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1. Introduction

1. Introduction

1.1. What is it about?

Analysis of nonlinear systems is often connected to significant problems. Many
analysing methods do not work because they are based on benefits provided by the
superposition principle (which only holds for linear systems). Without superposi-
tion it is not possible to chop the whole system into smaller parts. Therefore one
complex problem has to be solved instead of solving a few easier ones.

Keeping this part in mind it is easy to understand why many analysing methods
fail for nonlinear systems. But how can a nonlinear system be analysed?

One possible solution will be discussed in detail on the following pages: Phase
Space Reconstruction (PSR) or also called Attractor Reconstruction.

PSR is a method to reconstruct the whole, multidimensional dynamics of a sys-
tem out of only one component. So only one dimension is needed to be able to
reconstruct the dynamics of a system with many dimensions. This affords fantastic
applications for different problems.

It can be used for the analysis of real data, where only one or a few components of
a dynamical system can be measured. One example is the investigation of measle
epidemics as done by B. Blasius et al. [3]. It is easy to measure the number of in-
fected persons, but the number of sucebtibles can not be provided. This component
which is important for the dynamics can be obtained by PSR.

Another application is the classification of attractors. To catch the behaviour of
a system it is necessary to distinguish between periodic and chaotic cases. The
analysis of the power spectrum can give some hints (as used e.g. by Fenstermacher
et al. for analysing a Taylor vortex flow [6]) but for more accurate results again
the whole dynamics are needed. After reconstruction the classification can be done

4



1.1. What is it about?

by calculation of the fractal dimension ([29], [5]) and identification of the Lyapunov
exponents ([35], [14]). An example for this application can be found in "Observation
of a strange attractor" by Roux et al. [24].
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Figure 1.1.: X component of a Rössler-attractor

PSR is also useful to get a general expression of the behaviour of a system. Whereas
a time series is often hard to interpret the whole dynamics are often a good hint for
what is happening exactly. An elementary example is the Rössler system designed
by O. E. Rössler [21].

Looking only at the x-component of this system (fig. 1.1) some periodicity is no-
ticeable but the varying amplitude is hard to explain. Taking a look at the recon-
structed attractor (fig. 1.2) helps to comprehend this phenomen much better. The
further knowledge enhances the ability of making predictions about the system.

There are already good methods for doing PSR, but a general structure which unites
all of them is still missing. So the question for this work is: Is there a general struc-
ture of all functions/methods that can be used for Phase Space Reconstruction?

The idea is to compare all these methods in the frequency domain because it seems
to be more natural for this process: Taking a look back to the roots of PSR which
were done for the detection of strange attractors one will find that the first ap-
proaches for getting information about the kind of attractor was to take a look
at the frequency distribution in the power spectrum (e.g. done in [9], [8], [6] or
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Figure 1.2.: Phase Space Reconstruction of a Rössler-attractor

[27]). At this point the power spectrum could deliver already some information
about the attractor. But Takens doubted in his article "Detecting strange attractors
in turbulence" [30] that the power spectrum contains enough information for recon-
struction. Instead he invented the time-delay method which uses the time series
directly.

His assumption of missing information in the power spectrum was probably right.
But still the use of frequencies for reconstruction looks natural using the association
that a frequency is some kind of rotation around some center. With this interpreta-
tion a single frequency becomes a two-dimensional cycle and a set of frequencies
something more-dimensional. Hence it gets more clearly why one can reconstruct
the whole dynamics using only one dimension as input: To get trajectories with-
out gaps and bends it is necessary that the dynamics contained in every dimension
are the same. That means that the frequencies of each dimension need to be repre-
sented also in all other dimensions. Hence the ansatz in this diploma thesis is to use
the complex frequency domain which is achieved by using the fourier transforma-
tion for reconstruction. It seems that this can provide a more intuive imaginitation
how the reconstruction process works compared using the time-series itself. And
in opposite to the powerspectrum one has no loss of information.

Presenting this work is done in the following way: The remaining part of chapter
1 provides some basic information which is necessary to understand the follow-
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ing chapters. It includes basic methods and definitions (1.2), dynamical systems
(1.3), and common methods for reconstruction (1.4). Chapter 2 takes a look at the
frequency domain. Classical reconstruction methods are transformed into it (2.2)
and a more general description of reconstruction methods is developed (2.3). Ac-
cordingly these new results are justified in chapter 3 and applied to some choosen
examples in chapter 4. Chapter 5 provides a selection of further results concerning
this topic as e.g. some thoughts about the universality (5.1) and plausibility (5.2) of
this reconstruction method. But also other useful additional results obtained dur-
ing this investigation are presented. At the end chapter 6 gives an overview about
all results and a preview for the steps that should be done next.

Appendix A contains further data concerning the numerical verification done in
chapter 3. Appendix B offers the sourcecode of the matlabfunction used for the
reconstructions in the frequency domain.

1.2. Basic methods and definitions

1.2.1. Dynamical System

A dynamical system is a system which is described by a given time evolution for
each point. That means after choosing a starting position in the ambient space the
dynamical system will describe the evolution in time of this state. For a dynamical
system this expansion is described by a deterministic formula, so that the time evo-
lution is well defined for each state without being influenced by stochastic factors.
That means knowing the exact starting position in the phase space and knowing the
dynamical equations allow to predict the system state for any time exactly. There
are two main types of dynamical systems: Systems continuous in time which are
described by differential equations (eq. 1.1) and systems discrete in time which are
described by maps (eq. 1.2).

~̇x(t) = ~g(~x) (1.1)

~xn+1 = ~g(~xn) (1.2)
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1.2. Basic methods and definitions

Both cases can be handled by PSR. In the case of PSR the equations of the dynamical
system are not known normally (otherwise there is no need for reconstruction). In-
stead PSR is working with so called "time series": The measured values of a variable
of the system at different times under fixed external conditions (eq. 1.3).

time series = (x(t1), x(t2), x(t3), ...) (1.3)

Examples for such a time series are the temperature measured every hour at one
location, or the counted number of sun spots measured each day. Mathematically
this time series can be described as a projection of the evolution of a point in phase
space onto a lower dimensional subspace.

1.2.2. Phase Space

To handle a dynamical system the phase space is an useful construction. It is the
space spanned by all variables which are defining the state of an object in the sys-
tem. So one can say it is the space in which the dynamical system is living. And
it is, as the name "phase space reconstruction" already suggests, the space that is
reconstructed by PSR. The time evolution of a state is represented by trajectories
in phase space which are constructed by drawing each state of the time evolution
into the phase space. These trajectories are giving information about the behaviour
of the system and are showing in which direction a point in the system evolutes.
Trajectories never intersect each other in phase space because the evolution at every
point is well defined (otherwise the evolution of a point at an intersection would
not be clear). This is an important characteristic to distinguish between a correct
and a wrong reconstruction of phase space.

1.2.3. Topological Equivalence

To understand what an embedding is one has to understand what topological equiv-
alence means: Two objects are topological equivalent if there is a deformation which
transforms one object to the other without destroying the surface of it. That means
that the object can be squeezed, distorted, pulled and even cut if it is at the end
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1.2. Basic methods and definitions

sticked together at the same place. But it is not allowed to cut connections without
resticking it or to agglutinate parts where no connection was before.

As an example a ball is topological equivalent to a desk but not to a doughnut.
Whereas a doughnut is topological equivalent to a cup. The reason is that cup and
doughnut contain exactly one hole whereas ball and desk have no hole in their
structure.

Another important point to keep in mind for the following considerations is the
option to cut an object and to reagglutinate it without changing its topology. Taking
only simple objects into account this opportunity might not be relevant but dealing
with more complex structures this is important to remind. It explains e.g. why
point reflected objects are topological equivalent to their original object. Without
cutting and reagglutination it is mostly not possible to transform an object to its
point reflected version. This remark will become important later on.

1.2.4. Embedding and diffeomorphism

Having the description of topological equivalence it is easy to understand what
an embedding is: An embedding is a representation of a system in phase space
which is topological equivalent to its original representation. That means that all
topological properties of the original system are also contained in the embedded
system. This relation can also be described more mathematically: An embedding
of an object A is a diffeomorphic map of A into another phase space. That means
that the map is bijective (one-to-one and onto), differentiable and its inverted map
is also differentiable. Hence every point in an embedding can be identified explicit
with a point of the original system and the embedding is smooth and has no corners
or gaps.

1.2.5. Frequency domain and power spectrum

Instead of saving values for each time t there is also another useful way of stor-
age: The frequency domain. In this case the data is presented for each frequency
ω instead for each time t. This presentation makes it easy to identify important
frequencies in the data or to filter explicit kinds of noise.
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1.2. Basic methods and definitions

To transform data from time to frequency domain the Fourier Transformation can
be used. One has primary to distinguish between four cases: The data is either dis-
crete or continuous and either finite or infinite. For the following work especially
two cases are relevant: The case of continuous data of infinite length presents the
optimal situation and therefore represents the basis on which the following consid-
erations will rely theoretically. In this case the Fourier transformation is done by
integration:

x̃(ω) =
1√
2π

∞∫
−∞

x(t)e−iωtdt (1.4)

Practically one has to deal with discrete and finite data. This is the situation for
which all considerations will be applied to. In the discrete situation the integral is
substituted by a limited sum and the available frequencies become discrete (ωk =

2πk/N for k = 0, ..., N − 1):

x̃(ωk) =
1
N

N−1

∑
t=0

x(t)e−iωkt (1.5)

Hence adverse the idealized continuous and infinite situation one has to deal with
some sources of error: Due to the discretization information is lost if the sampling
rate fs is too low. As shown in the Nyquist-Shannon sampling theorem the sam-
pling rate must be higher then two times the highest frequency contained in the
spectrum fmax: fs > 2 fmax (ω = 2π f ). Another problem is that some transforma-
tions as e.g. derivation are only defined for continuous data. Coevally the finite
length of time series generates the problem that transformation rules, that are valid
for the infinite case become more complex and therefore impracticable. A more
detailed discussion about this errors can be found in chapter 2 when Fourier Trans-
formation is applied directly for reconstruction.

Besides these differences it has to be noted that the results of both equations are
complex: The result contains information about the amplitude of each frequency
and also about its phase.

For analysing only the frequencies of a time-series the power spectrum P(ω) is
used. The powerspectrum of a process is defined as the squared modulus of the
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1.2. Basic methods and definitions

continuos Fourier transform x̃(ω) [15].

P(ω) = |x̃(ω)|2 (1.6)

One gets a real valued representation of all amplitudes. Before invention of Phase
Space Reconstruction this result was used to detect chaotic behaviour in a time
series.

In the case of discrete time-series we have to estimate the power-spectrum. One of-
ten used estimate is the so called periodogram which is just the squared modulus of
the discrete Fourier transform. But this approximation has to be handled carefully.
There are better methods for estimation the power spectrum (e.g. the modified pe-
riodogram method by P. Welch [32]). Further discussions about this problematic
can be found in "Nonlinear Time Series Analysis" by Holger Kantz and Thomas
Schreiber [15].

1.2.6. Attractor

An attractor describes the long-time behaviour of a system. Starting somewhere
within the phase space a trajectory will reach the attractor after some time. Hence
one can say that an attractor is the stable part of a system. This is meant in the
sence that this part will be reached by trajectories at any time while other parts will
be emptied. For an undisturbed system only the attractor will remain after some
time and normally only the attractor itself or trajectories similar to the attractor will
be observed. This gives the opportunity to understand a dynamical system only by
taking a look at the attractor. There are several different definitions of an attractor.
In general one can say that it is an area A within the phase space to which all (or
some - depending on the used definition) parts of the dynamical system will flow
to. A typical definition of an attractor A for a discrete dynamic g(x) as done by R.F.
Williams (1968) [34] is:

A is an attractor of the dynamic g(x) if,

1. g(A) ⊂ A. Points within A cannot escape anymore.

11



1.2. Basic methods and definitions

2. A has a neighborhood U so that f (U) ⊂ U and
⋂

i>0
gi(U) = A. Points within

U are attracted to A.

3. There is no A′ ⊂ A for which 1. and 2. is fulfilled. A is the smallest set for
which 1. and 2. holds, every point in A is important.

In other words: Once reached an attractor it cannot be left anymore (1), it attracts
points in its environment (2) and every point of the attractor is needed to fulfil the
first two requrirements - the whole attractor is really used (3).

A good overview concerning all these different definitions (including the given
one) and a less restrictive definition can be found in "On the Concept of Attractor"
by John Milnor (1985) [18].

1.2.7. Lyapunov Exponents

As shown the attractor contains important information about the dynamics of a
system. Hence it is worthwhile to study some characteristics of it. One question
is: What will happen with points started closely together? Will they come closer to
each other, will the distance remain nearly constant or will they spread?

To answer it one can take a starting point x0 with some small disturbance δ0 and
observe the exponential growth-rate λ of the disturbance:

x0 + δ0 → xn + δn (1.7)

In the case of an one-dimensional discrete system with map g(x) one assumes the
following exponential evolution of the disturbance δ:

δn = δ0eλn ⇒ λ =
1
n

ln
(

δn

δ0

)
(1.8)

With δn = gn(x0 + δ0) − gn(x0) and gn(x0) = n-times application of g on x0 one
gets

λ =
1
n

ln
(

gn(x0 + δ0)− gn(x0)

δ0

)
⇒ λ =

1
n

ln
(

d(gn)(x0)

dx

)
(1.9)
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1.2. Basic methods and definitions

The Lyapunov Exponent is now defined as the upper limit for n → ∞ of this ex-
pression and can be calculated for each dimension of a system separately.

λ(x0) = lim
n→∞

sup
1
n

ln
(

d(gn)(x0)

dx

)
(1.10)

The classically expected result for dissipative systems are negative Lyapunov ex-
ponents. The reason is that dissipation reduces the volume in phase space due to
the energy loss. This indicates that trajectories should come closer together and
that differences in the starting-position should be erased. Furthermore solely this
characteristic makes it possible to get the same results of an experiment for each ex-
ecution. Otherwise a small change in starting conditions (which happens generally
repeating an experiment) would cause completely different results. Hence many
error reduction methods are based on this reproducibility.

Nevertheless every attractor of a continuous dynamic which is bounded and not
a fixed point contains at least one vanishing Lyapunov exponent in direction of
the trajectory [11]. A negative Lyapunov exponent along the trajectory means that
points on the trajectory are pressed together. Hence the speed of the trajectory
would be reduced constantly. Such a behaviour has to end up in a fixed point.
For a positive exponent in this direction the trajectory would speed up constantly,
but within a bounded region this is not possible. The reason is that the dynamic
~̇x(t) = ~g(~x) does not permit a raising speed upto infinity for finite values of ~x
because of the continuity of ~g(~x).

At least there is also the possibility of positive Lyapunov exponents. In this cases
one observes an interesting phenomen: Chaos. Having a positive Lyapunov expo-
nent means that a small disturbance will raise exponentially. A cluster of points
starting closely together will be spreaded fast over the whole attractor. Hence the
starting position become more and more unimportant while the influence of distur-
bances raises. Long time predictions become impossible.

Keeping these different behaviours in mind one can now start to categorize differnt
attractor types. The kind of attractor can be described by its Lyapunov exponents.
A limit cycle in three dimensional space has e.g. (0,-,-) exponents (one vanishing ex-
ponent and two negative ones), that means that in two directions everything flows
together while the distance along the trajectory remains constant. A torus has be-
cause of its structure two vanishing and one negative exponent (0,0,-) and so on.
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1.2. Basic methods and definitions

1.2.8. Chaos and "Strange Attractors"

One reason why the study of attractors became so popular is the existence of so
called "Strange attractors": Attractors containing chaotic dynamics 1. In our every-
day life "chaos" means that something is in a way unsorted, mixed and without
any structure. It describes things which are hard to handle because of this features.
Surprisingly in math the word "chaos" is used to describe deterministic systems:
Systems which are completely systematic because they have rules which desribe
exactly how the system evolutes in time. Hence it is the precise opposite of the ev-
eryday life definition where every kind of rule is missing. The reason for the use of
the word "chaos" therefore is not its definition but its behaviour: these completely
deterministic systems become unpredictable! This fact is very surprising because
it looks strange that there should be a system for which one knows exactly its time
evolution but is not able to make any predictions.

If one knows exactly how to calculate the evolution of a state why should it be
impossible to make predictions? It seems as one would know everything about
the system what one needs to know, but in fact this assumption is wrong: The
problem can be understood well by using Lyapunov Exponents: In a strange at-
tractor one has at least one positive Lyapunov Exponent. This means that points
starting closely together will spread in time. But these systems also contain dissi-
pation. Hence there is another trend pushing the trajectories back together. This
process can be described as streching and folding. It is the typical characteristic of
chaotic systems: The trajectories are streched first, so that points closely together
flow apart and they are folded so that they do not leave the compact attractor. This
leads to a giant dependency on disturbances which outshines the starting position
completely. So the problem of prediction in chaotic systems is not the process of
time-evolution - this is well defined. The problem is the limited knowledge about
the starting conditions. Hence a prediction is only limited because the actual state
cannot be determined perfectly.

1In literature one finds different definitions of "strange attractors". I use the definition that an
attractor is strange if the underlying dynamic is chaotic. Other definitions requesting a fractal
dimension for a strange attractor. Using this alternative definition one can find strange attractors
which are not chaotic and chaotic attractors which are not strange [10]. However this discussion
is not essential for the following considerations. Hence, to simplify the situation I will just use
the phrase "strange attractors" for attractors of chaotic systems. Nevertheless it is important to
keep this differences in mind.
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1.2. Basic methods and definitions

Reading through literature there are many different definitions of chaos. I will use
the relatively broad definition offered by S.H. Strogatz [29]:

Chaos is aperiodic long-term behavior in a deterministic system that
exhibits sensitive dependence on initial conditions.

