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Abstract

Dynamic earthquake rupture modeling provides information on the rupture physics as the
rupture velocity, frictions or tractions acting during the rupture process. Nevertheless, as
often based on spatial gridded preset geometries, dynamic modeling is depending on many
free parameters leading to both a high non-uniqueness of the results and large computation
times. That decreases the possibilities of full Bayesian error analysis.

To assess the named problems we developed the quasi-dynamic rupture model which is
presented in this work. It combines the kinematic Eikonal rupture model with a boundary
element method for quasi-static slip calculation.
The orientation of the modeled rupture plane is defined by a previously performed moment
tensor inversion. The simultanously inverted scalar seismic moment allows an estimation of
the extension of the rupture. The modeled rupture plane is discretized by a set of rectan-
gular boundary elements. For each boundary element an applied traction vector is defined
as the boundary value.
For insights in the dynamic rupture behaviour the rupture front propagation is calcula-
ted for incremental time steps based on the 2D Eikonal equation. The needed location-
dependent rupture velocity field is assumed to scale linearly with a layered shear wave
velocity field.
At each time all boundary elements enclosed within the rupture front are used to calculate
the quasi-static slip distribution. Neither friction nor stress propagation are considered.
Therefore the algorithm is assumed to be “quasi-static”. A series of the resulting quasi-
static slip snapshots can be used as a quasi-dynamic model of the rupture process.

As many a priori information is used from the earth model (shear wave velocity and ela-
stic parameters) and the moment tensor inversion (rupture extension and orientation) our
model is depending on few free parameters as the traction field, the linear factor between
rupture and shear wave velocity and the nucleation point and time. Hence stable and fast
modeling results are obtained as proven from the comparison to different infinite and finite
static crack solutions.

First dynamic applications show promissing results. The location-dependent rise time is
automatically derived by the model. Different simple kinematic models as the slip-pulse or
the penny-shaped crack model can be reproduced as well as their corresponding slip rate
functions. A source time function (STF) approximation calculated from the cumulative
sum of moment rates of each boundary element gives results similar to theoretical and
empirical known STFs.

The model was also applied to the 2015 Illapel earthquake. Using a simple rectangular rup-
ture geometry and a 2-layered traction regime yields good estimates of both the rupture
front propagation and the slip patterns which are comparable to literature results. The
STF approximation shows a good fit with previously published STFs.

The quasi-dynamic rupture model is hence able to fastly calculate reproducable slip re-
sults. That allows to test full Bayesian error analysis in the future. Further work on a full
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seismic source inversion or even a traction field inversion can also extend the scope of our
model.
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Zusammenfassung

Die dynamische Bruchmodellierung eines Erdbebens erlaubt Rückschlüsse auf Parameter
der Bruchphysik, z. B. die Bruchgeschwindigkeit, die Reibung oder die Scherspannungsän-
derungen auf der Bruchfläche. Die meisten dynamischen Ansätze basieren dabei auf einem
vorab definierten räumlichen Gitter. Dies führt zu einer großen Anzahl freier Modellpara-
meter. Dynamische Modellierungen sind darum oft rechenaufwändig und hochgradig mehr-
deutig im Ergebnis. Dies erschwert eine gute bayesische Fehleranalyse.

Die benannnten Probleme und Schwierigkeiten werden durch das in dieser Arbeit prä-
sentierte quasi-dynamische Bruchmodell angegangen. Es basiert auf der Kombination des
Eikonal-Bruchmodells mit einer eigens entwickelten Randelementmethode zur Bestimmung
der quasi-statischen Verschiebung.
Dabei wird die Orientierung der Bruchfläche vorab über eine Momententensorinversion
bestimmt. Das ebenfalls invertierte skalare seismische Moment dient zur Abschätzung der
Bruchgröße. Die so bestimmte Bruchfläche wird in rechteckige Randelemente unterteilt.
Als Randwerte werden die auf jedem Randelement angreifenden Spannungsänderungen
vorgegeben.
Um das dynamische Bruchverhalten zu studieren, wird die Bruchfrontausbreitung für in-
krementelle Zeitschritte auf Grundlage der 2D-Eikonalgleichung berechnet. Die Bruchge-
schwindigkeit wird dabei als linear zur Scherwellengeschwindigkeit skalierendes Feld ange-
nommen, basierend auf einem geschichteten 1D-Untergrundmodell.
Die von der Bruchfront eingeschlossenen Randelemente werden für eine quasi-statische
Verschiebungsinversion genutzt. Dabei werden weder Reibung noch Spannungsmigrierung
berücksichtigt (deswegen “quasi-statisch”). Eine Serie aus mehreren Verschiebungsbestim-
mungen ergibt dabei das quasi-dynamisches Bruchmodell.

Da viele a priori Informationen aus dem Erdmodell beziehungsweise der Momententensorin-
version genutzt werden, gibt es nur wenige freie Modellparameter (Nukleationspunkt und
-Zeit, Linearfaktor zwischen Scher- und Bruchgeschwindigkeit sowie das Spannungsände-
rungsfeld). Das ermöglicht stabile und schnelle Modellierungen. Dies belegen durchgeführte
Vergleiche mit finiten und infiniten analytischen, statischen Bruchlösungen.

Zudem wurden erste dynamische Anwendungen erprobt. Dabei ergibt sich die ortsabhän-
gige Zeit der Slipänderung jedes Randelementes (“rise time”) automatisch aus der Model-
lierung. Selbst die Reproduktion verschiedener kinematischer Modelle wie dem “slip-pulse”
oder dem “penny-shaped crack” Modell ist möglich. Die spezifischen Slipratenfunktionen
werden dabei automatisch erzeugt.
Zudem lässt sich eine so genannte äquivalente Herdzeitfunktion aus der Summe der Mo-
mentenänderungen aller Randelemente bestimmen. Diese ist vergleichbar mit verschiedenen
theoretischen und empirischen Herdzeitfunktionen.

Unser Modell wurde zudem auf das 2015 Illapel Erdbeben angewandt. Basierend auf einer
einfachen, rechteckigen Bruchgeometrie und einem zweigeteilten geschichteten Spannungs-
änderungsfeldes konnten sowohl die Bruchfrontausbreitung als auch das Verschiebungsfeld
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mit bekannten Werten aus der Literatur in Übereinstimmung gebracht werden. Die Herd-
zeitapproximation zeigt dabei einen Verlauf, der vergleichbar zu bereits veröffentlichten
Herdzeitfunktionen ist.

