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SummarySummary

Hydrological models are important tools for the simulation and quantification of the water cycle.
They therefore aid in the understanding of hydrological processes, prediction of river discharge,
assessment of the impacts of land use and climate changes, or the management of water
resources. However, uncertainties associated with hydrological modelling are still large. While
significant research has been done on the quantification and reduction of uncertainties, there
are still fields which have gained little attention so far, such as model structural uncertainties that
are related to the process implementations in the models. This holds especially true for complex
process-based models in contrast to simpler conceptual models. Consequently, the aim of this
thesis is to improve the understanding of structural uncertainties with focus on process-based
hydrological modelling, including methods for their quantification.

To identify common deficits of frequently used hydrological models and develop further
strategies on how to reduce them, a survey among modellers was conducted. It was found that
there is a certain degree of subjectivity in the perception of modellers, for instance with respect
to the distinction of hydrological models into conceptual groups. It was further found that there
are ambiguities on how to apply a certain hydrological model, for instance how many parameters
should be calibrated, together with a large diversity of opinion regarding the deficits of models.
Nevertheless, evapotranspiration processes are often represented in a more physically based
manner, while processes of groundwater and soil water movement are often simplified, which
many survey participants saw as a drawback. A large flexibility, for instance with respect to
different alternative process implementations or a small number of parameters that needs to be
calibrated, was generally seen as strength of a model.

Flexible and efficient software, which is straightforward to apply, has been increasingly
acknowledged by the hydrological community. This work further elaborated on this topic in
a twofold way. First, a software package for semi-automated landscape discretisation has
been developed, which serves as a tool for model initialisation. This was complemented by
a sensitivity analysis of important and commonly used discretisation parameters, of which
the size of hydrological sub-catchments as well as the size and number of hydrologically
uniform computational units appeared to be more influential than information considered for
the characterisation of hillslope profiles. Second, a process-based hydrological model has
been implemented into a flexible simulation environment with several alternative process
representations and a number of numerical solvers. It turned out that, even though computation
times were still long, enhanced computational capabilities nowadays in combination with
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innovative methods for statistical analysis allow for the exploration of structural uncertainties of
even complex process-based models, which up to now was often neglected by the modelling
community.

In a further study it could be shown that process-based models may even be employed as
tools for seasonal operational forecasting. In contrast to statistical models, which are faster
to initialise and to apply, process-based models produce more information in addition to the
target variable, even at finer spatial and temporal scales, and provide more insights into process
behaviour and catchment functioning. However, the process-based model was much more
dependent on reliable rainfall forecasts.

It seems unlikely that there exists a single best formulation for hydrological processes,
even for a specific catchment. This supports the use of flexible model environments with
alternative process representations instead of a single model structure. However, correlation
and compensation effects between process formulations, their parametrisation, and other
aspects such as numerical solver and model resolution, may lead to surprising results and
potentially misleading conclusions. In future studies, such effects should be more explicitly
addressed and quantified. Moreover, model functioning appeared to be highly dependent
on the meteorological conditions and rainfall input generally was the most important source
of uncertainty. It is still unclear, how this could be addressed, especially in the light of the
aforementioned correlations. The use of innovative data products, e.g. remote sensing data in
combination with station measurements, and efficient processing methods for the improvement
of rainfall input and explicit consideration of associated uncertainties is advisable to bring more
insights and make hydrological simulations and predictions more reliable.



ZusammenfassungZusammenfassung

Hydrologische Modelle sind wichtige Werkzeuge zur Simulation und Quantifizierung des Wasser-
kreislaufs. Sie helfen bei der explorativen Analyse hydrologischer Prozesse, Abflussvorhersage,
Abschätzung der Folgen von Klima- und Landnutzungswandel oder dem Management von
Wasserressourcen. Allerdings sind die mit der hydrologischen Modellierung einhergehenden
Unsicherheiten noch immer groß. Trotz der zahlreichen Forschungsarbeiten auf dem Gebiet
der Quantifizierung und Reduktion der Unsicherheiten gibt es einige Bereiche, die bisher wenig
erforscht wurden, wie beispielsweise strukturelle Unsicherheiten, welche sich unter anderem auf
die Prozessimplementation in den Modellen beziehen. Dies betrifft vor allem komplexe prozess-
basierte Modelle im Gegensatz zu einfacheren konzeptionellen Modellen. Gegenstand dieser
Arbeit ist es daher, das Verständnis struktureller Unsicherheiten sowie Methoden für deren
Quantifizierung innerhalb prozessbasierter hydrologischer Modellanwendungen zu erweitern.

Zur Identifikation typischer Defizite hydrologischer Modelle und Erarbeitung von Lösungs-
strategien, um diese zu reduzieren, wurde eine Umfrage unter Modellanwendern durchgeführt.
Dabei stellte sich heraus, dass ein hohes Maß an Subjektivität in der Wahrnehmung des
Themas unter Modellieren herrscht, beispielsweise bei der Einordnung hydrologischer Modelle
in konzeptionelle Klassen. Des Weiteren gibt es Unklarheiten in der Art und Weise, wie ein
bestimmtes hydrologisches Modell angewendet werden sollte, wie etwa hinsichtlich der Kali-
brierung bestimmter Parameter, sowie vielschichtige Auffassungen bezüglich der Modelldefizite.
Letztlich stellte sich jedoch heraus, dass Verdunstungsprozesse vor allem physikalisch basiert
abgebildet werden, während Prozesse im Bereich des Grundwassers und der Bodenwasserbe-
wegung häufig vereinfacht abgebildet werden, was von vielen Umfrageteilnehmern als Nachteil
empfunden wurde. Generell als Stärke wurde die Flexibilität einiger Modelle empfunden, zum
Beispiel wenn diese verschiedene Implementationen eines Prozesses enthalten oder wenn nur
eine geringe Zahl an Parametern kalibriert werden muss.

Flexible und effiziente Software, die darüber hinaus einfach zu bedienen ist, wird von
der hydrologischen Gemeinschaft immer stärker in den Vordergrund gebracht. Daher greift
diese Arbeit das Thema in zweifacher Hinsicht auf. Zum einen wurde ein Softwarepaket zur
halbautomatischen Landschaftsdiskretisierung entwickelt, welches zudem als Werkzeug zur
Modellinitialisierung gedacht ist. Damit einhergehend wurde eine Sensitivitätsanalyse wichtiger
und häufig genutzter Diskretisierungsparameter durchgeführt, bei der die Größe hydrologischer
Teileinzugsgebiete sowie die Anzahl und Größe hydrologischer Elementarflächen sich als
maßgeblicher herausstellte als etwa raumbezogene Informationen zur Charakterisierung der
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Hangprofile. Zum anderen wurde ein prozessbasiertes hydrologisches Modell in eine flexible
Softwareumgebung integriert, der verschiedene alternative Prozessformulierungen sowie nume-
rische Differentialgleichungslöser hinzugefügt wurden. Die Analyse struktureller Unsicherheiten
komplexer prozessbasierter Modelle wurde in der Vergangenheit von der hydrologischen Ge-
meinschaft mit Verweis auf zu lange Rechenzeit oft vernachlässigt. Es zeigte sich jedoch, dass
die mittlerweile zur Verfügung stehenden Computerressourcen, vor allem in Kombination mit
innovativen statistischen Analyseverfahren, derartige Untersuchungen bereits ermöglichen.

In einer weiteren Studie konnte zudem gezeigt werden, dass auch prozessbasierte Modelle
für den operationellen Einsatz in der saisonalen Vorhersage geeignet sind. Im Gegensatz
zu statistischen Modellen, welche schneller initialisierbar und anwendbar sind, produzieren
prozessbasierte Modelle neben der eigentlichen Zielgröße weitere potentiell relevante Infor-
mationen in höherer räumlicher und zeitlicher Auflösung und geben zudem tiefere Einblicke
in die generelle Wirkungsweise der hydrologischen Prozesse in einem Einzugsgebiet. In der
Studie stellte sich jedoch ebenso heraus, dass zuverlässige Niederschlagsvorhersagen für ein
prozessbasiertes Modell umso wichtiger sind.

Allgemein erscheint es unwahrscheinlich, dass eine einzelne optimale Implementation für
einen hydrologischen Prozess, selbst innerhalb eines bestimmten Einzugsgebietes, überhaupt
existiert. Die Nutzung flexibler Modellumgebungen mit alternativen Prozessbeschreibungen
anstelle eines einzelnen Modells scheint deshalb große Vorteile zu bringen. Mögliche Korrela-
tionen zwischen Prozessbeschreibungen, deren Parametrisierung, sowie anderen Aspekte wie
numerischen Lösern und Modellauflösung, können jedoch zu überraschenden Ergebnissen
und letztlich falschen Schlussfolgerungen führen. In zukünftigen Studien sollten solche Effekte
daher explizit berücksichtigt und quantifiziert werden. Darüber hinaus wird die Leistungsfä-
higkeit eines Modells maßgeblich von den meteorologischen Randbedingungen beeinflusst.
Vor allem der Niederschlag erwies sich innerhalb dieser Arbeit als wichtigste Ursache für
Unsicherheiten in der Modellierung. Allerdings ist nicht vollständig klar, wie dieser Umstand
berücksichtigt werden kann und inwiefern die zuvor genannten Korrelationen hier einen Einfluss
haben. Die Nutzung innovativer Datenprodukte, zum Beispiel Fernerkundungsdaten verbun-
den mit Stationsmessungen, in Kombination mit effizienten Prozessierungsalgorithmen zur
Verbesserung des Niederschlagsinputs und expliziten Beachtung einhergehender Unsicherhei-
ten wird angeraten. Dies verspricht bessere Einblicke in die Zusammenhänge verschiedener
Unsicherheitsquellen zu gewinnen und letztlich hydrologische Simulationen und Vorhersagen
zuverlässiger zu machen.



1. Introduction1. Introduction

1.1 Background
1.1.1 About hydrological modelling

Water is a colourless, transparent, odourless liquid that forms the seas, lakes, rivers, and rain
and is the basis of the fluids of living organisms (Oxford dictionaries, 2018). The movement
of water above and below the surface of Earth is commonly referred to as the hydrological
cycle. This cycle involves different physical processes, such as evaporation, precipitation,
runoff, and subsurface movement, describing the transport of water between different reservoirs,
including oceans, rivers and lakes, soil, and the atmosphere. Humans as living organisms
as well as their economy and infrastructure depend on water. However, water on Earth is
unequally distributed and this distribution is not necessarily static in time. Therefore, ever since
the beginning of civilisation, humans tried to control the supply of water. The construction of
canals and reservoirs, for instance, serve the provision and storage of water during dry periods,
when little or no rainfall occurs, whereas the alteration of natural rivers and the construction
of dams and weirs provide controlled discharge of water and protection against floods during
times of surplus. Nevertheless, hydrological extreme events such as droughts and floods still
have the power to provoke damages on goods, threaten our economy, or even cause fatalities.
Moreover, climate change is likely to aggravate such extreme events in many regions of the
world (Jiménez Cisneros et al., 2014).

The rapid development of powerful computer technology over the last about 70 years enabled
the evolution of hydrological computer models. Models are simplified and abstract mappings of
reality into machine code. As such, hydrological models include process formulations aiming
at the simulation of the hydrological cycle. Typically they serve the estimation of a discharge
hydrograph in a river following a rainfall event, but often also provide information about the
various components of the hydrological cycle. Today, they are invaluable tools for the exploration
of hydrological processes, the assessment of climate and land use change impacts on the water
cycle, the prediction of hydrological extremes, and the management of water resources.

Landscapes, however, are unique in their configuration of environmental attributes, such as
soil types, vegetation cover, geology, or meteorological conditions. Even though the physical
principles to describe the transport of water and energy at the microscale are known, at least
under static and homogeneous boundary conditions, there is still a lack of understanding
regarding the upscaling of such principles to the catchment scale. This includes, in particular,
the mathematical formulation of interactions of system variables and boundary conditions
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within extremely heterogeneous landscape configurations, which are nonlinear, hysteretic, and
scale-dependent (commonly referred to as closure problem) (Beven, 2006b).

To handle this upscaling problem, hydrological modelling approaches typically include
empirically based relationships. However, a unified theory of catchment hydrology is still
missing. Consequently, a large number of different hydrological models evolved varying in
complexity and conceptualisation (Weiler and Beven, 2015). To decide on a specific model
is therefore a difficult and often subjective task. Yet several formalised strategies exist, which
are commonly based on the principle of parsimony seeking for the best compromise between
model fit to observations and a minimum of complexity (Höge et al., 2018).

Physically based models incorporate explicit representations of physical processes. Thus,
they ideally describe the flow of water within the hydrological cycle in a mechanistic manner
following physical principles while the equations satisfy the laws of conservation of mass, energy,
and momentum. This modelling philosophy has been pursued for a long time in hydrology
(Abbott et al., 1986; Freeze and Harlan, 1969; Stephenson and Freeze, 1974; Woolhiser et al.,
1990). It comes with a number of advantages: the equations are related to physical processes
and as such the parameters are in principle directly measurable; the latter provides the benefit
that, at least in theory, such models can be readily applied to different regions with a priori
determined parameters and without calibration; quantities of interest, i.e. water fluxes such as
runoff, can be inferred at any point in space and time along the model domain.

In practise, however, this approach became more and more debated due to a number of
important drawbacks and limitations (Beven, 1989; Grayson et al., 1992b; Woolhiser, 1996):
physically based models are often slow and computationally demanding; their parametrisation
requires a large amount of data which is often lacking in availability and/or quality; the closure
problem may lead to large errors in the scaling of water fluxes to the scale of interest. Conse-
quently, also physically based models in practise rely on empirical simplifications and require the
calibration of certain parameters, which is why they are often also referred to as process-based
models instead of the rather imprecise and potentially misleading term "physically based".

In contrast to process-based approaches, conceptual models rely on empirical relationships
to transform a precipitation signal into a discharge hydrograph. Probably the most straight-
forward and purely empirical method is the unit hydrograph (Dooge, 1959; Sherman, 1932).
However, such straightforward empirical approaches are typically designed to describe a single
rainfall–runoff event and are limited in the considered aspects; baseflow, for instance, is often
neglected. Therefore, for the continuous simulation of discharge dynamics, more advanced
approaches are needed, which contain some degree of process mapping.

Conceptual models typically comprise theoretical reservoirs (also known as buckets) re-
flecting, for instance, groundwater and surface water storages, which are filled by rainfall input
and emptied following (non-)linear storage equations. The number of storages, included sub-
processes such as evapotranspiration, and storage equations reflecting the concentration of
flow in a river can vary greatly among models. Furthermore, the models can be applied in a
spatially lumped manner, i.e. describing a watershed as a single entity, or spatially distributed,
simulating the hydrological process dynamics independently in single sub-catchments and
merging the outflows.

Conceptual models contain a number of parameters reflecting the environmental conditions
of the landscape to be modelled. They need to be calibrated on observational data or related to
observable quantities via statistical relationships. Such kind of models are fast and straight-
forward to apply and are therefore suitable for the simulation of (large) catchments with poor
data availability. Furthermore, they are typically employed to generate operational predictions in
real-time, such as discharge forecasts over time horizons of a few hours or days.

As a result, many such models have emerged over time (e.g. Bergström, 1992; Fenicia et al.,
2011; Jakeman and Hornberger, 1993; Perrin et al., 2003). Even though they are much simpler,
they are often able to achieve performances similar to or even better than process-based
models, especially in case of limited data availability or restricted computational resources
(Kokkonen and Jakeman, 2001; Refsgaard and Knudsen, 1996). They may even serve for
an advanced process understanding in a study area, e.g. by testing alternative landscape
discretisations, incorporating different kind of information, or using different model structures,
which reflect hydrological processes in varying degree of detail (Fenicia et al., 2016).
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Figure 1.1: Illustration of the influence and propagation of different sources of uncertainty in a
typical hydrological model application.

Eventually it has to be noted that there is no strict separation between the model conceptions.
Many models are process-based in a way that they explicitly represent physical processes,
whereas the mathematical formulations rely on empirical relationships. Moreover, in the last
years, growing efforts on the syntheses of existing modelling approaches could be noted (Clark
et al., 2017; Fatichi et al., 2016; Hrachowitz and Clark, 2017) and there are even discussions
regarding the development of a community model (Weiler and Beven, 2015).

1.1.2 Uncertainties in hydrological simulations
Models as abstract simplifications of the real world are necessarily imperfect and, consequently,
model-based simulations are accompanied by a number of uncertainties. The large variety
of different model concepts and individual models in hydrology induces a large diversity of
uncertainties, which can be specific to individual models, model conceptions, or even individual
applications. Nevertheless, the problem can be simplified into three basic types of uncertainties
in hydrological modelling. They are related to model structure, model parametrisation, and
imperfect data (Liu and Gupta, 2007; Wagener and Gupta, 2005). The influence and propagation
of such uncertainties along a typical application of hydrological simulation and prediction are
illustrated in Fig. 1.1. In the following, these fundamental types of uncertainty will be briefly
described while in Sect. 1.1.3 some approaches for dealing with these uncertainties will be
introduced.

Structural uncertainties are related to the conception of a model, the incorporated mathe-
matical equations, and the translation of the latter into computer code. This starts already with
the perceptual model as a basis of every hydrological computer model, reflecting the perception
of the real-world system and the understanding of incorporated processes (Beven, 2009). Such
a perceptual model is typically based on evidence from experimental data and experience of the
model developer (Wrede et al., 2015). Therefore, it is subject to a certain degree of subjectivity
and uncertainties may arise from imperfect process understanding or misconception. What
follows the perceptual model is the mathematical representation. This involves the definition of
state variables, boundary conditions, input and output variables, flux equations, and parameters.

Apart from a possible lack of understanding, modellers are confronted with the problem that
for a certain process often various alternative equations exist, varying in the degree of detail
and physical realism. The selection of an equation is therefore associated with a high degree
of subjectivity and is usually problem-specific. For instance, to represent evapotranspiration
processes in an agricultural region in Germany, the empirical Haude formula (Haude, 1958)
might be sufficient, whereas for a model to be applied in different regions of the world, a more
general or even physically based approach should be used, but also requires much more data.

The mathematical equations then need to be translated into computer code. This step
furthermore involves decisions regarding the spatial and temporal resolution of the model and
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how to address the closure problem, i.e. how to integrate the process equations both in space
and time (Gupta et al., 2012). Besides, the skeletal structure of the model needs to be designed
and programmed, including the reading and possibly transformation of input and writing of
output information, definition of data structures and formats, construction of a user interface, etc.
Structural uncertainty may therefore arise not just from a lack of understanding, misconception,
or the degree of abstraction of the real world, but also from a certain degree of subjectivity and
ambiguity, numerical imprecision (e.g. when solving differential equations), and random errors
(e.g. during programming).

Measurement uncertainty refers to imperfect observations. Errors in the measurements can
arise randomly, e.g. by failure of a device or errors in the recording or transcription of data, and
can be systematic, which is, for example, associated with the imprecision or limited resolution of
a measurement device. In the context of hydrological modelling, especially uncertain discharge
data have a large impact on model results as discharge typically is the target variable of
hydrological simulations and is furthermore frequently used for model calibration (e.g. McMillan
and Westerberg, 2015; Ocio et al., 2017).

Rainfall observations as main forcing of hydrological models pose another important source
of measurement uncertainty. In this case, a large portion of uncertainty in particular arises from
the interpolation of point measurements to the (sub-)catchment scale (McMillan et al., 2012).
Quantitative precipitation estimates based on remote sensing (such as RADAR data) try to tackle
that problem but come along with further uncertainties, such as artefacts, signal attenuation
with increasing distance to the station, etc., and are not yet necessarily superior to gauge-based
interpolations (Abon et al., 2016). Measurement uncertainties may have far-reaching impacts
on hydrological simulations as they can influence our system understanding, deteriorate model
initialisation and adjustment, or interfere with model evaluation and, consequently, may lead
to wrong conclusions (Westerberg and Birkel, 2015). As such, rainfall uncertainty impacts all
simulation modes outlined in Fig. 1.1, including the forecast mode, where it is the principle
driving force of hydrological models (together with other meteorological variables) and needs to
be adequately predicted before starting the hydrological forecasting.

Parametric uncertainty generally refers to the estimation of realisations of model parameters
for a specific application. The estimation procedure typically focusses on effective parameters
which are aggregated "representations of spatially and temporally heterogeneous properties of
the real system" (Liu and Gupta, 2007). Parametrisations can essentially be determined in two
ways: measurement and calibration.

Measurement in this case refers to parameter estimation by direct derivation from field work
or indirect determination such as from remote sensing data. Such measurements are important
to characterise the physical properties of a landscape and therefore includes the effective
description of the spatial distribution of landscape attributes, such as soil types, vegetation,
geology, or the position of rivers and lakes. This further involves the parametrisation of such
landscape attributes, e.g. bulk density and hydraulic conductivity of a certain soil type, stomatal
resistance and albedo of the vegetation types, or the width and shape of a river section.

For an effective landscape representation, a model needs to be spatially discretised into
entities, which can comprise either the whole catchment (in lumped discretisation approaches),
smaller sub-catchments, hydrological uniform areas (referred to as semi-distributed modelling),
or even regular raster cells (fully distributed approach). Therefore, in a broader sense, the
discretisation of a landscape into model entities, which typically involves not only the acquisition
but also the transformation and analysis of data, can be attributed to model parametrisation and
belongs to the initialisation mode of a model application (Fig. 1.1). Uncertainties may arise from
imperfect measurements and the applied algorithms of data manipulation and transfer from the
scale of measurement to the model scale (Blöschl and Sivapalan, 1995).

Parametrisation by calibration follows model initialisation and is referred to as adjustment
in Fig. 1.1. It is done by adjusting the parameters in a way that the model output matches
observations as best as possible. This step includes a large degree of ambiguity and subjectivity,
and suffers from the lack of a generally applicable methodology. It typically requires a number of
decisions including the parameters of the model that shall be calibrated (for instance, because
they cannot be measured or measurements are very uncertain), the definition of feasible value
ranges for each parameter, the target variable(s) to be used for optimisation (in hydrology this is
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often but not exclusively discharge, also limited by data availability), the objective function as
quantification of the goodness of model fit to observations, and the algorithm to be employed.

Over the last decades, a tremendous number of different algorithms and strategies has
been developed, ranging from manual trial and error to automated methods, from deterministic
to probabilistic approaches, from (non-)linear regression of traditional statistics to Bayesian
philosophy, from single to multi-objective, from local to global calibration. In this context, it is
impossible to provide an overview, instead the interested reader is referred to, for example,
Beven (2009), Efstratiadis and Koutsoyiannis (2010), Kavetski et al. (2018), and Moriasi et al.
(2007).

A common problem of calibration is equifinality, i.e. that a calibration procedure may result
in not one superior but in a number of different parameter realisations achieving the same
goodness of fit (Beven, 1993, 2006a). Furthermore, overfitting or overparametrisation of a
model may result in a good fit of model simulations to measurements but not necessarily in an
adequate predictive power when applied to new data. The relationships between equifinality,
overfitting, goodness of fit, and parametric uncertainty of model results are, however, not
well understood and can be model and catchment specific (e.g. Fenicia et al., 2016; Her and
Chaubey, 2015; Schoups et al., 2008; Whittaker et al., 2010).

1.1.3 Dealing with uncertainties
The understanding and quantification of uncertainties along the modelling process are vital
steps towards, on the one hand, the assessment of reliability of simulations and predictions and,
on the other hand, the improvement of models and the reduction of uncertainties. Furthermore,
also an appropriate communication of uncertainties, which is often neglected, can be of value for
water managers and decision makers (McMillan et al., 2017). The quantification of uncertainties
in hydrology is a difficult task and, again, no common procedure exists. As the equations for
hydrological models are complex and nonlinear, the application of analytical methods to directly
infer the impact of uncertain variables and parameters on the output is not possible. In addition,
already the uncertainty quantification of just a single parameter or variable, such as discharge,
is often challenging and hardly achievable (Kiang et al., 2018). Therefore, existing methods and
frameworks for the quantification of hydrological model uncertainties typically consider multiple
sources of uncertainty in an aggregated manner.

Uncertainty analysis aims at the quantification of uncertainty of the target variable within a
model application. It is closely related to sensitivity analysis, which attributes this uncertainty
to different sources of uncertainty (also referred to as input factors) (Pianosi et al., 2016).
Identifiability analysis can then be employed by taking observations into account in order to
constrain sensitive input factors, i.e. identify input factor realisations, which lead to optimal
model performance and hence reduce model uncertainty (Ghasemizade et al., 2017). The
rather general term of identifiability analysis includes, for instance, parameter calibration of
a model, but extends to the questions of whether an optimal parametrisation with a given
model structure and dataset of observations can be determined at all and why this is the case
(Guillaume et al., 2019).

The most straightforward procedure for a combined uncertainty analysis is to apply a
Monte Carlo (MC) simulation. Therein, multiple realisations (also termed an ensemble) of the
uncertain input factors are generated. This, however, already requires some knowledge about
the uncertainty structure of the input factors (e.g. their underlying distribution or their upper and
lower bounds). The model is then run for each ensemble member individually and the resulting
spread of the output ensemble can be regarded as a measure of uncertainty.

Another common strategy for dealing with uncertainty is to acknowledge inherent uncertainty
in natural processes instead of seeking for the one optimum model and therefore rely on
probability theory and Bayesian statistics. The application of Bayesian theory on hydrological
modelling requires probabilistic in contrast to deterministic model output. When employing a
deterministic model, this can be achieved by the application of MC simulation. This first requires
to sample realisations of sensitive model input factors, in Bayesian theory referred to as prior
distribution, because a priori knowledge of the uncertainty structure is required. In a second
step, additional information, such as observations, are taken into account and compared with
runs of the model, expressed as the likelihood that observations can be reproduced by the
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model. This eventually leads to the posterior distribution, i.e. a refined space of input factors
instead of a single best model realisation.

In order to take model uncertainty explicitly into account, Bayesian strategies, e.g. for
calibration or uncertainty analysis, require assumptions about the error structure of the model
output in the form of an error model. In the simplest form, that error model is assumed
to be a Gaussian distribution of residuals (deviations of model output from observations).
The parameters of that error model (e.g. mean and variance) are estimated as latent (also
termed nuisance) variables during model calibration (in Bayesian statistics termed Likelihood
maximisation) in a way that the error model optimally describes the observed residuals.

A large number of algorithms has been developed pursuing that methodology and varying in
how they define the prior distributions, how the prior distribution is sampled (typically some MC
variant), the definition of the likelihood function and the maximisation method, and assumptions
about the error model and which sources of uncertainty are therein explicitly considered (e.g.
Beven and Binley, 1992; Kavetski et al., 2006; Krzysztofowicz, 1999; Todini, 2008; Vrugt
et al., 2003). However, such approaches are in turn generally associated with a large degree of
uncertainty due to, for example, the requirement to define prior distributions of uncertainty inputs,
which are usually not exactly known, the underlying assumptions regarding the structure of the
residuals, or because sources of uncertainty are not incorporated (often structural uncertainty
is neglected).

Especially the quantification of model structural uncertainty is challenging and labour
intensive and has therefore often been disregarded, especially for complex process-based
models. A prominent strategy to tackle that issue is to employ multiple instead of just a single
model. This can be done by the direct comparison of model outputs and performance metrics
(e.g. Breuer et al., 2009) or within mathematical more rigorous frameworks, such as in Bayesian
model averaging (BMA) (Duan et al., 2007; Hoeting et al., 1999). BMA can also be used to
estimate the structural uncertainty along with other sources of uncertainty (Ajami et al., 2007).
This, however, involves the determination of the so-called Bayesian model evidence (BME) for
which several methods exist (Schöniger et al., 2014; Volpi et al., 2017), but which is also subject
to a large degree of uncertainty (Schöniger et al., 2015).

To support the idea of employing multi-model ensembles and reduce the expenses for model
initialisation, several flexible model environments have been developed to enable the exchange
of model structures and/or single process representations in one application (Clark et al.,
2011a, 2008b; Fenicia et al., 2011). In the past, such frameworks were primarily focussing on
conceptual modelling approaches. Recently, more flexible environments have become available
(Kneis, 2015; Walker et al., 2018) as well as frameworks explicitly focussing on process-based
modelling approaches (Clark et al., 2015b,c).

Uncertainty quantification also imposes the question of how such information can be used
to improve hydrological models and/or how to reduce the uncertainty of model predictions (i.e.
model adjustment apart from mere parameter calibration). A common approach in short-term
flood forecasting is to assess an error correction model from previously observed prediction
errors (e.g. by means of time series analysis, provided there is a temporal correlation of errors)
and apply that correction model on forecasts of the target variable (e.g. discharge) to obtain
improved predictions (see Pinzinger et al., 2014, for an overview). The advantage of such
approaches is that they are fast and easily applicable. Such uncertainty (post-)processors can
as well be implemented in a Bayesian context (Herr and Krzysztofowicz, 2015).

Data assimilation (DA) is another strategy for the improvement of model simulations and
predictions. The term data assimilation can be understood in different ways, but herein shall
be defined in the sense of the assimilation of additional measurements during model runtime
to update the internal model states and provide an improved foundation for the generation of
model predictions. A prominent algorithm for DA is the Kalman filter (KF) proposed by Kalman
(1960). This procedure aims at the filtering of observations into the model to update the state
variables while explicitly considering uncertainties in both the model states and the observations.
Further developments such as the extended KF (EKF) and the ensemble KF (EnKF) enable the
use of the KF approach also for non-linear and computationally expensive models (Evensen,
1994; Reichle, 2008). The EnKF and related derivatives gained lots of attention in hydrological
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modelling (e.g. Chen et al., 2013; Clark et al., 2008a; Komma et al., 2008; McMillan et al.,
2013).

DA is especially attractive along with the use of remote sensing data, which are typically
available over larger scales and avoid labour intensive and costly field work (e.g. Blöschl et al.,
2014; Tian et al., 2017). However, some important drawbacks exist, which involves the need for
an adequate quantification of model and observation uncertainties (which is hardly achievable
and often done in a simplified manner), assumptions about the error structures that are usually
violated in hydrological application (i.e. Gaussian distributed and homoscedastic residuals), or
the decision on algorithmic parameters and which model state(s) should be updated (Sun et al.,
2016; Thiboult and Anctil, 2015).

The particle filter (PF) approach is a different method for DA that relaxes the assumption of
a Gaussian error model. It gained some interest for hydrological application and produces more
robust results and uncertainty quantifications than the EnKF, but poses a higher computational
burden, still includes the challenge of an adequate uncertainty quantification, and furthermore
depends on the selected sampling strategy (DeChant and Moradkhani, 2012; Moradkhani
et al., 2005; Vrugt et al., 2013). Another DA approach is variational DA (VDA), a batch method
assimilating multiple observations at once. This is often used in meteorology but only gained
little attention in hydrological forecasting. While it is less computationally demanding than EnKF,
it requires the complicated derivation of an adjoint model (Ercolani and Castelli, 2017; Seo
et al., 2003).

In hydrological forecasting, the most important source of uncertainty poses the uncertain
evolution of precipitation, which is the dominant forcing of hydrological models. To account
for uncertain rainfall forecasts, a whole ensemble of predictions is usually considered (as
illustrated for the forecast mode in Fig. 1.1). Such ensembles of numerical weather predictions
are typically generated by small perturbations of model states, which can have a large impact
on the forecasts. These forecasts are in turn model-based products and therefore incorporate
uncertainties. The resulting ensemble is then propagated into a hydrological model (Cloke
and Pappenberger, 2009; Kneis et al., 2012). Thereby, possible mismatches of spatial scales
between the meteorological and hydrological model need to be accounted for (also referred to
as downscaling). In addition, before application of the hydrological model, rainfall forecasts can
be analysed and corrected, e.g. via bias correction and other pre-processing methods (Bürger
et al., 2009; Gudmundsson et al., 2012; Kelly and Krzysztofowicz, 2000; Reggiani and Weerts,
2008; Verkade et al., 2013).

1.2 Objectives
The preceding literature study illustrates that there are numerous strategies focussing on the
quantification, attribution, and reduction of uncertainties. However, there still is a large gap of
knowledge and some sources of uncertainty have hardly been investigated. Therefore, the goal
of this thesis is to identify and close such gaps of research on model deficiencies, uncertainty
analysis, and their quantification. To achieve this, the following research questions shall be
investigated in more detail.

What are the strengths and deficits of frequently applied hydrological models? What are the
reasons for deficits and how can they be alleviated?
In hydrology a large variety of models of different conceptualisations exist. These are accompa-
nied by different strengths and deficits. Therefore, common strengths and deficits of prominent
hydrological models shall be identified, including the sources for such deficits and which actions
could be started for their elimination.

How does the methodology of discretisation of landscapes into spatial model units influence
simulation results?
There are many studies focussing on parametric model uncertainty and the impact of cali-
bration on model results. However, even though it is an integral part of every hydrological
model application, there are hardly any studies focussing on the impact of decisions during
landscape discretisation on simulation results. Consequently, existing approaches of landscape
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discretisation and software for their implementation shall be reviewed and common parameters
analysed in more detail.

What is the adequate structure for a process-based hydrological model?
The determination of adequate representations of hydrological processes for a computer model
is difficult and labour intensive. Moreover, while simplified numerical time step integration
enables rapid model application, it may deteriorate model results and conclusions. Many
model developers neglect this issue. This holds especially true for computationally demanding
process-based models. However, rapidly growing computational resources and technologies
offer new possibilities. Therefore, the identifiability of complex process-based model structures
will be investigated.

