
University of Potsdam
Hasso Plattner Institute

Information Systems Group

Single-column Data Profiling

Dissertation
zur Erlangung des akademischen Grades
“Doktor der Ingenieurwissenschaften”

(Dr.-Ing.)
in der Wissenschaftsdisziplin

“Informationssysteme”

eingereicht an der
Digital Engineering Fakultät

der Universität Potsdam

von
Hazar Harmouch

Potsdam, den 4. März 2020

http://www.uni-potsdam.de
http://www.hpi.de/naumann/
mailto:hazar.harmouch@hpi.de

This work is licensed under a Creative Commons License:
Attribution 4.0 International.
This does not apply to quoted content from other authors.
To view a copy of this license visit
https://creativecommons.org/licenses/by/4.0/

Reviewers

Professor Dr. Felix Naumann
Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam

Professor Dr. Wolfgang Lehner
Faculty of Computer Science Institute of System Architecture, The Technical
University of Dresden

Professor Dr. Ziawasch Abedjan
Faculty of Electrical Engineering and Computer Science, The Technical University
of Berlin

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-47455
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-474554

Abstract

The research area of data profiling consists of a large set of methods and

processes to examine a given dataset and determine metadata about it.

Typically, different data profiling tasks address different kinds of metadata,

comprising either various statistics about individual columns (Single-column

Analysis) or relationships among them (Dependency Discovery). Among the

basic statistics about a column are data type, header, the number of unique

values (the column’s cardinality), maximum and minimum values, the num-

ber of null values, and the value distribution. Dependencies involve, for

instance, functional dependencies (FDs), inclusion dependencies (INDs), and

their approximate versions.

Data profiling has a wide range of conventional use cases, namely data ex-

ploration, cleansing, and integration. The produced metadata is also useful

for database management and schema reverse engineering. Data profiling has

also more novel use cases, such as big data analytics. The generated meta-

data describes the structure of the data at hand, how to import it, what it is

about, and how much of it there is. Thus, data profiling can be considered as

an important preparatory task for many data analysis and mining scenarios

to assess which data might be useful and to reveal and understand a new

dataset’s characteristics.

In this thesis, the main focus is on the single-column analysis class of data

profiling tasks. We study the impact and the extraction of three of the most

important metadata about a column, namely the cardinality, the header, and

the number of null values.

First, we present a detailed experimental study of twelve cardinality esti-

mation algorithms. We classify the algorithms and analyze their efficiency,

scaling far beyond the original experiments and testing theoretical guaran-

tees. Our results highlight their trade-offs and point out the possibility to

create a parallel or a distributed version of these algorithms to cope with the

growing size of modern datasets.

Then, we present a fully automated, multi-phase system to discover human-

understandable, representative, and consistent headers for a target table in

cases where headers are missing, meaningless, or unrepresentative for the

column values. Our evaluation on Wikipedia tables shows that 60% of the

automatically discovered schemata are exact and complete. Considering more

schema candidates, top-5 for example, increases this percentage to 72%.

Finally, we formally and experimentally show the ghost and fake FDs phe-

nomenon caused by FD discovery over datasets with missing values. We

propose two efficient scores, probabilistic and likelihood-based, for estimat-

ing the genuineness of a discovered FD. Our extensive set of experiments on

real-world and semi-synthetic datasets show the effectiveness and efficiency

of these scores.

Zusammenfassung

Das Forschungsgebiet Data Profiling besteht aus einer Vielzahl von Metho-

den und Prozessen, die es erlauben Datensätze zu untersuchen und Metadaten

über diese zu ermitteln. Typischerweise erzeugen verschiedene Data-Profiling-

Techniken unterschiedliche Arten von Metadaten, die entweder verschiede-

ne Statistiken einzelner Spalten (Single-Column Analysis) oder Beziehungen

zwischen diesen (Dependency Discovery) umfassen. Zu den grundlegenden

Statistiken einer Spalte gehören unter anderem ihr Datentyp, ihr Name, die

Anzahl eindeutiger Werte (Kardinalität der Spalte), Maximal- und Minimal-

werte, die Anzahl an Null-Werten sowie ihre Werteverteilung. Im Falle von

Abhängigkeiten kann es sich beispielsweise um funktionale Abhängigkeiten

(FDs), Inklusionsabhängigkeiten (INDs) sowie deren approximative Varian-

ten handeln.

Data Profiling besitzt vielfältige Anwendungsmöglichkeiten, darunter fallen

die Datenexploration, -bereinigung und -integration. Darüber hinaus sind die

erzeugten Metadaten sowohl für den Einsatz in Datenbankmanagementsyste-

men als auch für das Reverse Engineering von Datenbankschemata hilfreich.

Weiterhin finden Methoden des Data Profilings immer häufiger Verwendung

in neuartigen Anwendungsfällen, wie z.B. der Analyse von Big Data. Dabei

beschreiben die generierten Metadaten die Struktur der vorliegenden Daten,

wie diese zu importieren sind, von was sie handeln und welchen Umfang sie

haben. Somit kann das Profiling von Datenbeständen als eine wichtige, vor-

bereitende Aufgabe für viele Datenanalyse- und Data-Mining Szenarien an-

gesehen werden. Sie ermöglicht die Beurteilung, welche Daten nützlich sein

könnten, und erlaubt es zudem die Eigenschaften eines neuen Datensatzes

aufzudecken und zu verstehen.

Der Schwerpunkt dieser Arbeit bildet das Single-Column Profiling. Dabei

werden sowohl die Auswirkungen als auch die Extraktion von drei der wich-

tigsten Metadaten einer Spalte untersucht, nämlich ihrer Kardinalität, ihres

Namens und ihrer Anzahl an Null-Werten.

Die vorliegende Arbeit beginnt mit einer detaillierten experimentellen Studie

von zwölf Algorithmen zur Kardinalitätsschätzung. Diese Studie klassifiziert

die Algorithmen anhand verschiedener Kriterien und analysiert ihre Effizi-

enz. Dabei sind die Experimente im Vergleich zu den Originalpublikationen

weitaus umfassender und testen die theoretischen Garantien der untersuch-

ten Algorithmen. Unsere Ergebnisse geben Aufschluss über Abwägungen zwi-

schen den Algorithmen und weisen zudem auf die Möglichkeit einer parallelen

bzw. verteilten Algorithmenversion hin, wodurch die stetig anwachsende Da-

tenmenge moderner Datensätze bewältigt werden könnten.

Anschließend wird ein vollautomatisches, mehrstufiges System vorgestellt,

mit dem sich im Falle fehlender, bedeutungsloser oder nicht repräsentativer

Kopfzeilen einer Zieltabelle menschenverständliche, repräsentative und kon-

sistente Kopfzeilen ermitteln lassen. Unsere Auswertung auf Wikipedia-Tabellen

zeigt, dass 60% der automatisch entdeckten Schemata exakt und vollständig

sind. Werden darüber hinaus mehr Schemakandidaten in Betracht gezogen,

z.B. die Top-5, erhöht sich dieser Prozentsatz auf 72%.

Schließlich wird das Phänomen der Geist- und Schein-FDs formell und expe-

rimentell untersucht, welches bei der Entdeckung von FDs auf Datensätzen

mit fehlenden Werten auftreten kann. Um die Echtheit einer entdeckten FD

effizient abzuschätzen, schlagen wir sowohl eine probabilistische als auch eine

wahrscheinlichkeitsbasierte Bewertungsmethode vor. Die Wirksamkeit und

Effizienz beider Bewertungsmethoden zeigt sich in unseren umfangreichen

Experimenten mit realen und halbsynthetischen Datensätzen.

Acknowledgements

First, I want to express my appreciation and gratitude to my advisor Felix

Naumann, who was always a supportive, patient, and caring mentor. This

thesis would not have been possible if he didn’t believe in me. I am truly

thankful for the guidance, the knowledge and the support I received from

him.

My gratitude also goes to Deutscher Akademischer Austauschdienst (DAAD)

for the great opportunity they gave to me at the hardest part of my life. Also,

many thanks to Laure Berti-Équille, Noël Novelli, and Saravanan Thirumu-

ruganathan, I really enjoined our collaboration and discussions.

Furthermore, I am truly grateful for having wonderful friends in the chair

who helped me feel at home. I want to express special thanks go to Thorsten

with whom I had the pleasure to work with and learn from and to Michael

who supported and encouraged me during the final stage of my PhD.

Finally and most importantly, I want to thank my family for their endless

support and love which gave me the confidence to follow my dream. Without

them, I would not be who I am.

Contents

1 Metadata: A Mediator between People, Systems and Data 1

1.1 Data profiling . 3

1.2 Single-column data profiling . 4

1.3 Structure and contributions . 8

2 Cardinality Estimation 11

2.1 Cardinality: The zeroth-frequency moment 12

2.2 Classification of general approaches and algorithms 14

2.3 Review of twelve cardinality estimation algorithms 18

2.4 Comparative experiments . 27

2.5 Summary . 38

3 Discovering Missing Column Headers 39

3.1 Missing schema: Dark data . 40

3.2 Related work . 44

3.3 Similarity search . 45

3.4 Topic coherence . 50

3.5 Missing schema discovery . 52

3.6 Experiments . 58

3.7 Summary . 69

4 The Impact of Missing Values on FD Discovery 71

4.1 FDs and incomplete data: Trust . 72

4.2 Related work . 76

4.3 Genuine, Ghost, and Fake FDs . 77

4.4 Identifying genuine FDs . 81

4.5 Probabilistic FD genuineness . 81

4.6 Likelihood-based FD genuineness . 85

i

CONTENTS

4.7 Experiments . 86

4.8 Summary . 97

5 Conclusion and Outlook 99

References 103

ii

Chapter 1

Metadata: A Mediator between

People, Systems and Data

“Metadata liberates us, liberates

knowledge”

Dr. David Weinberger

The main challenge facing data scientists today is finding (and cleaning) the right

datasets for a given data science scenario [Miller, 2018]. As reported in [Press, 2016], data

scientists spend 19% of their time on selecting datasets and another 60% on cleaning them

amounting to a total of 89% of the entire task. In the big data universe, the volume and

variety of data sources as well as their heterogeneous formats exacerbate this problem.

Stock exchange, social media, online retail, search engines as well as sensor data of

jets, satellites, and weather stations are all examples of such data sources that generate

a tremendous amount of data per second. In addition, challenging and valuable data

is available in data lakes. These repositories contain structured, semi-structured, or

unstructured data in its raw natural state. Two examples of data lakes are open data

and web tables [Miller, 2018].

The ability to understand, explore, and query such data is limited and therefore

hardly usable in any later applications. “If we just have a bunch of data sets in a reposi-

tory, it is unlikely anyone will ever be able to find, let alone reuse, any of this data. with

adequate metadata, there is some hope, but even so, challenges will remain...” [Agrawal

et al., 2012]. Metadata is as valuable as the data itself, because it reveals yet unknown

properties of the data. Thus, it gives us the opportunity to discover the good, bad,

and ugly about the data. In other words, it acts as a mediator between the data, data

scientists, researchers, IT professionals, and any downstream systems.

Generally, metadata is a crucial asset in data exploration [Kruse et al., 2016], clean-

ing [Rekatsinas et al., 2017], and integration [Wang et al., 2009]. It is also essential in

other data management tasks, such as schema engineering [Papenbrock and Naumann,

2017] and query optimization [Liu et al., 2016].

1

1. METADATA: A MEDIATOR BETWEEN PEOPLE, SYSTEMS AND
DATA

• Cardinalities

• Value distributions

• Patterns & data types

• Summaries and sketches

• Domain classification

Single-column

• Unique column combinations

• Inclusion dependencies

• Functional dependencies

• Order dependencies

• Matching dependencies

• Denial constrains

Multi-column

(Dependencies)

Metadata for non-relational data

Trees (XML, JSON)

Graph (RDF)

Text

Time series

Query optimization

Data cleaning (Data quality)

Data integration

Data exploration

Data analytics

Database reverse engineering

Data Metadata People & Systems

Relational Data

Data Lakes

Web Tables

Figure 1.1: An overview of typical metadata types produced by data profiling, and
their use cases.

Metadata can be extracted from many data formats, such as relations (tables), trees

(XML,YAML, and JSON), graph (RDF), and free text. In the context of relational data,

the types of metadata can be categorized into either single-column or multi-column meta-

data based on their scope [Naumann, 2014]. Whereas single-column metadata provides

a number of statistical information about individual columns, for example, cardinalities,

data types, and value distributions, multi-column metadata expresses relationships and

correlations between a group of columns in one or more tables, such as foreign keys,

inclusion dependencies, and functional dependencies.

However, such metadata is in many cases missing, either because of issues encountered

during data transformation, data transportation, or it never existed. Even datasets with

rich metadata may be growing too fast to keep metadata up to date. The field of data

profiling focuses on efficient, salable, and automatic extraction of both single-column

and multi-column metadata [Abedjan et al., 2018]. Data profiling has been applied by

data professionals to understand the content, the structure, and the quality of datasets

and and assess their suitability for a specific data science scenario. An overview of data

profiling use cases and metadata types is shown in Figure 1.1. The individual parts of

this figure are explained throughout this chapter.

This thesis focuses on data profiling tasks for extracting metadata about single

columns in relational datasets, specifically their cardinality, their number of null values,

and their header. In this introductory chapter, we first give an overview of data profiling.

Afterward, we focus on single-column profiling tasks and discuss their importance and

use cases. Finally, We introduce our concrete contributions and the structure of this

thesis.

2

1.1 Data profiling

1.1 Data profiling

Data profiling is “the activity of creating small but informative summaries of a data-

base” [Johnson, 2009]. Data profiling is also defined as a collection of tasks to system-

atically inspect a given dataset and automatically extract metadata about it [Abedjan

et al., 2018]. In general, a data profiling task expects only the data itself as an input

and generates as its output a set of metadata called the data profile.

With the focus on relational data, data profiling tasks are classified into two classes

based on metadata type:

• Single-column profiling encompasses the tasks that result in single-column meta-

data, such as cardinality (Chapter 2), data type, header/semantic type (Chapter 3),

or the number of null values (Chapter 4).

• Multi-column profiling consists of the set of profiling tasks that generate multi-

column metadata, such as functional dependencies [Papenbrock et al., 2015b], in-

clusion dependencies [Dürsch et al., 2019] or denial constrains [Pena et al., 2019].

Regardless of their class, data profiling tasks are either exact or approximate. As

an example, functional dependency discovery algorithms can either generate exact func-

tional dependencies or their approximate form. As such, the requirement for an FD to

hold can be relaxed, resulting in the detection of approximate (a.k.a. partial) or relaxed

FDs. While approximate FDs are violated by some fraction of the tuples, relaxed FDs

allow similar attribute values and do not require them to be identical when checking for

violations [Caruccio et al., 2016].

The importance of data profiling is a natural result of its implications in many use

cases. Query optimization is one of the most prominent use cases of data profiling. For

instance, the generated metadata can directly support the process of estimating the cost

of a query plan. Data profiling techniques are powerful tools to detect patterns, data

errors, and inconsistencies; therefore, they play a significant role in data cleaning. In

other words, data profiling assesses data quality by quantifying the fraction of data that

violates the previously specified constraints.

The metadata generated by data profiling techniques helps data professionals to

understand and explore a dataset. Moreover, such an informative summary of a “big”

dataset is necessary to avoid costs arising from the use of large amounts of data without

any prior assessment of its content and quality. When there is more than one data source,

data profiling reveals the commonalities and the differences between these sources and

gives hints to support data integration efforts.

A considerable number of contributions have been made to the field of data profil-

ing by both research and industry. We refer the reader to [Abedjan et al., 2018] for

an overview. There are also several commercial data profiling tools, such as Trifacta1,

1https://www.trifacta.com/

3

https://www.trifacta.com/

1. METADATA: A MEDIATOR BETWEEN PEOPLE, SYSTEMS AND
DATA

OpenRefine2, IBM InfoSphere3, and SAP Information Steward4. Apart from these in-

dustrial solutions, research also produced tools like Metanome [Papenbrock et al., 2015a],

RuleMiner [Chu et al., 2014], and ProLOD++ [Abedjan et al., 2014].

Nevertheless, there are still challenges and open research questions in the field of

data profiling, such as how to deal with non-relational, heterogeneous, incremental, and

streaming data scenarios. Another dimension to enhance data profiling methods is to

improve them so that they remain effective even when faced with data quality problems,

such as missing or dirty data. In this thesis, we address the problem of estimating column

cardinalities from big data and data streams. We investigate the effect of missing/dirty

data on functional dependency discovery and propose a solution to recommend missing

headers for columns in a table to resolve this data quality issue and support any further

data-driven application.

1.2 Single-column data profiling

Single-column data profiling tasks represent the main focus of this thesis. As shown in

Table 1.1, these tasks can be grouped into three categories: cardinalities, value distribu-

tions, and data patterns, types, and domains [Abedjan et al., 2018]. The basic statistics

collected by DBMS are a subset of single-column metadata [Mannino et al., 1988].

Given a dataset, single-column profiling provides data scientists with a set of potent

tools to gain a basic understanding of this dataset. In the rest of this section, we discuss

these three categories of single-column profiling tasks. For further reading about other

single-profiling tasks, we refer to the following books [Loshin, 2010; Maydanchik, 2007].

1.2.1 Cardinalities (counts)

Different counts can describe the content of an individual column in a table, such as its

size, cardinality, and the number of null values. Column size refers to the number of

values within this column, whereas column cardinality is the number of distinct values.

Put differently, the size of each column in a table is equal to the number of rows or

entities represented in this table. Once the cardinality of a column is equal to its size,

it is a key candidate. The cardinality and the number of null values are the focus

of Chapter 2 and Chapter 4 of this thesis, respectively. More details about their use

cases and importance are discussed in the dedicated chapters.

Two of the data quality dimensions are based on these counts, namely uniqueness

and completeness [Loshin, 2010]. The completeness dimension implies the absence of

missing values. It can be assessed by the ratio of null values to column size. In the

same manner, the ratio of distinct values to column size can be used to measure the

uniqueness dimension. Data uniqueness is characterized by the existence of each value

only once within the column.

2https://openrefine.org/
3https://www.ibm.com/analytics/information-server
4https://www.sap.com/germany/products/data-profiling-steward.html

4

https://openrefine.org/
https://www.ibm.com/analytics/information-server
https://www.sap.com/germany/products/data-profiling-steward.html

1.2 Single-column data profiling

Table 1.1: Overview of single-column profiling [Abedjan et al., 2018] (Tasks in
bold are the focus of this thesis).

Category Task Task Description

Cardinalities num-rows Number of rows
null values Number or percentage of null values

distinct Number of distinct values
uniqueness Number of distinct values divided by number of rows

Value histogram Frequency histograms (equi-width, equi-depth, etc.)
Distributions extremes Minimum and maximum values in a numeric column

constancy Frequency of most frequent value divided by number
of rows

quartiles Three points that divide (numeric) values into four
equal groups

first digit Distribution of first digit in numeric values; to check
Benford’s law [Benford, 1938]

Data Types, basic type Numeric, alphanumeric, date, time, etc.
Patterns, and data type DBMS-specific data type (varchar, timestamp, etc.)
Domains lengths Minimum, maximum, median, and average lengths of

values within a column
size Maximum number of digits in numeric values

decimals Maximum number of decimals in numeric values
patterns Histogram of value patterns (Aa9...)

data class Generic semantic data type, such as code, indicator,
text, date/time, quantity, identifier

domain Semantic domain, such as credit card, first name, city,
phenotype

1.2.2 Value distributions

A more complex single-column analysis of numerical columns reveals some statistical

properties of the content of the column at hand. This analysis generates metadata

including, but is not limited to, extremes, quartiles, histogram, and the first digit distri-

bution. We now briefly discuss each of these metadata types.

Extremes and quartiles

Tukey [1977] motivated a five-numbers summary of (extremes and quartiles): the

minimum and maximum values, the median, and the lower and upper quartiles. The

lower quartile is the middle number between the minimum and the median. The upper

quartile is the middle number between the median and the maximum value. The distance

between the upper and lower quartiles serves as a dispersion measure for the dataset.

This distance, known as the interquartile range, can be used to detect outliers by using

box-and-whisker plots [Dekking et al., 2005].

Extremes and quartiles are part of the order statistics of a dataset [David and Na-

garaja, 2004]. The kth smallest value of an unordered list (e.g., a column or a dataset)

represents the kth order statistics. All order statistics regarding a specific column can

5

1. METADATA: A MEDIATOR BETWEEN PEOPLE, SYSTEMS AND
DATA

be efficiently and exactly extracted using the QuickSelect algorithm: a linear quicksort-

based algorithm [Blum et al., 1973; Hoare, 1961]. However, the emergence of data streams

and the need for real-time processing of high-volume and velocity data motivated further

research efforts to find an approximation of order statistics. Ma et al. [2013] introduced

1-unit and 2-units memory frugal algorithms for estimating order statistics of a data

streams. Recently published work by Dunning and Ertl [2019] presents a set of streaming

algorithms to accurately compute order statistics, especially when the data is expected

to follow a skewed distribution.

Histograms

Another widely used type of graphical summary of datasets are histograms [Dekking

et al., 2005]. A histogram is a bar graph representation of the frequency distribution

of a column. Such graphical summaries are easily interpretable by data scientists; thus,

histograms are robust tools for data exploration. There are different flavors of basic

histograms, depending on the method of grouping data values into buckets, such as

equi-depth, equi-width, and equi-hight histograms [Ioannidis, 2003]. More complex and

accurate histograms have been designed with different methods to choose a bucket or

different statistics to store [Cormode et al., 2006].

Most modern DBMSs incorporate histograms in their query optimizers to improve

the query plan cost estimation using the actual value distribution within the involved

columns. The default value for a column can be determined by examining the value

distribution of this column [Hua and Pei, 2007]. A histogram can be derived from a

dataset by applying a recursive dynamic-programming algorithm [Jagadish et al., 1998].

In practice, this algorithm is not scalable enough; hence, several heuristics have been

employed, such as maxdiffare [Poosala et al., 1996], STHoles [Bruno et al., 2001], lattice

histograms [Karras and Mamoulis, 2008], and sample boundaries [Halim et al., 2009].

Approximating the value frequencies in a data stream is an active research topic.

Several data structures have been designed to keep track of values frequencies by us-

ing bounded storage, such as counting bloom filters [Fan et al., 2000] or count-min

sketchs [Cormode and Muthukrishnan, 2005]. For an overview of sketches that deal with

the value distribution of a dataset, we refer to [Cormode et al., 2011].

Distribution of first digit in numeric values

Benford [1938] observed an interesting statistical phenomenon regarding the prob-

ability distribution of the first digit in numerical datasets from 20 real-world domains.

Benford’s law, also known as the first digit law, states that the first digit d (d ∈ 1, ..., 9)

of a set of numbers occurs with a probability of p(d) = log10 1 + 1
d . Accordingly, in any

numerical set that obeys this law, the digit 1 is the leading digit with probability 0.3, i.e.,

it appears as the first digit about 30% of the time. This observation has been exploited

to detect fraudulent behaviour and anomalies in numerical columns that obey this law.

1.2.3 Data types, patterns, and domains

Beyond simple counts and statistical properties of the content of a column, single-column

profiling tasks also reveal additional high-level metadata about the format and the se-

6

1.2 Single-column data profiling

mantic of a column. Profiling tasks of this category convey metadata of varying semantic

granularity levels. So, they are ordered in Table 1.1 by increasing semantic richness as

well as increasing discovery difficulty. We now briefly discuss each subcategory.

Data type

A basic form of such metadata is the basic type (e.g., numeric vs. alphabetic and date)

and the DBMS-specific type (e.g., varchar vs. timestamp) of a column. Each data type

has some unique characteristics that make it easily distinguishable. For example, profil-

ing tools check for the absence of numbers, the presence of numbers with no-decimals, and

value ranges to detect alphabetic columns, integers and dates, respectively. Nevertheless,

it is not trivial to detect some data types, because they are a generalization of each other,

such as integer, float, and double. Profiling tools usually aim for the more specific type.

Extracting columns data types directly supports any schema reverse-engineering effort.

Patterns

Some profiling tasks identify patterns in the data values in the form of regular ex-

pressions (regexes) or a formal language. Raman and Hellerstein [2001] use the minimum

description length (MDL) to infer suitable patterns that represent the values of a column.

The information extraction system proposed by Li et al. [2008] creates regexes by train-

ing on negative and positive examples. Fernau [2009] formalized the problem of learning

regexes from data, while Bartoli et al. [2016, 2017] introduced a system for generating

regexes that is based on genetic programming and uses multi-criteria optimization search

to explore the vast solution space.

The main challenge to any pattern inference algorithm is the level of granularity of

the proposed pattern, i.e., how general or specific the pattern should be. For example,

(.∗), (\d{4}) and ((19|20) \ d{2}) are regexes that can match a year column in the 20th

or 21st centuries. Unfortunately, the current methods to extract regexes do not scale

well for large datasets. For instance, learning the regexes from 500 examples needs more

than 40 minutes [Bartoli et al., 2014]. To overcome this problem, the XSystem efficiently

learns a simpler syntactic pattern that represents a column at hand, and can then be

used to identify outliers or assign a semantic label to this column [Ilyas et al., 2018].

As a use case, any value violating the inferred patterns is recognized as an outlier,

i.e., an error candidate. To automatically detect such incompatible values within a

column, the Auto-Detect technique maps each column values to generalized languages,

each of them is sensitive to different types of errors [Huang and He, 2018]. Qahtan et al.

modeled partial column values as regex-like patterns and combined them with integrity

constraints as part of their solution for data cleaning [Qahtan et al., 2019].

Domains

Single-column profiling tasks are also used to assign a semantic data type or a domain

to a column. With the need to interpret the semantics of the data, the difficulty of the

problem increases. In Chapter 3, we propose an automated system that is able to assign

a meaningful header to a header-less column. We also discuss several approaches of

assigning a semantic class from a knowledge base to a column and how well such classes

are suited as headers.

7

1. METADATA: A MEDIATOR BETWEEN PEOPLE, SYSTEMS AND
DATA

1.3 Structure and contributions

This thesis focuses on the metadata of a single column in relational tables, and thus

on single-column profiling. We present the importance, utilization and discovery of

cardinality and headers as two important types of single-column metadata. In addition,

we analyze the influence of another metadata, namely the number of null values in a

column, on dependency discovery.

Particularly, we make the following contributions:

(1) An experimental survey of cardinality estimation (Chapter 2)

We discuss several broad approaches that are used to estimate the cardinality of a

multiset and their limitations . Then, we present three fine-grained classifications of car-

dinality estimation algorithms and provide a novel classification that distinguishes the

core method of these algorithms. To guarantee a unified test environment when compar-

ing the twelve algorithms, we implement them and extend the Metanome data profiling

framework to support these algorithms. Our implementation of the algorithms as well

as Metanome are open source. We then evaluate the twelve algorithms’ accuracy, run-

time, and memory consumption using synthetic and real-world datasets. In addition, we

evaluate the Guaranteed-Error Estimator as an example of a sampling-based cardinality

estimator. Our results show that different algorithms excel in different categories, and

we highlight their trade-offs. We also point out the possibility to create a parallel or a

distributed version of these algorithms to cope with the growing size of modern datasets.

This chapter is based on our published work in [Harmouch and Naumann, 2017]

which has been marked as reproducible by the pVLDB Reproducibility Committee 5.

(2) Automatic end-to-end schema discovery system (Chapter 3)

A schema discovery system that automatically extracts meaningful column headers

for given relational tables from a corpus of (web) tables. The system runs an efficient

similarity search algorithm optimized for matching web table columns. Furthermore, we

choose an unbiased similarity measure for web table columns that efficiently matches

similar value sets regardless of their length. The system has a context-aware column

header assessment: A schema evaluation approach that finds the overall optimal label

composition for a schema given multiple sets of column candidate headers. Finally, we

provide a systematic, empirical evaluation of the effectiveness of our schema discovery

system on hundreds of real-world web tables. A paper based on the content of this

chapter is under submission.

(3) Efficient methods to estimate an FD genuineness (Chapter 4)

We formally and experimentally show the phenomenon caused by missing values over

FD discovery under various null semantics and imputation strategies. A genuine FD is

an FD that would be valid if the dataset contained no missing values and no other errors.

We propose two efficient approaches to approximate the genuineness score of discovered

FDs: Sampling-based and Likelihood-based (PerValue and PerTuple). We perform an

5https://vldb-repro.com/

8

1.3 Structure and contributions

extensive set of experiments of our methods on real-world and semi-synthetic datasets

that show the effectiveness and efficiency of our suggested scores.

The contribution of this chapter was a joint effort of Berti-Équille, Harmouch, Nau-

mann, Novelli, and Thirumuruganathan [Berti-Equille et al., 2018]. Novelli and Thiru-

muruganathan contributed the efficient exact probabilistic genuineness score algorithm

and the sampling-based approximation of this score. Harmouch and Berti-Équille in-

vestigated and formalized the phenomena caused by missing values over FD discovery,

contributed the PerValue and PerTuple genuineness scores and the case study on the

Sensor dataset. Harmouch performed all experiments.

We conclude this thesis in Chapter 5 by summing up our results, the potential im-

plications, and discussing open research questions for future work on single-column data

profiling.

9

1. METADATA: A MEDIATOR BETWEEN PEOPLE, SYSTEMS AND
DATA

10

Chapter 2

Cardinality Estimation

Data profiling comprises many both basic and complex tasks to analyze a dataset at hand

and extract metadata. Among the most important types of metadata is the number

of distinct values in a column, also known as the cardinality or the zeroth-frequency

moment. Finding multiset’s cardinality is an active research area, because of its ever-

growing number of applications in a wide range of computer science domains.

Cardinality estimation is a fundamental task in database query processing and op-

timization [Youssefi and Wong, 1979]. The query optimizer picks the optimal query

plan based on a cost model that uses the cardinality of the attributes in the queried

database tables. Erroneous cardinality estimation translates into slow queries, and thus

unpredictable performance.

In network security monitoring, DDoS attacks can be identified by analyzing traffic

flows and computing the number of distinct flows per target IP [Estan et al., 2003].

In search engines and online data mining, the number of distinct users have seen an

advertisement, searched for a word in a search engine, or clicked on a specific URL is an

important metadata [Heule et al., 2013; Metwally et al., 2008].

Moreover, the number of distinct values is used in connectivity analysis of Internet

topology to find the distance between a pair of nodes on the Internet graph [Palmer

et al., 2001]. Similarly, the size of a social network can be estimated by the number of

distinct users who have a specific relationship distance [Backstrom et al., 2012].

The aim of this chapter is to review the literature of cardinality estimation and to

present a detailed experimental study of twelve algorithms, scaling far beyond the original

experiments. This chapter is based on our published work in [Harmouch and Naumann,

2017] which has been marked as reproducible by pVLDB Reproducibility Committee 1.

In detail, our contributions are the following:

1. We discuss several broad approaches that are used to estimate the cardinality of a

multiset and the limitation of each one.

1https://vldb-repro.com/

11

2. CARDINALITY ESTIMATION

2. We present three fine-grained classifications of cardinality estimation algorithms

and provide a new novel classification that distinguishes the core method of these

algorithms.

3. To guarantee a unified test environment when comparing the twelve algorithms,

we re-implemented them and extended the Metanome data profiling framework to

support these algorithms.

4. We evaluate the twelve algorithms’ accuracy, runtime, and memory consumption

using synthetic and real-world datasets. Our results show that different algorithms

excel in different in categories, and we highlight their trade-offs.

5. we evaluate Guaranteed-Error estimator as an example of a sampling-based cardi-

nality estimator.

