
FORMALIZATION OF A CONVERGED

INTERNET AND TELECOMMUNICATIONS

SERVICE ENVIRONMENT

VON

DIPL. INFORMATIKER (FH) NIKLAS BLUM

Dissertation

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

– Dr.-Ing. –

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam
am 15. September 2010

Betreuer:

Prof. Dr. Tiziana Margaria-Steffen Universität Potsdam
Prof. Dr. Thomas Magedanz Technische Universität Berlin

This work is licensed under a Creative Commons License:
Attribution - Noncommercial - Share Alike 3.0 Germany
To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2011/5114/
URN urn:nbn:de:kobv:517-opus-51146
http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-51146

Ich erkläre hiermit, dass die Arbeit bisher an keiner anderen Hochschule einge-
reicht worden ist sowie selbständig und ausschließlich mit den angegebenen Mit-
teln angefertigt wurde.

Berlin, den 15. September 2010 ——————————————

Niklas Blum

iii

iv

Acknowledgements

I have been supported throughout the last years by several people. Without the
valuable feedback in discussions and great team work, I would not have been able
to reach my own goal of writing this thesis.

I owe Fraunhofer Institute FOKUS, University of Potsdam, and University of
Applied Science in Leipzig (HTWK) a debt of gratitude for a great education and
surrounding study and work atmosphere allowing me to proceed in my research
and daily work based on values of freedom of thought and mind and trust in my
abilities. I especially would like to thank Tiziana Margaria and Thomas Magedanz
for their support and confidence in my person and work.

Several research projects sponsored by Deutsche Telekom and Nippon Telegraph
and Telephone (NTT) allowed me to work on topics related to my thesis and collect
necessary experience and knowledge. In these projects and my daily work I was
supported by a team of nice, talented, and aspiring colleagues, especially Andreas
Bachmann, Alexander Blotny, Irina Boldea, Irina Colgiu, Simon Dutkowski, Jan
Kleeßen, Sebastian Lampe, Lajos Lange, Alice Motanga, and Florian Schreiner. I
would also like to apologize at this point for moments of bad temper to Florian.
Sometimes I was under a lot of pressure and I wish especially you to also reach the
point to write the acknowledgements of your own thesis soon.

My parents have been very supportive in the last years helping me to reach this
goal. I hope that I make you proud of your son with this achievement.

Special gratitude goes to my wife Eva who has been an incredible backing dur-
ing all this time. Thank you for being so appreciative, especially during all these
weekends I spent at my desk instead with you.

v

vi

To my daughter.

vii

Abstrakt der Dissertation
Formalisierung einer Dienstumgebung für konvergente Internet- und

Telekommunikationsdienste

von Niklas Blum

betreut durch Prof. Dr. Ing. Tiziana Margaria-Steffen
und Prof. Dr. Ing. Thomas Magedanz

Das programmierbare Netz, das Ende des 20. Jahrhunderts in der Standardisierung
und Forschung für das Intelligente Netz entworfen wurde, wird nun Realität in ei-
nem auf das Internet Protokoll basierendem Netz der nächsten Generation (Next
Generation Network). Hierfür kommen Prinzipien aus der Informationstechnolo-
gie, insbesondere aus dem Bereich dienstorientierte Architekturen (Service-Orient-
ed Architecture / SOA) für die Diensterstellung, -ausführung und -betrieb zum Tra-
gen. SOA bietet hierbei die theoretische Grundlage für Telekommunikations-netze,
vor allem jedoch für die dazugehörigen Dienstplattformen. Diese erlauben dem Te-
lekommunikationsbetreiber seine Position in einem offenen Marktplatz der Diens-
te auszubauen. Dazu bedarf es allerdings möglichst flexibler Dienstumgebungen,
die die Kooperation zwischen Dienstanbietern und Nutzern aus unterschiedlichsten
Domänen durch Unterstützung geeigneter Werkzeuge und Mechanismen fördert.

Im Rahmen dieser Dissertation definieren wir aufbauend auf Forschungsergeb-
nisse im Bereich Overlay-Netze, Netzabstraktion und Zugriff auf exponierte Diens-
te eine Service Broker genannte Dienstumgebung für konvergente Internet- und
Telekommunikationsdienste. Dieser Service Broker stellt Mechanismen für die
Komposition von Diensten und Mediation zwischen unterschiedlichen Dienstpara-
digmen und Domänenspezifika beim Dienstaufruf zur Verfügung.

Der Forschungsbeitrag dieser Arbeit findet auf unterschiedlichen Ebenen statt:
Aufbauend auf einer Analyse und Klassifikation von Technologien und Paradig-
men aus den Bereichen Informationstechnologie (IT) und Telekommunikation dis-
kutieren wir die Problemstellung der Kooperation von Diensten und deren Kom-
position über Domänengrenzen hinweg. In einem zweiten Schritt diskutieren wir
Methoden der Dienstkomposition und präsentieren eine formalisierte Methode der
modellbasierten Diensterstellung. Der Schwerpunkt der Arbeit liegt auf der Spezi-
fikation der Service Broker Dienstumgebung und einem zugrundeliegenden Infor-
mations- und Datenmodell. Diese Architektur erlaubt die Komposition und Ko-
operation von Diensten über Domänengrenzen hinweg, um konvergente Internet-
und Telekommunikationsdienste zu realisieren. Hierfür wird ein auf Obligations-
politiken basierendes Regelsystem formalisiert, das Interaktionen zwischen Dienst-
merkmalen während der Diensterstellung und -ausführung definiert.

viii

Abstract of the Dissertation
Formalization of a Converged Internet and Telecommunications Service

Environment

by Niklas Blum

under supervision of Prof. Dr. Ing. Tiziana Margaria-Steffen
and Prof. Dr. Ing. Thomas Magedanz

The programmable network envisioned in the 1990s within standardization and
research for the Intelligent Network is currently coming into reality using IP-based
Next Generation Networks (NGN) and applying Service-Oriented Architecture
(SOA) principles for service creation, execution, and hosting. SOA is the found-
ation for both next-generation telecommunications and middleware architectures,
which are rapidly converging on top of commodity transport services. Services
such as triple/quadruple play, multimedia messaging, and presence are enabled by
the emerging service-oriented IP Multimedia Subsystem (IMS), and allow tele-
communications service providers to maintain, if not improve, their position in the
marketplace. SOA becomes the de facto standard in next-generation middleware
systems as the system model of choice to interconnect service consumers and pro-
viders within and between enterprises.

We leverage previous research activities in overlay networking technologies along
with recent advances in network abstraction, service exposure, and service creation
to develop a paradigm for a service environment providing converged Internet and
Telecommunications services that we call Service Broker. Such a Service Broker
provides mechanisms to combine and mediate between different service paradigms
from the two domains Internet/WWW and telecommunications. Furthermore, it
enables the composition of services across these domains and is capable of de-
fining and applying temporal constraints during creation and execution time. By
adding network-awareness into the service fabric, such a Service Broker may also
act as a next generation network-to-service element allowing the composition of
cross-domain and cross-layer network and service resources.

The contribution of this research is threefold: first, we analyze and classify prin-
ciples and technologies from Information Technologies (IT) and telecommunica-
tions to identify and discuss issues allowing cross-domain composition in a con-
verging service layer. Second, we discuss service composition methods allowing
the creation of converged services on an abstract level; in particular, we present
a formalized method for model-checking of such compositions. Finally, we pro-
pose a Service Broker architecture converging Internet and Telecom services. This
environment enables cross-domain feature interaction in services through formal-
ized obligation policies acting as constraints during service discovery, creation, and
execution time.

ix

x

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Statement . 4

1.3 Scope of the Thesis and Contribution 5

1.4 Methodology . 8

1.5 Classification Properties of Key Interest 10

1.5.1 Configurability . 10

1.5.2 Customisability . 10

1.5.3 Modifiability . 10

1.5.4 Network efficiency . 10

1.5.5 Powerfulness . 11

1.5.6 Scalability . 11

1.5.7 Simplicity . 11

1.6 Outline . 11

2 Service Principles in Telecommunications 13

2.1 Service Evolution in Telecommunications 13

2.1.1 The Plain Old Telephone System 13

2.1.2 The Intelligent Network 14

2.1.3 Telecommunication Information Networking Architecture
Consortium . 15

2.1.4 Service Delivery for Next Generation Networks 17

2.1.5 Open APIs in Telecommunications 19

2.2 Standards and Fora . 21

xi

Contents

2.2.1 3rd Generation Partnership Project 22

2.2.2 Java Community Process 23

2.2.3 Open Mobile Alliance 24

2.2.3.1 Next Generation Service Interfaces 24

2.2.3.2 OMA Service Environment 25

2.2.3.3 OMA Service Provider Environment 28

2.2.4 TeleManagement Forum 28

2.2.4.1 IPSphere . 29

2.2.4.2 Service Delivery Framework 30

2.3 Discussion . 31

3 Service Principles in Information Technologies 33

3.1 Service Oriented Architecture Principles 33

3.1.1 Main Characteristics . 34

3.1.2 SOA versus Web 2.0 . 36

3.1.3 Classification of Service Invocation Technologies 38

3.1.3.1 XML-RPC and Web Services 39

3.1.3.2 REST and RESTful APIs 39

3.1.3.3 JSON-RPC . 40

3.1.3.4 Classification 41

3.2 Service Composition Principles 43

3.2.1 Overview . 43

3.2.2 A Generic Service Composition Model 44

3.2.3 Classification of Composition Expression Languages . . . 47

3.2.3.1 Business Process Execution Language 47

3.2.3.2 Call Control XML and Voice XML 48

3.2.3.3 State Chart XML 49

3.2.3.4 Service Logic Graph 50

3.2.3.5 Classification 51

3.3 Model-Driven Engineering . 53

3.3.1 Base Standards and Technologies 54

xii

Contents

3.3.2 Strength and Weaknesses 57

3.3.3 Strategies for applying MDE in Telecommunications . . . 59

3.3.3.1 Open API-based Meta-model Approach 59

3.3.3.2 Domain-Specific Language Approach 61

3.4 Process Constraint Principles . 63

3.4.1 Introduction . 63

3.4.2 Classes of Constraints 64

3.4.3 Policy-based Constraint Expression 65

3.4.4 Classification of Policy-based Constraint Definition 67

3.4.4.1 Business Process Execution Language 67

3.4.4.2 Common Policy 68

3.4.4.3 WS-Policy . 69

3.4.4.4 eXtensible Access Control Markup Language . 70

3.4.4.5 Classification 71

3.5 Discussion . 72

4 A Service Broker for converged Internet and Telecom Services 75

4.1 Introduction . 75

4.2 Requirements . 76

4.2.1 Operator Perspective . 76

4.2.2 Service Developer Perspective 77

4.2.3 Service Provider Perspective 78

4.2.4 User Perspective . 78

4.3 Definition of an Information & Data Model 80

4.3.1 User & Persona Model 81

4.3.2 Associated Identifier Model 81

4.3.3 Role Model . 82

4.3.4 Profile Model . 82

4.3.5 Service Subscription Model 83

4.3.6 User Attributes . 83

4.3.6.1 Service History Model 83

xiii

Contents

4.3.6.2 Policies . 84

4.3.7 Device Instance Model 84

4.3.8 Device Class Model . 85

4.3.9 Service Provider Model 85

4.3.10 Service Model . 85

4.4 Definition of a Policy Taxonomy 87

4.4.1 Global Policy Model . 89

4.4.2 Profile Policy Model . 89

4.4.3 Role/Persona/User Policy Model 89

4.4.4 Service Provider/Service Policy Model 90

4.5 Definition of a Policy Formalism 91

4.6 Architecture of the Service Broker 93

4.6.1 Overview . 93

4.6.2 Key Assumptions . 94

4.6.3 Reference Architecture 94

4.6.3.1 Interceptor/Proxy 96

4.6.3.2 PEM1 Callable Interface 97

4.6.3.3 Policy Evaluation Engine 98

4.6.3.4 Policy Enforcement Engine 100

4.6.3.5 Workflow Engine 101

4.6.3.6 Service Registry 101

4.6.3.7 Service Capability Manager 101

4.6.4 Methodologies Integrated in the Platform 102

4.6.4.1 Policy Evaluation/Enforcement Algorithm . . . 103

4.6.4.2 Network Abstraction & Service Exposure . . . 104

4.7 Engineering Trade-off of the Service Broker 105

4.7.1 Flexibility versus Efficiency 106

4.7.2 Discussion . 107

4.8 Validation . 107

4.8.1 A converged Internet / Telecommunications Service . . . 108

4.8.1.1 Service Discovery via SCM 110

xiv

Contents

4.8.1.2 Policy-based Enforcement of Resource Constraints110

4.8.1.3 Policy-based Enforcement of Scheduling Con-
straints . 112

4.8.1.4 Policy-based Enforcement of Selection Constraints115

4.8.2 Modelling Hybrid Communication Services 117

4.8.2.1 Role-based Service Development 119

4.8.2.2 Modelling of Constraints 121

4.8.3 Performance Analysis 123

4.8.3.1 Policy Evaluation 124

4.8.3.2 Execution of Service Compositions 126

4.9 Conclusions . 129

5 Comparison with other Approaches 131

5.1 Evaluation Criteria for Telecom Service Broker Systems 131

5.1.1 Architecture-related Evaluation Criteria 131

5.1.2 Functional Evaluation Criteria 132

5.2 Survey of Service Broker Systems for Telecommunications 133

5.2.1 Khan07 . 133

5.2.2 Belaunde08 . 134

5.2.3 Kirchberg08 . 134

5.2.4 Bond08 . 135

5.2.5 Moro09 . 136

5.2.6 Matsumoto09 . 136

5.2.7 Bauknecht09 . 137

5.2.8 Jin09 . 137

5.2.9 Baladron09 . 138

5.2.10 Loreto09 . 138

5.3 Comparison of Telecom Service Brokers 139

6 Summary 143

6.1 Conclusions and Impact . 143

6.2 Outlook . 146

6.2.1 Telecom Beta Developer Platform 146

6.2.2 Cross-network, Cross-domain Information Sharing 147

6.2.3 Cross-layer Composition 148

xv

Contents

Acronyms 151

Bibliography 155

A Policy Rule Model 167

B Specification of a Telecom JavaScript/JSON-RPC API 177

B.1 LoginHandler . 177

B.1.1 Method Summary . 177

B.1.2 Method Details . 178

B.1.2.1 getSipUri . 178

B.1.2.2 isAuthorized 178

B.1.2.3 login . 178

B.1.2.4 logout . 178

B.2 ServiceCapabilities . 179

B.2.1 Method Summary . 179

B.2.2 Method Details . 179

B.2.2.1 getServices . 179

B.3 AddressBook . 179

B.3.1 Method Summary . 179

B.3.2 Method Details . 180

B.3.2.1 addMember 180

B.3.2.2 createGroup 181

B.3.2.3 deleteGroup 182

B.3.2.4 deleteMember 182

B.3.2.5 getAddressBook 183

B.3.2.6 getGroups . 183

B.3.2.7 getMembers 184

B.3.2.8 getMyProfile 184

B.3.2.9 getProfile . 185

B.3.2.10 setProfile . 186

B.4 Call . 187

xvi

Contents

B.4.1 Method Summary . 187

B.4.2 Method Details . 188

B.4.2.1 answerCall . 188

B.4.2.2 cancelCall . 188

B.4.2.3 endCall . 188

B.4.2.4 getCallInformation 189

B.4.2.5 makeCall . 189

B.4.2.6 onConnectionStatusChange 190

B.4.2.7 onIncomingCall 190

B.5 ConferenceCall . 190

B.5.1 Method Summary . 191

B.5.2 Method Details . 191

B.5.2.1 createConference 191

B.5.3 disconnectParticipant . 192

B.5.3.1 endConference 192

B.5.3.2 getCallInformation 193

B.5.3.3 getParticipantInfo 193

B.5.3.4 getParticipants 194

B.5.3.5 inviteParticipant 194

B.6 Location . 195

B.6.1 Method Summary . 195

B.6.2 Method Details . 195

B.6.2.1 getLocation 195

B.6.2.2 getLocationForGroup 196

B.6.2.3 getTerminalDistance 196

B.6.2.4 onChangeLocation 197

B.7 Messaging . 197

B.7.1 Method Summary . 197

B.7.2 Method Details . 198

B.7.2.1 getDeliveryStatus 198

B.7.2.2 onIncomingMessage 198

xvii

Contents

B.7.2.3 sendMessage 198

B.8 Presence . 199

B.8.1 Method Summary . 199

B.8.2 Method Details . 200

B.8.2.1 getUserPresence 200

B.8.2.2 getUserPresenceList 200

B.8.2.3 onChangePresence 201

B.8.2.4 publish . 201

B.8.2.5 subscribeToAddressBook 201

B.8.2.6 subscribeToMemberList 202

B.9 ShortMessaging . 202

B.9.1 Method Summary . 202

B.9.2 Method Details . 203

B.9.2.1 getDeliveryStatus 203

B.9.2.2 sendSMS . 203

B.10 ThirdPartyCall . 204

B.10.1 Method Summary . 204

B.10.2 Method Details . 204

B.10.2.1 cancelCall . 204

B.10.2.2 endCall . 204

B.10.2.3 getCallInformation 205

B.10.2.4 makeCall . 205

C Profile Policy Example 207

D Parlay X Presence Message Manipulation 209

E PEM1 Input/Output Template Examples 211

xviii

List of Figures

1.1 Change of Platforms and Technologies across Layers 2

1.2 Areas of operator concerns in a growing service market 3

1.3 Role of the Service Broker . 6

1.4 Major functional Service Broker components and research fields . 7

1.5 Workflow in this thesis . 9

2.1 IN service switching principles 14

2.2 TINA-C service architecture . 16

2.3 3GPP IMS Architecture within session control layer 18

2.4 Parlay gateway for multiple network technologies 20

2.5 Relevant Standard Definition Organisations 21

2.6 3GPP Service Capability Interaction Manager 22

2.7 3GPP centralised and distributed broker functions 23

2.8 SIP Servlet 1.1 request routing based on Application Router . . . 23

2.9 Scope of OMA NGSI 1.0 . 25

2.10 OMA Service Environment Architecture 26

2.11 OMA Policy Evaluation, Enforcement and Management Architecture 27

2.12 IPSphere Framework Context . 29

2.13 TM Forum Service Delivery Framework Reference Architecture . 30

3.1 Conceptual model of a SOA architectural style 34

3.2 Internet of Services basic architecture 38

3.3 XML-RPC mechanism . 39

3.4 Basic Web Services model . 39

xix

List of Figures

3.5 REST in a simple enterprise system 40

3.6 JSON-RPC mechanism . 41

3.7 Service Composition Model . 45

3.8 General BPEL mechanism . 48

3.9 SCXML / CCXML / VoiceXML Interaction 50

3.10 Basic Idea Model-Driven Software Development 55

3.11 Service Specification Levels in OMG’s MDA 56

3.12 Telecom Service Development Approach based on MDE 60

3.13 DSL in the context of other service creation approaches 62

3.14 Role-based Access Control Models 66

3.15 Limited Inheritance based on RBAC 67

3.16 BPEL-based service policy wrapper for composed services 68

3.17 Common Policy Enhancements 68

3.18 WS-Policy Data Model . 69

3.19 XACML Language Model . 70

4.1 Service Broker Information & Data Model 80

4.2 Policy Taxonomy . 87

4.3 Service Broker in the context of service creation, execution, and
enablers . 95

4.4 Service Broker Functional Architecture 96

4.5 Interceptor/Proxy Architecture 97

4.6 Policy Evaluation Engine Architecture 99

4.7 Policy Enforcement Engine Architecture 100

4.8 SCM functionality . 102

4.9 Forward-Chaining Procedure . 103

4.10 Web-based Telecom Widgets . 108

4.11 Telecom Widget Back-end Architecture 109

4.12 Sequence chart SCM . 110

4.13 Sequence chart policy-based service delegation 111

4.14 Sequence chart policy-based execution of a scheduling constraint . 113

4.15 Sequence chart policy-based execution of a scheduling constraint . 115

xx

List of Figures

4.16 MDSD principles in jABC . 118

4.17 Developer / Service Broker / SCE interaction 120

4.18 Broker-based Service Discovery in jABC 121

4.19 Model-checking in jABC . 123

4.20 Service Broker PEM1 interface load test 124

4.21 Service Broker ThirdPartyCallService load test 125

4.22 Service Broker GetUserPresence load test 125

4.23 Service Composition Execution Tests: BPEL, Java, SCXML . . . 127

4.24 Service Composition Execution Delay Tests: Java/SLG, BPEL . . 128

4.25 Service Error Rate Test: Java/SLG, BPEL 129

6.1 Service Broker for beta developer platform 147

6.2 Service Broker for cross-layer service composition 149

A.1 Condition Model Part 1 . 168

A.2 Condition Model Part 2 . 169

A.3 Condition Model Part 3 . 170

A.4 Condition Model Part 4 . 171

A.5 Condition Model Part 5 . 172

A.6 Condition Model Part 6 . 173

A.7 Action Model Part 1 . 173

A.8 Action Model Part 2 . 174

xxi

List of Figures

xxii

List of Tables

3.1 Classification of network-based application architectures and tech-
nologies . 41

3.2 Classification of process orchestration languages and models . . . 51

3.3 Strengths and Weaknesses of MDE 58

3.4 Classification of service policy languages 71

3.5 Classification Results . 73

4.1 Service Broker requirements of a network operator 77

4.2 Service Broker requirements of a service developer 78

4.3 Service Broker requirements of a service provider 78

4.4 Service Broker requirements of a user 79

4.5 Persona Model . 81

4.6 Associated Identifier Model . 81

4.7 Role Model . 82

4.8 Profile Model . 83

4.9 Service Subscription Model . 83

4.10 Service History Model . 84

4.11 Device Instance Model . 84

4.12 Device Instance Model . 85

4.13 Service Provider Model . 85

4.14 Service Model . 86

4.15 Policy Model . 88

4.16 Policy Identifier description . 88

4.17 Global Policy Model . 89

xxiii

List of Tables

4.18 Profile Policy Model . 89

4.19 Role/Persona/User Policy Model 90

4.20 Service Provider/Service Policy Model 90

4.21 Mean time of Policy Evaluation 106

4.22 Functional mapping Parlay X / jABC SIBs 119

5.1 Comparison of Telecom Service Broker Part I 140

5.2 Comparison of Telecom Service Broker Part II 141

A.1 Rule Model . 167

A.2 Condition Model Part 1 . 169

A.3 Condition Model Part 2 . 170

A.4 Condition Model Part 3 . 171

A.5 Condition Model Part 4 . 171

A.6 Condition Model Part 5 . 172

A.7 Condition Model Part 6 . 173

A.8 Action Model Part 1 . 174

A.9 Action Model Part 2 . 175

xxiv

Chapter 1

Introduction

1.1 Background and Motivation

During the last few years, we can witness the introduction of Next Generation
Networks (NGN) aiming at enhancing telecommunication systems from vertically
separated application-specific networks towards a unified horizontal layered Inter-
net Protocol (IP)-based network. This provides a homogeneous control layer to
enable integrated Internet, telecommunications, and media services as well as net-
work convergence (e.g., Fixed Mobile Convergence/FMC). Using IP as a common
signalling protocol, information and telecommunication technologies are merged
on a network control level. At present, NGN is known as a pioneer mean for
achieving the any where, any time service providing promise.

As a result of the implementation of new control infrastructures and technolo-
gies for message signalling, new technologies for service provisioning and cre-
ation are needed, too. Traditionally, developing telecommunications applications
and services were part of the network operator’s domain, whose technical staff was
intimately familiar with details of the network and proprietary interfaces of the
equipment in use. Business processes using these applications were extensive and
had multiple steps and many people were involved in the developing processes.

Within the last decade the marketplace for communications services has changed
dramatically. Ready-to-deploy services can be acquired from several vendors and
network operators can concentrate on the actual tasks to support and administrate
their networks and services. Nevertheless, these services continue to act as isol-
ated features that do not provide access for cross-domain interactions and integ-
rated services. Furthermore, operators are facing challenges from multiple sides,
as increased competition, the need to invest in new networks, platforms, and new
services, which are eroding time-tried revenue streams like voice services, and reg-
ulation by public authorities. Simultaneously, new trends in the Web have come

1

Chapter 1. Introduction

up which have changed the way people communicate (e.g., community portals,
presence and location-based services).

Figure 1.1 illustrates this change of principles, technologies, and convergence of
networks and platforms on the four levels of network layer, control layer, service
layer, and for service providers and 3rd parties.

Figure 1.1: Change of Platforms and Technologies across Layers

Alongside this evolution, we can observe the adaptation of platform principles
from Information Technologies (IT) in the service layer. Formerly closed, propriet-
ary platforms designed for the Intelligent Network (IN) make now use of industry
standards and best practices for service creation, hosting, and execution originally
designed for large enterprises and the World Wide Web (WWW). This is com-
monly referred to as the adaptation of Service Oriented Architectures (SOA) to the
telecommunications service domain.

From a service provider and user perspective, we can furthermore witness the
convergence of formerly isolated application domains into a converged triple /

2

1.1. Background and Motivation

quadruple play service offering, spanning across the communications and enter-
tainment/content sector. The adaptation of IT principles based on SOA for Internet
and communications services is also mostly visible reflecting the growing amount
of reusable e-services in the Internet that also make use of real-time functionality.

To cope with this development, major telecommunications operators in Europe1

have launched their own (proprietary) open development programmes offering
communication related enabler as SMS, voice call and conferencing, location. The
target of these portals is to expose simple interfaces for developers, who can com-
bine these services to create web applications or integrate those telecommunica-
tions functions into existing modelled business processes and other products. Via
these developer portals, 3rd party service developers get access to core network
functionalities using open Application Programming Interfaces (API) and Software
Development Kits (SDK). Opening-up the network for service developers will af-
fect all infrastructure levels of an operator and service provider ranging from pro-
visioning of customer equipment, monitoring traffic of 3rd party services, to the es-
tablishment of appropriate service enablers for exposed Telecom and non-Telecom
services. Therefore, it is of great importance for the operator to implement effect-
ive mechanisms of control to allow the development of an open service market on
top of the network infrastructure. The following figure 1.2 provides an overview
of issues and concerns that operator and service provider need to cope with in a
growing market of services.

Applications

Enablers
Non-telco Enablers

Customer
Equipment

Control &
Connectivity

E2... E1

Service Logic

S1 S2 ...

Telco Enablers

E1E2 ...

Cross-cutting concerns:

Authentication

Billing

Provisioning

Customer Support

Monitoring

Fault Detection

3rd Party Integration

Open APIs

Network Migration

NGN/IMS

Legacy infrastructure

Figure 1.2: Areas of operator concerns in a growing service market

From a service developer perspective, we can witness a growing number of small
and medium enterprises (SME) as well as integrators that are eager to create applic-

1see www.developergarden.com, www.o2litmus.co.uk, www.orangepartner.com,
www.ribbit.com

3

Chapter 1. Introduction

ations for the converging telecommunications / Internet service space using high
level APIs and programming languages with the aim to create new distributed ser-
vices or integrate existing communication channels into business processes. The
emerging digital marketplace presents an important opportunity to offer commu-
nications capabilities as services. Besides communication services like short mes-
sage service (SMS), voice-call or location, further capabilities like billing, identity
management, authentication or control of Quality of Service (QoS) are candidates
as telecommunications enablers for the development of new applications.

Allowing the service designers and developers to effectively make use of the new
converged service domain and its technologies, tools for service creation need to be
provided that offer the creation of converged services across multiple application
domains integrating a variety of service technologies on the one hand and hiding
the complexity of network and platform related topics on the other hand.

1.2 Problem Statement

The above described evolution in technology ranging from the network layer to
the service layer imposes changes for operators, service designers, and users. This
thesis deals in detail with problems related to the increasing variety of technolo-
gies on service layer, the adaptation of IT principles for the telecommunications
domain, and resulting the convergence of different application domains as depic-
ted in the upper half of figure 1.1 from the perspective of network operators, service
providers, service developers, and users.

Allowing the combination of features in a converged Telecom/Internet service
space, well-defined and formalized programming paradigms in IT need to be ap-
plied to the telecommunications service domain and combined with fast evolving
non-standardized, sometimes poorly described service principles in the Internet
and WWW. Accordingly, the traditionally well-protected and limited opened tele-
communications services need to be opened and exposed towards 3rd parties for
service creation and execution. Two main problem spaces open up in this context:

1. Cross-domain composition mechanisms for the creation of hybrid services
consisting of multiple different service endpoints providing different tech-
niques for description and service quality need to be applied in one ser-
vice environment. A formalized description of such mechanisms is currently
missing.

2. Constraints need to be applied during service execution and discovery time,
especially:

• Selection constraints that define which activities constitute a service,

• Scheduling constraints that define when these activities are to be per-
formed, both in terms of ordering as well as temporal dependencies,

4

1.3. Scope of the Thesis and Contribution

• Resource constraints that define which resources are required to per-
form activities.

Such constraints need to be applied independently of underlying service and
network technologies and platforms.

A general problem for developers, operators, and users are the vast amount of
technologies and standards to cope with in this field. We provide classifications
of service exposure API technologies, service composition/workflow expression
languages, and policy expression languages in this thesis identifying technologies
most suitable from the perspective of these three roles.

1.3 Scope of the Thesis and Contribution

We analyse technology trends in the economic important changing area of conver-
gence of Internet and Telecom infrastructures and services. By examining relevant
requirements for a target platform managing the interactions within a converged
service layer and especially between 3rd parties (service designers, developers,
and users) and network operators, we identify a key component acting as a broker
between the network-centric communications domain and the service-oriented ap-
plication domain.

To allow the integration of (tele-)communications-specific service enablers into
3rd party services, a formalism is defined to express constraints on access and usage
of these enablers. We differentiate the constraints by the following purposes:

• Authorisation for service enabler access

• Service discovery

• Service access definition and control

• Service composition/orchestration

Whereas the first two points authorisation and discovery are not subject to dis-
cussion in this thesis, the latter issues related to the definition of fine-granulated
service usage rules and the composition of several atomic service building blocks
across multiple application domains to form complex services are the main subject
of our research. A formalization of usage rules and their application to express
and enforce (temporal) constraints is still missing and a common solution at the
point of writing was not available. Furthermore, formalized methods for model-
checking of service compositions in telecommunications is still on-going research
[BMM 09].

5

Chapter 1. Introduction

The following figure 1.3 illustrates the role of a service broker function for the
telecommunications service layer and its interaction with service providers and
application domains.

Figure 1.3: Role of the Service Broker

The service broker function provides in an open telecommunications service en-
vironment vertical convergence between the business-driven service provider do-
main and the communications sector and horizontal convergence for platforms and
technologies within a Telecom Service Delivery Platform (SDP).

Horizontal convergence of different application domains for cross-domain ser-
vice composition is provided by a Service Creation Environment incorporating
composition mechanisms for services from multiple domains. This needs to be
tightly integrated with the service broker function to allow also cross-layer (ver-
tical) convergence between specific application domains and the network-centric
telecommunications domain.

Figure 1.4 illustrates the thematic focal points of the proposed service broker in
this thesis:

6

1.3. Scope of the Thesis and Contribution

Figure 1.4: Major functional Service Broker components and research fields

Integration of Service Creation Environments

Considering the currently most prominent service execution environments for NGN,
JAIN SLEE2 and SIP Servlets, the service logic is tightly coupled with concrete
technologies. In this way, services lack the ability to adapt quickly to the evol-
ution and requirements in changing application domains. How to enhance both
abstraction level of service development and re-usability of service logic is sub-
ject to research in the telecommunications field for many years (e.g., [GKM 03],
[BMS+ 97], and [BHL+ 99]). This thesis deals with the integration of telecommu-
nications specific services into Model-Driven Architecture (MDA)-based Service
Creation Environments (SCE) formalising application logic as models. We discuss
service creation principles and their evolution from a developer and operator per-
spective and present our approach for a formalisation of communications services.

Service Description

Complex services consist of a multitude of atomic features. In a distributed service
environment, those features are available via Application Programming Interfaces
(APIs) and protocols. We provide a classification of state of the art principles
and technologies for distributed services and service description standards and best
practices from a user’s, developer’s, and operator’s perspective. Furthermore, we
define a high-level Telecom API that allows integration of communication features
into web-based mash-up with minimal efforts.

Service Composition

One of the main characteristics of a SOA is to expose resources transparently as

2Java API for Integrated Networks Service Logic Execution Environment

7

Chapter 1. Introduction

services to be consumed by other services. The general principles of a SOA are
modularity, re-usability, service discovery, and the ability to compose services.
Cross-domain composition mechanisms allowing convergence of multiple applic-
ation domains are needed for the creation of hybrid services consisting of mul-
tiple different service endpoints. The Service Broker solution proposed within this
thesis acts as a central control unit for service exposure and composition of tele-
communications service enablers. We provide a classification of state of the art
principles and technologies to compose services with a special focus on real-time
capabilities required by communications services and heterogeneity of service end
points. Furthermore, candidates identified to meet developer, operator, and user
requirements are evaluated with the help of performance tests.

Constraints

Telecommunications operators have kept up with the walled garden strategy re-
garding limited access to services and network functionality from 3rd party do-
mains for a long time. But declining revenue and Over-The-Top (OTT) players
are now forcing them to open up their networks for developers and service pro-
viders. Access to network and service capabilities on the service layer is based
on constraints defined by the operator on a service provider or user-specific basis.
Constraints defined above in section 1.2 can be differentiated either as permanent/-
static or temporal constraints on multiple layers:

1. Model-checking within the SCE allows the verification of process and activ-
ity level constraints during the service composition process.

2. Policy enforcement at the Service Broker provides the enforcement of tem-
poral constraints during execution time:

• Selection constraints: Sequences of service and features to be executed,
e.g., specific logging, audio/video announcements before call setup,
etc.

• Scheduling constraints: Temporal dependencies, e.g., enforcement of
privacy rules based on location information, etc.

• Resource constraints: Definition of required resources, e.g., network
resources (QoS), service enabler selection, etc.

1.4 Methodology

This thesis will provide a fourfold approach addressing problems within the above
described scope:

8

1.4. Methodology

1. Analysis and classification of principles and technologies from IT and Tele-
coms to identify and discuss issues allowing cross-domain composition in a
converging service layer.

2. Definition of requirements from the perspective the network operator, service
provider, service developer, and user.

3. Discussion of service composition methods allowing the composition of con-
verged services on an abstract level, in particular based on a formalized
method for model-checking of such compositions.

4. Definition of a service broker architecture allowing converging Internet and
Telecom services. This environment enables cross-domain composition mech-
anisms for the creation of hybrid services consisting of multiple different
service endpoints and the application of constraints during service execution
and discovery time.

Following the below depicted workflow, a service broker is specified as a central
entity for providing cross-domain convergence of telecommunications and non-
Telecom service domains:

Figure 1.5: Workflow in this thesis

We define the following propositions to be discussed within this thesis:

I Technologies, mechanisms, and service paradigms in the Internet and Telecom
follow different principles. Cooperative services spanning across both do-
mains require an intermediate function for mediation between these domains.

9

Chapter 1. Introduction

II Policy-based service composition allows users, service providers, and network
operators to express service constraints in high-performance, low-latency re-
quirements in Telecom systems.

III Software synthesis and code generation based on formal models is a well-
suited software development approach for an open Telecom systems.

1.5 Classification Properties of Key Interest

Throughout this thesis we classify technologies and architectural approaches in IT
and telecommunications. This section describes the properties used to differentiate
and classify architectural styles and technologies and are applied for benchmarking
the developed solution. It is not intended to be a comprehensive list, we have
included only those properties that are clearly influenced by the set of technologies
taken into consideration. Note that not necessarily all criteria will be applied to
every classification. The list of criteria extends the criteria for classifying network-
based application architectures in [F 00].

1.5.1 Configurability

Configurability is related to both extensibility and re-usability in that it refers to
post-deployment modification of components or configurations of components,
such that they are capable of using a new service or data element types.

1.5.2 Customisability

Customisability refers to the ability to temporarily specialise the behaviour of an
architectural element, such that it can then perform an unusual service. A compon-
ent is customisable if it can be extended by one client of that component’s services
without adversely impacting other clients of that component. [MTS 03]

1.5.3 Modifiability

Service architectures are subject to change when new functionality is introduced.
Modifiability is about the ease with which a change can be made to an application.
[PC 07]

1.5.4 Network efficiency

An interesting observation about network-based applications is that the best applic-
ation performance is obtained by not using the network. The design of distributed

10

1.6. Outline

service architectures that use network APIs needs to take into consideration the
amount and interval of data and requests to be sent over the network.

1.5.5 Powerfulness

Powerfulness refers to the ability or capacity to perform or act effectively through
possession of controlling influence. In the context of this dissertation, powerfulness
is applied to the complexity of operations that can be achieved and the degree of
system governance to be enforced within platforms and architectures.

1.5.6 Scalability

Scalability refers to the ability of an architecture to support large numbers of
components, or interactions among components, within an active configuration.
Scalability is also impacted by the frequency of interactions, whether the load on
a component is distributed evenly over time or occurs in peaks, whether an in-
teraction requires guaranteed delivery or a best-effort, whether a request involves
synchronous or asynchronous handling, and whether the environment is controlled
or anarchic (i.e., can you trust the other components?).

1.5.7 Simplicity

Simplicity refers to the KISS principle: Keep it Simple, Stupid. It states that design
simplicity should be a key goal and that unnecessary complexity should be avoided.
Furthermore, simplicity is the property of a domain which requires very little in-
formation to be exhaustively described. If functionality can be allocated such that
the individual components are substantially less complex, then they will be easier
to understand and implement. Applying the principle of generality to architectural
elements also improves simplicity, since it decreases variation within an architec-
ture.

1.6 Outline

The thesis is structured in five main parts.

1. In Chapter 2, we provide an overview of the relevant technologies and stand-
ards in the context of this dissertation in regard of the evolution of telecom-
munications service environments.

11

Chapter 1. Introduction

2. Whereas Chapter 2 provides a rather Telecom centric perspective, Chapter
3 deals with general principles in IT, especially concerning Service Ori-
ented Architectures. We discuss and classify principles and technologies for
network-based service architectures, service composition, and the applica-
tion of Model-Driven Engineering in telecommunications.

3. Chapter 4 presents our service broker architecture and the underlying in-
formation and data model. The platform goal is to encapsulate the network-
driven service domain in telecommunications as services for developers and
users while allowing the operator to dynamically manage access to its re-
sources. We validate this platform with developer, network operator-, and
user-oriented use cases and provide a performance analysis for high amount
of requests.

4. In Chapter 5, we compare our proposed solution with other approaches in
current and past research activities.

5. We summarize our work in Chapter 6 and describe the dissemination of
the results of this work into other research activities regarding an open ser-
vice market platform and cross-layer composition of network and service
resources in the context of Future Internet (FI) initiatives.

12

Chapter 2

Service Principles in

Telecommunications

This chapter provides an overview of the evolution of service principles and tech-
nologies in telecommunications and associated standards from various fora. Con-
cluding, we will discuss the current state from the perspective of a developer, op-
erator, and user point of view.

2.1 Service Evolution in Telecommunications

This section provides a chronological overview of the evolution of service plat-
forms in telecommunications from a closed circuit-switched telephony system to
an open, standardised IT multimedia infrastructure.

2.1.1 The Plain Old Telephone System

The Plain Old Telephone Service (POTS) is the voice-grade telephone service that
remains the basic form of residential and small business service connection to the
telephone network in most parts of the world. The name is a reflection of the tele-
phone service still available after the advent of more advanced forms of telephony
such as the Integrated Services Digital Network (ISDN), mobile phones and Voice
over IP (VoIP). It has been available almost since the introduction of the public
telephone system in the late 19th century, in a form mostly unchanged to the nor-
mal user despite the introduction of Touch-Tone dialling, electronic telephone ex-
changes and fiber-optic communication into the public switched telephone network
(PSTN). While POTS provides limited features, low bandwidth, no mobile capab-
ilities, and no standardized interfaces and platforms for developers, it provides
greater reliability than other telephony systems (mobile phone, VoIP, etc.). Many

13

Chapter 2. Service Principles in Telecommunications

telephone service providers attempt to achieve "dial-tone availability" more than
99.999% of the time the telephone is taken off-hook, equivalent to having a dial-
tone available for all but less than five minutes each year.

The communications circuits of the PSTN continue to be modernised by ad-
vances in digital communications; however, other than improving sound quality,
these changes have been mainly transparent to the POTS customer. In most cases,
the function of the POTS local loop presented to the customer for connection to
telephone equipment is practically unchanged and remains compatible with old
pulse dialling telephones, even ones dating back to the early 20th century.

2.1.2 The Intelligent Network

Based on the wish to establish a network independent, vendor independent, and
service independent service provisioning and execution platform, the Intelligent
Network (IN) was originally developed in the 1980s in the US by AT&T1 and later
Bellcore (nowadays Telcordia Inc.2).

The Intelligent Network is a network architecture intended both for fixed as well
as mobile Telecom networks. It allows operators to differentiate themselves by
providing value-added services in addition to the standard services such as PSTN,
ISDN, and Global System for Mobile Communications (GSM) services on mobile
phones. As illustrated in the following figure 2.1, in the IN, the intelligence is
provided by network nodes owned by operators, as opposed to solutions based on
intelligence in the telephone equipment, or in Internet servers provided by any part.

Figure 2.1: IN service switching principles

Principally the IN separates network signalling, i.e. the switching, from service
signalling or the service control and thereby achieves network independence. In
addition, the IN aimed basically at the delivery of value-added services (VAS) ex-
tending the POTS based on a set of reusable service building blocks and thereby
providing a first step into service independence of the underlying networks. These
services, such as the Customer Access Line Signalling Services (CLASS), Free-
phone, Premium Rate, Virtual Private Networks (VPN) provide primarily capabil-
ities like flexible routing, flexible charging, screening, and user interactions.