Are process-based models suitable tools for operational forecasting? What are the deficits and
how can forecasts be improved?
Operational forecasting usually relies on the application of statistical approaches or conceptual
models, which are fast and straightforward in their implementation. However, in contrast to
process-based models, they usually cannot provide as much detail on hydrological process
behaviour or the spatial distribution of hydrological variables. In addition, increasing computer
power nowadays allows for the application of more complex models in an operational context.
Consequently, the suitability of a process-based model for seasonal drought prediction shall
be investigated for a dryland catchment in northeast Brazil. Besides, the main sources of
uncertainty shall be identified and guidelines for future model improvement be given.

1.3 Thesis outline and author contribution

This cumulative thesis combines three published articles and one manuscript submitted to a
scientific journal. All the manuscripts were prepared during my doctoral research time at the
University of Potsdam. They comprise the combined efforts of different teams of authors. In the
following, an overview of the four papers along with my individual contributions shall be given.

Chapter 2: “Charakterisierung und Analyse hydrologischer Modelle im deutschsprachigen
Raum” (“Analysis and characterisation of hydrological models in German-speaking countries”)
The paper gives an overview of prominent hydrological models employed in German-speaking
countries based on an online survey. Furthermore, general model conception and process
representation along with strengths and deficits are analysed in more detail. The paper is
published in German language. However, in order to fit into the context of this thesis, the article
has been translated into English. It has been published as:

Guse, B., Pilz, T., Stoelzle, M., and Bormann, H. (2019). “Charakterisierung und Analyse
hydrologischer Modelle im deutschsprachigen Raum”. In: Wasser und Abfall 5.2019, pp. 43–52.

Own contribution: support to idea and methodology; compilation of the online survey with
support of all co-authors; data analysis with support of all co-authors; contributions to figures
and tables; contribution to the German manuscript; translation into English.

Chapter 3: “lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based
hydrological models”
The paper introduces lumpR, a software for semi-automated landscape discretisation and
model initialisation. The most important discretisation parameters were investigated within a
case study in a dryland catchment. The article has been published as:

Pilz, T., Francke, T., and Bronstert, A. (2017). “lumpR 2.0.0: an R package facilitating
landscape discretisation for hillslope-based hydrological models”. In: Geosci. Model Dev. 10.8,
pp. 3001–3023. DOI: 10.5194/gmd-10-3001-2017.

Own contribution: idea and methodology in consultation with the co-authors; development
of the lumpR package with significant contributions by T. Francke; realisation of experiments,
analysis of results, and compilation of figures and tables with support of T. Francke; writing of
the manuscript with contributions by the co-authors.

https://doi.org/10.5194/gmd-10-3001-2017
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Chapter 4: “How to Tailor my Process-based Model? Dynamic Identifiability Analysis of Flexible
Model Structures”
The manuscript introduces a framework for identifiability analysis of complex process-based
model structures. It is seeking for the most adequate model structure in terms of process
representation and numerical solver while explicitly accounting for parameter interactions.
Moreover, the variability of identifiability in space and time is investigated. The manuscript has
been submitted as:

Pilz, T., Francke, T., Baroni, G., and Bronstert, A. (2019b). “How to Tailor my Process-based
Model? Dynamic Identifiability Analysis of Flexible Model Structures”. Submitted to Water
Resources Research.

Own contribution: experiment design with contributions by all co-authors; programming of
process formulations; model initialisation and realisation of experiments; analysis of results,
compilation of figures and tables, and writing of the manuscript with support of all co-authors.

Chapter 5: “Seasonal drought prediction for semiarid northeast Brazil: what is the added value
of a process-based hydrological model?”
This study compares the abilities of a statistical regression approach and a process-based hy-
drological model to generate drought forecasts in a dryland catchment. Moreover, uncertainties
and limitations of the approaches are analysed and discussed. The paper has been published
as:

Pilz, T., Delgado, J. M., Voss, S., Vormoor, K., Francke, T., Costa, A. C., Martins, E., and
Bronstert, A. (2019a). “Seasonal drought prediction for semiarid northeast Brazil: what is
the added value of a process-based hydrological model?” In: Hydrol. Earth Syst. Sc. 23.4,
pp. 1951–1971. DOI: 10.5194/hess-23-1951-2019.

Own contribution: experiment design with contributions by all co-authors; realisation of
experiments regarding the WASA-SED model; analysis of results, compilation of figures and
tables, and writing of the manuscript with support of all co-authors.

https://doi.org/10.5194/hess-23-1951-2019
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Abstract
In order to investigate different aspects of hydrology and water management, a large number
of models of different conceptions with various process representations is employed. This
study presents the results of an online survey regarding the classification of models and the
characterisation of associated strengths and deficits.

Condensed summary:
• For the analysis of a survey among modellers, 47 completed questionnaires comprising

26 different models of various conceptions were available.
• There are small differences among groups of model conception with respect to temporal

resolution and spatial domain of application.
• Processes of evapotranspiration are often implemented in a process-based manner while

for processes related to groundwater and soil water movement conceptual approaches
dominate.

Published as:
Guse, B., Pilz, T., Stoelzle, M., and Bormann, H. (2019). “Charakterisierung und Analyse
hydrologischer Modelle im deutschsprachigen Raum”. In: Wasser und Abfall 5.2019, pp. 43–52
The original article has been translated from German into English.
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2.1 Introduction

Hydrological models differ in various aspects, such as conception, field of application, spatial
and temporal resolution, computational demand, and degree of detail in the representation of
hydrological processes (Bormann et al., 2009a). The decision for a specific model may vary
depending on the goal of a study. What follows are different demands regarding the degree of
detail and physical realism in the representations of hydrological processes, as their importance
may vary depending on the type of application and the catchment area (Wagener et al., 2001).
Following Clark et al. (2015b), there are at least four different aspects that should be considered
when deciding for a specific model: the processes that shall be considered; degree of detail in
the representation of these processes; applicability, e.g. with respect to computational demand;
data availability. However, the experience of a modeller may play a further important role.

A simplified process formulation may exhibit a less realistic simulation in space and time
(Clark et al., 2011c; Wagener et al., 2001). On the other hand, in this way computational demand
and efforts for data preparation can be reduced. If a simplified formulation is not sufficient
to adequately represent the hydrological processes, a more physically-based representation
should be used (e.g. an approach based on the energy balance instead of the degree-day
method for to calculate snowmelt). To simulate a specific hydrological process, there typically
various alternative processes representations available (Clark et al., 2015b), such as different
equations to determine evaporation (e.g. Hargreaves, Priestley-Taylor, Penman-Monteith).

In order to structure the different process representations for the hydrological community,
hydrological models can be classified (Dyck and Peschke, 1995). This enables the rapid
evaluation of the functionality of a yet unknown model a modeller is confronted with. Usually,
model can be grouped into at least three categories of conceptualisation.

• Conceptual models represent processes with simplified and abstract concepts, such as
cascades of storages. These models needs to be calibrated and the transferability of the
parametrisation to other catchments is limited (Merz and Blöschl, 2004).

• Conceptualised process-based models explicitly represent the (sub-)processes of rainfall-
runoff transformation. Yet they also contain simplifying conceptual components.

• Physically based models aim at an exact representation of processes based on the laws
of physics (Zehe et al., 2001). Their parameters have a physical meaning and can be
derived by measurements, which should result in less efforts regarding calibration.

To sort a model into one of these groups, typically the representation of key processes is used
(Bormann et al., 2009a; Wagener et al., 2001), such as evapotranspiration (often Penman-
Monteith vs. conceptual approaches) or soil water movement (e.g. Richards’ equation vs.
storage-based models).

The simplified representation of the hydrological system, also with respect to a specific
application, necessarily leads to deficits (Beven, 2007). Such deficits may arise from the
conceptualisation (Fenicia et al., 2011) or can be attributed to specific characteristics of a study
area. For instance, a simplified formulation of processes related to snow might be sufficient
for study areas in northern Germany, while it can cause large errors in alpine regions. In
that way, the conception of a model is directly connected with the possibilities of meaningful
model applications. The knowledge about strengths and deficits of a model is a condition for its
consistent and productive application (Elfert and Bormann, 2010) and may further aid in the
interpretation of results (Guse et al., 2014).

Up to now, deficits in process formulations usually have been investigated in combination with
a specific model. In this way it is possible to determine the deficits of a process formulation in a
specific model (Guse et al., 2014). However, such model-specific insights are not necessarily
transferable to other models. More systematic analyses are typically based on the comparison
of multiple models (e.g. Clark et al., 2015a). Therein, different models are applied with unified
datasets and their strengths and deficits are subsequently analysed respecting the specific
objectives of the study (Breuer et al., 2009; Holländer et al., 2009). Such analyses showed
that models of different conception represent specific parts of the hydrograph with varying
quality (Breuer et al., 2009) and react differently on issues with data availability (Bormann et al.,
2009b).
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In the hydrological community there is a debate whether individual models should be
optimised or if it is more productive to discuss model structures and process representations in
a joint effort in order to develop a broadly accepted community hydrological model (Weiler and
Beven, 2015). Pursuing the approach of systematic model comparison, Clark et al. (2016) call
for a community modelling process to compare process implementations of different models.

The goal of this work is to provide an overview over frequently used hydrological models
in German-speaking countries, focussing on model characteristics, strengths, and deficits.
To achieve this, an online survey among model developers and users was conducted. The
following research questions are addressed:

• How large is the spectrum of models and is there a consistent classification?
• How are specific processes represented in models with different conceptions?
• What strengths and deficits with respect to process formulations are attributed to the

models mentioned along the survey and can systematic causes for deficits be inferred?

2.2 Methods
2.2.1 Survey design

Between November 2017 and January 2018 an online survey was conducted among users of hy-
drological models. The survey was distributed over the network of the Deutsche Hydrologische
Gesellschaft e.V. (DHG) and further directed towards research groups in Switzerland and Aus-
tria. The completion of the questionnaire was done anonymously. The complete questionnaire
can be retrieved from the DHG web page: https://www.dhydrog.de/dhg/arbeitskreise/
(German only; last access 5 June 2019).

The questionnaire consisted of four topics: model properties, implemented processes and
parameters, strengths and deficits, and application. For each topic, different questions were
formulated, which could mostly be answered in a quantitative manner (Table 2.1). Thereby,
three categories of answers were be distinguished. Free text enabled to fill in arbitrary text.
Predefined fields gave a limited number of choices, of which one had to be selected. For some
predefined fields it was allowed to select multiple choices. A further category was a drop-down
menu, from which a specific answer had to be chosen.

2.2.2 Survey analysis
In order to improve the comparability of the answers of the questionnaire, some of the information
were grouped into categories. Only completed questionnaires were used for further analysis.
However, it was not mandatory to provide answers to all questions, which resulted in gaps
in some of the datasets. Small deviations in model names (e.g. due to varying versions or
typos) have been manually adapted. Specifications from free-text fields were categorised into
predefined classes. In case of multiple answers of a participant within one free-text field, all the
answers were counted individually.

2.3 Results and discussion
The survey was started by 81 persons and completed by 47 participants. Only the latter were
therefore used for further analysis. In the 47 datasets 26 different models were mentioned.

2.3.1 Model conception
Most of the participants classified their model as conceptualised process-based (22 datasets,
48 %), while 12 models (26 %) were grouped as conceptual and physically based, respectively
(Table 2.2). For one model (CMF) no classification was given. Eight of the ten models, which
were mentioned several times, have been classified into different groups of conception by
different participants. The models SWAT, J2000, and TRAIN, for instance, have been classified
as conceptualised process-based and physically based, respectively, models NASIM, COSERO,
and LARSIM as conceptual and conceptualised process-based, respectively. The exceptions
are HBV, which consistently has been classified as conceptual model, and WaSiM-ETH, which

https://www.dhydrog.de/dhg/arbeitskreise/
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Table 2.1: Overview over the topics of the questionnaire.

Topic Request Category of answer

Model properties Name + version Free text
Conception Predefined
Spatial discretisation Predefined
Temporal discretisation Predefined (multiple choices)
Scale of application Predefined (multiple choices)
Determinism Drop-down menu
Dimensions Drop-down menu

Model application Operating system Predefined (multiple choices)
Handling Predefined (multiple choices)
Field of application Free text
Catchments / regions Free text
Key publications Free text

Processes and parameters Implemented processes Predefined (multiple choices)
Further processes Free text
Number of calibration
parameters

Predefined

Strengths and deficits Strengths Free text
Deficits Free text
Causes for deficits Free text
Ideas for elimination of
deficits

Free text

was always seen as physically based. This illustrates the large degree of subjectivity in the
perception of such a widely accepted classification scheme. Consequently, their is a rather
diffuse transition from conceptual to physically based models.

2.3.2 Model discretisation

With respect to discretisation, three categories were distinguished in the survey: spatial extent,
spatial resolution or model entities, and temporal resolution (see Fig. 2.1). All categories were
analysed separately with respect to the different conceptual model groups. One assumption
along the survey was, that models are applied differently with respect to their conceptualisation
as they usually have been developed for specific scales, objectives, and data availability.
Consequently, a characteristic pattern regarding model conception was expected. Depending
on the degree of detail in the underlying process representations, models are only applicable
with specific temporal and spatial resolution, and spatial units. Another expectation was that
some models would appear as all-rounders and others more specialised with respect to their
discretisation.

Spatial scale

With respect to spatial scale, all conceptual model groups are applied over broad ranges
(Fig. 2.1a). Nevertheless, it can be seen that physically based model are rarely applied over
large scales and conceptual models are less apparent for small scales. Physically based
model usually have been developed for field scales, whereas conceptual models are commonly
designed for catchment scales. A more dominant pattern supporting this fact was expected.

A potential cause for this mismatch might be the higher data availability nowadays. Detailed
soil and land use maps with large spatial coverage and the increasing availability of remotely
sensed data may enable the applicability of conceptual models over small areas and the use
of physically based models over larger catchments. This tendency is further enhanced by
increasing computational resources and less limitations for numerically demanding complex
models. Another reason might be that modellers rather stick to models they are experienced
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Table 2.2: Hydrological models mentioned along the survey, including their conceptions as
specified by the participants. The full list of references can be accessed via the DHG web
pages: https://www.dhydrog.de/dhg/arbeitskreise/ (last access 5 June 2019).

Model Conceptual Conceptualised
process-
based

Physically
based

Reference

BlueM 0 1 0 Bach et al., 2009
CMF 0 0 0 Kraft et al., 2011
COSERO 1 4 0 Kling & Nachtnebel,

2009
GSFLOW 0 1 0 Carroll et al., 2016
HBV 5 0 0 Bergström, 1976
HEC-HMS 0 1 0 HEC, 2013
HILLFLOW 0 0 1 Bronstert & Plate, 1997
HydroGeoSphere 0 0 1 Jones et al., 2008
J2000 0 1 1 Nepal et al., 2014
LARSIM 1 1 0 Ludwig & Bremicker,

2006
LWF-Brook90 0 1 0 Hammel & Kennel, 2001
mHM 0 1 0 Samaniego et al., 2010
MIKE-SHE 0 0 1 Abbott et al., 1986
PANTA RHEI 0 1 0 Meon et al., 2015
RoGeR 0 1 0 Steinbrich et al., 2016
SES 0 0 1 Asztalos, 2004
Simulat 0 0 1 Diekkrüger & Arning,

1995
SWAT 0 2 2 Arnold et al., 1998
SWIM 0 1 0 Krysanova et al., 1998
TOPMODEL 1 0 0 Beven & Kirkby, 1979
TRAIN 0 1 1 Menzel, 1997
UHP 1 0 0 Bormann & Diekkrüger,

2003
WASA-SED 0 3 1 Güntner und Bronstert,

2004
WaSiM-ETH 0 0 2 Schulla, 1997
WaterGAP 1 1 0 Döll et al., 2003
Sum 12 22 12

with and avoid the efforts to become acquainted with a new model, even though the application
might exceed the limits of applicability of their model (Holländer et al., 2014).

Spatial resolution

With respect to spatial resolution, the pattern appears more as expected (Fig. 2.1b, Wood
(1995)). Physically based model either use a raster-based discretisation or irregularly shaped
elementary units, e.g. hydrological response units (HRUs). The same counts for conceptualised
process-based models. In contrast, for conceptual models use all types of spatial resolution oc-
cur, i.e. lumped approaches, discretisations based on sub-catchments (also termed subbasins),
as well as HRUs, and raster cells. Therefore, a clear distinction between conceptual model on
the one hand and conceptualised process-based and physically based model discretisations on
the other hand can be made. Models without spatial discretisation (lumped approaches) were
exclusively classified into the conceptual group.

https://www.dhydrog.de/dhg/arbeitskreise/
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Figure 2.1: Share of answers regarding a) catchment size, b) size of spatial entities, and c)
temporal resolution with respect to different model conceptions.

Temporal resolution
Temporal resolution could be specified between less than hourly and more than monthly (Fig.
2.1c). In the survey, models with hourly and daily resolution dominated (70 %). With respect to
conceptual classification, no clear pattern can be distinguished, as all conceptual groups are
applied with all kinds of temporal resolution. This was surprising as physically based models
are usually designed for application with small time steps. As the included processes are
typically represented with a high degree of detail, a low temporal resolution increases the
risk of numerical instabilities during the integration of the underlying differential equations. In
addition, it was expected that conceptual models are predominantly applied with larger time
steps as their simplified process representations are designed for lower resolutions. This leads
to the question, whether process representation does not anymore depend on structural model
conception. It seems that, probably due to increasing data availability and computer resources,
models are more frequently applied outside of their original scope of application.

When focussing on spatial scale and temporal resolution of a specific selection of eight
models (Fig. 2.2), some models, such as SWAT and COSERO, are applied over almost all
combinations of spatial scale and temporal resolution. Other models are more flexible with
respect to spatial scale but are constrained regarding the temporal resolution (e.g. TRAIN,
LARSIM) and vice versa (e.g. WaSiM-ETH). Subsequent analyses may help in identifying
overlapping patterns of models with different conceptualisation.

2.3.3 Model application
The analysis of fields of model application with respect to their conception (Fig. 2.3) shows that
flood forecasting and engineering tasks are primarily conducted with conceptual models. In
contrast, for process analyses and assessments related to matter transport and water budget
more complex models are preferred (process-based and physically based). Presumably, such
models seem more appropriate to modellers when extrapolation under changing boundary
conditions is necessary.

2.3.4 Processes and parameters
In order to calibrate models to the specific conditions of a study area, they contain parameters,
which implicitly represent relevant properties that are not explicitly represented in the underlying
conceptual design or the data used to initialise the model. The number of parameters that is
used for calibration varies substantially among models and conceptions (Fig. 2.4). Thereby, the
full range of predefined parameter numbers can be found. Even the specified numbers for a
specific model can differ substantially according to the rating of survey participants. For model
COSERO, for instance, the given minimum number of necessary calibration parameters varies
between 1 and 10, while as maximum number values between 10 and more than 50 were given.
For SWAT the minimum number ranges from 0 to 20 and the maximum number from 10 to more
than 50. Both examples illustrate the huge variety, which cannot just be explained by catchment
areas of different complexity. As these ratings vary between individual modellers, likely reasons
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Figure 2.2: Relation between spatial scale and temporal resolution for some selected models.

for the large variety are different objectives of their model application or the use of standard
values by some modellers, while other prefer to calibrate more parameters (Holländer et al.,
2014).

Despite the variety in specifications it can be seen that the number of calibration parameters
is lower for physically based models. Also the differences between minimum and maximum
parameter numbers are lower. For physically based models it seems that it is more obvious,
which parameters need to be calibrated and which need to be directly inferred from observations.

For the conceptual and process-based models the number of parameters differs to a larger
degree. On the one hand this can be explained by the higher number of potential calibration
parameters, on the other hand subjective decisions might play a role, which parameters should
be calibrated and which should not. With increasing experience with a specific model it is more
likely that the parameters, that need to be calibrated, can be narrowed down. On the other
hand, the number of calibration parameters may as well vary in dependence of the calibration
method.

In the questionnaire, some selected processes were evaluated regarding their conceptual
implementation (Fig. 2.5). For all processes it was assessed whether they are implemented
empirically, conceptually or physically based. In the analysis the overall model conception was
further considered. Overall a consistent picture appears as the conceptual implementation of
processes in most cases is in accordance with model conception.

Processes of evaporation and transpiration hold the largest share of physically based ap-
proaches across all model conceptual groups (45 %). In that way, model are more independent
from the application in a specific region. On the other hand it can also be seen that physically
based models may as well contain processes with conceptual or empirical implementation.
For instance, subsurface processes (baseflow, interflow, soil water movement) are often imple-
mented in a conceptual manner (67 %). This suggests that for some processes, independent
of the overall model conception, a certain implementation is commonly employed. In that way
a physically based implementation of evapotranspiration can by implemented in models of
different overall complexity.
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Figure 2.3: Fields of application of hydrological models with respect to their conception.

Due to the varying conceptualisations of certain process implementations in a single model
there is necessarily a certain degree of subjectivity in the rating of the overall model conception.
The classification into a conceptual group presumably depends on the implementation of
certain key processes for the study area. Consequently, certain parts of the model are seen
as characteristic for the whole model and changes of these parts may lead to a different
classification of the model. Therefore, the empirical snow module of a model applied in an
alpine catchment may lead to a classification as conceptual model, while modellers applying
the same model in northern Germany might come to a different conclusion.

2.3.5 Strengths and deficits of implemented processes

In Fig. 2.6, strengths and deficits of the implementations of important hydrological processes are
shown together with the further model properties of flexibility and efficiency. Irrespective of model
conceptual class, processes implementations of soil water / interflow, groundwater / baseflow,
and snow are most often seen both as strengths and deficits. Efficiency is commonly regarded
as a strength of conceptual and conceptualised process-based models. Thereby, efficiency is
related to an efficient handling, straightforward model initialisation or low computational demand.
Flexibility, i.e. the lack of it, was only referred to as deficit of many models. Flexibility here is
defined as a modularised design of a model or a broad field of application. It can be seen
that conceptual models were primarily associated with deficits in process representations and
strengths in terms of flexibility and efficiency.

The sources for model deficits as seen by the survey participants can basically be related to
general model structure and conception, and missing implementations for certain processes
(Fig. 2.7). Limited processes understanding, computational demand, and numerical deficits
are almost exclusively related to physically based models. However, these findings should be
interpreted with some caution as the absolute number of specifications for physically based
models is low. On the other hand, it seems to be a more robust finding that conceptualised
process-based models are limited by missing process implementations, inadequate model
structure, and problematic model calibration. Furthermore, issues of data availability and
quality are less often seen as problematic for conceptualised process-based models than for
conceptual and physically based models. Yet it seems unclear if an improved data basis alone
would already reduce the model deficits or if it is in addition necessary to improve the process
representations (Francke et al., 2018b).
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Figure 2.4: Minimum and maximum number of parameters needed for the calibration of a
specific model (only models are shown that were mentioned more than once in the survey).

In order to improve hydrological models and eliminate their deficits, improved process
implementations are seen as the major strategy by survey participants across all conceptual
groups (Fig. 2.8). In addition, improvements with respect to spatial resolution and general model
conception as well as more resources (time, money, employees) were mentioned. It remains to
be debated, whether more complex process representations are the main key to reduce deficits
or if this would rather cause more problems related to data availability, parametrisation, and
calibration. Moreover, it is to be expected that increasing model complexity will also lead to less
straightforward applicability.

2.4 Conclusions

How large is the spectrum of models and is there a consistent classification?

The variety of different models that have been mentioned in the survey (n = 16) illustrates the
large number of models that is used in German-speaking countries. With respect to model
conception, most models are conceptualised process-based (22), followed by conceptual and
physically based models (12 each). This study is not statistically representative and does
therefore not necessarily reflect the true conditions of the hydrological landscape in the German-
speaking countries. However, it shows the large diversity of models that can be applied by the
hydrological community and indicates that the improvement or combination of existing models
should be preferred over the development of new ones.

It was found that different modellers may group a specific model into different conceptual
groups. Even though the classification scheme with respect to the structural conception, which
was used in this work, is frequently employed among hydrologists, there still seems to be a
large degree of subjectivity. This holds also true for the limits of applicability of certain model
groups. Nevertheless, there is a certain consensus about the objectives for the different model
conceptions. Eventually, it seems to be practical to further use the distinction of conceptual
groups for the characterisation of hydrological models.
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Figure 2.5: Conception of model implementation of selected hydrological processes.

How are specific processes represented in models with different conceptions?
Within models of a specific conceptual class, different processes can be represented with
varying degree of detail. Physically based model may as well contain conceptual process
implementations and vice versa. Overall it was found that evapotranspiration processes are
often implemented in a physically based manner in all model conceptual groups. In contrast,
processes related to groundwater and soil water movement are usually empirically or conceptu-
ally represented. Only for some models a clear and objective classification into a conceptual
group is possible. Therefore, it is always advisable to check the implementation of the most
relevant processes before applying a model in a specific catchment.

What strengths and deficits with respect to process formulations are attributed to the models
mentioned along the survey and can systematic causes for deficits be inferred?
There is a large diversity of specifications made by survey participants with respect to strengths
and deficits of models. Frequently, certain processes were seen as inadequately represented
in one model and as strength in another model. Nevertheless, implementations of soil and
groundwater processes were most often rated as a deficit. As strengths of more conceptual
models were usually seen aspects such as flexibility and efficiency in their application, while for
more physically based models certain process implementations and their degree of detail (often
implementations related to snow and soil water processes) were mentioned. In general, flexible
process implementations with multiple alternatives rather than static representations were seen
as strength of models. The opinions about deficits vary greatly among models, which favours a
model-specific investigation rather than a universal prioritisation of deficits.

As a common reason for deficits in models, limited or missing process implementations
were mentioned. Consequently, suggestions for model improvement were mostly directed
towards improved process representations. Furthermore, new methods of remote sensing
and further improvement of data availability should be exploited to check alternative process
implementations for their capabilities of improved process representation.

2.4.1 Outlook

Future studies could focus on frequently used models of different conception in a more detailed
analysis or questionnaire among model practitioners. Based on the conclusions of this work,
model could be selected that are applied on similar spatial and temporal scales. Model
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Figure 2.6: Mentioned strengths and deficits of hydrological models.

developers could then elaborate solutions for model improvement, e.g. in a workshop. Moreover,
processes that are frequently rated as a deficit could be further investigated in studies of model
intercomparison in order to identify more suitable representations and test their applicability.
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Figure 2.7: Potential sources for model deficits mentioned by survey participants in relation to
model conception.
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Abstract
The characteristics of a landscape pose essential factors for hydrological processes. Therefore,
an adequate representation of the landscape of a catchment in hydrological models is vital.
However, many of such models exist differing, amongst others, in spatial concept and discretisa-
tion. The latter constitutes an essential pre-processing step, for which many different algorithms
along with numerous software implementations exist. In that context, existing solutions are
often model specific, commercial or depend on commercial back-end software, and allow only a
limited or no workflow automation at all.

Consequently, a new package for the scientific software and scripting environment R,
called lumpR, was developed. lumpR employs an algorithm for hillslope-based landscape
discretisation directed to large-scale application via a hierarchical multi-scale approach. The
package addresses existing limitations as it is free and open source, easily extendible to other
hydrological models, and the workflow can be fully automated. Moreover, it is user-friendly
as the direct coupling to a GIS allows for immediate visual inspection and manual adjustment.
Sufficient control is furthermore retained via parameter specification and the option to include
expert knowledge. Conversely, completely automatic operation also allows for extensive analysis
of aspects related to landscape discretisation.

In a case study, the application of the package is presented. A sensitivity analysis of the most
important discretisation parameters demonstrates its efficient workflow automation. Considering
multiple streamflow metrics, the employed model proved reasonably robust to the discretisation
parameters. However, parameters determining the sizes of subbasins and hillslopes proved
to be more important than the others, including the number of representative hillslopes, the
number of attributes employed for the lumping algorithm, and the number of sub-discretisations
of the representative hillslopes.

Published as:
Pilz, T., Francke, T., and Bronstert, A. (2017). “lumpR 2.0.0: an R package facilitating landscape
discretisation for hillslope-based hydrological models”. In: Geosci. Model Dev. 10.8, pp. 3001–
3023. DOI: 10.5194/gmd-10-3001-2017
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3.1 Introduction

Hydrological simulation models are important tools for gaining process understanding, fore-
casting streamflow, supporting water managers, and climate and/or land use change impact
studies. However, the lack of a unified theory in catchment hydrology led to a large number
of competing models (e.g. Weiler and Beven, 2015). These differ in terms of aim and scope,
process representation and parameterisation, temporal resolution, and spatial discretisation.
The latter includes the size and shape of units where the model’s underlying mathematical
equations are solved.

The most straightforward procedure in terms of data handling and computation is the
discretisation of the landscape into quadratic grid cells of equal size, commonly referred to as
fully distributed approach. This, however, suffers from several drawbacks: high computational
burden and large memory demands for small grid cells, while for large grid cells limitations
in representing landscape variability and processes at scales smaller than given by the grid’s
resolution may occur. Another strategy is to treat a hydrological catchment as a single unit,
known as lumped approach. While being easy to implement along with simple and fast
computable conceptual process representations, this approach fails to adequately represent
complex landscapes and process interactions often leading to a deteriorated simulation of
hydrological catchment behaviour (e.g. Yang et al., 2000). Several approaches exist addressing
this scaling problem for which no generic solution has been found so far (Beven, 2006b).
Subgrid parameterisation is a common procedure, describing the variability of a response
function lying below a model’s spatial resolution by the estimation of spatial distribution functions
(e.g. Beven, 1995; Bronstert and Bárdossy, 1999; Nijzink et al., 2016). A different approach
is to introduce different spatial levels in a model as compromise between distributed and
lumped discretisation schemes. This is sometimes referred to as semi-distributed approach,
often being the preferred choice in practical applications (e.g. Euser et al., 2015; Kumar et al.,
2010). Although no clear definition exists, this family of discretisation typically consists of a
hierarchical multi-scale scheme dividing a hydrological basin into several subbasins which in
turn contain irregularly shaped computational elements being hydrologically uniform entities
(e.g. Krysanova et al., 1998). Thus, the properties of both distributed and lumped modelling
can be found, often extended by integrating subgrid parameterisation schemes. On the one
hand, hydrological processes are simulated at different locations in the study area taking into
account distributed model input (such as meteorological forcing and landscape parameters) and
producing spatially variable output (such as lateral and vertical water flows). On the other hand,
naturally heterogeneous but hydrologically similar areas are aggregated and parameterised
in the same manner. The spatial heterogeneity of parameters or state variables of the model,
such as hydraulic conductivity and soil moisture, respectively, may thereby be described by
constitutive relationships. In favour of more computational efficiency, the topology of individual
elements is often neglected. This, however, imposes the threat that significant hydrological
connectivity between the elements might not be correctly represented.

In the last decades, a large number of landscape discretisation procedures has been devel-
oped for the delineation of spatial units for hydrological models. The number of accompanying
software solutions is even larger. This makes it a difficult task to choose a specific model,
the corresponding discretisation approach, and potential tools for landscape pre-processing.
Therefore, the first objective of this paper is to provide an overview of existing landscape discreti-
sation algorithms and software implementations, thereby solely focussing on semi-distributed
hydrological model application (Sect. 3.2).

Among the semi-distributed approaches, hillslope-based modelling is an efficient option for
representing heterogeneous runoff generation processes while accounting for phenomena of
hydrological connectivity (see Sect. 3.2.2). However, so far only few computer programmes
exist that aid in the pre-processing of hillslope-based models. Furthermore, these are often
model specific, have a limited applicability, and are not freely available or can only be used
along with commercial software (see Sect. 3.2.3). The second objective therefore is to present a
new software package for the pre-processing of hillslope-based multi-scale hydrological models
addressing these limitations. It is introduced and described in Sect. 3.3.
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The role of detail of discretisation (i.e. the spatial resolution) of hydrological models, partly
also as a user decision during the pre-processing process, has long been acknowledged in
numerous studies (e.g. Euser et al., 2015; González et al., 2016; Haghnegahdar et al., 2015;
Han et al., 2014; Kumar et al., 2010; Wood et al., 1988). For grid-based models, this influence
has been thoroughly assessed (e.g. Molnár and Julien, 2000; Refsgaard, 1997; Sulis et al.,
2011; Zhang and Montgomery, 1994). Such analyses are relatively straightforward, as changing
grid resolution is easily attained. For semi-distributed models, however, systematic and objective
analyses covering multiple scale are less common as they require an efficient and automated
workflow for the creation of many realisations. The proposed software package is able to
provide this. Thus, the third and last objective of this paper is to present an example case study
in a semi-arid catchment using the WASA-SED model, thereby conducting a sensitivity analysis
of crucial discretisation parameters (Sect. 3.4).

Eventually, the findings of this study are discussed and conclusions are inferred (Sects. 3.5
and 3.6, respectively).

3.2 Review of landscape representation in hydrological modelling

As being the starting point of any representation of landscapes in computer models, this
section starts with a short overview of basic approaches for the representation of topography
in computer models (Sect. 3.2.1). What follows is a review of methods for the delineation of
spatial entities in semi-distributed hydrological modelling (Sect. 3.2.2) and, finally, an appraisal
if and how these are supported by existing software tools (Sect. 3.2.3).