6. We point out the possibility to create a parallel or a distributed version of these

algorithms to cope with the growing size of modern datasets.

The rest of this chapter is organized as follows. We first formally define the problem of

finding the cardinality of a dataset in Section 2.1. Then, we present general approaches

used in literature to solve this problem, and discuss several classifications of concrete

algorithms to estimate the cardinality of a dataset in Section 2.2. In Section 2.3, we

present, discuss, and compare twelve well-known algorithms – we describe their main

idea, error-guarantees, advantages, and disadvantages. Section 2.4 presents our compre-

hensive set of comparative experiments using both synthetic and real-world data, and

reports the results of the empirical evaluation. Finally, we conclude in Section 2.5.

2.1 Cardinality: The zeroth-frequency moment

The problem of finding the number of distinct values of a multiset is polyonymous: In

statistics, it is known as the problem of estimating the number of species in a population.

It is also know as the cardinality of a column or the “COUNT DISTINCT” in database

literature. Furthermore, the number of distinct values in a multiset is referred to as the

zeroth-frequency moment by Alon, Marias, and Szegedy, who introduced the frequency

moments of a multiset [Alon et al., 1996]:

Definition 2.1. Consider a multiset E = (e1, e2, . . . , en) of n items where each ei is a

member of a universe of N possible values and multiple items may have the same value.

Let mi = |{j : ej = i}| denote the number of occurrences of i ∈ N in the multiset E.

The frequency moments Fk for each k ≥ 0 are

Fk =
n∑
i=1

mk
i

The number of distinct values in E, called the zeroth-frequency moment F0 of the

multiset E, is the number of elements from universe N appearing at least once in E. For

12

2.1 Cardinality: The zeroth-frequency moment

most applications null values are discarded. The size of E is the first-frequency moment

F1. The second-frequency moment F2, known as Gini index, measures the homogeneity

or the skewness of E. In a database context, F2 represents the self join size. Generally,

the frequency moments form a set of critical demographic statistics about the data that

is needed in many applications such as DBMS, data partitioning in distributed systems,

and event detection and monitoring in data streams. The algorithms for finding F0 are

the main topic of this chapter.

Without doubt, given a memory size linear to the size of the dataset makes finding

the cardinality an easy task: sort, then count. Nevertheless, such memory need is too

much for some applications. Therefore, many algorithms to approximate the cardinality

of a dataset have been developed in a manner reducing resource/memory consumption.

The other cost-dimension to consider is that of I/O. However, it has been shown that

approaches that save cost by sampling cannot guarantee any reasonable degree of accu-

racy (we also validate this statement in Section 2.4.5). Thus, research has focused on

reducing memory consumption and assumes to read all data only once.

The cardinality F0 has a wide variety of applications. Each application has its special

requirements for designing an algorithm determining F0. Some of these applications re-

quire a very accurate estimation of F0. However, others accept a less accurate estimation.

To give an illustration, the number of distinct visitors of a website influences the price

of showing advertisements. So allowing only a small error in measuring F0 is important.

In comparison, a more rough estimation of the number of distinct connections is enough

to detect a potential denial of service attack.

To address these differing needs, some applications focus on high accuracy but have

a high memory consumption and runtime. Others do the opposite and accept lower

accuracy and can better limit memory and runtime. As a result, the key requirements

for F0 estimation algorithms for a specific application can be specified by trading off

among accuracy, memory consumption, and runtime. This chapter presents many well-

known algorithms with which the cardinality can be estimated in big datasets using small

additional storage and a small number of operations per element. Our results serve as a

guide to choose a suitable algorithm for a given use-case.

To experimentally quantify the accuracy of such algorithms, we check how close the

estimation is to the true cardinality. There are many error metrics to evaluate the

accuracy of an estimation algorithm; the most popular ones are:

Definition 2.2. The standard error of an estimation F̂0 is the standard deviation of F0

divided by F0:

Estandard(F̂0) =
σF̂0

(F0)

F0
(2.1)

Definition 2.3. The relative error of an estimation F̂0 is:

Erelative(F̂0) =
|F̂0 − F0|

F0
(2.2)

13

2. CARDINALITY ESTIMATION

Another frequently used accuracy metric addresses the strength of the algorithm

guarantee as follows:

Definition 2.4. The (ε, δ) approximation scheme of an estimation F̂0 means that the

estimator guarantees a relative error of ε with probability ≥ 1− δ where ε, δ < 1.

Besides the accuracy, we also need to quantify the memory consumption of the cardi-

nality estimation algorithm. The data structure maintained by the estimation algorithm

in main memory is called synopsis. An estimation algorithm should find an estimate

F̂0 of the dataset cardinality close to the true F0 as a function of the synopsis size. To

exactly determine F0 by sorting, the synopsis size needs to be essentially proportional to

the size of the multiset.

However, multisets today tend to be too big to fit in main memory of one machine

or in the allotted memory for the profiling process. Consequently, the synopsis of the

estimation algorithm can be seen from two different perspectives. First, the synopsis

is only a temporary data structure used to estimate F0 in static scenarios, i.e., the

whole dataset is stored on disk. Second, the synopsis is a replacement or a compact

representation of the real data in scenarios where we cannot store the dataset, such as

in streaming applications.

To sum up, the goal of this experimental survey is to present and analyze the effi-

ciency of a wide range of known algorithms for estimating F0, the number of distinct

elements/cardinality of a multiset. We also take into account the application require-

ments determined by the three factors: accuracy, memory consumption, and runtime.

2.2 Classification of general approaches and algorithms

Here we discuss several broad approaches that are used to estimate the cardinality of

a multiset and the limitation of each one. We also present several classifications of the

larger set of algorithms presented in this chapter to find an approximation of the number

of distinct values. Cardinality can be estimated using the following broad approaches:

Sorting

For decades, the method of determining F0 was through sorting to eliminate dupli-

cates [Whang et al., 1990]. However, sorting is an expensive operation that requires a

synopsis size at least as large as the dataset itself. Modern sorting methods have less

memory consumption. Still, sorting is an impractical approach especially for the current

big datasets.

Bitmap

A trivial method to determine F0 exactly is by using a bitmap of size N , the size of

the universe, as the synopsis. The bitmap is initialized to 0s. Then, we scan the dataset

item-wise and set the bit i to 1 whenever an item with the i-th value of the universe is

observed. After a single scan of the dataset, F0 is the number of 1s in the bitmap. The

synopsis size is a function of the universe size N , which is potentially much larger than

14

2.2 Classification of general approaches and algorithms

the size of the dataset itself. Thus, this approach is infeasible, but bitmaps in general

do play a role in other approaches.

While the methods above are exact, they are also expensive in both size and runtime.

If we relax the need for an exact solution, other approaches are available.

Hashing

A straightforward approach to obtain an estimation of F0 and scale-down the synopsis

size is hashing. Hashing eliminates duplicates without sorting and requires only one pass

over the dataset to build a hash table. However, a simple application of hashing can be

worse than sorting in terms of memory consumption. The more the hash collisions in

the hash table, the higher the approximation error. Thus, to accurately capture datasets

with high column cardinalities, the hash table would need to be too large to fit in normal

main memory.

Bitmap of hash values

Instead of storing the hash table, the bitmap approach is used to keep track of the

hashed values of the dataset items. Each item i is mapped to a bit h(i) in a bitmap of

size N . Hash collisions remain a source of estimation error. A Bloom filter with several

groups of hash functions can be used to reduce the hash collision effect on the estimation

quality [Kumar et al., 2006]. However, the main problem of this approach is that it

requires prior knowledge of the maximum expected cardinality to choose a good bitmap

size and hash range.

Sampling

Another common general approach is sampling to reduce the synopsis size. Various

studies used this approach for cardinality estimation [Flajolet, 1990; Gibbons, 2001; Haas

et al., 1995]. Obviously, F0 is difficult to estimate from a sample of the dataset. Charikar

et al. [2000] presented negative results for estimating F0 from a sample of a large table:

for every estimator based on a small sample, there is a dataset where the ratio between

the cardinality estimate and the exact cardinality is arbitrarily large. I.e., if the estimator

does not examine a large fraction of the input data, there is no guarantee of low error

across all input distributions. These results match the results obtained by Haas and

Stokes [1998]; Haas et al. [1995]. There, Haas et al. highlighted that to bound the

estimation error within a small constant, almost all the dataset needs to be sampled.

Therefore, we can admit that any approach based on sampling is unable to provide a

good guaranteed error and we need to read the entire dataset to determine an accurate

estimation as we show in the experimental section.

Observations in hash values

Another approach relies on making observations on the hashed values of the input

multiset elements to reduce the size of synopses, such as the length of a particular prefix

in the binary representation of the hashed values. The observations are linked only to

cardinality and are independent of both replication and order of the items in the dataset.

These observations are then used to infer an estimation F̂0 of the dataset cardinality.

Most of the algorithms presented in this survey follow this approach to estimate F0.

15

2. CARDINALITY ESTIMATION

Table 2.1: Classifications of algorithms studied in this survey

Algorithm Observables Intuition Core method
[Flajolet et al., 2008] [Metwally et al., 2008] (Sec. 2.3)

FM Bit-pattern Logarithmic hashing Count trailing 1s
[Flajolet and Martin, 1985]
PCSA Bit-pattern Logarithmic hashing Count trailing 1s
[Flajolet and Martin, 1985]
AMS Bit-pattern Logarithmic hashing Count leading 0s
[Alon et al., 1996]
BJKST Order statistics Bucket-based Count leading 0s
[Bar-Yossef et al., 2002a]
LogLog Bit-pattern Logarithmic hashing Count leading 0s
[Durand and Flajolet, 2003]
SuperLogLog Bit-pattern Logarithmic hashing Count leading 0s
[Durand and Flajolet, 2003]
HyperLogLog Bit-pattern Logarithmic hashing Count leading 0s
[Flajolet et al., 2008] (order statistics)
HyperLogLog++ Bit-pattern Logarithmic hashing Count leading 0s
[Heule et al., 2013]
MinCount Order statistics Interval-based k-th min. value
[Giroire, 2009]
AKMV Order statistics Interval-based k-th min. value
[Beyer et al., 2007]
LC No observable Bucket-based Linear synopses
[Whang et al., 1990]
BF No observable Bucket-based Linear synopses
[Papapetrou et al., 2010]

The backbone of most modern cardinality estimation algorithms is the work of Flajo-

let and Martin in the mid-1980’s [Flajolet and Martin, 1985]. For that reason, Gibbons

in his survey for the literature on distinct-values estimation has a separate family of

algorithms named Flajolet and Martin‘s Algorithms [Gibbons, 2007]. Under this family,

he classified FM & PCSA [Flajolet and Martin, 1985], AMS [Alon et al., 1996], and

LogLog & SuperLogLog [Durand and Flajolet, 2003].

To understand the similarity among the larger set of algorithms presented in this sur-

vey, we discuss two more fine-grained classifications of cardinality estimation algorithms.

In addition, we provide a new classification that distinguishes the core method of the

algorithms. Table 2.1 gives a summary of these algorithms and their class according to

each classification.

The first classification is by Flajolet et al. [2008]. The authors classified algorithms

in two categories corresponding to the type of observations bit-pattern observables and

order statistic observables. In the first category, the hash values are seen as bit-strings.

The algorithms are based on the occurrence of particular bit patterns at the binary string

representation of the dataset values. On the other hand, the order statistic observable

algorithms consider the hash values as real numbers. The estimation is based on the order

statistics rather than on bit patterns in binary representations. The order statistic of

rank k is the k-th-smallest value in the dataset, which is not sensitive to the distribution

16

2.2 Classification of general approaches and algorithms

Figure 2.1: Classification of F0 estimation algorithms [Metwally et al., 2008].

of repeated values. So, the minimum of the hashed values is a good observable. The

hash function distributes the hash values uniformly in the interval [0-1]. The minimum

of n uniform random variables taking their values in [0-1] is an estimate of 1/(n + 1).

So we are able to retrieve an approximation of n from this value. All the algorithms in

our survey belong to the first category except BJKST, MinCount, and AKMV, which

are associated with the second category. LC and BF do not use any observable.

The second classification is a high-level classification given by Metwally et al. [2008]

(Figure 2.1). The authors distributed the algorithms into two broad categories: Sam-

pling algorithms and sketch-based algorithms. The first category contains the algorithms

that take advantage of not scanning the entire dataset, but estimate the cardinality by

sampling (discussed in the previous section). Algorithms of the second category scan the

entire dataset once, hash the items, and create a sketch. The sketch, also called synopsis,

is queried later on to estimate the cardinality.

Metwally et al. further classified the sketch-based algorithms according to their hash-

ing probabilities into logarithmic hashing and uniform hashing algorithms. The former

keeps track of the most uncommon element observed so far, using a bitmap and a hash

function. The hash function maps each element to a bit in the bitmap with a hashing

probability that decreases exponentially as the bit significance increases. FM, PCSA,

AMS, LogLog, SuperLogLog, HyperLogLog, and HyperLogLog++ are in this category

of the sketch-based algorithms. The insight of the latter class, uniform hashing, is to

employ a uniform hash function to hash the entire dataset into an interval or a set of

buckets. Thus, this class comprises two classes: Interval-based algorithms and Bucket-

based algorithms. F0 is estimated in the interval-based algorithms based on how packed

the interval is. But F0 is estimated based on the probability that a bucket is (non)empty

by the bucket-based algorithms. BJKST, LC, and Bloom filter are examples of the

bucket-based category. AKMV and MinCount are members of the interval-based class.

The first classification by Flajolet et al. [2008] depends on the observable which an

estimation algorithm uses. The second classification by Metwally et al. [2008] is based

on the intuition of the algorithm and how it maps the hash values to a bit in the bitmap.

We added a third classification based on the core method an algorithm uses to estimate

F0, as explained in the next section.

17

2. CARDINALITY ESTIMATION

2.3 Review of twelve cardinality estimation algorithms

After introducing the motivation, the problem, and general approaches to solve it, we

provide a new classification and an overview of concrete cardinality estimation algorithms

and how they trade the accuracy for runtime and memory consumption. Table 2.2 (page

27) summarizes this section.

2.3.1 Trailing 1s algorithms

This algorithm family uses the number of trailing 1s in the bit pattern observable’s

bitmap as the core method to estimate F0.

Flajolet and Martin (FM)

Flajolet and Martin designed the first algorithm to estimate F0 in a single pass using fewer

than one hundred binary words additional storage and only a few operations per elements

(what would nowadays be called a data stream scenario) [Flajolet and Martin, 1985].

This algorithm, also known as probabilistic counting, uses the observations approach.

Flajolet and Martin observed that if a hash function h maps the elements into uniformly

distributed integers (binary strings y of length L) over the range [0 . . . 2L−1], the pattern

0k1 . . . appears with probability 1/2(k+1).

They formalized this observable as a function ρ(y) that represents the position of the

least significant 1-bit in y, i.e., k if y > 0 and L otherwise. Then, they recorded these

observable values using a bitmap B initialized to all 0. All items with same value set at

random the same bit ρ(y) in B to 1. After the algorithm scans the entire dataset, B is

independent of any duplication and B[i] is expected to be 1 if there are at least 2(i+1)

distinct values. If B[i+ 1] is still 0, F0 is likely greater than 2(i+1) but less than 2(i+2).

Therefore, Flajolet and Martin used R, the position of least significant bit that was

not flipped to 1 in the bitmap B as an indicator of log2(ϕ · F0) with standard deviation

close to 1.12. In other words, R is the number of trailing 1s in B. So the estimation F̂0

of the cardinality F0 is given by F̂0 = 2R/ϕ where ϕ = 0.77351 is a statistical correction

factor.

To reduce the variance of R, the FM algorithm is improved to take the average of m

runs of the previous procedure using a set of m hash functions to compute m bitmaps,

i.e., F̂0 is

F̂FM0 =
2R

ϕ
with R =

1

m
·
m∑
i=1

Ri (2.3)

Hence, the standard error of the estimator is reduced by a factor of O(
√
m) to become

O(1/
√
m), yet CPU usage per element processing is multiplied by m. FM’s accuracy is

directly proportional to the synopsis size namely to the design parameter m. The size

L of the bitmap is also an important design parameter and depends on the maximum

cardinality Nmax to which we safely want to count up to, and selected to be larger

18

2.3 Review of twelve cardinality estimation algorithms

than log2(Nmax/m) + 4. However, error analysis of the FM algorithm is based on the

assumption that a specific family of hash functions with some ideal random properties

is used.

Probabilistic counting with stochastic averaging (PCSA)

In the same article [Flajolet and Martin, 1985], the authors pointed out that the use

of what is called stochastic averaging can achieve the same effect as when using direct

averaging in the FM algorithm. The result was a new variant of the FM algorithm

called probabilistic counting with stochastic averaging (PCSA). The algorithm uses the

same observable of FM but reduces the processing time per element to O(1) as well as

reducing the synopsis size.

The intuition behind PCSA is to distribute the dataset items into buckets hoping

that F0/m items fall into each bucket. The value R of each bucket, as described in FM,

should be close to F0/m and the average of those values can be used in the right hand

side of the Equation (2.3) as R to derive a reasonable approximation of F0/m.

This intuition is implemented using m bitmaps, one per bucket, and a single hash

function h that is used to distribute the dataset elements into one of the bitmaps. When

PCSA observes a new item x, the log2(m) least significant bits of the binary represen-

tation of h(x) are used to determine the bitmap to be updated and the remaining bits

are used to find the observable ρ (same in FM), and then set the corresponding bit to 1

within the previously determined bitmap. So the estimation F̂0 of the cardinality F0 is

given by:

F̂PCSA0 = m · 2R

ϕ
(2.4)

where ϕ,L, the size of each bitmap, and R are identical to those in FM algorithm.

But since each bitmap has seen only 1/m of the total distinct values, we multiply by

m. PCSA has several advantages over FM: it reduces the cost of FM by using a single

hash function and increases the estimation accuracy to an expected standard error of

0.78/
√
m.

2.3.2 Leading 0s algorithms

This algorithm family uses the number of leading 0s in the bit pattern observable’s

bitmap as the core method to estimate F0. But, the algorithms of this family do not

maintain an actual bitmap. Instead they keep only the maximum observable value which

equals to the number of leading 0s in the observable’s bitmap.

Alon, Martias and Szegedy (AMS)

Alon et al. [1996] provided the first theoretic definition and discussion of the frequent-

moments statistics for approximate counting. In their work, they revise the FM algorithm

as a randomized algorithm for estimating F0 and adapt it into the AMS algorithm.

19

2. CARDINALITY ESTIMATION

First, they argue that FM was designed assuming an explicit family of ideal random

hash functions that could be unrealistic. In consequence, they proposed to use linear

hash functions instead. Second, AMS keeps using the same observable ρ(y). But it uses

R, the position of most significant bit flipped to 1 in the bitmap B, as an indicator of

log2(F0). In other words, R is the number of leading 0s in B.

The number of distinct values is likely to be 2r, if ρ(y) = r. Thus, after scanning the

entire dataset, one of the observable values hits ρ(y) ≥ log2(F0). The maximum value of

ρ(y), namely R, is a good estimation of log2(F0). AMS estimates F0 by:

F̂AMS
0 = 2R (2.5)

Finally, AMS does not use a bitmap to record the observable values. Instead, it keeps

track of only the maximum observable value R.

The authors proved that AMS guarantees a ratio error of at most c with a probability

of at least 1−2/c for any c > 2. Using m hash functions can further improve the accuracy

with the trade-off of increasing the space and time linearly.

FM is still more accurate than AMS [Gibbons, 2007]. The least significant 0-bit in

B (R in FM and PCSA) is more accurate than the most-significant 1-bit (R in AMS)

to estimate F0. The reason is that the bit that represents R in AMS can be set by a

single outlier hash value. As a result, AMS overestimates F0 as 2R, especially when the

bits preceding the most significant bit are zeros. AMS and FM share the drawback of

performing m hashes for every element.

Bar-yossef, Jayram, Kumar, Sivakumar and Trevisan (BJKST)

Three theoretical algorithms for approximating F0 are presented in [Bar-Yossef et al.,

2002a]. We focus on the third algorithm, because it is the most used and, in a sense,

the best one. It is known as the BJKST algorithm, an acronym of the authors’ last

names. This algorithm is an improvement of the work in [Bar-Yossef et al., 2002b] based

on AMS, unified with the Coordinated Sampling algorithm presented by [Gibbons and

Tirthapura, 2001].

In essence, BJKST is based on AMS. It uses the same function ρ(y), but does not

simply keep track of the maximum value of ρ(y). Instead, it resembles the Coordinated

Sampling algorithm and uses a pairwise independent universal hash function h and a

buffer B to estimate F0.

The hash function h guarantees that the probability of ρ(h(x)) ≥ r is precisely 1/2r

for any r ≥ 0 as stated in [Alon et al., 1996]. Thus, items {x0, x2, . . . , xn} of the dataset

can be assigned to a level according to their ρ(h(xi)) values as following: half of the

items have a level equal to 1, a quarter of them have a level equal to 2, and 1/2r have a

level equal to r.

The buffer B initially stores all the elements scanned so far and their level is at least

Z = 0. Whenever the buffer size is larger than a predefined threshold θ, the level Z is

20

2.3 Review of twelve cardinality estimation algorithms

increased by one and all the elements in B with a level of less than Z are removed, and

so on.

Unlike the Coordinated Sampling algorithm, BJKST stores pairs (g(xi), ρ(h(xi)))

instead of keeping the actual value of the element xi in order to further improve the

efficiency of the buffer. g is another uniform pairwise independent hash function. These

pairs are stored in array of binary search trees where the j-th entry contains all the pairs

in level j.

After one pass over the dataset, BJKST finds the minimum level Z for which the

buffer size does not exceed a specific threshold θ. Also, it expects F0/2
r elements to be

in the level Z, i.e., |B| = F0/2
Z ≤ θ. Therefore, F̂0 is

F̂BJKST
0 = |B| · 2Z (2.6)

BJKST can provide an (ε, δ) approximation scheme of F0, when the output is the

median of running O(log(1/δ)) parallel copies of the algorithm. Then, θ = 576/ε2 for

any ε > 0 and 0 < δ ≤ 1
3 .

Both BJKST and Coordinated Sampling have the advantages of keeping samples of

the data that can be used later. But BJKST improves the efficiency of the buffer, both

in space and processing time, as explained above.

LogLog

Durand and Flajolet introduced another AMS-based estimator for F0, which uses only

log2 log2(Nmax) of memory to estimate cardinalities in range of millions with a relatively

high accuracy [Durand and Flajolet, 2003]. This LogLog algorithm uses PCSA’s intuition

to overcome the overestimation problem in AMS. It improves space usage over PCSA

by trading off the accuracy.

The algorithm uses m buckets B1, . . . , Bm to distribute the dataset items over them.

Then, LogLog uses the AMS approach and maintains Ri for each bucket Bi. Each bucket

is responsible for about F0/m of the distinct elements. Thus, the arithmetic mean R of

R1, . . . , Rm is a good approximation of log2(F0/m). The LogLog estimator returns F̂0

with a standard error ≈ 1.3/
√
m, as the following:

F̂LogLog
0 = αm ·m · 2R with R =

1

m
·
m∑
i=1

Ri (2.7)

Durand and Flajolet [2003] used the correction factor αm = 0.39701 as soon as

m ≥ 64 in their practical implementation.

Whenever a new element xj is scanned, the algorithm uses the first k = log2(m) bits

of the binary representation of h(xj) to map the element xj to a bucket Bi. Then, it

updates Ri after comparing its value with ρ(h(xj)), after ignoring the first k bits. Like

AMS, LogLog maintains only the value of the maximum Ri, and not a bit vector.

21

2. CARDINALITY ESTIMATION

SuperLogLog

SuperLogLog is an optimization of the LogLog algorithm [Durand and Flajolet, 2003];

Durand and Flajolet suggest two improvements. The first one decreases the variance of

the F̂0 around the mean, while the second improves the space cost by bounding the size

of each Ri. To implement the improvements, SuperLogLog uses two rules: the truncation

rule and the restriction rule.

The truncation rule refers to discarding the largest 30% of the estimates when aver-

aging Ri to produce the final estimate. In other words, SuperLogLog retains only the

m0 = b0.7 ·mc smallest values to compute the truncated sum
∑∗Ri. Thus, SuperLogLog

estimates F0 by:

F̂ SuperLogLog
0 = α̃m ·m0 · 2R with R =

1

m0
·
∑∗

Ri (2.8)

The modified statistical correction factor α̃m = 1.09295 minimizes the bias [Metwally

et al., 2008]. Empirically, this truncation increases the accuracy and bounds the standard

error of order 1.05/
√
m.

The restriction rule is based on an empirically justified fact that Ri values can be

restricted to a maximum value of dlog2(Nmax
m) + 3e, thereby enhance the algorithm syn-

opsis size without any noticeable effect on the estimation accuracy [Durand and Flajolet,

2003].

HyperLogLog

Flajolet et al. [2008] introduced HyperLogLog as a near-optimal successor to LogLog.

HyperLogLog uses the same observable, ρ(y), as LogLog and also maintains the maxi-

mums Ri. But, it reduces the estimation’s variance using harmonic means to estimate

F0 from the maximums Ri.

Based on the same intuition behind LogLog, the harmonic mean R of 2R1 , . . . , 2Rm

is close to F0/m. Therefore, HyperLogLog returns an estimation of F0 as a normalized

bias corrected harmonic mean:

F̂HyperLogLog
0 = αm ·m ·R (2.9)

with

R =
m

1
2R1

+ . . .+ 1
2Rm

and αm is a bias correction factor where α16 = 0.673, α32 = 0.697, α64 = 0.709, and

αm = 0.7213/(1 + 1.079/m) for m ≥ 128.

The algorithm archives a standard error in the order of 1.04/
√
m. The authors’ prac-

tical results analysis shows that the estimation of F0 maintains the theoretical standard

error in the range]52 ·m,
232

30] for any m ∈ {24, . . . , 216}.

22

2.3 Review of twelve cardinality estimation algorithms

Two corrections are introduced to deal with the F̂HyperLogLog0 values that fall outside

the specified range, either in the small range (i.e., ≤ 5
2 ·m) or in the large range (i.e.,

> 232

30).

The problem in small range is the presence of nonlinear distortions. The source of

the bias is the high number V of Ri = 0 in the harmonic mean when n is small compared

to m. The small range correction uses LC to estimate F0 from the maximums Ri when

V > 0 as:

F̂HyperLogLog∗
0 = m · log(

m

V
) (2.10)

In the large range the cardinality is reaching 232, which causes an increase in the hash

collisions due to 32-bit hash function used by HyperLogLog. So, the algorithm applies a

correction to the estimation and returns:

F̂HyperLogLog∗
0 = −232 · log(1− F̂HyperLogLog0

232
) (2.11)

Hence, HyperLogLog is a bit-pattern observable algorithm. Yet, it can also be viewed

as order statistics observable algorithm, because 1/2Ri is an estimation of min(Bi) up

to a factor at most 2. The authors argue that HyperLogLog is near optimal, because

its estimation standard error is near 1/
√
m, the lower bound for accuracy achievable by

order statistics algorithms.

HyperLogLog++

HyperLogLog++ is a revision of the HyperLogLog algorithm [Heule et al., 2013]. The

authors suggest a series of changes to improve the original algorithm’s estimation accu-

racy and reduce the space cost. The development of this algorithm was driven by the

need to accurately estimate cardinalities well beyond 109, as well as small cardinalities

and to efficiently adapt memory usage to the cardinality. The authors present three

improvements, which can be applied together or independently to fit the need of the

application.

First, HyperLogLog++ uses a 64-bit hash function as a replacement to the high range

correction in the original algorithm with low additional cost in memory. This increases

the size of each Ri by only one bit, but it enables to estimate cardinalities approaching

264 before the hash collisions start to increase.

Second, the authors experimentally found a bias correction method that works effec-

tively up to n = 5 ·m. They estimate the bias of F0 from F̂0 using k-nearest neighbours

interpolation with the empirically determined values. They further combine this bias

correction of the estimation with LC. LC is used to correct estimations that are lower

than θ, an empirically determined threshold.

Third, HyperLogLog++ develops a sparse representation to avoid the cases where

n � m and most of the Ri’s are never used. This representation is identical to the

one used in BJKST, where the algorithm stores pairs (idx, ρ(y)). But, HyperLogLog++

23

2. CARDINALITY ESTIMATION

switches back to the original dense representation whenever maintaining this list con-

sumes more memory than the original memory consumption. As a result, the memory

consumption is reduced for small cardinalities with small runtime overhead to maintain

the new representation.

2.3.3 K-th minimum value algorithms

This algorithm family uses order statistics as their observable, specifically the k-th min-

imum value.

MinCount

The MinCount algorithm was introduced by Giroire [2009] as a generalization of the

first algorithm presented by Bar-Yossef et al. [2002a], which is where also BJKST was

introduced. Like the original algorithm, MinCount is an interval-based algorithm that

uses the k-th minimum value order statistics observable (KMV) to estimate the density

of the interval, which is in turn used to estimate F0. In other words, MinCount considers

the hashed values as a set of independent uniformly distributed real numbers in the

interval [0, 1] with repetitions, i.e., an ideal multiset É.

The algorithm’s main idea is that the first minimum of É is an indication of 1/(F0+1).

However, the inverse of this minimum has an infinite expectation. MinCount avoids this

by using two new aspects: It combines M (k)(k ≥ 2) the k-th minimum of É and a sub-

linear function of 1/M (k), such as its logarithm or square root, as a replacement of the

first minimum and its direct inverse alone.

Furthermore, MinCount reduces the standard error using the stochastic averaging

like in PCSA. So, the hashed values interval is divided into m buckets. A hash value

h(x) is mapped to the bucket i if (i− 1)/m ≤ h(x) < i/m. For each bucket, the values

M
(k)
i are maintained for i = 1, . . . ,m. MinCount’s best estimate of F0 is using k = 3

and the logarithm function as follows:

F̂MinCount
0 = m ·

(
Γ(k − 1

m)

Γ(k)

)−m
· eR (2.12)

with R = − 1

m
·
m∑
i=1

ln(M
(k)
i)

where Γ is the Euler Gamma function. The standard error of this estimation is up

to 1/
√
M using M = k ·m units of storage.

AKMV

Beyer et al. also revised the first algorithm proposed by Bar-Yossef et al. [2002a] to

introduce their unbiased version of F0 estimator based on KMV order statistics [Beyer

et al., 2007, 2009]. The authors provided several estimators of F0 in two scenarios:

24

2.3 Review of twelve cardinality estimation algorithms

(1) when the dataset consists of only one partition, which is what we study in this

survey, and (2) when the dataset is split into partitions and the estimation is obtained

in parallel with the presence of multiset operations.

The original algorithm uses the k-th smallest hash value to estimate K/F0. Beyer

et al. [2009] showed that the original estimator overestimates F0 and is biased upwards

towards F0. To lower this bias, the AKMV estimator is given by:

F̂AKMV
0 =

(k − 1)

M (k)
(2.13)

where F0 > k, otherwise the algorithm finds the exact F0. If F0 is expected to be

large, the suitable synopsis size k can be determined based on the error bounds. AKMV’s

relative error is bounded to
√

2/(π · (k − 2)).

For the second scenario, i.e., to support the multiset operations among the synopses

of the partitions, the authors introduce the AKMV synopsis and a corresponding F0

estimator, to estimate F0 of each partition as well as of the whole dataset. In addition

to the k minimum hash values, AKMV maintains k counters. Each counter contains

the multiplicity of the corresponding element in the k minimum hash values set. The

F̂AKMV
0 estimator was generalized to estimate F0 for compound partition created from

disjoint partitions by multiset operations.