1http://www.att.com
2http://www.telcordia.com/

14

2.1. Service Evolution in Telecommunications

Technically the IN demarcates the first relevant use of IT, namely the Remote
Procedure Call (RPC) principle and central computers within the Telecom world.
The idea was to define an overlay service architecture on top of a physical network
and to extract the service intelligence from the legacy network switches into ded-
icated central computers, referred to as Service Control Points (SCPs). [M 93]

Service independence of the IN architecture was provided by the definition of
reusable service components, so-called service independent building blocks (SIB)
were able to be chained together for the realisation of new services in a Service Cre-
ation Environment (SCE), resulting in an executable program for the SCP. The In-
ternational Telecommunication Union - Telecommunication Standardization Sec-
tor (ITU-T) invented an iterative approach to the standardisation of the IN Q.1200
recommendation series [ITU1200] organised in phases, called IN Capability Sets
(CS). Whereas the first CS was designed for the PSTN only, later CSs were targeted
for ISDN, GSM, and IP-based networks.

Service independence was limited to a set of predefined reference services, which
were decomposed into service features that could be part of several services. These
features, describing for example one logical number, reverse charging, or user in-
teraction were decomposed within a second stage into low level SIBs, representing
some kind of programming approach for IN services. These SIBs, in a third step
were mapped to IN functional components and their interactions, which finally in
a fourth and final step led to the specification of the dedicated protocol Intelligent
Network Application Part (INAP) between physical elements of the IN architec-
ture. Therefore, an IN architecture is in principle only to a limited extent con-
sidered as service independent by the selection of benchmark services. The IN in
the mobile world is referred to as Customised Applications for Mobile Enhanced
Logic (CAMEL) [3G 99] and was standardised by the 3rd Generation Partnership
Project (3GPP) as a GSM phase 2+ feature from the mid 1990s onwards. The
driving force for CAMEL was the need to provide Prepaid and VPN services to
roaming users across country and network boundaries due to the success of GSM.

IN and CAMEL were successfully performing. However, the envisaged open
market of services imagined originally in that time frame was not created. One
main reason for this is that the SIB approach did not finally work in a standardised
way and many vendors defined their own feature sets and INAP extensions. That
limited the interoperability of products and vendor independence. In addition, and
more important, the programmer’s base for the IN was far too limited as the tech-
nology used was too Telecom specific and did not follow mainstream programming
paradigms of the IT world. [M 96]

2.1.3 Telecommunication Information Networking Architecture Con-

sortium

The Telecommunication Information Networking Architecture Consortium (TINA-
C) was an attempt started in 1992 by several actors in the telecommunication world

15

Chapter 2. Service Principles in Telecommunications

to define, design, and realise a software architecture for telecommunications infra-
structures. The IN evolution expressed by the capability set approach was tar-
geted towards a so-called IN Long-term Architecture (LTA). In the mid 1990s,
programming languages like C++ and Java and especially middle-ware concepts,
namely the Object Management Group’s (OMG) CORBA (Common Object Re-
quest Broker Architecture) and the Java Remote Method Invocation (RMI) al-
lowed implementing scalable and distributed service platforms and provided ab-
straction from the details of underlying network signalling and transport protocols
[VZM 00]. The developed architecture was targeted for the future multimedia mo-
bile broadband environment providing video conferencing and video on demand
type of services in addition to existing POTS/ISDN services. The following fig-
ure 2.2 depicts the TINA-C service architecture with respect to the business model
[TINA 97].

Figure 2.2: TINA-C service architecture

The TINA-C result has been a set of architectures, namely the Business Architec-
ture, the Service Architecture, which was defined on top of a distributed processing
environment representing an extended CORBA middle-ware, and a Network Re-
source Control Architecture enabling Quality of Service (QoS) based service pro-
vision. This architecture allowed a decoupling of networks from the service archi-
tecture and the flexible distribution of service platform components across different
physical nodes. Most interesting at that time was the notion of a Service Retailer
/ Broker providing single sign-on capabilities for aggregated services by a set of
service providers in a walled garden approach. Services were programmed by
means of objects in an object-oriented manner, specific service components were
not standardised.

16

2.1. Service Evolution in Telecommunications

TINA failed as the consortium specified the architectures mainly in a walled
garden approach and lacked a clear migration path from existing IN architectures.
Furthermore, the proposed middle-ware technologies did not meet the operational
requirements of operators at that time. Nevertheless the work performed serves
still as a basis for nowadays service architecture concepts.

2.1.4 Service Delivery for Next Generation Networks

In parallel to CAMEL, 3GPP started at the beginning of the 2nd millennium, in
regard of a new emerging core and access network evolution towards all-IP, the
specification for a service control architecture: the IP Multimedia Subsystem (IMS)
[3G 06].

The IMS was designed originally as an overlay on top of the General Packet
Radio Service (GPRS) domain within 3GPP Release 5 specifications, published in
2003. Its main target was to provide an infrastructure for the provision of real-time
multimedia services, but it has evolved since then as a general NGN control overlay
network on top of any mobile, fixed, and even cable network. This means that today
IMS represents the only common NGN service control standard. As such, IMS
is being standardised by 3GPP for nearly every wireless access network, includ-
ing Universal Mobile Telecommunications System (UMTS), Wireless Local Area
Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX),
and Long Term Evolution (LTE). The European Telecommunications Standards
Institute (ETSI) TISPAN (TIPHON (Telecommunications and Internet Protocol
Harmonization over Networks) and SPAN (Services and Protocols for Advanced
Networks)) group 3 has defined additions for the fixed network domain within its
Next Generation Network reference architecture definition, including PSTN/ISDN
emulation [ETSI 09], IMS, and also interactive Internet Protocol based Televi-
sion (IPTV) / streaming subsystems [ETSI 09a], as well as in the cable domain
by CableLabs within their PacketCable 2.0 specifications [PacketCable 09].

IMS allows the integration of service platforms for efficiently implementing vari-
ous multimedia communications applications, including VoIP, video calls and con-
ferencing, instant messaging, presence, group lists, Push to Talk [BM 05a], and
IPTV [ABM 07]. The architecture is based on a combination of IN/CAMEL and
VoIP concepts deploying the major IP protocols for session signalling and Au-
thorization, Authentication and Accounting (AAA), namely the Session Initiation
Protocol (SIP) (it should be noted that SIP has been extensively enhanced for IMS
purposes and is much more complex than basic SIP as defined in [RSC+ 02]) and
Diameter [CLG+ 03], which is an evolution of the RADIUS protocol, standardised
by Internet Engineering Task Force (IETF).

The major target of IMS is to provide a standardised and structured overlay net-
work control architecture in contrast to the standard Internet for better security,

3http://portal.etsi.org/tispan/TISPAN_ToR.asp

17

Chapter 2. Service Principles in Telecommunications

QoS, and flexible charging within a single sign-on framework. Figure 2.3 illus-
trates the IMS architecture as part of the session control layer:

Application Layer

Session Control Layer

Transport Layer

ation Layer

Signaling

Media

P- CSCF

I- CSCF S- CSCF

HSS

SIP AS

Par lay X

G ateway

Presence

Ser ver

Core

NetworkGGSN

PDG

SGSN

I-BGF/

TrGW

WAG

DSLAM
BAS/

A=BFG

RAN

Media

Ser ver

NASS A-RACS (S)PDF

IPv6

Network

IPv4

Network

Media

Gateway

Signaling

Gateway

PSTN

XDMS

Figure 2.3: 3GPP IMS Architecture within session control layer

From an architectural point of view 3GPP defines an IMS core layer comprising
a set of extended SIP servers, called Call Session Control Function (CSCFs), as
well as signalling and media gateways to inter-work with fixed and mobile legacy
circuit-switched networks and media servers. End users will use an enhanced SIP
/ IMS client to connect to the system. A specialised AAA server known as Home
Subscriber System (HSS), or in case of fixed network access referred to as User
Profile Server Function (UPSF) by ETSI TISPAN, stores the entire user and service
related data which is exchanged with the SIP servers using the Diameter Base
protocol. Application Servers are out of scope from the 3GPP perspective, but IMS

18

2.1. Service Evolution in Telecommunications

provides standardized interfaces based on SIP and Diameter for the application
layer as a single point of integration for service platforms.

2.1.5 Open APIs in Telecommunications

In face of the loss of momentum of TINA, which led to its official termination
in 2000, a more pragmatic activity was started in 1998: the definition of Applic-
ation Programming Interfaces (APIs) for telecommunications. These APIs allow
the flexible implementation of services in application servers accessing the net-
work functions via dedicated interface operations defined by the API. They are in-
dependent of the underlying network signalling protocols through the definition of
protocol-specific resource adaptors and should thereby support network and vendor
independence. Service independence is provided by the extensibility of an API.
The major target of an API approach, however, is when publishing the API spe-
cifications openly to allow the creation of services by a 3rd party community and
thereby gaining more service innovation.

Using open communications APIs and inspired by the Computer Telephony In-
tegration (CTI) environment, Private Branch Exchanges (PBXs) were among the
first solutions programmed for implementing sophisticated enterprise telephony
applications. These were quite similar to IN VPN services, however implemented
at the edge of the network and much more flexible and innovative. One prominent
example of the applied APIs was the Java Telephony Application Programming
Interface (JTAPI) [JCP 02]. The Java community started with its development of
Java APIs for integrated Networks (JAIN) [JCP 02a] at the end of the 1990s. In
this framework Java classes for carrier grade call control (Java Call Control) were
defined and Java containers were extended to support carrier grade performance,
leading to the development of a Service Logic Execution Environment (SLEE)
[JCP 04] which allowed the creation and execution of Telecom services based on
Java Service building blocks on top of various signalling protocols, such as JAIN
INAP or SIP.

In addition to these JAIN activities, the Parlay Group was founded in 1998, tar-
geting the development of language independent and network independent Tele-
com service APIs. In its first version this API could be regarded as a pragmatically
cut down version of the TINA Service Architecture, where applications in an ap-
plication server on top of IN for fixed networks provided the services and CORBA
provided the middle-ware functionality. With the extension of the Parlay scope
towards mobile and IP networks and a growing number of members in the con-
sortium, the APIs have been extended over the last ten years and feature telecom-
munications related capabilities, such as (multimedia) call control, conferencing,
messaging, charging, location, presence, group definitions, application-layer QoS
control etc. in a network independent way, i.e. hiding the signalling protocol details
of the underlying telecommunications networks. Figure 2.4 provides a schematic

19

Chapter 2. Service Principles in Telecommunications

overview of a how an API gateway based on Parlay may map application specific
functionality to specific network resources.

Figure 2.4: Parlay gateway for multiple network technologies

In principle, all these APIs make Telecom service implementation much easier
and faster compared to the traditional IN approach by providing abstract service
interfaces and leave the application developers the choice of using state of the art
service development tools. As mentioned before, the basic idea of these APIs is
that Application Servers (ASs) host the application logic. Developers access these
APIs (via a secure network connection), which are provided by a dedicated network
operator service gateway. This gateway maps the service interfaces to available
resource interfaces in a flexible way not seen by the application. For example, an
IN SCP could have been upgraded to become such a network gateway but also
direct mappings of these APIs onto a network signalling protocol are possible.
Corresponding interoperability specifications for the Parlay APIs were developed
by ETSI TISPAN and should ensure the inter-operation of different application
servers and gateways.

Whereas the Parlay APIs are based on CORBA, the Parlay group started in 2003
the definition of Web Services based APIs labelled as Parlay X [3G 09]. Parlay X
is not considered as a successor of Parlay but rather an alternative, allowing the ini-
tiation of Telecom functionality via high-level functionality. On the one hand, this
approach does not provide the developer with the functionality of creating sophist-
icated communications services with deep control of features. On the other hand,
Parlay X hides most of the complexity of the Parlay APIs and can be considered as
an offering for non-Telecom service developers that want to make use of Telecom
features for their services.

Although this API technology is very promising, particularly as it provides some

20

2.2. Standards and Fora

kind of Enterprise Architecture Integration (EAI) within a network operator infra-
structure, market acceptance has taken a very long time of almost 15 years as most
network operators at that time were still not ready to open up their networks to
3rd parties. However, in face of changing network technologies, i.e. the migration
from circuit-switched to all-IP networks, the value of OSA/Parlay APIs is fully re-
cognised as they allow services to be provided on top of both networking domains
in parallel.

2.2 Standards and Fora

This section discusses selected technical reports and emerging standards related
to service brokerage in telecommunications environments, namely by 3GPP4, the
Java Community Process (JCP)5, the Open Mobile Alliance (OMA)6, and the Tele-
Management Forum (TMF)7 initiative. Figure 2.5 illustrates a classification of
covered fora within a 4-tier horizontal model.

Figure 2.5: Relevant Standard Definition Organisations

4http://www.3gpp.org
5http://www.jcp.org
6http://www.openmobilealliance.org
7http://www.tmforum.org/

21

Chapter 2. Service Principles in Telecommunications

The mentioned standards are not exhaustive for this broad field but focus on the
main working areas related to this thesis.

2.2.1 3rd Generation Partnership Project

3GPP has defined a function within the SIP application layer of IMS managing
interactions between application servers. This function can be considered as a ser-
vice broker for SIP services and has been labelled Service Capability Interaction
Manager (SCIM) and defined in [3G 03]. However, the service interaction man-
agement functionalities of SCIM are not specified. Research in this field has been
in progress over the last years [GC 07]. The following figure 2.6 depicts one of the
first architectural classifications as part of release 5.

Figure 2.6: 3GPP Service Capability Interaction Manager

As part of release 8, 3GPP investigates [3G 08] impacts on defined control ar-
chitectures through service brokering. A service broker is defined in this context
as a logical function that manages service interactions among services hosted on
single or multiple Application Servers. The main focus of the investigation is re-
lated to feature interaction between applications that are executed in a chain to form
a complex service. Beyond the scope of [3G 08] are service integration between
SIP and non-SIP applications available via the IMS service architecture and the
support of service integration across multiple service providers. It is considered

22

2.2. Standards and Fora

as a functional part of the IMS Service Control (ISC) reference point interfacing
IMS Serving Call Session Control Functions (S-CSCF) and Application Server
functions. These considerations by 3GPP extend the static invocation mechan-
ism as part of the S-CSCF through initial Filter Criteria (iFC). 3GPP differentiates
between centralised and distributed service broker functions as depicted in the fol-
lowing figure:

Figure 2.7: 3GPP centralised and distributed broker functions

2.2.2 Java Community Process

The Java Community Process (JCP) adopts the idea of a 3GPP SCIM as a so
called Application Router (AR) as part of its SIP Servlet 1.1 specification JSR 289
[JCP 08]. The Application Router is defined as a function alongside the Servlet
container. It is responsible for routing SIP requests to applications. As soon as the
container receives a new request, it calls the Application Router; the AR determ-
ines which application should be selected and returns the name of that application
to the container. The container then passes the request to the selected application.
The following figure 2.8 is an illustration of request routing in JSR 289.

Figure 2.8: SIP Servlet 1.1 request routing based on Application Router

The AR is aware of what applications are deployed on the container, and it knows

23

Chapter 2. Service Principles in Telecommunications

the request and the request context. Nevertheless, the AR is only limited to broker
applications within a JSR 289 compliant container. The application is able to proxy
the SIP request back out to the container, where it will again be passed to the AR
to find the next application in a chain. The AR can tell from the request context
passed to it by the container whether a request is new, or whether it has already
been handled by one or more applications.

2.2.3 Open Mobile Alliance

The following subsections depict briefly standardisation efforts of the Open Mobile
Alliance (OMA) that are related to work presented in this thesis, especially the Next
Generation Service Interfaces (NGSI), OMA Service Environment (OSE), and the
OMA Service Provider Environment (OSPE).

2.2.3.1 Next Generation Service Interfaces

The objective of Next Generation Service Interface (NGSI) [OMA 09] initiative
is to define a set of new service APIs in order to stimulate the usage of various
service enablers fostering the development of new services and applications. NGSI
will both define extensions beyond today’s Parlay X APIs (latest version: 3GPP
Release 8 Parlay X 4.0 APIs [3G 09]) and define several new APIs as needed. In
order to allow for advanced service creation based on multiple services/enablers,
interface functionalities for identity federation and related obligations as well as
configuration for the composition of services are included.

The main functionality and goal of NGSI may be described as follows:

1. OMA NGSI offers a way to applications to access network capabilities as
well as to enhance existing communications with features offered via these
applications.

2. Respecting device capabilities, service subscriptions, context, user profiles,
privacy as well as their dynamic collaboration, the user experience can be
enhanced with additional service value offered by the applications. These
mechanisms are controlled and enabled via NGSI.

3. Leverage the enforced service capabilities from the applications, enhanced
user experience and service consumption is provided. This step involves
collaboration of network capabilities with features from the application en-
vironment.

The following figure 2.9 illustrates the scope of NGSI:

24

2.2. Standards and Fora

Figure 2.9: Scope of OMA NGSI 1.0

Service APIs are provided as part of the exposure layer of service delivery plat-
forms to applications. While those APIs are offered via the service exposure layer,
the service delivery platforms need to provide the necessary means to manage and
govern the access of applications to network services. Thus, the set of APIs sup-
ports developers to implement their applications reusing offered network services
while at the same time taking over the control and execution towards the underlying
service and network layer.

2.2.3.2 OMA Service Environment

The definitions of several application service enablers by the Open Mobile Alli-
ance and the need for a general access function for 3rd party service access led to
the specification of the OMA Service Environment (OSE) [OMA 07]. It defines
an enabler layer which incorporates specific enabler components that offer north-
bound interfaces to applications that implement certain application logic. These
applications either reside at the operator domain or are hosted at a 3rd party do-
main. An enabler component can either be part of the OSE or the OSE can act as
an application overlay that offers interfaces to other enabler functions. Figure 2.10
illustrates the proposed architecture by the OMA:

25

Chapter 2. Service Principles in Telecommunications

Figure 2.10: OMA Service Environment Architecture

Basically, an OSE incorporates service enabler interfaces and translates service
requests either directly into enabler logic or to an enabler specific protocol, in the
case of IMS mostly SIP, Diameter and XCAP [R 07a] for XML document manage-
ment. OMA, at the point of writing, does not standardise any mapping to a specific
middle-ware messaging technology but leaves this open to the implementation of
service environments. An enabler could as well be a non standardised implement-
ation towards a specific telephony platform or an IN platform. An OSE consists
according to OMA of several architectural elements that are described in the fol-
lowing:

• Enabler – A technology intended for use in the development, deployment or
operation of a Service; defined in a specification, or group of specifications,
published as a package by OMA. An enabler should specify one or more
public interfaces. Examples of OMA enablers include Location or Presence.

• Enabler implementations – An element in the OSE representing an imple-
mentation of an enabler, e.g., either in a service provider domain or in a
terminal domain. An enabler implementation can be viewed as a template
that represents an implementation of any enabler (e.g., MMS or Presence) as
defined by OMA.

26

2.2. Standards and Fora

• Enabler interface bindings – Interfaces must be specified in a neutral lan-
guage manner. However, specifications may also define language specific
bindings for the interfaces. Enabler interface bindings provide the specific
formats (i.e. syntax and protocols used to access enablers using particular
programming languages or network protocols).

• Policy Enforcer – An OSE architectural element that provides a policy-based
management mechanism to protect resources from unauthorised requests and
to manage the use of these requests.

• Applications – An implementation of a related set of functions that performs
a certain application logic, often enabling one or more services.

Policy Evaluation, Enforcement and Management

The Policy Enforcer function of OSE or Policy Evaluation, Enforcement and Man-
agement (PEEM) as labelled within OMA standards can be used to intercept ser-
vice requests and responses to and from a foreign domain as well as from any other
service requester and apply certain rules (policies) on them that are stored at a re-
pository. Furthermore, PEEM may be called explicitly by a resource for a specific
policy evaluation result response to be executed as part of an enabler service lo-
gic. Policies in this context are formalisms used to express business, engineering
or process criteria represented by a combination of policy conditions and actions.
The following figure 2.11 provides an overview of the architecture of PEEM by
OMA:

Figure 2.11: OMA Policy Evaluation, Enforcement and Management Architecture

PEEM supports two options for expressing policies:

• A rule set-based option: Each rule is evaluated as separate entity, and the
combination of the results of the processing of all the rules in the rule set

27

Chapter 2. Service Principles in Telecommunications

determines the policy outcome (notice that a precedence mechanism may
be needed). The policy expression language specified is the XML Common
Policy schema from IETF [STM+ 07].

• A workflow-based option: The entire policy is processed as a whole, follow-
ing a flowchart approach, where at each node in the graph, a rule is being pro-
cessed. The policy expression language specified is Web Services Business
Process Execution Language (WSBPEL 2.0) defined by OASIS [OASIS 07].

2.2.3.3 OMA Service Provider Environment

The Open Mobile Alliance Service Provider Environment (OSPE) [OMA 05] is fo-
cused on standardising the service life-cycle management by addressing the main
actors involved with application development, application deployment and applic-
ation consumption:

1. End user

2. Service Provider

3. Application Developer

Independent deployment of services may lead to inconsistent user experience. From
the end user perspective, the benefits of OSPE are supposed to be primarily that
of improved service experience, i.e. improved services consistency and coherency.
By re-using and leveraging components such as a common user-profile it is pos-
sible that individual services offered by a Service Provider will avoid, for example,
the need for an end-user to repeatedly supply their personal service preferences and
settings for each individual service that is offered by the Service Provider.

From a service provider perspective, OSPE is supposed to provide reduction
in integration efforts for new services and facilitate integrating, deploying, man-
aging, monitoring, upgrading, adding and removing components by standardising
the components and their management interfaces. This should also encourage
multi-vendor and hence component plug and play and component re-usability.

By standardizing the environment/infrastructure for developing and deploying
services, OSPE is supposed to eliminate the need for the application developer

to develop proprietary and operator specific mechanisms for the deployment of
new services. This should be achieved by promoting modularity and re-use of
components.

2.2.4 TeleManagement Forum

TeleManagement Forum (TMF) focuses on solving systems and operational man-
agement issues and is mostly known for its de-facto standards Business Process

28

2.2. Standards and Fora

Framework (eTOM), Information Framework (SID). Applications Framework (Tele-
com Application Map or TAM), and New Generation Operations Systems and Soft-
ware (NGOSS) programme. The following subsections depict in more detail the
emerging work of IPShpere and Service Delivery Framework related to the scope
of this thesis.

2.2.4.1 IPSphere

The TeleManagement’s Forum IPSphere working group works on specifications
for inter- and intra-service provider working modes with a special focus on util-
ising service-specific management systems linked to service-specific network tech-
nology. The IPSphere service management approach focuses on extending existing
frameworks to handle inter-provider and other multi-stakeholder interactions and
defines a framework for properties as organizational roles, scope of business prac-
tices, service structuring, service & technology independent. The following figure
2.12 illustrates the functional scope of the IPSphere framework in more detail:

Figure 2.12: IPSphere Framework Context

The scope of the IPSphere Framework is based on two key aspects namely, ser-
vice abstraction and service decomposition. The former is concerned with provid-
ing a mechanism to classify a service offer in terms of practical and business con-
straints and the latter with mapping a service offer to resource commitment across

29

Chapter 2. Service Principles in Telecommunications

one or more providers. The framework is concerned with identifying the functional
components required to facilitate service structuring within and across provider do-
mains. It deals with defining an information model to capture the requirements of
a structured service, providing flows for distributing the configuration informa-
tion to the participating elements, so they can be configured to deliver the service,
receiving fault and performance information from the underlying resources, and
generating events to support auditing, notification, billing and settlement, etc. The
Service Structuring Stratum is the focus of the IPsphere Framework and the place
where service abstraction and decomposition takes place. It translates the abstract
service requests to concrete resource commitments across providers and between
providers and customers. The IPSphere framework is supposed to be responsible
for defining interfaces to these systems and entities to facilitate participation in the
Service Structuring Stratum and to identify the core functional components and
interfaces that need to be standardised to enable systems, both within and across
service, network, and content provider domains to collaborate in the delivery of
services.

2.2.4.2 Service Delivery Framework

The goal of the TeleManagement’s Forum Service Delivery Framework (SDF) pro-
gramme [TMF 08] is to define a generic management framework for next genera-
tion services regardless of the software or network technologies used to implement
those services. This management framework is aimed at addressing the full life-
cycle of services. In order to scope the problem space, a SDF reference model is
defined as depicted in the following figure 2.13:

Figure 2.13: TM Forum Service Delivery Framework Reference Architecture

30

2.3. Discussion

In the context of the SDF work, services are defined as components exposing
their capabilities via one or more interfaces. A specific SDF compliant service
exposes one ore more SDF Service Management Interface(s) (SMI). A SDF service
may itself rely on capabilities exposed by other services, such as those provided by
an integration infrastructure, by network or IT resources, or by other SDF services.
The consumption of such external capabilities by the SDF service is graphically
represented by a consumer (a “half moon”) in figure 2.13.

The IPSphere framework and its overlap with evolving SDF service life cycle
management will be integrated in future SDF work.

2.3 Discussion

The evolution of Telecom technology has come a long way from POTS to digital
networks as ISDN and the currently on-going paradigm shift from circuit-switched
to packet-switched based Next Generation Networks. The result of this develop-
ment is a change of paradigms on all layers. Nevertheless, the realisation of this
evolution in standardisation can also be considered as a continuous effort by the
classic Telecom industry to protect the network and network services domain from
openness and therefore limit the amount of options for (non-Telecom) 3rd parties
to gain footage.

Whereas great achievements are visible regarding network technologies (e.g.,
fixed data networks and wireless communication networks), the service domain
has remained rather static within the last decades concerning the evolution of new
services and features. Interestingly, architectural principles defined initially for
TINA-C are now applied on top of NGN service architectures as part of the stand-
ards definition by OMA and the TeleManagement Forum. Furthermore, we witness
a similar technology shift in paradigms performed on the control layer happening
on the service layer, too. Proprietary service platform with limited to none open-
ness for developers and 3rd parties are being replaced with platforms providing
well-defined APIs towards network-specific functionality. Besides OSA/Parlay
and Parlay X (now under the label of OMA NGSI) these standardization efforts
take place within activities and fora not associated to the well-established Telecom
standardization fora, but at organizations as the Java Community Process that have
their roots in defining principles for service creation and execution in IT. A sim-
ilar observation can be made regarding signalling protocols for the NGN where the
Internet Engineering Task Force is the leading forum, compared to the ITU-T for
circuit-switched network technology.

From the point of view of the service developer the evolution from proprietary
service platforms requiring detailed knowledge of network protocols and platform
specific tools for service creation is overdue. Technology and principles have been
defined to allow cross-operator and cross-network development of services that

31

Chapter 2. Service Principles in Telecommunications

can be exposed again to other services and developers for re-use. The current
state in standardization and best practices may be considered as a well-defined eco
space for service development and deployment compared to fragmented solutions
with limited access realised for the IN [BT 08]. The definition and deployment
of network abstraction APIs offer now for service developers access to program
communication-centric services for Telecom networks ([BMS 07], [BMS+ 10]).
Nevertheless, the amount of technologies, standards, and fora to be considered
have significantly increased and impose a significant increase in complexity for the
service developer.

From an operator perspective, the change in technologies has been significant,
too. Monolithic vertical service/network silos realised for POTS and IN have been
replaced by a well-defined horizontal NGN standard providing a set of distrib-
uted functions connected via specified protocol-based reference points. Most out-
standing is the paradigm shift from circuit-switched signalling towards a packet-
switched all-IP infrastructure. Adopting IT principles for service life-cycle man-
agement, the complexity of the service layer increased tremendously [BMS+ 09].
Non-deterministic behaviour of services is a challenging result of this evolution
and clear guidelines for service creation and the management of once-deployed
services are missing at the point of writing by standardization fora. Ironically, the
definition of a new, well-structured network control and access architecture based
on well-defined standards leads to a higher amount of complexity for network and
service management. The openness of the service layer to expose network service
functionality towards 3rd parties via network abstraction allows from a business
perspective new partnerships and possibilities for service integration. From a tech-
nical perspective the accompanying variety and complexity of technologies and
standards on the one hand and on the other hand loosing control of service execu-
tion in the case of 3rd party services impose high risks in operations for network
operators.

From a user’s point of view, the opening of the network allows the integration of
communications features into a variety of service options. Nevertheless, this evol-
ution has just started. Coming along the migration to all-IP for communications
services, so called Over-The-Top (OTT) service provider already offer competing
communications services to classic operator offerings, currently with a lower de-
gree of Quality of Experience (QoE) for the end user and in some cases neglecting
most of applicable standards described. Nevertheless, we expect communications
features to be available for the end user in many service contexts through the avail-
ability of open APIs for developers ([BM 05], [BDM 07], [BLM 08], [BLM+ 09]).
Still missing in 2010 and subject to research are tools and building blocks for users
to create and configure their own services to meet their specific needs [BC 08].

32

Chapter 3

Service Principles in Information

Technologies

The preceding chapter presented principles and standards enabling the technical
inter-operation of distributed applications in telecommunications. One obvious no-
tice when looking at the development of standards for service architectures in tele-
communications in the last two decades is the adoption of principles from Inform-
ation Technologies (IT) for the telecommunications service domain. This chapter
deals with general principles of Service Oriented Architectures (SOA), composi-
tion of complex services, Model-Driven Engineering (MDE), and the formal ex-
pression and enforcement of service constraints during service creation and execu-
tion context in the context of this thesis.

We argue that this application of distributed service technologies and the ser-
vice creation methodology in MDE is a novel application of existing technology
for telecommunications that creates a robust, scalable, and flexible federation of
principles that are needed in the next generation of large-scale SOA deployments
to allow convergence of communications and information services.

3.1 Service Oriented Architecture Principles

A key concept of the SOA model is the publication and accessibility of services
to create more complex, orchestrated services, and to allow the re-use of services
through open access and well-defined service descriptions. The following sections
describe open access and service invocation principles and technologies needed to
realise a SOA.

33

Chapter 3. Service Principles in Information Technologies

3.1.1 Main Characteristics

According to the SOA reference model (SOA-RM) specification in [OASIS 06],
SOA is a paradigm for organising and utilising distributed capabilities that may be
under the control of different ownership domains. It provides a uniform means to
offer, discover, interact with and use capabilities to produce desired effects consist-
ent with measurable preconditions and expectations. The SOA-RM specification
bases its definition of SOA around the concept of “needs and capabilities”, where
SOA provides a mechanism for matching needs of service consumers with capab-
ilities by service providers.

This concept is based on an architectural style that defines an interaction model
between three primary parties:

1. a service provider, who publishes a service description and provides the im-
plementation for the service,

2. a service consumer, who is either able to use the uniform resource identifier
(URI) for the service description directly or to find the service description in
a service registry and to bind and invoke the service,

3. a service broker providing and maintaining the service registry.

The service broker may define interaction patterns as depicted in the following
diagram 3.1:

Figure 3.1: Conceptual model of a SOA architectural style

In the following are principal concepts that the reference model defines around
services. Visibility, Interaction, and Real World Effect address the dynamic aspects
of services (interactions with services), while the remaining concepts address static
aspects:

• Service Description: The information needed in order to use, or consider
using, a service. The purpose of description is to facilitate interaction and
visibility, particularly when the participants are in different ownership do-
mains, between participants in service interactions.

34

3.1. Service Oriented Architecture Principles

• Visibility: The capacity for those with needs and those with capabilities to
be able to interact with each other. This is typically done by providing de-
scriptions for such aspects as functions and technical requirements, related
constraints and policies, and mechanisms for access or response.

• Interaction: Refers to the interaction between service providers and con-
sumers. Typically mediated by the exchange of messages, an interaction
proceeds through a series of information exchanges and invoked actions. The
result of an interaction is a real world effect.

• Real World Effect: The actual result of using a service. This may be the re-
turn of information or the change in the state of entities (known or unknown)
that are involved in the interaction.

• Execution Context: The set of technical and business elements that form a
path between those with needs and those with capabilities and that permit
service providers and consumers to interact. All interactions are grounded
in a particular execution context, which permits service providers and con-
sumers to interact and provides a decision point for any policies and contracts
that may be in force.

• Contract & Policy: A policy represents some constraint or condition on the
use, deployment or description of an owned entity as defined by any parti-
cipant, while a contract represents an agreement by two or more parties.

As a SOA provides means for the definition of complex distributed services envir-
onments by a well-defined approach based on above service principles and interac-
tions, the fragmented Telecom service domain consisting of proprietary platforms
(e.g., IN SCPs) and open service platforms (e.g., SLEEs, SIP Servlet containers)
as depicted in the previous chapter seems to be one among many Enterprise Ar-
chitecture Integration (EAI) efforts to be solved by classical IT. Nevertheless, the
following criteria differentiate from our view point the Telecom sector from other
service sectors (e.g., enterprise):

• Services to be executed are network-centric services with low latency (e.g.,
call establishment, signal routing)

• Interactions between services are based on asynchronous behaviour (e.g.,
notifications of network events)

• Events in the network are communicated via signalling protocols (e.g., SIP)
and need to be translated into platform specific APIs, resulting in multiple
layers of translation between control and service layer

• Extreme high availability of services (e.g., 99.999%)

• Great variety of implementations for services (e.g., C++, Java, proprietary
languages)

35

Chapter 3. Service Principles in Information Technologies

Taking into consideration that protocol adaptors and most legacy services have
been “hard-wired” within network-centric platforms and these platform will only
be replaced within an operator’s infrastructure incrementally, the transformation of
the Telco service layer into a SOA and the following option of opening the oper-
ator’s service domain for 3rd party access requires the implementation of a well-
defined network abstraction layer allowing the communication between services
within the service platform of an operator by a common communication principle
to also allow the efficient exposure of those services.

3.1.2 SOA versus Web 2.0

The relationship between Web 2.0 and SOA has received an enormous amount
of coverage through the notion of complexity-hiding and reuse, along with the
concept of loosely coupling services. Some argue that Web 2.0 and SOAs have sig-
nificantly different elements and thus can not be regarded as parallel philosophies
1. Others, however, consider the two concepts as complementary and regard Web
2.0 as the global SOA.

Tim O’Reilly coined the term Web 2.0 to describe a quickly growing set of Web-
based applications. SOA is considered the approach of encapsulating application
logic in services with a uniformly defined interface and making these publicly
available via discovery mechanisms as depicted above. O’Reilly identifies ma-
jor characteristics inherent to the Web 2.0 philosophy: the Web is considered a
platform for building systems that are “tied together by a set of protocols, open
standards, and agreements for cooperation" 2. The exploitation of collective intelli-
gence of Web users, ownership of mission-critical data, and the end of the software
release cycle are quoted as central characteristics as well. The use of lightweight
programming models that allow for loosely coupled applications, the use of diverse
media and devices for the consumption of Internet-based applications, and the real-
ization of rich user experiences represent further paradigms inherent to the concept
of Web 2.0.

According to [HMS+ 06], we classify Web 2.0 applications as follows:

• Communities that aim to unify their users by means of a common ideal such
as social networking or knowledge sharing.

• Platforms or tools that help users create and share content with a broad audi-
ence (e.g., Web logs and online directories). Mash-up platforms let users
retrieve content or functionality from arbitrary sources, mix it with other
resources, and expose it for further reuse by other applications.

1see http://edgeperspectives.typepad.com/edge_perspectives/2006/04/soa_versus_web_.html
2T. O’Reilly, 2005, http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-

20.html

36

3.1. Service Oriented Architecture Principles

• Online collaboration tools support users in collaboratively performing cer-
tain tasks, such as maintaining time schedules or processing text online.

In comparison, the following are ways we can differentiate SOA use cases from
Web 2.0:

1. SOAs allow for a cross-organizational integration of services. By adhering
to common standards for the description of their service interfaces, corpor-
ations are enabled to setup loosely coupled electronic business transactions
with other companies and thus automate business transactions in a quickly
changeable fashion.

2. SOAs facilitate the intra-organizational integration of disparate services. On
the basis of a central integration layer (often referred to as an Enterprise
Service Bus / ESB), heterogeneous applications can be encapsulated and
composed to a seamlessly integrated IT landscape

3. SOA-based application development significantly reduces development time
thanks to the availability of reusable application building blocks.

The first major analogy between product design in the fields of Web 2.0 and SOA is
the notion of reusing and composing existing resources. Both concepts let users re-
use, compose, and enrich existing resources and components to new and potentially
higher-level applications. The second commonness is the affinity to collaboration
and coupling of remote resources or services. Both Web 2.0 and SOA applica-
tions enable the loose coupling of distant and possibly heterogeneous resources.
A third similarity between Web 2.0 and SOA is the shared principle of agility and
the support of permanent structural change. Web 2.0 and SOA also have divergent
elements. First of all, many Web 2.0 applications incorporate a social aspect, as
they facilitate human interaction and also mainly deal with human-readable con-
tent, such as text and pictures.

In contrast, conventional SOAs merely aim at interconnecting dispersed busi-
ness functionality and facilitating seamless machine-machine collaboration. Web
2.0 is clearly about presentation and user interface integration, whereas SOA de-
ployments are more abstract and less visible to its users. Furthermore, the degree
of ex ante determination and involved governance is a key differentiator between
Web 2.0 and SOA [M 05] . Because of their frequent implementation in the cor-
porate context, SOAs are subject to requirements that do not necessarily exist in
the case of most Web 2.0 applications and thus underlie well-defined governance
mechanisms [WR 04].

In general, the philosophies of Web 2.0 and SOA serve different user needs and
thus expose differences with respect to the design and used technologies of real-
world applications. However, recently numerous novel use cases [SJ 07] demon-
strate the great potential of combining the technologies and principles of Web 2.0

37

Chapter 3. Service Principles in Information Technologies

and SOA. One major example of the convergence of the two philosophies is the
emergence of a global SOA that we refer to as Internet of Services (IoS) as depic-
ted in figure 3.2.

Figure 3.2: Internet of Services basic architecture

Up to 2010, the average Internet users with little IT sophistication have not been
able to easily retrieve and use certain services. This is because many of these
services mostly reside within company boundaries and are only accessed for pro-
fessional use in a corporate context. However, the provision of easily accessible
services for end users might drive a novel generation of Internet use and allow for
the ad-hoc setup and configuration of IT-supported business models.

3.1.3 Classification of Service Invocation Technologies

Service Oriented Architecture is found at multiple levels within software systems.
This section examines the highest level of abstraction in software architecture,
where the interactions among components are capable of being realised in net-
work communication. In the following, we classify technologies related to dis-
tributed service principles in IT, namely Remote Procedure Call, the evolved Web
Services standard and Representational State Transfer (REST) by applying criteria
described in section 1.5.

38

3.1. Service Oriented Architecture Principles

3.1.3.1 XML-RPC and Web Services

XML-RPC is a remote procedure call protocol which uses eXtensible Markup Lan-
guage (XML) to encode its calls and Hypertext Transfer Protocol (HTTP) as a
transport mechanism. Figure 3.3 depicts the basic mechanism:

Figure 3.3: XML-RPC mechanism

As new functionality was introduced, the standard evolved into what is now
SOAP [LJD 01]. SOAP, originally defined as Simple Object Access Protocol, is a
protocol specification for exchanging structured information in the implementation
of Web Services in networks and is standardised by the World Wide Web Consor-
tium (W3C) [W3C 07]. SOAP can form the foundation layer of a Web Services
protocol stack, providing a basic messaging framework upon which Web Services
can be built. The following figure 3.4 depicts the basic Web Service model:

Figure 3.4: Basic Web Services model

3.1.3.2 REST and RESTful APIs

Representational State Transfer (REST) is a style of software architecture for dis-
tributed hypermedia systems such as the World Wide Web (WWW). The terms

39

Chapter 3. Service Principles in Information Technologies

’representational state transfer’ and ’REST’ were introduced in [F 00] and they
describe a method for building distributed services as web services in the WWW.

The following figure 3.5 illustrates some of the entities of REST and how they
might participate within a simple enterprise system.

Figure 3.5: REST in a simple enterprise system

An essential concept in REST is the existence of resources (sources of spe-
cific information/functionality), each of which is referenced with a global identifier
(e.g., a URI) in Hypertext Transfer Protocol (HTTP). In order to manipulate these
resources, components of the network (user agents and origin servers) communic-
ate via a standardised interface (e.g., HTTP) and exchange representations of these
resources (the actual documents conveying the information). A RESTful web API
is a simple web service implemented using HTTP and the principles of REST. Such
a web service can be viewed as a collection of resources. In a system like the one
above, connectors would be embodied as ports to enable communication among
the components over each given protocol.

3.1.3.3 JSON-RPC

JSON-RPC is a remote procedure call protocol encoded in JavaScript Object Nota-
tion. JSON [C 06] is a lightweight computer data interchange format, text-based
and human-readable for representing simple data structures and objects.

At the point of writing JSON-RPC is specified by the JSON-RPC Working
Group3. It is a very simple protocol similar to XML-RPC, defining only few data

3http://groups.google.com/group/json-rpc/web/json-rpc-1-2-proposal

40

3.1. Service Oriented Architecture Principles

types and commands and in contrast to XML-RPC or SOAP, it allows for bidirec-
tional communication between the service and the user agent client, treating each
more like peers and allowing peers to call one another or send notifications to one
another. Figure 3.6 depicts the basic mechanism:

Figure 3.6: JSON-RPC mechanism

JSON-RPC allows multiple calls to be sent to a peer which may be answered out
of order. Besides using HTTP for transport, one may use TCP/IP sockets to create
much more responsive web applications with JSON-RPC, compared to polling data
from a service with JSON-RPC over HTTP.