Das quasi-dynamische Bruchmodell kann schnell reproduzierbare Verschiebungsfelder und
deren zeitliche Veränderung bestimmen. Damit ermöglicht es bayesische Fehlerabschätzun-
gen. Auch für komplette seismische Quellinversion sowie eine Integration der Spannungs-
änderungen auf der Bruchfläche kann das Modell in Zukunft genutzt werden.
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Chapter 1

Introduction

1.1 Motivation

A large number of people lives in zones of increased seismic hazard (e.g. Japan, the
Philippines, Indonesia, Taiwan, California or Istanbul) according to the world seismic
hazard and world population density maps (Giardini et al., 2003; Schiavina et al., 2019).
As earthquake predictions are not possible with todays knowledge a good hazard and risk
assessment is crucial to prevent these zones from a high number of fatalities.

In case of an earthquake also rupture modeling is needed. It provides information on the
strength of the earthquake and can supply the public authorities with important predictions
on ground motions, slip distributions and tsunami risks, for example. Therefore a fast and
well-performing modeling can essentially help earthquake aids.

Is it possible though to model the rupture processes in a fast and robust manner that the
results can be used for first aid activities in case of devastating earthquakes? What are
the strengths and limits of the present day modeling approaches? And is there a way to
use the advantages of different models in a combined new set up for improved, faster and
more reliable rupture process modeling and error estimations? I will try to answer these
questions in this thesis.

1.2 Introduction to rupture models

An earthquake and its rupture process can be described in several ways differing in com-
plexity. One of the simplest is the double couple (DC) point source model which describes
the rupture as shearing. The low frequent seismic energy is focused onto the centroid lo-
cation of the earthquake, leading to insights in the possible fault plane orienation and the
fault mechanism. Nevertheless neither the extension of the rupture plane nor kinematic
rupture parameters as e.g. the rupture velocity are obtained.
A more general centroid model is given by the full moment tensor. Not only shearing or
tearing (DC component) is quantified, but also a possible opening or closing (the isotropic
component) and uniaxial elongation or shortening (compensated linear vector dipole com-
ponent). However the limits of the DC model are also valid for the full moment tensor.

1



INTRODUCTION

Insights in the kinematic parameters as the rupture geometry and the rupture front prop-
agation speed can be obtained from kinematic modeling. Simple models as proposed
by Haskell, (1969) and Sato et al., (1973) provide kinematic solutions for the slip evolu-
tion assuming simple rupture geometries (rectangular or circular) and simple rupture front
propagation patterns. The kinematic modeling considering more complex rupture geome-
tries and also inhomogenities in elastic parameters along the fault often requires spatial
gridding which leads to a large set of free modeling parameters and long computation
times. That impedes a complete Bayesian misfit analysis.
Within kinematic models smoothing conditions are typically implemented to stabilize the
inversion and reduce the non-uniqueness. Also the activation of grid elements for a precal-
culated rupture front or the rise time of the element (the time of a non-zero sliprate) are
often set before the main modeling.

A kinematic model using a simple source parametrization is given by Heimann, (2011). It
calculates the slip distribution based on few parameters describing both the rupture plane
(orientation, extension) and kinematic parameters such as the nucleation point and the
rise time. The slip distribution is calculated based on the moment tensor density of a set
of point sources on the rupture plane.
A novelty of this approach is the usage of precalculated Green’s function databases. They
contain a layered earth model of the elastic parameters. Hence, Heimann, (2011) calculates
the slip distribution based on known and preset geophysical ground parameters.
Also the location-dependent seismic velocities are given in the Green’s function database.
Heimann, (2011) links the rupture velocity with the shear wave velocity using a linear fac-
tor which reduces the number of free parameters and thus decreases the overall calculation
time.

Kinematic modeling enables a better understanding of the kinematic rupture parameters.
The physical causes and controls of the rupture are not obtained though. Therefore dy-
namic modeling is needed which integrates for e.g. frictions and tractions on a spatial grid.
The obtained model is physically consistent. Nevertheless the spatial gridding implies a
large set of parameters. Hence the computation time is an issue for dynamic rupture
modeling.

1.3 Our modeling approach

In this thesis I present the developed quasi-dynamic rupture model. It combines different
features of dynamic modeling and the kinematic Eikonal model by Heimann, (2011). The
Eikonal rupture model is coupled with an adapted boundary element approach (based on
Thorwart, 2000) used to calculate quasi-static slip distributions.

The aim is to retrieve a series of quasi-static and physical consistent slip distribution snap
shots for incremental increased times. The rupture front is calculated with the 2D-Eikonal
equation (Müller, 2007; Heimann, 2011; Heimann et al., 2019) for each time step analogous
to Heimann, (2011). The boundary elements enclosed by the rupture front are used within
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the quasi-static slip inversion. Tractions applied on the boundary element are linearly
linked with the expected slip distribution using Okada, (1992).
A series of quasi-static slip calculations leads then to a “quasi-dynamic” model of the
rupture. Neither friction nor effects as stress propagation are considered to keep the model
simple.

The presented approach shall be stable in the inversion on one hand, but shall also contain
as few free parameters as possible on the other hand. Therefore we want to use a priori
information as the rupture plane orientation and it scalar moment from a moment tensor
inversion and also precalculated layered 1D earth models as done by Heimann, (2011).
The reduced number of parameters is useful to perform time-efficient computations and
avoid non-unique results. Thereby also a good Bayesian error estimation of the modeling
results can be possible.

1.4 Structure of this thesis

The theory and different settings of the quasi-dynamic rupture model are explained in
chapter 2. Thereafter a verification of the model and comparisons with different infinite
and finite static analytical slip models are described within the chapter 3 and 4. First
applications on hypothetical examples and the discussion of the forward modeling results
for the 2015 Illapel earthquake are presented in chapter 5. Chapter 6 summarizes the main
results of my thesis and gives a brief overview over potential future investigations and uses
of the quasi-dynamic model.
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Chapter 2

Methods

Within this chapter the different aspects of the self-similar quasi-dynamic rupture model
are discussed. Theoretical approaches for both the static slip distribution calculation using
the boundary element method (sec. 2.1) and the rupture front propagation (sec. 2.2) are
described.

2.1 Traction - dislocation relation with boundary element
method

The boundary element method in the elastic domain is powerfull as it allows to calculate
the equilibrium dislocations in a volume which are caused by tractions on a discretized
closed surface within this volume. The closed surface will be used later to model rupture
planes. Each patch of the discretized surface is a boundary element with a boundary con-
dition. Here the boundary condition is given by tractions which apply on the boundary
elements. The conditions need to be fulfilled by the dislocation on the fault.
The derivation of the method starts with the displacement and later traction calculation
within a finite volume on a surface (sec. 2.1.1) which lead to the crack problem (sec. 2.1.2
and 2.1.3). The discretization of the crack into several boundary elements is shown in
section 2.1.4. In the last part the setup of the boundary element equation (sec. 2.1.5) and
the slip inversion (sec. 2.1.6 and 2.1.7) are described.