Related to the description of chaos above only the formulation "aperiodic long-term
behavior" is new: It is only a more mathematical description of its unpredictable
behavior.

Another interesting point about chaos is that for continuous systems it can only ex-
ist with more than two dimensions. The reason can be understand easily looking
at the Lyapunov Exponents: A continuous and chaotic system needs at least one
positive exponent for stretching, at least one negative component for folding and
one vanishing component along the trajectory. Hence a continuous chaotic system
must have at least three dimensions (+,0,-). In discrete systems there is not neces-
sarily a vanishing Lyapunov exponent. Therefore this rule cannot be applied on
discrete systems.

1.2.9. Whitneys embedding theorem

The previous parts showed the use of attractors and explained that knowing the
attractor means knowing the dynamical system. Hence the next step is to take
a closer look to the subject of this work itself: Attractor Reconstruction. Before
one can reconstruct a system some thoughts about the dimension one needs are
necessary. How many dimensions do one need that the attractor fits in it? Let
us assume a randomly chosen map of an attractor in another phase space. Will this
map be an embedding? An interesting answer is delivered by Whitneys embedding
theorem [33]. Using a for attractor reconstruction optimized formulation done by
Sauer et. al [26] it says:

Let A be a compact smooth manifold of dimension d contained in Rk.
Then Almost every smooth map Rk → R2d+1 is an embedding of A.

In other words: Given the collection of all maps of A into R2d+1 the probability to
choose an embedding is 1. By choosing an embedding dimension bigger than 2d
one can be relatively sure to get an embedding.
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Figure 1.3.: 2-dimensional representations of a Limit Cycle

To understand this statement better let us assume a limit cycle attractor (a closed
circuit). Its dimension is d = 1 so one should use a 3-dimensional space for re-
construction. But one knows that it is possible to present a limit cycle also in 2
dimensions (fig. 1.3(a)). Why should one use 3 dimensions? The problem in 2 di-
mensions are situations for which the reconstruction fails. Fig. 1.3(b) is no proper
embedding because of its intersection. Looking at the situation of an embedding
in 3 dimensions as required by Whitneys embedding theorem (fig. 1.4) one can see
that an intersection is also possible. The crucial difference between both cases is its
behaviour for small changes within the mapping: Imagine a small change in the
mapping of fig. 1.3(b). The position of the intersection probably would change a
bit but the intersection would still remain. Imagine the situation in 3 dimensions
nearly every small change in the map would remove an intersection. The reason
is the higher degree of freedom. And that is exactly the point: Whitneys theorem
delivers the dimension in which the probabilty for an intersection falls down to
zero.

Following approach can be also helpful for comprehension: Given two d1- and
d2-dimensional objects N and M placed in a dspace-dimensional space. Then the
expected dimension dover of the overlap of both objects will be the sum of the
object-dimensions subtracted by the space dimension (compare the limit cycle ex-
ample):

dover = d1 + d2 − dspace (1.11)
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Figure 1.4.: 3-dimensional embedding of a Limit Cycle

For the situation of a self-intersection both objects become the same with dimension
d1 = d2 = d.

dover = 2 · d− dspace ⇒ dspace = 2 · d− dover (1.12)

For an embedding there must not be any overlap. Hence the dimension of the
overlap dover must be at least -1 or smaller:

dspace ≥ 2 · d + 1 (1.13)

And finally one receives the equation provided by Whitneys embedding theorem.

Remark: Whitneys embedding theorem is powerful. It delivers important infor-
mation about the optimal dimension for reconstruction. Nevertheless it does not
say that nearly every map can be used for Phase Space Reconstruction. The rea-
son is that possible maps for reconstruction only depend on one component of the
original attractor per definition. This means that the group of all possible recon-
struction functions is only a vanishing small subset of all possible maps. Because
of this strong restriction the probability to get an embedding could be smaller than
1, it could possibly also be 0. Also it is not clear if this additional restriction allows
to change the mapping in a way that a false embedding become a true one. Hence
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1.2. Basic methods and definitions

it is important to keep in mind that Whitneys embedding theorem says something
about the optimal dimension for reconstruction but it does not say anything about
the probability that a reconstruction is an embedding!

1.2.10. False Nearest Neighbours

Whitneys embedding theorem delivers information about the optimal embedding
dimension for a known attractor. But for measurement data the underlying system
normally is not known. Therefore it is necessary to have additional tools for esti-
mation of the embedding dimension. One possible solution is the so called "False-
Nearest-Neighbours"-method. It bases on the idea that in the case of a too low
dimensional embedding points will become direct neighbours which normally lie
far away of each other. At the same time it is not possible to disperse real neigh-
bours by using a too high embedding. To find the optimal embedding dimension
d one has just to increment the embedding dimension starting with d = 1 and to
test which points are neighbours in this actual embedding. Increasing the dimen-
sion this number of neighbours will decrease: The false nearest neighbours will be
reduced step by step. The optimal embedding dimension will be reached when the
number of neighbours does not decrease anymore. This happens when only true
nearest neighbours remain. Hence the attractor is embedded correctly.

Imagine a simple limit cycle. Using a too high embedding the attractor will still
remain as limit cycle. Direct neighbours will remain as direct neighbours. Using
only a one-dimensional embedding the attractor is projected on one line. One sides
of the limit cycle will be folded on the other side. Therefore some points that were
before on the opposite will now become neighbours.

This method is not used on the following pages. For analysing the reconstruction
itself it is more useful to work with systems that are fully known. Anyhow it is
important to be familiar with this method when applying it to real measurement
data. A more detailed description concerning the optimal embedding dimension
and a presentation of alternative methods can be found e.g. in [15] or [29].
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1.2. Basic methods and definitions

1.2.11. Fractal dimension

Another important property of chaotic attractors is its fractal structure: Mostly they
do not have an integral dimension. To understand this phenomena is it necessary
to know how the dimension can be measured. Actually there are several measures
for it. The best measure to understand its functionality is probably the box dimen-
sion:

The box dimension takes a look at the scaling of an object. For that purpose the ob-
ject is covered with boxes of the same edge length ε. The relation between number
of needed boxes N and edge length ε delivers the dimension D of the object:

N(ε) ∝ ε−D (1.14)

Choosing ε big means that the resolution for analysing the attractor is low. Hence
the definition of the Boxdimension uses the limit of ε → 0 to make sure that every
detail of the attractor is included in the result. After some transformations one gets
the final formula:

DBox = − lim
ε→0

ln(N(ε))

ln(ε)
(1.15)

Another measure for the dimension is the so called information dimension DI .
It bases on the same idea but works with probabilities. This definition delivers
slightly different results (in general one can say DI ≤ DBox) but can also be used to
describe fractal objects:

DI = − lim
ε→0

N(ε)

∑
i=1

Pi(ε) log(Pi(ε))

log(ε)
with

N(ε)

∑
i=1

Pi(ε) = 1 (1.16)

Pi(ε) is the probability to find a particle in the i-th space-area (the probability to
find the particle in the whole space is 1).

Applying this concept on real time series also the numerical aspect becomes rele-
vant. A limited set of points has dimension 0 by definition. Hence for a discrete
dataset the dimension of the underlying attractor has to be approximated. One of
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1.3. Some dynamical systems

the numerical fastest ways is to calculate the correlation dimension d2. For this
dimension first the correlation integral has to be calculated:

C(ε) = lim
n→∞

1
N

n

∑
i=1

i−w

∑
j=1

H(ε− |sj − si|) (1.17)

N is the number of summands and n is the number of used points. si stands for
the i-th point of the used data in phase space. H is the Heaviside-function which
has value 1 for inputs greater 0 and value 0 for all other inputs and w is the Theiler
window which prevents counting of temporally correlated pairs (otherwise the cal-
culated dimension will be too small [31]). Hence the correlation integral counts
all pairs of points which have a distance smaller than ε excluding pairs of points
which were recorded approximately at the same time. Increasing ε the number
of pairs with a distance less than ε will raise. The exponent of this raising is the
correlation dimension d2.

C(ε) ∝ εd2 ⇒ d2 = lim
ε,ε′→0

ln
(

C(ε)
C(ε′

)
ln
(

ε
ε′
) (1.18)

Numerically d2 will be derived by averaging d2 for different ε or by fitting a straight
line in a log-log-plot of C(ε) over ε.

For the following work it is not important to get to know about other measures
of fractal dimension and differences between them, hence I will only provide this
basic information. Important to know is that the fractal dimension should only
depend on the measure that is used and the attractor that is measured but not on
its embedding. Hence the fractal dimension is such as the Lyapunov-exponents a
good measure to test if an embedding was successful. For an correct embedding
one should recieve the correct fractal dimension.

1.3. Some dynamical systems

For testing the functionality of reconstruction methods dynamical systems are needed.
PSR is mostly applied to real measurement data. By contrast for testing purposes
it is more helpful to use systems which are already known exactly. At the same
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1.3. Some dynamical systems

time most interesting systems are strange attractors. Hence I will use four different
chaotic systems for presenting and comparing different reconstruction methods.
The choice was done arbitrarily so any other attractor could also be used for the
following parts.

1.3.1. Lorenz Attractor
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Figure 1.5.: Lorenz attractor

One of the first presented deterministic systems with chaotic behavior was a simple
model for cellular convection invented by E. Lorenz [17]. Because of its low dimen-
sionality and its - for a chaotic system - clear structure it is one of the most used
examples for strange attractors. It is described by the following equations:

ẋ1 = σ(x2 − x1) (1.19)

ẋ2 = −x1x3 + rx1 − x2 (1.20)

ẋ3 = x1x2 − bx3 (1.21)

It becomes chaotic for certain parameters. One possible choice to produce chaotic
behaviour which is used for all following examples is σ = 10, r = 28 and b = 8/3
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1.3. Some dynamical systems

(fig. 1.5). For calculations a dataset was used with starting coordinates x1 = x2 =

x3 = 5, timestep ∆t = 0.01 and length of 100000 points.

1.3.2. Rössler Attractor
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Figure 1.6.: Rössler attractor

The Lorenz attractor is simple for a chaotic system. However it is still too complex
for some analysing methods. Therefore O.E. Rössler built a "model of a model"
which should described the basic characteristics of the Lorenz system [21]. Instead
of two spirals this system only contains one (fig. 1.6). For rebuilding the Lorenz
system with the used parameters above Rössler got:

ẋ1 = −(x2 + x3) (1.22)

ẋ2 = x1 + 0.2x2 (1.23)

ẋ3 = 0.2 + x3(x1 − 5.7) (1.24)

Another interesting property of the Rössler system is its mixture of chaotic and pe-
riodic elements. Taking a look at x1 or x2 one will find functions with well defined
periodicities combined with chaotic amplitudes.
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1.3. Some dynamical systems

For my work I used a dataset with 100000 points, starting from x1 = x2 = 4, x3 = 0
with timestep ∆t = 0.005.

1.3.3. Hénon Map
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Figure 1.7.: Hénon attractor

Another ansatz to build up a simple chaotic system was done by Hénon [13]. The
goal was to create a system which has similar properties compared to a Lorenz
system but with simpler equations. This should reduce the amount of calcula-
tions needed for a simulation. Therefore he tried to rebuild the Poincare map of
a strange attractor instead of rebuilding the whole trajectories. The result was a
two-dimensional discrete map with chaotic behaviour.

xn+1 = 1 + yn − ax2
n (1.25)

yn+1 = bxn (1.26)

For a = 1.4 and b = 0.3 one gets a chaotic behaviour of this system. It is a good
example to test the embedding of discrete systems and will be used in this way on
the following pages.
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1.3. Some dynamical systems

The used dataset has 100000 points and starts from x1 = 0.7, x2 = 0.002.

1.3.4. Hyperrössler Attractor
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Figure 1.8.: Hyperrössler attractor

Another class of chaotic systems are so called "hyperchaotic systems". In contra-
diction to chaotic objects these systems contain at least two positive Lyapunov Ex-
ponents. Hence hyperchaos is more chaotic and higher dimensional than chaotic
systems. I will use a 4-dimensional hyperchaotic system invented by Rössler ([23],
[22]) which is closely connected to the Rössler system introduced before.

ẋ1 = −x2 − x3 (1.27)

ẋ2 = x1 + 0.25x2 + x4 (1.28)

ẋ3 = 3 + x1x3 (1.29)

ẋ4 = −0.5x3 + 0.05x4 (1.30)

It is a good example for testing reconstructions with a more complex system. For
that purpose I use a time series with 150000 points starting from x1 = −10, x2 = −6,
x3 = 0, x4 = 10 with a time step ∆t = 0.001.
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1.4. Common methods for attractor reconstruction

1.4. Common methods for attractor reconstruction

1.4.1. Time Delay

Time delay was one of the first published methods for reconstruction (see [30] [20])
and is today the most frequently used one. One reason is probably that Floris Tak-
ens could present very early a mathematical proof for its functionality. The other
reason is its good usability: The additional coordinates are built using the original
time series shifted in time with a delay τ. So the reconstructed system v(t) has the
structure:

v(t) = (x(t), x(t + τ), x(t + 2τ), ...) (1.31)

This is easy to handle for real measurement data because the reconstruction itself
does not need any complex calculations. Instead the time series can be used directly.
It also has the benefit that every dimension shows the same noise level.

Analysing discrete systems a reconstruction with τ = 1 can also be interpreted very
well because it follows the structure of discrete equations (xn+1 = f (xn)...). Hence
one can say that it is some kind of natural reconstruction for these systems.

A disadvantage is the introduction of the parameter τ which has to be determined
first. Takens embedding theorem says that nearly every τ gives a correct embed-
ding but there are qualitative differences between these choices. Therefore it is
necessary to calculate a proper delay τ first. At the same time the possibilities of
optimizing the reconstruction is limited due to its definition. To get better results
multiple time delays were introduced which make the reconstruction even more
complex.

v(t) = (x(t), x(t + τ1), x(t + 2τ2), ...) (1.32)

Nevertheless most papers published about attractor reconstruction are working
only with time delay reconstruction and many papers are offering more efficient
ways to calculate the correct embedding dimension and embedding delays.
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1.4. Common methods for attractor reconstruction

1.4.2. Derivation

Another early published but not so well known method is a reconstruction using
the derivatives of the original function (see [20]).

v(t) = (x(t),
dx(t)

dt
,

d2x(t)
dt2 , ...) (1.33)

Whereas most dynamical systems can be reconstructed very well using time delay
coordinates there are also many cases for which the derivation method has some
advantages. There are more numerical calculations necessary to get the new coor-
dinates. In return this method needs only the reconstruction-dimension as input,
no more values are introduced. This reconstruction gives often better results if the
dynamical system bases on differential equations. In this cases the reconstruction
has a similar structure as the original system and it is often possible to get a proper
reconstruction in a lower dimension compared to time delay.

Hence time delay delivers correct reconstructions for nearly every system but often
it is possible to get the same results in a lower dimension using other methods. The
latter bears big advantages because a lower dimension also means better opportu-
nities for working with the system.

Because of its structural similarity to differential equations the reconstructed di-
mensions are often easier to identify with physical properties of a system and there-
fore the reconstruction is often better to explain physically compared to a recon-
struction with time delay.

On the other hand the derivation method has the disadvantage that the coordinates
have different noise levels because of their different dependency on frequencies
(high frequencies are amplified through derivation).

1.4.3. Integration

Reconstruction with integration is the opposite method of derivation.

v(t) = (x(t),
t∫

0

x(t′)dt′,
t∫

0

 t′∫
0

x(t′′)dt′′

 dt′, ...) (1.34)
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1.4. Common methods for attractor reconstruction

It has similar pros and cons but does not work for real data as good as derivation.
The reason is its high dependency on low frequent noise. This leads to the prob-
lem that it only gives useful results in a combination with some moving average
noise reduction or a similar technique. Some further discussions and explanations
concerning integration reconstruction were done by Blasius et al. [3] and Gilmore
[7].

1.4.4. Hilbert-Transformation

Hilbert Transformation is a method which is used to calculate the imaginary part of
a signal. For this reason it is often applied in electronics to determine the complex
impedance of an electrical system. This is its main application but it can also be
used for reconstruction of other systems. Its behaviour can be described best taking
a look at the frequency domain. There it is a rotation around the origin. Positive
frequencies are rotated +π/2, negative ones −π/2.

v(t) = (x(t), IFFT (i · sign(ω) · FFT (x(t))) (1.35)

(FFT = Fast Fourier Transform, IFFT = Inverse Fast Fourier Transform)

The method needs some numerical calculations to get the additional dimension
but is easy to use because of the absence of selectable parameters. It also does not
change the noise level and conserves the most important properties of the origi-
nal time series. The big disadvantage is its limitation to only one additional re-
construction dimension. So only a two-dimensional embedding is possible. This
disqualifies the method for most situations. Anyhow it will help to understand the
following ideas and will also be useful within the new methods presented in this
work.
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2. Look at the frequency-domain

2.1. Motivation

As we have seen above there are a few different methods for achieving the same
goal. At the same time all these reconstructions have a quite different appearance
in the time domain. Therefore the questions are:

• Why are all these methods producing similar results? (they are all offering
proper embeddings)

• Are there more reconstructions that can be used?

• What are the requirements for a map that it can be used as a reconstruction?

To answer this questions one needs to find a representation for which all these
methods get a similar shape. The following pages will show that the frequency
space is offering such a structure. There are primary two reasons that can motivate
the use of the frequency space:

1. Using a time-series it is actually hard to imagine "where" information about
the other dimensions is stored. Reconstruction appears in a way magical.
Working in the frequency space the reconstruction process becomes more ev-
ident: Instead of time one handles with frequencies and they are closely con-
nected with motion on a circle. Therefore at least one single frequency has
already some kind of two-dimensional interpretation. Using more frequen-
cies a more-dimensional interpretation becomes more obvious.