3.1.3.4 Classification

The following table 3.1 provides a classification of the above depicted service in-
vocation methods according to the defined criteria in section 1.5:

XML-RPC Web Services RESTful API JSON-RPC

Configurability + + ++ +
Customizability + + ++ ++
Modifiability / / + /
Network efficiency - + + ++
Powerfulness + ++ - +
Scalability + ++ ++ +
Simplicity / - + ++

Table 3.1: Classification of network-based application architectures and technolo-
gies

Configurability refers to the ability that a service might be re-configured during
run-time without influencing clients and users. As REST is fully based on URIs and
makes only use of the four verbs of HTTP, it is fairly easy to add new functionality

41

Chapter 3. Service Principles in Information Technologies

through the definition of new URIs without influencing other services that make
use of the providing service. Therefore it receives the highest benchmark.

Customizability in this context refers to the amount of effort a service developer
needs to invest to change specific service behaviour. As all service request paradigms
are considered as high-level network APIs compared to Common Object Request
Broker Architecture (CORBA) or Java Remote Method Invocation (RMI), we con-
sider all highly customisable through relatively less efforts. RESTful APIs and
JSON-RPC are considered with a slightly higher degree, as data structures do not
need to be defined in XML and therefore data parsing and consistency constraints
are less complex.

Modifiability – As RESTful APIs do not incorporate complex data structures
(usually XML or JSON transported within the HTML body) but resources based
on URIs, it is fairly easy to modify underlying service logic by keeping resources
consistent. Other APIs need to assure consistency in data, structured to achieve
modifications not conflicting with remote service logic.

Network efficiency refers to amount and size of requests needed to achieve ba-
sic network-based distributed functionality. As stated above JSON-RPC allows the
direct usage of TCP sockets and is not bound to high-level protocols as HTTP. Fur-
thermore JSON objects are not XML encoded and require therefore less bandwidth
as XML documents and XML tag overhead does not exist. The same applies for
RESTful APIs but those do not support an active notification model as incorpor-
ated into JSON-RPC and follows the basic HTTP request/response paradigm as
Web Services and XML-RPC do.

Powerfulness refers to the complexity of operations to be achieved by a request.
In this regard, Web Services through the possibility of defining complex APIs as
part of WSDL clearly receive the highest benchmark opposed to REST that is lim-
ited to the four HTTP verbs POST, GET, PUT and DELETE. Furthermore, as Web
Services provide a well-defined description language (WSDL), automated genera-
tion of service end points is possible, too.

Scalability – RESTful APIs and Web Services scale well by design. In the case
of RESTful APIs, it can be stated the more services are added to a distributed
network architecture, the higher the degree of scalability. Also, considering that
RESTful services end points usually make use of web servers as underlying service
provider software, a cheap and scalable infrastructure can be achieved with rather
few efforts.

Simplicity – RESTful APIs and JSON-RPC are definitely the most simple API
constructs. The simplicity of JSON objects even adds on in favour of JSON-RPC
and RESTful services that make use of JSON-based data structures. Web Services
in contrast are more complex regarding the creation of services and software lib-
raries required and also regarding the execution. JSON-RPC furthermore allows a
very simple way of creating responsive web applications, compared to polling data
from a service with XML-RPC or Web Services.

42

3.2. Service Composition Principles

Concluding, it can be stated that RESTful APIs achieve through their simplicity
a comparable high benchmark and have not without reason become the favourite
way of achieving distributed network-based service architectures on the Internet.
Considering the complexity in operations that is needed for advanced enterprise ar-
chitectures and services, the efforts needed to achieve such functionality are rather
high on the other hand and justify the usage of Web Services. Both XML-RPC and
JSON-RPC may also be applied for RESTful services and a combination is advis-
able when more complex operations and data structures need to be incorporated.
It should clearly be stated that Web Services based on SOAP define the most ma-
ture standard as the standard provides a well-defined communication pattern and
service description language allowing automated generation of service end points.

3.2 Service Composition Principles

Service Oriented Architectures expose resources transparently as services. The
mechanism of combining two or more (basic or composite) services into a com-
plex service is known as service composition. The following subsections provide
an overview of service composition principles and how they form the basis of busi-
ness logic expression languages and modern service creation environments. We
depict why composition mechanisms play an important role in converged Telecom
and Internet service environment and provide the basis for modern service creation
principles. We classify the most prominent composition/workflow expression lan-
guages according to their suitability in the context of this thesis.

3.2.1 Overview

The domain of service composition can be grouped into three main parts of charac-
teristics differentiating how complex services are created: static, semi-automatic,
and fully-automated service composition. Other characteristics are possible, but
the complexity of the individual approaches can be roughly grouped based on the
following characteristics for combining services:

• Combination of services manually in a fixed order as a static composition.

• Semi-automatic composition by the user with the help of tools

• Fully-automated composition of services, meaning that services are added
or removed dynamically and can be aggregated to new complex value-added
services. In this case the process of discovery and composition is automated
and realized by a component performing the composition.

Generally, due to the openness of the Internet and the continuously growing amount
of available services, dynamic service composition becomes a decision problem

43

Chapter 3. Service Principles in Information Technologies

in regard of which services should be selected by optimizing the user’s end-to-
end QoS requirements. Considering the limited magnitude of telecommunications
services within an operator’s domain, selection problems can be reduced to an
acceptable complexity by defining sets of applicable services for specific scenarios.
Basically, this can be considered as an application of automated composition within
a pre-defined space of action. This allows service providers and operators to adjust
service behaviour according to users and their needs.

From an operator perspective service composition can be applied as a solution
fulfilling the following targets:

• Application for multiple business concepts within one service scenario. E.g.
one service might be composed with different features, depending on user-
/service preferences, privacy or context information

• Selection of appropriate network services. E.g., selection of closest call con-
trol enabler to reduce interconnection costs in inter-domain or roaming scen-
arios, selection of alternative service enabler due to operations as mainten-
ance down-time.

• Provisioning of service creation/composition tools to developers to leverage
new service development for existing platforms.

From the point of view of a service developer an integrated service composi-
tion environment for service creation allows the definition of workflows and ser-
vice logic on a very high abstraction level without touching or altering the actual
code of service features. This provides on the one hand tools and mechanisms to
non-experts hiding non-relevant programming support details. On the other hand
facilitating the rapid creation of new communication services should leverage the
magnitude of available services for further re-use in complex compositions and to
end users.

From a user’s point of view the combination of the above described targets is
expected to provide a greater variety of services and a higher degree of personal-
isation of features and service behaviour.

The following subsection provides a general introduction into the principles of
service workflows and composition.

3.2.2 A Generic Service Composition Model

The following Figure 3.7 illustrates the components of a generic service compos-
ition reference model defined in [ILeM 09]. The major components which can be
identified are: Translator, Generator, Evaluator and Builder.

44

3.2. Service Composition Principles

Figure 3.7: Service Composition Model

The composition middle-ware interacts with the application layer by receiving
functionality requests from users or applications. It needs to respond to the func-
tionality requests by providing services that fulfil the demand, these services can be
atomic or composite. The Service Repository represents all the distributed service
repositories where services are registered. The composition middle-ware interacts
with the Service Repository to choose services to compose. Focusing on synthesis,
mechanisms range from static service compositions to semi-automatic to fully-
automated service compositions; static and automatic composition approaches are
compared in [DS 05]. Whereas static service composition requires manual gener-
ation of choreographies (similar to workflows), fully-automated service composi-
tions are capable of discovering components and synthesizing composite services
at run-time.

The process of service composition includes the following phases:

1. Translation Phase

Applications specify their needed functionalities by sending requests to the
middle-ware. These requests may be described by diverse languages or tech-
niques. Most systems distinguish between external specification languages
and internal ones. The external ones are used to enhance the accessibility
with the outside world, commonly users or other services. Internal specific-

45

Chapter 3. Service Principles in Information Technologies

ation corresponds to a formal way of expressing things and uses specific
languages, models, and logics, usually for SOA a generic service model.
[M 07] provides a translation mechanism of the available service technolo-
gies and service descriptions into one model. Authors in [CFB 04] propose
a wrapper to provide a uniform access interface to services. These middle-
ware usually realize transformation from one model to another or from one
technology to another. If new technology models appear in the environment,
the Translator will need to be expanded to take these technologies into con-
sideration. Other approaches ([CJF+ 05], [SHP 03]) abandon the Translator
module as they use a common model to describe all the services of the en-
vironment. They use common description languages based on semantics as
OWL-S [OSC 03] for describing atomic services, composed services and
user queries.

2. Generation Phase

Once translated, the request specification is sent to the Generator. It will
try to provide the needed functionalities by composing the available services
and functionalities and generates one or several composition plans with the
same or different services available in the environment. Composing service
is technically performed by chaining interfaces using a syntactically or se-
mantically method matching. The interface chaining is usually represented
as a graph or described with a specific language, representing the semantic
matching between the input and output parameters [FS 05]. A number of
languages have been proposed to describe data structure in general and func-
tionalities offered by devices in particular. While some languages are widely
used, such as XML, and generic for multiple use cases, others are more spe-
cific to certain tasks as service composition, orchestration or choreography
such as Business Process Execution Language (BPEL) [OASIS 07] and State
Chart XML (SCXML) [W3C 09].

3. Evaluation Phase

The Evaluator chooses the most suitable composition plan for a given con-
text. This selection is done from all plans provided. The evaluation depends
strongly on many criteria like the application context, the service technology
model, the quality of the network, the non-functional service QoS proper-
ties, etc. Two main approaches are commonly used: rule-based planning
([CIJ+ 00], [GPZ 04], [PF 02]) and a formal methods approach ([KKS 07],
[MBE 03], [M 07]. The first one evaluates whether a given composition plan
is appropriate or not in the actual context by applying rules. A major prob-
lem of the rule-based evaluation approach is the lack of tools verifying the
correctness (functional and non-functional aspects) of the composition plan.
This aspect is at the main advantage of a formal method approach.

4. Build Phase

The Builder executes the selected composition plan and produces an imple-
mentation corresponding to the required composite service. It may apply a

46

3.2. Service Composition Principles

range of techniques to realize the effective service composition, depending
strongly on the service technology model to be composed and on the context.
Once the composite service is available, it may be executed by the applic-
ation that requires its functionality. Literature distinguishes different kinds
of builders provided by the service composition middle-ware. Some builders
are very basic and use only simple invocation in sequence to a list of services
[ILeM 09]. These services need to be available otherwise the composition
result is not certain. Others [U 00] provide complex discovery protocols ad-
apted to the heterogeneous nature of the pervasive environments.

3.2.3 Classification of Composition Expression Languages

The generic service composition model presented in the previous section defines a
model applicable for manual to fully-automated approaches. The Generator has
the task to create a workflow of services and features that can be directly ex-
ecuted or compiled to machine-executable code. Within in the last decade XML-
based languages for expressing such workflows of compositions, orchestrations
or choreographies of services have been standardized to allow the execution of
such services across multiple platforms. This section outlines the most prominent
approaches in the context of this thesis to enable complex services including com-
munications features. It provides a qualitative classification of different languages
based on our experiences during the last years and a comparative literature study.

3.2.3.1 Business Process Execution Language

BPEL, short for Web Services Business Process Execution Language (WS-BPEL)
was standardised in 2004 by OASIS after collaborative efforts to create the lan-
guage by BEA Systems, IBM, Microsoft, SAP and Siebel Systems. We refer to the
latest version WS-BPEL 2.0 [OASIS 07], released in January 2007.

It is a language that combines and replaces IBM’s WSFL (Web Services Flow
Language) and Microsoft’s XLANG specification, relying on WSDL, XML schema
and XPath. Basically, it is an executable XML-based language, for specifying in-
teractions between Web Services, which can be executable business processes and
abstract business processes. The first category refers to the behaviour of a parti-
cipant in a business interaction, while abstract processes represent some partially
specified services that are not intended to be executed, but serve a descriptive role.
BPEL supports the specification of an executable process, the message exchange
with other systems involved, and finally the coordination and management of the
entire process. A BPEL process provides a Web Services (SOAP) interface, but
behind the scenes it calls other Web Services to actually realise service specific
functionality; those services are called partners. The relationship between them is
called a partner link and it is defined by operations that each partner provides to the

47

Chapter 3. Service Principles in Information Technologies

other. Thus, BPEL orchestrates Web Services by specifying the order in which it is
meaningful to call a collection of services, and assigns responsibilities for each of
the services to partners. [M 03] The following figure 3.8 depicts the general BPEL
mechanism:

Figure 3.8: General BPEL mechanism

The design of Web Services, including BPEL processes, generally follows a
number of best practices for SOA ([S 06], [RA 04]). A well designed service
should expose a coarse-grained interface to the functionality it supports. Client-
service communication should also be minimized by exchanging coarse-grained
data types and doing composite tasks together where possible. This helps to keep
response time within acceptable limits, what is an essential feature in the context of
near real-time services like call control, since Web service invocations tend to have
more overhead due to underlying tasks such as encoding and decoding of request
and response messages in XML, and logging and monitoring for error recovery
[B 07].

3.2.3.2 Call Control XML and Voice XML

The Voice eXtensible Markup Language (VoiceXML) [W3C 07a] and Call Con-
trol eXtensible Markup Language (CCXML) [W3C 07b], are XML-based although
separate frameworks, that have been proposed by W3C and complement each other.

CCXML is an XML-based language for marshalling telephony servers such as
dialogue systems and conference bridges to service telephone calls. Since the ac-
tual work is performed by external servers, this can be seen as a domain specific
form of composition. The motif in CCXML is that during the course of a call, a
number of objects are connected together. These objects raise events; a CCXML

48

3.2. Service Composition Principles

script reconfigures the connections in response. In contrast, the motif in BPEL is
that of an assembly line: a BPEL script moves a request through a sequence of
steps. CCXML can be used with a dialogue system such as VoiceXML, but the
call control model in CCXML has been designed to be sufficiently abstract so that
it is able to accommodate all major definitions including Parlay or JAIN SLEE.
CCXML is capable of receiving events and messages from external computational
entities (e.g., via HTTP POST), interacting with an outside call queue, or placing
calls on behalf of a document server. Call legs are considered as audio sinks and
sources which can be combined to form arbitrary networks, in support of sophist-
icated conference call features.

VoiceXML supports the creation of Interactive Voice Response (IVR) services.
It is designed for creating audio dialogues that feature synthesized speech, digitized
audio, recognition of spoken and DTMF key input, recording of spoken input, tele-
phony, and mixed initiative conversations. A VoiceXML document/script specifies
each interaction dialogue to be conducted by a VoiceXML interpreter. User input
affects dialogue interpretation and is collected into requests submitted back to the
Web server. The latter replies with another VoiceXML document to continue the
user’s session with other dialogues. From a design perspective, VoiceXML min-
imizes client/server interactions by specifying multiple interactions per document.
It separates user interaction code (in VoiceXML) from service logic (e.g., in CGI
scripts) and it promotes service portability across implementation platforms. There
are however several issues with this language when used for IVR applications. For
instance, when working as a call controller, VoiceXML offers limited advanced
telephony functions and called parties cannot be placed in an IVR. [AS 07]

3.2.3.3 State Chart XML

State Chart XML (SCXML) is an XML-based markup language which provides
a generic state-machine based execution environment based on Harel state charts
[H 87]. At the point of writing it is a working draft at W3C [W3C 09].

SCXML is able to describe complex state-machines; it is possible to describe
notations such as sub-states, parallel states, synchronisation, or concurrency. The
objective of this standard is to generalise state diagram notations which are already
used in other XML contexts as CCXML or VoiceXML. As a multi-modal control
language combining VoiceXML 3.0 dialogues with dialogues in other modalit-
ies including keyboard and mouse, ink, vision, haptics, etc., it may also control
combined modalities such as lipreading (combined speech recognition and vision)
speech input with keyboard as fallback, and multiple keyboards for multi-user edit-
ing. The following figure 3.9 illustrates the interaction of SCXML with CCXML
and VoiceXML:

49

Chapter 3. Service Principles in Information Technologies

Figure 3.9: SCXML / CCXML / VoiceXML Interaction

Even if SCXML has its roots in CCXML and will be adapted into the upcoming
VoiceXML standard, it offers a generic and light weight approach for expressing
generic work-flows independent of protocols and programming languages.

3.2.3.4 Service Logic Graph

The OASIS Open Composite Services Architecture (Open CSA) defines an inde-
pendent programming model for SOA-based systems. In this model functionality
is designed as a set of services which may be tied together to create new combined
services with additional value. CSA was first published as Service Component
Architecture (SCA) [OSOA 09] in March 2007 by the Open Service Oriented Ar-
chitecture (OSOA) industry initiative. SCA v1.0 was handed over to OASIS to
become a formal industry standard. Open CSA provides a model for the composi-
tion of services, creation of service components, and re-use of existing application
functions within SCA composites. It aims at the support of a wide range of tech-
nologies for service components and for the access methods which are used to

50

3.2. Service Composition Principles

connect them. According to SOA principles the offered services in Open CSA are
independent from the underlying implementation technologies.

Service Logic Graphs (SLGs) are a behavioural counterpart to SCA compos-
ites and they are architecturally compliant with the coming standard for Service
Composition [JMN+ 08]. SLGs provide a model for the orchestration of Service
Independent Building Blocks (SIB), an analogy to the original naming of element-
ary telecommunication services [MBD 08]. SLGs represent the underlying model
of jABC [JKN+ 06], a flexible framework that supports the whole lifecycle of a
business process. It can be used by business and application experts to graphically
orchestrate complex end-to-end business processes into running applications on
the basis of a service library. SLGs can be canonically wrapped into (graph-) SIBs
to allow for a hierarchical organization of complex process models. Moreover,
process models, which follow a certain standard defined by jABC, can be directly
exported into (partial or complete) stand-alone applications, a feature which turns
jABC from a modelling into a development tool. Finally, there are SIBs, which
serve as wrappers for outside functionality (e.g., non-Java applications such as
C++, C#, SOAP/WSDL Web services, REST); this enables modeling and building
heterogeneous, distributed, applications [MS 09].

3.2.3.5 Classification

The following table 3.2 provides our classification of the above depicted models
and languages according to the defined criteria in section 1.5 as applicable:

BPEL CCXML SCXML SLG VoiceXML

Configurability ++ - ++ ++ -
Customisability / / / - /
Modifiability + + + - +
Network efficiency - - - ++ ++ - -
Powerfulness - / ++ + /
Scalability + - - ++ ++ - -
Simplicity / ++ - - ++

Table 3.2: Classification of process orchestration languages and models

Configurability is related to both extensibility and re-usability in that it refers to
modification of components, or configurations of components, such that they are
capable of using a new service or data element type. BPEL, SLG, and SCXML
provide constructs for modelling and executing abstract workflows that may either
be re-used or modified for alternative usage. CCXML and VoiceXML are con-
sidered as domain- and feature-specific and in this sense limited regarding re-
usability and especially extensibility.

51

Chapter 3. Service Principles in Information Technologies

Customisability in this context refers to the ability to temporarily manipulate the
behaviour of a service either manually by changing the code or through environ-
ment variables without the need to re-deploy the service into a framework. As
BPEL, CCXML, VoiceXML, and SCXML are all executable languages, manipu-
lation of the workflow is possible through altering the orchestration script directly.
Therefore, there is no distinction between those in this context. Services based on
SLGs are provided as models within the jABC environment and require redeploy-
ment to the service platform when services are not executed directly within jABC.

Modifiability refers to the effort needed with which a change can be made to an
existing work-flow. It has to be differentiated between the effort needed to manip-
ulate code directly (e.g., by using a text editor) or by using a SCE that provides
graphical representation and allows manipulation via such an interface. In the
first case rather simple languages, especially VoiceXML and CCXML, but also
SCXML and BPEL allow direct manipulation of code but graphical environments
are available, too. SLG, as stated above requires the usage of graphical editors for
those users that are not intimately familiar with the language constructs and the
internal functionality of the SCEs. With the understanding that it is easier for non-
experts to manipulate workflows through graphical interfaces, we still rate these
languages higher that provide the possibility to edit code with few efforts in non-
graphical editors as well.

Network efficiency comprises in this context the ability to integrate different re-
mote service endpoints by means of variety of protocols and service technologies.
VoiceXML and CCXML allow only the integration of services that are provided
by the interpreter and the platform. BPEL allows the integration of distributed
Web Services but only through SOAP in a homogeneous Web Services environ-
ment. SCXML provides mechanisms to include hybrid services into a work-flow
when provided by the interpreter that executes the workflow script. jABC creates
executables that may incorporate any kind of remote service but requires the imple-
mentation of a jABC/SLG specific service/protocol adaptor. Therefore, SCXML
and SLG are rated highest.

Powerfulness refers to strength of expression of an orchestration but also to ad-
ditional orchestration-specific application logic that can be included. SLG and
SCXML are very powerful languages allowing the definition of complex work-
flows. SCXML provides furthermore the option to include script-like languages
(e.g., JavaScript) into workflow definitions directly for implementing logic within
the workflow definition. CCXML and VoiceXML are powerful languages but only
within a limited scope of managing call and voice related services. BPEL provides
no standardised mechanism for the implementation of application-specific logic but
only means for defining delegations to other Web Services and receives therefore
the lowest ranking.

Scalability in this context is similar to Network efficiency and refers to the abil-
ity to support a large number of services across various (distributed) platforms.

52

3.3. Model-Driven Engineering

Generally, all composition languages that allow the inclusion of remote services
to form a distributed service mash-up scale in this context better than languages
that may only invoke local services. Therefore, CCXML and VoiceXML receive
the lowest benchmark as services may only be locally executed. As stated above
BPEL allows only the integration of Web Services and scales therefore merely in a
homogeneous Web Services domain. All other languages provide mechanisms to
integrate remote services with various APIs and receive high benchmarks.

Simplicity refers to the amount of information, complexity, and knowledge needed
by the developer to express a specific behaviour and is unrelated to specific graph-
ical representation forms inside an SCE. SLG and SCXML are the most complex
languages, providing at the same time the widest scope in usage, they are there-
fore rated rather low. BPEL is considered as human-readable and -codable, but is
due to its generic usage approach still a rather complex languages. CCXML and
VoiceXML are considered to be the most simple languages.

Concluding, we may state that each composition language has its use case and
platform specific pros and cons and there is no perfect language that combines busi-
ness process related orchestrations that are rather data-driven and complex commu-
nications services that are asynchronous and event-driven. Nevertheless, SCXML
has a good potential to become, once finally standardised, a candidate for a multi-
modal control language that offers backward compatibility to CCXML call flows
and VoiceXML interactions and it may also control database access and business
logic modules. BPEL and SLG offer the integration of multiple remote service
endpoints to create integrated complex orchestrations. BPEL has one main draw-
back, for our consideration, that it only allows the integration of SOAP-based Web
Services, other kind of service technologies need a special Web Services adaptor
to be integrated into a BPEL work-flow.

3.3 Model-Driven Engineering

The previous two sections provide a general introduction to Service Oriented Ar-
chitectures and the underlying principles of distributed services and service com-
position. This section focuses on a SOA-aligned software design approach for the
development of software systems by the definition of models allowing a formal
description of state machines and automated code production based on Model-
Driven Engineering (MDE). MDE has been promoted as a solution to handle the
complexity of large-scale software development by raising the abstraction level
and automating labour-intensive and error-prone tasks. Related to the scope of
this thesis, we consider MDE as an enabling option for Service Creation Environ-
ments for rich Telecom services (either from a 3rd party developer perspective or
for operator internal service development) allowing formal verification of software
to reduce errors in hybrid, distributed service scenarios that are difficult to con-

53

Chapter 3. Service Principles in Information Technologies

trol. MDE has been hailed as the solution to handle the key problem of increasing
complexity facing the software development industry by:

1. providing better abstraction techniques and

2. facilitating automation.

By switching to a MDE approach, businesses are promised to reap benefits through
increased productivity and software quality [UP 07].

The following subsections depict briefly relevant standards and principles and
discuss the strength and weakness of MDE. We outline several examples providing
a detailed overview of industry’s experiences with MDE in telecommunications.

3.3.1 Base Standards and Technologies

Software development in emerging domains and rapidly changing environments
raises increasing demands to the quality and automation degree of applied devel-
opment processes. Model-Driven Software Development (MDSD) is a key tech-
nology to enhance these processes significantly. Well-defined models replace pro-
gramming code and text documents as primary development artefacts. MDE pro-
motes to apply model transformations to bridge the gaps between models which
contain the development information resulting from the execution of different de-
velopment activities.

In [B 04], authors define MDSD as a multi-paradigm approach that embraces
domain analysis, meta modelling, model-driven generation, template languages,
domain-driven framework design, the principles for agile software development,
and the development and use of open source infrastructure. In MDSD, aspects from
popular mainstream approaches that can scale to large-scale industrialized software
development are combined with less well-known techniques that are needed to pre-
vent architectural degradation in large systems. Additonally, it provides techniques
to automate the repetitive aspects of software development. To apply MDSD, we
consider an existing implementation or reference implementation. It consists of
unique code parts with individual structure. When analysing this unique code, it
can be structured into three main parts:

1. a generic part that is identical for all (future) applications,

2. a schematic part that is not necessarily identical for each application, but
uses the same taxonomy (e.g., based on the same design patterns),

3. an application specific part that is not generalisable.

The following figure 3.10 illustrates this separation in the context of application
development using MDE:

54

3.3. Model-Driven Engineering

Figure 3.10: Basic Idea Model-Driven Software Development

MDSD aims at deducing the schematic part for all (sub-)applications from the
same model. Intermediate steps might be possible during transformation, never-
theless the key elements are Domain-Specific Languages (DSL), transformation,
and platforms. Those have to be created only once for a specific domain.

One of the important standardized approaches of MDSD based on abstraction of
platform similarities is the Object Management Group’s (OMG) Model Driven Ar-
chitecture (MDA)4. It focuses on forward engineering, meaning to produce code
from abstract models. The MDA approach defines through the Computation In-
dependent Model (CIM), a colloquial system description, the transformation into
a Platform-Independent Model (PIM) using an appropriate Domain-Specific Lan-
guage (DSL). Then, given a Platform Definition Model (PDM) corresponding to
CORBA, .NET, the Web, etc., the PIM is translated to one or more Platform-
Specific Models (PSMs) that are executable. The PSM may use different DSLs,
or a general purpose language like Java, C#, PHP, Python, etc. Automated tools
generally perform this translation [KMW 04]. The base PIM only expresses busi-
ness functionality and behaviour, it expresses business rules and functionality in-
dependent of technology. The benefit lies in its technological independence, the
base PIM retains its full value over the years, requiring change only when business
conditions mandate. The general division of the modelling levels can be depicted
as in the following:

4http://www.omg.org/mda/

55

Chapter 3. Service Principles in Information Technologies

Figure 3.11: Service Specification Levels in OMG’s MDA

Once the first iteration of the PIM is completed, it is stored in the MOF as the
input to the mapping step that will produce a PSM. Specialisations and extensions
to UML allow to express both PIMs and PSMs. During the mapping step, the
run-time characteristics and configuration information that are designed into the
application model in a general way are converted to the specific forms required
by the target middle-ware platform. Guided by an OMG-standard mapping, auto-
mated tools perform as much of this conversion as possible, flagging ambiguous
portions for programming staff to resolve by hand. Early versions of MDA required
considerable hand adjustment.

The use of the Unified Modeling Language (UML) [OMG 97] provides the cap-
ability to describe static invariants and pre/post conditions that are particularly
important features of an approach to software engineering called contract-based
design. UML allows formalisation of the vocabulary otherwise left imprecise in
interface specifications, as an abstract, yet precise model of the state of the object
providing that interface and of any parameters exchanged. Some current OMG
specifications including UML, MOF (Meta-Object Facility), and CWM (Common
Warehouse Metamodel) specifications already use UML and OCL (Object Con-
straint Language) for specifying constraints. [OMG 08]

The life-cycle of an application may vary dramatically depending on whether
it is being used to build a new application from scratch or just to add a wrapper
to an existing application. MDA supports many of the commonly used steps in
MDSD and deployment. A key aspect of MDA is that it addresses the complete
life-cycle covering analysis and design, programming (testing, component build or
component assembly) and deployment and management. [SFH+ 04]

56

3.3. Model-Driven Engineering

3.3.2 Strength and Weaknesses

There is some debate among software developers about how useful code generation
as such is or should be [MV 08]. This certainly depends on the specific problem
domain and to which extent code generation should be applied. There are well-
known areas where code generation is an established practice and not limited to
the field of UML. Even though many promises are made that MDE provides a cost-
efficient way to address complexity in software development and reducing the error
rate of software, these are in most cases poorly, if at all, supported by evidence.
This section outlines strengths and weaknesses of MDE applied in specific sectors
based on a literature review. It should be noted that generally success cases are
more likely to be published than failures.

A broad range of companies in various domains report their experience from in-
vestigating or applying MDE. The investigated papers cover the following sectors:

• Telecommunications domain ([BLW 05], [PB 05], [UP 07], [WW 06]),

• Business applications and financial organizations ([DLT+ 03], [SKS 07]),

• Defense / aerodynamics / avionic systems ([B 05], [JN 04]),

• Web applications ([BCF+ 05], [M 03]).

We consider three main criteria to evaluate MDE:

1. Context and motivation

MDE is applied in a wide range of domains as listed above, including safety-
critical systems and product lines. MDE is assumed to lead to higher pro-
ductivity (by increased automation in the development process), increased
standardization and formalisation, and improved communication within de-
velopment teams and with external stakeholders. Labour-intensive and error-
prone development tasks are automated and best-known solutions can be
integrated in code generators, resulting in reducing defects and improving
software quality.

2. Maturity level of MDE

The current state of MDE is far from mature. There is a varying degree
of automation and it is mostly applied for code generation. Tools are im-
proved during the recent years but several papers still discuss the lack of
a coherent MDE environment and tool chain. Tools should scale to large
scale development and support the domain-specific approach more effect-
ively. Software processes should also be adapted to MDE. Other challenges
in adopting MDE are the complexity of modelling itself, developing PIMs
that are portable to several platforms and using MDE together with legacy
systems.

57

Chapter 3. Service Principles in Information Technologies

3. MDE impact on productivity and software quality

Quantitative evidence on productivity gains in the area of telecommunica-
tions are mentioned in [BLW 05] and [WW 06]. Those are the only ones
providing some quantitative data on software quality improvements. Soft-
ware quality benefits are discussed in several papers but are not backed up
with data.

The following table 3.3 provides an overview contrasting the arguments for strengths
and weaknesses of MDE based on experiences by Motorola5 in [BLW 05]:

Strength Weakness

Reduction of overall cost of quality due
to a decrease in inspection and testing
times

Lack of common tools and inter-
operability between modelling tools

2-8x productivity improvement when
measured in terms of equivalent source
lines of code

Lack of well-defined semantics in
models

2-3x reduction in effort through the use
of co-simulation, automatic code gen-
eration, and model testing

Poor performances of tools and gener-
ated code

Missing well-defined processes for
team-based MDSD
Lack of migration tools for transform-
ing existing development processes to
MDE

Table 3.3: Strengths and Weaknesses of MDE

Generally spoken, modelling should be easier and faster than code writing to
be able to differentiate clearly between strengths and weaknesses of MDE. Ap-
propriate tools and processes and increased expertise on modelling are areas for
improvement in most cases. Combining MDE with domain-specific approaches
and in-house developed tools has played a key role in successful adoption of the
approach. One of the promises of MDE in increasing portability of solutions to
multiple platforms has not often been feasible, mainly due to the fact that tools are
bound to specific platforms. Interesting is the quantification of savings as a clear
strength, once a development process is migrated to MDE end-to-end.

5http://www.motorola.com

58

3.3. Model-Driven Engineering

3.3.3 Strategies for applying MDE in Telecommunications

The previous section lists a set of key sectors in IT that apply MDE for the software
creation process. But MDA as a common software development architecture does
neither define any methodology and guideline aiming at specific domains (such
as telecommunications), nor does it provide a concrete definition for “platforms”.
Taking into consideration principles and technologies described in chapter 2, a
service platform for (tele-)communications services can be considered from two
perspectives:

(1) A technical view on the platform providing and implementing open APIs as
OSA/Parlay, OMA NGSI, SIP Servlet or JAIN SLEE.

(2) An implementation view referring to platform specific technologies as Java,
J2EE and Enterprise Java Beans (EJB), Web Services, and REST.

Whereas (2) can be considered as domain independent from a service perspective,
from a platform view telecommunications has similar requirements as platforms
in the finance or defence sector regarding availability, resilience, and real-time
behaviour.

3.3.3.1 Open API-based Meta-model Approach

The model-driven service creation approach adopts concern-separated design meth-
ods. The horizontal level involves meta-model/UML profile layer, model trans-
former layer, and service model layer. The meta-model layer is used to define the
structure and semantics of the model layer and can be considered as the instanti-
ation of the model layer [QLL 06]. Following this approach, the meta-model layer
consists of a Telecom service domain meta-model, an open API-based meta-model,
and an implementation-specific platform meta-model.

The Telecom service domain meta-model is a high-level abstraction of service
concepts and classification, service characteristics, and behaviour, etc. This do-
main meta-model is independent of concrete open API technologies, so it can be
used to construct a high-level service logic model of the model layer.

The open API-based meta-model depicts the concrete characteristics of open
API technologies. By applying a concrete API-related meta-model, it is possible
to describe a service model implemented by a specific API technology. These two
kinds of meta-models are then related to the Telecom service domain.

Implementation platform meta-models aim at concrete implementation technolo-
gies, such as EJB, C/C+ + , Java, etc. These implementation platform meta-models
provided by MDE tools are independent of specific domains generally. The fol-
lowing figure 3.12 illustrates these principles:

59

Chapter 3. Service Principles in Information Technologies

Figure 3.12: Telecom Service Development Approach based on MDE

60

3.3. Model-Driven Engineering

The model transformer layer is in charge of model-to-model and model-to-code
transformation. Model transformers utilise the mapping rules to realise the trans-
formation, they are defined according to the source meta-model and target meta-
model. Using this approach, three different kind of model transformers are needed:

1. Transformation of high-level service models to concrete API-based model.

2. Transformation of API-based model to specific implementation/technology-
related model.

3. Transformation of implementation/technology-related model to executable
code.

With the support of related meta-models and model transformers, service designers
are able to develop services applying the following steps:

1. Using constructs based on service domain meta-model to build up the high-
level service logic.

2. Selecting appropriate model transformer to concrete API technologies.

3. Depending on the concrete service deployment environment, choose the cor-
responding model transformer to map the concrete API-based service model
to a platform specific model.

4. Applying the platform specific model to the implementation platform trans-
former to generate code.

3.3.3.2 Domain-Specific Language Approach

DSLs offer notations and abstractions that are specific to a given domain. It cap-
tures domain knowledge (as opposed to code) and raise abstraction from the im-
plementation world by using domain abstractions. In doing this, it applies do-
main concepts and rules as modelling constructs, narrowing down the design space
and focusing on a single range of products. A DSL may or may not have a pro-
gramming nature. Most DSLs developed by programming language researchers,
although domain-specific, require programming skills. The following figure 3.13
compares DSL with other (model-driven) service creation approaches:

61

Chapter 3. Service Principles in Information Technologies

Figure 3.13: DSL in the context of other service creation approaches

Besides languages for processing data as PADS [FG 05], or MAWL, a lan-
guage for interactive Web services [LR 95], DSLs have also been created for tele-
phony service creation [BCL+ 06]. Although it is claimed that DSLs provide be-
nefits in terms of productivity and safety [LMC 07], DSLs have mostly been tar-
geted towards developers having some level of programming skills, excluding non-
programmer domain experts.

Authors in [BCL+ 06] have designed a DSL for telephony services, named Ses-
sion Procession Language (SPL). This language offers domain-specific program-
ming constructs that permit services to be defined concisely and safely. By design,
SPL is supposed to guarantee critical properties that cannot be verified in general-
purpose languages. SPL serves as an interface between telephony models and tele-
phony platforms. As the telephony domain imposes stringent safety and robustness
requirements. A service should not itself incur runtime errors and should respect
the underlying protocol. A number of verifications can be done at the level of the
DSL layer. SPL has been designed to prevent errors that can occur when program-
ming SIP services. In doing so, verifications are factorised because they do not
depend on the target platform. As a result, it becomes easier and safer to introduce
other modelling languages on top of SPL.

Another approach has been followed by IBM6 and presented in [HKK+ 08], pro-
posing the Telecom Service Domain Specific Language (TS-DSL) as a language
for defining models of telecommunications services which are independent of spe-
cific architectures and protocols. This language is intended for service designers

6https://www.research.ibm.com/haifa/

62

3.4. Process Constraint Principles

who may not have Telecom industry domain knowledge. It hides the internals
of the platforms focusing on their functionality and provides high level building
blocks for the design of services. Model transformations are responsible for clos-
ing the abstraction gap by transforming the service model into a deployable service.
TS-DSL includes both static and dynamic aspects of telecom services utilizing the
power of UML2 and IBM’s UML Profile for Software Services7, refining and ex-
tending them for Telecom service domain.

At the point of writing, OMG is defining the Telecommunication SOA Modeling
Language (TelcoML). The objective of this specification is to define a domain-
specific UML Profile for designing advanced and integrated telecommunications
services, meaning services that exploit the convergence of communication net-
works - landline, wireless and voice, and in the same time take advantage of fa-
cilities accessible from the World Wide Web. In TelcoML a service can be seen
under two perspectives: a customer sees a UML-based service interface defini-
tion that lists the supported operations and parameters he should use to invoke the
service. This can be considered as a black-box view. The provider defines the in-
terface and possibly provides an explicit white-box behaviour definition for some
of the operations. It should be noted that the specification is, at the point of writing,
in a very early stage and not publicly available.

3.4 Process Constraint Principles

Technology continues to face challenges in coping with dynamic environments,
where requirements and goals are constantly changing. The system defined within
this thesis is conducive to dynamic change and the need for flexibility in execu-
tion. This section covers system governance enforcement principles for service
execution through process constraints. We define classes of constraints and ba-
sic process constraints to propose a policy-based mechanism for the definition and
enforcement of constraints.

3.4.1 Introduction

Workflow systems have been delivered effectively for a class of business processes,
but typical workflow systems based on languages described in 3.2 are criticised due
to their lack of flexibility, i.e. their limited ability to adapt to changing temporal
business conditions. In the dynamic environment of e-business, it is essential that
technology supports the business to adapt to changing conditions, where different
process models should be derived from existing ones to tailor individual process
instances.

7http://www.ibm.com/developerworks/rational/library/05/419_soa/

63

Chapter 3. Service Principles in Information Technologies

Providing a workable balance between flexibility and control is a challenge, es-
pecially regarding the performance of systems for real-time communications. Ob-
viously, there are parts of processes which need to be strictly controlled through
fully pre-defined models to reach execution performance requirements. But there
can also be parts of the same process for which some level of flexibility must be
offered, often because the process cannot be fully pre-defined due to lack of data
at process design time.

We consider the definition and execution of constraints from the perspective of:

1. Network operators and service providers, intending to expose services for
further re-use in other service domains and optimise the internal execution
of service requests.

2. Service developers that want to compose those exposed services in a com-
plex service work-flow.

3. Service users that want to protect their privacy and receive and optimised
service experience depending on context information as presence, location,
etc.

3.4.2 Classes of Constraints

In general, a process model needs to be capable of capturing multiple perspect-
ives, in order to fully capture the business process [JB 96]. There are a number
of proposals from academia and industry on modelling environments (languages)
allowing these perspectives to be adequately described. Different proposals offer
different level of expressiveness in terms of these perspectives. Basically these
perspectives are intended to express the constraints under which a business process
can be executed such that the targeted business goals can be effectively met. We
follow [LSP+ 06] considering three essential classes of constraints:

1. selection constraints defining what activities constitute the process,

2. scheduling constraints defining when these activities are to be performed,
both in terms of ordering as well as temporal dependencies, and lastly

3. resource constraints defining which resources are required to perform the
activities.

These constraints are applicable at two different levels: process level and activity
level. Process level constraints specify what activities must be included within the
process and the flow dependencies within these activities including the control de-
pendencies (such as sequence, alternative, parallel etc.). Activity level constraints
constitute the specification of various properties of the individual activities within
the process, including activity resources (applications, roles and performers, data),
and time (duration and deadline constraints).

64

3.4. Process Constraint Principles

In the context of this thesis, we differentiate constraints either as permanent/
static or temporal constraints on multiple layers:

1. During service creation process, e.g., within an SCE, model-checking al-
lows the verification of process and activity level constraints during service
composition.

2. During service execution, e.g., a Service Broker providing the enforcement
of temporal constraints by intercepting service requests:

• Selection constraints: Sequences of service and features to be executed,
e.g., specific logging, audio/video announcements before call setup.

• Scheduling constraints: Temporal dependencies, e.g., enforcement of
privacy rules based on location information.

• Resource constraints: Definition of required resources, e.g., network
resources (QoS), service enabler selection.

3.4.3 Policy-based Constraint Expression

According to [SL 02], we sort policies into two basic types: authorization and
obligation policies. Authorization policies are used to define access rights for a
subject (service provider request, user, or role). The evaluation outcome can be
either positive (defining the actions subjects are permitted to perform on target
objects) or negative (specifying the actions subjects are forbidden to perform on
target objects). As such, authorization policies are used to define access control
rules implemented by several types of mechanisms in a network security system,
such as packet filters, Kerberos, and VPNs [AKG 05].