The derivations on the next pages have been presented by Aliabadi et al., (1991) and Thor-
wart, (2000), if not cited differently.

2.1.1 Inner problem of displacement field calculation

The analysis of potentials, e.g. of the scalar gravity potential, is often performed in geo-
physical contexts. In potential theory a known scalar potential V on a closed surface Γ of
the finite volume Ω allows to calculate the field continuation of the potential onto a certain
observation point ~x (Müller, 1990)):

V (~x) =
1

4π

∫
Γ
G
∂V

∂n
− V ∂G

∂n
. (2.1)
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with the Green’s function G = 1/r, the distance from the surface to the observation
point r and the derivative in normal direction ∂/∂n (fig. 2.1). The potential V (~x) is the
superposition of the potential V and its derivative in normal direction ∂V/∂n on the surface
Γ weighted with the Green’s function G and its derivative ∂G/∂n. That means that the
potential can be characterized by its values and its normal derivatives at a boundary.

Fig. 2.1: Sketch showing the essential elements of a scalar potential field con-
tinuation (modified after Thorwart, 2000). Ω is the volume surrounded by the
closed surface Γ with the normal vector ~n. The scalar potential V measured at the
surface is continued along the line r to the observation point ~x by weighting it and
its derivative in normal direction with the Green’s function G and its derivative
in normal direction. G is here 1/r.

If the surface Γ is aligned with an equipotential surface of the scalar potential V , further
simplifications of equation (2.1) can be done. Only the potential V or its normal derivative
∂V/∂n needs to be known then. These cases are referred to as the Dirichlet problem or
the Neumann boundary condition respectively.

A similiar approach is used in the elastic theory. It has been published by Somigliana,
(1886) and is known as Somigliana’s identity (derivation details in Appendix A):

c(~x)ui(~x) =

∫
Γ
Uij(~x, ~x

′)tj(~x
′)− Tij(~x, ~x′)uj(~x′)dΓ(~x′). (2.2)

with the components of the static displacement field ui(~x) at the observation point ~x,
the tractions tj(~x′) and displacements uj(~x′) at the source point ~x′ and the two Greens
functions Uij(~x, ~x′) and Tij(~x, ~x′). The index i ranges from 1 to 3. The summation con-
vention needs to be applied. c(~x) is the smoothing coefficient. The smoothing coefficient
guarantees that c(~x)ui(~x) is continuous differentiable. It is defined as

c(~x) =


δij for ~x within volume Ω,

0.5δij for ~x within volume Ω on surface Γ,

0 for ~x outside volume Ω.

(2.3)

Analogue to the potential field continuation (eq.( 2.1)) Somigliana’s identity continues
the displacement field within the volume. Somigliana, (1886) uses the displacement and

6



METHODS

traction vector fields whereas the potential field continuation (eq. (2.1)) is applied on a
scalar potential field. In both cases the field measured at the observation point can be
interpreted as a superposition of the weighted effect of point sources located on the closed
surface.
The surface is identical with the outer boundary of the volume. As the volume is placed
within the surface, the displacement field calculation is called an inner problem (fig. 2.2).
The weighting in equation (2.2) is done with the Green’s functions Uij and Tij which
contain the components of the displacement and traction vector respectively observed at
~x in ith direction due to a unit point force at the source point ~x′ in jth direction.
In the following the derivation focuses on the case that the observation points are located
on the surface Γ of the volume Ω. Both source and observation points are placed on Γ.
Therefore the smoothing coefficient c(~x) is set to 0.5δij (eq.( 2.3)).

Fig. 2.2: Sketch showing the essential elements of the field continuation as pro-
posed by Somigliana, (1886). Ω is the volume surrounded by the closed surface
Γ. The displacements u(~x′) and tractions t(~x′) applied at ~x′ at the surface are
continued to the observation point ~x by weighting them with the Green’s function
T and U . The result is a displacement u(~x) at ~x. ~x is placed on Γ.

2.1.2 Crack problem of displacement field calculation

So far the inner problem was studied with the closed surface as the outer boundary of the
volume (in which the displacement field is continued). In order to successfully model a
rupture located in a volume the outer problem is now considered. The volume Ω is then
located around the closed surface Γ. The displacement field continuation is done into the
volume surrounding the surface (fig. 2.3).

It was already stated in the previous section that both source and observation points are
placed on the surface. The displacement estimation at the observation points ~x on Γ can be
done using boundary conditions for both tractions and displacements at the source points
~x′ on Γ (Dahm, 1996). This procedure is named the direct boundary element method. The
indirect boundary element method uses dislocations (differences of displacement: displace-
ment discontinuities) between the upper and the lower side of the surface Γ instead of a
displacement estimate. This method, the so called displacement discontinuity method, is
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used in this approach.
The usage of the displacement discontinuity method leads to certain boundary condi-
tions (e.g. Aliabadi et al., 1991; Dahm, 1996; Cayol et al., 1997; Thorwart, 2000):

t+j = −t−j

∆uj = u+
j − u

−
j

Crack is either stress free or symmetrical tractions are applied. The
tractions are continuous.
Dislocation (displacement discontinuity) for arbitrary u+

j and u−j .

Superscripts + and − highlight the upper or lower side of the surface Γ.

The crack problem (plane strain problem) for this setting needs further assumptions. The
surface Γ is represented now as two surfaces Γ+ and Γ− which are oppositely oriented and
located at x = 0. The normal vectors n+ and n− are parallel, but with reversed direction.
The tractions t+j and displacements u+

j act on the surface Γ+, t−j and u−j on Γ−.
The distance between opposing surface elements ∂Γ is small. The paths from any source
point ~x′ to an observation point ~x are therefore assumed to be equal (fig. 2.3). As
the Green’s functions depend on the distance and the paths, the following relations are
valid (e.g. Aliabadi et al., 1991):

T+
ij = −T−ij

U+
ij = U−ij

Absolut values of T+
ij and T−ij are equal, but due to oppositely oriented

normal vectors ~n on opposing surface elements dΓ+ and dΓ− T+
ij and

T−ij are reverse.

The previously listed properties are used to rewrite Somigliana’s identity (eq. (2.2)) (e.g.
Aliabadi et al., 1991; Dahm, 1996):

c(~x)ui(~x) =

∫
Γ+

U+
ij t

+
j − T

+
ij u

+
j dΓ +

∫
Γ−
U−ij t

−
j − T

−
ij u
−
j dΓ

=

∫
Γ+

Tij∆ujdΓ for i = 1, 2, 3.

