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tive with respect to the arc-length s, e.g. ḟ = ∂
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1 Introduction

The formation of the first cell was a breaking point in the evolution of

complex organisms like animals, bacteria and plants. A cell is an entity

that is separated from its environment by a lipid membrane. Over

time, the interior of the cell evolved by subdivision and change of its

composition, by fission into separate cells and fusion with other cells.

With rising complexity different functional complexes differentiated

and formed what is today known as prokaryotic and eukaryotic cells.

While natural evolution is increasing the complexity over time, sci-

entists use reductionism as a tool to understand complex systems.

This means, that they strive to identify elementary components with

respect to a specific function or an observed effect.

Taking the human cells as an example, a variety of specialised cells

exists: Oblate shaped red blood cells can transport oxygen from the

lungs to the tissue and carbon-dioxide back; polyhedral shaped brown

fat cells (plurivacuolar adipocytes) have a large amount of mitochon-

dria to produce heat; and the long tube-like axons of nerve cells

transport electrical signals and create concentration gradients via ion-

pumps.

This thesis focuses on the shape of cells. Cells come in different

shapes from discocyte human red blood cells[2] to prolate E. coli bac-

teria. Furthermore they can change their shape to fit through narrow

capillaries or replicate via cell division. On the other hand malformed

cells can lead to diseases like sphero- or ellipsocytosis[2].

Natural cells are very complicated organisms whose membranes can

contain many different components as well as channels or other pro-
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teins as shown in figure 1.1a. Very simple membranes with only a few

components are produced in laboratories. These simple membranes

are called biomimetic membranes. A schematic drawing is shown in

figure 1.1b. They can be used to create „empty“ cells, which are called

vesicles, and they can be produced in a wide range of sizes and, as

visible in chapter 4, come in a number of different shapes. This is very

useful for controlled experiments, since it is easier to isolate functional

behaviour. One such experiment will be analyzed in more detail in

chapter 5.

(a) Schematic representation of an animal cell[3]

(b) Schematic representation of a vesicle[4]

Figure 1.1. Comparison of an-
imal cells and vesicles. (a)
The animal cell consist of
three main layers: The nucle-
olus at its core, the nuclear en-
velope and the cell membrane.
The nuclear envelope sepa-
rates the nucleoplasm from
the cytoplasm, whereas the
cell membrane separates the
cytoplasm from the outer so-
lution. In the cytoplasm
many smaller compartments,
such as lyosomes, ribosomes
or mitochondria can be en-
capsulated. In addition larger
structures that have shapes
akin to folded sheets, like the
golgi apparatus and the rough
endoplasmatic reticulum are
present. (b) In contrast to the
complex structure of an ani-
mal the cell, a vesicle has only
two components: The inner
solution and the lipid bilayer,
which may consist of differ-
ent types of lipids, that sep-
arates the inner solution from
the outer solution.

Giant unilamellar vesicles (GUVs) are being studied intensively since

they are large enough to be observed by light microscopy and they

show the remarkable property of being able to change between vari-
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ous shapes. The transition from one shape to another can be induced

by increasing or decreasing the asymmetry between the two leaflets of

the lipid bilayer[5] or by adsorption of proteins to the membrane[6,7]

as well as deflation or inflation of the vesicle. By adsorbing photo-

switchable proteins to the membrane photoresponsive membranes can

be obtained[8], which means that a change of the shape of the vesicle

can be induced by light in a reversible manner, e.g. the formation of a

bud by exposition to UV-light and backtransformation to a spherical

vesicle with blue light. In particular, the coexistence of highly curved

tubes and necks with regions of relatively low curvature in the same

vesicle is a central property to being able to undergo fission[7].

In addition, GUVs can be used to encapsulate chemical compounds

or build multilamellar structures[9,10]. Depending on the composition

of the bilayer it is possible to observe phase-separation of liquid-ordered

and liquid-disorderd phases[11,12], which are also called rafts, as well

as phase-separation of different gel-phases[13]. GUVs are thought to

become a basic building block in the engineering of basic living organ-

isms[14,15].

With respect to theoretical modeling of membrane shapes mostly

homogeneously filled vesicles have been considered so far and chapter 4

will recapitulate the findings relevant for this thesis. Beyond that, new

results on multi-spherical vesicles will be reported.

In this thesis also vesicles in non-uniform environments are consid-

ered. This includes shape transformations due to the active process

of membrane adhesion of Min-proteins in chapter 5, which causes pe-

riodic transitions in time between a homogeneous protein distribution

and a distribution that is mainly localized on the membrane.

Furthermore, spatial concentration gradients are considered in chap-

ter 6. These gradients can arise by external forces like electromagnetic

or gravitational fields, by particle sinks or reservoirs like absorbtion

sites or production sites as well as by active processes like the move-

ment of processive molecular motors, which are introduced in sec-
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tion 6.2. Molecular motors are naturally abundant in biological cells

and as such are a promising candidate to be useful in practice. Their

directed motion along the cytoskeleton may well be used to create a

concentration gradient of the cargos that they are able to transport.

To decouple the complex behaviour of lipid membranes from the

effects of concentration gradients rigid conic compartments as further

explained in section 3.2 are used as a surrogate. The theoretical de-

scription of axisymmetric vesicles and conic compartments will be il-

lustrated in chapter 3.

Another abundant force is the gravitational field of the earth, which

causes sedimentation, but its strength is rather weak compared to other

intracellular dynamics such as diffusion. An ideal gas in gravity will

also be used as a surrogate system for the more complex system of the

molecular motors in section 6.1. Both, the ideal gas and the gravita-

tional force, are often used in theoretical physics to get a fundamental

understanding of a more complex system. In this thesis they are used

to get a qualitative picture of the expected effects of gradients, since

many properties are analytically calculable.

In the following chapter 2 the fundamental theoretical preliminaries

are introduced. Finally, the thesis will be concluded with a discussion

in chapter 7 and a summary in chapter 8.



2 Theoretical preliminaries

2.1 Calculus of variation

The calculus of variation investigates conditions to find critical points

ξ0 of a function f : X → R where X is an open subset of a k-dimensional

Banach space (like the set of all functions1). A critical point is a point 1 In that case f is called a func-
tional and for the rest of this
document X is treated as the set
of all functions.

for which the first variation δ f of f vanishes, which is either a local

maximum, a local minimum or a saddle-point. In order to distin-

guish between these cases higher order variations have to be consid-

ered. Here, a variation of f (ξ) means that instead of the functions ξ

a univariate family of functions ξ + εη is considered and the variation

δ can be defined as

δ = ε lim
ε→0

∂

∂ε
(2.1)

and interpreted as the amount the value of f would change at each

point ξ along the curve that f defines in X if it would be slightly per-

turbed. A typical mathematical formulation for a variational problem

reads

δ
∫ s1

s0

f (ξ, ξ ′, s)ds =
∫ s1

s0

δ f (ξ, ξ ′, s)ds = 0. (2.2)

These formulations are very useful in the field of theoretical physics

since it allows to formulate laws of nature independent of any coordi-

nate system (like Fermat’s principle or Hamilton’s principle). Finally,

the solutions to equation (2.2) can be found by solving the Euler-

Lagrange equations[16]

d
ds

(
∂

∂ξ̇i
f
)
− ∂

∂ξi
f = 0, i ∈ [1, k], (2.3)
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which are k second order differential equations, which corresponds to

2k first order differential equations.

2.1.1 Constrained variation

Often not all possible points ξ are physically possible. Then the set X

is said to be constrained. Constraints can be expressed in differential

or integral form. These are demonstrated in example 2.1. In general,

constraints can be written as gi( f ) = 0, where i ∈ [1, m] if m is the

number of constraints. Constraints can be incorporated by introduc-

Dido was the founder and first queen of Carthage. According to a tradition
of the Greek historian Timaeus she got the land from the Numidian King
Hierbas by asking for as much land as can be encompassed by a bull’s hide in
814BC. After he agreed, she cut the hide into thread-like strips and formed a
circle with it, thus gaining the maximum amount of area. The corresponding
variational problem can be stated as follows

δ
∫ s1

s0

f ds = 0

g( f ) =
∫ s1

s0

√
1 + ḟ 2 ds = L

f (s0) = f0, f (s1) = f1 (2.4)

or

δ
∫ s1

s0

f ds = 0

ġ =
√

1 + ḟ 2

f (s0) = f0, f (s1) = f1

g(s0) = 0, g(s1) = L (2.5)

where equation (2.4) is the integral formulation and equation (2.5) is the
differential formulation. The more general problem of determining a plane
figure of the largest possible area whose boundary has a specified length is
called an isoperimetric problem.

Example 2.1. Dido’s problem

ing as many new functions λi(s) as constraints have to be satisfied and

define

F = f +
m

∑
i=1

λi(s)gi. (2.6)
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The λi(s) are called Lagrange multipliers. Again, these have to fulfill

the Euler-Lagrange equations

d
ds

(
∂

∂ξ̇i
F
)
− ∂

∂ξi
F = 0, i ∈ [1, k]. (2.7)
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2.2 Free energy of a canonical ensemble

In classical statistical thermodynamics a canonical ensemble describes

a statistical system with constant temperature T, constant volume V

and constant number of particles N.[17]

2.2.1 Partition sum

A fundamental thermodynamic entity is the partition sum Z, since

every thermodynamic potential can be derived from the partition sum.

With a given partition sum and the inverse thermal energy β = 1
kBT ,

the free energy F can be calculated via

F = − 1
β

log Z. (2.8)

Since the particles of an ideal gas do not interact, the N-particle par-

tition sum can be directly computed by the one particle partition sum

Z1

Z = Z1
N. (2.9)

The Hamiltionian H(r, p) is a funciton that describes the total energy

of a conservative physical system in terms of the generalized coordi-

nates r and p, which correspond to the three spatial coordinates and

three mechanical impulses for the ideal gas. For an ideal gas consisting

of particles of mass M that are subject to the gravitational accaleration

g the Hamiltionian reads

H(r, p) =
N

∑
i=1

p2
i

2M
+ Mgzi, (2.10)

where zi is the z-coordinate of particle i in a cartesian or cylindrical

coordinate system.
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Using the Hamiltonian, the one particle partition sum is defined by

an integral over the enclosing volume V

Z1 =
1
h3

∫
d3r

∫
d3pe−βH(r,p)

=

(
2πM
h2β

) 3
2 ∫

e−βMgzdV. (2.11)

Examples 2.2 to 2.4 show the one particle partition sum for the cases

of a spheric, a tubular and a conic compartment.

Z1 =

(
2πM
h2β

) 3
2 ∫

e−βMgzdV

=

(
2πM
h2β

) 3
2

2π
∫ 2R

0

∫ √R2−(z−R)2

0
e−βMgzr drdz

=

(
2πM
h2β

) 3
2
(

4πe−βMgR(βMgR cosh(βMgR)− sinh(βMgR))
(βMg)3

)

Example 2.2. Partition sum
inside a sphere of radius R.

Z1 =

(
2πM
h2β

) 3
2 ∫

e−βMgzdV

=

(
2πM
h2β

) 3
2

πR2
∫ L

0
e−βMgzdz

=

(
2πM
h2β

) 3
2 πR2

βMg

(
1 − e−βMgL

)

Example 2.3. Partition sum
inside a tube of height L and
radius R.
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Z1 =

(
2πM
h2β

) 3
2 ∫

e−βMgzdV

=

(
2πM
h2β

) 3
2 π

(βMg)3

∫ L

0
e−βMgzr(z)2dz

=

(
2πM
h2β

) 3
2 πe−βMgL

(2βMg)3
1

cos2 α

(
(cos(2α)− 1)((

1 − eβMgL
) (

8 + (βMgL)2
)
+ 4βMgL

(
1 + eβMgL

))
− (cos(2α) + 1) 4(βMgR)2

(
1 − eβMgL

)
+ 4βMgR sin(2α)

(
2
(

1 − eβMgL
)
+ βMgL

(
1 + eβMgL

)))

Example 2.4. Partition sum
inside a cone of height L
and mid-height radius R and
opening angle α. r(z) is de-
fined by equation (3.20). �

https://gitlab.mpikg.mpg.de/christ/phdthesis_code/-/blob/v0.1/PartitionSum_IdeaGas_Cone.wls


3 Flexible and rigid membrane compart-

ments

Biological membranes mainly consist of glycerophospholipids whose

amphipathic1 nature drives the formation of a bilayered structure. 1 This means that glycerophos-
pholipids have a hydrophobic
part, which is the tail, as well as
a hydrophilic part, which is the
polar head group

These bilayers are very anisotropic: they have a thickness of a few

nanometers, while their lateral size can extend over hundreds of mi-

crometer. The ability of the lipids to laterally diffuse in the bilayer

allows a smooth shape where the individual positions of the lipids are

not very important. It is rather the elastic properties on the larger

scale that define the overall shape. This allows to model it as a contin-

uous yet flexible surface, rather than as an ensemble of many individual

lipids 2. 2 Which is what is done in molec-
ular dynamics simulations

It is also possible to attach a lipid bilayer to a solid support[18,19].

In this case the shape is determined by the shape of the support. Also

the rigid walls of the channels in microfluidic devices[20,21] or the tip

of micropipettes[22–25] force vesicles to take a shape that is conformant

with these boundaries.

This chapter explains the mathematical modeling of asymmetric

flexible membranes using the spontaneous curvature model in the first

section and the mathematical description of truncated cones in the

second section.
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3.1 Spontaneous curvature model

Vesicle sizes vary from 15nm-30nm in diameter (small unilamellar vesi-

cles (SUVs)) to 100nm-200nm in diameter (large unilamellar vesicles

(LUVs)) to 5�m-200�m (GUVs)[26]. These sizes have to be compared to

the thickness of the lipid bilayer which is typically 4nm-5nm[27]. Thus,

for large scale shape transformations the membrane of a vesicle can be

modelled as a continuous surface in space. The bending energy of such

a vesicle with mean curvature M, spontaneous curvature m, bending

rigidity κ and surface area A is given by[28–30] 3 3 The bending energy actually
contains an additional term de-
pending on the gaussian curva-
ture, which depends on the topo-
logical genus of the surface. But
since in this thesis only surfaces
with one connected component
are considered, this term is con-
stant and can be neglected.

Ebe = 2κ
∫

(M− m)2 dA. (3.1)

Vesicles that stay isolated in constant osmotic conditions also have

approximately constant area and volume. This is accounted for by

adding two Lagrange multipliers as mentioned in section 2.1.1: the

surface tension Σ that ensures constant area A and the difference in

osmotic pressure ∆P that ensures constant volume V.

E = Ebe + Σ A − ∆P V. (3.2)

3.1.1 Scales of a sphere

Even if osmotic conditions vary, the surface area of vesicles does not

change much for isothermal processes[30]. Treating it as conserved is a

very good approximation in these cases and therefore the surface area

is a good candidate for defining the basic length-scale of the system.

Furthermore, a sphere is the form with the minimal surface area for

a given volume and is hence chosen as the reference shape. Thus, the

vesicle radius Rve is defined by the radius of a sphere with the same

surface area as the vesicle

Rve =
√

A/(4π). (3.3)
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Consequently all curvatures will be scaled with Rve:

m̄ = mRve , (3.4)

M̄ = MRve . (3.5)

Volume and area are scaled by their spheric equivalent:

Ā =
A

4πRve2 = 1 , (3.6)

v =
V

4π
3 Rve3

= 6
√

π
V

A
3
2

. (3.7)

The normalized volume v is also known as reduced volume or area-to-

volume ratio in the literature. The bending energy of a sphere with

zero spontaneous curvature is 8πκ. This is a common choice for the

basic energy scale

Ē = E/(8πκ) = Ēbe +
ΣA
8πκ

− ∆PV
8πκ

. (3.8)

Finally, by introducing the dimensionless surface tension Σ̄

Σ̄ =
Σ Rve

2

κ
(3.9)

and osmotic pressure difference ∆P̄

∆P̄ =
∆P Rve

3

κ
(3.10)

equation (3.2) reads

Ē =
∫ (

M̄ − m̄
)2 dĀ +

1
2

(
Σ̄ − ∆P̄

3
v
)

. (3.11)

An additional parameter that is important in the next section is the

arc-length S, which gets scaled by the arc-length of a semi-circle be-

cause that is the minimal integration length

S̄ =
S

πRve
. (3.12)
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3.1.2 Axisymmetric vesicles

In particular, axisymmetric vesicles can be described solely by a one

dimensional curve r̄(s), where s ∈ [0, 1] is the position along the arc-

length S. The bending energy can then be expressed in terms of r̄(s)

and its derivatives. However, it is far more convenient to use a param-

eterization in terms of r̄(s) as well as the bending angle ψ(s) and the

bending curvature ū(s) = πS̄ψ̇(s).