Obligation policies are, in turn, event-triggered condition-action rules used to
define the activity subjects (services) that are allowed to perform on objects (e.g.
service enablers) in the target domain. In the service exposure context, obligation
policies can be used to specify the behaviour of services.

Many access control systems commonly provide groups of users as the access
control unit. A major difference between groups and roles is that groups are typic-
ally treated as a collection of users but not as a collection of permissions. A role,
serving as an intermediary, is both a collection of users and a collection of permis-
sions. In e.g., Unix, because group membership is defined in two files (/etc/passwd
and /etc/group), it is easy to determine the users belonging to a particular group.
Permissions are granted to groups on the basis of permission bits associated with
individual files and directories. Determining the permissions granted to a partic-
ular group generally requires a traversal of the entire file system tree. It is easier,
therefore, to determine a group’s membership than its permissions. Moreover, the
assignment of permissions to groups is highly decentralized. Essentially, the owner

65

Chapter 3. Service Principles in Information Technologies

of any Unix file system subtree can assign permissions for that subtree to a group.
Although Unix groups are different from our concept of roles, in certain situations
Unix groups can implement roles.

Although most access control and security systems do not always agree on the
definition of roles [JSS 97], many to most support some form of Role-based Ac-
cess Control (RBAC). Roles can be very complex entities, comprising constraints
on role membership, constraints on role activation, and constraints on role use. Au-
thors of [SCF+ 97] have defined a RBAC model as depicted in the following figure
3.14:

Figure 3.14: Role-based Access Control Models

RBAC0, as the base model at the bottom, is the minimum requirement for an
RBAC system. Advanced models RBAC1 and RBAC2 include RBAC0, but RBAC1

adds role hierarchies, whereas RBAC2 adds constraints. The consolidated model,
RBAC3, includes RBAC1 and RBAC2 and, by transitivity, RBAC0. Constraints are
an important aspect of RBAC and are sometimes argued to be the principal motiv-
ation behind RBAC. A common example in our field is that of mutually disjoint
roles, such as those of service provider and the system administrator. Generally, the
same entity is not permitted to belong to both roles, because this creates a possib-
ility for committing fraud. This well-known, time-honored principle is separation

of duties. Constraints are a powerful mechanism for laying out higher level organ-
izational policies. Once certain roles are declared mutually exclusive, there’s less
concern about assigning individual users/services to roles. If RBAC management
is decentralized, constraints become a mechanism by which system administrators
can restrict users’/services’ ability to exercise privileges.

Applying RBAC principles on obligation policies, we can define a model provid-
ing limited inheritance of access and usage rights for users and services as depicted

66

3.4. Process Constraint Principles

in the following figure 3.15 for a service provider that has access to the services S1,
S2, S3, and S3’, whereas S3, and S3’ offer specific subservices labelled as tasks:

Figure 3.15: Limited Inheritance based on RBAC

3.4.4 Classification of Policy-based Constraint Definition

In the following, we provide a classification of popular policy languages, namely
Business Process Execution Language (BPEL), Common Policies [STM+ 07], Web
Services Policy Framework (WS-Policy) [W3C 07c], and eXtensible Access Con-
trol Markup Language (XACML) [OASIS 05] related to service exposure in the
context of OMA Service Environment depicted in section 2.2.3.2.

3.4.4.1 Business Process Execution Language

In a homogeneous (Web) service environment where services that do not expose
their functionality directly to a 3rd party domain (rather their functionality is shield-
ed by a BPEL engine exposing the functionality of the underlying services aug-
mented with the necessary policies), it is possible to create a ’wrapper’ BPEL pro-
cesses to expose the functionality of the underlying services. As BPEL supports
control structures such as if-then-elseif-else and while as well as variable manip-
ulation, service specific constraints can be expressed within a BPEL script. This
approach follows OMA’s specification of PEEM as described in section 2.2.3.2 us-
ing a BPEL-engine as PEEM enabler. It can be applied to complex orchestrated
services as depicted in the following figure 3.16:

67

Chapter 3. Service Principles in Information Technologies

Figure 3.16: BPEL-based service policy wrapper for composed services

3.4.4.2 Common Policy

During the work in the IETF GEOPRIV (GEOlocation PRIVacy) working group8,
the need for authorisation policies that provide end-users with the possibility to
disclose location information to 3rd parties, became obvious. Work was started
on a common policy framework and document format [STM+ 07] following the
general policy framework of [YPG 00]. This common policy framework and doc-
ument format is then further extended for the specific needs with respect to loc-
ation information [STM+ 09] and presence information [R 07], as depicted in the
following figure 3.17:

Figure 3.17: Common Policy Enhancements

8http://www.ietf.org/dyn/wg/charter/geopriv-charter.html

68

3.4. Process Constraint Principles

[STM+ 07] defines a policy as a rule set containing an unordered list of rules. A
rule itself has conditions, actions and a transformation part. The term permission

indicates the action and transformation components of a rule. A rule in a rule set
can have a number of conditions that need to be met before executing the remaining
parts of a rule. Transformations are operations that a policy server must execute and
that modify the result which is returned to the policy requester. This functionality
is particularly helpful in reducing the granularity of information provided to the
requester, e.g., for presence and location information. Transformation are defined
by application specific usage of this common framework.

3.4.4.3 WS-Policy

WS-Policy is specified by W3C [W3C 07c] allowing Web Services to use XML to
advertise their policies (on security, Quality of Service, etc.) and for Web Service
consumers to specify their policy requirements. It represents a set of specifica-
tions that describe the capabilities and constraints of security (and other business)
policies on intermediaries and end points and how to associate policies with ser-
vices and end points.

Figure 3.18 illustrates the WS-Policy data model. This figure indicates that a
policy consists of a collection of policy alternatives. Policy alternatives consist of
a collection of policy assertions. A policy assertion itself represents a requirement,
capability or other property. It identifies a domain specific behaviour or require-
ment or condition.

Figure 3.18: WS-Policy Data Model

A policy-aware client may use a policy to determine whether one of these policy

69

Chapter 3. Service Principles in Information Technologies

alternatives can be met in order to interact with an associated Web Service. The
WS-Policy model requires the awareness and explicit handling of policies by a
requester.

3.4.4.4 eXtensible Access Control Markup Language

The eXtensible Access Control Markup Language (XACML) [OASIS 05] is a de-
clarative access control policy language expressed in XML. It includes a processing
model describing how to interpret policies. XACML allows defining fine-grained
control of authorised activities, the effect of characteristics of the access requester,
the protocol over which the request is made, authorisation based on classes of
activities, and content introspection (i.e. authorization based on both the requester
and potentially attribute values within the target where the values of the attributes
may not be known to the policy writer). Figure 3.19 depicts the XACML language
model:

Figure 3.19: XACML Language Model

70

3.4. Process Constraint Principles

The main components of the model are rules, policies and policy sets as the most
elementary unit of a policy. A rule can be evaluated on the basis of its contents.
The main components of a rule are targets, that define the set of resources, subjects,
actions, and the environment to which the rule is intended to apply, effects of a rule
that indicate the rule-writer’s intended consequence of a “true” evaluation for a
rule, and conditions that represent a boolean expression of the applicability.

3.4.4.5 Classification

The following table 3.4 provides a classification of the above depicted policy lan-
guages according to the defined criteria in section 1.5:

BPEL Common Policy WS-Policy XACML

Configurability - + ++ ++
Customizability - + + +
Modifiability - + + +
Network efficiency n.a. n.a. n.a. n.a.
Powerfulness - + - ++
Scalability - - + + +
Simplicity ++ ++ + - -

Table 3.4: Classification of service policy languages

Configurability refers to the ability that a service might be re-configured through
run-time without influencing clients and users. Considering BPEL as a policy ex-
pression language with a unified policy decision and enforcement, a new policy
results in a new service deployment at the BPEL engine. WS-Policy and XACML
provide the definition of multiple assertions or rules to a policy to allow enhanced
configurability. The Common Policy framework provides the possibility to add
multiple actions and transformations to a condition within one policy.

Customisability refers to the ability to temporarily manipulate the behaviour of a
service through policy manipulation. As the provisioning of a policy within BPEL
requires a new deployed BPEL service (wrapper service) to replace the old ser-
vice, we rate customisability as low. Adding or changing an action or condition
within a policy using Common Policy is trivial but requires also to change the ex-
isting policy, similar to adding a new policy or policy assertion to a WS-Policy and
XACML. Therefore they all receive the same benchmark.

Modifiability is closely related to customisability but is not related to temporary
changes. Nevertheless, efforts and risks are comparable with customising an exist-
ing policy to meet a temporary constraint. The rating is therefore similar, Common

71

Chapter 3. Service Principles in Information Technologies

Policy is benchmarked equal to WS-Policy and XACML as all require to change
existing policies in the same way.

Network efficiency is not applicable to this classification, as network communic-
ation is usually not involved and can be considered as an implementation-specific
issue of a policy framework.

Powerfulness refers to the strength of expression of service constraints. As BPEL
and WS-Policy provide only capabilities to express policies for Web Services,
they are rated lowest. XACML as the most complex of the depicted frameworks
provides the most sophisticated options to express service-specific constraints.

Scalability refers to the ability to support a large number of services, or inter-
actions among services within an active configuration. BPEL in contrast to the
other options requires as depicted above a dedicated service for each exposed ser-
vice and receives therefore the lowest benchmark. Common Policy, WS-Policy,
and XACML allow the association of one or more policies to multiple services.
Therefore, they all are rated equally.

Simplicity refers to the amount of information that is needed and the complexity
to express and understand a service policy. Common Policy provides the easiest
constructs and formats to define constraints. BPEL requires partner links to enforce
constraints. XACML is the most powerful but also the most complex language.
Compared to WS-Policy, it is not bound to a specific service protocol.

Concluding, it can be stated that XACML as the most mature policy framework
provides the highest degree of flexibility and the greatest strength of expression at
the cost of requiring the most complex language and evaluation mechanism. BPEL
and WS-Policy have the major drawback that they are only suitable for Web Ser-
vices. Common Policy is a relatively new standard, originally intended to express
authorisation policies for access to application-specific data. Nevertheless, as the
format allows service-specific extensions it can be applied beyond the primarily
intended use. This light weight framework allows also to meet the requirement to
express complex constraints.

3.5 Discussion

Throughout this technology analysis of service invocation technologies for distrib-
uted services, service composition languages, and policy expression languages, we
have classified current most prominent concepts and languages. The following
table 3.5 provides an overview of the results of the three classifications conducted
in this chapter

72

3.5. Discussion

Service Invoca-
tion Technologies

Composition
Languages

Policy Frameworks

Configurability REST BPEL, SCXML,
SLG

WS-Policy,
XACML

Customisability JSON-RPC,
REST

BPEL, CCXML,
SCXML,
VoiceXML

Common Policy,
WS-Policy,
XACML

Modifiability REST BPEL, CCXML,
SCXML,
VoiceXML

Common Policy,
WS-Policy,
XACML

Network effi-
ciency

JSON-RPC SCXML, SLG n.a.

Powerfulness Web Services SCXML XACML
Scalability JSON-RPC,

REST, Web
Services

SCXML, SLG Common Policy,
WS-Policy,
XACML

Simplicity JSON-RPC CCXML,
VoiceXML

BPEL, Common
Policy

Best distribu-
tion

JSON-RPC,
REST

SLG, SCXML Common Policy,
XACML

Table 3.5: Classification Results

Adding onto this classification MDE as an approach allowing the formalization
of services and platforms, we have depicted besides concrete technologies for ser-
vice binding and execution also principles for the design of services and allowing
the expression of service access and execution patterns with the help of formalized
constraints.

In the following, we reflect the presented technologies in the context of the three
roles of service developers, operators/service provider, and users.

Service developers need tools and paradigms tailored to their specific needs. We
differentiate between developers in small and medium enterprises (SME) that have
their main focus on innovative services with tight time-to-market business plans
and large enterprises focusing on complex, sophisticated services as part of lar-
ger service frameworks. Whereas first ones need fast and easy access to services
and service creation tool support might not be one of the main criteria, latter need
dedicated SLAs and verified processes that do not harm existing software and cus-
tomers when using the software. Those are in our focus for MDE-based service
creation tools. Considering SMEs on the other hand, we believe that light weight
APIs (e.g., REST, JSON-RPC) and easy access to new services are of major im-
portance to stimulate new service development.

73

Chapter 3. Service Principles in Information Technologies

Operators need mechanisms to manage service access individually, defining con-
straints on service access during service creation and execution time. The more
options and tools for fine-grained access management are available, the more pos-
sibilities an operator has to expose its network and service assets. Nevertheless, the
systems have to be error-free and need to guarantee specific QoS in service execu-
tion and network connectivity. Proven constraint definition for service access and
execution and verified service behaviour are considered as key system attributes.
Therefore, the MDE-based approach is from our perspective of major importance.
Furthermore, the system needs to be extendible to future services and platforms
in a growing service market and a SOA provides such an approach. But current
systems in an operator environment can be considered as service islands with lim-
ited access and interoperability. The transition to an open SOA is in this context
a challenging task with many risks as verified service behaviour in complex, large
scale systems is difficult to achieve.

Users want innovative services and in a growing network of services and data
that is available to others, the ability to control the access to this data. Innovation
in the Internet is closely coupled with openness related to technology in means of
standards and platforms. To participate in the innovative field Internet and WWW
from a telecommunications perspective, the technological paradigms of the web
domain need to be applied to the telecommunications domain to attract users. This
may be recognized on the one hand with the rise of the mobile Internet and on
the other hand with the amount of services available for so called smart phones
that are created and deployed to open market platforms easily. Currently missing
in 2010 is the tight integration of communication features into available services.
Furthermore, the user is starting to maintain relationships with service providers
that are outside of the operator’s domain providing services through the IP bit pipe.
Therefore, the user needs tools and mechanisms to define and manage access to
personal information as published location information or accessibility based on
context information.

Concluding, we believe that the depicted mechanisms and technologies are ap-
plicable for all three roles in the context of this thesis, but, depending on the role
and the use case to a different extend. MDE-based SCEs offer the ability to create
services that are verified by model-checking and formal system/service descrip-
tion, but only within the scope and boundaries of the framework that is used for
development. This might be a limitation when it comes to allowing innovative new
approaches that have not been considered beforehand. The definition of constraints
on various levels play an elementary role in our opinion when it comes to service
access from an operator perspective as well as data access from a user point of
view. In the following chapter, we present the blue print of a system incorporating
these characteristics.

74

Chapter 4

A Service Broker for converged

Internet and Telecom Services

4.1 Introduction

The overarching goal of adopting a Service Oriented Architecture is to allocate
an organization’s computing resources ensuring the direct alignment with core
business processes. When implemented correctly, Service Oriented Architectures
provide a framework that reuses existing elements of an IT infrastructure while
reducing total cost of ownership and providing a more flexible and robust envir-
onment for the integration of IT and business processes. Services in a SOA are
coarse-grained, discoverable software entities that exist as single instances and
interact with consumers, applications, and other services via a loosely coupled,
message-based communication model. These properties enable the flexibility of
SOA because they remove dependencies on implementation specifics by relying
on interactions between services through standardized interfaces.

The use of standardized interfaces also supports service virtualization, which
allows entities to provide alternate interfaces to the same service instance. This
furthermore allows value-added functionality to be inserted into the flow of a ser-
vice invocation in a manner transparent to the consumer; similar concepts are being
adopted in next-generation IP Multimedia Subsystem (IMS) and telecommunica-
tion networks. Loose coupling and service virtualization enable a dynamic and
flexible integration infrastructure where different service providers, each of which
serves as a perfect substitute for another, can be chosen at runtime to fulfil service
requests.

In this chapter, we propose a Service Broker allowing the definition of the rela-
tionship between service developers, users and service providers to operator-owned
(tele-)communication service enabler based on policy evaluation and enforcement.
This Service Broker selects the appropriate service provider for a request, based

75

Chapter 4. A Service Broker for converged Internet and Telecom Services

on business and/or operations policies to optimally route service requests. Our
approach is novel in its goal to efficiently maximize the value derived from the
underlying IT resources through the application of service discovery and service
execution-based rules. An instantiation of such a Service Broker platform delivers
the promises of SOAs by enabling a dynamic and robust integration infrastructure
that we believe is applicable to both middleware of next-generation telecommunic-
ations services as well as legacy services.

The remainder of the chapter is structured as follows: in the following section,
we depict the main requirements from the perspective of network operators, ser-
vice providers, service developers, and users. In section 4.3, an information and
data model is defined for the interactions between these parties. Additionally, a
policy taxonomy is derived from the model in section 4.4. We define a policy
formalism in section 4.5. Section 4.6 provides the reference architecture of the
Service Broker and the integrated methodologies. We also introduce the descrip-
tion of a Javascript/JSON-RPC high-level network abstraction API, providing easy
integration of communications services into Web-based services. In section 4.7,
we discuss trade-offs in the design of the platform regarding performance versus
flexibility. Section 4.8 describes two selected use cases for the Service Broker from
the perspective of the roles: service provider, network operator, service developer,
and user. This section provides also a performance analysis of the prototype im-
plementation and a comparison of the execution of different compositions.

4.2 Requirements

This section defines main requirements for the general architecture and service
concept. We contemplate general requirements from the perspective of a network
operator, service provider, service developer, and user.

4.2.1 Operator Perspective

Generally spoken, the Service Broker should provide a network operator an envir-
onment that allows the definition of its relationship with services, service providers,
and service developers on multiple layers in multi-faceted way. The following table
4.1 provides an overview of these requirements:

Requirement Description

Security It is important for the network operator to secure its service
and network infrastructure against malicious requests from
other services that may harm its environment.

76

4.2. Requirements

Operations By dynamically defining service end points applicable for re-
quests, the operator is capable of virtualizing service enablers
for service providers. This allows to delegate requests to al-
ternative platform, e.g., to optimise internal traffic or to route
requests to alternative services in case of downtime of specific
platforms or other operational requirements.

Openness for
developers

The network operator should allow maximum openness to de-
velopers regarding access to developer APIs encouraging ser-
vice developers to create new services.

Control for ser-
vice execution

Requests from 3rd party services should be interceptable
on multiple levels (e.g., protocol layer, requested functions
for execution, transmitted parameters) to allow differentiated
levels of authorization of service requests.

Role-based Ac-
cess

The Service Broker should provide the differentiation of roles
of users/services that want to access the environment.

Adaptation of
Service Logic

The Service Broker should provide means to insert a specific
service logic into service requests (depending on e.g., business
concepts) to apply or to compensate/hide internal changes to
already existing services.

Performance The Service Broker should not significantly reduce the per-
formance of service execution.

Transparency The Service Broker should be transparent to service con-
sumers and providers.

Table 4.1: Service Broker requirements of a network operator

4.2.2 Service Developer Perspective

The Service Broker should provide service developers access to service enablers
and service provider APIs. These APIs should not be subject to change from a
developer perspective and should always be backward compatible to existing ser-
vices. Furthermore, the Service Broker should allow the integration of APIs into
SCEs to allow the development of services with multiple tools (e.g., IDEs, model-
based SCEs). The following table 4.2 lists requirements from a service developer
perspective:

Requirement Description

Service Access The Service Broker should provide a single point of access
to service enablers, services, and service APIs to allow the
creation of new services.

77

Chapter 4. A Service Broker for converged Internet and Telecom Services

API integration The Service Broker should provide means to allow the integ-
ration of its available service APIs into SCEs for convenient
service development

API consistency The Service Broker should provide APIs consistently, mean-
ing e.g that even if operator-side service end points change, the
Service Broker should hide such changes to ensure sustainable
service execution at the service provider side.

Service Manip-
ulation

The Service broker should allow the manipulation of service
request to alter the behaviour of generic services without chan-
ging the API (e.g., the integration of announcements at the be-
ginning of calls should be independent of the ThirdPartyCall
API).

Table 4.2: Service Broker requirements of a service developer

4.2.3 Service Provider Perspective

The Service Broker should support service providers offering value-added services
with access to operator assets to create and run new services independently of
the operator infrastructure. It should be able to apply different business concepts
for different user roles. The following table 4.3 lists requirements from a service
provider perspective:

Requirement Description

Service Profiles The Service Broker should allow to define service profiles for
different user classes/profiles.

Service Differ-
entiation

The Service Broker should allow to provide mechanisms for
easy service differentiation (e.g., advertisement support, dif-
ferent QoS).

Operator Virtu-
alization

A service provider should be able to connect to many net-
work operators to use their APIs. The Service Broker should
provide means to abstract from specific operator APIs to offer
a single API to service provider services.

Table 4.3: Service Broker requirements of a service provider

4.2.4 User Perspective

The Service Broker should provide the user with tools to protect his/her privacy
and to define a specific user experience and preferences. The following table 4.4
lists requirements from a user perspective:

78

4.2. Requirements

Requirement Description

Privacy Protec-
tion

The Service Broker should allow users to define what data
(e.g., presence, location) to expose in a fine-granular manner
to other services.

User Experi-
ence

The user should be able to define its user experience of ser-
vices (e.g., selection of services) on service exposure level.

Table 4.4: Service Broker requirements of a user

79

Chapter 4. A Service Broker for converged Internet and Telecom Services

4.3 Definition of an Information & Data Model

The Information & Data Model is defined as an underlying abstract model for the
main entities that interact in a converged Telecom and Internet service environment
providing service/service and service/user interactions. The following figure 4.1
depicts the proposed model.

P
ro

file

+
I
D

+
N
a
m
e

P
e
rs

o
n

a

+
I
D

+
P
I
I

0
.
.
*

1
.
.
*

A
s
s
o

c
ia

te
d

 Id
e
n

tifie
r

+
I
D

+
S
e
r
v
i
c
e

P
r
o
v
i
d
e
r

I
D

+
S
e
r
v
i
c
e

I
D

0
.
.
*

1
.
.
*

0
.
.
*1

D
e
v
ic

e
 In

s
ta

n
c
e

+
I
D

+
D
e
v
i
c
e

C
l
a
s
s

0
.
.
*

1

D
e
v
ic

e
 C

la
s
s

+
I
D

+
D
e
v
i
c
e

V
e
n
d
o
r

+
D
e
v
i
c
e

M
o
d
e
l

+
C
a
p
a
b
i
l
i
t
y

1 1
.
.
*

U
s
e
r

+
I
D

+
S
e
c
u
r
i
t
y

A
s
s
e
r
t
i
o
n

1

1
.
.
*

R
o

le

+
I
D

+
R
o
l
e

N
a
m
e

+
S
e
c
o
n
d
a
r
y

I
d
e
n
t
i
t
y

T
y
p
e

+
S
e
c
o
n
d
a
r
y

I
d
e
n
t
i
t
y

+
A
u
t
h
o
r
i
z
e
d

I
d
e
n
t
i
t
i
e
s

0
.
.
*

1

0
.
.
*

1

U
s
e
r A

ttrib
u

te
s

0
.
.
*

1

P
o

lic
y

+
P
o
l
i
c
y

I
d
e
n
t
i
f
i
e
r

+
R
u
l
e
s

+
A
u
t
h
o
r
i
z
e
d

I
d
e
n
t
i
t
i
e
s

S
e
rv

ic
e
 H

is
to

ry

+
I
D

+
T
i
m
e
s
t
a
m
p

+
S
e
r
v
i
c
e

P
r
o
v
i
d
e
r

I
D

+
S
e
r
v
i
c
e

I
D

+
D
e
v
i
c
e

C
l
a
s
s

S
e
rv

ic
e
 S

u
b

s
c
rip

tio
n

+
I
D

+
E
x
p
i
r
e
s

+
S
e
r
v
i
c
e

D
e
s
c
r
i
p
t
i
o
n

+
S
e
r
v
i
c
e

P
r
o
v
i
d
e
r

I
D

+
S
e
r
v
i
c
e

I
D

0
.
.
*

1

0
.
.
*

1

S
e
rv

ic
e
 P

ro
v
id

e
r

+
I
D

+
N
a
m
e

S
e
rv

ic
e

+
I
D

+
N
a
m
e

+
S
e
m
a
n
t
i
c

D
e
s
c
r
i
p
t
i
o
n

+
F
u
n
c
t
i
o
n
a
l

D
e
s
c
r
i
p
t
i
o
n

0
.
.
*

1

P
o

lic
y

+
P
o
l
i
c
y

I
d
e
n
t
i
f
i
e
r

+
R
u
l
e
s

+
A
u
t
h
o
r
i
z
e
d

I
d
e
n
t
i
t
i
e
s

0

1
.
.
*

1 1
.
.
*

S
e

rv
ic

e
 M

o
d

e
l

U
s
e

r M
o

d
e

l

0
.
.
*

1

Figure 4.1: Service Broker Information & Data Model

80

4.3. Definition of an Information & Data Model

In the context of this model, services may act on behalf of users (in the name of
a user) and users are reachable through service front-ends on multiple devices and
software environments (browser, mobile phone, IMS UA, etc.). From this model,
we derive a general policy taxonomy in the following section 4.4. The model is
separated into a user model and a service model. The following subsections depict
each entity and the relation between them.

4.3.1 User & Persona Model

A user is represented within the system through the unique User entity, having a
unique ID and associated security assertions, as e.g., credentials or Security As-
sertion Markup Language (SAML) tokens for Web Services security. A user may
define several views on the system through Personas. A Persona is a concept for
aggregating several user-related attributes which will be used in specific situations
as configured by the user. Examples of attributes are birth date, address, etc. (so
called Personally Identifiable Information (PII)). The following table 4.5 depicts
the Persona model:

Name Occurs Description

ID 1 Persona ID
PII 0..1 Personally Identifiable Information

Table 4.5: Persona Model

4.3.2 Associated Identifier Model

One special attribute of the Persona is the Associated Identifier. The Associated
Identifier represents an identifier of the user in a specific service context (e.g., user
name, Email address, SIP URI). The Associated Identifier is defined in relation
with a service and/or service provider. Given the implementation of the services
and service providers for the Associated Identifier, credentials may be provided.
This model offers support for services and service providers which need to authen-
ticate on behalf of the user to execute specific services. The Associated Identifier
is identified by the attributes in the following table 4.6:

Name Occurs Description

ID 1 Associated Identifier ID
Service ID 0..1 The Service ID to whom the identifier is asso-

ciated.
Service Provider
ID

0..1 The associated service provider.

Table 4.6: Associated Identifier Model

81

Chapter 4. A Service Broker for converged Internet and Telecom Services

4.3.3 Role Model

A role is a set of connected behaviours, rights and obligations as conceptualized
by identities in a social situation1. The Role entity defines what an identity (e.g.,
user or persona) does or, at least, is expected to do in relation with other identities
(also called secondary identities). A secondary identity regarding the Role may be
a group identity or administrator ID. The role of a user or persona may be assigned
by the administrator, the user itself or other users. In order to protect the rights on
the defined roles, the attribute Authorized Identity is introduced which defines the
entities allowed to perform any modifications. The Authorized Identity is defined
by an identity type (User or Role) and an ID (User ID or Role ID).

An administrator role has the Secondary Identity Type “system” and no Second-
ary Identity. For other users, the role “user” is automatically assigned. Another
role that may be frequently used in the policy model is the “group administrator”
which is associated automatically to the user that creates a group. The Role entity
is defined as in the following table 4.7:

Name Occurs Description

ID 1 The identifier of this role
Role Name 1 The role name (e.g., Administrator).
Secondary Identity
Type

1 May have one of the following values: sys-
tem, users, group administrator.

Secondary ID 0..1 The specific second identity.
Authorized Iden-
tity

1..* Authorized identities which have rights to
modify or delete this role or its associated
identities

Table 4.7: Role Model

4.3.4 Profile Model

An administrator may define specific QoS profiles for personas based on specific
criteria (e.g., loyalty, service offering). In this context the entity Profile (e.g., silver,
gold, enterprise ’xyz’) will be used to reference administrator defined profiles.

If necessary, profiles may be given a hierarchical structure. Complex profiles,
roles, and rights management in hierarchical groups are not considered to be ne-
cessary for the Service Broker as this should be subject of a collaboration/group
server. Profiles allow besides the definition of QoS-related service attributes, also
the reference to a set of services subscriptions providing automated classification of

1http://en.wikipedia.org/wiki/Role

82

4.3. Definition of an Information & Data Model

users during service discovery and execution time. The following table 4.8 depicts
the Profile model:

Name Occurs Description

ID 1 Profile ID
Name 0..1 The name of the profile.

Table 4.8: Profile Model

4.3.5 Service Subscription Model

A persona or service provider may define subscriptions to services. This can be
considered as the definition of individual service profiles of a user. A Service

Subscription is defined by a service reference and a service provider identifier. The
Service Subscription Model is depicted in the following table 4.9:

Name Occurs Description

ID 1 Subscription ID
Expires 0..1 Time when the subscription expires. If the

field is empty the subscription will never ex-
pire.

Service Provider
ID

0..1 The service provider from which services are
consumed including all its services.

Service ID 0..1 A specific service from the service provider.

Table 4.9: Service Subscription Model

4.3.6 User Attributes

User Attributes represent a set of attributes describing the behavioural part of a
user, its personas, and associated identifiers from the perspective of the Service
Broker. User Attributes consist of Service History and Policies expressing user
preferences.

4.3.6.1 Service History Model

Based on the past experiences of a persona regarding service usage, a history may
be maintained (e.g., services accessed within the last days, duration and destination
of outgoing calls). A persona may have a service usage history for each service.
The Service History entry is defined by the elements in the following table 4.10:

83

Chapter 4. A Service Broker for converged Internet and Telecom Services

Name Occurs Description

ID 1 History ID
Timestamp 1 Represents the service usage time.
Service Provider
ID

1 The service provider offering the service.

Service ID 0..1 The service ID of the consumed service.
Device Class 0..1 The device on which the service was con-

sumed.

Table 4.10: Service History Model

This table does not include the Service Subscription ID because even if the sub-
scription may expire the history can be maintained.

4.3.6.2 Policies

A user (global administrator or system user) defines preferences through policies
(e.g., for specific personas) by configuring parameters of the Service Broker and
services of a user. The configurable parameters may include besides the user
private information:

• Disclosure policies of user (also persona) information (e.g., access permis-
sion given to service provider/user) to other users, groups or service pro-
viders.

• Policies regarding the definition of behaviour of services as a result of ser-
vices subscription (e.g., targeting advertisement).

The according policy model is described below in section 4.4.

4.3.7 Device Instance Model

An associated identifier may be mapped to many device instances. During service
execution time, based on the configurations/preferences (policies), it will be de-
cided which device(s) to be chosen in order to consume a service. The following
table 4.12 describes the Device Instance entity:

Name Occurs Description

ID 1 Device instance ID
Device Class ID 1 Reference to device class.

Table 4.11: Device Instance Model

84

4.3. Definition of an Information & Data Model

4.3.8 Device Class Model

A Device Class is a collection of devices that have similar characteristics and can
be managed in a similar manner. A device class is defined by the following model:

Name Occurs Description

ID 1 Device class ID
Device Vendor 1 The device vendor.
Device Model 1 The device model.
Capability 0..1 The hardware capabilities.

Table 4.12: Device Instance Model

4.3.9 Service Provider Model

The Service Provider entity references to several services it may offer. In case
solely a service provider is addressed, the request refers to all its services. The
following table 4.13 depicts this entity:

Name Occurs Description

ID 1 Service provider ID
Name 1 The name of the service provider.

Table 4.13: Service Provider Model

4.3.10 Service Model

A Service may also be considered as an ordinary user from a Service Broker per-
spective; consequently, policies and access information may be defined, providing
rules for disclosed information and service execution behaviour by other users or
service providers. The service entity is defined by the following table 4.14:

Name Occurs Description

ID 1 Service ID
Name 1 The name of the service.
Semantic Descrip-
tion

1 Semantic description about service capabilit-
ies. This information may be used for e.g.,
identifying result items of a search. Struc-
tured and well-defined semantic service an-
notation may allow automated composition of
services.

85

Chapter 4. A Service Broker for converged Internet and Telecom Services

Functional De-
scription

1 Functional description of a service (e.g.,
WADL, WSDL).

Table 4.14: Service Model

86

4.4. Definition of a Policy Taxonomy

4.4 Definition of a Policy Taxonomy

Policies are defined for expressing user and service-related preferences regarding
actions to be performed by the Service Broker of service enablers when requesting
a policy evaluation process for a specific event. Through policies, personalization
of services according to specific preferences does not require specific adaptations
in the core system or a service, thus enabling policy-based composition of ser-
vices implicitly during service execution time. The following figure 4.2 depicts the
developed policy taxonomy for the Service Broker:

U
s
e
r

P
o
lic

y
 M

o
d
e
l

S
e
rv

ic
e
 P

o
lic

y
 M

o
d
e
l

P
o

li
c
y

+
P
o
l
i
c
y

I
d
e
n
t
i
f
i
e
r

+
R
u
l
e
s

+
A
u
t
h
o
r
i
z
e
d

I
d
e
n
t
i
t
i
e
s

G
lo

b
a
l
P

o
li
c
y

+
E
v
e
n
t

+
R
u
l
e

P
ro

fi
le

 P
o

li
c
y

+
I
D

+
I
d
e
n
t
i
t
y

S
c
o
p
e

+
E
v
e
n
t

+
R
u
l
e

R
o

le
 P

o
li
c
y

+
I
D

+
I
d
e
n
t
i
t
y

S
c
o
p
e

+
E
v
e
n
t

+
A
u
t
o
r
i
z
e
d

I
d
e
n
t
i
t
y

+
R
u
l
e

U
s
e
r

P
o

li
c
y

+
I
D

+
I
d
e
n
t
i
t
y

S
c
o
p
e

+
E
v
e
n
t

+
A
u
t
h
o
r
i
z
e
d

I
d
e
n
t
i
t
y

+
R
u
l
e

S
e
rv

ic
e
 P

ro
v
id

e
r

P
o

li
c
y

+
I
D

+
I
d
e
n
t
i
t
y

S
c
o
p
e

+
E
v
e
n
t

+
A
u
t
h
o
r
i
z
e
d

I
d
e
n
t
i
t
y

+
R
u
l
e

S
e
rv

ic
e
 P

o
li
c
y

+
I
D

+
I
d
e
n
t
i
t
y

S
c
o
p
e

+
E
v
e
n
t

+
A
u
t
h
o
r
i
z
e
d

I
d
e
n
t
i
t
y

+
R
u
l
e

P
e
rs

o
n

a
 P

o
li
c
y

+
I
D

+
I
d
e
n
t
i
t
y

S
c
o
p
e

+
E
v
e
n
t

+
A
u
t
h
o
r
i
z
e
d

I
d
e
n
t
i
t
y

+
R
u
l
e

P
o

li
c
y

+
P
o
l
i
c
y

I
d
e
n
t
i
f
i
e
r

+
R
u
l
e
s

+
A
u
t
h
o
r
i
z
e
d

I
d
e
n
t
i
t
i
e
s

S
e
rv

ic
e
 P

ro
v
id

e
r

P
o

li
c
y

+
I
D

+
I
d
e
n
t
i
t
y

S
c
o
p
e

+
E
v
e
n
t

+
A
u
t
h
o
r
i
z
e
d

I
d
e
n
t
i
t
y

+
R
u
l
e

S
e
rv

ic
e
 P

o
li
c
y

+
I
D

+
I
d
e
n
t
i
t
y

S
c
o
p
e

+
E
v
e
n
t

+
A
u
t
h
o
r
i
z
e
d

I
d
e
n
t
i
t
y

+
R
u
l
e

Figure 4.2: Policy Taxonomy

87

Chapter 4. A Service Broker for converged Internet and Telecom Services

Policies are represented as a logical set of rules. A set of rules is selected based
on the matching of a policy identifier with a set of input data. A policy is defined
by the following model in table 4.16:

Name Occurs Description

Policy Identifier 1 Identifier of the policy.
Rules 1..* A logical set of rules which compose the

policy. When a policy is selected each of the
rules will be evaluated.

Authorized Iden-
tity

1..* Authorized identities defining the rights for
operations view, delete or modify of the
policy.

Table 4.15: Policy Model

The identifier of the policy needs to be deduced from the input data that needs
to be processed against policies. The policy identifier is defined in the following
table 4.16:

Name Occurs Description

Identifier ID 1 The ID (e.g., profile ID, role ID, user ID, per-
sona ID, service provider ID or service ID);
for a global reach, there should be no ID as-
sociated as they address all users/personas.

Identity Scope 1 Defines the relation of the identity regarding
an event (e.g., request to a specific function
call). It may have one of the following values:
“Originator”, “Target”, “All”.

Event Name 1 Event name represents the name of the opera-
tion inside the system (e.g., createCall) based
on which a request for policy evaluation is
triggered.

Table 4.16: Policy Identifier description

A rule is composed of conditions and actions. The conditions define the scope
and the constraints imposed by a rule. The actions define the behaviour that should
be enforced in case the evaluation of the conditions was successful.

According to the above depicted policy taxonomy several types of policies can
be defined, the type of the policy is defined by the policy identifier value. The
following subsections depict each type in detail.

88

4.4. Definition of a Policy Taxonomy

4.4.1 Global Policy Model

A Global Policy is selected when a specific event is fired no matter of the identities
included in the input data. It can be viewed/created/modified only by the adminis-
trator. In this case the policy identifier equals “global”. The following table 4.17
depicts the Global Policy Model:

Name Occurs Description

Event 1 The event name (e.g., sendMessage, sub-
scribeToLocation); can also be NULL (ap-
plies to all events)

Rule 1..* The rule(s) of the policy.

Table 4.17: Global Policy Model

4.4.2 Profile Policy Model

An identity may be associated to a specific system profile, according to the Profile
Model. Therefore a Profile Policy is selected based on the profile of the identity,
its identity scope, and the specific event. It can be viewed/created/modified only
by the administrator. The policy identifier has the identity type “Profile”. The
following table 4.18 depicts the Profile Policy Model:

Name Occurs Description

Profile ID 1 The ID of the profile.
Identity Scope 1 Defines the relation of the identity regarding

the event (“originator” or “target”).
Event 1 The event name (e.g., sendMessage, sub-

scribeToLocation); can also be NULL (ap-
plies to all events)..

Rule 1..* The rule(s) of the policy.

Table 4.18: Profile Policy Model

4.4.3 Role/Persona/User Policy Model

For each of the identities included in the input data a Role/Persona/User Policy

may be selected based on either the role, persona, or user of the identity, its identity
scope and the specific event. This policy type represents an expression of an indi-
vidual preference. The policy identifier has either the identity type “Role”, “Per-
sona”, or “User”. The following table 4.19 depicts the Role/Persona/User Policy
Model:

89

Chapter 4. A Service Broker for converged Internet and Telecom Services

Name Occurs Description

Role/Persona/User
ID

1 The ID of the role/persona/user.

Identity Scope 1 Defines the relation of the identity regarding
the Event (“originator” or “target”).

Event 1 The event name (e.g., sendMessage, sub-
scribeToLocation); can also be NULL (ap-
plies to all events).

Authorized Iden-
tity

1..* User IDs or role IDs that are allowed to ad-
ministrate the policy.

Rule 1..* The rule(s) of the policy.

Table 4.19: Role/Persona/User Policy Model

4.4.4 Service Provider/Service Policy Model

This model includes policies selected based on the service provider ID, identity
scope and event name. This class of policies may on the one hand be defined as
a user-specific policy for a certain service provider and all its services or for a
specific service offered by a service provider. On the other hand these policy types
may as well be defined by a service provider for its service providing a general
system configuration. Therefore, service provider or service policies may either
belong to the User or to the Service Policy Model. The policy identifier has the
identity type “ServiceProvider” resp. “Service”. The following table 4.20 depicts
the Service Provider/Service Policy Model:

Name Occurs Description

Service Provider-
/Service ID

1 The ID of the service provider/service.

Identity Scope 1 Defines the relation of the identity regarding
the Event (“originator” or “target”).

Event 1 The event name (e.g., sendMessage, sub-
scribeToLocation); can also be NULL (ap-
plies to all events).

Authorized Iden-
tity

1..* User IDs or role IDs that are allowed to ad-
ministrate the policy.

Rule 1..* The rule(s) of the policy.

Table 4.20: Service Provider/Service Policy Model

90

4.5. Definition of a Policy Formalism

4.5 Definition of a Policy Formalism

A policy is represented as a formalism developed in order to describe in a declar-
ative manner the requirements related to the use and management of resources. It
provides access control of resources, customization of access to resources, invoc-
ation of other resources, and manipulation of requests and parameters. Therefore,
our approach can be considered as a combination of authorization and obligation
policies expressing constraints according the definitions in section 3.4.3. The form-
alism should be easily extensible in order to adapt to any kind of resources and au-
thorization scenarios. The policy model should be mapped to the proposed model
in section 4.4. As defined before, a policy represents a logical set of rules. A rule
represents a mechanism for defining a specific behaviour which should be enforced
under specific conditions. A specific behaviour is defined as actions.

To formalize our policy-based approach, we use the language Lactive presented
in [BLT 97] and used in [RCC 09] to formalize the management of group oblig-
ations. Lactive provides a formal characterization of active databases and allows
reasoning about change in the state of dynamic systems which results from action
occurrences in the system. A translation of the language to logical programs is
presented in [BL 96]. The alphabet of Lactive consists of four sorts:

(1) Fluents: are time-varying propositions or facts representing the
system state.

(2) Actions: represent possible actions in the system.
(3) Events: are used to specify state conditions at which actions are

required.
(4) Rule IDs: unique identifiers of Event Condition Action (ECA)

rules.