(2.4)

The resulting displacement discontinuity equation is valid for an outer crack problem. It
shows that the displacement within the volume Ω on the surface Γ depends solely on the
dislocations ∆u on the surface Γ and the Green’s functions Tij (the path between source
and observation point) (Dahm, 1996).

2.1.3 Crack problem of traction field calculation

The displacement discontinuity equation (eq. (2.4)) reveals the link between displacements
in the volume Ω on the surface Γ and the dislocations on the surface Γ. In order to see effects
of the dislocations on the traction field, equation (2.4) is first partially differentiated (e.g.
Aliabadi et al., 1991; Dahm, 1996; Thorwart, 2000):

c(~x)
∂

∂xk
~ui(~x) =

∂

∂xk

∫
Γ+

Tij∆ujdΓ

=

∫
Γ+

∂

∂xk
Tij∆ujdΓ for i = 1, 2, 3.

(2.5)
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(a) Upper surface Γ+ (b) Lower surface Γ−

Fig. 2.3: Schematic image of the outer crack problem using the dislocation
discontinuity method (modified after Thorwart, 2000). ~t is the traction, ~u the
displacement vector at a point ~x′ on the surface element ∂Γ with its normal
vector ~n. T and U are the Green’s functions between ~x′ on ∂Γ and the observation
point ~x. Superscripts + and − indicate the upper or lower crack surface. In a)
the traction and displacement vector at an upper surface element ∂Γ+ are shown.
Analogue in b) for a lower surface element ∂Γ−. The paths of the Greens’ functions
T+, U+ and T−, U− are assumed equal due to the small distance between ∂Γ+

and ∂Γ−. The traction vectors are symmetric.

The differentiation acts on all displacements at the observation point while the integration
is performed on all source points. Therefore integration and differentiation are independet
and exchangeable.
Now Hooke’s law for traction vectors (e.g. Müller, 2007) is used:

ti = σijnj = (λδijθ + 2µεij)nj for i = 1, 2, 3

with δij =

1 for i = j

0 for i 6= j.

with the components of the stress tensor σij , Lamés elasticity constants λ and µ, the
volumetric dilatation Θ, the strain tensor components εij = 0.5

(
∂ui
∂xj

+
∂uj
∂xi

)
and the nor-

mal vector components nj . Combining it with equation (2.5) leads to the displacement
discontinuity equation for tractions:

c(~x)ti(~x) =

∫
Γ+

Dij∆ujdΓ for i = 1, 2, 3. (2.6)

The traction field at an arbitrary observation point ~x is linked with the dislocation on the
crack surface. The dislocations are weighted with new Green’s functions Dij which contain
both Hooke’s law and Tij .
Either the traction field or the dislocation ield on the crack surface Γ can be used as the
initial boundary condition. The traction field can be obtained by a forward calculation for
known dislocation boundary values. The inverse problem solves equation (2.6) with given
tractions as the boundary condition for the unknown boundary dislocations. As tractions
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along a crack are the cause of a dislocation on the cracks surface the latter problem setup
is preferred and used within the quasi-dynamic model.

2.1.4 Numerical discretization of the crack problem

The previous section has pointed out that the objective of the crack problem is the cal-
culation of the dislocation field on the crack surface from given traction boundary values
with the displacement discontinuity equation (2.6).
Approaching this problem numerically requires some assumptions. The displacement dis-
continuity equation uses an infinite number of point sources located on the surface Γ. Now
a constant dislocation (or a dislocation with rather small changes) is assumed for all source
points in the vicinity of a source point ~x′. All these points form a source plane then (or
source patch) around ~x′ which is characterized by a constant dislocation ∆uj .
This procedure can be done for the whole crack. Thereby the crack is now described using
a finite number of source patches, the boundary elements. Each boundary element has
an associated traction boundary vector. The dislocation vector on each boundary element
needs to the boundary conditions.
As the number of boundary elements is finite, the integration over the weighted disloca-
tions at each source point in the displacement discontinuity equation (2.6) can be rewritten
as a sum of the weighted dislocations on each boundary element (Thorwart, 2000):

c(~x)ti(~x) =

nsrc∑
ks=1

∫
Γ+
ks

DijdΓks(∆uj)ks

=

nsrc∑
ks=1

Bijks(∆uj)ks for i = 1, 2, 3

with Bijks =

∫
Γ+
ks

DijdΓks .

(2.7)

The number of boundary elements is given by nsrc. ks is the boundary element (BE) index
going from 1 to nsrc. Bijks is the component of the coefficient matrix B depending on
the BE. It corresponds to the traction ti at ~x due to a unit force planar excitation in jth
direction of the BE dΓ+

ks
(a boundary element). ∆(uj)ks is the dislocation of the BE dΓ+

ks

(fig. 2.4).

The shape of the boundary elements has been arbitrary so far, but is now set to be rectan-
gular. This geometry allows to use the approach by Okada, (1992) for the calculation of the
tractions and dislocations. He proposed to use closed analytical expressions for derivation
of internal displacements and strains due to shear or tensile dislocations on a finite rectan-
gular fault in the half-space. The strain values are important as they allow to calculated
the stress tensor components using Hooke’s law (e.g Müller, 2007). An advatange of the
expressions is the possiblity of using several fault planes as dislocation sources at the same
time.
The described features are ideal for the use in the presented boundary element method.
Each boundary element can be seen as an independent rectangular source. The centre
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point of each boundary element is also an observation point. Okada, (1992) provides the
link between both the traction at the centre points of each boundary element and disloca-
tion field at each boundary element (fig. 2.4).
The last paragraph pointed out that the centre points of each boundary element are obser-
vation points. That needs to be taken into account also in equation (2.7) which is adjusted
only for a single observation point so far. Therefore an index kr for each observation point
(analogue to ks for each BE) is introduced (Thorwart, 2000). It ranges as ks from 1 to
nsrc. Equation (2.7) can then be rewritten as:

c(~x)(ti(~x))kr =

nsrc∑
ks=1

Bikrjks(∆uj)ks for i = 1, 2, 3 (2.8)

The only unkowns left in the discretized dislocation discontinuity equation (2.8) are now
the components of the coefficient matrix B.

Fig. 2.4: Schematic image of the outer crack problem for a finite number of
discretized boundary elements. dΓ+ is a rectangular boundary element (dashed
area) with its normal vector ~n+ and its dislocation vector (∆~u)ks . The traction ~tkr
measured at ~x (which is the centre of another boundary element) is computed as
the sum of the dislocations of each boundary element weighted with the coefficient
matrix B.

