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Abstract 

It is well documented that transcriptionally coordinated genes tend to be functionally related, 

and that such relationships may be conserved across different species, and even kingdoms. 

(Ihmels et al., 2004). Such relationships was initially utilized to reveal functional gene 

modules in yeast and mammals (Ihmels et al., 2004), and to explore orthologous gene 

functions between different species and kingdoms (Stuart et al., 2003; Bergmann et al., 

2004). 

 Model organisms, such as Arabidopsis, are readily used in basic research due to 

resource availability and relative speed of data acquisition. A major goal is to transfer the 

acquired knowledge from these model organisms to species that are of greater importance to 

our society. However, due to large gene families in plants, the identification of functional 

equivalents of well characterized Arabidopsis genes in other plants is a non-trivial task, 

which often returns erroneous or inconclusive results.  

 In this thesis, concepts of utilizing co-expression networks to help infer (i) gene 

function, (ii) organization of biological processes and (iii) knowledge transfer between 

species are introduced. An often overlooked fact by bioinformaticians is that a bioinformatic 

method is as useful as its accessibility. Therefore, majority of the work presented in this 

thesis was directed on developing freely available, user-friendly web-tools accessible for any 

biologist.  

  

 

  



 

 

Zusammenfassung 

Es ist bereits ausgiebig gezeigt worden, dass Gene, deren Expression auf 

Transkriptionsebene koordiniert ist, häufig auch funktional in verwandten 

Stoffwechselwegen vorkommen, und dass sich dies wahrscheinlich auch Spezies- und sogar 

Reichübergreifend sagen lässt (Ihmels et al., 2004). Anfänglich wurden solche Beziehungen 

verwendet, um sogenannte Genfunktionsmodule in Hefe und Säugern aufzudecken (Ihmels et 

al., 2004), um dann orthologe Genfunktionen zwischen verschiedene Spezies und Reichen zu 

entdecken (Stuart et al., 2003; Bergmann et al., 2004). 

Modellorganismen wie Arabidopsis werden bevorzugt in der Forschung verwendet, weil man 

durch die schnelle Generationszeit in kurzer Zeit viele Daten erheben kann und aufgrund 

dessen die Ressourcen- und Informationsvielfalt um ein Vielfaches größer ist. Ein Hauptziel 

ist der Wissenstransfer von Modellorganismen auf Spezies, die gesellschaftlich von höherer 

Bedeutung sind wie z.B. Getreidearten oder andere Feldfrüchte. Pflanzen besitzen oft große 

Genfamilien und die eindeutige Identifizierung von gut charakterisierten 

Arabidopsisorthologen in besagten Nutzpflanzen ist kein triviales Vorhaben.          

In der vorliegenden Arbeit werden Konzepte zur Nutzung von Co-expressionsnetzwerken 

beschrieben, die helfen sollen (i) Genfunktionen zu identifizieren, (ii) die Organisation von 

biologischen Prozessen aufzuklären und (iii) das erworbene Wissen auf andere Spezies 

übertragbar zu machen. Ein häufig von Bioinformatikern übersehender Umstand ist, dass 

bioinformatische Methoden nur so sinnvoll sind wie ihre Zugänglichkeit. Deshalb basiert der 

Großteil dieser Arbeit auf freiverfügbaren und vor allem für Biologen nutzerfreundlichen 

Webtools.                
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1. Introduction 
Biology is currently one of the most rapidly evolving sciences. Cross-diciplinary 

developments in molecular biology, chemistry and computer science generate vast amount of 

biological data from high-throughput -omics studies. Genomics, in the form of genome 

sequences from various organisms, have increased our understanding of gene content, gene 

function and evolution. As of June 2010, over 1500 genomes from prokaryotic, eukaryotic 

and archae organisms have been fully sequenced, and over 5500 sequencing projects are in 

progress (Liolios et al., 2010). Transcriptomic studies, i.e. microarrays and deep sequencing 

of mRNA, reveal how internal or external perturbations affect the responses of an organism. 

Over 100.000 microarray experiments from various organisms are now publicly available 

(Rocca-Serra et al., 2003). While not as exhaustive, high through-put studies of metabolome 

(Hegeman et al., 2010), proteome (Premsler et al., 2009), interactome (Lievens et al., 2009) 

are also becoming important factors in understanding biology.  

 The descriptive biology of last century is slowly transforming into science that can 

both explain and predict complex biological systems (Kitano et al., 2005). While molecular 

biology of 20th century focused on the elucidating the function and interaction of single 

components, many studies today use systems biology approaches to investigate how different 

cellular components interact to make up a system (e.g. cell). This may be achieved by the 

combination of different -omic disciplines (Kitano, 2002). It is safe to say that no gene, nor 

gene product, is an island, and that each component of a cell is directly or indirectly 

interacting and affecting at least one other component of the cell. Systems biology attempts to 

model dynamic interactions between different components by measuring changes of the 

system in response to perturbances (Kirschner, 2002). The major tool of a systems biologist is 

arguably transcriptomics, which can measure simultaneous expression level of thousands of 

mRNAs in response to any internal or external stimuli. Indeed, just for Arabidopsis thaliana 

alone, nearly 400 experiments investigating the response of this plant to various stimuli, 

stresses or genotypes has been performed (Goda et al., 2008, Kilian et al., 2007).    
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 A major discovery while analyzing the accumulating expression data was that 

functionally related genes tend to be transcriptionally coordinated, i.e. co-expressed (Stuart et 

al., 2003, Yu et al., 2003). For example, by identifying genes showing similar expression 

patterns to cellulose synthase (CESA) genes across 408 microarrays, Persson et al., (2005) 

characterized two novel genes that displayed deficiencies related to cellulose synthesis in 

Arabidopsis. Consequently, using “guilt by association” approaches, co-expression analyses 

have proved valuable for rapid inferences of gene functions and of biological pathway 

discovery (Wei et al., 2006; Yonekura-Sakakibara et al., 2008; Usadel et al., 2009).   

 Arabidopsis has little economic value, but is used to research dicotyledon plants for a 

number of reasons including a short generation time, large seed production, convenient size, a 

relatively small and fully sequenced genome, and the existence of well established 

transformation protocols. The plant has approximately 50% of the genes functionally 

annotated by sequence homology, and roughly 11% of the genes are associated with distinct 

biological functions that have been experimentally verified (Saito et al., 2008). Due to little 

economical value of Arabidopsis, the knowledge obtained in this plant needs to be applied to 

other species, which may be of greater importance for the society. However, while the exact 

function of a gene product in a model organism (i.e. knowledge donor) has been proven 

experimentally, uncovering the identity of the functional equivalent in, for example a crop 

plant (i.e. knowledge acceptor) is not trivial. Plants generally hold large gene families and 

sequence comparisons can return a large list of possible candidate genes. However, several 

studies have showed that co-expressed relationships are conserved across distantly related 

organsisms, such as yeast, mouse and human (Stuart et al., 2003; Bergmann et al., 2004). 

Thus, a functional homolog may be rapidly identified by combined sequence and co-

expression approaches. 

 Today, a cell biologist faces three challenges: (i) to define the function of cellular 

components (e.g. proteins, metabolites), (ii) to understand how those components cooperate 

to form a living cell, and ultimately (iii) to transfer and apply this knowledge to any organism 

important for the society. The work presented in this thesis attempts to demonstrate how 

comparative co-expression analysis in several plant species, combined with available 

experimental and bioinformatical knowledge can help answer the abovementioned questions. 

The following chapters in the introduction provide key concepts which were used in this 

work.   
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1.1 Transcriptomics 
A transcriptome is a collection of all messenger RNA molecules in a cell. The information 

gained from transcriptomics can provide a platform for the researchers to gain a better 

understanding of how genes and pathways are involved in biological processes. Although 

several important steps such as translation efficiency and post-translational modification are 

not revealed by measuring mRNA levels, transcriptomics via DNA microarrays provide a 

mature and affordable method for monitoring regulatory changes.  

 AtGenExpress consortium generated an exhaustive transcriptomic atlas of all 

Arabidopsis organs during different stages of development and during a wide range of abiotic 

(e.g. heat, cold, drought), biotic (infection) and hormonal (e.g. auxin, cytokinin) treatments 

(Schmid et al., 2005, Kilian et al., 2007, Goda et al., 2008). Apart from measuring of the 

mRNA levels, DNA microarray technology has also been applied to study alternative splicing 

(splicing arrays reviewed in Hallegger et al., 2010), genotype (SNP arrays reviewed in Gupta 

et al., 2008), and empirical discovery of unknown transcripts (tiling arrays reviewed in 

Gregory, 2009). 

 The traditional DNA microarrays, however, represent powerful high throughput tools 

to measure the expression of thousands of genes simultaneously, and have been successfully 

applied to study transcriptional changes during developmental programs, responses to 

internal (genetic) and external (stress) perturbations. DNA microarrays are usually simple 

glass slides with microscopic spots of DNA probes attached to the surface with each spot 

consisting of several identical sequences. The sequence of each probe can be targeted towards 

a certain gene or targeted towards some other sequence in a genome. Two types of 

microarrays exist: spotted cDNA microarrays utilize cDNA probes spotted onto a glass slide 

by a robotic “arrayer”, while oligonucleotide arrays employ in-situ synthesized short (~25 

nucleotide long, as used by for example Affymetrix) or long (~50-70 used typically by 

Agilent, Illumina, and Nimblegen) oligonucleotides. Spotted cDNA and long oligonucleotide 

arrays permit hybridization of two samples to the same array, where treatment and control 

can be labeled with Cy3 (green) and Cy5 (red) fluorophores, respectively, and the differential 

gene expression can be directly measured by observing Cy3/Cy5 ratio. For short 

oligonucleotide arrays, one mRNA population per treatment is hybridized to one microarray, 

requiring at least two microarrays per any comparative experiment.    

 A workflow over how microarrays are used is presented in Figure 1.1 (reviewed in 

Churchill, 2002). To use a microarray for expression measurements, the investigator first 
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needs to formulate the set up of the experiment. Often, a researcher compares two cell 

populations; one from treatment/disease and one from control. To avoid effects of technical 

variance (e.g. imperfections of array manufacturing) and biological variance (e.g. discrepancy 

in responses of two genetically equal cell cultures/organisms to a given treatment), it is 

generally accepted to use 3 microarrays for each measurement, with mRNA from one or 

more independent cell cultures.  

 
Figure 1.1 Comparison of two color and one color microarray procedures. For two color 

arrays, two cell populations, for instance treatment and control, are isolated, RNA is 

extracted, and cDNA is made, which is used for in vitro transcription (IVT) with Cy3 (green) 

or Cy5 (red) labeled nucleotides. The two labeled cRNA samples are mixed and hybridized 

on a glass slide array, which is scanned with a laser, followed by computer analysis of the 

intensity image. With Affymetrix arrays, one population is used as starting material. Total 

RNA is extracted and cDNA is prepared. The cDNA is used in an IVT reaction to generate 

biotinylated cRNA. After fragmentation, this cRNA is hybridized to microarrays, washed and 

stained with phycoerythrin-conjugated streptavidin, and subsequently scanned on a laser 

scanner. Figure based on (Staal et al., 2003) 
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Extracted mRNA is reverse transcribed into cRNA, and labeled with a fluorescent dye 

(Cy3/C5 for spotted, or long, oligonucleotide microarrays), or biotin (short oligonucleotide). 

The array is washed with the labelled cRNA (followed washing with phycoerythrin-

conjugated streptavidin for short oligo microarrays), and under a fluorescent light, glow of 

each spot is quantified using a confocal microscope.  

 Microarrays are subject to multiple sources of undesired variation, which includes the 

array manufacturing process (e.g. imperfections during manufacture, dust spots on array), the 

preparation of the biological sample (e.g. different labeling methods used by different 

laboratories), the hybridization of the sample to the array (due to the existence of different 

hybridization protocols), and the quantification of the spot intensities (due to different 

protocols and types of laser scanners). Normalization is a critical initial step in the analysis of 

a microarray experiment, where the objective is to balance the individual signal intensity 

levels across the experimental factors, while maintaining the effect due to the treatment under 

investigation. The most commonly used normalization techniques assume that the majority of 

genes are not differentially regulated, or that the number of up-regulated genes roughly 

equals the number of down-regulated (Do et al., 2006). These assumptions seem to be 

adequate and do not appear to affect most biological experiments. The normalization strategy 

of in situ synthesized short oligonucletode arrays is different from that of long 

oligonucleotide or cDNA arrays, due to differences in array structure and labeling scheme. 

As short oligonucleotide microarrays are one colored, the normalization data is performed at 

the level of between-array, while normalization of two colored spotted oligonucleotide or 

cDNA array data is basically conducted at the level of within array. Do et al. (2006) provides 

a review discussing the different normalization procedures. While different normalization 

algorithms that can return dramatically different expression estimates, it has been showed that 

for co-expression analysis, the effect of a normalization procedure is negligible for a larger 

(>50) number of microarrays (Usadel et al., 2009). Short oligonucleotide microarrays from 

Affymetrix were used in this study, and the arrays were normalized using the popular RMA 

(Irizarry et al., 2003) and MAS5 algorithms (www.affymetrix.com).  

 

1.2 Co-expression analysis 
Functionally related genes tend to show coordinated spatiotemporal expression, i.e. co-

expression (Figure 1.2; Yu et al., 2003). Co-expression analysis therefore employs "guilt-by-

association" paradigm, where investigator assumes that the query gene is involved in the 
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same biological process as genes co-expressed with the query. While such assumption 

disregards the fact that coordination between mRNAs and corresponding proteins is 

surprisingly low, probably due to translational regulation (Maier et al., 2009), co-expression 

analysis has been successfully applied to functionally characterize previously unknown genes 

from yeast (Yu et al. 2003) and human (Lee et al. 2004). 

 
Figure 1.2 Expression values (y-axis) of Arabidopsis CESA1, 3, and 6 genes across 

microarray data from different tissues (x-axis). The three CESA genes correlate with 

average Pearson correlation coefficient (r-value) of 0.87. Output from GeneCAT's 

ExpressionProfiling tool (Mutwil et al., 2008). 

 

Co-expression analysis in its simplest form can be used to: (1) find novel genes involved in 

the biological process of interest, and (2) suggest the biological process a gene is involved in. 

For example, (1) transcript of Arabidopsis gene At1g31330 (photosystem I subunit F) is 

strongly co-expressed with other subunits of photosystem I and II complexes, and also with 

gene At1g08380, annotated as "predicted protein" (Table 1.1). While At1g08380 gene is not 

characterized, it is likely to be also involved in photosynthesis. (2) Let's assume that the 

molecular function of At1g08380 was defined in an experimental study, yet the biological 
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context of this gene is unknown. However, the gene is strongly associated with other genes 

involved in photosynthesis, implying the involvement of At1g08380 in this process. 

 

r-value Gene ID Description 
1 at1g31330 photosystem I reaction center subunit III family protein 
0.98206 at5g66570 Extrinsic subunit of photosystem II 
0.9815 at4g12800 photosystem I reaction center subunit XI 
0.97977 at1g55670 photosystem I reaction center subunit V 
0.97963 at1g08380 expressed protein  
0.97789 at4g02770 photosystem I reaction center subunit II 
0.97714 at4g28750 photosystem I reaction center subunit IV 
0.97547 at3g16140 photosystem I reaction center subunit VI 
0.97473 at1g52230 photosystem I reaction center subunit VI, chloroplast, putative 
0.97373 at3g61470 chlorophyll A-B binding protein (LHCA2) 

 

Table 1.1 Co-expression analysis of photosystem I subunit At1g31330.  Top ten co-

expressed genes are showed. 

 

 In Arabidopsis, there are several instances in which co-expression analyses have 

successfully been used to identify genes not previously associated with a given biological 

process. Perhaps the most explored co-expressed process is the formation of secondary cell 

wall in Arabidopsis (Brown et al., 2005; Persson et al., 2005). Both studies identified 

candidate genes from co-expression analysis, and subsequently took a reverse genetics 

approach and showed through mutant analyses that several of the predicted genes were 

essential for secondary cell wall integrity.  

 Several groups have used co-expression approaches in attempts to associate genes 

with specific pathways or with given functions (Aoki et al., 2007), and with biological 

processes. For example, Ehlting et al., (2008) used co-expression analysis to ascribe potential 

function to members of the large cytochrome P450 superfamily in Arabidopsis. Horan et al. 

(2008) assigned 104 proteins of unknown function (PUFs) along with 269 proteins of known 

function (PKFs) as being involved in a wide variety of abiotic stresses, whereas a further 206 

PUF genes, along with 608 PKFs, could be associated with specific stresses.  

Co-expression relationships can be represented as tables (e.g. Table 1.1), or as graphs 

(introduced in chapter 1.4), in which nodes represent genes and connecting edges represent 

significant co-expression. The representation of co-expression relationships as networks 
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enable biologists to more readily contextualize their genes or proteins of interest, and are 

discussed and utilized in later chapters of this thesis. 

 

1.2.1 Expression similarity metrics 
Pearson Correlation Coefficient (PCC), or r-value, is the most commonly used metric to 

score expression similarity between any two genes. The PCC measures the tendency of the 

expression levels of a pair of genes to respond in the same (or opposite) direction across 

different samples. It ranges from -1, indicating that the two genes respond in completely 

opposite directions, to +1, in which case the two genes respond in the same manner across all 

samples (Figure 1.3). Thus, a positive correlation coefficient indicates that an increase in the 

expression level of one gene is likely reflected by an increase in the expression level of the 

other. In cases where the coefficient is zero, no association can be detected. 

 
Figure 1.3. Exemplary plots of expression values of gene x vs. gene y. Corresponding PCC 

values are given. 

 

Pearson correlation coefficient is obtained by the formula (1.1): 

(1.1) 
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where xi, yi represent the expression values of gene x and y in array i, and x� and y� are the 

average expression of genes x and y across all arrays. A feature of Pearson correlation 

coefficient is its sensitivity for outliers. If both genes show very high expression, i.e. from an 

outlier in one sample because of a single ‘bad’ array, the Pearson correlation coefficient can 

approach +1, falsely indicating a strong correlation when none in fact exists.  

 Because of the Pearson correlation coefficient’s sensitivity to outliers, other metrics 

more robust to outliers, such as Spearman Correlation Coefficient (SCC), can be applied. 

While SCC utilizes the same formula (1.1) for calculating the correlation coefficient, the 

expression values are first transformed into ranks, where for each gene the lowest expression 

level in the expression dataset gets a value of 1, the second lowest 2, and so on. This 

transformation diminishes the effect of an outlier as for large amount of arrays, the difference 

between an outlier and highest biologically relevant expression value is 1. However, in some 

cases such an ‘outlier’ might actually be driven by biology, and thus be highly meaningful. It 

may therefore be relevant to manually inspect the plotting of the values. Another interesting 

characteristic of the Pearson correlation coefficient is that it can only be +1 if the relationship 

in question is strictly linear, whereas the Spearman correlation can be used to detect non-

linear associations if one gene is monotonically rising or falling in its expression levels with 

respect to the other.  

Nevertheless, there are many kinds of relationships that cannot be uncovered with either 

correlation coefficient. For this reason the mutual information, derived from information 

theory, has been suggested to decipher relationships between genes (Steuer et al., 2002). The 

mutual information quantifies the reduction in the uncertainty of one gene given knowledge 

about another gene. In the case that there is no interdependence it assumes the value of zero, 

but unlike correlation coefficients there is no upper bound for the mutual information score. 

Because the calculation of the mutual information more samples are needed for an estimate of 

the mutual information than for the estimation of correlation coefficients. In principle, the 

mutual information is suited to find any kind of relationship between genes. Complex non-

linear types of relationships, however, do not seem to be present in all examples from real 

biological data (Daub et al. 2004), and are much harder to interpret biologically.  

 

1.2.2 Setting threshold for biologically relevant co-expression 
While abovementioned similarity metrics return a numerical value that reflects the strength of 

expression profile similarity, a more difficult task is to define a biologically relevant cut-off. 
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A commonly used method in statistics is calculation of p-values, which refers to the 

likelihood of obtaining the same or a better co-expression score than the observed by chance 

alone. The p-value can be calculated using formula (1.2): 

(1.2) 

where, r is the co-expression score and n is number of microarrays used in the study. 

However, due to a large number of genes on any array, p-value metrics often return very 

large amount of significantly correlated genes. Also, in cases where many arrays are used to 

compute the co-expression scores, a correlation coefficient as low as 0.2 can become highly 

significant. Therefore, especially when considering large number of samples, a significant 

correlation might not be of biological relevance. In addition, for Pearson’s correlation 

analysis, the data have to be normally distributed for each gene and bivariate normally 

distributed for gene pairs, which might not hold true for all gene pairs. Also, the hypothesis 

of independence of experimental conditions cannot be essentially satisfied because the 

experiments were conducted for a particular biological purpose, resulting in deviations from 

the necessary behavior of the data (e.g. strong enrichment for microarrays representing one 

tissue type). 