As a basis for watershed delineation and further landscape discretisation, a number of
pre-processing steps have to be performed. These shall be briefly mentioned but not further
discussed herein. Typically included is (i) pit filling of the digital elevation model (DEM) to
remove sink areas and ensure a proper drainage of water from the catchment; (ii) computation
of flow directions; (iii) computing upslope contributing area (i.e. the accumulated flow for each
DEM unit); (iv) derivation of the river network, typically based on flow accumulation from the
previous step; (v) delineation of the hydrological basin and subbasins. For each step different
algorithms have been proposed whose selection depends on the type of DEM, model to be
employed, aim and scope of the study, or just personal preferences, e.g. in terms of software to
be used (e.g. Costa-Cabral and Burges, 1994; Lacroix et al., 2002; Moretti and Orlandini, 2008;
O’Callaghan and Mark, 1984; Tarboton et al., 1991; Vivoni et al., 2004).

3.2.1 Topography representation in computer models

Topography is typically mapped using DEMs. Contour-based DEMs store terrain information
as contour lines (or x, y coordinate pairs) of specific elevation (Moore et al., 1988). Moore
and Grayson (1991) and Maurer (1997) showed example applications of contour-based terrain
analysis for hydrological model application where this type of DEM proved to be powerful as
its structure is based on how water flows on (albeit not necessarily below) the land surface.
However, although they have been further investigated for hydrological application (e.g. Dawes
and Short, 1994; Maunder, 1999; Moretti and Orlandini, 2008; Zhang et al., 1999) contour-
based DEMs come along with some limitations. They have a relatively high data-storage
demand, topographic attributes are complicated to derive, and they provide no computational
advantages (Moore et al., 1991).

Triangulated irregular networks (TINs) form a type of DEM sampling elevation points at
specific landscape features, such as peaks or ridges, and form an irregular network of x, y,
and z coordinates. They are very flexible as, due to their irregular structure, they are able to
map regions of high heterogeneity with more data points than smooth terrain and thus avoid
redundancy and increase data-storage efficiency (DeVantier and Feldman, 1993; Moore et al.,
1991). TINs also proved to be useful in a number of hydrological applications (e.g. Freitas et al.,
2016; Ivanov et al., 2004; Tucker et al., 2001; Vivoni et al., 2004). Their irregularity, however,
makes the computation of topographic attributes more difficult and there can be problems when
determining upslope connections for watershed derivation (Moore et al., 1991).
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Table 3.1: Classification of prominent landscape discretisation approaches for semi-distributed
hydrological modelling. Approaches are ordered as they appear in the text. For the mean-
ing of abbreviations of the approaches see text. Listed model and software solutions are
non-exhaustive examples. Key references refer to the introductory or an illustrative example
publication.

Approach Class Model Software solution Key reference

REA Areal unit – – Wood et al. (1988)
GRU Areal unit SIMPLE, CHARM WATFLOOD Kouwen et al. (1993)
ASA Areal unit SLURP SLURPAZ Kite (1995)
Hydrologic
landscapes

Areal unit – – Winter (2001)

HRU Areal unit PRMS, SWAT,
SWIM, PREVAH,
GSFLOW,
MHYDAS

IOSWAT, AGWA,
AVSWAT,
WINHRU,
Geo-MHYDAS

Flügel (1995) and Leavesley et al.
(1983)

HSB Hillslope h3D – Troch et al. (2003)
Single Hillslope Hillslope KINEROS, IHDM,

CATFLOW,
HILLSLOPE

– Bronstert (1999)

Representative
Hillslope

Hillslope WEPP GeoWEPP, LUMP Flanagan and Nearing (1995)

ECS Hillslope – SMART Khan et al. (2014)
flow-interval scheme Hillslope – – Yang et al. (2002)
REW Functional unit – – Reggiani et al. (1998)
Functional response
units

Functional unit TAC – Uhlenbrook and Leibundgut (2002)
and Zehe et al. (2014)

Multiple scales Mixed RHESSys,
WASA-SED

LUMP Güntner (2002)

Grid-based DEMs store elevation information as a regularly spaced mesh. There are a
number of drawbacks as the regular structure might impose artefacts and discontinuities while
sub-resolution landscape features cannot be captured limiting the applicability for hydrological
purposes. Furthermore, when increasing the grid’s resolution to reduce these problems,
computational burden and memory requirements are increased reducing their suitability for
large-scale applications. Nevertheless, grid-based DEMs are the most widely used data
structures due to their straightforward generation from remote sensing data, direct applicability
for further investigations, and efficient calculation of geomorphological characteristics (DeVantier
and Feldman, 1993; Moore et al., 1991).

Some models explicitly use TINs, such as tRIBS (Ivanov et al., 2004), or modelling units
derived from contour-based DEMs, e.g. THALES (Grayson et al., 1992a). The majority, however,
delineate irregularly shaped polygons as computational model units derived from grid-based
DEMs which will be further discussed in the following subsection.

3.2.2 Discretisation approaches in semi-distributed hydrological modelling

There exists a large number of landscape discretisation schemes for semi-distributed hydro-
logical model application. In this context, with discretisation we understand the process of
deriving computational units for a hydrological computer model from spatial input data. We do
not consider temporal resolution here. The spatial discretisation in a model determines size,
hierarchy, and topology of model elements. For semi-distributed hydrological models, these
comprise landscape elements such as (sub-)catchments, river segments, hillslopes, hillslope
segments (e.g. different slope sectors along a hillslope), hydrologically homogeneous areas, soil
units, and horizons. In correspondence to the dominating hydrological processes, the objects of
higher hierarchy are commonly determined by topography, while for the lower hierarchy soil and
vegetation are the distinguishing factor.

For our review we identified four general classes of discretisation approaches which are
presented along with specific examples in Tab. 3.1. These include areal unit schemes, which
delineate spatial polygons as fundamental modelling units; approaches taking hillslopes as
spatial elements; functional units with a focus on a homogeneous process description rather
than mere spatial entities; and a mixed class, typically comprising a hierarchical scheme of
different spatial scales. With the latter we mean conceptions exceeding the common watershed–
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subbasin–element scheme. In the following, the presented approaches shall be briefly described
whereas more information on the mentioned software solutions can be found in Sect. 3.2.3.

Wood et al. (1988) focussed on how to define a hydrological (sub-)catchment and studied
its dominant controls. They defined the smallest discernible averaging watershed where
statistics of runoff generation did not further change as representative elementary area (REA)
and applied simple conceptual equations for the simulation of runoff generation. They found
the size of their REA to be primarily influenced by topography. Similar, though conceptually
different, is the study of Kouwen et al. (1993) who were looking for an approach to represent
watershed heterogeneity over large basins. They defined grouped response units (GRUs), small
watersheds as computational units with uniform meteorological forcing that are considered to be
hydrologically heterogeneous by consisting of a range of land cover (or some other attribute’s)
characteristics, where only percent cover is used for characterisation instead of an explicit
spatial reference. Topography and the other relevant attributes (e.g. land cover) are assumed
to be the major factors influencing runoff generation. A similar conception is utilised by the
aggregated simulation area (ASA) approach developed for the SLURP model (Kite, 1995).
Winter (2001) aimed for an integrated inspection of the complete hydrological system in different
terrain types by introducing hydrologic landscapes. These consist of variations and multiples of
fundamental hydrological landscape units as building blocks characterised by land surface form,
geologic framework, and climatic setting to describe movements of surface water, groundwater,
and atmospheric water, respectively.

The concept of hydrological response units (HRUs) is directly related to a smaller spatial level.
Introduced by Leavesley et al. (1983) for their Precipitation–Runoff Modeling System (PRMS)
and further elaborated by Flügel (1995), it evolved into a prominent landscape discretisation
scheme utilised by many models. An HRU is assumed to be a homogeneous set of hydrological
process dynamics formed by a pedo–topo–geological association with specific land use and as
such controlled by land use management and physical landscape properties. The conception
has been adopted for models such as SWAT (Manguerra and Engel, 1998), SWIM (therein
termed hydrotopes) (Krysanova et al., 1998), PREVAH (Viviroli et al., 2009), or GSFLOW
(Markstrom et al., 2008). MHYDAS is a process-based hydrological model for which the
HRU concept has been further pursued for application in agricultural management contexts by
including man-made hydrological discontinuities such as ditches and field boundaries (Moussa
et al., 2002). However, the HRU approach commonly does not preserve topological information
for the spatial units. Instead of a direct representation of water flow pathways, generated runoff
is typically summed over all HRUs of a watershed and routed along a representative channel
element.

Other approaches divide the watershed into representative hillslopes as one- or two-
dimensional (1-D or 2-D) approximation of a three-dimensional soil catena separated by
drainage network and ridges. For instance, Troch et al. (2003) developed the hillslope-storage
Boussinesq (HSB) equation to simulate drainage and soil moisture storage dynamics along a
hillslope described by a polynomial function. In their hybrid 3-D hillslope hydrological model
(h3D), Hazenberg et al. (2015) employed the latter along with the Richards’ equation for vertical
flow and a diffusive wave approximation of the shallow water equations for overland flow as an
efficient physically based modelling approach aimed for use in continental and global-scale
Earth system models. Flanagan and Nearing (1995) introduced WEPP, a complex process-
based soil erosion prediction model applicable over hillslopes or small watersheds comprised
of multiple hillslopes, channels, and impoundments. They lump individual hillslopes by calculat-
ing and averaging quantitative hillslope characteristics. Examples for models treating single
hillslopes over smaller scales include KINEROS (Woolhiser et al., 1990), IHDM (Beven et al.,
1987), HILLSLOPE (Bronstert, 1994), or CATFLOW (Maurer, 1997). Several studies focussed
on how to delineate and describe hillslopes from a DEM (e.g. Cochrane and Flanagan, 2003;
Noël et al., 2014), discussing morphometric controls on hillslope parameters (Bogaart and
Troch, 2006), or investigating the role of hydrologic connectivity (Smith et al., 2013). Khan et al.
(2014), for instance, formulated equivalent cross sections (ECSs) as representatives of a part
or an entire subbasin and proposed different averaging algorithms based on topographical and
physiographical properties. Yang et al. (2002) introduced the flow-interval hillslope scheme
where a catchment is subdivided into a number of connected flow intervals which are defined
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by the width (i.e. the number of streams) and the geomorphological area (i.e. the drainage area)
as functions of distance from the watershed outlet. Overall, hillslope hydrological modelling
has been proven to be useful in regions with steeply sloping landscapes and heterogeneous
runoff generation mechanisms where lateral water fluxes are relevant (Bronstert, 1999). On the
other hand, especially when iterating through individual hillslopes of a watershed, applicability
is clearly limited to smaller scales due to the large computational demand.

In a different concept, a stronger focus is put on functional units rather than mere spatial
units which always came along with the assumption of homogeneous process dynamics
in a certain area. Herein, each unit is characterised by a specific dominant process and
an accompanying model conceptualisation, such as for the TAC model of Uhlenbrook and
Leibundgut (2002). Reggiani et al. (1998) delineated the basin into autonomous functional
subbasins, the representative elementary watersheds (REWs), using the drainage network as
basic organising structure. The REW is then divided into five functional sub-regions whereas
micro-scale physical conservation equations for each sub-region are simplified and averaged,
further accounting for thermodynamic exchange between sub-regions and REWs. Zehe et al.
(2014) proposed three functional response units separating radiation-driven vertical flow from
rainfall-driven lateral flow processes on similar functional entities within a hydro-geomorphic
homogeneous subbasin. However, it still is a challenge to define the size of averaging volumes
and the closure relationships of boundary fluxes (Beven, 2006b).

Regardless of the chosen approach, for the application at large scales it is necessary to
find a compromise between sufficient detail in landscape representation and computational
feasibility. Thus, several studies examined the impact of discretisation complexity on model
performance. They showed that (semi-)distributed models are usually more suitable for the
representation of landscape heterogeneity and the exploration of hydrological processes, and
are also more able to reproduce observed discharge dynamics than lumped models (Euser
et al., 2015; Kumar et al., 2010). However, there is a threshold of subdivision level above which
no more improvements can be achieved (Haghnegahdar et al., 2015; Han et al., 2014; Wood
et al., 1988). On the other hand, natural variability outside the models’ spatial discretisation level
can still exhibit an important limitation in the representation of natural processes. This can be
accounted for by different spatial scales in a model application (e.g. the scales of meteorological
forcing, model application, and basin characteristics) and combining them using parameter
regionalisation (e.g. Samaniego et al., 2010).

The concepts described above are often extended by a hierarchical multi-scale discretisation
scheme. It commonly includes the basin of investigation being discretised into subbasins
(i.e. hydrological sub-catchments) and hydrologically homogeneous modelling elements (e.g.
HRUs). Thus, elementary units are grouped into a structure of higher order, summarising (and
potentially defining a topology of) their in- and outputs. For the modelling system RHESSys,
for instance, the landscape is partitioned into a hierarchy of progressively finer units modelling
different processes associated with a particular scale. A given spatial level is represented as
object type with a set of states, fluxes, process representations, and corresponding model
parameters (Band et al., 2000; Tague and Band, 2004).

For their WASA model, Güntner and Bronstert (2004) developed an even more complex
scheme of six spatial levels. Starting at the watershed, subbasins are delineated, sub-divided
into representative hillslopes termed landscape units which are further separated into specific
parts of the hillslope, the terrain components to account for lateral redistribution of water flows,
whereas vertical processes and runoff generation are simulated over individual homogeneous
soil–vegetation components for which a representative soil profile with respective soil layers has
to be given. As for the GRU approach, at the smaller scales an explicit spatial representation
is omitted in favour of a percentage cover representation in order to better capture landscape
heterogeneity while keeping storage and computational demands at a minimum. This concept
has been proven to be efficient and successful for the simulation of heterogeneous semi-arid
landscapes with complex hillslopes and patchy vegetation over large scales dominated by
Hortonian overland flow and runoff redistribution mechanisms. As hydrologic connectivity of the
landscape can be represented in a realistic manner, the model has been used for a number of
studies investigating runoff redistribution and erosion processes (e.g. Bronstert et al., 2014;
Güntner and Bronstert, 2004; Medeiros et al., 2010; Mueller et al., 2010).
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3.2.3 Software for model pre-processing and landscape discretisation
The previous section described conceptual approaches of landscape discretisation and gave
examples for models where these concepts are utilised. Their implementation into a model,
however, requires a number of more or less complex pre-processing steps. Together with
improving computer facilities and increasingly available DEMs and processing algorithms,
software for terrain analysis and discretisation started to evolve. Already in the early 1990s,
DeVantier and Feldman (1993) published a review of applications of geographical information
systems (GIS) in hydrological modelling. Especially for grid-based models, many tasks during
spatial data pre-processing can be performed with standard GIS functionality. However, other
steps require more specific operations. Thus, many researchers started writing their own scripts
tailored to their needs and sometimes later on published or distributed their solutions both
commercially and in non-profit manners.

TAPES-G is an early terrain analysis programme written in FORTRAN-77 and C for use
on Unix machines already including several algorithms for specific tasks, e.g. five methods
alone to calculate flow accumulation (Gallant and Wilson, 1996). A prominent and widely used
example is the TOPAZ software package for automated analysis of digital landscape topography
addressed to guide farmers, engineers, and scientists in both research and practical application.
The programme is free of charge and available on request but the development stopped in
1999 (Garbrecht and Martz, 1999). Tarboton (2003) introduced TauDEM, a freely usable terrain
analysis programme for Windows that can be applied independently from the command line
or comes along with a graphical user interface (GUI) as extension for the commercial ArcMap
software and is still being further developed. More information on hydrologically relevant
software of the commercial ArcGIS family, such as ArcHydro, can be found at the software’s
community web pages: http://resources.arcgis.com/en/communities/hydro/ (accessed
23 June 2016). The free and open-source software (FOSS) GIS GRASS provides a number of
elaborated and still evolving tools for hydrological model pre-processing, such as r.watershed,
that have been successfully applied in a number of studies (e.g. Kinner et al., 2005; Metz et al.,
2011; Neteler et al., 2012). Another recent example of stand-alone software is GeoNet, a tool
for automatic channel head, channel network, and channel morphological parameter extraction
from high resolution topography data that can be employed within MATLAB or, in a more recent
version, as Python programme (Passalacqua et al., 2010; Sangireddy et al., 2016).

As being a frequently employed discretisation scheme used in well-known hydrological
models such as SWAT, many software solutions exist implementing the HRU concept. Typically,
the delineation process is based on the intersection of spatial raster data including land cover,
soil, and/or geology. The programmes basically differ in terms of additional processing steps
(such as terrain analysis), used algorithms, supported data formats and whether they are
tailored to a specific model or are stand-alone, GIS back-end (mostly ArcGIS or GRASS),
supported operating systems, and whether they provide a GUI or have to be run from command
line. Sanzana et al. (2013) developed a number of stand-alone and model-independent Python
scripts for terrain analysis and HRU mesh generation making use of GRASS functionalities.
Also relying on GRASS and Python, Schwartze (2008) created an extension for QGIS (a FOSS
GIS with user-friendly GUI) as a HRU delineation tool. Other software is model specific, such
as IOSWAT (Haverkamp et al., 2005), AGWA (Miller et al., 2007, 2002), or AVSWAT (Di Luzio
et al., 2004), being addressed to SWAT, WINHRU (Viviroli et al., 2009) written for PREVAH, or
Geo-MHYDAS (Lagacherie et al., 2010), which is a collection of SHELL and PERL scripts using
GRASS to help users of MHYDAS with the model pre-processing. Some of these are mere
wraps around individual programmes to guide through the whole modelling process, including
terrain analysis, HRU delineation, preparation of input files, model execution and parameter
calibration, and graphical and/or statistical analysis of simulation results.

The pool of software packages for other landscape discretisation schemes is less rich.
Lacroix et al. (2002) presented SLURPAZ, an interface between the TOPAZ terrain analysis tool
and the SLURP model for the delineation of ASAs. The WATFLOOD flow forecasting system is
a framework consisting of a hydrological model (CHARM) including pre- and post-processors,
incorporating the GRU approach (Kouwen, 2016) . Around the hillslope-based WEPP model,
the geo-spatial assessment software GeoWEPP has been developed integrating TOPAZ, WEPP,
and other tools for detailed analysis of spatially and temporally variable environmental and

http://resources.arcgis.com/en/communities/hydro/
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management scenarios (Renschler, 2003). It is presently integrated into the ArcGIS project
with a lightweight web-based interface for less advanced users and ad hoc model application
(Flanagan et al., 2013). RHESSys comes with interfaces for both GRASS and ArcGIS to assist in
landscape pre-processing (Band et al., 2000). Ajami et al. (2016) published SMART, a MATLAB
toolbox integrating TauDEM as terrain analysis tool, performing rainfall–runoff simulations over
hillslopes in the sense of ECSs with several options for their derivation, and providing functions
for the post-processing of modelling results.

Francke et al. (2008) published an algorithm for the semi-automated delineation of represen-
tative hillslopes. This Landscape Unit Mapping Program (LUMP) first discretises the landscape
into various hillslopes, the elementary hillslope areas, and computes a representative catena
for each of them. As a next step, similar catenae are grouped into landscape units whereas for
the classification several variables can be taken into account such as horizontal and vertical
catena length, shape of the profile, and sets of supplemental attributes further characterising the
hillslope, e.g. qualitative data such as soil type and land cover class, or quantitative attributes
such as leaf area index or further terrain characteristics. These representative catenae are
eventually sub-divided into terrain components, e.g. into upslope, middle, and downslope parts.
The approach will be further discussed in Sect. 3.3.2 and is illustrated in Fig. 3.2. LUMP is semi-
automated in way that the hillslope-based landscape parameterisation is largely automated
generating reproducible results and reducing required user decisions to a minimum whereas,
on the other hand, expert knowledge can be easily incorporated to improve the discretisation
outcome. Contrary to other hillslope-based algorithms, due to the discretisation at multiple
scales, it is applicable over large areas with relatively little effort. Even though LUMP was
directed to the pre-processing of the WASA-SED model (Güntner and Bronstert, 2004), it a is
stand-alone model and the output can as well be used for other hillslope-based models. How-
ever, the programme is basically a collection of freely available scripts written in MATLAB and
SHELL using GRASS functionalities. Additionally to the dependence on commercial software,
the workflow still requires a considerable number of pre-processing steps and user interaction.

Considering the above-mentioned merits of hillslope-based landscape discretisation, the
number of tools for automating this tasks is low. On the other hand, manual derivation of
such an discretisation is labour intensive, prone to error and rarely fully reproducible, which
generally precludes its application on the larger scale. Thus, to meet the second objective of this
study to develop a user-friendly and efficient tool for hillslope-based landscape discretisation,
it was decided to build upon the LUMP algorithm which already remedies some of the above-
mentioned shortcomings.

3.3 lumpR: R package description
The landscape unit mapping program for R (lumpR) was developed with the aim to obtain a
lightweight user-friendly and efficient tool for hillslope-based landscape discretisation and serve
as a pre-processing tool for the WASA-SED model (Güntner and Bronstert, 2004, see also Sect.
3.4.2). In a more general sense, however, it should meet the requirements of being (i) platform
independent, (ii) applicable for other hillslope-based models, too, (iii) free and open source, (iv)
automated as far as possible reducing subjectivity but (v) allowing to include expert knowledge.
In order to produce an easily applicable software and to meet objectives (i) and (iii) in particular,
it was decided to use the scripting language R (R Core Team, 2015) and assemble lumpR as a
software package for this environment, licensed under the GNU General Public Licence (GPL)
version 3 or later.

Figure 3.1 gives an overview of the structure and functionalities of the package. In the
following these shall be explained in more detail. For more information on how to install and use
the package and to inform about updates the reader is referred to the package’s documentation
(see Sect. 3.6).

3.3.1 Prerequisites and general workflow
As it is a package of the scripting language R, lumpR requires the statistical software R together
with various packages it depends on. It employs a number of external calls to GRASS GIS and
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Figure 3.1: Schematic overview of the functionalities of the lumpR package. Shown are all
available functions (in italics) with a short explanation, interactions with external components,
and the typical flow of information during the application. Processing order is indicated by
numbers, whereas optional steps are indicated by dashed circles. Note that the acronym DBMS
refers to DataBase Management System.

thus requires having GRASS to be installed. A third requirement is a database management
system (DBMS) which will be accessed via the open database connectivity (ODBC) which
has to be set up as well. So far the DBMSs MySQL/MariaDB, SQLite, and MS Access are
supported. When all settings and algorithm parameters can be determined, all processing steps
can be run completely automatically. However, it is generally recommendable to process the
steps successively to check the intermediate results, if necessary.

After installing the package and all additionally needed software, the user has to acquire
and prepare all needed spatial data in a location in GRASS GIS. Internally the package’s
functions connect to that location, use the given data for processing while partly employing
GRASS functions, and finally stores the spatial output in the GRASS location and/or text files in
a specified directory for immediate inspection after each function call. As a first step in a new R
session, before executing any of the package’s function, R has to be connected to the GRASS
location by the user. A template script guiding through the processing steps of landscape
discretisation and the parameter database management has been prepared and is provided
along with the package (see Sect. 3.6).

3.3.2 Landscape discretisation

As is sketched in Fig. 3.1, the process of landscape discretisation involves five functions that
should be applied in the following order. This can be ensured by customising the provided
template script. Figure 3.2 gives an illustrative example for the outcomes of the following
steps (i) to (iv). (i) calc_subbas() sub-divides the hydrological basin into subbasins using
a given grid-based DEM (black outlined polygons S1–3 in Fig. 3.2). Subbasin size can be
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influenced by the user by either giving a set of coordinates of drainage locations inferred
beforehand or by specifying the parameter thresh_sub being the minimum size of a subbasin
in number of grid cells internally used by GRASS function r.watershed. Furthermore, the
river network is inferred from calculated flow accumulation (the number of upstream raster
cells draining through a specific raster cell) via a user-defined threshold (blue lines in Fig.
3.2). (ii) lump_grass_prep() does several pre-processing steps needed for later use such as
computing soil–vegetation components (SVCs) as simple overlay of soil and vegetation raster
maps, inferring Horton stream order, and DEM-processing steps including the calculation of
flow direction, flow accumulation, relative elevation (i.e. elevations above next downstream river
grid cell), and distance to next river grid cell. The results are stored in the specified GRASS
location. Furthermore, the function infers elementary hillslope areas (EHAs) based on the size
parameter eha_thres. These are the basic units for calculation of representative catenae and,
thus, one can think of them as single hillslopes (denoted as small polygons in Fig. 3.2).

(iii) area2catena() takes data from step (ii) and supplemental raster maps of quantitative
and/or qualitative attributes to calculate a representative catena for every EHA (grey boxes in
Fig. 3.2). It is characterised by horizontal and vertical length, shape (in terms of cumulated
elevation along the hillslope), slope width (approximated by taking the number of grid cells at
a profile point divided by the total number of grid cells representing the whole hillslope), and
all supplemental data. This reduction is based on the work of Cochrane and Flanagan (2003)
for the WEPP model. (iv) prof_class() classifies the representative catenae into landscape
units (LUs) (coloured areas in Fig. 3.2). In this step similar catenae are identified and lumped
together based on the calculated properties employing an unsupervised K-means clustering
method. The user has to specify the number of classes to generate from each attribute during
the clustering, which is done separately for each attribute. The final class assignment for each
catena results from the combination of these attribute-wise classifications. Each LU is then
further sub-divided into terrain components (TCs), i.e. planar elements representing, e.g. upper,
middle, and downslope parts of the lumped catena (coloured diagrams in Fig. 3.2). The number
of TCs to be generated for each LU can be specified and the partition is done by evaluating
the derived LU properties and employing a minimisation of variances approach. Topological
relations between SVCs, TCs, and LUs are established, expressed as percentages of covered
area and along-slope location of TCs within a LU rather than spatial coordinates. For visual
inspection, the user has the option to let the functions generate plots during steps (iii) and (iv).
The employed algorithms for steps (iii) and (iv) are explained in more detail by Francke et al.
(2008).

Finally, (v) lump_grass_post() establishes the topology between subbasins and LUs, again
expressed as the percentage of covered area. Subbasins are the only spatial units with explicit
reference in terms of geographic coordinates. In addition, subbasin and LU-specific parameters
such as representative channel geometry and routing parameters, groundwater, and landscape
coefficients, are approximated. Hereby, rather simple relationships or typical standard values
are employed. The output of this function is mainly designed to provide a complete plausible
parameterisation. Where alternative information is available, it should be used. See the
function’s documentation for more details.

A summary of the most important parameters for the landscape discretisation process is
given in Tab. 3.2. Their meaning along with a sensitivity analysis will be further discussed in
Sect. 3.4.4.

3.3.3 Additional tools
In order to meet further capabilities of the WASA-SED model, functions reservoir_*() have
been introduced. They facilitate the pre-processing of reservoir-specific input files for the
model using spatial reservoir data and pre-compiled parameterisations. The additional function
rainy_season() calculates start and end dates of the rainy season for every year based on a time
series of daily precipitation values using a statistical approach described by Gerstengarbe and
Werner (1999). calc_seasonality() then uses the output of the former function and information
about seasonal variation of a vegetation parameter to calculate a daily time series of that
parameter by linear interpolation of the parameter’s node points depending on the current
start and end dates of the rainy season for a specific year. In hydrological models such as
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Figure 3.2: Example of the outcome of steps (i) to (iv) of landscape discretisation. Shown is a
hydrological basin sub-divided into subbasins (labelled S 1–3), EHAs (small polygons), and
LUs (red, blue, yellow) with TCs. Along-slope catena properties for the EHAs and LUs are
summarised by the diagrams.

WASA-SED or WaSiM-ETH (Schulla and Jasper, 2007), such information can be used to
describe intra-annual variations of vegetation parameters.

3.3.4 Parameter database

To store the results of landscape discretisation and allow easy maintenance, manipulation, and
the generation of necessary model input files, all processing results are stored in a database.
For flexibility, lumpR currently supports multiple DBMS, including MS Access, MySQL / MariaDB,
and SQLite. Details for database configuration are provided in the wiki of lumpR’s web page
(see Sect. 3.6). For interacting with the database, the package provides a set of functions.
Again, these functions should be applied in the recommended order as indicated in Fig. 3.1 and
will be further explained in the following.

(i) db_create() creates an empty parameter database. As the package underlies continuous
further development, (ii) db_update() ensures backward compatibility to previous database
versions. (iii) db_fill() assimilates the output of the landscape discretisation steps and other pre-
processing not included in the package (e.g. readily prepared soil and vegetation parameters)
and imports the data into the respective tables of the parameter database. (iv) db_check()
performs a number of checks to identify and (if possible and desired) automatically resolve
inconsistencies and/or missing information in the database. These include filtering of tiny and
spurious areas (e.g. spatial entities smaller than a specified threshold) to reduce computational
overhead, checking that all TCs have a slope larger than zero, defining special areas for separate
treatment (this currently includes SVCs marked as water or impervious), removing special areas
marked as water, computing fractions of impervious surfaces at TC level, removing impervious
surfaces, estimating a storage coefficient for groundwater delay at LU level, deleting obsolete
datasets (i.e. unused spatial entities), checking for completeness (all IDs in the *_contains_*
tables exist within the respective referenced tables), and computing the subbasin order from
upstream to downstream. The user can decide, which checks to perform, how to deal with
inconsistencies, and define thresholds for certain checks. For reproducibility, any changes to
the database will be logged in table meta_info.
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Figure 3.3: Overview over the Benguê catchment (c) and location within Brazil (b) and South
America (a). Black lines in the background of the lower panel correspond to the grid of the
meteorological dataset of Xavier et al. (2016) that was used in this analysis (see Sect. 3.4.3).

At any point during the processing the user can freely inspect and adjust the parameter
database by means other than the functions provided by lumpR. In the current version, the
package provides the function db_wasa_input() to convert the values of the parameter database
into input files for WASA-SED. However, the user may as well export the values needed and
compile the input files for any other model. Furthermore, upon request, export function for other
models can easily be added.

3.4 Example application and sensitivity analysis
Within an example application, multiple realisations of hillslope discretisations of the same
model domain are generated with lumpR version 2.0.0 by varying five parameters that control
the creation of model entities on different scales. These realisations are then used with the
hydrological model WASA-SED and their effect on the model output is analysed. In the following
subsections, the study site, the WASA-SED model and data used for model initialisation, the
sensitivity analysis of the discretisation parameters, and, finally, the results of this study are
described.

3.4.1 Study site
To demonstrate the functionalities of lumpR the Benguê catchment was selected (Fig. 3.3). It is
part of the upper Jaguaribe River catchment in the northeast of Brazil within the federal state
of Ceará. The area has been investigated in a number of studies, in many cases employing
the WASA-SED model, and was thus selected to ensure the suitability of the model for the
catchment (de Araújo and Medeiros, 2013; Bronstert et al., 2014; de Figueiredo et al., 2016;
Krol et al., 2011; Medeiros and de Araújo, 2014; Medeiros et al., 2014, 2010).

The Benguê catchment drains an area of about 926 km2. At its outlet, the ephemeral
Umbuzeiro River disembogues a reservoir built in 2000 with a storage capacity of 19.6 million
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m3 to enhance water supply and reliability in the region. As the area is located within the "drought
polygon" of Brazil, annual average precipitation is low with about 600 mm in comparison to a
potential evapotranspiration of more than 2000 mm. The mean annual temperature is 25 ◦C with
little variation. Climate is further characterised by a strong intra-annual variation of precipitation
leading to distinct rainy (January to May with more than 80 % of annual rainfall) and dry seasons.
Rainfall is mostly convective and concentrated in only a few high-intensity events per year..
Inter-annual variation of precipitation, however, is also high causing recurrent droughts which in
cases may last over several consecutive years. The dominant natural vegetation is Caatinga
consisting of deciduous bushland with xerophytic species ranging from dense dry forests to
almost desert-like sites. The environment is further characterised by mainly sedimentary
plateaus in the southern and western parts of the study site with steep terrain and deep (> 1 m)
permeable soils, predominantly Latosols. In the north and east crystalline bedrock is prevailing
with shallow Luvisols (< 1 m) causing high runoff coefficients. In alluvial zones, Planosols are
dominant. The population density is low (6.4 inhabitants per km2) with rural lifestyle. Parts of
the area are used for small-scale farming including cattle breeding and growing of maize and
beans in particular.

3.4.2 The WASA-SED model
The WASA-SED model, revision 247 from 29 September 2016, is used to study the effects
of different landscape discretisations realised with lumpR on simulated streamflow dynamics.
WASA-SED is a deterministic, process-based, semi-distributed, time-continuous hydrological
model. The model was first introduced by and is described in detail within Güntner (2002), with
special focus on its application in semi-arid environments. It has been frequently employed in
semi-arid areas such as northeastern Brazil (including the Benguê catchment; for references
see Sect. 3.4.1), India (Jackisch et al., 2014) and Spain (Bronstert et al., 2014; Mueller et al.,
2009, 2010).