2.1.5 Simplifcation of the discretized displacement discontinuity equa-
tion

The discretized displacement discontinuity equation (2.8) is rather difficult to use in nu-
merical applications due to the large number of indices and the large dimension of the
coefficient matrix B. Also the smoothing coefficient as a constant needs to be removed
from the left side of the equation. Therefore different rearangements are applied to sim-
plifiy and structure the equation (Thorwart, 2000).

The smoothing coefficient c(~x) which is constant (eq. (2.3)) is merged with the coefficient
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matrix B (a set of constants). Thereby the new coefficient matrix A is obtained:

(ti(~x))kr =

nsrc∑
ks=1

Bikrjks
c(~x)

(∆uj)ks

=

nsrc∑
ks=1

Aikrjks(∆uj)ks

with Aikrjks =
Bikrjks
c(~x)

.

(2.9)

Thereafter the coefficient matrix A needs to be adjusted. Two different sets of indices are
excisting: kr and i represent the observation point (kr) and the direction of the traction
(i). ks and j are the analogue indices for the BEs giving BE (ks) and dislocation direction
(j). Both sets of indices are compressed into a single index each (q and p) which iterate
over each BE/receiver and then over each dislocation/traction direction. p = 3(kr − 1) + i

represents the observation points and traction directions, q = 3(ks − 1) + j the source BE
and dislocation directions.
With the new indices the tractions, dislocations and the coefficient matrix can be refor-
mulated. For clarity the new rearanged vectors and matrices are named d (the traction
vector), m (the dislocation vector) and G (the coefficient matrix) (fig. 2.5). Then

dp = (ti)kr

mq = (∆uj)ks

Gpq = Aikrjks

and
d = Gm (2.10)
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or in matrix notation:

(t1)1

(t2)1

(t3)1

(t1)2

...
(ti)kr

...
(t3)nsrc


=



A1111 . . . A11jks . . . A113nsrc

A2111 . . . A21jks . . . A213nsrc

A3111 . . . A31jks . . . A313nsrc

A1211 . . . A12jks . . . A123nsrc

...
...

...
. . .

...
Aikr11 . . . Aikrjks . . . Aikr3nsrc

...
...

...
. . .

...
A3nsrc11 . . . A3nsrcjks . . . A3nsrc3nsrc





(∆u1)1

(∆u2)1

(∆u3)1

(∆u1)2

...
(∆uj)ks

...
(∆u3)nsrc



⇒



d1

d2

d3

d4

...
dp
...

d3nsrc


=



G11 . . . G1q . . . G13nsrc

G21 . . . G2q . . . G23nsrc

G31 . . . G3q . . . G33nsrc

G41 . . . G4q . . . G43nsrc

...
...

...
. . .

...
Gp1 . . . Gpq . . . Gp3nsrc

...
...

...
. . .

...
G3nsrc1 . . . G3nsrcq . . . G3nsrc3nsrc





m1

m2

m3

m4

...
mq

...
m3nsrc


The tractions in d can be seen as data obtained from a model G with the dislocations in
m as the corresponding model parameters. The tractions observed at the centre points of
each boundary element depend linearly on the dislocations at the boundary elements. The
model components as the weighting of the dislocations represent the path between BE and
observation point (fig. 2.5).

(a) Dislocation to model parameter vector (b) Traction to data vector

Fig. 2.5: Schematic image of a simple crack model characterized by two rectangu-
lar boundary elements (grey squares). Both upper panels show the old notation of
dislocation (∆uj)ks (subfig. a) and traction (ti)kr (subfig. b). The bottom panels
display the new notation and indiciation as model parametersmq and components
of the data vector dp.
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2.1.6 Coefficient matrix calculation

With Okada, (1992) tractions as a result of dislocations on the boundary elements are
calculated. Both tractions and dislocations are used to quantifiy the value of the coefficient
matrix components Gpq (eq. (2.10)). Dividing the equation by the dislocations stored in
m leads to

Gpq =
dp
mq

for m, q = 1, ..., 3 · nsrc. (2.11)

When a single directional unit dislocation is applied on one single boundary element, m
is solely non-zero for one q = q′. Thereby mq can be seen as a single value mq′ instead
of a full vector. Hence, iterating over all traction components in d (iteration over p) and
dividing them by the constant dislocation mq′ gives directly the values of the q′th row of
coefficient matrix Gpq.

Fig. 2.6: Schematic image of a simple crack model characterized by two rectan-
gular boundary elements (grey squares). The panels show the different iterations
of populating the components of the coefficient or model matrix G. At each step
a single unit dislocation mq′ = 1.0 m (direction is shown by the solid arrow) is
applied on one boundary element and the effects on the tractions dp at the cen-
tre point of the other boundary element (marked with X) are calculated. Via
equation. (2.11) the components of G are obtained.

An example of the coefficient matrix components is given in the figures 2.7, 2.8 and 2.9.
They show a single column of G, so the effect of dislocations in the three directions on the
tractions. It gives an idea of the influence of a unit dislocation of 1 m on the tractions.
Only the effect on the normal tractions tN at each boundary element is shown.
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Fig. 2.7: Image of the coefficient matrix Gpq connecting the dislocation ∆ux
at the centre boundary element with the normal tractions tN at each boundary
element (for q = 696). Further details on the fault geometry in the caption of
figure 2.9.

Fig. 2.8: Image of the coefficient matrix Gpq connecting the dislocation ∆uy
at the centre boundary element with the normal tractions tN at each boundary
element (for q = 696). Further details on the fault geometry are given in the
caption of of figure 2.9.
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Fig. 2.9: Image of the coefficient matrix Gpq connecting the dislocation ∆uz
at the centre patch with the normal tractions tN at each boundary element (for
q = 696). The extension of the rupture is 10 km along x direction (length) and
5 km along y direction (width). The upper edge is located at 100 km depth.
Strike and dip are 0.0◦. The boundary element grid consists of 31 elements along
x and 15 along y direction.

2.1.7 Dislocation inversion

The elements characterizing the displacement discontinuity equation (2.8) can be inter-
preted as a data vector d, a model parameter vector m and a model matrix G (eq. (2.10)).
The data vector contains the tractions at the boundary elements centre points, the model
parameter vector the dislocations at each boundary element and the model matrix the
path between dislocation boundary elements and traction observation points.