2.3.4 Linear synopses based estimators

The core method for estimating F0 for this algorithm family is how packed or empty its

linear synopsis is. This family uses a uniform hash function(s) to distribute the items

over the linear synopsis or to group them into buckets. Then, the algorithm estimates

the cardinality based on the density of the synopsis.

Linear Counting (LC)

Whang et al. [1990] present a probabilistic algorithm for estimating the number of distinct

values in a dataset called Linear Counting (LC). This algorithm is a straightforward

application of the bitmap of hash values approach. LC maintains a bitmap B of size b,

in which all entries are initialised to 0.

LC is neither a logarithmic hashing algorithm nor a logarithmic counting algorithm.

In contrast, it is a linear counting algorithm that applies a uniform hash function h to

each item from the dataset x. Then, h(x) maps the item uniformly to a bucket in the

bitmap and sets it to 1, i.e., B[h(x)] = 1.

After hashing the entire dataset, if there were no collisions the number of 1-bits in B

would be F0. But F0 can be estimated based on the probability that a bucket is empty.

Let Vn denote the fraction of empty buckets in the bitmap. It is a good estimation of

this probability. The expected probability of a bucket being empty is given by e−n/b. As

a result, F0 is estimated using maximum likelihood estimator:

25

2. CARDINALITY ESTIMATION

F̂LC0 = −b · ln(Vn) (2.14)

The size b of the bitmap is defined in terms of a constant called load factor t as

b = F0/t. Whang et al.’s analysis reveals that using t ≤ 12 provides F̂0 with 1% standard

error. This fact reduces the synopsis by a factor of t. That leads to the main limitation

of LC: it needs some prior knowledge of F0 to determine the size of B. Practically, the

upper bound of cardinality nmax is used when creating B instead of F0. Thus, a linear

space of order O(nmax) is the main drawback of LC, when we have limited memory or

datasets of high cardinalities. Nevertheless, LC is a simple algorithm that can provide a

highly accurate estimation F̂0, if one chooses the right load factor. The standard error

of F̂LC
0 is

√
(et − t− 1)/(t · nmax).

Bloom filter (BF)

The main source of the algorithm LC’s estimation error are hash collisions in the bitmap.

Bloom filters can reduce collisions using m independent hash functions. Unlike LC, each

element is mapped to a fixed number of bits ≤ m, i.e., B[hi(x)] = 1.

The standard Bloom filter is designed to maintain the membership information rather

than a statistical information about the underlying dataset. But one can count the

distinct elements in a multiset by combining a Bloom filter with a counter, which is

incremented whenever an element is not in the filter. The value of the counter can never

be larger than the exact cardinality due to the Bloom filter’s nature, but hash collisions

can cause it to underestimate F0.

Bloom filters have been used effectively for cardinality estimation. Like LC, Swami-

dass and Baldi introduced an estimator of the population of Bloom filter using X as

the number of bits set to 1 in the filter [Swamidass and Baldi, 2007]. Intuitively, after

inserting all the elements of the dataset into a Bloom filter, the number of elements in a

Bloom filter is in fact F0 of the represented dataset. Given a Bloom filter of size b with

m hash functions, F0 can be estimated by:

F̂BF1
0 = − b

m
· ln(1− X

b
) (2.15)

Papapetrou et al. [2010] proposed a probabilistic approach to estimate F0 of a dataset

from its standard Bloom filter representation. This approach estimates the number of

elements in a Bloom filter based on its density and requires only X and the configuration

of the Bloom filter (b and m).

They estimate F0 by the maximum likelihood value for the number of hashed ele-

ments:

F̂BF2
0 =

ln(1− X
b)

m · ln(1− 1
b)

(2.16)

26

2.4 Comparative experiments

Table 2.2: Error-guarantees of the twelve algorithms

Algorithm Error Notes

FM Std. err. = (1/
√
m) m: Number of hash functions

PCSA Std. err. = 0.78/
√
m m: Number of bitmaps

AMS Ratio err. < c with
probability > 1− 2/c

c > 2

BJKST (ε, δ) Approximation Scheme Relative err. ε > 0
0 < δ ≤ 1/3

LogLog Std. err. = 1.3/
√
m m: Number of maximums Ri

SuperLogLog Std. err. = 1.05/
√
m m: Number of maximums Ri

HyperLogLog Std. err. = 1.04/
√
m m: Number of maximums Ri

HyperLogLog++ Smaller by factor 4 compared
to HyperLogLog for cardinalities
up to 12,000 [Heule et al., 2013].

Precision = 14
Sparse representation precision
= 25

MinCount Std. err. = 1/
√
k ·m k: order of the used minimum

m: Number of buckets

AKMV Relative err. ≈
√

2/(π · (k − 2)) k: order of the used minimum

LC Std. err. =
√

(et−t−1)
(t·nmax)

= 0.01

for t ≥ 12

t: load factor
nmax: Upper bound on n

BF Relative err. ≤ 0.04 [Papapetrou
et al., 2010]

BF density = 0.9

Their evaluation results show that the Bloom filter configuration affects the estima-

tion accuracy – larger Bloom filter provides higher estimation accuracy. Bloom filters

with fewer hash functions exhibit a more accurate cardinality estimation. Bloom filter

shares with LC the same limitation of the need of a prior knowledge of the maximum

cardinality in order to choose the suitable size of the filter.

Count-Min, not to be confused with MinCount, is a Bloom filter-like sub-linear syn-

opsis, which estimates the dataset item’s frequencies [Cormode and Muthukrishnan,

2005]. Count-Min is not originally designed to track the number of distinct values, but

to solve problems such as determining quantiles and heavy hitters. However, Cormode

[2009] pointed out that Count-Min sketches could be updated using FM-like synopses to

achieve this goal.

To summarize, we presented an overview of the state-of-the-art cardinality estimation

algorithms. In the following section, we compare the described algorithms and bench-

mark their accuracy, runtime, and memory consumption. Table 2.2 summarizes the error

guarantees of the algorithms presented in this section.

2.4 Comparative experiments

In the papers where they had been introduced, most of the twelve algorithms are accom-

panied by a theoretical analysis of how well they estimate F0 in terms of error and space

27

2. CARDINALITY ESTIMATION

bounds. Nevertheless, these analyses suffer from some shortcomings. The O() notation

in space bounds hides the actual space used for maintaining hash functions and data

structures. Furthermore, there is no unified error metric or hashing assumption among

the algorithms. To decide on a suitable algorithm for a given use case one needs more

information.

In this section we experimentally compare all twelve F0 estimation algorithms to ana-

lyze and better understand their behavior using a unified error metric, the same amount

of memory, and the same hash function. First, we describe the experimental setup and

the implementation details. Then, we briefly evaluate a sampling-based algorithm. We

compare the algorithms’ accuracies among each other and per algorithm family. Next,

we study the correlation between runtime, exact F0, and dataset size. Finally, we mea-

sure memory consumption of these algorithms and report minimum memory needed to

run each algorithm.

2.4.1 Experimental setup

Hardware

We performed all experiments on a Dell PowerEdge R620 server running CentOS 6.4.

It has two Intel Xeon E5-2650 (2.00 GHz, Octa-Core) processors, 128 GB DDR3-1600

RAM and a 4 TB RAID-5 storage. We implemented all algorithms as single-threaded

Java applications using OpenJDK 64-Bit Server VM 1.8.0 111-b15.

Implementations

To guarantee a unified test environment when comparing the twelve F0 estimation

algorithms, we implemented them for the Metanome data profiling framework [Papen-

brock et al., 2015a]. Metanome is a standard framework decoupled from the algorithms2.

It provides basic functionalities, such as input parsing and performance measurement.

In addition to various of discovery algorithms for complex metadata, such as keys or

functional dependencies, we extended Metanome to support basic statistics algorithms,

including F0 estimation.

To further unify our comparison we need to avoid the significant impact of the used

hash function on the runtime and the estimation accuracy. Thus, we implemented all

algorithms using the same hash function, namely MurmurHash3. We chose MurmurHash

based on the results in [Singh and Tirthapura, 2015], where the authors showed that

PCSA, LC, and LogLog yield the fastest and most accurate F0 estimation when using

MurmurHash compared to Jenkins, Modulo congruential hash, SHA-1, and FNV.

The next implementation decision was whether to use a 64-bit or 32-bit version of

MurmurHash. Nowadays, in the era of “Big Data”, it is important to estimate cardinali-

ties of over 108. The algorithms based on an observable of the hash values are limited by

the number of bits used to represent these hash values. For linear synopses, using 64-bit

hash functions reduces collisions in the case of large datasets. As a result, we implement

2www.metanome.de
3https://sites.google.com/site/murmurhash/

28

www.metanome.de
https://sites.google.com/site/murmurhash/

2.4 Comparative experiments

all algorithms using the 64-bit MurmurHash version. We made an exception of 32-bits

for AKMV and MinCount, because they both use the k-minimums of the hashed values

and using 64 bits adds an overhead without improving the algorithms’ counting ability.

We counted the exact value of F0 using the “JavaHashSet”. Unless stated otherwise,

all algorithms were configured to produce theoretical (standard/relative) errors of 1%

according to Table 2.2. LC and Bloom filter use the number of tuples in the dataset as

nmax. Bloom filter is implemented as a standard Bloom filter with four bits per element

and three hash functions to minimize the false positive rate and preserve the membership

test ability of the filter. For a detailed experimental evaluation of the influence of Bloom

filter length, number of hash functions, and number of blocks, on estimation accuracy,

refer to [Papapetrou et al., 2010].

Our re-implementations, all datasets, and results are available on our repeatability

page4.

Datasets

To benchmark the estimation accuracy and runtime of the considered F0 estimation

algorithms, we have run them over real-world datasets as well as synthetic datasets.

The 90 synthetic datasets were generated by the Mersenne Twister random number

generator [Matsumoto and Nishimura, 1998]. For each specific cardinality, we generated

ten independent datasets using different seeds for each of them and report their average

runtime and estimation error. The exact cardinalities were made to be the powers of 10,

starting with 10 up to 109.

By dataset cardinality, we always refer to the number of distinct values in the dataset,

while the dataset size is the overall number of elements. Table 2.3 shows our real-world

datasets, chosen based on tuple count, i.e., how large the dataset size is, and the variety

of columns cardinalities as illustrated in Figure 2.2.

Table 2.3: Real-world dataset characteristics

Dataset [#] Attributes [#] Tuples

NCVoter 25 (of 71) 7,560,886

Openadresses-Europe 11 93,849,474

NCVoter is a collection of North Carolina’s voter registration data5. We used the

first 25 columns to perform experiments. The Openadresses dataset is a public database

connecting the geographical coordinates with their postal addresses6.

To avoid the possibly misleading results caused by null semantics, all null values

are discarded by cardinality estimation algorithms and while determining datasets size

and exact cardinality (Figure 2.2).

4https://hpi.de/naumann/projects/repeatability/data-profiling.html
5https://www.ncsbe.gov/data-statistics
6https://openaddresses.io/

29

https://hpi.de/naumann/projects/repeatability/data-profiling.html
https://www.ncsbe.gov/data-statistics
https://openaddresses.io/

2. CARDINALITY ESTIMATION

Figure 2.2: Exact cardinality range of the real-world datasets columns and corre-
sponding column size.

Evaluation metrics

We allocate the same memory capacity to all algorithms and evaluate their perfor-

mance regarding runtime and estimation accuracy. We use relative error as the measure

of estimation accuracy as described in Section 2.1. The total time taken by an algorithm

to process all the data elements and estimate F0 is considered as its runtime. Runtime

and relative error of the real-world datasets are averaged over ten runs using the same

dataset. Runtimes and relative errors are averaged among ten synthetic datasets for each

specific cardinality.

2.4.2 Accuracy experiments

This section compares the accuracy of the twelve algorithms and how they scale with

the exact cardinalities of the datasets. We limited the Java Virtual Machine (JVM)

to 100 GB and ran each algorithm on each dataset with runtime limit of two hours.

Figures 2.3 and 2.4 illustrate the change of the algorithms’ relative error for each exact

F0 of the input dataset for synthetic and real datasets. The runtimes of this experiment

set are depicted in Figures 2.6 and 2.7, and are discussed in the next section.

Accuracy comparison among all algorithms

For datasets with a low number of distinct values (up to 1,000), all the logarithmic hash-

ing algorithms that use stochastic averaging as a method for accuracy boosting, namely

PCSA, LogLog, and SuperLogLog, extremely overestimate F0.

This effect is a consequence of stochastic average magnification of estimation by m.

From Table 2.2 (page 27), we can tell that as m increases, the upper bound of the

standard error of the over-all algorithm decreases. The accuracy of PCSA, LogLog, and

SuperLogLog increases up to this bound for larger cardinalities. Still, the bias of PCSA

30

2.4 Comparative experiments

(a) Synthetic datasets (b) Zoom of (a) up to 15 average relative error

(c) Zoom of (b) up to 0.1 average relative error

Figure 2.3: Accuracy of the twelve F0 estimation algorithms over 90 synthetic
datasets

is slightly less than that of the others due to the use of trailing 1s of the hash value

binary strings as observable. Figure 2.3a clearly shows this observation.

Overall, we see that all algorithms perform similarly well for larger cardinalities.

However, taking a closer look, Figure 2.3b makes it clear that AMS and MinCount

perform worse than the rest, even for large cardinalities. We note that AMS has a

high variance and is presented as a theoretical algorithm. Our measurements show this

variance in practice and show how the LogLog algorithm solved this problem, at least

for large cardinalities, using stochastic averaging.

As is clear from Figure 2.3c, BJKST outperformed all the other algorithms. The

error guarantee of BJKST was even better than the theoretical lower bounds (i.e., relative

error was always far less than 1%).

The second best algorithm after BJKST was Bloom filter with error measures close

to or equal to zero for most of the cardinality range. Noticeably, the relative error of

Bloom filter is inversely proportional to the exact cardinality of the dataset. In other

words, when the ratio of Bloom filter size over the dataset cardinality is relatively low,

the estimation accuracy is improved until the point when the Bloom filter is full and

31

2. CARDINALITY ESTIMATION

(a) NCvoter (b) Openaddresses-Europe

Figure 2.4: Accuracy of the twelve F0 estimation algorithms on real-world datasets

the error rises again. Obviously, this accuracy comes at a cost: we analyze runtime in

Section 2.4.3 and memory consumption in Section 2.4.4.

HyperLogLog++ maintained a good estimation accuracy with relative error be-

low 0.008, regardless how many distinct values the dataset has. The bias correction

implemented in HyperLogLog++ caused a tangible enhancement in estimating the car-

dinalities of datasets with small F0. FM is a strong competitor of HyperLogLog++, but

it exceeded the two hour runtime limit for datasets with F0 > 106.

According to Metwally et al. [2008] experimental results, LC was the most accurate

F0 algorithm, beating LogLog, SuperLogLog, FM, PCSA, MinCount, and BJKST. The

authors studied the accuracy change with only much smaller datasets and with differing

space usage, which is a different setting than in our experiments, which uses different

cardinalities. In fact, in our setting, LC also beat LogLog, SuperLogLog, PCSA, and

MinCount, but not FM and BJKST.

HyperLogLog provided a very good, and in particular stable estimation. Its use of

LC to estimate small cardinalities explains the similarity of the behavior of HyperLogLog

and LC for F0 < 106. AKMV’s accuracy went down steadily with the increase of the

dataset cardinality. Beyer et al. [2007] experimentally showed that AKMV is significantly

more accurate than SuperLogLog. Their measurements went up to cardinalities of 107.

In our experiments we observe that AKMV loses this advantage for cardinalities over

105 (but it remains to be more efficient than SuperLogLog). In contrast, PCSA, LogLog,

and SuperLogLog performed better for high cardinalities than for lower ones.

We also tested the accuracy of the twelve F0 estimation algorithms on real-world

datasets, as shown in Figures 2.4a and 2.4b. A very poor performance can be observed

for PCSA, LogLog, and SuperLogLog (the only algorithms appear clearly in the Figures)

for columns with low cardinalities on both datasets. More than half of the columns of

the NCVoter dataset, as well as only two of the Openaddresses-Europe dataset have

cardinalities below 1,000 (Figure 2.2). So, overall we can draw the same conclusion as

with our experiments on synthetic datasets.

32

2.4 Comparative experiments

(a) Trailing 1s family over synthetic datasets (b) Leading 0s family over synthetic datasets

(c) K-th minimum value family over synthetic
datasets

(d) Linear synopses family over synthetic
datasets

Figure 2.5: Average relative error of the algorithm families over 90 synthetic data-
sets

For the remaining columns of NCVoter, MinCount had the highest average error

around 0.5. All the other algorithms provided a very good accuracy with average relative

error less than 0.02. The same observation is also valid on Openaddresses-Europe.

Accuracy comparison per algorithm family

Because accuracy covered a very wide range of values, it was not easy to compare all

the algorithms together. To extend our discussion to another perspective, this section

validates what we know about each family, discusses the advantages and disadvantages

of its algorithms, and identifies the most accurate candidate for each algorithm family.

Figure 2.5 shows our findings.

As shown in Fig. 2.5a, in the trailing 1s family, FM is more resilient to dataset

cardinality than PCSA, but it is impractical with respect to runtime as we show in the

next section.

33

2. CARDINALITY ESTIMATION

A remarkable variance concerning their accuracy change among the leading 0s family

algorithms is illustrated in Figure 2.5b. The main disadvantage of this algorithm family

is that its algorithms are sensitive to hash value outliers (LogLog substantiates this

observation).

Each algorithm enhances its accuracy by using a dedicated boosting method to com-

bine results from m instances of the algorithm or/and correcting specific bias ranges

experimentally. LogLog and SuperLogLog use the stochastic averaging method. Hyper-

LogLog and HyperLogLog++ use harmonic means. SuperLogLog and HyperLogLog++

add also a specific bias correction tuned by experimental observations, which explains

why they outperformed LogLog, and HyperLogLog, respectively. Furthermore, we can

conclude that using the harmonic means method has an appreciable effect in reducing

the impact of hash-value outliers and in boosting the overall estimation accuracy with-

out adding a time overhead (Section 2.4.3). Interestingly, BJKST is the best member

of this family, although it does not use any additional boosting method to overcome the

problem of outliers with added cost for maintaining samples of the original dataset.

AKMV from the K-th minimum value family is another example of an algorithm

using only one instance defeating other algorithms that combine results of multiple in-

stances. MinCount is designed to use the stochastic averaging method to step-up its

accuracy. Still, the fairly simple algorithm AKMV is more accurate than MinCount, as

shown in Figure 2.5c.

As anticipated in the Linear synopses family, Bloom filter beats LC due to their

adoption of multiple hash functions resulting in a lower hash collision rate (Figure 2.5d).

An expected consequence is that LC is faster than Bloom filter as we show in the next

section. Nevertheless, the previous knowledge of maximum F0 in order to fairly tune

these algorithms is the drawback of this family.

2.4.3 Runtime behavior experiments

To compare the runtimes of the twelve algorithms, we recorded the runtime of the ac-

curacy experiments in the previous section. We used a runtime limit of two hours. This

period was not enough to count exactly the distinct values of the generated datasets

with cardinalities above 109, nor for the FM algorithm to finish: despite its high accu-

racy, FM exceeded the time limit for datasets with F0 over 106, both in synthetic and

real-world datasets. Figures 2.6 and 2.7 represent in log scale the runtimes for synthetic

and real-world datasets, respectively.

General speaking, for the synthetic datasets the runtimes of all algorithms scale

quadratically with synthetic dataset size (equaling their cardinality here), FM being the

slowest. All twelve algorithms apply hashing on every single element of the dataset, and

hashing constitutes the majority of each algorithm runtime. Accordingly, the runtime

mainly depends on the size of the dataset, not its cardinality. As the synthetic datasets’

sizes are identical to their F0, the correlation between dataset size and runtime is obvious.

In contrast, real-world dataset columns consist of duplicated items and have different

size within the same dataset due to removal of null values. For example, more than half

34

2.4 Comparative experiments

Figure 2.6: Runtime behavior of the twelve cardinality estimation algorithms on
synthetic datasets.

(a) NCvoter (b) Openaddresses-Europe

Figure 2.7: Runtime behavior of the twelve cardinality estimation algorithms on
real-world datasets

of the elements in the tenth column of openaddresses-Europe are null values. Despite

the high F0 value, this column has fewer elements than columns with a lower cardinality,

explaining the dip at around 107. Figure 2.7a shows a similar behavior for the NCVoter

dataset. Comparing it with NCVoter columns size in Figure 2.2, we notice the influence

of column size of runtime of all algorithms.

In addition to dataset size, two factors have a significant impact on runtime: the

number of used hash functions and the maintained data structures (synopsis type). The

disadvantage of using m hash functions is noticeable in FM’s runtime behavior. It is

slower by a factor of two than all other algorithms, regardless of input dataset cardinality,

but still follows the same influence of dataset size. The second slowest algorithm is

BJKST due to the overhead of keeping samples of the dataset and using a second hash

function in order to comprise its synopsis. Our measurements revealed that FM and

BJKST were slower than counting the exact F0 using a hash table, when the JVM heap

size was limited to 100 GB (i.e., large memory budget).

35

2. CARDINALITY ESTIMATION

LC hashes each element from the dataset once, so it is obviously faster than Bloom

filter which uses three hash functions. Both LC and Bloom filter need large synopses,

proportional to dataset size. Except FM, PCSA is the only logarithmic hashing algorithm

that keeps track of all the observable values (i.e., ρ(y)), making it slightly slower.

In summary, all the rest of the algorithms ran in roughly the same time without

a critical difference. HyperLogLog++, HyperLogLog, AKMV, and LC are the best

algorithms in terms of accuracy and runtime using a large memory budget.

2.4.4 Memory consumption experiments

In the previous experiments, we discussed the accuracy and runtime behavior using a

large memory budget (JVM was limited to 100 GB). It is a key requirement for cardinality

estimation to efficiently use all available memory. In some cases, a dataset is so massive

that count-distinct queries could not be run within available memory. For example,

out-of-memory was the error of a non-negligible part of count-distinct queries in the

PowerDrill system [Heule et al., 2013]. In other cases, such as stream processing, the

available memory is typically orders of magnitude smaller than the input [Garofalakis

et al., 2016].

Therefore, we evaluated the memory efficiency of the twelve algorithms. We deter-

mined the heap size that was used by each algorithm to estimate F0 of each dataset as

precise and fast as with large memory. We kept a runtime limit of two hours and all

algorithms configured to guarantee 1% estimation error. We report the minimum heap

size of ten runs for each data point.

Figure 2.8: Memory consumption of the twelve cardinality estimation algorithms
on real-world datasets.

Among all algorithms, only the hash table required a linear (and thus unacceptable)

memory consumption. For example, a heap size of 16.5 GB is required to exactly estimate

a cardinality up to 108. All other algorithms have similar sub-linear behavior. Among

those, BJKST has the highest constant factor. As described in Section 2.3, BJKST stores

36

2.4 Comparative experiments

samples of the data as part of its mechanism which explains the outstanding memory

consumption by BJKST compared to other approximation methods, especially to those

in the same family. HyperLogLog++ has the lowest constant factor and needs no more

than 52 MB heap size.

We ran the same experiments over real-world datasets and also observed an increase

in the constant factor in correlation with dataset size.

2.4.5 Sampling-based experiments

Sampling has an inherent difficulty to accurately estimate the number of distinct values

(Section 2.2). However, for the sake of completeness, we briefly evaluated Guaranteed-

Error Estimator(GEE) [Charikar et al., 2000] as an example of a sampling-based cardi-

nality estimator. GEE estimates the number of distinct values based on the frequency

of values within the uniformly and randomly sampled items from a column or a dataset.

The GEE estimator of the cardinality of a multiset of size n is defined as follows:

F̂GEE
0 =

√
n

r
· f1 +

r∑
j=2

fj (2.17)

Where r is the number of sampled items and fj is the number of items with frequency

j within the sample.

For this experiment, we used Reservoir sampling without replacement to randomly

sample 20%, 40%, 60%, and 80% of each column. Table 2.4 shows the experimentally

observed effect of different sampling rates on the average GEE estimation error over all

columns per dataset. To produce a cardinality estimation with 1% relative error, GEE

needs to sample more than 90% of the dataset. We also observed that when GEE is

applied to datasets with duplicated values, the estimation error is less.

Table 2.4: GEE average estimation relative error vs. sampling rate

Dataset
Sampling rate

20% 40% 60% 80% 100%

Synthetic 0.54 0.43 0.4 0.2 0

NCVoter 0.26 0.19 0.17 0.07 0.00002

Openadresses 0.28 0.2 0.19 0.09 0.00001

GEE runtime noticeably increases with the size of the dataset, but only slightly with

the sampling rate. The main drawback of GEE is its memory consumption. A GEE

synopsis consists of both sampled values and their frequencies. For a single column, GEE

needs a minimum heap size of at least 13 GB and 35 GB to guarantee an estimation error

below 1% on NCVoter and Openadress-Europe, respectively.

37

2. CARDINALITY ESTIMATION

2.5 Summary

Single-column data profiling provides a basic understanding of relational data by gen-

erating a diverse set of descriptive metadata about each column. Column’s cardinality

is one of the basic statistics about a column. It refers to the number of distinct values

in the respective column. Efficiently estimating the cardinality of a column, a dataset,

or a stream is a widely studied problem. We reviewed and discussed twelve of the most

important algorithms addressing this task.

We have confirmed that some preliminary solutions, such as sampling and hash ta-

bles, are valid only when one can scale up the available computational resources. Both

sampling and hash tables have the disadvantages of linear memory consumption and

quadratic runtime with dataset size.

Our work has led us to conclude that none of the twelve estimation algorithms is

clearly the best for all datasets and all scenarios. For a given accuracy, dataset size is

obviously the main factor, affecting all the algorithms’ runtime and memory consump-

tion.

We have categorized the algorithms into four families: Count trailing 1s, count lead-

ing 0s, k-th minimum value, and linear synopses. We showed that FM, BJKST, AKMV,

and Bloom filter are the best among their families, respectively. However, FM needs

an extremely high runtime. BJKST and Bloom filter, on the other hand, have a high

memory consumption. But AKMV survived for very large cardinalities with low mem-

ory consumption and runtime. For datasets with expected small cardinalities, PCSA,

LogLog, SuperLogLog are not recommended due to their overestimation problem. Fi-

nally, HyperLogLog, AKMV, and LC are efficient over all cardinality ranges by all means.

This study has investigated only single-threaded implementations of the algorithms.

However, several algorithms have characteristics that make them ready for parallelization

and distributed environments. We can divide them into three categories: (1) Algorithms

whose partial results can be easily merged, such as PCSA, AMS, and all their modifica-

tions. If the same hash function was used by all threads/nodes, bit-wise OR-operation

among their bitmaps can lead to the same final bitmap of a single thread. (2) Algorithms

running several copies of the same algorithm or use several hash functions to improve

their accuracy, such as FM, MinCount, and Bloom filters. These can be distributed in

a straightforward manner. (3) Algorithms allowing set operations like intersections or

unions, such as AKMV. In conclusion, there is an ample room for future work to evaluate

parallel implementations of these algorithms.

38

Chapter 3

Discovering Missing Column

Headers

The header of a column is among the most relevant types of single-column metadata

for relational tables, because it provides meaning and context in which the data is to

be interpreted. Headers play an important role in many data integration, exploration,

and cleaning scenarios, such as schema matching, knowledge base augmentation, and

similarity search. Unfortunately, in many cases column headers are missing, because they

were never defined properly, are meaningless, or have been lost during data extraction,

transmission, or storage. For example, around one third of the tables on the Web have

missing headers; it is even worse for open data tables, which are seldomly supplied with

meaningful schemata. In the end, missing headers lead to abundant tabular data being

shrouded and inaccessible to many data-driven applications.

In this chapter, we introduce a fully automated, multi-phase system that discovers

table column headers for cases where headers are missing, meaningless, or unrepresenta-

tive for the column values. We refer by schema to an ordered set of non-empty column

header-strings of a table. Our approach is to leverage existing table headers from web

tables to suggest human-understandable, representative, and consistent headers for any

target table. We evaluate our system on web tables that have been extracted from Wi-

kipedia. Overall, 60% of the automatically discovered schemata are exact and complete.

Considering more schema candidates, top-5 for example, increases this percentage to

72%. A paper based on the content of this chapter is under submission.

This work makes the following contributions:

1. End-to-end schema discovery. A schema discovery system that automatically

extracts meaningful column headers for given relational tables based on a corpus

of (web) tables.

2. Efficient similarity search. A similarity search algorithm optimized for match-

ing web table columns.

3. Unbiased column similarity measure. A similarity measure for web table

columns that efficiently matches similar value sets regardless of their length.

39

3. DISCOVERING MISSING COLUMN HEADERS

4. Context-aware column header assessment. A schema evaluation approach

that finds the overall optimal label composition for a table given multiple sets of

column candidate headers.

5. Evaluation. A systematic, empirical evaluation of the effectiveness of our schema

discovery system on hundreds of real-world web tables.

This chapter is organized as follows. First, we motivate and formally define the

problem of schema discovery in Section 3.1. Then, we discuss related work in Section 3.2.

We give some background information on similarity search in Section 3.3 and coherence

measures in topic modeling in Section 3.4. We describe our schema discovery system

and its components in Section 3.5. The results of the empirical evaluation are discussed

afterwards in Section 3.6. Finally, we conclude in Section 3.7.

3.1 Missing schema: Dark data

A table is a two-dimensional matrix of data values that are stored either in machine-

readable formats, such as a relational table in a database or as a structured document

(JSON, CSV, XML, etc.) in a file system, or in a human-readable formats, such as

embedded tables in a PDF file, a plain text file, or in an HTML web page. Tables

usually contain a high density of information that exceeds their core content to also

provide their structure and, with that, extra semantic meaning.

A relational table is a special format of tables that consists of one header row, the

schema, which indicates the domains of the values in the data rows, and a relational

instance, which is the set of rows, i.e., records that hold the actual data values [Codd,

1970]. Ideally, the schema provides a specification of the table that enables simple

understandability by humans and integrability by machines.

Definition 3.1. Given a relational table τ consisting of n columns, we formally define

Sτ , the schema of τ , as an ordered set of non-empty header-strings Sτ = {h1, ..., hn}.
Each element hi is a header of the column ci.

A table’s schema is among the most widely used types of metadata in many scenarios.

The majority of traditional schema matching approaches make use of column headers to

find a mapping between two data sources [Bernstein et al., 2011]. The main subject for

query answering in table search engines are column headers (combined with the table’s

context and body). For instance, Pimplikar and Sarawagi [2012] emphasized that the

completeness and the descriptiveness of the table’s schema directly impacts the search

results. The existence and the quality of a schema also significantly impacts the process

of extending a table with additional attributes [Lehmberg et al., 2015].

Several systems have been introduced to match web tables to a knowledge base (KB)

in order to enrich them [Dong et al., 2014; Efthymiou et al., 2017; Ritze et al., 2015].

The existence and quality of headers strongly influence these matching efforts.

Nevertheless, the semantic embedding-based approach by Chen et al. [2019], is able

to predict the KB class, independently of the availability of table headers. Systems, such

40

3.1 Missing schema: Dark data

as [Fernandez et al., 2018a,b], acknowledge that missing schemata aggravate the data

discovery problem and suggest similarity-based methods to semantically group datasets.

The lack of a schema limits the abilities to understand, explore and query a table.

Furthermore, the quality of the table’s schema has a direct impact on the performance

of any later application. A schema of good quality is complete, descriptive and does

not contain any meaningless, unreliable or opaque column names (and values). Because

tables with missing or low quality header are hardly usable for many downstream tasks,

we refer to them as Dark Data.