 Rather than using p-value, existing co-expression approaches use subjective cut-offs. 

For example, r-value of 0.7 is often used as accepted cut-off (e.g. Srinivasasainagendra et al., 

2008), as r2= 0.49, which amounts to ~50% shared variance between expression profiles of 

two genes.  

 

1.2.3 Meta-analysis of co-expression relationships. 
Several studies have combined co-expression with other types of analyses.  

 Cis-regulatory elements in the promoter are the major contributions to the 

spatiotemporal regulation of gene expression. Several investigations observed that co-

expressed genes share similar cis-regulatory sites (e.g. Wang et al., 2003), and studies 

combining co-expression analysis with promoter motif showed that this approach can 

effectively predict novel cis-elements. For example, Toufighi et al., (2005) showed that genes 

co-expressed due to abscinic acid treatment contain ACGT cis-element, which has been 

shown to mediate response to the hormone (Hobo et al., 1999). Consequently, bioinformatic 
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tools that can extract enriched regulatory sites from promoters of co-expressed genes have 

been developed for plants (e.g. Mariño-Ramírez, 2009, Toufighi et al., (2005)).  

 Comparative co-expression analyses between different species and kingdoms have 

revealed that co-expression relationships between corresponding gene pairs are robust (van 

Noort et al., 2003). For example, Stuart et al. (2003) combined co-expression analysis with 

gene sequence, and showed that certain modules of genes that are co-expressed in one species 

may be similarly co-expressed in other species, indicating that not only gene sequence, but 

also regulation can be conserved. Using this type of comparative analysis the authors 

predicted functionalities of different genes between species, and proved the predictions for a 

gene involved in cell proliferation in C. elegans using an RNAi approach (Stuart et al. 2003). 

A study by Geisler-Lee et al., (2007) combined co-expression analysis, in silico sub-cellular 

localization prediction, together with protein-protein interaction data from yeast and other 

species, to predict the Arabidopsis interactome.  The study found total of 1,159 high 

confidence, 5,913 medium confidence, and 12,907 low confidence interactions in 

Arabidopsis proteins.   

 Ihmels et al. (2004) analysed how different genes that encode metabolic enzymes in 

yeast are transcriptionally wired. They found that most such connections formed linear 

arrangements following predicted pathway structures. Comparable analyses were 

subsequently undertaken in Arabidopsis. One such analysis investigated the transcriptional 

coordination of genes associated with secondary metabolism, and found that the genes 

encoding the main enzymes in the investigated pathways display a clear linear relationship to 

each other (Gachon et al. 2005). This analysis was followed by a wider analysis conducted on 

all genes associated with different metabolic pathways (Wei et al. 2006). Similar to Ihmels et 

al. (2004) observations, this study revealed that genes associated with distinct metabolic 

pathways were more tightly co-expressed than those in different pathways. 

 Co-expression analysis has also been combined with other omics techniques, such as 

metabolomics, to estimate coordination between gene expression and metabolite content, and 

to assess metabolite regulated gene circuits. Hirai et al. 2004 showed that both genes and 

metabolites associated with the glucosinolate pathway responded in an organized fashion, 

suggesting that this approach can reveal genes infuencing metabolic content of cell.  

These and other examples demonstrate the importance of combining co-expression analyses 

with other large scale data, which may provide a system-wide glimpse into a cell. (Sweetlove 

& Fernie, 2005). 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mari%C3%B1o-Ram%C3%ADrez%20L%22%5BAuthor%5D�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Geisler-Lee%20J%22%5BAuthor%5D�
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1.3 Functional gene ontology 
Functional ontology analysis via Gene Ontology and Mapman Ontology are used in this 

thesis (chapter 3 & 4) to help infer the biological function of co-expression networks. A great 

advantage of ontologies is that they are precise and can be used to implement biological 

knowledge into algorithms.  

 Gene Ontology is a collection of terms used to describe gene products and was 

created to facilitate standardization and exchangeability of gene description (Ashburner et al., 

2000). The Gene Ontology project provides an ontology of defined terms representing gene 

product properties. The ontology covers three domains: (i) cellular component (e.g. 

mitochondrium), (ii) molecular function (e.g. oxidoreductase activity) and (iii) biological 

process (e.g. oxidative phosphorylation). The GO vocabulary is designed to be species-

neutral, and includes terms applicable to prokaryotes and eukaryotes, single and multicellular 

organisms. 

 Mapman ontology was designed specifically for plants (Usadel et al., 2006). Genes 

are assigned based on their annotation into largely non-redundant and hierarchically 

organised BINs. Each BIN consists of items of similar biological function and can be further 

split into sub-BINs, corresponding to submodes of the biological function. 

 

1.4 Graphs and graphs theory 
Graphs, or networks, are a conceptual construct that show the relationships in a system. A 

graph is often depicted as a series of nodes that are connected by lines (edges). The structure 

of a graph can be employed to define and analyse different properties that would not be 

visible when analyzing associations presented as a list.  

 Several studies have explored the properties of biological networks (Ihmels et al., 

2004; Mentzen & Wurtele, 2008; Ma et al., 2007). The structture of biological networks may 

generally be described by power-law related relationships, i.e. a small number of nodes 

appear to have a large number of connections while most nodes have very few connections 

(Albert, 2005). Another apparent feature is that essentiality correlates with high node degree 

in both co-expression and protein-protein interaction networks in several species, i.e. 

essential genes have more edges that non-essential genes (Bergmann et al., 2004; Jeong et al., 

2001; Carlson et al., 2006).  

Properties of essential genes in co-expression networks are further discussed in chapter 

3.3.11. 
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1.5 Clustering 
Clustering is a process of grouping objects that are similar to each other, without considering 

any prior knowledge of their true membership. Clustering methods are widely used in co-

expression analyses, as the process groups genes with similar expression patterns.  

 Genome-scale co-expression networks, probably due to the power-law nature, are 

highly heterogenous, with regions consisting of densely connected nodes, interspersed with 

regions of low density. The densely connected regions represent clusters of highly co-

expressed genes, most likely involved in same biological process, and are therefore of great 

interest to a biologist. Clustering of microarray data is therefore a common procedure in 

transcriptomics. 

 The most popular algorithms in clustring of gene expression values are hierarchical 

clustering and k-means clustering (Eisen et al. 1998,  Sherlock G., 2000). Several algorithms 

clustering networks, such as Markov Clustering and MCODE have been applied to protein-

protein interaction networks (van Dongen, 2000, Bader and Hogue, 2003). Thalamuthu et al. 

(2006) provided a omprehensive review on clustering of expression data. 

Clustering of co-expression networks, together with development of novel Heuristic Cluster 

Chiseling Algorithm (HCCA) are discusses in chapter 3.3.4. 

 

1.6 Outline and contributions 
In this thesis, new concepts of utilizing co-expression networks to help infer (i) gene 

function, (ii) organization of biological processes and (iii) knowledge transfer between 

species were introduced. An often overlooked fact by bioinformaticians is that a 

bioinformatic method is as useful as its accessibility. Therefore, majority of the work 

presented in this thesis was directed on developing freely available, user-friendly web-tools 

accessible for any biologist.  

 In Chapter 2, co-expression tool GeneCAT (Gene Co-expression Analysis Toolbox) 

for Arabidopsis and Barley is introduced. This platform provides the user both with standard 

co-expression tools, such as gene clustering and expression profiling, and also includes tools 

that use multiple bait-genes and makes functional inferences across different organisms by 

combining sequence comparison and co-expression analysis.  

 In Chapter 3, AraNet, web-tool for Arabidopsis based on co-expression network, is 

introduced. To better visualize the genome-wide co-expression network of Arabidopsis, a 

novel graph clustering algorithm was developed. Available phenotypic data for Arabidopsis, 
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together with ontological analysis of the network was combined to assign function to 

different network regions. To cluster the co-expression network, we have developed HCCA 

algorithm. We investigated the properties of the co-expression network in terms of gene 

essentiality, and characterized six novel genes, essential for Arabidopsis development.  

Importantly, we have introduced an analysis of transcriptional associations of Mapman 

ontology terms, which might reflect the coordination of biological processes in plants. We 

further explored the predictive power of this network through mutant analyses, and identified 

six new genes that are essential to plant growth.  

  In Chapter 4, we have extended AraNet with six additional model plant species, 

creating PlaNet. We implemented a comparative network algorithm that estimates similarities 

between network structures. Thus, the platform can be used to swiftly infer similar co-

expressed network vicinities within and across species and can predict the identity of 

functional homologs.  

 

The context of the results are discussed in the final chapter along with an outlook. 
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2. GeneCAT - Novel webtools that combine 
BLAST and co-expression analyses 
 
2.1 Abstract 
The Gene Co-expression Analysis Tool-box (GeneCAT) introduces several novel microarray 

data analyzing tools. First, the multi-gene co-expression analysis, combined with co-

expressed gene networks, provides a more powerful data mining technique than standard, 

single gene co-expression analysis. Second, the high throughput Map-O-Matic tool matches 

co-expression pattern of multiple query genes to genes present in user-defined sub-databases, 

and can therefore be used for gene mapping in forward genetic screens. Third, Rosetta 

combines co-expression analysis with BLAST and can be used to find “true” gene orthologs 

in the plant model organisms Arabidopsis thaliana and  Hordeum vulgare (barley). 

GeneCAT is equipped with expression data for the model plant Arabidopsis thaliana, and 

first to introduce co-expression mining tools for the monocot barley. GeneCAT is available at 

http://genecat.mpg.de. 

 

2.2 Introduction 
The ability to measure the activity of several thousands of genes simultaneously has 

revolutionized the way we currently view biological processes. Substantial amounts of such 

expression data that represent experiments from a variety of tissues, developmental stages 

and stimuli, are currently publicly available for different organisms. Widely used  public 

microarray data repositories are ArrayExpress (Parkinson et al., 2007) and Gene Expression 

Omnibus (GEO). As each microarray experiment often generates large amounts of 

expression data, it is often difficult for researches without background in bioinformatics to 

extract the information they seek. However, several web-based tools that analyze collections 

of publicly available microarray data for the plant model organism Arabidopsis thaliana have 

therefore been developed, including Genevestigator (Zimmermann et al., 2004), Arabidopsis 

Co-expression Tool (ACT; Manfield et al., 2006), Botany Array Resource (Toufighi et al., 
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2005) , CSB.DB (Steinhauser et al., 2004) and ATTED-II (Obayashi et al., 2007). These 

tools provide comparative gene analyses including cis-element prediction, expression 

profiling and co-expression analysis. In addition, a tool that combines co-expression and 

predicted protein-protein interactions has recently been developed (Gesiler-Lee et al., 2007). 

It therefore appears that future web-tools will combine different types of data to facilitate a 

more complex and multi-dimensional view of organisms such as Arabidopsis.  

 Several studies exploit the fact that genes which are functionally related may be 

transcriptionally coordinated (Stuart et al., 2003; Bergmann et al., 2004). Recent studies have 

shown that this is also the case in plants (Brown et al., 2005; Persson et al., 2005; Wei et al., 

2006; Hirai et al., 2007). Consequently, most of the current web-based tools are mainly 

focused on retrieving expression and/or co-expression patterns for individual genes. We have 

extended and refined this process and produced several new tools under the banner Gene Co-

expression Analysis Toolbox (GeneCAT). This platform provides the user both with standard 

co-expression tools, such as gene clustering and expression profiling, and also includes tools 

that use multiple bait-genes and makes functional inferences across different organisms by 

combining BLAST and co-expression. GeneCAT is preloaded with data sets for two plant 

model organisms, Arabidopsis and barley, and data set from other species can readily be 

added. To increase the accessibility to the tools we have made GeneCAT accessible either 

via the web (www.genecat.mpg.de) or as platform independent source-code, upon request. 

 

2.3 Results and Discussion 
GeneCAT provides expression analyzing tools for two major model organisms in plant 

biology; Arabidopsis and barley. To provide an easy introduction to the application of the 

GeneCAT tools, we present each of them individually and give one biological example for 

how each tool may be used. A more detailed description of the different tools can be found 

on genecat.mpg.de FAQ section. 

 

2.3.1 Expression Profiling and Tree View - Cellulose synthases 
The Expression Profiling tool generates line plots of expression profiles for a specified set of 

genes within Arabidopsis and barley. The ExpressionTree tool uses these data to generate 

dendrograms corresponding to the tightness of co-expression for the same set of genes. To 

exemplify these tools we analyzed the cellulose synthase (CESA) genes from both 



  17 2. GeneCAT - Novel webtools that combine BLAST and co-expression analyses 
 

 

Arabidopsis and barley. There are 10 and at least 8 members of the CESA families in 

Arabidopsis and barley, respectively. The current model for cellulose synthesis proposes that 

at least three different CESA proteins are assembled into a functional complex (reviewed in 

Mutwil et al., 2008). Mutant analyses have shown that AtCESA1, 3 and 6 are necessary for 

primary cell wall cellulose synthesis in Arabidopsis (Arioli et al., 1998; Fagard et al., 2000; 

Persson et al., 2007). Similarly, AtCESA4, 7 and 8 are required for cellulose production 

during secondary cell wall formation (Turner and Somerville, 1997). A similar divergence of 

the CESA genes associated with primary and secondary cell wall synthesis is also predicted 

in barley (Burton et al. 2004).  

 
Figure 2.1. ExpressionTree analysis for cellulose synthase genes. A. ExpressionTree 

analysis of AtCesA genes. B. ExpressionTree analysis of HvCesA genes. Numbers above 

edges signify branch lenghts, where lenght = 1 - PCC. 
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 The 10 CESA genes from Arabidopsis were analyzed using the ExpressionTree tool 

(Figure 2.1A). Two tight clusters were evident; one consisting of AtCESA4, 7 and 8 and the 

other including AtCESA1, 3 and 6 corresponding to secondary and primary cell wall 

biosynthesis, respectively. Interestingly, AtCESA2 and AtCESA5 are tightly associated with 

the primary cell wall AtCESAs, and have recently been implicated to be functionally 

redundant to AtCESA6 (Persson et al., 2007; Desprez et al., 2007). Similar to Arabidopsis, 

the expression of the eight Barley HvCESAs create two tight clusters consisting of HvCESA1, 

2 and 6, and HvCESA5/7, 4 and 8 (Figure 2.1B), suggesting that these groups of HvCESAs 

form functional complexes in barley. These data are consistent with results obtained by q-

RT-PCR obtained by Burton et al (2004). The high sequence similarity of HvCESA5 and 

HvCESA7 makes it impossible to distinguish between these homologs (Burton et al 2004). 

 
Figure 2.2 ExpressionProfiler output of primary cell wall associated CESAs.  

 

We further examined the AtCESA expression levels using the Expression Profiling tool. Six 

of the AtCESAs, AtCESA1, 2, 3, 5, 6 and 9 are anticipated to be involved in primary cellulose 

synthesis (Somerville, 2006). Recently, two studies provided evidence for functional 

redundancies for AtCESA2, 5, 6 and 9 (Persson et al., 2007; Desprez et al., 2007). To 
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evaluate the redundancies based on transcriptional patterns we plotted the expression levels 

for these AtCESAs across different tissues (Figure 2.2). AtCESA2 and 6 are expressed 

throughout the plant. Consistent with this, double mutants between cesa2 and cesa6 result in 

additive phenotypic traits compared to the cesa2 and cesa6 parent lines (Persson et al., 2007).  

Interestingly, double mutants between cesa5 and cesa6 result in retardation of seedling 

growth (Desprez et al., 2007. In addition, AtCESA9 is highly expressed in seeds and the male 

organs of flowers. In agreement with this triple mutants between cesa2, cesa6 and cesa9 

result in male gametophytic lethality (Persson et al., 2007).  

 

The use of these tools may similarly predict phenotypic outcomes and may therefore also 

provide a platform for researchers to choose mutant combinations. 

2.3.2 Co-expression using multiple bait genes – Suberin 
biosynthesis 
Genes that are involved in related processes are often co-expressed (Wei et al., 2006). Co-

expression analyses therefore generally use a bait gene with a known function that is used to 

target transcriptionally coordinated genes. This approach typically returns a list of genes that 

appear co-expressed with the bait gene. It is, however, difficult to prioritize what genes that 

are most relevant to the process that the bait gene is involved in. It therefore appears that an 

enrichment of such genes would be highly appreciated by biologists. GeneCAT utilizes two 

approaches to enrich genes for a given function. First, two or more genes that are involved in 

functionally related processes may be used as bait genes to more accurately identify target 

genes. Second, target genes that are true positives should in general also exhibit significant 

transcriptional coordination to each other, thus forming clusters of co-expressed genes (Aoki 

et al. 2007). Several other tools provide the opportunity to apply such approaches, but 

GeneCAT is first to relate network information to the list of co-expressed genes. This process 

is done in three steps. In the first step an average co-expressed gene list is calculated for the 

bait genes. In the second step, a co-expressed gene network is created by measuring mutual 

co-expression ranks between the top 50 genes from the list in a pair-wise manner. Any two 

nodes (genes) that are connected with bold, normal or dashed lines display mutual ranks 

smaller than 10, 20 or 50, respectively. Blue nodes indicate bait genes and genes connected 

to these baits are colored green, orange and red if they are linked to any of the bait genes with 

bold, normal or dashed lines, respectively. The third step implements the color codes from 
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the network to the co-expressed gene list, thus highlighting genes that exhibit high 

transcriptional connectivity to the bait genes and other genes in the list. 

 Since genes that are co-expressed tend to be functionally related, a typical co-

expression list includes genes with overlapping annotations. This implies that the gene 

products may be functionally redundant. Consequently, any phenotypic traits may be masked 

by functional compensation if one gene is deleted. To identify genes that may be functionally 

redundant cross-wise BLAST analyses are performed for the top 150 genes in the co-

expressed gene list. This analysis may thus give biologists information about functionally 

redundant genes and therefore candidates for additional mutant analyses. 

 To illustrate how the co-expression tool works we use a multi-gene co-expression 

approach for the suberin biosynthesis pathway from L-phenylalanine at AraCyc 

(http://www.Arabidopsis.org/biocyc/index.jsp) as an example. Suberin is a waxy, polymeric 

plant cell wall constituent that regulates water transport and protects against pathogen attacks 

(Franke and Schreiber, 2007).  To enrich for other genes associated with suberin biosynthesis 

we then used these genes together with the OMT1 gene as bait genes for the multiple-bait 

gene co-expression analysis (Table 2.1; Figure 2.3). Several genes that are connected to 

shikimate, phenylpropanoid, and chorismate biosynthesis are among the most highly ranked 

genes in the table. For example, two genes annotated as 4-coumarate-CoA ligases 

(At1g51680 and At3g21240) are among the top ranked genes (Table 2.1). 
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Table 2.1. Co-expression analysis using multiple bait genes involved in suberin synthesis. 

Five genes associated with suberin biosynthesis (blue color) were used as bait genes for the 

co-expression tool at GeneCAT. Genes that are connected with display highest reciprocal 

ranks of 10, 20 and 50 to any of the bait genes, are color coded green, orange and red, 

respectively 
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These genes convert 4-coumarate into coumaryl-CoA linking the suberin biosynthesis and 

phenylpropanoid biosynthesis pathways. In addition, a gene annotated as prephenate 

dehydratase (At5g22630) is associated with the last steps in the phenylalanine biosynthesis 

pathway and may therefore provide substrate for the suberin biosynthesis.  

 

 
Figure 2.3. Co-expression network for multiple bait genes involved in Suberin 

biosynthesis. Cropped co-expression network generated by using At2g37040, At4g34050, 

At3g53260, At5g54160 and At2g30490 as bait genes. Blue nodes indicate the bait genes for 

the analysis. Green, orange and red nodes indicate decreasing strength between node and 

the bait genes, respectively. Similarly, black, grey and dashed lines indicate decreasing 

strength between any two nodes. 

 

Furthermore, the cross-wise BLAST analysis of the top 150 genes identified several putative 

homologs associated with suberin biosynthesis (Table 2.2). These genes may consequently 

perform similar functions and may be considered as prime candidates for multiple mutant 

analyses. 