The model incorporates the Shuttleworth–Wallace approach for evapotranspiration calcu-
lation over sparsely vegetated surfaces and an infiltration approach based on Green–Ampt
accounting for Horton-type infiltration. Via the complex hierarchical spatial disaggregation
scheme (see Sect. 3.2.2), lateral redistribution processes as well as re-infiltration along a
hillslope are considered while the model can still be applied over large scales (up to the order of
magnitude of 100,000 km2). Large strategic reservoirs can be represented in an explicit manner
while smaller ones are treated as lumped water bodies of different size classes to efficiently
account for water retention of many small reservoirs in a study region. The model has been
subsequently expanded, e.g. to account for sediment dynamics and was renamed from WASA
to WASA-SED (Mueller et al., 2010). It should, however, be noted that in this study erosion is
not modelled.

3.4.3 Data and model set-up
Meteorological data in daily resolution to drive WASA-SED, in particular precipitation, air
temperature (obtained by minimum and maximum temperatures by simple averaging), relative
humidity, and incoming shortwave radiation, have been derived from the dataset described by
Xavier et al. (2016). This gridded dataset is based on station information that has been checked,
corrected, and interpolated to a grid with 0.25°x 0.25°resolution. For the analysis, data from
20 grid cells were considered, whereas the catchment itself directly intersects with six cells (see
Fig. 3.3). Extraterrestrial radiation as a further driver that has been calculated from astronomical
relationships employing the R package sirad. Meteorological data have been interpolated to the
locations of subbasin centroids using an inverse-distance weighting approach by employing the
R package geostat.1

The basis of terrain analyses was the 90 m x 90 m SRTM DEM. As pre-processing step, the
raw raster was sink-filled employing the GRASS function r.terraflow. Soil information has been
derived from the database of Jacomine et al. (1973). The parameters needed by WASA-SED
have been inferred by pedo-transfer functions based on soil texture information using the R

1This package is not on CRAN but available via the ECHSE tools library from https://github.com/echse/echse_
tools.

https://github.com/echse/echse_tools
https://github.com/echse/echse_tools


50 Chapter 3. lumpR 2.0.0: R package for landscape discretisation

Table 3.2: User decisions affecting landscape discretisation complexity and their realisations
used for sensitivity analysis.

Identifier Meaning Realisations

SUB_thresh Minimum size of subbasins in number of
grid cells

1000, 2000, 5000, 10000, 30000

EHA_thresh Minimum size of EHAs in number of grid
cells

25, 50, 100, 200, 500, 750, 1000

LU_no Maximum number of LUs to be classified 5, 10, 20, 50, 75, 100, 150, 200, 250, 300
LU_atts Number of attributes to be considered dur-

ing LU classification
1...7

TC_no Number of TCs to be deviated for every
LU

1...5

packages soilwaterfun and soilwaterptf available via http://soilwater.r-forge.r-project.
org/. Vegetation parameters for the types occurring within the study area have been elaborated
during the development of WASA (Güntner, 2002) and have been adopted for this study. An
updated shapefile of landcover distribution was obtained from the Brazilian Ministry for the
Environment and the land cover classes have been reclassified to those used in Güntner (2002).
Data on reservoirs and the geology of the area had been collected and processed within the
SESAM project; see http://www.uni-potsdam.de/sesam.

No calibration of any model parameters has been done as a comparison with observational
data shall not be part of this study. As has been mentioned, however, the model has been used
in and proved its ability for the catchment (see references given in Sect. 3.4.1).

3.4.4 Sensitivity analysis of landscape discretisation parameters
During the process of landscape discretisation, a user commonly has to make a number of –
often subjective – decisions. These are directly influencing the complexity of the discretisation
and thereby affecting computational efforts and, possibly, model results. Although this issue
has been acknowledged (e.g. Ajami et al., 2016; Fenicia et al., 2016), we are not aware of any
study systematically analysing this effect for hillslope-based approaches and at multiple spatial
scales at the same time. This may be mainly because of the associated manual effort and
computational burden, which has become accessible using lumpR. Its fully automatic integration
allows for conducting a comprehensive numerical experiment, reflecting the complexity and multi-
dimensionality in the discretisation process. Henceforward, we consider these as parameters
within a model sensitivity analysis.

Experimental set-up
For landscape discretisation using lumpR, five parameters reflecting the most important user
decisions have been identified and are summarised in Tab. 3.2. Their presented realisations
are based on expert knowledge. They result from a reasonable range of values while striving
for maximum possible variation in the generated spatial units. Therefore, for some parameters
such as SUB_thresh, also non-uniform distributions of the values have been taken into account.
What follows is a reasoning on selected parameter realisations for the experiments that can as
well be used as guidelines for lumpR applications.

SUB_thresh and EHA_thresh are size thresholds affecting the size and thereby the number
of delineated subbasins and EHAs, respectively. As their realisations are given in number of grid
cells, their choice depends on the resolution of the GRASS location which should be oriented
on the DEM (here, the SRTM DEM resolution of 90 m x 90 m), and catchment size. LU_no and
LU_atts control the process of clustering EHAs into LUs. The maximum possible value for
LU_atts depends on the number of attributes that can be used for classification. These, by
defaults, include the shape of EHAs, their horizontal and vertical extension, and a proxy for
hillslope width which are all inferred from a DEM. Further supplemental attributes can be added
which in this study included maps of soil types, land cover, geology, and SVCs that resulted
in a total of seven attributes. In this study, different realisations of LU_atts thus simulate a

http://soilwater.r-forge.r-project.org/
http://soilwater.r-forge.r-project.org/
http://www.uni-potsdam.de/sesam
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Table 3.3: Streamflow indices used as scalar response functions for sensitivity analysis.

Symbol Index Calculation Unit

RR Runoff ratio Sum of daily streamflow values divided by sum
of daily precipitation over the whole period of
analysis multiplied by 100

%

Pflow Probability for
significant streamflow

Number of days with significanta streamflow
divided by total number of values multiplied by
100

%

Qavmax Average annual
maximum flow

Average over all annual maximum streamflow
values

m3 s−1

SFDC Slope of flow duration
curve

Average slope of the flow duration curve for
significanta medium rangedb streamflow
values; high values stand for a more variable
whereas low values represent a more damped
flow regime (Sawicz et al., 2011)

dimensionless

flow Frequency of low flows Average number of insignificanta flow eventsc

per year
year−1

fhigh Frequency of high
flows

Average number of high flowd eventsc per year year−1

RCrise Rate of change during
rise

Average rate of change of the rising limbs of
high flowd eventsc

m3 s−1 day−1

RCfall Rate of change during
fall

Average rate of change of the falling limbs of
high flowd eventsc

m3 s−1 day−1

a (In-) significant streamflow defined as those values (less than or equal to) larger than 0.01 m3 s−1.
b Values between the 33 % and 66 % percentiles.
c An event is defined as a period of consecutive days a certain condition is fulfilled.
d High flows are those values being larger than a flow threshold which is herein defined as the 90 %

percentile of all significant1 flow values from all 12,250 model realisations during the analysis period.

differing degree of information available for the deviation of LUs. For LU_atts less than seven,
the aforementioned attributes were sampled randomly. LU_no defines the maximum number
of LUs to be generated. As the LU classification is done successively for each attribute, this
number results from the product of the number of classes Ni specified for each of the LU_atts
considered attributes i :

LU_no =
LU_atts∏

i

Ni (3.1)

Thus, conversely, when LU_no is pre-specified, the values of Ni need to be determined
under the above-mentioned constraint as follows: one of the considered attributes is randomly
selected and its Ni increased by one. This procedure is repeated until Eq. 3.1 is satisfied, i.e.
the actual number of LUs, is greater than or equal to LU_no. Finally, TC_no is the number of TCs
that will be delineated for every LU.

For the sensitivity analysis all possible combinations of parameter realisations were em-
ployed which resulted in a total of 12,250 realisations of discretisations. These comprise varying
complexities within all spatial levels and different degrees of data availability. Finally, WASA-SED
was run with each realisation over a 13-year period, where the first 5 years were considered as
warm-up and thus have been excluded from the analysis.

Scalar model output

The target variable of the analysis is the time series of simulated daily river contributions to
the Benguê reservoir located at the catchment outlet. However, for conducting the desired
sensitivity analysis, a scalar target function is needed. As it is impossible to summarise all
important characteristics of a streamflow time series in a single scalar value, we employed
multiple indices and performed the sensitivity analysis for each index separately. The indices
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are presented and described in Tab. 3.3. The indices were chosen to describe a wide range of
aspects of streamflow behaviour ranging from the magnitude of flow (RR, Pflow, Qavmax) over
flow regime (SFDC) to frequency (flow, fhigh) and runoff concentration time (RCrise, RCfall).

Analysis method

Numerous approaches for sensitivity analysis exist (Pianosi et al., 2016). Their choice depends
on the objective of the study, the nature and complexity of the model, its parameters and outputs,
and available computing resources.

The goals of this analysis were, first, a ranking of the described descritisation parameters in
terms of their influence (sometimes also referred to as priorisation) and, second, the identifi-
cation of those parameters with negligible influence on the respective streamflow index (also
referred to as screening or fixing). The above-mentioned sampling procedure for the parameters
corresponds to a global sensitivity analysis with all-at-a-time sampling. This allows a variance-
or density-based approach Pianosi et al. (2016). The former is based on the calculation of
sensitivity indices based on the variance of the response function. This, however, requires the
assumption that the variance is a good proxy for describing the variation of the value range. For
multi-modal or highly skewed distributions this cannot be guaranteed. In such a case Pianosi
et al. (2016) recommend density-based methods. Rather than the variance alone this family of
sensitivity analyses considers the probability density function of the response surface.

For the above-mentioned reasons, we chose the recently introduced PAWN method by
Pianosi and Wagener (2015) as this density-based method can cope with skewed distributions
and is relatively easy and straightforward to implement. PAWN uses empirical approximations
of the unconditional cumulative distribution function Fyi (yi ), with yi being one of the eight
streamflow indices selected as scalar response functions over all 12,250 realisations, and
the conditional cumulative distribution functions Fyi |pj (yi ) where a certain parameter pj is fixed
at a specific value. The PAWN index Tj as a sensitivity measure can then be calculated for
each parameter employing a numerical approximation of the Kolmogorov–Smirnov statistic KS
following

KS(pj ) = max
yi

∣∣∣Fyi (yi )− Fyi |pj (yi )
∣∣∣ (3.2)

and

Tj = median
pj

[
KS(pj )

]
(3.3)

Tj varies between 0 and 1, where low values of Tj identify the less influential parameters.
For parameter screening the two-sample Kolmogorov–Smirnov test was employed. It calculates
a critical value KScrit above which a parameter is significant as its conditional cumulative
distribution function differs significantly from the unconditional one at a certain confidence level
α:

KScrit = c(α)
√

n + m
nm

(3.4)

where n and m are the number of samples to estimate Fyi (yi ) and Fyi |pj (yi ), respectively, and
taking the tabulated value of c(α) = 1.36 for an α = 0.05.

3.4.5 Results

Instead of the simulated river discharge (i.e. the model output used to calculate the streamflow
indices, see Sect. 3.4.4), Fig. 3.4 provides an overview over the simulated reservoir storages in
comparison to observations for the Benguê reservoir at the catchment outlet. We chose the
latter because of the very episodic characteristic of the river discharge while the volumes, for
visual comparison, constitute a more informative representation and are more directly related
to available measurements. Figure 3.4 furthermore shows the catchment’s areal precipitation
used to drive the model. The absolute deviations of these uncalibrated model runs from
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Figure 3.4: Time series plot of daily resolution of simulated (all 12,250 parameter realisations)
and observed Benguê reservoir volume and areal precipitation. Note that the maximum
reservoir level corresponds to the official value which has been used for model parameterisation.
Observations sometime show slight deviations due to, e.g. random measurement errors or
changed rating curves.

Figure 3.5: Histograms showing the value distributions of streamflow indices over the 12,250
realisations.

the observations are, in parts, considerable, whereas qualitative behaviour is matched well.
However, in some years (2008 and 2011) the model simulates reservoir filling within the rainy
season much earlier than observed. Simulated reservoir depletion is often slower than it can be
observed which might be the result from an imperfect parameterisation of reservoir abstractions
for water consumption. Overall it should be noted that variability caused by different parameter
realisations is rather small. Deviations mainly appear in a way that different discretisations result
in slightly different amounts of generated runoff and, as a consequence, different reservoir level
changes. Naturally, this cannot be observed during runoff events causing the maximum reservoir
level to be exceeded in which additional runoff is lost as reservoir overspill. Furthermore, it can
be observed that a rainfall volume of at least about 35 hm3 (which is almost equal to 35 mm)
seems to be necessary to produce noticeable reservoir inflow.

Figure 3.5 gives an overview of the streamflow index value distributions from the 12,250
realisations. Some indices, namely Qavmax, RCrise, and RCfall, show distinct multi-modal value
distributions. Distributions for the other indices are slightly bi-modal (flow) or skewed (Pflow and
SFDC) with RR as the only index being more or less normally distributed. In general, the
runoff coefficient RR is consistently low ranging between 3 % and 4 % and streamflow can be
characterised as ephemeral due to a low probability of days showing significant streamflow
(Pflow about 5 % for most of the experiments). Opposed to low flow periods, high flow events do
rarely occur. The variability of flow is relatively high whereas fhigh shows relatively low variance.
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Figure 3.6: Barplots of PAWN sensitivity indices Tj for each streamflow index and landscape
discretisation parameter. Red lines indicate critical Kolmogorov–Smirnov values (KScrit); i.e.
parameters, for which Tj is not greater than this value, can be regarded as insignificant for the
respective streamflow index.

Peak flows (Qavmax) as well as runoff concentrations (characterised by RCrise and RCfall) vary
considerably between the realisations also exhibiting multi-modal distributions.

Screening and ranking of landscape discretisation parameters is illustrated in Fig. 3.6. The
size of subbasins (SUB_thresh) is the most influential parameter for all indices except for those
being related to low flow characterisation (flow and Pflow) which are dominated by the size
of EHAs (EHA_thresh). The number of LUs (LU_no) can be regarded as the third important
parameter being especially of relevance for high flow-related indices (fhigh and Qavmax) and,
to some extent, flow regime (SFDC) and runoff concentration (RCfall). The least important
parameters are the number of TCs (TC_no), except for runoff concentration (RCrise and RCfall),
and the number of attributes considered for LU classification (LU_atts), which is insignificant
for all streamflow indices.

More information on parameter influences on the various streamflow indices can be obtained
from Fig. 3.7. The more influential a parameter, the larger the deviations of the conditional
empirical cumulative distribution functions from the unconditional one. Many of the diagrams
show a clear relationship between parameter realisation and streamflow index value. The larger
the subbasins (i.e. the larger SUB_thresh and the lower the number of subbasins) the smaller
the generated amount of runoff (RR gets smaller) and the smaller the probability of significant
runoff (Pflow). On the other hand, peak discharges (Qavmax) increase and the catchment appears
to produce more rapid runoff responses (higher values of RCfall and RCrise). Furthermore it
can be seen that SUB_thresh is responsible for the multi-modal distributions of Qavmax, fhigh,
RCfall, and RCrise as the conditional distribution functions show a less stepped shape than the
unconditional functions. The influence on flow appears to be less clear. It can be seen, however,
that larger values of SUB_thresh result in a more pronounced bimodal distribution of that index.
Low flows are otherwise more dominated by the size of EHAs (EHA_thresh). The larger the
EHA_thresh (i.e. the larger the EHAs and the lower their number) the less the probability for
significant streamflow (Pflow) and the less the number of low flow events per year (flow) while the
flow regime becomes more variable (higher values of SFDC). Higher numbers of LUs (LU_no)
result in more generated runoff (RR increases) with a tendency to both higher frequencies of
low flow and high flow events, and generate more variable streamflow regimes.
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Figure 3.7: Unconditional (black lines) and conditional (rainbow-coloured lines) empirical cu-
mulative distribution functions for each streamflow index–discretisation parameter combination.

3.5 Discussion
3.5.1 lumpR: features, benefits, limitations

It is still common practice for many researchers in the field of hydrological modelling to not
automate their pre-processing steps. Even if they do, the related scripts are rarely published
along with the studies. Furthermore, common limitations of existing software are that they
are often model specific, and/or perform only certain steps of pre-processing. Some tools are
commercial or can only be used along with commercial software (e.g. ArcGIS or MATLAB).

With lumpR, a package for the free and open-source programming language R has been
developed that addresses these limitations and build on the philosophy of FOSS. So far, the
software has been tested under Windows as well Linux-based operating systems (openSUSE
and Ubuntu). lumpR interacts with the GIS GRASS and thus allows for graphical investigation
and manual correction of outcomes. As R is a widespread scripting language, model pre-
processing in that way can easily be customised, automated, and reproduced. Via the database
tools, the software allows one to keep the output directories clearly arranged by putting all
information into a database. Several database systems are supported.

In this study, lumpR’s functionality was demonstrated together with the model WASA-SED.
However, the package provides a function to create the model’s input files, which can by
easily adapted to the requirements of other hillslope-based models. First tests employing the
simulation environment ECHSE (Kneis, 2015) revealed the package to be easily adaptable
for producing the input files needed by a different model. Other candidate models are, in
principal, all hydrological models with similarly complex spatial aggregation schemes as used
by WASA-SED that can make use of the information provided by lumpR, such as the WEPP
model (Flanagan and Nearing, 1995).2

The centrepiece of the package is the LUMP algorithm introduced by Francke et al. (2008) for
the calculation of hillslope properties and the delineation of representative LUs together with the
subdivision into TCs. In contrast to simple GIS overlay techniques, as usually employed for the
delineation of HRUs, it preserves information on the distribution of hillslope parameters and their
relative topographic position, i.e. their downslope connection. In that way, the task of hillslope-
based landscape discretisation and parameterisation can be purposefully directed to landscape
properties dominating hydrological response. Via its integration into lumpR, the application of
the algorithm could be further simplified and harmonised as the original LUMP consisted of

2Readers considering lumpR for use with their model are encouraged to contact the corresponding author of this
paper for support.
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a loose collection of less user-friendly scripts, partly also relying on non-free software such
as MATLAB. In that way, the package hides unnecessary detail from the user while at the
same time ensuring a certain level of control over the discretisation process. For instance, in
the present study, the use of morphological parameters was limited to shape, horizontal and
vertical extension, and hillslope width. The lumpR package is, however, flexible enough that a
user can include further parameters as supplemental information for the classification process.
This might include the use of other factors relevant for hillslopes characterisation such as, for
instance, contour curvature being related to the convergence or divergence of flow paths and
as such being of hydrological relevance (Bogaart and Troch, 2006). Furthermore, lumpR comes
with a lot more additional functionalities than the mere LU and TC deviation.

Thanks to lumpR allowing for a high degree of automation, for the first time a multi-hierarchy
sensitivity analysis of discretisation parameters in a hillslope model could be conducted. Within
this analysis, a high number of discretisations of varying complexity were easily produced. Thus,
a user can experiment and find out the optimal degree of complexity for a certain catchment
and a specific objective, e.g. by systematically employing a multiple hypothesis framework.
For the presented case study, the analysis revealed the pronounced influence of the size of
the subbasins and the EHAs on various aspects of the hydrograph. All other discretisation
parameters showed no or considerably less influence.

During the testing phase, some shortcomings of lumpR were identified. With regards to the
applicability over large datasets, i.e. when applying the package to large areas in the order of >
100,000 km2 and/or when employing high-resolution DEMs, time consumption might pose a
restriction, although lumpR already uses parallelised code in the most critical steps. Therefore,
future enhancements also need to include further improvements regarding computational
efficiency.

A limitation more related to the algorithm is that the software is not able to automatically
distinguish and account for artificial hydrological discontinuities. This includes, e.g. ditches and
field boundaries or other problematic formations such as large flat areas in a DEM as produced
by lakes. While the former pose restrictions on the general applicability of the hillslope approach,
the latter need to be masked in GRASS before the analysis. In addition, some of the pre- and
post-processing steps within lumpR (i.e. functions lump_grass_prep() and lump_grass_post())
still employ rather simplistic approaches. This affects in particular the deviation of the river
network, subbasin delineation, and the approximation of streamflow routing parameters (the
latter tailored to the rather simplistic unit hydrograph approach of WASA-SED). In this respect,
future enhancements should also include a review on latest advancements of terrain analysis
and parameterisation and the refinement of employed algorithms.

3.5.2 On the sensitivity analysis of discretisation parameters
As in science reproducibility and objectivity are primary criteria for any investigation, it has to be
noted that any model discretisation is subject to a certain degree of subjectivity. Especially for
hillslope-based discretisation, this can cover several hierarchy levels. Consequently, the effects
of these choices on the model output have been assessed via the sensitivity analysis within the
example application and its results shall be discussed in the following.

The results from the 12,250 realisations of landscape discretisation show only little difference
with respect to water storage dynamics of the Banguê reservoir (Fig. 3.4). The small variation of
the runoff coefficient (see Fig. 3.5) further supports the conclusion that decisions on landscape
discretisation parameterisation only have a minor impact on simulated runoff volume for the
given case. On the other hand, the influence on other indices describing runoff concentrations
and dynamics, and the frequency of flood or drought events is much more obvious.

The hydrological regime of the study area is primarily influenced by precipitation, which
is characterised by a high temporal concentration and a large temporal and spatial variability.
A comparison with the data reported in Medeiros and de Araújo (2014) further supports that
uncertainties regarding the precipitation input to the model have a much larger impact on
simulation results than the discretisation parameters. In their study, Medeiros and de Araújo
(2014) used a set of raw station data in contrast to the pre-processed and gridded dataset by
Xavier et al. (2016) used for our experiments and their runoff values have been assessed by
taking the Benguê reservoir inflows computed from water balance calculations. Their reported
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runoff coefficients are mostly lower than ours, even when precipitation is higher, and shows
less inter-annual variation (see Fig. 3.A1 in Appendix).

The precipitation forcing for the current study was implicitly slightly influenced by variable
subbasin sizes and numbers, as the precipitation was specified at the subbasin level. The
variability in precipitation input among the realisations, however, appears to be negligible as it is
generally less than 6 mm for daily values and less than 10 mm for yearly sums (see Fig. 3.A2 in
Appendix).

Our simulation results show a general overestimation in comparison to measured values
(Fig. 3.4). Despite the mentioned uncertainties arising from the precipitation input, there are
some other possible factors that could have led to the observed mismatch: uncertainties in
the reservoir parameterisation in the model (e.g. we use a static parameterisation of reservoir
abstractions which are, in reality, dynamic); uncertainties in the observations (e.g. due to
deficiencies or changes of the rating curve); model parameterisation uncertainty (the model has
been run with standard parameterisation for the area without further calibration, see Sect. 3.4.3).
Regarding the parameterisation it should furthermore be noted that the different discretisations
did not directly affect soil nor land-cover parameters. They merely modified the fractions of soil
and vegetation types that are assigned to the spatial units.

Considering the method of sensitivity analysis it can be concluded that the choice for a
density-based approach was reasonable as most of the analysed streamflow indices exhibit
multi-modal or skewed value distributions. A drawback of the analysis approach is that only
first-order effects of parameter sensitivities have been quantified while interactions among
parameters have been neglected. It might thus be that insignificant parameters (i.e. the
parameter LU_atts) have significant higher-order effects due to parameter correlations. With
respect to the discretisation parameterisations, it can be argued that the chosen parameter
realisations are both subjective and case study specific. On the other hand, all parameter
realisations show a monotonous effect on the streamflow indices; i.e. when increasing a
sensitive parameter the streamflow index values increase or decrease monotonously (see Fig.
3.7). This suggest a continuous response of the parameters, facilitating some transferability of
the results.

Overall, the example study and sensitivity analysis is catchment and model specific. Strictly
speaking, conclusions are thus limited to applications of the same model under similar hydro-
climatic conditions, i.e. semi-arid areas without substantial groundwater influences mainly
characterised by spatially and temporally heterogeneous precipitation patterns. It remains
an open question whether the use of a different model and/or the application in a catchment
with distinct environmental and climatological characteristics and/or different dominant runoff
generation mechanisms would lead to other conclusions. This paper presents a novel framework
along with an example application to address these questions in future studies.

3.6 Conclusions
The goal of this study was to introduce a new software for landscape discretisation in semi-
distributed hydrological modelling. Thereby, three objectives have been pursued.

First, we provided a short review of existing landscape discretisation algorithms and software
solutions. The number of existing concepts and corresponding tools was found to be large,
making it a difficult task to choose a specific approach and software. Besides grid-based
approaches, the most common strategies for semi-distributed hydrological modelling focus on
the delineation of spatial entities with homogeneous process dynamics, such as the frequently
implemented HRU approach. Approaches directly concentrating on the description of a hillslope
as central modelling unit or pursuing hierarchical multi-scale frameworks as efficient solutions
for large-scale application are less in number. In addition, existing programmes implementing a
specific discretisation often exhibit various limitations, e.g. they are model specific, commercial
or employ commercial back-end software, or allow only a limited or no automation of workflows.

Second, we developed and presented a new software called lumpR as a package for
the open-source environment R. It was designed to implement a hillslope-based hierarchical
multi-scale discretisation of landscapes, including the delineation of subbasins, the derivation
and lumping of hillslopes, and the subdivision of the latter into terrain and soil–vegetation
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components. The package thereby connects to GRASS GIS, directly using prepared spatial
information and writing spatial output into an initialised location for immediate inspection.
Furthermore, database functionalities have been included to manage the outcomes of the
discretisation process. lumpR overcomes existing limitations in a way that it easily allows one to
include different hillslope-based models, it is completely free and open source, and it facilitates
the automation of workflows. At the same time, however, it is retaining a sufficient degree of
freedom to the user via the selection of parameters, and the inclusion of expert knowledge and
additional information.

Third, the functionality of the package was shown in a case study in the semi-arid north-
eastern Brazil, employing the hydrological model WASA-SED. Thereby, the workflow automation
allowed a systematic sensitivity analysis of crucial landscape discretisation parameters. Regard-
ing multiple streamflow metrics, the model appeared to be reasonably robust to the dicretisation
parameters. The size of subbasins and delineated hillslopes were found to be the most influen-
tial factors. The number of landscape units (i.e. lumped hillslopes) and the further subdivision
into terrain components appeared to be less important, making the amount of information
included in the hillslope lumping process being even completely insignificant.

The R package turned out to be an efficient and user-friendly tool for the automation of
landscape discretisation for hillslope-based large-scale hydrological models. Future work,
on the one hand, will focus on comparing uncertainties arising from discretisation to other
sources of uncertainties. On the other hand, in order to obtain more general conclusions, the
presented sensitivity analysis of landscape discretisation parameters needs to be extended to
other catchments within different environmental and hydro-meteorological conditions as well
as other hillslope-based models. Technical extensions will include the integration of further
models, improvement of time consumption and memory handling for application in large areas
> 100,000 km2, consideration of artificial discontinuities and mechanisms for large flat areas,
refinement of certain parameter estimation approaches, and testing the package for other
hydro-meteorological and environmental conditions.

Code availability
Code for lumpR is freely available at https://github.com/tpilz/lumpR. The Latex code to
reproduce this paper including R code to reproduce all analyses and figures is available at
https://github.com/tpilz/lumpr_paper.

Data availability
Meteorological data are available from http://careyking.com/data-downloads/. DEM raw
data can be obtained via http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp by select-
ing tile 28/14 (horizontal/vertical). Reservoir data and the geology map have been processed
within the SESAM project and are not publicly available. For more information and contact
details see http://www.uni-potsdam.de/sesam. Land cover and soil raster maps are not
publicly available.
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3.A Appendix
Precipitation uncertainty and comparisons with other studies

Figure 3.A1: Comparison of simulated yearly runoff coefficients (a) and precipitation forcing
(b) for all 12,250 discretisations (black dots) with values reported by Medeiros and de Araújo
(2014) (red dots).

Figure 3.A2: Maximum of absolute differences in rainfall input between the 12,250 discretisa-
tions for daily, monthly, and yearly aggregated time steps.
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Abstract
In the field of hydrological modeling, many alternative mathematical representations of natural
processes exist. To choose specific process formulations when building a hydrological model is
therefore associated with a high degree of ambiguity and subjectivity. Identifiability analysis
may provide guidance by constraining the a priori range of alternatives based on observations.
In this work, a flexible simulation environment is used to build a process-based hydrological
model with alternative process representations, numerical integration schemes, and model
parametrizations in an integrated manner. The flexible simulation environment is coupled with
an approach for dynamic identifiability analysis. The objective is to investigate the applicability
of the coupled framework to identify the most adequate model structure. It turned out that
identifiability of model structure varies in space and time, driven by the meteorological and
hydrological characteristics of the study area. Moreover, the most accurate numerical solver
is often not the best performing solution. This is possibly influenced by correlations and
compensation effects among process representation, numerical solver, and parametrization.
Overall, the proposed coupled framework proved to be applicable for the identification of
adequate process-based model structures and is therefore a useful diagnostic tool for model
building and hypotheses testing.

Key Points:
• A flexible simulation environment coupled with dynamic identifiability analysis forms a

diagnostic tool for process-based model building
• The most adequate model structure in terms of process representation, numerical solver,

and its parametrization is identified
• Identifiability of model structures varies in space and time driven by the current hydro-

meteorological conditions

Submitted manuscript:
Pilz, T., Francke, T., Baroni, G., and Bronstert, A. (2019b). “How to Tailor my Process-based
Model? Dynamic Identifiability Analysis of Flexible Model Structures”. Submitted to Water
Resources Research
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4.1 Introduction

Computer models are imperfect abstractions and simplifications of the real world transferred
into computer code. As such, they necessarily impose uncertainties when simulating a certain
processes or the evolution of target variables. In surface hydrology, one main objective of
modeling is to transfer a precipitation signal into a discharge hydrograph at a certain river
section. However, the diversity of landscapes, data sets, and specific research objectives led to
the development of a large number of different hydrological models. These can vary in their
conceptualization, how and to which degree of realism hydrological processes are represented,
model runtime, initialization efforts, the number of parameters and if they need to be calibrated,
or under which environmental conditions they are appropriate simulation tools (e.g., Clark et al.,
2011b; Fenicia et al., 2016; Weiler and Beven, 2015).

Uncertainties are commonly associated with different input factors of a model, such as
parametrization, forcing, or the selected equations for process representation (Pianosi et al.,
2016). The impact of such input factors on simulations and predictions varies among different
models and applications. This study is specifically focusing on parametric and structural model
uncertainty.

Parametric uncertainty refers to uncertainty stemming from the parametrization of a model.
Parameters can be determined by measurement and/or calibration. Model calibration aims
at the estimation of effective model parameters by fitting the model output to observations.
This imposes large uncertainties, primarily related to the phenomena of equifinality (different
parameter realizations end up with equal model performances) and overparametrization (a
larger number of parameters results in superior calibration performance but less predictive
power). Such uncertainties are difficult to quantify and understand (Beven, 1993, 2006a; Her
and Chaubey, 2015; Schoups et al., 2008).

Structural uncertainties are associated with the general conception of a model, incorporated
mathematical equations, and computer code (Gupta et al., 2012). The structure of a model
is basically related to the perceptual model of the real-world system and therefore reflects
the system understanding of the model developer, which is in turn based on evidence from
observations and experience (Beven, 2009; Wrede et al., 2015). Furthermore, model devel-
opers are usually confronted with a number of ambiguities, such as multiple equally plausible
equations for a certain process. In addition, input and output of the model, state variables,
effective calibration parameters, and the scale of operation need to be defined. Eventually, the
functionality of the model needs to be proven in case studies. Model development is therefore
often problem or even catchment specific, where usually no straightforward solutions exist
and compromises need to be made (Fenicia et al., 2016; Höge et al., 2018; Jakeman et al.,
2006). Consequently, structural uncertainties can be attributed to misconceptions of the general
system, a lack of process understanding, spatial and temporal scaling issues, subjectivity
and ambiguity regarding important decisions during model building, and random programming
errors.

Hydrological model structures commonly comprise a set of Ordinary Differential Equations
(ODEs) to describe the evolution of state variables. These ODEs need to be integrated
over discrete time steps along a model application. However, complex hydrological models
typically contain nonlinear ODEs, which are analytically intractable. Consequently, numerical
approximation methods, also referred to as ODE solvers, need to be employed, which raise a
number of mathematical issues that need to be considered, such as convergence (the solver
needs to converge to a solution), order (how well solutions are approximated), and stability
(the solution needs to be stable and must not oscillate). In surface hydrology, this problem has
been ignored by many model developers and was handled negligently by applying the explicit
Euler method, often along with operator splitting and solution constraints; i.e., water fluxes are
calculated from the process equations in a predefined order, multiplied by time step length,
added to the current values of state variables, and the solutions are eventually adapted to fit
into physical constraints. It has been shown that this procedure can induce high uncertainties
and lead to wrong conclusions (Gupta et al., 2012; Kavetski and Clark, 2011; Schoups et al.,
2010).
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Several approaches have been developed to disentangle the role of different input factors
and support the identification of the best model structure and/or parametrization (Pianosi et al.,
2016). Among others, in the last decades approaches of global sensitivity analysis (GSA) have
been identified as important tools for model assessment and improvement (e.g., Pianosi and
Wagener, 2016; Savage et al., 2016). Complementary, frameworks of identifiability analyses
have been used to identify adequate model parametrizations (Herman et al., 2013; Wagener
et al., 2003). Identifiability analysis relates to sensitivity analysis in a way that it tries to reduce
uncertainty of model output by constraining the a priori range of sensitive input factors based
on additional information, such as observations (Ghasemizade et al., 2017; Guillaume et al.,
2019).