Nowadays, there is a wealth of tables in online published documents both in machine

and human-oriented formats. The WebTables project was the first to automatically

detect and extract human-readable tables from the Web [Cafarella et al., 2018]. Their

corpus has estimated 154 million diverse HTML relational-like tables. Lehmberg et al.

[2016] also extracted a collection of 51 million relational tables from the HTML Web

Common Crawl. Open Data is another flavor of online published tables in machine-

readable format. Open Data consists of databases published by federal governments,

companies, and academic institutions as part of the Open Data movement. Nargesian

et al. [2018] crawled 215 393 CSV tables from the UK, US and Canadian Open Data

Portal.

In principle, tables on the Web can be viewed as a tremendous distributed database

that covers a wide variety of topics, which makes them an appealing source of information.

But schemata have shown to be missing in a non-negligible amount of tables on the Web.

The majority of relational web tables have, however, missing or only obscure schemata

[Balakrishnan et al., 2015; Cafarella et al., 2008]. In [Embley et al., 2006; Wang et al.,

2012; Yakout et al., 2012] the authors found that web tables are often lacking schemata

or their headers are ambiguous, non-informative, or very generic. Open Data tables

seldomly have informative or reliable schemata [Nargesian et al., 2018].

In this chapter, we tackle the problem of discovering a schema for a table with a

missing or a low quality schema. Solving this problem sheds light on the dark data

and makes it accessible to downstream applications. Our key intuition is to leverage

the share of web tables with schemata to discover a suitable, coherent, and human-

understandable schema for any user-specified table with missing schema. We refer to the

task of discovering suitable, coherent, and human understandable schemata for tables

with missing headers as the schema discovery problem.

Definition 3.2. Given a table τ with missing or meaningless headers and a corpus

of tables T with headers, the schema discovery problem is to find a schema Sτ with

meaningful and coherent headers taken from the headers of T.

Figure 3.1 shows an overview of our schema discovery system. In the first step, simi-

larity search, it automatically discovers for each column in the input table a set of similar

columns (with a header) in a web table corpus. Then, it constructs candidate schemata

by systematically combining the discovered headers from each individual column with

the possible headers of the other columns. In the second step, coherence check, our sys-

tem measures how strong the individual headers in the final schema fit together based

41

3. DISCOVERING MISSING COLUMN HEADERS

? ? ?

H1 .. Hn

Similarity
search

Coherence
CheckSchema

Corpus

Figure 3.1: Overview of our system

on their co-occurrence in a schema corpus. In other words, we measure how coherent the

schema is and use this measure to rank the schema candidates. The schema discovery

system finally outputs the top-ranked schema(ta).

Although our system could infer column headers from any table corpus with informa-

tive headers, we use web tables extracted from Wikipedia pages (Wiki web tables) as our

main source of knowledge, because their schemata are, in general, of high-quality. Ta-

bles from Wikipedia also cover a wide range of topics, allowing our approach to produce

header candidates without introducing any additional semantic data, such as querying a

Knowledge Base. Although Wiki tables are only a fraction of all web tables, Bhagavatula

et al. [2013] pointed out that these high-quality Wiki web tables are sufficiently valuable

to enable table search; hence, they are also a good foundation for our use case.

In order to solve the schema discovery problem, we need to overcome three main chal-

lenges: efficient similarity search, unbiased similarity calculation, and coherent schema

discovery. We now motivate these three challenges step by step.

First, web tables have a special shape: They are usually small compared to traditional

relational tables or to Open Data tables. They have on average five columns and around

ten rows per table [Miller, 2018]. Still, the range for the number of columns and rows is

surprisingly large (see Figure 3.4 on page 59 for the case of Wiki web tables). Despite their

relatively small sizes, exact similarity search in web tables is computationally expensive,

memory exhausting and disk straining, because the corpus is huge. A similarity check

between each column in the input table and all columns in Wiki web tables (∼170k tables)

is unaffordable. A possible solution is to build inverted indexes that map every distinct

value of the web tables to a list of columns that contain it. Web tables contain many

42

3.1 Missing schema: Dark data

distinct values. For example, there are ∼185m unique values in web tables extracted

from the Web Common Crawl [Zhu et al., 2019]. Consequently, an inverted index-based

solution is infeasible for web table corpora as it results in huge indexes that make memory

management an issue. Thus, we implemented an efficient approximate similarity search

approach that reduces memory consumption.

In addition, a similarity measure is needed that matches similar columns independent

of their cardinalities, because the number of distinct values often differs significantly in

different columns. Statistically, the cardinalities of Web table columns follow a power-

law distribution; thus, the column cardinalities have a skewed distribution [Zhu et al.,

2016]. In our header discovery scenario, this means that an input column could have a

large cardinality difference to the web table column with an optimal header. Therefore,

the similarity measure must not be biased towards column cardinalities.

Finally, the discovered schema should consist only of header candidates that appear

naturally together. For example, “Color” and “Medal” are possible headers to a column

with the values {Silver, Gold, Bronze}. But, once this column co-occurs in a schema

that has another column with the header “Team”, it is preferable to choose “Medal” over

“Color”. So, we need to design a schema quality measure to quantify and, in this way,

eventually improve the overall quality of the proposed schemata.

Schema discovery problem formalization

We interpret the schema discovery problem as a combination of a similarity search

problem and a coherence optimization problem: The first part of our solution is a similar-

ity search to find good candidate headers for each individual input column given a table

corpus T – here a corpus of Wiki web tables. More specifically, the similarity search task

is described as follows: Considering each column of table τ as a set of distinct values,

find the set Yi of top-k most similar columns for each column ci in τ from all tables t in

T with the following properties:

(a) Each similar column in Yi has a header.

(b) Yi columns are only taken from tables t that have a table-level similarity simt(τ, t)

within some threshold θt.

(c) Yi consists of the top-k most similar columns to ci in terms of a column-level

similarity measure simc.

First, assuring property (a) is important, because not all columns in the tables of T

are guaranteed to offer a header. Second, because a table represents the context for its

columns, we demand in property (b) that not only the columns need to be similar, but

also their entire table (with a threshold on table similarity). Applying property (b) as a

filter sorts out similar columns from other domains. Third, we propose a top-k filter for

the number of similar columns in property (c) for both performance and quality reasons

(see Section 3.5).

The second part of our schema discovery solution is an optimization process that

composes the desired schema from the candidate headers, aiming for the best coherence

43

3. DISCOVERING MISSING COLUMN HEADERS

score. A coherence score C(Sτ) of a schema Sτ is a measure of how closely the headers

hi within the schema Sτ are related to each other. We present a concrete measure to

quantify this quality aspect of a schema, based on co-occurrence in other schemata, in

Section 3.4. We use the headers of columns in Yi as candidates headers Hi to construct

a schema Sτ as the combination in "i∈1...nHi that maximizes coherence C(Sτ).

3.2 Related work

Our approach is based on several related works that we describe throughout the chapter,

mainly in Sections 3.3 and 3.4. Here, we discuss two related approaches that tackle an

overall similar problem to our schema discovery problem.

The WebTables project was an effort to create a corpus of “high-quality relational web

tables” from Google’s gigantic general-purpose Web Crawl [Cafarella et al., 2008]. While

conducting the project, Cafarella et al. ran into the problem that a large portion of the

extracted web tables had no schema. They tried to generate syntactic schemata for every

header-less table by matching the content of each column to a database of 6.8M tuples

that covered 849 different domains. However, according to their own analysis, “we found

extremely few tables with clean enough string data to match our controlled database”.

This mismatch inspired us to leverage the labeled part of the (wiki) web tables to generate

headers, i.e., schemata for the non-labeled part of the web tables, because the labeled

part is expected to have the same structure and properties as the non-labeled part,

and it also covers a wide variety of domains. As stated in Section 3.4, this work also

suggested a schema coherence score based on PMI, which is one of the 15 coherence score

implementations that we tested.

Another approach to find meaningful headers for web tables without a schema was

made by Wang et al. [2012]. Their main goal was to understand the concepts that

each web table describes, which should then be reflected in the assigned schema. Their

efforts consequently enable semantic search functionality that returns relevant tables to

an issued keyword query. The header generation phase of the proposed algorithm follows

a similar roadmap as our schema discovery system with three major differences: (1) It

uses the Microsoft ProBase knowledge base as its main source of information, whereas

we use web tables; (2) it uses the top-k concepts as header candidates for each column

via direct knowledge base lookup and not via similarity search; (3) it generates the final

schema as the combination of column concepts with the highest confidence score returned

by the ProBase Knowledge API and not our coherence score.

The proposed schema generation approach, as a pre-processing step for understand-

ing web tables, also follows a different goal than our approach and, hence, produces

incomparable results: The algorithm tries to find the combination of column-concepts

that most likely represents the table-concept, whereas we try to find the combination

of existing column-headers that (according to the reference data) best fit the columns’

values and have a high co-occurrence probability. Our approach does not condition the

schema to represent any (real-world) entity or concept, because this approach tends to

produce less specific and, in particular, different headers than existing tables. The head-

44

3.3 Similarity search

ers we discover are previously used headers that also tend to appear together in the

schema corpus; they are not general attribute labels of concepts.

In the following sections, we present the foundations of similarity search and topic

modeling, and discuss how they are used to solve our problem.

3.3 Similarity search

We model the problem of finding a single missing header as a set similarity search prob-

lem: Given a column without a header, we search for similar columns with headers in

the very large search space of all web table columns. The similarity search needs to be

efficient enough to process large web table corpora, but it should prioritize the quality

of the results (headers) over query time.

This section is divided into three parts. First, we present the similarity measures

that we use in our approach and discuss existing solutions to estimate them with limited

storage. Then, we present state of the art solutions for set similarity search and discuss

whether they fit our problem. We finally describe the data sketching technique that we

apply in our schema discovery system.

3.3.1 Set similarity estimation

A set similarity function sim(A,B) maps two value sets A and B to a similarity value in

[0,1]. This number measures the similarity between A and B. If A and B are identical,

i.e., both contain the same values, sim(A,B) = 1; if A and B are completely different,

i.e., the two value sets share no value, sim(A,B) = 0; for any other value overlap,

sim(A,B) should yield values in between 0 and 1. Many set similarity functions exist,

and we refer to [Choi et al., 2010] for an overview.

In our scenario, we need to calculate sim(A,B) for a very large number of column-

and table-pairs. For this reason, the techniques to estimate the similarity of two tables

and two columns, respectively, need to be not only accurate but also efficient. Because

column value sets and tables value sets have different characteristics w.r.t. their similarity

calculation, we propose two different functions, which we denote as simc and simt,

respectively. The table-level similarity simt(A,B) measures the similarity between a

header-less input table and a web table, where A and B are the value sets of these

two tables. The column-level similarity simc(A,B) measures the similarity between a

column without header from the input table and a candidate column with header from

the web table corpora, where A and B are the value sets of these two columns. In our

solution, we use two well-known similarity functions, namely Jaccard similarity as simt

and Jaccard containment as simc [Jaccard, 1901].

45

3. DISCOVERING MISSING COLUMN HEADERS

Jaccard similarity

Jaccard similarity is the size of the intersection of two sets divided by the size of their

union:

J(A,B) =
|A ∩B|
|A ∪B|

(3.1)

We use Jaccard similarity as simt to guarantee that the table’s columns have at

least some common content with the input table; we filter out such web tables that are

dissimilar.

Estimation. Because the exact similarity check is too expensive for large numbers of

sets, Broder introduced the MinHash technique to efficiently estimate Jaccard similari-

ties with high accuracy [Broder, 1997]. Calculating MinHash sketches, though, requires

the hashing of every item in the set with k hash functions. This is computationally

expensive, because k is usually in the range between hundreds to thousands, if an es-

timation of high accuracy is required [Shrivastava and Li, 2014]. Hashing techniques,

such as OOPH [Shrivastava, 2017], have emerged to reduce this cost at the expense of a

noticeable decrease in the quality of the similarity estimation. The Lazo index method in-

troduces a cardinality-based heuristic to improve OOPH’s estimation quality [Fernandez

et al., 2019].

Our system, however, uses set cardinalities to estimate simt with HyperLogLog

(HLL) data sketches [Flajolet et al., 2008; Heule et al., 2013] (see Section 3.5.3).

Jaccard containment

Jaccard containment, also known as inclusion coefficient, is an asymmetric measure that

captures the ratio of the intersection size of two sets to the size of one of the sets:

C(A,B) =
|A ∩B|
|A|

(3.2)

Jaccard containment is preferable over Jaccard similarity for measuring the similar-

ity between sets that have a high variance in their cardinalities. This is true for web

table columns, because their distinct value counts statistically follow a power-law dis-

tribution [Zhu et al., 2016]. Thus, we use Jaccard containment as simc to find relevant

columns where A and B consist of the values of two columns. We also experimentally

tested the use of Jaccard containment as simt, but it filtered out too many tables. Hence,

we use Jaccard similarity as simt.

Estimation. Because the exact calculation of containment between a large number

of column pairs is a performance issue, we need to approximate this calculation as

well. Zhang et al. [2010] used bottom-k sketches to estimate the Jaccard similarity, which

then serve to estimate containment as follows: C(A,B) = J(A,B)
J(A∪B,A) . By translating a

Jaccard containment threshold into a Jaccard similarity threshold, Zhu et al. [2016] esti-

mate containment using MinHash. The Lazo index introduces a method to estimate both

46

3.3 Similarity search

Jaccard similarity and containment simultaneously from MinHash sketches [Fernandez

et al., 2019]. Nazi et al. [2018] introduced BML – a maximum likelihood estimator to

estimate containment between two sets represented by HLL sketches.

Our system also uses HLL to estimate simc, but we do not introduce a direct con-

tainment estimator like BML. As our experiments in Section 3.6.3 show, our method

for containment estimation solves the problem exactly, i.e., as accurate as BML even

without the estimator overhead.

3.3.2 State-of-the-art similarity search

Finding the closest neighbor to a given query point from a set of n points within a d-

dimensional space is a widely studied problem and well-known as nearest neighbor search.

A generalization of this problem is similarity search: It describes the distance of items

by their similarity and, then, finds closest similar items, i.e., neighbors.

Many real-world applications require a solution for this problem. In information

retrieval, for instance, similarity search serves to answer search queries with a ranked list

of top similar documents [Haveliwala et al., 2002] and it helps to detect near-duplicate

web pages for search result filtering [Broder et al., 1997]. In database research, similarity

search is used in similarity joins that try to find join-able tables [Augsten and Böhlen,

2013; Zhu et al., 2019]. Similarity search is one of the core components of data discovery

systems such as Armur [Fernandez et al., 2018a,b] and Goods [Halevy et al., 2016].

Finally, in data mining, collaborative filtering depends on similarity search to match

users by similar tastes, which is necessary to make recommendations [Shi et al., 2014].

There are two variations of similarity search within a d-dimensional space: one that

finds all items with a similarity above a given threshold and one that finds the top-k

most similar items to a given item. Because the search space for the similarity search

problem grows exponentially with the number of dimensions d, finding the exact answer

to a similarity search query results in exponential query times and/or space requirements.

This problem is known as the dimensional curse [Andoni and Razenshteyn, 2015]. In our

scenario, the search space consists of all columns in the web table corpora that includes

25k tables with width between 1 to 400 as shown in Figure 3.4b (page 59).

Some approaches focus on accelerating the similarity search without sacrificing the

exactness of the results using indexing and optimization strategies [Arasu et al., 2006;

Bayardo et al., 2007; Xiao et al., 2011; Zhu et al., 2019]. Conversely, various approxima-

tion methods have been proposed for the similarity search problem that either transform

the input data to a lower dimensional representation and/or approximate the similarity

measure computation [Wang et al., 2014].

Locality-sensitive hashing (LSH) is the state-of-the-art approximate solution for simi-

larity search. It reduces the complexity from O(n2) (all pairs comparison) to O(n) [Indyk

and Motwani, 1998]. LSH indexes the data items with a hash table in a way that similar

items collide and, hence, fall into the same bucket. Thus, any item that collides with

the hash of the input item is a candidate. The hashing is an approximation step, but it

achieves an effective dimensionality reduction.

47

3. DISCOVERING MISSING COLUMN HEADERS

Based on the similarity measure, various flavors of LSH indexes have been developed

for different similarity measures: Jaccard similarity (MinHash LSH) [Indyk and Motwani,

1998], Euclidean distance [Datar et al., 2004], Hamming distance [Indyk and Motwani,

1998], Cosine distance [Charikar, 2002], Jaccard containment (LSH Ensemble) [Zhu et al.,

2016], and coupled Jaccard similarity and Jaccard containment (Lazo index) [Fernandez

et al., 2019].

These approaches are all possible alternatives for implementing the similarity search

phase in our approach. However, they work well only for a certain similarity measure

(except Lazo) and our similarity search solution supports top-k queries using any similar-

ity measure that can be defined in terms of set cardinalities. Furthermore, they require

powerful compute environments to optimize the query time and, in this way, cope with

large table corpora. Our solution in contrast offers high quality results with low main

memory requirements. We compare experimentally against Lazo as a representative ap-

proximation method in Section 3.6.4.

3.3.3 HyperLogLog (HLL)

As mentioned in Chapter 2, data sketching techniques serve to represent data in suffi-

ciently compact forms and to significantly speed up calculations, e.g., of similarity scores.

HLL sketches in particular approximate set cardinalities and, therefore, constitute a

well-fitting solution for our scenario: They help to overcome the dimensionality curse of

similarity search in web tables and enable the calculation of both Jaccard similarity and

containment.

HLL [Flajolet et al., 2008; Heule et al., 2013] is a data sketch that provides a near-

optimal estimation for the number of distinct values in a given set (i.e., the set cardi-

nality). HLL is popular and adapted even in databases engines, such as PostgreSQL.

One HLL sketch requires approximately 1kB of memory regardless of the underlying set

size. We introduced HLL in Chapter 2, we now only review the main aspects of this data

sketching technique.

Construction. The input items of a set (i.e., the values of a column) are hashed and

the hash value is divided into prefix p and suffix q. Prefix p is used as an index

into an array of registers. Each register contains the maximum leading zero count

among all suffixes q that have been mapped into it.

Estimators. The maximum leading zero count of each register can be used to estimate

the cardinality of the entire set. Register-level estimates are then averaged (by

harmonic mean) and corrected to obtain an overall cardinality estimate for the set.

Estimation Error. HLL maintains a relative estimation error < 0.01 for sets with up to

109 distinct values [Harmouch and Naumann, 2017] (as we experimentally showed

in Chapter 2).

Set operations. HLL sketches support set union operations in a lossless fashion. The

result of combining two HLL sketches is exactly the same as if the union of the

48

3.3 Similarity search

two sets had been fed into one HLL sketch. Note that this operation works only if

the two input HLL sketches used the same hash functions and the same number of

buckets. Because the intersection operation is not natively supported by most HLL

implementations, we summarize possible methods of estimating the set intersection

and explain which one we choose in the next subsection.

Set intersection estimation

The intersection between the two sets A and B has the cardinality O = |A ∩ B|. The

larger the intersection is, the higher is the probability that A and B are samples from

the same population [Rice, 2006]. Finding the exact value of O requires comparing each

element in A to each element in B.

The set intersection can be calculated either using the sieve, (inclusion-exclusion)

principle:

|A ∩B| = |A|+ |B| − |A ∪B| (3.3)

or based on the Jaccard coefficient [Beyer et al., 2007; Dasu et al., 2002]:

|A ∩B| = J(A,B) · |A ∪B| (3.4)

|A ∩B| = J(A,B)

J(A,B) + 1
· (|A|+ |B|) (3.5)

Estimation. As we experimentally showed in Chapter 2, an estimation of the cardinal-

ities |A|, |B| and |A ∪ B| can be obtained efficiently and with low standard error using

HLL. If an estimation of the Jaccard similarity is also available (using, for instance,

MinHash), one can use Equations (3.4) and (3.5).

MinHash is biased towards smaller sets and we observe a huge variance in set car-

dinalities in our web tables scenario. Hence, to avoid adding additional data sketches,

we estimate the set intersections by Equation (3.3) in our similarity search phase, which

uses cardinalities estimated by HLL sketches.

In summary, we use Jaccard similarity for table-level similarity simt and Jaccard

containment for column-level similarity simc in the similarity search step of our solution

for the schema discovery problem. We need to calculate simt and simc for a very large

number of table- and column- pairs. For this reason, We estimate both similarities using

HLL as the data sketching technique.

Given a column without a header, similarity search step finds a set of most similar

columns with headers in all web table columns. For every column in the header-less

input table, a set of header candidates is extracted. Next, we need to suggest a schema

for the input table consists only of header candidates that appear naturally together.

Thus, we discuss in the next section methods to quantify how good a set of words (in

our case headers) fit together.

49

3. DISCOVERING MISSING COLUMN HEADERS

3.4 Topic coherence

In the past, research efforts from different disciplines focused on measuring the strength

of how facts within a set support each other; more specifically, they aim to quantify

how coherent they are. The term schema coherence debuted in the context of auto-

completion of a schema for database designers based on word co-occurrence statistics for

headers in schemata, extracted from web tables [Cafarella et al., 2008]. Furthermore,

text mining approaches automatically learn a set of important words from unlabeled

documents to model a specific topic; these approaches also use coherence measures to

support the interpretability of their models [Newman et al., 2010].

In order to develop a suitable coherence score C(Sτ) for the evaluation of our dis-

covered schema candidates, we adopt measures from topic modelling by treating schema

headers as word sets that model a topic.

Given a word set W , Röder et al. [2015] represent a topic coherence measure as a

composition of four steps: The coherence score is calculated by splitting W into word

pairs (segmentation), then calculating the co-occurrence probability of each pair (prob-

ability calculation), then translating the probabilities into a measure of agreement for

each pair (confirmation), and finally combining all confirmation measures into one final

coherence score (aggregation). In our case, the word set W is the schema candidate Sτ .

1. Segmentation (Sg) is the division of W into a set of subset pairs. Each subset

contains one or multiple words from W . A pair of subsets is formed by pairing

every individual subset to, for example, every other subset, only the proceeding

subset, or only the succeeding subset.

2. Probability calculation (P) is the method to derive word probabilities from the

reference corpus. The word probability is estimated by the proportion of documents

that it appears in with respect to all documents in the reference corpus. Other

variations make use of formatting information and estimate at sentence, paragraph,

or sliding window level.

3. Confirmation measure (m) assesses the agreement of each subset pair and how

strong they support each other. It is computed based on the probabilities corre-

sponding to the subset pair.

4. Aggregation (σ) is the function used to combine all confirmation measures of all

word pairs into one score C(Sτ).

We need to choose carefully each part to design our coherence measure C(Sτ) to fit our

problem.

We evaluated three single-word-based segmentation methods, i.e., methods that rec-

ognize each subset as only one header, namely: Sgone pairs each header with every other

header in the schema, Sgpre pairs each header with only proceeding headers and Sgsuc
pairs each header with only succeeding headers.

The reference corpus for our coherence measure is the schema corpus. For the schema

corpus, we propose to use the attribute correlation statistics database (ACSDb) [Cafarella

50

3.4 Topic coherence

et al., 2008], because it is the richest available corpus of schemata with statistics. ACSDb

lists each unique schema as a set of headers along with a count that indicates how many

relations contain it. This directly affects our option for probability calculation and limits

it to document level, i.e., the header either exists in a schema in ACSDb or not. For

the other three parts, we tried the best variations of methods reported by Röder et al.

[2015], measured their effectiveness, and used the best-performing ones.

Because we calculate the probabilities based on ACSDb and not on the Wiki web

table corpus, as discussed earlier, from which we extract the headers, there is a chance

of encountering a column header or a pair of column headers that never appeared (in

this combination) in the reference corpus. For this reason, our system implements a

smoothing step. More specifically, we add a small constant (ε = 10−12) as recommended

by Stevens et al. [2012] to all probabilities.

We consider five different confirmation measures in our experiments. Given a pair

of headers (h, h′), the confirmation measure m of this pair can be computed as either

conditional mc [Mimno et al., 2011], difference md [Douven and Meijs, 2007], Fitelson

mf [Fitelson, 2003], Log-ratio mlr or normalized log-ratio measure mnlr. The latter two

measures are well known as point-wise mutual information (PMI) and normalized point-

wise mutual information (NPMI) [Bouma, 2009], respectively. In [Cafarella et al., 2008],

the schema coherence score is computed with PMI.

If P (h) is the probability of the header h and P (h, h′), P (h|h′) are the joint and

conditional probabilities of h and h′ to occur in the same schema, the exact measure

definitions are as follows:

mc(h, h
′) =

P (h, h′)

P (h′)
(3.6)

md(h, h
′) = P (h|h′)− P (h) (3.7)

mf (h, h′) =
P (h|h′)− P (h|¬h′)
P (h|h′) + P (h|¬h′)

(3.8)

mlr(h, h
′) = log

P (h, h′) + ε

P (h) · P (h′)
(3.9)

mnlr(h, h
′) =

mlr(h, h
′)

− log(P (h, h′) + ε)
(3.10)

Finally, popular aggregation functions are minimum, maximum, arithmetic mean and

median, and geometric mean. We choose the arithmetic mean σa, because Röder et al.

[2015] showed that it produces a score that best correlates with human ratings.

As we show in the evaluation section, the best combination of coherence measure

parts is:

C(Sτ) = (Sgsuc,mc, σa) (3.11)

51

3. DISCOVERING MISSING COLUMN HEADERS

Query TimeOffline Preprocessing In-MemoryDisk

Similarity Search

ACSDb
2.6M schemata

Wiki Web
Tables
32 GB (1.6M tables)

Coherence Check

Transform

Parsing
ACSDb

HLL Tables
450 M

Lucene Index

....

Table with
missing headers

Header
candidates
column 1

? ? ?

H1 .. Hn

Phase 1

Phase 2

Schema
candidates

Header
candidates
column n

Figure 3.2: Overview of our multi-phase system for coherent schema discovery
from Wiki web tables

3.5 Missing schema discovery

After providing the essential foundations, this section focuses on the workflow of our

schema discovery system. An overview of the multi-phase missing schema discovery

system is shown in Figure 3.2 on page 52.

We start by describing the data structures that are used to efficiently represent the

input data. We then discuss the offline pre-processing that constructs these data struc-

tures from the two given corpora – the web and the schema corpus. Afterwards, we

describe in detail the similarity search for candidate headers and finally the assembly of

candidate headers into a coherent schema.

3.5.1 Data structures

Our schema discovery system uses two main data structures: HyperLogLog-based table

representations (short HLL tables) and an inverted index on schemata statistics (short

a schema index). The HLL table is a data structure to represent each table in the table

corpus with a limited amount of memory and still guarantee an efficient estimation of

both simt and simc (details in Section 3.5.3).

The mapping between a table and a HLL table is shown in Figure 3.3. Each HLL

table is an array of HLL columns, one for each attribute in the original table. Each HLL

column is a pair of a header string and a HyperLogLog data sketch constructed from the

set of distinct values of the original data column. Converting all tables from the wiki

52

3.5 Missing schema discovery

Figure 3.3: HLL table representation of a Wiki web table

web table corpus into this data structure reduces the size of the table corpus from 32 GB

to 450 MB, which fits easily into the main memory of modern computers.

Given that HLL sketches naturally support union set operations, a HLL sketch of the

values of the entire table is exactly the result of the union of its column HLL sketches.

We later show that the similarity search can effectively be conducted using only the HLL

table representation of the table corpus.

To measure the coherence of a schema, we need to query the schema corpus. The

computation of the probability of a given header to appear in a schema and the compu-

tation of the probability of two headers to co-occur in some schema are two expensive

operations, because they need to retrieve all schemata that contain a certain header. To

accelerate these retrieval steps, we build a disk-based inverted index, the schema index,

on top of the schema corpus, pointing each column header to all the schemata it occurs

in.

Both data structures, the HLL tables and the schema index, are built once in an

offline step, i.e., before the system is queried for schemata. In the following, we list the

steps to prepare and build the two structures.

3.5.2 Offline pre-processing

Tables without a header in the web table corpus are worthless for our system, because

they do not provide column header candidates – we remove all such tables from the

table corpus. Then, we scan each table once and transform it into a HLL table. During

the transformation, empty columns are also ignored, because they lack the basis for a

similarity comparison in the similarity search phase. Adding such columns to the HLL

tables would consume unnecessary extra space for the respective HLL sketches and they

would generate random header candidates for any empty column in the input tables, i.e.,

the tables for which our system is supposed to find meaningful column headers.

53

3. DISCOVERING MISSING COLUMN HEADERS

The ACSDb schema corpus contains 2 219 785 distinct schemata, together with their

occurrence frequencies. The frequency refers to the number of tables in the relational

tables of the Google Web Crawl that have the same set of headers. To build the schema

index, we parse the ACSDb corpus and build a Lucene inverted index on top: Each

schema is inserted z times into the index, where z is the frequency of this schema as

provided by the ACSDb corpus, to ensure the propagation of the schema frequencies to

the co-occurrence probabilities of its headers. Before inserting a schema into the schema

index, we execute several preparation operations, such as trimming and lower-casing each

header and removing special characters including {.;:!?,}.

3.5.3 Phase 1: Similarity Search

To construct a coherent schema candidate for a table with missing schema, we first search

in the table corpus for similar columns w.r.t. the columns’ values. Algorithm 1 shows

the similarity search process in detail. As Figure 3.2 on page 52 depicts, the similarity

search phase expects the HLL table corpus H and a table τ with missing schema as

input. The only required disk access is to read and load these two files into memory.

Apart from the HLL tables and the header-less query table, two additional parameters

are required: k and θt. The parameter k is the maximum number of header candidates

to keep for each column in τ ; the parameter θt is a similarity threshold for the table

similarity measure simt.

Note that we provide only the essential parameters in Algorithm 1; additional pa-

rameters for tuning the HLL structures are provided in the evaluation section.

Because our system tries to find not only reasonable column headers but coherent

schemata, it first searches for overall similar tables and then within these tables for

similar headers. The threshold θt defines which tables are considered to be similar. The

intuition is that similar columns have higher probability to occur within a similar table t

than in arbitrary tables; hence, we consider only those tables t for the column similarity

search that are at least θt similar to τ w.r.t. the similarity simt between t and hτ . Our

experimental results confirm this intuition in Section 3.6.6.

The array of priority queues (candidates) is a local data structure that stores the

output of the similarity search. The header candidates for each column ci ∈ {c1, ..., cn}
in τ are stored in a priority queue candidates[i] of size k, which ranks the headers by

the similarity between their column and ci. The algorithm first initializes candidates

according to n, which is the number of columns in τ , and k, which is the maximum

number of candidate headers per column (Lines 1 and 2). The input table τ is then

transformed into a HLL table hτ (Line 3) to enable the calculation of simt and simc

with the tables in the corpus H.

After the first initialization steps, the tables in the table corpus are scanned one after

another. Each table t in H is checked for whether its Jaccard similarity simt(t,Hτ) to

the input table is larger than the threshold θt (Lines 7 to 14). The HLL sketches of both

t and hτ are constructed by merging the HLL sketches of their columns.

54

3.5 Missing schema discovery

Algorithm 1 Web tables similarity search

Data: H: the HLL table corpus.

Input : τ : a table with n columns missing headers.
k: the number of candidates for each column.
θt: a table-level similarity simt threshold

Output: candidates: an array of n priority queues (one for each column in τ).