For understanding of this motivation let us take the picture of a frequency as
a motion on a circle: Intuition will predict that every frequency contained in
one dimension should also be contained in all other dimensions. Intuitively
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2.2. Common methods

the only exception of this should be the non-generic case of a dimension that
stands orthogonal on the flow.

2. Before Phase-Space-Reconstruction was invented the power spectrum of a
function was used to determine chaotic behaviours. On its basis it was easier
to detect signs for chaotic characteristics. But the power spectrum has the big
disadvantage that the phase-information is neglected. Therefore it cannot be
used for reconstruction and Takens began to use the time-series directly. But
still it remains reasonable to work with frequencies for reconstruction. Hence
the solution is to work with the fourier transform which uses a frequency-
representation without neglecting the phases.

Most likely this argumentations are easy to challenge but one has to keep in mind
that these are only motivations. They should be understood as indications for the
following pages.

2.2. Common methods

2.2.1. Time Delay

Using the Fourier-transformation a time delay nτ in the time domain becomes a
multiplication with the exponential function eiωnτ in the frequency domain.

xn+1(t) = x(t + nτ) ⇒ x̃n+1(ω) = x̃(ω) · eiωnτ (2.1)

It has to be remarked that this representation is valid for the case of infinite time
series. For real data one has to deal with finite data. Also the numerical ways of
getting the additional coordinates are completely different. For the classical method
one has only to shift the data. In the new case one has to transform the data to
the frequency domain, multiply it with a frequency-depending factor and have to
transform it back to the time domain. So it is necessary to compare both realizations
to test the assumption that both ways producing the same result.

Figure 2.1 shows the example of a Lorenz attractor [17] reconstructed with both re-
alizations. As expected both ways provide the same results with only two small
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Figure 2.1.: Time-Delay reconstruction of a lorenz system using the x-axis: Comparison
between the classical method shifting the data (2.1(a)) and the emulated version in
frequency-space using a multiplication with exp(iωnτ) (2.1(b)).

exceptions (marked red, fig. 2.1(b)). These wrong trajectories are caused by bound-
ary effects due to the finiteness of the time series. Equation 2.3 shows the difference
of the finite calculation. Because of the limited dataset one gets some additional
terms which are rising with time-shift τ:

n

∑
t=0

x(t + τ)e−iωt =
n+τ

∑
t=τ

x(t)e−iω(t−τ) (2.2)

=
n

∑
t=0

x(t)e−iω(t−τ) +
n+τ

∑
t=n+1

x(t)e−iω(t−τ) −
τ−1

∑
t=0

x(t)e−iω(t−τ)

︸ ︷︷ ︸
difference to continuous case

One could use now the exact formula but this would gain the complexity of further
calculations. Instead it is more practicable to keep this problem in mind and deal
with it.

In case of time delay both lines have the length τ and can be easily removed just cut-
ting the ends of the reconstructed datasets (in the classical case we also have to cut
the ends of our datasets because of the shifting). Finally after cutting one receives
two reconstructed datasets with the same length and values. So exactly the same
reconstruction is received with the continuous formula using some corrections at
the end.
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One remark has to be made at this stage: The result above is only valid if no infor-
mation is lost due to the Fourier Transformation. This induces that the sampling
rate fulfilled the Nyquist-Shannon sampling condition!

A similar result is found looking at the example of a discrete Hénon map (fig. 2.2).
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Figure 2.2.: Time-Delay reconstruction of a discrete hénon map using the x-axis: Com-
parison between classical method (2.2(a)) and emulation in frequency space (2.2(b)).
The used delay is τ = 1.

The classical method produces nearly the same result compared to the reconstruc-
tion in fourier space. Also both reconstructions are similar to the original system.
As in the example of Lorenz system the reconstruction delivers one wrong point
(only one point because of τ = 1) marked red in fig. 2.2(b).

Another visible but not fundamental difference is the absolute position of the at-
tractor. This is caused by the syntax I used for reconstruction in frequency space:
Using time-delay the component for ω = 0 has normally to be multiplied with
exp(iτ · 0) = 1. My explicit realization in frequency space instead sets this compo-
nent to zero. The reason for this choice is to prevent singularities for ω = 0 which
are e.g. produced by integration reconstruction in chapter 2.2.3. Actually this con-
stant shift does not infect the quality of an embedding. Hence it does not matter if
this part is removed or not.

2.2.2. Derivation

Derivation of a function in time domain becomes a multiplication with the function
f1(ω) = iω in frequency domain. Hence the transformation gets the structure:
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xn+1(t) =
dnx(t)

dtn ⇒ x̃n+1(ω) = x̃(ω) · (iω)n (2.3)

Fig.2.3 compares the classical derivation reconstruction of a Rössler system [21]
with its emulation in frequency space.
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Figure 2.3.: derivation reconstruction of a Rössler attractor using the x-axis: Compar-
ison between classical realization (2.3(a)) and its idealized counterpart in frequency
space (2.3(a)).

Also for derivation reconstruction one receives similar results for both realizations.
But compared to the results of time-delay the differences are bigger: In contrast to
time-delay the disturbances are not primary produced due to the finiteness of the
used time series. More problematic becomes the discretization of data: For discrete
data it is not possible to calculate its derivation in the time domain. Instead the
difference between two following points is used as approximation. Coevally the
counterpart of an exact derivation was used in frequency space for reconstruction.
In case of continuous data the result would be the same but for discrete data the
operations differ. Nevertheless the results are still comparable. The disturbances
in the alternative reconstruction are only situated at beginning and end of the time
series. Therefore it is easy to remove these parts.

Alternatively it is also possible to use the exact counterpart of the used deviation
instead of the derivation (eq. 2.4).
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x2(t) =
x(t + dt)− x(t)

dt
⇒ x̃n+1(ω) = x̃(ω) ·

(
eiωdt − 1

dt

)n

(2.4)

Fig. 2.4 shows the result applying this accurate emulation of the used reconstruc-
tion. The difference to the classical case (fig. 2.3(a)) are two wrong points caused
again by boundary effects due to a delay of τ = 1 (beyond the plotting range of the
figure).
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Figure 2.4.: alternative derivation reconstruction of a Rösslersystem using the x-axis:
exact emulation of the classical reconstruction reconstruction (2.3(a)).

Because of its easier handling only equation 2.3 will be used for the following ex-
amples. But there is no problem to use also the exact transformed equation. Both
methods can be applied in the same way and the choice only depends on the re-
quirements the experimentalist has for reconstruction.

2.2.3. Integration

Without taking notice of the mentioned problems of integration reconstruction (chap-
ter 1.4.3) the integration reconstruction becomes a division with iω in frequency
space. As the counterpart of derivation reconstruction this result gets clear imme-
diately.
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x2(t) =
t∫

0

x(t′)dt′ ⇒ x̃n+1(ω) = x̃(ω) · 1
(iω)n (2.5)

As explained before this result normally cannot be applied directly on a time series
because of its magnification of low frequent disturbances. However the aim at this
point is to understand the reconstruction structurally and not to find the practically
most valuable method. This can be reached best by comparing first the idealised
and most simplified reconstruction version before taking a look at its practical is-
sues. Hence 2.5 gives a comparison between the skeletal structures of classical in-
tegration reconstruction and its emulation in frequency space.
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Figure 2.5.: reconstruction with integration of a Rössler attractor using the x-
component: Comparison of the standard method (2.5(a)) with its emulated counterpart
(2.5(a)) and without additional filtering.

As one can see the result does not embed the dynamics correctly. But at the same
time it is noticeable that both methods deliver similar results. Analogue to deriva-
tion reconstruction the emulated result differs more of its prototype as e.g. for time-
delay. And as for derivation reconstruction this error is caused by the discretization
of data: Because of this condition there is no real integration in the time domain.
Instead all points are summed up. This difference leads to the differences in the
reconstruction. It has also to be remarked that there is a small discrepancy between
the equation shown above and the used equation in frequency space: As already
denoted in chapter 2.2.1 I added a small change to the sourcecode that was used for
emulation: The component for a vanishing frequency is set to zero. This becomes
here important because otherwise one would get a singularity for ω = 0. Coevally
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2.2. Common methods

this fact is closely connected to the problems using integration reconstruction: Also
frequencies close to zero are amplified too much. In the presentet case this does
not affect the first reconstructed component but leads to a divergency in the second
reconstructed dimension because of its quadratical dependency on ω.

Classically this problem is solved by applying a moving average filter to the data.
Working in the frequency space this can be done much easier just by introducing a
small offset. Figure 2.6 shows the result using this modification.
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Figure 2.6.: optimized integration reconstruction of a Rössler system: Lowfrequent dis-
turbances are neglected by introduction of a small offset.

The emerged embedding is not the best but all topological properties are mapped
correctly. Also it is easy to identify the Rösslersystem. Hence this reconstruction
gives a first example for the advantages of reconstruction in the frequency domain:
It is easier to modify reconstructions and to optimize them for a given dataset.

2.2.4. Hilbert-Transformation

In the case of the Hilbert transformation no comparison is necessary: The recon-
struction is already done in the frequency domain. At the same time the structure
in the frequency domain is the simplest one of all presented reconstructions:

x̃2(ω) = x̃(ω) · i · sign(ω) (2.6)
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2.3. Generalization

Worth mentioning is its strong affinity to reconstruction with derivation or inte-
gration. The only difference is that derivation and integration are working with
the frequency as a weighting function instead of only using its sign. This fortifies
the relevance of Hilbert-Transformation as a reconstruction that is reduced to the
essential.

−10 0 10

−10

0

10
x 2:  

f(ω
) 

=
 i

x
1
:  f(ω) = 1

Figure 2.7.: Hilbert Reconstruction of a Rössler system using the x-component

2.3. Generalization

2.3.1. Overview

I showed that it is possible to emulate all presented reconstructions in frequency
space. Considering the mentioned limitations the results of classical and emulated
technics delivering nearly the same results. Hence in the following the emulations
will be used as proper replacements for the classical methods. The next step is
to compare them with each other to find similarities. For this purpose table 2.1
provides an overview about the presented methods.

As already known there are not many similarities between these methods looking
at the time domain: It is nearly impossible to identify a general structure for all
reconstructions. Taking a look at the frequency space one will find a much more
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2.3. Generalization

method time domain frequency domain

Time Delay xn+1(t) = x(t + nτ) x̃n+1(ω) = x̃(ω) · eiωnτ

Derivation x2(t) = ẋ(t), x3(t) = ẍ(t),... x̃n+1(ω) = x̃(ω) · (iω)n

Integration x2(t) =
t∫

0
x(t′)dt′,... x̃n+1(ω) = x̃(ω) · 1

(iω)n

Hilbert x2(t) = IFFT (i · sign(ω) · x̃(ω)) x̃2(ω) = x̃(ω) · i · sign(ω)

Table 2.1.: Comparison of most common reconstruction methods displayed in time and
frequency domain.

structured situation: All reconstructions can be described as a product between
original time-series and a frequency-depending function f (ω).

x̃n(ω) = x̃(ω) · fn(ω) (2.7)

That means that one needs only the original time series x(ω) and n different recon-
struction functions fn(ω) (one function per embedding dimension) to reconstruct
the attractor. Hence every reconstructed dimension provides the frequency struc-
ture of the original time series with some variations in phase and amplitude. This
clear structure of reconstruction leads to the questions of the beginning: Are there
more possible reconstruction functions? Is there perhaps a whole class of functions
which can be used for reconstruction? What are the requirements for f (ω) to be a
proper reconstruction function?

2.3.2. Requirements on the reconstruction functions fn(ω)

To get information about the properties of the reconstruction functions fn(ω) it is
necessary to think about the requirements for a good reconstruction. One important
requirement is that all reconstructed dimensions must be real-valued. Because we
are working with complex values in the frequency domain a real-valued output
leads to restrictions for the reconstruction function:
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2.3. Generalization

x(t) =
1√
2π

+∞∫
−∞

(a(ω) + ib(ω)) e−iωtdω x(t), a(ω), b(ω) ∈ R

⇒ ∀t ∈ R : 0 =

+∞∫
−∞

b(ω) cos(ωt)− a(ω) sin(ωt)dω

⇒ a(ω) = a(−ω) ∧ b(ω) = −b(−ω) (2.8)

This means that the Fourier transformed of a real valued time series has the prop-
erty: x̃(ω) = x̃(−ω). The function itself and its complex conjugated of the negative
frequency needs to be the same.

In the case of a reconstructed dimension the Fourier transformed is a multiplication
of the reconstruction function and the Fourier transform of the original time series
fn(ω)x̃(ω):

fn(ω)x̃(ω)
!
= fn(−ω)x̃(−ω) ∧ x̃(ω) = x̃(−ω) (2.9)

Hence one property of the reconstruction functions fn(ω) is:

fn(ω) = fn(−ω) (2.10)

Another requirement is the linear independency of all reconstruction functions:

f1(ω)... fn(ω) linearly independent (2.11)

This is necessary to prevent same reconstruction results for different reconstruction
dimensions. In phase space all components needs to be linearly independent. Oth-
erwise the embedding will be flat and could also be presented in less dimensions.
Hence in this case at least one dimension must be redundant. Because of the linear-
ity of Fourier transformation this requirement can directly be adopted to frequency
space.
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2.3. Generalization

Besides these two obvious requirements there must be even more. In the following
part I will present a third requirement in a heuristic way. An accurate description
of this part would be very useful and should be aimed at future investigations.

Using the limitations above fn(ω) can still be nearly everything. So it would be
also possible to use e.g. fn(ω) = random (fig. 2.8) or to use functions which are
discontinuous at every point. As shown in fig. 2.8 for the random case this obvi-
ously does not work. In fact this would mean that one could produce every result
one wants to have just by choosing the reconstruction functions. It would be pos-
sible to eliminate the original signal nearly completely. This cannot deliver proper
embeddings!
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Figure 2.8.: Failed reconstruction of a Rössler system using random numbers as recon-
struction functions

For an accurate reconstruction it is necessary to conserve the basic elements of the
original system. The ideal reconstruction changes the accent within the time series
but it does not add or remove information. The reconstruction functions them-
selves should be neutral. Mathematical imprecise this means that the functions
fn(ω) have to be smooth. And in fact all classical functions are continuous and
differentiable in ω except the point ω = 0.

So a good but perhaps not necessary postulation should be the continuity of fn(ω).

fn(ω) continuous (2.12)
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2.3. Generalization

Also a stronger postulation could be necessary. A continuous function could also
be able to "overwrite" the frequency information of the original system if the recon-
struction function moves very fast in the order of magnitude of the original data.
The reconstruction can also be understood as some kind of filtering 1 (effectively fil-
tering has the same structure in frequency domain as the propagated reconstruction
in equation 2.7).

Filtering means that some parts are highlighted while some other parts are atten-
uated. As more loading is done as more information of the original signal is lost.
Without filtering we have the case f (ω) = 1 and we do not get any reconstruc-
tion. At the same time too aggressive filtering as e.g. f (ω) = random removes
the original information completely. Hence a good reconstruction needs to find a
good balance between both extremes. Under this point of view it could be better to
postulate slowly varying functions fn(ω) (eq. 2.13) instead of only claim continuity
(eq. 2.12).

fn(ω) slowly varying (2.13)

2.3.3. Syntax declaration

Before taking a look at some examples it is important to fix the used syntax for all
reconstruction functions fn(ω). Chapter 2.3.2 showed that there is an explicit re-
lationship between f (ω) and its negative counterpart f (−ω) (equation 2.10). That
means that one only needs to define the reconstruction functions for positive fre-
quencies ω ≥ 0. Then the negative part is defined automatically.

So far all shown reconstruction functions were already fulfilling equation 2.10 in
the presented structure. Anyhow there are many situations were the full function
for the whole frequency-spectrum is more complex as the same function defined
only for positive frequencies. For example the Hilbert transformation has f (ω) =

i · sign(ω). Describing the behaviour only for positive frequencies one can write
f (ω) = i.

1Here the notion "Filter" is used in the physical meaning, not in the mathematical. Mathematically
a filter discriminates more: Objects are either removed or left unaltered. For reconstruction is this
behaviour too strong: information of the system is changed significantly. In contrast a physical
filter only modifies the phases and amplitudes of different frequencies. Therefore it changes the
signal quite less.
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2.3. Generalization

Another example is an integration with a small offset a. The reconstruction-function
for the full space (2.14, left) is much more complex compared to the function only
written for positive frequencies (2.14, right):

f (ω) =
1

i · sign(ω)(|ω|+ a)
⇔ f (ω) =

1
i(ω + a)

(2.14)

A simpler structure allows to capture the kind of reconstruction more easily. At
the same time no information is lost. For example in the last case the relationship
to unmodified integration is much better to detect in the right declaration. From
my point of view the higher complexity of the left formula is only confusing. Also
under knowledge of the symmetry in frequency space the left equation can be de-
rived easily of the right one if needed. Therefore in the following examples the
reconstruction function will be only defined for positive frequencies!

So keep in mind: f (ω) is defined only for ω ≥ 0! The behaviour for
negative frequencies can be derived using equation 2.10.

2.3.4. Some examples

Using this new reconstruction method one gets a whole bunch of possible recon-
struction functions. One interesting option is to change well known reconstructions
slightly. Instead of f (ω) = iω (derivation) one can use f (ω) = ω or f (ω) = i

√
ω.

Both changes can help to produce a reconstruction similar to derivation reconstruc-
tion but with less dependency on high-frequent parts.