Figure 3.1. Illustration of the

coordinate system of a vesicle

that is parameterized along its

arc-length s. The axis of rota-

tion is z, the radial distance

is r and the bending angle is

denoted by ψ.

The bending angle ψ(s) and r̄(s) are related via (cf. figure 3.1)

˙̄r(s) = πS̄ cos ψ(s). (3.13)

This non-trivial dependency makes it necessary to add an additional

term to (3.11) containing a Lagrange parameter function γ̄r(s)[16]

Ē = Ēbe +
1
2

(
Σ̄ − ∆P̄

3
v
)
+ πS̄

∫
γ̄r(s) ( ˙̄r(s)− πS̄ cos ψ(s)) ds.

(3.14)

Parameterizing the remaining terms yields

Ē = πS̄
∫ ( r̄

8

(
d
ds ψ(s)

πS̄
+

sin ψ(s)
r̄(s)

− 2m̄

)2

+
Σ̄
4

r̄(s)− ∆P̄
8

r̄2(s) sin ψ(s)+

γ̄r

(
d
ds r̄(s)

πS̄
− cos ψ(s)

))
ds. (3.15)

Demanding the first variation of this functional to vanish yields the cor-

responding Euler-Lagrange-equations also known as the shape equa-

tions

ψ̇(s) = πS̄ū(s)

˙̄u(s) = πS̄
(
r̄(s)

(
8γ̄r(s) sin ψ(s)− cos ψ(s)

(
∆P̄ r̄2(s) + 2ū(s)

))
+ sin (2ψ(s))

)
2r̄(s)2

˙̄r(s) = πS̄ cos ψ(s)

˙̄γr(s) =
πS̄
8

(
(ū(s)− 2m̄)2 − 2∆P̄ r̄(s) sin ψ(s)− sin2 ψ(s)

r̄(s)2 + 2Σ̄

)
.

� (3.16)

https://gitlab.mpikg.mpg.de/paper/min_GUV_oscillations_Code/-/blob/master/Deriving_Shape_Equations.wl
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These have to satisfy the boundary conditions

ψ(0) = 0

ψ(1) = π

ū(0) = ū0

ū(1) = ū1

r̄(0) = r̄(1) = 0

γ̄r(0) = γ̄r(1) = 0. (3.17)

Special care has to be taken in the limit r̄(s) → 0, since the terms
sin ψ(s)

r̄(s) can’t be evaluated naively. From the Taylor expansions in ap-

pendix B follows that

sin ψ(s)
r̄(s)

∣∣∣∣
s={0,1}

= u{0,1} . (3.18)

Thus, the shape equations at the endpoints read

ψ̇(s) = πS̄ ū(s)

˙̄u(s) = 4πS̄ ū(s)γ̄r(s)

˙̄r(s) = πS̄ cos ψ(s)

˙̄γr(s) = πS̄
(

1
8

(
(ū(s)− 2m̄)2 − ū(s)2

)
+

1
4

Σ̄
)

= πS̄
(

1
2

(
m̄2 − m̄ū(s)

)
+

1
4

Σ̄
)

. (3.19)

In total this model has seven parameters: ∆P̄, Σ̄, ū0, ū1, S̄, m̄ and v.
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3.2 Cones with constant area and volume

As mentioned in the beginning of chapter 3 besides flexible compart-

ments also rigid compartments are part of this study. Particularly,

the focus is on circular cones, which includes truncated cones and the

special case of a tube. From a theoretical point of view rigid shapes

can also act as a surrogate shape that facilitate analytic calculations

to gain insight in the qualitative behaviour of vesicles.

An open cone is represented by its radial profile r(z) (cf. figure 3.2),

which gives the three dimensional body by revolution around the z-axis

r(z) = R −
(

z − L
2

)
tan α . (3.20)

Alternatively, it is also possible to parameterize the radial coordinate

along the arc-length s

r(s) =



s 0 ≤ s ≤ R+ 1
2 L tan α

2R+L
√

1+tan2 α

R −
(

s
(

1 + 2R
L
√

1+tan2 α

)
− R+ 1

2 L tan α

L
√

1+tan2 α
− 1

2

)
L tan α

R+ 1
2 L tan α

2R+L
√

1+tan2 α
< s ∧

s <
R+ 1

2 L tan α+L
√

1+tan2 α

2R+L
√

1+tan2 α

2R + L
√

1 + tan2 α(1 − s) R+ 1
2 L tan α+L

√
1+tan2 α

2R+L
√

1+tan2 α
≤ s ∧

s ≤ 1

(3.21)

which describes a closed cone. However, it is also possible to use

equation (3.20) for closed cones, when the two circular disks at the

ends are treated separately in the calculation of derived quantities like

the area. Figure 3.2 illustrates the geometry of a closed cone; its two

kinks are marked as point A and point B .

When points A and B are represented as position vectors in the

z-r-plane, they read as follows

A =

 0

R + L
2 tan α

 , B =

 L

R − L
2 tan α

 .
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0 L
2

L

0

R

A

Bα

z

r Figure 3.2. Cross section of
a truncated cone as consid-
ered in this thesis. Halfway
between point A and point
B the radius R is kept con-
stant. The length of the cone
is the distance between the
z-coordinates of point A and
point B . Finally, the opening
angle α is measured between
the z-axis and the connecting
line of A and B .

The values of the opening angle α lie in the closed interval α ∈ [−αc, αc]

with the critical value

αc = arctan
(

2R
L

)
. (3.22)

If α = −αc point A lies on the z-axis (red line in figure 3.2) and

respectively point B lies on the z-axis for α = αc.

3.2.1 Volume and Area

Volume V and surface area A of these cones are given by standard

calculus

A = 2π
∫ L

0
r(z)dz + π

(
r(0)2 + r(L)2

)
=

π

2

(
L2 tan2(α) + 4R(L + R)

)
V = π

∫ L

0
r(z)2dz

= π

(
1

12
L3 tan2(α) + LR2

)
.

However, inverting those equations to get radius and length of cones

with constant area and volume for a given opening angle cannot be

done analytically, because the following equation (3.23) for determin-

ing the height L is a sixth order polynomial and it is proven that there

is no general analytical solution for polynomials with higher order than
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four[31]. These equations read

π2L6 tan2 α
(

tan2 α + 3
)
− 6πAL4 tan2 α

+ 12πVL3
(

tan2 α − 3
)
+ (3LA − 6V)2 = 0 (3.23)

Ri(α) =
1
2

√
4V

πLi(α)
− 1

3
L2

i (α) tan2(α) . (3.24)

i = 1, 2
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Figure 3.3. The two solu-
tions to equation (3.24) (a)
and equation (3.23) (b) as
function of the opening an-
gle α for V = 1pl, v = 0.8
and m = 0. The orange solu-
tion is stretching the length of
the cone and shrinking the ra-
dius to obtain a cylinder and
the other solution is behav-
ing the other way around. (c)
The aspect ratio Φ as given by
equation (3.25). Shapes cor-
responding to the orange data
points have a smaller aspect
ratio than the solutions shown
in blue, except for two criti-
cal angles ±αc where both are
equal to 1.5.

Figure 3.4. Illustration of

the two solutions of equa-

tion (3.23) for α = 0. The or-

ange cylinder has a smaller

height L and a larger radius

R and vice versa for the blue

cylinder.

A numerical solution of equations (3.23) and (3.24) can be seen in

figure 3.3 and part of the parameter space provided by surface area A,

volume V and opening angle α is shown in figure 3.5. The region of the

parameter space where two solutions exists is smaller than the region

for the case of only one solution and has complex-shaped boundaries

(cf. figures 3.5 and 3.6). When two solutions exist one has a larger

height than the other but a smaller radius, e.g. the solution corre-

sponding to the blue shape in figure 3.4 respectively the blue curves
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in figure 3.3. In terms of the aspect ratio

Φ =
L

R + L
2 tan |α|

(3.25)

the blue shapes have a larger aspect ratio than the orange shapes as

shown in figure 3.3c.

Figure 3.5. Parameter space
of equation (3.23). In the
transparent region exist two
solutions for the height L and
the radius R, whereas in the
solid colored region only one
solution exists. These regions
are obtained by solving equa-
tion (3.23) symbolicly using
Mathematica[32] up to radi-
cals and then plotting the con-
ditions where those solutions
exist�.

https://gitlab.mpikg.mpg.de/christ/phdthesis_code/-/blob/v0.1/BendConeGas.wls
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Figure 3.6. Parameter space
where two solutions exist
(the transparent region of fig-
ure 3.5). The boundaries of
the region are not smooth but
ragged. �

https://gitlab.mpikg.mpg.de/christ/phdthesis_code/-/blob/v0.1/cone_parameter_region.wls
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3.2.2 Bending energy

The bending energy Ebe of a cone has two contributions, the bending

energy of the shell surface Ebe,s and the energy of the kinks Ebe,k.

3.2.3 Shell surface

The bending energy of the shell surface can be calculated from the

radial profile. The planar caps of the cones are not curved and thus

have zero mean curvature, so they only contribute to the bending

energy, if the spontaneous curvature is non-zero

Ebe,s = 2κ
∫

(M− 2m)2 dA

= 4πκ
∫ L

0

(
1

2r(z)
− 2m

)2

r(z)dz + 2πκ
(

r2(0) + r2(L)
)

m2

= πκ

(
cot(α) log

(
2R + L tan(α)
2R − L tan(α)

)
− 8Lm +

(
16LR + 2R2 − 2RL tan α +

L2

2
tan2 α

)
m2
)

.

(3.26)

3.2.4 Kinks

The bending energy of a kink is undefined by the traditional definition

of curvature, which requires a twice differentiable curve. However, it is

obvious that some kinks are more acute than others. Thus, it should

be possible to differentiate between differently kinked edges in terms

of bending energy. The extreme case of a cone with α = ±αc will be

considered first.

3.2.5 Spherical cap

In the case of a cone with α = ±αc the kink will be replaced with

a spherical cap to get an estimate for the curvature of the kink[33].

Without loss of generality it is sufficient to calculate it for the case of

α = −αc, where point A becomes the tip of the cone. The solutions

at point B can be retrieved by the substitution α → −α. The area
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Figure 3.7. The tip of the
cone with opening angle α and
the circle of radius RA, whose
cap replaces the conic cap to
calculate the mean curvature.

differential for a spherical cap reads

dAsphere = 2πR2
A sin θ dθ . (3.27)

The mean curvature on any point of the sphere is

Msphere =
1

RA
(3.28)

and thus the bending energy (neglecting spontaneous curvature) is

Ebe,k = 2κ
∫

M2
sphere dAsphere = 2π

∫ π
2 −α

0
sin θ dθ = 4πκ(1− sin α) .

(3.29)

3.2.6 Toroidal ring

To generalize the ansatz to the case of a truncated cone, the tip of

the sphere gets punctuated and stretched to a toroidal segment with

a plane disk in between. A torus is characterised by two radii. The

radius of the tube will be RA, while the distance of the center from the

tube to the z-axis is denoted by Rtorus, which has to be calculated.

The mean curvature on any point of the torus is given by[34]

Mtorus =
Rtorus + 2RA sin α

2RA (Rtorus + RA sin θ)
(3.30)
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Figure 3.8. The tip of the
truncated cone with opening
angle α and the circle of curva-
ture with radius RA. The dis-
tance of the center of the cir-
cle and the symmetry axis of
the cone is Rtorus. It is shown
in this section that it is not
consinstently possible to have
Rtorus 6= 0.

and the area differential is

dAtorus = RA (Rtorus + RA sin θ) dϕ dθ . (3.31)

The bending energy differential is

dEbe,k = Mtorus
2 dAtorus

= sin θ +
Rtorus

2

4RtorusRA + 4R2
A sin θ

.

In order for the bending energy to be independent of RA

Rtorus = cRA (3.32)

must hold for a constant c that is yet to be determined. Furthermore,

in the extreme cases of a cylinder (α = 0) and a proper cone (α = −αc)

the radius needs to satisfy

Rtorus(α = 0) = R − RA ,

Rtorus(α = −αc) = 0 . (3.33)
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The only way to satisfy these conditions is with c = 0, which means

that the kink still gets approximated by a sphere, whose bending en-

ergy is given by equation (3.29)�.

The energy of both kinks is then given by

Ebe,k = Ebe,k(α) + Ebe,k(−α) = 8πκ . (3.34)

3.2.7 Total energy

Combining these results, the total bending energy reads

Ebe = Ebe,s + Ebe,k

= πκ

(
cot(α) log

(
2R + L tan(α)
2R − L tan(α)

)
− 8Lm +

(
16LR + 2R2 − 2RL tan α +

L2

2
tan2 α

)
m2
)

+ 8πκ .

(3.35)

Figure 3.9 shows that the cones with lower aspect ratio are energet-
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Figure 3.9. Bending energy
as given by equation (3.35) of
cones with V = 1pl, v = 0.8
and m = 0. Curves of differ-
ent color correspond to differ-
ent solutions for the height L
and the radius R as shown in
figure 3.4.

ically favored with the tube having the lowest energy. For the cones

with the larger aspect ratio it is the other way around. Decreasing the

volume-to-area ratio v the difference in the bending energy between

the cones with larger aspect ration and those with lower aspect ratio

is becoming larger and larger while the parameter space for cones with

larger aspect ratio is increasing and the parameter space for cones with

larger aspect ratio is decreasing as shown in figure 3.10.

https://gitlab.mpikg.mpg.de/christ/phdthesis_code/-/blob/v0.1/KinkRadius.wls
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Figure 3.10. Parameter scan
of bending energy of cones
with V = 1pl, v ∈]0, 0.8] and
m = 0. Surfaces of different
color correspond to the two
different solutions for L and R.





4 Morphologies of uniform vesicles in

equilibrium

The equilibrium shapes of uniform vesicles have been studied for a

long period of time. Even the simplified models show a rich variety of

vesicle shapes and new shapes can still be discovered.

The spontaneous curvature model as explained in section 3.1 is no

exception and a large portion of morphologies where explored by Seifert

et al.[29] and Deuling & Helfrich[35] by analytic and numeric investiga-

tion of the shape equations.

In the following their findings of morphologies for non-negative spon-

taneous curvature are reviewed. Special focus lies on the formation of

necks, since necks lead to compartmentalization of vesicles. Compart-

mentalization is widely observed in cells of living organisms and plays

a crucial role in cell division, endo- and exocytosis.

Finally, additional findings about multi-spherical vesicles that were

discovered as part of this thesis are presented in section 4.2.1.

4.1 Zero spontaneous curvature

If the spontaneous curvature is zero (m̄ = 0) four thermodynamically

stable morphologies were found: spheres, prolates, oblates and stom-

atocytes. These shapes can be characterized by their reduced volume

v.