In the context of model structure analysis and identification, some former studies compared
few different alternatives directly with each other (e.g., Fenicia et al., 2016; Kavetski and Fenicia,
2011). However this type of analysis has found some limitations due to interactions between the
input factors and nonlinearities in the model response (Saltelli and Annoni, 2010). In contrast,
simultaneous comparison of several model structures in a variety of Monte Carlo (MC) based
approaches were developed, which avoid these limitations (e.g., Ajami et al., 2007; Baroni
and Tarantola, 2014). For instance, by means of GSA it is possible to investigate the role
of different factors (Günther et al., 2019; Savage et al., 2016; Stahn et al., 2017). Similarly,
identifiability analyses can be performed to assess the capability of observational data to
support model development (Coxon et al., 2014; Guillaume et al., 2019). These studies showed,
how structured comparisons can account for the complex relation between model structures
and parameters to support model improvement and testing.

In the present study, we further explore the use of identifiability analysis by coupling it with a
flexible model environment. In specific, the aim of this study is to identify the optimal model
structure with respect to uncertainties arising from parametrization, process representation, and
numerical ODE solvers. By employing a flexible modeling platform, process equations can be
easily exchanged and the integration of ODEs is separated from the process implementations.
Moreover, instead of using simplified conceptual approaches as many other studies, more
complex process-based representations are employed. In addition, spatial and temporal
variability will be considered by employing dynamic identifiability analysis over catchments
with different hydro-meteorological characteristics. It is hypothesized that this will provide
more insights on model functioning and process behavior from a set of equally plausible
process-based model structures tailored to the hydro-meteorological conditions of the area
under investigation. The following specific research questions are addressed:

1. How well identifiable is a set of equally likely process representations, numerical ODE
solvers, and parameter realizations?

2. How does identifiability vary over time with different meteorological conditions?
3. How consistent is the pattern for different parts of a catchment with varying hydrological

conditions?
The paper is structured as follows: section 4.2 introduces the flexible model environment and

framework for identifiability analysis. In section 4.3, a case study is presented to evaluate the
proposed framework of model identification. The results of the case study and a discussion of
their implications are given in sections 4.4 and 4.5, respectively. Eventually, the final conclusions
are presented in section 4.6.

4.2 Framework for Process-based Model Identification

In order to determine the most adequate model structure, multiple alternatives need to be tested
against each other. This is best achieved by implementing them in a single environment, which
offers the infrastructure for a straightforward exchange of model structures, while preparation of
input data and handling of output files are independent from the specific model. In the past,
several such model platforms have been developed (Clark et al., 2015b, 2008b; Fenicia et al.,
2011; Kneis, 2015).

To identify the most plausible model, the alternative model structures need to be evaluated.
Instead of directly comparing the alternative model structures with each other, MC based strate-
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gies exist, which account for correlations and provide more robust results. In the following, the
chosen flexible model environment and the algorithm for identifiability analysis are introduced.

4.2.1 The Flexible ECHSE Environment
The ecohydrological simulation environment (ECHSE) is a software designed for flexible model
building (Kneis, 2015). The environment consists of a generic part and the model engines. The
former is the basis of each ECHSE-based model and defines the format and general structure of
input and output files, provides data types for model development (state variables, parameters,
input, and output variables), and contains methods for the actual simulation, including a number
of ODE solvers. The latter is the actual model and consists of code provided by the user, i.e.,
the actual process formulations.

For an application, first a user needs to declare generic model classes (such as a river, lake,
subbasin, or soil–vegetation class), including state variables (e.g., soil moisture), parameters
(e.g., hydraulic conductivity), input (e.g., rainfall), and output (e.g., lateral surface runoff),
and include the process equations for each class (e.g., evapotranspiration, infiltration, runoff
generation, and water movement for the soil–vegetation class). This defines the actual model.
The user can choose from a pool of already existing classes and process formulations generated
by other users or contribute own code for example applications using the ECHSE see Abon
et al., 2016; Kneis et al., 2014; Kneis et al., 2017. During model initialization, the classes of
the model need to be associated with real-world objects and the relations between the objects
need to be defined (e.g., which subbasins drain into which downstream subbasin).

For this analysis, a new model engine has been developed, which is oriented at the process-
based hydrological and sedimentological model WASA-SED (Güntner and Bronstert, 2004;
Mueller et al., 2010). The model comprises an efficient hierarchical landscape disaggregated
scheme over multiple scales. These spatial scales include subbasins, which contain landscape
units (LUs) as representative hillslopes, further characterized by different terrain components
(TCs), which in turn consist of several soil–vegetation components (SVCs) described by a
characteristic soil profile with specific vegetation cover. Explicitly represented processes include
evapotranspiration, infiltration, both infiltration-excess and saturation-excess runoff, soil water
movement, exfiltration as well as lateral runoff redistribution. Groundwater is represented by a
simplified linear storage approach. River flow is described by a simple unit hydrograph routing
with evaporation as only source for transmission losses. The model has been applied in several
dryland regions in Spain (Bronstert et al., 2014; Francke et al., 2018b; Mueller et al., 2009,
2010), Brazil (de Araújo and Medeiros, 2013; Krol et al., 2011; Medeiros et al., 2014, 2010; Pilz
et al., 2019a), and India (Jackisch et al., 2014).

4.2.2 Dynamic Identifiability Analysis (DYNIA)
To identify the most adequate model structure, the dynamic identifiability analysis (DYNIA)
approach by Wagener et al. (2003) was adopted. It is based on the regional SA (RSA, also
called MC filtering) approach by Spear and Hornberger (1980) by partitioning an ensemble of
model runs into behavioral (acceptable model performance) and nonbehavioral sets. The DYNIA
framework uses the same basis of RSA with the aim to dynamically assess the information
content of input factors over moving time windows. In that way the influence of varying hydro-
meteorological conditions, i.e., wet and dry periods, on the identifiability of model structures
can be assessed. Instead of employing a formal Bayesian approach for the partition of model
results, Wagener et al. (2003) employed an informal method as in GLUE (Beven and Binley,
1992) by selecting the best performing realizations in an arbitrary manner (e.g., the best 10 %),
which was also used in this work.

In general, DYNIA consists of the following steps: (i) calculation of a performance metric for
each model run; (ii) filtering of the best model runs; (iii) calculation of an identifiability measure
for each input factor; (iv) determination of the posterior distribution of each input factor from
filtered model results.

Originally, DYNIA has been applied to parameters, for which a distribution was defined and
realization were sampled (Wagener et al., 2003). To account for discrete nonscalar input factors
(e.g., different model structures), the analysis is modified following the approach described by
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Figure 4.1: Overview over the Isábena catchment (c) and its location within Spain (b) and
Europe (a). In panel (c), background colour is based on the DEM used for model initialization,
thin black lines within the catchment outline subbasins (delineated with the lumpR software),
red triangles mark the position of discharge gauges, blue and green points show gauges of
rainfall and other meteorological variables, respectively. Note that not all stations used in this
study are visible due to feature overlays and because some stations are located slightly outside
the plot.

Baroni and Tarantola (2014) within their general probabilistic framework (GPF). In specific, each
possible realization of model structure–parameter combinations is associated with a scalar
value. The number of possible realizations characterizes the discrete uniform distribution, from
which is sampled. This is a generic strategy for the quantification and ranking of different
sources of uncertainty in the context of environmental model application and allows for the
quantification of both numeric and nonscalar input factors. The framework requires that all
possible combinations of the input factors are assessed.

4.3 Case Study
4.3.1 Study Area

For the model simulations, the Isábena catchment in northeastern Spain was selected (Fig-
ure 4.1). The watershed comprises an area of about 425 km2 and is located at the southern
edge of the Pyrenees. It is a small headwater catchment of the Ebro river basin. Therefore,
the mountainous topography is characterized by a heterogeneous relief with altitudes ranging
from about 500 m to 2700 m. Consequently, also precipitation is spatially heterogeneous with
annual sums ranging from 450 mm in the lowlands up to 1600 mm in the upland parts of the
catchment and a spatial average of about 770 mm. The climate is characterized by Atlantic and
Mediterranean influences and is generally wet and cold (García-Ruiz et al., 2001).

The hydrological regime is influenced by rain and snow. Floods may occur in spring as a
consequence of precipitation events amplified by snowmelt, or in late summer and autumn
caused by thunderstorms. Mean annual discharge at the catchment outlet is 4.1 m3/s, while a
maximum instantaneous value of 370 m3/s has been observed so far. Minimum discharge can
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be less than 1 m3/s, but the river never falls completely dry. The study area is not regulated,
thus the hydrological regime is determined by natural factors only. It is mainly composed of
deciduous woodland, agriculture, pasture, and bushes in the valley bottoms with evergreen
oaks and pines.

The area has been investigated in many research projects, including intensive hydro-
sedimentological monitoring see Bronstert et al., 2014, and references therein. Consequently,
a rich dataset exists with relatively high spatial coverage of meteorological and discharge
measurements. In addition, the mountainous catchment consists of several subcatchments with
varying hydrological and meteorological conditions, which provide different settings to apply
the proposed framework of this study and investigate the influence of hydro-meteorological
conditions on the identification of model structures. Recorded time-series data have recently
been published and described by Francke et al. (2018a). The dataset will be described in more
detail along with model initialization in the following subsection.

4.3.2 Data and Model Initialization

All model simulations are based on the same initialization procedure, including the discretization
of the study area into model units, parametrization of soil and vegetation, and the preparation of
meteorological inputs. Hillslope-based landscape discretization was performed using the lumpR
software, a package for the free and open-source environment R (Pilz et al., 2017). The basis
of the algorithms were a 15 m x 15 m DEM processed from ASTER raw data, a soil type, and
a land-use map including parametrizations of the soil and vegetation types. The initialization
procedure comprised the delineation of the catchment and subbasins (outlined in Figure 4.1),
the derivation of further model units (the LUs, TCs, and SVCs described in 4.2.1), calculation
and checking of parameters, and the generation of model input files.

Meteorological and discharge data were obtained from the dataset of Francke et al. (2018a).
This includes rainfall data from 18 stations, temperature from 9 stations, and solar radiation and
air humidity data from 2 stations within or in close vicinity to the study area. Gaps in the time-
series were interpolated with data from neighbouring stations. Furthermore, station data needed
to be interpolated to the centroids of the subbasins by employing inverse distance interpolation
(IDW), which was realized using the geostat R package of the ECHSE toolbox (Kneis, 2012).
For model evaluation, spatially distributed discharge measurements from the Isábena river at
the catchment outlet (Capella) and from five subcatchments were used (Table 4.1).

All experiments were conducted under the same experimental design. The general sim-
ulation and analysis period covered three years from 1 January 2013 to 31 December 2015
with a temporal resolution of one day. This decision is based on a compromise between data
availability and computational feasibility. On the one hand, the period should be sufficiently long
to cover the hydrological catchment dynamics under different conditions. On the other hand,
although subdaily measurements are available and numerical ODE solvers would be expected
to be more reliable under hourly resolution, model runtimes with hourly resolution would be too
long to achieve results in acceptable time, when applied in the presented framework. To bring
model states into equilibrium and avoid artificial effects on outputs, a warm-up was conducted
prior to any simulation run. This warm-up run consisted of iterations over one year (1 January
2012 to 31 December 2012) until convergence was achieved, i.e., until the sum of hydrological
storages at the end of a warm-up iteration deviated by less than 0.1 % from the sum of storages
at the end of the previous iteration.

4.3.3 Input Factor Definition

In this study, five input factors reflecting different sources of uncertainty were distinguished: (Ia)
structural uncertainty with respect to evapotranspiration subprocesses; (Ib) uncertainty in the
representation of soil water processes; (Ic) runoff concentration; (II) numerical integration of
underlying ODEs; (III) parametrization. In the following it will be described, how these have
been implemented in the ECHSE environment.
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Table 4.1: Characteristics of the study area and delineated subcatchments referring to the
analysis period 2013 to 2015.

Gauge A (km2) Gauge elevation (m a.s.l.) P (mm year−1) Q (m3 s−1) RC (%)

Villacarli 41 866 673 0.30 27
Cabecera 145 841 901 2.09 46
Carrasquero 25 762 673 0.44 68
Ceguera 29 598 599 0.13 21
Lascuarre 44 565 572 0.06 6
Capella 424 490 743 4.57 40

Note: Capella is located at the outlet of the study area, while all other gauges refer to
individual subcatchments; A: catchment area referring to the model setting of this study;
P: average annual rainfall (spatially interpolated from station data, see text); Q: average
discharge; RC: runoff coefficient.

Process Representations
For nine hydrological (sub-)processes, two alternatives each were implemented in ECHSE
(Table 4.2). These alternatives consist of the respective representation copied from the WASA-
SED model (denoted by approach 1 in Table 4.2) and an alternative (approach 2). In most
of the cases, approaches are similar but may vary in degree of detail. For instance, the
evapotranspiration approach by Shuttleworth and Wallace (1985) is deviated from the Penman-
Monteith formula, but consists of a more detailed conception of resistances to account for
patches of bare soil instead of assuming a homogeneous vegetation cover.

ODE Solvers
An aspect of this study was to account for more appropriate numerical integration of the model’s
ODEs than it is commonly done in the field of surface hydrology (Kavetski and Clark, 2011).
Therefore, several ODE solvers were implemented in ECHSE using the external GNU Scientific
Library (Galassi et al., 2017). Four different solvers were considered in this study, varying in
accuracy and stability (Table 4.3). More detailed information about ODE solvers in general and
the selected implementation are provided in the Supporting Information, Section 4.A.

Parametrization
To reflect uncertainty in the parametrization, seven sensitive and commonly uncertain param-
eters were considered (Table 4.4). These parameters influence different components of the
model including evapotranspiration, soil water movement, groundwater recharge, infiltration,
and runoff concentration. Parameters denoted as factors are multiplied by the a priori estimated
parameter value for each spatial unit. In case of absolute parameters, the value is directly
inserted into the model equation. Consequently, all parameters are globally effective parameters
and independent from the spatial model set-up.

4.3.4 Implementation of the Analysis Framework
This section describes how the dynamic identifiability analysis was coupled with the flexible
simulation environment ECHSE for the specific case study.

Input Factor Realizations (Prior Distribution)
Regarding process representation (Ia to Ic), the realizations for each input factor were defined
by all possible combinations of the two alternative representations for each subprocess. This
resulted in 2n realizations for each input factor, where n is the number of considered subpro-
cesses; i.e., 5, 3, and 1 subprocesses for evapotranspiration, soil, and runoff concentration,
respectively, resulting in 32, 8, and 2 realizations for input factors Ia, Ib, and Ic, respectively
(for an overview see Supporting Information Table 4.7). The ODE solvers (input factor II) were
combined with the possibility of constrained or freely evolving solutions, which resulted in eight
realizations for this input factor (4 solver variants times 2 variants of constraints). To represent



68 Chapter 4. Dynamic identifiability analysis of flexible model structures

Table 4.2: Overview over considered alternative process representations implemented in the
ECHSE engine.

Approach 1 (as in WASA-SED) Approach 2

Process ID Reference ID Reference

Evapotranspiration

Evapotranspiration SW Shuttleworth and Wallace
(1985)

PM Penman-Monteith

Bulk stomatal
resistance of
canopy

SK Saugier and Katerji (1991) eq.
4

SW19 Shuttleworth and Wallace
(1985) eq. 19

Roughness length SG43 Shuttleworth and Gurney
(1990) eq. 43

BT Brutsaert (1975)

Displacement
height

SG42 Shuttleworth and Gurney
(1990) eq. 42

SG41 Shuttleworth and Gurney
(1990) eq. 41

Clear sky radiation AN Ångström formula AL Allen et al. (2005) eq. 19

Soil water

Infiltration GA Modified Green–Ampt
(Güntner, 2002)

PH Philip (1957)

Percolation PS SWAT approach (described in
Güntner, 2002)

PR Simplified Richards’ equation

Soil water retention VG van Genuchten (described in
Maidment, 1993)

CB Campbell (described in
Maidment, 1993)

Runoff concentration

Runoff
concentration

RW Lateral re-distribution along a
hillslope as developed for the
WASA-SED model (Güntner,
2002)

RS Additional delay of
WASA-SED based runoff
concentration by linear
storage approach (requires
calibration)

Note: equations see Supporting Information, Tables 4.5 and 4.6.

the parameter space (input factor III), 1000 realizations were taken by Latin hypercube sampling
from the log-transformed and uniformly distributed parameter spaces (except for Phil_cal, which
was not transformed). In line with the GPF (Baroni and Tarantola, 2014), each realization of
the input factors was associated with a number in order to obtain numerical input factors with
discrete distributions (see also Supporting Information Table 4.7).

Because of computational constraints, of the resulting 4,096,000 possible input factor
combinations, 12,000 samples were randomly drawn. The model was subsequently evaluated
for each sample. It should be noted that this framework involves no explicit parameter calibration
of the model. The resulting ensemble of model runs was then analyzed following the DYNIA
framework as follows.

Posterior Distribution and Dynamic Identifiability Measure
As performance metric the root mean square error was selected. For the dynamic analysis a
performance value was calculated for each simulation day d over a moving window of the width
2w + 1 as follows:

RMSE(d) =

√√√√ 1
2w + 1

d+w∑
i=d−w

(
qs(i)− qo(i)

)2
(4.1)

where qs is the simulated and qo the observed discharge, and w a parameter defining the
window size. For this study, w was set to a value of 15 days, which resulted in a total moving
window size of 31 days.

Identifiability in general can be quantified by comparing the prior and posterior distributions
for each input factor. In this context, different quantification strategies exist (e.g., Pianosi
and Wagener, 2016; Wagener et al., 2003). In this study, as dealing with discrete input
factor distributions, identifiability was defined by comparing the frequency of occurrences of all
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Table 4.3: Overview over ODE solvers.

ID Description Accuracy Time step

EU Explicit Euler First order Fixed (daily)
RK Explicit Runge–Kutta Cash–Karp Fourth order Fixed (daily)
RKST Explicit Runge–Kutta Cash–Karp Fourth order Adaptive
BDF Backward differentiation formula in

Nordsieck form (predictor–corrector)
Dynamic (first to fifth
order)

Multistep

Note: Each solver can be applied with (CONS) or without (FREE) solution constraints.
Stability of solutions generally increases from EU to BDF.

Table 4.4: Overview over parameters and sampling ranges.

Symbol Description Component Type
Lower
range

Upper
range

cal_wind Windspeed correction Evapotranspiration Factor 0.1 5
cal_ks Correction of saturated

hydraulic conductivity
Soil water
movement

Factor 0.01 100

cal_kfbed Correction of bedrock
conductivity

Groundwater
recharge

Factor 0.01 100

Phil_cal Parameter for Philip’s
equation (m s−1)

Infiltration Absolute 0.2 1

str_surf Surface runoff retention
parameter

Surface runoff Factor 0.001 0.1

str_inter Subsurface runoff
(interflow) retention
parameter

Interflow Factor 0.01 0.5

str_base Groundwater runoff
(baseflow) retention
parameter

Baseflow Factor 0.1 10

realizations for a certain input factor before (referring to the prior) and after the filtering (referring
to the posterior distribution). As proposed by Wagener et al. (2003), the posterior distributions
were obtained by arbitrarily selecting the best 10 % of model evaluations with respect to RMSE
measures. A specific realization of an input factor was considered negligible if the number of
occurrences in the posterior distribution was less than 10 % the number of occurrences in the
prior distribution. Eventually, the posterior distribution generically consisted of 1200 values out
of the 12,000 prior samples.

For a specific input factor, the identifiability measure was defined as

IM = 1−
npost − 1
nprior − 1

, (4.2)

where nprior is the number of realizations in the prior distribution, and npost is the number of
remaining realizations in the posterior distribution of that input factor after the filtering. Thus, IM
ranges between zero and one, where the former indicates no identifiability at all and the latter
indicates perfect identifiability (i.e., the posterior distribution of that input factor comprises of
only a single realization).

Note that both nprior and npost in this context are positive integers. A value of zero for npost
would indicate that the model is not able to produce acceptable performances. Furthermore,
when comparing the input factors, the different characteristics and number of realizations have
to be kept in mind, which define each input factor.

The aforementioned steps of DYNIA were applied over both the full simulation period
(static identifiability analysis) in order to identify the optimal model structure, and a moving
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window over the simulation period (dynamic identifiability analysis) to study the influence of
varying meteorological conditions. Spatial variability, and hence the influence of hydrological
characteristics, was investigated by analyzing the full study area and individual subcatchments
with distinct characteristics

Credibility Assessment

Credibility of the processing framework was assessed by means of: (i) analysis of convergence
(is a sample size of N = 12, 000 realizations sufficient?); and (ii) analysis of robustness (is
the sampled posterior distribution independent of specific samples?). Convergence is typically
analyzed by subsampling, i.e., the computation of the target variable for increasing N from the
original sample. This was coupled with a bootstrapping approach to analyse robustness, which
consists of sampling from the N model results Nb times with replacement and subsequent
re-calculation of the target variable. The range over the values of the target variable from the
Nb bootstrapping procedures is a measure of robustness. In that way credibility analysis does
not require any additional model evaluations (Pianosi et al., 2016).

In this study, Nb was set to a value of 1000. The target variable, for which credibility
was assessed, was the RMSE value of the posterior distribution of model results. This also
includes the filtering step, i.e., in each bootstrap iteration the filtering step was applied and
subsequently the minimum, maximum, and median RMSE value of the resulting posterior
distribution calculated.

4.4 Results
4.4.1 Model Simulations

Model Errors

To carry out the experiments with the different model structures and parametrizations, the
ECHSE environment was run 12,000 times according to the number of sampled realizations of
Process representations, ODE solvers, and parametrizations. Individual simulation runtimes
varied between less than a minute and more than one hour, mainly depending on the ODE
solver and workload of the high performance cluster, where the simulations were carried out.
During model evaluation, 32 runtime errors occurred, i.e., for the further analyses only 11,968
realizations could be considered. The runtime errors occurred exclusively when employing
the backward differentiation formula (BDF) without solution constraints as ODE solver. This is
not surprising as it is the only one of the family of implicit solvers considered in this analysis,
which are generally known to be limited by the given constraints of accuracy and maximum
number of iterations. However, the number of errors is low, even in comparison to all runs with
the BDF solver (approx. 3000), and thus no impact on the general conclusions of this study are
expected.

Discharge Simulation

Observed discharge values for most time steps fall into the 90 % probability range of the
11,968 model realizations (Figure 4.2). However, especially large discharge peaks are often
underestimated by the model ensemble as well as by the single best model runs. Nash–Sutcliffe
values range from 0.25 for the Villacarli headwater catchment to 0.67 for the basin outlet at
Capella. The RMSE for the best performing realization generally lies in the order of magnitude of
average discharge (compare with Table 4.1). However, especially for the smaller subcatchments
(Villacarli, Carrasquero, Ceguera) RMSE is relatively high. In general, the model is performing
better for the larger (sub-)catchments (Cabecera, Capella).

Credibility Assessment

The sample of realizations is adequate for the further processing steps (Figure 4.3). For all
subcatchments, characteristic values of the posterior distribution of model performances (i.e.,
the minimum, maximum, and median RMSE) each converge with increasing sample size.
Besides, the characterizations of the posterior distributions for each subcatchment appear to be
robust as the uncertainty ranges are small.
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Figure 4.2: Discharge simulations in comparison to observations for each studied subcatchment
and the whole study area (Capella). The gray area illustrates the 90 % probability range of the
model realizations (prior distribution).

4.4.2 Static Identifiability Analysis

Parametrization is the best identifiable input factor for all gauges, followed by evapotranspiration
structures (Figure 4.4). For the latter, however, spatial differences exist. At gauge Lascuarre,
with its comparatively low runoff coefficient (see Table 4.1), no behavioral model structures
with respect to evapotranspiration processes could be distinguished from the set of a priori
structures. For the other input factors, all realizations of the prior distribution also occur in the
posterior distribution resulting in identifiability measures of zero for all gauges.

More detailed information on identifiability can be obtained when analyzing the posterior
distributions of each input factor (Figure 4.5). For evapotranspiration, not only the identifiability
measure but also the occurrences of realizations (npost ) are similar for all gauges except
Lascuarre. In general, the Penman–Monteith approach (PM, odd-numbered realizations, see
Supporting Information Table 4.7) has the highest occurrence values in the posterior distribution
of that input factor. For the other evapotranspiration subprocesses, no obvious patterns can
be seen. In contrast to the other gauges, at Lascuarre the Shuttleworth–Wallace approach
(SW, even-numbered realizations) achieves high values of npost . That means that the PM
approach (almost exclusively constituting the best 10 % of realizations) is clearly the superior
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Figure 4.3: Credibility of the sampled posterior distribution of model performances. Vertical
bars represent the 90 % confidence intervals of minimum (lower row), median (middle), and
maximum (upper) RMSE values of the bootstrap samples and are a measure of robustness of
the sample. Decreasing bar size with increasing sample size indicates sampling convergence.

evapotranspiration model for most parts of the study area, regardless of the choices for the
other evapotranspiration subprocesses, while for Lascuarre the SW approach excels.

Regarding the soil water processes, the approach by van Genuchten (VG, IDs 1 and 4)
obtained the highest posterior occurrences at most gauges. Again, there is a different picture
for gauge Lascuarre, where no clear pattern can be distinguished. For runoff concentration,
ID 2 (approach with empirical delay factors in addition to the physically based approach of
WASA-SED) achieved slightly more occurrences for all gauges but for Lascuarre.

The ODE solvers without solution constraints (odd-numbered IDs) exhibit the highest npost
values for all gauges except Villacarli and Lascuarre. Moreover, solvers with higher accuracy
tend to have obtained slightly more occurrences in the posterior distribution. This, however, is
opposed to the findings for Lascuarre, where solvers with solution constraints (even-numbered
IDs) dominate and the explicit Euler approach even achieved most occurrences.

It should be noted that configurations with the highest values of npost do not necessarily
comprise the best performing realizations (see red bars in Figure 4.5, representing the red line
in Figure 4.2).

Despite the high identifiability measure, the posterior distributions of input factor parametriza-
tion show distinct peaks only for three of the seven parameters (cal_kfbed (groundwater
recharge), cal_ks (soil water movement), and cal_wind (evapotranspiration); Figure 4.6). The
other parameters are relatively equally distributed and show little distinction from the prior
distribution (uniform distribution within the parameter ranges). Differences among gauges are
small. The only exception is parameter cal_wind, for which at gauge Villacarli a peak in the
posterior distribution for values greater zero (resulting in increasing values of evapotranspira-
tion) can be seen, while for the other gauges peaks are at smaller values (translating into less
evapotranspiration). Parameters cal_kfbed and cal_ks show a tendency towards smaller values,
which results in less groundwater recharge and delayed subsurface runoff generation.

4.4.3 Dynamic Identifiability Analysis
Identifiability may change over time depending on the current boundary conditions (Figure 4.7).
This holds especially true for input factor evapotranspiration, which is varying considerably,
while for the other input factors identifiability remains more ore less constant. There is some
evidence that identifiability of evapotranspiration is enhanced during wet periods. However,
differences exist among subcatchments, as for Lascuarre the pattern seems to be reversed and
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Figure 4.4: Identifiability measures for the different input factors and subcatchments.

for Ceguera there are periods of enhanced identifiability during wet and dry periods. For the
other input factors no relationships become visible.

The dynamic analysis of posterior frequencies, however, provides more detailed insights and
reveals patterns even for input factors other than evapotranspiration (Figure 4.8). It shows that
the clear pattern of high posterior values of odd-valued realizations of evapotranspiration (i.e.,
preference of the PM formula) is blurred or even reversed during periods of low flows, where
even-valued realizations (the SW formula) dominate the posterior distribution (e.g., end of 2013
or beginning of 2015). In contrast, for soil water, such low flow periods lead to high posterior
values of IDs 7 and 8 (soil water retention model after Campbell and percolation modeled by
simplified Richards’ approach), while during high flows ID 1 with completely different equations
is favored (see Supporting Information Table 4.7). A model structure for runoff concentration is
best identifiable during peak flows (ID 2, with additional calibration parameters), but for most of
the simulation period posterior values were close to prior occurrences. The pattern for ODE
solvers is mostly blurred but shows a small tendency towards even-numbered realizations
(constrained solvers) during low flows. During high flows, however, although the pattern is
still blurred, odd-numbered (unconstrained) solvers with higher accuracy are more frequent
in the posterior. However, it should be kept in mind that absolute identifiability measures for
soil water, runoff concentration, and ODE solver are low and small absolute values of posterior
frequencies are amplified due to the scaling in Figure 4.8.

For input factor parametrization (Figure 4.9), clear signals can only be seen for parameters
cal_kfbed (groundwater recharge) and cal_ks (soil water movement). Parameter cal_kfbed
appears to be best identifiable during dry periods with a tendency towards smaller values
(less groundwater recharge, more soil moisture and interflow). In contrast, cal_ks is best
identifiable during wet periods with a tendency towards smaller values (reduced conductivity of
soil, more surface runoff). For cal_wind (evapotranspiration) and str_base (baseflow), patterns
can be distinguished as well, but are more difficult to generalize. Both during peak discharge
and low flow periods, cal_wind is well identifiable with tendency towards smaller values (less
evapotranspiration), while in times of intermediate flow identifiability tends towards larger values
(more evapotranspiration). Parameter str_base shows a tendency towards small values (small
retention, quick release of flows) at the beginning of flow events with values increasing over the
discharge event (increasing retention and prolonged release of flows; e.g., at the end of year
2013 or several times in 2015).



74 Chapter 4. Dynamic identifiability analysis of flexible model structures

Evapotranspiration Soil water RC ODE solver

V
illacarli

C
abecera

C
arrasquero

C
eguera

Lascuarre
C

apella

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 1 2 1 2 3 4 5 6 7 8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Input factor realization

N
or

m
al

iz
ed

 n
po

st

Figure 4.5: Normalised occurrences of realizations in the posterior distribution (npost ) for the
various input factors and subcatchments. A red bar marks the realization for each input factor
related to the best model run (red line in Figure 4.2).

4.5 Discussion

4.5.1 Evaluation of Model Performance

There are a number of factors influencing the performance of the hydrological model and,
hence, the subsequent identifiability analysis. It was shown that the model, overall, performs
acceptable but is often missing the large peak flow events (Figure 4.2). Such behavior can often
be attributed to uncertainties in the precipitation input. This arises from limited coverage with
station data, especially in mountainous areas, where rainfall is typically unevenly distributed
in space. Moreover, convective rainfall events in summer, which are characterized by high
intensity, short duration, and small spatial coverage, can produce sharp peaks in the discharge
hydrograph but might be entirely undetected by rainfall stations. Such an event presumably
occurred in summer 2013 in subcatchment Ceguera, which resulted in the highest peak flow of
the simulation period (Figure 4.2), but no such event appears in the rainfall dataset (not shown).
Moreover, the highest influential rainfall station of this subcatchment did not record within this
particular period, which leads to missing data due to station failure as yet another important
source of uncertainty. This issue could generally be addressed by using rainfall products derived
from remotely sensed data (e.g., radar data), which provide a better spatial coverage as well as
spatial and temporal resolution. Yet a combination with station measurements is still crucial as
radar products do not yet provide rainfall information with sufficient quality (Abon et al., 2016;
Kneis et al., 2014).

Apart from the limited number of stations, interpolation of station data to computational
model units (in this case subbasins, thin black lines in Figure 4.1) results inevitably in a smoothed
input signal for the model. On the one hand, single events of high intensity detected by just
a single station might be obscured when merged with data of other stations. On the other
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Figure 4.6: Density plots of the posterior distributions of parameters. Shown are log-
transformed parameter spaces except for Phil_cal. For parameter symbols see Table 4.4.

hand, the size of such computational units, typically defined as subjective decision during model
initialization, dictates the spatial resolution of rainfall input and is again of high relevance for
convective rainfall events (Pilz et al., 2017). In contrast, events of long duration and large
spatial coverage are often better detected by stations and directed into models, and therefore
usually result in better model performance. One such event occurred in November 2014, where
several weeks of recurring days with high precipitation resulted in high streamflow peaks in all
subcatchments. This event was much better reproduced by the model, especially at gauges
Cabecera and Lascuarre, where the match of observed and simulated discharge hydrographs
is almost perfect.

4.5.2 Methodology and Identifiability Measure

In general it has to be noted that the employed model structures were not calibrated in terms of
explicit parameter optimization. Instead, the presented framework refers to the 10 % best of the
12,000 model structure and parameter realizations for each gauge. Besides, the model struc-
tures used in this study are largely derivatives of the WASA-SED model, which was transferred
into the ECHSE environment and enhanced by additional process representations and ODE
solvers. This accounts for structural uncertainties in hydrological models, but introduces further
uncertainties related to (possibly) random programming errors and ambiguities during model
building due to subjective decisions, e.g., which parameters are hard coded, which need to be
calibrated, and which can be derived from measurements.