. Initialization

1 for f ∈ {1, ..., n} do
2 candidates[f]← priorityQueue(k)

. HLL table

3 hτ ← table2Hyper(τ)
. Merge of column HLLs into a table HLL

4 HLLhτ ← merge(hτ.getColumns())
5 cardhτ ← HLLhτ .cardinality()
6 foreach table t ∈ H do
7 HLLt ← merge(t.getColumns())
8 cardt ← HLLt.cardinality()

. Early pruning of tables

9 if
min(cardt, cardhτ)

max(cardt, cardhτ)
< θt then Break;

. Inclusion-Exclusion principle

10 HLLall ← merge(HLLt, HLLhτ)
11 cardu ← HLLall.cardinality()
12 cardn ← cardt + cardhτ − cardu

13 tablesim ←
cardn
cardu

. Jaccard similarity

14 if tablesim ≥ θt then

. Find top-k most similar columns for each column from the input table

15 foreach column ci ∈ hτ do
16 foreach column cj ∈ t do
17 HLLboth ← merge(ci, cj)
18 cardcu ← HLLboth.cardinality()
19 cardcn ← ci.cardinality() + cj .cardinality()− cardcu

. Containment between columns

20 columnsim ←
cardcn

ci.cardinality()
21 weightsim ← columnsim · tablesim
22 candidates[i].insert(cj .getHeader(),weightsim)

Because estimating the actual Jaccard similarity for the two tables is expensive,

we prune some of these estimation steps by checking the ratio between the two table

cardinalities (Line 9): Given two sets A and B (i.e., tables in our case) where |A| ≥ |B|,
if |B||A| < θt then J(A,B) < θt is also true, because |A∩B| ≤ |B| ≤ |A| ≤ |A∪B|. Hence,

55

3. DISCOVERING MISSING COLUMN HEADERS

if |B||A| < θt is already true, we can skip the calculation of J(A,B). This optimization step

is used also in other work [Bayardo et al., 2007; Xiao et al., 2011].

If t passes this test, the Jaccard similarity is estimated given only the HLL sketches

of t and τ ; otherwise, the algorithm estimates both the cardinality of each table and the

union cardinality from the HLL sketches (Lines 10 to 11). Likewise, the cardinality of the

intersection is estimated using the inclusion-exclusion principle from these cardinalities

(Line 12). If simt(hτ ,t) is above θt, i.e., if the overall tables are similar (Lines 13

and 14), the algorithm calculates all pair-wise similarities between the columns of hτ

and t (Lines 15 to 20).

For each column pair (ci, cj), where ci belongs to hτ and cj belongs to t, it estimates

the containment using the HLL sketches of the columns. The higher simc between any

column cj and a column ci is, the more likely it is that cj ’s header also fits ci; hence,

we use cj ’s header as a candidate header for ci if it is among the top-k headers with the

largest value overlap. Thus, the denominator of the containment is the cardinality of ci
(Line 20). Again, we use HLL sketches to estimate the intersection as described above.

Finally, the column containment simc is weighted by the tables’ Jaccard similarity

simt to increase the rank of a column from a similar table in the respective priority queues

(Line 21). Boosting the column similarity with the table similarity is the first step to

enhance the coherence of the final schema, because it favors headers from more similar

tables once the header candidate is inserted in the respective priority queue (Line 22).

Algorithm complexity. The worst case complexity of Algorithm 1 for n columns in

an input table is O(|T| + n · Tc), where |T| is the number of tables in T and Tc is the

number of all columns in T. Both are constants for the fixed table corpus T.

The coherence of the final schema is checked again in Phase 2, which we describe in

the following section.

3.5.4 Phase 2: Coherence Check

The coherence check phase is responsible for building a meaningful and coherent schema

from the up to k header candidates that the system calculated in the previous phase for

each column. Algorithm 2 shows the coherence check process in detail.

The algorithm calculates a list (schemata) containing the top-m possible schemata

for a table τ ranked by their coherence measure C(Sτ). We already discussed the details

of the coherence measure calculation in Section 3.4 and it represented by (Lines 3 to 11)

in Algorithm 2.

The input of the algorithm consists of the schema index I, the top-k header candidates

candidates and the desired number of best schema candidates m. The process then starts

by initializing the priority queue schemata of size m to retain the most coherent possible

schemata (Line 1). The local data structure SC stores all possible schemata that can be

assembled from the different top-k candidate header lists; it is calculated as the Cartesian

product over all n header sets candidates[1], . . . , candidates[n].

The algorithm scores each schema s in SC (Lines 3 to 11) before inserting it into

the priority queue (Line 12). First, a set PS of header pairs is constructed using the

56

3.5 Missing schema discovery

Algorithm 2 Coherence check

Data: I: The Schema Index.

Input : candidates: an array of header candidates. (output of Algorithm 1).
m: the number of schema candidates.

Output: schemata: Top-m coherent schemata

1 schemata← priorityQueue(m)

. Schema candidates

2 SC ← "i∈1...n candidates[i]
3 foreach s ∈ SC do

. Header pairs

4 PS ← segment(s)
5 MC ← Φ
6 foreach (h, h′) ∈ PS do

. Probabilities

7 p← probability(h′, I)
8 pc← condProbability(h, h′, I)

. Confirmation measure

9 mc ← pc
p

10 MC.insert(mc)
. Schema coherence

11 c← arithmeticMean(MC)
12 schemata.insert(s, c)

Sg(suc) segmentation method that groups each header with the succeeding header in

the schema s. Then, the agreement of each pair of headers (h, h′) in PS is assessed using

the conditional confirmation measure mc (Line 9).

The measure mc is the ratio of pc, which is the probability of h and h′ to co-occur

together in the same schema, and p, which is the probability of seeing the header h′

within any schema of I. Thus, the algorithm queries the schema index I to retrieve the

required statistics (e.g., number of schemata in which a header appears or in which two

headers co-occur) to calculate p and ps (Lines 7 and 8). The arithmetic mean of the

set MC of all mc values of all pairs in PS, then, is the coherence score of the schema s

(Line 11).

The schema s is finally inserted into the schemata priority queue of size m together

with its coherence score. Because schemata is bound in size to m, it in the end contains

the m most coherent schemata for the header-less input table τ (Line 12).

Algorithm complexity. The complexity of Algorithm 2 for n columns in an input

table is O(kn · n·(n−1)2), where kn is |SC| and n·(n−1)
2 is the complexity of segment(s); k

is constant.

57

3. DISCOVERING MISSING COLUMN HEADERS

3.6 Experiments

The goals of our experimental evaluation are (1) to evaluate the effectiveness of using

HLL sketches for Jaccard similarity estimation between tables and Jaccard containment

estimation between columns; (2) to compare several well-known topic coherence measures

to rank the discovered schemata; and (3) to evaluate the ability of our approach to

discover correct or meaningful schemata for web tables. More specifically, this section

supports the following insights:

Section 3.6.3. HLL sketches offer an efficient and accurate estimation method for

Jaccard similarity and containment. This is true even with the skewed distribution of

column cardinalities in web tables.

Section 3.6.4. The best header of a column can be expected to appear within the top-5

header candidates.

Section 3.6.5. The coherence score that uses Sgsuc as segmentation method and mc as

confirmation measure is the optimal configuration for the majority of schemata in the

Wiki web table corpus. Thus, we propose it as the default measure of coherence in our

system.

Section 3.6.6. Our system produces meaningful, coherent schemata. In our experi-

ments, 60% of the automatically discovered schemata are exact and complete; considering

top-5 schemata, this percentage increases to 72%.

Section 3.6.7. Many discovered schemata that do not exactly match the ground truth

are still semantically very close (and, hence, good): They differ only in synonyms, plural

forms, short forms, or symbolic representations. Thus, the effectiveness scores of our

method measured in Section 3.6.6 are even higher when the discovered schemata are

evaluated by humans.

3.6.1 Experimental setup

Hardware

We tested our system on a Dell PowerEdge R620. The server has two Intel Xeon

E5-2650 (2.00 GHz, Octa-Core) processors, 128 GB DDR3-1600 RAM and runs CentOS

6.10. The implementation is a multi-threaded Java application for Oracle’s JDK 64-Bit

Server VM 1.8.0 151.

Parameters

Our schema discovery system requires four parameters: the table-similarity threshold

θt, the number of header candidates for each column k, the number of final schemata in

the result m, and the expected standard error of the HLL sketches defined by the length

of the prefix p.

The value of θt should enable the retrieval of the most similar tables from the table

corpus, but not too many tables. A low value of θt severely affects the runtime, as it

58

3.6 Experiments

(a) Distribution of table lengths (b) Distribution of table widths

(c) Distribution of numeric columns

Figure 3.4: Basic statistics about the Wiki web tables corpus

adds many additional column to be tested for similarity. We experimentally test several

values for θt in Section 3.6.4 and use θt = 0.4 if not stated otherwise, because it provides

a good balance between runtime and result quality (for web tables).

We tested k = 5 and k = 10. Because the runtime and results improved with

k = 5, we use this value by default. Furthermore, we use m = 10 as the default value

for the number of output schema candidates, but, in practice, it is up to the user’s

preference. Our HLL sketch implementation is based on [Heule et al., 2013]. It uses a

64-bit MurmurHash function1 and is parameterized to provide an estimated standard

error of 0.01, i.e., we set a prefix p = 14 for the normal representation and p = 25 for

the sparse representation. For the Lazo index, we use the official Java implementation2.

Datasets

We use the Wiki web tables corpus [Bhagavatula et al., 2013] as table corpus and

the attribute correlation statistics database (ACSDb) [Cafarella et al., 2008] as schema

corpus.

The Wiki web table corpus has 1.6 million Wikipedia tables in JSON format. They

have been extracted from HTML tables with “wikitable” class attribute and were then

1https://sites.google.com/site/murmurhash/
2https://github.com/mitdbg/lazo

59

https://sites.google.com/site/murmurhash/
https://github.com/mitdbg/lazo

3. DISCOVERING MISSING COLUMN HEADERS

Figure 3.5: Schemata frequency distribution in ACSDb.

normalized into regular matrices of attribute values. Figure 3.4 illustrates the statistical

characteristics of this corpus. We use these statistics for the interpretation of our results.

The ACSDb corpus stores statistics about schemata used in tables on the Web. This

second corpus is needed to compute the probability of seeing a header in a schema,

as well as, the conditional probability of a header knowing the presence of another

header in the same schema. The ACSDb corpus contains 5.4 million unique headers

and 2.6 million unique schemata. Only a relatively small number of schemata in ACSDb

appears frequently, while most schemata are actually rare as shown in Figure 3.5.

Quality Measures

Human rankings would serve as the best quality measure to evaluate the results of

our schema discovery system, but evaluating the large number of test schemata in our

experiments manually is not feasible. Therefore, we judge only a small sample (100

tables) of discovered schemata and 400 headers manually for error analysis and, for

the majority of tests, hide the existing original headers from the system, and then test

whether we can re-discover them.

We apply a train-test split validation by dividing the Wiki tables into train and test

tables using two different settings: In the first setting, we have 5% test tables (24 770

tables) and 95% training tables (1 627 997 tables). In a 70%/30% setting, we split the

Wiki tables into 30% test tables (149 163 tables) and 70% training tables (1 503 608

tables).

While the training tables provide header candidates, i.e., they serve as the table

corpus, the test tables are used as input for the header discovery. Because both splits

show very similar results (quality-wise), we present only the results for the 95%/5% split

in the individual charts. We randomly sampled the test tables and used the same split

in all experiments. We made sure that there is no intersection between the train and test

tables so that a table cannot be used to find its own header. In reality, though, tables

can appear multiple times in automatically harvested table corpora.

We use the quality metrics Precision (P), Recall (R) and F-measure (F1) to assess

the quality of each suggested schema. To calculate them, we compare the original and

the suggested schemata pair-wise. Based on the automatic schema matching evaluation

60

3.6 Experiments

analogy from [Do et al., 2002] we define true positives as exactly re-discovered headers;

false positives as in any degree different headers from the original schema; and false

negatives as no-header suggestions, i.e., cases where no header could be suggested for an

input column.

For example, if the original table schema is {“year”, “population”, “growth”} and

the result is {“year”,“village population”,“”}, then P is 1
2 , because “year” is a match

and the second attribute is a non-match. Similarly, R is 1
3 , because the column “growth”

received no header proposal. In Section 3.6.7 we examine close but not exact matches.

3.6.2 Schema discovery with knowledge bases

A large body of research focuses on solving the problem of matching web tables to a KB,

such as [Chen et al., 2019; Dong et al., 2014; Efthymiou et al., 2017; Limaye et al., 2010;

Ritze et al., 2015]. Any approach that matches a web table to a KB class can be seen

as a baseline for our approach, if we interpret the properties of the assigned KB class as

a schema proposal. The proposed schema, then, includes only the subset of properties

that we are able to map to the columns of the header-less web table.

In general, KB-based approaches are different from ours in that they are able to

propose (if at all) column headers for only such tables that match KB classes. They,

however, are unable to infer schemata for non-KB concepts, such as sports results, annual

reports, or fishing supplies. Our approach, in contrast, is able to match a table to any

concept and combination of concepts seen anywhere on the Web, which also covers

concepts that are not represented in KBs. As shown by Ritze et al. [2016], only ∼3% of

relational web tables describe DBpedia3 entities and only 562 445 out of 137M (∼32%)

columns have a property correspondence. Hence, KB-based approaches cannot derive

any header for at least ∼97% of the web tables and miss at least 68% of the columns

within the matchable tables.

Because the pool of headers provided by a KB contains only a fraction of possible

headers in web tables, KB-based schema discovery approaches are not able to suggest

specific headers, such as the exact headers of web tables. For example, only 2% of the

headers in our test tables are in fact also DBpedia properties. Hence, no DBpedia-based

approach can reconstruct them and compete with our approach in suggesting specific

headers.

3.6.3 Similarity estimation using HLL

HLL sketches offer high data compression, fast construction times (due to using only

one hash function), and excellent accuracy in estimating set cardinalities. Nevertheless,

there is no quality guarantee for estimating the similarity between two sets of arbitrary

values, given only the sets’ HLL sketches. Thus, we experimentally tested the efficiency

of our two HLL-based similarity estimation methods, i.e., the Jaccard similarity simt

and the Jaccard containment simc estimations (see Section 3.3.1), which both use the

HLL table representation of the web tables.

3https://wiki.dbpedia.org/

61

https://wiki.dbpedia.org/

3. DISCOVERING MISSING COLUMN HEADERS

For this experiment, we calculated the exact Jaccard similarity for all pairs of test

tables and the exact Jaccard containment for all pairs of test table columns. These exact

similarity values serve as our ground truth for the estimated similarity values. Before

discussing the quality of the estimated similarities, we point out that estimating the sim-

ilarities instead of exactly calculating them yields an extreme reduction in memory and

runtime: The exact calculations took a week of runtime, while our estimation methods

consumed only six hours, including building the HLL sketches from the input tables.

Quality-wise, we observed that the HLL-based estimations of simt and simc are, in

fact, exact in all tested cases. This is because HLL sketches guarantee near exact car-

dinality estimations for small value sets [Harmouch and Naumann, 2017; Heule et al.,

2013] and the number of values in both columns and tables is low on average in our

web table corpus: The average column cardinality is 10, confirming the statistics by Zhu

et al. [2019], and the average number of distinct values in a table is 40. The exactness

of the cardinality estimations propagates into exact Jaccard similarity and containment

estimations. Despite the already small size of the web tables, their HLL table represen-

tations are still more than 98% smaller without losing a relevant amount of accuracy to

calculate simt and simc.

3.6.4 Similarity search evaluation

To evaluate the effectiveness of the similarity search phase, we trained our schema dis-

covery system, built a Lazo index on the training split of the web table corpus, and

ran the similarity search for all tables in the test split with a fixed memory of 100GB.

During the similarity search phase, we recorded the top-10 header candidates for each

column (k = 10). Given that the Lazo index does not support top-k queries, we set the

containment threshold to 0, ordered the results by containment score, and considered

only the top-10 header candidates to make it comparable to our results. We ran Lazo

with an increasing number of permutations to evaluate the trade off between quality and

used resources.

To systematically study the effect of the table similarity threshold θt, we repeated the

experiment with values θt ∈ {0.0, 0.1, 0.2, 0.3, 0.4}. We also omitted the table similarity

filtering in an additional experiment, i.e., we ran Algorithm 1 without lines 9 and 14.

Table 3.1 lists for every threshold θt the percentage of columns whose original header

is in the top-10 proposed headers (we discovered the exact header), the percentage of

columns whose exact original header is not among the top-10 proposed headers (we

discovered a differing header), and the percentage of columns where no header was

proposed at all (we discovered no header). Table 3.1 also shows the average indexing

time and the average query time per column. The same statistics are also reported for

the headers suggested by the Lazo index method with permutations 1, 8, and 10.

Using a Lazo index, a higher number of permutations causes an increase in both the

indexing time and the number of headers that are exactly recovered. Due to the limited

memory, the Lazo index fails to index the training tables using 10 permutations (the

largest dataset reported by Fernandez et al. [2019] has only 10k columns). Our system

consumption remained less than 25GB. Compared to the Lazo index with 8 permutations,

62

3.6 Experiments

% exact % differing % no Indexing Query
header header header (sec) (sec)

Lazo (1) 30.95 38.52 30.52 1109 ∼0
Lazo (8) 31.63 39.60 28.77 1236 ∼0
Lazo (10) out of memory - -

no filtering 62.73 36.16 1.10 1016 0.97
θt = 0.0 74.00 24.10 1.10 1016 0.52
θt = 0.1 61.66 13.49 24.85 1016 0.32
θt = 0.2 42.90 7.92 49.18 1016 0.28
θt = 0.3 27.25 4.02 68.73 1016 0.26
θt = 0.4 16.77 1.98 81.25 1016 0.26

Table 3.1: Percentage of columns with exact, differing, and no discovered header
and runtime (indexing and query per column) w.r.t. different experimental settings.

Figure 3.6: Percentage of columns with exact discovered headers at each position
in the top-10 header candidates.

our system is capable of proposing twice the number of original headers with fewer

incorrect headers and only 1.1% of no headers. With the same differing-header ratio,

we also suggest at least twice as many exact headers. The indexing time of our data

structures is constant, but Lazo requires much more memory to provide the same quality

as our system does.

The higher we set the threshold θt, the more tables from the table corpus are filtered

out during similarity search, because we require a higher minimum Jaccard similarity

between them and the input test table. This trend is reflected in Table 3.1 by the

percentage of columns with no discovered header. On the other hand, the percentage of

columns for which the exact header appears in the top-10 header candidates is inversely

proportional to θt, i.e., the likelihood of finding the exact header increases when filtering

out fewer tables. Simultaneously, the query runtime per column increases when we filter

out less tables, i.e., with lower θt.

Our intuition for conducting the table similarity filtering step is that the table is the

context for all of its columns. By pre-conditioning the table similarity, we rank headers

from similar tables higher. Thus, the correct header is at a higher position in the top-k

63

3. DISCOVERING MISSING COLUMN HEADERS

header candidates list. To show this effect experimentally, Figure 3.6 presents for each

threshold θt at which position (1 to 10) in the respective header candidates lists the exact

headers occur. When we apply no table similarity filtering, the exact headers, if found,

appear at arbitrary, mostly lower positions.

However, with table similarity filtering, the exact headers are ranked higher and

appear largely within the top-5 header candidates; even the top-1 header candidate is

in most of the cases (69% to 88%) the exact header. A higher threshold θt, in general,

ranks the exact header at a higher positions. In conclusion, with the table similarity

filtering and the similarity threshold θt we can force our system to report high-quality

headers at higher positions in the header candidates list.

Figure 3.6 also shows that Lazo ranks exact headers in a similar manner to our system

but not as good as ours. In general, one can trade the header quality for the number of

columns that receive no header recommendations and vice versa (see Table 3.1). If a use

case requires headers and can tolerate low quality recommendations, we suggest θt = 0;

use cases that do require reliable headers should use some θt ≥ 0.4, because false headers

are, then, less than 2%.

The numbers reported in Figure 3.6 also show that a candidate ranking of size k = 5

is sufficient to find the exact headers for the majority of the tested columns regardless

of θt; hence, we use this as the default ranking size.

3.6.5 Coherence measure comparison

Our schema discovery system implements an optimization process that aims for the

schema with the maximum coherence score. As discussed in Section 3.4, the coherence

score is a combination of four components: a segmentation method (Sg), a confirmation

measure (m), a probability calculation (P), and an aggregation function (σ). Having

already made a decision for P and σ, we still need to find the optimal combination of

implementations for Sg and m.

To find the combination that maximizes the coherence score of the discovered correct

schema, we tested 15 implementation combinations (3 segmentation methods × 5 con-

firmation measures). Each of the 15 combinations was used to test the usefulness of the

coherence score for the schema discovery on a random sample of 1000 test web tables.

Table 3.2 presents for each combination of Sg and m and for schema precisions

∈ {30%, 50%, 70% and 100%} the percentage of tables that achieves at least that precision

level with the specific combination. For example, with Sgsuc and mc (first row), our

system correctly discovered 30% of each schema for 66.1% of all test tables; with the

same combination, it correctly discovered the entire schema for 22.2% of the test tables.

The maximum percentage of tables for which our approach was able to correctly

find the complete and exact original schema uses the combination Sgsuc as segmentation

method and mc as a confirmation measure. Therefore, we propose to use the coherence

measure C(Sτ) = (Sgsuc,mc, σa) with a Boolean-document level method for probability

calculation. To provide some examples, the top-10 coherent schemata in our web table

64

3.6 Experiments

Sg m
Precision (p)

30% 50% 70% 100%

Sgsuc

mc 66.1 54.8 31.7 22.2
mf 61.9 49.5 27.4 18.5
md 65.5 53.3 31.2 20.9
mlr 65.9 52.4 30.4 20.3
mnlr 65.9 53.9 31.2 20.6

Sgpre

mc 61.4 48.5 26.7 19.2
mf 65.4 53.6 32.2 21.9
md 59.3 47.4 26.1 17.8
mlr 65.2 52.0 30.1 20.2
mnlr 66.1 53.9 30.7 20.4

Sgone

mc 64.1 51.3 30.2 20.7
mf 64.2 52.2 30.2 20.8
md 63.2 50.8 28.9 18.9
mlr 65.5 51.9 29.9 19.8
mnlr 66.3 53.8 31.4 20.7

Table 3.2: Precision of schemata proposed for 1000 random test tables w.r.t. 15
combinations of Sg and m.

corpus are listed in Table 3.3.

Schema C(Sτ)

1 {mon, tue, wed, thu, fri, sat, sun} 0.97252
2 {friday, saturday, sunday} 0.97078
3 {males, females} 0.94508
4 {females, males} 0.92715
5 {girls, boys} 0.92715
6 {high, low} 0.92625
7 {male,female} 0.92319
8 {gold, silver, bronze} 0.91984
9 {9th, 10th, 11th, 12th} 0.91678
10 {singular, plural} 0.91429

Table 3.3: The top-5 most coherent schemata in our tables corpus

3.6.6 Overall system evaluation

Having demonstrated the effectiveness of the similarity search phase and investigated

reasonable settings for the coherence check phase, the following experiment evaluates the

overall effectiveness and efficiency of our multi-phase schema discovery system. To this

end, we ran both phases using the entire training set and the entire test set, respectively.

65

3. DISCOVERING MISSING COLUMN HEADERS

P R F1 Schema Suggested

θt = 0.0 36% 36% 36% 99%
θt = 0.1 52% 38% 44% 84%
θt = 0.2 62% 30% 41% 61%
θt = 0.3 71% 22% 33% 38%
θt = 0.4 78% 14% 24% 22%
θt = 0.4 (No-weight) 76% 14% 23% 22%

Table 3.4: Micro-average of P , R, F1 percentages of the top-1 schemata with
varying table similarity threshold.

Figure 3.7: Ratio of test tables with proposed schema of precision ≥ P w.r.t.
varying schema candidate ranking sizes m and similarity thresholds θt.

In Section 3.6.4, we concluded that our system ranks high-quality headers, which are

the original headers, higher using higher thresholds θt, but with many columns receiving

no header recommendations as a trade-off. To better understand the effect of θt on the

entire final schemata, we let the discovery system produce the top-m schemata for each

table in the test split of the web table corpus with various values θt ∈ {0.1, 0.2, 0.3, 0.4}.
In Table 3.4, we report on the percentage of the 24 770 test tables for which our system

automatically suggested a schema (m = 1) and the quality of these schemata. With

θt = 0.1, only 16% of the test tables received no schema suggestion, i.e., the system

could not suggest a header for any of the schema’s attributes. A higher threshold θt
results in a higher percentage of tables getting no schema candidates.

66

3.6 Experiments

Figure 3.8: Runtimes of similarity search and coherence check phases w.r.t the
number of attributes and rows within test tables

Quality-wise, the experiment clearly shows the inverse relationship between precision

and recall. Because our system aims to produce meaningful and coherent schemata for

header-less tables, it is more important to produce precise schemata (high precision)

rather than finding a schema for every input table (high recall). Trading off recall for

precision, the output of our system has a higher assurance to be a part of any further

data science effort. Next, we quantify the precision levels of the resulting schemata.

Figure 3.7 plots for three schema ranking sizes m ∈ {1, 5, 10} the resulting table

percentages for increasing precision, i.e., the percentage of resulting test tables that

have P or more correct headers. The left figure shows the results for the top-1 schema

candidates, which are the truly automatically discovered schemata – they do not require

a user to pick a schema from a ranked list of schema candidates. With θt = 0.4, 60% of

the discovered top-1 schemata are completely and exactly the original schema (P = 1).

This percentage decreases to 23% with θt = 0.1, because most of the schemata that the

system finds with the lower threshold do not match the original headers. Therefore,

higher thresholds θt increase precision as we observe in Table 3.4.

Considering more schema candidates, i.e., larger ranking sizes m, increases the per-

centage of tables for which our system is able to discover the entire, exactly correct

schema to 75% of the cases. The threshold θt still controls the quality of the proposed

schemata trading off precision of the recommendation and the number of tables with no

results. As default setting, we have chosen θt = 0.4 to produce schema suggestions of

high quality.

In addition, we validated the effect of enhancing the coherence of the final schema by

boosting the column similarity with the table similarity (see Algorithm 1, Line 21). For

this purpose, we experimentally disabled the step of boosting simc with simt in Line 21

of Algorithms 1 by removing the Tablesim factor from weightsim = columnsim ·Table sim.

We then ran the experiment with θt = 0.4 again. Figure 3.7 shows that, without boosting,

the quality of the suggested schemata drops, regardless of the size of correctly suggested

part of the schema and the number of considered schema candidates. This shows that

enhancing simc with simt improves the precision, especially for m = 1 (Table 3.4).

67

3. DISCOVERING MISSING COLUMN HEADERS

To evaluate the runtime performance of our system, we measured the runtime of each

phase per test table. On average, our schema discovery system needs 6.9, 4.2, and 11.1

seconds per table for the similarity search phase, the coherence check phase, and the

overall discovery, respectively.

In an additional experiment, we investigated the scalability of our approach w.r.t. the

width (#columns) and the length (#rows) of the header-less input table. The similarity

search shows a linear runtime behavior with the input table’s length and width (see

Section 3.5.3). The runtime of the coherence check, in contrast, increases exponentially

w.r.t. the input table’s width and linear with table’s length (see Section 3.5.4). The

exponential runtime increase with the input table’s width is expected due to the increase

of the size of the Cartesian product in Algorithm 2 (Line 2).

3.6.7 Error analysis

To automate our previous evaluations, we demanded the system to produce the exact

original header as a candidate to count it as a hit; otherwise, it was counted as a miss,

although the proposed schemata might have been very similar or even better than the

original schema. We now take a closer look at the cases where our system failed to

re-discover the exact schema of a test table using the training tables. For this purpose,

we manually evaluated 100 non-matching schemata.

During manual investigation, we noticed many cases where non-matching attribute

labels actually differed only in plural form, synonym, time, representation, or granularity.

Our system explicitly performs lower-casing but it avoids all other transformations, such

as stemming and plural removal, because these operations can be error-prone. Table 3.5

presents some of the proposed schemata that are not exact but still meaningful. The

candidate headers provided by our system for some test tables simply include plural

forms of the original headers, such as “champions” instead of “champion”. In other

cases, the suggested header is a synonym of the original one, such as suggesting “male”

as a header for a column with original header “men”, “boy”, or “man”.

Furthermore, many Wikipedia tables represent the same object or concept but at

different points in time. Because time is often reflected in the column headers, some

proposed headers are basically correct but with the wrong time-affix. For instance, the

header “season” appears with a year attached to it and we find “2008 season” as a

candidate for a column with original header “2009 season”.

We also observe several representations of the same header that are interchangeable,

such as symbols “#” or short forms like “no.” that both refer to “number”. Another

interesting case is when the header candidate is more specific or granular compared to

the original header. For example, “village population” is a correct header for a column

with the original header “population”.

In total, we manually evaluated 400 random headers considered as differing in the

experiment with θ = 0.4 shown in Table 3.1. Around 50% of them are actually incorrect

headers, mainly due to different date or date range; most of them were proposed for

numerical columns. The other 50% headers are differing due to granularity, word form,

68

3.7 Summary

Original schema
Top-1 proposed schema Error source

{Year, Champion}
{year, champions} Plural

{men’s, women’s}
{male, female} Synonym

{team, city, state, stadium, capacity, 2008 season}
{team, city, state, stadium, capacity, 2009 season} Time

{no., date, score, opponent, record}
{number, date, score, opponent, record} Short form

{Place, Rider, Number, Country, Machine, Points, Wins}
{place, rider, #, country, machine, points, wins} Symbol

{year, population}
{year, village population} Granularity

Table 3.5: Example cases where our system suggested a different but still very
meaningful schema

Error source % of headers

Incorrect 50%
Granularity 24%
Word form 6%
Spacing 6%
Synonym 12%
Shorter form 2%

Table 3.6: The results of manual evaluation of 400 random headers considered as
differing in the experiment with θ = 0.4 shown in Table 3.1

spacing, being a synonym, or being a shorter form of the original header. The detailed

results are shown in Table 3.6.

3.7 Summary

In this chapter, we focused on column header as one of the most relevant single column

metadata in the context of relational data. We proposed a system to solve the problem

of discovering suitable, coherent, and human understandable schemata for tables with

missing or meaningless headers.

Our system consists of two phases: similarity search and coherence check. In the first

phase, we use a table corpus to discover similar columns for each column in a header-

less input table; the headers of the discovered columns serve as a header candidates for

the input table’s columns. In the second phase, we built schema candidates with the

header candidates of all columns; a coherence measure is, then, used to score the schema

candidates and keep the most coherent schemata as an output for the user.

69

3. DISCOVERING MISSING COLUMN HEADERS

We evaluated our approach on a table corpus extracted from Wikipedia pages and a

schema corpus extracted from the Google search Web Crawl. Our experiments showed

that our system can automatically recover the exact and complete schema for 60% of the

discovered schemata; this increases to 75% if we consider the top-10 schema candidates.

The similarity search phase of our system is capable of proposing twice the number of

original headers with fewer incorrect headers compared to Lazo index. A higher table

similarity threshold θt, in general, forces our system to report high-quality headers: when

some θt ≥ 0.4 is used, the percentage of false headers is less than 2%.

Through manual inspection, we also found that many discovered schemata that do

not match their original schemata exactly are still very similar to their original schemata,

because they differ only in synonyms, plural forms, short forms, or symbolic representa-

tions.

70

Chapter 4

The Impact of Missing Values on

FD Discovery

High data quality has a significant impact on any downstream data-driven applica-

tion [De Veaux and Hand, 2005; Haug et al., 2011]. Missing values represent one of

the most common and challenging data quality issues. Single-column data profiling tools

consider the number of missing values in a column as key metadata to indicate data

quality. In this chapter, we investigate the impact of this metadata on another data pro-

filing task, namely functional dependencies (FDs) discovery. Functional dependencies

also play an important role in maintaining data quality as they can be used to enforce

data consistency and to guide repairs over a database.