In the case of a 4-dimensional reconstruction of a signal one gets with derivation
reconstruction terms up to the order of ω3:

f1(ω) = 1 f2(ω) = iω f3(ω) = −ω2 f4(ω) = −iω3 (2.15)

This means that this reconstruction is already useless for experimental data with
low amount of noise. As a solution following reconstructions could be used:

f1(ω) = 1 f2(ω) = i f3(ω) = ω f4(ω) = iω (2.16)
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2.3. Generalization

This reconstruction can be interpreted as a standard derivation reconstruction which
is stretched by doubling each reconstruction dimension with a Hilbert transforma-
tion. Another choice would be:

f1(ω) = 1 f2(ω) = i
√

ω f3(ω) = −ω f4(ω) = −iω3/2 (2.17)

In this case the classical raise in orders of ω for each step is still conserved. Instead
the raising order itself is decreased from 1 to 1/2. Both cases reduce the highest
order in ω strongly. Which method should be used depends on which properties
should be conserved. Should the reconstruction use only integral orders of mag-
nitude (eq. 2.16)? Or is it more important that for every dimension the order of
magnitude in ω is increased (eq. 2.17)? Furthermore it is still possible to create own
reconstructions and to make stronger reductions.

Another idea is to use functions with a low gradient for high frequencies as e.g.
arctan(ω) or log(ω + 1). So one could use a derivation reconstruction and just
replace ω with log(ω + 1).

To show that all these choices delivering useful results I will present some plots of
these customized reconstructions applied to Lorenz- and Rössler-systems:
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Figure 2.9.: Customized reconstructions using a modified derivation reconstruction
with weakened frequency dependence
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Figure 2.10.: Another alternative reconstruction using a modified derivation recon-
struction with weakened frequency dependence
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Figure 2.11.: Reconstruction under use of the arcus-tangens-function
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Figure 2.12.: Reconstruction with a shifted logarithmic function
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Also the d2-dimension calculated for these alternative reconstructions delivers a
good agreement with data derived of the original dynamical system:

method d2 Lorenz d2 Rössler
original system 1.99± 0.07 1.81± 0.05

derivation alternative 1 2.02± 0.09 1.83± 0.06
derivation alternative 2 2.01± 0.09 1.86± 0.07
atan reconstruction 1.95± 0.07 1.79± 0.07
log reconstruction 2.01± 0.07 1.81± 0.05

Table 2.2.: calculated d2-dimension for original data and the reconstructed versions
shown above

For calculations the program d2.exe of the TISEAN package [12] was used (r=1,
R=10, t=1000). Unfortunalety the results for the used Rössler-system do not agree
with the known dimension which has a value above 2. But the output for the recon-
structed systems is consistent with the output for the original system. The mistake
is probably caused by the high samplingrate of the attractor. Even under use of
a wide Theiler-window this can lead to a lowering of the estimated dimension be-
cause the attractor appears at many parts 1-dimensional. To check if the embedding
was succesful this fact does not play any role. The calculated d2-dimension of the
original system is also obtained by analysing the reconstructed systems. Hence the
reconstructions have not distorted the result.
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3. Numerical Verification

3. Numerical Verification

3.1. Method

So far most results were only checked by taking a look at the graph. For systems
with simple and low dimensional structures this method works very well. In these
cases it is mostly easy to recognize if an embedding was successful or not.

Nevertheless it is also necessary to test the results numerically. This helps to verify
the results received discovering the graph and gives the opportunity to investigate
more complex systems.

The most common numerical methods for analysing data of dynamical systems are
the determination of Lyapunov exponents and fractal dimension. Both properties
only depend on the dynamics and therefore on the topology of the system but not
on its embedding. Hence the results should be the same for every embedding under
use of the same time series.

To calculate it I used the function lyap_spec of the Nonlinear data analysis tool
TISEAN [12]. This function computes the whole Lyapunov spectrum of a dynamic
by estimating the local jacobian matrix at each point. Using the equations of a dy-
namical system one can obtain the jacobian matrix by calculating the time evolution
of a group of points lying dense together. By using measurement data one normally
does not have a dense group of starting points. Instead one has to work with the
time evolution of only one point. To get that group of points the algorithm takes
a starting point and searches for all points of this time series lying in a small ball
of radius ε around this point. These points are used then as starting group. A
more detailed description of the algorithm can be found in the work of Sano and
Sawada [25] and Eckmann, Kamphorst, Ruelle and Ciliberto [4] on which the func-
tion lyap_spec bases. Besides the Lyapunov exponents in each direction one also
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3.2. Results

get the Kaplan-Yorke-Dimension DKY which is directly derived from the Lyapunov
exponents as shown in eq. 3.1.

DKY = k +

k
∑

i=1
λi

|λk+1|
(3.1)

Where λi are the Lyapunov exponents in order of its value beginning with the high-
est one and k is the highest integer for which the sum over all exponents from 1 to
k remains non-negative. It is conjectured in [16] that this result should be equal to
the information dimension DI of the system.

For verification I used 5 time series: x-,y- and z-component of a Lorenz-system
(to investigate differences within the same dynamical system) and the first compo-
nents of Rössler- and Hyperrössler-systems (to obtain differences between differ-
ent dynamical systems). In the next step all time series were reconstructed with a
set of representative reconstruction functions (table 3.1). For every possible com-
bination of three (in case of Hyperrössler four) different reconstruction functions
the reconstruction were performed and the Lyapunov spectrum and Kaplan-York-
Dimension were calculated. Because of the additional dimension of a Hyperrössler
system a smaller selection of reconstruction functions was used for it. Otherwise
the calculation time for the Lyapunov exponents would have been to long. Each
original time series had 100000 points. To reduce calculation time and to remove
errors caused by the limited length of the used time series only the points 10001 -
30001 were used.

3.2. Results

Before presenting the results the following remark has to be given: Theoretically
the results for Lyapunov exponents and Kaplan-Yorke-Dimension should be com-
pletely independent of the choice of embedding. It should only deliver wrong
results for failed embeddings. In reality the used methods are not as robust as
wanted. Because they are working with some assumptions they are very sensitive
to the kind of embedding. Hence it is necessary for analysing measurement data to
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3.2. Results

no. f (ω) Part of small selection?
1 1 yes
2 i yes
3 ω yes
4 i ·ω yes
5 ω2 yes
6 i ·ω2 no
7

√
ω yes

8 i ·
√

ω no
9 arctan(ω) yes
10 i · arctan(ω) no
11 log(ω + 1) yes
12 i · log(ω + 1) no
13 exp(iω) yes
14 i · exp(iω) no
15 exp(2iω) yes
16 i · exp(2iω) no
17 1/(ω + 0.1) yes
18 i/(ω + 0.1) yes
19 1/(ω2 + 0.1) yes
20 i/(ω2 + 0.1) no
21 ω/(ω + 1) no
22 i ·ω/(ω + 1) no
23 ω2/(ω2 + 1) no
24 i ·ω2/(ω2 + 1) no

Table 3.1.: Set of test functions for numerical verification

choose the parameters of these functions very carefully under explicit knowlegde
of the actual situation.

On the other hand adopted as a tool for comparing different embeddings it is a di-
rect requirement that the calculation parameters kept the same for all embeddings.
Otherwise it would not be possible to make a comparison. That means that this
numerical measurements have to be treated in a rough way they are not built for.
This leads to results that are not as good as probably expected. But it is actually the
only way to get data for a numerical verification.

Nevertheless the findings are still useful. The mentioned problem produces only
trouble for finding a proper measure to assess its results because it is not possible
to distinguish between errors produced by the embedding and errors produced by
the numerical calculation. To handle this problem I will use different measures to
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3.2. Results

take a look at it with different views. Hence one will receive many different aspects
of the result.

3.2.1. Results using the lyap_spec output directly

Probably the most evident way to analyse the results is to compare them under use
of its relative and absolute errors calculated by lyap_spec itself with results directly
derived out of the equations of the original system (table 3.4). For this purpose
I checked for how many reconstructions the calculated Lyapunov exponents were
(under adherence of its relative and absolute measurement errors) identically to the
results of the original system (table 3.2).

used data L1 rel. L1 abs. L2 rel. L2 abs. L3 rel. L3 abs.
Rössler X 38,44% 69,61% 48,81% 71,34% 11,31% 14,87%
Lorenz X 43,28% 83,55% 60,18% 90,46% 10,23% 22,38%
Lorenz Y 35,72% 85,13% 53,11% 92% 8,55% 14,77%
Lorenz Z 16,36% 53,18% 79,55% 98,18% 9,09% 35,45%

Table 3.2.: Percentage of successful calculations of Lyapunov exponent under adher-
ence of its relative (rel.) and absolute (abs.) measurement errors. For calculations
the attractor was reconstructed with all combinations of reconstruction functions men-
tioned in table 3.1). Exception: Lorenz Z. This dataset was reconstructed with a smaller
but similar set of reconstruction functions shown in table A.1

Using the absolute average error one gets a good agreement for the first two Lya-
punov exponents L1 and L2, whereas the third Lyapunov exponent L3 is calculated
wrong in the majority of cases. This error in L3 is due to the more problematic
numerical estimation of negative Lyapunov-exponents und therefore an error pro-
duced by the Lyapunov-estimation and not by the reconstruction. The results using
the relative average errors is more catchy. In this case around every second calcu-
lation was successful. Hence this result does not support the assumption that the
reconstructions were successful but it also does not disprove it because the high
amount of wrong results could also caused in the numerical estimation process it-
self. The whole result is also qualified by the used average errors. Table 3.3 shows
the average of these averaged relative and absolute errors calculated by lyap_spec
for different time series.

Comparing these errors with the reference Lyapunov exponents (table 3.4) one finds
that most errors have a higher order than the reference value. Hence the results
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used data L1 rel. L1 abs. L2 rel. L2 abs. L3 rel. L3 abs.
Rössler X 0.4146 2.1310 0.4153 1.8103 0.1630 0.5515
Lorenz X 0.0627 0.8195 0.0729 1.2808 0.0570 0.5629
Lorenz Y 0.1779 2.5903 0.1080 2.4563 0.1419 4.2703
Lorenz Z 0.0311 2.4752 0.0445 3.5781 0.0106 0.5398

Table 3.3.: Average of all with lyap_spec estimated average relative (rel.) and absolute
(abs.) errors for the calculated Lyapunov exponents L1, L2 and L3 for different used
time series.

should not be overrated because such a high average error allows a whole bunch
of results to be counted as a success.

L1 L2 L3 DKY ref.
Rössler 0.069± 0.003 −0.0002± 0.0002 −4.978± 0.002 2.01 [28],[25]
Lorenz 1.37 0.00 −22.37 2.06 [25]

Table 3.4.: Under use of the original equations numerical derived Lyapunov exponents
and Kaplan-Yorke-dimensions. This values are used as references for all comparisons.

Another problem is that these errors are varying a lot between different calculations
for different embeddings. That implies that a successful calculation of Lyapunov
exponent could either mean that the result was real close to the reference value but
it could also mean that the average error was just big enough so that the result was
counted as success. At the same an unsuccessful calculation could mean a result far
away from the reference value or just a too low estimated error. Hence the results
have to be handled with care and more investigations are needed to get a more
significant statement.

3.2.2. Chaotic behaviour mapped correctly?

Besides the quantitative results it is interesting to take a look at the qualitative re-
sults. One question is: Is the chaotic behaviour of our test-systems displayed cor-
rectly in the results. As explained in chapter 1.2.8 a 3D chaotic system has one pos-
itive, one vanishing and one negative lyapunov exponent (+,0,-). Table 3.5 shows
the percentage of positive outputs for each lyapunov-exponent. Hence the perfect
result for a 3-dimensional, chaotic system should have 100% positive values for L1,
50% for L2 and 0% for L3. In the case of a hyperchaotic 4-dimensional system the
result should be [100%|100%|50%|0%].
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L1 L2 L3 L4
Rössler X 95,95% 22,23% 0% -
Lorenz X 99,85% 18,18% 0% -
Lorenz Y 99,9% 15,56% 0% -
Lorenz Z 100% 23,18% 0% -
Hyperrössler X1 99,3% 85,31% 20% 0%

Table 3.5.: Percentage of positive valued Lyapunov-exponents L1 to L4 for different
systems using the reconstruction-functions listed in table 3.1

Table 3.5 reproduces this behaviour adequately. For the vanishing exponent one
finds some tendency to negative exponents but the relevant positive exponent can
be found for at least every reconstruction. That means that the chaotic behaviour
is visible in nearly every case. This can be seen as a good verification of the initial
thesis.

3.2.3. Kaplan-Yorke-Dimension DKY
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Figure 3.1.: Histogram showing the distribution of calculated Kaplan-Yorke-
Dimensions DKY for all reconstructions applied to the first components of Lorenz-,
Rössler- and Hyperrössler-system.

To analyse the results of the Kaplan-Yorke-Dimension the histogram seemed to be
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the most useful way, because it delivers a graphical subsumption of all results.
Figure 3.1 shows the distribution of the calculated Kaplan-Yorke-dimension for
Lorenz-, Rössler- and Hyperrössler-system. As one can see one recieves a broad
spectrum from DKY = 0 to 4. Hence there are many combinations of reconstruction
functions which deliver wrong results for the Kaplan-Yorke-Dimension. This can
be explained either by a failed embedding process or by a calculation error within
the dimension estimation. Special cases are the calculated dimensions 0 and 3 for
Lorenz- and Rössler-system and 0 and 4 for the Hyperrössler-system. These values
are the boundaries of the applied reconstructions. Hence a calculated dimension
DKY = 0 means that the calculation routine could not find any attractor whereas
the upper limit means that the data points seemed to be equally distributed within
the whole space.

Neglecting these obvious errors one receives another important result: The max-
ima of all three time series agree with the known dimensions of the used attractors.
Rössler- and Lorenz-system have their maxima at DKY = 2 with some tendency
to higher values which corresponds to DKY = 2.01 for the Rössler-system and
DKY = 2.06 for the Lorenz-system (see table 3.4). Even the higher dimension of
the Lorenz-attractor is expressed in the graph: The results for the Lorenz-system
showing a smaller decrease from 2 to the next higher step as the Rössler-system
does. Therefore the Lorenz-system is tending a bit more to higher values than the
Rössler-system. The Hyperrössler-system has its maximum somewhere between
DKY = 3.0 and DKY = 3.3. I could not find any reference values in this case but the
result also seems to be coherent.

Furthermore one can see that Rössler- and Hyperrössler-system have a broader
spectrum compared to the Lorenz-system. Probably this can be explained by the
qualities of the used time series. Chapter 2.3.4 showed already that the sampling
rate of the Rössler-attractor was chosen a bit too high whereas the Lorenz attrac-
tor seemed to have an optimal sampling rate. At the same time the Hyperrössler-
system probably had not enough data points because the number of necessary data
points for good calculations is raising significantly with the dimension of the sys-
tem. Anyhow all three time series showing their maxima in the histogram at ex-
pected values.

Another interesting ansatz is to take reconstructions using different components of
the same system as input data. For this purpose figure 3.2 shows the distribution
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Figure 3.2.: Histogram showing the distribution of calculated Kaplan-Yorke-
Dimensions DKY for all reconstructions of all three components (x,y,z) of a Lorenz-
attractor.

for all three components of a Lorenz system. Again the maximum can be found
somewhere above DKY = 2, but there are some differences concerning the used
input component. Whereas x and y are showing nearly the same results the z com-
ponent is producing a much broader spectrum. This can be explained by the fact
that a reconstruction under use of the z component of a Lorenz system is problem-
atic. All classical methods having strong problems to obtain a succesful embedding
using the z component. Hence it make sense that also the dimension estimation
fails more often. A more detailed discussion of the problems produced by the z
component can be found in chapter 5.3.

Summarized the results of the Kaplan-Yorke-Dimension showed that not all used
reconstructions were producing correct results. Hence it seems that not all used
reconstructions were creating successful embeddings. Probably a part of the wrong
results were produced by failed embeddings and another part by errors within the
dimension estimation. Nevertheless there is also a big part which was delivering
correct results. Therefore one can say that many of the investigated reconstructions
were successful.
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4. Applications

4.1. Noisy time series

As already mentioned in chapter 2.3.2 the reconstruction can also be interpreted as
a filtering. Using classical methods this identity is not obvious. Analysing real mea-
surement data with these methods normally two steps are necessary: First the data
has to be filtered and after that it can be reconstructed. Using the results of the for-
mer chapters this means that a two step filtering is applied to the original data. One
filter is used to reduce the noise and the other is used to get a proper reconstruc-
tion. But because both filters have different aims it could happen that the second
one neutralizes the effect of the first one. Also two different filters are destroying
more information of the original data than necessary. Using a reconstruction in the
frequency domain these two steps become one. The number of calculations needed
and the amount of data lost due to the reconstruction is reduced. Furthermore it
offers the opportunity to produce a custom reconstruction-filtering for each special
problem.

4.1.1. High frequent noise

The following example shows a Rössler-attractor pointwise combined with Gaus-
sian noise (σ2 = 1, µ = 0). It presents the case of a system which measurement is
disturbed by highfrequent noise.

Fig.4.1 displays the original noisy system. The Rössler-attractor is reconizable be-
cause of its characteristic structure but the topological characteristics are hidden by
the noise. Especially the characteristic switching of the trajectories from outer to
inner parts is not visible. It is possible to suppose an already known system behind
this structure but it would be impossible to analyse a completely new system.
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Figure 4.1.: Original Rössler-attractor overlayed with highfrequent gaussian noise
(σ2 = 1, µ = 0)

Fig.4.2 compares the case of a classical reconstruction using the time-delay method
and an optimized reconstruction using the reconstruction functions f (ω) shown in
equation 4.1. As expected time delay produces a proper reconstruction of the noisy
dataset without rebuilding the topological properties of the original system. Using
the optimized reconstruction functions (eq. 4.1) the result is a perfect image of the
original Rössler system.

f1(ω) =
1

(ω + 0.1)5 f2(ω) =
ei90ω

(ω + 0.1)5 f3(ω) =
ei180ω

(ω + 0.1)5 (4.1)

In this example the reconstruction functions are some kind of mixture between
time-delay method and a high-frequent-noise-filter. There are many other possi-
ble choices for fi(ω) that should lead to similar results.