By using several connected bait genes for a given process it is therefore apparent that 

functionally associated genes are enriched. 
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249910_at 
252652_at 
266257_at 
261758_at 

at5g22630 
at3g44720 
at2g27820 
at1g08250 

prephenate dehydratase family protein 
 

251962_at 
251324_at 
265444_s_at 
257313_at 

at3g53420 
at3g61430 
at2g37180 
at3g26520 

tonoplast intrinsic protein, putative, similar to 
tonoplast intrinsic protein GI:5081419 from 
(Brassica napus) 

247251_at 
253428_at 
250827_at 

at5g64740 
at4g32410 
at5g05170 

cellulose synthase, catalytic subunit, putative 

258037_at 
256186_at 
258047_at 

at3g21230 
at1g51680 
at3g21240 

4-coumarate--CoA ligase, putative 
 

245803_at 
245483_at 
247627_at 

at1g47128 
at4g16190 
at5g60360 

cysteine proteinase, putative  

255552_at 
260913_at 
263838_at 

at4g01850 
at1g02500 
at2g36880 

S-adenosylmethionine synthetase, putative 

259570_at 
259516_at 
261749_at 

at1g20440 
at1g20450 
at1g76180 

dehydrin  

263845_at 
251984_at 

at2g37040 
at3g53260 

phenylalanine ammonia-lyase  
 

245101_at 
267470_at 

at2g40890 
at2g30490 

cytochrome P450, putative 
 

245356_at 
257173_at 

at4g13940 
at3g23810 

adenosylhomocysteinase, putative  

258023_at 
253277_at 

at3g19450 
at4g34230 

cinnamyl-alcohol dehydrogenase, putative 

252291_s_at 
253099_s_at 

at3g49120 
at4g37530 

peroxidase, putative 
 

267153_at 
267154_at 

at2g30860 
at2g30870 

glutathione S-transferase, putative 
 

260180_at 
262990_at 

at1g70660 
at1g23260 

ubiquitin-conjugating enzyme family protein 
 

265354_at 
247656_at 

at2g16700 
at5g59890 

actin-depolymerizing factor  
 

 
Table 2.2. Homologs identified by BLAST (BLAST cut-off e-value<10^-07) among genes 

co-expressed with multiple bait genes associated with suberin biosynthesis. The table has 

been formatted from the output of the website. Annotations are abbreviated to fit the table 

format. 

 

2.3.4 Forward genetics predictions using Map-O-Matic: 
photosynthesis 
Identification of genes that correspond to phenotypic traits through forward genetic screens is 

typically time and resource consuming. The Map-O-Matic tool may be used to find genes 

that are likely to harbor mutations based on phenotypic similarities. The tool uses similar 

assumptions as regular co-expression approaches, namely, those genes involved in a specific 

biological process tend to be co-expressed. 
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 To show how the Map-O-Matic tool works (Figure 2.4), we included an example 

based on photosynthesis.  

 
Figure 2.4. Calculation flow of the Map-o-Matic tool.m The tool shows distribution of r-

values of co-expression analysis between query genes and every gene in the current 

database. A. Map-o-Matic calculates co-expression analysis for two genes X and Y, using 

database genes A-F and produces two tables. B. The tool visualizes distribution of r-values in 

each co-expression list using circle sizes to depict the distribution. Genes in the picture are 

then ordered by the average r-value (black dot) in descending order. 

 

A mutant that is defective in photosynthesis was identified in Arabidopsis and the mutation 

was mapped to a genomic region of approximately 190 kbp (Muraoka el al. 2006). This 
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region is predicted to hold 57 genes, of which 50 were included on the ATH1 chip. To assess 

which of these genes that may be likely candidates we compiled a sub-database using the 

keyword “photosystem” as query, which found 47 genes associated with photosyntheis on 

the ATH1 chip. We then ran cross-wise co-expression analyses between the 50 candidate 

genes and the 47 photosystem associated genes. The output from the Map-O-Matic analysis 

is displayed as a graph with the average co-expression for each of the 50 candidate genes 

against the 47 photosystem associated genes (Figure 2.5). 

 
Figure 2.5. Map-O-Matic analysis of a photosynthesis mutant. Fifty genes corresponding to 

a genomic region of approximately 190 kbp that was mapped for a photosynthetic defect was 

cross-wise compared for co-expression with 47 genes associated with the keyword 

photosystem. Each of the 50 bait genes on the graph is ranked by average coefficient of 

correlation across the comparison with the 47 photosystem genes. The bait genes are 

displayed in descending order from left to right, according to average correlation coefficient 

(depicted as a black dot).  

 

The top 5 genes of the 50 candidate genes are all highly co-expressed with most of the 

photosystem-associated genes (Figure 2.5). The gene that corresponded to the phenotypic 

trait was mapped to At2g01590 (Muraoka et al., 2006), which also was the gene that ranked 

as the most highly co-expressed gene with the photosystem genes of the 50 genes in the 

region. The gene ranked second in the analysis, At2g01870, is annotated as ‘expressed 

protein’. Based on its high co-expression with the photosystem genes we suggest that this 

gene product may also play a direct role in photosynthetic processes. We believe that the 

Map-O-Matic tool is a powerful way to predict genes that are likely to be involved in 

specified biological processes. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447783/figure/F2/�
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2.3.5 Combining BLAST and Co-expression using Rosetta - 
Cellulose synthases 
Orthologs in different species can be inferred through BLAST analyses and sequence 

comparison. These orthologs are then predicted to perform similar molecular functions in the 

different organisms. If they do perform similar functions we would also expect that other 

genes involved in the same process would have corresponding orthologs in the different 

species. Combining BLAST and co-expression analyses may consequently reveal “true” 

orthologous processes that are conserved in different organisms.  

 
Figure 2.6. Calculation flow of the Rosetta tool. 1. User specifies the bait and target(s) 

genes. 1a. Targets can also be found by using bait as a query in BLAST search (e-value<10-

7). 2. Rosetta extracts list of top 150 co-expressed genes for bait gene, and lists the top 150 

co-expressed genes for each of the target genes. 3. BLAST analysis identifies genes in the 

target lists that share sequence similarity with genes in the bait list (e-value cut-off < 10-7). 

4. The results are displayed as a table where genes with sequence similarity above cut-off are 

grouped in rows.  
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 Plant species typically contain comparatively large gene families (Cooke et al., 1997). 

This implies that several gene products may perform similar functions in different organs, 

tissues and/or developmental stages. It may therefore also be relevant to compare co-

expression lists between these homologs to investigate functional conservation within a 

single species.  To demonstrate the application of the Rosetta tool (Figure 2.6), we compared 

the cellulose synthesis machineries both in Arabidopsis thaliana and between Arabidopsis 

thaliana and Barley.  

 Primary cell wall CESA1 and secondary cell wall CESA4 in Arabidopsis were used as 

bait and target (i.e. Arabidopsis versus Arabidopsis), respectively, for the Rosetta analysis. 

Using this bait and target, Rosetta identified AtCESA1,  AtCESA3,  AtCESA6 and AtCESA4, 

AtCESA7, AtCESA8 as being associated with primary and secondary cell wall synthesis, 

respectively, based on the individual genes co-expression profiles (Table 2.3). 
Bait: At4g32410 (CESA1) Target 1: At5g44030 (CESA4) 

At4g32410 cellulose synthase AtCesA1 
At5g64740 cellulose synthase AtCesA6 
At5g05170 cellulose synthase AtCesA3 
At5g09870 cellulose synthase AtCesA5 
At4g39350 cellulose synthase AtCesA2 

At5g17420 cellulose synthase AtCesA7 
At5g44030 cellulose synthase AtCesA4 
At4g18780 cellulose synthase AtCesA8 

At5g60920 phytochelatin synthetase (COBRA) At5g15630 COBRA-like 4 
At1g05850 chitinase-like protein 1 (CTL1) At3g16920 CTL2 
At5g49720 endo-1, 4-beta-glucanase (KOR) At1g19940 glycosyl hydrolase family 9 protein 
At3g23820 NAD-dependent epimerase/dehydratase At2g28760 NAD-dependent epimerase/dehydratase 

At5g59290 UDP-glucuronic acid decarboxylase (UXS3)  
At4g12880 plastocyanin-like domain-containing protein At5g26330 plastocyanin-like domain-containing protein 

At3g27200 plastocyanin-like domain-containing protein 
At1g72230 plastocyanin-like domain-containing protein 
At1g22480 plastocyanin-like domain-containing protein 

At5g03040 calmodulin-binding family protein At2g33990 similar to calmodulin-binding protein 
At3g59690 calmodulin-binding family protein 
At3g15050 calmodulin-binding family protein 

At3g16850″glycoside hydrolase family 28 protein At3g42950 glycoside hydrolase family 28 protein 
At1g80170 polygalacturonase, putative 

At1g75500 nodulin MtN21 family protein At3g45870 integral membrane family protein/nodulin 
At3g15480 expressed protein At4g27435 expressed protein 
At1g41830 multicopper oxidase type I family protein At5g03260 laccase, putative 

At2g38080 laccase, putative 
At5g01190 similar to laccase 
At5g05390 laccase, putative 
At2g29130 laccase, putative 
At5g60020 laccase, putative 

At3g02350 glycosyl transferase family 8 protein At5g54690 glycosyl transferase family 8 protein 
At1g19300 glycosyl transferase family 8 protein 

At5g12250 tubulin beta-6 chain (TUB6) 
At1g20010 tubulin beta-5 chain (TUB5) 

At5g12250 tubulin beta-6 chain (TUB6) 
At5g23860 tubulin beta-8 chain (TUB8) 

Table 2.3 Rosetta analysis comparing primary and secondary cellulose biosynthesis in A. 

thaliana. Corresponding gene families from primary and secondary cell wall are presented 

in same row. 

 

Present in the co-expression lists were also genes that are common between the two 

processes. These include COBRA (At5g60920) and CTL1 (At1g05850) and COBRA-like 4 
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(At5g15630) andCTL2 (At3g16920) that are associated with primary and secondary cellulose 

synthesis, respectively (Table 2.3). The COBRA and CTL gene products affect primary and 

secondary cell wall biosynthesis, although their specific functions are unclear (Mutwil et al., 

2008). Several other genes, such as glucanases, family 8 glycosyltransferases and 

arabinogalactan proteins, also appear to have homologs associated with primary and 

secondary cellulose production, respectively. 

 To identify genes associated with secondary cell wall biosynthesis in Barley we used 

AtCESA4 from Arabidopsis as bait gene and used BLAST to identify targets in Barley 

(i.e. Arabidopsis versus Barley). Rosetta identified 14 probe sets in Barley that have similar 

sequences compared to AtCESA4 in Arabidopsis (Table 2.4).  

 
Target # Affymetrix probe Description # hits with the bait / # maximum 

hits:  
Target 1: Contig3478_at Cellulose synthase-9 related cluster 45/150 

Target 2: HK04P18r_s_at Cellulose synthase-1 related cluster  39/150 

Target 3: Contig4452_at Cellulose synthase-1 related cluster  47/150 

Target 4: Contig4451_s_at Cellulose synthase-1 related cluster 49/150 

Target 5: Contig4451_at Cellulose synthase-1 related cluster 47/150 

Target 6: Contig9658_at Cellulose synthase catalytic subunit 10 related cluster 57/150 

Target 7: Contig7166_s_at Cellulose synthase BoCesA4a related cluster 28/150 

Target 8: Contig5706_at CSLF6 related cluster   46/150 

Target 9: Contig8067_at  Putative cellulose synthase-like protein OsCslE1 related cluster 25/150 

Target 10: Contig20165_at Cellulose synthase catalytic subunit 12 related cluster  55/150 

Target 11: Contig20783_at  Cellulose synthase-like protein CslG related cluster 21/150 

Target 12: Contig7068_at  Cellulose synthase-like H1 related cluster  15/150 

Target 13: Contig15116_at  putative cellulose synthase 56/150 

Target 14: rbasd15h01_s_at  CSLD2 related cluster 38/150 

Table 2.4. Barley probesets found to have significant (BLAST cut-off e-value<10^-07) 

sequence similarity to AtCesA4. The three putative HvCESAs with high similarities to the 

AtCESA4 co-expression list are high-lighted in bold. The table is formatted from the output 

from the website. 

 

Similar to above, Rosetta recognized genes that are common between the co-expressed gene list 

for AtCESA4 and the co-expressed gene lists for the 14 Barley probe sets. The comparison of the 

co-expression profiles revealed that three of the Barley probe sets, corresponding to 

Contig9658_at, Contig20165_at and Contig_15116_at, had the most similar co-expression 

profiles to AtCESA4 in Arabidopsis (Table 2.4). BLAST analysis revealed that these probe sets 

correspond to secondary cell wall HvCESA4, HvCESA7 and HvCESA5/7, respectively. Similar to 

the analysis in Arabidopsis, Rosetta also identified putative COBRA-like 4 and CTL2 orthologs 

associated with the secondary HvCESAs in Barley (Table 2.5).  
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Bait: At5g44030 Target1: Contig9658_at 
At5g44030 cellulose synthase, AtCesA4 
At4g18780 cellulose synthase, AtCesA8 
At5g17420 cellulose synthase, AtCesA7 

Contig9658_at Cellulose synthase, HvCesA5// 
Contig20165_at Cellulose synthase,  HvCesA4 
Contig15116_at  Cellulose synthase,  HvCesA8 

At3g16920 chitinase-like, CTL1 Contig6213_x_at chitinase related 
Contig6213_s_at chitinase related 

At2g38080 putative laccase 
At5g60020 laccase, putative 

Contig18837_at Putative laccase related    
HVSMEn0005G15f_s_at Putative laccase LAC5-6 related 

At5g03170 fasciclin-like arabinogalactan-protein, FLA 12 Contig10000_s_at Putative arabinogalactan protein related 
Contig10000_at Putative arabinogalactan protein related 
Contig15105_at Fasciclin-like protein related 

At5g15630 Encodes a member of the COBRA family, CTL2 Contig23169_at BRITTLE CULM1 related 
At3g62020 germin-like protein, GLP10 Contig10847_at Putative oxalate oxidase related 
At2g37090 glycosyl transferase, IRX9 Contig13725_at 3-beta-glucuronosyltransferase related 
At4g28500 no apical meristem (NAM) family protein Contig11856_at No apical meristem (NAM) protein-like 
At2g41610 expressed protein Contig23037_at Expressed protein related 
At3g50220 expressed protein  
At1g09610 expressed protein 

Contig25082_at H0212B02.6 protein related 

At5g01360 expressed protein Contig5252_at Hypothetical protein 
Contig14278_at Expressed protein related 
Contig21755_at Hypothetical protein 
Contig13805_at Leaf senescence protein-like related 

At5g60490 fasciclin-like arabinogalactan-protein Contig10000_s_at Putative arabinogalactan protein 
Contig10000_at Putative arabinogalactan protein 
Contig15105_at Fasciclin-like protein 

 

Table 2.5. Rosetta analysis comparing secondary cell wall AtCesA4 and HvCesA5/7.  

Genes displaying mutual BLAST score e-value<10^-7 are placed in the same row by Rosetta. 

The table is formatted from the output from the website. 

 

Thus, Rosetta may rapidly identify homologs that are involved in similar biological processes 

within and across different organisms and may therefore be used to infer ‘true’ orthologs. 

 

2.4 Concluding Remarks 
Several tools use transcriptional coordination of genes to prioritize genes associated with a 

specific biological function. However, combining gene expression analyses with other data 

sources may give researchers additional information. GeneCAT combines sequence 

homology and co-expression and therefore provides a multidimensional platform for 

exploring gene co-expression and functional redundancies between homologs within and 

across different species such as Arabidopsis and Barley. Rapid advances in other large-scale 

approaches, such as protein–protein interactions and metabolomics, may in the near future be 

combined with the tools presented here to generate a more in depth view of cellular processes 

in higher plants. To facilitate an easily accessible exploratory platform for plant biologists we 

have linked web interfaces for several other genome tools through the GeneCAT FAQs page. 

 

http://www.arabidopsis.org/servlets/Search?type=general&name=at5g44030&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig9658_at&blast=uniprot�
http://www.arabidopsis.org/servlets/Search?type=general&name=at5g44030&action=detail&method=4&sub_type=protein�
http://www.arabidopsis.org/servlets/Search?type=general&name=at4g18780&action=detail&method=4&sub_type=protein�
http://www.arabidopsis.org/servlets/Search?type=general&name=at5g17420&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig9658_at&blast=uniprot�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig20165_at&blast=uniprot�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig15116_at&blast=uniprot�
http://www.arabidopsis.org/servlets/Search?type=general&name=at3g16920&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig6213_x_at&blast=uniprot�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig6213_s_at&blast=uniprot�
http://www.arabidopsis.org/servlets/Search?type=general&name=at2g38080&action=detail&method=4&sub_type=protein�
http://www.arabidopsis.org/servlets/Search?type=general&name=at5g60020&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig18837_at&blast=uniprot�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=HVSMEn0005G15f_s_at&blast=uniprot�
http://www.arabidopsis.org/servlets/Search?type=general&name=at5g03170&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig10000_s_at&blast=uniprot�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig10000_at&blast=uniprot�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig15105_at&blast=uniprot�
http://www.arabidopsis.org/servlets/Search?type=general&name=at5g15630&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig23169_at&blast=uniprot�
http://www.arabidopsis.org/servlets/Search?type=general&name=at3g62020&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig10847_at&blast=uniprot�
http://www.arabidopsis.org/servlets/Search?type=general&name=at2g37090&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig13725_at&blast=uniprot�
http://www.arabidopsis.org/servlets/Search?type=general&name=at4g28500&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig11856_at&blast=uniprot�
http://www.arabidopsis.org/servlets/Search?type=general&name=at2g41610&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig23037_at&blast=uniprot�
http://www.arabidopsis.org/servlets/Search?type=general&name=at3g50220&action=detail&method=4&sub_type=protein�
http://www.arabidopsis.org/servlets/Search?type=general&name=at1g09610&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig25082_at&blast=uniprot�
http://www.arabidopsis.org/servlets/Search?type=general&name=at5g01360&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig5252_at&blast=uniprot�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig14278_at&blast=uniprot�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig21755_at&blast=uniprot�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig13805_at&blast=uniprot�
http://www.arabidopsis.org/servlets/Search?type=general&name=at5g60490&action=detail&method=4&sub_type=protein�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig10000_s_at&blast=uniprot�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig10000_at&blast=uniprot�
http://www.plexdb.org/modules/PD_probeset/contig_barley1.php?exemplar=Contig15105_at&blast=uniprot�


  30 2. GeneCAT - Novel webtools that combine BLAST and co-expression analyses 
 

 

2.5 Materials and Methods 
Implementation and calculation. 
GeneCAT is running on Apache server using cgi to link html forms with Python scripts.  

PhyFi (Fredslund, 2006) and Graphviz (www.graphviz.org) are used for visualization of 

ExpressionTree and co-expressed gene network, respectively. Calculations are performed on 

the fly by Python scripts. GeneCAT’s source code is freely available upon request.  

 

Microarray data sources and processing. 
Databases for Arabidopsis and barley use Affymetrix ATH1 and barley1 GeneChips, 

respectively. Arabidopsis thaliana microarray datasets consisting of 1436 RMA normalized 

ATH1 microarrays data were obtained from TAIR (Rhee et al., 2003). Separate Arabidopsis 

thaliana tissue atlas datasets used for ExpressionProfiling were generated by the 

AtGenExpress project (Schmid et al. 2005). For the barley tissue atlas 64 MAS5 normalized 

microarray datasets were obtained from the BarleyBase (Shen et al. 2005) and was created 

by Druka et al. (2006).  
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3. Assembly of an Interactive Correlation 
Network for the Arabidopsis Genome Using 
a Novel Heuristic Clustering Algorithm 
 

 

3.1 Abstract 
A vital quest in biology is comprehensible visualization and interpretation of correlation 

relationships on a genome scale. Such relationships may be represented in the form of 

networks, which usually require disassembly into smaller manageable units, or clusters, to 

facilitate interpretation. Several graph clustering algorithms that may be used to visualize 

biological networks are available. However, only some of these support weighted edges, and 

none provide good control of cluster sizes, which is crucial for comprehensible visualization 

of large networks. We constructed an interactive co-expression network for the Arabidopsis 

genome using a novel Heuristic Cluster Chiseling Algorithm (HCCA) that supports weighted 

edges, and that may control average cluster sizes. Comparative clustering analyses 

demonstrated that the HCCA performed as well as, or better than, both the commonly used 

Markov, MCODE, and k-means clustering algorithms. We mapped MapMan ontology terms 

onto co-expressed node vicinities of the network, which revealed transcriptional organization 

of previously unrelated cellular processes. We further explored the predictive power of this 

network through mutant analyses, and identified six new genes that are essential to plant 

growth. We show that the HCCA partitioned network constitutes an ideal “cartographic” 

platform for visualization of correlation networks. This approach rapidly provides network 

partitions with relative uniform cluster sizes on a genome-scale level, and may thus be used 

for correlation network lay-outs also for other species.  
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3.2 Introduction 
The complete, or partial, genome sequences from a vast number of organisms have increased 

our understanding of the design principles for biological systems (Kitano, 2002). The 

sequence availability has also provided platforms for various omics technologies, including 

transcriptomics, interactomics and proteomics (Schena et al.,1995; Li et al., 2004; 

Baerenfaller et al., 2008). Such techniques have generated an immense amount of data that 

for the most part is publicly available. One of the central ideas behind the concept of systems 

biology is to utilize these types of datasets to reveal functional relationships between genes, 

proteins, and other molecules (Kitano, 2002).  