The forward problem of this setting obtains data (tractions) from known model parameters
(the dislocation field). The inverse problem, the calculation of dislocations from known
tractions, is preferred though as discussed already in section 2.1.3. According to Menke,
(1989) the inverse problem of equation (2.10) is explicit and linear. As the length of the
data (traction) and the model parameter (dislocation) vector are equal, the problem is
excactly determined.
Following the approach of Menke, (1989) the goal is the reduction of the error E between
observed data and the model estimated. The error is E = eTe = (d −Gm)T (d −Gm).
The error is reduced using the L2 norm assuming a gaussian error distribution.
Transferring these features onto the boundary element problem, the difference between ob-
served and estimated tractions mest shall be minimized. The estimate is controlled by the
choice of the model parameters - the dislocations. Only if the dislocations are estimated
right, the error E is minimized and thereby the boundary conditions (the tractions) are
fulfilled.
As the problem is exactly determined, the model parameters (dislocations) can be esti-
mated as (Menke, 1989):

mest =
[
GTG

]−1
GTd (2.12)
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Equation (2.12) represents the least squares solution for an inverse problem of a structure
analogue to equation (2.10). Neither a damping nor any weighting is applied.

It is important to mention that the chosen solution is differing from the solution used
by Thorwart, (2000). Lawson et al., (1974) published a least squares solution and inequality
constraints which has been implemented in Thorwart, (2000) routine thoriris. Hence he is
preventing the normal component of the dislocation to be negative, as that would mean a
spatial swap of the two crack planes Γ+ and Γ−. The upper plane Γ+ would be below the
lower plane Γ−.
For reasons of simplicity and computational efficiency I use the least squares solution
by Menke, (1989) without any inequality constraint. Therefore it can also show dislocations
in negative normal direction. The stability of the unconstraint least squares solution will
be tested in the next chapter.

The result of the inversion is a quasi-static dislocation field estimate. The tractions are in
equilibrium with the dislocations, but no frictions are taken into account.

2.2 Dynamic rupture

So far the rupture has been treated as quasi-static. The next step towards a quasi-dynamic
rupture model is implemented using parts of the Eikonal rupture model (proposed by
Müller et al., 2000; Heimann, 2011). The aim is retrieving quasi-static dislocation snap-
shots for any time between the rupture initiation and the complete rupture of the fault.
The following sections will therefore highlight essential features of the travel time and rup-
ture propagation calculation (sec. 2.2.1) and their implementation in the quasi-dynamic
rupture model (sec. 2.2.2). Furthermore the calculation of both the slip rate and moment
rate functions is discussed (sec. 2.2.3).

2.2.1 Eikonal equation

In seismology the travel time of a wave T propagating in the x− z plane can be calculated
with the Eikonal equation (Aki et al., 2002; Müller, 2007)(

∂T

∂x

)2

+

(
∂T

∂z

)2

=
1

v2
(2.13)

with the horizontal and vertical point coordinates x, z and the wave velocity v = v(x, z). It
relates the spatial derivatives of the travel time function (the gradient of T (x, z)) with the
inverse wave velocity. The wave velocity depends on the spatial coordinates. The rewritten
eikonal equation

|∇T | v = 1

with |∇T | =

√(
∂T

∂x

)2

+

(
∂T

∂z

)2 (2.14)
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is used as the base for the fast marching level set method proposed and introduced
by Sethian, (1996). It allows to numerically calculate the evolution of an arbitrary in-
terface on a regular grid. The interface is assumed to propagate along the normal direction
with the speed v(x, z).
The wave propagation front is an interface fulfilling this assumptions. But also the rupture
front of an earthquake can be seen as an interface propagating with the rupture velocity
vrup(x, z) (e.g. Aki et al., 2002; Müller, 2007). Following Müller et al., (2000) and Heimann,
(2011) the rupture velocity can be modeled as

vrup(x, z) = γvs(x, z) (2.15)

with the S-wave velocity vs(x, z) and a constant linear factor γ. S-wave velocities are
calculated depending on a chosen Green’s function database (Heimann et al., 2019).

2.2.2 Usage of the Eikonal equation in the quasi-dynamic rupture model

The quasi-dynamic rupture model is approximating a rupture plane by a number of bound-
ary elements (sec. 2.1). A key step is the decision, when the rupture front has reached a
boundary element and the tractions acting on the element need to be taken into account
within the quasi-static dislocation calculation.

The boundary elements (BE) in the quasi-static model are characterized by the dislocation
and traction at their centre points. The tractions act at these points and lead to a uniform
dislocation on the whole BE (compare with sec. 2.1.4 and fig. 2.6). Hence a boundary
element is seen as “active” and its traction values are used in the dislocation calculation,
if the rupture front has reached the centre point of the element (fig. 2.10).

(a) Richt patch inactive (b) Right patch active

Fig. 2.10: Sketch of the rupture front propagation as calculated with the Eikonal
equation (orange dashed lines) and its influence on the boundary element dislo-
cation calculation for a fault discretized by two boundary elements (BEs). The
nucleation point is set at the centre of the left BE. Assuming a uniform rupture
velocity vrup the rupture front is first propagating circular and in the later stage
unidirectional. Up to the time snapshot t3 the rupture front has not reached the
centre of the right BE - it is inactive (subfig. a). Therefore its traction boundary
values are not taken into account for the dislocation calculation. For the times
t4, t5 the rupture front has passed the centre point of the right BE and its active
and hence its tractions values are used for dislocation inversion now (subfig. b).

The time is calculated with the previously presented Eikonal equation (2.13) and equa-
tion (2.15) on a dense equidistant grid (fig. 2.11). The grid spacing is controlled by the
Green’s functions database. Either the grid spacing of the store or the minimum expected
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wave half-length of a S-wave are taken into account. The minimum spacing of both is re-
duced further by a choseable factor in order to densify the rupture propagation time grid.
As the error of propagation time is in the range of the travel time between two neighboring
grid nodes, a decrease of the grid spacing is crucial for smaller errors.

Fig. 2.11: Schematic image of the travel time grid (dots) compared to the bound-
ary element grid (black rectangles with centre points X) for a simple quasi dy-
namic rupture model set up. The grid, the rupture propagation time is calculated
on, is much denser than the grid of boundary elements. As the error of time cal-
culation is in range of the time difference ∆t between two neighboring grid nodes,
a denser grid reduces the rupture propagation time error.

After the times have been calculated the rupture plane is discretized with an arbitrary num-
ber of rectangular BEs. The rupture front propagation time from the nucleation point(s)
to the centre of the BEs is determined applying either bilinear or nearest neighbor inter-
polation on the rupture time grid. Only BEs with a time smaller or equal to a chosen time
are used in the dislocation calculation.