4.1.2. Random Walk

Another useful example for noise is the Random Walk. Because of its dependency
on its former values (shown in eq. 4.2) is it a good model for noise with a strong
lowfrequent part.
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Figure 4.2.: Reconstruction of a noisy Rössler-system. Comparison between classi-
cal delay method (4.2(a)) and a customized reconstruction including noise-reduction
(4.2(b)).

n(t + 1) = n(t) + random(t) (4.2)

For this example again the Rössler attractor was used and combined with a random
walk. It demonstrates the case of real measurement data containing noise of various
frequencies with focus on low frequent parts.

20

40

−30

−10

30

60

90

x
1x

2

x 3

Figure 4.3.: Rössler attractor combined with random walk

Fig.4.3 shows the original system combined with a random walk. Even for the case
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4.1. Noisy time series

that one expect a Rössler attractor as underlying dynamics it is hard to recognize
it in the graph. Hence without noise reduction nearly no further investigations
are possible. Also all classical methods would not deliver any further information
without using another filtering before. Even reconstruction with derivation which
damps lowfrequent parts would not lead to better results because every dimen-
sion would get another power of ω in f (ω). Every dimension would have another
noiselevel and the reconstruction would be strongly inhomogeneous.
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Figure 4.4.: Customized reconstruction of a Rössler system interfered with a random
walk. Noise is reduced due to special choice of reconstruction-functions.

Fig.4.4 shows the result applying similar reconstruction functions fi(ω) as used in
the first example (chapter 4.1.1). To take into account the lowfrequent parts the
numerator of each function is expanded with ω. The used reconstruction functions
are shown in eq.4.3.

f1(ω) =
ω

(ω + 0.1)5 f2(ω) =
ω · ei90ω

(ω + 0.1)5 f3(ω) =
ω · ei180ω

(ω + 0.1)5 (4.3)

Compared to the example with high frequent noise the result is less accurate but it
still shows the basic features of the underlying attractor. Hence the Rössler system
can be recognized. One should keep in mind that this choice of reconstruction-
functions is only an example. There are probably reconstruction functions which
are providing much better results for this case.
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5. Further results

5.1. Some thoughts about universality

As shown all presented methods do fit in the propagated structure, but does that
mean that all possible reconstructions have to do that? Obviously not. One example
which does not meet with this structure was developed by Gilmore for symmetric
systems [7]. He used the reconstruction:

x(t) ; y(t) =
dx(t)

dt
; z(t) = y(t)

dy(t)
dt

(5.1)

Whereas the first two components are equivalent to a derivation reconstruction the
third term uses a multiplication of the classical derivation term dy(t)

dt and the second
component y(t). Applying this set of functions to the Lorenz attractor (fig. 5.1) one
recieves a successful embedding which displays all topological properties correctly.
Especially the reinjection of trajectories coming from one ring into the other one is
displayed correctly without any autocrossing.

Converting its z-variable into the frequency domain one gets a convolution of two
components:

z̃(ω) = (iωx̃(ω)) ∗
(
−ω2x̃(ω)

)
(5.2)

Hence there is no possibility to express this reconstruction with a reconstruction-
function f (ω). This means that this representation does not contain all possible re-
constructions. But taking a closer look at this example one gets another interesting
result: Let us assume that one can produce a new and independent reconstruction
variable by multiplying two different reconstructions. So it should be also possible
to use the following reconstruction:
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Figure 5.1.: Successful embedding of a Lorenzattractor using equation 5.1. The reinjec-
tion of trajectories (marked red) happens orthogonal to the ring-plane. Therefore no
autocrossing occurs.

x(t) ; y(t) =
dx(t)

dt
; z(t) = x(t)

dx(t)
dt

(5.3)

This reconstruction has the same structure as equation 5.1 but uses a multiplication
of x(t) and its derivative as z-component instead of of y(t) and its derivative. In
fact this reconstruction does not work (fig. 5.2). It looks similar but produces only a
two-dimensional reconstruction which is lying twisted in three-dimensional space.
This leads to autocrossing at the reinjection places and other parts of the system.
The quality of this embedding is equivalent to one using only the first two compo-
nents, therefore the third component does not produce any new information. The
reason is probably that x(t) and dx(t)

dt were already used as reconstructions (first and
second component). In the first example (eq. 5.1) y(t) was also already used but the
derivative of y(t) was new. Hence one does not get a new variable by multiplying
two already used ones. It looks like at least one part has to be completely new and
has to follow the structure f (ω)x̃(ω) to produce a proper reconstruction.

So I guess that the propagated structure does not describe all possible reconstruc-
tions but it contains some kind of basic reconstruction elements which are neces-
sary for proper embeddings. This is only an assumption because a mathematical
proof is missing but I could not find any example so far which disagrees with this
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Figure 5.2.: Failed embedding of a Lorenzattractor using equation 5.3. The reinjected
trajectories (marked red) lying in the ring-plane and crossing the trajectories in the
plane. Hence one does not get a proper embedding.

statement.

5.2. Some thoughts about a proof and plausibility

One actual problem for reconstruction in the frequency domain is that the proof
for time-delay cannot be expanded easily for the case of general reconstruction
functions in the frequency domain. Takens time-delay proof bases on the idea
that a time series can be written as (h(x), h(g(x)), h(g2(x)), ...). Here means h(x)
the measurement-function which projects the whole dynamic x on the measured
dimension, g(x) is a function mapping the original state to the next state of the dy-
namical system. Using this description a time-series can be understood as a series
of different representations of x, hence x can be rebuilt combining enough of these
different representations.

Therefore the proof bases on the idea to reconstruct the phase-space pointwise. In
opposite to this ansatz a reconstruction in frequency space happens at once for the
whole system. It is not possible to describe this kind of reconstruction point by
point. Hence the proof has to look completely different.
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5.2. Some thoughts about a proof and plausibility

So I could not find any proof for that reconstruction but there are some points that
make the idea plausible: First of all some thoughts about the general structure.
Only to use a function that can change phase and amplitude of a frequency but
which cannot shift frequency peaks is very restrictively. It means that the general
structure in frequency space has to be the same for each component of a dynami-
cal system. That looks arguable because in the time-domain different components
often have significantly different behaviour. Hence the idea is to look at original
dynamical systems and compare its components in the frequency domain. Are all
components of a dynamical system such similar in frequency space?

The first example is the Rössler attractor. Here especially the z-component behaves
different to x and y (fig. 5.3). But looking at the frequency space (fig. 5.4) one gets
the situation that all three components are showing exactly the same peaks.
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Figure 5.3.: Components of a Rössler attractor in time-domain (detail). X and Y exhibit
similar characteristics whereas Z behaves considerably different.

Unfortunately not every example delivers such a favoured structure, e.g. looking
at the Lorenz attractor one finds a z-component that differs completely from x and
y in its frequencies (fig. 5.5).

This conflict can be solved by taking again a look at Gilmores reconstruction for
symmetric systems [7] mentioned in chapter 5.1: The original Lorenz attractor has
a symmetry relative to a line parallel to the z-axis (fig. 5.6(a)) whereas classical
embedding delivers a system with a point as symmetric center (fig. 5.6(b)).
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Figure 5.4.: Powerspectrum of a Rössler attractor (detail). In opposite to the presenta-
tion in time-space all components behave similar.
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Figure 5.5.: Powerspectrum of a Lorenz attractor (detail). Z diverge in its behaviour
from X and Y and exhibits different peaks.
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Figure 5.6.: Original Lorenz attractor unchanged (5.6(a)) and with modified z-axis
z(t) = zold(t) · y(t) to obtain another symmetry (5.6(b))

This difference can be understood easily by taking into account that a symmetry-
axis along the z-axis means that x and y have a symmetry that differs from the
symmetry z contains. At the same time a classical reconstruction delivers the same
symmetric properties for every component. This leads to a dynamic which is sym-
metric to a point instead to a line.

Gilmore used a reconstruction which inserts that information about the symmetry
artificial to get a picture that is closer to the original system. But this change does
not affect the topological properties of the system.

One can use this idea to compare the original Lorenz attractor with its reconstruc-
tions. For this test I multiplied the z-component of the original system with its
y-component to get a new z-axis (fig. 5.6 compares the original system with this
new version). This new system derived from the original Lorenz attractor is now
symmetric to the center and therefore has the same symmetric properties as all
reconstructions of the Lorenz system which do not insert any changes in the sym-
metry.

Fig.5.7 shows the result in the frequency domain. Now also the modified z-component
has the same peaks in its powerspectrum compared to x and y. Hence it supports
the assumption that every dynamical system features at least one representation for
which all components have same peaks in their powerspectra. This makes it more
plausibel that the propagated class of reconstructions is working correctly.

Another argument are the classical reconstruction functions themselves: Besides
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Figure 5.7.: Powerspectrum of a Lorenz attractor with z = zold · y (detail). Now also Z
exhibits the same characteristic peaks as X and Y.

the fact that all this methods fit in this propagated structure there is another inter-
esting point. It is proven that time delay delivers a correct embedding in nearly
every case (probability not to get an embedding is equal to zero [26]). This means
by changing the direction of this proof that at least nearly every system has a rep-
resentation for which all components have the same peaks in their porwerspectra.
Under this circumstances it make sense to assume that a reconstruction that is only
smoothly changing phases and amplitudes works.

5.3. Symmetries

It seems that symmetries are a good tool to understand the being of a reconstruc-
tion. Especially the difference in symmetric properties between original and recon-
structed system shown in chapter 5.2 might give interesting hints. It looks like a
reconstruction in frequency space is not able to modify the symmetry information
of any component. Instead the symmetries of the used time series are conserved.

As a product one finds only reconstructions with the same symmetric behaviour
for each component as e.g. (x, y, z)→ (−x,−y,−z) for a reconstruction of a lorenz
attractor using its x oder y-component as source. The assumption that reconstruc-
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Figure 5.8.: Time-delay reconstruction using the z-component of a Lorenz system. Due
to the symmetric properties of the z-component both characteristic rings are folded
together.

tion cannot change the symmetries could also be a good explanation for the result
of a reconstruction using the z-component of a Lorenz system (fig. 5.8): In this case
one gets an attractor wich looks a bit like a broadened limit cycle. Instead of that
two characteristic loops of a lorenz system the result contains only one loop. Under
assumption of symmetry-conservation this is easy to explain: The original system
has a symmetry of the structure (x, y, z) → (−x,−y, z). Taking a look at the z-
components that means that booth loops lying exactly above each other. Using this
dataset for reconstruction also the reconstructed x and y-component will have this
property because of symmetry-conservation. This leads to a reconstruction where
both loops become one. Hence it can be understood very well why a reconstruction
using the z-component delivers such an unusual result.

Another interesting point is to investigate the consequences of a symmetry change.
One could expect that a symmetry change does not change the power spectrum
strongly. Especially looking at the example of a sinus, which has a point-symmetry
to the origin, and cosine, which is axis-symmetric to the origin, one knows that in
powerspectrum the difference is only a shift in phase. Hence one could expect that
especially that kind of transformations we use for reconstruction (smooth change
of phase and amplitude) could be intpertreted as changes in symmetry. In fact this
assumption must be completely wrong!
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5.4. DFT related implementation errors

As already mentioned all transformations are derived from the continuous Fourier
Transformation and then used for the case of Discrete Fourier Transformation (DFT).
This lead to some problems and errors. Most of them were already discussed but
one problem concerning the implementation is still missing:

Using a time series containing 2n data points with n ∈ N one gets also 2n data
points in Fourier space. But an even number of datapoints means that the dataset
for ω = 0 cannot be the centre of all datapoints and the symmetry one normally
expects for the Fourier space is ruined. Instead of datapoints for (−ωmax...0...ωmax)

one gets ((−ωmax + ∆ω)...0...ωmax). Hence ωmax has no negative counterpart.

In the discrete case this fact does not produce any problems because the DFT is
projecting the time series on the unit circle and the maximal frequency is ω = π.
Because of the symmetry at the circle a rotation with π is equivalent to a rotation
with −π. Hence the lonely data point presents ω = π and ω = −π at the same
time. That means also that for real-valued time series this data point is always
real-valued (x(ω) = x̄(−ω)).

Applying methods of the continuous Fourier Transformation for such a DFT-trans-
formed time series leads to errors because in the continuous case only the value
for ω = 0 has to be real-valued to obtain a real-valued time series. Hence most
methods derived from the continuous case do produce complex values for the last
data point of the series. Because of the missing symmetry in the last data point this
produces a complex time series after applying the inverse DFT.

To solve this problem I restricted the incoming dataset to have an odd length. This
restores the required symmetry in frequency space and thereby avoids the men-
tioned error.

5.5. Optimal embedding

One of the biggest advantages delivered by this generalization of the reconstruc-
tion process simultaneously produces one of the biggest problems of it: An endless
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amount of possible reconstructions. Even for Time-delay itself existing many dif-
ferent methods and suggestions to calculate the optimal time-delays to get the best
embedding. Taking the problem now to this new, more generalized description it
gets even more complicated.

There are two different approaches two deal with this topic: The passive way mea-
suring the quality of an embedding and the active way providing optimal functions
for embedding. The passive method has the advantage that the user maintains the
freedom of choice for the embedding functions. On the other hand this freedom has
the disadvantage that this measure is only giving some information after the em-
bedding was realized. The active method allows to perform an embedding without
thinking about the reconstruction functions. At the same time this prohibits to im-
plement special requirements into the embedding process.

Anyhow I made some approaches for both ways but they did not produce satisfy-
ing results:

5.5.1. Measure for an optimal embedding

The primary ansatz for finding a good measure was to take a look at the powerspec-
trum. As requirements for a good embedding I found that all reconstructed dimen-
sions must be linearly independent and that the reconstruction functions should be
slowly varying compared to the time series (chapter 2.3.2). Chapter 5.2 shows that a
slowly varying reconstruction function produces a signal which still containes the
same peaks as the original dataset. Using a reconstruction function that is vary-
ing too fast can remove or produce peaks in the data. This led to the idea that a
good embedding should conserve peaks in the powerspectrum. But using only a
measure for the peak conservation cannot be enough because in this case the recon-
struction function f (ω) = 1 would be the best choice. The other requirement one
has to deal with is the linearly independency of all components. So a good embed-
ding should conserve peaks AND should produce components that are as indepent
as possible.

For this purpose I invented the following measure m(a, b):

m(a, b) = powerdiffcorr(a, b) + 1− abs(corr(a, b)) (5.4)
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a and b are the power spectra of two components that should be compared. "abs" is
the absolute value function and "corr" the correlation function. The function "pow-
erdiffcorr" calculates the similarity between two time series. The aim was to com-
pare only the positions of peaks and not to consider its amplitudes. For this purpose
only the sign of the derivative of the powerspectrum was used:

powerdiffcorr(a, b) = corr
(

sign(
da
dω

), sign(
db
dω

)

)
(5.5)

So two signals with exactly the same peaks produce powerdiffcorr(a, b) = 1 as
result and two exactly opposite signals result in powerdiffcorr(a, b) = −1. Ap-
plied to the measure of embedding quality m an optimal embedding should have
powerdiffcorr(a, b) = 1 and abs(corr(a, b)) = 0. So the best combination of two
components should result in m = 2 whereas every other combination produces a
result m < 2. Hence the best combination should have the highest m-value. For the
embedding with more than two dimensions one could just sum up the results of m
for each possible combination and again the highest value should present the best
embedding.

Unfortunately in pratice this measure does not deliver good results. In fact it is
a good algorithm to determin wrong embeddings. For example applied on the
24 reconstruction functions used for the numerical verification in chapter 3 (table
3.1) and a Rössler system a failed embedding was choosen as optimal case (the
system was blown up in one direction with some highfrequent disturbances). Also
in most other tests especially failed embeddings were evaluated extremely positive.
Mostly the choosen embedding had the characteristic that the system was blown up
in some directions which was happening because of foldings within the system or
because of high-frequent disturbances. So obviously the made assumptions were
wrong.

5.5.2. Constructing an optimal embedding

For the construction of an optimal embedding the initial idea was to use orthogonal
reconstruction functions. This makes sense because it is the classical way to span a
vector space. But which inner product should be used? Because one handles with
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reconstruction functions in frequency space also the scalar product should be de-
fined in this space. So the first ansatz was to use the integral over all frequencies:

S1( f1(ω), f2(ω)) =

π∫
−π

f1(ω) · f2(ω)dω (5.6)

This had the big disadvantage that most dynamical systems do not have frequen-
cies over the full spectrum. Often only a quarter of the frequency spectrum shows
significant signals whereas the rest is vanishing. So it does not play any role how the
reconstruction function behave in parts where the power spectrum p(ω) vanishes.
For this reason I introduced the square root of the power spectrum as a weighting
function to take into account the influence of the time series itself. As a second step
also the integration limits of the scalar product could be reduced. Under use of the
symmetry between positive and negative frequencies it is enough to integrate from
0 to π:

S2( f1(ω), f2(ω)) =

π∫
0

√
p(ω)

(
f1(ω) · f2(ω) + f1(ω) · f2(ω)

)
dω (5.7)

One first result using the scalar product S2 is that a Hilbert transformation deliv-
ers an optimal two-dimensional embedding: Independently of the used time se-
ries the integral will vanish. This effect is also observed for every combination
of one only real-valued and one only imaginary-valued function. In most other
cases the underlying time series plays a role in the choice of the optimal embed-
ding. This also agrees with time-delay, where the choice of delay depend on the
time series. Unfortunately this inner product is not able to predict the best delay
for a time-delay embedding. Calculating the scalar product between f1(ω) = 1
and f2(ω) = exp(iωτ) one gets the case of orthogonal functions for a delay much
higher than the delay normally used. Figure 5.9(a) shows the relation of delay τ and
calculated inner product for a Lorenz attractor. The optimal embedding delay for
the first component is lying somewhere between 50 and 200. In this area one finds
a linear decreasing of the inner product. The relevant area of a vanishing scalar
product is reached for delays greater 1000. Using such a big delay does not offer a
proper embedding as figure 5.9(b) shows. Hence the choosen inner product does
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not deliver a measure for an optimal embedding. Possibly another scalar product
could provide better results.
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(a) Inner product of f1(ω) = 1 and f2(ω) =
exp(iωτ) for different delays τ. Orthogonality
is reached for τ ≈ 1250
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(b) Time-delay embedding using a delay of
τ = 1250. The graph shows strong foldings.
The underlying attractor cannot be identi-
fied.