By definition single spheres are only stable for v = 1. Whereas

prolates were found to be stable in the region v ∈ [0.652 . . . , 1[ and
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oblates in v ∈ [0.592 . . . , 0.651 . . . ]. Finally stomatocytes are stable

for v ∈]0, 0.591 . . . ] (cf. figure 4.1). The limit shape Lsto at v = 0 cor-

responds to an inverted sphere 1, that is connected to a normal sphere 1 that is a sphere whose surface
normals point inwards

by an ideal neck. This shape has a bending energy of Ebe = 16πκ.

The transition between the shapes takes place via discontinuous bifur-

cations as shown in figure 4.1.
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lines , , and (see Fig. 3). This shape transfor-
mation can again be understood by a Landau-type expan-
sion, as in (4.4).

The stomatocytes exist in a region bounded by the lines
, , and , where they always have lower energy

than the symmetric shapes. At , the limiting shapes
consist of a sphere that encloses a smaller sphere. Both
spheres are connected by an ideal neck. The locus is
given by (4.6) with . In Fig. 6 we show the
bending energy and in Fig. 7 the shapes of the two
branches for . The bending energy diverges at
and remains finite at and

C. Further branches of solutions

So far, we have discussed prolate and oblate shapes
arising from the bifurcation of the sphere and the

symmetry-breaking pearlike and stomatocyte shapes. In
the phase diagram of Fig. 3 the gap between the limit
shapes and implies that this region contains no

axisymmetry shapes. On the other hand, this re-

gion contains shapes that derive from the bifurca-
tion of the sphere. Peterson [34] has found, however,
that these shapes are locally unstable with respect to el-
liptical deformations in the spherical limit, i.e., as goes
to 1. His argument is based on the general expression for
the second variation of the bending energy in this limit.
It holds irrespectively whether the spontaneous-curvature
model or the bilayer-coupling model is considered. This
implies that if the gap contains locally stable shapes at
all, these must be nonaxisymmetric shapes. How
far this region of stable nonaxisymmetric shapes extends
into the prolate and oblate region cannot be answered
without a more detailed analysis.

Finally, it is remarkable that the boundary lines ,

, and approach the sphere point

with the same derivative

(4.8)

As proven in Appendix C, this relation holds even more
generally for any curve of smooth shapes
which approach the sphere, i.e., which can be
parametrized as in (3.10) where

V. PHASE DIAGRAM

FOR THE SPONTANEOUS-CURVATURE MODEL

For the spontaneous-curvature model, the phase dia-

gram is determined by the solution of the shape equation
which has the lowest bending energy for a given area

and volume Because the bending energy is scale in-
variant, this phase diagram again depends only on two di-
mensionless parameters, which are the reduced volume

as defined by (4.1) and the reduced

spontaneous curvature of as given by

(5.1)

Since the branches have significantly more overlap in this
model, most transitions are discontinuous, i.e., the first

derivative of the energy is discontinuous at the transi-
tion point.

A. Phase diagram for zero spontaneous curvature

This case is certainly the minimal model for vesicle
shapes and deserves a special presentation. In Fig. 8 we
show the bending energy as a function of the reduced
volume for the prolate-dumbbell, oblate-discocyte, and
stomatocyte branches. The pear-shaped vesicles do not
exist for this choice

The prolate-dumbbell branch exists for all
With decreasing reduced volume , the shapes along this
branch vary smoothly from a prolate ellipsoid via

dumbbell-like shapes to a long and narrow capped
cylinder.

For , the shapes of the oblate-discocyte branch
correspond to oblate ellipsoids. With decreasing , these
shapes become discocyte and finally self-intersect for

For , the stomatocyte branch bifurcates

from the oblate branch. It reaches the maximal volume
at . The lower part of this stomatocyte

branch finally approaches a limit shape for small , where
an inverted sphere is connected by an ideal neck with a
sphere of the same radius as required by (3.14) for

Thus the volume vanishes and the energy goes to
The form of the energy as shown in Fig. 8 for the

oblate-discocyte and the stomatocyte branches can again
be understood in terms of a Landau-type expansion for
the order parameter which represents the amplitude of
the unstable mode. As before, this mode breaks the up-
down symmetry of the oblate-discocyte shapes. Howev-
er, in this case, one has to include a six-order term ,

which leads to

(5.2)

FIG. 8. Bending energy for as a function of the re-

duced volume . Three branches are displayed: the prolate, the

oblate, and the stomatocyte branches. The latter bifurcates

from the oblate branch. Its upper part between and

corresponds to locally unstable shapes. Its lower part between

and corresponds to locally stable shapes. The oblate

branch beyond corresponds to self-intersected states.

(a) Bending energies for the three branches. Reading from v = 1 to v = 0
prolates are the stable shapes until the discontinuous bifurcation at D.
Between D and Dsto oblates are the shapes with the minimal bending
energy. Finally, stomatocytes are locally stable between Msto and Lsto,
reach its maximum volume at Msto u 0.66 and are globally stable between
Dsto and Lsto. Lsto denotes the limit shape of a membrane with an
inbud that is the same size as the containing sphere and an ideal neck.
Solutions of the oblate branch beyond SIob begin to self-intersect and are
not physically meaningful.

44 SHAPE TRANSFORMATIONS OF VESICLES: PHASE ... 1191

with
For , the coefficients and are negative.

At , changes sign. For , the function

has three local minima and two local maxima. The

minima with correspond to the lower stomatocyte
branch which is, thus, locally stable. The minimum with

describes the symmetric oblate-discocyte branch.
The local maxima correspond to unstable stomatocytes.
At , the local minima with merge with the local
maxima and disappear for . In this range, only

one local minimum survives.
Comparing the bending energy of the three

branches—the prolate-dumbbell, the oblate-discocyte,
and the stomatocyte branches—one finds that for

, the stomatocytes have the lowest ener-

gy, while for , the oblate shapes have

lowest energy. Since the oblate shapes are discocytes in
this regime, no spontaneous curvature is necessary in or-
der to stabilize biconcave shapes, as previously observed
by Svetina and Zeks [25]. For , finally, the

prolate shapes correspond to the ground state. In Fig. 9
we show the shapes of lowest bending energy for several
values of . Discontinuous transitions separate the three
regimes.

It is worthwhile to observe also that the energy barrier
between the oblate and the stomatocyte shapes can

be derived from Fig. 8. It is given by the energy
difference between the oblate branch and the upper part
of the stomatocyte branch which is the saddle point along
a path of axisymmetric solutions connecting the two lo-
cally stable shapes. We find for , i.e.,

at the discontinuous transition. This is typically much
more than the thermal energy. Therefore, one expects
hysteresis, i.e., the oblate-discocyte shapes can be extend-
ed into the "metastable" region with . The transi-

tion will then take place when the energy difference

becomes comparable to Note that for the transition
between the prolate and the oblate branches the activa-
tion energy cannot be read off from the energy diagram of
Fig. 8, because a path connecting the prolate and the ob-
late branches at constant involves nonaxisymmetric

shapes.

B. Complete phase diagram

We describe in this subsection the phase diagram for
as displayed in Fig. 10. The derivation of these re-

sults is sketched in Appendix D.

The right half of the phase diagram is divided into two
parts by the line , which denotes a discontinuous transi-
tion between the prolate-dumbbell and the oblate-
discocyte branches. Above , the prolate-dumbbell
shapes have lower bending energy than the oblate-
discocyte ones. As goes to 1, it has already been de-
rived analytically that this phase boundary approaches
the critical value [27]. For , this phase

boundary is at

For , with and , a

discontinuous transition between two different
prolate-dumbbell shapes occurs. This line terminates in a
critical point.

For , the pear-shaped vesicles have

lowest energy in the region which is bounded by the lines
and . While the line denotes a line of

discontinuous transitions from symmetric to pear-shaped
states (and is an approximation to this transition

as discussed in Appendix E), the line corresponds to
a continuous transition between these states. In order to
illustrate these transitions, we show in Fig. 11 the func-
tional dependence of the bending energy and in Fig.

12 the corresponding shapes for . The energy dia-

gram shows that the pear-shaped vesicles and the sym-
metric ones can, of course, be extended beyond the
discontinuous transition . This region of metastabil-
ity is briefly discussed in Appendix D.

For , budding can occur, as illustrated in Figs.

FIG. 9. Shapes for and several values of . and

denote the discontinuous prolate-oblate and oblate-stomatocyte

transitions, respectively. All shapes have the same area.

FIG. 10. Phase diagram of the spontaneous-curvature model.

This phase diagram shows the shape of lowest bending energy

for a given scaled spontaneous curvature and reduced volume

. The regions where the prolate-dumbbells, pears, oblate-

discocytes, and stomatocytes have lowest energy are separated

by transitions. The line denotes a continuous transition.

All other transitions are discontinuous. The dashed lines

and denote approximations to the discontinuous transi-

tions as derived in Appendix E. The line denotes where

budding occurs. The line corresponds to the inclusion of a

spherical cavity. Beyond the lines and , self-

intersected states occur. For , the phase dia-

gram is not yet known.

(b) Examples of the thermodynamic stable stomatocytes, oblates and pro-
lates. All shapes have the same area.

Figure 4.1. Energy diagram
for vesicles with zero sponta-
neous curvature and the cor-
responding shapes as shown
by Seifert et al.[29].

Note, that the symbol used
by Seifert et al.[29] for the
bending energy is Fb while in
this thesis Ebe is used.
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4.2 Positive spontaneous curvature

Increasing the spontaneous curvature generally leads to shapes with re-

gions that are more narrow and eventually to the formation of necks.

Such necks are effectively dividing the vesicle into different compart-

ments. The upcoming section is about vesicles that are a conjunction

of spheres. These limit shapes play a special role, since they are con-

nected by a perfect neck, which means that the radius of the neck

goes to zero. But having a point where the radius is zero inside of

the integration interval when integrating the shape equations (equa-

tion (3.16)) is causing numerical instability as well as a discontinuity

in the bending angle ψ. Therefore these shapes are limiting to the

exploration of the morphology diagram (cf. figures 4.4 and 4.6) via

numerical methods.

4.2.1 Regions of spheres

Fortunately, the case of n spheres connected by a point-like neck can

be studied analytically. A neck that connects a sphere of radius R̄1 to

a sphere of radius R̄2 has to fulfill the neck closure condition[30], which

connects the radii of the spheres to the spontaneous curvature m̄

m̄ ≥ 1
2

(
1

R̄1
+

1
R̄2

)
. (4.1)

Using the Euler-Lagrange equation it can be shown[30] that each of the

n spheres can only have one of two possible radii, either a small radius

R̄s or a large radius R̄l.

In the following, each configuration of the n connected spheres is

denoted by a specific sequence composed of the letters s and l: For

example, a large sphere connected to small sphere that is connected to

another small sphere is denoted by lss (cf. figure 4.2). A sphere can

be connected to more than two other spheres simultaneously, which is

expressed by a prefixed number: As an example, l3s refers to a large

sphere connected to three small spheres.
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Note that the shapes that contain a number don’t have rotational

symmetry in general and thus cannot be described by the shape equa-

tions. The only exceptions are l2s and s2l, which are equivalent to sls

(cf. figure 4.3) and lsl respectively.

In order for the whole conformation to be stable all necks have to

be stable. As a consequence of equation (4.1) the neck with the most

spheres of radius R̄s will determine the lower bound of possible m̄

values.

Figure 4.2. A multisphere

lss solution consisting of one

large and two small spheres at

m̄ = 2
√

3 and v = 10
√

10+2
24
√

3
≈

0.809 . . . .

Figure 4.3. A multisphere

l2s solution consisting of one

large and two small spheres at

m̄ = 2
√

3 and v = 0.925 . . . .

The boundary of a region where n spheres are connected of which ns

spheres have the radius R̄s and nl have the radius R̄l can be calculated

via

R̄s =


1
m̄ if at least one ss-neck exists

1√
n if R̄s = R̄l

R̄l
2m̄R̄l−1 else,

1 = nl R̄l
2 + nsR̄s

2,

v = nl R̄l
3 + nsR̄s

3. (4.2)

Solving these equations will give unique solutions for n = nl + ns

spheres. The large radius can have values in R̄l ∈ [ 1√
n , 1] and the

small radius in R̄s ∈ [0, 1√
n ]. The lowest possible value of the reduced

volume v is reached when R̄l = R̄s which leads to vmin(n) = 1√
n . The

maximal value of the reduced volume, vmax(nl) =
1√
nl

, is reached in

the limit R̄s → 0. Note, that the shape only varies with the volume-

to-area ratio v and not with the spontaneous curvature m̄, while the

bending energy is minimal for

m̄min(v) =
1
2

(
1
R̄s

+
1
R̄l

)
(4.3)

and increases with larger m̄. Thus, shapes observed in experiments

most likely have a spontaneous curvature close to m̄min(v). The bound-

ary line v(m̄) depends on the type of necks present for a given config-

uration.
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Figure 4.4 shows the resulting boundaries for n = 2 (black), n = 3

(blue) and n = 4 (red). Each color has different branches for those

configurations that have the same neck constraint corresponding to

the cases in equation (4.2) and the same number of small spheres

ns. For example the two configurations lsl and lls both contain a ls-

neck and have ns = 1 and thus approach the limit shape ll, while the

configuration sls also contains a ls-neck, but since ns = 2 it approaches

the limit shape l in the limit m̄ → ∞.
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Figure 4.4: Regions of existence for multi-sphere solutions for 2 ( ), 3 ( ) and
4 ( ) spheres in the plane spanned by the reduced volume v and the dimensionless
spontaneous curvature m̄. Labels that are mirror images of each other are omitted. So
labels like ls include its mirror image sl. In the case where all spheres are of the same
size the label with all l’s is used, while using s would be equally valid. The gray region
starting at m̄ =

√
5 indicates the region where more than 4 spheres are connected. These

additional lines are omitted for the sake of readability but still cover a large enough
interval such that the asymptotics of the boundaries are clear.
In the interval m̄ ∈ [0, 10] 100 families of curves would have to be displayed otherwise.
Note that the l3s line corresponds to non-axisymmetric solutions that can not be discribed
by the shape equations.
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4.2.2 Breaking of symmetry

Prolates and oblates with zero spontaneous curvature are in addition

to their rotational symmetry symmetric with respect to a plane that

crosses the axis of rotation in its center (see figure 4.5).

However, in experiments, deflation of vesicles typically leads to the

formation of buds[36], which were discussed in section 4.2.1(cf. fig-

ures 4.2 and 4.3). These multi-sphere vesicles do not have this ad-

ditional symmetry and might not even be axisymmetric. As shown

in figure 4.4 multi-sphere vesicles exist for larger values of the spon-

taneous curvature in the morphology diagram. The fact, that they

do occur for the same value of the reduced volume as the symmetric

prolates, indicates that there has to be a transition region.

Figure 4.5. Symmetry axes

of a prolate with m̄ = 0 and

v = 0.7.

Indeed, Seifert et al.[29] reported such a transition region for the

case of two connected spheres. Figure 4.6 shows this region between

the lines Dpear and L1+1. The line Dpear describes a discontinuous

transition between prolates with two symmetry axes and prolates with

one symmetry axis. The line L1+1 is identic to the line labeled as ls in

figure 4.4. The asymptotic behaviour when the spontaneous curvature

goes to infinity (m̄ → ∞) can be calculated by solving the equation[29]

v =
2m̄(4 − 3(R̄s + R̄l))− 3

2(m̄ − 3)
, (4.4)

where R̄s and R̄l are given by equation (4.2) for nl = ns = 1. The

lower solid part of the line Dpear was obtained by numerically tracking

the point where the shapes of the symmetric and asymmetric branch

have equal energy. The dotted lines correspond to cubic splines that

connect the numeric and analytic solutions.

The line of limit shapes that have two spheres with different radii

L1+1 is described by the functional relationship[29]

v = v1+1(m̄) ≡ − 1
4m̄3 +

(
1 − 1

2m̄2

)√
1 +

1
4m̄2 for m̄ ≥

√
2 .