2.2.3 Slip rate and moment rate determination

The temporal rupture development is characterized by the propagation of the rupture
front. Also the slip and the source moment are evolving with time. They are measures of
the time-dependent energy release of the rupture. Therefore further insights into both slip
and moment rate are essential for a better understanding of the rupture evolution.

For a continuous dislocation observation between rupture initiation and stop the slip
rate/dislocation rate u̇(t) is defined as:

u̇(t) =
∂∆u

∂t
(2.16)

The time-dependent slip rate u̇(t) is the change of the total dislocation ∂∆u over time ∂t.
As the quasi-dynamic rupture model is characterized by its boundary elements, equa-
tion (2.16 ) needs to be applied on them individually. Hence an individual slip rate function
is derived for each boundary element ks for a given finite time difference dt. The slip rate
per boundary element is calculated as:

(u̇(t))ks =
(d∆u)ks

dt
(2.17)

for each boundary element ks = 1, ..., nsrc with the finite time difference dt = t2 − t1

and the total slip difference on each boundary element (d∆u)ks occuring within the time
interval t1 < t ≤ t2 (example in fig. 2.12).
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The knowledge of the slip rate is a crucial step towards the calculation of the seismic
moment changes.
The scalar seismic momentM0 of the centroid of a rupture is linked to the slip (dislocation)
on the rupture using (e.g. Müller, 1990; Aki et al., 2002; Müller, 2007; Dahm, 2014):

M0 = µA〈∆u〉. (2.18)

µ is the shear modulus, A the sliped/ruptured area and 〈∆u〉 the average slip on the
rupture. Only the average slip on the whole rupture plane is used for moment calculation.
Within the quasi-dynamic rupture model equation (2.18) is applied on each boundary
element individually. Both the average slip and the areas of each boundary element are
defined. Assuming a known shear modulus µ, the total seismic moment of the rupture is
gained via:

M0 =

nsrc∑
ks=1

µksAks〈∆u〉ks . (2.19)

The seismic momentM0 is the sum of moments of each boundary element ks characterized
by its shear modulus µks , area Aks and average slip 〈∆u〉ks .
So far the moment was calculated depending on the total slip occuring on each boundary
element. But also the slip rate (eq. (2.17)) can be used. Not the total seismic moment but
its changes over time are obtained:

dM0 =

nsrc∑
ks=1

µksAks

〈
d∆u

dt

〉
ks

=

nsrc∑
ks=1

µksAkss(t)ks

(2.20)

This formula is equivalent to the seismic moment rate as defined for example by Dahm,
(2014). It is defined as the cumulative seismic moment rate in the far-field. Both time
delays and the angles characterizing the path between the slipped boundary elements and
the observation point are taken into account. Equation (2.20) provides the seismic moment
rate for the specific case of no attenuation measured for a distant observation point. Hence
both time delays and angles can be seen as constants and are therefore neglectable. The
rupture is approximated as a centroid. The moment rate function displays the cummulative
moment release changes of all boundary elements on the rupture within the observed time
intervals (example in fig. 2.13).
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(a)

(b)

Fig. 2.12: Example of the slip rate calculation results of the quasi-dynamic
rupture model. The contour line indicates the rupture front arrival in seconds
after rupture initiation. The rupture is 15 km long and extends 5 km along down
dip. Strike and dip are set to 0.0◦. The rupture depth is 2 km and it is discretized
by 40x15 boundary elements. The average Shear modulus, poisson ratio and the
rupture velocities are gained from the crust2 dd Green’s function store using
γ = 0.8. The traction vector is (tx, ty, tz) = (0, 0, 0.5 MPa). The figures show
the slip rate derived from slip calculations at (a) 1.0 - 1.5 seconds and (b) 3.0 -
3.5 seconds for a nucleation point at (−5.0 km, 2.5 km).
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Fig. 2.13: Example of the results for the seismic moment rate calculation. The
normalized moment rate is given (normalized with the maximum seismic moment
rate of 5.480 · 1016 Nm). The used rupture parameters are the same as in fig-
ure 2.12. The time interval dt is 0.5 seconds based on the sampling interval of the
used crust2 dd Green’s function store.
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Chapter 3

Static tests

The comparison of the quasi-dynamic rupture model with known and tested solutions for
both dislocation and displacement is essential for insights in both the validity and limits
or errors of the model.
For a better understanding the different known types of cracking are briefely introduced
first (sec. 3.1). In section 3.2 different static crack solutions for the different crack modes
assuming an infinite 2D crack are compared with results from the quasi-dynamic rupture
model. Different features and major differences are highlighted and discussed.
In a similar manner the static dislocation solution for a finite 3D penny-shaped crack is
compared to the quasi-dynamic rupture model (sec. 3.3).

3.1 Crack modes and general test setup

In crack theory different crack types are distinguished depending on the relative direction
of dislocation and the crack rupture front (e.g. Pollard et al., 1987). In figure 3.1 three
types of 2D crack modes are shown. Mode I describes a pure opening crack with a normal
dislocation ∆uz caused by a normal traction tz (fig. 3.1a) assuming a 2D crack opening
perpendicular to the crack front. An in-plane shear dislocation perpendicular to the crack
front ∆uy due to a shear traction perpendicular to the crack front ty characterizes mode II
cracks (fig. 3.1b). Mode III cracks are the result of tearing. In this case the shear traction
tx acts parallel to the crack front. That leads to a tearing ∆ux in our example (fig. 3.1c).

Different crack modes and the resulting dislocations and displacements have been studied
assuming simple fault geometries within a homogeneous, isotropic medium. Analytical
solutions for both an infinite 2D crack (infinite extension perpendicular to the crack front)
and a 3D crack with finite extension in each dimension are already known (e.g. Weert-
man, 1971; Hahn, 1976; Pollard et al., 1987) for the fullspace. In the following different
stress regimes and fault geometries are tested on the quasi-dynamic rupture model and the
comparison with analytical solutions is shown. The tests performed follow a scheme seen
in Thorwart, (2000).
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(a) Mode I - Opening (b) Mode II - Shearing (c) Mode III - Tearing

Fig. 3.1: Schematic image of different crack types depending on the direction
of dislocation (after Pollard et al., (1987)). Traction vectors are shown as arrows
marked with t. ∆u represents the direction of the dislocation. The dotted line
represents the crack front, also highlighted with “CF”. Subscripts x, y, z denote
the different axis parallel to the crack front, perpendicular to the crack front and
normal respectively.