When using existing FD discovery algorithms, some FDs could not be detected pre-

cisely due to missing values or some FDs can be discovered even though they are caused

by missing values with a certain null semantics. A genuine FD is an FD that would be

valid if the dataset contained no missing values and no other errors.

We define a notion of genuineness and propose algorithms to compute the genuineness

score of a discovered FD. This can be used to identify the set of genuine FDs among

the set of all valid dependencies that hold on the data. We evaluated the quality of our

method over various real-world and semi-synthetic datasets with extensive experiments.

The results show that our method performs well for relatively large FD sets and is able

to accurately capture genuine FDs. Our published work in [Berti-Equille et al., 2018] is

the basis of this chapter.

Despite its importance, no previous work has focused on these critical aspects of FD

discovery over incomplete data. We make the following contributions.

1. We formally and experimentally show the phenomenon caused by missing values

over FD discovery.

2. We formalize the definitions of genuine, ghost, and fake FDs and study their impact

under various null semantics and imputation strategies.

3. We propose a probabilistic approach for estimating the genuineness score of FDs,

provide an efficient method for enumerating and pruning irrelevant possible worlds,

71

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

and propose an efficient sampling-based algorithm to approximate the probabilistic

genuineness score.

4. We propose likelihood-based approaches to efficiently approximate the genuineness

score of discovered FDs.

5. We perform an extensive set of experiments of our methods on real-world and

semi-synthetic datasets that show the effectiveness and efficiency of our approach.

The rest of the chapter is organized as follows. In Section 4.1, we introduce the

problem of FD discovery over incomplete data. Section 4.2 presents related work. In

Section 4.3, we provide an illustrative example to motivate the need for this study and

then formally define the notions of fake, ghost, and genuine FDs. In Sections 4.5 and 4.6,

we propose probabilistic and likelihood-based approaches to quantify the genuineness of

an FD. In Section 4.7, we present our experimental evaluation, and finally, Section 4.8

concludes our contribution and suggests future work.

4.1 FDs and incomplete data: Trust

Functional dependencies (FDs) are one of the most important types of integrity con-

straints and have been extensively studied by the research community [Caruccio et al.,

2016; Liu et al., 2012]. FDs have a number of applications, such as maintaining data

quality [Fan and Geerts, 2012], capturing schema semantics [Fan et al., 2008], schema

normalization [Papenbrock and Naumann, 2017], data integration [Wang et al., 2009],

repairing of data inconsistencies, and data cleaning [Beskales et al., 2010; Bohannon

et al., 2007].

Let R be a relation with schema {A1, . . . , Am} with n tuples and m attributes. The

domain of an attribute Ai is denoted as dom(Ai). Let X ⊆ R be a subset of attributes.

The projection of a tuple t to a set of attributes X is denoted as t[X].

Definition 4.1. Functional dependency (FD). An FD X → Y over a set of at-

tributes X,Y ⊆ R states that X functionally determines Y . X is the determinant

(LHS) and Y is the dependent (RHS). The FD is said to hold on R when ∀ti, tj ∈ R,

if ti[X] = tj [X] then ti[Y] = tj [Y]. The FD is violated when there exists at least one pair

of tuples (ti, tj) such that ti[X] = tj [X] but ti[Y] 6= tj [Y].

An FD X → Y is said to be minimal if no subset of X determines Y . In other words,

removing any attribute from X renders the FD invalid. An FD is said to be non-trivial

if X ∩ Y = ∅. An FD is said to be normalized if the RHS is a single attribute. In this

study, we consider only the set of minimal, non-trivial, and normalized FDs as they can

be used to infer all other FDs that hold on R using Armstrong’s axioms [Armstrong,

1974].

Traditional FDs are typically defined for correct and complete data and there are

many efficient algorithms to discover FDs from a given clean dataset [Papenbrock et al.,

72

4.1 FDs and incomplete data: Trust

Figure 4.1: Number of FDs discovered from the clean version of Glass dataset and
a polluted version.

2015b]. However, many real-world datasets are neither correct nor complete, possibly

due to the integration of multiple relations.

In addition, a common implicit assumption is that the proportion of incomplete data

is assumed to be relatively low and with no significant impact on the set of discovered

dependencies. But it is well-known that data error rates may vary from 20% up to 80% in

many real-world datasets [DemandGen, 2017; Gartner, 2007] with dramatic consequences

and significant costs [De Veaux and Hand, 2005; Haug et al., 2011].

Thus, traditional FDs often have trouble with incomplete data that routinely exist in

massive datasets. The missing values are represented as null values, which we denote

with ⊥.

4.1.1 Strategies to handle missing values

Not surprisingly, the database community has come up with a number of workarounds

and strategies to handle the issue of missing values. We provide a representative list

of such strategies and briefly mention why they are not satisfactory. The experimental

results are based on the Glass dataset, a benchmark dataset with 10 attributes and only

214 tuples, that we used as one of the datasets in our experiments (see Section 4.7).

73

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

Strategy 1: Skipping tuples with nulls.

The simplest strategy is to ignore the set of tuples with nulls and use the remaining

subset of the relation to discover FDs. This approach suffers from two problems. First,

as mentioned above, large parts of the dataset even entire columns can contain null

values. Second, this approach also discovers a number of spurious FDs that do not hold

on the entire relation.

We illustrate this issue in Figure 4.1 (bars corresponding to approximation degree 0).

There are 11,263 FDs on the correct and complete version of Glass dataset. However,

when we injected missing values randomly into 5% of the tuples and skipped those

incomplete tuples, the number of discovered FDs jumped to 12,736 (on average over 10

runs).

Strategy 2: null Semantics.

An alternative approach is to propose definitions of FDs over relations with nulls.

The two commonly used null semantics are, NULL-EQ, denoted (⊥ = ⊥) or, NULL-NOT-EQ,

denoted (⊥ 6= ⊥) that treat all missing values as identical or distinct, respectively.

The two semantics have diverse motivations and lead to the discovery of different sets

of functional dependencies. If two tuples ti and tj have null for an attribute Ak, then

NULL-EQ assumes that both tuples have the same indeterminate value. NULL-NOT-EQ

assumes that ti and tj have different but still indeterminate value.

For example, consider the dataset R3(A,B,C) (Figure 4.2 on page 78) and the two

tuples, t2 and t3. Both tuples have null for the attribute B. No exact FD holds for

NULL-EQ. But, two exact FDs, B → A and B → C, hold given the null semantic

NULL-NOT-EQ.

However, as we shall show in Section 4.3, this approach also does not prevent the

discovery of spurious FDs. This can also be seen in Figure 4.1 where there are 11,263 FDs

on the clean dataset but almost 12,329 and 12,173 FDs for NULL-NOT-EQ and NULL-EQ

respectively.

Strategy 3: Approximate FDs.

Another strategy is to relax the requirement that the FD holds on all tuples. Instead,

one can aim to discover approximate (a.k.a. partial) or relaxed FDs. Approximate FDs

are violated by some fraction of the tuples. Relaxed FDs allow attribute values to be

similar and do not require them to be equal when checking for violations [Caruccio et al.,

2016].

Definition 4.2. Approximate functional dependency (AFD). An FD is called

approximate (or partial) functional dependency if it holds only on a subset of the tuples.

We represent an AFD with an approximation degree of α as X ⇁α A. The approximation

degree α can be quantified through the notion of satisfaction error [Kivinen and Mannila,

1995; Liu et al., 2012]. Note that X ⇁0 A is the same as X → A.

The G3 metric measures the number of violating tuples that must be deleted from R

such that the AFD holds exactly (no violation). We use G3 as the approximation degree

measure for the rest of the chapter.

74

4.1 FDs and incomplete data: Trust

This approach also suffers from multiple issues whereby identifying a suitable thresh-

old is not straightforward and it does not prevent from discovering a large number of

spurious FDs.

This is illustrated in Figure 4.1 where the number of approximate FDs discovered

over the complete dataset and the incomplete dataset are different for various approxi-

mation degrees. For example, there are 1,156 FDs that are violated by exactly 1 tuple

(approximation degree 1). However, there are 379, 1328, and 1404 FDs with an approxi-

mation degree of α = 1 when we skip incomplete tuples or apply NULL-EQ, NULL-NOT-EQ

semantics, respectively.

Strategy 4: Data Imputation.

Data imputation refers to the process of replacing missing data with substituted

values [Efron, 1994]. One can use probabilistic or other statistical imputation techniques

to fill the missing data, such as [Fan et al., 2012; Song et al., 2015], and run FD discovery

on the imputed data. However, the FDs discovered are tightly tethered to the imputation

strategy. Further, in the case of probabilistic imputation, it can happen that the FDs

discovered are valid only in a small fraction of all possible imputed worlds. Our proposed

solutions are based on the concept of data imputation as we discuss in Section 4.5.

4.1.2 The genuineness of FDs discovered over nulls

We investigated the effect of incomplete data on the discovery of functional dependencies

and compare the FDs that are discovered from the dirty dataset and its corresponding

clean version using several approaches to handle missing values. It is clear that the FD

discovery result from the incomplete data includes spurious FDs that do not hold on the

clean dataset and also misses some FDs that do hold.

In order to systematically study this phenomenon, we define three types of FDs:

genuine, ghost, and fake FDs. A genuine FD is an FD that would be valid if the

dataset contained no missing values and no other errors. When the data is incomplete,

a traditional FD discovery could discover false positive (fake) FDs that do not hold on

the complete version of data, or miss discovering some true FDs (ghost) that actually

hold on the complete data.

Most current FD discovery techniques do not provide any guarantee regarding the

genuineness of the discovered dependencies. Further, these methods neither detect nor

remove fake FDs and they do not consider ghost FDs. Note that we do not address the

quite different problem of judging whether a valid FD is in fact semantically correct.

This latter decision can, in principle, be made only by a human expert.

As mentioned earlier, FDs have been used in a number of applications, such as data

cleaning and query optimization. Use of non-genuine FDs for such scenarios could have

a deleterious effect. For example, ghost FDs could be considered as missed opportunities

for schema normalization and data cleaning. On the other hand, fake FDs could cause

issues when they are used in query optimization. When used as data integrity constraints,

fake FDs prevent the insertion of valid tuples.

75

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

In the rest of this chapter, we define the notion of genuineness of FDs and develop

algorithms to estimate it. We would like to note that from the perspective of FD discov-

ery, the impact of null values and the impact of other erroneous values, such as typos

and outliers, are very similar. For example, one could use an orthogonal mechanism to

identify typos or outliers and simply set those erroneous cells to null that have to be

fixed later. However, in the rest of this thesis, we consider only the case of missing values

in FD discovery. Regardless, our method can be naturally extended to handle outliers

and typos.

4.2 Related work

There has been a number of different formalisms to extend FDs to handle erroneous data

inherent in real-world applications. Common approaches include approximate FDs [Blei-

fuss et al., 2016] and conditional FDs [Huhtala et al., 1998; Kivinen and Mannila, 1995]

whereby a FD holds on a subset of data instead of the entire dataset. We refer to [Caruc-

cio et al., 2016] for a detail survey of relaxed definitions of FDs. There has been some

work on probabilistic FDs that might hold on the data with some probability [De and

Kambhampati, 2010; Wang et al., 2009]. Recently, there has been some proposals to

extend the semantics of FDs under null markers [Badia and Lemire, 2015, 2017].

However, none of the FD discovery algorithms questions whether the discovered FDs

are genuine FDs or not. The usual working assumption is that FD discovery oper-

ates from a clean dataset. As an unfortunate consequence, existing FD discovery-based

frameworks for data cleaning rely on the correctness of the discovered dependencies;

cleaning rules based on matching dependencies [Bertossi, 2011] and constant or vari-

able CFDs [Fan and Geerts, 2012] may actually be erroneous (fake) and skip relevant

dependencies (ghost).

There has been some research considering the effect of null values on constraints,

namely on FDs [Levene and Loizou, 1998] and on keys [Köhler et al., 2016a]. As in

our work, the authors first acknowledge the presence of null values in typical datasets

and explain their detrimental effects on enforcing constraints. They then introduce the

notions of possible and certain FDs/keys (weak and strong FDs in [Levene and Loizou,

1998]). A possible FD/key is one for which a possible world exists (i.e., some instantiation

of all null values with any non-null values). A certain FD/key is one that holds for all

possible worlds. Both works then construct sound and complete axiom systems for such

dependencies and Köhler et al. [2016a] suggest an algorithm for the discovery of certain

keys.

Köhler et al. [2016b] go a step further, by proposing an algorithm to discover approx-

imate certain keys, i.e., keys with null values that are still sufficient to identify tuples

(certain), but may have some violating values (approximate). In a similar vein, certain

FDs (with some violations) might be good candidates for genuine FDs. In contrast,

we are interested in the behavior of FDs under changing cleanliness to then determine

genuine FDs.

76

4.3 Genuine, Ghost, and Fake FDs

Finally, some attempts have been made to solve the problem of inconsistency between

data and their respective set of FDs. Chiang and Miller [2011] developed an algorithm for

FD repair and maintenance without overfitting the potentially erroneous data. But they

did not consider null semantics within their cost model for both data and constraint

repairs. Another method to maintain an FD set was proposed in [Mazuran et al., 2016].

This method adds one or more attributes to an FD to repair it instead of changing

the data. It estimates to what extent an FD is violated by the data using measures of

confidence and goodness of an FD. However, the authors excluded attributes with null

values from being involved in FDs.

4.3 Genuine, Ghost, and Fake FDs

In this section, we first provide an illustrative example of the impact of missing values

on the discovery of FDs. Next, we formalize the definition of genuine, fake, and ghost

FDs in the case of exact and approximate FDs.

4.3.1 Illustrative example

Let us consider the relation R0 with schema R0(A,B,C) in Figure 4.2. We compute

the set of exact and approximate FDs from R0. Table F0 (Next to R0) gives a sample

of the FDs discovered, with their corresponding approximation degree α. For non-zero

approximation degree, we also list the identifiers of the tuples that need to be changed

or removed, using “|” as OR operator and “,” as AND operator on the same line of the

approximate FD. For instance, in the last line of table F0, the notation of the AFD

C ⇁2 A {(t1|t2), (t3|t4)} means that two tuples (t1 or t2) and (t3 or t4) have to be

removed or updated so that C → A becomes valid.

Now, suppose we randomly inject missing values (denoted by ⊥) in the original

dataset R0 to create three polluted versions of the dataset, denoted R1, R2, and R3

containing one, two, and three missing values, respectively.

We recompute the set of exact and approximate FDs for each dataset version, denoted

as F1, F2, and for F3 with the two null semantics. In R1 and R2, both NULL-EQ or

NULL-NOT-EQ are identical as there is only one missing value per attribute.

Then, we compare the original set of FDs reported in F0 with the sets of FDs dis-

covered from each polluted version. We can observe some interesting differences in the

discovered FD sets. For example, when we compare F0 to F1, and F1 to F2, the more

the number of missing values increases, the more FDs are lost for a fixed approximation

degree (e.g., the exact FDs A→ C and B → C disappear from F1 to F2), and new FDs

appear (e.g., B → A appears from F0 to F1).

Actually, the original FDs do not completely disappear, they lose one approximation

degree and “fade out”. For example, A→ C and B → C in F0 and F1 become A ⇁1 C

and B ⇁1 C in F2 respectively; another example is C ⇁1 B in F0, which becomes

C ⇁2 B in F2.

77

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

R0 A B C
t1 0 1 1
t2 0 1 1
t3 1 1 1
t4 1 0 1

F0 α FDs discovered from R0

0 A→ C
B → C

1 A ⇁1 B {(t3|t4)}
B ⇁1 A {t3}
C ⇁1 B {t4}

2 C ⇁2 A {(t1, t2)|(t3, t4)}

R1 A B C
t1 0 1 1
t2 0 1 1
t3 1 ⊥ 1
t4 1 0 1

F1 α FDs discovered from R1

0 A→ C
B → C
B → A (fake)

1 A ⇁1 B {(t3|t4)}
2 C ⇁2 A {(t1, t2)|(t3, t4)}

C ⇁2 B {(t3, t4)} (ghost)

R2 A B C
t1 0 1 1
t2 0 1 ⊥
t3 1 ⊥ 1
t4 1 0 1

F2 α FDs discovered from R2

0 B → A (fake)

1 A ⇁1 B {(t3|t4)}
C ⇁1 A {t1} (fake)

B ⇁1 C {(t1|t2)} (ghost)

A ⇁1 C {(t1|t2)} (ghost)

2 C ⇁2 B {(t1, t3)|(t1, t4)|(t3, t4)} (ghost)

R3 A B C
t1 0 1 1
t2 0 ⊥ ⊥
t3 1 ⊥ 1
t4 1 0 1

F=
3 α FDs discovered from R3

0 ∅
1 B ⇁1 A {(t2|t3)}

A ⇁1 C {(t1|t2)} (ghost)

B ⇁1 C {(t2|t3)} (ghost)

C ⇁1 A {t1} (fake)

2 A ⇁2 B {(t1|t2), (t3|t4)} (ghost)

C ⇁2 B {(t1, t3)|(t1, t4)|(t3, t4)} (ghost)

F 6=3 α FDs discovered from R3

0 B → A (fake)

B → C
1 A ⇁1 C {(t1|t2)} (ghost)

C ⇁1 A {t1} (fake)

2 A ⇁2 B {(t1|t2), (t3|t4)} (ghost)

C ⇁2 B {(t1, t3)|(t1, t4)|(t3, t4)} (ghost)

Figure 4.2: R0 is a relation of binary values for attributes A, B, and C; R1 is the
same relation but with one missing value (⊥) randomly injected; similarly, R2 and
R3 have two and three missing values randomly injected, respectively. Exact and
approximate FDs are computed from each relation and reported in a tables next to it
where α is the approximation degree. Tables F=

3 and F 6=3 report the FDs computed
from R3 for the two null semantics: NULL-EQ and NULL-NOT-EQ, respectively.

78

4.3 Genuine, Ghost, and Fake FDs

In this example we deliberately injected missing values, but an integration scenario

with data from multiple, heterogeneous sources may well introduce such missing values,

which similarly affect FD discovery. As seen in Figure 4.2, the presence of missing values

produces some FDs that were not discovered in R0.

Another interesting phenomenon is illustrated in Figure 4.2, where three missing

values were injected in R0. In the case where null values have the NULL-EQ semantics

(F=
3), exact FDs are no longer discovered but some FDs appear (e.g., C ⇁1 A), even

though they were not present in the original FD set F0 with the same approximation

degree.

Interestingly, the two FD sets, F=
3 and F 6=3 obtained using the two NULL-EQ and

NULL-NOT-EQ semantics are very different for the first two approximation degrees. Which

one should be selected? Which FD set is the closest to F0, the set obtained from the

original, clean dataset? What if the three missing values were injected differently? Obvi-

ously, removing all tuples with missing values would also lead to another quite different

FD set, even further apart from the one obtained from the original dataset.

This phenomenon has neither been identified nor studied by previous work: Either

FDs are computed from a supposedly complete and error-free dataset, where records

with missing values do not exist or are excluded from the FD discovery process, or

the methods assume that one of the two default semantics for handling null values is

systemically applied.

As illustrated in the example, both working assumptions suffer from the discovery of

spurious FDs. Understanding the various ways in which spurious FDs appear is extremely

important, as FDs have a number of applications in data management. We investigate

precisely this phenomenon by first formally defining the types of FDs discovered over

null values and then developing a series of algorithms to quantify the genuineness of an

FD.

4.3.2 Formalization

For ease of exposition, we first define the notion of genuine, ghost and fake for exact FDs.

Consider two versions of the relation R: Rclean that is clean/complete and Rdirty that

is a noisy version of Rclean with missing values. Let Fclean be the set of FDs discovered

over Rclean while Fdirty is the set of FDs discovered over Rdirty under a suitable null

semantics (such as skiptuple, NULL-NOT-EQ, or NULL-EQ).

We can see that the set of FDs is not identical. We partition the set of exact FDs in

Fclean ∪ Fdirty into the following groups.

Same FDs: These are exact FDs that are present in both FD sets, i.e., Fsame = Fclean∩
Fdirty;

Fake FDs: These are exact FDs that are discovered from Rdirty but not from Rclean,

i.e., Ffake = Fdirty\Fclean. We consider them as false positive FDs – FDs that could

be considered valid but are not;

79

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

Ghost FDs: These are exact FDs that are discovered in Fclean but “disappeared” in

Fdirty, i.e., Fghost = Fclean \ Fdirty. These are false negative FDs – candidate FDs

that are considered non-FDs but are indeed valid FDs from Fclean;

Genuine FDs: Using the notations above, we can see that genuine exact FDs can be

reconstructed as Fgenuine = Fsame ∪ Fghost.

Let us now extend these definitions for approximate FDs. Recall that approximate

FDs are associated with an approximation degree that measures how many tuples need

to be removed such that an AFD can become an exact FD. A simplistic approach would

be to consider all AFDs with an approximation degree less than a certain threshold as

equivalent to exact FDs and reuse the prior definition of genuineness for exact FDs.

However, finding an appropriate threshold is challenging. We provide a generic defini-

tion that takes into account both the degree of cleanliness of data and the degree of

approximation.

Given a dataset with x% of missing values, we denote with Fx,y the set of valid FDs

with approximation degree of exactly y. For example, F0,0 denotes the set of exact FDs

discovered from the clean dataset, and F10,3 denotes the set of approximate FDs with

degree 3 discovered from the dataset containing 10% missing values. Let Fx′,y be the set

of valid FDs discovered from a version of the dataset (x′ > x) with more missing values

with the same approximation degree y. For notational convenience, we denote both the

degree of dirtiness and the corresponding dataset with that degree of dirtiness using x.

Definition 4.3. Same FD set. Given a fixed approximation degree y, SAMEx0x,y is the

set of FDs discovered from a dirty dataset x (with x > 0) that also appear in the clean

version x0 of the dataset:

SAMEx0x,y = SAME(Fx0,y, Fx0,y) = Fx0,y ∩ Fx,y (4.1)

Definition 4.4. Fake FD set. Given a maximum approximation degree y, FAKEx0x,y
is the set of FDs discovered from a dirty dataset (x > 0) that were not valid in the clean

dataset x0:

FAKEx0x,y = FAKE(Fx0,y, Fx,y) = Fx,y \
⋃
∀y0≤y

Fx0,y0 (4.2)

Definition 4.5. Ghost FD set. GHOSTx0
x,y is the set of FDs discovered from a dirty

dataset (x > 0) that are valid in the clean dataset x0 with a certain approximation degree

y0 ≥ 0, but exist only with a higher approximation degree y > y0 in the dirty dataset:

GHOSTx0
x,y = GHOST(Fx0,y, Fx,y) = Fx,y ∩

⋃
∀y0<y

Fx0,y0 (4.3)

For generalization, we denote by Fx,∗, the FD set discovered from a dataset with x%

of missing values for all approximation degrees. We denote by F=
x,y and F 6=x,y, the FD sets

discovered with NULL-EQ and NULL-NOT-EQ semantics respectively. Finally, in presence

of the clean dataset (x0 = 0), we define genuine FDs as follows:

80

4.4 Identifying genuine FDs

Definition 4.6. Genuine FD set. Given two versions of the same dataset, one

containing x% incomplete values (x > 0) and the clean version of the dataset (x0 < x),

then GENUINEx0x,y can be computed as the union of FDs of SAMEx0x,y and GHOSTx0
x,y.

Intuitively, genuine FDs discovered from a dirty dataset x are the FDs that hold in

the clean version x0 of the dataset. But generally, we do not have access to the clean

dataset. In the next section, we propose a procedure to identify genuine FDs.

4.4 Identifying genuine FDs

As we described previously, the set of FDs that are discovered from an incomplete relation

can be genuine, ghost, or fake. Naively using all of the discovered FDs, irrespective of

whether they are genuine or not, might be sub-optimal in applications, such as query

optimization and data cleaning.

A data analyst would prefer to utilize only the FDs that are either genuine or very

likely to be genuine. Our objective is to identify a measure, a genuineness score, that

can be used to quantify the “genuineness” of a given FD . Informally, we would expect

for a genuine FD to have a higher genuineness score than non-genuine FDs. Assuming

the availability of such a score, we propose the following procedure to identify the set of

FDs that are likely to be genuine:

1. Run some exact FD discovery algorithm on the “clean” subset of R that does not

have any null values; The set of discovered FDs will be a superset of all genuine

FDs and can contain both ghost and fake FDs;

2. Compute the genuineness score for each of the discovered FDs;

3. Prune the list of discovered FDs based on some top-k or a domain-specific thresh-

old whereby all FDs with genuineness score above that threshold are considered

genuine.

4.5 Probabilistic FD genuineness

In this section, we introduce the probabilistic genuineness score of an FD. Then, we

propose an efficient algorithm to exactly compute it. Finally, we suggest a sampling-

based approach to efficiently approximate the probabilistic genuineness score.

Probabilistic imputation of missing values

A common strategy for handling missing values is imputation. Imputation refers to

the statistical process that replaces missing data with substituted values. There has been

extensive work in statistics to perform imputation in a robust way [Van Buuren, 2012].

Usually, imputation strategies seek to replace missing data for a given attribute with

an estimated value based on the values of other attributes/tuples. For example, a simple

81

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

imputation strategy for numeric data is to replace missing data with the median value

of all the values of that attribute.

Alternatively, one can use a regression-based approach to estimate the value of an

attribute given the values of other attributes. This approach also subsumes various null

semantics, such as NULL-EQ and NULL-NOT-EQ. To see why, one can simulate NULL-EQ by

imputing with null values for a given attribute to the same value. Alternatively, one

can simulate NULL-EQ by imputing all null values for a given attribute to a different

value.

We now consider a general probabilistic imputation approach to estimate the gen-

uineness score of an FD. For each missing data value, we give a probability distribution

over the various values that can be taken. This approach generalizes most of the main

imputation strategies and allows us to exploit the connection to the well-studied area of

probabilistic databases.

In a probabilistic database, each tuple (or an attribute) is associated with a proba-

bility distribution such that it can take different values with different probabilities. A

possible world is a specific instantiation of the probabilistic database where each tuple

takes a value based on the probability distribution associated with the tuple. As an

example, consider a probabilistic database with two tuples t1 and t2 that can take two

and three values respectively. Then there are totally six possible worlds (by Cartesian

product).

In this work, we consider the scenario where the probability distribution is defined

over the entire tuple. Note that this approach is more general than the one where the

probability distribution is defined over attributes: the former can handle correlated at-

tributes. Table 4.1 shows a probabilistic imputation based on relation R3 from Figure 4.2,

where the probabilities are chosen arbitrarily for expository purposes. For example, the

third line of the table can be interpreted as: B and C values of tuple t3 will be imputed

as t3[B] = 0 and t3[C] = 1 with probability 0.2 and t3[B] = 1 and t3[C] = 1 with

probability 0.8.

Intuitively, the probabilistic imputation associates with each incomplete tuple a set

of possible imputed/complete tuple values it can take with the corresponding probability.

This is equivalent to an uncertain tuple in a probabilistic database that is associated with

a probability distribution. We also make the tuple independence assumption whereby

individual tuples are imputed independently. This is a standard assumption in both

probabilistic imputation and probabilistic databases.

Table 4.1: Tuple-level probability distribution for imputation over relation R3 of
the illustrative example.

A (B , C)

t1 0 (1,1)
t2 0 {(0, 0) : 0.12; (0, 1) : 0.18; (1, 0) : 0.28; (1, 1) : 0.42}
t3 1 {(0, 1) : 0.2; (1, 1) : 0.8}
t4 1 (0,1)

82

4.5 Probabilistic FD genuineness

The probabilistic genuineness score

Given the setup above, we can now define the probabilistic genuineness score as

follows:

Definition 4.7. The genuineness score of an FD X → A is the sum of probabilities of

all the possible worlds in which the FD holds.

Our definition of genuineness generalizes both the strong and weak FDs [Levene and

Loizou, 1998]. A strong FD is one that holds in all possible worlds while a weak FD

holds in at least one possible world. Based on our genuineness score definition, we can

see that strong FDs have a genuineness of 1 while weak FDs have a genuineness score

> 0.

Let us consider how to efficiently compute the probabilistic genuineness score of an

FD in a probabilistic imputation setting.

Complete enumeration. The simplest approach to compute the probabilistic genuine-

ness score enumerates all possible worlds, evaluating for each whether the FD holds in

that world and then simply summing up the probabilities of all worlds where it does.

One can generate the possible worlds in a straightforward manner. The deterministic

tuples that have no null values exist in all the possible worlds while the tuples with

null exist with appropriate imputation probability.

Example 4.1. There are eight possible worlds for the example in Table 4.1 (four for

t2 times two for t3). Tuples t1 and t4 exist in each of them. Tuples t2 and t3 take

values from the Cartesian product of all possible imputed values. So in possible world

w1, t2[B] = 0, t2[C] = 0 and t3[B] = 0, t3[C] = 1. Since this is a tuple-independent

probabilistic database, this occurs with probability 0.12× 0.2. The last possible world w8

has t2[B] = 1, t2[C] = 1 and t3[B] = 1, t3[C] = 1 with probability 0.42 × 0.8. One can

enumerate other possible worlds and compute its probability in a systematic manner.

Note that this approach is exact and returns the accurate genuineness score. However,

this approach is very expensive as the number of possible worlds grows exponentially in

the in the number of tuples in a real-world dataset. We leverage prior work on efficient

inference over probabilistic databases [Dalvi and Suciu, 2007; De and Kambhampati,

2010; Koch and Olteanu, 2008] to propose a more efficient algorithm that can compute

the exact genuineness score by avoiding the enumeration of irrelevant worlds where the

FD does not hold.

Efficient enumeration. Consider an FD X → A and an arbitrary tuple ti. Intu-

itively, we perform two major pruning steps. First, we can notice that when con-

sidering the possible worlds where we imputed ti[X] = VX and ti[A] = VA for some

VX ∈ Dom(X), VA ∈ Dom(A), we no longer need to consider all possible worlds where

tj [X] = VX and tj [A] 6= VA where j > i. In other words, the entire set of possible worlds

where ti[X] = tj [X] = VX , ti[A] = VA and tj [A] 6= VA will have a contribution of 0 to

the genuineness score computation and can be readily pruned. Second, if all the values

in a given tuple comply with the FD, then the genuineness score computation does not

change whether the tuple is picked or not as its contribution is 1.

83

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

Algorithm 3 shows the pseudo-code. Given an FD X → A, we use the term con-

straints loosely to denote the set of (X,A) pairs that are valid in the given partial

probable world. For example, consider a tuple ti with ti[X] = VX and ti[A] = VA where

VX ∈ Dom(X), VA ∈ Dom(A). Then the pair (VX , VA) acts as a constraint (denoted

by C in Algorithm 3) whereby all possible worlds where another tuple tj is imputed

with same value for X but different value for A is invalid. Please refer to [De and

Kambhampati, 2010] for additional details.

Algorithm 3 Find Probabilistic Genuineness Score

Input : D: Imputed database
f : an FD
C: Set of constraints

Output: Genuineness score P of f

13 P = 0
14 t = Next tuple to process from D
15 if t does not violate f and C then
16 Estimate Genuineness Score(D \ t, f , C)
17 foreach distinct possible (t[LHS], t[RHS]) combination in imputed t do
18 if Possible tuple (t[LHS], t[RHS]) does not violate C then
19 Add constraint (t[LHS], t[RHS]) to C
20 result = Estimate Genuineness Score(D \ t, f , C)
21 P = P + Prob(t[LHS], t[RHS]) × result
22 Remove t[LHS], t[RHS] from C

23 return P

Example 4.2. Consider Table 4.1 and try to compute the genuineness score of candi-

date FD A → B. We can see that tuples t1 and t4 are deterministic and impose the

“constraints” {(A = 0, B = 1), (A = 1, B = 0)}. Hence, we need to consider only the set

of possible worlds where this set of constraints hold.