 Transcriptional coordination, or co-expression, of genes may uncover groups of 

functionally related genes (DeRisi et al., 1997; Ihmels et al., 2004; Brown et al., 2005; 

Persson et al., 2005; Wei et al., 2006). Such relationships was initially utilized to reveal 

functional gene modules in yeast and mammals (Ihmels et al., 2004), and to explore 

orthologous gene functions between different species and kingdoms (Stuart et al., 2003; 

Bergmann et al., 2004). Comparable studies have also been undertaken in plants (Brown et 

al., 2005; Persson et al., 2005; Hirai et al., 2007). In addition, several web-based tools for 

plants offer various forms of co-expression analyses. These include CressExpress 

(Srinivasasainagendra et al., 2008), ATTED-II (Obayashi et al., 2009), Arabidopsis 

Coexpression Data Mining Tools (ACT; Manfield et al., 2006), Genevestigator 

(Zimmermann et al., 2004), GeneCAT (Mutwil et al., 2008), CSB.DB (Steinhauser et al., 

2004), CoreCarb (Mutwil et al., 2009) and Expression Angler of the Bio-Array Resource 

(BAR; Toufighi et al., 2005). These tools can provide co-expressed gene lists for user 

specified query genes, and thus represent user-friendly web resources for biologists.  

 While it appears useful for scientists to examine these types of co-expression lists, 

more information is generally acquired by visualizing the relationships in the form of 

networks (Jupiter and VanBuren, 2008). Several studies have explored the properties of such 

network assemblies (Ihmels et al., 2004; Barabási and Oltvai, 2004; Mentzen and Wurtele, 

2008; Ma et al., 2007). The distribution of connections in the networks may generally be 

described by power-law related relationships, i.e. a small number of nodes appear to have a 

large number of connections while most nodes have very few connections (Albert, 2005). 

Another apparent feature is that essentiality correlates with high-connectivity in both co-

expression and protein-protein interaction networks in several species (Bergmann et al., 
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2004; Jeong et al., 2001; Carlson et al., 2006), though this relationship is less clear in 

mammalian protein-protein interaction networks (Gandhi et al., 2006; Zotenko et al., 2008).  

 Although features of co-expression and protein-protein interaction networks have 

been investigated, the output is generally not very useful for visual inspection, and 

interpretation. One major task is therefore to make the networks more accessible to 

biologists, i.e. to produce visualizations of networks that easily may be interpreted (Aoki et 

al., 2007). For genome-scale networks this requires dividing the network into smaller 

manageable units, or clusters. Such clustering may, however, artificially assign genes to 

certain clusters, and therefore skew the output of the biologically “correct” network. It is 

therefore of importance to maintain as many relevant biological relationships as possible 

despite division. The ideal number, or sizes, of clusters to maintain these relationships are 

very rarely known, and is generally very difficult to predict for biological networks. On the 

other hand, biological networks may also be viewed as clusters within clusters, i.e. as a 

hierarchical structure that can be viewed on different levels. For example, genes associated 

with photosynthesis may be viewed as a cluster that belongs to a super-cluster of genes 

associated with functions in the chloroplast. Thus, the ideal clustering algorithm, and 

subsequent visualization scheme, should generate partitions of manageable sizes that readily 

can be re-connected into a whole network to be used for manual inspection.  

 Several graph clustering algorithms are available, for example Markov Clustering 

(MCL; van Dongen, 2000), Restricted Neighborhood Search Clustering (RNSC; et al., 2004) 

and others, but none of these can efficiently control cluster sizes. While these partitioning 

methods provide useful lay-outs for global biological and clustering interpretations, they are 

not particularly useful for visual inspection. To overcome this problem we developed a novel 

Heuristic Cluster Chiselling Algorithm (HCCA), and employed it to construct an interactive 

correlation network for the Arabidopsis genome (AraGenNet: http://aranet.mpimp-

golm.mpg.de/aranet). We show that the HCCA-generated cluster solutions were as good, or 

better, than the commonly used partition algorithms Markov, MCODE and k-means using 

real world data. We also show that this type of visualization may reveal biological 

relationships that are not apparent from single gene co-expression approaches. Finally, we 

explored the network surroundings to identify essential Arabidopsis genes, and present six 

new genes that are essential for plant growth through mutant analyses. 
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3.3 Results and Discussion 

3.3.1 Calculation of Pearson-Based Correlation Networks 
To generate a starting network for the HCCA we calculated the degree of transcriptional 

coordination between all the genes present on the Arabidopsis ATH1 array (22,810 probe 

sets) using 351 RMA normalized microarray datasets from TAIR (Mutwil et al., 2008). Prior 

to choosing these datasets we removed datasets that displayed poor replication between 

arrays.  

 
Figure 3.1. Network characteristics and mutant analyses. A. Log-log plot of node degree 

distribution for 261 essential (red points), 1224 non-essential (green points), and all genes 

(22810 blue points) in the Pearson correlation network (r-value≥0.8) for Arabidopsis. B. 

Log-log plot of node degree distribution for Pearson correlation networks (r-value≥0.8) from 

E. coli (blue), yeast (red), and Arabidopsis (green). The x-axis represents the node degree, 

i.e. the number of connections a node shows, and the y-axis displays the frequency (B) or the 

normalized frequency (A), i.e. the number of genes (B), or normalized number of genes (A), 

showing this degree. 
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 Since it is rather difficult to assess whether lowly expressed genes represent noise or 

real data we chose to include all probe sets in the analysis. We then calculated all-versus-all 

co-expression network matrix using Pearson correlation coefficient cut-off of 0.8. In contrast 

to Spearman correlation, Pearson correlations only capture linear relationships between any 

two given components. However, it is anticipated that most linked expression profiles will 

adhere to a linear relationship (Daub et al., 2004).  

 The distribution of connections in Pearson correlation based biological networks may 

generally be described by power-law related relationships, i.e. a small number of nodes 

appear to have a large number of connections while most nodes have very few connections 

(Barabási and Oltvai, 2004). To assess whether the topology of the obtained Pearson 

correlation network for Arabidopsis also followed such a relationship, we calculated the node 

degree distribution of all individual nodes in the network. Figure 3.1 shows that the node 

degree distribution is best described by a truncated power-law behaviour. We also observed 

similar deviations from classical power law behaviour in Pearson correlation networks 

generated for Yeast, and to a lesser degree for E. coli (Figure 3.1B), in agreement with recent 

reports (van Noort et al., 2004).  

3.3.2 Centrality vs. Essentiality 
Another apparent feature in biological networks is that essentiality typically correlates 

positively with high node degree, i.e. mutations in highly connected nodes tend to result in 

more severe phenotypes compared to less well connected nodes (Albert, 2005; Jeong et al., 

2001; Carlson et al., 2006; Zotenko et al., 2008). To assess if this type of relationship also is 

evident in our Pearson correlation network, we analyzed gene connectivity vs. embryo 

lethality. We did this by linking phenotypic data from The Arabidopsis Information Resource 

(TAIR; www.Arabidopsis.org) to the genes in our Pearson-based network (R=0.8). Figure 

3.1A shows the node degree distribution of embryo lethal genes, genes associated with any 

type of phenotype, and all genes included on the ATH1 microarray. Whereas the node degree 

distribution for genes associated with non-lethal phenotypes did not deviate significantly 

compared to all genes present on the ATH1 gene chips (Figure 3.1A), genes corresponding to 

embryo lethality were significantly more connected compared to non-essential genes 

(Wilcoxon test p<0.05). Similar observations have also been reported for co-expression, and 

protein-protein interaction networks in yeast (Albert, 2005; Carlson et al., 2006). 
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3.3.3 Construction of a Highest Reciprocal Rank - Based 
Correlation Network in Arabidopsis  
Several studies have used r-value cut-offs ranging between 0.6 and 0.8 to depict co-

expression correlations (for example van Noort et al., 2004). However, different genes have 

different distributions of r-values, i.e. at a given cut-off some genes may correlate 

significantly with hundreds of genes while other genes may not correlate with any. Despite 

this, it is still possible that the latter may hold biologically relevant relationships. For 

example, the two transcription factors MYB33 (At5g06100) and MYB65 (At3g11440) 

regulate pollen and anther development, are expressed similarly, and are functionally 

redundant (Millar and Gubler, 2005). However, an r-value cut-off of 0.8 did not associate 

these genes transcriptionally (r-value 0.7; data not shown; Mutwil et al., 2008). To minimize 

this problem we chose to normalize the r-value distributions in the calculated Pearson 

correlation networks by using highest reciprocal rank (HRR) as they define the mutual co-

expression relationship between two genes of interest. Using this approach the MYB33 and 

MYB65 were readily transcriptionally linked (average rank=2 using GeneCAT; Mutwil et 

al., 2008). With this approach we were also able to define a connection cut-off, or maximum 

number of connections, for a given gene. The importance of defining such cut-off is apparent 

when looking at the distribution of r-values among the data. For example, approximately 

1500 genes are only expressed in pollen (estimated from GeneCAT; Mutwil et al., 2008). All 

of these genes are correlated with each other with an r-value of 0.8 and should therefore be 

connected to each other in a Pearson-based correlation network (Mentzen and Wurtele, 

2008). However, it is virtually impossible to retain any information from such network 

structure through manual inspection. Instead we argue that displaying these genes in close 

network vicinities, which is achieved by the HRR-based network, is more useful.  In 

addition, recent results indicate that correlation ranked networks produce sounder results than 

networks based on correlation co-efficients (Obayashi and Kinoshita, 2009). 

 We set the HRR limit to 30, thus capping the maximum number of edges per node to 

30. The resulting HRR network seemed a reasonable compromise between readability and 

richness of information. In addition, we defined three degrees of co-expression weights using 

highest reciprocal ranks of 10, 20 and 30 (Mutwil et al., 2008). Similar approaches have also 

been used by several co-expression web-tools, such as GeneCAT and ATTED-II (Obayashi 

et al., 2009; Mutwil et al., 2008). The resulting weighted HRR network contained 103,587 

edges between 20,785 nodes, and was used as the starting network for the HCCA. As 
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anticipated, not all the probe sets shared strong correlation with other probe sets, resulting in 

2,025 nodes that were not included in the network (data not shown). The HRR based network 

shared 29,956 edges and 6,942 nodes with Pearson based co-expression network using r≥0.8 

as cut-off (total: 231,882 edges, and 7,178 nodes). 

 

3.3.4 Designing the HCCA 
Genome-scale co-expression networks, as other networks, consist of nodes and edges that 

may form a continuous structure or separate islands of clusters, depending on what cut-off 

one uses. While the smaller structures in such network may be suitable for visual inspection, 

other regions may not due to the number of nodes and edges in these regions. To make such 

regions more accessible it is necessary to partition the network into smaller units, or clusters. 

Obviously, such partitioning will lead to division of network structures that may, or may not, 

reflect the ”real” network properties. Most biological networks do not contain sufficient data 

to assess whether the divisions are justifiable or not. However, the flaws in network divisions 

may be overcome if the different partitions can be reassembled into the structures they were 

initiated from. We argue that if we can visualize individual network partitions, or clusters, 

and put these into context to other clusters then the connectivity between the individual 

clusters may reflect the larger structures that were partitioned.  

 Many graph clustering algorithms do not support weighted edges, and do not yield 

cluster sizes that readily allow visual interpretations. In addition, many graph clustering 

algorithms do not allow clustering of large networks, i.e. networks consisting of several 

thousands of nodes. We therefore developed a novel graph clustering algorithm (Figure 3.2), 

referred to as Heuristic Cluster Chiselling Algorithm (HCCA). The HCCA algorithm takes n-

value (step size), and desired cluster size range as parameters. The HCCA accepts a network 

as starting point (Figure 3.2). For each node in the network, the algorithm generates node 

vicinity networks (NVNs) by collecting all nodes within n steps away from the seed node. 

Nodes with higher connectivity to the outside of the NVN are iteratively removed. The 

resulting clusters are then ranked by outside-to-inside connectivity ratio, and filtered 

according to desired cluster size range. Non-overlapping clusters are retained by the 

algorithm and nodes in these clusters are removed from the network. Nodes associated with 

rejected clusters are returned to the network, and re-evaluated. The HCCA recursively creates 

non-overlapping clusters until no nodes are left in the network, or when no more stable 
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clusters can be obtained (Figure 3.2). In the latter case, remaining nodes are associated with 

clusters for which they display the highest connectivity to.  

 

 
Figure 3.2. Schematic work-flow of the HCCA with n=3. The HCCA accepts a network as 

input. 1. Each of the m nodes in the network are used to generate Node Vicinity Networks 

(NVNs) by taking n steps away from a seed node (star). 2. Each NVN is then “chiseled” by 

recursively removing nodes that have higher connectivity to nodes outside of an NVN than to 

nodes inside the NVN. In this example, squared and triangular nodes are removed in the first 

and second round of chiseling, respectively. 3. The chiseling either completely depletes a 

NVN of nodes, or produces a Stable Putative Cluster (SPC). 4. Non-overlapping SPCs with 

highest cSPC value are extracted and accepted as clusters. 5. Nodes that were accepted as 

clusters in step (4) are removed from the network. The remaining network is then transferred 

to step 1, and re-chiseled (2-5).  

3.3.5 Visual Inspection of the Network Solutions 
To partition the network we used the HCCA, with different steps n away from the seed node 

(Figure 3.2), with desired cluster sizes ranging from 40 to 400. For example, for n=3 the 

HCCA generated 181 clusters that contained approximately 40 to 300 genes per cluster 

(Figure 3.3A). To assess the biological relevance of the partitioned network we initially 

compared obtained connections with known biological data through visual inspection. For 

example, the secondary cell wall cellulose synthase genes CESA4, 7 and 8, have been used 
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extensively for co-expression analyses (Brown et al., 2005; Persson et al., 2005; Ma et al., 

2007). In agreement with these analyses we obtained genes associated with secondary cell 

wall synthesis, including IRX6, IRX8, IRX9, IRX12, and several transcription factors that 

recently have been implicated in secondary cell wall regulation (Zhong and Ye, 2007), in the 

network vicinity of the three CESA genes (data not shown).  

3.3.6 Estimates of Clustering Solutions 
A few other graph clustering algorithms also support weighted edge graphs, such as the 

commonly used MCL (Mentzen and Wurtele, 2008; van Dongen, 2000; Enright et al., 2002). 

To estimate the quality of the clustering solution obtained by HCCA we therefore clustered 

the HRR network using the MCL algorithm with a range of different inflation. We have also 

included MCODE clustering solutions (Bader and Hogue, 2003; Prieto et al., 2008). In 

addition, we performed clustering using k-means with different settings (Hartigan and Wong, 

1979), and then compared the results obtained from the HCCA with the different clustering 

solutions for the other two algorithms (Figs. 3.3A to 3.3D). We used two different metrics to 

evaluate the clustering efficiency; the commonly used quantity modularity (Newman and 

Girvan, 2004), which judges partitions by comparing inside-to-outside connectivity ratios, 

and by the Davies-Bouldin index, which measures the compactness and separation of the 

obtained clusters (Davies and Bouldin, 1979). Our HCCA approach yielded better cluster 

partitioning compared to both MCL,k-means  and MCODE in terms of modularity (Figure 

3.3B). In addition, the HCCA solutions were clearly better than all the k-means partitions in 

terms of the Davies-Bouldin index (Figure 3.3C). However, the MCL and MCODE partitions 

rendered better Davies-Bouldin scores compared to the HCCA (Figure 3.3C). While the best 

overall MCL solution was the MCL 1.15 it is important to point out that this partition contain 

cluster sizes in the range of 2 to 800 genes per cluster (Figure 3.3A), and is therefore not 

useful for our purposes. These results show that the HCCA performed better than k-means in 

terms of modularity and Davies-Bouldin index, and also comparably to MCL and MCODE in 

terms of modularity scores. 

 When considering modular networks it is generally expected that neighboring nodes 

fulfill related functions, which also has been recognized in social networks (Wasserman and 

Faust, 1994). Hence, ideally one co-expressed gene cluster should contain genes associated 

with similar biological functions. We therefore also tested the overlap of MapMan ontology 

classes with the clusters generated by the HCCA, MCL, MCODE and k-means. We used an 

approach similar to ClusterJudge (Gibbons and Roth, 2002) which uses mutual information 
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between clusters and MapMan ontology terms to score clustering quality (Steuer et al., 

2006).  

 
Figure 3.3. Cluster comparison of HCCA, MCL, k-means and MCODE. A. Graph 

displaying the cluster size range (x-axis) vs. number of clusters (y-axis; Frequency) for 

selected HCCA, MCL k-means and MCODE partitions of the HRR network (HRR cutoff=30). 

B. Modularity scores for different settings for the HCCA, MCL k-means and MCODE 

algorithms. k-means 100, 200, and 400 represent desired cluster number parameters for k-

means; MCL1.15, 1.5, and 2.0 represent different inflation degrees for the Markov 

clustering; HCCA n=2, 3, and 4 represent different step size (n) as described in Figure 3.2.; 

MCODE (A,B,C,D) represent degree cut-off, node score cut-off, k-core and maximum depth, 

respectively. High modularity values represent better clustering. C. Davies-Bouldin score, or 

index, for different settings for the HCCA, MCL, k-means and MCODE. The settings are in 

accordance with B. Low DB-score represents good clustering D. ClusterJudge scores of the 

clustering generated by  HCCA, MCL, k-means and MCODE. respectively. The settings are 

in accordance with B. High ClusterJudge score represents better clustering. 

 

In brief, this approach scores the overlap between the ontological terms and the clusters, and 

then subtracts the mean score obtained for randomly assigned clusters and divides this by the 

standard deviation of the random clustering solutions. Therefore, a score of 0 (or even 

negative scores) would indicate random biological categories and clusters, whereas higher 
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scores (which have no upper bound) indicate better concordance between biological 

categories and clusters. Using this assessment the HCCA partitioned networks scored better 

than all of the MCL and MCODE partitions and scored nearly as well as the solutions 

generated by k-means (Figure 3.3D). It is important to note that the latter commonly used 

algorithm cannot generate clusters based on networks but must use the original expression 

data, and thus has an inherent advantage compared to the HCCA and MCL.  

Taken together, these tests show that the HCCA partitions scored better than k-means in 

terms of modularity and Davies-Bouldin index, and outperformed the MCL and MCODE 

solutions in terms of biologically relevant associations. 

 

3.3.7 Robustness of Clustering Towards Node Removal and to 
Different HRR Cut-offs 
The ATH1 microarray chip contains 22,810 probe sets covering roughly 60% of the genes in 

the Arabidopsis genome. This means that approximately 8000 genes are omitted from the 

chip, and therefore from our analysis. To assess whether omission of such a number of genes 

may significantly skew the connections in the HRR network we randomly removed 

approximately 20% of the genes from our datasets and re-clustered the network using HCCA. 

We repeated this twenty times and then assessed whether the clusters were significantly 

different by estimating the average adjusted Rand index. Average score for HCCA (n=3) was 

0.3818, with only 4 % standard deviation. This value is similar to the value obtained for the 

comparison of one thousand k-means clustering solution with 100 cluster centers. These data 

show that the network outline, and HCCA clustering is robust against removal of a 

significant portion of randomly selected genes, and therefore also should display biologically 

meaningful correlations despite the absence of some genes on the ATH1 chip. A matrix 

containing Rand index comparison of the algorithms with different parameteres is available 

online as supplementary material (Mutwil et al., 2010). 

 To test how different HRR cut-offs influence the clustering by HCCA, we calculated 

adjusted Rand indices between networks generated using HRR of 10, 20, 30, 40, and 50. 

Table 3.1 shows that the adjusted Rand index is relatively high (>0.4) for networks generated 

by similar HRR cut-offs (HRR20 vs HRR30, HRR30 vs HRR40, and HRR40 vs HRR50), 

despite that the networks differ dramatically in the number of edges (Table 3.1). Taken 

together, these results indicate that clusters obtained by HCCA are robust against the 

parameters used to generate the co-expression networks. 
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Mutual rank HRR10 HRR20 HRR30 HRR40 HRR50 
HRR10             1 0.3643 0.1595 0.0871 0.053 
HRR20  1 0.4763 0.2844 0.1833 
HRR30   1 0.4802 0.3257 
HRR40    1 0.4407 
HRR50     1 

 

Table 3.1 Adjusted Rand index analysis of clustering solutions generated by HCCA using 

different HRR cutoffs.  Sizes of the networks compared: HRR10=26770 edges, HRR20= 

63491 edges, HRR30= 103587 edges, HRR40 = 145644 edges and HRR50 = 189291 edges. 