The semantics of Lactive is given by the following three propositions:

(EL) a(X) causes f(Y) if p1(X1), ..., pn(Xn)
(ED) e(Y) after a(X) if p1(X1), ..., pn(Xn)
(AR) r(Xr) : e(X) initiates [α] if p1(X1), ..., pn(Xn)

Where the symbols f, p1, .., pn are fluent symbols, a is an action, e is an event,
and r is an active rule identifier. An effect law proposition (EL) states that the
execution of a(X) in a state where the fluents p1(X1), ..., pn(Xn) are true causes
f(Y) to be true in the next state. An event definition proposition (ED) states that
if the conditions p1(X1), ..., pn(Xn) are true in the state following the execution
of the action a(X), then event e(Y) is produced. An active rule proposition (AR)
states that every new detection of the event e(X) initiates the execution of the
sequence of actions [α] if the rule conditions are true.

91

Chapter 4. A Service Broker for converged Internet and Telecom Services

The operational semantics of the language define a transition function which,
given a state and a (potentially empty) sequence of actions, produces a new state.
Actions in the input sequence are processed successively. For every action, its
effect laws are evaluated and the state is updated. If after the execution of the
action, conditions in some event definition are true, the event is generated. The
newly generated events trigger active rules. The identifiers of the triggered rules are
added to the triggered rules set. When the last action in the sequence is evaluated, if
the triggered rule set is not empty, an action selection function selects the sequence
of actions appearing in one of the rules to process.

The policy format, we have decided on is based on the classification results in
table 3.5. It complies to [STM+ 07] and has been chosen due to its simplicity, open-
ness for extensions, and service specific adaptability. Furthermore, it is named by
OMA as an option for PEEM policies part of OSE. Appendix A provides the com-
plete XML schema description and defined extensions. A rule example is depicted
in the following listing 4.1:

1 <rule id="r1">

2 <conditions>

3 <originatorIdentity>

4 <one id="sip:alice@open-ims.org"/>

5 </originatorIdentity>

6 <targetIdentity>

7 <many/>

8 </targetIdentity>

9 <validity>

10 <from>2008-05-27T14:11:00.943Z</from>

11 <until>2010-05-27T14:11:00.943Z</until>

12 </validity>

13 <serviceOperation name="inviteParticipant">

14 <parameter name="participant">

15 <operator name="notequal" operandsType="string" match="regx">

16 sip:00[0-9]*@open- ims.org

17 </operator>

18 </parameter>

19 </serviceOperation>

20 </conditions>

21 <actions>

22 <invokeService url="http://www.thirdpartyprovider.com:8080/

services/

23 ConferenceServiceWithAd" namespace="http://www.csapi.org/schema/

conference/local"

24 name="ConferenceServiceWithAd">

25 <invokeOpReq name="inviteParticipant">

26 <forwardOriginal/>

27 </invokeOpReq>

28 </invokeService>

29 </actions>

30 </rule>

Listing 4.1: Rule listing

92

4.6. Architecture of the Service Broker

The above rule applies for sip:alice@open-ims.org message originator,
for any target of the message, for the operation inviteParticipant and for
the processing time between 2008-05-27T14:11:00.943Z and 2010-05-
27T14:11:00.943Z. The rule is evaluated to allow only, if the value of par-
ticipant does not match sip:00[0-9]*@open-ims.org. Otherwise the re-
quest will be denied. The actions define the invocation of a delegated service
ConferenceServiceWithAd using the original message of a service exposed
to a 3rd party service provider which provides a conference service.

Rules are defined only for authorized access describing the constraints that the
message must respect for a successful evaluation result. This approach reduces
the policies conflicts that might rise up when defining contradictory rules. Conflict
resolution in general is addressed below in section 4.6.4.1.

4.6 Architecture of the Service Broker

In this section, we propose our Service Broker architecture that explicitly links the
value extracted from Telecom resources to other business processes and services.

4.6.1 Overview

The platform is composed of service-oriented intermediaries and service providers.
The platform provides:

• A fully distributed service exposure infrastructure,

• Flexible and optimal selection of service providers that can be based on vari-
ous system-level goals (e.g., user/service profile, operations optimization),

• A high-level telecommunications API for service integration into web mash-
ups,

• Anchor points for model-based SCEs for service discovery and service exe-
cution.

The novelty of our proposal arises from the integration of several well-established
theoretical and practical techniques from networking, service-oriented computing,
and service creation that, together, form a fully-distributed Service Broker plat-
form. The core component that enables the Service Broker is a policy engine. The
objective of this component is the evaluation of requests on multiple layers (re-
questor, destination, requested action/function, parameters) and the assignment of
an allow, deny or forward decision based on defined conditions and actions follow-
ing the policy taxonomy introduced in 4.4 and the policy formalism introduced in
section 4.5.

93

Chapter 4. A Service Broker for converged Internet and Telecom Services

4.6.2 Key Assumptions

To build our Service Broker platform, we make several key assumptions:

• The network operator needs to provide a well-defined network abstraction
layer incorporating a set of service enablers providing APIs that abstract of
specific network technology. Service enablers and the API-based access are
either distributed across platforms and networks or provide a single access
point.

• The network operator intends to provide those service enabler APIs for the
development and execution of services. It is interested in a fine-granulated
definition of cooperative consumer/provider relationships on an individual
basis.

• We assume an existing security assertion between the Service Broker oper-
ator and services/service providers that want to use exposed services.

• Service developers have their individual approaches and selection of tools
and languages for service creation. We assume that enterprises have an in-
terest to integrate communications enablers as verified and proven correct
software into larger systems.

• We assume that consumers (e.g., 3rd party services) only submit their service
request to a single intermediary. This intermediary evaluates and delegates
the service selection decision to an appropriate provider to achieve an op-
timal selection decision.

• Since the platform assumes global knowledge of per-service utility func-
tions and trusted relationships between intermediaries, such that all nodes
cooperate to optimally achieve common goals, it is assumed that the deliv-
ery platform exists within a single autonomous domain.

4.6.3 Reference Architecture

In this section we describe our design of the Service Broker enabling service ac-
cess to domain-specific services for service developer and 3rd party services using
policies as a mechanism for service contract definition. The concept of a service
broker is not new and a well-known entity of general Service Oriented Architec-
ture (SOA) design patterns as depicted in the previous chapter. From an operator
perspective, the following strategic aspects of such a function are most relevant for
exposing services:

1. strong enforcement of flexible operator policies for service enabler usage

2. support for service discovery during the creation process

3. support of comprehensive security measures

94

4.6. Architecture of the Service Broker

Our design focuses especially on 1) and 2) as we consider 3) as an objective for a
session border controller (SBC) or dedicated security gateways.

OMA defines its service environment (OSE) for generic NGN application ena-
blers as described in section 2.2.3.2. We extend the concept of policy evaluation
and enforcement of event-driven service requests to:

• definition of service behaviour and service selection through resource and
scheduling constraints based on obligation policies,

• dynamic service capability description for service and developers using model-
based SCEs.

The following figure 4.3 provides an overview of the Service Broker and its relation
to service creation, service execution, and service enablers:

Figure 4.3: Service Broker in the context of service creation, execution, and ena-
blers

Policy-based service access and execution within the Service Broker is designed
as several independent modules that are accessible for external entities through
OMA compliant interfaces, especially the PEM1 [OMA 08a] interface to trigger
policy evaluation requests for incoming service requests and the PEM2 [OMA 08b]
interface for policy management. The most important components of the policy-
based Service Broker architecture are Interceptor/Proxy, PEM1 Callable Interface,

95

Chapter 4. A Service Broker for converged Internet and Telecom Services

Policy Evaluation Engine, Policy Enforcement Engine, Service Registry and Ser-

vice Capability Manager, Workflow Engine , and Policy Repository.

The following figure 4.4 provides a more detailed architecture of the Service
Broker and its interfaces:

Figure 4.4: Service Broker Functional Architecture

The following subsections depict each function of the architecture in some more
detail.

4.6.3.1 Interceptor/Proxy

The Interceptor/Proxy function may be applied to all critical interfaces within a ser-
vice layer (e.g., as part of an ESB) or acts as the service exposure point (e.g for Web
Services, RESTful APIs, etc.) within an operator’s architecture and act as an in-
termediate system between resources. It acts as a proxy in the connection between
a service consumer and a service provider and it is able to intercept every request
and corresponding responses. The purpose of the Interceptor/Proxy is to enforce
the evaluation resulted upon an intercepted message. An intercepted message itself
does not represent its semantics for a policy evaluation process, therefore a trans-
formation for preparing relevant data of a message needs to be applied preparing
it as interpretable for an evaluation process. This mechanism involves identific-
ation of the request’s relevant template and the creation of a document based on
this template. The structure of this document and its semantic needs to be known

96

4.6. Architecture of the Service Broker

by the policy evaluation component. The following figure 4.5 depicts the main
subcomponents of the Interceptor/Proxy entity:

Figure 4.5: Interceptor/Proxy Architecture

A template is a transformation script that applies for a certain request and res-
ults into a data structure that respects the specifications described in the template.
An example of a transformation script language is XML Stylesheet Language for
Transformations (XSLT). XSLT may be used for the transformation of SOAP mes-
sages to the required policy evaluation input template.

The Interceptor/Proxy provides a decision mechanism based on the results re-
ceived from the Policy Evaluation Engine as an output of the evaluation process.
Thus, if the output from the evaluation process provides information that the mes-
sage has been successfully authorized, the request will be forwarded to a specific
target resource. This new request will be sent on behalf of the initial requester,
the Interceptor/Proxy address will represent the source address of the new request.
Otherwise, if the output contains information that the message has not been author-
ized, a rejecting message will be sent to the message initiator.

4.6.3.2 PEM1 Callable Interface

The PEM1 Callable Interface provides an explicit interface for policy evaluation
that can be used by services to request for a policy evaluation result during service
execution. It provides an alternative mechanism to the Interceptor/Proxy concept
for services that are aware of the policy evaluation component in a service envir-
onment.

97

Chapter 4. A Service Broker for converged Internet and Telecom Services

According to OMA specifications, the PEM1 interface provides a mechanism
to identify and store the necessary information for policy evaluation consumption.
This mechanism is called a template and may be designed generic for all services or
specific for each service. PEM1 is defined to support SOAP and Diameter protocol.
It provides operations for synchronous and asynchronous evaluation processes and
defines a standardized way to communicate to the Policy Evaluation Engine. The
payload of the PEM1 Callable Interface message is defined as XML for SOAP.

The Interceptor/Proxy does not make use of PEM1 Callable Interface to avoid
unnecessary protocol overhead for internal Service Broker communication. Never-
theless, when the concept of distributed Interceptors/Proxies in a distributed service
environment is applied, those (remote) Interceptors/Proxies shall use the PEM1
Callable Interface to communicate to the Policy Evaluation Engine.

4.6.3.3 Policy Evaluation Engine

The Policy Evaluation Engine’s main activity is to fetch and evaluate associated
policies of a message sent for evaluation. In order to achieve this, it provides a
mechanism for identifying relevant policies, to evaluate policy conditions and to
execute associated actions. Based on the above described behaviour, this compon-
ent can be split into three main subcomponents:

• Policy Repository Requester fetches policies from a policy repository, either
based on the input parameters received through PEM1 Callable Interface or
the Interceptor/Proxy.

• Policy Condition Evaluation evaluates the policy conditions and decides which
ones apply to a received request.

• Policy Action Execution executes matching actions between operation para-
meter requirements defined in the policy and parameters value received as
input. It may also involve delegation to Policy Enforcement Engine.

Based on input data, the Policy Repository Requester identifies the policy identifi-
ers that apply to the involved request, and initiates a request to fetch correspond-
ing policies from the repository. Policy identifiers should respect the organization
flow of the proposed policy repository, i.e. one example of a policy identifier is
TargetResourceName/Subscriber_Identifier.xml. After fetching
the associated policies, the Policy Condition Evaluation gets involved in order to
evaluate the conditions of a set of policies. Based on the evaluation result of a
policy condition, it may be decided whether the involved policy applies to the re-
quest or not. Rules that do not apply to the request are discarded from the policy
set. The evaluation of conditions results either into:

• A true boolean value which translates into a decision of allow. In case a rule
evaluates as true, the evaluation process will continue with the evaluation of
other associated rules.

98

4.6. Architecture of the Service Broker

• A false boolean value which translates into a decision of deny. The eval-
uation of further rules is abandoned. Another case of message rejection is
when no associated policies are found in the policy repository.

The next step in the evaluation process is the execution of actions associated to
the evaluated condition task that is processed by the Policy Action Execution com-
ponent. The involved actions represent either matching actions between the values
stored in the policy and the values provided as input data or actions to delegate
execution responsibility to other resources.

As one policy may contain more than one action to be executed, a combination
algorithm has been defined. It respects the requirement that in case no policy is
found to apply to the request, the evaluation process output will be negative for the
request. It also takes into consideration that this decision should be configurable.
Hence, an operator policy should be defined and describe what decision should
be taken when there is no policy available. There are two algorithms to evaluate
policies implemented for the Service Broker, but only one is used at a time based on
a global configuration of the Policy Evaluation Engine. The optimistic algorithm
allows everything, except what it is defined within a policy. In this case a request
is denied if at least one policy from the associated policy set evaluates as false
and is accepted if no condition part of a rule matches the request. The pessimistic
algorithm defines a policy evaluation result as true, if at least one policy (and all
associated rules) evaluates as true and is denied otherwise.

The following figure 4.6 depicts the main components of the Policy Evaluation
Engine:

Figure 4.6: Policy Evaluation Engine Architecture

99

Chapter 4. A Service Broker for converged Internet and Telecom Services

The next step of the Policy Evaluation Engine process is to forward the composed
evaluation output to the Policy Enforcement Engine for enforcement of the request.

4.6.3.4 Policy Enforcement Engine

The Policy Enforcement Engine gets involved when the Policy Evaluation Engine
has finished an evaluation process. It generates a more complex output based on
the evaluation output and also on further execution output of actions and sends it
to the policy evaluation requester. This enforcement decision is based on the result
of the evaluation process and the execution of other actions that may be performed
as consequence of an evaluation process. The following figure 4.7 depicts the main
components of the Policy Enforcement Engine:

Figure 4.7: Policy Enforcement Engine Architecture

For a better understanding of the functionalities within this component, it has
been split into two main components:

1. Operations Invocation Subsystem invoking operations of other resources.
Examples of this operations are charging, logging or requests for authoriza-
tion. It involves initialization of the invocation process (further invocations
to get certain parameter values) and the invocation process that executes the
invocation steps for resource operations. An example may be the request for
a presence status of a certain subscriber, as the Service Broker has to sub-
scribe for the presence status of the involved user to receive its approval and
in the end to receive the presence tuple set.

100

4.6. Architecture of the Service Broker

2. Enforcement Output provides a mechanism to combine the result of the
policies evaluation from the upper layer (Policy Evaluation Engine) with the
results of the resources invocation processes.
The result of this combination algorithm respects the specifications of OMA
related to PEM1 response messages and for each type of the result a pre-
defined value should be used e.g., ’2100’ if a message has been authorized
or in the case of denial ’2400’. A detailed list of enforcement result codes is
provided in [OMA 08a].

4.6.3.5 Workflow Engine

The Service Broker may incorporate a workflow engine to execute complex, com-
posed services as part of a policy enforcement action of the Operations Invocation
Subsystem. Based on the classification results in section 3.2.3 two options for de-
fining abstract workflows as delegated services of a policy evaluation result are
defined:

1. State Chart XML-based workflows

2. Business Process Execution Language-based workflows

Whereas the first option provides the possibility of generic workflow definition
independent of a specific service invocation technology, the latter option is targeted
on composed Web Services-based services that are provided again as Web Services.
BPEL has been taken into consideration especially as it defines the current de-facto
standard in enterprise service environment for the orchestration of services. We
provide a more detailed analysis of performance-related pros and cons of these
two options in section 4.8.3.

4.6.3.6 Service Registry

One main general task of a service broker is the awareness of available services to
provide a brokering mechanism for. These service descriptions and meta informa-
tion are stored in a service repository. Services available at the Service Broker may
be described using Web Services Description Language (WSDL) or Web Applic-
ation Description Language (WADL) [W3C 09a], an XML-based file format that
provides a machine-readable description of HTTP-based web applications, typic-
ally REST web services.

4.6.3.7 Service Capability Manager

The Service Capability Manager (SCM) provides access to the service registry for
developers and services acting in the name of a user with its persona and associated

101

Chapter 4. A Service Broker for converged Internet and Telecom Services

identifier. The result set of the SCM is based on a policy evaluation process. To
compute the list of available services and profile information, the SCM must first
have a full list of all available services retrieved from the service registry. The
Policy Evaluation Engine must then be asked (using the callable PEM1 interface)
for each service if it is allowed for the user. The following image depicts the
functionality of the SCM within the Service Broker.

Figure 4.8: SCM functionality

SCM provides support for the concept of profiles as depicted in the Service
Broker Information & Data Model. The main idea is to share policies between
groups of users to classify them for different service level agreements. E.g., an
operator may want to classify its subscribers to “Silver” or “Gold” profiles offering
special service levels expressed in policies.

4.6.4 Methodologies Integrated in the Platform

The service broker platform is based on the integration of several key methodo-
logies: constraint/policy evaluation/enforcement, network abstraction, and service
exposure. In the subsections below, we give a brief overview of relevant issues
related to each the methodologies applied to the Service Broker architecture.

102

4.6. Architecture of the Service Broker

4.6.4.1 Policy Evaluation/Enforcement Algorithm

System and service behaviour definition within the Service Broker is expressed
through rules as part of a policy as described above. These rules are solved us-
ing a forward-chaining, data-driven algorithm that compares data in the working
memory against the conditions of rules and determines which rules to fire. The
applied forward chaining procedure is described in the following figure 4.9:

Figure 4.9: Forward-Chaining Procedure

Given the increasing number of possible applicable rules, the evaluation pro-
cess may become exponential costly. Forward-chaining systems, as powerful as
they may be if well designed, can become cumbersome if the problem is too large.
As the rule-base and working memory grow, the brute-force method of checking
every rule condition against every assertion in the working memory can become
quite computationally expensive. When R is the number of rules, C is the approx-
imate number of conditions per rule, and A is the number of assertions in working
memory, such an algorithm may reach a processing requirement P, with the follow-
ing big O notation of

P ≡ O
(

RAC
)

In order to overcome the complexity problem, the Rete algorithm [F 82], an ef-
ficient pattern matching algorithm for implementing production rule systems has
been designed. Most of the current production rule engines (e.g., Microsoft Biztalk

103

Chapter 4. A Service Broker for converged Internet and Telecom Services

Server2, JBoss Drools3, Oracle Business Rules4) use the Rete algorithm with im-
provements regarding memory consumptions. The Rete algorithm keeps up to date
information associated with the nodes in a graph. When a fact is added or removed
from the working memory, a token representing that fact and operation is entered
at the root of the graph and propagated to its leaves modifying the information
associated with the nodes. When a fact is modified, e.g., the validity of a service
is changed from date 2010-05-27T14:11:00.943Z to 2010-12-27T14:11:00.943Z,
this is expressed as a deletion of the old fact and the addition of a new fact. Rete
is implemented as a rooted, acyclic, directed graph, providing an interconnected
network of nodes.

The Rete algorithm reduces the complexity by reducing the number of comparis-
ons between rule conditions and assertions in the working memory. To accomplish
this, the algorithm stores a list of rules matched or partially matched by the current
working memory. Thus, it avoids unnecessary computations in re-checking the
already matched rules (they are already activated) or un-matched rules (their con-
ditions cannot be satisfied under the existing assertions in the working memory).
Only when the working memory changes, it re-checks the rules, and then only
against the assertions added or removed from working memory. This method drops
the complexity to a linear rather than exponential complexity:

P ≡ O (RAC)

The Rete algorithm, however, requires additional memory to store the state of
the system from cycle to cycle. The additional memory can be considerable, but
may be justified for an increased speed efficiency.

Concerning our strategy for conflict resolution of multiple applicable policies/rules
on rule prioritisation. The priority relation of the identities is defined as:

User < ServiceProvider < Administrator

Policies are evaluated in the order of their priority starting from the one with the
highest priority. Prioritisation is furthermore already applied during evaluation to
determine the set of applicable rules reducing the rule set in a first iteration only
to Administrator rules, in the second iteration to all service provider rules, and in a
third iteration to all user-defined rules. This optimising approach allows a reduction
of evaluated rules to a minimum set.u

4.6.4.2 Network Abstraction & Service Exposure

Current network abstraction concepts are based on APIs providing services for
network service-specific protocols as depicted in section 2.1.5. Current state of

2http://www.microsoft.com/biztalk
3www.jboss.org/drools
4http://www.oracle.com/appserver/rules.html

104

4.7. Engineering Trade-off of the Service Broker

standardization at the point of writing defines SOAP-based Web Services APIs la-
belled as Parlay X and REST-based APIs, named the GSMA OneAPI. Taking into
consideration the evolution of APIs in the Internet, JSON-RPC and REST APIs as
depicted in sections 3.1.3.3 and 3.1.3.2 are favoured by most developers. We have
defined a Javascript/JSON-RPC API that can be integrated directly into HTML/-
Javascript by developers. It is structured in the following functional components:

• LoginHandler – provides service, user authentication

• ServiceCapabilties – provides service discovery

• AddressBook – manages address book information

• Call – creates a call on a device

• ConferenceCall – creates a conference session

• Location – manages location information

• Messaging – send/receive an Instant Message

• Presence – manages presence information

• ShortMessaging – send/receive SMS

• ThirdPartyCall – creates a call between two parties

All functions of the components are static. User may choose between synchronous
or asynchronous calls, asynchronous calls expect a callback function as input para-
meter. The JavaScript code continues running and the callback function is invoked
when a service enabler function returns the requested result set. To invoke a syn-
chronous call set, the callback function is simply NULL. In this case the JavaScript
code waits until the service enabler returns the requested result set. Therefore, it
is highly recommended to use asynchronous calls due to the fact that synchron-
ous calls may cause an application to freeze. The full specification of the API is
provided in Appendix B. The current on-going standardization efforts within the
OMA NGSI program support our decision for high-level API definition to suit Web
developers.

4.7 Engineering Trade-off of the Service Broker

High performance and very low delay in service execution are mandatory for ser-
vice environments in the telecommunications domain. As the Telecom business
environment is subject to fundamental changes through challenges by the IT and
Internet industry, flexibility to adapt to new situations in service usage, creation,
and deployment is key to survive from an operator’s perspective. The follow-
ing subsection discusses concepts applied in our design of the platform to allow
a maximum of flexibility for a changing set of requirements from users, service
providers, and service developers versus efficiency of service execution.

105

Chapter 4. A Service Broker for converged Internet and Telecom Services

4.7.1 Flexibility versus Efficiency

We discuss the possible increase of flexibility and decrease of efficiency of our
solution by evaluating on the one hand the decrease of efficiency through policy
evaluation and enforcement by the Service Broker and on the other hand the in-
crease of flexibility through policy-based orchestration of services.

The applied policy-based access control and service execution mechanism de-
scribed above, even if optimised through using the Rete algorithm with enhance-
ment through prioritisation reducing the number of rules to be evaluated imposes
still an additional latency in service execution. We investigate two use cases to de-
termine latency caused by the Service Broker during service request and execution
time:

1. Authorization of a Parlay X ThirdPartyCall Web Services request resulting
into an IMS SIP-based B2BUA INVITE message.

2. Manipulation of presence data provided by the Parlay X PresenceConsumer
Service Web Service based on policies.

Whereas the first case requires a policy evaluation process for service request au-
thorization, the latter one requires the execution of a composition to change pres-
ence status values according to defined values within a policy. The following table
provides an overview of mean execution time of service requests for both cases
above, with and without policy evaluation and enforcement process within the Ser-
vice Broker5. It is calculated by taking the average computation of time of 250
executed requests at rate of 1 req/s.

ThirdPartyCallService PresenceConsumerService

Case 1: Mean time
without Service Broker

7 ms 3 ms

Case 2: Mean time with
Service Broker

50 ms 100 ms

Table 4.21: Mean time of Policy Evaluation

As expected, simple authorization of a request takes much less time than the ex-
ecution of a composition. It can be stated that a policy-based authorization of a ser-
vice request takes about ∼ 1

2
of the time of the execution of a composition, adding

a mean time latency of ~40ms to a request, whereas the execution of composition
adds ~95mslatency to the general service execution time. The policy evaluation
process itself takes ~15ms. It should be noted that the performance measurements
depend highly on the SuT used.

5The System under Test (SuT) is described in section 4.8.3

106

4.8. Validation

4.7.2 Discussion

The increase of flexibility provided by policy-based access and usage definition
can be broken down to the following statements:

• Definition of fine-grained access rules, e.g., user, service provider-specific
access definition depending on time, origin, parameter values.

• Policy-based service orchestration resulting in composed complex services
defining additional service behaviour without changing service logic on code
level.

• Definition of optimal service routing paths based on policies, e.g., routing of
service requests to service enablers based on operations rules or geographical
dependencies.

We believe that there is no globally valid statement for all operator/service/ser-
vice provider relationships stating that either efficiency in service execution or flex-
ibility in access definition is more important. Generally, considering long term,
well-defined service contracts, a great flexibility for service contract definition
is probably of less use than efficient service execution. A static access mechan-
ism realised through firewall rules in a hardware-based Session Border Controller
(SBC) provides in this case a more efficient way to access operator-owned service
enabler. But, when addressing a great variety of service providers that make use of
service enabler capabilities on a changing case-by-case basis, the flexibility of our
Service Broker solution is highly needed to meet service provider requirements on
the one hand and to maximise control of operator assets on the other hand. This is
the target environment that we have tailored our solution for.

Considering the operator/developer relationship, one may state that the greater
the access for developers regarding services and service functionality is, the more
services may potentially be created and a controlling entity as the Service Broker is
limiting growth in services and usage. As we do agree with this statement, we still
believe that operators engaging with many parties, enterprises and individuals at
the same time on one logical platform should have mechanisms at hand to control
access to service end points not only from a service/user but also from a developer
perspective. We believe therefore that our Service Broker especially addresses this
case by the definition of the above described SCM interface.

4.8 Validation

To illustrate the flexibility of the system for defining and enforcing temporal con-
straints (see section 3.4) to adapt to different criteria that may be of interest in par-
ticular situations, we describe two validation use cases focusing on operator/service
provider relationship and on operator/developer interactions. We have integrated

107

Chapter 4. A Service Broker for converged Internet and Telecom Services

our Service Broker into the Open SOA Telco Playground6 at Fraunhofer Institute
FOKUS7, providing an open environment for NGN service prototyping and val-
idation ([BGM 07], [BMS+ 09a]). We conclude this section with a performance
analysis.

4.8.1 A converged Internet / Telecommunications Service

As the main purpose of the Service Broker is to make operator-specific assets (ser-
vice enablers) available to 3rd parties, we have implemented a set of web-based
widgets using the JavaScript/JSON-RPC API introduced in section 4.6.4.2. These
widgets are integrated into the iGoogle 8 widget framework. The following image
provides a screen shot of the used widgets.

Figure 4.10: Web-based Telecom Widgets

The architecture is based on several layers of protocol/API abstraction in which
the Service Broker manages the operator/service interactions by enforcing access
policies and temporal constraints. The following figure 4.11 illustrates the high-
level architecture:

6http://www.opensoaplayground.org
7http://www.fokus.fraunhofer.de
8http://www.igoogle.com

108

4.8. Validation

Figure 4.11: Telecom Widget Back-end Architecture

The developer uses the JavaScript/JSON-RPC API [BLK+ 08] to include into
a mash-up operator provided service enablers as address book management, call
control, conferencing, Instant Messaging, location, presence, and SMS. The API
end points of the JavaScript API are provided by the Service Broker and translated

109

Chapter 4. A Service Broker for converged Internet and Telecom Services

into Parlay X-based SOAP requests. The message intercepting, policy evaluation
and enforcement is applied on SOAP level by the Service Broker and forwarded
to a Parlay X gateway communicating via enabler specific protocols to the service
enablers. These are connected either via SIP/XCAP to an IMS core system or
to SOAP-based services provided by Deutsche Telekom Developer Garden9. The
following subsections depict selected service use cases illustrating Service Broker
functionality applied on requests initiated by these web widgets.

4.8.1.1 Service Discovery via SCM

Figure 4.10 illustrates the same widget with for three different profiles Platinum,
Gold, and Silver, each providing a different set of services and features. The widget
application makes actively use of the SCM interface of the Service Broker for
service and profile discovery. The following sequence chart 4.12 illustrates the
SCM flow:

Figure 4.12: Sequence chart SCM

Whereas the Silver profile comprises only address book management, Instant
Messaging, and presence, the Gold profile provides additionally SMS, location,
and 3rd party call control for VoIP-only networks. The Platinum profile contains
all services without limitations. The widget application implements the SCM to
explicitly display the different profiles by using adaptive Graphical User Interfaces
(GUI).

4.8.1.2 Policy-based Enforcement of Resource Constraints

We have defined in section 3.4.2 resource constraints as constraints for resources
that are required to perform a certain activity. This example illustrates how the Ser-

9http://www.developergarden.com

110

4.8. Validation

vice Broker and policies are used to define and enforce resource constraints during
the execution of a service request. Figure 4.11 shows that more than one service
enabler may provide the same service for different access networks. This might be
reasonable in cases of a large geographic distribution of an operator’s network/ser-
vice domain or for n+1 service redundancy in operations scenarios (e.g., usage of
an alternative service enabler during service maintenance). Furthermore, a service
provider might also offer web-based communication services for many customers
and connects to multiple operator service enablers through the Service Broker that
provides a case-by-case request delegation to the corresponding service enabler for
business reasons or optimal service request routing [BMS 08]. The following se-
quence chart illustrates a high-level flow of request and responses for policy-based
enforcement of a service enabler selection constraint:

Figure 4.13: Sequence chart policy-based service delegation

The advantage from a service provider/service perspective is that a service needs
to implement in this case only one call control provider interface, but the oper-
ator may still be able to use multiple call control providers with different APIs to
optimise internal request routing or operations. The task enforcing the resource
constraint resulting in a delegation of the service request and possible API trans-
lation to the appropriate service enabler is performed by the Service Broker. The
following listing illustrates a policy for service delegation as a resource constraint:

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <rule id="r1" xmlns="http://urn/ietf/params/xml/ns/common-policy">

3 <conditions>

4 <originatorIdentity>

5 <one id="alice@serviceprovider.com"/>

111

Chapter 4. A Service Broker for converged Internet and Telecom Services

6 </originatorIdentity>

7 <targetIdentity>

8 <many/>

9 </targetIdentity>

10 <serviceOperation name="makeCall">

11 <parameter name="callee">

12 <operator name="notequal" operandType="string" match="regx">

tel:+49</operator>

13 </parameter>

14 </serviceOperation>

15 <validity>

16 <from>2008-05-27T14:11:00.943Z</from>

17 <until>2010-12-27T14:11:00.943Z</until>

18 </validity>

19 <constraints/>

20 </conditions>

21 <actions>

22 <invokeService id="a123" namespace="http://www.csapi.org/

schema/parlayx/thirdpartycall/v2_1/local" name="

ThirdPartyCallService" url=" http://IP_ADDRESS:PORT/

opense/ThirdPartyCall/ThirdPartyCallService">

23 <invokeOpReq name="createCall"/>

24 </invokeService>

25 </actions>

26 </rule>

Listing 4.2: Policy expressing a resource constraint

This policy states that each makeCall service request from alice@service

provider.com to a PSTN number with country code +49 will be delegated to
a specific service enabler using the createCall method of this enabler.

4.8.1.3 Policy-based Enforcement of Scheduling Constraints

Policy-based execution of a scheduling constraint is illustrated by enforcing a pri-
vacy rule using a presence service through a policy-based composition. Presence
is one of the most used services by applications that are based on user interaction
and socialization where presence serves as context information. As presence is
not limited to the set of know attributes of most Internet Instant Messaging clients
as online, offline, away, and busy, but may also comprise personal information as
moods, a user or operator may offer the possibility to provide a privacy option.
The Parlay X presence service exposes various operations for receiving presence
information of certain presentities (subscribers of which presence status is reques-
ted). The following list describes the two possible methods for retrieving status
info of a specific subscriber:

• Subscribe to the user’s presence status (subscribePresence()) and
then fetch the presence information by calling the operation getUserPre-
sence().

112

4.8. Validation

• Subscribe to the user’s presence status and then register by notifications of
presence status change by calling the operation startPresenceNotifi-
cation(); after the registration is successful the client that initially sub-
scribed for presence status will become a server that is waiting for status-
Changed() notifications.

The getUserPresenceResponse() and statusChanged() calls carry
inside of the SOAP message the presence status requested. The Parlay X presence
service is exposed via the JavaScript/JSON-RPC Presence service as described in
detail in section B.8. Users or operators may set up preferences regarding the
granularity of information included in these messages as a scheduling constraint.

One example of such as granularity is limitation of the presence information
only to basic values, meaning Available and NotAvailable. Mood values as Angry,
Bored, Depressed, etc. are transformed to a NotAvailable value. The Service
Broker offers this functionality by evaluating and enforcing a policy that requires
the transformations of the request attributes, thus representing a service compos-
ition enforcing a scheduling constraint. The following sequence chart illustrates
a high-level flow of request and responses for policy-based execution of service
compositions:

Figure 4.14: Sequence chart policy-based execution of a scheduling constraint

The following rule of a policy provides the granularity requested for the presence
information. In this case the rule causes all Parlay X activity values to be deleted

113

Chapter 4. A Service Broker for converged Internet and Telecom Services

and the status to be set to ’Off’, resulting that only online/available presence status
will be preserved as part of the presence information published.

1 <ruleset>

2 <rule>

3 <conditions>

4 <originatorIdentity>

5 <many />

6 </originatorIdentity>

7 <validity>

8 <from>2010-05-27T14:11:00.943Z</from>

9 <until>2013-05-27T14:11:00.943Z</until>

10 </validity>

11 </conditions>

12 <actions>

13 <if>

14 <test>

15 <operator name="equal" operandsType="string" match="

noregx">

16 <operand1>fn:contains($result/typeAndValue/

UnionElement, ’Activity’)</operand1>

17 <operand2>true</operand2>

18 </operator>

19 </test>

20 <then>

21 <action type="ModifyMsg">

22 <attribute name="operation">del</attribute>

23 <attribute name="parameter">fn:elementAt($result,

fn:indexOf($result/typeAndValue/UnionElement, ’

Activity’))</attribute>

24 </action>

25 <action type="ModifyMsg">

26 <attribute name="operation">set</attribute>

27 <attribute name="parameter">$result/typeAndValue/

Communication/means/status</attribute>

28 <attribute name="to">’Off’</attribute>

29 </action>

30 </then>

31 <else />

32 </actions>

33 </rule>

34 </ruleset>

Listing 4.3: Policy expressing a scheduling constraint

As the message is a SOAP message and thus based on an XML description lan-
guage, the parameters of the called operation are represented using XPATH relat-
ive to the root element of the message body (the element that represents the name
of the called operation). For example the element "result/typeAndValue/Activity"
contains the presence status like Busy, Away, or moods. The corresponding SOAP
message envelops can be found in appendix D.

114

4.8. Validation

4.8.1.4 Policy-based Enforcement of Selection Constraints

Policy-based execution of selection constraints is illustrated by enforcing the selec-
tion of outbound messaging channels in a messaging session. We use a converged
messaging enabler [BLM 09] aiming to support personalized message delivery by
taking context information into account to optimize content delivery. The ena-
bler interacts with the Service Broker through the PEM1 interface in order to trig-
ger policy evaluation requests for incoming Instant Messages. According to the
provided policy evaluation result, the message enabler will deliver outbound mes-
sages through the appropriate messaging channel. In this case the Service Broker is
only providing the Policy Decision Point (PDP), the messaging enabler acts as the
Policy Enforcement Point (PEP. The following sequence chart illustrates a high-
level flow of request and responses for policy-based enforcement of selection con-
straints:

Figure 4.15: Sequence chart policy-based execution of a scheduling constraint

In this example a user Bob receives text messages while he is unregistered to the
IMS core network. According to his user policies for Alice, the message will be
delivered via the Messaging Enabler via a specific outbound channel determined
from the Service Broker. In the first case, Alice sends a SIP Instant Message. Bob
receives the message as an SMS (alt 1) because he has created a policy rule for
Alice that enables the request to be routed towards the corresponding messaging

115

Chapter 4. A Service Broker for converged Internet and Telecom Services

channel. As soon as the content size exceeds a specified limit (160 characters), the
message will be delivered via Email (alt 2) instead. Messages received from other
senders as Alice will be deferred by the system (default option).

The following listing provides the necessary policy for this functionality:

1 <rule id="r1">

2 <conditions>

3 <originatorIdentity>

4 <one id="sip:alice@open-ims.test" />

5 </originatorIdentity>

6 </conditions>

7 <actions>

8 <if>

9 <test>

10 <operator match="noregx" name="equal" operandsType="

string">

11 <operand1>$Message-Mode</operand1>

12 <operand2>PAGER_MODE</operand2>

13 </operator>

14 </test>

15 <then>

16 <if>

17 <test>

18 <operator match="noregx" name="less" operandsType

="int">

19 <operand1>$Message-Size</operand1>

20 <operand2>140</operand2>

21 </operator>

22 </test>

23 <then>

24 <invokeService id="i1" ... name="AccountService"

>

25 <invokeOpReq name="getMobileAccount">

26 <invokeOpReqParameter name="user">

27 $fn:getOriginator()

28 </invokeOpReqParameter>

29 </invokeOpReq>

30 </invokeService>

31 <selectCommunicationChannel name="sms">

32 <originatorId>$i1:mobileAccount</originatorId>

33 <targetId>tel:01243435353</targetId>

34 </selectCommunicationChannel>

35 </then>

36 <else>

37 <invokeService id="i2" ... name="AccountService"

>

38 <invokeOpReq name="getEmailAccount">

39 <invokeOpReqParameter name="user">

40 $fn:getOriginator()

41 </invokeOpReqParameter>

42 </invokeOpReq>

43 </invokeService>

44 <selectCommunicationChannel name="email">

116

4.8. Validation

45 <originatorId>$i2:emailAccount</originatorId>

46 <targetId>email:bob@mailhub.open-ims.test</

targetId>

47 </selectCommunicationChannel>

48 </else>

49 </if>

50 </then>

51 <else>

52 <selectCommunicationChannel name="defer">

53 <originatorId>$default</originatorId>

54 <targetId>$default</targetId>

55 </selectCommunicationChannel>

56 </else>

57 </if>

58 </actions>

59 </rule>

Listing 4.4: Policy expressing a selection constraint

This user policy will be evaluated if the originating sender of the incoming mes-
sage request is sip:alice@open-ims.test else, the default path will be ap-
plied. Before validating the concrete messaging channel, the first action checks the
communication request against the $Message-Mode. Otherwise, the deferred
messaging functionality will be executed, as well (lines 44-50). If the message
fits the configured $Message-Size, the Service Broker will evaluate true, en-
forcing the messaging enabler to use deliver the message via a Short Messaging
Service (lines 17-29). The originatorId and targetId are used by the ser-
vice broker to perform modifications on the original message for manipulation of
data received from the target service. In the case of large messages, the policy
evaluation result will cause the interworking selection for Email. In order to obtain
the originatorId, the Service Broker invokes another service capability (Ac-
countService) and therefore reuses functionalities exposed by other components in
the network. The AccountService queries the shared user-profile of the originator
on the XDMS for communication addresses related to Email. The related PEM1
message request and response payload can be found in appendix E.

4.8.2 Modelling Hybrid Communication Services

This validation use case focuses on interactions between the Service Broker and
a developer making use of the MDSD-based SCE jABC10 to declare and enforce
constraints during the service creation and execution process. We have applied the
open API-based meta-model approach depicted in section 3.3.3.1 by implementing
Parlay X Service Independent Building Blocks (SIB) and a role model provided by
the Service Broker (see section 4.3.3) for jABC.

10http://jabc.cs.tu-dortmund.de

117

Chapter 4. A Service Broker for converged Internet and Telecom Services

jABC implements the MDSD approach and bridges IT thinking with a manage-
ment and user-level perspective aiming to overcome the capability and perspect-
ive gap between the two worlds. It offers a fine granular, feature-oriented service
paradigm of modelling processes. We challenge the conventional service defini-
tion practice in the telecommunications sector by applying the pluralistic and in-
terface supporting jABC approach that contrasts with the logic of traditional tight
and isolated telecommunications service definition, which paradoxically enhances
organizational inertia, static routines, and inefficient path dependencies. The fol-
lowing figure 4.16 illustrates the structure of an MDSD-oriented SCE provided by
jABC. SIBs are grounded to services, e.g., Web services, CORBA components, or
any other software components via APIs, thus enabling hybrid mash-ups [BM 10].
User-level service aggregations are called features. They are useful and flexible
units for reusing purpose-specific orchestrations. Applications are service orches-
trations realized in terms of features and of SIBs, they are modelled as Service
Logic Graphs (SLGs).

Figure 4.16: MDSD principles in jABC

Temporal constraints are declarative process-level business rules, that can be
defined independently of the concrete service and serve as a background knowledge
basis against which services can be validated. In jABC, this validation is automatic
and happens by model checking. The SLG of an application is therefore built
as a service and feature orchestration, it can be easily validated for conformance
through a library of temporal logic constraints that are typically application domain
specific.

Features were traditionally understood as local modifiers of the basic service:
they were individually executed, i.e. a single feature was triggered by some event,

118

4.8. Validation

executed, and it returned upon termination to the basic service. This is no longer
sufficient. In order to account for complex evolutions of services, we allow in
today’s service description a multilevel organization of features, whereby more
specialized features build upon the availability of other, more basic functionalit-
ies. In this context, features are also service components from a different domain
that might be triggered from a telecommunications perspective by incoming events
as calls or messages triggering a service enabler from another service provider’s
domain, e.g., a Web 2.0 service enabler as maps and/or information sources. The
consequence is that features need to be integrated into SCEs that are not part of the
service provider’s domain but available via remote procedure calls on the WWW.
This also means that during run-time of complex services involving non-operator
enabler, application misbehaviour might occur through feature triggering by non-
communication services outside of the operator domain.