The results of parameter identification and sensitivity analyses are influenced by the em-
ployed performance metric (Francke et al., 2018b; Guse et al., 2017). For this study, the RMSE
was selected as in the studies of Wagener et al. (2003) and Pianosi and Wagener (2016).
Experiments with the Nash–Sutcliffe index gave very similar results (not shown). Yet, RMSE, as
well as the Nash–Sutcliffe index and other metrics using squared residuals, is biased towards
higher values and the timing of the hydrograph while deficiencies of a model in reproducing low
flows are less strictly penalized. This aspect is relevant when aggregating over long periods
and may therefore influence the findings of the static identifiability analysis of this work.

The dynamic analysis, in turn, is influenced by the decision on the length of the moving
window. This in particular is the case if sensitivity of the considered input factors varies in time,
e.g., because they represent processes occurring within larger or smaller characteristic time
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Figure 4.7: Identifiability measures over the simulation period. Black lines represent the
observed discharge hydrograph at each gauge.

scales than the chosen window width (Massmann et al., 2014). However, objective selection
criteria are missing and it was decided to use a window of one month. In that way measurement
uncertainties are less likely to dominate the results (as would be the case for a small window
size), but the window is still small enough to identify relevant process realizations at varying
hydrological conditions. Experiments with window size (not shown) revealed that a smaller
window size generally leads to a more blurred pattern while with larger windows patterns can be
more easily detected. However, the general conclusions which can be derived from Figures 4.8
and 4.9 (i.e., the dependency of posterior values from wetness conditions) do not change. On
the other hand, a small window might aid in more detailed analyses of process dynamics. For
instance, identifiability patterns changed slightly for Evapotranspiration when using a smaller
window, especially for gauge Villacarli, where more periods of high identifiability appeared,
where nothing could be seen with the original window size. For the other gauges, patterns
became more diverse as well, but not relevant regarding the general conclusions of this study.

This work addressed the identifiability of different input factors reflecting uncertainty in the
choice of equally likely process representations, ODE solvers, and parameter realizations.
However, the identifiability measure was defined in a way that each input factor has to be
analyzed separately. This resulted from the discrete distribution of input factors and the highly
different numbers of realizations. To overcome this issue, Pianosi and Wagener (2016) sampled
the prior and posterior distributions with an alternative approach and were able to compare time-
varying sensitivity indices of discrete input factors. In that way they also applied a mathematically
more rigorous approach than the informal MC filtering applied in this study to derive the posterior
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Figure 4.8: Posterior frequencies over the simulation period for gauge Capella (the catchment
outlet) scaled to [−1, 1]. Negative (positive) values indicate posterior frequencies less (larger)
than prior frequency values. Black lines represent the observed discharge hydrograph.

distribution. Their method, however, requires a larger sample size and, hence, more model
runs, which was not achievable with the complex model structures employed in this work. Other
approaches, such as global sensitivity analysis, rely on assumptions that input factors are
uncorrelated or at least continuously distributed. For the future, in order to directly compare the
impacts of different input factors for process-based models, an approach dealing with correlated
input factors of discrete distribution is required, which is also computationally feasible.

4.5.3 Spatiotemporal Patterns of Identifiability
Static analysis over the whole simulation period as well as the dynamic approach using a moving
window found evapotranspiration and parametrization to be the only input factors showing a
certain degree of identifiability. Yet the temporal analysis provides much more insights into
model functioning. It allows for a more detailed comparison of prior and posterior distributions
and reveals temporal patterns also for the other input factors, which are overall poorly identifiable.
In addition, the analysis shows that the time-varying dominance of certain input factors is to
a large degree driven by meteorological conditions. This conclusion is well in line with other
studies emphasizing the added value of a temporal analysis of sensitivity or identifiability (e.g.,
Ghasemizade et al., 2017; Guse et al., 2014; Herman et al., 2013; Pianosi and Wagener, 2016;
Reusser and Zehe, 2011; Savage et al., 2016).

It was found that during wet periods the PM approach clearly dominated the posterior
distribution and the parameter cal_wind was directed towards reduced evapotranspiration
amounts. During dry periods, the SW approach was dominant with a less clear pattern
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Figure 4.9: Posterior densities of model parameters derived via kernel density estimation
and scaled to sum up to one at each time step for each parameter. Parameter values are
log-transformed, except for Phil_cal. Shown is only gauge Capella, the catchment outlet. Black
lines represent the observed discharge hydrograph.

for cal_wind. This is supported by the fact that the SW approach was most dominant for
subcatchment Lascuarre, which is the driest part of the study area. The SW formula relaxes the
big-leaf assumption of the PM approach in a way that it accounts for bare soil and is therefore a
more sophisticated approach for sparse crops and patchy vegetation (Shuttleworth and Wallace,
1985). While subcatchment Lascuarre has the largest fraction of cropland, it is not clear whether
this really translates to a more patchy vegetation and thus no better suitability of either approach
can be inferred a priori. It rather seems that moisture condition is the most influential factor for
the selection of an evapotranspiration model in comparison to landscape characteristics (full
vs. patchy vegetation cover).

An interesting finding is that unconstrained ODE solvers with high accuracy perform better
during wet periods. A possible explanation is that implausible model states, which are likely
caused by unconstrained solvers under rainfall conditions, can still produce a more realistic
streamflow dynamic. This can be attributed to the faster soil water fluxes with characteristic
time scales less than the model’s temporal resolution. Under such circumstances ODE solvers
without solution constraints could serve as compensation for the rather coarse daily resolution
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of the model runs. For instance, consider a high amount of daily precipitation, which occurs
in fact just within a few hours rather than equally over a full day. A large signal of rainfall input
within a single model time step would likely cause a high amount of surface runoff, while if the
signal would be distributed over several sub steps, it would rather result in less overland flow
and a less sharp runoff signal. In that way, the temporary storage of water in the soil, although
exceeding the physical boundaries, is delaying the runoff signal and could therefore still result
in a more realistic system behavior. In contrast, under dry conditions, constrained ODE solvers
are favored as they keep the model states within physical limits, which eventually results in a
more realistic streamflow dynamic.

Apart from the temporal patterns, some differences among the subcatchments could be
found. This is especially true for gauge Lascuarre in comparison to the rest of the catchment.
Apart from the issue of the evapotranspiration model, which already has been discussed, con-
strained ODE solvers are more clearly favored at this than at the other gauges. In general, this
can be attributed to the distinct hydrological and meteorological conditions in this subcatchment
(see Table 4.1). In contrast to the other subcatchments, Lascuarre is characterized by a very
low runoff coefficient, sharper discharge peaks, less precipitation, less steep topography, and
more agricultural areas. This supports the findings of van Werkhoven et al. (2008) who found
distinct patterns of parametric controls in dry and wet catchments. Their findings for parametric
controls can therefore be extended to certain process realizations and even ODE solvers.

4.5.4 Is There an Optimal Model Structure?
The most straightforward approach to address the question of the optimal model structure
would be to select the best performing realization. On the other hand, it was shown that
the best performing model run does not necessarily refer to the highest occurrences in the
posterior distributions of the analyzed input factors (Figure 4.4). This suggests a high influence
of parametrization, i.e., only very specific parameter values result in a good performance of a
certain model structure, while changes in the parameters may significantly deteriorate model
behavior.

It was found that spatial variability, even in small catchments such as investigated in this
work, can be substantial and lead to contrasting conclusions in neighboring subcatchments.
In combination with the identified temporal patterns, these findings allow for more general
conclusions. For instance, it was consistently found that under dry conditions the SW model is
a more plausible evapotranspiration model, while under wet conditions the PM approach was
favored. In future studies, more advanced methods, such as machine learning techniques, could
be employed to derive relationships between catchment characteristics and meteorological
conditions as predictors and certain model process formulations as response variable. This
would allow to design the most likely model configuration prior to an application based on the
characteristics of the catchment to be investigated. Flexible simulation environments such as
ECHSE (among others) enable such a task and serve as a toolbox for the modeller (Clark et al.,
2015b, 2008b; Fenicia et al., 2011; Kneis, 2015).

It should be kept in mind, after all, that the complexity of the problem makes it difficult to
draw general conclusions. Quite surprisingly, ODE solvers of low accuracy achieved rather
high rankings in the posterior distribution. This suggests that model deficiencies can be easily
compensated by, albeit unrealistic, parametrizations or process formulations. Consequently,
there is a high chance to obtain the right answers for the wrong reasons, a phenomenon resulting
from, e.g., overparametrization of a model, which has been acknowledged in numerous studies
in the field of hydrological modeling (e.g., Fenicia et al., 2016; Kavetski and Clark, 2010;
Kirchner, 2006; Samaniego et al., 2010; Schoups et al., 2008). As a consequence, the use of
unconstrained ODE solvers should be avoided, even if they achieve good model performances.
In general, ODE solvers of high accuracy should be used. However, this as well calls for finer
discretizations (in space and time) than they were used in this study. Separate analysis of
the soil water module in ECHSE revealed that simulations with accurate ODE solvers are of
much more use when running the model with shorter temporal resolution (not more than one
hour) and more soil horizons with gradually varying soil parameters (not shown in this paper).
On the other hand, model runtimes increase dramatically and prevent detailed analyses of
ensemble-based approaches as presented in this study.
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4.6 Conclusions

This study investigated the spatiotemporal identifiability of multiple model structures. The
experiments were conducted in a small mountainous catchment in northeastern Spain. To
carry out simulations, the flexible simulation environment ECHSE was used, which enabled
the rapid implementation of different alternatives for process representation (with respect to
subprocesses of evapotranspiration, soil water movement, and runoff concentration) and ODE
solvers. Model configurations were in general based on the process-based hydrological and
sedimentological model WASA-SED, whose process formulations have been transferred into
ECHSE and extended by alternatives. This was the first approach analyzing complex process
representations, ODE solvers, and parametrizations in a fully integrated manner by coupling
the flexible model environment with dynamic identifiability analysis (DYNIA).

Overall, the approach proved to be useful for the identification of complex process-based
model structures. With respect to the initially stated research questions, the main findings shall
be briefly summarized.

1. Parametrization and subprocesses of evapotranspiration turned out to be the only identifi-
able input factors. Yet different patterns could be identified in the posterior distributions
also for the other input factors. Surprisingly, ODE solvers without solution constraints
achieved better simulation performances than those with constraints.

2. Identifiability patterns vary over time, especially for the input factor of evapotranspiration
routines. As such, the Penman–Monteith approach appeared to be superior during wet
periods while during dry periods the Shuttleworth–Wallace approach led to better model
performances. Moreover, unconstrained ODE solvers with high accuracy performed
better during wet periods, while solvers with solution constraints obtained better model
performance during dry periods.

3. The results of model identification are clearly influenced by hydrological characteristics.
While identifiability patterns are relatively consistent over areas with similar hydrological
characteristics, identified model structures are most distinct for the subcatchment with
the most diverging characteristics with respect to land use, topography, rainfall sum, and
runoff coefficient.

It should be noted that identifiability patterns might be influenced by correlation among input
factors and compensation effects, which can distort the general findings. This could explain
why sometimes ODE solvers of low accuracy achieved good model results and therefore high
rankings in the posterior distribution. Therefore, it is difficult to decide for a specific model
configuration, as the model obtaining the best performance metrics might be influenced by such
compensation effects. Consequently, the following questions could be addressed by future
research:

1. How can the compensation effects be eliminated and model identification made more
robust? How do temporal resolution and ODE solvers dictate these issues and how do
they interact?

2. If temporal resolution and ODE solvers are crucial, how can they be addressed while
maintaining feasible model runtimes?

3. Could data science (e.g., machine learning) be combined with process knowledge to
determine the most adequate model structure for a study area before conducting time
consuming model evaluations?
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4.A Supporting Information
Background information on ODE solvers
In many hydrological models, fluxes r are calculated based on the model state S of the current
time step i :

ri = f (Si ) (4.3)

Model states for the next time step are then simply updated by multiplication of fluxes with time
step length h (the so-called explicit Euler method):

Si+1 = Si + rih (4.4)

This, however, may lead to discrepancies as simulated processes (such as evapotranspiration
or infiltration) often change within time scales much smaller than h (e.g., minutes or hours while
h, in this study as in many others, is one day).

To catch unrealistic results, in many models calculated fluxes and model states are checked
for physical realism (e.g., soil moisture should range between saturated and residual water
content defined by soil texture) and adjusted if necessary. This adaptation is referred to as
solution constraint.

To account for subscale temporal dynamics and possible feedbacks between fluxes and
states, equations 4.A and 4.A are typically applied for each process individually in a prescribed
order, such that state variables are updated successively within a time step (e.g., in WASA-SED:
lateral inflow→ precipitation and interception→ infiltration→ evapotranspiration→ percolation
and lateral re-distribution). In a mathematical sense, this approach is referred to as operator
splitting and is popular as the problem can be subdivided into parts which are easier to integrate
(Schoups et al., 2010). This, however, comes at the cost of a "splitting error" and is unsatisfying
from a physical point of view, as processes in reality do not occur sequentially but take place
concurrently. Therefore, the ECHSE-based model structures built for this study do not contain
operator splitting.

In ECHSE, several ODE solvers were implemented from the GNU Scientific Library (Galassi
et al., 2017). Explicit Runge–Kutta methods calculate state Si+1 from Si as a weighted average
of k increments within the fixed interval h. The explicit Euler method is a special case where
k = 1 resulting in first-order accurate solutions, while for fourth-order methods k = 4 with fourth-
order accurate results. Adaptive step size methods differ from methods with fixed step size in a
way that h is adaptively split into subintervals until the estimated local error of the integration is
smaller than a predefined tolerance. The Backward Differentiation Formula (BDF) is another
approach considered in this work, which belongs to the family of linear multistep methods.
Instead of discarding all previous information before taking the next time step integration, as
is done by Runge–Kutta methods, linear multistep algorithms use a linear combination of
derivatives from previous time steps. Implicit methods as another group first estimate Si+1 in an
explicit manner, as illustrated by equation 4.A, followed by a corrector step, where an improved
estimation of Si+1 is derived implicitly as (in case of the implicit Euler method)

Si+1 = Si + hf (Si+1). (4.5)

Such methods generally have the advantage over explicit methods that they provide more stable
solutions, but require, especially in case of stiff equations (equations that may cause rapid
variation in the solution), much more computation time. This is the reason why in this study
no implicit methods (e.g., implicit Runge–Kutta solvers) except for BDF (which also contains a
predictor–corrector method) could be considered, although they can be used within ECHSE.
Test runs revealed that they cannot produce solutions within acceptable computation time within
this framework.
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Equations of Implemented Process Representations

Table 4.5: Equations of evapotranspiration processes.

ID Equation

SW et = 1
Ewat

[CcPMc + CsPMs]

PMc = sA+(ρair Cair D−srcaAs)/(raa+rca)

s+γ
[

1+rcs/(raa+rca)
] , PMs =

sA+
[
ρair Cair D−srsa(A−As)

]
/(raa+rsa)

s+γ
[

1+rss/(raa+rsa)
]

Cc = 1
1+RcRa/Rs(Rc+Ra) , Cs = 1

1+RsRa/Rc (Rs+Ra)

Ra = (s + γ)raa, Rc = (s + γ)rsa + rss, Rs = (s + γ)rca + rcs

PM et = 1
Ewat

[ s(Rnet−Gsoil )+ρair Cair (E−e)/raa
s+γ(1+rcs/raa)

]
SK rcs = rl ,actε/ln

[ gsrad +εRinS
gsrad +εRinSexp(−εL)

]
SW19 rcs = rl ,act

2L

SG43 z =

{
zr ,s + 0.3hc(cdL)0.5 if 0 < cdL < 0.2
0.3hc(1− d

hc
) if 0.2 < cdL < 1.5

BT z =

{
0.123hc if hc ≤ 2
0.058h1.19

c otherwise

SG42 d = 1.1hc ln(1 + (cdL)0.25)

SG41 d = 2
3 hc

AN RinS,cs = (as + bs) Rex

AL RinS,cs =
(
0.75 + 2× 10−5h

)
Rex

Symbols: Ewat : latent heat of water evaporation; s: slope of saturation vapour pressure
curve; γ: psychrometric constant; ρair : density of air; Cair : specific heat of moist air; D:
vapour pressure deficit at canopy source height; e: vapour pressure; E : vapour pressure at
saturation; As = Rnet ,soil −Gsoil : total energy available at soil surface; Rnet ,soil : incoming net
(short- and long-wave) radiation hitting the soil surface; Gsoil : soil heat flux; A = Rnet −Gtotal :
total energy available at measurement height (should be above canopy); Rnet : incoming
net (short- and long-wave) radiation at measurement height; Gtotal : heat flux into soil,
vegetation, and air below measurement height; raa: aerodynamic resistance; rss: soil surface
resistance; rca: bulk boundary layer resistance of the vegetative elements in the canopy; rsa:
aerodynamic resistance between soil and canopy source height; rl ,act : surface resistance
of a single leaf; ε: canopy extinction coefficient; gsrad : solar radiation for which stomatal
conductance is half of its maximum value; RinS: incoming short-wave radiation (above
canopy); L: leaf area index; zr ,s: roughness length of bare soil; hc : canopy height; cd :
drag coefficient of vegetative elements; Rex : extraterrestrial radiation; as, bs: Ångström
coefficients
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Table 4.6: Equations of soil water processes.

ID Equation

GA Solve iteratively: F∆t = kf (∆t − tsat ) + nrψf · ln

(
F∆t +nrψf
Fs+nrψf

)
+ Fs

Fs = Dwetnr , Dwet = ψf
Rf/kf−1 , tsat = Fs

Rf

PH F = St1/2 + At , S =
√

2kf (θs − θ)ψf

PS qperc = SWperc

[
1− exp

(
−∆t
TT

)]
/∆t

SWperc =

{
0 if θ ≤ θfc

Dhor (θ − θfc) otherwise
, TT = SWperc

ku

PR qperc =

{
ku(∆ψ/Dhor + 1) if ∆ψ > 0
0 otherwise

VG Se = θ−θr
θs−θr

=

[
1

1+
(
ψ/ψb

)λ+1

]
, ku = kf S

1/2
e

[
1−

(
1− S

λ+1
λ

e

) λ
λ+1
]2

CB Se = θ
θs

=
(
ψb
ψ

)λ
, ku = kf

(
Se

)3+2/λ

Symbols: kf : saturated hydraulic conductivity; ∆t : time step length; nr : refillable porosity; ψf :
capillary suction at the wetting front; Rf : surface water flux for infiltration; θ: actual water
content; θs: water content at saturation; θfc : water content at field capacity; θr : residual
water content; t : time since start of infiltration event; A: calibration parameter (Phil_cal in
Table 4.4); Dhor : thickness of soil column; ku: unsaturated hydraulic conductivity; ψ: capillary
suction; ψb: bubbling capillary pressure; λ: pore size index
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Input factor realizations

Table 4.7: Input factor realizations.

ID Realization

Ia: Evapotranspiration
1 PM SW19 BT SG41 AN
2 SW SW19 BT SG41 AN
3 PM SK BT SG41 AN
4 SW SK BT SG41 AN
5 PM SW19 SG43 SG41 AN
6 SW SW19 SG43 SG41 AN
7 PM SK SG43 SG41 AN
8 SW SK SG43 SG41 AN
9 PM SW19 BT SG42 AN

10 SW SW19 BT SG42 AN
11 PM SK BT SG42 AN
12 SW SK BT SG42 AN
13 PM SW19 SG43 SG42 AN
14 SW SW19 SG43 SG42 AN
15 PM SK SG43 SG42 AN
16 SW SK SG43 SG42 AN
17 PM SW19 BT SG41 AL
18 SW SW19 BT SG41 AL
19 PM SK BT SG41 AL
20 SW SK BT SG41 AL
21 PM SW19 SG43 SG41 AL
22 SW SW19 SG43 SG41 AL
23 PM SK SG43 SG41 AL
24 SW SK SG43 SG41 AL
25 PM SW19 BT SG42 AL
26 SW SW19 BT SG42 AL
27 PM SK BT SG42 AL
28 SW SK BT SG42 AL
29 PM SW19 SG43 SG42 AL
30 SW SW19 SG43 SG42 AL
31 PM SK SG43 SG42 AL
32 SW SK SG43 SG42 AL

ID Realization

Ib: Soil
1 PH PS VG
2 GA PS VG
3 PH PR VG
4 GA PR VG
5 PH PS CB
6 GA PS CB
7 PH PR CB
8 GA PR CB

Ic: Runoff concentration
1 RW
2 RS

II: ODE solvers
1 EU FREE
2 EU CONS
3 RK FREE
4 RK CONS
5 RKST FREE
6 RKST CONS
7 BDF FREE
8 BDF CONS

III: Parametrization
ID cal_wind cal_ks cal_kfbed Phil_cal str_surf str_inter str_base

1 2.130 1.980 0.091 0.455 0.003 0.147 5.720
2 0.635 15.911 3.374 0.796 0.025 0.176 0.980
3 1.844 0.029 0.022 0.290 0.022 0.065 0.161

... ... ... ... ... ... ... ...
998 0.185 0.021 3.823 0.226 0.093 0.290 2.514
999 0.400 1.451 0.136 0.433 0.011 0.030 4.773

1000 4.455 0.458 0.147 0.702 0.045 0.076 2.340

Note: Highlighted realizations mark the WASA-SED implementations.
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Abstract
The semiarid northeast of Brazil is one of the most densely populated dryland regions in
the world and recurrently affected by severe droughts. Thus, reliable seasonal forecasts of
streamflow and reservoir storage are of high value for water managers. Such forecasts can
be generated by applying either hydrological models representing underlying processes or
statistical relationships exploiting correlations among meteorological and hydrological variables.
This work evaluates and compares the performances of seasonal reservoir storage forecasts
derived by a process-based hydrological model and a statistical approach.

Driven by observations, both models achieve similar simulation accuracies. In a hindcast
experiment, however, the accuracy of estimating regional reservoir storages was considerably
lower using the process-based hydrological model, whereas the resolution and reliability of
drought event predictions were similar by both approaches. Further investigations regarding the
deficiencies of the process-based model revealed a significant influence of antecedent wetness
conditions and a higher sensitivity of model prediction performance to rainfall forecast quality.

Within the scope of this study, the statistical model proved to be the more straightforward
approach for predictions of reservoir level and drought events at regionally and monthly aggre-
gated scales. However, for forecasts at finer scales of space and time or for the investigation
of underlying processes, the costly initialisation and application of a process-based model
can be worthwhile. Furthermore, the application of innovative data products, such as remote
sensing data, and operational model correction methods, like data assimilation, may allow for
an enhanced exploitation of the advanced capabilities of process-based hydrological models.
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5.1 Introduction

Drought is a type of natural hazard characterised by meteorological, hydrological, and water
management conditions, affecting many regions around the globe. Generally, it arises due to a
shortage of water availability. A general valid or comprehensive definition, however, is hardly
achievable due to many different possible causes, complex relationships, and feedbacks among
its determining factors and, consequently, different impacts on nature, society, and economy. As
such, different categories can be distinguished ranging from meteorological (lack of rainfall) and
hydrological (shortage of consumable water resources) to agricultural (water deficit for crops or
husbandry) and socio-economic droughts (not enough of income to pay water price). For the
characterisation of droughts, different statistics can be computed describing duration, frequency,
and severity based on various predictors and thresholds (Mishra and Singh, 2010).

The semiarid northeast of Brazil (NEB) is one of the world’s most densely populated dryland
regions (Marengo et al., 2017). Its climate is characterised by a short rainy season with
high interannual variability. As a consequence, already since the colonisation in the 16th
century, regularly occurring severe droughts causing famine and mass exodus have been
reported. Drought occurrence is primarily driven by sea surface temperature (SST) anomalies
in the eastern Pacific, i.e. the El Niño–Southern Oscillation (ENSO), and the northern tropical
Atlantic region (i.e. the Tropical Atlantic SST Dipole) influencing the location of the Intertropical
Convergence Zone (ITCZ), which is the main source of rain during the rainy season in the
NEB area (Hastenrath, 2012). Profound governmental actions for drought mitigation since the
late 19th century resulted, among others, in the construction of thousands of small reservoirs
and several large dams for water storage and provision within the dry season and during
dry spells. Still, severe drought events might endanger water supply, as has happened in
the current series of drought years since 2012. Even the regular years (in terms of rainfall
amount) of 2017 and 2018 were not able to eliminate or significantly alleviate water scarcity,
resulting in filling states of the largest reservoirs of less than 10 % (for the current state of water
provision and statistics of the state of Ceará see http://www.hidro.ce.gov.br; last access:
6 April 2019 and the drought monitor http://msne.funceme.br; last access: 6 April 2019). In
addition, climate change is likely to aggravate water scarcity, calling for efficient strategies in the
management of water storages (de Araújo et al., 2004; Braga et al., 2013; Krol et al., 2006).

Reliable seasonal forecasting, i.e. forecasts of streamflow and reservoir storages for the
upcoming rainy season, can be of significant value for water managers (Sankarasubramanian
et al., 2009). Accurate precipitation forecasts over several months are still a challenge for
dynamical climate models. However, many dryland regions are located in areas with distinct dry
and rainy seasons, the latter often connected to large-scale atmospheric circulation patterns.
Therefore, statistical models relating meteorological or SST indices with streamflow or a
combination of statistical and process-based models are applied in many dryland regions in
the world to provide seasonal forecasts (e.g. Schepen and Wang, 2015; Seibert et al., 2017;
Sittichok et al., 2018).

For the northern NEB region, the high correlation of rainfall and droughts with SST anomalies
in the eastern Pacific and tropical Atlantic, together with correlation of preseason rainfall, offers
a favourable setting for seasonal prediction (Hastenrath, 2012; Souza Filho and Lall, 2003; Sun
et al., 2006). Several studies exist for the area, typically employing one or several (realisations
of) general circulation models (GCMs) driven by SST predictions, downscaled to a finer scale
by statistical or dynamical downscaling approaches, whose meteorological (especially rainfall)
outputs are eventually used as forcing in a hydrological model producing streamflow and/or
reservoir level forecasts. For instance, Galvão et al. (2005), Block et al. (2009), and Alves et al.
(2012) employed different hydrological models of varying complexity to generate streamflow
and/or reservoir level predictions. While model performance over daily timescales was generally
reported to be low, over longer aggregation periods, such as at a monthly or seasonal scale,
acceptable results could be achieved.

In a recent study, Delgado et al. (2018b) investigated the use of a statistical relationship to
provide seasonal reservoir level predictions. They used the two GCMs ECHAM4.6 and ECMWF,
with the meteorological output of each downscaled by three different statistical approaches,
generating ensembles of wet-season (i.e. January to June) hindcasts for each year in the

http://www.hidro.ce.gov.br
http://msne.funceme.br


5.2 Study site 89

period 1981 to 2014. Based on these meteorological hindcasts, they calculated a number
of meteorological drought indices which are compared with observations to evaluate the
skill of the predictions. Using reservoir storage as a target variable, they further computed
hydrological drought indices and fitted a multivariate linear regression to predict these indices
using the meteorological indices as predictors. Even though there was variation among the
GCM and downscaling combinations, the occurrence of meteorological drought could mostly be
predicted with skill. Furthermore, their relatively simple statistical model was able to predict also
hydrological droughts with skill. However, the absolute hindcast error was often not appreciably
better than climatology, i.e. the observed long-term average of a variable.

While being straightforward to apply and computationally advantageous, such statistical
relationships, in contrast to process-based hydrological models, do not represent underlying
processes and are less flexible in terms of the output variable and their spatial and temporal
resolution. However, what remains is the question of how to balance accuracy, operability,
and usability from the perspective of water managers and stakeholders. As such, this study
complements the work of Delgado et al. (2018b), employing a process-based hydrological
model instead of a statistical model. Thus, the aim is to present and evaluate a forecasting
system, predicting seasonal reservoir levels and the occurrence of hydrological droughts for the
Jaguaribe River basin, located within the NEB region. Three different objectives are put into
focus: first, the process-based hydrological model and the statistical model of Delgado et al.
(2018b) shall be evaluated and compared in terms of reservoir level simulation performance.
Second, the process-based hydrological model as an operational forecasting tool is to be
verified in a hindcast experiment. Third, major sources of prediction and simulation errors
in the modelling system are to be investigated. Thereby, the question of whether the costly
initialisation and use of a complex hydrological model is worthwhile in comparison to a much
simpler statistical relationship is to be answered, and guidelines for further research and the
improvement of the forecasting system shall be given.

This study touches on issues of atmospherical sciences, hydrology, and water resources
management. As terminology partially differs, a clarification on certain terms used throughout
the paper can be consulted in Appendix, Sect. 5.A.1.

5.2 Study site

The study area comprises the Jaguaribe River basin in the state of Ceará, northeast Brazil
(see Fig. 5.1). The catchment is of crucial importance in terms of water supply for the whole
state and has been intensively investigated in numerous studies (e.g. de Araújo et al., 2004;
Bronstert et al., 2000; de Figueiredo et al., 2016; Gaiser et al., 2003; Krol et al., 2006; Mamede
et al., 2012; van Oel et al., 2012). It covers an area of about 70 000 km2 with a rural population
of 2.7 million. Additionally, it is the source of water for the metropolitan area of Fortaleza with
2.6 million people (IPECE, 2016). Annual precipitation sums up to, on average, 755 mm per year,
whereas 90 % of rainfall occurs within the rainy season between January and June. Potential
evapotranspiration is high with more than 2000 mm per year. The mean annual temperature is
about 25 °C with little variation. Rainfall, however, is mostly convective with only a few events of
high intensity per year and a strong inter-annual variation caused by SST anomalies resulting in
a northward shift of the ITCZ inducing recurrent droughts that can last over several years (see
also Sect. 5.1; Hastenrath, 2012; Marengo et al., 2017). As the geology is characterised by
a primarily crystalline basement with low-density fractures, water supply needs to be secured
by surface water resources. Accordingly, thousands of small and several large reservoirs
were constructed. The small reservoirs are typically bordered by uncontrolled earth dams,
mainly serving for water provision of rural population and livestock. Conversely, large so-called
strategic reservoirs contain a barrage with intake devices for active regulation, are sometimes
also used for hydropower production, and serve as water resources for larger towns and cities
and industrial farming. These settings cause meteorological droughts (lack of precipitation) and
hydrological droughts (lack of surface water) to be often out of phase (de Araújo and Bronstert,
2016; van Oel et al., 2018).
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Figure 5.1: Overview over the Jaguaribe watershed (c) and location within Brazil (b) and South
America (a). The five regions of interest (red numbers) are (1) Lower Jaguaribe, (2) Banabuiú,
(3) Castanhão, (4) Orós, and (5) Salgado. Thin black lines in (c) outline subbasins, which are
the computational units within the model. Black dots are rainfall stations considered within the
study. Background grid lines refer to the gridded meteorological dataset of Xavier et al. (2016).

For the present study, the Jaguaribe catchment was subdivided into five subregions, named
after the main tributary river or the major reservoir at its outlet: Banabuiú, Orós, Salgado,
Castanhão, and Lower Jaguaribe (see Fig. 5.1 for their location).

5.3 Data and methods
5.3.1 General workflow

The aim of this study is to elucidate the application potential of a process-based hydrological
model for water resources and drought prediction. Consequently, hindcasts of reservoir volumes
and hydrological drought indices shall be produced, driving the model by meteorological
hindcasts. The general workflow is illustrated in Fig. 5.2.

A process-based hydrological model was first calibrated to observations and an initial model
run conducted for the period of 1980 until 30 June 2014. This initialisation run was driven by
observed meteorology and at each 1 January the storage volume of each strategic reservoir
was replaced by the observed value. Furthermore, if available, measured reservoir releases
through a dam’s intake devices were fed into the model in order to make use of as much
information as available to produce simulations as realistic as possible. The first year of the
run was used as a warm-up to bring the model states into equilibrium. At each end of year, the
model’s state variables, including soil moisture, groundwater, river, and small (i.e. non-strategic)
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Figure 5.2: Workflow for the generation and evaluation of hindcasts of hydrological drought
indices.

reservoir storages, were stored. This entire procedure is intended to mimic the conditions in a
real forecast situation.

In a specific hindcast run, the model was then re-initialised with the saved model states
and driven by hindcast meteorology. These runs were conducted successively for the wet
seasons (1 January to 30 June) of 1981 to 2014. The resulting strategic reservoir volumes
were used to infer drought indices which were evaluated employing verification metrics. To
distinguish uncertainties from the meteorological hindcasts and in order to investigate mere
model performance, the model runs were performed in two ways: driven by observations
(simulation mode) and meteorological hindcasts (hindcast mode).

The runs were conducted for both the process-based model initialised and calibrated within
this study and a statistical model, which is a regression approach derived by Delgado et al.
(2018b) for the same study area. Consequently, verification metrics were calculated and
analysed for both model approaches and both forcing modes.

In order to identify the strengths and weaknesses of the process-based model, the results of
the simulation runs were further analysed. In this context, the model output (reservoir storage)
was stratified. The details of the individual processing steps are described in the following.

5.3.2 Data
To parametrise the hydrological model, various spatial data were obtained including a
90 m× 90 m SRTM digital elevation model (DEM), a soil map provided by the Research Institute
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for Meteorology and Water Resources of the state of Ceará (FUNCEME) along with soil parame-
ters from a local database (Jacomine et al., 1973) from which the necessary model parameters
were calculated employing pedotransfer functions, a land cover map from the Brazilian Ministry
of the Environment with parametrisations assembled by Güntner (2002), and a map of small and
strategic reservoirs provided by FUNCEME. Reservoir parameters were made available by the
Company for Water Resources Management of Ceará (COGERH) and FUNCEME and include
the year of dam construction, storage capacity, and water-level–lake-area–storage-volume
relationships along with daily resolution time series of water levels and artificial water release.
A time series of daily precipitation for 380 stations within and in close vicinity around the study
area were provided by FUNCEME. Other daily meteorological time series needed by the model
(relative humidity, air temperature, and incoming shortwave radiation) were derived from the
gridded dataset (0.25°×0.25° resolution) of Xavier et al. (2016).