The networks contain 22810 nodes each. 

3.3.9 Construction of an Interactive Correlation Network for the 
Arabidopsis Genome 
To illustrate the usefulness of the network partition obtained from the HCCA we 

implemented an interactive co-expression network browser, which we named the 

Arabidopsis Gene Network (AraGenNet; http://aranet.mpimp-golm.mpg.de/aranet). Since the 

aim of the visualization scheme was to reassemble the partitioned HRR network for manual 

inspection, the network works on two levels; on assembled cluster level, and on gene level 

(Figs. 3.4 and 3.5).  

 The cluster level network (Figure 3.4) represents an overview of the interactions 

between different partitions, or clusters, and therefore depicts the co-expressed context for 

individual clusters. We therefore refer to this network as a meta-network. Any two clusters in 

the meta-network are connected if the combined weight of edges between them was larger 

than a certain threshold. We set this linkage threshold, or connectivity-score, to 0.02, as this 

value produced a connection-rich, but readable meta-network (Figs. 3.4A and 3.4B). A node 

in the meta-network consists of a cluster of co-expressed genes generated from the HCCA 

(n=3; Figure 3.5). This gene level network becomes visible by clicking on a cluster node in 

the meta-network. All connections in the gene level network are based on HRR, and are 

weighted accordingly, i.e. HRR below ten, twenty, and thirty are color coded green, orange, 

and red, respectively (Figure 3.5). These visualization schemes prove the capability and 

functionality of the HCCA clustering approach.  
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Figure 3.4 Meta-network of coexpressed gene clusters generated by HCCA (n = 3). A, 

Nodes in the meta-network, or assembled cluster-level network, represent clusters generated 

by HCCA. Edges between any two nodes represent interconnectivity between the nodes 

above threshold 0.02 (according to C). B, Enlarged region depicts part of the meta-network 

presumably associated with photosynthesis. Cluster annotations were inferred by MapMan 

terms, phenotypic, and expression data (http://aranet.mpimpgolm. mpg.de/aranet). C, 

Connectivity cutoff values [c(A,B)] for edges in the meta-network. We used a cutoff of 0.02 

for visualization purposes. 

 



  44 3. Assembly of an Interactive Correlation Network for the Arabidopsis Genome Using a 
Novel Heuristic Clustering Algorithm 

 

 

 
Figure 3.5 Features of HCCA (n = 3) gene cluster 59. Nodes in this cluster, or gene-level 

network, represent genes, while edges and edge coloration depict the HRR values between 

any two nodes. Red, yellow, and green node colors depict gene mutants displaying embryo-

lethal, gametophyte-lethal, and other described phenotypes, respectively. Gray nodes 

represent genes with no described phenotype. 

3.3.10 Phenotype and Ontology Mapping onto Network 
Since co-expressed genes often tend to be functionally related (DeRisi et al., 1997; Ihmels et 

al., 2004; Brown et al., 2005; Persson et al., 2005; Wei et al., 2006) we anticipated that 

connected clusters in the meta-network would share a certain degree of functional 

commonalities (Freeman et al., 2007). To assess this we analyzed the genes in each cluster 

for MapMan ontology term enrichments. We also mapped phenotypic data 

(http://www.Arabidopsis.org/), and tissue-dependent expression profiling for the individual 
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genes. By combining these analyses we then attempted to describe what biological functions 

are associated with the individual clusters. For example, mutations in genes associated with 

cluster 59 (Figure 3.5) often result in embryo lethality, or pale green plants.  

          The dominant expression profile of genes in this cluster shows high expression in 

aerial tissues, and low expression in roots, pollen and seeds. MapMan ontology analysis 

revealed that the most significantly enriched term is amino acid metabolism (p≤ 10-9). Taken 

together these data suggest that cluster 59 is over-represented for genes involved in amino 

acid metabolism in the chloroplast, and that this function is important for chloroplast 

development, photosynthesis and embryo development. This conclusion is supported by the 

fact that cluster 59 was highly enriched for genes with plastidic localization (p<0.001; data 

not shown). 

3.3.11 Prediction and Verification of Essential Genes in the 
Network 
To expand the visual features of the network we color coded the severity of the phenotypic 

traits using red (embryo lethality), yellow (gametophytic lethality), and green (other 

phenotypes) nodes in the network (Figure 3.5). Interestingly, we observed an uneven 

distribution of embryo lethal genes per cluster, compared with genes associated with non-

lethal phenotypes (Figure 3.6A). For example, the chloroplast associated clusters 21, 59, 137 

showed strong enrichment for essential genes (p<10-5, Fisher's exact test). This suggests that 

nodes in clusters associated with certain biological processes are more essential. For 

example, of the 111 genes associated with cluster 59, twelve are known to be essential for 

embryo development (Figure 3.6A). As described above this cluster may be associated with 

amino acid activation in the chloroplast.  

 We also investigated how the essentiality of a gene is determined by the number and 

the distances of its homologs in the network. Figure 3.7A shows that embryo lethal genes are 

clearly over-represented by single-copy genes (p<0.001). Furthermore, essential genes tend 

to be under-represented for genes with family members in the network vicinity, i.e. in the 

node vicinity network (p<0.05; Figure 3.7 B-C). Conversely, non-essential genes tend to be 

neighbors to their family members (p<0.05; Figure 3.7 E-F). Taken together, the probability 

of essentiality for a given gene therefore appears to depend not only on the connectivity of 

the gene (Figure 3.1A), but also on its functional uniqueness in the network vicinity, and on 

its biological role. Interestingly, similar results have recently also been observed in protein-

protein interaction studies in yeast (Zotenko et al., 2008). This study convincingly showed 
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that essentiality corresponded to gene products that are well connected, and that are 

associated with certain biological functions.  

 
 

Figure 3.6. Essentiality distribution and mutant phenotypes in the HCCA (n = 3) 

partitioned network. A, The graph displays the relative distribution of essential genes per 

any given cluster in the network (HRR cutoff = 30). Black bars depict clusters significantly 

enriched (P < 0.05) for essential genes. B, Siliques from a plant heterozygous for mutation in 

At3g14900 (cluster 137). Red arrows indicate chlorotic embryos. Bar = 3 mm. C, Mutant 

seedlings (At1g15510) from cluster 137 exhibiting pale cotyledons (indicated by arrows). 

Bar = 3 mm. D, Chlorotic dwarfed mutant (At3g57180; indicated by the arrow) from cluster 

21. Bar = 1 cm. 
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Figure 3.7. Distribution of 1000 random samplings of essential and non-essential genes 

from the mutual rank network. A. Distribution of single copy genes from sampling of 261 

random genes 1000 times. The number (152) of essential, single copy genes observed in our 

network is denoted by a red bar. B. Distribution of genes shown to be in a family but unique 

in the node vicinity network (n=2) from sampling 109 random nodes 1000 times. The 

observed number (82) of essential genes in family, but unique in the node vicinity network is 

denoted by red bar. C. Distribution of genes shown to be in a family with family members in 

node vicinity network (n=2) from sampling of 109 random nodes 1000 times. The observed 

number (27) of essential genes in family with family members in the node vicinity network is 

denoted by red bar. D, E, and F correspond to A (1224 nodes sampled), B (802 nodes 

sampled), and C (802 nodes sampled), respectively, but show distribution for non-essential 

genes. The observed numbers of non-essential, single copy (422), non-essential, in gene 

family, but unique in vicinity network (507), and non-essential with family members in 

vicinity network (295), are denoted by red bars in the figure. 
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To explore the prediction of essentiality we chose twenty genes associated with clusters that 

harbor numerous essential genes, i.e. the connected clusters 21, 59, and 137 (Figure 3.6A), 

and that are well connected to other essential genes in the network. We ordered T-DNA 

mutant lines corresponding to these genes and analyzed them for mutant phenotypes (Table 

3.2). Out of the twenty mutant lines two resulted in embryo lethality, one in seedling 

lethality, two in male gametophytic lethality, and one in dwarfed pale green plants (Figure 

3.6C to E; Table 3.2). Furthermore, chlorotic cotyledon phenotypes are typically associated 

with chloroplastic functions (for example Flores-Pérez et al., 2008), supporting our 

prediction that genes belonging to these clusters, i.e. 21, 59 and 137, are functionally 

associated with the chloroplast. These results illustrate how a coherent and easy-to-navigate 

data visualization scheme, such as the AraGenNet, can predict biologically meaningful 

relationships. Recently, the pollen deficient mutant corresponding to the gene At1g74260 

was confirmed by another study (Berthomé et al., 2008).   
Gene T-DNA line Phenotype Family 

size 

Family members  

in vicinity 

At3g23940 SALK_069706 Gametophytic lethal 0 0 

At1g74260 SALK_050980 Gametophytic lethal 0 0 

At5g64580 SAIL_74_G12 Embryo lethal 0 0 

At3g14900 SALK_123989 Embryo lethal 0 0 

At1g15510 SALK_112251 Seedling lethal 182 38 

At3g57180 SALK_068713 Pale green, dwarf 0 0 

 

Table 3.2. Characteristics of mutants. The family size, and members in vicinity indicate size 

of a gene family as defined by COG, and number of family members in the gene network 

vicinity (n=2), respectively.   

 

3.3.12 Associations of Functional Annotations Using MapMan 
Ontology 
Although the visualization of co-expressed genes may give insight into functional gene 

patterns and arrangements, an equally relevant quest is to understand how these patterns and 

arrangements are organized to fulfill cellular functions. To investigate this we explored the 

notion that co-expressed genes, and therefore network vicinities, often are functionally 

related (Brown et al., 2005; Persson et al., 2005; Wei et al., 2006; Ihmels et al., 2004). To 

assess how different ontological terms are transcriptionally connected we used the non-

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Berthom%C3%A9%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract�
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clustered HRR network (HRR cut-off30), and calculated whether certain MapMan ontology 

terms were overrepresented in non-overlapping node vicinities (NVNs in Figure 3.2). We 

then identified terms that co-occurred more often than expected by chance (p ≤ 0.05).  

 
Figure 3.8. Network of coexpressed MapMan ontology terms. Nodes in this network 

represent biological processes as defined by MapMan ontology terms. Node colors and 

numbers depict the different MapMan terms (legend at left), while edges represent significant 

(P < 0.001) associations between the terms based on coexpression. OPP, Oxidative pentose 

pathway; PS, photosynthesis; CHO, carbohydrate. 
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These significantly associated terms were connected, and the resulting ontological network 

was visualized as an interactive network browser (Figure 3.8; http://aranet.mpimp-

golm.mpg.de/aranet/Mapman_network). In order to get a more complete network we also 

retained connections representing parent-child relationships, which are trivial due to their 

mutual overlap. 

 From this visualization it became evident that terms that represent related processes 

tend to be connected, for example photosynthesis-related processes (dark green) were 

connected to plastidial protein synthesis (light blue) and to “protein assembly and co-factor 

ligation” which comprises many proteins involved in the assembly of the plastidial apparatus 

(light blue). Furthermore, the chloroplast cluster (dark green) is closely associated with genes 

related to tetra-pyrrole biosynthesis (light green; Figure 3.8). These processes most likely 

reflect parts of the basal plastidial photosynthetic activity program. Other examples were 

mitochondrial processes linked to the TCA cycle as well as polyamine synthesis being 

coupled to arginine degradation more than would be expected by the trivial link of arginine 

decarboxylase which is present in both processes. Also arabinogalactn proteins were linked 

to abiotic stress which is in-line with their upregulation upon salt stress (Lamport et al., 

2006). 

 Since biologically relevant associations were confirmed in the MapMan ontology 

network, we also investigated associations between other biological processes, which were 

previously unrelated MapMan terms and which might help to generate new functional 

insights. Interestingly, plant defensins were connected to sphingolipid biosynthesis in planta. 

As often the mode of action of plant defensins seems to be mediated by sphingolipids of the 

attacking pathogen (Thevissen et al., 2000; 2005; Ramamoorthy et al., 2009), it could be 

speculated, that plant sphingolipids might play a role in this mechanism as well. Furthermore 

it might be interesting to investigate what caused the link introduced between aromatic amino 

acid degradation and starch breakdown (Fig 3.8, lower left corner). Thus, the combination of 

co-expressed gene vicinities and ontology terms may similarly reveal new associations 

between different processes in the cell. 

 

3.4 Conclusions 
We have constructed an interactive correlation network for Arabidopsis using a novel 

heuristic clustering algorithm (HCCA). The cluster solutions obtained from this clustering 

algorithm performed as well, or better, than the commonly used clustering algorithms MCL 
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and k-means. More importantly, by visualizing the portioned clusters we could reassemble 

the network, and we were therefore able to place the obtained partitions into larger biological 

contexts. We predicted that unique, well connected genes with certain biological functions 

tend to be more essential than other genes, and confirmed this by mutant analyses. The 

presented data therefore show that comprehensible visualization of genome-scale correlation 

networks may render new insights into the wiring of biological systems. We propose that this 

type of network visualization constitutes an easy-to-navigate framework for biologists to 

prioritize genes for functional analyses.   

3.5 Materials and Methods  
Microarray Data 
All calculations for this work were done using python and java scripts. Databases for 

Arabidopsis yeast and E.coli use Affymetrix ATH1 (22 810 probe sets), Affymetrix Yeast 

Genome S98 (9 335 probe sets) and Affymetrix Ecoli_ASv2 (7312 probesets) GeneChips, 

respectively. Arabidopsis microarray datasets consisting of 1428 ATH1 microarrays were 

obtained from TAIR (http://www.Arabidopsis.org/). Separate Arabidopsis tissue atlas 

datasets containing 121 microarrays, which were used for plotting the gene expression across 

Arabidopsis tissues, were generated by the AtGenExpress project (Schmid et al., 2005), and 

obtained from TAIR. The data was quality controlled by visual inspection of boxplots of raw 

PM data and RMA residuals of RMA normalized data, using RMA express program. Cel 

files showing artifacts on RMA residual plots or visibly deviating from the majority on the 

PM-boxplots were removed from further analysis. In addition, we removed experiments 

representing very similar transcriptomic snapshots by iteratively discarding microarrays that 

displayed Pearson correlation (r(A,B)≥0.95) to more than three other microarrays. From 

these analyses we retained 351 microarrays, which subsequently were normalized using R 

package simpleAffy. The 244 E. coli and 789 yeast microarray datasets used to generate 

Figure 3.1 were downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/), RMA 

normalized and quality controlled as for the arrays for Arabidopsis. Names of the cel files 

used to construct the Arabidopsis HRR networks are downloadable from AraGenNet's 

homepage. 
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Phenotypic data for Arabidopsis thaliana 
Phenotypic data for Arabidopsis was requested and obtained from TAIR curators, and was 

divided into essential, gametophytic lethal and non-lethal sets. All the expression data, co-

expression network and phenotypic data presented in this work is downloadable from 

AraGenNets homepage (http://aranet.mpimp-golm.mpg.de/aranet). 

 

Construction of Co-expression Networks  
Pearson-based co-expression networks were used for the centrality vs. essentiality study, and 

for generating log-log plots. These networks were created using the 351 ATH1 microarrays 

described above. An edge in the network represents two genes with Pearson correlation 

(r(A,B)≥0.8). All subsequent analyses were done on highest reciprocal rank (HRR) based 

networks, including the visualized interactive co-expression network used on the AraGenNet 

homepage. HRR score between genes A,B is calculated according to:  

        (3.1) 

where r(A,B) is correlation rank of gene B in gene A's co-expression list.  Any two genes that 

were present in each others top 10, 20 or 30 correlation lists were connected by green, orange 

or red connections, respectively. Edges representing HRR values 10, 20 and 30 were 

assigned weights 1/5, 1/15 and 1/25, respectively.  

 Any two clusters in the meta-network were connected if the connectivity score 

exceeded 0.02 according to formula 3.2:  

(3.2) 

 where  

. 

 

We used c(A,B)≥0.02, which connects clusters A a nd B, if the average mutual weights of 

edges between the two clusters exceed 0.02. The connectivity score can range from 0 (no 
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edges between the clusters) to 1 (all outgoing connections from cluster A are targeted to 

cluster B, and vice versa). 

 

Comparison of a Pearson Correlation Network and a GGM 

Network 
Our Pearson correlation network (R=0.8) was compared to a datasets from a recently 

published Graphical Gaussian (GGM) network (Ma et al., 2007), and common edges were 

identified by set comparisons. Approximately one third of the edges in the GGM network 

were also present in our network, consistent with a previous comparison made between the 

GGM and a Pearson correlation network (Ma et al., 2007).  

  

Centrality vs. Essentiality 

To assess the association of node degree (number of nodes a node is connected to) with 

phenotype characteristics (essential or non-essential), a node degree of genes showing a 

phenotype vs. those not showing any phenotype was compared. This was done across 20 co-

expression networks generated by using Pearson r-values ranging from 0.9 to -0.9 (steps of 

0.1).  The median node degree of genes showing a phenotype was compared to median node 

degree of genes not showing any phenotype at a given r-value cutoff. Significant differences 

(Wilcoxon test p<0.05) in the median node degree between these two classes was used to 

indicate significant differences between the two classes. 

 

HCCA clustering algorithm 
The HCCA can be implemented by a pseudo-code available from the AraGenNet’s 

homepage, and the full source code is available upon request from the authors. A simplified 

description of the algorithm is depicted in Figure 3.2, and in the Results and Discussion 

section. Python implementation of HCCA, together with sample networks, is available from 

AraGenNet's homepage. 

 

Markov Clustering (MCL) 
We used the available C code (http://micans.org/mcl/; van Dongen, 2000) for MCL 

calculations. The method simulates random walks on the graph, with the walking probability 

respecting the weight, i.e. HRR values, of the edges (HRR value of 10 received weight 1/5, 
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20 received 1/15, and 30 received 1/25). We used different inflation values, which are the 

Hadamard power of a stochastic matrix that gives the probabilities for the random walk. Low 

inflations result in slower random walks, and vice versa. The inflation parameter may range 

from ≥1 to 5, where small values generate fewer but larger clusters. 

 

K-means Clustering (k-means) 
To partition probe sets based on the original data, the expression values for each probe set 

were centered, scaled, and then subjected to the k-means clustering procedure provided by R 

using the default Hartigan and Wong algorithm (Hartigan and Wong, 1979). 

 

Comparison of Clustering Solutions 
The clustering solutions were judged by modularity (Newman and Girvan, 2004) that 

evaluates the graph partitioning by comparing the sum of edge-weights within clusters with 

edge-weights linking different clusters. This value is subsequently subtracted by the value 

that one expects for random partitions. The obtained modularity score ranges between -1 and 

1, where 1 represents perfect modularity, 0 represents value expected by chance, and -1 

represents value worse than expected by chance. 

The partitions were also evaluated by the Davies-Bouldin index (Davies and Bouldin, 1979) 

using the clusterSim R-package. It is defined by formula 3.3:  

 

(3.3) 

 

with n number of clusters, Sn average distance of all objects from the cluster to their cluster 

center and S(QiQj)distance between two cluster centers. DB score can range from 0 to 

infinity. Values close to 0 are achieved by good (distant) clustering. However, the value of 

zero is gained by just one big cluster. 

 We used adjusted Rand indices to compare two clustering solutions by pairwise 

affiliation of nodes (Hubert and Arabie, 1985). The scores for biological significance of 

clusters were calculated using the approximate mutual information between the clustering 

and MapMan categories (Usadel et al., 2006) having at least 10 members. In the case when 

the clustering solution did not assign all genes to clusters, only those that could be assigned 
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where considered. To make the HCCA clustering comparable to k-means, genes not assigned 

to any cluster by HCCA were not subjected to k-means, as these genes are most likely 

difficult to cluster. From this mutual information value, the mean mutual information from 

1000 random assignments (denoted by MI ) with preserved cluster sizes was subtracted, and 

the result was divided by the standard deviation (denoted by σ) of these random mutual 

information values, according to formula (3.4). 

 

random

randomcluster MIMI
S

σ

−
=

(3.4)
 

 

Overrepresentation Analysis 
In order to identify terms which might be associated we randomly sampled approximately 

700 non-overlapping NVNs from the whole network and tested for a significant 

overrepresentation of MapMan terms within these clusters using a Fisher exact test (p<0.05 

after Benjamini Hochberg correction). This was repeated several times to exclude random 

effects. Subsequently, we tested for significant co-occurrence of overrepresented terms using 

again a Fisher exact test. 