4.8.2.1 Role-based Service Development

We have implemented a Parlay X library for jABC [BMK+ 09]. Each Parlay X
based building block (interface) comprises operations for a specific telecommu-
nications related functionality and consists of several operations that are available
through a Web Service. Each Parlay X building block is represented by one or
more SIBs providing the underlying enabler functionality in an abstract manner
for service modelling inside jABC. The following table 4.22 lists the implemented
Parlay X services offered by the Service Broker in jABC:

Part Building Block Version Parlay X
Gateway

jABC #SIBs

1. Commons 2.1 & 3.0 complete complete 0
2. Third Party Call 2.1 complete complete 4
4. Short Messaging 2.1 partially partially 7
5. Multimedia Mes-

saging
3.0 partially partially 9

9. Terminal Location 3.0 complete complete 6
11. Audio Call 2.1 & 3.0 complete complete 11
12. Multimedia Confer-

ence
3.0 complete complete 9

13. Address List Man-
agement

2.1 complete complete 19

14. Presence 3.0 complete complete 12

Table 4.22: Functional mapping Parlay X / jABC SIBs

To reduce the above described risk for the operators, we have applied the SCM
of the Service Broker as discovery and role definition interface to jABC. As jABC

119

Chapter 4. A Service Broker for converged Internet and Telecom Services

is intended to be used by experts and non-experts for service creation, we have
considered dividing jABC users in the following role categories:

• Developers – expert and non-expert users having access to Parlay X and
basic jABC support SIBs according to applicable policies. Each user has his
own workspace created at the first login and all his services - meaning the
graphs and SIBs created in jABC - are being stored there. This category of
developers has access to a user-specific workspace including SIBs for Parlay
X services and supporting SIBs.

• Operator/system administrator – this user has a special role and rights, mean-
ing that he has access to all Parlay X SIBs and services for service creation.

The following figure 4.17 depicts the role of developers in the context of the Ser-
vice Broker as part of the operator domain and jABC for service creation:

Figure 4.17: Developer / Service Broker / SCE interaction

120

4.8. Validation

The developer is able to use a jABC plug-in for a user/role-based service re-
trieval, based on policy evaluation. Different roles/profiles may be defined through
a profile specific authorization policy analogous to the profile definition described
in section 4.8.1.1 and [BMM 09]. Listing C.1 in appendix C shows a policy that
allows only access to address book, messaging, presence, and SMS by defining
constraints on requested services during service discovery at the Service Broker.
The following figure 4.18 shows a screenshot of the login feature in jABC:

Figure 4.18: Broker-based Service Discovery in jABC

4.8.2.2 Modelling of Constraints

Events indicate a state change of the world. They are n-tuples containing an ar-
bitrary number of data items. For instance, a PublishPresence event contains data
related to a user, e.g., the user ID, presence information as well as a timestamp
denoting the occurrence time of the publish event.

Let T = (T,≤) be an ordered time domain. Then, let I := {[ts; te] ∈ T × T |
ts ≤ te} be the set of time intervals with ts as start and te as the end time-point of
the interval. Let D be the set of atomic values, where atomic values are elementary
data types, such as strings. Then, let E := {(k1, ..., kn, kn + 1, ts, te) | ki ∈
D, [ts, te] ∈ I} be the set of events on which constraints can be applied.

An event is characterized by the time of its occurrence, which is stored as the
event’s timestamp. Instantaneous events are single events which occur at a cer-
tain point in time. They have a duration of zero, ts = te. The aforementioned

121

Chapter 4. A Service Broker for converged Internet and Telecom Services

PublishPresence event is an example of an instantaneous event. Complex events
describe the occurrence of a certain set of events (instantaneous or complex) hav-
ing relationships defined using logical and/or temporal operators. These operators
commonly include conjunction, disjunction and negation as logical operators and
can include temporal operators such as before and after to define the order of events
[WBG 08].

Defining events and verifying modelled process constraints for events requires
the transformation of services into mathematical objects on which formal proofs
are able to be carried out [MS 09]. Complex, orchestrated services are modelled in
jABC using Service Logic Graph (SLG)-based models expressing the orchestration
of heterogeneous service end points. SLGs are semantically interpreted as Kripke
Transition Systems (KTS), a generalization of both Kripke structures and labelled
transition systems that allow labels both on nodes and edges of a service graph.
Nodes in the SLG represent activities (or services, or components, depending on
the application domain). The edges directly correspond to SIB branches; they
describe how to continue the execution depending on the result of the previous
activity and express process constraints. More formally, a KTS is defined in the
following.

A KTS(V,AP,Act,→) consists of:

(1) a set of nodes V
(2) set of atomic propositions AP describing basic properties for a

node
(3) The interpretation function I : V → 2AP specifies which pro-

positions hold at which node
(4) A set of action labels Act is used to designate the edges
(5) The possible transitions between nodes are given through the re-

lation → and is contained in V ×Act× V

SLGs may be seen as KTS including atomic propositions and actions. Specifica-
tions of a model can be defined using appropriate formalisms as temporal logics,
e.g., CTL (Computation Tree Logic) [CGP 00] or modal µ-calculus [K 82].

Selection constraints may be defined in jABC for enforcing verified service be-
haviour of communication services. An example for a selection constraint is the
following:

¬ Call U (TerminalIsRegistered
^GetPresence==“online/available”
^(GetPresence==“online/busy” ⇒ SendMessage))

In this formula, Call, TerminalIsRegistered, etc. are atomic propositions that hold
in particular nodes of the model, while U is the until operator. It states that a call
can only be terminated if the callee’s terminal is registered to the operator network

122

4.8. Validation

and the presence status is “online/available”. If the presence status is “online/busy”
a message should be sent.

jABC provides a graphic environment for the composition of SLGs and defini-
tion of temporal logics, depicted in the following figure 4.19:

Figure 4.19: Model-checking in jABC

These models can be validated during execution time in jABC by the Local-
Checker and GEAR plugin as depicted in the above image as edges of the graph
visualize the successful execution of a Parlay X service. Temporal constraints can
therefore be provided by the operator to service developers through pre-defined
models to be included in user-created service compositions. Model-checking of
the user-defined models allows then the verification of process and activity level
constraints during service composition.

Composed services in jABC are generated automatically as SOAP-based Web
Services. This allows the operator to model temporal constraints as jABC-compos-
ed services that are deployed to the Service Broker’s workflow engine and are
applied during service execution time resulting in selection constraint enforcement.

4.8.3 Performance Analysis

The performance analysis of the developed solution is separated into two sections.
The first section illustrates the performance of policy evaluation of the Service
Broker, the second part focuses on the evaluation of different composition lan-
guages. As service delegation to composed services expressing scheduling, selec-
tion, or resource constraints is a central concept of the Service Broker, we have

123

Chapter 4. A Service Broker for converged Internet and Telecom Services

evaluated the performance of different composition languages classified in section
3.2.3.

The SuT is based on a VMWare ESX11 virtualization system running on 3
IBM x3650, Typ 7979 B3G machines. Each system consists of 2x Intel Xeon
E5420@2.5Ghz Quad-Core CPU with 48 GB RAM. The ESX virtualization share
for the Service Broker has 4 CPUs, 4 GB RAM and runs Debian 5.0 OS.

4.8.3.1 Policy Evaluation

We have used SIPNuke12 as a load generation tool to execute a set of pre-defined
tests for the Service Broker. The first test illustrates the performance of a policy
evaluation process initiated through the PEM1 interface for a ThirdPartyCallSer-
vice to have an isolated view on the overhead caused by evaluation. The following
figure 4.20 depicts the behaviour of the service broker for up to 260 requests per
second (req/s):

Figure 4.20: Service Broker PEM1 interface load test

The policy evaluation process needs an almost constant execution time of approx.
19 ms until a rate of 90 req/s. The processing time increases until 260 req/s linearly
to 1 s.

The following two test cases illustrate the usage of the Service Broker in inter-
cepting mode, therefore the measured execution time includes besides policy eval-
uation and enforcement also the time of the execution of the service enabler itself.
The test cases are the same as in section 4.7, each stress tests started at a 1 req/s
- 260 req/s with a 10 s sleep between each incrementation. The JavaScript/JSON-
RPC API has not been used to reduce possible overhead caused by the translation
of this API to Web Services. The following figure 4.21 depicts the behaviour of the

11https://secure.wikimedia.org/wikipedia/en/wiki/VMware_ESX
12http://www.sipnuke.org/

124

4.8. Validation

service broker for the authorization of a Parlay X ThirdParyCallService compared
to the execution of the service without request interception of the Service Broker:

Figure 4.21: Service Broker ThirdPartyCallService load test

Until 40 req/s the Service Broker needs approx. 30 ms for the authorization
process of a request. The processing time increases until 200 req/s linearly to 800
ms.

The following figure 4.22 depicts the behaviour of the service broker for the
enforcement of a policy-based composition of a GetUserPresence request part of
the Parlay X PresenceConsumerService compared to the execution of the service
without request interception of the Service Broker:

Figure 4.22: Service Broker GetUserPresence load test

The Service Broker needs until 20 req/s approx. 20 ms for the execution of a
manipulation of presence parameters. The processing time increases then until 260
req/s linearly to 7 s, which is caused by the limitation of the defined virtualization.

125

Chapter 4. A Service Broker for converged Internet and Telecom Services

This result shows that complex operations inside a policy may become quite
expensive in means of computing power and an alternative approach should be
selected in this regard. We therefore test also composition languages that allow the
execution of such services on a different level than within a policy, making instead
use of a delegation mechanism. The following subsection depicts the performance
of selected service compositions.

4.8.3.2 Execution of Service Compositions

Following to the theoretical analysis of composition languages and models in sec-
tion 3.2.3, we provide in this section a performance analysis for the following clas-
sification candidates:

• BPEL

• SCXML

• SLG

BPEL was chosen because of the widespread usage and the standard description
language for the Web Service processes used. SCXML has been selected for its
good adaptability, scalability and simplicity characteristics. SLG is the third can-
didate as it provides similar to SCXML the capability to compose heterogeneous
services consisting of different APIs and the ability to generate executable Java
code with the help of jABC. Two independent test scenarios are presented in this
work that compares between BPEL and SCXML as well as between BPEL and
SLG.

BPEL vs. Java vs. SCXML Test Scenario

For the performance analysis between SCXML and BPEL the frequent orches-
tration of a simple SIP Instant Messaging service is assessed. The performance
measurements are related to the service invocation:

a) in Java

b) with SCXML

c) with SCXML triggering the service via a Web Service

d) with BPEL (triggering also a Web Service)

The invoked service sends a simple SIP MESSAGE request to a SIP application
server that replies with a 200 OK. The implementation of the service is the same
for every approach. Regarding a) the service is executed directly using the Java
method implementing the service. In case of b) a local Java method has been
invoked directly by the SCXML Engine. At last c) and d) need to call the Java

126

4.8. Validation

method via Web Services inside the SCXML respectively the BPEL script. The
following diagram 4.23 shows the time in milliseconds for every approach needed
to execute in relation to the frequency of service invocations:

Figure 4.23: Service Composition Execution Tests: BPEL, Java, SCXML

For this experiment two machines are used. The first machine executes the ser-
vice via the Apache ODE BPEL Engine13, the Apache Commons SCXML En-
gine14, the Web Service and the Java implementation. All services are deployed
in a Jetty Web Server15 in order to have comparable results. The second machine
deploys the SIP Message Servlet, which gets the SIP Messages and sends back a
200 OK to avoid retransmissions disturbing the performance measurements.

The test shows, that as expected the Java service has the highest performance.
We took Java into account due to two reasons:

• SLGs may be grounded to Java by code generation,

• to measure the computation overhead caused by the SCXML engine to ex-
ecute the script in case b).

Applying a higher invocation frequency, the execution time of SCXML is approx-
imately 2.5 times higher than the native Java execution. Furthermore we wanted to
get a picture of the overhead caused by using Web Services instead of native Java
method calls in the SCXML engine. The performance decreases rapidly in case c)
in particular for higher frequencies. The same applies for the last test case using
BPEL.

13http://ode.apache.org
14http://commons.apache.org/scxml
15http://www.mortbay.org/

127

Chapter 4. A Service Broker for converged Internet and Telecom Services

It should be noted that the orchestration overhead in SCXML is lower than the
overhead in BPEL, even when using Web Services. Nevertheless this overhead in
combination with Web Service calls always results to the lowest performance.

BPEL vs. SLG Test Scenario

Another performance analysis compares the execution time of a more complex
composition scenario using BPEL and SLG defining a selection constraint. The
service receives address book information of a user from an OMA XDMS service
enabler and invites users to an audio conference. Depending on the profile in-
formation stored at the XDMS, users receive a gender-dependent audio jingle at
the beginning of the conference. All service end points of the composed service,
namely address book access, conference management, audio call for jingles are
SOAP-based Web Services. The service execution environments are also Apache
ODE for the execution of BPEL scripts and Java-based services generated by the
jABC framework from SLG defined service compositions. Figure 4.24 depicts the
results of the performance measurements:

Figure 4.24: Service Composition Execution Delay Tests: Java/SLG, BPEL

It shows that services generated by jABC support a much higher rate of requests
per second without returning errors - around 120 requests per second while BPEL
can only manage around 30 requests per second in the same test conditions and
environment.

Relevant for our analysis is also to compare the error rate obtained at the threshold
value of the request rate for both jABC and BPEL composition strategies. In this
case, an error means that the client receives a time-out error from the server. The
following figure 4.25 depicts the results of this performance measurement.

During this test, the error rate increases directly in relation with the growth of
the rate of requests per second. The errors in jABC/SLG-based composition ap-

128

4.9. Conclusions

pear later, approximately at a rate of 90 req/s and the gradient is growing slowly,
regarding the BPEL-based composition strategy, the error appears quite early at a
rate of 25 req/s. The error rate increases quite fast, reaching a 100% error rate at
35 req/s.

Figure 4.25: Service Error Rate Test: Java/SLG, BPEL

Concluding, it can be stated that compositions implemented in Java or grounded
through code generation to executable code are much more responsive and per-
forming than composition created and executed in workflow engines. SOAP-based
Web Services create a measurable overhead caused on the one hand by network
communication, but interestingly on the other hand by the SOAP stack itself (e.g.,
due to the required XML parsing).

4.9 Conclusions

In chapter 4, we introduced an abstract information and data model providing the
underlying basis of our Service Broker reference architecture. From this model, we
derived a general policy taxonomy and defined a policy formalism. Together, this
builds the theoretical basis for our policy-based Service Broker reference architec-
ture. The central part of this architecture are policy evaluation and enforcement
functions. Our Service Broker serves all actors in a cooperation of operators, 3rd

party service providers, service developers, and users to express and enforce ser-
vice related preferences as user privacy, service profiles or operator preferences
for optimisations in operations and service routing. Service developer interests are
addressed by the definition of a high-level Telecom API based on Javascript/JSON-
RPC and the tight integration of a service discovery interface into the MDSD-based
jABC environment.

129

Chapter 4. A Service Broker for converged Internet and Telecom Services

As current communications service infrastructures enable in the end real-time
communications as voice or video, special efforts have been conducted to assure
minimum processing overhead by the policy evaluation process. We have discussed
the complexity of two algorithms to motivate our selection of the Rete algorithm
for policy evaluation. Furthermore, we have done a set of performance tests, illus-
trating the performance of the Service Broker and the policy evaluation function
under different conditions. A certain trade-off in performance is in our opinion
acceptable compared to the increase in flexibility gained to define the behavioural
part of services during execution time. One major finding of the performance tests
is that complex functionality applied to service requests should not be performed
within a policy composition due to heavily increasing computation time, but should
be delegated to a specific service providing this isolated functionality instead.

The definition and enforcement of temporal constraints is illustrated by three
validation use cases on different levels of service execution and service creation.
We motivate the application of model-driven definition of services implementing
constraint enforcement due to model-based service verification, on the one hand,
to assure proven service behaviour and, on the other hand, a better performance
achieved by code generation in contrast to workflow execution by orchestration
engines or policy-based enforcement of complex constraints. This decision is also
supported by a set of performance test that we have conducted using two different
workflow expression languages and corresponding engines and code generated by
the MDSD-based jABC SCE.

130

Chapter 5

Comparison with other

Approaches

Service Brokering in SOAs is a wide research field. A lot of different research
work has already been published to propose a middleware function, abstracting
from network resources and enabling 3rd parties through APIs. In this chapter we
survey different recent middleware approaches from other researchers that are in
scope with our work and have been published in scientific literature. We compare
these to our own solution as specified in chapter 4 defining different criteria on
which we base the comparison and summarize the evaluated approaches.

5.1 Evaluation Criteria for Telecom Service Broker Sys-

tems

Multiple service infrastructures have been proposed for NGN and converging net-
works, either with focus on feature interaction between services on a platform or
interaction between different domains and corresponding platforms. For compar-
ative purposes we will evaluate these methods using different criteria as they target
different networks and use cases, use different internal mechanisms or have per-
formance differences. We define two main criteria groups: architecture-related

and functional criteria. The former is related to the design of a solution. It covers
IT and service engineering principles, including set-up and performance. The latter
covers the functional perspective of the designed solution.

5.1.1 Architecture-related Evaluation Criteria

Network Agnostic

Description of network abstraction principles and technologies, e.g., what kind of
API technology used, specific for a certain protocol or network technology.

131

Chapter 5. Comparison with other Approaches

System Governance

Details about the defined system governance approach, e.g., similar to the specified
policy-based approach in the previous chapter, if any.

Platform-specific

Description of the architecture with dependencies to a specific platform technology,
e.g., JAIN SLEE.

Implementation

Details about the actual implementation, if any. This includes the programming
language and frameworks used.

Performance Test Results

If an implementation exists, we will present performance results as described by
the authors. Noteworthy features include processing latency, e.g., the delay ser-
vices/users encounter, how many messages the solution can process in 1 s. Note
that these results cannot directly be compared between different implementations
– there are too many variations between test set-ups, test configurations and testing
hardware.

5.1.2 Functional Evaluation Criteria

Composition Capabilities

Described capabilities of a solution to define and execute composed services, e.g.,
defined as a workflow.

Feature Interaction

Description and development of certain feature interaction mechanisms allowing
feature invocation between services and domains.

Integration with SCE

Details about service creation principles required to develop extensions and ser-
vices for a platform, if any. Description of possible integration and interactions
with a service creation environment.

Service Exposure

Description of service exposure approach to offer services to 3rd parties for re-use
in e.g., mash-ups.

132

5.2. Survey of Service Broker Systems for Telecommunications

5.2 Survey of Service Broker Systems for Telecommunic-

ations

In this section we present related work that has been proposed by various research-
ers. The approaches are presented in order of publication. Each proposal is sum-
marised according to the aspects of the evaluation criteria introduced above and
separated into an architecture-section and a functional-section.

We base this summary on available facts from the publication and do not judge
any of the proposed ideas here. A comparison and discussion of the presented
ideas follows in a later section. There are already several commercial solutions
(e.g., Amdocs1, IBM2, Oracle3) targeting similar. However, information on and
specifications of these systems are restricted, and thus cannot be evaluated here.

5.2.1 Khan07

Authors of [KGL 07] propose an extension to the IMS service layer to broker and
integrate SIP, HTTP, and Real Time Streaming Protocol (RTSP) service delivery in
the application layer.

Architecture Description

The main proposition is an application policy function including related functions
of IMS, RSTP, and HTTP networks. One option for the realization of such a func-
tion named is a SCIM. The proposed application policy function makes use a pro-
tocol specific extensions to blend services. Specific policy evaluation and enforce-
ment points are not described, neither is a specific target platform mentioned nor
are implementation results described.

Functional Description

Based on the description of the application policy function, service invocation and
service blending seems to be based on static behavioural descriptions inside the
proposed application function, but a detailed description is missing. Feature inter-
action between different services is mentioned, a specific algorithm or sequence
diagram of the signalling part is not provided. The exposure of services for further
re-use or integration into a SCE is out of scope of this work.

1http://www.amdocs.com/Offerings/CES-Portfolio/Service-Delivery/Convergent-Service-
Platform

2http://www.ibm.com/software/industry/telecommunications/
3http://www.oracle.com/us/industries/communications

133

Chapter 5. Comparison with other Approaches

5.2.2 Belaunde08

Authors in [BF 08] propose an approach for developing composite telecommunic-
ation services running on mobile phones which takes advantage of the use of model
driven techniques as well as the loose coupling paradigm in SOA. The presented
results are based on the EU FP 6 project SPICE4.

Architecture Description

The paper describes an SCE that is connected to a repository, to import and export
the definition of running services and a life-cycle manager, to deploy and activate
services in a execution environment. The model-driven SCE allows the composi-
tion of back-end BPEL services and GUI front-ends on mobile devices. The imple-
mentation makes use of available tools to generate from meta-models executable
Java or Python code. The SCE is connected to a repository, to import and export
the definition of running services and a life-cycle manager, to deploy and activate
services in a execution environment.

Functional Description

The SPICE project has defined a high-level and executable language for describing
composite telecommunication services. This formalism, named SPATEL (SPICE
Advanced language for Telecommunication services), can be considered as a cus-
tomization of the UML language for expressing the definition of service inter-
faces and service composition logic that is well-suited to the Telecom domain.
The model transformations and the code generators are implemented using two
alternative techniques: firstly through direct usage of the meta-modelling APIs
generated from the platform-specific meta-model, and secondly using an OMG
MOF-based model (see section 3.3) transformation language. SPATEL may be
also transformed to BPEL providing back-end services that are exposed via SOAP.
Front-end services on devices are grounded to Python to be executed on a mobile
device. Feature interaction is based on Web Services.

5.2.3 Kirchberg08

Authors in [XTT+ 08] propose an integrated Telecom and Internet SDP for inter-
working between IMS and Web Services. The authors propose a SIP-based Micro
Service Orchestration and Web Services bus to integrate Web Services, IMS ser-
vices, and underlying network resources.

Architecture Description

Main focus of the work is a SIP-based micro service orchestration layer. It may

4http://www.ist-spice.org/

134

5.2. Survey of Service Broker Systems for Telecommunications

integrate protocol specific modules for CAMEL or Parlay services, generic Web
Services, SIP, and Diameter. A policy manager is mentioned, it contains user-
defined policies and provides and enforces these policies on a per-service session
basis. A more thorough explanation is missing. The architecture is mapped to a
JAIN SLEE platform, details about the implementation and related performance
tests are missing.

Functional Description

The basis of the proposed environment is a so called Service Provider Deliver En-
vironment (SPDE), a functional framework for developing, deploying, and deliv-
ering service functionality. It includes a service broker acting as an intermediary
between a service provider and a service requester, and a service orchestration
function. A detailed description of these functions, used algorithms and standards
is missing. Feature interaction between services in the SPDE is addressed, as well
as service exposure.

5.2.4 Bond08

Authors of [BC 08] propose a light-weight, Java-based framework for converged
Telecom services and mash-ups. The framework supports interactions between a
specific feature and external services, it can be utilized to support Telecom service
mash-ups as customized web services that incorporate Telecom services with other
services.

Architecture Description

The proposed service environment is based on a SIP Servlet 1.1 container, allowing
the integration of SIP and HTTP-based service features. Composition capabilities
are limited to the container’s application router. A BPEL engine provides orches-
tration capabilities for Web Services.

Functional Description

The core of the defined framework is based on Java-to-SIP and SIP-to-Java feature
interfaces that may be encapsulated by SOAP interfaces to use Web Services or-
chestration. Composition of features is available by using the graphical ECharts5

framework for SIP Servlets supporting the notion of reusable state machine frag-
ments: reusable parameterizable state machines that perform common functions.
Convergence of Telecoms and IT is achieved by defining SOAP-based Web Ser-
vices for Telecom features.

5http://echarts.org

135

Chapter 5. Comparison with other Approaches

5.2.5 Moro09

Authors in [MBO+ 09] present the results of a study on the use of SCXML for the
real-time composition of network-centric services.

Architecture Description

The focus lies on the provisioning of a SCIM function for IMS services, a spe-
cific platform technology is not mentioned, neither are implementation details or
performance evaluations depicted. The proposed architecture is based on a ses-
sion control abstraction layer for IMS that may be used by the SCXML engine to
orchestrate SIP-based services and IN/CAMEL services.

Functional Description

Composition capabilities are addressed by the authors based on SCXML work-
flows to provide feature interaction between the SIP-based Telecom domain and
other brokered services (e.g., charging, IN services, other SIP services). The au-
thors describe a use case of a service provider exposing service composition rules
for Mobile Virtual Network Operators (MVNO). Details of rules and related pro-
cessing are missing.

5.2.6 Matsumoto09

Authors in [MHT 09] focus on a middleware platform for Fiber-To-The-Home
(FTTH) and metro Ethernet networks to manage large scale network resources.

Architecture Description

The architecture is based on a SOA middleware for NGN and legacy networks. A
BPEL-driven policy manager is proposed in order to enforce global QoS policies
on both NGN and legacy infrastructures. This middleware belongs logically to the
network control layer and serves IMS-only services. Details about implementation-
specific aspects and related performance tests are missing.

Functional Description

The proposed policy management is based on workflow-based policy rules, trans-
action status, and resource conditions. In accordance with the policy decision
workflow, the policy manager enforces policies on network resource managers
through a specific network resource management interface based on SOAP. In-
teraction of features or accessibility of network services for foreign domains is not
addressed. The creation of policies or services is out of scope of the work.

136

5.2. Survey of Service Broker Systems for Telecommunications

5.2.7 Bauknecht09

Authors of [BHK 09] propose a flexible decision-making mechanism for a person-
alized communication controller in IMS for multi-device/multi-session use cases.

Architecture Description

The main architectural focus is based on the XACML policy framework and spe-
cific extensions for obligation policies to be used for service personalization. The
underlying session control protocol for services is SIP and the used target platform
is based on JAIN SLEE. The policy engine acts as a SIP B2BUA towards SIP UAs
and realises service feature control for ongoing SIP sessions. The overall system
governance is policy-based and example XACML polices are provided. Details of
the implementation and a performance evaluation are missing.

Functional Description

Composition of features through policy enforcement is explicitly addressed by the
authors with limitations to a single domain. All feature compositions are expressed
within policies allowing a generic personalization of services. The workflow of a
composition is considered as static, features are handled as variables. The core
of the work is the proposal to support variables as parameters of obligations as an
extension to XACML. The creation of compositions is out of scope of the proposed
work.

5.2.8 Jin09

Authors in [JPY+ 09] propose a way to shorten and simplify the service creation
life-cycle by building a template-based SCE. A model is used to separate service
workflow definition and service parameter configuration and to achieve rapid de-
velopment for different roles.

Architecture Description

The main focus of the work is on service template toolkit. A template represents
patterns of communications services with the same or similar logic. The toolkit
is an Eclipse6 IDE plug-in allowing the definition of templates. It may act as a
BPEL or SCXML editor and deploy services to corresponding workflow engines
as part of a SLEE environment. Specific network technologies and protocols are
not addressed by the authors.

6http://www.eclipse.org/

137

Chapter 5. Comparison with other Approaches

Functional Description

The underlying model of the template toolkit is based on template profiles describ-
ing business parameters and a template deployment package including Telecom
service logic. Business logic may be composed either using BPEL or SCXML.
Authors state that service development of a template with their tool is about 2-5
times faster than manual coding of the service. A template provides the flexibility
to compose 10-15 services. The description of a specific composition model and
feature interaction mechanism is missing.

5.2.9 Baladron09

Authors of [BAC+ 09] are proposing a platform for graphical service creation
aimed at individuals with no specific skills in computer science or programming.
Services are grounded to a service-oriented execution environment capable of seam-
less interoperability between Web Services and Telecom applications based on an
operator-owned infrastructure.

Architecture Description

The architecture is based on a distributed environment for a SCE, an execution
environment, and a base service repository. The SCE can be broken down to
a browser-based BPEL designer, as the execution environment provides a BPEL
orchestration engine with partner links to so called base services. Base services
may be hosted on different platforms within an operator domain. Implementation-
related issues are not presented besides naming Web Services as the underlying
communication standard.

Functional Description

The platform provides a web portal for service creation, a service life-cycle man-
ager automating tasks as deployment, and a user information manager to manage
profiles and context data. Compositions may be created through the web-based,
graphical SCE that are grounded to BPEL. It is mentioned that the composition
model is asynchronous, allowing interactions with communications services. In-
tegration with synchronous applications is provided by a platform middleware.

5.2.10 Loreto09

Authors of [LMO+ 09] present the concept and implementation a location service
broker providing a flexible layer for convergence of Telecom and IT services.

138

5.3. Comparison of Telecom Service Brokers

Architecture Description

The architecture is based on a service front-end function providing service APIs
as Parlay X, an operator network connectivity layer for connecting to different
network capabilities, location-specific utility function providing geographical cal-
culations, and a business logic function. The environment is implemented as J2EE
services, performance results are not provided.

Functional Description

A web-based mash-up service is described by the authors integrating location in-
formation into a map service and adding local weather information. The service
broker itself does not provide composition capabilities, it only exposes user and
device location information from multiple sources. Services are developed with a
code-based IDE and deployed to the J2EE service environment.

5.3 Comparison of Telecom Service Brokers

The related work we present in this chapter targets different approaches towards
converged Telecom and Internet service environments. This section compares the
outlined work above with our approach.

139

Chapter 5. Comparison with other Approaches

K
han07

K
irchberg08

B
elaunde08

B
ond08

M
oro09

N
etw

ork
agnostic

IP
only,

S
IP,

H
T

T
P

&
R

T
S

P
services

IP
-based

S
IP

ser-
vices

&
legacy

IN
services

depending
on

avail-
able

service
ena-

bler

IP
-only,

S
IP

&
H

T
T

P
services

IP
-based

S
IP

ser-
vices

&
legacy

IN
services

S
ystem

G
overnance

N
o

specifi
c

m
ech-

anism
is

described
P

olicy-based
JS

R
289

applica-
tion

router-based
&

B
P

E
L

engine

B
P

E
L

-based
orchestration

R
ule

defi
nition

in
S

C
X

M
L

P
latform

O
penw

ave
M

ulti-
m

edia
P

roxy
JA

IN
S

L
E

E
J2E

E
JS

R
289

Java
con-

tainer
JA

IN
S

L
E

E

Im
plem

entation
N

o
im

plem
entation

details
provided

N
o

im
plem

entation
details

provided
T

ransform
ation

de-
tails

provided
Java

m
ethod

details
provided

S
C

X
M

L
exam

ple
provided

C
om

position
capabil-

ity
P

ossible,
no

details
provided

S
IP

m
icro

service
orchestration

B
ased

on
S

PA
T

E
L

,
transform

ation
to

B
P

E
L

,
Java,

and
P

ython
based

on
service

tem
plates

W
eb

S
ervices

com
-

position
based

on
B

P
E

L
,

S
IP

S
ervlet

com
position

based
on

E
C

harts

S
C

X
M

L
-based

or-
chestration

of
ser-

vices

Integration
w

ith
S

C
E

out
of

scope
not

described
Integration

in
G

M
F

/E
clipse

fram
ew

ork
w

ith
graphical

editor

E
C

harts
provides

a
graphical

S
C

E
(w

ithout
m

odel-
checking)

out
of

scope

S
ervice

E
xposure

out
of

scope
S

O
A

P
W

eb
S

er-
vices

S
O

A
P

W
eb

S
er-

vices
S

O
A

P
W

eb
S

er-
vices

P
arlay

X
S

O
A

P
W

eb
S

ervices

T
able

5.1:
C

om
parison

of
T

elecom
S

ervice
B

roker
P

art
I

140

5.3. Comparison of Telecom Service Brokers
M

at
su

m
ot

o0
9

B
au

kn
ec

ht
09

Ji
n0

9
B

al
ad

ro
n0

9
L

or
et

o0
9

B
lu

m
10

N
et

w
or

k
ag

no
st

ic
IP

-o
nl

y
IP

-o
nl

y,
S

IP
-

ba
se

d
se

rv
ic

es
ab

st
ra

ct
se

rv
ic

e
te

m
pl

at
es

A
P

I-
ba

se
d

ne
t-

w
or

k
ab

st
ra

ct
io

n
A

P
I-

ba
se

d
ne

t-
w

or
k

ab
st

ra
ct

io
n

A
P

I-
ba

se
d

ne
t-

w
or

k
ab

st
ra

ct
io

n
S

ys
te

m
G

ov
-

er
na

nc
e

B
P

E
L

-b
as

ed
po

li
ci

es
X

A
C

M
L

-b
as

ed
po

li
ci

es
B

P
E

L
/

S
C

X
M

L
-

ba
se

d
B

P
E

L
-b

as
ed

no
t

de
sc

ri
be

d
C

om
m

on
P

ol
ic

y-
ba

se
d

P
la

tf
or

m
P

la
tf

or
m

-
in

de
pe

nd
en

t
JA

IN
S

L
E

E
S

L
E

E
O

P
U

C
E

ex
ec

u-
ti

on
en

vi
ro

nm
en

t
J2

E
E

P
la

tf
or

m
-

in
de

pe
nd

en
t

Im
pl

em
en

ta
ti

on
N

o
im

pl
em

en
t-

at
io

n
de

ta
il

s
pr

ov
id

ed

N
o

im
pl

em
en

t-
at

io
n

de
ta

il
s

pr
ov

id
ed

N
o

im
pl

em
en

t-
at

io
n

de
ta

il
s

pr
ov

id
ed

N
o

im
pl

em
en

t-
at

io
n

de
ta

il
s

pr
ov

id
ed

N
o

im
pl

em
en

t-
at

io
n

de
ta

il
s

pr
ov

id
ed

Im
pl

em
en

ta
ti

on
de

ta
il

s
&

pe
r-

fo
rm

an
ce

te
st

re
su

lt
s

pr
ov

id
ed

C
om

po
si

ti
on

ca
pa

bi
li

ty
W

eb
S

er
vi

ce
s

co
m

po
si

ti
on

ba
se

d
on

B
P

E
L

P
ol

ic
y-

ba
se

d
no

t
de

sc
ri

be
d

W
eb

S
er

vi
ce

s
co

m
po

si
ti

on
ba

se
d

on
B

P
E

L

ou
t

of
sc

op
e

P
ol

ic
y-

ba
se

d,
S

C
X

M
L

-b
as

ed
,

S
L

G
-b

as
ed

In
te

gr
at

io
n

w
it

h
S

C
E

ou
t

of
sc

op
e

ou
t

of
sc

op
e

In
te

gr
at

io
n

w
it

h
E

cl
ip

se
ID

E
(w

it
ho

ut
m

od
el

-c
he

ck
in

g)

B
ro

w
se

r-
ba

se
d

gr
ap

hi
ca

l
B

P
E

L
co

m
-

po
se

r
(w

it
ho

ut
m

od
el

-c
he

ck
in

g)

ou
t

of
sc

op
e

M
od

el
-b

as
ed

gr
ap

hi
ca

l
S

C
E

(j
A

B
C

)

S
er

vi
ce

E
xp

os
-

ur
e

no
t

ad
dr

es
se

d
no

t
ad

dr
es

se
d

no
t

ad
dr

es
se

d
S

O
A

P
W

eb
S

er
-

vi
ce

s
P

ar
la

y
X

S
O

A
P

W
eb

S
er

vi
ce

s
P

ro
to

co
l-

ag
no

st
ic

,
S

O
A

P
&

JS
O

N
-R

P
C

W
eb

S
er

vi
ce

s
de

sc
ri

be
d

T
ab

le
5.

2:
C

om
pa

ri
so

n
of

T
el

ec
om

S
er

vi
ce

B
ro

ke
r

P
ar

t
II

141

Chapter 5. Comparison with other Approaches

142

Chapter 6

Summary

This dissertation has presented service-oriented paradigms applied to telecommu-
nications and IT, discussed large-scale service-oriented systems, and proposed a
new policy-based access and system governance mechanism for service delivery
platforms allowing optimal service behaviour and control for operators, 3rd party
service provides, developers, and users.

In the course of the research for this thesis, we have published one book chapter,
ten journal papers, and 18 conference papers dealing with the addressed problems.

This chapter summarizes achievements of this work and describes on-going fu-
ture extensions of our work in several research projects.

6.1 Conclusions and Impact

In this dissertation, we formally proposed a policy-based Service Broker as an
emerging middleware function for converged Telecom and Internet service archi-
tectures. We discussed the challenges, both in building service platforms, as well as
in interconnecting different service domains to form a service-oriented converged
Telecom and Internet service layer based on IT principles. We continued by dis-
cussing service evolution in telecommunications from proprietary platforms to-
wards specialized IT-based environments. We described how IT principles have
influenced this evolution and presented current trends in IT for distributed services
and model-based service creation.

For defining a converged service environment for Telecom and Internet services,
we have identified requirements from the perspective of a network operator, service
developer, service provider, and user. Based on these requirements we designed an
information and data model for the interaction of users, their personas and devices,
and Internet services offered by service providers. From this model we derived a
general policy taxonomy for service providers and users. Finally, we presented our

143

Chapter 6. Summary

policy-based Service Broker as a middleware enabling feature interaction between
an operator controlled communications-centric service domain, the Internet, and its
service overlay WWW. The goal of our platform is to enable cross-domain service
composition for the creation of hybrid services and constraint enforcement during
service execution and discovery time. We provided details of the underlying policy-
based formalism, as well as results from performance experiments showing the
ability of the solution to address needs of operators, service providers, developers,
and users.

Our Service Broker provides a direct link from business value of a service to
its priority in the service enabler layer of the operator; it applies general prin-
ciples designed by OMA as part of its OSE and compliance to PEM1 and PEM2
interface specification. More important, this dissertation provides the theoretical
basis of a policy taxonomy and formalism that is missing as part of the OSE spe-
cification and concentrates on interactions between the service environment and
service developers in a two folded approach: by defining a high-level JSON-RPC
based communications API and a model-driven approach for service and constraint
definition.

We have laid down three proposition in the beginning of this thesis in section 1.4
that have been discussed from several technological and usage-related perspectives
throughout this thesis:

I Technologies, mechanisms, and service paradigms in the Internet and Telecom
follow different principles. Cooperative services spanning across both do-
mains require an intermediate function for mediation between these domains.

II Policy-based service composition allows users, service providers, and network
operators to express service constraints in high-performance, low-latency re-
quirements in Telecom systems.

III Software synthesis and code generation based on formal models is a well-
suited software development approach for an open Telecom systems.

As part of the state of the art technology and principles analysis in the first one-
third of this thesis, we have outlined that technologies and principles from IT are
currently adapted to be used in Telecom service infrastructures. Proposition I is
based on the assumption that the circuit-switched, IN-based technology will still
co-exist for the time being. Regarding the technology shift towards all-IP that
is performed with the introduction of the NGN and related service technologies
(e.g. SIP Servlets), this proposition gets softened and cannot be sustained that
strictly. Nevertheless, requirements on service availability and performance remain
the same for legacy and NGN service infrastructures, resulting in a special need for
protection and control of arbitrary and malicious service behaviour. This statement
supports proposition I and the need for an intermediary control function that we
propose by the definition of a Service Broker.

144

6.1. Conclusions and Impact

Inside of the defined Service Broker, we use policies extensively to control sys-
tem behaviour and enforce user, service provider, and network operator defined
preferences. We have shown with the help of several use cases and validation ex-
amples the feasibility of our approach. During the conducted performance tests we
have found out that the execution of complex operations through policy enforce-
ment is creating a significant overhead for the end-to-end service execution time
and is in our opinion therefore not applicable in a low-latency, high-performance
service environment. Only basic obligations on called services and parameters
should be enforced with this mechanism. We recommend that complex operations
should be transferred to specific services to which we refer to as delegated ser-
vices. Therefore, we cannot keep up proposition II to the extend that policy-based
composition of constraints is a well-suited approach in any case. This statement
needs to be limited to the enforcement of simple obligations to ensure the execution
requirements of carrier-grade Telecom systems.

In designing our Service Broker, we have put special emphasis on programmab-
ility of network services and resources by defining on the one hand a high-level
JSON-RPC API and, on the other hand, the tight integration with jABC, a model-
driven software development environment. With the provided capability of jABC
for constraint definition based on temporal logics, developers and service designers
are able to create service models based on pre-defined constraints. During the dis-
cussion of strengths and weaknesses of MDSD in section 3.3, we refer to several
studies stating that MDSD has significantly increased the productivity of the soft-
ware creation process. On the other hand service performance has not been rated
as sufficient, e.g. by [BLW 05].

We have found out that generated services perform still much better than in-
terpreted services that are defined using standardized service composition/orches-
tration languages as BPEL that are currently being proposed for commercial ser-
vice execution environments for Telecom systems. We can therefore still support
proposition III and by implication, based on our tests, state that we highly doubt
the success of orchestration languages for near real-time services. Proposition III
may only be restrained by the fact that many developers, especially for WWW-
based services tend to create their services still by hand, supported with tools for
high-level programming languages and script languages instead of using graphical
composition tools that do not allow direct manipulation of the code base.

Similar cross-domain, cross-layer service environments are being proposed as
part of the EU Future Internet Research and Experimentation (FIRE)1 initiative
towards creating a multidisciplinary research environment for investigating and
experimentally validating highly innovative and revolutionary ideas for new net-
working and service paradigms.