Figure 5.9.: Embedding of a Lorenz-attractor using orthogonal time-delay functions

5.5.3. Comment

As shown both methods (active and passive) do not work so far. Nevertheless I
expect that there are solutions for both cases that should work. My approach for a
measure bases on many different assumptions, hence it is not such a big surprise
that it does not work. In opposite the ansatz using orthogonal functions seems
more fundamental to me and I expect that there should be a solution similar to the
presented approach.

Anyhow compared to the situation for time-delay the problematic becomes much
more complex but in my opinion also less important. For time-delay it is essential
to find a good choice for τ. Using a too small delay both components remain too
similar. Using a too big delay the signal is varying too much and the the original
data mutates significantly: As a result one receives foldings in the phase space.
This problematic is caused in the special structure of time delay where τ is some
kind of speed-parameter for the mutation of the original dataset. For most other
reconstruction functions as e.g. derivation this problematic does not play any role
because they have a more stable structure in frequency space. They do not modify
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5.6. Z-transform

the time series too much but also not too less. This behaviour leads to the situation
that using ordinary functions the reconstruction mostly will work. This means that
it is still an important aim to find measures and methods for an optimal embedding
but it is not as important as one could expect. A good embedding under use of
generic functions is more common than a bad one. Hence it is more problematic to
mess up an embedding than to achieve it.

5.6. Z-transform

So far all considerations based on Fourier transformation. This special choice was
done because it offers simple representations of all used reconstructions and it is
easy to compute by using the Fast-Fourier-Transformation (FFT). However it is also
possible to use the more general Z-transformation. In some cases the representa-
tions in z-space become more complex but the basic process remain unchanged.

x̃(ωk) =
1
N

N−1

∑
t=0

x(t)e−iωkt ⇒ x̂(z) =
1
N

N−1

∑
t=0

x(t)z−t (5.8)

Using the Z-transformation x̂(z) the term eiωk from the Fourier transformation x̃(ωk)

is replaced by a generalized complex number z (eq 5.8). Hence the frequency de-
pending reconstruction functions fn(ω) have to be replaced by z-depending recon-
struction functions fn(z). Everything else is done analog to the limited case of the
Fourier-transform.

5.7. Filter theory

An interesting ansatz is to interpret a reconstruction as some kind of filtering. Thus
it is possible to apply results of the filter theory on the reconstruction:

The counterpart of the reconstruction function f (ω) in filter theory is called "trans-
fer function". The transfer is the fourier transform of the used filter in time domain.
Filter are divided in different classes. The most important separations are between
causal and non causal filters and between finite-impulse-response-filter (FIR) and
infinite-impulse-response-filter (IIR).
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Causal filters have the property that their result only rely on the past of a signal
and not on its future. Hence they can be used in real time. Examples are the re-
construction functions for time-delay, derivation and integration. In opposite non
causal filter using also the future. Hence they can only be applied on a full time
series. Hilbert transformation is an example for this behaviour.

Applied on reconstruction theory this distinction does not play such a big role.
Nevertheless it highlights one fundamental difference between classical and new
approach: In the classical case the reconstruction is applied pointwise on the in-
put. Hence it is self-evident to use causal filters. This is more common because
this allows to transform a reconstruction in real-time. Anyhow it is also possible
to use non-causal filters, but this enforces a more complex reconstruction process.
Working in frequency space the reconstruction is done for the whole system at once.
Hence it does not play any role whether the reconstruction function is causal or not.
Summarized one can say that both kinds of filters (causal and non-causal) can be
applied in both reconstruction approaches. But only for the classical case the differ-
ence between causal and non-causal reconstruction becomes apparent. The reason
is that the classical approach has to make a difference in appliance whereas the
reconstruction process in frequency space is not affected by the filter-causality.

More relevant to reconstruction theory becomes the distinction between FIR and
IIR filters. FIR filter producing -as mentioned by its name- an output that has a
finite length. This is because their output only depends on a limited range of points
around the actual position. Hence the output has to vanish if all inputs within the
range of the filter vanish. In literature one finds often a causal representation of
this behaviour for which only the N-th last point affect the actual output but the
definition can be easily extended for the non-causal case:

y(n) =
N

∑
i=−N

aix(n− i) (5.9)

This structure is a convolution of the original time series x(n) and the used filter.
Therefore one receives a multiplication between time series and filter applying a
Z-transformation:
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Y(z) =
N

∑
i=−N

aiz−iX(z) ⇒ f (z) =
N

∑
i=−N

aiz−i (5.10)

Equation 5.10 shows the structure for a FIR reconstruction function in z-space. It
has to be remarked that this representation already uses the discretization in time-
domain whereas many representations of reconstruction functions shown before
intentionally neglect this fact. Hence with this representation it is not obvious that
f (ω) = iω is a FIR-filter. It becomes obvious taking again a look at the discrete case
of this derivation: f (ω) = 1− e−iω. In z-space one gets f (z) = z0 − z−1.

For the case of IIR-filter the crucial difference is its recursive depence on the filter
output. Every new output depends on at least one other output of the IIR-filter.

y(n) =
N

∑
i=−N

aix(n− i)−
M

∑
j=1

bjy(n− j) ⇒
M

∑
j=0

bjy(n− j) =
N

∑
i=−N

aix(n− i)

(5.11)

Equation 5.11 shows this structure of an IIR filter. Using b0 = 1 one can express it
as a relation between a limited number of outputs and inputs of the filter. Again
this representation can be extended to the more general case which also includes
the future of the filter and not only its past. One gets:

M

∑
j=−M

bjz−jY(z) =
N

∑
i=−N

aiz−iX(z) ⇒ f (z) =

N
∑

i=−N
aiz−i

M
∑

j=−M
bjz−j

(5.12)

Applying the z-transformation one receives a reconstruction function similar to
FIR but divided by another sum. Hence every reconstruction function with a z-
depending denominator is an IIR-filter whereas a constant denominator agrees
with a FIR-filter.

The next step is to take a closer look at differences in the output generated by these
two kinds of filters: Because of the recursive relation of IIR-filters every input can
affect the actual output. Hence it is theoretically possible that the output does not
vanish even if the last non-vanishing signal occurred a long time before. So a FIR
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5.7. Filter theory

can only see a limited part of the whole time series whereas an IIR filter can see
the whole series. For reconstruction this difference becomes important because it
generates in the case of IIR-filters some serious problems: Because of its unlimited
memory it can build up effects within the signal. This allows IIR-filter to add own
dynamics to the system. In the worst case the dynamical system can get a whole
new dimension produced by the filter. This explains e.g. the wrong embedding
for the unfiltered integration reconstruction (fig.2.5 in chapter 2.2.3). There one can
see that the whole system is inflated. But at the same time the reconstruction with
an applied offset (fig.2.6, same chapter) shows that applying an IIR filter does not
produce necessarily a new dimension. Anyhow FIR filter does not have the oppor-
tunity to paste additional dynamics into the system. Hence it is recommended to
use FIR functions for reconstruction not to run the risk of changing the dynamics.
If there is a strong reason to use an IIR filter instead of FIR this is still possible but
one has to notice that this could lead to errors.

A good explanation and a more detailed discussion of this dependence was done
by Badii et al. [2] [1] and Mitschke et al. [19]. All these publications assume that the
time series is filtered first and then reconstructed using time-delay. Nevertheless all
results can also be applied describing the reconstruction itself as filtering.
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6. Conclusion and Outlook

As shown Phase Space Reconstruction is a powerful tool for analysing nonlinear
data. It can be used for calculating Lyapunov-exponents and detecting chaos. It
helps to understand complex dynamics and their behaviour. And it can reproduce
datasets which were not measured (chapter 1).

There are many different methods which produce correct reconstructions as time-
delay, Hilbert-transformation, derivation and integration (chapter 1.4). The most
used one is time-delay but all methods have special properties which are useful in
different situations. Hence every reconstruction method has some situations where
it is the best choice.

Looking at all these different methods the questions were: Why can all these dif-
ferent looking methods be used for the same purpose? Is there any connection be-
tween all these functions? The answer is found in the frequency domain (chapter 2):
Performing a Fourier transformation all these methods getting a similar shape:

x̃n(ω) = fn(ω)x̃(ω) (6.1)

Every presented reconstruction method can be described as a multiplication in the
frequency domain with a frequency-depending reconstruction function fn(ω). This
structure is also known as a filter. From this point of view every reconstructed
dimension can be seen as a filtered version of the measured time series. It contains
the original data but applies just a new focus: Some parts are amplified and other
parts are reduced.

Continuing this investigation I showed that obviously not every function f (ω) can
be used for reconstruction (e.g. f (ω) = random does not work). Hence there have
to be some restrictions. I found these (chapter 2.3.2):

74



6. Conclusion and Outlook

• real-valued output

To obtain a real-valued output in time-domain the reconstruction functions
need to have this symmetry. Otherwise a real-valued time series together with
a reconstruction function would produce a complex output in phase space:

fn(ω) = fn(−ω) (6.2)

• linear independency

In phase space all components need to be linearly independent. Otherwise
some dimensions are redundant and could be neglected. The embedding
would have a lower embedding dimension than the number of components
denotes. Because of the linearity of Fourier transformation this requirement
leads directly to the linear independency of reconstruction functions.

f1(ω)... fn(ω) linearly independent (6.3)

• smoothness

The reconstruction functions must be smooth in a way. Otherwise the re-
construction functions would mutate the original dataset too strong and too
much information of the original system would get lost. So far an explicit
mathematical formulation is missing. Probably it is useful to postulate con-
tinuous and slowly varying reconstruction functions. fn(ω).

fn(ω) smooth (6.4)

Under consideration of these restrictions one got now a whole bunch of new possi-
ble reconstructions. This gives the opportunity to build reconstructions which are
fitting best for the special situation it is made for. So it is now possible to reduce
noise within the reconstruction process itself (chapter 4) instead of doing that in two
steps (which can also interfere with each other in a negative way). And one can set
now the focus on chosen parts of the frequency spectrum or use some advantages
of already known reconstructions while suppressing other negative properties of
it. For example is is possible to create a reconstruction with a similar structure as

75



6. Conclusion and Outlook

derivation but without amplifying high-frequent parts in such a strong way (chap-
ter 2.3.4).

Because I was not able to find a mathematical proof for that method so far I tried
to justify it heuristically (chapter 3). This was only achieved in a limited way. The
idea was to calculate properties of a system which are theoretically invariant con-
cerning the used embedding. Practically all calculation methods for time series are
only approximations. Hence they were not independent of the used embedding.
Normally this effect is neglected by choosing several calculation parameters under
adherence of the used embedding. In contrast it does not make sense to change
the calculation parameters for different embeddings if one want to compare them.
Hence the calculations had to be treated in an unusual way and therefore the results
were not very clear. In our special case the Lyapunov-spectrum was calculated for
different dynamical systems reconstructed with every possible combination of 24
different reconstruction functions. The estimated Lyapunov-exponents were differ-
ing in many cases of the exact value. At the same time the chaotic behaviour of the
used systems was reflected correctly in nearly every case.

The analysis of the Kaplan-Yorke-Dimension (chapter 3.2.3) was giving some kind
of subsumption: It showed that many calculations were providing wrong results
but that at the same time the maxima of all calculated dimensions in the histogram
were giving the correct values. Hence it seemed that not all reconstructions were
delivering correct embeddings but many of them.

Anyhow only a mathematical proof seems to be able to clarify this relation. For
this reason I gave some thoughts to the characteristics of a reconstruction (chap-
ter 5). Interesting results were that there are reconstructions that do not fit in the
propagated structure but that probably all of them are basing on it (chapter 5.1).

Concerning the reconstruction process there is an important difference between
classical methods and their counterpart in frequency space: The classical recon-
struction happens pointwise whereas the new methods reconstruct the whole dy-
namic at once. This difference will probably play an important role for a proof
(chapter 5.2).

Another interesting point is that the propagated structure is strongly limited. It
only allows to change phase and amplitude in frequency space smoothly. That
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means that the power spectra of all dimensions will have its peaks at the same po-
sitions. To investigate this fact I took a look at some original dynamical systems to
check if they also have the same peaks in frequency space in all dimensions. The re-
sult was that this is not true. But it seems that every component can be transformed
to a structure where the peaks are lying at the same positions using a symmetry
transformation. I suppose that the symmetry properties of the original dataset are
conserved under reconstruction transformation (or in other words: the symmetry
properties of the full dynamical system are lost). This would also explain why the
reconstruction of a Lorenz system always has a different symmetry compared to
the original data (chapter 5.3).

Having an endless number of possible reconstruction functions it is essential to
know which functions should be used. For this purpose it is important to think
about an optimal embedding (chapter 5.5). I tested two different approaches to
find an optimal embedding: Defining a measure for an optimal embedding and
building up an orthogonal system of reconstruction functions. Unfortunately both
approaches were not very successful so far. But it is still an important topic and
should be investigated further.

Also interesting and already mentioned is the description of reconstruction as filter-
ing. This allows to apply the whole filter theory on reconstruction theory (chapter
5.7).

One of my biggest problems concerning this topic was its wide range. The possible
fields of investigation are endless. One big part of it is the problem to find the op-
timal embedding. Using only the classical methods the number of possible recon-
struction functions was strongly limited. Anyhow there is an uncountable amount
of publications dealing only with the problem to find the optimal embedding func-
tions. Now in frequency space the number of possible functions is endless. Hence
also the problem of finding the optimal embedding gets much more complex.

In my opinion this generalization of reconstruction methods has a great potential
for future applications. Classical methods working well in most cases but they are
not as flexible as the generalized method is. Especially when it is not clear which
reconstruction delivers the best result reconstruction in frequency space becomes
interesting: One can test different reconstructions much faster because the source
code can remain the same. Also one has more opportunities. This is not such a
big advantage because everything can be done also classically but one can handle
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everything faster. For most applications the more complex numerical calculations
should not play any role because normally the choice of reconstruction costs more
time than the reconstruction itself. Hence for most applications this new method
should be a bit better than the classical ones because of its better usability. More
visible becomes the potential of this new method applying it in very special situa-
tions where explicit requirements are assessed for the reconstruction. In this cases
it is necessary to have a method which can be fully customized.

Beyond this great opportunities there are also some problematic points that have to
be marked: Without a mathematical proof it is critically to apply this method and
to interpret its results. One can only assume that one got a proper embedding and
there are strong hints that are supporting this assumption but one cannot be sure.
Even with time-delay one has the problem that an embedding could also fail but
this has another quality because there it is known that the probability for this case
is vanishing.

Another problem of the missing proof is that there must be some requirements on
the reconstruction functions fn(ω) we do not know at the moment. One point is the
exact mathematical formulation for "smooth" one has to use. At the same time there
are some combinations of reconstruction functions which are fulfilling all requests
made in chapter 2.3.2 but do not produce a proper reconstruction. One example is
the Hilbert-transformation which works for a Rössler system but which does not
work for a Lorenz attractor. The reconstruction function f (ω) = i seems to pro-
duce in this case some errors: The attractor is dispersing under this reconstruction.
Hence there must be more rules which are not clear at the moment. Probably a
solution can be found applying results of the filter theory, but at the moment this
further requirements are not known. Hence it is still problematic to be sure to have
a proper embedding.

Summed up this generalized method has a great potential but it still needs some
investigations to be usable in an optimal way. The next steps that should be most
important are:

• Finding a mathematical proof: This is probably the most important step. A
proof would set this method on a strong base. At the same time it would help
to understand the process much better and one should obtain the require-
ments on fn(ω) which are actually missing.
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• Detecting optimal embedding functions: For optimal application one needs
strong mechanisms to detect the optimal embedding. Otherwise it is prob-
lematic to make a choice out of this endless set of functions. Actually it is
still possible to orientate oneself at the classical methods and most generic
functions deliver proper results but to use the full potential of the generalized
method an optimal-embedding-detection is essential.