 

Uniqueness vs. Essentiality Estimates 
In order to group Arabidopsis thaliana genes into gene families, a BLASTCLUST analysis 

on Arabidopsis protein sequences obtained from TAIR was performed.  Length coverage 

threshold of 70% and score coverage threshold were used as parameters.  

 We used random sampling to investigate whether there is correspondence between a 

gene having essential or non essential characteristics, and its uniqueness in the genome or 

node vicinity network. So far, 261 genes are characterized as being essential (phenotypic data 

from TAIR), and 152 of these are single copy genes based on the settings above. To 

investigate whether essential genes tend to be single copy, we sampled 261 random nodes 

1000 times and counted the number of single copy genes acquired in each sampling. To 

investigate whether essential genes that do belong to gene family tend to be unique in the 

network vicinity, we sampled 109 (261 total - 152 single copy) random nodes 1000 times. 

The number of genes unique or non-unique in network vicinity was then counted, and 
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represented as histogram. The same was done for non-essential genes with characterized non-

lethal phenotype (1224 total, 422 single copy).  

 

Plant Cultivation and Mutant Analysis 
T-DNA knockout lines (Table 3.2) were obtained from the Nottingham Arabidopsis Stock 

Centre (Alonso et al., 2003). The seeds were surface sterilized, sown on plates containing MS 

media (1x Murashige and Skoog (MS) salts, 8 g L-1 Agar, 1X B5 vitamins, 10.8 g L-1 

Sucrose) and incubated for 48 h at 4°C in the dark.  The plates were then incubated for 7 days 

at 21°C with 16 h photoperiod. T-DNA insertions were confirmed using PCR (data not 

shown). Pictures of seedlings and siliques were done using Leica MZ 16 FA stereo 

microscope.  
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4. PlaNet: Combined sequence and 
expression comparisons across seven plant 
species  
 
4.1 Abstract   
Model organisms, such as Arabidopsis, are readily used in basic research due to resource 

availability and relative speed of data acquisition. A major goal is to transfer the acquired 

knowledge from these model organisms to species that are of greater importance to our 

society. However, due to large gene families in plants, the identification of functional 

equivalents of well characterized Arabidopsis genes in other plants is a non-trivial task, 

which often returns erroneous or inconclusive results. It is well documented that 

transcriptionally coordinated genes tend to be functionally related, and that such relationships 

may be conserved across different species, and even kingdoms.   

 To exploit such relationships we constructed whole genome co-expression networks 

for Arabidopsis and six important plant crop species. We clustered the networks using the 

HCCA algorithm, and provide interactive versions of the networks under the banner PlaNet 

(http://aranet.mpimp-golm.mpg.de). We attempted to assign biological functions to each 

cluster by assessing enriched ontology terms, and mutant phenotype associations. 

Importantly, we implemented a comparative network algorithm that estimates similarities 

between network structures. Thus, the platform can be used to swiftly infer similar co-

expressed network vicinities within and across species and can predict the identity of 

functional homologs. We exemplify this using the co-expressed gene vicinities for the PSA-D 

and Chalcone Synthase genes in Arabidopsis as case studies. Finally, we assessed how 

ontology terms are transcriptionally connected in the seven species, and provide both 

individual MapMan co-expression networks, as well as a network containing the MapMan 

co-expressed terms across all seven species. We propose that this platform will considerably 

improve the transfer of knowledge generated in Arabidopsis to valuable crop species.  
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4.2 Introduction  
Various rapidly evolving genomic and post-genomic technologies, including genome 

sequences and gene expression data, have greatly enhanced our understanding for how 

biological systems function. As of June 2010, over 1500 genomes from prokaryotic, 

eukaryotic and archae organisms have been fully sequenced, and over 5500 sequencing 

projects are in progress (Liolios et al., 2010). In parallel, transcriptional studies via DNA 

microarrays and deep sequencing methods have generated vast amounts of publicly available 

expression data for various organisms, with over 6000 microarray datasets available for 

Arabidopsis alone (GEO database, as of June 2010). In essence, the expression data has been 

generated, and subsequently mined, for hypothesis-driven gene discovery, for example to 

reveal transcriptional responses to certain genotypes or external stimuli, and for mining 

coordinate expression of different genes (Usadel et al., 2009). These types of analyses have 

facilitated the conclusion that functionally related genes tend to be transcriptionally 

coordinated, i.e. co-expressed (Stuart et al., 2003; Persson et al., 2005). Consequently, using 

“guilt-by-association” approaches, co-expression analyses have proved valuable for rapid 

inference of gene function, sub-cellular localization of gene products, and biological pathway 

discovery (Wei et al., 2006; Yonekura-Sakakibara et al., 2008; Usadel et al., 2009).  

  
Organism Affymetrix 

GeneChip* 
Prob
esets 

No. of 
chips* 

No. of HCCA 
obtained clusters 

Source database of coding sequences Percentage of 
represented genes 

Arabidopsis 
thaliana 

ATH1 22,81
0 

351 181 TAIR8 http://www.arabidopsis.org/ ~63% 

Barley Barley1 22,84
0 

116 195 harvEST Hv35 http://www.harvest-
web.org/ 

N/A** 

Medicago 
truncala, 
sativa 

Medicago 61,26
3 

105 360 IMGAG 27-02-2008 
http://www.medicago.org/genome/IMG
AG/ 

N/A** 

Poplar Poplar 61,41
3 

69 400 Poptr 1.1 Jamboree http://genome.jgi-
psf.org/poplar/poplar.home.html 

~65% 

Rice Rice 57,38
0 

83 530 Rice Genome annotation v 6.0 
http://rice.plantbiology.msu.edu/ 

~60% 

Wheat Wheat 61,29
0 

150 384 Triticum aestivum http://www.harvest-
web.org/ 

N/A** 

Soybean Soybean 61,17
0 

215 549 harvEST Gm 10-12-2009 
http://www.harvest-web.org/ 

N/A** 

 

Table 4.1. Detailed microarray information. *Microarray datasets used in this study and 

clustering algorithm are available at: http://aranet.mpimp-golm.mpg.de/aranet/downloads. 

**Due to lack of complete genome sequence, the estimation is not possible. 

 

However, while co-expression relationships in many cases can provide insight into biological 

processes and predict genes for functional testing, the representation of genomic content on 

the microarrays is not complete and the results are therefore also incomplete (Table 4.1). For 
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example, the widely used Arabidopsis ATH1 chip and the Affymetrix rice array cover 

approximately 63% and 60% of the genes in the Arabidopsis and rice genomes, respectively. 

It is therefore clear that certain transcriptional relationships are not revealed using 

microarrays. In addition, low spatio-temporal resolution of gene expression contributes to 

both false negatives, e.g. expression of genes may be rendered as noise due to activity in only 

specific cell types or stimuli, and false positives, e.g. difficulties in distinguishing pollen and 

ovule specific genes if only flowers were measured. These caveats should prompt caution by 

biologists in over-reliance, or at least over-interpretation, of “whole-genome” expression 

analyses. 

 Arabidopsis, as the most studied plant species, has approximately 50% of its genes 

functionally annotated by sequence homology, and approximately 11% of the genes are 

associated with distinct biological functions that have been experimentally verified (Saito et 

al., 2008). Still, a major goal is to transfer the knowledge obtained in a model organism 

(donor), such as Arabidopsis, to other species (acceptors), which may be of greater 

importance for society. After the exact function of a gene product in the knowledge donor 

has been proven experimentally, uncovering the identity of the functional equivalent in an 

acceptor species is, however, not trivial. As plants generally hold large gene families, 

sequence comparison of a gene from the knowledge donor to the genome of the acceptor can 

return a large list of possible candidate genes. While several of those candidates may perform 

the same molecular function, they are not necessarily part of the biological process of 

interest. Intuitively, a functional homolog should be present when the relevant biological 

process occurs. Thus, functional homologs from different species should be reflected in 

conserved co-expression patterns. Indeed, several studies have showed that co-expressed 

relationships are conserved across species and even kingdoms (Stuart et al., 2003; Bergmann 

et al., 2004). Thus, a functional homolog may be identified by combined sequence and co-

expression approaches.  

Several web-tools that combine co-expression analyses with sequence, protein-

protein interaction, cis-element, and sub-cellular localization prediction have been created for 

individual plant species (Steinhauser et al., 2004; Manfield et al., 2006; Mutwil et al., 2008; 

Srinivasasainagendra et al., 2008; Obayashi et al., 2009; Mutwil et al., 2009). The 

representation of co-expressed relationships as networks has transcended standard single 

gene analyses, since this enables the biologist to more readily contextualize their genes or 

proteins of interest (Mao et al., 2009; Mutwil et al., 2010).  
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Here, we present PlaNet (Plant Network), a platform that integrates genomics, 

transcriptomics, phenomics and ontology analyses across seven plant species important both 

for research and human circumstances (http://aranet.mpimp-golm.mpg.de). For comparative 

analyses we implemented NetworkComparer, a novel pipeline that compares and displays 

commonalities and differences between the co-expressed vicinity networks (VNs) across 

selected species. Importantly, considering the incomplete gene coverage of the microarray 

probes, comparative analysis between species provided insight into the association of a gene 

with certain processes despite the absence of corresponding microarray probe. We 

demonstrate the features of the platform by two examples, the photosynthesis related PSA-D1 

gene and several Chalcone Synthase (CHS) genes in Arabidopsis. However, we are 

convinced that its utility extends well beyond both these examples, and also our own research 

interests, which is why we are making it available as a community resource. 

 

4.3 Data sources, construction and structure of PlaNet  
Affymetrix microarray datasets (summarized in Table 4.1) for seven plant species 

(Arabidopsis, barley, rice, Medicago, poplar, wheat and soybean) were obtained from GEO 

(Edgar et al., 2002) and ArrayExpress (Parkinson et al., 2009), and were subjected to deleted 

residual quality control to remove possible array errors (Persson et al. 2005). The resulting 

arrays are summarized in Table 4.1, and can be downloaded from http://aranet.mpimp-

golm.mpg.de. The starting networks were generated by calculating the degree of co-

expression using Pearson correlation cut-off of 0.8 between genes for the respective species, 

similar to what has been described previously (Mutwil et al., 2010). Social and biological 

networks generally follow power law distribution (Barabási and Oltvai, 2004). This implies 

that most of the network nodes are connected to only few other nodes, while a small number 

of nodes are connected to many other nodes. Indeed, we also observed such relationships in 

the co-expression networks of each of the seven plant species (Figure 4.1). For visualization 

of the expression relationships we used the highest reciprocal rank (HRR) between any two 

genes as a measure (Mutwil et al., 2010), given that it has been demonstrated that rank-based 

associations produce robust co-expression analyses (Obayashi and Kinoshita, 2009). 

As whole genome-scale networks are too large and complex for comprehensive 

visualization, we first partitioned the networks into manageable clusters, using Heuristic 

Cluster Chiselling Algorithm (HCCA) with step=3 (Mutwil et al., 2010). In essence, HCCA 

finds clusters by generating putative clusters for every node in the graph and then recursively 
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remove nodes that show higher connectivity to nodes outside of a cluster compared to nodes 

within the cluster. During each recursion new clusters are generated until all nodes are 

assigned to clusters (Mutwil et al., 2010). HCCA was chosen since this algorithm supports 

weighted edge graphs and permits the user to specify their own desired cluster size. The latter 

is crucial for visualization of large networks since large clusters (>400) often are too dense 

for visual inspection, and conversely small networks (<10) are often biologically 

meaningless. When the desired cluster size interval is set to 40-200 nodes the algorithm 

yields between 181 and 549 clusters for the seven plant species (Table 4.1). Following this 

example further, we used Graphviz (www.graphviz.org) to calculate the layout of the 

networks. The resulting interactive clusters (available at http://aranet.mpimp-golm.mpg.de) 

represent co-expressed genes, presumably involved in related biological processes.  

 
Figure 4.1. Network characteristics. Log-log plot of node degree distribution for Pearson 

correlation networks (r ≥ 0.8) from Arabidopsis (green), Barley (dark-blue), Poplar (light-

blue), Rice (red), Medicago (purple), Soybean (black), and Wheat (Mangenta). The x axis 

represents the node degree (i.e. the number of connections a node holds), and the y axis 

displays the frequency (i.e. the number of genes) showing this degree. 
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To interrogate the resulting networks, the user can specify their gene of interest by 

probeset ID, gene ID, nucleotide/protein sequence or keyword, which redirects the user to the 

corresponding gene cluster or to an individual gene specific page (Figure 4.2). The latter 

page contains the expression profile of the gene across different tissues, a step=2 vicinity 

network surrounding the gene (i.e. genes co-expressed within two steps from the selected 

gene), phenotypes found in the VN, and Mapman and Gene Ontology (GO) analyses (Figure 

4.2). The phenotype associations are displayed as color-coded nodes, where red, yellow and 

green represent embryo lethal, gametophytic lethal, and non-lethal phenotypes, respectively. 

Moving the mouse pointer over a node opens a pop-up window displaying annotation and 

phenotypic information of a gene, while clicking a node redirects the user to a page dedicated 

to the corresponding gene.  

Partitioning of any object into smaller units indisputably removes information about 

how the units are arranged to make up the object. To avoid loss of such valuable information 

we connected the clusters based on mutual co-expression relationships to form a network of 

clusters, which should reflect the organisation of the genome-wide co-expression network. 

The resulting “meta-networks” rendered from this analysis thus depict relations between co-

expressed gene clusters (Figure 4.2), i.e. a node in this type of network is a HCCA obtained 

cluster of co-expressed genes (Mutwil et al., 2010). Any two clusters in the meta-network are 

connected if the number of edges between them exceeds a linkage threshold β≥0.02 (Mutwil 

et al. 2010). We chose this linkage threshold value to β≥0.02, as it produced informative yet 

readable network structures. Given that any cluster in the “meta-network” contains genes 

which are co-expressed to one another, we anticipated that the majority of these genes should 

be involved in related biological processes. Inferring such relations is, however, not trivial as 

many genes are not associated with useful annotations. We attempted to get around this 

problem by combining MapMan and Gene Ontology (GO), available phenotypic data, and 

tissue dependent expression profiling. For example, the majority of genes in the Arabidopsis 

cluster 77 show ubiquitous expression profiles, and mutations in the genes often show pale 

green phenotypes or are embryo lethal (Figure 4.2). 

MapMan and GO analysis revealed that this cluster is strongly enriched for genes 

associated with fatty acid elongation and to lesser degree with amino acid synthesis (Table 

4.2; http://aranet.mpimp-golm.mpg.de/aranet/ac77). Based on the combined information 

from these analyses we predict that cluster 77 holds genes involved in lipid metabolism and 

chloroplast development.  



  63 4. PlaNet: Combined sequence and expression comparisons across seven plant species 
 

 

 

 
Figure 4.2. Outline of the PlaNet platform. MetaNetwork (upper left). Each node in this 

network represents a cluster of co-expressed genes (upper right). We mapped available 

phenotypic data onto the genes (blow-up insert upper right; red indicates embryo lethality; 

yellow indicates gametophytic lethality; and green indicates other reported phenotypes, that 

results when the gene is mutated). The coloured edges indicate strength of the co-expression 

based on mutual ranks between the individual gene pairs (green indicates a mutual rank 

below 10; orange indicates a mutual rank between 10 and 20; and red indicates a mutual 

rank between 20 and 30). Each of the genes in the cluster can also be displayed with its node 

vicinity network (VN) in which the gene of interest is centered, and the surrounding co-

expressed genes are displayed (lower left). This lay-out also includes the expression profile 
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of the gene across different tissues. All pages also give information about phenotypic data for 

the genes in the cluster (Lower right), and enriched ontology terms. 
Bin number Bin annotation p-value 

11  lipid metabolism 2.87E-19 

11.1  lipid metabolism,FA synthesis and FA elongation 7.75E-24 

11,1,1  lipid metabolism,FA synthesis and FA elongation,Acetyl CoA Carboxylation 6.04E-07 

11,1,2  lipid metabolism,FA synthesis and FA elongation,Acetyl CoA Transacylase 0.003165392 

11,1,3  lipid metabolism,FA synthesis and FA elongation,ketoacyl ACP synthase 5.90E-05 

11,1,4  lipid metabolism,FA synthesis and FA elongation,ACP oxoacyl reductase 0.003165392 

11,1,5  lipid metabolism,FA synthesis and FA elongation,beta hydroxyacyl ACP dehydratase 9.88E-06 

11,1,6  lipid metabolism,FA synthesis and FA elongation,enoyl ACP reductase 0.003165392 

11,1,12  lipid metabolism,FA synthesis and FA elongation,ACP protein 0.021951303 

11,1,30  lipid metabolism,FA synthesis and FA elongation,pyruvate kinase 2.96E-05 

11,1,31  lipid metabolism,FA synthesis and FA elongation,pyruvate DH 3.03E-07 

11.3  lipid metabolism,Phospholipid synthesis 0.011398276 

11.9  lipid metabolism,lipid degradation 0.057192339 

11,9,2  lipid metabolism,lipid degradation,lipases 0.110769082 

11,9,3  lipid metabolism,lipid degradation,lysophospholipases 0.133078577 

11,9,3,2  lipid metabolism,lipid degradation,lysophospholipases,carboxylesterase 0.012602403 

13  amino acid metabolism 0.000214568 

13.1  amino acid metabolism,synthesis 1.71E-05 

Table 4.2. Mapman terms associated with Cluster 77 in Arabidopsis.  

 

 Analogous to the enrichment of certain biological processes within a cluster, 

connected clusters also share co-expressed gene pairs and may therefore also be involved in 

related processes. One such example is evident for genes grouped in the connected clusters 6, 

14, 21, 59, 81, 91, 121, 137 and 142 in Arabidopsis. Mutations in many of these genes 

display pale green phenotypes, or result in embryo lethality (data not shown). Most of the 

genes associated with these clusters are also ubiquitously expressed with the exception of 

roots, and the clusters are enriched for MapMan ontology terms such as protein targeting to 

chloroplast, plastid protein synthesis, and photosystem light reaction. We, therefore, find it 

likely that many of these clusters are associated with chloroplast development and 

photosynthesis. Many other groups of clusters are also enriched for certain biological 

functions, such as cell division, protein synthesis, defense and tissue specific development. It 

may, therefore, be useful to not only explore the direct VN of the gene of interest for 

functional context, but also to evaluate neighboring clusters for a higher contextual order. 

 The interactive gene-related networks in PlaNet may thus be browsed on three 

different levels for each of the individual species: as meta-networks displaying inter-
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connectivity between gene clusters, as individual gene clusters, and as single gene pages with 

surrounding gene VNs (Figure 4.2).  

4.4 Comparative co-expression relationships across seven 
plant species.  
The co-expressed network arrangements of the individual species may reveal genes and 

processes which are associated with the function of a gene of interest. However, due to 

incomplete coverage of the arrays (Table 4.1), and also of the analyzed datasets, the 

individual networks most likely lack some candidate genes as well as containing false 

positive candidates. Here we argue that by comparing network structures across species we 

may enrich for genes related to the particular biological function of interest. In addition, 

considering the comparably high knowledge about gene functions in Arabidopsis we 

anticipated that by comparing VNs to other species we would be able to readily infer 

functional homologs in other species that are likely to have higher societal value.  

To compare different network vicinities we included a NetworkComparer pipeline, 

which can score and display conserved co-expression network structures across species by 

combining gene sequences with co-expression network structure (Figure 4.3), in the PlaNet 

platform. For the sequence comparison we binned genes present on the arrays into Protein 

families (binning downloadable from http://aranet.mpimp-

golm.mpg.de/aranet/Downloads). We next obtained probeset target sequence information 

from Affymetrix homepage (www.affymetrix.com). The probesets were mapped using 

BLAST to the corresponding best-hit coding sequence as defined by the most current data 

from genome assembly databases (Table 4.1). Probesets with no gene hit or expected values 

higher than 0.01 were excluded from further analysis. Then, using reversed position specific 

BLAST (Marchler-Bauer et al., 2007) with a cut-off expected value of 0.01 we assigned each 

gene to the best-hit protein (PFAM v23.0) family (Finn et al., 2008). The NetworkComparer 

pipeline can compare either user defined genes to each other, or a specific gene to all 

members of the associated protein family (Figure 4.3). Here we illustrate the principle and 

application of the pipeline by two examples, photosynthesis and the chalcone synthase 

pathway, however, we also stress that such an approach can be adopted for any 

gene/pathway/process of interest.  
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Figure 4.3. Outline for the NetworkComparer pipeline. Similarities of vicinity networks 

(VN) are scored by counting the amount of gene families (depicted by colored nodes) they 

have in common. 