(4.5)
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The line of limit shapes that have two spheres of equal radius L2∗ is

located at[30]

v = v∗ ≡
1√
2
≈ 0.707 and m̄ ≥ m∗ ≡

√
2 ≈ 1.414 . (4.6)

The two boundary lines meet in a corner point with m̄ = m̄∗ =
√

2

and v = v∗ = 1/
√

2. At this corner point of the morphology dia-

gram, the dumbbell shape consists of two equally sized spheres with

radius R̄s = R̄l = 1/
√

2 and vanishing bending energy. Transitions
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Figure 4.6: Morphology diagram of prolates and dumbbells for positive spontaneous
curvature m̄ with 0.7 ≤ m̄ ≤ 2.8 and volume-to-area ratio v ≥ 0.6. The horizontal line
with v = 1 corresponds to a single sphere. Along the solid line L1+1, the vesicles form
limit shapes consisting of two different spheres connected by a closed membrane neck.
The location of this line is given by the algebraic expression in equation (4.5). Along the
solid line L2∗ with v = 1/

√
2 ≈ 0.707 and m̄ ≥

√
2, the vesicles consist of two equally sized

spheres connected by a closed neck. The parameter region between the two lines L1+1
and L2∗ defines the yellow stability regime for (1 + 1)-spheres, in which the vesicle shape
depends only on v but is independent of m̄. The black dotted line Dpear separates up-
down symmetric from asymmetric dumbbells with open necks. The latter line is obtained
using cubic splines to connect numerical and analytical solutions. The solid blue and
red circles correspond to shapes with v = 0.768 as displayed in figure 4.7a, the solid red
and blue squares to shapes with v = 1/

√
2 as in figure 4.7b. Red markers corrspond to

asymmetric shapes and blue markers to symmetric shapes.

from fully symmetric prolates to prolates that are only axisymmetric

were found to happen discontinuously whereas the transition of these

prolates into two connected spheres is continuous[29]. Solutions with
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(a)

(b)

Figure 4.7: Examples for dumbbell shapes with open and closed necks: (a) Dumbbells
with v = 0.768, corresponding to the three solid circles in figure 4.6. From left to right,
these shapes have the rescaled spontaneous curvatures m̄ = 1.2, 1.3 and ≥ 1.56, where
the rightmost shape corresponds to the limit shape L1+1 with v = 0.768; (b) Dumbbells
with v = v∗ = 1/

√
2 = 0.707 corresponding to the three solid squares in figure 4.6.

From left to right, these shapes have the spontaneous curvature m̄ = 1.167, 1.352, and
m̄ ≥ m̄∗ =

√
2 = 1.414. The two shapes with m̄ = 1.352 and m̄ = m̄∗ are undoloids as

explained in section 4.3, while the other shapes are solutions of the shape equations.

broken symmetry have a significantly lower minimum of the radial

coordinate than their symmetric counterpart (cf. figure 4.7a). This

means that for fixed volume-to-area ratio v narrow necks can occur for

lower values of the spontaneous curvature m̄ if the symmetry perpen-

dicular the the axis of rotation is broken 2. 2 See also figures 5.4 and 5.5

4.3 Bridging the gap - parameterization for narrow necks

As the neck closes, solving the shape equations becomes more and more

difficult because of numerical instabilities when the neck radius goes to

zero. For narrow necks a prolate can be approximated by two spherical

caps joined by two unduloid segments[37]. This approximation has the

advantage that it can be treated analytically.

The parameterization consists of four regions. The first region is

a spherical cap with radius R̄s
3 and curvature ψ̇(s) = 1

R̄s
between 3 without loss of generality, it

can be assumed that the first
spherical segment is smaller than
the second

s0 = 0 and s1 = π
2 R̄s. The second region connects the spherical cap

with radius R̄s with the neck of radius R̄ne with an unduloid segment,
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while the third region connects the neck to the second spherical cap of

radius R̄l.

Figure 4.8. Illustration of the
four regions of the approxima-
tion for dumbbell shaped vesi-
cles with narrow necks. Re-
gion I is a spherical cap with
radius R̄l and region IV a
spherical cap with radius R̄s.
Region II and III are undu-
loids whose parameterization
is given by equation (4.7).[37]

The parameterization of the unduloid segments as shown by Four-

cade et al.[37] reads

sin ψ(s) =
1

R̄i + R̄ne

(
r̄(s) +

R̄iR̄ne
r̄(s)

)
i ∈ {s, l}, (4.7)

where i = s in the second region and i = l in the third. By taking the

derivative with respect to the arc-length s the curvature ψ̇(s) can be

calculated:

ψ̇(s) =
πS̄

R̄i + R̄ne

(
1 − R̄iR̄ne

r2(s)

)
i ∈ {s, l},

˙̄r(s) = πS̄ cos(ψ(s)). (4.8)

The fourth region is a spherical cap of radius R̄l and curvature ψ̇(s) =
1
R̄l

from s = 1 − R̄l
2S̄ to s = 1.

The total area Au and volume Vu of shapes consisting of all four

regions are given by[37]

Au = 4π
(

R̄l
2 + R̄s

2
)
+ 2πR̄ne (R̄l + R̄s) +O(R̄ne

2 log(R̄ne)) ,

Vu =
4π
(

R̄l
3 + R̄s

3)
3

+ πR̄ne
(

R̄l
2 + R̄s

2
)
+O(R̄ne

2) .

(4.9)



36 chapter 4. morphologies of uniform vesicles in equil ibrium

4.3.1 Matching to shape equations

When starting with a shape that has a reduced volume v = 1/
√

2

and a spontaneous curvature m̄ = 0 and approaching the limit shape

L2∗ at v = 1/
√

2 and m̄ =
√

24, the numerical instability of the 4 this is the egde of the yellow
region in figure 4.6

closing neck eventually causes the algorithm to fail. The last available

shape obtained by solving the shape equations is at m̄ = 1.306. Using

the values of the area and the volume of this solution, R̄l and R̄s are

calculated via (4.9) using a root finding algorithm. Here, the trust-

region algorithm provided by NLsolve.jl[38] was used. The neck radius

was computed by finding the minimum between the two maxima of

the radial component of the solution. The values are R̄ne ≈ 0.023,

R̄l ≈ 0.723 and R̄s ≈ 0.679. These values are then used to obtain

an unduloid shape via equation (4.8). The resulting relative error is

below 2% for area and volume with respect to the solutions of the

shape equations (cf. figure 4.9).

1.0 0.0 1.0
0

1

2

3

r/Rve

z/
R

v
e

m̄ = 1.306

Shape equations
Undoloid (shifted)

Figure 4.9. Fitting of param-
eterization at m̄ = 1.306 and
v = 1/

√
2 . The solution of

the shape equations is shown
in red and the unduloid pa-
rameterization with the same
neck radius R̄ne ≈ 0.023 is
shown in black. The undu-
loid shape was slightly shifted
in z direction to be symmetric
relative to the solution of the
shape equations.

4.3.2 Closing neck interpolation

As shown in figure 4.6, an ideal neck with R̄ne = 0 connecting two

spheres of equal radius R̄l = R̄s = 1√
2

forms at m̄ =
√

2. The neck

radius can now be linearly interpolated between R̄ne ≈ 0.023 and 0,



4.3. bridging the gap - parameterization for narrow necks 37

which yields

R̄ne(m̄) ≈ 0.3005 − 0.2125m̄. (4.10)

For any m̄, the values of R̄s and R̄l can be calculated from equa-

tion (4.9) as in section 4.3.1.
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(a) m̄ = 1.306

1.0 0.0 1.0

0

1

2

3

r/Rve

z/
R

v
e

(b) m̄ = 1.354

0.0

0

1

2

3

r/Rve

z/
R

v
e

(c) m̄ = 1.414
Figure 4.10. Contours cor-
responding to the linear in-
terpolation in equation (4.10).
(a) The same contour as in fig-
ure 4.9 with R̄ne ≈ 0.023.
(b) Intermediate shape with
R̄ne ≈ 0.013. (c) Limit shape
with a closed neck R̄ne = 0.





5 Non-equilibrium shape transformations

5.1 Shape oscillations in GUVs filled with min-proteins

The previous section dealed with the different shapes of axisymmetric

vesicles as they can be computed using the spontaneous curvature

model. In this section this model is used to analyse the shapes of GUVs

in vitro and thus provide a way to estimate spontaneous curvature and

neck radii below the optical limit.

5.1.1 The experiment

In the experiment by Litschel et al.[6] fluorescently labeled GUVs where

produced via continuous droplet interface crossing encapsulation (cDICE)[39]

and observed simultaneously by differential interference contrast mi-

croscopy (DIC) and confocal fluorescence microscopy. The aqueous

buffer enclosed by the GUVs contained two Min proteins, MinD and

MinE, as well as adenosine triphosphate (ATP) and enhanced green

fluorescent proteins (eGFPs). The corresponding solution concentra-

tions were 1.5 µM MinD, 1.4 µM eGFP-MinD, 3 µM MinE, and 5 mM

ATP.[6] Thus, about half of the MinD proteins were fluorescently la-

beled and the overall MinD concentration was roughly equal to the

MinE concentration. The lipid bilayer of the GUVs was composed

of zwitterionic 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and

anionic 1,2-Dioleoyl-sn-glycero-3-phosphoglycerol (DOPG) in a ratio

of 4:1.

MinD adsorbs onto lipid membranes when loaded with ATP.[40]

MinE binds to membrane-bound MinD-ATP and the resulting MinD-ATP-
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MinE complex stimulates ATP hydrolysis by MinD, causing both pro-

teins to desorb again from the membrane. In the presence of a sufficient

amount of ATP, this MinD-MinE system undergoes many repetitive

cycles of adsorption and desorption. For osmotically deflated vesicles,

this periodic molecular process leads to shape oscillations of the vesicles

which can be directly observed in the optical microscope.[6] Different

types of shape oscillations have been detected; the two most frequent

types of oscillations were denoted by ‘periodic dumbbell splitting’ and

‘periodic budding’ in Ref. 6.

The analysis in this section focuses on the dumbbell case as displayed

in figures 5.1 and 5.2. In this case, the fluorescence of the eGFP-labeled

MinD adjacent to the inner leaflet of the GUV membrane was observed

to be laterally uniform. Therefore, membrane segments with a lateral

extension of about 300 nm 1 can be considered to have, on average, a 1 this corresponds to the limit of
optical resolution

laterally uniform molecular composition which implies that they have

uniform elastic properties as well. As shown in chapter 4, the shape of

uniform GUV membranes strongly depends on spontaneous curvature

of these membranes.[41]

5.1.2 Analysis

The theoretical analysis is based on the time-lapse Movie1� which

consists of 200 snapshots or frames, each of which displays a different

image of the same GUV as obtained by differential interference contrast

microscopy. The movie was taken with the predefined time interval

∆t = 7.61 s between successive frames and displays the whole series of

200 frames within 20 s, corresponding to about 1500 s or 25 min real

time. Apart from a few frames at the beginning and at the end, the

movie consists of 26 complete shape oscillations with an average time

period of 55.9 s as described in more detail further below.

All individual snapshots of Movie1� are consistent with the view

that the observed shapes represent essentially axisymmetric shapes

that are tilted with respect to the focal plane and are deformed by

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fanie.201808750&file=anie201808750-sup-0001-Video_S6.mp4
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fanie.201808750&file=anie201808750-sup-0001-Video_S6.mp4
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relative displacements of the two subcompartments with respect to

the closed membrane neck, which acts as a flexible hinge. The two

shape sequences in figure 5.1a-c and figure 5.2a-c have been selected as

good canditates to be analyzed because they can be well approximated

by axisymmetric shapes without additional deformations arising from

relative displacements around the hinge-like membrane neck.
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(a) (b) (c)

(d) Symmetric
dumbbell:
Rne = 1.17 µm

(e) Symmetric
dumbbell:
Rne = 0.78 µm

(f) Asymmetric
dumbbell:
Rne = 0.12 µm

Figure 5.1. Symmetry-
breaking transformation
during one shape oscillation:
Comparison of experimen-
tally observed vesicle shapes
in (a-c) with theoretically
calculated shapes in (d-f)
that match the neck radius
measured from the cor-
responding experimentatl
images. The neck radius
Rne attains its largest value
of 1.17 µm in (a,d) and its
smallest value of 0.12 µm in
(c,f). The up-down symmetry
of the symmetric dumbbells
(blue shape contours) in (a,d)
and (b,e) is broken for the
asymmetric dumbbell (red
shape contour) in (c,f). The
three images in panels a-c
were obtained by differen-
tial interference contrast
microscopy[6] and represent
three subsequent frames
of the time-lapse Movie1.
The dashed vertical lines in
panels d-f represent axes of
rotational symmetry.[41]

(a) (b) (c)

(d) Asymmetric
dumbbell:
Rne = 0.12 µm

(e) Asymmetric
dumbbell:
Rne = 0.52 µm

(f) Symmetric
dumbbell:
Rne = 0.95 µm

Figure 5.2. Symmetry-
restoring transformation
during one shape oscillation:
Comparison of experimen-
tally observed vesicle shapes
in (a-c) with theoretically
calculated shapes in (d-f).
The neck radius Rne attains
its smallest value of 0.12 µm
in (a,d) and its largest value
of 0.95 µm in (c,f). The
up-down symmetry is broken
for the red shapes of (a,d) but
restored for the blue shape of
(c,f). The asymmetric shape
in (a,d) is the same shape as
in figure 5.1c,f but flipped
upside-down. The three
images in panels a-c represent
three subsequent frames of
the time-lapse Movie1.[41]
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During the observed shape changes, both the membrane area and

the volume of the GUVs were essentially conserved. These properties

were explicitly demonstrated for the six snapshots in figure 5.1a-c and

figure 5.2a-c by manually fitting splines to the shape contours of these

images, assuming rotational symmetry of the shapes, and then mea-

suring the membrane area A and the vesicle volume V as well as the

neck radius Rne.[1,42]� The numerical estimates for these geometric

quantities are given in table 5.1.

A [µm2] V [µm3] v Rne [µm]
Fig. 5.1a 390 ± 30 490 ± 60 0.68 ± 0.01 1.1 ± 0.2
Fig. 5.1b 380 ± 30 470 ± 60 0.68 ± 0.01 0.8 ± 0.2
Fig. 5.1c 380 ± 30 460 ± 50 0.66 ± 0.02 < 0.3
Fig. 5.2a 380 ± 30 470 ± 53 0.67 ± 0.01 < 0.3
Fig. 5.2b 380 ± 30 463 ± 52 0.68 ± 0.01 0.6 ± 0.2
Fig. 5.2c 380 ± 30 483 ± 55 0.68 ± 0.01 0.9 ± 0.2

Table 5.1: Membrane area A, vesicle volume V, dimensionless volume-to-area ratio v
defined in equation (3.7), and neck radius Rne, as estimated from the optical images
in figure 5.1a-c and figure 5.2a-c via fitting with splines. In the third and fourth row,
the upper bound for Rne corresponds to the optical resolution of differential interference
contrast microscopy. The error of the spline fitting was estimated with ±2 pixels which
corresponds to ±132nm and the uncertainties of the displayed values is obtained by linear
error propagation using Measurements.jl[43,44].[41]

v m̄ R̄ne m [µm−1] Rne [µm]
Fig. 5.1d 0.670 1.18 0.21 0.21 1.17
Fig. 5.1e 0.670 1.63 0.14 0.29 0.78
Fig. 5.1f 0.670 1.89 0.021 0.34 0.12
Fig. 5.2d 0.670 1.89 0.021 0.34 0.12
Fig. 5.2e 0.670 1.93 0.094 0.35 0.52
Fig. 5.2f 0.670 1.40 0.17 0.25 0.95

Table 5.2: Dimensionless shape parameters v and m̄ that were used to compute the dumb-
bell shapes in figure 5.1d-f and figure 5.2d-f, see also figure 5.4. The third column contains
the rescaled neck radius R̄ne = Rne/Rve of the computed shapes. The spontaneous cur-
vature m = m̄/Rve and the neck radius Rne = R̄ne Rve in the fourth and fifth column
were computed using the vesicle size Rve =

√
A/(4π) = 5.57 µm as obtained from the

membrane area A = 390 µm2 for the image in figure 5.1a.[41]

The theoretical shapes in figure 5.1d-f and figure 5.2d-f were then

calculated using the volume-to-area ratio v = 0.670 and several values

of the rescaled spontaneous curvature m̄ as given in table 5.2 and

displayed in the morphology diagram of figure 5.4. These values of

the spontaneous curvature were chosen by measuring the neck radius

https://gitlab.mpikg.mpg.de/paper/min_GUV_oscillations_Code/-/tree/v0.1/analyse_frames
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of the experimental shapes and comparing them to the radii of the

computed shapes as shown in figure 5.7. Furthermore, to obtain the

dimensionful quantities from the dimensionless ones, the vesicle size

Rve =
√

A/(4π) = 5.57 µm as obtained from the area A = 390 µm2

of the image in figure 5.1a was used, see first row in table 5.1.