5.3.3 Meteorological hindcasts
Daily meteorological hindcast data for the period 1981 to 2014 used as input into the hydrological
model stem from an ensemble (20 members) of ECHAM4.6 GCM runs (Roeckner et al.,
1996) which were bias corrected by empirical quantile mapping (EQM) (Boé et al., 2007;
Gudmundsson et al., 2012). Although Delgado et al. (2018b) identified some deficiencies
regarding this product, there was no clear better-performing alternative. In addition, ECHAM4.6
is already employed operationally by the local water authority FUNCEME (Sun et al., 2006),
and, in contrast to other seasonal forecast systems like those by ECMWF, it comes without
further costs for operational use, making it the candidate for future operational application. The
20-member ensemble runs of ECHAM4.6 were conducted and results provided by FUNCEME.
More information is given in Delgado et al. (2018b).

5.3.4 The process-based model
Introduction to WASA-SED
The hydrological model WASA-SED, version rev_257, was employed for the process-based
hindcasts of reservoir volumes. WASA-SED is a deterministic, process-based, semi-distributed,
time-continuous hydrological model. The representation of hydrological processes focuses on
dryland environments. A complex but efficient hierarchical spatial disaggregation scheme allows
for application over large scales up to an order of magnitude of 100 000 km2 (Güntner and
Bronstert, 2004; Mueller et al., 2010). Reservoirs can be simulated by treating large strategic
reservoirs in an explicit manner while representing smaller ones as lumped water bodies of
different size classes to efficiently account for water retention of many small reservoirs in a
study region (Güntner et al., 2004). The model was developed for and successfully applied
in the semiarid areas of northeastern Brazil (de Araújo and Medeiros, 2013; Krol et al., 2011;
Medeiros et al., 2014, 2010) and used for other dryland regions, such as in India (Jackisch
et al., 2014) and Spain (Bronstert et al., 2014; Mueller et al., 2009, 2010).

Model parametrisation and calibration
The model was parametrised using the lumpR package for the statistical environment R (Pilz
et al., 2017). This included the delineation of catchment and model units, assembly, calculation,
and checking of parameters, and the generation of the model’s input files. Meteorological data
were interpolated to the respective spatial units (sub-basins). For rainfall, this step used the
Thiessen polygon method as implemented in the Information System for Water Management
and Allocation (SIGA) (Barros et al., 2013). For the other meteorological variables, inverse
distance weighting (IDW) from the R package geostat (Kneis et al., 2012) was used. Reservoir
data were processed and prepared for the model. A total of 36 strategic reservoirs within
the study area was selected for explicit treatment in the model according to their size and
importance for water management.

The model was calibrated independently for each of the five regions in the study area
(see Fig. 5.1). Calibrated output of upstream regions was used as boundary condition for
downstream regions. Due to lack of data for Lower Jaguaribe, the calibrated parameters of
Castanhão were transferred. However, sufficient data were available for further analyses. The



5.3 Data and methods 93

calibration period spanned 2003 to 2010, which includes both wet (2004 and 2009) and dry
(2005, 2007, and 2010) years.

Daily reservoir volume increase in the strategic outlet reservoir of a specific region was used
as a target variable as reservoir level measurements were assumed to be more reliable than
streamflow observations. Streamflow in the area is highly variable and rivers, especially in the
downstream part of the catchment, are characterised by broad and dynamic cross sections and
dense riparian vegetation inducing large uncertainties in streamflow measurements derived
from rating curves. However, reservoir management has a strong impact on reservoir dynamics
and only a limited number of data on artificial releases were available, while there was even no
information on overspill (which does not often occur at the large strategic reservoirs) and only
rough estimates of withdrawals. To minimise the impact on calibration, only positive volume
variations (i.e. net reservoir volume gain), which are effectively caused by runoff draining into
the reservoirs, were considered for calibration. Therefore, daily net losses of volume, which are
largely determined by such management influences, were set to zero and therefore effectively
excluded from the calibration. However, for the region of Salgado, streamflow measurements
had to be used as this specific region does not contain a strategic reservoir at its outlet.

In total, 15 parameters were chosen for calibration. As objective function, a modified version
of the Nash–Sutcliffe efficiency (NSE) called benchmark efficiency (BE) following Schaefli and
Gupta (2007) was employed. It is calculated as

BE = 1−

N∑
t=1

(qobs(t)− qsim(t))2

N∑
t=1

(qobs(t)− qbench(t))2
, (5.1)

with t being the index of time containing N time steps within the calibration period; qobs repre-
sents the observations; qsim represents the simulations; and qbench, instead of being the average
of the observations as in the traditional NSE, represents the mean of the observations for every
Julian day over all years within N (i.e. the mean annual cycle). In this way, a value of BE > 0
means the model is able to reproduce the average yearly dynamics better than simply using
statistics. Consequently, a value of BE = 1 signifies perfect agreement of simulations with
measurements. Eventually, BE as a performance measure employs a much stricter criterion on
simulated hydrological dynamics compared to using the NSE measure.

For calibration, the dynamically dimensioned search (DDS) algorithm (Tolson and Shoe-
maker, 2007) implemented in the R package ppso (Francke, 2017) was used. Since DDS was
developed for computationally demanding hydrological models it is able to obtain satisfying
results within the order of 1000 to 10 000 model calls. For this study, the number of calls was
limited to 5 000 for every region, which resulted in about 10 000 h of CPU core processing time
on a high-performance cluster.

Analysis of simulation performance and influencing factors
An objective of this study is to analyse the simulation performance of the process-based model
in more detail and to identify possible influencing factors. Instead of using a single goodness
of fit measure, as for automated calibration, different aspects of model performance should
be investigated. Therefore, the Kling–Gupta efficiency (KGE) was chosen as a performance
measure along with its three components correlation, bias, and deviation of standard deviations
of simulations and observations (see upper part of Table 5.1). Like NSE and BE, KGE scales
from minus infinity to one where one is the optimum value achieved for maximum correlation
(i.e. COR = 1) and no deviation of means and standard deviations. To assess which factors
influence the model performance, several candidate descriptors where selected, which are
presented in the lower section of Table 5.1. These descriptors were tested for their capability
to explain model performance in time and space in a regression approach by using these
descriptors as predictors and the performance metrics as the response variable.

For the analysis, the calibration period 2003 to 2010 was used. Each response variable
(i.e. performance metric) was calculated for each of the 36 strategic reservoirs located in the
study area. Furthermore, each year was divided into a falling period, where the difference
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Table 5.1: Response and predictor variables used for the analyses of the process-based model
performance.

Abbrev. Explanation

Responses

KGE Kling–Gupta efficiency (Gupta et al., 2009): 1−
√

(COR− 1)2 + BIAS2 + VAR2

COR Pearson correlation of simulations y and observations o: cov(y ,o)
σyσo

with cov being
their covariance and σ their standard deviations

BIAS Deviation of means µ: µy
µo
− 1 ∈ [−1,∞)

VAR Deviation of variability: σy
σo
− 1 ∈ [−1,∞)

Predictors

Aup Upstream catchment area of the reservoir (km2)
Vcap Reservoir volume capacity (hm3)
nresup Number of upstream reservoirs (–)
∆vol Rising or falling period of reservoir volume (–)
Pmax Maximum regional daily precipitation sum over rising/falling period of a year (mm)
Preg Regional precipitation sum over rising/falling period of a year (mm)
P12 Regional precipitation sum over the entire previous year (mm)
P36 Regional precipitation sum over 36 months of the preceding years (mm)

of reservoir levels for two consecutive days was negative, and a rising period, where the
difference was greater than or equal to zero. For each reservoir, year, and period, the respective
performance was computed and analysed separately. This resulted in a total of 32 reservoirs
times 8 years times two periods minus some missing observations, i.e. 484 values to be
aggregated for each response variable. The predictors were either static and unique for
each reservoir (upstream catchment area Aup, reservoir capacity Vcap, number of upstream
reservoirs nresup), region-specific and dynamic as aggregation over a certain amount of time
(maximum daily precipitation Pmax, regional precipitation sum Preg, regional precipitation over
the last 12 months P12, and over the last 36 months P36), or a grouping variable by itself
(reservoir level is currently rising or falling ∆vol) (see also Table 5.1 for more information).

To identify predictor importances and their specific influence on the performance measures,
a random forest analysis was conducted using the R package party (version 1.3-1). In general,
random forests consist of an ensemble of regression trees, where each tree is fitted using a
bootstrap sample of the training dataset and only a subsample of all available predictors. This
eliminates typical problems of traditional regression tree approaches, such as a high sensitivity
to small changes in the data and the likelihood of overfitting (Breiman, 2001). For this study, a
refined random forest algorithm was employed, which is better suited for predictors of different
types (e.g. mixed categorical and continuous) and produces more robust measures of predictor
importance in the case of correlated predictor variables (Hothorn et al., 2006; Strobl et al., 2008,
2007).

For each response variable, an individual random forest was built. Except for ∆vol (cate-
gorical), each predictor and response variable was treated as numerical. To generate robust
estimates of predictor importance, 1000 regression trees were built per forest (otherwise stan-
dard parameter values of the algorithm were used). The most influential predictors for a certain
response were then distinguished by an importance measure, which in this study was derived by
permuting the values of each predictor and measuring the difference in prediction accuracy of
the random forest before and after permutation (also termed permutation importance in contrast
to the often used Gini importance or mean decrease in impurity ). In addition, the permutation
of predictor values was done by accounting for potential correlation among predictor variables
(hence termed conditional permutation importance) as suggested by Strobl et al. (2008).

In order to get an impression of the concrete effect of each predictor instead of the mere
variable importance, the two leaf nodes with the highest and lowest median response values
for each tree were identified. For these two nodes, the ranges of each numerical predictor
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Table 5.2: Regional equations used for the calculation of monthly volume changes with the
statistical approach. Table extracted and extended from Delgado et al. (2018b) (Table A1). For
details and abbreviations see text.

Region Formula R2

Lower
Jaguaribe

0.689 + 2.222SPI1 + 0.035 SPI36
SPI12

+ 2.116SPI1SPI12 + 1.075SPI12
SPI12

SPEI12
+ 0.286SPI1

SPI12
SPEI36

0.38

Orós 0.416 + 2.428SPEI1SPI1 + 2.233SPI1SPI12− 0.173SPI36
SPEI36
SPEI12

+ 4.197SPEI1
SPI12

SPEI12
− 0.003 SPEI36

SPEI12

SPI36
SPI12

0.36

Salgado −0.377 + 2.002 SPI12
SPEI12

+ 2.454SPEI1SPI1 + 2.600SPEI1SPI36 + 4.20 SPI12
SPEI12

SPEI1 + 0.314SPI1
SPI36

SPEI12
0.45

Castanhão 2.947 + 3.468SPI1 − 1.147 SPI1
SPEI1

− 1.270 SPI1
SPEI1

SPEI36 − 0.791SPI1
SPI36

SPEI12
+ 1.412SPEI12

SPI36
SPEI36

0.21

Banabuiú 4.812 + 4.638SPI1 − 13.853SPI12 − 2.293SPI12SPEI36 + 15.317SPEI12
SPI36

SPEI36
− 0.341 SPI36

SPEI36

SPI12
SPEI36

0.23

(except ∆vol) were classified into four groups ranging from small to large to facilitate visual
investigation.

5.3.5 The statistical model: a regression approach
A goal of this study is to answer the question of whether the application of a complex process-
based simulation model is worthwhile in comparison to a much more convenient statistical
approach to generate seasonal forecasts of reservoir storage and drought indices. To achieve
this, the regression model of Delgado et al. (2018b), which was developed for the same study
area, was employed. They fit a multivariate linear regression (MLR) model individually for each of
the subregions also defined in this study. As a response variable, regional volume changes were
used (approach M2 in Delgado et al., 2018b). As possible predictors, meteorological drought in-
dices (standardised precipitation index, SPI; and standardised-precipitation–evapotranspiration
index, SPEI) aggregated over time periods of 1, 12, and 36 months, respectively, were consid-
ered in their study. To account for correlation among predictors, ratios of predictors exhibiting
significant correlation to each other were used. Genetic optimisation with respect to the Akaike
information criterion (AIC) was employed to determine the specific predictors for each subregion.
To enforce model parsimony, not more than five predictors should be used in the regression
equation. For the model fit, all available observations within the analysis period were used
(monthly values from 1986 to 2014, less a few missing values). The resulting equations are
presented in Table 5.2.

To generate hindcasts, the predictors of the equations (the SPI and SPEI values over
different time horizons) were calculated on a monthly scale to obtain monthly forecasts of
regional reservoir volume changes for each rainy season of the hindcast period. Regional
storage volume values could then be obtained by successively adding predicted volume changes
to the measured value of December of the previous year, which served as a base value for each
rainy season. Even though the shown model fits for monthly volume changes were rather poor
(low R2 values in Table 5.2), the derived absolute reservoir level values were in good agreement
with measurements (Delgado et al., 2018b).

To compare the mere simulation performances, both the process-based and the statistical
model were first driven by observed meteorology to exclude the effect of the downscaled GCM
runs. In a second step, the two approaches were evaluated for real hindcasts.

5.3.6 Drought hindcasting
Hydrological drought quantification
As water stored in surface reservoirs is of primary importance to water supply, hydrological
drought indices based on surface reservoir filling level appear to be the most adequate choices
to identify and characterise hydrological droughts in the study area. Thus, in line with Delgado et
al. (2018b), for the quantification of hydrological droughts the regionally and monthly aggregated
reservoir storage was defined as a drought indicator:
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It =

Rj∑
i=1

V i
t

Rj∑
i=1

V i
cap

, (5.2)

with t being the time index, V i
t the volume stored in reservoir i of a certain region Rj (i.e. one

of the five subregions of interest illustrated in Fig. 5.1), and V i
cap the storage capacity of that

reservoir. This metric was calculated for each of the five regions of interest (R) and each month
of the hindcast period (wet seasons, January to June, of 1981 to 2014). For each month the
last daily value was taken.

A drought was then defined as

Dt =
{

1 if It < q0.3
0 if It ≥ q0.3

, (5.3)

where D = 1 denotes drought, D = 0 indicates no drought, and q0.3 is the 0.3 quantile of I over
the hindcast period. The definition of q0.3 is based on the choice of local decision makers who
defined this value as a warning threshold for reservoir scarcity. In Sect. 5.5.1 the impact of this
decision will be discussed. The threshold was applied to each region individually and, thus,
resulted in regionally different drought thresholds. As such, the results of this study will be
comparable to the work of Delgado et al. (2018b).

Verification of drought hindcasts
Hindcasts of reservoir volumes (V i

t ) and, consequently, the hydrological drought index (It ) were
verified employing the root mean square error (RMSE), the relative operating characteristic
skill score (ROCSS), and the Brier skill score (BSS). Definitions and discussions of the various
forecast verification metrics can be found in textbooks such as Wilks (2005). In the following,
short explanations for each selected measure shall be given.

The RMSE is a deterministic measure and was derived by calculating the root of squared
differences of hindcasts and observations averaged over all values of the hindcast pe-
riod:

RMSE =

√√√√ 1
N

N∑
t=1

(
I f
t − Io

t

)2, (5.4)

where N is the number of forecasted time steps, and the superscripts “f” and “o” denote forecast
and observation, respectively. It was calculated multiple times by using as I f

t each GCM member
individually and, in addition, the median of members as the deterministic value. The metric
quantifies the average magnitude of hindcast errors in units of the target variable, i.e. in this
case regional reservoir storage in percent points, and is therefore useful for the interpretation
of the suitability of the model for water managers who rely on accurate forecasts of volumes
to coordinate reservoir operation. As such, the RMSE refers to the attribute of accuracy. The
lower the RMSE, the lower the forecast error and the higher the accuracy.

The ROCSS quantifies the ability of a model to correctly discriminate between events and
non-events. In this context, an event is defined as a hydrological drought which, in turn, is
distinguished by the drought index falling below the 0.3 quantile (q0.3) as explained above. The
ROCSS is based on the ROC curve which plots the probability of event detection against the
false alarm rate for different thresholds of forecast probability defining an event. Taking the area
under the curve (AUC) of this graph, the skill score can be calculated as

ROCSS = 2 · AUC− 1. (5.5)

The value ranges between −1 and 1 with values lower than or equal to zero indicating the false
alarm rate being greater than or equal to the probability of event detection and, thus, the model
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having no skill. A value of one represents the highest score, i.e. the model is able to predict
every event and non-event correctly. As such, the ROCSS is a measure for event resolution of
probabilistic forecasts.

The Brier score (BS) measures the mean squared error of probabilistic forecasts and
indirectly contains information about reliability, resolution, and the variability of observations (the
latter being commonly referred to as uncertainty). As such it can be calculated as

BS =
1
N

N∑
t=1

(
Df

t − Do
t

)2
. (5.6)

The corresponding skill score (BSS) compares the BS of a forecast model with that of a simple
reference forecast, in our case climatology:

BSS = 1− BS
BSreference

, (5.7)

with BSreference = 0.3, corresponding to q0.3, the initially defined long-term average probability of
drought occurrence (as described above). It follows that BSS ∈ (−∞, 1] and a forecast model
having skill relative to the reference model if BSS > 0.

5.4 Results
5.4.1 Comparison of model performance in simulation mode

Figure 5.3 compares the performances of the process-based and statistical model in simulating
relative regional reservoir storage driven by observed meteorology. The regional RMSE varies
between 5 % and 18 %, whereas for the whole catchment both modelling approaches achieve a
result of about 13 %. Overall, the performance differences between the two models are small
for all regions. Only for Salgado the statistical model shows a lower RMSE compared to the
process-based model, and the difference among the two approaches is largest (6 %). For all
other regions, the process-based model exhibits a slightly higher accuracy, and the interregional
ranking is equal for both approaches. Generally speaking, both models show a comparable
performance, suggesting they are equally suitable for their application in hindcast mode.

5.4.2 Comparison of model performance in hindcast mode
The uppermost panel of Fig. 5.4 shows that, in hindcast mode, the accuracy in terms of RMSE
considerably decreases when compared to simulation mode for both types of models. However,
in contrast to the situation in simulation mode, the statistical approach outperforms the process-
based model for all regions. While for the statistical model deterioration in terms of RMSE is
generally less than 10 %, the process-based model achieves significantly lower accuracy with
increasing RMSE by up to almost 30 %. This degradation of model performance in hindcast
mode for the process-based model is especially pronounced for the Banabuiú region.

The lower two panels of Fig. 5.4, however, demonstrate that both approaches are able to
generate drought hindcasts with skill. The resolution of event hindcasting of the two models
(i.e. the ROCSS) is very similar when it is combined over the whole catchment. Regional
differences are more pronounced but still negligible. For some regions the process-based
model performs better, but for other regions the statistical model performs slightly better. The
BSS, while also indicating skill, shows lower performance values which can be attributed to lack
of accuracy (as already indicated by RMSE) and reliability.

An attribute plot, as the one presented in Fig. 5.5, can reveal more details on that issue.
Therein, the predicted probability of drought occurrence (obtained from the outcomes of in-
dividual ensemble members) is plotted against the relative frequency of observed drought
occurrences (solid lines) together with the relative prediction frequency of a certain forecast
probability interval (dotted lines). It demonstrates several verification attributes including resolu-
tion (the flatter the solid lines, the less resolution), reliability (agreement with the gray diagonal
line), sharpness (dotted coloured lines), and skill (values within the gray region contribute
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Figure 5.3: Comparison of accuracy in predicting relative reservoir storage for the process-
based and statistical model in simulation mode (i.e. run with observed forcing). The underlying
analysis period comprises monthly values of the rainy season (January to June) over the
hindcast period (observations available since 1986 until 2014 with some data gaps in between,
resulting in a maximum of 174 values for each subregion).

positively to BSS; for unclear terms see Appendix Sect. 5.A.1 or consult textbooks such as
Wilks, 2005). Apparently, predictions from both models contain skill except for low forecast
probabilities where both models contribute negatively to BSS. Furthermore it can be seen that
both approaches exhibit problems in terms of reliability. Specifically, forecast probabilities are
too low compared to observed occurrences, which is generally denoted as underforecasting.
This observation appears to be a bit more pronounced for the process-based model than for
the statistical model. That also holds true for sharpness, as the statistical approach shows
slightly more confidence for higher forecast probabilities; i.e. the relative frequency of maximum
forecast probability is higher.

5.4.3 Model performance attribution

Hindcasts

The monthly aggregated accuracy of the hindcasts, i.e. performance with increasing lead
time, is shown in Fig. 5.6. Overall, the hindcast error (i.e. RMSE) increases with lead time
(i.e. progression of the wet season), even when using observed forcing. The statistical approach
generally produces better hindcasts. Its RMSEs differ only little from runs with observed
forcing. Also the increase in RMSE with lead time is very similar. For the process-based model,
hindcasts deviate clearly from observation-based results (as was already shown in Fig. 5.4).
The error increases much more strongly over the hindcast horizon. However, its RMSE values
reach a plateau at about 40 % in March. Generally, it can be seen that aggregating the ensemble
members by using the median of reservoir storage hindcasts (solid lines) is usually a better
choice than most of the single ensemble members (distributions shown as box plots). The
spread of ensemble member results differs for the two approaches. These ranges are clearly
larger for the process-based model in January and February but comparable for the other
months.
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Figure 5.4: Model performance in hindcast mode for the two model approaches. In the top
panel, horizontal dashed lines in the bars mark the results obtained with observed forcing
(simulation mode, as in Fig. 5.3). Note that for RMSE low values indicate a better performance
while for ROCSS and BSS higher values are favoured.

In Fig. 5.7 prediction accuracy is assessed for different wetness conditions (i.e. dry, normal,
wet) over different accumulation time periods for rainfall. Again, when driven by meteorological
hindcasts, the statistical approach performs best with relatively small differences compared
to results obtained using observed forcing. Under wet conditions, irrespective of the rainfall
accumulation period, the error is highest for most settings. The only exception from this pattern
shows the process-based model driven by hindcasts. Here, the error under dry precondi-
tions increases with increasing rainfall accumulation length while the performance under wet
preconditions improves with longer accumulation length.

Process-based simulation performance

In the preceding subsections it was shown that the process-based model does not outperform
the statistical approach. Moreover, in hindcast mode, the process-based model often achieved
worse performance measures, especially in terms of accuracy. This subsection therefore aims
at the identification of deficit causes by analysing the results of process-based model calibration
and potential influencing factors of simulation performance in more detail.

Regional calibration performance of the process-based model is summarised in Table 5.3.
A good overall agreement of simulated and observed reservoir dynamics in terms of BE values
could be achieved during calibration. However, percent bias (PBIAS) as a performance metric
not used in the calibration shows, on the one hand, acceptable values of no more than 12 %
but, on the other hand, a consistent slight overestimation of reservoir level dynamics. It can be
further observed that a good BE value does not correlate with a low PBIAS.
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Figure 5.5: Attribute plot of drought hindcasts aggregated over the whole study area. Values
within the gray region contribute positively to the Brier skill score (BSS). For details on the
interpretation of the plot see text.

The random forest analysis brought more insight into process-based model performance
and its influencing factors. Figure 5.8 illustrates the importance of each potential predictor
for different performance metrics. Apparently, overall model performance (here measured via
KGE) primarily depends on the wetness preconditions (P36). While reservoir size (Vcap) plays
only a minor role for the overall performance metric KGE, it clearly affects correlation and
bias. (Mis)match of standard deviation (VAR), however, is mainly determined by both wetness
conditions and reservoir size. Overall, long-reaching antecedent wetness condition (P36) is more
important than the conditions of the preceding 12 months (P12), and reservoir capacity (Vcap)
is dominant over upstream catchment area (Aup), although the latter is not negligible. The
current rainfall conditions, in terms of intensity (Pmax) and sum over a rising/falling period (Preg),
whether it is a reservoir level increase or decrease period (∆vol), and the number of upstream
reservoirs (nresup) show little or no explanatory value for any of the performance measures.

To analyse the specific influence of predictors on the response variables, Fig. 5.9 relates
the values of the most influential predictors to the corresponding performance measures.
This is done by plotting the occurrences of predictor categories in the highest and smallest
valued leaf nodes of all regression trees within the random forest. It shows that under dry
preconditions (P36 = min) there is a tendency for underestimation of standard deviations
(VAR = min), i.e. a less variable reservoir storage series than observed, but a better a better
overall performance (KGE = max). On the other hand, under wet conditions, especially for
larger upstream catchments (Aup = high), results tend to show an overestimation of variability
(VAR = max), whereas under dry conditions in small catchments variability is more often
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Figure 5.6: RMSE of regional reservoir storage hindcasts with increasing forecast horizon
and lead time. Monthly values are obtained by aggregation over the full analysis period (1986
to 2014) for a specific month. Each box reflects the distribution of the 20 ensemble members.
Coloured solid lines refer to the ensemble median taken as the deterministic forecast and
analysed individually.

Table 5.3: Results of regional calibration of the process-based model. BE refers to benchmark
efficiency (Eq. 5.1) and was used for calibration; PBIAS is percent bias, i.e. the average
tendency for over- or underestimation of simulations in comparison to observations. For Lower
Jaguaribe, no observations at the catchment outlet were available.

Region BE PBIAS (%)

Banabuiú 0.84 11.78
Orós 0.76 0.92
Salgado 0.79 7.37
Castanhão 0.76 6.93
Lower Jaguaribe [no obs.] [no obs.]

underestimated. For small reservoirs correlation is mostly low. It should be noted, however,
that relationships cannot always be clearly distinguished. For instance, a low precipitation sum
over the preceding year (P12) may result in both a high and a low KGE value, whereas very low
precipitation over the preceding 3 years (P36) only led to a high KGE. Furthermore, there is no
relationship between reservoir capacity and KGE.

5.5 Discussion
5.5.1 Robustness of performance metrics

There are two important algorithmic parameters affecting drought predictions of this study. One
is the threshold of drought definition, i.e. the quantile of drought index observations specifying
a drought, which was set to 0.3 as commonly used in the study area among water managers.
This choice affects the performance values of BSS and ROCSS. The other is the number of
probability bins into which hindcasts are grouped for further analysis, affecting ROCSS but
not BSS as BS was herein calculated without probability binning (see Eq. 5.6). Figure 5.10
illustrates the sensitivity of verification attributes to the two parameters. It shows that a higher
drought threshold results in a more evenly running curve while a smaller threshold of 0.2 tends to
be better oriented towards the reliability line and appears more variable (Fig. 5.10a). This might
result from the necessarily lower number of values of smaller thresholds. However, altogether
general conclusions remain untouched, namely underforecasting and the statistical being
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Figure 5.7: RMSE of regional reservoir level hindcasts for different antecedent wetness con-
ditions. Wetness is expressed by three different accumulation horizons of rainfall (1, 12, and
36 months; left, centre, right). Each box reflects the distribution of the 20 ensemble members.
Coloured solid lines refer to the ensemble median taken as the deterministic forecast and
analysed individually.

superior to the process-based model. Regarding the number of probability bins (Fig. 5.10b),
a larger value leads to a more variable curve. This effect can be attributed to the decreasing
number of values per bin with increasing number of bins. For this study, it was decided to use a
value of seven as it appears to be the best compromise between sufficient data availability per
bin and an adequate number of bins for further calculations (namely ROCSS). Even affecting
the values of ROCSS and partly BSS (not shown), it can be concluded that the somewhat
arbitrary decision on a certain drought threshold and the number of bins, as long as reasonable
values are chosen, does not affect the general results of the analysis.

The RMSE as an accuracy measure is free of such decision parameters but is admittedly
influenced in a different way. With the target variable (relative regional reservoir filling) ranging
from 0 % to 100 %, the actual maximum value of the metric tends to be smaller during wet
periods: the observed value (which is usually greater than zero) effectively causes the RMSE to
be limited to about 40 % to 50 %. This effect is reflected as the apparent performance plateau
for the process-based model in Fig. 5.6 and is also likely to affect the results presented in
Fig. 5.7. The effect that, when driven by hindcasts, the process-based model exhibits larger
errors under dry than under wet conditions can be at least partially attributed to this issue. In
contrast, when models are driven by observations, it seems reasonable that model simulation
performance is generally better under dry conditions (Fig. 5.7). However, as no threshold effects
can be observed and the RMSE values are always considerably lower for the statistical model,
this effect should not influence general conclusions of the model comparison.

5.5.2 Model comparison

In terms of simulation accuracy when driven by observations and for drought event prediction
in the hindcast mode, both models perform equally well. Hindcast accuracy, however, is
substantially lower for the process-based approach. This result is well in line with findings of
other studies that simple statistical model approaches often perform equally well or even better
than complex process-based prediction systems, especially in tropical regions due to exploitable
correlations among meteorological and hydrological variables (Block and Rajagopalan, 2009;
Hastenrath, 2012; Sittichok et al., 2018). It has to be noted, however, that the process-based
approach with the WASA-SED model achieved acceptable results on monthly (hindcasts) and
even daily (calibration metrics) timescales whereas former studies in NEB reported passable
results only aggregated over seasonal scales (Alves et al., 2012; Block et al., 2009; Galvão
et al., 2005).
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Figure 5.8: Predictor importances for each response variable determined by the random forest
approach. In this case conditional permutation importance was used (see Sect. 5.3.4).

The reason for the discrepancy of model ranking between simulation and hindcast mode
can be attributed to the different model structures. To illustrate this, Fig. 5.11 shows the average
monthly changes of regional reservoir storage for the different models and modes in comparison
to observations. For the simulation mode (dashed lines) it can be seen that the process-based
model, though exhibiting a constant overestimation, all in all is well in line with observations.
The statistical model, however, shows a more or less constant storage change over the whole
simulation horizon, resulting in over- and underestimations and, eventually, a good overall
simulation performance (see Fig. 5.3). In hindcast mode (solid lines), for the process-based
model the overestimation of storage change is much more pronounced and the peak shifted
from April to March. Although the statistical model now more realistically exhibits seasonal
dynamics, the general pattern still appears too smooth, which effectively results in less deviation
from observations than the output of the process-based model (Fig. 5.4). This indicates a strong
influence of precipitation forcing on the process-based model while the statistical approach
shows less pronounced reactions to changes in the rainfall input. Consequently, deficiencies
in this forcing affect the process-based model much more. This, in addition to the plateau
effect discussed in Sect. 5.5.1, explains the more diverse RMSE values among the hindcast
realisations for the process-based model at the beginning of the rainy season when reservoirs
are filling up (Fig. 5.6) and the higher RMSE under antecedent dry conditions (Fig. 5.7 middle
and right panels). In contrast, for the statistical model, the general patterns of RMSE over
different lead times or under different antecedent moisture conditions do not change in hindcast
mode when compared to simulation mode. The issue of uncertainties arising from defective
precipitation forcing will be discussed in more detail later on.
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Figure 5.9: Relative distribution of predictor class occurrences within the largest and smallest
valued leaf nodes aggregated over all regression trees of the random forest for each response
variable. Shown are only the most important predictors.

Despite the lower prediction performance, the process-based approach still provides benefits
over the statistical model. This includes the potential access and investigation of multiple
spatially distributed hydrological variables with daily resolution, such as evapotranspiration,
runoff generation, or streamflow, which were generated during the model runs. This clearly
excels over the statistical model, which only yielded predictions of a single target variable.
Another advantage is that model output is not only provided in a regionally and monthly
aggregated manner, as for the statistical approach, but for all individual strategic reservoirs in
the area as daily time series. Figure 5.12 illustrates that accuracies of individual reservoirs
exhibit a slightly larger variation, but the RMSEs of individual reservoirs are at a similar level as
when regionally aggregated. This suggests that most of the single reservoirs can be modelled
with a comparable performance to the regionally aggregated values.

A further advantage of a model such as WASA-SED is that underlying processes are
directly represented. As such it can be of higher value to water managers interested not only
in streamflow or reservoir level forecasts but also in the investigation of process behaviour
or assessments under changing boundary conditions. Therein the model could be used in
scenario analyses, such as climate change impact assessment, or sensitivity analyses of,
for instance, uncertain meteorological input to detect critical streamflow or reservoir stages.
Furthermore, the model is transferable and can be easily applied in different regions and over
different spatial and temporal scales, only limited by computational resources and available
input data.