 

4.4.1 Photosynthesis – AtPSA-D1 and AtPSA-D2 
The two Arabidopsis genes AtPSA-D1 and AtPSA-D2 are co-expressed and belong to the 

photosystem I reaction center (PSA-D) family, necessary for assembly of the PSI complex 

(Ihnatowicz et al., 2004). BLAST and phylogenetic analysis of the PSA-D family revealed 

two, two, three and one members from Arabidopsis, Medicago, poplar and rice, respectively 

(Figure 4.4A). As only a single PSA-D related copy is present in rice it appears easy to infer 

that this gene should represent a functional homolog to the Arabidopsis PSA-Ds. Consistent 

with such idea, the VN for the rice PSA-D gene contains many genes for which homologs are 

found also in the AtPSA-D1 VN (data not shown). However, the sequence divergence 

between the AtPSA-Ds and the two Medicago PSA-D proteins is minute. Similarly, the two 

Poplar PSA-Ds are also at approximately equal sequence distance to the AtPSA-D proteins 
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(Figure 4.4A). It therefore seems rather difficult to predict which of the PSA-D proteins in 

poplar and Medicago that have the most closely related biological function to the AtPSA-Ds.  

 
Figure 4.4. Co-expression vicinity networks for PSA-D-related genes across seven plant 

species. A. Phylogenetic tree of PSA-D-related proteins in Arabidopsis, poplar, rice, and 

Medicago. Colour coded proteins/probe sets corresponds to; Green; Arabidopsis PSA-

D1and D2, Red; rice PSA-D with a similar VN to AtPSA-D1 and AtPSA-D2, Light-blue; 

poplar PSA-D with a similar VN to AtPSA-D1 and AtPSA-D2, Purple; Medicago PSA-D with 

a similar VN to AtPSA-D1 and AtPSA-D2, and Black; Proteins for which the gene VNs have 

low similarity to the AtPSA-D1 VN. Protein sequences were aligned in MEGA4 (Tamura et 

al., 2007) using ClustalW and phylogenetic trees were constructed using bootstrapped 

Neighbour-Joining method (1000 runs). B. Heat-map of co-expressed VNs of PSA-D-related 

genes across the seven species. X- and Y-axes represent PSA-D-related genes for which VNs 

were compared. Darker colours indicate more similar VNs. White areas indicate that the two 

VNs in a species are overlapping, and the values are therefore excluded (inclusion would 
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result in artificially high values since the VN areas are overlapping and therefore include the 

same genes). Coloured vertical lines indicate the different species; Green; Arabidopsis, 

dark-blue; barley, purple; Medicago, light-blue, poplar, red; rice, and black; soybean. Two 

lines indicate that the genes are in the same gene VNs. C. Combined co-expressed gene VNs 

for the seven different plant species for PSA-D genes. Colour coded nodes and edges 

represent presence of certain genes and connections across species. Red, orange and pink 

nodes indicate that a gene homolog is found in the VN of more than 75%, 50% and 25% of 

the species, respectively. Similarly, red, orange and pink edges indicate that an edge is found 

between the two connected gene homologs in more than 75%, 50% and 25% of the species, 

respectively. 

We attempted to predict which of these, and other PSA-D, genes most closely 

resemble the AtPSA-D gene function and therefore used one of the PSA-D genes from 

Arabidopsis, AtPSA-D1 (At4g02770), as query for the NetworkComparer. The pipeline 

found 13 PSA-D associated probesets in the six plant species (Fig 4.4), which were passed on 

to the comparative analysis. The algorithm implemented in the NetworkComparer first 

generates VNs for each of the 13 probesets by taking in all co-expressed nodes that are 

within two steps (step=2) from each probeset (Fig 4.3).  
Co-expressed group: 1 
at4g02770 
at1g03130 

Average score of group:37.0 
40 
34 

Co-expressed group: 2 
contig4015_at 

Average score of group:22.0 
22 

Co-expressed group: 3 
Mtr.19267.1.S1_at 
Msa.1655.1.S1_at 
Mtr.34726.1.S1_at 

Average score of group:14.0 
21 
19 

2 
Co-expressed group: 4 
PtpAffx.71066.9.S1_at 

Average score of group:3.0 
3 

Co-expressed group: 5 
PtpAffx.71066.5.A1_s_at 

Average score of group:3.0 
3 

Co-expressed group: 6 
Ptp.5240.1.S1_s_at 

Average score of group:14.0 
14 

Co-expressed group: 7 
Os03g09220.3 

Average score of group:20.0 
20 

Co-expressed group: 8 
Gma.10852.4.S1_a_at 

Average score of group:10.0 
10 

Co-expressed group: 9 
Gma.10852.1.S1_a_at 
Gma.10852.2.S1_at 

Average score of group:23.5 
24 
23 

 

Table 4.3. NetworkComparer table showing similarity scores of  PSAD-1 related probesets 

to PSAD-1 from Arabidopsis. Bold probesets were selected for further analysis. 

 

The VNs are then compared to one another in a pair-wise fashion, where the score value 

between any two VNs equals the number of protein families they have in common (Fig 4.3). 
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Thus, VNs with highly similar protein family content should show high mutual score. Results 

of this comparison are shown as a heatmap and a table. The heat-map graphically reveals the 

similarity scores of VNs of all probe-sets in the protein family of the query gene. Table 4.3 

shows the similarity scores of the query gene to all genes from the analyzed protein family. 

It is important to keep in mind that some members from the same gene family may be 

co-expressed, i.e. present in one another’s VNs, and comparison of such genes will, 

therefore, return an artificially large comparison score. To avoid such artificial enrichments, 

the pipeline bins the overlapping VNs into co-expression groups. For the PSA-D family, nine 

such co-expression groups were found across the six plant species. The heat-map shows that 

three probesets representing Medicago PSA-D genes are present in one co-expression group 

(Figure 4.4, Table 4.3). Of the three corresponding genes, Medtr5g006220.1 (represented by 

probeset Mtr19267.1.S1_at) showed the highest score to co-expression network of AtPSA-D1 

(Msa.1655.1.S1_at could not be readily associated with any current gene models). In 

addition, of the three PSA-D genes from poplar, gene model 564827|eugene3.00081422 

(represented by probeset ptp.5240.1.s1_s_at) showed the highest score to AtPSA-D1 (Fig 4.4, 

Table 4.3). Taken together, these exemplary results suggest that the second step of the 

NetworkComparer pipeline can be used to identify potential functional homologs across the 

different species.  

To analyze the commonalities between the PSA-D associated networks we chose the 

highest scoring PSA-D gene, i.e. the PSA-D genes with the most similar gene VNs to AtPSA-

D1, from each species (Table 4.3), and sent these to the final step of the analysis. In this step 

the pipeline extracts and displays the common features of the selected gene VNs in form of a 

combined network and a table (Figure 4.4C). The combined co-expression VN depicts the 

frequency for which a given protein family is found in the selected co-expression networks, 

where red, orange and pink nodes and connections correspond to protein families and family 

associations found in >75%, >50% and >25% of the networks, respectively.  

The co-expression networks of the selected PSA-D genes showed strong enrichment 

of PSA and PSB gene families which are components of photosystem I and II complexes 

(Figure 4.4C, Table 4.4; Nelson and Yocum, 2006). In addition, several other genes not 

directly associated with the photosystem complexes, but with ATP generation, such as ATP 

synthase, glyceraldehyde 3-phosphate dehydrogenase and triose phosphate transporter family 

were also present in the network. Interestingly, two Domain of Unknown Function families, 

DUF566 and DUF477, were present in four and three of the co-expression networks 
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analyzed, respectively, suggesting association of those families with the biological function 

of the PSA-D gene products.   
 Arabidops
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Table 4.4. Detailed identity information from the NetworkComparer analysis of the PSA-D 

related genes using At4g02770 as query. The table is truncated due to space limitations. 

 

While the common network depicts enrichment and associations between protein 

families in the analyzed co-expression networks for the individual species, the associated 

table provides detailed information regarding the identity of probesets associated with the 

families (Table 4.4).  

Apart from predicting functionally related genes and putative functional homologs 

across species, the table can also reveal functional redundancies. For example, using AtPSA-

D1 from Arabidopsis as query for the analysis, the pipeline detected AtPSA-D2 to be present 

in the VN of AtPSA-D1 (Table 4.4). Literature search reveals that whilst mutations in AtPSA-

D1 affect the photosynthetic electron flow, disruption of AtPSA-D2 results in no observable 

phenotype (Ihnatowicz et al., 2004). This could perhaps be due to functional redundancy 

between the two gene products. Indeed, atpsa-d1 atpsa-d2 double mutants result in an 

additive phenotype, i.e. seedling lethality (Ihnatowicz et al., 2004), supporting this 

hypothesis.  

 



  71 4. PlaNet: Combined sequence and expression comparisons across seven plant species 
 

 

4.4.2 Flavonol and flavonoid synthesis - Chalcone Synthases 
The PSA-D gene family is relatively small and we therefore also chose to approach a 

considerably larger gene family; the Polyketide Synthase family (PKSs; Austin and Noel, 

2003; Abe and Morita, 2010). From within this family we chose the Chalcone Synthase 

(CHS) subfamily, which is one of the larger subfamilies of the PKSs. Whilst Arabidopsis 

only contains four CHS related genes, rice and Medicago have at least 20 CHS homologs 

each (Figure 4.5).  

 
Figure 4.5. Phylogenetic tree of CHS-related proteins in Arabidopsis, Poplar, Rice, and 

Medicago. Colour coded genes/probe sets corresponds to; Grey; gene not present on the 

array, Green; Arabidopsis genes with secondary metabolism related VNs, Red; Rice genes 

with secondary metabolism related VNs, Light-blue; Poplar genes with secondary 

metabolism related VNs, Purple; Medicago genes with secondary metabolism-related VNs, 

and Black; Genes with no significant secondary metabolism related ontology terms for their 

VNs. The boxed area is blown up and displays, together with genes/probesets indicated with 

arrow heads, putative CHS related genes associated with floral tissues for the four species. 

Protein sequences were aligned in MEGA4 (Tamura et al., 2007) using ClustalW and 

phylogenetic trees were constructed using bootstrapped Neighbour-Joining method (1000 

runs). Values on the branches indicate bootstrap support in percent. 

 

The CHS gene products are associated with flavonoid-related biosynthesis pathways in 

which they catalyze the conversion of coumaroyl-CoA into naringenin chalcone (Austin and 

Noel, 2003; Abe and Morita, 2010; Figure 4.6). One of the more prominent CHS members in 
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Arabidopsis (At5g13930; TT4) has been experimentally associated with the main 

flavonol/flavonoid biosynthesis route (Feinbaum and Ausubel 1988), and is co-expressed 

with many of the genes for which the gene products work either up- and downstream of the 

CHS (Tohge et al., 2005; Yonekura-Sakakibara et al., 2008; Tohge and Fernie, 2010). These 

relationships may readily be seen in Figure 4.6, in which the general flavonoid biosynthetic 

genes, e.g. CHS (TT4, At5g13930), CHI (TT5, At3g55120), F3H (TT6, At3g51240), F3’H 

(TT7, At5g07990), Fd3GT (UGT78D2, At5g17050) and 4CL3 (At4CL3, At1g65060) are 

found in a central co-expressed cluster. In addition, this central network is connected to genes 

associated with anthocyanin production, such as ANS (TT18, At4g22880), DFR (TT3, 

At5g42800), A3G2”XT (UGT79B1, At5g54060), A3GCoT (At1g03940 and At1g03495; Luo 

et al., 2007), A5GT (UGT75C1, At4g14090) and A5GMalT (At3g29590), and also to genes 

associated with flavonol production, e.g. FLS (AtFLS1, At5g08640), F3RT (UGT78D1, 

At1g30530), RHM1 (ROL1, At1g78570) and MYB111(PFG3, At5g49330). Interestingly, 

several light response genes, including HY5, CRYD and PHR1, are transcriptionally 

coordinated with the TT4 gene (Figure 4.6). 

 
Figure 4.6. Co-expressed gene vicinity network for Chalcone Synthase (CHS; At5g13930) 

in Arabidopsis. Many of the genes co-expressed in this VN (left) participate in the 

flavonol/flavonoid pathway (right) leading up to anthocyanin production. Network genes 
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indicated in red, brown and blue are related to flavonoid, flavonol and anthocyanin 

production, respectively, and green are related to light responsive genes.  

 

HY5 can activate the transcription factor Production of Flavonol Glycosides (PFG) in 

response to ultraviolet-B light (Stracke et al., 2010). Thus, this co-expressed gene cluster 

reveals links between various natural products, and also between transcriptional activators 

and biosynthetic genes 

 To assess similarities across the different species for CHS-related processes we used 

TT4 as query gene for the NetworkComparer platform. The output from the tool resulted in 

approximately 30 co-expression groups, with varying degrees of VN similarities to the VN of 

the query gene (Figure 4.7). We selected the most similar VN from each species compared to 

the query gene VN (boxed in red and blue in Figure 4.7A), which yielded a combined co-

expression network for the CHSs across the seven species (Figure 4.7B). From this network 

it is apparent that many of the VNs contain genes associated with the general flavonoid 

biosynthesis, including CHIs, F3Hs, FLSs and DFRs (Figure 4.7C). Also, several genes that 

transport and modify flavonoids, such as OMTs and glycosyltransferases, and ABC-

transporters, glutathione-S-transferases and sugar-transporters, are present in the VNs in 

multiple species (Figs. 4.7B and 4.7C). Flavonoids are generally accumulated as glycosylated 

forms in the vacuole. The conservation of both glycosyltransferses and transporters in the 

VNs across species suggest that both glycosylation events and the vacuolar transporting 

systems occur in all the species we studied here. Furthermore, genes that encode epimerases 

and certain transcription factors are also included in the combined network. NDP-sugar 

converting enzymes, such as UDP-rhamnose synthases can provide substrates for the 

glycosylation of flavonoids. Transcription factors, on the other hand, transcriptionally 

activate the biosynthetic pathway genes. It is important to note that several of these 

annotations have previously been directly associated with flavonoid-related biosynthesis in 

Arabidopsis. 
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Figure 4.7. Combined co-expressed gene vicinities for CHS-related genes across seven 

species. A. Heatmap depicting similarities of gene vicinity networks for the CHS family in 

seven species. CHS genes are represented by probeset IDs. Higher opacity of intersecting 

areas indicates higher gene VN similarity. Overlapping gene network vicinities are marked 

by alternating - and | sign and by alternating color bars. The column and rows containing 

VNs selected for the combined network are boxed in blue (query gene) and red (selected 
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VNs). B. Combined gene VNs for CHS-related genes across the seven species using CHS 

(At5g13930) as bait. Different colored nodes and edges correspond to number of species in 

which a homolog is found in the gene vicinity network (see explanation in Figure 4.4). Genes 

that directly correspond to pathway members are highlighted in black. Genes that are 

functionally related to the pathways are indicated in red. The blue gene indicates a DUF538 

containing gene of unknown function for which homologs occur in the CHS gene network 

vicinity in at least three species. C. Schematic pathway structure of the anthocyanin/flavone 

biosynthesis in the different species. Different colors correspond to the different species as 

indicated. See box I for acronym annotations.  

 
For example, over-expression of the MYB transcription factor PAP1 resulted in 

accumulation of cyanidin and quercetin derivates, and led to the activation of genes 

associated with the anthocyanin production (Tohge et al., 2005). Figure 4.7C shows a 

schematic pathway outline of the conserved flavonoid biosynthesis pathway, including 

anthocyanin, flavonol, glycoflavone and isoflavone synthesis, based on literature survey and 

KEGG pathways, for Arabidopsis (Tohge et al., 2005, Tohge et al., 2007, Yonekura-

Sakakibara et al., 2008), barley (Nørbaek et al., 2003; Brazier-Hicks et al., 2009; Klausen et 

al., 2010), Medicago (Nørbaek et al., 2003; Kowalska et al., 2007; Farag et al., 2008), rice 

(Han et al., 2009; Kim et al., 2009), soybean, (Steele et al., 1999; Choung et al., 2001; 

Latunde-Dada et al., 2001) and wheat (Ioset et al., 2007). Sub-classes of flavonoids, and 

anthocyanins have been detected and reported in all six plant species, but none of the 

flavonoid subfamilies flavonol, glycoflavone and isoflavone has been reported. By 

comparing Figures 4.7B and 4.7C it is clear that many of the enriched protein family 

annotations in Figure 4.7B are prominent in the flavonoid pathway structure. 

To obtain further information about the specific genes in the different VNs for the 

CHS-related genes we looked at the respective gene pages. One prominent example is the 

CHS-related gene (AtPKS-B, At4g34850, Mizuuchi et al., 2008) in Arabidopsis. The VN for 

this gene contains some genes that could be associated with flavonoid-related processes 

(Figure 4.8), such as a dihydroflavonol reductase (At4g35420), a 4-coumarate CoA ligase 

(At1g52940), and a glycosyltransferase (At1g33430). However, the VN does not contain the 

charactarized flavonoid biosynthetis genes nor the flavonol arabinosyltransferase F3AbT 

(UGT78D3, At5g17030), which convert flower specific flavonol. In addition, flavonoid 

profiling of tt4 mutant flowers showed that many flavonoids were not detected (Yonekura-

Sakakibara et al., 2008).  
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Figure 4.8 Co-expressed gene vicinity network for CHS-related gene (At4g34850) in 

Arabidopsis. Nodes in the network resemble individual genes and the connecting edges 

represent co-expressed links. Expression of the CHS-related gene across different tissues is 

displayed upper left. 

 

These results indicate that the majority of flavonoids are produced via TT4 in 

Arabidopsis flowers. This in turn suggests that AtPKS-B is part of a different biosynthetic 

pathway. Indeed, Mizuuchi et al. (2008) concluded that AtPKS-A (At1g02050) and AtPKS-B 

could accept fatty acyl CoAs as a starting substrate. Furthermore, recent studies have shown 

that several of the genes in the VN of AtPKS-B participate in the synthesis of polyamines, 

such as N1,N5-di(hydroxyferuloyl)-N10-sinapoylspermidine, being a part of the sporopollenin 

surrounding the pollen grains (Ehlting et al., 2008; Matsuno et al., 2009; Dobritsa et al., 

2010). Several MYB and bHLH transcription factor encoding genes are also present in the 

AtPKS-B VN and may be good candidates for transcriptional regulators of the pathway 
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(Figure 4.8). Interestingly, Os07g22850 is a close rice homolog for AtPKS-B (Figure 4.5), 

making it a good candidate for related functions in rice. Indeed, this gene appears to be 

exclusively expressed in floral tissues and the VN contains genes that are associated with 

polyamine-related processes (http://aranet.mpimp-golm.mpg.de/ricenet/r48241).  

Since many of the flavonoid-related processes have been relatively well characterized 

in Arabidopsis we inspected VNs from Medicago with high similarity to the Arabidopsis TT4 

VN. The highest scoring Medicago VN is associated with the probe ID Mtr.40122.1.s1_s_at 

(Figure 4.7A) and contains many genes with annotations related to isoflavone/flavonoid 

synthesis, including cytochrome P450s, IFRs, and O-methyltransferases (data not showed). 

Interestingly, another high-scoring VN surrounds the probe ID (Mtr.45667.1.s1_x_at), which 

is exclusively expressed in roots and root nodules (Figure 4.9). The flavonoid-derived 

metabolite medicarpin is a phytoalexin that is utilized by plant roots as protection from 

fungus and insects (Dakora et al., 1993; Dixon and Sumner, 2003; Naoumkina et al., 2007). 

Closer inspection of the VN revealed that many genes that encode proteins tentatively 

involved in the synthesis of medicarpin-conjugates were found co-expressed with the TT4-

related Medicago gene. These genes represent gene products for virtually all the pathway 

steps from isoliquiritgenin to medicarpin and its downstream conjugates (Figure 4.9), and 

include CHIs, IFSs, 4O’MTs, HIDHs, I2’Hs, IFRs, VRs, DMIDs, UGTs, GSTs, transporters, 

WRKYs and bHLHs. While several of the proteins responsible for the catalysis of the 

constituent pathway steps have been identified or anticipated (Naoumkina et al., 2007) we 

propose that many of the genes associated with the VN may qualify as good candidates for 

biosynthetic and regulatory gene products for this pathway.  
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Figure 4.9. Co-expressed gene vicinity network for putative CHS-mediated (CHS4) 

Medicarpin biosynthesis. Nodes in the network resemble individual genes and the connecting 

edges represent co-expressed links. The coloration of nodes and edges are explained in 

Figure 4.2. The different steps in the medicarpin biosynthetic pathway are indicated in 

different colors according to the pathway structure on the left. The P450-related genes 

indiacted in gold could encode the missing DMID step in the pathway. The interactive 

networks may be found at http://aranet.mpimp-golm.mpg.de/medinet/m40731. The expression 

profile for the CHS4 is indicated above the network. Acronyms stand for: CHS; Chalcone 

Synthase, CHR; Chalcone Reductase, CHI; Chalcone Isomerase, IFS; Isoflavone Synthase, 

4’OMT; 4’ O-methyltransferase, HIDH; 2-hydroxyisoflavanone dehydratase, I2’H;isoflavone 

2’-hydroxylase, IFR; Isoflavone Reductase, VR; Vestitone reductase, DMID; 7,2′ -dihydroxy-

4′-methoxyisoflavanol dehydratase, UGT; UDP-Glycosyl transferase, GST; Glutathione S-

transferase, WRKY and BHLH; Different types of transcription factors. 