5.1.3 Finding shapes assuming v = 0.670

The symmetric and asymmetric dumbbells as displayed in figure 5.5

were obtained by numerical solution of the shape equations as ex-

plained in more detail in appendix B. The region of the morphology

diagram that was traversed is displayed in figure 5.3. These shapes

belong to two different branches of the bending energy Ebe as shown

in figure 5.6. The branch of the asymmetric shapes is connected to

the branch of the symmetric shapes by a continuous bifurcation Bop.

From this point on the neck radius decreases until it reaches the limit

shape of a sphere connected to a prolate. This limit shape is labeled

by the symbol Lps. As visible in figures 5.6 and 5.7, the two branches

of shapes coexist in a rather narrow interval of values for the sponta-

neous curvature with m̄(Lps) < m̄ < m̄(Bop). From extrapolation of

the neck radii of the computed shapes m̄(Lps) ' 1.84 is estimated as

indicated by the red star in figure 5.7. The bifurcation value of the

spontaneous curvature for the continuous bifurcation m̄ = m̄(Bop) is

given by the point where the energy of both shapes is equal. From the

shapes shown in figure 5.5 it is concluded that the value of m̄(Bop) is

in the interval ]1.933, 1.94[. The continuous bifurcation at the point

Bopis confirmed by the functional form of the bending energy, see inset

in figure 5.6.

The latter inset displays the rescaled bending energy difference

∆Ēbe ≡
(
Ēasym

be − Ē sym
be
)

/(8πκ) (5.1)

between the bending energy Ēasym
be of the asymmetric branch and the

bending energy Ē sym
be of the symmetric branch. Inspection of this inset
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Figure 5.3. Close up of
figure 4.6. The gray line
at v = 0.670 indicates the
direction in which solutions
where obtained. Starting at
m̄ = 0 the spontaneous
curvature has been stepwise
increased to find new solu-
tions. The blue and red
squares correspond to the so-
lutions shown in figure 4.7.
The blue and red diamonds
correspond to the solutions
shown in figure 5.3. Red
markers indicate solutions on
asymmetric branches and blue
markers solutions on symmet-
ric branches.

1.18 1.40 1.68 1.89 1.94 2.27

Figure 5.4: Symmetric dumbbell shapes (blue) for constant volume-to-area ratio v = 0.670
and rescaled spontaneous curvature m̄ as given by the numerals below the shapes. The
first three shapes correspond to the blue diamonds in figure 5.3. This sequence of shapes
illustrates the closure of the membrane neck along the symmetric branch the value of the
spontaneous curvature m̄ is increased from 1.18 to 2.27.[41]

reveals that the two energy branches merge with a common tangent

for a critical m̄-value close to 1.94. The latter behavior agrees with

the shape evolution in figure 5.5, which directly demonstrates that the

up-down asymmetric shapes become more and more symmetric as the

bifurcation value m̄(Bop) of the spontaneous curvature is approached.

The bending energy difference ∆Ēbe displayed in the inset of fig-

ure 5.6 is always positive, i.e., the asymmetric branch has an increased

bending energy compared to the symmetric one. However, this energy

increase is rather small for the whole range of m̄-values covered by the

shape oscillations. For m̄ = 1.89, for example, the bending energy of
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1.94

1.89 1.92 1.93 1.933

Figure 5.5: Up-down symmetric (blue) and asymmetric (red) dumbbells for v = 0.670 and
five values of the rescaled spontaneous curvature m̄ as indicated by the numerals below
the shapes. The asymmetric dumbbells with m̄ = 1.89 and 1.93 correspond to the red
diamonds in figure 5.3. The two types of shapes coexist between m̄ = 1.89 and m̄ = 1.933.
For m̄ = 1.94, only the symmetric shape is found which implies that the asymmetric
branch merges with the symmetric one at a critical value of the spontaneous curvature
slightly above m̄ = 1.933. Comparison of the asymmetric and symmetric shapes reveals
that the asymmetric shapes approach the symmetric ones in a continuous manner as we
increase the spontaneous curvature towards its critical value. This conclusion is further
corroborated by the corresponding energy branches in figure 5.6. Note that the neck
radius of the asymmetric (red) dumbbells increases with increasing m̄, in contrast to the
behavior of the symmetric (blue) dumbbells.[41]

the asymmetric dumbbell is only 0.002 × 8πκ larger than the bending

energy of the symmetric dumbbell. For the typical bending rigidity

κ = 20 kBT at room temperature, the energy scale 8πκ is 503 kBT

and the bending energy difference ∆Ēbe is of the order of one kBT for

m̄ = 1.89.

For each dumbbell shape, the two subcompartments are connected

by a membrane neck with a circular waistline. The radius of this

waistline defines the neck radius Rne, see figures 5.1 and 5.2, which

changes during the shape oscillations.

In figure 5.7a, the rescaled neck radius R̄ne is displayed as a function

of the spontaneous curvature m̄ = mRve, along the symmetric (blue)

and asymmetric (red) branch of dumbbells. In addition to the two

branches of the neck radius as a function of spontaneous curvature,



5.1. shape osci l lations in GUVs filled with min-proteins 47

1.00 1.25 1.50 1.75 2.00
0.0

0.1

0.2

0.3

0.4

Spontaneous curvature m̄

Be
nd

in
g

en
er

gy
Ē
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Figure 5.6: Rescaled bending energy Ēbe = Ebe/(8πκ) as a function of rescaled spon-
taneous curvature m̄ for volume-to-area ratio v = 0.670. κ is the bending rigidity. The
Ēbe-values are displayed in blue for the symmetric dumbbells and in red for the asym-
metric ones. The inset shows the energy difference ∆Ēbe between the asymmetric and
the symmetric branch as defined in equation (5.1). The asymmetric branch (red) has a
slightly larger bending energy than the symmetric branch (blue). In addition, the two
branches merge with a common tangent at a critical m̄-value slightly above m̄ = 1.933, see
figure 5.5. The symmetric branch exhibits a pronounced minimum at m̄ = 1.373 which
reflects the vicinity of the corner point with v = 1/

√
2 and m̄ =

√
2, see the morphology

diagram in figure 5.3, at which the bending energy vanishes.[41]

the two panels b and c of figure 5.7 contain the numerical values of

the neck radius R̄ne and the spontaneous curvature m̄ for the three

dumbbell shapes in figures 5.1 and 5.2. The latter plots show once more

that the neck radius decreases and increases monotonically along the

symmetric and asymmetric branches, respectively, as the spontaneous

curvature of the GUV membrane is increased. They also show how the

uncertainties in the neck radius lead to different uncertainties in the

spontaneous curvature, depending on the value of the radius as well

as the branch to which the shape belongs. The steeper the curve of

the neck radius is, the more accurate can the spontaneous curvature

be estimated. Additionally the bifurcation point Bop and the optical

limit are natural boundaries at which the error bars can be truncated.
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Figure 5.7. Rescaled radius
R̄ne = Rne/Rve of mem-
brane neck as a function of
spontaneous curvature m̄ for
v = 0.670: (a) Computed
variation of the neck radius
along the symmetric (blue)
and asymmetric (red) dumb-
bell branches. As the spon-
taneous curvature m̄ is in-
creased, the neck radius de-
creases along the symmet-
ric but increases along the
asymmetric branch. The
red star indicates the esti-
mate m̄ ' 1.84 for the
spontaneous curvature of the
prolate-sphere limit shape Lps
with R̄ne = 0; (b) Evo-
lution of neck radius and
spontaneous curvature for the
three shapes in figure 5.1
that describe the symmetry-
breaking transformation; and
(c) Evolution of neck radius
and spontaneous curvature for
the three shapes in figure 5.2
that describe the symmetry-
restoring transformation. The
error bars of the neck radius
correspond to the uncertainty
of the neck radius as obtained
by approximating the experi-
mental shape contours in fig-
ure 5.1a-c and figure 5.2a-
c with splines, truncated at
the bifurcation point and the
threshold of the optical reso-
lution. The error bars of the
spontaneous curvature corre-
spond to the resulting un-
certainty of the spontaneous
curvature given the non-linear
shape of the curve. The hori-
zontal dotted lines correspond
to the optical resolution limit
of 300 nm.[41]
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5.1.4 Finding shapes assuming v = 0.685

Table 5.1 shows that there is an interval of values for the reduced vol-

ume v that are compatible with the measurements. Choosing v = 0.685

the shapes in figures 5.1a to 5.1c, 5.2a and 5.2c could also be matched

as shown in figures 5.8 to 5.10, while there are no asymmetric solutions

available for the range of values of the neck radius R̄ne measured for

figure 5.2b as indicated by the orange bar in figure 5.10c. Hence, the

assumption of v = 0.685 is not in agreement with the experimental

data. Finding rigorous bounds on the values of the volume-to-area

ratio that are in agreement with the experiment remains an open task.
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(a) (b) (c)

(d) Symmetric
dumbbell:
Rne = 1.17 µm

(e) Symmetric
dumbbell:
Rne = 0.78 µm

(f) Asymmetric
dumbbell:
Rne = 0.12 µm

Figure 5.8. Same comparison
as in figure 5.1 but the the-
oretical shapes (d), (e) and
(f) are calculated assuming
v = 0.685. These theoretical
shapes are slightly less elon-
gated and a bit wider as those
in figure 5.1.

(a) (b) (c)

(d) Asymmetric
dumbbell:
Rne = 0.12 µm

(e) (f) Symmetric
dumbbell:
Rne = 0.95 µm

Figure 5.9. Same compari-
son as in figure 5.2 but the
theoretical shapes (d) and
(f) are calculated assuming
v = 0.685. (e) For v = 0.685
there is no asymmetric shape
available that matches the
measured neck of the shape
in panel (c) as shown in fig-
ure 5.10.
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Figure 5.10. Rescaled ra-
dius R̄ne = Rne/Rve of mem-
brane neck as a function of
spontaneous curvature m̄ for
v = 0.685: (a) Computed
variation of the neck radius
along the symmetric (blue)
and asymmetric (red) dumb-
bell branches. The qualita-
tive behaviour of the neck
radius as a function of the
the spontaneous curvature m̄
is the same as in figure 5.7,
but the region where both
branches coexist is larger. (b)
Evolution of neck radius and
spontaneous curvature for the
three shapes in figure 5.8
that describe the symmetry-
breaking transformation; and
(c) Evolution of neck radius
and spontaneous curvature for
the three shapes in figure 5.9
that describe the symmetry-
restoring transformation. The
orange band referring to fig-
ure 5.9e shows that there are
no asymmetric solutions cor-
responding to the radii mea-
sured for figure 5.9b. This
means that these data are not
compatible with the choice of
v = 0.685. It can be matched
with lower v as shown in fig-
ure 5.7. The error bars of the
spontaneous curvature corre-
spond to the resulting un-
certainty of the spontaneous
curvature given the non-linear
shape of the curve. The hori-
zontal dotted lines correspond
to the optical resolution limit
of 300 nm.
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5.1.5 Time evolution

The time-lapse Movie1� consists of 200 individual snapshots or frames

which were taken with the predefined time interval ∆t = 7.61 s be-

tween successive frames. The frame number is identified by the index

i from i = 1 to i = 200 and each frame is labeld as ‘open’ if it dis-

plays an open neck and as ‘closed’ if the neck appears to be closed

on the optical image. In this way, the sequence of 200 vesicle images

is mapped onto a sequence of open and closed states. Both types of

states are persistent and form short subseries of successive open states

that alternate with short subseries of successive closed states.

Neck closure events are provided by those frames that display a

closed neck and are directly preceded by a frame with an open neck.

Furthermore, a complete shape oscillation is defined by the sequence

of ∆i frames between two successive closure events. Such a sequence

consists of a subseries of three to four successive images with closed

necks, followed by a subseries of three to four successive images with

open necks. Movie1� displays 191 frames between the first and the

last closure event, which form 26 complete shape oscillations. Thus,

the average number of frames, 〈∆i〉, per complete shape oscillation

is equal to 191/26 = 7.35 frames and the average time period for

one complete oscillation is given by 〈∆i〉∆t = 7.35 × 7.61 s = 55.9 s,

which is similar to the cycle time observed for Min oscillations in other

compartments[45,46].

Most of the 26 complete shape oscillations consist of 7 or 8 successive

images or frames. The 7-frame oscillations are observed 15 times, the 8-

frame oscillations 10 times. In addition, one complete oscillation with

only 6 successive frames is present. Thus, including these statistical

fluctuations, the estimate ∆i = 〈∆i〉 ± 1 = 7.35 ± 1 is obtained for

the individual shape oscillations which shows that these oscillations

are quite regular and almost clock-like. The small deviations from a

perfect clock reflect the stochastic adsorption-desorption kinetics of

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fanie.201808750&file=anie201808750-sup-0001-Video_S6.mp4
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fanie.201808750&file=anie201808750-sup-0001-Video_S6.mp4
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the Min proteins.[40,47] Furthermore, when these molecular oscillations

drive the shape transformations of the GUVs, small differences in the

initial shapes tend to become amplified during the shape evolution

and to generate relative displacements of the two subcompartments

around the membrane neck. To obtain a quantitative description of

the experimentally observed shapes in terms of axisymmetric shapes,

the images i = 1, 2, and 3 were selected for the symmetry-breaking

transformation in figure 5.1 and the images i = 68, 69, and 70 for the

symmetry-restoring transformation in figure 5.2.
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Figure 5.11: Rescaled spontaneous curvature m̄ versus frame index i. The frame i was
taken at time t = (i − 1)× 7.61 s after the initial frame with index i = 1. The blue data
points correspond to up-down symmetric dumbbell shapes, the red data points to asym-
metric ones. The symmetry-breaking transformation in figure 5.1 corresponds to i = 1, 2,
and 3, the symmetry-restoring transformation in figure 5.2 to i = 68, 69, and 70. The
image i = 4 displays a slightly distorted version of i = 3 and is thus taken to have the
same m̄-value as i = 3. The image i = 71 displays a symmetric dumbbell with an in-
creased neck radius compared to i = 70. This increased radius implies the spontaneous
curvature m̄ = 1.32. The combined sequence of all eight images represents one complete
shape oscillation with an average time period of 55.9 s. The error bars are obtained as in
figure 5.7.[41]

The theoretical shapes in figures 5.1 and 5.2 were obtained for the

parameter values in table 5.2. The resulting time-dependence of the

spontaneous curvature m̄ is shown in figure 5.11 where the spontaneous

curvature m̄ is plotted versus the frame index i which corresponds to

the time

t = (i − 1)∆t = (i − 1)× 7.61 s (5.2)
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after the initial image i = 1. For each spontaneous curvature m̄ = m̄(i)

in figure 5.11, the GUV shape has a certain neck radius R̄ne = R̄ne(m̄)

as plotted in figure 5.7b and c. When these two relationships are

combined, the time dependence of the neck radius R̄ne = R̄ne(i) as

shown in figure 5.12 is obtained.