Furthermore there are many other topics that could be interesting. Some of them
are already mentioned under further results (chapter 5). The interpretation of re-
construction as some kind of filtering could produce interesting results but also
other topics have potential for great findings.
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A. Numerical verification - data

f (ω) L1 rel. L1 abs. L2 rel. L2 abs. L3 rel. L3 abs.
1 1 35,97% 55,34% 66,8% 85,38% 20,16% 24,9%
2 i 12,65% 37,94% 59,68% 94,47% 3,56% 7,11%
3 ω 7,91% 65,61% 56,92% 81,42% 1,98% 4,74%
4 i ·ω 60,08% 77,86% 24,11% 40,71% 0,4% 1,58%
5 ω2 55,73% 78,26% 29,25% 52,96% 0,4% 1,58%
6 i ·ω2 17,79% 60,47% 77,47% 98,02% 1,58% 3,95%
7
√

ω 50,59% 75,49% 56,92% 79,05% 15,81% 24,11%
8 i ·

√
ω 27,27% 75,49% 21,34% 49,8% 0% 0%

9 arctan(ω) 52,57% 79,45% 54,94% 77,08% 23,32% 28,85%
10 i · arctan(ω) 39,13% 66,01% 45,45% 70,36% 12,25% 13,83%
11 log(ω + 1) 50,59% 79,84% 57,71% 74,7% 22,13% 27,27%
12 i · log(ω + 1) 21,74% 59,29% 27,67% 53,75% 0,4% 1,58%
13 exp(iω) 45,06% 67,59% 50,99% 74,7% 18,58% 23,72%
14 i · exp(iω) 30,04% 73,12% 49,01% 79,05% 1,98% 3,16%
15 exp(2iω) 37,55% 61,26% 52,96% 72,73% 17,39% 22,13%
16 i · exp(2iω) 24,11% 61,26% 41,9% 62,85% 2,37% 4,74%
17 1/(ω + 0.1) 48,22% 81,03% 49,8% 69,57% 15,42% 20,55%
18 i/(ω + 0.1) 40,71% 72,73% 58,89% 80,63% 17,39% 23,72%
19 1/(ω2 + 0.1) 47,04% 77,08% 41,5% 65,22% 15,81% 21,34%
20 i/(ω2 + 0.1) 43,08% 75,89% 55,34% 77,08% 16,6% 20,95%
21 ω/(ω + 1) 54,55% 80,24% 58,5% 73,91% 21,34% 26,48%
22 i ·ω/(ω + 1) 36,36% 64,82% 42,29% 62,45% 11,86% 13,44%
23 ω2/(ω2 + 1) 47,43% 78,26% 53,36% 71,94% 19,76% 24,11%
24 i ·ω2/(ω2 + 1) 36,36% 66,4% 38,74% 64,43% 11,07% 13,04%

Table A.1.: (Rössler X) Table shows the percentage of reconstructions for which
lyap_spec calculated Lyapunovexponents (L1,L2,L3) which agree with results derived
directly from the equations. As source was used the x-component of a Rössler-attractor.
As accuracy was used the average relative error (columns marked with "rel.") and av-
erage absolute error ("abs.") estimated by lyap_spec itself.
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f (ω) L1 rel. L1 abs. L2 rel. L2 abs. L3 rel. L3 abs.
1 1 39,13% 68,38% 68,38% 88,54% 15,42% 30,43%
2 i 29,64% 72,73% 78,26% 98,02% 4,74% 25,69%
3 ω 33,6% 81,03% 69,57% 95,65% 9,88% 30,04%
4 i ·ω 56,92% 81,03% 24,9% 65,61% 0,4% 1,58%
5 ω2 67,19% 85,77% 33,6% 79,45% 0% 1,58%
6 i ·ω2 6,72% 60,47% 71,94% 100% 0,4% 3,95%
7
√

ω 47,83% 87,75% 62,85% 91,7% 18,58% 34,78%
8 i ·

√
ω 20,95% 84,19% 32,81% 86,96% 0% 0%

9 arctan(ω) 50,2% 83,79% 66,4% 91,3% 20,55% 35,18%
10 i · arctan(ω) 34,78% 84,58% 56,92% 91,3% 1,19% 14,62%
11 log(ω + 1) 44,66% 82,61% 64,03% 90,51% 16,2% 35,18%
12 i · log(ω + 1) 22,92% 78,26% 45,85% 83,79% 0% 0,4%
13 exp(iω) 41,11% 86,56% 57,31% 91,3% 12,25% 22,13%
14 i · exp(iω) 32,81% 79,05% 58,89% 94,86% 3,56% 19,76%
15 exp(2iω) 35,18% 83% 58,5% 92,09% 7,11% 24,11%
16 i · exp(2iω) 29,64% 75,89% 60,08% 94,47% 5,93% 25,3%
17 1/(ω + 0.1) 64,43% 94,86% 72,33% 90,91% 19,76% 32,41%
18 i/(ω + 0.1) 73,52% 97,63% 76,68% 95,26% 23,72% 46,25%
19 1/(ω2 + 0.1) 80,24% 97,63% 79,45% 93,68% 23,32% 47,43%
20 i/(ω2 + 0.1) 67,19% 97,23% 69,96% 93,28% 14,23% 34,78%
21 ω/(ω + 1) 48,22% 87,75% 62,45% 89,33% 20,55% 27,67%
22 i ·ω/(ω + 1) 31,62% 82,61% 52,96% 89,72% 1,19% 2,37%
23 ω2/(ω2 + 1) 47,83% 84,98% 64,43% 92,09% 22,53% 32,81%
24 i ·ω2/(ω2 + 1) 32,41% 87,35% 55,73% 91,3% 3,95% 8,7%

Table A.2.: (Lorenz X) Table shows the percentage of reconstructions for which
lyap_spec calculated Lyapunovexponents (L1,L2,L3) which agree with results derived
directly from the equations. As source was used the x-component of a Lorenz-attractor.
As accuracy was used the average relative error (columns marked with "rel.") and av-
erage absolute error ("abs.") estimated by lyap_spec itself.
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f (ω) L1 rel. L1 abs. L2 rel. L2 abs. L3 rel. L3 abs.
1 1 28,46% 60,47% 60,87% 90,51% 16,6% 22,92%
2 i 20,16% 65,22% 60,87% 97,23% 0,79% 2,77%
3 ω 28,46% 83,4% 69,96% 97,23% 13,44% 26,09%
4 i ·ω 64,82% 82,61% 27,67% 70,36% 0,4% 1,58%
5 ω2 49,8% 85,38% 34,39% 84,58% 1,58% 1,58%
6 i ·ω2 9,88% 60,47% 84,19% 99,6% 1,98% 3,95%
7
√

ω 40,71% 86,17% 61,66% 90,51% 15,81% 26,88%
8 i ·

√
ω 21,74% 91,7% 22,13% 93,28% 0% 0%

9 arctan(ω) 40,32% 86,56% 61,66% 92,09% 16,6% 27,67%
10 i · arctan(ω) 26,88% 84,58% 43,48% 90,91% 0% 3,56%
11 log(ω + 1) 35,97% 86,96% 59,68% 92,09% 14,62% 24,9%
12 i · log(ω + 1) 23,32% 84,58% 37,15% 90,51% 0% 0,79%
13 exp(iω) 36,36% 90,51% 49,41% 93,68% 9,88% 19,37%
14 i · exp(iω) 26,88% 83% 46,64% 93,68% 0,79% 1,58%
15 exp(2iω) 22,92% 86,96% 52,96% 96,84% 2,77% 20,95%
16 i · exp(2iω) 24,9% 84,98% 50,99% 96,05% 1,98% 7,91%
17 1/(ω + 0.1) 54,55% 96,44% 59,68% 91,3% 17% 26,48%
18 i/(ω + 0.1) 56,52% 96,84% 64,03% 94,07% 20,95% 27,27%
19 1/(ω2 + 0.1) 63,64% 97,23% 67,98% 94,86% 20,55% 27,67%
20 i/(ω2 + 0.1) 57,71% 96,84% 58,89% 94,86% 15,02% 25,69%
21 ω/(ω + 1) 39,92% 89,72% 52,57% 91,3% 17% 25,3%
22 i ·ω/(ω + 1) 20,55% 86,17% 44,66% 88,14% 0% 1,19%
23 ω2/(ω2 + 1) 39,92% 90,12% 57,31% 92,89% 17,39% 26,09%
24 i ·ω2/(ω2 + 1) 22,92% 86,17% 45,85% 91,3% 0% 2,37%

Table A.3.: (Lorenz Y) Table shows the percentage of reconstructions for which
lyap_spec calculated Lyapunovexponents (L1,L2,L3) which agree with results derived
directly from the equations. As source was used the y-component of a Lorenz-attractor.
As accuracy was used the average relative error (columns marked with "rel.") and av-
erage absolute error ("abs.") estimated by lyap_spec itself.
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f (ω) L1 rel. L1 abs. L2 rel. L2 abs. L3 rel. L3 abs.
1 1 10,91% 49,09% 80% 94,55% 18,18% 49,09%
2 i 1,82% 20% 81,82% 96,36% 0% 27,27%
3 ω 10,91% 58,18% 83,64% 98,18% 12,73% 49,09%
4 i ·ω 34,55% 52,73% 47,27% 94,55% 0% 7,27%
5 −ω2 23,64% 74,55% 67,27% 98,18% 3,64% 16,36%
6 i ·ω2 9,09% 30,91% 83,64% 100% 3,64% 18,18%
7 exp(i · 10ω) 14,55% 54,55% 85,45% 100% 12,73% 49,09%
8 exp(i · 20ω) 12,73% 56,36% 85,45% 100% 10,91% 40%
9 exp(i · 100ω) 7,27% 50,91% 81,82% 100% 10,91% 38,18%
10 exp(i · 200ω) 10,91% 52,73% 87,27% 100% 14,55% 56,36%
11 log(ω + 1) 29,09% 67,27% 83,64% 98,18% 10,91% 36,36%
12 arctan(ω) 30,91% 70,91% 87,27% 98,18% 10,91% 38,18%

Table A.4.: (Lorenz Z) Table shows the percentage of reconstructions for which
lyap_spec calculated Lyapunovexponents (L1,L2,L3) which agree with results derived
directly from the equations. As source was used the z-component of a Lorenz-attractor.
As accuracy was used the average relative error (columns marked with "rel.") and av-
erage absolute error ("abs.") estimated by lyap_spec itself.
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function [Datensatz, F_Datensatz] = fftrec(arg1, arg2, arg3,

arg4, arg5, arg6, arg7);

%

%#################################################################

%function for space time reconstruction. The Fourier transformed

%input data will be multiplied with frequency-depending functions

%to produce additional dimensions. (Version 1.10)

%#################################################################

%

%[Data, Fourier_Data] = fftrec(TIMESERIES, resolution, FUNCTIONS,

% plots, plotstyle, {axis1, axis2,...}, dt);

%

%##################### OPTIONAL OUTPUT ###########################

%Data: reconstructed attractor (matrix)

% 1.column = input data

% 2.column = 1.reconstructed dimension

% 3.column = 2.reconstructed dimension

% ...

%

%Fourier_Data: reconstructed attractor at the frequency domain

% (matrix)

% 1.column = input data (frequency space)

% 2.column = 1.reconstructed dimension (frequency space)

% 3.column = 2.reconstructed dimension (frequency space)

% ...

%

%###################### MANDATORY INPUT ##########################

%timeseries: input data (vector)

%
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%functions: functions to use for reconstruction arranged in a cell

% array.

% structure = {@(x) func1(x), @(x) func2(x),...}

% Functions only have to be defined for positive x

%(negative part has to be the complex conjugated of this function)

%

%##################### OPTIONAL INPUT ############################

%resolution (optional): resolution=n means: every n-th point

% of the input data will be used for

% reconstruction

%

%dt (optional): difference between two data points of the input

% data in seconds.

%

%plots (optional): Choose of the plots that should be calculated

% plots = ’no plot’ : no plots

% plots = ’all plots’ : 3D and 2D plots (standard)

% plots = ’2D plot’ : only 2D plots

% plots = ’3D plot’ : only 3D plots

%

%plotstyle (optional): Input of the plot design

% (standard matlab format, e.g. ’k-’)

%

%axis (optional): plot-scaling-factor. Graph will be plotted

% in the area -axis...axis

%#################################################################

%############################## CHANGELOG ########################

%1.01: -Fixed a bug that prevented the calculation of the negative

% frequency part

%1.02: -Reduced the calculation time due to initializing the value

% "Datensatz" with zeros before using.

%1.03: -renamed function to "fftrec"

% -resorted input parameters for better usabilty

% -implemented standard values for unchoosen parameters

%1.04: -improved input for optional parameters
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% -replaced numbers with text commands for parameter "plots"

%1.05: -added part to set the omega=0 component of the frequency

% spectrum to zero to prevent complex values in the time

% domain

%1.06: -added 1D-graphs of the reconstructed timeseries

%1.07: -added parameter "frequencyinput" to control the kind of

% inputvalues for used functions (experimental only)

%1.08: -changed reconstruction calculations: negative frequency

% part is now calculated directly as complex conjugated

% of the positive frequency part

%1.10: -restricted datasets to ones with an odd length to prevent

% errors induced by calculations in the frequency domain

% and adjusted calculations for that purpose

% -Inserted a routine for handling with datasets of even

% length removing the last entry.

%#################################################################

%#################################################################

%Some additional configurations

%Standard values for arguments requested at the execution of

%this function

standard_resolution = 1;

standard_functions = {@(x) 1, @(x) i*x, @(x) x};

standard_plots = 1;

standard_plotstyle = ’k-’;

standard_dt = 1;

%Additional information for the output (actually only correlation)

AdditionalInformation = 1;

%Defining wheter functions should get real frequencies

%(frequencyinput = 1 STANDARD) or integers from 1 to maxn/2

%(frequencyinput = 0) as input. The second option is useful if

%there are predefined arrays with numbers instead of functions

%as input
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frequencyinput = 1;

%#################################################################

AutoScale = 1;

Korn = standard_resolution;

funktionen = standard_functions;

plots = standard_plots;

plotstyle = standard_plotstyle;

deltaT = standard_dt;

%#####################READING PARAMETERS##########################

if nargin == 0 %Testing mode without parameters, only for testing

load roessler2.dat; Datenquelle = roessler2(:,3); end;

if nargin > 0 Datenquelle = arg1; end;

if nargin > 1

if isnumeric(arg2) Korn = arg2;

if nargin > 2 funktionen = arg3; end;

else

funktionen = arg2;

if nargin > 2

if isnumeric(arg3)

deltaT = arg3;

else

if ischar(arg3)

switch arg3

case ’no plot’ plots = 0;

case ’all plots’ plots = 1;

case ’2D plot’ plots = 2;

case ’3D plot’ plots = 3;

case ’1D plot’ plots = 4;

otherwise plotstyle = arg3;

end;

else

Achsen = arg3; AutoScale = 0;
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end;

end;

end;

end;

end;

if nargin > 3

if isnumeric(arg4) deltaT = arg4;

else

if ischar(arg4)

switch arg4

case ’no plot’ plots = 0;

case ’all plots’ plots = 1;

case ’2D plot’ plots = 2;

case ’3D plot’ plots = 3;

case ’1D plot’ plots = 4;

otherwise plotstyle = arg4;

end;

else

Achsen = arg4; AutoScale = 0;

end;

end;

end;

if nargin > 4

if isnumeric(arg5) deltaT = arg5;

else

if ischar(arg5)

switch arg5

case ’no plot’ plots = 0;

case ’all plots’ plots = 1;

case ’2D plot’ plots = 2;

case ’3D plot’ plots = 3;

case ’1D plot’ plots = 4;

otherwise plotstyle = arg5;

end;

else

88



B. Software

Achsen = arg5; AutoScale = 0;

end;

end;

end;

if nargin > 5

if isnumeric(arg6) deltaT = arg6;

else

if ischar(arg6)

switch arg6

case ’no plot’ plots = 0;

case ’all plots’ plots = 1;

case ’2D plot’ plots = 2;

case ’3D plot’ plots = 3;

case ’1D plot’ plots = 4;

otherwise plotstyle = arg6;

end;

else

Achsen = arg6; AutoScale = 0;

end;

end;

end;

if nargin > 6

if isnumeric(arg7) deltaT = arg7;

else

if ischar(arg7)

switch arg7

case ’no plot’ plots = 0;

case ’all plots’ plots = 1;

case ’2D plot’ plots = 2;

case ’3D plot’ plots = 3;

case ’1D plot’ plots = 4;

otherwise plotstyle = arg7;

end;

else

Achsen = arg7; AutoScale = 0;
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end;

end;

end;

%#################################################################

deltaT = deltaT*Korn;

maxdimension = length(funktionen);

maxn = floor(length(Datenquelle)/Korn);

%##############DEFINING GRAPHICAL OUTPUT##########################

if (maxdimension == 1) x1d = 1; y1d = 1; end;

if (maxdimension == 2) x2d = 1; y2d = 1; x1d = 1; y1d = 2; end;

if (maxdimension == 3) x3d = 1; y3d = 1; x2d = 2; y2d = 2;

x1d = 1; y1d = 3; end;

if (maxdimension == 4) x3d = 2; y3d = 2; x2d = 3; y2d = 2;

x1d = 1; y1d = 2; end;

if (maxdimension > 4) x3d = 3; y3d = 2; x2d = 3; y2d = 2;

x1d = 1; y1d = 3; end;

%#################################################################

if (maxn/2 == floor(maxn/2)) maxn = maxn-1;

’NOTE: Last entry of timeseries removed to recieve an

symmetric dataset in frequency space!’ end;

Datensatz = zeros(maxn,maxdimension+1);

for n1=1:1:maxn; Datensatz(n1,1) = Datenquelle(n1*Korn,1); end;

F_Datensatz = zeros(maxn,maxdimension+1);

F_Datensatz(:,1) = fftshift(fft(Datensatz(:,1)));

w_middle = ceil(maxn/2);

if (frequencyinput == 1)

for n2 = 1:1:maxdimension;

for n1 = 1:1:w_middle-1;

F_Datensatz(w_middle+n1,n2+1)

= F_Datensatz(n1+w_middle,1)

*funktionen{n2}(2*pi*n1/(deltaT*maxn));

F_Datensatz(w_middle-n1,n2+1)
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= conj(F_Datensatz(n1+w_middle,n2+1));

end;

%setting omega = 0 component to zero to prevent

%complex values in the time domain

F_Datensatz(w_middle,n2+1) = 0;

end;

else

for n2 = 1:1:maxdimension;

for n1 = 1:1:w_middle-1;

F_Datensatz(w_middle+n1,n2+1)