  79 4. PlaNet: Combined sequence and expression comparisons across seven plant species 
 

 

4.5 MapMan ontology networks 
Although co-expression analysis can suggest gene function and help unravel novel 

components of biological machineries, another important quest in biology is to understand 

how different biological functions are orchestrated to fulfill cellular processes. We have 

observed that genes involved in distinct yet related biological functions are often associated 

in co-expression networks. For example, ontology analysis of PSA-D genes used in one of the 

above case studies revealed that genes associated with photosystem I/II complexes, ATP 

synthesis, and Calvin cycle are co-expressed in Arabidopsis (http://aranet.mpimp-

golm.mpg.de/aranet/a12253). To similarly evaluate co-occurence of ontology terms, we 

examined the HCCA clusters generated for the different organisms for MapMan ontology 

terms annotated to genes in the VN. Ontology terms showing a significant enrichment or 

depletion (Fisher test p<0.05) were then extracted. Subsequently, the co-occurrence of pairs 

of terms was determined for all clusters, and was tested for overrepresentation using a 

Fisher’s exact test. Pairs of terms that were overrepresented were then connected, and the 

resulting networks were visualized as interactive networks for the seven species. Many 

ontology terms that were anticipated to be functionally connected also occured in close 

vicinity in the networks. For example, mitochondrial ATP synthesis/electron transport and 

TCA cycle related ontology terms, and terms such as photosynthesis, Calvin cycle, and 

tetrapyrrole synthesis are connected in the network for Medicago (http://aranet.mpimp-

golm.mpg.de/medinet/ Mapman_network).  

Similar to the comparative network approach for individual gene networks described 

above, we postulate that ontology terms that are connected in two or multiple species may 

more reliably reflect noteworthy links between the terms. To produce such network we 

identified terms which were associated in at least two monocots and two dictots. The 

resulting network, therefore, represents conserved ontology term associations across at least 

four of the plant species (Fig 4.10). Visual inspection of the network reveals that related 

processes are readily connected, and often form clusters. For example, photosynthesis related 

terms are associated with terms such as Calvin cycle, and tetrapyrrole biosynthesis, but is also 

associated with glycolysis, TCA cycle, and various mitochondrial processes. The latter 

associations could be viewed as reflecting the cross-talk between the chloroplast and 

mitochondria, for example in the form of different redox-related metabolites, such as malate 

and oxaloacetate, and in the exchange of ATP (Sweetlove et al., 2006; Raghavendra and 

Parmasree, 2003; Nunes-Nesi et al., 2008). In addition, terms associated with cell division, 
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e.g. various cell cycle related terms, histone biosynthesis, and chromatin structure, are closely 

linked to various vesicle trafficking terms, e.g. p- and v-ATPases, G-protein signalling, 

dynamins (Figure 4.10). Finally, flavonoid synthesis-related terms are directly connected to 

several stress related terms, which in turn connects to cytochrome P450s, GSTs, peroxidises 

and to jasmonate biosynthesis. The latter relationship is substantiated by the induction of 

anthocyanin production and of flavonoid-related genes by methyl jasmonates (Franceschi and 

Grimes, 1991). Hence, the ontology associations captured in the networks recapitulate known 

biological connections, and may therefore also be used as a guide to discover and establish 

new relationships between different biological pathways and functions. 

 
Figure 4.10. Combined MapMan ontology network for the seven species. Co-expressed 

gene MapMan ontology terms in at least four of the investigated species. Key to the MapMan 

ontology is displayed on the right. 

 

 

4.6 Summary and future prospects.  
The PlaNet platform integrates transcriptomic, genomic, phenomic and ontology terms for 

seven plant species with the aim to rapidly transfer knowledge across the species. Current 

functional homology predictions rely heavily on sequence comparisons, i.e. phylogentic 

relationships. While such inference in some instances may be accurate we contest that the 
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combination of sequence information with transcriptional relationship is likely to 

considerably improve such inferences. We have exemplified this using genes involved in 

assembly of the photosystems and in flavonoid-related processes. These analyses revealed 

many gene products and whole pathways that we predict would be closely linked to the 

respective pathways but currently are uncharacterized. Zooming out from an individual gene 

level we took advantage of co-expression between ontology terms and provided networks 

displaying how different terms are transcriptionally linked. We propose that the combination 

of the tools presented here will allow researchers to predict genes involved in highly diverse 

pathways and processes across diverse species, and to contextualize biological processes by 

ontology term associations. This tool may readily be extended to also include other species, 

provided that sufficient expression datasets exist. Inclusion of even more plant species may 

also allow for more detailed analyses, for example a more detailed assessments of 

transcriptional differences between monocots and dicots. That said even in its current format 

PlaNet should represent a highly useful resource for the many groups currently attempting to 

transfer knowledge gleaned from Arabidopis to species more vital for human circumstance. 
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5. General discussion 
 
In the introductory chapter, I outlined the topics and tools used in this thesis, with the main 

focus set on co-expression analysis. Co-expression is based on the observation that 

transcriptionally coordinated genes tend to be functionally related. As stated in Chapter 1, a 

bioinformatic method is as useful as its accessibility, and quite commonly many prospective 

bioinformatical methods are either not implemented at all, or require considerable 

background in programming, e.g. R or Perl. A major objective for this thesis has therefore 

been to create bioinformatic-based tools that relatively easily can address biological 

problems.  

Despite the great potential of co-expression analysis, it is important to keep in mind 

that correlation does not prove causal relationships. It only provides useful leads for 

establishing hypotheses, which may lay as ground for experimental procedures.  While a 

potent tool, co-expression analysis has also several caveats:  

 (a) Low temporal resolution of gene expression contributes to false negatives. Some 

genes are only expressed in a specific tissue or stimuli, which may or may not be covered by 

available microarray data. If the specific condition is not covered by the arrays the genes 

would be tagged as not expressed, and would either show no correlation to any gene, or show 

correlation to other "not expressed" genes.  

 (b) False positives can arise due to the fact that samples used for microarray study 

often contain whole organs. For example, if one uses a microarray dataset containing 

expression profile of whole flowers, excluding specific data for petals, sepals, stamens and 

carpels, genes from these separate tissues would appear strongly co-expressed, even when 

this is not the case.  

 (c) At least 40 high-quality arrays are needed to conduct a sound co-expression 

analysis (Manfield et al., 2006). The ATH1 microarrays that fulfil those criteria for 

Arabidopsis cover approximately 63% of predicted genes (~21000 genes on microarray, with 

~30000 genes in Arabidopsis genome). It is therefore clear that certain transcriptional 

relationships are not revealed using microarrays, resulting in further false negatives.  
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 These caveats should prompt caution by biologists in over-reliance, or at least over-

interpretation, of “whole-genome” expression analyses. I attempted to address this issue by 

introducing comparative transcriptomics for seven plant species. Comparative analysis could, 

in response to the above points, improve: a) poor temporal transcriptomic resolution of one 

organism, using a rich resolution of another, b) separate bulky, whole tissue transcriptomic 

snapshots, using fine grained measurements of another, and c) suggest missing co-expression 

relationships in one species by using discovered relationships from another species. Indeed, 

several studies have indicated that comparative transcriptomic analyses can improve co-

expression analysis, by highlighting conserved co-expression relationships, e.g. Oti et al., 

2008) 

 At the end of Chapter 1, I stated that co-expression analysis is a potent tool that can be 

used for prediction of: (i) gene function, (ii) organization of biological processes and (iii) 

functional homologs. With those three problems in mind, the web-tools GeneCAT, AraNet 

and PlaNet were created. This chapter briefly summarizes the three web-tools and output 

from them. This chapter also discusses how comparative co-expression analysis can be 

applied to improve co-expression analysis, and also presents an outlook for future work. 

5.1  Prediction of gene function 
The lack of knowledge of gene function is still the major bottleneck in understanding how a 

complex system, such as the cell, functions. Arabidopsis, as the most thoroughly investigated 

plant in science, has ~50% genes without any functional annotation. Those genes do not share 

sequence similarity with annotated genes, and are often described as "expressed protein" or 

"protein of unknown function". Functional annotation can be suggested by basic co-

expression analysis, as suggested in chapter 2.1 of this thesis. Examples from literature that 

used co-expression analysis as predictor of gene function in Arabidopsis include Horan et al. 

(2008), who associated 1,541 proteins of unknown function (PUFs) with clusters containing 

proteins with known function (PKFs), thus suggesting putative annotations for the PUFs. 

Similar analysis was performed in Mutwil et al., (2009, not presented in this thesis), where I 

investigated association of cell wall related gene families with all families present in the 

genome. I have observed logical associations between families involved in cell wall 

biosynthesis and also with families not associated with cell wall biosynthesis, forming a 

potential basis for future investigations.  
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5.2 Organization of biological processes 
Any biological process or pathway, for example photosynthesis, requires coordinated effort 

of many gene products. While uncovering the components of a pathway is essential for 

understanding the underlying mechanism, it is equally vital to understand how the different 

biological processes are associated with one another. For example the biological process of 

cell division could be roughly divided into biological sub-processes of DNA synthesis, DNA 

methylation, histone biosynthesis, cell cycle control, cell wall biosynthesis and others.  

By combining Mapman ontology analysis with co-expression, I have investigated the 

association of hierarchies of biological processes, as shown in Chapter 3 and 4. The results 

presented in those chapters revealed known, and logical associations, e.g. ontologies 

constituting photosynthesis related processes were strongly connected with one another, but 

also with plastid protein synthesis and tetra-pyrrole biosynthesis (Figure 4.9). Another 

interesting associations were found between vesicle trafficking, G-proteins, post-translational 

modification of proteins and proteasome, possibly reflecting a pathway for tagging, 

transportation and degradation of proteins 

Several unknown, but interesting associations were also found in the Mapman 

ontology association network. For example, plant defensins were connected to sphingolipid 

biosynthesis. As the mode of action of plant defensins often seems to be mediated by 

sphingolipids of the attacking pathogen (Thevissen et al., 2000; 2005; Ramamoorthy et al., 

2009), it could be speculated, that plant sphingolipids might play a role in this mechanism as 

well.  

Thus, the combination of ontology associations and co-expression analysis can 

capture known biological connections, and may therefore also be used as a guide to discover 

and establish new relationships between different biological pathways and functions. 

5.3  Prediction of functional homologs. 
Arabidopsis is characterized by short generation time, large seed production, convenient size 

and a small, fully sequenced genome, but with minor economical value, making it a good 

basis for studying dicots. Basic research done in Arabidopsis assumes that many biological 

pathways are also conserved in other plants, important for the society. While this assumption 

probably is true in many cases, identifying the corresponding pathways in economically 

valuable plant is a non-trivial task, largely due to large gene families generally found in 

plants. As a consequence, sequence comparison of a gene from the knowledge donor to the 
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genome of the acceptor can return a large list of possible candidate genes, as discussed in 

chapter 4.4.  

Intuitively, a functional homolog should be present when the relevant biological 

process occurs. Thus, a functional homolog may be identified by combined sequence and co-

expression approaches. Several studies have observed that biological pathways are conserved 

across different species (Zhou et al., 2004, Stuart et al., 2003, Li et al., 2009). However, those 

studies investigated conservations across highly divergent species such as yeast, mouse and 

human, and most discoveries belong to already well characterized, primordial pathways, such 

as protein synthesis. Thus, a study comparing less divergent species would constitute a more 

powerful analysis. 

 In Chapter 4.4, I have introduced NetworkComparer, a pipeline that can identify and 

display the most similar co-expression network regions in three monocots (barley, rice, 

wheat) and four dicots (Arabidopsis, medicago, poplar and soybean). As mentioned above, an 

advantage of such approach is that comparative transcriptomic analyses can highlight 

conserved co-expression relationships. Importantly, the pipeline both suggests the 

corresponding pathways, and also reveals the identity of the associated transcripts. 

 Another interesting observation during the investigation of co-expression networks 

relating to flavonoid associated pathways was made in Chapter 4.4. The analysis revealed 

two distinct network regions, a ubiquitously expressed flavonoid associated pathway, and a 

flower specific polyamine pathway. Thus, while the two pathways synthesize different 

compounds, they employ similar molecular machinery. While it is not clear from the analysis 

whether those two pathways evolved via convergence or divergence, this finding suggests 

that not only genomic material can be subjected to copy/pasting events (e.g. gene or genome 

duplication), but whole pathways. Another clear example of such duplication of biological 

pathways can be observed for cellulose biosynthesis, where two distinct co-expression 

network regions are associated with synthesizing primary and secondary cell walls (discussed 

in Chapter 2).  

5.4  Future work 

5.4.1  Improved algorithm for comparing network structures 
 

While NetworkComparer pipeline can be effectively used to predict functional homologs and 

identify duplicated co-expression network regions, it could be improved in two aspects: (i) 
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the comparative algorithm does not return any value indicating the significance of similarity 

between co-expressed vicinities, and (ii) the results are not pre-calculated, resulting in 

relatively slow analysis.  

 
Figure 5.1. Workflow of "Mutwil-Nikoloski" algorithm with example of comparing two 

sub-networks from two species. A) Nodes represent genes, node colors represent different 

gene families, while edges depict significant co-regulations between genes. Sub-networks are 

generated by taking 2 steps out away from the seed node (red). Gray nodes represent the 

remaining parts of network that are outside of the sub-network and thus not compared. B) 

Table of gene family sizes in species A and B. C) Minimal common network of sub-network a 

and b. For example, there are 2 and 3 black nodes in sub-networks a and b, so there are 

minimum 2 black nodes in the minimal common network. There are 2 red-blue edges in sub-

network a, and 3 red blue-edges in sub-network b, therefore there are 2 red-blue edges in the 

minimal common network. D) Scoring the nodes and edges present in minimal common 

network. Weight of nodes is a product of reciprocal values of gene family sizes in species A 

and B. Weight of edges is an average of weight of nodes connected by the edge. Score of an 

element is calculated by multiplying weight of an element with its occurrence in minimal 

common network. E) Finally, the similarity score between sub-networks a and b is a sum of 

scores of elements found in D).  
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To remedy those issues, Zoran Nikoloski and I have developed an algorithm that can return a 

p-value of a comparison, by shuffling gene family associations (Figure 5.1). The method 

consists of five steps: A) The algorithm accepts two sub-networks as query, and extracts a 

minimal common network (MN) from the sub-networks. B) Construction of MN. For 

example, there are two and three genes belonging to blue gene family in sub-network a and b, 

respectively, and therefore there are minimum two blue nodes shared between the sub-

networks. There are two and three blue-red connections in sub-network a and b, respectively, 

resulting in two red-blue connections in MN. C) The nodes and edges of the MN are then 

weighted according to the sizes of the gene families found in respective species, and the final 

score is a sum of products of inversed sizes of gene families. 

An advantage of this algorithm is that it weights co-presence of the different gene 

families according to the size of the families. In addition, the algorithm also interrogates the 

structure of the network by analyzing the connections between nodes.  

 

5.4.2  Further comparative analyses 
The accumulation of microarray data permits construction of high quality co-expression 

networks for many more organisms than has analyzed by any study. For example, during 

creation of PlaNet, microarray datasets comprising different tissues from economically 

important tobacco and tomato were released (Edwards et al. 2009, Ozaki et al., 2010). PlaNet 

and its tools are easily expandable and additional species will soon be included, permitting a 

comprehensive comparison of the different species. Pertinent information about gene 

functions also comes from available phenotype data, as shown in Chapter 2. Most genes in 

yeast and E.coli. have been characterized by knock-out analyses, and this information could 

be readily transferred to other species. Table 5.1 shows one row from NetworkComparer 

analysis for At1g53850 (20S proteasome alpha subunit E1) from Arabidopsis in which yeast 

microarray datasets were included. The analysis detected highly similar networks in all seven 

plant species and yeast. The table below shows one row for Rpn3 family, which is associated 

with the 20S subunit. Interestingly, functional homologs from Arabidopsis and yeast show  

similar phenotypes. While yeast and Arabidopsis have completely different anatomies, I 

argue that this type of comparative analyses, i.e. inclusion of sequence similarity, co-

expression vicinity and phenomics, may be very powerful when comparing for example 

species fungal, mammalian and plant species. 
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pfam 
ID 

Description Arabidopsis Barley Medi
cago 

Rice Poplar Yeast Soy
bean 

Wheat 

Rpn3_
C 

Proteasome 
regulatory subunit 
C-terminal 

at1g20200  
embryo 
defective 

contig 
6657_at
  

N/A N/A PtpAffx. 
163275.2 

YER021W 
Phenotype: 
inviable 

N/A Ta.23012.
1 

Table 5.1 NetworkComparer analysis of At1g20200 (regulatory subunit of proteasome) 

across  the seven plant species and yeast. 

 

Additional species will be added to the PlaNet platform, and features, such as ontology 

analysis and available phenotypic data, will be integrated into the database. This study will 

hopefully reveal many previously unknown functional pathway and gene function 

homologies, and uncover duplicated network regions. 

 

5.4.3 Transcriptomic associations between gene families. 
Association of ontology terms presented in this study can also be applied to gene families. 

Previous comparative studies have largely focused on functional predictions of single genes. 

An equally worthwhile quest is to gain more general knowledge about gene families. Certain 

gene families are specifically associated with certain biological processes, while others are 

not. For example, it is unlikely that photosystem I subunit protein is a component of any other 

process than photosynthesis. On the other hand, two protein kinases from same family can be 

involved in different biological processess and phosphorylate vastly different substrates.  

 To investigate the transcriptional association on a gene family level, one could apply 

the same calculation as described in Chapters 3 and 4, but replace gene ontologies with gene 

families. Indeed, premilinary results indicate many logical associations between different 

gene families (Figure 5.2) 
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Figure 5.2 Associations between pfam families in Arabidopsis, barley, Medicago, poplar 

and rice. Any two families are connected if they are co-regulated with one another (p-

value>0.05) in at least two monocots and two dictos. A. Family association network centered 

around PsbP. B. Family association network centered around Cyclin_N. 

 

Figure 5.2A is centered around PsbP, which gene product participate in the photosystem II 

complex. The network contains other subunits of photosystem I and II, but also several 

unexpected proteins, e.g. DUF1995. Figure 5.2B is centered around the Cyclin_N family, 

which is co-regulated with families broadly associated with cell division. While these results 

are preliminary, they suggest that transcriptional association can be used to predict general 

function for a gene family. 

 

5.5  Conclusion 
The search for alternative methods for investigating biological phenomena can provide new 

perspectives and discoveries. Work presented in this thesis focus on three problems: prediction 

of gene function, understanding organization of biological processes and finding functional 

homologs between species. 

 Several available co-expression tools for plants use transcriptional coordination of 

genes to prioritize genes associated with a specific biological function. In this thesis, I have 

demonstrated how co-expression analysis can transcend the standard applications. However, 

co-expression analysis suffers from incomplete genomic representation of genes on available 
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microarrays, and poor spatio-temporal resolution of measured gene expression. Several 

studies have indicated that comparative transcriptomic analyses across species can improve 

co-expression analysis. GeneCAT was the first plant web-tool to introduce comparative 

transcriptomics analyses for Arabidopsis and Barley.  

 Co-expression analysis can be further augmented by including additional information. 

AraNet was first web-tool in plant community to combine available phenotypic data with co-

expression networks, permitting a phenotypic prediction of gene knock-outs. For 

comprehensive visualization of genome scale co-expression networks, I developed a novel, 

efficient Heuristic Cluster Chiseling Algorithm. To investigate the transcriptional wiring of 

biological processes, I also investigated coordinated expression of ontological processes. 

Finally, I confirmed the predictive power of AraNet by identifying seven previously 

uncharacterized genes as being essential for  plant growth. 

 To augment AraNet platform with comparative transcriptomics, six additional plants, 

Barley, Medicago, Poplar, Rice, Wheat and Soybean were included under the banner PlaNet. 

I constructed a NetworkComparer pipeline that permits comparative analyses across the 

plants, and that predict conserved regulatory relationships. Importantly, this pipeline returns 

the identity of functional homologs which is essential for transfering biological knowledge 

from a model organism to organisms important for society.  

These webtools are user-friendly and are freely available online. 
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