5.5.3 Deficiencies of the process-based simulation approach
To improve the performance of the process-based model it is first necessary to identify sources
for simulation inaccuracies. It was shown that the process-based model achieved regionally
different performances. A comparison of Fig. 5.3 and Table 5.3 reveals that regional bias during
the calibration period is in compliance with the ranking of regional simulation errors. Moreover,
although exhibiting the highest BE value, the region of Banabuiú is characterised by the largest
bias during calibration and highest simulation and hindcast errors. As the latter is observed for
both the process-based and statistical approaches, the reason is suspected to originate from
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Figure 5.10: Reliability plots for different settings of (a) drought thresholds and (b) number of
probability bins. Solid lines refer to the values used in this study. The gray 1 : 1 lines in each
plot illustrate perfect reliability for comparison.

uncertainties in observations, i.e. precipitation measurements within the region, or defective
reservoir level acquisition. The reason for the Salgado region being out of the general pattern
for the process-based model certainly originates from the different calibration procedure applied
here, namely the use of streamflow measurements in contrast to reservoir dynamics as for the
other regions. In addition, the region is distinct from other parts of the catchment in terms of
environmental settings such as larger groundwater influence and sedimentary plateaus in the
headwater area. Conversely, the transfer of the calibrated parameters from Castanhão to the
Lower Jaguaribe region seems justifiable as the simulation error was small. Overall, reservoir
size largely influences both simulated storage time series and bias. Model performance,
however, appears to not be superior for large reservoirs. Moreover, wetness condition in terms
of antecedent rainfall sums over the last 36 months is of major importance, i.e. dry conditions
lead to the best model performance in terms of KGE. The latter is not surprising as rainfall in
the study area is extremely heterogeneous both in space and time, usually characterised by
convective heavy precipitation events with short durations. Thus, prolonged periods without rain
constitute a spatially more homogenous input. Conversely, the aggregation of rainfall to daily
sums and interpolation over subbasin units, on average covering an area of about 700 km2,
must necessarily induce uncertainties. The assimilation of observed reservoir filling states at the
beginning of each hindcast season is therefore a reasonable approach to improve predictions
and compensate for preceding rainfall input uncertainties during the initialisation run.

5.5.4 Potential improvements
There are several options to make use of the findings of this study and improve the forecast
system in upcoming applications. In the presented study, observed reservoir level data were
assimilated into the process-based model to correct the initial conditions for the hindcast runs
by simply replacing model states by measurements. For assimilation, more formal approaches
already exist, such as the rich families of Kalman and particle filtering approaches (e.g. Komma
et al., 2008; Liu and Gupta, 2007; Sun et al., 2016; Vrugt et al., 2013; Yan et al., 2017). These,
however, require a profound quantification of both simulation and observation uncertainties and,
thus, much additional information and, moreover, significantly higher expenses in terms of data
preparation, processing, and model application. Nevertheless, they hold the potential to better
account for uncertainties in the observations, which were disregarded in this study, despite
being considerable.
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Figure 5.11: Monthly changes of regional reservoir storage averaged over all regions, years,
and hindcast members for the two models and application modes in comparison to observations.

Preprocessing schemes in the context of hydrological forecasting usually focus on the
improvement of rainfall predictions used as main drivers for hydrological models (e.g. Kelly
and Krzysztofowicz, 2000; Reggiani and Weerts, 2008; Verkade et al., 2013). This is partly
already included in the downscaling scheme applied to GCM products but may as well be further
extended. The importance of rainfall forcing on model results, especially for the process-based
approach, was already addressed above. A further comparison of the statistical properties
(distribution of daily sums, dry/wet spell lengths) of rainfall hindcasts used in this study with
observations revealed large discrepancies. Some preliminary tests suggested these to be
responsible for the decreased accuracy of the process-based model hindcasts (not shown).
In comparison to observations, the hindcasts contain (i) a general shift of rainfall seasonality
towards the first months of the rainy season; (ii) a much lower frequency of both wet and dry
periods for spell lengths up to 4 days; (iii) a lower frequency of low daily rainfall values while the
number of large precipitation events is overestimated and daily extreme values are much higher;
and (iv) a much higher probability that a dry day follows a dry day, and the probability that a
wet day follows a wet day is often underestimated. These findings indicate a high potential
for improvement in future applications in the study area. As a first starting point, monthly
bias of hindcasts per region was corrected and both models were rerun. Figure 5.13 shows
that this relatively simple procedure already results in a considerable decrease in RMSE for
the process-based model, even though it is still higher than for the statistical approach. The
improvement of drought forecast performance in terms of BSS and ROCSS is thereby less
pronounced than the increase in accuracy. For the statistical model, performance metrics hardly
change, which can be attributed to the smoothing effects of its model structure on regional
reservoir storage identified in a previous subsection (Fig. 5.11).

In addition to preprocessing, post-processing approaches directly tackle the correction of
streamflow forecasts by statistical means including bias correction or the estimation of an
error model applied to predictions (e.g. Bourdin et al., 2014; Krzysztofowicz and Kelly, 2000;
Roulin and Vannitsem, 2014; Todini, 2008). Especially when focussing on extreme events,
such as floods or droughts, the adequate characterisation of model residuals exhibits a large
potential when incorporated into the correction of simulations and predictions (Farmer and
Vogel, 2016). While being still an active field of research, such means are routinely applied in
operational streamflow forecasting and, in addition to rainfall correction, could further improve
model performance.

The parametrisation of the process-based model could be further improved by the use of
more and different data sources. This includes, for instance, the use of satellite data to infer
spatially distributed reservoir information with greater detail and more accuracy than currently
available. The study area has already been of interest in ongoing research (Delgado et al.,
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Figure 5.12: Comparison of accuracies of the process-based model for different spatial aggre-
gation levels on a monthly timescale.

2018a) and past studies (Heine et al., 2014) addressing that issue. In addition, management
plans as well as data on water abstraction and reallocation from the larger reservoir should
be included in the model but were not available for the present study. Another opportunity is
to increase rainfall input resolution in the model to better account for sub-daily and spatially
heterogeneous precipitation. This could be done by improving the current spatial scaling of
rainfall in the model to account for heterogeneous patterns and to make use of radar rainfall
data recently made available in the area.

The combination of multiple models may provide further benefits in cases where different
models show strengths in different aspects of performance (e.g. Block and Rajagopalan, 2009;
Schepen and Wang, 2015). However, within this work the two employed model approaches,
with respect to simulation performance, achieved almost equal results and did not diverge in
aspects such as lead time and antecedent moisture conditions. Thus, the combination of the
two models analysed in this study is not expected to provide benefits.

5.5.5 Generally valid features and broader implications of results

The possibilities to generalise and transfer insights gained for one particular environment and
a specific hydro-climatological setting will always be limited to questions of transferability of
model approaches and the applicability of particular methods. In other word, one cannot expect
that the actual numbers of model performance, be it statistical or process-based, have similar
values under differing conditions. Adapting the two forecast setups presented here to other
regions will presumably not lead to the same ranking of the statistical vs. the process-based
model approach. In order to achieve an optimal forecast score, it is obvious that the forecast
design, e.g. selection of target variables, models, and input data, needs to be tailored to the
region of interest and to the purpose of the forecast including the designated forecast lead time.
The design of the statistical forecast approach presented here is particularly tailored to the
rather specific hydro-climatological and landscape conditions of this semiarid region. In our
case, the statistical model relies on antecedent wetness conditions of the basin, quantified by
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Figure 5.13: As Fig. 5.4 but driving hindcasts with additional bias correction of precipitation on
the monthly scale (dotted boxes).

precipitation indices (SPI and SPEI) aggregated over several months (see regression equations
in Table 5.2). This satisfactorily describes the attenuated hydrological behaviour of this particular
semiarid region, which is further influenced by many large and small reservoirs, in order to
obtain forecasts over several months. This adaptation to the regional peculiarities does not
per se allow a spatial transfer of the derived statistical model. However, the application of
the underlying statistical model principles to other regions is generally possible, given that
appropriate regional information and forcing data are available.

The transfer of a process-based hydrological model to another region is, generally speak-
ing, more straight forward, because one can rely on the fact that the underlying physical
assumptions and process descriptions of the model are valid for different environments and
hydro-climatological conditions. In other words, the hydrological model implicitly contains the
representation of general hydrological processes and, therefore, represents an adequate work-
ing hypothesis of the hydrological system at other target locations. Still, process-based models
also require a sufficient data availability and quality at the region of interest while forecast
performance for both model types primarily depends on the quality of rainfall forecasts.

The question of which modelling approach will finally yield a better performance score
cannot universally be answered. On the one hand, this is dependent on the predictive power
(i.e. the strength of correlation between predictors and target variable) of the statistical model
and, on the other hand, on the validity of the physical assumptions and governing equations
of the process-based model. Both model strategies benefit from good data conditions, while
the required type of data is rather different. The advantage of a statistical model approach as
presented here is that less distributed data of the catchment are required and the model is
easier to establish and needs much less computational power. On the other hand, the process-
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based model allows us to simulate a rather large variety of hydrological variables in a spatially
distributed manner. This enables independent verification of process-based models and leads
further to a high explanatory power of this model type, which are important advantages, even
for cases where the overall performance of a process-based model might be lower compared to
a statistical model approach.

5.6 Conclusions
The aim of this work was to explore options for a seasonal forecasting system of regional
reservoir volume and drought occurrence with lead times up to 6 months for the semiarid
northeast of Brazil. In this context, the performance of a complex process-based hydrological
model was evaluated against a much simpler statistical model developed by Delgado et al.
(2018b) given the same meteorological forcing. The study pursued three objectives.

First, the two modelling approaches were to be investigated in terms of mere simulation
performance, i.e. when driven by meteorological observations. It turned out that both models
performed almost equally well. However, regional differences exist where the process-based
model achieved slightly better results in four out of five subregions. Furthermore, regional
performance ranking of both models was equal in four regions. This suggests that data
uncertainty of meteorological input or reservoir level observations exceeds model structural
uncertainties and dictates simulation performance in the study area.

Second, the process-based model was to be verified as a prediction tool in a hindcast
experiment and evaluated against the statistical approach. In comparison to simulation runs
with observed forcing, hindcast performance of the process-based model dropped significantly
while the performance of the statistical approach decreased only to a small degree. This
can be explained by the structure of the statistical approach which is less sensitive to rainfall
forecasts. Although this exhibits less realistic intra-seasonal dynamics than for the process-
based model, performance metrics were eventually superior as uncertainties from precipitation
hindcasts could not propagate as much to the model output. However, apart from reservoir
level predictions, forecasting of mere drought occurrence works almost equally well for both
approaches. The two models exhibit satisfying event resolution while slight deficiencies in terms
of underforecasting were detected regarding the reliability of the hindcasts.

The third and last objective was to identify the major sources for simulation and hindcast
deficiencies and provide guidelines for further improvement. In general, both models achieve
better results under dry than under wet (pre)conditions. An attempt to identify potential predictors
of model performance for the process-based model revealed that reservoir size and antecedent
rainfall conditions explain most of the variance of the performance metrics while variables
such as current precipitation amount and daily precipitation intensity are of surprisingly low
importance. However, hardly any clear patterns through which these predictors contribute
to model performance could be identified. Consequently, no direct means through which the
process-based model could be improved to achieve better simulation results could be derived.
Also regarding the hindcasts, precipitation was identified as the most significant source of
uncertainty. It was found that rainfall hindcasts from the downscaled GCM show statistical
properties significantly distinct from observations. Therefore, simple approaches, such as the
tested monthly regional bias correction, already result in improved hindcast accuracies. Future
studies should also consider the use of more sophisticated means of preprocessing as well as
post-processing approaches, such as forecast error modelling, or innovative data assimilation
and data fusion approaches to correct erroneous model states.

So, what is the added value of a process-based hydrological model? In our case, when it
comes to reservoir level or mere drought event prediction on regionally and monthly aggregated
scales, a statistical model proved to be the better option, as computational effort is much
lower and the model is easier to apply. Nevertheless, we advocate the application of an
appropriate process-based hydrological model in cases where predictions on finer spatial
(e.g. for individual reservoirs) and temporal scales are desirable. In cases for which information
on more hydrological processes or variables, such as evapotranspiration or various runoff
generation and concentration variables, is required, a process-based model is the right choice.
As such, due to the explanatory power of process-based hydrological models, decision makers
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and stakeholders can be supported to detect and understand hydrological changes in their
catchments in order to derive reasonable and sustainable decisions.

These conclusions are likely to differ among study sites, primarily depending on the charac-
teristics and the degree of stochasticity of the hydro-meteorological system and available data.
In regions where hydrological variables can be described by covariates, which in turn can be
forecast with high reliability, statistical models might be advantageous. This would more likely
be the case in climatic regions that are characterised by a high degree of seasonality, such as in
many semiarid regions around the globe. In contrast, process-based models are independent
of such correlation patterns and are more generically applicable due to the underlying process
representations. They can be applied under any environmental and hydro-climatological con-
ditions, for which the incorporated process formulations constitute valid working hypotheses,
and thereby primarily depend on rainfall input. Consequently, they can also be used in regions
characterised by more chaotic weather and low predictability over seasonal scales, such as in
temperate climatic zones, provided adequate rainfall forecasts can be delivered.

Therefore, further research is needed to increase the accuracy of important model drivers,
i.e. for many regions as well as in our case of dry northeastern Brazil, first and foremost
precipitation. We expect that the use of new data products, such as rainfall radar and satellite
data along with conventional data from rainfall stations with sub-daily resolution, in combination
with innovative methods of data assimilation and data fusion, may provide opportunities to
improve forecast accuracy, in particular for process-based hydrological models. In that respect,
the time and effort of their application can be justified and allow for the exploitation of their
advanced capabilities.
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5.A Appendix
5.A.1 Terminology

The word forecast generally refers to model-based estimations of future meteorological or
hydrological variables such as precipitation, streamflow, or reservoir level. The term prediction,
in this article like in many others, can be used synonymously to forecast. With hindcast we
specifically denote retrospective forecasts, i.e. predictions issued for a period in the past
building only on data available up to the time of start of the model run. The results are then
compared with observations. In some occasions, the terms forecast and hindcast might be
used interchangeably. In contrast to predictions or hindcasts, we denote model simulations as
model runs driven by observations instead of forecasts of model forcing.

Many of the notions discussed in this article refer to the field of forecast verification. While
being standard in atmospherical sciences, some terms are less common for the hydrological
community and thus will be briefly explained in the following. For more information, the reader
is generally referred to textbooks such as Wilks (2005). The analysis of drought hindcasts
will focus on their quality, i.e. the correspondence of such hindcasts with observations. This
quality as defined by Murphy (1993) can be described in terms of nine different aspects of
which five will be addressed explicitly in this study: accuracy as the average agreement of
forecast–observation pairs which is as such inversely proportional to the error ; reliability which,
in the case of probabilistic drought forecasts, quantifies the average correspondence of forecast
probabilities and observed drought occurrences; resolution evaluating the ability of a model
to correctly predict an event; sharpness describing the variability of forecasts of a model; and
skill comparing the ability of a model with a much simpler reference model, such as climatology
(which is the observed long-term average of a specific variable) or persistence (i.e. no change
of a variable or the pattern of a quantity over the forecast period).

Furthermore, we distinguish process-based from statistical models. The former are rather
complex computer programs combining a set of mathematical equations (simple, linear up to
complex differential equations), which can be derived from first-order principles, e.g. conserva-
tion of mass and energy. The aim here is to represent, up to a certain degree of abstraction,
the governing subprocesses of the hydrological cycle and their interactions. They compute
estimates of the unknown variables (e.g. river discharge, soil moisture, reservoir storage) as a
reaction to a set of input or driving variables (e.g. precipitation, solar radiation, water abstrac-
tion). In this paper, the underlying process-based hydrological model refers to the WASA-SED
model which is described in Sect. 5.3.4. The latter, on the other hand, relies on purely empirical
relationships between one or more predictors and the target variable, often consisting of only
a single equation, typically obtained by regression. Consequently, the regression model of
Delgado et al. (2018b), which is used for model intercomparison in this study, is referred to as
the statistical model or statistical approach throughout this work.
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6.1 Summary of results

The general aim of this thesis was to pursue the understanding of uncertainties in hydrological
modelling. To achieve this, existing research gaps have been identified and analysed in more
detail. In the following, the general results shall be summarised with respect to the specific
research questions formulated at the outset of this thesis.

What are the strengths and deficits of frequently applied hydrological models? What are the
reasons for deficits and how can they be alleviated?
The diversity of landscapes and hydrological conditions, datasets, and research objectives led
to a large variety of hydrological models with different conceptualisations and complexity. To
capture this complexity and explore common strengths and weaknesses of hydrological models,
an online survey addressed to German-speaking model developers and users was conducted
(Chapter 2). This survey, though not fully representative, constitutes a starting point for future
model enhancement. First of all, it was found that there is a high degree of subjectivity in the
classification of models into conceptual groups, as some models were classified differently by
different participants of the survey. This can be explained by the fact, that different process
representations can be implemented with a varying degree of complexity within one model.
Nevertheless, evapotranspiration processes are usually represented in a complex and more
physically based manner, while others, especially processes related to groundwater, are often
simplified. As a result, the participants of the survey were especially calling for a revision of
soil and groundwater processes in their models. However, there was a great diversity in the
specifications of strengths and deficits of models and their causes. In general, flexibility of
models, for instance because they include a selection of alternative process representations or
are relatively independent of parameter calibration, was seen as a strength by the participants.

How does the methodology of discretisation of landscapes into spatial model units influence
simulation results?
Landscapes and environmental conditions are parametrised in many different ways in computer
models. However, it turned out that not only different philosophies of landscape discretisation
exist, but also different algorithms and computer tools, even for the same discretisation approach
(Chapter 3). Yet many approaches require user interactions and allow only limited or no workflow
automation at all. Consequently, the influence of typical decisions along the discretisation
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process has hardly been investigated. Therefore, a new software package has been developed
to largely automatise the processing steps of hillslope-based landscape parametrisation. This
enabled the investigation of crucial discretisation parameters via Monte Carlo-based sensitivity
analysis. Within the performed case study, model output appeared to be relatively independent
from such decisions on discretisation. The highest impact could be directed towards spatial
resolution, represented by subbasin size as well as the number of elementary hillslope units,
which formed the basis for the derivation of landscape units, the spatial entities in the employed
hydrological model.

What is the adequate structure for a process-based hydrological model?
To identify the most adequate model structure for a hydrological simulation, several alternative
structures have been transferred into a flexible model environment (Chapter 4). Model structure
identification was performed by conducting dynamic, i.e. time varying, identifiability analysis.
Model structures in this study consisted of alternative process representations of evapotranspi-
ration, soil water movement, and runoff concentration. In addition, different numerical solvers for
the temporal integration of the underlying ordinary differential equations were tested, which has
not been done before in the field of process-based hydrological modelling. Different parametri-
sations of effective model parameters were further included and analysed in an integrated way
together with the choices for specific model structures. It turned out that process formulations
of evapotranspiration are better identifiable, i.e. specific evapotranspiration formulas consis-
tently achieve acceptable model performance while others do not, in comparison to the other
process groups, where often no superior formulation could be detected. However, the optimal
combination of model structure and parametrisation varied in space and time. There is strong
evidence that identifiability of certain model configurations is primarily driven by meteorological
conditions, especially rainfall, and hydrological characteristics of the landscape. Surprisingly,
the most accurate numerical solver is not always leading to the best simulation results. There
are indications that this can be attributed to compensation effects due to correlations among the
numerical solver, process formulations, and parametrisation, where imperfect model structures
result in optimal model performance with a certain parametrisation. Eventually it has to be noted
that there is no single best performing combination of process representation, numerical solver,
and parametrisation that gives optimal results under all conditions, but some combinations are
more suitable than others.

Are process-based models suitable tools for operational forecasting? What are the deficits and
how can forecasts be improved?
In operational forecasting, fast computation time is crucial. Rapidly growing computational
resources more and more allow for fast initialisation and application of even complex process-
based models. Therefore, the suitability of a process-based model has been analysed in
comparison to a simpler statistical regression approach in an experiment of seasonal drought
prediction in northeast Brazil (Chapter 5). Regarding the forecasts of regional reservoir filling,
which was defined as drought proxy, the statistical approach delivered results superior to the
process-based model. However, both models achieved acceptable and comparable results in
terms of prediction performance of mere drought occurrence. Moreover, when driving both
models with measured instead of predicted rainfall, the process-based model achieved a
simulation performance superior to the regression. Generally speaking, uncertainty in the
rainfall prediction could be identified as the largest source of uncertainty. This is more relevant
for the process-based than for the statistical approach. Consequently, the improvement of
hydrological forecasts should primarily focus on the correction of rainfall prediction as main
driver for subsequent hydrological predictions, for instance by employing bias correction or other
means of pre-processing. Post-processing methods may further improve potentially erroneous
hydrological predictions. Even though they demand more computational resources and greater
efforts in their initialisation, advantages of process-based models are that they can readily
produce hydrological predictions at finer spatial and temporal scales, and provide information
for other variables such as evapotranspiration or runoff. It can be concluded, that, as long as
sufficient computational resources are available, the application of complex process-based
models in operational forecasting should not be limited by computer power anymore. However,
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in order to obtain adequate predictions and to be able to use the full capacity of process-based
models, rigorous initialisation as well as pre- and post-processing are vital.

6.2 Discussion and directions for further research
6.2.1 Advances on model deficits and methods for their identification

Different strategies were pursued in this thesis to explore the deficits and uncertainties of
hydrological models. These can be roughly classified into informal and formal approaches.

The online survey presented in Chapter 2 can be regarded as informal approach. It directly
aims at collecting and analysing the needs and concerns of modellers, but is associated with
a high degree of subjectivity as the results are influenced by the perceptions on hydrological
processes, experiences, and subjective opinions of the survey participants and the different
purposes of models. Sensitivity and identifiability analysis are more formal approaches to
assess the impact of uncertain input factors and determine the behavioural range, where input
factors produce adequate model performances. Thereby they support uncertainty analysis and
can as well be used to identify deficits in model structures. Such analyses were presented in
Chapter 3, where landscape discretisation was investigated, and Chapter 4, which focused
on model structures. Other formal approaches exist, treating individual models as source of
uncertainty in an integrated way, but thereby obscuring the various uncertainties associated
with a specific model, such as is done in Bayesian model averaging (Duan et al., 2007; Hoeting
et al., 1999). In general, the identification and elimination of model deficits can be conducted
by rejection of certain models or model structures (Graeff et al., 2009), stepwise improvement
(Fenicia et al., 2008), or even mixed approaches (Francke et al., 2018b).

In this work it turned out that in many hydrological models evapotranspiration processes are
implemented in a more complex, physically based manner while processes of groundwater and
soil water movement are often simplified. The latter is seen as a deficit by many modellers,
who therefore call for a revision of these process implementations. On the other hand, even
so-called physically based evapotranspiration approaches rely on strong simplifications of
real-world processes. An example is the frequently used Penman-Monteith formula, which is
based on the so-called big-leaf approach, where the land surface is reduced to a homogeneous
plant cover, and water and energy fluxes are described by the concept of resistances (for a
comprehensive discussion see Shuttleworth, 2007). Consequently, the experiments shown in
Chapter 4 demonstrate that even process-based formulations of evapotranspiration processes
may lead to different model performances under contrasting hydrological and meteorological
conditions, depending on the assumptions and simplifications of a specific approach. Moreover,
the selection of a specific evapotranspiration model had a larger influence on model results
than a specific approach for soil water movement.

Deficiencies of model structures can often be compensated by their parametrisation. On the
other hand, such parametrisation might by physically unrealistic and limit the predictability of
models and their transferability to (even slightly) different environments. Moreover, compensa-
tion effects can distort the findings of formal approaches, eventually leading to surprising results
(e.g. the low identifiability of accurate numerical solvers shown in Chapter 4) and consequently
impeding model improvement.

Model resolution is another important aspect. In Chapter 3, the definition of the sizes
of computational units was identified as the most influential factor during model initialisation.
Temporal resolution, on the other hand, affects the integration of model equations. This becomes
relevant if water fluxes occur over characteristic time scales different than the size of model time
steps. However, increasing model resolution is often computationally not feasible. Therefore,
this issue adds a further dimension to the compensation effects and hinders model structure
identification (Chapter 4).

In future studies, it will be essential to reduce undesired side-effects to a minimum. However,
strategies need to be found to increase model resolution, while keeping runtimes computationally
feasible and/or applying statistical methods (such as sensitivity analysis) with a small number
of model evaluations. To determine the optimal model structure, data science (e.g. machine
learning) could be combined with process knowledge before conducting time consuming model
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runs. In order to advance process understanding and implementation into models, workshops of
model application, such as presented by Holländer et al. (2014), could provide further insights
by comparing model results and opinions of modellers and thereby accounting for the impact
of subjective decisions. To achieve such goals, flexible model frameworks as employed in
Chapter 4 are promising tools to conduct experiments in a controlled framework by following a
predefined protocol, reducing the chances of random errors and undesired side-effects.

6.2.2 Software solutions for explorative uncertainty analysis
To study uncertainties in the field of hydrological modelling, a large number of model runs and
repeated model application is essential to solve the involved complex differential equations,
which are analytically intractable. Therefore, an important focus of this thesis was the devel-
opment and enhancement of efficient computer tools to automatise workflows. The lumpR
package for the statistical software environment R is such a tool, which serves the discretisation
of landscapes into model units and the initialisation of hydrological models (Chapter 3). As
such it complements the numerous existing software solutions for landscape discretisation (see
Section 3.2.3 for a review) and integrates features that these do not offer or contain only partially.
It is free and open source and is flexible in a way that it allows for complete workflow automation,
which enables the efficient use in Monte Carlo simulation, but still allows user interaction, such
as to include additional information depending on data availability, and therefore enables optimal
characterisation of spatial model units.

Flexible hydrological models have been proven as efficient tools to study process dynamics
in catchments and refine process descriptions. As such, a selection of alternative process
implementations was seen as a strength of models by participants of the survey presented in
Chapter 2. During the work on this thesis, the eco-hydrological simulation environment (ECHSE)
introduced by Kneis (2015) has been extended and employed (Chapter 4). It builds upon the
philosophy of other flexible frameworks such as FLEX (Fenicia et al., 2008), SUPERFLEX
(Fenicia et al., 2011), or FUSE (Clark et al., 2008b). These, however, are solely based on
simplified conceptualisations of hydrological processes. The SUMMA framework by Clark et al.
(2015b) already contains more rigorous physically based formulations of fluxes of mass and
energy, comes with a range of alternative process formulations, and includes a more advanced
numerical integration of fluxes than is commonly used, but only supports less complex landscape
discretisation. ECHSE, on the other hand, is more flexible in a way that any kind of complexity
regarding spatial discretisation or process formulation can be included. The HYPSO-RR engine,
for instance, is a less complex conceptual model, while the WASA-SED engine, which was
developed and used along this work, involves more complex process formulations and spatial
disaggregation. A drawback still of all such hydrological model environments focussing on
(near) surface processes on the catchment scale is that no partial differential equations can
be solved, i.e. no explicit 2-D or 3-D integration of fluxes is possible. Moreover, even with
today’s capabilities, computational burden is still a major drawback when applying process-
based hydrological models with advanced numerical solvers over catchment scales larger than
1000 km2. However, as for ECHSE, the extensive computational load could partly be attributed
to input–output operations, which could be optimized by reorganising the internal data handling.

Having this in mind, clear recommendations about future advances are difficult. A common
model for the whole community would certainly be advantageous as individual efforts could be
better consolidated than it is the case nowadays, where individual groups of modellers tend
to work on their own advances. This leads to parallel developments and therefore wasting
of efforts and potentially oversight of significant ideas. On the other hand, there are yet
unresolved questions, such as how should generically applicable process representations and
closure schemes be defined (Weiler and Beven, 2015). In the meantime, the use of flexible
environments is certainly advantageous over static model configurations, as process formulation
can be integrated, exchanged, refined, and tested in a straightforward manner.

6.2.3 What is the largest source of uncertainty?
The preceding discussion focussed on model architecture and process formulations. But is this
really the key towards optimal model simulations? Many studies (see for instance McMillan
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et al., 2012) as well as the experiments of this thesis identified model forcing as the primary
source of uncertainty, i.e. first and foremost precipitation. For instance, in Chapter 4 deviations
of streamflow simulations from observations were largest in case of station failure. This is
further supported by Bárdossy and Das (2008) and Francke et al. (2018b) who found that the
number and distribution of rain gauges affect simulation results, and Yatheendradas et al. (2008)
who identified rainfall volume bias as the most significant source of uncertainty in flash flood
forecasts.

A common strategy, especially in flood forecasting, is to account for potential deficits in
precipitation forcing by pre-processing of the rainfall dataset and error modelling (e.g. Kavetski
et al., 2006; Kelly and Krzysztofowicz, 2000; Renard et al., 2010). Yet, Fraga et al. (2019)
concludes that accounting for rainfall uncertainty only has little effect, while the correct repro-
duction of spatial and temporal evolutions of rainfall fields is more important. This could be
realised by increasing the spatial resolution of the model entities, which direct precipitation into
the model. In the WASA-SED model, for instance, these are the subbasins and, indeed, in
Chapter 3 subbasin size has been identified as the most important discretisation parameter.
Moreover, during the implementation of process representations into the ECHSE framework,
synthetic experiments for the spatio-temporal investigation of soil water movement in the model
showed that there is a high influence of spatial and temporal resolution on adequate model
functioning (not shown in this work). On the other hand, the higher the model resolution, the
more important is a high station density, which is often not given (Bárdossy and Das, 2008).
To overcome this issue, remote sensing data, such as satellite or radar measurements, can
be used as they provide a high spatial and temporal resolution. This usually comes at the
cost of a high uncertainty in rainfall volume estimates, which is why remote sensing data are
commonly used in combination with station-based information (Abon et al., 2016; Kneis et al.,
2014; Yatheendradas et al., 2008).

Considering all the potential means for improvement of both the model and its forcing, it
should be kept in mind that calibration is still often able to compensate for many deficits in
a way that simulated discharge dynamics adequately resembles observations. At the same
time, however, internal sub-processes such as soil moisture dynamics are often unrealistic, e.g.
exceeding physical limits when integrating the differential equations without solution constraints.
This may influence the predictive capabilities of models and potentially limit the ability of models
to be applied under changing boundary conditions, e.g. in studies of climate change impacts.
In the end it can be concluded that the improvement of models and their input data as well as
the elimination of deficits strongly depends on the field of study and associated objectives. For
instance, an improved representation of underlying processes may lead to a better representa-
tion of water fluxes while model performance is decreasing, possibly because rainfall input is
the main source of uncertainty that can no longer be compensated by parametrisation.

6.3 Conclusion

This thesis provides an overview of uncertainties associated with the application of hydrological
models and aims at filling existing gaps of knowledge. A study of existing literature reveals that
many studies on uncertainties as well as computer tools for their quantification already exist.
However, there is still a large gap with respect to structural uncertainties and more complex
process-based models, which was therefore the focus of this work. Specifically, a survey among
modellers was conducted to collect and analyse their perspectives and concerns, new software
tools have been developed, and computer experiments were carried out to analyse model
uncertainties. The main conclusions and associated needs for further research are summarised
in the following.

• Hydrological modellers have distinct perceptions of the various conceptions of hydrological
models that exist and how models should be applied. As a consequence, results of the
various models applied by different modellers are often hardly comparable, which hampers
the discovery of common deficits and subsequent improvement of models.



118 Chapter 6. Discussion and conclusions

• The software lumpR for automated landscape discretisation and model initialisation was
developed and its applicability proven in a case study. The software was further used
for sensitivity analysis of user decisions and to initialise all further model applications
presented in this thesis. It turned out that spatial resolution in terms of subbasin size and
the number of spatial model units are the most sensitive parameters.

• Flexible model environments were identified as useful tools for the rapid development,
exchange, refinement, and testing of alternative model structures. Their use instead of
static models is therefore recommended.

• The flexible model environment ECHSE has been extended by a new model engine
providing a number of complex, process-based model structures. Together with dynamic
identifiability analysis it was used a diagnostic tool for process-based model building. So
far, research in this field focussed on less complex conceptual model structures and often
neglected the impact of inaccurate numerical solvers to avoid excessive computational bur-
den. However, the presented approach proved to be efficient for the exploration of complex
process formulations, numerical solvers, and associated deficits and uncertainties.

• It was found that the performance of specific model structures and therefore their identifia-
bility is determined by the current meteorological conditions and hydrological character-
istics. Consequently, no optimal model structure exists and compromises are inevitable
during model selection. However, in future studies, data science and process knowledge
could be combined in order to determine the optimal model structure before conducting
time consuming model runs.

• In general, rainfall input was the largest source of uncertainty. The impact was found to
be more relevant for complex process-based than for statistical models. Innovative data
sources (such as remote sensing products) in combination with well maintained local
stations and processing algorithms are required to remedy this deficit.

• Even though modellers generally call for a revision and more detailed description of
soil and groundwater processes in their models, this study found a larger impact of
alternative (but similarly complex and process-based) evapotranspiration approaches on
general model performance. Although they are often regarded as physically based, even
complex approaches such as the Penman–Monteith formula are based on a number of
simplifications that should be revised by future studies.

• Parametrisation can compensate for deficits in model structures. However, this effect may
as well obscure the results of sensitivity and identifiability analyses and therefore hinder
model selection and improvement. Consequently, as the best performance metric might
not be related to the most plausible model structure, the capabilities are limited to transfer
a model into different environments or apply them under changing boundary conditions,
such as in studies of climate change impacts.

• In addition to parametrisation, insufficient model resolution can induce further undesired
side-effects. For instance, the temporal resolution of one day, common in most hydrological
models, is much larger than the characteristic time scale of soil water processes, which
affects the integration of process equations and lead to unrealistic soil moisture states.
Therefore, investigations are needed, how finer model resolution can be achieved while
keeping computational burden within acceptable limits.
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