1http://cordis.europa.eu/fp7/ict/fire/

145

Chapter 6. Summary

6.2 Outlook

Our solution design and its theoretical basis will serve in 2010 and 2011/12 as the
foundation for several research projects:

• Design of a beta developer platform for a large German Telecom operator.

• Design of a cross-network, cross-domain information sharing platform for a
large Japanese Telecom operator.

• Design of a cross-layer service composition platform as part of the German
Federal Ministry of Education and Research (BMBF) G-Lab DEEP2 Future
Internet project.

The following subsections depict each project briefly.

6.2.1 Telecom Beta Developer Platform

The goal of this project is the provisioning of an “innovation window” part of an
existing Telecom developer portal. The main idea is based on exhibiting innovative
functionalities bearing the potential for future Telecom services to developer com-
munities enabling early feedback and insights for further service evolution. This
should allow the operator to leverage better open development for safeguarding
future business. The target platform should incorporate services from 3rd parties:

• from developers themselves

• from external service providers

• from R’n’D networks (German & EU public R’n’D projects, e.g. FP 7)

Inside this “innovation window”, functionalities will be offered to the developer
community as enabling services as part of the platform. The platform will provide
an environment for composition of services with workflow languages as SCXML
and a graphical composition tool kit. Service enablers will either be provided by
the Telecom operator or any 3rd party. A central role has the Policy Engine en-
abling the enforcement of constraints during service creation and execution time.
Composed services may be exposed automatically with multiple different APIs
(e.g. REST, JSON-RPC, Web Services, RMI, etc.), depending on the targeted de-
velopers and use cases. The following figure 6.1 depicts the extension of our work
towards a platform for developers of beta services:

2http://www.g-lab-deep.de/

146

6.2. Outlook

O
u

ts
id

e
-i

n
 S

e
rv

ic
e
s

In
si

d
e
-o

u
t

S
e
rv

ic
e
s

Address Books

Location

Billing SMS/MMS

Call Control /Conferencing

3rd Party
Messaging

3rd Party
Service

Provider
3rd Party

Developer
SME

Communities Enterprises

Flickr, Picasa, etc.
Service Composition

Service Broker

Policy Engine

Service Configuration

YouTube
Information

Services

Authentication

…

…

Service Import

R
P

C

S
O

A
P

R
E

S
T

R
M

I

…

Process
Execution

Service Hosting/
Service Provider

Policy
Evaluation

Policy
Enforcement

Configuration
Repository

Service Discovery

Access /Usage
Control

Service
Registry

Policy
Repository

Figure 6.1: Service Broker for beta developer platform

6.2.2 Cross-network, Cross-domain Information Sharing

Integrating synchronous and asynchronous communication paradigms into a hol-
istic service and combining services and end devices from multiple domains re-
quires cooperative session awareness as an underlying principle. When combining
different clients, connected to multiple networks, each with its own specific sig-
nalling and transport protocol, one cannot assume that all clients may become part
of the same session. It would be a complicated task to handle multiple different
clients including the combinations of different communication methods with their
specific manners, networks, and huge variety of devices. The goal of this project
is to overcome technological and administrative boundaries for information shar-
ing by applying an information push towards clients. This push service is capable
of delivering information from various sources to different devices depending on
user, operator, and content provider preferences. The service can be considered
as an enhancement or extension of a simple information service such as IP-based
Television (IPTV), Video-on-Demand (VoD), e-Health record, P.O. box, network
address book/scheduler, and file/video sharing.

The main target is to enable services to adapt to evolving service environments
in three aspects:

1. multi-network,

2. multi-device, and

3. multi-service.

147

Chapter 6. Summary

In a multi-network environment, users may receive services via appropriate net-
works and connected devices and users are able to use multiple devices without any
special efforts. The term “multi-service” refers to the situation that most service
providers have popular content and application services outside of a carrier net-
work and deliver their services in an OTT manner. This spotlights the significance
of inducing the content and application services to carrier networks by allowing
carrier network services to mash-up outside services. Furthermore, OTT services
may increase their mash-up services by utilizing additional data available from net-
works such as the device location, easier connection to the other users/devices on
the network, etc.

6.2.3 Cross-layer Composition

The German BMBF G-Lab DEEP project focuses on research of innovative com-
position approaches for the cooperation of network and service layer with a special
focus on security for the Future Internet. The project is scheduled as a 3.5 year
project, started in September 2009 until March 2012.

The main focal point lies on the dynamic, controllable communication of re-
quirements resulting from a concrete service request originated in the application
layer towards the network layer. As a result, network and application layer dynam-
ically provide corresponding functional building blocks and required composed
services supported by the target architecture and associated tools. Central research
questions and problems as description, administration, discovery, and functional
combination of services to more complex (workflow-based) services are investig-
ated on multiple layers of the network architecture. The goal is to apply concepts
of SOA to all network layers and replace finally the layer-oriented architecture of
the Internet through a global service-oriented (network) architecture.

In G-Lab DEEP, applicable tools and frameworks are investigated providing
the flexible creation of communication workflows for secure voice and multime-
dia communication in the Future Internet allowing the cooperation of the net-
work and service layer based on SOA principles. Therefore, events from multiple
layers (cross-layer), different technologies (cross-technology) beyond the borders
of administrative domains (cross-domain) are targeted and will be provisioned.
It presents a Future Internet architecture based on the cross-layer composition
concept in which the network is composed according to application specific re-
quirements. Functional composition is used to select and compose functionalities
on the network data path, suitable for the demanded application level requirements.

The project makes use of the designed policy engine to apply constraints during
the functional composition process. The following figure 6.2 illustrates the applic-
ation of our Service Broker for such a cross-layer service composition mechansim:

148

6.2. Outlook

Authorization Authentication Contract & SLA

Discovery

Service
Provider

S1 S2 S3 S11 S33S22

FB1 FB1FB2 FB3

FB33

FB33

FB22FB11

S4 S5

Service
Provider

Network
Node

Network
Node

Network
Node

Network
Node

Service
Provider

Orchestration Composition

QoS

Context-aware
Routing

Broker

Service Layer

Network Layer

Figure 6.2: Service Broker for cross-layer service composition

The Service Broker identifies the required services, which are necessary to sat-
isfy user requests. Such a service may consist of a single service or several services,
which might be combined. Functional building blocks (FBs) of network nodes will
be composed according to requirements of the service layer, where services are
composed of service features from multiple providers and domains. Service layer
compositions are grounded to SCXML for execution.

149

Chapter 6. Summary

150

Acronyms

3GPP 3rd Generation Partnership Project
AAA Authorization, Authentication and Accounting
API Application Programming Interface
AR Application Router
AS Application Server
BPEL Business Process Execution Language
CAMEL Customized Applications for Mobile Enhanced Logic
CCXML Call Control eXtensible Markup Language
CIM Computation Independent Model
CLASS Customer Access Line Signalling Services
CORBA Common Object Request Broker Architecture
CS Capability Set
CSCF Call Session Control Function
CTI Computer Telephony Integration
CTL Computation Tree Logic
CWM Common Warehouse Metamodel
DSL Domain-Specific Languages
EAI Enterprise Architecture Integration
ECA Event Condition Action
EJB Enterprise Java Beans
ESB Enterprise Service Bus
eTOM enhanced Telecom Operations Map
ETSI European Telecommunications Standards Institute
FB Functional Building Block
FI Future Internet
FIRE Future Internet Research and Experimentation
FMC Fixed Mobile Convergence
FTTH Fiber-To-The-Home
GEOPRIV GEOlocation PRIVacy
GPRS General Packet Radio Service
GSM Global System for Mobile Communications
GSMA Groupe Speciale Mobile Association
GUI Graphical User Interface

151

Acronyms

HSS Home Subscriber System
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IETF Internet Engineering Task Force
iFC initial Filter Criteria
IMS IP Multimedia Subsystem
IN Intelligent Network
INAP Intelligent Network Application Part
IoS Internet of Services
IP Internet Protocol
IPTV IP-based Television
ISC IMS Service Control
ISDN Integrated Services Digital Network
IT Information Technologies
ITU-T International Telecommunication Union -Telecommunication
IVR Interactive Voice Response
JAIN Java APIs for integrated Networks
JCP Java Community Process
JSON JavaScript Object Notation
JTAPI Java Telephony Application Programming Interface
KISS Keep It Simple, Stupid
KTS Kripke Transitions System
LTA Long-term Architecture
LTE Long Term Evolution
MDA Model Driven Architecture
MDE Model-Driven Engineering
MDSD Model-Driven Software Development
MOF Meta-Object Format
MVNO Mobile Virtual Network Operator
NGOSS New Generation Operations Systems and Software
NGSI Next Generation Service Interfaces
OCL Object Constraint Language
OMA Open Mobile Alliance
OMG Object Management Group
OS Operating System
OSE OMA Service Environment
OSOA Open Service Oriented Architecture
OSPE OMA Service Provider Environment
OTT Over The Top
PBX Private Branch Exchange
PDM Platform Definition Model
PDP Policy Decision Point
PEP Policy Enforcement Point
PII Personally Identifiable Information

152

Acronyms

PIM Platform-independent Model
POTS Plain old telephone service
PSM Platform-specific Model
PSTN Public Switched Telephone Network
QoE Quality of Experience
QoS Quality of Service
RBAC Role-based Access Control
REST Representational State Transfer
RMI Remote Method Invocation
RPC Remote Procedure Call
RTSP Real Time Streaming Protocol
S-CSCF Serving Call Session Control Function
SAML Security Assertion Markup Language
SBC Session Border Controller
SCA Service Component Architecture
SCE Service Creation Environment
SCIM Service Capability Interaction Manager
SCM Service Capability Manager
SCP Service Control Points
SCXML State Chart XML
SDF Service Delivery Framework
SDK Software Development Kit
SDP Service Delivery Platform
SIB Service Independent Building Block
SID Shared Information/Data Model
SIP Session Initiation Protocol
SLEE Service Logic Execution Environment
SLG Service Logic Graph
SME Small and Medium Enterprise
SMI Service Management Interface
SMS Short Messaging Service
SOA Service Oriented Architecture
SOA-RM Service Oriented Architecture Reference Model
SPATEL SPICE Advanced language for Telecommunication services
SPDE Service Provider Deliver Environment
SPL Session Procession Language
SuT System under Test
TAM Telecom Application Map
TelcoML Telecommunication SOA Modeling Language
TINA-C Telecommunication Information Networking Architecture Con-

sortium
TISPAN TIPHON (Telecommunications and Internet Protocol Harmon-

ization over Networks) and SPAN (Services and Protocols for
Advanced Networks)

153

Acronyms

TMF TeleManagement Forum
TS-DSL Telecom Service Domain Specific Language
UML Unified Modeling Language
UMTS Universal Mobile Telecommunications System
UPSF User Profile Server Function
URI Uniform Resource Identifier
VAS Value-added Service
VoD Video-on-Demand
VoiceXML Voice eXtensible Markup Language
VoIP Voice over IP
VPN Virtual Private Networks
W3C World Wide Web Consortium
WADL Web Application Description Language
WiMAX Worldwide Interoperability for Microwave Access
WLAN Wireless Local Area Network
WS-BPEL Web Services Business Process Execution Language
WS-Policy Web Services Policy
WSFL Web Services Flow Language
WWW World Wide Web
XACML eXtensible Access Control Markup Language
XCAP XML Configuration Access Protocol
XML eXtensible Markup Language
XSLT XML Stylesheet Language for Transformations

154

Bibliography

[3G 99] 3GPP. 3GPP TS 23.078. Customized Applications for Mobile network
Enhanced Logic (CAMEL) Phase X; Stage 2. 1999.

[3G 03] 3GPP. 3GPP TS 23.002 V5.12.0, 3rd Generation Partnership Project;
Technical Specification Group Services and Systems Aspects; Network ar-
chitecture (Release 5). Sep. 2003.

[3G 06] 3GPP. 3GPP TS 23.228 V7.6.0. 3rd Generation Partnership Project; Tech-
nical Specification Group Services and System Aspects; IP Multimedia Sub-
system (IMS); Stage 2 (Release 7). Dec. 2006.

[3G 08] 3GPP. 3GPP TR 23.810 V8.0.0. 3rd Generation Partnership Project; Tech-
nical Specification Group Services and System Aspects; Study on Architec-
ture Impacts of Service Brokering (Release 8). Sep. 2008.

[3G 09] 3GPP. 3GPP TS 29.199-XX V8.0.0, Open Service Access (OSA); Parlay
X Web Services. Sept. 2009.

[AKG 05] J. de Albuquerque, H. Krumm, P. de Geus. Policy Modeling and Re-
finement for Network Security Systems. Sixth IEEE International Workshop
on Policies for Distributed Systems and Networks (POLICY’05), pp. 24-33,
2005.

[ABM 07] A. Al-Hezmi, N. Blum, T. Magedanz. IMS basiertes Triple Pay Toolkit
- Der FOKUS Open IMS Playground. in Praxis Profiline - Triple Play. pp.18-
21. Vogel Industrie Medien und Triple Play Alliance. Juli 2007. ISBN: 3-
8259-1948.

[AS 07] D. Amyot, R. Simoes. Combining VoiceXML with CCXML: A Compar-
ative Study. 4th IEEE Consumer Communications and Networking Confer-
ence CCNC 2007, pp.342-346, Jan. 2007.

[BLW 05] P. Baker. P. Loh, F. Weil. Model-Driven Engineering in a Large Indus-
trial Context - Motorola Case Study. ACM/IEEE 8th International Confer-
ence on Model Driven Engineering Languages and Systems (MoDELS/UML
2005). LNCS, vol. 3713, pp. 476-491. Springer, Heidelberg. 2005.

[BL 96] C. Baral, J. Lobo. Formal characterization of active databases. in LID ’96:
Proceedings of the International Workshop on Logic in Databases. London,
UK. Springer-Verlag, pp.175-195. 1996.

[BLT 97] C. Baral, J. Lobo, G. Trajcevski. Formal characterizations of active data-
bases: Part ii. in Deductive and Object-Oriented Databases, S. B. Heidelberg,
Ed. 1997.

155

Bibliography

[BF 08] M. Belaunde, P. Falcarin. Realizing an MDA and SOA Marriage for
the Development of Mobile Services. In. I. Schieferdecker and A. Hartman
(Eds.). ECMDA-FA 2008, LNCS 5095, pp. 393-405. Springer, Heidelberg.
2008.

[BC 08] E. Bertin, N. Crespi. Describing Next Generation Communication Ser-
vices: A Usage Perspective. 1st European Conference on Towards A Service-
Based internet. Madrid, Spain, December 10 - 13, 2008. P. Mähönen, K. Pohl,
and T. Priol, Eds. Lecture Notes In Computer Science, vol. 5377. Springer-
Verlag, Berlin, Heidelberg, 86-97. 2008. ISBN 978-3-540-89896-2.

[B 04] J. Bettin. Model-Driven Software Development Activities, The Process
View of an MDSD Project. 2004, http://www.softmetaware.com/mdsd-
process.pdf

[B 05] T. Bloomfield. MDA, Meta-Modeling and Model Transformation: Introdu-
cing New Technology into the Defense Industry. In: A. Hartman, D. Kreische
(Eds.) ECMDA-FA 2005. LNCS 3748, pp. 9-18. Springer, Heidelberg. 2005.

[BM 05] N. Blum, T. Magedanz. Push-To-Multimedia as a Platform Enabler for
NGN Services. 11th European Wireless Conference 2005. Nicosia, Cyprus.
April, 10-13. VDE Verlag GmbH, pp. 315-321. 2005. ISBN 3-8007-2886-9.

[BM 05a] N. Blum, T. Magedanz. PTT+IMS=PTM - Towards
Community/Presence-based IMS Multimedia Services. 7th IEEE Inter-
national Symposium on Multimedia, Irvine, Ca (U.S.A.). 12.-14. December
2005. ISBN 0-7695-2489-3.

[BGM 07] N. Blum, F. Carvalho de Gouveia, T. Magedanz. An Open IMS Testbed
for exploring Wireless Service Evolution and Network Architecture Evolu-
tion towards SAE and LTE. 2nd IEEE Australian Conference on Wireless
Broadband and Ultra Wideband Communications. Sydney, Australia. 27 - 30
August 2007. ISBN 0-7695-2842-2.

[BMS 07] N. Blum, T. Magedanz, H. Stein. Service Creation & Delivery for SME
based on SOA / IMS. MNCNA ’07, Nov. 26, 2007. Port Beach - CA. 2007
ISBN 978-1-59593-932-6

[BDM 07] N. Blum, S. Dutkowski, T. Magedanz. Combining enhanced mobile
IMS Presence with Web-based Location Services. 4. GI/ITG KuVS Fachge-
spräch Ortsbezogene Anwendungen und Dienste. Sept. 13./14. 2007, Hrsg.
Roth, Küpper und Linnhoff-Popien. Munich, 2007. ISBN 978-3-89963-591-
1.

[BLM 08] N. Blum, L. Lange, T. Magedanz. Combining Web 2.0 and NGN:
Mobile geo-blogging as Service Enabler for Next Generation Networks. 5.
GI/ITG KuVS Fachgespräch Ortsbezogene Anwendungen und Dienste. 4.-
5. September 2008, Nürnberg. Jörg Roth (Ed.). Sonderdruck Schriftenreihe
der Georg-Simon-Ohm-Hochschule Nürnberg Nr. 42. pp.53-58. 2008 ISSN
1867-5433.

[BLK+ 08] N. Blum, D. Linner, S. Krüssel, T. Magedanz, S. Steglich. Defini-
tion of a Web 2.0 Gateway for 3rd Party Service Access to Next Generation
Networks. IFIP International Federation for Information Processing, Volume

156

Bibliography

284. Wireless and Mobile Networking. Zoubir Mammeri. (Boston: Springer).
pp. 247-258. 2008 ISBN: 978-0-387-84838-9.

[BMS 08] N. Blum, T. Magedanz, F. Schreiner. The Role of Service Brokers for
Composed Services in an Open Service Environment. TELEKOMMUNIKA-
TION AKTUELL 1-2/2008. Verlag für Wissenschaft und Leben Georg Hei-
decker GmbH, Erlangen. 2008. ISSN 1619-2036

[BT 08] N. Blum, T. Magedanz. Requirements and Components of a SOA-based
NGN Reference Architecture. e&i - elektrotechnik und informationstechnik.
Österreichischer Verband für Elektrotechnik. pp.263-267. Springer-Verlag
2008. Juli/August 2008. ISSN 0932-383X.

[BMS+ 09] N. Blum, T. Magedanz, F. Schreiner, S. Wahle. From IMS Manage-
ment to SOA based NGN Management. Journal of Network and Systems
Management, Springer New York. Feb. 2009. ISSN 1064-7570.

[BMS+ 09a] N. Blum, T. Magedanz, F. Schreiner, S. Wahle. A Research Infra-
structure for SOA-based Service Delivery Frameworks - The Open SOA
Telco Playground at Fraunhofer FOKUS. 5th International Conference on
Testbeds and Research Infrastructures for the Development of Networks and
Communities (TRIDENTCOM 2009), Washington DC, USA. April 2009.
ISBN 978-1-4244-2847-2.

[BMK+ 09] N. Blum, T. Magedanz, J. Kleeßen, T. Margaria. Enabling eXtreme
Model Driven Design of Parlay X-based Communications Services for End-
to-End Multiplatform Service Orchestrations. 14th IEEE International Con-
ference on Engineering of Complex Computer Systems (ICECCS). pp.240-
247. 2009. ISBN 978-0-7695-3702-3

[BLM+ 09] N. Blum, L. Lange, T. Magedanz, J. Simoes. Mediacast for Mobile
Communities: When the Web and Telecommunications converge. 10th IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks. Greece, June 15-19. 2009. ISBN 978-1-4244-4439-7.

[BLM 09] N. Blum, S. Lampe, T. Magedanz, “Design of a Message Interworking
Function for Converged IP Messaging in Next Generation Networks”, IEEE
Symposium on Computers and Communications (ISCC’09), July 5 - 8, 2009,
Sousse, Tunisia, www.comsoc.org/iscc/2009

[BMM 09] N. Blum, T. Magedanz, T. Margaria. Rapid Service Creation using eX-
treme Model Driven Design for real-time Communications Services on top of
Next Generation Networks. 13th International Conference on Intelligence in
Next Generation Networks, 2009. ICIN 2009. pp.1-6. 26-29 Oct. 2009. doi:
10.1109/ICIN.2009.5357109.

[BM 10] N. Blum, T. Margaria. An Open Service Environment for Service Ex-
posure and Orchestration of Heterogeneous NGN Services. Praxis in der In-
formationsverarbeitung und Kommunikation (PIK), Fachzeitschrift für den
Einsatz von Informationssystemen. 33. Jahrgang, Heft 1, 2010. De Gruyter
SAUR Verlag, Germany. www.degruyter.com/pik. ISSN: 0930-5157. 2010

[BMS+ 10] N. Blum, T. Magedanz, H. Stein, I. Wolf. A Platform For User Gen-
erated Multimedia Communication Services. Journal of Mobile Multimedia,
Vol.6 No.3. pp.185-206. 2010. ISSN 1550-4646

157

Bibliography

[BHL+ 99] M. Born, A. Hoffmann, M. Li, I. Schieferdecker. Using Formal
Methods for the Design of Telecommunication Services. Proceedings of the
Conference on Formal Methods for Object Oriented Distributed Systems
(FMOODS) 1999, Florence, Italy 1999. Boston: Kluwer, 1999. ISBN: 0-
7923-8429-6.

[BCF+ 05] M. Brambilla, S. Ceri, P. Fraternali, R. Acerbis, A. Bongio. Model-
Driven Design of Service-Enabled Web Applications. ACM SIGMOD Inter-
national Conference on Management of Data, pp. 851-856. 2005.

[BMS+ 97] V. Braun, T. Margaria, B. Steffen, F.-K. Bruhns. Service Definition for
Intelligent Networks: Experience in a Leading-edge Technological Project
Based on Constraint Techniqueservice Definition for Intelligent Networks:
Experience in a Leading-edge Technological Project Based on Constraint
Techniques. Proc. PACT’97. 3rd Int. Conf. on Practical Application of Con-
straint Technology - April 1997. London, UK. Ed. by The Practical Applica-
tion Company.

[B 07] C. Bussler. The Fractal Nature of Web Services. IEEE Comp, vol. 40, no.
3, pp. 93-95. 2007. doi:10.1109/MC.2007.106

[BCL+ 06] L. Burgy, C. Consel, F. Latry, J. Lawall, L. Réveillère, and N. Palix.
Language Technology for Internet-Telephony Service Creation. IEEE Inter-
national Conference on Communications (ICC’06), Istanbul, Turkey. 2006.

[BC 08] G. Bond, E. Cheung. A framework for converged telecom services and
mashups. Technical Report TD-7DKHSW v2, AT&T, 2008. available at
http://echarts.org

[BHK 09] J. Bauknecht, J. Haussler, D. Kraft, M. Kuhnen M. Lischka, A. Schulke
A. Policy-Based Real-Time Decision-Making for Personalized Service Deliv-
ery. IEEE International Symposium on Policies for Distributed Systems and
Networks (POLICY ’09). IEEE Computer Society, Washington, DC, USA,
53-59. 2009. DOI=10.1109/POLICY.2009.13.

[BAC+ 09] C. Baladron, J. Aquiar, B. Carro, L. Goix, A. Leon Martin, P. Falcarin,
J. Sienel. User-Centric Future Internet and Telecommunication Services. Fu-
ture of the Internet Conference, Prague (Czech Rep.) May 2009.

[CLG+ 03] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko. Diameter
Base Protocol. Request for Comments: 3588, Network Working Group,
<http://www.ietf.org/rfc/rfc3588.txt?number=3588>. Sep. 2003.

[CIJ+ 00] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, M. Shan. eFlow: A Plat-
form for Developing and Managing Composite e-Services. HP Labs Tech-
nical Report, HPL-2000-36, HP Software Technology Laboratory, Palo Alto,
Ca. USA. March 2000.

[CJF+ 05] D. Chakraborty, A. Joshi, T. Finin, Y. Yesha. Service Composition for
Mobile Environments. Journal on Mobile Networking and Applications, Spe-
cial Issue on Mobile Services, Vol. 10, No. 4, pp. 435-451. 2005.

[CGP 00] E. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press. 1999.
ISBN 0-262-03270-8.

158

Bibliography

[CFB 04] I. Constantinescu, B. Faltings, W. Binder. Large Scale, Type-
Compatible Service Composition. ICWS ’04: Proceedings of the IEEE In-
ternational Conference on Web Services, Washington, DC, USA. 2004.

[C 06] D. Crockford. The application/json Media Type for JavaScript Object
Notation (JSON). Request for Comments: 4627, Network Working Group,
<http://www.ietf.org/rfc/rfc4627.txt?number=4627>. July 2006.

[DLT+ 03] G. Deng, T. Lu, E. Turkay, A. Gokhale, D. Schmidt, A. Nechypurenko.
Model Driven Development of Inventory Tracking System. 3rd OOPSLA
Workshop on Domain Specific Modeling (DSM 2003), p. 6. 2003

[DS 05] S. Dustdar, W. Schreiner. A survey on web services composition. Int. J.
Web Grid Services, pp. 1-30, 1, 1 (Aug. 2005).

[ETSI 09] ETSI. ETSI ES 282 002: Telecommunications and Internet converged
Services and Protocols for Advanced Networking (TISPAN); PSTN/ISDN
Emulation Sub-system (PES); Functional architecture. 2009.

[ETSI 09a] ETSI. ETSI TS 182 028: Telecommunications and Internet converged
Services and Protocols for Advanced Networking (TISPAN); IPTV Architec-
ture; Dedicated subsystem for IPTV functions. 2009

[F 00] R.T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. Doctoral dissertation, University of California, Irvine,
2000.

[FG 05] K. Fisher, R. Gruber. PADS: A Domain-Specific Language for Processing
Ad-Hoc Data. ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation (PLDI’05), pages 295-304, Chicago, IL, USA.
2005.

[F 82] C. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligence, 19, pp. 17-37, 1982.

[FS 05] K. Fujii, T. Suda. Semantics-based dynamic service composition. IEEE
Journal on Selected Areas in Communications, Vol. 23, No. 12. 2005.

[GKM 03] R.H. Glitho, F. Khendek, A. De Marco. Creating value added services
in Internet telephony: an overview and a case study on a high-level service
creation environment. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Review vol.33 no.4. pp.446-457. Nov 2003. doi:
10.1109/TSMCC.2003.818499.

[GC 07] A. Gouya, N. Crespi. Service Broker for Managing Feature Interactions
in IP Multimedia Subsystem. Sixth International Conference on Networking
(ICN ’07), pp.54-54, 22-28 April 2007

[GPZ 04] T. Gu, H. Pung, D.Zhang. A Middleware for Building Context-Aware
Mobile Services. Proceedings of IEEE Vehicular Technology Conference,
Los Angeles, USA. 2004.

[H 87] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Sci. Comput. Program. 8, 3 , pp. 231-274. Jun. 1987. doi=
http://dx.doi.org/10.1016/0167-6423(87)90035-9

[HKK+ 08] A. Hartman, M. Keren, S. Kremer-Davidson, D. Pikus. Model-
based Design and Generation of Telecom Services. available at ht-
tps://www.research.ibm.com/haifa/projects/services/sce/papers/Automated
GenerationOfTelecomServicesFinal.pdf

159

Bibliography

[HMS+ 06] R. Högg, M. Meckel, K. Stanoevska-Slabeva, R. Martignoni. Over-
view of Business Models for Web 2.0 Communities. Proc. Gemeinschaften
in Neuen Medien (GeNeMe 2006), Technische Universität Dresden, pp. 23-
37. 2006.

[ILeM 09] N. Ibrahim, F. Le Mouel. A Survey on Service Composition Middle-
ware in Pervasive Environments. International Journal of Computer Science
Issues, IJCSI, Volume 1, pp1-12. August 2009. ISSN (Online): 1694-0784.

[ITU1200] ITU-T. Recommendation Q.1200, Q-Series Intelligent Network Re-
commendation Structure. Technical report, International Telecommunication
Union, October 1992.

[JB 96] S. Jablonski, C. Bussler. Workflow Management - Modeling Concepts,
Architecture and Implementation. International Thomson Computer Press.
1996.

[JSS 97] S. Jajodia, P. Samarati, V. Subrahmanian. A logical language for express-
ing authorizations. In SympSecPr, Research in Security and Privacy, Oakland,
CA. May 1997.

[JCP 02] Java Community Process. JSR43 JTAPI 1.4 Specification. 2002.
[JCP 02a] Java Community Process. JSR21 JAIN JCC Specification. 2002.
[JCP 04] Java Community Process. JSR 22: JAIN SLEE API Specification. 2004.
[JCP 08] Java Community Prociess. JSR289: SIP Servlet v1.1. 2008.
[JPY+ 09] L. Jin, P. Pan, C. Ying, J. Liu, Q. Tian. Rapid service creation en-

vironment for service delivery platform based on service templates. 11th
IFIP/IEEE international Conference on Symposium on integrated Network
Management (New York, NY, USA, June 01 - 05, 2009). IEEE Press, Piscat-
away, NJ, 117-120. 2009.

[JKN+ 06] S. Jörges, C. Kubczak, R. Nagel, T. Margaria, B. Steffen. Model-driven
development with the jABC. In HVC 2006 - IBM Haifa Verification Confer-
ence, Haifa, Israel. October 23-26 2006. LNCS 4383. IBM, Springer Verlag.
2007. ISBN 978-3-540-70888-9.

[JN 04] E. Jouenne, V. Normand. Tailoring IEEE 1471 for MDE Support. In:
Jardim Nunes, N., Selic, B., Rodrigues da Silva, A., Toval Alvarez, A. (eds.)
UML Satellite Activities 2004. LNCS, vol. 3297, pp. 163-174. Springer,
Heidelberg. 2005.

[JMN+ 08] G. Jung, T. Margaria, R. Nagel, W. Schubert, B. Steffen, H. Voigt, H.
SCA and jABC: Bringing a service-oriented paradigm to Web-service con-
struction. Proc. 3rd Int. Symp. on Leveraging Applications of Formal Meth-
ods, Verification, and Validation (ISoLA08). Chalkidiki (GR), Oct. 2008.
CCIS N. 017, Springer Verlag. 2009. ISBN 978-3-540-88478-1

[KKS 07] S. Kalasapur, M. Kumar, B. Shirazi. Dynamic Service Composition in
Pervasive Computing. IEEE Transactions on Parallel and Distributed Sys-
tems, Vol. 18, No. 7, pp. 907-918. 2007.

[KMW 04] O. Kath, T. Magedanz, R. Wechselberger. MDA-based Service Cre-
ation for OSA/Parlay within 3Gbeyond Environments. Modatel Workshop,
March 17-18, 2004. University of Twente, Enschede, The Netherlands, pp.
33-42, Publisher Eurescom GmbH. 2004. ISSN 1381-3625.

160

Bibliography

[KGL 07] S. Khan, R. Gaglianello, M. Luna. Experiences with blending HTTP,
RTSP, and IMS. IEEE Commun. Mag. vol. 45. Mar. 2007. pp. 122-128.

[K 82] D. Kozen. Results on the Propositional Mu-Calculus. Ninth International
Colloquium on Automata, Languages, and Programming, pp. 348-359. 1982.

[LR 95] D. Ladd, J. Ramming. Programming the Web: An application-oriented
language for hypermedia service programming. 4th International World Wide
Web Conference, Boston, Massachusetts. Dec. 1995.

[LJD 01] S. St.Laurent, J. Johnston, E. Dumbill. Programming web services with
XML-RPC. O’Reilly. 2001. ISBN 0596001193.

[LMC 07] F. Latry, J. Mercadal, C. Consel. Staging telephony service creation: a
language approach. 1st international Conference on Principles, Systems and
Applications of IP Telecommunications, New York City, New York, July 19
- 20, 2007. IPTComm ’07, pp. 99-110. 2007.

[LMO+ 09] S. Loreto, T. Mecklin, M. Opsenica, H. Rissanen. Service broker ar-
chitecture: location business case and mashups. IEEE Comm. Mag. 47, 4,
pp.97-103. 2009.

[LSP+ 06] R. Lu, S. Sadiq, V. Padmanabhan, G. Governatori. Using a temporal
constraint network for business process execution. 17th Australasian Data-
base Conference - Volume 49 (Hobart, Australia, January 16 - 19, 2006).
G. Dobbie and J. Bailey, Eds. ACM International Conference Proceeding
Series, vol. 170. Australian Computer Society, Darlinghurst, Australia, 157-
166. 2006.

[M 93] T. Magedanz. IN and TMN providing the basis for future information
networking architectures. in Computer and Communications, pp. 267-276,
Butterworth-Heineman, Vol.16, No. 5, May 1993.

[M 96] T. Magedanz, R. Popescu-Zeletin. Intelligent Networks: Basic Techno-
logy, Standards and Evolution. Thompson Computer Press, 1996. ISBN 1-
85032-293-7.

[MBD 08] T. Magedanz, N. Blum, S. Dutkowski. Evolution of SOA Concepts in
Telecommunications - A Déjà vu?. IEEE Computer Special Issue on Service
Oriented Architectures. Nov. 2007. ISSN 0018-9162

[M 03] K. Mantell. From UML to BPEL. IBM developerWorks vol. 2004. 2003.
[MS 09] T. Margaria, B. Steffen. Business Process Modelling in the jABC: The

One-Thing-Approach. Handbook of Research on Business Process Modeling,
J. Cardoso and W. van der Aalst (eds.), IGI Global, 2009.

[MHT 09] N. Matsumoto, M. Hayashi, H. Tanaka, H. Network middleware design
for bridging legacy infrastructures and NGN. 5th Euro-NGI Conference on
Next Generation internet Networks (Aveiro, Portugal, July 01 - 03, 2009).
IEEE Press, Piscataway, NJ, 175-183. 2009.

[M 05] A. McAfee. Will Web Services Really Transform Collaboration. MIT
Sloan Management Review, vol. 46, no. 2, pp. 78-84. 2005.

[MBE 03] B. Medjahed, A. Bouguettaya, A. K. Elmagarmid. Composing Web ser-
vices on the Semantic Web. The VLDB Journal, Vol. 12, No. 4, pp. 333-351.
2003.

161

Bibliography

[M 03] Middleware Company. Model Driven Development for J2EE Utilizing
a Model Driven Architecture (MDA) Approach. Productivity Analysis.
Report by the Middleware Company on behalf of Compuware (2003),
http://www.omg.org/mda/mda_files/MDA_Comparison-TMC_final.pdf

[MV 08] P. Mohagheghi, V. Dehlen. Where Is the Proof? - A Review of Experi-
ences from Applying MDE in Industry. Model Driven Architecture - Found-
ations and Applications, pp. 432 - 443, Springer Berlin / Heidelberg, 2008.
ISSN 0302-9743.

[M 07] S. Ben Mokhtar. Semantic Middleware for Service-Oriented Pervasive
Computing. Ph.D. thesis, University of Paris 6, Paris, France. 2007.

[MTS 03] R. Montanari, G. Tonti, C. Stefanelli. Policy-based separation of con-
cerns for dynamic code mobility management. 27th Annual International
Computer Software and Applications Conference, 2003. COMPSAC 2003.
pp. 82-90. 3-6 Nov. 2003.

[MBO+ 09] S. Moro, S. Bouat, M. Odini, J. O’Connell. Service Composition with
Real Time Services. 13th International Conference on Intelligence in Next
Generation Networks (ICIN). Bordeaux, 26 - 29 October, 2009. ISBN 978-1-
4244-4694-0.

[OASIS 05] OASIS. XACML 2.0 Core: eXtensible Access Control Markup Lan-
guage (XACML). Version 2.0. Feb. 2005.

[OASIS 06] OASIS. Reference Model for Service Oriented Architecture 1.0.
OASIS Standard. 12 October 2006.

[OASIS 07] OASIS. Web Services Business Process Execution Language. Version
2.0. April 2007.

[OMA 05] Open Mobile Alliance (OMA). OMA Service Provider Environment
Requirements. Candidate Version 1.0 - 14. June 2005.

[OMA 07] Open Mobile Alliance (OMA). Architecture Document OMA Service
Environment. Approved Version 1.0.4 - 01 Feb 2007. 2007.

[OMA 08a] Open Mobile Alliance (OMA). Policy Evaluation, Enforcement and
Management Callable Interface (PEM1). 2008.

[OMA 08b] Open Mobile Alliance (OMA). Policy Evaluation, Enforcement and
Management - Management Interface (PEM2). 2008.

[OMA 09] Open Mobile Alliance (OMA). Enabler Release Definition for Next
Generation Service Interfaces. Candidate Version 1.0 - 18 Nov 2009.

[OMG 97] Object Management Group. UML Specification version 1.1 (OMG
document ad/97-08-11). 1997. http://www.omg.org/cgi-bin/doc?ad/97-08-11

[OMG 08] Object Management Group. OMG MetaObject Facility. 2008.
http://www.omg.org/mof/

[OSC 03] The OWL Services Coalition. OWL-S: Semantic Markup for Web Ser-
vices. White paper. 2003.

[OSOA 09] Open Service Oriented Architecture collabora-
tion. Service Component Architecture Specifications.
http://www.osoa.org/display/Main/Service+Component+Architecture+
Specifications. April 2009.

[PacketCable 09] PacketCable 2.0. http://www.packetcable.com/specifications/
specifications20.html. 2009

162

Bibliography

[PC 07] N. Parlavantzas, G. Coulson. Designing and constructing modifiable mid-
dleware using component frameworks. Software, IET , vol.1, no.4. pp.113-
126. Aug. 2007.

[PF 02] S. Ponnekanti, A. Fox. SWORD: A developer toolkit for web service com-
position. 11th World Wide Web Conference, Honolulu, USA. 2002.

[PB 05] M. Presso, M. Belaunde. Applying MDA to Voice Applications: an Ex-
perience in Building an MDA Tool Chain. In: Hartman, A., Kreische, D.
(eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 1-8. Springer, Heidelberg.
2005.

[QLL 06] X. Qiao, X. Li, Y. Li. MDA-Based 3G Service Creation Approach and
Telecom Service Domain Meta-Model. The Journal of China Universities of
Posts and Telecommunications, Volume 13, Issue 2, pp.54-60. June 2006.
ISSN 1005-8885, DOI: 10.1016/S1005-8885(07)60104-6.

[RCC 09] Y. Rakaiby, F. Cuppens, N. Cuppens-Boulahia. Formalization and Man-
agement of Group Obligations. IEEE International Workshop on Policies for
Distributed Systems and Networks, pp. 158-165, 2009 IEEE International
Symposium on Policies for Distributed Systems and Networks. 2009.

[RSC+ 02] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.
Peterson, R. Sparks, M. Handley, E. Schooler. SIP: Session Initi-
ation Protocol. Request for Comments: 3261. Network Working Group,
<http://www.ietf.org/rfc/rfc3261.txt?number=3261>. June 2002.

[R 07] J. Rosenberg. Presence Authorization Rules. draft-ietf-simple-presence-
rules-10, work in progress. July 2007.

[R 07a] J. Rosenberg. The Extensible Markup Language (XML) Configuration
Access Protocol (XCAP). Request for Comments: 4825, Network Working
Group, <http://tools.ietf.org/html/rfc4825>. May 2007.

[SCF+ 97] R. Sandhu, E. Coyne, H. Feinstein, C. Youman. Role-based access con-
trol models. IEEE Computer, 29(2):38-47. 1996.

[SJ 07] C. Schroth, T. Janner. Web 2.0 and soa: Converging concepts enabling
the internet of services. IT Professional, vol. 9, no. 3, pp. 36-41. May 2007.
ISSN:1520-9202

[STM+ 07] H. Schulzrinne, H. Tschofenig, J. Morris, J. Cuellar, J. Polk, J.
Rosenberg. Common Policy: A Document Format for Expressing Pri-
vacy Preferences. Request for Comments: 4745. Network Working Group
<http://www.ietf.org/rfc/rfc4745.txt?number=4745>. February 2007.

[STM+ 09] H. Schulzrinne, H. Tschofenig, J. Morris, J. Cuellar, J. Polk. Geoloca-
tion Policy: A Document Format for Expressing Privacy Preferences for Loc-
ation Information. draft-ietf-geopriv-policy-21, work in progress. July 2009.

[RA 04] R. Shah, N. Apte. Web Services: A Business Module Packaging Strategy.
Prentice Hall PTR online article. Apr. 2004.

[SKS 07] D. Shirtz, M. Kazakov, Y. Shaham-Gafni. Adopting Model Driven De-
velopment in a Large Financial Organization. In: Akehurst, D.H., Vogel, R.,
Paige, R.F. (eds.) ECMDAFA 2007. LNCS, vol. 4530, pp. 172-183. Springer,
Heidelberg. 2007.

163

Bibliography

[SHP 03] E. Sirin, J. Hendler, B. Parsia. Semi-automatic composition of Web ser-
vices using semantic descriptions. Proc. of Web Services: Modeling, Archi-
tecture and Infrastructure workshop in conjunction with ICEIS 2003, April
2003.

[SL 02] M. Sloman, E. Lupu. Security and management policy specification.
IEEE Network, Special Issue on Policy-Based Networking, 16(2):10-19.
March/April 2002.

[S 06] M. Stal. Using Architectural Patterns and Blueprints for Service-Oriented
Architecture. IEEE Software, vol. 23, no. 2. Mar./Apr. 2006.

[SFH+ 04] J. Strassner, J. Fleck, J. Huang, C. Faurer, T. Richardson. TMF White
Paper on NGOSS and MDA. April 2004.