Because of the relatively large error bars for the data in figure 5.12,

depicting the time-dependence of the neck radius R̄ne, it is difficult to

fit these data in a quantitative manner. The presumably simplest fit

is provided by a single Fourier mode of the form

R̄ne = a + b cos[2π(i − 1)/7] , (5.3)

where the frame indices i = 68, . . . , 71 2 in figure 5.12 are identified 2 As a reminder: these frames
where taken instead of the suc-
ceeding frames i = 5, . . . , 8 be-
cause the vesicle is less tilted
around its neck in those frames.
They correspond to the same
phase of the oscillation, just
shifted by 9 periods.

with the indices i = 5, . . . , 8 as well as the frame indices i = 8 and

i = 1, thereby taking the oscillation period to be ∆i = 7. Using

the method of least squares provided by LsqFit.jl� [48], the parameter

values a = 0.10 ± 0.02 and b = 0.09 ± 0.03 are retrieved as used in

figure 5.12.[41]
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Figure 5.12. Rescaled neck
radius R̄ne versus frame in-
dex i corresponding to time
t = (i − 1)× 7.61 s. Direct in-
spection of the frame with in-
dex i = 71 leads to the neck
radius R̄ne = 0.189 for this
image. The combined se-
quence of all eight images rep-
resents one complete shape os-
cillation which takes, on aver-
age, 55.9 s. The color code of
the data points is the same as
in figure 5.11. The trigono-
metric curve (dashed black
line) through the data pro-
vides the best fit to a single
Fourier mode as parametrized
by equation (5.3). The error
bars are obtained as in fig-
ure 5.7.[41]

https://gitlab.mpikg.mpg.de/paper/min_GUV_oscillations_Code/-/blob/v0.1/plots/r(t)_v0_670.jl#L46


6 Concentration gradients in rigid com-

partments

The previous chapters mostly showed possible shape transformations

in the case of homogeneously filled vesicles. By itself homogeneous

vesicles are quite a complex system and thus when adding another

complexity in form of concentration gradients, it is instructive to re-

duce the complexity of the compartment by substitution of the flexible

vesicle with a rigid compartment. In particular rigid cone-like compart-

ments and their interaction with an ideal gas in a gravitational field

or a solution of processive molecular motors are studied. An outlook

of how to deal with gradients in vesicles can be seen in appendix A.

6.1 Ideal gas in cones

The simplest case is a conic compartment as introduced in section 3.2

filled with an ideal gas in a gravitational field as depicted in figure 6.1.

g

Figure 6.1. Schematic of ideal

gas particles confined in a

conic department in the grav-

itational field of the earth.

How to calculate the free energy F for this system was covered in

section 3.2 when combining equation (2.8) with example 2.4. For the

sake of comparability the same energy scale as for the bending energy

in chapters 4 and 5 is chosen

F̄ =
F

8πκ
. (6.1)

The gas will have a different free energy depending on the opening

angle α of the cone, given that the rotation axis of the cone is aligned

with the vector of the gravitational field. The free energy of the gas
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has been calculated in section 2.2.1 and reads

F̄ = − N
8πκβ

log (Z1(L, R, α)) , (6.2)

where Z1(L, R, α) is the same as in example 2.4. Figure 6.2 shows that

the free energy of the gas is lower the wider the base of the cone is and

a small influence when forming sharp kinks as the minimal/maximal

opening angle αc is approached. This leads to an optimal opening

angle that is below the maximum opening angle.
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-�����
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-�����

-�����

-����� Figure 6.2. Free energy of an
ideal gas subject to gravity as
given by equation (6.2)
with β = 0.25 · 1021 1

J ,
M = 5 · 10−26kg and N = 600
in conic compartment
with V = 1pl, v = 0.8,
κ = 8 · 10−21J and m = 0.
Curves of different color cor-
respond to the two different
solutions of equations (3.23)
and (3.24).

Total Energy

The total energy Ētot = Ēbe + F̄ can have a different minimum of

energy when the particle density is low enough to not compensate the

cost of increasing the bending energy as shown in figure 6.3. The

bending energy of this system was derived in equation (3.35) and the

free energy is given by equation (6.2).
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-����� Figure 6.3. Total energy of
an ideal gas subject to grav-
ity with β = 0.25 · 1021 1

J ,
M = 5 · 10−26kg and N = 600
in conic compartment with
V = 1pl, v = 0.8, and m = 0.
Curves of different color cor-
respond to the two different
solutions of equations (3.23)
and (3.24). In contrast to fig-
ure 6.2 the tube is now the
preferred shape. If the num-
ber of particles would be in-
creased, the graph will grad-
ually start to look more like
figure 6.2.
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Conclusions

This short detour illustrates the counter play between the strive of the

ideal gas to maximize the volume in the direction of the gradient and

the bending energy which penalizes highly curved regions. This can

lead to the counter-intuitive result of an optimal opening angle below

the critical angle αc if only the free energy of the gas is considered. If

the bending energy is included and the magnitude of the energies is

comparable, the tube remarkably robust.

6.2 Cytoskeletal molecular motors

The rest of this chapter is about molecular motors in rigid compart-

ments. Therefore a short introduction about the biological function of

the type of molecular motors that are considered in this thesis follows.

The cytoskeleton has a major influence on the shape of the cell. It

can have three types of filaments: microtubuli, actin filaments and

intermediate filaments. Besides being a main component for the me-

chanical properties of the cell they also serve as tracks or anchors for

molecular motors and play a role in the inner dynamics of the cell.

Molecular motors have at least two parts: one part which can bind

to and unbind from cytoskeletal filaments and another part which can

bind to cargo or loads. Furthermore, the amount of steps that motors

typically perform before detaching does vary and motors that perform

many steps are called processive molecular motors (e.g. kinesin and

dynein), while those that detach after only a few conformation changes

are non-processive motors (e.g. myosin II).14 C. Appert-Rolland et al. / Physics Reports 593 (2015) 1–59

Fig. 6. Sketch of dynein carrying cargo along a microtubule.

Fig. 7. Sketch of an experiment to explore the stepping of a motor under load.
Source:Modified from [80].

Fig. 8. Velocity of kinesin as a function of the backward force, measured in vitro using an optical trap.
Source: From [93].

approximation (see the experimental results of Fig. 8) and has been used for example in the model of [97]. In [95], Kunwar
et al. rather took w = 2 for kinesin and w = 1/2 for dynein.

The force-dissociation relations differ below and above stall. Kunwar et al. [95] propose to write the detachment rate as
ϵ = ϵ0Ω(F) where ϵ0 is the detachment rate without load (typically between 0.25 and 1 s−1) and Ω(F) gives the variation

Figure 6.4. Structure of a pro-
cessive molecular motor. The
motor is attached to the mi-
crotubulus via its two head
proteins. The heads are then
connected via two different
chains to the cargo. Typically
multiple motors are attached
to one cargo.[49]
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Processive motors walk along polar filaments usually in a preferred

direction but in a stochastic fashion, that is they occasionally step

backwards or sideways[50]. They use energy gained by hydrolysis of

adenosine triphosphate (ATP) to perform various kinds of motion. Ki-

nesin for example walks in a hand-over-hand fashion (cf. figure 6.5)[51].

In contrast to muscle myosin, convention-
al kinesin walks methodically along a micro-
tubule protofilament, stepping from one tu-
bulin subunit to the next (distance of 80 Å),
similar to a person walking across a pond
along a row of stepping stones (24, 25). How
kinesin, which lacks an obvious long lever
arm, could take a step larger than the dimen-
sion of its motor domain remained a mystery
for several years. However, Rice et al. (26)
have shown that unidirectional motion is pro-
duced by a pronounced conformational change
in kinesin’s “neck linker,” a 15–amino acid
region that is COOH-terminal to the catalytic
core (Figs. 1 and 4) (17). The neck linker is
mobile when kinesin is bound to microtubules
in its nucleotide-free and adenosine diphos-
phate (ADP)–bound states. However, when the
microtubule-bound kinesin binds an ATP ana-
log, the neck linker becomes docked on the
catalytic core with its COOH-terminus pointing
toward the microtubule plus end (Fig. 4). Thus,
the energy associated with ATP binding drives

a forward motion of the neck linker and any
object attached to its COOH-terminus (27).

In a truncated kinesin monomer whose
neck linker is attached directly to a bead or
slide surface, the docking of the neck linker
on the core will deliver a plus-end–directed
pull on its cargo. However, such monomer-
based motility is nonprocessive and slow rel-
ative to the kinesin dimer (28–30). In the
native kinesin dimer, the neck linker is con-
nected to a coiled-coil dimerization domain,
and neck linker motion in one head is con-
veyed to its partner to enable processive mo-
tion. Specifically, when ATP binding “zip-
pers” the neck linker of the forward head into
the docked position, the trailing head detach-
es from its binding site and is thrust forward
to the next tubulin binding site, akin to a judo
expert throwing an opponent with a rearward-
to-forward swing of the arm (Fig. 1). Thus,
the kinesin step is initiated by the ATP-driven
swing of the neck linker, which positions the
partner head over the forward subunit. The

tight binding of the partner head to its new
tubulin site then locks the step in place and
produces a force that pulls kinesin’s cargo
forward by 80 Å [see animation (23)].

The above models highlight several dif-
ferences in how muscle myosin and conven-
tional kinesin produce motion. Muscle myo-
sin undergoes a large angular rotation of a
long and relatively rigid mechanical element
within the myosin head to produce a displace-
ment of ;100 Å per ATP hydrolyzed. For
conventional kinesin, a smaller conforma-
tional change is produced by the neck linker
peptide, which is rigid (docked) only in the
ATP/ADP-Pi–bound state (Pi, phosphate).
This small change becomes amplified into an
80 Å net movement as a consequence of the
partner head binding to the next tubulin bind-
ing site. The different mechanical strategies
of conventional kinesin and muscle myosin
reflect their distinct biological roles (31).
Conventional kinesin transports small mem-
brane organelles or protein complexes, and
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A BFig. 1. Models for the motility cycles of muscle myosin and
conventional kinesin [see animation (23)]. (A) Muscle myo-
sin. Frame 1: Muscle myosin is a dimer of two identical
motor heads (catalytic cores are blue; lever arms in the
prestroke ADP-Pi state are yellow), which are anchored to
the thick filament (top) by a coiled coil (gray rod extending
to the upper right). In the ADP-Pi–bound state, the catalytic
core binds weakly to actin. Frame 2: One head docks prop-
erly onto an actin binding site (green). The two myosin
heads act independently, and only one attaches to actin at
a time. Frame 3: Actin docking causes phosphate release
from the active site. The lever arm then swings to the
poststroke, ADP-bound state (red), which moves the actin
filament by ;100 Å. Frame 4: After completing the stroke,
ADP dissociates and ATP binds to the active site, which
rapidly reverts the catalytic core to its weak-binding actin
state. The lever arm will then recock back to its prestroke
state (i.e., back to frame 1). (B) Conventional kinesin. Unlike
myosin, the two heads of the kinesin dimer work in a
coordinated manner to move processively along the track.
The coiled coil (gray) extends toward the top and leads up
to the kinesin cargo. Frame 1: Each catalytic core (blue) is
bound to a tubulin heterodimer (green, b subunit; white, a
subunit) along a microtubule protofilament (the cylindrical
microtubule is composed of 13 protofilament tracks). To
adopt this position, the neck linker points forward on the
trailing head (orange; neck linker next to but not tightly
docked to the core) and rearward on the leading head (red).
ATP binding to the leading head will initiate neck linker
docking. Frame 2: Neck linker docking is completed by the
leading head (yellow), which throws the partner head for-
ward by 160 Å (arrow) toward the next tubulin binding site.
Frame 3: After a random diffusional search, the new leading
head docks tightly onto the binding site, which completes
the 80 Å motion of the attached cargo. Polymer binding also
accelerates ADP release, and during this time, the trailing
head hydrolyzes ATP to ADP-Pi. Frame 4: After ADP disso-
ciates, an ATP binds to the leading head and the neck linker
begins to zipper onto the core (partially docked neck indi-
cated by the orange color). The trailing head, which has
released its Pi and detached its neck linker (red) from the
core, is in the process of being thrown forward. The surface
features of the motors and filaments were rendered by G.
Johnson (fiVth media: www.fiVth.com) using the programs MolView, Strata Studio Pro, and Cinema 4D (also for Figs. 4 and 5). Protein Data Bank (PDB)
files used throughout the figures are as follows: ADP-AlF4

2 smooth muscle myosin [prestroke, yellow: 1BR2 (16)], nucleotide-free chicken skele-
tal myosin [poststroke, red: 2MYS (14)], human conventional kinesin [prestroke, red: 1BG2 (6)], and rat conventional kinesin [poststroke, yellow: 2KIN
(40)]. Scale bars, 60 Å (A) and 40 Å (B).
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Figure 6.5. The two heads of

kinesin move in a coordinated

hand-over-hand fashion. By

binding ATP to the leading

head the conformation change

of the linker protein (red/ or-

ange) is induced, which flips

the rear head over the front

head. Then hydrolization of

the ATP produces ADP and

inorganic phosphate. Mean-

while the new leading head

binds tightly to the filament

site. From this configuration

the process can be repeated as

long as ATP supply is suffi-

cient.[51]

They can transport organelles, vesicles[52], filament precursors, mRNA

granules[53], lipid droplets[54], viral capsids[55], lysosomes, or even ob-

jects as large as mitochondria[56]. Thus they play an important role in

intracellular transport.
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6.3 Molecular motors in tubes

Creating gradients in vesicles by gravitation might be difficult because

the effect of gravitation is relatively small compared to hydrodynamic

forces and diffusion effects. Nonetheless it was instructive to inspect

this system since the qualitative effects should be the same as in other

systems with gradients.

Another way to create gradients in vesicles is via an active process

like processive molecular motors (cf. figure 6.4). This has the drawback

that the free energy F of the system can’t be calculated by equilibrium

thermodynamics. Instead the density of the particles themselves have

to be considered.Molecular motor traffic in a half-open tube S3841
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Figure 1. Motion of motor particles along a filament within a half-open tube (a) and the
corresponding lattice model (b). At the left end, the system is connected to a motor reservoir with
fixed bound and unbound densities ρb,in and ρub,in, while the right end is closed. Motor particles
bound to the filament perform active movements with velocity vb, while unbound motors perform
symmetric diffusion with diffusion constant Dub. In the lattice models, these movements are
described by the forward step probability α on the filament and the symmetric hopping probability
1/6 to each neighbour site for unbound motors. In addition, unbound motors which reach the
filament bind to it with probability πad, and bound motors unbind from the filament through steps
to adjacent non-filament sites which occur with probability ε/6 per non-filament neighbour site.
The motors interact via hard core exclusion.

In the appendix, the same method is applied to the closed tube system studied in [6, 28]. We
close with a short summary of our results.

2. The model

To mimic transport in an axon, we study the traffic of motor particles in a half-open cylindrical
tube with a single filament located along its cylinder axis. The tube has length L and radius
R. The bound motors move along the filament and the unbound motors diffuse freely within
the cylinder; see figure 1(a). At the right end, the tube is closed, i.e. no motors can leave or
enter the system. This mimics the synaptic terminal of the axon. At the left end, the system
is coupled to a motor reservoir which represents the cell body and provides fixed bound and
unbound motor densities ρb,in and ρub,in, respectively.

Each motor can be in two states: bound to the filament, where it moves actively to the right
with velocity vb, and unbound, where it performs symmetric diffusion with diffusion constant
Dub. The filament is taken to lie along the x-axis, so that the system is characterized by the
bound motor density ρb(x) and the unbound motor density ρub(x). As in [26, 28], we neglect
the variation of the unbound motor density ρub with the transverse coordinates y and z.