= F_Datensatz(n1+w_middle,1)*funktionen{n2}(n1);

F_Datensatz(w_middle-n1,n2+1)

= conj(F_Datensatz(n1+w_middle,n2+1));

end;

%setting omega = 0 component to zero to prevent

%complex values in the time domain

F_Datensatz(w_middle,n2+1) = 0;

end;

end;

for n2 = 1:1:maxdimension;

Datensatz(:,n2+1) = ifft(ifftshift(F_Datensatz(:,n2+1)));

end;

n4 = 1; n5 = 1;

if (maxdimension > 2)

if (plots == 1) | (plots == 3)

for n1 = 1:1:maxdimension-2;

for n2 = n1+1:1:maxdimension-1;

for n3 = n2+1:1:maxdimension;

if (n4 == x3d*y3d + 1)

n4 = 1;

n5 = n5 + 1;

end;

if (n4 == 1)

figure(’Name’, [’3D-plots - part ’ int2str(n5)
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’/’ int2str(ceil(factorial(maxdimension)

/(6*factorial(maxdimension-3))/(x2d*y2d)))]);

end;

subplot(y3d,x3d,n4);

plot3(real(Datensatz(:,n1+1)),

real(Datensatz(:,n2+1)),

real(Datensatz(:,n3+1)),

plotstyle,

’MarkerSize’,1);

if (AutoScale == 0)

axis([-Achsen{n1} Achsen{n1} -Achsen{n2}

Achsen{n2} -Achsen{n3} Achsen{n3}]);

end;

if (AdditionalInformation == 1)

Korrelation1 = corrcoef(

real(Datensatz(:,n1+1)),

real(Datensatz(:,n2+1)));

Korrelation2 = corrcoef(

real(Datensatz(:,n1+1)),

real(Datensatz(:,n3+1)));

Korrelation3 = corrcoef(

real(Datensatz(:,n2+1)),

real(Datensatz(:,n3+1)));

title([’x’ int2str(n1) ’ - x’ int2str(n2)

’ - x’ int2str(n3) ’ (’

num2str(Korrelation1(2,1)) ’, ’

num2str(Korrelation2(2,1)) ’, ’

num2str(Korrelation3(2,1)) ’)’],

’Color’,’r’);

else

title([’x’ int2str(n1) ’ - x’ int2str(n2)

’ - x’ int2str(n3)],’Color’,’r’);

end;

xlabel([’x’ int2str(n1) ’ : ’

func2str(funktionen{n1})],’Color’,’b’);

ylabel([’x’ int2str(n2) ’ : ’

func2str(funktionen{n2})],’Color’,’b’);
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zlabel([’x’ int2str(n3) ’ : ’

func2str(funktionen{n3})],’Color’,’b’);

n4 = n4 + 1;

end;

end;

end;

end;

end;

n4 = 1; n5 = 1;

if (maxdimension > 1)

if (plots == 1) | (plots == 2)

for n1 = 1:1:maxdimension-1;

for n2 = n1+1:1:maxdimension;

if (n4 == x2d*y2d + 1)

n4 = 1;

n5=n5+1;

end;

if (n4 == 1)

figure(’Name’, [’2D-plots - part ’ int2str(n5) ’/’

int2str(ceil(factorial(maxdimension)

/(2*factorial(maxdimension-2))/(x2d*y2d)))]);

end;

subplot(y2d,x2d,n4);

plot(real(Datensatz(:,n1+1))

,real(Datensatz(:,n2+1))

,plotstyle, ’MarkerSize’,1);

if AutoScale == 0 axis([-Achsen{n1} Achsen{n1}

-Achsen{n2} Achsen{n2}]);

end;

if (AdditionalInformation == 1)

Korrelation = corrcoef(

real(Datensatz(:,n1+1))

,real(Datensatz(:,n2+1)));

title([’x’ int2str(n1) ’ - x’ int2str(n2) ’

(’ num2str(Korrelation(1,2)) ’)’],
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’Color’,’r’);

else

title([’x’ int2str(n1) ’ - x’ int2str(n2)],

’Color’,’r’);

end;

xlabel([’x’ int2str(n1) ’ : ’

func2str(funktionen{n1})],’Color’,’b’);

ylabel([’x’ int2str(n2) ’ : ’

func2str(funktionen{n2})],’Color’,’b’);

n4 = n4 + 1;

end;

end;

end;

end;

n2 = 1; n3 = 1;

if (plots == 1) | (plots == 4)

for n1 = 1:1:maxdimension;

if (n2 == x1d*y1d + 1)

n2 = 1;

n3 = n3 + 1;

end;

if (n2 == 1)

figure(’Name’, [’1D-plots - part ’ int2str(n3)

’/’ int2str(ceil(maxdimension/(x1d*y1d)))]);

end;

subplot(y1d,x1d,n2);

plot(Datensatz(:,n1+1), plotstyle,’MarkerSize’,1);

if AutoScale == 0 ylim([-Achsen{n1} Achsen{n1}]); end;

xlabel(’number of datapoint’,’Color’,’b’);

ylabel([’x’ int2str(n1) ’ : ’

func2str(funktionen{n1})],’Color’,’b’);

n2 = n2 + 1;

end;

end;
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Summary in German

Deutsche Zusammenfassung

Diese Diplomarbeit behandelt das Thema "Attraktorrekonstruktion". Dabei han-
delt es sich um eine Technik, die es ermöglicht, aus einer einzelnen Zeitreihe den
vollständigen Phasenraum des Systems zu rekonstruieren und somit Rückschlüsse
auf topologische Eigenschaften dieses dynamischen Systems zu ziehen (Kapitel 1).
Es gibt bereits mehrere Methoden der Attraktorrekonstruktion. Die wohl bekan-
nteste und am weitesten verbreitete Methode ist der "Time-Delay"-Ansatz. Bei
dieser Technik wird die Zeitreihe x(t) einfach um τ Punkte verschoben und danach
als zusätzliche Dimension verwendet. Der volle Phasenraum hat dann die Struk-
tur:

v(t) = (x(t), x(t + τ), x(t + 2τ), ...)

Neben Time-Delay existieren weitere Methoden wie z.B. Rekonstruktion durch Ab-
leitung oder durch Integration (Kapitel 1.4). Alle diese Methoden erzeugen eine
korrekte Rekonstruktion des Phasenraums, sehen jedoch in der Anwendung sehr
unterschiedlich aus. Ansatz dieser Diplomarbeit war die Idee, dass es eine Verall-
gemeinerung dieser verschiedenen Methoden geben muss, da sie alle letztendlich
demselben Zweck dienen. Die Lösung wurde dabei im Frequenzraum vermutet:
Denn obwohl alle Methoden im Ortsraum sehr unterschiedlich aussehen, erhalten
sie durch eine Fourier-Transformation ein einheitliches Gesicht: Alle untersuchten
Methoden konnten auf folgende Struktur reduziert werden (Kapitel 2):

x̃n(ω) = fn(ω)x̃(ω)

Somit ist das Fouriertransformierte der n-ten rekonstruierten Dimension lediglich
das Fouriertransformierte der Originalzeitreihe multipliziert mit einer Rekonstruk-
tionsfunktion fn(ω). Die nächste Frage war nun: Gibt es neben den klassischen
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Methoden also noch weitere Rekonstruktionsvarianten? Welche Art von Rekon-
struktionsfunktionen fn(ω) sind erlaubt? Auf der Suche nach der Antwort kristalli-
sierten sich vor allem drei Forderungen an die Rekonstruktionsfunktionen heraus
(Kapitel 2.3.2):

• reellwertiges Ergebnis im Ortsraum

Durch die Fouriertransformation erhält man im Frequenzraum zunächst eine
komplexe Funktion. Gleichzeitig weiß man jedoch, dass die Zeitreihen und
somit auch die rekonstruierten Dimensionen reellwertig sein müssen. über-
setzt auf die Rekonstruktionsfunktionen bedeutet dies, dass das komplex kon-
jugierte der Funktion für −ω dem Wert der Funktion für +ω entsprechen
muss:

fn(ω) = fn(−ω)

• lineare Unabhängigkeit

Im Ortsraum ist eine bekannte Forderung, dass alle Komponenten linear un-
abhängig sein müssen. Andernfalls wären Komponenten redundant und der
Phasenraum würde nicht vollständig aufgespannt. Aufgrund der Linear-
ität der Fouriertransformation führt dies auch direkt zu einer linearen Un-
abhängigkeit der Rekonstruktionsfunktionen.

f1(ω)... fn(ω) linear unabhängig

• langsame Veränderlichkeit

Ein weiterer wichtiger Punkt, der mathematisch jedoch nicht exakt bestimmt
werden konnte, ist die langsame Veränderlichkeit der Rekonstruktionsfunk-
tionen: Zum einen muss die Rekonstruktionsfunktion die originale Zeitreihe
in irgendeiner Form verändern, damit das Ergebnis linear unabhängig von
der originalen Zeitreihe sein kann, diese Veränderung darf jedoch auch nicht
zu stark sein. Stellt man sich z.B. als Rekonstruktionsfunktion eine Aneinan-
derreihung von Zufallszahlen vor, so wird schnell klar, dass in diesem Fall
die Informationen der originalen Zeitreihe vollständig überschrieben wer-
den würden. Deshalb darf sich die Rekonstruktionsfunktion im Vergleich
zur originalen Zeitreihe nur sehr wenig verändern, um die Informationen des
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Originalsystems zu erhalten. Aus diesem Grund lag die Idee nahe zu fordern,
dass die Rekonstruktionsfunktion langsam veränderlich sein muss.

fn(ω) langsam veränderlich

Beachtet man nun diese drei Einschränkungen, so bleiben dennoch unendlich viele
Möglichkeiten für Rekonstruktionen. Viele dieser Varianten werden von den klas-
sischen Methoden nicht abgedeckt und sind somit neu. Eine interessante Anwen-
dung kann z.B. die Kombination von Rekonstruktion und Filterung sein (Kapitel
4). Des Weiteren sind Situationen denkbar, in welchen es nötig ist, der Rekonstruk-
tion gewisse Eigenschaften aufzudrücken. Dies ist nun durch die Wahlfreiheit der
Rekonstruktionsfunktionen möglich (Kapitel 2.3.4).

Leider war es mir während meiner Diplomarbeit nicht möglich, einen mathemati-
schen Beweis dafür zu finden, dass die Rekonstruktion unter der Verwendung
des Frequenzraumes eine korrekte Rekonstruktion des Phasenraums ermöglicht.
Dies ist zwar naheliegend, jedoch nicht bewiesen. Als Ersatz habe ich daraufhin
versucht, die Methode heuristisch zu untermauern. Zu diesem Zweck habe ich
einen Blick auf verschiedene Invarianten dynamischer Systeme geworfen (Kapi-
tel 3): Es gibt einige Größen, z.B. Lyapunovexponent oder fraktale Dimension,
welche theoretisch nur vom dynamischen System und nicht von seiner Einbettung
im Phasenraum abhängen. Somit sollten die Werte dieser Größen für alle Rekon-
struktionen übereinstimmen. Um dies zu zeigen, habe ich 24 verschiedene Rekon-
struktionsfunktionen gewählt und in allen möglichen Kombinationen zur Rekon-
struktion verwendet. Danach wurde für jede Rekonstruktion das Lyapunovep-
sktrum berechnet und die Ergebnisse verglichen. Unglücklicherweise waren die
Ergebnisse jedoch nicht so eindeutig wie erhofft. Dies hängt jedoch vor allem
mit der Berechnung des Lyapunovspektrums zusammen: Zeitreihen stellen jedoch
immer nur eine Näherung des Originalsystems dar, daher können auch alle Be-
stimmungen von Invarianten nur Näherungen sein. Dementsprechend sind diese
Näherungen in der Praxis auch nicht unabhängig von der Einbettung. Normaler-
weise wird dieser Effekt durch die Wahl verschiedenster Parameter der Berechnung
reduziert, jedoch musste der Vergleich mit einem einzigen Parameterset durchge-
führt werden, um die Vergleichbarkeit zu gewährleisten. Diese "unsachgemäße"
Anwendung führte somit zu den uneindeutigen Ergebnissen. Aber immerhin ein
Ergebnis war relativ eindeutig: Durch nahezu alle Lyapunovspektren wurde ko-
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rrekt wiedergegegeben, dass es sich um chaotische Systeme in der Untersuchung
handelte. Die Analyse der Kaplan-Yorke-Dimension lieferte schließlich eine Art
Zusammenfassung dieses Kapitels. Es zeigte sich dass das Spektrum der berech-
neten Dimensionen im Histogramm relativ breit war und somit viele Ergebnisse
von dem korrekten Wert abwichen. Gleichzeitig lagen die Maxima jedoch immer
an den Stellen der zu erwartenden Werte. Somit lässt sich vermuten, dass schein-
bar nicht alle Einbettung erfolgreich waren (die Fehler könnten alternativ allerdings
auch durch Probleme innerhalb der Dimensionsberechnung entstanden sein), dass
jedoch ein Großteil der Rekonstruktionen funktioniert haben muss.

Auf der Suche nach einem Beweisansatz ergaben sich viele weitere Teilergebnisse
und Ideen (Kapitel 5). So zeigte sich z.B., dass man auch Rekonstruktionsmethoden
finden kann, welche nicht dem propagierten Muster entsprechen, dass diese jedoch
scheinbar jeweils eine Rekonstruktion als Basis verwenden, welche wiederum in
das Muster passt. Die zusätzlichen Teile der Rekonstruktion hatten dabei nur Ein-
fluss auf Symmetrieeigenschaften der Rekonstruktion, halfen bei der eigentlichen
Rekonstruktion jedoch nicht mit. Es lässt sich daher vermuten, dass man bei der
besprochenen Struktur von einer Art Basis für die Rekonstruktion sprechen könnte
(Kapitel 5.1).

Bezüglich eines Beweises war es auch interessant zu überlegen, wie plausibel diese
Methode erscheint. Dabei fällt auf, dass die relativ restriktive Form der Rekonstruk-
tionsmethoden zur Folge hat, dass alle Dimensionen eines rekonstruierten Systems
zwangsläufig dieselben Peaks im Powerspektrum besitzen müssen und somit die
Powerspektren von allen Komponenten sehr ähnlich aussehen müssen. Um zu
überprüfen, ob dies plausibel ist, wurden die Powerspektren von Originalsyste-
men genauer untersucht. Dabei stellte sich heraus, dass nicht zwangsläufig alle
Komponenten dieselben Peaks enthalten. Bei den untersuchten Beispielen führten
Symmetrieoperationen jedoch zu Formen, in welchen diese Bedingung wiederum
erfüllt war (Kapitel 5.2).

Diese Symmetrieüberlegung wiederum könnte erklären, weshalb die Rekonstruk-
tionen des Lorenzsystems immer eine vom Originalsystem abweichende Symme-
trie aufweisen. Die Untersuchungen legten die Vermutung nahe, dass bei einer
Rekonstruktion für jede Komponente immer die Symmetrie der Originalzeitreihe
übernommen wird. Das würde bedeuten, dass die Symmetrie des Originalsys-
tems bei der Rekonstruktion leider verloren geht. Des Weiteren würde es erklären,
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weshalb die Rekonstruktion des Lorenzssystems aus der Z-Komponente zu merk-
würdigen Resultaten führt (Kapitel 5.3).

Ein weiteres wichtiges Thema bezüglich der Rekonstruktion ist die Frage nach der
optimalen Einbettung. Zu diesem Zweck wurde nach verschiedenen Methoden
zur Beurteilung einer Rekonstruktion gesucht. Dabei habe ich zwei Ansätze ver-
folgt: Zum einen den passiven Ansatz der Definition eines Maßes für die Einbet-
tungsqualität, zum anderen eine aktive Methode zur direkten Bestimmung der op-
timalen Einbettung mittels orthogonaler Funktionen. Leider lieferten beide Meth-
oden soweit keine nutzbaren Ergebnisse, jedoch erscheinen die Ansätze an sich für
mich sinnvoll, so dass weitere Untersuchungen auf diesem Gebiet sicher Ergebnisse
bringen sollten (Kapitel 5.5).

Ein letzter interessanter Punkt ist die Interpretation der Rekonstruktion als Fil-
terung: Schaut man sich die propagierte Struktur im Frequenzraum an, so stellt
man fest, dass diese mit der Struktur eines Filters übereinstimmt. Dies bedeutet,
dass eine Rekonstruktion nichts anderes ist, als die originale Zeitreihe in gefilterter
Form als neue Komponente zu verwenden. Neben der Nützlichkeit dieses Ergeb-
nisses für das Verständnis einer Rekonstruktion liefert es zudem die Möglichkeit,
Ergebnisse der Filtertheorie nun direkt auf die Rekonstruktion von Systemen anzu-
wenden (Kapitel 5.7).

Aus meiner Sicht bringt diese Verallgemeinerung der Rekonstruktion viele Möglich-
keiten für zukünftige Anwendungen mit sich. Zum einen erleichtert die Kombina-
tion, klassische Methoden gegeneinander abzuwägen, zum anderen sind nun aber
auch völlig neue Ansätze möglich. Es ist nun bedeutend leichter, der Rekonstruk-
tion bestimmte Eigenschaften zu geben und sie besser an die Aufgabenstellung
anzupassen (Kapitel 6).

Um das gesamte Potential ausnutzen zu können, sind vor allem zwei weitere Schritte
wichtig: Zum einen muss ein Beweis der Methode gefunden werden, um sie auf
eine solide Basis zu stellen und die Forderungen an die Rekonstruktionsfunktion
mathematisch exakter formulieren zu können. Zum anderen sind Methoden zur
Wahl der optimalen Einbettung notwendig, um in der Praxis ein System bestmöglich
rekonstruieren zu können.
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