Let us now consider tuple t2. Since t2[A] = 0, t2[B] has to be 1 (otherwise it violates

the constraints and has a probability of 0). We can see that t2[B] = 1 occurs with

probability 0.7 (0.28 + 0.42).

Similarly, t3[B] can take only the value of 0 that occurs with probability 0.2. The

assignment for t2 and t3 happens independently with probability 0.7× 0.2 = 0.14. Hence

the genuineness score of A→ B is 0.14.

The efficiency of Algorithm 3 stems from the fact that it avoids enumerating possible

worlds where a given FD does not hold. Still, Algorithm 3 is exponential in the cardinality

of the domain of the attributes. When the number of attributes involved in the FD is

small or when they have low domain cardinality, such as Gender, this approach is orders

of magnitude faster than complete enumeration. One can trade the exactness of the

probabilistic genuineness score of an FD for an efficient computation by generating a

sample of possible worlds.

84

4.6 Likelihood-based FD genuineness

Monte Carlo sampling of possible worlds. We adapt the Karp-Luby algorithm for

approximate model counting that is used for inference over probabilistic databases [Dalvi

and Suciu, 2007; Koch and Olteanu, 2008]. In contrast to the complete enumeration

approach, we do not enumerate all possible worlds. Instead we generate a sample of

possible worlds and compute the genuineness score for each FD from the sample.

Intuitively, we generate different possible worlds in proportion to their likelihood.

We then compute the genuineness score as the weighted ratio of the likelihood of all the

generated worlds where the FD held to the likelihood of all the generated worlds.

When the size of the sampled possible worlds is large enough, the ratio converges to

the correct genuineness score with high probability. Specifically, Dalvi and Suciu [2007];

Koch and Olteanu [2008] showed that if we run the experiment for N ≥ 4n
ε2

ln 2
δ , we can

guarantee that the probability that the generated estimate being off by more than ε

is less than δ. For example, if there are n = 100 tuples and we want the genuineness

estimate to be within 0.1 of the true value at least 95% of the times, then we need to

generate at least 29,778 possible worlds.

Furthermore, one can generate a confidence interval during the execution of the

algorithm and can terminate it when the confidence is satisfactory. After sampling N

possible worlds with 0 ≤ δ < 1, we can guarantee that the estimated genuineness score

p̃ relates with accurate genuineness score p as follows:

P (p̃ ≤ (1− δ)p) ≤ exp

(
−N × p× δ2

2

)
. (4.4)

One can see that the runtime complexity of the algorithm is parameterized by the

number of sampled possible worlds N . Since one can evaluate whether a given FD holds

in O(n2), the overall time complexity is O(N · n2).
In Section 4.7.3, we report on the qualitative performance of sampling-based compu-

tation of the probabilistic genuineness score.

4.6 Likelihood-based FD genuineness

An alternate approach to speed up genuineness computation is to limit the expressiveness

of the imputation. A number of commonly used imputation and repair strategies are

frequency-based (the more frequent a value occurs, the more likely it is to be correct).

If one adopts such an imputation strategy, one can design a linear time algorithm to

efficiently compute the genuineness score.

Given a candidate FD X → A, we can define its genuineness as the “likelihood” that

it is correct. FDs that are more likely would have a higher genuineness score. Note that

if the FD X → A is indeed genuine, we would like its genuineness score (and hence its

likelihood) to be 1. However, due to incomplete data, there might be some violating

tuples.

Hence, a natural way to define the likelihood of a FD is to compute the fraction of

tuples for each distinct value of X where the FD holds. In the following, we present two

85

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

approaches adapted from [Wang et al., 2009] to compute efficiently genuineness scores

per value and per tuple.

4.6.1 PerValue approach

Given a FD X → A and a null semantics, we begin by computing the likelihood that the

FD holds for each distinct value of X. Consider an arbitrary value VX ∈ Dom(X). For

all the tuples that have t[X] = VX , we identify the value VA that occurs the maximum

number of times. The likelihood that FD X → A holds for the value VX can be computed

as

Lik(X → A, VX) =
|VX , VA|
|VX |

(4.5)

where |VX , VA| and |VX | are the number of tuples that have t[X] = VX , t[A] = VA,

and t[X] = VX , respectively.

Note that Lik(X → A, VX) is determined for a specific value VX . We can compute

the likelihood for a FD as the average of the likelihood values for each distinct value VX .

Formally, the genuineness score is computed as

GenuinenessPV (X → A) =

∑
VX∈Distinct(X) Lik(X → A, VX)

|Distinct(X)|
(4.6)

where Distinct(X) returns all distinct values of X that occur in the relation R.

4.6.2 PerTuple approach

The PerValue approach, while intuitive, has a subtle issue. Consider two groups of

tuples for arbitrary values VX and VY . Let |VX | = 1, 000 and |VY | = 10 and assume that

|VX , VA| = 800 and |VY , VA| = 8. Using Equation 4.5, the likelihood for both VX and

VY are 0.8. Intuitively, we might want to give higher weight to VX than VY . This can

be achieved by weighting the likelihood by the frequency of each distinct value VX . This

results in a PerTuple definition of genuineness score computed as

GenuinenessPT (X → A) =

∑
VX∈Distinct(X) |VX , VA|∑
VX∈Distinct(X) |VX |

(4.7)

4.7 Experiments

In this section, we report on our experimental results. First, we expose the phenomenon

of fake and ghost FDs when missing values are injected in a clean dataset and we show

how missing values can distort the FD discovery result (Section 4.7.2). Second, we

apply our algorithms to compute the genuineness score of FDs from various real-world

datasets that we have artificially polluted with missing values, and we report the quality

86

4.7 Experiments

Table 4.2: Clean versions of real-world datasets with the number of (A)FDs dis-
covered (with approximation degree α)

Datasets [#] [#] [#]Distinct [#] [#]FDs
Att. Rows (min;max) Missing α = 0 α = 1 α = 2 α = 3 α = 4 α ≥ 5 [#]Total

Iris 5 150 (3;43) 10-40% 5 2 1 1 7 59 80
Abalone 9 4,177 (3;2,429) 10-40% 783 219 122 57 56 1,067 2,313
Computer 9 209 (15;209) 10-40% 3,046 193 199 168 92 1,422 5,129
Glass 10 214 (6;214 10-40% 8,624 1,156 536 166 84 687 11,263

Sensor 8 2,313,681 (137;10,283) 96,733 Skiptuple

Sensor10 → 10 397 29 10 14 11 563 1,024
Sensor100 → 100 432 40 10 0 3 539 1,024
Sensor1000 → 1000 427 44 7 0 3 543 1,024

performance evaluation of our approach given the true labels of FD discovered from the

clean version of the datasets (Section 4.7.3). In particular, we observed:

• Increasing the percentage of missing values in LHS attributes of FDs generates fake

FDs both for NULL-NOT-EQ semantics and skiptuple (Section 4.7.2.B);

• Increasing the percentage of missing values in RHS attributes of FDs generates

fake FDs with NULL-EQ semantics or skiptuple but ghost FDs for NULL-NOT-EQ

(Section 4.7.2.C);

• PerValue (PV) and PerTuple (PT) approximations of the genuineness score have

the highest quality performance to discover genuine FDs with NULL-EQ semantics.

skiptuple is not a good strategy to discover genuine FDs (Section 4.7.3.A). We

show that our approach is robust and can perform well even under a worst case

imputation (Section 4.7.3.B).

Experiments on the real-world Sensor dataset show that our FD-scoring methods

can find 100% of genuine FDs that would have been obtained by multiple imputation

strategies in very reasonable time, which offers a significant gain over pre- and post-

processsing efforts for FD discovery (Section 4.7.4). Regarding runtime performance,

the results directly follow the complexity analysis of various algorithms proposed in

Sections 4.5 and 4.6.

4.7.1 Experimental setup

In each experiment, we vary (1) the dataset and the characteristics of the discovered

FDs in terms of number, set of attributes in LHS and RHS, and approximation degree;

(2) the number and distribution of missing values; and (3) the considered null semantics:

NULL-NOT-EQ, NULL-EQ, or skiptuple, and (4) the threshold to select the top-k genuine

FDs (k = 10%, 20%, 30% and 100% of the total number of FDs discovered).

87

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

Datasets

We used five real-world datasets: four are selected from the UCI machine learning

repository [Lichman, 2013] and one Sensor dataset from Intel Berkeley Research lab 1.

The first four datasets (used in Section 4.7.2) are originally complete, i.e., without any

missing values. The Sensor dataset (used in Section 4.7.4) includes missing values. As

shown in Table 4.2, they vary in the number of columns, rows, and discovered FDs,

and cover a wide variety of topics, and they are representative in terms of distributional

characteristics and distinctness of attribute sets.

We injected a varying percentage of missing values from 5% to 40% in the dataset

attributes using one of the three modes: UNIFORM, PARETO, and TARGET. For

UNIFORM, we distribute the random injection of missing values uniformly over the set

of attributes. For PARETO, we inject randomly 20% of the missing values in 80% of

the attributes and 80% in the remaining 20% of the attributes. Using PARETO, we

study the impact of a realistically unbalanced distribution of missing values across the

attributes and how it can affect FD discovery (e.g., causing more ghost and fake FDs).

Using TARGET, we select a subset of attributes involved either in LHS or RHS for a set of

targeted FDs. For each originally complete dataset (×4), each missing value percentage

(×6), and each distribution mode (×3), we generate 10 polluted versions to finally obtain

4× 6× 3× 10 = 720 datasets.

FD discovery

The exact and approximate FDs were discovered from all datasets using the original

implementation of the FUN algorithm [Novelli and Cicchetti, 2001]. Once missing values

have been injected, we re-ran FD discovery for each null semantics and for Skiptuple,

the case where the tuples containing missing values are skipped in the FD discovery

process. We finally analyze 3×720 = 2, 160 FD sets for the experiments of Sections 4.7.2

and 4.7.3 and 18 datasets for Section 4.7.4.

Quality performance evaluation

For the first sets of experiments in Sections 4.7.2 and 4.7.3, we used the ground truth

obtained by discovering FDs from the originally clean datasets. We compared the set of

FDs discovered before and after injection of missing values. We used the true labels of

FDs to compute the traditional measures of precision (P), recall (R), and F1-measure

for Top-k percent of the discovered FD size defined as:

P =
|true Genuine FDs|
|Top-k FDs|

R =
|true Genuine FDs|

|AllFDs|

F1k =
2PR

(P +R)

1http://db.csail.mit.edu/labdata/labdata.html

88

 http://db.csail.mit.edu/labdata/labdata.html

4.7 Experiments

For the case study in Section 4.7.4, since we do not have access to the ground truth,

we used the set of FDs discovered from datasets obtained from three most commonly

used imputation strategies as a baseline and report the Jaccard coefficient.

Data storage and system setup

We store all discovered FDs with their approximation degrees as well as the attribute

sets’ distinctness in a MySQL database and perform SQL queries to extract the infor-

mation we report hereafter. We perform all experiments on a Dell XPS machine with

an Intel Core i7-7500U quad-core, 2.8 GHz, 16 GB RAM, Windows 10 64-bit with g++

(GNU).

4.7.2 Ghost and fake FDs phenomenon

A. Impact of nulls uniformly distributed in LHS and RHS

In this experiment, our goal is to show that ghost and fake FDs exist and have

considerable impact on the validity of FD discovery results. First, we randomly injected

increasing percentages of missing values uniformly in the attribute list for each clean

version of the real-world datasets described in Table 4.2.

We discover the sets of FDs for the full range of approximation degrees in the orig-

inal, clean version of the dataset as well as from each polluted version in the two null

semantics and the Skiptuple cases.

Figure 4.3 shows two Jaccard coefficients (in Y-axis) averaged over the 10 polluted

versions of the Abalone dataset with increasing percentage of missing values (X-axis).

The first Jaccard coefficient (same approxdeg as dashed line) is computed as the fraction

of the number of common FDs discovered both in the clean dataset and each polluted

dataset version for exactly the same approximation degree over the total number of FDs

discovered in both datasets. It represents the same FDs as defined in Equation (4.1).

The second Jaccard coefficient (higher approxdeg as solid line) represents the fraction

of common FDs that have an approximation degree in each dirty version that is higher

than in the clean dataset over the total number of FDs discovered in both datasets.

In this figure, we can see that non-exact FDs are the most impacted by the ghost and

fake phenomenon. The more missing values are introduced, the more dissimilar sets of

FDs with same approximation degree are obtained. Skipping tuples with missing values

for FD discovery is clearly not a good option to preserve genuine FDs as the Jaccard

coefficients tend to 0 when increasing the percentage of null values. We made the same

observations of the phenomenon on the other datasets.

B. Impact of nulls in LHS

To better understand the phenomenon at the attribute set level, we injected missing

values with the PARETO mode. We obtained very similar figures to Figure 4.3 in the

two cases of null semantics. To grasp the phenomenon at a finer grain, we used the

TARGET mode over the least and most distinct attributes of the datasets.

89

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

Figure 4.3: Jaccard coefficients with increasing percentage of missing values for
Abalone dataset. It measures the similarity between the FD sets discovered from
the original, dirty datasets for the same or higher approximation degrees in the 3
cases of null semantics: NULL-NOT-EQ, NULL-EQ, and skiptuple.

Figure 4.4 (Top) shows the approximation degree variation (Y-axis) with respect to

the percentage of missing values (X-axis) injected in attribute A10 (the least distinct

attribute) of Glass dataset for each FD having A10 in its LHS for each null semantics

cases (similarly Figure 4.4 (Bottom) for RHS).

In Figure 4.4 (Top), an increasing percentage of missing values in LHS causes a dra-

matic drop of the approximation degree of all FDs both for NULL-NOT-EQ and Skiptuple

(thus generating fake FDs), whereas for NULL-EQ semantics, targeted injection in LHS

leaves the FDs’ approximation degree intact irrespectively of the number of missing

values injected.

C. Impact of nulls in RHS

In Figure 4.4 (Bottom), 150 FDs (not listed due to space limitation) having A10 in

the RHS are plotted for each null semantics. We observe clearly that the increase of

their approximation degree is proportional to the increasing of the percentage of missing

90

4.7 Experiments

Figure 4.4: Variation of FD approximation degree w.r.t. the null semantics when
missing values are injected in the least distinct attribute in LHS of the FDs and in
RHS of FDs for the Glass dataset.

values for NULL-NOT-EQ, whereas it decreases significantly in the two other cases with a

much steeper slope when the tuples are skipped than for NULL-EQ.

In this case, when more missing value are injected in RHS, depending on the null

semantics, we can see either the generation of fake FDs (with approximation degrees

getting lower for NULL-EQ and Skiptuple) or the disappearance of FDs (becoming ghost

with approximation degrees getting higher for NULL-NOT-EQ).

Conclusions

We observe the same phenomenon in all polluted versions of all datasets. This cor-

roborates our conclusions:

• Increasing the distinctness of the LHS attribute set or adding more distinct missing

values decreases the approximation degree of the corresponding FDs and more fake

FDs appear for NULL-NOT-EQ and Skiptuple;

• Increasing the distinctness of RHS attribute set makes the corresponding FDs be-

come more and more approximate: more genuine FDs disappear and become ghost

FDs for NULL-NOT-EQ;

• Decreasing the distinctness of RHS or adding missing values with NULL-NOT-EQ and

Skiptuple makes the corresponding FDs become less and less approximate and

more fake FDs appear.

91

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

4.7.3 Quality evaluation

In this set of experiments, we compute the genuineness scores proposed in Sections 4.5

and 4.6 and report quality performance as accuracy, recall, precision, and F1-measure.

A. PerValue (PV) and PerTuple (PT) genuineness scores

For each polluted version of each dataset, precision, recall, and F1-measure are com-

puted as follows: we select as supposed genuine FDs the ones having PV and PT scores

greater than a predefined top-k threshold and we compare them with the true genuine

FDs discovered from the clean version of each dataset. This procedure is repeated ten

times for averaging the quality metrics.

In Figure 4.5, we report averaged F1-measure of PV and PT scores for top-k genuine

FDs discovered from the dirty datasets with k = 10%, 20%, and 30%. Precision and

recall averages are presented in Figure 4.6.

Overall, we observe that Skiptuple is the worst performer across all the datasets. All

PV and PT scores obtained with the two null semantics outperform the scores obtained

from Skiptuple to a significant extent across all datasets. PV and PT genuineness

scores have very close F1-measures except for Iris where PV score reaches 1 despite the

increasing percentage of missing values.

We observe that NULL-EQ is consistently the best performer, regardless of the missing

values percentage. With high percentages of missing values, the difference between scores

obtained from NULL-NOT-EQ and NULL-EQ is greater by more than 10% to 20%.

In conclusion, our PV score combined with NULL-EQ semantics can correctly approx-

imate the genuineness of FDs across all datasets. We note that for all datasets, the

computation time of PV and PT per FD is negligible (linearly with the dataset size:

around 1 second for 100,000 tuples).

B. Sampling-based probabilistic genuineness score.

The qualitative performance of the sampling-based approach is guaranteed to be

identical to the PerValue and PerTuple when frequency-based probabilistic imputation is

used. Instead, we highlight the robustness of the sampling-based approach by performing

a worst-case uniform imputation and show that it still achieves meaningful results.

In uniform imputation, each value in the domain of an attribute is equally likely to

be imputed. For example, if the attribute has a domain cardinality of 100, then each of

the possible values have 1% probability of being imputed.

We now study how our approach fares under this imputation for the Glass dataset.

Applying Eq. (4.4) with δ = .95 and ε = .2 and ε = .1 requires sampling at least 15,931

and 63,724 possible worlds respectively. In Table 4.3, we report the quality metrics of

top-10% FDs based on the probabilistic genuineness score (GS) computed using 10,000

to 70,000 worlds from exact minimal FDs from Skiptuple Glass dataset.

As expected, both precision and recall decreases with increasing missing values. How-

ever, our approach has high precision but low recall: we return few FDs but most of the

returned FDs are genuine. Given the preponderance of database applications of FDs,

returning FDs that are very likely to be genuine is indeed desirable.

92

4.7 Experiments

Figure 4.5: Average F1-measures of genuineness scores per value (PV) and per
tuple (PT) over 10 runs for Skiptuple, NULL-EQ, and NULL-NOT-EQ semantics and
3 thresholds k = 10, 20, 30% of the number of FDs discovered from dirty dataset.

Once again, we caution that this result is for the absolute worst case of uniform

imputation. If the imputation is reasonably accurate, then the precision/recall will com-

parable to the PerValue and PerTuple approaches.

4.7.4 Case study on the real-world Sensor dataset

In this set of experiments, we use real-world data collected from 54 sensors deployed in-

cluding 2,313,681 records identified by a timestamp and five relevant numerical attributes

describing the conditions of the monitored rooms such as (date, hour, epoch, sensorId,

voltage, temperature, humidity, light). The dataset includes 96,733 missing values

with the distribution given in Table 4.4.

A “1” in the table indicates a non-missing value and a “0” indicates a missing value.

There are 2,219,802 observations with non-missing values, and for example, 3 observa-

tions with non-missing values except for the variables humidity and light (line 5 of the

table). The original number of distinct values per attribute is given in parenthesis. We

do not consider the spatio-temporal dimension of the dataset and focus on FD discovery

in presence of missing values.

93

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

Figure 4.6: Average recall and precision of genuineness scores per value (PV) and
per tuple (PT) over 10 runs for Skiptuple, NULL-EQ, and NULL-NOT-EQ semantics
and 3 thresholds k = 10, 20, 30% of the number of FDs discovered from dirty dataset.

94

4.7 Experiments

Table 4.3: Averaged precision, recall, F1-measure of GS@10% for Glass dataset
over 10 runs with 10,000 to 70,000 possible worlds.

Missing (%) [#] possible worlds Precision Recall F1

10,000 0.758 0.082 0.149
5 20,000 0.783 0.085 0.154

50,000 0.778 0.085 0.153
70,000 0.866 0.094 0.170

10,000 0.642 0.078 0.139
10 20,000 0.642 0.078 0.139

50,000 0.657 0.080 0.143
70,000 0.556 0.068 0.122

10,000 0.580 0.033 0.062
20 20,000 0.559 0.032 0.060

50,000 0.570 0.032 0.061
70,000 0.152 0.009 0.017

Table 4.4: Missing values distribution in Sensor data.

SensorId voltage temp. hum. light
[#]Records (61) (137) (10,283) (1,990) (143)

2,219,802 1 1 1 1 1
1 1 1 0 1 1

92,975 1 1 1 1 0
1 1 1 0 1 0
3 1 1 1 0 0

373 1 1 0 0 0
526 0 0 0 0 0

2,313,681 526 526 901 902 93,878

To study the effect of attribute cardinality on FD discovery, we transformed the

dataset into three binned versions with 10, 100, and 1000 bins, respectively, for the five

numerical attributes. We discovered FDs from each binned versions. Table 4.2 (three

last lines) reports the numbers of FDs discovered from Skiptuple binned version.

We can observe the overlaps of common FDs across various null semantics in the

Venn diagram for 10 bins in Figure 4.7 (Left). Similar overlaps are observed for 100 and

1000 bins.

Our intuition about the phenomenon of fake and ghost FDs is confirmed as we ob-

served exact FDs, that are present in Skiptuple, “disappear” with another null se-

mantics, such as the FD epoch, sensorId,temperature,humidity → voltage exact

in Skiptuple and NULL-NOT-EQ versions but with approximation degree 18 in NULL-EQ.

Next, we computed PV, PT, and GS scores and selected the top-k FDs with k =

10, 20, 30, and 100%.

As in many similar application scenarios, we do not have access to the ground truth

related to missing values, but a common technique is to apply statistical imputation

95

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

Figure 4.7: Venn diagrams representing the FD sets and their intersections in
Sensor 10 Bins dataset between Skiptuple, NULL-EQ and NULL-NOT-EQ versions
(Left) and imputation strategies (Right).

methods. Therefore, we applied three imputation strategies to the original Sensor data-

set, namely PMM, RI, and QUAD. PMM calculates imputations by predictive mean

matching [Van Buuren, 2012]. RI (Random Indicator) estimates an offset between the

distribution of the observed and missing data using an algorithm that iterates over the

response and imputation models. QUAD is a multivariate imputation technique based

on estimating the squared terms [Van Buuren, 2012]. We also applied the same binning

strategies to the imputed datasets and discovered three FD sets respectively.

In the absence of ground truth, we can reasonably make the assumption that common

FDs across all imputed datasets can be considered as genuine FDs for our comparison

purposes. Figure 4.7 (right) represents the overlaps and the set of 486 genuine FDs

for imputed Bin 10 Sensor dataset (similar figures for Bin 100 and 1000 are observed).

Finally, Figure 4.8 reports the Jaccard coefficient between FDs discovered using our

top-k scoring-based methods for various null semantics and the set of genuine FDs as

FPMM ∩ FRI ∩ FQUAD.

Our results show that with only top-30% of PT- and PV-scoring results obtained

from the FD set size of any null semantics, around 60% of the set of imputed-genuine

FDs can be discovered. PV and PT scores are computed simultaneously for the full

Sensor dataset in approximately 21 seconds for 10 Bins, 20 seconds for 100 Bins, and 20

seconds for 1000 Bins for the three cases of null semantics and Skiptuple. GS score

computation times are: 11 min and 35s, 3 hours 32 min, and 3 hours 26 min, respectively.

As a conclusion, the user may choose many different ways to impute missing val-

ues and then discover FDs from imputed datasets. However, using our method and in

particular PV score regardless of the null semantics, the user can obtain the set of

96

4.8 Summary

Figure 4.8: Jaccard coefficient between top-k FD sets based on GS, PV, and PT
scores and the set of common FDs discovered from imputed datasets using PMM,
RI, and QUAD imputation techniques for Sensor dataset with 10 and 100 Bins.

genuine FDs instead of carefully selecting the imputation strategies, spending time for

imputation and screening the FDs discovered from multiple imputed datasets.

4.8 Summary

In this chapter, we studied how missing values may impair the final FD discovery results

by causing the generation of spurious FDs and the omission of valid FDs at the same

time. We formalized the notions of ghost, fake, and genuine functional dependencies.

We proposed a probabilistic approach to quantify the genuineness of FDs and provide

an efficient sampling-based computation of genuineness score with accuracy guarantee.

We also proposed two algorithms to approximate the genuineness score of FDs based on

per value and per tuple granularity levels that could be used by analysts to identify most

promising FDs. Experimental results on real-world and semi-synthetic data show high

accuracy and efficiency of our scoring model.

For future work, our technique can be extended to the particular case of “disguised”

missing values when incorrect default values are misused in replacement of missing values

and hardly detectable, which adds complexity into the detection of genuine FDs and

anomaly semantics interpretation.

97

4. THE IMPACT OF MISSING VALUES ON FD DISCOVERY

98

Chapter 5

Conclusion and Outlook

Single-column data profiling provides a basic understanding of relational data by gener-

ating a diverse set of descriptive metadata about each column. In this thesis, we focused

on the discovery of single column cardinality as well as its header, representing two im-

portant types of single-column metadata. In addition, we analyzed the impact of the

number of null values in a column on FDs discovery.

We discussed twelve of the most important algorithms for efficiently estimating the

cardinality of a single column, a dataset, or a stream (Chapter 2). We contributed a

new classification of these algorithms based on the core method an algorithm uses to

estimate the cardinality. We confirmed that some preliminary solutions, such as sam-

pling and hash tables, are valid only when one can scale up the available computational

resources. We concluded that none of the twelve estimation algorithms is clearly the best

for all datasets and all scenarios. We discussed our insights on which algorithm to use,

given the application requirements determined by the three factors: accuracy, memory

consumption, and runtime.

In addition to cardinality estimation, we addressed the question of how to find mean-

ingful and coherent headers to a header-less table (Chapter 3). This question is par-

ticularly relevant, given the wide range of use cases in which column headers are the

main player, such as schema matching, data integration, and KB augmentation. We

introduced a fully automated end-to-end schema discovery system, that suggests the

combination of the most coherent headers, i.e., the best schema, for a header-less table.

Our system conducts an approximate similarity search within a table corpus to suggest

headers for each headless-column. It then utilizes statistics of header co-occurrences from

a schema corpus to output the best schemata.

This brings us to the last question raised in this thesis: should one trust FDs discov-

ered from incomplete data, given the fact that discovery algorithms are typically defined

for correct and complete data. To this end, we showed how missing values may impair

the final FD discovery results by causing the generation of spurious FDs and the omission

of valid FDs at the same time (Chapter 4). We formalized the notions of ghost, fake,

and genuine FDs. We proposed two efficient approaches to approximate the genuineness

score of FDs that could be used to identify the most promising FDs.

99

5. CONCLUSION AND OUTLOOK

Apart from continuations, we would also like to point out the limitations of our work

and any interesting directions for future work. To this end, we discuss some thoughts on

how to extend the solutions proposed throughout this thesis.

Parallel and distributed cardinality estimation. There is ample room for future

work to build and evaluate parallel and distributed implementations of cardinality esti-

mation algorithms. Several of the cardinality estimation algorithms discussed in Chap-

ter 2 have characteristics that make them a good candidate for parallelization and dis-

tributed environments. They can be divided into three categories: (1) Algorithms whose

partial results can be easily merged using a bit-wise OR-operation. (2) Algorithms run-

ning several copies of the same algorithm or use several hash functions to improve their

accuracy. (3) Algorithms allowing set operations like intersections or unions.

Semantic domain. In Chapter 3, our solution to suggest a header for a column was a

value-based solution, i.e., no extra semantic knowledge is needed. But, labeling columns

with their semantic domain can be useful in other scenarios that require finding cor-

respondences between columns from different domains, such as table understanding,

schema matching, and question answering. Usually, semantic domain detection systems

are matching-based: either matching column values with predefined regular expressions

or matching column header and values with look-up dictionaries. These systems are

not flexible enough to handle dirty data and support only a limited number of semantic

domains. Recently, Hulsebos et al. [2019] took a step forward and used modern deep

learning methods to detect the semantic domain of a column. Single-column metadata,

such as column size, cardinality, and value distribution comprises the main part of the

features used for training their machine learning models.

Disguised missing values and genuine FDs. Disguised missing values are data val-

ues that are treated as valid values, while it is unknown or non-specified and must be

treated as null values. For instance, when default values are misused as a replacement

of missing values and hardly detectable. Disguised missing values add another level of

complexity to the detection of genuine FDs and anomaly semantics interpretation. The

straightforward solution to overcome this problem is to detect disguised values and tech-

niques for identifying genuine FDs as proposed in Chapter 4 become applicable. However,

the detection of disguised missing values is difficult. A good starting point for continued

research in this area is the work by Qahtan et al. [2018].

It is not a secret that single-column profiling results are used as the foundation for

multi-column data profiling tasks. In fact, single-column profiling together with multi-

column profiling provides a powerful toolkit for data scientists. Although significant

advances have been already made in the field of data profiling both by research and in-

dustry, future work is still required to address open challenges, such as profiling dynamic

data, interactive profiling, profiling results interpretation, better scalability, exploiting

modern hardware, and profiling non-relational data. Next, we discuss some of these

challenges.

100

Incremental data profiling. The assumption of static data, i.e., non-changing statis-

tics, limits the effectiveness of many of the current data profiling methods. In other

words, any insert, update, or delete operation requires rerunning the whole profiling pro-

cess. Incremental data profiling algorithms are critical to avoid re-profiling all the data

to obtain up-to-date statistics, especially with the increase of volume and velocity of data

in modern data management scenarios. Nevertheless, there is already some work in this

area. For instance, there are methods to estimate column cardinality even with dynamic

data as we discussed in Chapter 2. However, incremental approaches for dependency

discovery remain a challenge, as current solutions are too time-consuming to deal with

rapidly growing datasets.

User-oriented data profiling. Currently, data profiling methods are not ready to pro-

vide an interactive user experience. Some profiling algorithm’s runtimes are not suitable

when one needs to wait for the results in front of a screen. Furthermore, no interaction

with the users is expected during the profiling process, whereas such interaction can

be useful in cases, such as data cleansing that requires expert feedback. For example,

experts can be consulted to verify a detected error or FD during the profiling process, al-

lowing the algorithm to take this feedback into account as it progresses. In addition, data

profiling results can be very large, turning their handling, querying and interpretation

into a challenge for the user. Therefore, new profiling algorithms are needed to improve

the user experience both during the profiling process and while interpreting their results.

We close this thesis by emphasizing that data profiling remains to be a fundamental

data management task considering the multitude of use cases in which data profiling

techniques can be beneficial. The importance of data profiling can hardly be understated,

particularly with the notable increase in both the volume of data and the number of

people working with it.

101

5. CONCLUSION AND OUTLOOK

102

References

Ziawasch Abedjan, Toni Grütze, Anja Jentzsch, and Felix Naumann. Profiling and

mining RDF data with ProLOD++. In Proceedings of the International Conference

on Data Engineering (ICDE), pages 1198–1201, 2014.

Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock. Data

profiling. Synthesis Lectures on Data Management. Morgan & Claypool Publishers,

2018.