[TINA 97] TINA-C Deliverable. Service Architecture Version 5.0.
http://www.tinac.com/specifications/documents/sa50-main.pdf. 1997

[TMF 08] TeleManagement Forum. TR139 Service Delivery Framework Over-
view Release 2.0. September 2008.

[UP 07] A. Ulrich, A. Petrenko. Reverse Engineering Models from Traces to Val-
idate Distributed Systems - an Industrial Case study. In: Akehurst, D.H., Vo-
gel, R., Paige, R.F. (eds.) ECMDA-FA 2007. LNCS, vol. 4530, pp. 185-193.
Springer, Heidelberg. 2007.

[U 00] UPnP Forum. Understanding UPnP: A White Paper. Technical Report.
2000.

[VZM 00] I. Venieris, F. Zizza, T. Magedanz (Ed.). Object Oriented Software
Technologies in Telecommunications - From Theory to Practice. Wiley Pub-
lishers UK, April 2000. ISBN: 0471-6233792.

[W3C 07] W3C. SOAP Version 1.2. 2007. http://www.w3.org/TR/soap/
[W3C 07a] W3C. Voice Extensible Markup Language (VoiceXML) 2.1. 2007.

http://www.w3.org/TR/voicexml21/
[W3C 07b] W3C. Voice Browser Call Control: CCXML Version 1.0. 2007.

http://www.w3.org/TR/ccxml/
[W3C 07c] W3C. Web Services Policy 1.5 - Framework. 2007.

http://www.w3.org/TR/ws-policy/
[W3C 09] W3C. State Chart XML (SCXML): State Machine Notation for Control

Abstraction. 2009. http://www.w3.org/TR/scxml/
[W3C 09a] W3C. Web Application Description Language. 2009.

http://www.w3.org/Submission/wadl/
[WBG 08] K. Walzer, T. Breddin, M. Groch. Relative temporal constraints in the

Rete algorithm for complex event detection. Second international Conference
on Distributed Event-Based Systems (Rome, Italy, July 01 - 04, 2008). DEBS
’08, vol. 332. ACM, New York, NY, pp. 147-155, 2008.

[WR 04] P. Weill, J.W. Ross. IT Governance: How Top Performers Manage IT
Decision Rights for Superior Results. Harvard Bus. School Press, 2004. ISBN
1591392535.

[WW 06] T. Weigert, F. Weil. Practical Experiences in Using Model-Driven En-
gineering to Develop Trustworthy Computing Systems. In: IEEE Interna-
tional Conference on Sensor Networks, Ubiquitous, and Trustworthy Com-
puting (SUTC 2006), pp. 208-217. 2006.

164

Bibliography

[XTT+ 08] X. Shao, T. Chai, T. Lee, L. Ngoh, L. Zhou, M. Kirchberg. An In-
tegrated Telecom and IT Service Delivery Platform. 2008 IEEE Asia-Pacific
Services Computing Conference. APSCC. pp.391-396. 2008.

[YPG 00] R. Yavatkar, D. Pendarakis, R. Guerin. A Framework for Policy-based
Admission Control. Request for Comments: 2753, Network Working Group
<http://www.ietf.org/rfc/rfc2753.txt>. Jan. 2000.

165

Bibliography

166

Appendix A

Policy Rule Model

This section describes in more detail the proposed rule model within policies. The
description is based on the Common Policy Format specifications which define a
highly flexible and extensible policy model.

For a more efficient rule processing and management, rules define only what it is
“permited”. If several rules apply, the overall evaluation result represents the union
of each rule evaluation result. By default the evaluation decision equals “deny”.
Also in case the constraints of one of the matching rules are not respected the re-
quest is denied. In case of a “deny” decision the evaluation and respective actions
execution is abandoned and an appropriate error message is returned to policy eval-
uation requestor through PEM1 interface. Otherwise the actions execution will be
performed.

A rule is defined by the following rule model:

Name Occurs Description
ID 1 The unique id of the rule inside the policy.
Conflict Resolution
Extensions

0..1 Necessary extensions for conflict resolution.

Conditions 1 The “if” part of a rule. Based on the evalu-
ation result the actions execution proceeds or
not.

Actions 1 The “then” part of a rule. Contains actions
that must be enforced. Possible actions can
be of any type (e.g. setLocationScope, for-
wardToService) and will be processed by the
Policy Enforcement. The actions are defined
according to a predefined schema.

Table A.1: Rule Model

167

Appendix A. Policy Rule Model

A condition is composed of two parts:

1. Rule scope defines the input to which the policy applies.

2. Rule constraints define under which constraints the request is allowed.

The following picture depicts the schema details of the conditions. Because of its
dimensions it is split on several parts.

Figure A.1: Condition Model Part 1

The elements description of conditionsType is provided in the following table
A.2:

[H] Name Occurs Description
Originator ID 0..1 Values of the accepted originator identity (e.g

userID, roleID, personaID) for the rule in
question in order to apply. Part of the rule
scope.

OriginatorSrvIdentity 1 Accepted originator service identity.
TargetIdentity 0..1 Values of the accepted target identity (e.g

userID, roleID, personaID) for the rule in
question in order to apply. Part of the rule
scope.

TargetSrvIdentity 0..* Accepted target service identity.

168

Sphere 0..1 Part of the rule scope. Defines complex situ-
ations in which case the rule applies (it may
also include validations of information type
or reference). If it fails the rule evaluation
will be abandoned but the overall evaluation
process will continue.

Validity 1 Validity time of the rule. Part of the rule
scope.

Constraints 0..1 Restrictions on the input data. It may also in-
clude constraints regarding requested inform-
ation type of reference. It is the last part in a
rule that is evaluated. If it fails, a deny de-
cision is returned and the whole evaluation
process dropped.

Table A.2: Condition Model Part 1

identityType is defined by the following schema:

Figure A.2: Condition Model Part 2

The elements description of identityType is provided in the following table A.3.

Name Occurs Description

169

Appendix A. Policy Rule Model

One 0..* Defines for which identities the policy applies
(userID, persona ID). It referes to identities
that represent aggregation of identities with
size one.

Many 0..* Defines for which aggregation of identities
the policy applies (profile ID, role ID, profile
ID). In case the attributes are missing, it ap-
plies to all identities.

Except 0..* Part of the many element. Describes the iden-
tities that should not be considered when de-
ciding if “many” applies or not. (“Applies to
groupX except userY”)

Table A.3: Condition Model Part 2

The identitySrvType is similar with the one previously described but it applies to
services and service providers identities. The following image depicts this element
in detail:

Figure A.3: Condition Model Part 3

The elements description of the identitySrvType element is provided in the fol-
lowing table A.6.

Name Occurs Description
One 0..* Defines for which service identities the policy

applies (serviceID). It referes to identities that
represent aggregation of identities with size
one.

170

Many 0..* Defines for which aggregation of identities
the policy applies (service provider ID). In
case the attributes are missing, it applies to
all identities.

Except 0..* Part of the many element. Describes the iden-
tities that should not be considered when de-
ciding if “many” applies or not. (“Applies to
Service A except Service B”)

Table A.4: Condition Model Part 3

The constraintstype element of a rule is defined below:

Figure A.4: Condition Model Part 4

The elements description of the constraintsType element is provided in the fol-
lowing table A.5.

Name Occurs Description
booleanExpression
Type

0..1 Defines constraints of the parameters in a
boolean expression format.

eachDay 1 When the constraints are valid.
Day 0..* Defines granular times for the contraints

validity.
Table A.5: Condition Model Part 4

The booleanExpressionType element defines a boolean expression.It is com-
posed of elements which may form a boolean expression when they are evaluated.
The schema can be depicted in the following figure A.5.

171

Appendix A. Policy Rule Model

Figure A.5: Condition Model Part 5

The folowing table provides detailed information regarding the above defined
schema.

Name Occurs Description
and 0..* Boolean “and” operator.
or 0..* Boolean “or” operator.
startDelimiter 0..* Delimiter in a boolean expression (e.g. “(”)
endDelimiter 0..* Delimiter in a boolean expression (e.g. “)”)
operator 0..* Boolean operator defined by a comparison

operation name (e.g. “equal”), operandsType
(e.g. “string”) and match type (“noregx” = no
regular expression, “regx” = regular expres-
sion). It has two operands (operand1 and op-
erand2).

conditionalAction 0..* Action with requirements on the returned val-
ues. It will be evaluated as true or false de-
pending on the requirements resolution.

Table A.6: Condition Model Part 5

A conditionalActionType extends a normal action type by defining requirements
on parameters resulted from the evaluation of the action. It is part of the previosly
defined booleanExpressionType.

172

Figure A.6: Condition Model Part 6

The following table describes the main components of the conditionalActionType

element:

Name Occurs Description
actionType 1 The action which is executed. The model of

this type is defined in the following figure
A.8.

resultParams
Requirements

1 Define the requirements of the result paramet-
ers of the action execution. It evaluates as a
boolean expression.

Table A.7: Condition Model Part 6

Actions represent the “then” part of a rule. They are executed either by the policy
enforcer or by the policy evaluation requestor (e.g. a servic enabler). Actions,
depicted in the following figure A.7 with the type “actionsType”, are composed of
several actions of type “actionType” and of type “ifType”.

Figure A.7: Action Model Part 1

The above figures describe the skeleton of the actions and provide the possibility
of defining any kind of possible action. The following table A.8 describes more de-
tailed the above schema elements. Sequentially described actions will are executed
concurrently.

Name Occurs Description

173

Appendix A. Policy Rule Model

Action 0..* Action of type “actionType” which is de-
scribed in the following figure A.8. The
schema of this type is generic in order to cover
most of the possible actions.

If 0..* It is a special action used in order to minim-
ize the number of rules which have common
conditions. Integration of the “test” into the
“actions” part instead to the “conditions” al-
lows for a larger amount of actions to be set
up into the same rule. If the later approach a
rule should be created for each of the “then”
and “else” part of “if”. This granularity will
be decided by the creator of the policy.

Table A.8: Action Model Part 1

Figure A.8: Action Model Part 2

The following table A.9 describes in more detail the elements defined in the
previous schema for type “actionType”.

Name Occurs Description
id 1 Unique ID of the action inside a rule.
type 1 Predefined type of the action (e.g. “sendMes-

sage”).

174

attribute 0..* Attributes of the action (e.g. Parlay X Loc-
ation URL) necessary to prepare the action
execution. Defined by attribute “name” and
value.

parameter 0..* Parameters used in the action execution (e.g.
presentity, watcher). Defined by attribute
“name” and value.

parameterWith
Children

0..* Representation of complex data types neces-
sary for the action execution. Defined by at-
tribute “name”.

Table A.9: Action Model Part 2

The above figures describe the skeleton of the actions and provide the possibility
of defining any kind of possible action.

175

Appendix A. Policy Rule Model

176

Appendix B

Specification of a Telecom

JavaScript/JSON-RPC API

B.1 LoginHandler

LoginHandler does not represent a telecommunication service. It provides func-
tions for authentication. The authentication mechanism uses browser cookies to
save the session of the user. The function login checks if the user has permission
to access IMS telecommunication services. If the user has permission a sessionId
is stored in the cookie. All functions of IMS telecommunication services check if
the stored sessionId is valid before the access to the service.

B.1.1 Method Summary

static getSipUri()

Returns the sipUri of the user who is logged in.

static isAuthorized()

Checks if there is a valid user session.

static login (string username, string password)

Login with username and password.

static logout()

Logs out the user and destroys the dedicated user session.

177

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

B.1.2 Method Details

B.1.2.1 getSipUri

static getSipUri()

Returns the sipUri of the user who is logged in.

Returns:

sipUri if somebody is logged in otherwise null

B.1.2.2 isAuthorized

static isAuthorized()

Checks if there is a valid user session.

Returns:

true or false

B.1.2.3 login

static login(string username, string password)

Login with username and password. The login sets a browser cookie that is needed
for the user session. The cookie authenticates the user for using IMS telecommu-
nication services. The value of the cookie is the sessionId.

Parameters:

- username
- password

Returns:

sessionId on success otherwise null

B.1.2.4 logout

static logout()

Logs out the user and destroys the dedicated user session.

Returns:

true on success

178

B.2. ServiceCapabilities

B.2 ServiceCapabilities

This interface is quering for service capabilities of a logged in user and returns also
the service profile identifier of the user. The service capabilities are provided by a
Service Broker.

B.2.1 Method Summary

static getServices

Returns services from the Service Capability Manager of the user who is logged
in.

B.2.2 Method Details

B.2.2.1 getServices

getServices(function userCallback)

Get information about the last initiated, connected or disconnected VoIP call.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.
result contains:
- result.serviceCapabilities (list of services)
- result.serviceProfile (list of profile identifieres)

Returns:

including a list of service profiles definition and a list of services

B.3 AddressBook

Manage your contacts. Informations are stored on xdms resource-list

B.3.1 Method Summary

static addMember(function userCallback, string

groupName, string sipUri, string displayName)

Adds a new member to an existing group.

179

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

static createGroup(function userCallback, string

groupName, string displayName)

Creates a new group in your resource list.

static deleteGroup(function userCallback, string

groupName)

Removes a group from your resource list.

static deleteMember(function userCallback, string

groupName, string sipUri)

Removes a member from a group.

static getAddressBook(function userCallback)

Get all contacts of your addressbook.

getGroups(function userCallback)

Get a list of all groups in your address book.

static getMembers(function userCallback, string

groupName)

Get all members from a group.

static getMyProfile(function userCallback)

Get your own profile.

static getProfile(function userCallback, string sipUri)

Get the profile of a user.

static setProfile(function userCallback, UserProfile

userProfile) Set your own profile.

B.3.2 Method Details

B.3.2.1 addMember

static addMember(function userCallback, string

groupName, string sipUri, string displayName)

Adds a new member to an existing group.

180

B.3. AddressBook

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success
groupName - user will be added to this group
sipUri - sip uri of the new member
displayName - display name of the new member

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

B.3.2.2 createGroup

static createGroup(function userCallback, string

groupName, string displayName)

Creates a new group in your resource list.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success

groupName - internal name for the new group
displayName - display name for the new group

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

181

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

B.3.2.3 deleteGroup

static deleteGroup(function userCallback, string

groupName)

Removes a group from your resource list.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success

groupName - internal name for the group that should be removed

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns true on success

B.3.2.4 deleteMember

static deleteMember(function userCallback, string

groupName, string sipUri)

Removes a member from a group.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success

groupName - user will be removed from this group
sipUri - sip uri of the member

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

182

B.3. AddressBook

B.3.2.5 getAddressBook

static getAddressBook(function userCallback)

Get all contacts of your addressbook.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result[] contains array of
AddressBookBean: - result[].groupName
- result[].group_SipUri
- result[].MemberBean[]
MemberBean[] contains
- displayName
- sipUri

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns array of AddressBookBean.

B.3.2.6 getGroups

static getGroups(function userCallback)

Get a list of all groups in your address book.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result[] contains array of groups

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns true on success

183

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

B.3.2.7 getMembers

static getMembers(function userCallback, string

groupName)

Get all members from a group.

Parameters:

userCallback - userCallback(result[])function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result[] contains:
- list of sip uris
groupName - group name

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

B.3.2.8 getMyProfile

static getMyProfile(function userCallback)

Get your own profile.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:

- result.address
- result.communicationAddresses[]
- result.profileSipUri
- result.displayName
- result.givenName
- result.familyName
- result.birthDate
- result.addressCountry

184

B.3. AddressBook

- result.addressRegion
- result.addressCity
- result.addressStreet
- result.addressStreetNumber
- result.addressPostalCode
- result.gender
- result.freetext
- result.hobbies[]
- result.favouriteLinks[]

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns user profile

B.3.2.9 getProfile

static getProfile(function userCallback, string sipUri)

Get the profile of a user.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains user profile:

- result.address
- result.communicationAddresses[]
- result.profileSipUri
- result.displayName
- result.givenName
- result.familyName
- result.birthDate
- result.addressCountry
- result.addressRegion
- result.addressCity
- result.addressStreet
- result.addressStreetNumber
- result.addressPostalCode
- result.gender
- result.freetext

185

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

- result.hobbies[]
- result.favouriteLinks[]

sipUri - sip uri of the user

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns user profile

B.3.2.10 setProfile

static setProfile(function userCallback, UserProfile

userProfile)

Sets a profile.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success

userProfile - user profile of the user

- communicationAddresses[]
- profileSipUri
- displayName
- givenName
- familyName
- birthDate
- addressCountry
- addressRegion
- addressCity
- addressStreet
- addressStreetNumber
- addressPostalCode
- gender
- freetext
- hobbies[]

186

B.4. Call

- favouriteLinks[]

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

B.4 Call

Functions for initiating or receiving a VoIP call on a locally installed client.

B.4.1 Method Summary

static answerCall(function userCallback)

Connects an incoming call.

static cancelCall(function userCallback)

Cancels an initiated VoIP call that is not yet connected.

static endCall(function userCallback)

Hangs up a connected VoIP call.

static getCallInformation(function userCallback)

Get information about the last initiated, connected or disconnected VoIP call.

static makeCall(function userCallback, string

calleeSipUri)

Initiates a VoIP call.

static onConnectionStatusChange(function userFunction)

Assign a function that is invoked when call connection status changes.

static onIncomingCall(function userFunction)

Assigns a function that is invoked when an incoming call arrives and registers this
instance (browser or widget) for receiving incoming calls.

187

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

B.4.2 Method Details

B.4.2.1 answerCall

static answerCall(function userCallback)

Connects an incoming call.

Parameters: userCallback - userCallback(result) - function that is asynchronously
invoked when method returns. Set userCallback parameter to null to invoke a syn-
chronous call.

result contains:
true on success

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

B.4.2.2 cancelCall

static cancelCall(function userCallback)

Cancels an initiated VoIP call that is not yet connected.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success

Returns: no return value - callback function is invoked when message returns
If called synchronous: returns true on success

B.4.2.3 endCall

static endCall(function userCallback)

Hangs up a connected VoIP call.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when

188

B.4. Call

method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

B.4.2.4 getCallInformation

static getCallInformation(function userCallback)

Get information about the last initiated, connected or disconnected VoIP call.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
- result.callStatus
- result.duration
- result.startTime
- result.terminationCause

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns result parameters

B.4.2.5 makeCall

static makeCall(function userCallback, string

calleeSipUri) Initiates a VoIP call.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success

189

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

calleeSipUri - sip uri of the user that will be called

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

B.4.2.6 onConnectionStatusChange

static onConnectionStatusChange(function userFunction)

Assign a function that is invoked when call connection status changes.

Parameters:

userFunction - userFunction(status) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
status - CONNECTED / DISCONNECTED

Returns:

no return value

B.4.2.7 onIncomingCall

static onIncomingCall(function userFunction)

Assigns a function that is invoked when an incoming call arrives and registers this
instance (browser or widget) for receiving incoming calls.

Parameters:

userFunction - userFunction(incomingCallSipUri) - function that is invoked when
an incoming call arrives

Returns:

no return value

B.5 ConferenceCall

Conference Calls connect multiple users. The initiator of the conference may invite
new participants and disconnect users.

190

B.5. ConferenceCall

B.5.1 Method Summary

static createConference(function userCallback, string

description, int maxParticipants)

Creates a call conference with a various number of user.

disconnectParticipant(function userCallback, string

sipUri)

Disconnects a user from a running conference call.

static endConference(function userCallback)

Ends a running conference call.

static getCallInformation(function userCallback)

Get information about the actual call conference.

static getParticipantInfo(function userCallback,

string sipUri)

Get information about a conference participant.

static getParticipants(function userCallback)

Get a list of participants for the actual conference call.

static inviteParticipant(function userCallback, string

sipUri)

Adds a new participant to a running conference call.

B.5.2 Method Details

B.5.2.1 createConference

static createConference(function userCallback, string

description, int maxParticipants)

Creates a call conference with a various number of user. At the beginning the con-
ference has no user. Use inviteParticipant() function to add new users.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

191

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

result contains:
true on success
description - description for the conference
maxParticipants - max. number of participants

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns true on success

B.5.3 disconnectParticipant

static disconnectParticipant(function userCallback,

string sipUri)

Disconnects a user from a running conference call.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success
sipUri - sip uri of the participant

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns true on success

B.5.3.1 endConference

static endConference(function userCallback)
Ends a running conference call.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success

192

B.5. ConferenceCall

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns true on success.

B.5.3.2 getCallInformation

static getCallInformation(function userCallback)

Get information about the actual call conference.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains callInfo:
- result.duration
- result.conferenceDescription
- result.conferenceIdentifier
- result.maximumNumberOfParticipants
- result.numberOfParticipants
- result.owner
- result.startTime
- result.status

Returns: no return value - function is invoked when message returns.
If called synchronous: returns callInfo

B.5.3.3 getParticipantInfo

static getParticipantInfo(function userCallback, string

sipUri)

Get information about a conference participant.

Parameters: userCallback - userCallback(result) - function that is asynchronously
invoked when method returns. Set userCallback parameter to null to invoke a syn-
chronous call.

result contains:
- result.sipUri
- result.startTime

193

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

- result.status
sipUri - participants sip uri

Returns: no return value - callback function is invoked when message returns
If called synchronous: returns participant

B.5.3.4 getParticipants

static getParticipants(function userCallback)

Get a list of participants for the actual conference call.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
array of participants - result[].sipUri
- result[].startTime
- result[].status

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns participant array

B.5.3.5 inviteParticipant

static inviteParticipant(function userCallback,

string sipUri)

Adds a new participant to a running conference call

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success
sipUri - sip uri of the new participant

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

194

B.6. Location

B.6 Location

Location service group provides functions for getting location information of your-
self and other users.

B.6.1 Method Summary

static getLocation(function userCallback, string sipUri)

Get location information for a user

static getLocationForGroup(function userCallback, string

sipUris[])

Get location information for a list of users.

static getTerminalDistance(function userCallback, string

sipUris)

Computes the distance between yourself and another client.

static onChangeLocation(function userFunction)

Assigns a function that is invoked when location of one of the subscribed buddies
changes.

B.6.2 Method Details

B.6.2.1 getLocation

static getLocation(function userCallback, string sipUri)

Get location information for a user.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains location information:
- result.timestamp
- result.accuracy
- result.altitude
- result.latitude
- result.longitude

195

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

sipUri - sip uri of the user

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns location information

B.6.2.2 getLocationForGroup

static getLocationForGroup(function userCallback, string

sipUris[])

Get location information for a list of users.

Parameters:

userCallback - userCallback(result[]) - function that is asynchronously invoked
when method returns. Set userCallback parameter to null to invoke a synchron-
ous call.

result contains:
- result[].timestamp
- result[].accuracy
- result[].altitude
- result[].latitude
- result[].longitude
sipUris[] - sip uris of the user

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns location information

B.6.2.3 getTerminalDistance

static getTerminalDistance(function userCallback, string

sipUris)

Computes the distance between yourself and another client.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
distance in meter

196

B.7. Messaging

sipUris - sip URI of the user

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns distance in meter

B.6.2.4 onChangeLocation

static onChangeLocation(function userFunction)

Assigns a function that is invoked when location of one the subscribed buddies
changes.

Parameters:

userFunction - userFunction(sipUri, latitude, longitude) - function that is invoked
when an incoming location change arrives.

Returns:

no return value

B.7 Messaging

Messaging allows to send and receive instant messages from and to other IMS
users.

B.7.1 Method Summary

static getDeliveryStatus(function userCallback)

Get delivery information for a message that was just sent.

static onIncomingMessage(function userFunction)

Assigns a function that is invoked when an incoming message arrives and registers
this client (browser or widget) for receiving messages.

static sendMessage(function userCallback, string

calleeSipUris[], string subject, string content)

Sends a sip message to one or more users.

197

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

B.7.2 Method Details

B.7.2.1 getDeliveryStatus

static getDeliveryStatus(function userCallback)

Get delivery information for a message that was just sent.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains delivery status arrray:
- result[].addressURI
- result[].status

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns delivery status arrray.

B.7.2.2 onIncomingMessage

static onIncomingMessage(function userFunction)

Assigns a function that is invoked when an incoming message arrives and registers
this client (browser or widget) for receiving messages.

Parameters:

userFunction - userFunction(from,subject,content) - function that is invoked when
an incoming message arrives.

Returns:

no return value

B.7.2.3 sendMessage

static sendMessage(function userCallback, string

calleeSipUris[], string subject, string content)

Sends a sip message to one or more users.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when

198

B.8. Presence

method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success
calleeSipUris[] - array of sip uris who will receive the message
subject - message subject
content - message content

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

B.8 Presence

Functions to get presence state of other users and to set your own presence state.

B.8.1 Method Summary

static getUserPresence(function userCallback, string sipUri)

Get the actual presence state of a user.

static getUserPresenceList(function userCallback, string

sipUri)

Get the actual presence state for a list of users.

static onChangePresence(function userFunction)

Assigns a function that is invoked when presence status of a person changes that
you are subscribed to.

static publish(function userCallback, string

presenceStatus)

Set your own presence status.

static subscribeToAddressBook(function userCallback)

Subscribe to presence state of all user in a address book (usually OMA XDMS
resource-list).

static subscribeToMemberList(function userCallback,

string userSipUris[])

199

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

Subscribe to a list of users that you want to get noticed when their presence state
changes.

B.8.2 Method Details

B.8.2.1 getUserPresence

static getUserPresence(function userCallback, string

sipUri)

Get the current presence state of a user.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains presence status info:
- result.sipUri
- result.lastChange
- result.presenceStatus: ONLINE|OFFLINE|AWAY|BUSY
sipUri - sip URI of the user to retrieve the presence state

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns presence status info

B.8.2.2 getUserPresenceList

static getUserPresenceList(function userCallback, string

sipUri)

Get the actual presence state for a list of users.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains presence status info:
- result.sipUri
- result.lastChange
- result.presenceStatus: ONLINE|OFFLINE|AWAY|BUSY
sipUri - sip uri of the user, from whom you want to get the actual presence status.

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns presence status info

200

B.8. Presence

B.8.2.3 onChangePresence

static onChangePresence(function userFunction)

Assigns a function that is invoked when presence status of a subscribed identity
changes.

Parameters:

userFunction - userFunction(sipUri, presenceStatus) function that is invoked when
any of your subscribed buddies changes its presence state.

Returns:

no return value.

B.8.2.4 publish

static publish(function userCallback, string

presenceStatus)

Set a presence status.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success presenceStatus - ONLINE|OFFLINE|AWAY|BUSY

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

B.8.2.5 subscribeToAddressBook

static subscribeToAddressBook(function userCallback)

Subscribe to presence state of all user in a address book (usually OMA XDMS
resource-list). Use onChangePresence() to set the function that should be invoked
when user changes presence state.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

201

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

result contains:
true on success

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

B.8.2.6 subscribeToMemberList

static subscribeToMemberList(function userCallback,

string userSipUris[])

Subscribe to a list of users that you want to get noticed when their presence state
changes. Use onChangePresence() to set the function that should be invoked when
user changes presence state.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success
userSipUris[] - array of sip uris of the user you want to get noticed when presence
state changes

Returns:

no return value - callback function is invoked when message returns
If called synchronous: returns true on success

B.9 ShortMessaging

Use Short Messaging Services to mobile phones.

B.9.1 Method Summary

static getDeliveryStatus(function userCallback)

Get delivery status for a sms just sent

static sendSMS(function userCallback, string

calleeSipUris[], string subject, string content)

Sends a SMS to one or more mobile phones.

202

B.9. ShortMessaging

B.9.2 Method Details

B.9.2.1 getDeliveryStatus

static getDeliveryStatus(function userCallback)

Get delivery status for a sms just sent.

Parameters:

userCallback - userCallback(result[]) - function that is asynchronously invoked
when method returns. Set userCallback parameter to null to invoke a synchron-
ous call.

result contains smsstatus array:
- result[].phoneNumber
- result[].deliveryStatus

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns smsstatus array.

B.9.2.2 sendSMS

static sendSMS(function userCallback, string

calleeSipUris[], string subject, string content)

Sends a SMS to one or more mobile phones.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success
calleeSipUris[] - receiver sip uris
subject - message subject
content - message content

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns true on success.

203

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

B.10 ThirdPartyCall

Third Party Call initiates a call between two external participants. Participants can
be SIP addresses like sip:bob@yourdomain.com or classic telephone numbers.

B.10.1 Method Summary

static cancelCall(function userCallback)

Cancels an initiated call that is NOT yet connected.

static endCall(function userCallback)

Hangs up a connected third party call.

static getCallInformation(function userCallback)

Get information about the last initiated or connected third party call.

B.10.2 Method Details

B.10.2.1 cancelCall

static cancelCall(function userCallback)

Cancels an initiated call that is not yet connected.

Parameters:

userCallback . userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains: true on success

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: return value: true on success.

B.10.2.2 endCall

static endCall(function userCallback)

Terminates a call to a connected third party call.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when

204

B.10. ThirdPartyCall

method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
true on success

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: return value: true on success

B.10.2.3 getCallInformation

static getCallInformation(function userCallback)

Get information about the last initiated or connected third party call

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

result contains:
- result.callStatus
- result.duration
- result.startTime
- result.terminationCause

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns result (like asynchronous result variable)

B.10.2.4 makeCall

static makeCall(function userCallback, string

participant1, string participant2)

Initiates a call between two participants. The phone of the second participant rings
first.

Parameters:

userCallback - userCallback(result) - function that is asynchronously invoked when
method returns. Set userCallback parameter to null to invoke a synchronous call.

205

Appendix B. Specification of a Telecom JavaScript/JSON-RPC API

result contains:
true on success
participant1 - SIP URI or telephone number of the first participant
participant2 - SIP URI or telephone number of the second participant

Returns:

no return value - callback function is invoked when message returns.
If called synchronous: returns true on success.

206

Appendix C

Profile Policy Example

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <rule definedFor="request" id="r1" xmlns="http://urn/ietf/params/

xml/ns/common-policy">

3 <conditions>

4 <validity>

5 <from>2008-05-27T14:11:00.943Z</from>

6 <until>2010-05-27T14:11:00.943Z</until>

7 </validity>

8 <constraints>

9 <operator match="noregx" operandsType="string" name="

equal">

10 <operand1>fn:getTargetEnabler()</operand1>

11 <operand2>PresenceConsumerService</operand2>

12 </operator>

13 <or></or>

14 <operator match="noregx" operandsType="string" name="

equal">

15 <operand1>fn:getTargetEnabler()</operand1>

16 <operand2>PresenceNotification</operand2>

17 </operator>

18 <or></or>

19 <operator match="noregx" operandsType="string" name="

equal">

20 <operand1>fn:getTargetEnabler()</operand1>

21 <operand2>SendMessageService</operand2>

22 </operator>

23 <or></or>

24 <operator match="noregx" operandsType="string" name="

equal">

25 <operand1>fn:getTargetEnabler()</operand1>

26 <operand2>SendSMSService</operand2>

27 </operator>

28 <or></or>

29 <operator match="noregx" operandsType="string" name="

equal">

30 <operand1>fn:getTargetEnabler()</operand1>

207

Appendix C. Profile Policy Example

31 <operand2>GroupService</operand2>

32 </operator>

33 <or></or>

34 <operator match="noregx" operandsType="string" name="

equal">

35 <operand1>fn:getTargetEnabler()</operand1>

36 <operand2>MessageNotificationManagerService</

operand2>

37 </operator>

38 <or></or>

39 <operator match="noregx" operandsType="string" name="

equal">

40 <operand1>fn:getTargetEnabler()</operand1>

41 <operand2>PresenceNotificationService</operand2>

42 </operator>

43 <or></or>

44 <operator match="noregx" operandsType="string" name="

equal">

45 <operand1>fn:getTargetEnabler()</operand1>

46 <operand2>MessageNotification</operand2>

47 </operator>

48 <or></or>

49 <operator match="noregx" operandsType="string" name="

equal">

50 <operand1>fn:getTargetEnabler()</operand1>

51 <operand2>GroupManagementService</operand2>

52 </operator>

53 </constraints>

54 </conditions>

55 <actions/>

56 </rule>

Listing C.1: Profile Policy

208

Appendix D

Parlay X Presence Message

Manipulation

SOAP envelop of the Parlay X Presence service request:

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <ns2:getUserPresenceResponse xmlns:ns2="http://www.csapi.org

/schema/parlayx/presence/consumer/v3_2/local" xmlns:ns3=

"http://www.csapi.org/schema/parlayx/common/v3_1">

4 <ns2:result>

5 <lastChange>2010-06-30T17:44:39</lastChange>

6 <typeAndValue>

7 <UnionElement>Communication</UnionElement>

8 <Communication>

9 <means>

10 <priority>0.0</priority>

11 <contact>sip:aramis@fokus.fraunhofer.de</

contact>

12 <type>Chat</type>

13 <status>On</status>

14 </means>

15 </Communication>

16 </typeAndValue>

17 </ns2:result>

18 <ns2:result>

19 <lastChange>2010-06-30T17:44:39</lastChange>

20 <note/>

21 <typeAndValue>

22 <UnionElement>Activity</UnionElement>

23 <Activity>Busy</Activity>

24 </typeAndValue>

25 </ns2:result>

26 </ns2:getUserPresenceResponse>

27 </S:Body>

209

Appendix D. Parlay X Presence Message Manipulation

28 </S:Envelope>

Listing D.1: Parlay X Presence Service SOAP request

SOAP envelop of the manipulated response by the Service Broker:

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <ns2:getUserPresenceResponse xmlns:ns2="http://www.csapi.org

/schema/parlayx/presence/consumer/v3_2/local" xmlns:ns3=

"http://www.csapi.org/schema/parlayx/common/v3_1">

4 <ns2:result>

5 <lastChange>2010-06-30T17:44:39</lastChange>

6 <typeAndValue>

7 <UnionElement>Communication</UnionElement>

8 <Communication>

9 <means>

10 <priority>0.0</priority>

11 <contact>sip:aramis@fokus.fraunhofer.de</

contact>

12 <type>Chat</type>

13 <status>Off</status>

14 </means>

15 </Communication>

16 </typeAndValue>

17 </ns2:result>

18 </ns2:getUserPresenceResponse>

19 </S:Body>

20 </S:Envelope>

Listing D.2: Parlay X Presence Service SOAP response with deleted Activity set

210

Appendix E

PEM1 Input/Output Template

Examples

SOAP envelop of the PEM1 input request containing the originator’s and the re-
cipient’s address as well as context information characterizing the message itself.
The information are extracted from the incoming SIP request.

1 <ns2:policyInputData ... >

2 <policyInputTemplate>

3 <requestMessage>true</requestMessage>

4 <policyIdentifiers>

5 <originatorId>sip:alice@open-ims.test</originatorId>

6 <targetId>sip:bob@open-ims.test</targetIdD>

7 </policyIdentifiers>

8 <targetService name="ConvergedMessaging">

9 <targetServiceOperation namespace=""

10 name="InterworkingDecision">

11 <operationParameter name="Message-Mode">

12 PAGER_MODE

13 </operationParameter>

14 <operationParameter name="Message-Size">

15 729

16 </operationParameter>

17 </targetServiceOperation>

18 </targetService>

19 </policyInputTemplate>

20 </ns2:policyInputData>

Listing E.1: PEM1 input template

SOAP envelop of the PEM1 output response received from the Service Broker. The
user policy has been evaluated true (lines 3-4) and the <enforcementData>
element will be taken into account for the outbound messaging channel selection
process. Line 8 and line 10 contains the URIs to be used for the execution whereas
line 7 determines to route the message request to the SMS enabler.

211

Appendix E. PEM1 Input/Output Template Examples

1 <ns2:policyOutputData ... >

2 <policyOutputTemplate>

3 <StatusCode>2101</StatusCode>

4 <StatusText>Successfully evaluated</StatusText>

5 <enforcementData>

6 <enforcementAction id="4">

7 <enforcementActionOperation name="sms">

8 <enforcementActionOperationParameters>

9 tel:09969955776

10 </enforcementActionOperationParameters>

11 <enforcementActionOperationParameters>

12 tel:01243435353

13 </enforcementActionOperationParameters>

14 </enforcementActionOperation>

15 </enforcementAction>

16 </enforcementData>

17 </policyOutputTemplate>

18 </ns2:policyOutputData>

Listing E.2: PEM1 output template

212

	Title page
	Imprint

	Abstrakt
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Problem Statement
	Scope of the Thesis and Contribution
	Methodology
	Classification Properties of Key Interest
	Configurability
	Customisability
	Modifiability
	Network efficiency
	Powerfulness
	Scalability
	Simplicity

	Outline

	Service Principles in Telecommunications
	Service Evolution in Telecommunications
	The Plain Old Telephone System
	The Intelligent Network
	Telecommunication Information Networking Architecture Consortium
	Service Delivery for Next Generation Networks
	Open APIs in Telecommunications

	Standards and Fora
	3rd Generation Partnership Project
	Java Community Process
	Open Mobile Alliance
	Next Generation Service Interfaces
	OMA Service Environment
	OMA Service Provider Environment

	TeleManagement Forum
	IPSphere
	Service Delivery Framework

	Discussion

	Service Principles in Information Technologies
	Service Oriented Architecture Principles
	Main Characteristics
	SOA versus Web 2.0
	Classification of Service Invocation Technologies
	XML-RPC and Web Services
	REST and RESTful APIs
	JSON-RPC
	Classification

	Service Composition Principles
	Overview
	A Generic Service Composition Model
	Classification of Composition Expression Languages
	Business Process Execution Language
	Call Control XML and Voice XML
	State Chart XML
	Service Logic Graph
	Classification

	Model-Driven Engineering
	Base Standards and Technologies
	Strength and Weaknesses
	Strategies for applying MDE in Telecommunications
	Open API-based Meta-model Approach
	Domain-Specific Language Approach

	Process Constraint Principles
	Introduction
	Classes of Constraints
	Policy-based Constraint Expression
	Classification of Policy-based Constraint Definition
	Business Process Execution Language
	Common Policy
	WS-Policy
	eXtensible Access Control Markup Language
	Classification

	Discussion

	A Service Broker for converged Internet and Telecom Services
	Introduction
	Requirements
	Operator Perspective
	Service Developer Perspective
	Service Provider Perspective
	User Perspective

	Definition of an Information & Data Model
	User & Persona Model
	Associated Identifier Model
	Role Model
	Profile Model
	Service Subscription Model
	User Attributes
	Service History Model
	Policies

	Device Instance Model
	Device Class Model
	Service Provider Model
	Service Model

	Definition of a Policy Taxonomy
	Global Policy Model
	Profile Policy Model
	Role/Persona/User Policy Model
	Service Provider/Service Policy Model

	Definition of a Policy Formalism
	Architecture of the Service Broker
	Overview
	Key Assumptions
	Reference Architecture
	Interceptor/Proxy
	PEM1 Callable Interface
	Policy Evaluation Engine
	Policy Enforcement Engine
	Workflow Engine
	Service Registry
	Service Capability Manager

	Methodologies Integrated in the Platform
	Policy Evaluation/Enforcement Algorithm
	Network Abstraction & Service Exposure

	Engineering Trade-off of the Service Broker
	Flexibility versus Efficiency
	Discussion

	Validation
	A converged Internet / Telecommunications Service
	Service Discovery via SCM
	Policy-based Enforcement of Resource Constraints
	Policy-based Enforcement of Scheduling Constraints
	Policy-based Enforcement of Selection Constraints

	Modelling Hybrid Communication Services
	Role-based Service Development
	Modelling of Constraints

	Performance Analysis
	Policy Evaluation
	Execution of Service Compositions

	Conclusions

	Comparison with other Approaches
	Evaluation Criteria for Telecom Service Broker Systems
	Architecture-related Evaluation Criteria
	Functional Evaluation Criteria

	Survey of Service Broker Systems for Telecommunications
	Khan07
	Belaunde08
	Kirchberg08
	Bond08
	Moro09
	Matsumoto09
	Bauknecht09
	Jin09
	Baladron09
	Loreto09

	Comparison of Telecom Service Brokers

	Summary
	Conclusions and Impact
	Outlook
	Telecom Beta Developer Platform
	Cross-network, Cross-domain Information Sharing
	Cross-layer Composition

	Acronyms
	Bibliography
	Appendix
	Policy Rule Model
	Specification of a Telecom JavaScript/JSON-RPC API
	LoginHandler
	Method Summary
	Method Details
	getSipUri
	isAuthorized
	login
	logout

	ServiceCapabilities
	Method Summary
	Method Details
	getServices

	AddressBook
	Method Summary
	Method Details
	addMember
	createGroup
	deleteGroup
	deleteMember
	getAddressBook
	getGroups
	getMembers
	getMyProfile
	getProfile
	setProfile

	Call
	Method Summary
	Method Details
	answerCall
	cancelCall
	endCall
	getCallInformation
	makeCall
	onConnectionStatusChange
	onIncomingCall

	ConferenceCall
	Method Summary
	Method Details
	createConference

	disconnectParticipant
	endConference
	getCallInformation
	getParticipantInfo
	getParticipants
	inviteParticipant

	Location
	Method Summary
	Method Details
	getLocation
	getLocationForGroup
	getTerminalDistance
	onChangeLocation

	Messaging
	Method Summary
	Method Details
	getDeliveryStatus
	onIncomingMessage
	sendMessage

	Presence
	Method Summary
	Method Details
	getUserPresence
	getUserPresenceList
	onChangePresence
	publish
	subscribeToAddressBook
	subscribeToMemberList

	ShortMessaging
	Method Summary
	Method Details
	getDeliveryStatus
	sendSMS

	ThirdPartyCall
	Method Summary
	Method Details
	cancelCall
	endCall
	getCallInformation
	makeCall

	Profile Policy Example
	Parlay X Presence Message Manipulation
	PEM1 Input/Output Template Examples