The motors can unbind from or bind to the filament. Since the motors are strongly attracted
by the filament, the binding rate π̃ad is taken to be large compared to the unbinding rate ε̃.
When motors come close to each other, they may interact. In our simple model we include
only hard core exclusion, which prevents motors from occupying the same site. In a mean
field treatment, this can be taken into account by using exclusion factors of the form (1 − ρb)

or (1 − ρub).
We are interested in the stationary states of the system. Since the right tube end is closed,

the net current vanishes in the stationary state. Thus, the directed bound current of motors,
vbρb(1 − ρb), and the unbound diffusive motor current, −φDub

∂
∂x ρub, must balance to give

zero total current:

vbρb(1 − ρb) − φDub
∂

∂x
ρub = 0. (1)

Here the unbound diffusive current has been integrated over the tube cross section. The
prefactor φ describes the area available for unbound diffusion. For large radii R, φ ≈ π R2.
Furthermore, in the stationary state, the in- and outgoing currents balance on any filament site,
which leads to

∂

∂x
[vbρb(1 − ρb)] = π̃adρub(1 − ρb) − ε̃ρb(1 − ρub) (2)

Figure 6.6. Model system of
molecular motors in a half-
open tube with a microtubule
along the axis of rotation.
Motors diffuse in the bulk and
perform a biased random walk
along the microtubule.[57]

As mentioned in section 6.2 motors can bind to microtubuli and

perform stochastic directed motion by hydrolization of ATP.

A model system studied by Müller et al.[57] is a half-open tube of

length L, radius R and cross-section σcyl with one microtubulus along

the axis of rotation (cf. figure 6.6). Such a half-open compartment

can be viewed as a part of a larger compartment, such as the end of

an axon. Molecular motors travel along the tubulus in their preferred

direction with the effective velocity vb, detach, diffuse undirected in the

cytosol with the diffusion rate Dub and reattach. This leads eventually

to a higher concentration of molecular motors in the region towards

which the motors are preferably moving. If the motor density ρb of
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Figure 2. (a) Bound density profiles ρb and (b) current densities jb for different boundary
densities ρb,in as obtained from Monte Carlo simulation (♦) and from the adsorption equilibrium
approximation (solid lines). The parameters are vb = −0.001, ε̃ = 2/300, π̃ad = 2/3 and φ = 4.
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Figure 3. Phase diagram for the half-open tube. For motors moving to the left, i.e. vb < 0,
the system is essentially empty with bulk density ρb = 0, while for motors moving to the right,
i.e. vb > 0, it is essentially full with bulk density ρb = 1. At the phase transition vb = 0, the
system is dominated by the left boundary density and has the bulk density ρb = ρb,in. For vb < 0,
the motors form a traffic jam with length L∗ at the left end, provided that the boundary density
ρb,in is larger than 1/2. Likewise, for vb > 0 and ρb,in < 1/2, a ‘jam of holes’, i.e. a region with
low density, separates the (completely filled) bulk of the system from the left boundary.

one could change the sign of their average velocity by influencing the switching rates through
regulatory molecules. For example, tau proteins which strongly suppress movements towards
the synapse in axons can induce the retreat of vesicles into the cell body [33].

For vb = 0, i.e. when there is no active motion of the motors, the system is in
thermodynamic equilibrium, and the adsorption equilibrium as described by equation (3) is
valid for all x along the filament. Thus the bulk densities are ρb = ρb,in and ρub = ρub,in. This
case is the only one where the bulk values are dominated by the open left filament end. A
phase diagram is shown in figure 3; the control parameters are the motor velocity vb and the
left boundary density ρb,in.

To examine the bulk behaviour, equations (1) and (2) are linearized around the appropriate
fixed point. In the case of motors moving to the left (vb < 0) with bulk values ρb = ρub = 0,
the linearization leads to an exponential density profile with

ρb ≈ N exp(−x/ξ) and ρub ≈
(

ε̃

π̃ad
− vb

π̃adξ

)
ρb (4)

Figure 6.7. Possible density
profiles along the axis of ro-
tation for a half-open tube.
Depending on the direction
of movement along the mi-
crotubuli (positive or nega-
tive velocity of bound mo-
tors vb) and initial concentra-
tion of bound motors ρb, in
the tube gets either crowded
or drained. If the motor
don’t have undirected motion
on the filament the density is
homogenous. L∗ is called the
jam length.[57]

the motors that are bound to the microtubulus is considered, three

different states can be observed: When the motors are moving towards

the closed end of the tube (positive vb) the density increases towards

the closed end and the microtubulus gets crowded. While when the

net velocity is zero the bound motor density will be match the initial

density in equilibrium. Finally, if the motors effectively move towards

the open end, the motor density will only reach a finite amount that is

less than the tube length into the tube (cf. figure 6.7). In both cases of

velocities different from zero the distance until which the bound motor

density reaches 0.5 is referred to as the jam length L∗[57], which is a

measure of the location of the concentration gradient.

It was shown that the jam length depends on two relative charac-

teristics connected to the two possible kinds of motion, the desorption

constant K is the ratio of the unbinding rate γub to the binding rate

γb

K =
γub
γb

(6.3)

whereas the ratio of the times that are needed to travel the distance

L in the bounded or unbounded state respectively is denoted by µ

µ =
L vb

σcylDub
. (6.4)
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Furthermore, with these the jam length was found to be determined

by[57]

g(ρ, K) =
−1

1
1−K − ρ

+ K ln(ρ)− 1
K

ln(1 − ρ) +
1 − K2

K
ln
∣∣∣∣ 1
1 − K

− ρ

∣∣∣∣
(6.5)

L∗
L

=
1
µ

[
g
(

1
2

, K
)
− g (ρb, in, K)

]
. (6.6)

Which simplifies in the special case of K = 1 to

L∗
L

=
1
µ

ln
(

1 − ρb, in
ρb, in

)
. (6.7)
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6.4 Density of molecular motors in conic compartments

In this section the result of section 6.3 is generalized to geometries of

cones and numerical particle simulations are used to verify the results.

In the two-state approximation[57] the unbound motor density is in-

tegrated over the dimensions perpendicular to the filament. Motors

bind to the filament with binding rate γb and unbind with rate γub,

resp. with binding probability pb and unbinding probability pub. On

the filament they perform a biased random walk with forward rate

γ+ (p+) and backward rate γ- (p-) and in the bulk they perform an

undirected random walk. The mean diffusion time of the un-/bound

motors is denoted by τ/τb.

Using mean-field theory, the equations for the stationary density

profiles of bound motors ρb and unbound motors ρub are given by the

equation for zero net current

0 = vbρb(1 − ρb)− σ(z)Dub
∂

∂z
ρub (6.8)

vb =
L(p+ − p-)

τb
,

where vb is the effective velocity of the bound motors and the balance

of currents at any filament site

∂

∂z
[vbρb(1 − ρb)] = vb(1 − 2ρb)

∂

∂z
ρb = γbρub(1 − ρb)− γubρb(1 − ρub) .

(6.9)

If the probability of an unbinding event at any filament site is equal

to an binding event it is called adsorption equilibrium. In terms of the

motor densities it reads

γbρub(1 − ρb) = γubρb(1 − ρub) . (6.10)
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Using this assumption, the mean-field equation for the bound and

unbound motor density becomes

∂

∂z
ρb(z) = µ(z)

(1 − K)2

K
ρb(1 − ρb)

(
1

1 − K
− ρb

)2

(6.11)

∂

∂z
ρub = µ(z)

Kρub(1 − ρub)

(ρub + K(1 − ρub))
2 . (6.12)

Since the radius r(z) is now a function of z, so is the cross-section σ(z)

and the relative motility µ(z)

σ(z) u πr(z)2 (6.13)

µ(z) =
L (p+ − p-)

τb σ(z) Dub
. (6.14)

Equation (6.9) leads to the conclusion that adsorption equilibrium

strictly holds in regions where ρb = 1
2 and where the spatial derivative

of the bound motors vanishes and in the trivial case where the effective

movement along the microtubulus is zero.

In a closed cone the particle conservation requires

N =
∫ L

0
ρb(z) + σ(z)ρub(z)dz . (6.15)

6.4.1 Motor densities for K = 1

If the desorption constant is K = 1 both equations (6.11) and (6.12)

become

∂

∂z
ρ(z) = µ(z)ρ(1 − ρ). (6.16)

Equation (6.16) can be solved by integration by parts

∂ρ

ρ(1 − ρ)
= ∂z µ(z) (6.17)

(log (ρ)− log ((1 − ρ))) =
∫

µ(z′)dz′ + c (6.18)

ρ

1 − ρ
= e

1
C
∫ z

0
1

r(z)2
dz′+c

(6.19)
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Finally, with ρ(0) = ρ0

ρ(z) =
1

1 + 1−ρ0
ρ0

e−
1
L
∫ z

0 µ(z′)dz′
. (6.20)

The only thing that is left, is the calculation of the integral in the

exponent of equation (6.20)

1
L

∫ z

0
µ(z′)dz′ =

(p+ − p-)L
τb π Dub

∫ z

0

1
r2(z′)

dz′ =

L
C

∫ z

0

1
r2(z′)

dz′ =
L
C

z(
R + L

2 tan α
) (

R + ( L
2 − z) tan α

) , (6.21)

where C = τb π Dub
(p+−p-)

.

For open compartments ρ0 is a given parameter, whereas for closed

compartments ρ0 has to be calculated from equation (6.15).

6.4.2 Jam length in open conic compartments

Analytic results for K = 1:

Using the definition of the jam-length ρ(L∗) = 1/2 in equation (6.20)

yields

L
C

∫ L∗

0

1
r2(z)

dz = − log
(

ρ0

1 − ρ0

)
, 1 (6.22)

where C = τb π Dub
(p+−p-)

. 1 Another measure that can be
interesting is the decay length
L? defined by ρ(L?) = ρ0

2 . This
would yield log

(
2−ρ0
1−ρ0

)
.6.4.3 Variation of opening angle with constant length and radius

This kind of transformation is aimed to mimic the behaviour when

part of a tubular cell gets squeezed at the closed end. R refers to the

radius at the open left end of the compartment in this section. Also

there is no conservation of either volume or area, instead the radius R

and length L are kept constant. Two cases are considered:

Global deformation: Squeezing at the tip in a manner that the shape

of the whole compartment is affected is the first case. The opening



6.4. density of molecular motors in conic compartments 65

angle varies from zero to the critical angle α ∈ [ 0, αc ] (cf. figure 6.8).

In this setup the critical angle is given by

αc = arctan
(

R
L

)
. (6.23)

r(z) = R − z tan(α) (6.24)

Figure 6.8. Cross section of
parametric variation of the
boundaries. Solid black lines
are hard walls and dotted
lines are open boundaries.
The red line represents the
microtubulus.

Local deformation: The other case is when the compartment only lo-

cally deforms. Thereby opening angles α ∈ [ αc, π/2 ] can be achieved

(cf. figure 6.9).

r(z) =

R z ≤ L − R/ tan(α)

(L − z) tan(α) z ≥ L − R/ tan(α)
(6.25)

At α = αc both methods coincide.

Figure 6.9. Cross section of
parametric variation of the
boundaries. Solid black lines
are hard walls and dotted
lines are open boundaries.
The red line represents the
microtubulus.
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There are three regions at which equation (6.22) has to be evaluated:

1. α ∈ [0, αc],

2. α ∈ [αc, α23],

3. α ∈ [α23, π/2].

To this point α23 is unknown, since it depends on the location of the

gradient measured by L∗. The integral on the left hand side of equa-

tion (6.22) is calculated for the three cases in the upcoming paragraphs.

1. r(z) = R − z tan(α)

∫ L∗

0

1
r2(z)

dz =
∫ L∗

0

1
(R − z tan(α))2 dz

=
1

tan(α) (R − z tan(α))

∣∣∣∣L∗

0

=
L∗

R2 − RL∗ tan(α)
(6.26)

Inserting equation (6.26) into equation (6.22) results in

L∗
L

=
R2

RL tan(α) + L2
[
C log

(
ρ0

1−ρ0

)]−1 . (6.27)

2. r(z) given by equation (6.25) and L∗ ≥ L − R
/

tan(α)

∫ L∗

0

1
r2(z)

dz =
∫ L−R/ tan(α)

0

1
R2 dz +

∫ L∗

L−R/ tan(α)

1
((L − z) tan(α))2 dz

=
cot2(α)

L − L∗
+

L
R2 − 2 cot(α)

R
(6.28)

Inserting equation (6.28) into equation (6.22) results in

L∗
L

= 1 − R2 cot2(α)

CR2 log
(

ρ0
1−ρ0

)
− L2 + 2RL cot(α)

(6.29)
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3. r given by equation (6.25) and L∗ ≤ L − R
/

tan(α)

∫ L∗

0

1
r2(z)

dz =
L∗
R2

⇒ L∗
L

=
CR2

L2 log
(

ρ0

1 − ρ0

)
(6.30)

Now α23 can be calculated by the point where equations (6.29)

and (6.30) coincide.

CR2

L2 log
(

ρ0

1 − ρ0

)
= 1 − R2 cot2(α)

CR2 log
(

ρ0
1−ρ0

)
− L2 + 2RL cot(α)

⇒ α23 = cot−1

L2 − CR2 log
(

ρ0
1−ρ0

)
RL

 (6.31)

From equation (6.31) follows also that

0 < R <

√√√√ L2

C log
(

ρ0
1−ρ0

) (6.32)

to ensure a physically meaningful solution.

The relative reduction of L∗ is given by

∆L∗ = 1 − L∗(α = αc)

L∗(α = 0)

=
1

1 + L2

CR2 log
(

ρ0
1−ρ0

) . (6.33)

Verification:

Numerical solution of equation (6.11) is used to compare it to the

analytical curves of equation (6.27)-equation (6.30) (�). Figure 6.10

shows the corresponding curves. It is visible that the curves match the

simulation all regions.

https://gitlab.mpikg.mpg.de/christ/phdthesis_code/-/blob/v0.1/JamLengthVSOpeningAngle.wls
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Figure 6.10. Comparison of
numeric (solid black line) and
analytic (dashed blue line)
results for the jam length
vs. the opening angle. The
agreement is very good in
all three regions. Parameters
are: R = 30, L = 100, p+ =

0.1, p- = 0.8, pb = 0.8 and
pub = 0.01.

Results for K 6= 1:

Integration of equation (6.11) yields a cumbersome transcendental

equation for ρ(z), which will not be displayed here. However, this

equation has not to be resolved for calculation of the jam length. All

calculations are analogue to the case of K = 1 and the general results

can be obtained by the following substitutions:

C log
(

1 − ρ0

ρ0

)
→C K

(
(1 − K)2

K
2ρ0

1 + K − (1 − K2)ρ0
+

log

[
1 − (1 − K)ρ0

ρ0

(
1 − ρ0

1 − (1 − K)ρ0

) 1
K2

(1 + K2)
K2−1

K2

])
� (6.34)

resp. if L?is considered

C log
(

1 − ρ0

2 − ρ0

)
→C K

(
(1 − K)2ρ0

K(1 − (1 − K)ρ0)(2 − (1 − K)ρ0)
+

log

[
1 − (1 − K)ρ0

2 − (1 − K)ρ0

(
(1 − ρ0)(2 − (1 − K)ρ0)

(2 − ρ0)(1 − (1 − K)ρ0)

) 1
K2
])

� (6.35)

https://gitlab.mpikg.mpg.de/christ/phdthesis_code/-/blob/v0.1/JamLengthGenK.wls
https://gitlab.mpikg.mpg.de/christ/phdthesis_code/-/blob/v0.1/JamLengthGenK.wls
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6.4.4 Simulation

Finally the results can be compared to the average particle densities ob-

tained from a stochastic particle simulation (cf. appendix C). This sim-

ulation is performed by discretizing the space in a three-dimensional

regular lattice with lattice constant a = 8nm, which corresponds to

the step-length of kinesin motors. The molecular motors are modeled

by hard core particles diffusing on a 3D-grid, with one central fila-

ment along the z-axis, which is identical to the axis of rotation of the

cone. Measuring the jam-length after an initial equilibration time of

4000 time-steps the qualitative behaviour of the jam-length as shown

in figure 6.11 matches results of the mean-field theory in figure 6.10

quite good. But there are also quantitative deviations due to large

volume available for the unbound motors, which violates the two-state

approximation.