Divyakant Agrawal, Philip Bernstein, Elisa Bertino, Susan Davidson, Umeshwar Dayal,

Michael Franklin, Johannes Gehrke, Laura Haas, Alon Halevy, Jiawei Han, H. V. Ja-

gadish, Alexandros Labrinidis, Yannis Sam Madden, Papakonstantinou, Jignesh Pa-

tel, M. Raghu Ramakrishnan, Kenneth Ross, Cyrus Shahabi, Dan Suciu, and Shiv

Vaithyanathan. Challenges and opportunities with big data: A white paper prepared

for the computing community consortium committee of the computing research as-

sociation, 2012. http://cra.org/ccc/resources/ccc-led-whitepapers/, Online;

accessed January 16, 2020.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. In Proceedings of the ACM Symposium on Theory of Computing

(STOC), pages 20–29, 1996.

Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approxi-

mate near neighbors. In Proceedings of the ACM Symposium on Theory of Computing

(STOC), pages 793–801, 2015.

Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact set-similarity joins.

In Proceedings of the International Conference on Very Large Databases (VLDB),

pages 918–929, 2006.

William Ward Armstrong. Dependency structures of data base relationships. In Infor-

mation Processing, Proceedings of the IFIP Congress, pages 580–583, 1974.

Nikolaus Augsten and Michael Böhlen. Similarity joins in relational database systems.

Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2013.

Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna. Four

degrees of separation. In Proceedings of the ACM Web Science Conference, pages

33–42, 2012.

103

http://cra.org/ccc/resources/ccc-led-whitepapers/

REFERENCES

Antonio Badia and Daniel Lemire. Functional dependencies with null markers. The

Computer Journal, 58(5):1160–1168, 2015.

Antonio Badia and Daniel Lemire. On desirable semantics of functional dependencies

over databases with incomplete information. arXiv preprint arXiv:1703.08198, 2017.

Sreeram Balakrishnan, Alon Halevy, Boulos Harb, Hongrae Lee, Jayant Madhavan, Af-

shin Rostamizadeh, Warren Shen, Kenneth Wilder, Fei Wu, and Cong Yu. Applying

WebTables in practice. In Proceedings of the Conference on Innovative Data Systems

Research (CIDR), 2015.

Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. Counting

distinct elements in a data stream. In Proceddings of the International Workshop

on Randomization and Approximation Techniques in Computer Science (RANDOM),

pages 1–10, 2002a.

Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming algorithms,

with an application to counting triangles in graphs. In Proceedings of the ACM-SIAM

Symposium on Discrete Algorithms, pages 623–632, 2002b.

Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Eric Medvet, and Enrico Sorio.

Automatic synthesis of regular expressions from examples. IEEE Computer, 47(12):

72–80, 2014.

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. Inference of reg-

ular expressions for text extraction from examples. IEEE Transactions on Knowledge

and Data Engineering (TKDE), 28(5):1217–1230, 2016.

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. Active learning

of regular expressions for entity extraction. IEEE transactions on cybernetics, 48(3):

1067–1080, 2017.

Roberto J Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up all pairs similar-

ity search. In Proceedings of the International World Wide Web Conference (WWW),

pages 131–140, 2007.

Frank Benford. The law of anomalous numbers. Proceedings of the American philosoph-

ical society, pages 551–572, 1938.

Philip A Bernstein, Jayant Madhavan, and Erhard Rahm. Generic schema matching,

ten years later. PVLDB, 4(11):695–701, 2011.

Laure Berti-Equille, Hazar Harmouch, Felix Naumann, Noël Novelli, and Saravanan

Thirumuruganathan. Discovery of genuine functional dependencies from relational

data with missing values. PVLDB, 11(8):880–892, 2018.

Leopoldo E. Bertossi. Database repairing and consistent query answering. Synthesis

Lectures on Data Management. Morgan & Claypool Publishers, 2011.

104

REFERENCES

George Beskales, Ihab F. Ilyas, and Lukasz Golab. Sampling the repairs of functional

dependency violations under hard constraints. PVLDB, 3(1):197–207, 2010.

Kevin Beyer, Peter J Haas, Berthold Reinwald, Yannis Sismanis, and Rainer Gemulla.

On synopses for distinct-value estimation under multiset operations. In Proceedings

of the International Conference on Management of Data (SIGMOD), pages 199–210,

2007.

Kevin Beyer, Rainer Gemulla, Peter J Haas, Berthold Reinwald, and Yannis Sismanis.

Distinct-value synopses for multiset operations. Communications of the ACM, 52(10):

87–95, 2009.

Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. Methods for ex-

ploring and mining tables on wikipedia. In Proceedings of the ACM SIGKDD Workshop

on Interactive Data Exploration and Analytics (IDEA@KDD), pages 18–26, 2013.

Tobias Bleifuss, Susanne Bülow, Johannes Frohnhofen, Julian Risch, Georg Wiese, Se-

bastian Kruse, Thorsten Papenbrock, and Felix Naumann. Approximate discovery of

functional dependencies for large datasets. In Proceedings of the International Con-

ference on Information and Knowledge Management (CIKM), pages 1803–1812, 2016.

Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre

Tarjan. Time bounds for selection. Journal of Computer and System Sciences, 7(4):

448–461, 1973.

Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis.

Conditional functional dependencies for data cleaning. In Proceedings of the Interna-

tional Conference on Data Engineering (ICDE), pages 746–755, 2007.

Gerlof Bouma. Normalized (pointwise) mutual information in collocation extraction.

Proceedings of Proceedings of the International Conference of the German Society for

Computational Linguistics and Language Technology (GSCL), pages 31–40, 2009.

Andrei Broder. On the resemblance and containment of documents. In Proceedings of

Compression and Complexity of SEQUENCES, pages 21–29, 1997.

Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey Zweig. Syntactic

clustering of the web. Computer Networks and ISDN Systems, 29(8-13):1157–1166,

1997.

Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Stholes: a multidimensional

workload-aware histogram. In Proceedings of the International Conference on Man-

agement of Data (SIGMOD), pages 211–222, 2001.

Michael Cafarella, Alon Halevy, Yang Zhang, Daisy Zhe Wang, and Eugene Wu. Uncov-

ering the relational web. In Proceedings of the ACM SIGMOD Workshop on the Web

and Databases (WebDB), 2008.

Michael Cafarella, Alon Halevy, Hongrae Lee, Jayant Madhavan, Cong Yu, Daisy Zhe

Wang, and Eugene Wu. Ten years of webtables. PVLDB, 11(12):2140–2149, 2018.

105

REFERENCES

Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. Relaxed functional de-

pendencies: A survey of approaches. IEEE Transactions on Knowledge and Data

Engineering (TKDE), 28(1):147–165, 2016.

Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Towards

estimation error guarantees for distinct values. In Proceedings of the Symposium on

Principles of Database Systems (PODS), pages 268–279, 2000.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Pro-

ceedings of the ACM Symposium on Theory of Computing (STOC), pages 380–388,

2002.

Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, and Charles Sutton. Colnet: Em-

bedding the semantics of web tables for column type prediction. In Proceedings of the

National Conference on Artificial Intelligence (AAAI), pages 29–36, 2019.

Fei Chiang and Renee J Miller. A unified model for data and constraint repair. In

Proceedings of the International Conference on Data Engineering (ICDE), pages 446–

457, 2011.

Seung-Seok Choi, Sung-Hyuk Cha, and Charles C Tappert. A survey of binary similarity

and distance measures. Journal of Systemics, Cybernetics and Informatics, 8(1):43–48,

2010.

Xu Chu, Ihab F Ilyas, Paolo Papotti, and Yin Ye. Ruleminer: Data quality rules dis-

covery. In Proceedings of the International Conference on Data Engineering (ICDE),

pages 1222–1225, 2014.

Edgar F Codd. A relational model of data for large shared data banks. Communications

of the ACM, 13(6):377–387, 1970.

Graham Cormode. Count-Min sketch. In Encyclopedia of Database Systems, pages 511–

516. Springer, 2009.

Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the

Count-Min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

Graham Cormode, Flip Korn, Shanmugavelayutham Muthukrishnan, and Divesh Srivas-

tava. Space-and time-efficient deterministic algorithms for biased quantiles over data

streams. In Proceedings of the Symposium on Principles of Database Systems (PODS),

pages 263–272, 2006.

Graham Cormode, Minos Garofalakis, Peter J Haas, Chris Jermaine, et al. Synopses for

massive data: Samples, histograms, wavelets, sketches. Foundations and Trends® in

Databases, 4(1–3):1–294, 2011.

Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. VLDB

Journal, 16(4):523–544, 2007.

106

REFERENCES

Tamraparni Dasu, Theodore Johnson, Shanmugauelayut Muthukrishnan, and Vladislav

Shkapenyuk. Mining database structure; or, how to build a data quality browser.

In Proceedings of the International Conference on Management of Data (SIGMOD),

pages 240–251, 2002.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab Mirrokni. Locality-sensitive

hashing scheme based on p-stable distributions. In Proceedings of the 20th ACM

Symposium on Computational Geometry, pages 253–262, 2004.

Herbert Aron David and Haikady Navada Nagaraja. Order statistics. Encyclopedia of

Statistical Sciences, 2004.

Sushovan De and Subbarao Kambhampati. Defining and mining functional dependencies

in probabilistic databases. arXiv preprint arXiv:1005.4714, 2010.

Richard De Veaux and David Hand. How to lie with bad data. Statistical Science, 20

(3):231–238, 2005.

Frederik Michel Dekking, Cornelis Kraaikamp, Hendrik Paul Lopuhaä, and Ludolf Erwin

Meester. A Modern introduction to probability and statistics: Understanding why and

how. Springer Science & Business Media, 2005.

DemandGen. Assessing the impact of dirty data on sales & marketing performance, 2017.

https://www.zoominfo.com/business/mktg/ebooks/dirtydataebook.pdf, Online;

accessed January 16, 2020.

Hong-Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of schema matching evalu-

ations. In Web, Web-Services, and Database Systems, NODe 2002 Web and Database-

Related Workshops, Revised Papers, pages 221–237, 2002.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,

Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale

approach to probabilistic knowledge fusion. In Proceedings of the International Con-

ference on Knowledge discovery and data mining (SIGKDD), pages 601–610, 2014.

Igor Douven and Wouter Meijs. Measuring coherence. Synthese, 156(3):405–425, 2007.

Ted Dunning and Otmar Ertl. Computing extremely accurate quantiles using t-digests.

arXiv preprint arXiv:1902.04023, 2019.

Marianne Durand and Philippe Flajolet. LogLog counting of large cardinalities. In

European Symposium on Algorithms, pages 605–617, 2003.

Falco Dürsch, Axel Stebner, Fabian Windheuser, Maxi Fischer, Tim Friedrich, Nils

Strelow, Tobias Bleifuß, Hazar Harmouch, Lan Jiang, Thorsten Papenbrock, and Fe-

lix Naumann. Inclusion dependency discovery: An experimental evaluation of thirteen

algorithms. In Proceedings of the International Conference on Information and Knowl-

edge Management (CIKM), pages 219–228, 2019.

107

https://www.zoominfo.com/business/mktg/ebooks/dirtydataebook.pdf

REFERENCES

Bradley Efron. Missing data, imputation, and the bootstrap. Journal of the American

Statistical Association, 89(426):463–475, 1994.

Vasilis Efthymiou, Oktie Hassanzadeh, Mariano Rodriguez-Muro, and Vassilis

Christophides. Matching web tables with knowledge base entities: from entity lookups

to entity embeddings. In Proceedings of the International Semantic Web Conference

(ISWC), pages 260–277, 2017.

David W Embley, Matthew Hurst, Daniel Lopresti, and George Nagy. Table-processing

paradigms: a research survey. International Journal of Document Analysis and Recog-

nition (IJDAR), 8(2-3):66–86, 2006.

Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting active

flows on high speed links. In Proceedings of the ACM SIGCOMM Internet Measure-

ment Conference (IMC), pages 153–166, 2003.

Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. Summary cache: A scalable

wide-area web cache sharing protocol. IEEE/ACM transactions on networking, 8(3):

281–293, 2000.

Wenfei Fan and Floris Geerts. Foundations of data quality management. Synthesis

Lectures on Data Management. Morgan & Claypool Publishers, 2012.

Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional func-

tional dependencies for capturing data inconsistencies. ACM Transactions on Database

Systems (TODS), 33(2):6:1–6:48, 2008.

Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. Towards certain fixes

with editing rules and master data. VLDB Journal, 21(2):213–238, 2012.

Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel Madden,

and Michael Stonebraker. Aurum: A data discovery system. In Proceedings of the

International Conference on Data Engineering (ICDE), pages 1001–1012, 2018a.

Raul Castro Fernandez, Essam Mansour, Abdulhakim A Qahtan, Ahmed Elmagarmid,

Ihab Ilyas, Samuel Madden, Mourad Ouzzani, Michael Stonebraker, and Nan Tang.

Seeping semantics: Linking datasets using word embeddings for data discovery. In

Proceedings of the International Conference on Data Engineering (ICDE), pages 989–

1000, 2018b.

Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. Lazo: A

cardinality-based method for coupled estimation of Jaccard similarity and contain-

ment. In Proceedings of the International Conference on Data Engineering (ICDE),

pages 1190–1201, 2019.

Henning Fernau. Algorithms for learning regular expressions from positive data. Infor-

mation and Computation, 207(4):521–541, 2009.

Branden Fitelson. A probabilistic theory of coherence. Analysis, 63(3):194–199, 2003.

108

REFERENCES

Philippe Flajolet. On adaptive sampling. Computing, 43(4):391–400, 1990.

Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base

applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.

Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. HyperLogLog:

the analysis of a near-optimal cardinality estimation algorithm. Discrete Mathematics

and Theoretical Computer Science (DMTCS) Proceedings, AH(1):127–146, 2008.

Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Data stream Management:

A brave new world, pages 1–9. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

ISBN 978-3-540-28608-0.

Gartner. Dirty data is a business problem, not an it problem, 2007. http://www.

gartner.com/newsroom/id/501733, Online; accessed January 16, 2020.

Phillip Gibbons and Srikanta Tirthapura. Estimating simple functions on the union of

data streams. In Proceedings of the Annual ACM Symposium on Parallel Algorithms

and Architectures (SPAA), pages 281–291, 2001.

Phillip B Gibbons. Distinct sampling for highly-accurate answers to distinct values

queries and event reports. In Proceedings of the International Conference on Very

Large Databases (VLDB), pages 541–550, 2001.

Phillip B Gibbons. Data stream management: Processing high-speed data streams, chap-

ter Distinct-values estimation over data streams. Springer, 2007.

Frédéric Giroire. Order statistics and estimating cardinalities of massive data sets. Dis-

crete Applied Mathematics, 157(2):406–427, 2009.

Peter J Haas and Lynne Stokes. Estimating the number of classes in a finite population.

Journal of the American Statistical Association, 93(444):1475–1487, 1998.

Peter J Haas, Jeffrey F Naughton, S Seshadri, and Lynne Stokes. Sampling-based estima-

tion of the number of distinct values of an attribute. In Proceedings of the International

Conference on Very Large Databases (VLDB), pages 311–322, 1995.

Alon Halevy, Flip Korn, Natalya F Noy, Christopher Olston, Neoklis Polyzotis, Sudip

Roy, and Steven Euijong Whang. Goods: Organizing google’s datasets. In Proceedings

of the International Conference on Management of Data (COMAD), pages 795–806,

2016.

Felix Halim, Panagiotis Karras, and Roland HC Yap. Fast and effective histogram con-

struction. In Proceedings of the International Conference on Information and Knowl-

edge Management (CIKM), pages 1167–1176, 2009.

Hazar Harmouch and Felix Naumann. Cardinality estimation: An experimental survey.

PVLDB, 11(4):499–512, 2017.

Anders Haug, Frederik Zachariassen, and Dennis van Liempd. The costs of poor data

quality. Journal of Industrial Engineering and Management, 4(2):168–193, 2011.

109

http://www.gartner.com/newsroom/id/501733
http://www.gartner.com/newsroom/id/501733

REFERENCES

Taher Haveliwala, Aristides Gionis, Dan Klein, and Piotr Indyk. Evaluating strategies

for similarity search on the web. In Proceedings of the International World Wide Web

Conference (WWW), pages 432–442, 2002.

Stefan Heule, Marc Nunkesser, and Alexander Hall. HyperLogLog in practice: algorith-

mic engineering of a state of the art cardinality estimation algorithm. In Proceedings

of the International Conference on Extending Database Technology (EDBT), pages

683–692, 2013.

C. A. R. Hoare. Algorithm 65: find. Communications of the ACM, 4(7):321–322, 1961.

Ming Hua and Jian Pei. Cleaning disguised missing data: a heuristic approach. In

Proceedings of the International Conference on Knowledge discovery and data mining

(SIGKDD), pages 950–958, 2007.

Zhipeng Huang and Yeye He. Auto-detect: Data-driven error detection in tables. In Pro-

ceedings of the International Conference on Management of Data (SIGMOD), pages

1377–1392, 2018.

Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Efficient discovery

of functional and approximate dependencies using partitions. In Proceedings of the

International Conference on Data Engineering (ICDE), pages 392–401, 1998.

Madelon Hulsebos, Kevin Zeng Hu, Michiel A. Bakker, Emanuel Zgraggen, Arvind Satya-

narayan, Tim Kraska, Çagatay Demiralp, and César A. Hidalgo. Sherlock: A deep

learning approach to semantic data type detection. In Proceedings of the International

Conference on Knowledge discovery and data mining (SIGKDD), pages 1500–1508,

2019.

Andrew Ilyas, Joana MF da Trindade, Raul Castro Fernandez, and Samuel Madden.

Extracting syntactical patterns from databases. In Proceedings of the International

Conference on Data Engineering (ICDE), pages 41–52, 2018.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing

the curse of dimensionality. In Proceedings of the ACM Symposium on Theory of

Computing (STOC), pages 604–613, 1998.

Yannis Ioannidis. The history of histograms (abridged). In Proceedings of the Interna-

tional Conference on Very Large Databases (VLDB), pages 19–30, 2003.

Paul Jaccard. Distribution of alpine flora in the dranses basin and in some neighboring

regions. Bulletin de la Societe vaudoise des Sciences Naturelles, 37:241–272, 1901.

Hosagrahar Visvesvaraya Jagadish, Nick Koudas, S Muthukrishnan, Viswanath Poosala,

Kenneth C Sevcik, and Torsten Suel. Optimal histograms with quality guarantees. In

Proceedings of the International Conference on Very Large Databases (VLDB), pages

24–27, 1998.

Theodore Johnson. Data profiling. Encyclopedia of Database Systems, pages 604–608,

2009.

110

REFERENCES

Panagiotis Karras and Nikos Mamoulis. Lattice histograms: a resilient synopsis struc-

ture. In Proceedings of the International Conference on Data Engineering (ICDE),

pages 247–256, 2008.

Jyrki Kivinen and Heikki Mannila. Approximate inference of functional dependencies

from relations. Theoretical Computer Science, 149(1):129–149, 1995.

Christoph Koch and Dan Olteanu. Conditioning probabilistic databases. PVLDB, 1(1):

313–325, 2008.

Henning Köhler, Uwe Leck, Sebastian Link, and Xiaofang Zhou. Possible and certain

keys for SQL. VLDB Journal, 25(4):571–596, 2016a.

Henning Köhler, Sebastian Link, and Xiaofang Zhou. Discovering meaningful certain

keys from incomplete and inconsistent relations. IEEE Data Engineering Bulletin, 39

(2):21–37, 2016b.

Sebastian Kruse, Thorsten Papenbrock, Hazar Harmouch, and Felix Naumann. Data

anamnesis: Admitting raw data into an organization. IEEE Data Engineering Bulletin,

39(2):8–20, 2016.

Abhishek Kumar, Jun Xu, and Jia Wang. Space-code Bloom filter for efficient per-flow

traffic measurement. IEEE Journal on Selected Areas in Communications, 24(12):

2327–2339, 2006.

Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Robert Meusel, Heiko Paulheim, and

Christian Bizer. The Mannheim search join engine. Web Semantics: Science, Services

and Agents on the World Wide Web, 35:159–166, 2015.

Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. A large public

corpus of web tables containing time and context metadata. In Proceedings of the

International World Wide Web Conference (WWW), pages 75–76, 2016.

Mark Levene and George Loizou. Axiomatisation of functional dependencies in incom-

plete relations. Theoretical Computer Science, 206(1-2):283–300, 1998.

Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar Vaithyanathan,

and HV Jagadish. Regular expression learning for information extraction. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 21–30, 2008.

M. Lichman. UCI machine learning repository, 2013. http://archive.ics.uci.edu/ml,

Online; accessed January 16, 2020.

Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and searching

web tables using entities, types and relationships. PVLDB, 3(1):1338–1347, 2010.

Hai Liu, Dongqing Xiao, Pankaj Didwania, and Mohamed Y Eltabakh. Exploiting soft

and hard correlations in big data query optimization. PVLDB, 9(12):1005–1016, 2016.

111

http://archive.ics.uci.edu/ml

REFERENCES

Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. Discover dependencies from

data – a review. IEEE Transactions on Knowledge and Data Engineering (TKDE),

24(2):251–264, 2012.

David Loshin. Master data management. Morgan Kaufmann, 2010.

Qiang Ma, Shanmugavelayutham Muthukrishnan, and Mark Sandler. Frugal streaming

for estimating quantiles. In Space-Efficient Data Structures, Streams, and Algorithms,

pages 77–96, 2013.

Michael V Mannino, Paicheng Chu, and Thomas Sager. Statistical profile estimation in

database systems. ACM Computing Surveys, 20(3):191–221, 1988.

Makoto Matsumoto and Takuji Nishimura. Mersenne Twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator. Transactions on Model-

ing and Computer Simulation (TOMACS), 8(1):3–30, 1998.

Arkady Maydanchik. Data quality assessment. Technics publications, 2007.

Mirjana Mazuran, Elisa Quintarelli, Letizia Tanca, and Stefania Ugolini. Semi-automatic

support for evolving functional dependencies. In Proceedings of the International Con-

ference on Extending Database Technology (EDBT), pages 293–304, 2016.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Why go logarithmic if we can

go linear? Towards effective distinct counting of search traffic. In Proceedings of the

International Conference on Extending Database Technology (EDBT), pages 618–629,

2008.

Renée J Miller. Open data integration. PVLDB, 11(12):2130–2139, 2018.

David Mimno, Hanna M Wallach, Edmund Talley, Miriam Leenders, and Andrew McCal-

lum. Optimizing semantic coherence in topic models. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing (EMNLP), pages 262–272, 2011.

Fatemeh Nargesian, Erkang Zhu, Ken Q Pu, and Renée J Miller. Table union search on

open data. PVLDB, 11(7):813–825, 2018.

Felix Naumann. Data profiling revisited. SIGMOD Record, 42(4):40–49, 2014.

Azade Nazi, Bolin Ding, Vivek Narasayya, and Surajit Chaudhuri. Efficient estimation

of inclusion coefficient using HyperLogLog sketches. PVLDB, 11(10):1097–1109, 2018.

David Newman, Jey Han Lau, Karl Grieser, and Timothy Baldwin. Automatic evalua-

tion of topic coherence. In Proceedings of Human Language Technologies: The Annual

Conference of the North American Chapter of the Association for Computational Lin-

guistics (HLT-NAACL), pages 100–108, 2010.

Noel Novelli and Rosine Cicchetti. Fun: An efficient algorithm for mining functional and

embedded dependencies. In Proceedings of the International Conference on Database

Theory (ICDT), pages 189–203, 2001.

112

REFERENCES

Christopher Palmer, Georgos Siganos, Michalis Faloutsos, , Christos Faloutsos, and

Phillip Gibbons. The connectivity and fault tolerance of the internet topology. In

Workshop on Network-Related Data Management (NRDM), 2001.

Odysseas Papapetrou, Wolf Siberski, and Wolfgang Nejdl. Cardinality estimation and

dynamic length adaptation for Bloom filters. Distributed and Parallel Databases, 28

(2):119–156, 2010.

Thorsten Papenbrock and Felix Naumann. Data-driven schema normalization. In Pro-

ceedings of the International Conference on Extending Database Technology (EDBT),

pages 342–353, 2017.

Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and Felix Nau-

mann. Data profiling with Metanome. PVLDB, 8(12):1860–1863, 2015a.

Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph,

Martin Schönberg, Jakob Zwiener, and Felix Naumann. Functional dependency dis-

covery: An experimental evaluation of seven algorithms. PVLDB, 8(10):1082–1093,

2015b.

Eduardo Pena, Eduardo de Almeida, and Felix Naumann. Discovery of approximate

(and exact) denial constraints. PVLDB, 13(3):266–278, 2019.

Rakesh Pimplikar and Sunita Sarawagi. Answering table queries on the web using column

keywords. PVLDB, 5(10):908–919, 2012.

Viswanath Poosala, Peter J Haas, Yannis E Ioannidis, and Eugene J Shekita. Improved

histograms for selectivity estimation of range predicates. SIGMOD Record, 25(2):

294–305, 1996.

Gil Press. Cleaning big data: most time-consuming, least enjoyable data science task,

survey says, 2016. https://www.forbes.com/sites/gilpress/2016/03/23/data-

preparation-most-time-consuming-least-enjoyable-data-science-task-

survey-says/#607a77356f63, Online; accessed January 16, 2020.

Abdulhakim Qahtan, Nan Tang, Mourad Ouzzani, Yang Cao, and Michael Stonebraker.

Anmat: Automatic knowledge discovery and error detection through pattern func-

tional dependencies. In Proceedings of the International Conference on Management

of Data (SIGMOD), pages 1977–1980, 2019.

Abdulhakim A Qahtan, Ahmed Elmagarmid, Raul Castro Fernandez, Mourad Ouzzani,

and Nan Tang. Fahes: A robust disguised missing values detector. In Proceedings

of the International Conference on Knowledge discovery and data mining (SIGKDD),

pages 2100–2109, 2018.

Vijayshankar Raman and Joseph M Hellerstein. Potter’s wheel: An interactive data

cleaning system. In Proceedings of the International Conference on Very Large Data-

bases (VLDB), pages 381–390, 2001.

113

https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#607a77356f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#607a77356f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#607a77356f63

REFERENCES

Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. Holoclean: Holistic

data repairs with probabilistic inference. PVLDB, 10(11):1190–1201, 2017.

John A Rice. Mathematical statistics and data analysis. Cengage Learning, Inc., 2006.

Dominique Ritze, Oliver Lehmberg, and Christian Bizer. Matching HTML tables to

DBpedia. In Proceedings of the International Conference on Web Intelligence, Mining

and Semantics (WIMS), pages 10:1–10:6, 2015.

Dominique Ritze, Oliver Lehmberg, Yaser Oulabi, and Christian Bizer. Profiling the

potential of web tables for augmenting cross-domain knowledge bases. In Proceedings

of the International World Wide Web Conference (WWW), pages 251–261, 2016.

Michael Röder, Andreas Both, and Alexander Hinneburg. Exploring the space of topic

coherence measures. In Proceedings of the International International Conference on

Web Search and Data Mining (WSDM), pages 399–408, 2015.

Yue Shi, Martha Larson, and Alan Hanjalic. Collaborative filtering beyond the user-

item matrix: A survey of the state of the art and future challenges. ACM Computing

Surveys, 47(1):3, 2014.

Anshumali Shrivastava. Optimal densification for fast and accurate minwise hashing.

In Proceedings of the International Conference on Machine Learning (ICML), pages

3154–3163, 2017.

Anshumali Shrivastava and Ping Li. Densifying one permutation hashing via rotation for

fast near neighbor search. In Proceedings of the International Conference on Machine

Learning (ICML), pages 557–565, 2014.

Sneha Aman Singh and Srikanta Tirthapura. An evaluation of streaming algorithms for

distinct counting over a sliding window. Frontiers in ICT, 2:23, 2015.

Shaoxu Song, Aoqian Zhang, Lei Chen, and Jianmin Wang. Enriching data imputation

with extensive similarity neighbors. PVLDB, 8(11):1286–1297, 2015.

Keith Stevens, Philip Kegelmeyer, David Andrzejewski, and David Buttler. Explor-

ing topic coherence over many models and many topics. In Proceedings of the Joint

Conference on Empirical Methods in Natural Language Processing and Computational

Natural Language Learning (EMNLP-CoNLL), pages 952–961, 2012.

S Joshua Swamidass and Pierre Baldi. Mathematical correction for fingerprint similarity

measures to improve chemical retrieval. Journal of chemical information and modeling,

47(3):952–964, 2007.

John W Tukey. Exploratory data analysis, volume 2. Reading, Mass., 1977.

S. Van Buuren. Flexible imputation of missing data. CRC/Chapman & Hall, 2012.

114

REFERENCES

Daisy Zhe Wang, Xin Luna Dong, Anish Das Sarma, Michael Franklin, and Alon Y.

Halevy. Functional dependency generation and applications in pay-as-you-go data

integration systems. In Proceedings of the ACM SIGMOD Workshop on the Web and

Databases (WebDB), 2009.

Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for similarity

search: A survey. arXiv preprint arXiv:1408.2927, 2014.

Jingjing Wang, Haixun Wang, Zhongyuan Wang, and Kenny Q Zhu. Understanding

tables on the Web. In Proceedings of the International Conference on Conceptual

Modeling (ER), pages 141–155, 2012.

Kyu-Young Whang, Brad Vander-Zanden, and Howard Taylor. A linear-time proba-

bilistic counting algorithm for database applications. ACM Transactions on Database

Systems (TODS), 15(2):208–229, 1990.

Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang. Efficient sim-

ilarity joins for near-duplicate detection. ACM Transactions on Database Systems

(TODS), 36(3):15:1–15:41, 2011.

Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri. Info-

gather: entity augmentation and attribute discovery by holistic matching with web

tables. In Proceedings of the International Conference on Management of Data (SIG-

MOD), pages 97–108, 2012.

Karel Youssefi and Eugene Wong. Query processing in a relational database manage-

ment system. In Proceedings of the International Conference on Very Large Databases

(VLDB), pages 409–417, 1979.

Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M Procopiuc, and Divesh

Srivastava. On multi-column foreign key discovery. PVLDB, 3(1):805–814, 2010.

Erkang Zhu, Fatemeh Nargesian, Ken Q Pu, and Renée J Miller. LSH Ensemble:

Internet-scale domain search. PVLDB, 9(12):1185–1196, 2016.

Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J Miller. JOSIE: Overlap

set similarity search for finding joinable tables in data lakes. In Proceedings of the

International Conference on Management of Data (SIGMOD), pages 847–864, 2019.

115

Selbstständigkeitserklärung

Ich erkläre hiermit, dass ich die vorliegende Doktorarbeit mit dem Thema:

Single-column Data Profiling

selbstständig verfasst und keine anderen als die angegebenen Quellen und

Hilfsmittel benutzt habe.

Potsdam, den 4. März 2020

Hazar Harmouch

	Title
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Metadata: A Mediator between People, Systems and Data
	1.1 Data profiling
	1.2 Single-column data profiling
	1.3 Structure and contributions

	2 Cardinality Estimation
	2.1 Cardinality: The zeroth-frequency moment
	2.2 Classification of general approaches and algorithms
	2.3 Review of twelve cardinality estimation algorithms
	2.4 Comparative experiments
	2.5 Summary

	3 Discovering Missing Column Headers
	3.1 Missing schema: Dark data
	3.2 Related work
	3.3 Similarity search
	3.4 Topic coherence
	3.5 Missing schema discovery
	3.6 Experiments
	3.7 Summary

	4 The Impact of Missing Values on FD Discovery
	4.1 FDs and incomplete data: Trust
	4.2 Related work
	4.3 Genuine, Ghost, and Fake FDs
	4.4 Identifying genuine FDs
	4.5 Probabilistic FD genuineness
	4.6 Likelihood-based FD genuineness
	4.7 Experiments
	4.8 Summary

	5 Conclusion and Outlook
	References