0
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L*

L
Figure 6.11. Jam length vs
angle. Significant drop at αc.
Parameters are: τ = τb = 1,
p+ = 0.1, p- = 0.8, pb =

0.8, pub = 0.05, L = 25 and
R = 10.





7 Discussion

This chapter serves the purpose of discussion about the chosen strate-

gies in this thesis and possible alternatives.

Solution of the shape equations

One characteristic of the approach of using the Euler-Lagrange-equations

is that its solutions are local extrema, given that the second variation

does not vanish. This is useful, because you can track meta-stable solu-

tions over a wider parameter regime as used in chapter 5. On the other

hand, because the number of possible solutions is unbounded, it is hard

to guarantee that a particular solution is the global minimum. A pos-

sible solution to this would be to replace ψ and r̄ in equation (3.1)

with a finite parameter representation (e.g. by Chebyshev-series[58],

splines or a neural network) and fit the resulting parameters via a

guaranteed global optimization procedure[59]. This way it should be

possible to reliably find the thermodynamic stable shape. In addition,

the explorable parameter regime is limited by the spherical regions

discussed in section 4.2.1, since a closed neck will have a discontin-

uous bending angle at the neck. This could in principle be handled

by a sophisticated event detection in the differential equation solver,

but it gets complicated by the numerical instability once the radial

coordinate gets sufficiently close to zero.

To get a complete picture of the morphology diagram of the spon-

taneous curvature model further analysis is necessary to either find

analytically the feasible parameter regions or to reliably detect bifur-

cation points and systematically track the different branches.





8 Summary

Understanding the rich variety of shapes that liquid lipid membranes

can have is a challenging task. Even restricting the possible shapes to

be axisymmetric as in the Helfrich model introduced in section 3.1 still

exposes a complex system that is not completely understood. When

going even further and reducing the compartment to simple geometric

forms like truncated cones shows that the volume and area conserva-

tion constraints result in a non-trivial parameter space as seen in sec-

tion 3.2. This can be seen as an indication that the area and volume

constraints are a main contributor to the complex shaped parameter

spaces.

In chapter 4 solutions of equilibrium shapes of the parameter space

of the spontaneous curvature model were calculated to get an overview

of the morphologies of GUVs. Thereby the boundaries of the already

known regions of the morphology diagram were extended. Unfortu-

nately, the picture is still incomplete. But even incomplete knowledge

can be useful, as shown in chapter 5, where the experimental obser-

vation of symmetry breaking shape oscillations of GUVs filled with

Min-proteins could be successfully explained by a periodic but homo-

geneous change of the spontaneous curvature caused by the binding

and unbinding of the proteins to the inner membrane surface.

A step beyond the system of isolated vesicles has been done by the

investigation of concentration gradients within conic compartments.

Two model systems were chosen in the case of conic compartments.

Probably the simplest system available is an ideal gas in a constant

external field like gravity, it has the advantage that many properties
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like the free energy can be calculated analytically (cf. sections 2.2.1

and 6.1). A remaining task is the investigation of the effects when

the spontaneous curvature model is considered. The corresponding

equations are derived in appendix A.

The other system that is inspired by actual biological processes,

are processive molecular motors. But since this is an active non-

equilibrium system, analysis is much harder and numeric simulation

becomes more important as used in sections 6.3 and 6.4 to get a quali-

tative insight in the distribution of the motors when the compartment

changes. This could be extended to the case where the compartment

reacts to the distribution of the motors, either due to the inhomoge-

neous pressure or an interaction of the motors with the compartment

akin to the interaction of the Min proteins with the membrane that

was observed in chapter 5.



A Concentration gradients in flexible com-

partments

A.1 Shape equations for an ideal gas in a vesicle

In this section a vesicle that is filled with an ideal gas within the

earth’s gravitational field is considered. The corresponding equations

of evolution can be calculated by combining the energy functional of a

vesicle as given by equation (3.2) plus the free energy of an ideal gas

in gravity F as calculated in section 2.2.1.

E = Ebe + ΣA − ∆PV + F

=
∫

πκr
(

ψ̇ +
sin ψ

r
− 2m

)2

+ 2πΣr − π∆Pr2 sin ψ + γr (ṙ − cos ψ) + γz (ż − sin ψ)ds

− N
β

log

((
2πM
h2β

) 3
2

π
∫

e−βMgzr2 sin ψ ds

)

δE = δ
∫

πκr
(

ψ̇ +
sin ψ

r
− 2m

)2

+ 2πΣr − π∆Pr2 sin ψ + γr (ṙ − cos ψ) + γz (ż − sin ψ)ds

− N
β

δ
∫ e−βMgzr2 sin ψ

ζ
ds.

(A.1)

With surface tension Σ, pressure difference ∆P and Lagrange multiplier

functions γr and γz. As well as the shape dependent partition volume

ζ

ζ =
Z1(

2πM
h2β

) 3
2

π

=
∫

e−βMgzr2 sin ψ ds′ .
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From equation (A.1) the shape equations can be calculated by standard

calculus of variation as explained in section 2.1.

ψ̇ = u

u̇ =
1

2πκ

(
πr cos ψ

(
−∆P − N

πβ

e−βMgz

ζ

)
+

sin ψ

r
γr −

cos ψ

r
γz

)
+

sin ψ cos ψ

r2 − cos ψ
u
r

ṙ = cos ψ

ż = sin ψ

γ̇r = πκ

(
(u − 2m)2 − sin2 ψ

r2

)
+ 2πΣ + 2πr sin ψ

(
−∆P − N

πβ

e−βMgz

ζ

)
γ̇z = NMg r2 sin ψ

e−βMgz

ζ
.

(A.2)

with additional boundary conditions

z(0) = 0, z(S) = z1

γz(0) = 0, γz(S) = 0

This shows that the difference to the shape equations shown by Seifert

et al.

Agudo-Canalejo & Lipowsky[29,60], apart from the two extra equations,

is an effective Peff(z) = ∆P + N
πβ

e−βMgz

ζ plus an extra term containing

γz.

The shape dependence introduced by ζ complicates the numerical

solution of equation (A.2), since it requires now a self-consistent iter-

ation on top of the shooting procedure. That is, starting with a trial

shape an initial ζ0 is calculated and with which the shape equations

can be solved to obtain a new shape with which a new ζ1 can be calcu-

lated and so on and so forth. This has to be done until the difference

∆ζ = ζn − ζn−1 becomes zero.



B VesicleForms.jl

The implementation of the shape equation solver is a julia reimplemen-

tation of the matlab algorithm used by Agudo-Canalejo & Lipowsky[60]

which both base on the algorithm sketched by Seifert et al.[29]. This

code is packaged as VesicleForms.jl � and publicly available.

B.1 Solving the shape equations

B.1.1 Conservation of area and volume

In order to ensure the conservation of area and volume it is useful to

augment the shape equations (3.16) with the volume, area and energy

differentials

˙̄A(s) =
πS̄
4

r̄(s),

v̇(s) =
πS̄
8

r̄(s)2 sin ψ(s),

˙̄Ebe(s) =
πS̄
8

r̄(s)
(

ū(s) +
sin ψ(s)

r̄(s)
− 2m̄

)2

. (B.1)

B.1.2 Taylor expansion near the boundary points

Due to the 1/r̄2(s) terms in (3.16) numerical evaluation of the equa-

tions near r̄ = 0 is likely to be unstable. A way to alleviate this

problem near the boundaries s = 0 and s = 1 ist to expand (3.16)

and (B.1) near those points and calculate the approximate solutions

https://gitlab.gwdg.de/PhD/VesicleForms.jl
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analytically. At s = 0 this yields

ψ0(ds) = πS̄ dsū0 −
(πS̄ ds)3

16

(
∆P̄ − 2ū0

(
Σ̄ − 2m̄ū0 + 2m̄2

))
+O(ds5),

ū0(ds) = ū0 −
3(πS̄ ds)2

16

(
∆P̄ − 2ū0

(
Σ̄ − 2m̄ū0 + 2m̄2

))
+O(ds4),

r̄0(ds) = πS̄ ds − (πS̄ ds)3

6
ū2

0 +O(ds5),

γ̄r
0(ds) =

πS̄ ds
4

(
Σ̄ − 2m̄ū0 + 2m̄2

)
+

(πS̄ ds)3

96

(
m̄
(

3∆P̄ − 6Σ̄ū0 − 4ū3
0

)
,

− 12m̄3ū0 + 16m̄2ū2
0 + ū0 (2Σ̄ū0 − 9∆P̄)

)
+O(ds4),

Ā0(ds) =
(πS̄ ds)2

4
− (πS̄ ds)4

48
ū2

0 +O(ds6),

v0(ds) =
3(πS̄ ds)4

16
ū0 +O(ds6),

Ēbe
0(ds) =

(πS̄ ds)2

4
(ū − m̄)2

− (πS̄ ds)4

96
(ū0 − m̄)

(
10m̄ū2

0 − 12m̄2ū0 − 6Σ̄ū0 + 2ū3
0 + 3∆P̄

)
+O(ds6).

� (B.2)

While for s = 1 the equations can be inferred by symmetry

ψ1(ds) = π + πS̄ dsū1 −
(πS̄ ds)3

16

(
∆P̄ − 2ū1

(
Σ̄ − 2m̄ū1 + 2m̄2

))
+O(ds5),

ū1(ds) = ū1 −
3(πS̄ ds)2

16

(
∆P̄ − 2ū1

(
Σ̄ − 2m̄ū1 + 2m̄2

))
+O(ds4),

r̄1(ds) = −πS̄ ds +
(πS̄ ds)3

6
ū2

1 +O(ds5),

γ̄r
1(ds) =

πS̄ ds
4

(
Σ̄ − 2m̄ū1 + 2m̄2

)
+

(πS̄ ds)3

96

(
m̄
(

3∆P̄ − 6Σ̄ū1 − 4ū3
1

)
,

− 12m̄3ū1 + 16m̄2ū2
1 + ū1 (2Σ̄ū1 − 9∆P̄)

)
+O(ds4),

Ā1(ds) = 1 − (πS̄ ds)2

4
+

(πS̄ ds)4

48
ū2

1 +O(ds6),

v1(ds) = v − 3(πS̄ ds)4

16
ū1 +O(ds6),

Ēbe
1(ds) = Ēbe(1)−

(πS̄ ds)2

4
(ū − m̄)2

+
(πS̄ ds)4

96
(ū1 − m̄)

(
10m̄ū2

1 − 12m̄2ū1 − 6Σ̄ū1 + 2ū3
1 + 3∆P̄

)
+O(ds6).

(B.3)

https://gitlab.mpikg.mpg.de/paper/min_GUV_oscillations_Code/-/blob/v0.1/Boundary_Conditions+expansion.wl
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Ēbe(1) is unknown, but that is not important for the algorithm, since

Ēbe
1(ds) as well as ds will be known after integration.

B.1.3 Parameter estimation

This implementation is finding solutions to the shape equations by

fixing m̄ as well as the area A and the volume V and therefore the

reduced volume v1. The other five parameters ∆P̄, Σ̄, ū0, ū1 and S̄ 1 While the description is writ-
ten with scaled variables, ver-
sion 0.1 only displays the re-
sults scaled and works internally
dimensionful. The version 0.2
branch which has the ability to
work in scaled variables exists
but is not fully functional

are determined by using an initial guess ( e.g. via a nearby known

solution ) to solve (3.16) and (B.1) using DifferentialEquations.jl [61] in

an interval s ∈ [ds, 1 − ds], the solutions at s = 1 − ds are used to

compute

∆u = [

ψ(1 − ds)− ψ1(−ds),

r̄(1 − ds)− r̄1(−ds),

γ̄r(1 − ds)− γ̄r
1(−ds),

Ā(1 − ds)− Ā1(−ds),

v(1 − ds)− v1(−ds)

].

Which the trust-region root-finding algorithm provided by NLsolve.jl [38]

can use to adjust the five parameters such that ∆u < ε.2 2 usually with ε = 10−12

B.1.4 Testing

A good way to test the correctness of obtained solutions for m̄ = 0 is

to check whether the global shape equation[30] holds

3∆P V − 2Σ A = 0.





C Molemoto

Molemoto� is a stochastic particle simulator for confined geometries

written in C++. The aim is to simulate particles that diffuse homo-

geneously in the bulk and perform a biased 1D random walk along

the microtubulus while taking steric interaction into account. It has

a modular structure (cf. figure C.2) and is easily extendable. In its

present state it supports closed and half-open tubes and cones as ex-

plained in chapter 3, bound and unbound diffusion as well as adherence

to the compartment walls.

The usage of a KD-Tree for the storage of the particles changes

the complexity for all operations that iterate over the particles from

O(NxNyNz) , where Ni is the numer of grid points in the i-th di-

mension to O(Np log Np) on average, where Np is the number of par-

ticles. This enhances the runtime of the simulations in most cases

significantly, especially in 3D. This has the positive side effect, that

automatically enforces the steric interaction, since each node of the

tree can only store one particle.

KD-Tree: A KD-Tree constructs a tree of points in a k-dimensional

space by assigning k-dimensional points to its nodes and from each

node branch to branches resulting from dividing the space by hyper-

planes and sorting the following nodes with respect to the half-space

lives in relative to the hyperplane. At each level one hyperplane per-

pendicular to the former is chosen (see figure C.3).

https://gitlab.gwdg.de/PhD/molemoto
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Figure C.1. Snapshot of a
Molemoto simulation. Blue
spheres represent molecular
motors and the microtubulus
is shown in red. The yel-
low end is a closed bound-
ary whereas the black ring
at the other end indicates an
open boundary. The shell has
also reflective boundary con-
ditions.
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(a) (b)

(c)

Figure C.2. Class hierarchy
of Molemoto. Every class is a
possible point of entry to ex-
tend the program.

Agents are stored in the
AgentMap and associated with
a Point in space and move
according to their Movement

(figure C.2a). A few utility
classes allow controlling the
scheduling of events (Clock,
Cron, RNG), measuring ob-
servables (Measure and sub-
classes) and visualizing re-
sults (HarryPlotter and sub-
classes) (figure C.2b). Differ-
ent geometries are implement
by instances of sub-classes of
the World class. Coordination
of the dynamics are handled
by different Simulation classes
(figure C.2c).

x

x

Y

(7,2)

(5,4) (9,6)

(2,3) (4,7) (8,1)

(a) 2D KD-tree corresponding to the division
of space as shown in figure C.3b.1

0 2 4 6 8 10
0

2

4

6

8

10

(b) Division of the plane corresponding to the
KD-tree shown in figure C.3a.2

Figure C.3. Construction of a
KD-tree.

1: „Tree_0001“ by MYguel
- Own work. Licensed under
Public Domain via Wikimedia
Commons - https://commons.w
ikimedia.org/wiki/File:Tree

_0001.svg#/media/File:Tree_0

001.svg

2: „Kdtree_2d“ by Origi-
nal uploader was KiwiSunset
at en.wikipedia - Transferred
from en.wikipedia; transfer
was stated to be made by
User:KindDragon33.. Li-
censed under CC BY-SA 3.0
via Wikimedia Commons - ht

tps://commons.wikimedia.org

/wiki/File:Kdtree_2d.svg#/me

dia/File:Kdtree_2d.svg
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