For all tests the elastic parameters have been chosen as:

poisson ratio ν = 0.25

shear modulus µ = 32.0 · 109 Pa

1st lamés parameter λ =
2νµ

1− 2ν
= 32.0 · 109 Pa

The horizontal origin of the coordinate system is always located in the centre of the crack
(fig. 3.2). The boundary element method used for the quasi-dynamic rupture model is
based on a half-space solution by Okada, (1992). Therefore effects of the free surface are
observable if no sufficiant depth is chosen (here I choose a upper edge depth of the fault
of 200 km). Figure 3.2 shows the general geometry of the model and some explanations
for the later sketches. In the initial coordinate system the fault length is measured in x
direction, the width in y direction. The width is defined as twice the half-length a.
Further settings as length-width ratio or the number of boundary elements are determined
independentely for each test and will be mentioned then. Also the orientation of the local
geopgraphical coordinates northing, easting and depth (N,E,Z) is given seperately for
each test.

3.2 Static 2D tests

In literature different crack solutions for dislocation and displacement calculation exist
for the special case of an infinite 2D crack. The crack extension in x direction (which is
perpendicular to the crack front) is infinite, whereas the extent in the other directions y
and z is finite. The chosen examples are used for a comparison with the quasi-dynamic
rupture model.
In this section crack solutions for both dislocation and displacement derivations due to
single directional tractions are used for the different crack modes. First normal tractions
are assumed (sec. 3.2.1). Later also the effect of in-plane shear and tear tractions is
discussed (sec. 3.2.2 and 3.2.3)
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Fig. 3.2: Sketch displaying key features of the quasi-dynamic rupture model.
The black rectangle is the crack surface, grey rectangles indicate the boundary
elements. The orange line is the profile line. Coordinates are given with respect to
the center of the fault normalized with the half-length a. The coordinate system
of tractions and dislocations has its x axis parallel to the length axis (the crack
front) of the fault, the y axis perpendicular to the crack front on the fault and z
axis parallel to the normal of the fault plane. z points up.

3.2.1 Mode I crack

Mode I or opening cracks are characterized by normal tractions acting on the rupture plane.
Shear tractions are absent. That leads to a traction vector of the structure (tx, ty, tz) =

(0, 0, 6= 0) as the boundary condition (subscription indicates traction direction analogue to
fig. 3.2). An example for such a traction setting is a fluid-filled crack. The fluid causes
an internal pressure P which is linked to the normal traction as tz = −P . Two cases are
presented modeling a crack under uniform pressure and a vertical dike with a gradient of
the internal pressure.

Infinite crack with homogeneous internal pressure

An infinite, horizontal fault under constant internal pressure P0 is a simple model for a
mode I crack. The normal boundary tractions are uniform over the whole crack plane:
(tx, ty, tz) = (0, 0,−P0). The analytical solution for the dislocation in normal direction
∆uz is given by Pollard et al., (1987):

∆uz(y) =
2(1− ν)

µ
− P0

√
a2 − y2 (3.1)

with the poisson ratio ν, the shear modulus µ, the traction along the normal axis −P0, the
half-length of the crack a and the distance of the observation point from the centre of the
crack along the y axis |y| < a. It describes the opening along the profile as a symmetrical
and elliptical shaped curve with the maximum at the cracks centre.

Instead of being infinite along the x axis the quasi-dynamic rupture model has finite exten-
sions in all dimensions. Differences in the dislocation calculation between equation (3.1)
and the quasi-dynamic rupture model could be due to the non-infinity of the model. To
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study this finite fault effect several models have been set up with a fixed width, but an
increasing length. Thus the length-width ratio is increasing from 0.4 to 5.2 (fig. 3.3).

Fig. 3.3: Sketch of the fault model used to quantify the influence of the fault
length on the normal dislocation ∆uz measured at the profile (orange line). The
length is increased while the width and the location of the profile stay the same.
Both the x and the z axis of the fault are parallel to N or Z respectively. y is
oppositely oriented to E.

The analytical solution by Pollard et al., (1987) is reproduced well (fig. 3.4). Especially
for increasing length-width ratios the error is significantly smaller (> 0.4 for length

width = 0.4

compared to < 0.1 for length
width ≥ 2.0).

(a)
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(b)

Fig. 3.4: Comparison of the dislocations in normal direction ∆uz caused by
a traction in normal direction tz calculated with eq. (3.1) (red line) and with
the quasi-dynamic rupture model (blue dots). a) shows the normalized normal
dislocation ∆uz/∆uz,max for different length-width ratios. The corresponding
standard deviation depending on the length-width ratio is plotted in b).

The error has a general trend of decreasing with larger aspect ratios of the fault plane.
Hence, lower aspect ratios are not recommendable when infinite 2D cracks are modeled.
A closer look on the error distribution shows a slight increase for fault models with aspect
ratios larger than 3.0. Comparing the results along the profile with the solution of Pollard
et al., (1987) individually shows an increasing difference, the closer a boundary element is
to the edge of the crack. A possible reason is the rough discretization along the profile.
The dislocation on each boundary element is assumed to be constant. Especially close to
the crack tips large changes of the normal dislocation ∆uz are observed. Therefore the
named assumption of uniform dislocation on a boundary element is not holding for a to
rough discretization. Hence a densification of boundary elements along the profile might
increase the fit.

Therefore new setups have been chosen with an increasing number of boundary elements
along the profile (fig. 3.5). All other fault parameters as length, width and number of
boundary elements perpendicular to the profile stay constant. The length-width ratio is
set to 5.0.
A denser boundary element grid along the profile leads to a convergence between the normal
dislocations ∆uz given by the quasi-dynamic rupture model and by Pollard et al., (1987),
as shown in figure 3.6. The errors decrease from > 0.06 to nearly 0.01 for a increasing
number of boundary elements along the profile ranging from 10 to 50.
The parts of the crack with a small change of dislocation (centre of the crack) show a good
approximation by the quasi-dynamic rupture model for 20 to 30 boundary elements along
the y axis. The crack tips which are characterized by larger dislocation gradients need a
denser discretization of up to 50 boundary elements for a sufficient difference reduction.
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Fig. 3.5: Sketch of the fault model used to quantify the influence of the number
of boundary elements along the y axis on the normal dislocations ∆uz measured at
the profile (orange line). The length-width ratio is constant (length/width = 5.0).
The dashed lines indicate the finer discretization in y direction. Both the x and
the z axis of the fault are parallel to N or Z respectively. y is oppositely oriented
to E.

(a)
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(b)

Fig. 3.6: Comparison of the dislocations in normal direction ∆uz caused by a
traction in normal direction tz calculated with eq. (3.1) (red line) and with the
quasi-dynamic rupture model (blue dots). a) shows the normalized normal dislo-
cation ∆uz/∆uz,max along the profile for different number of boundary elements
(BEs) along y. The standard deviation depending on the number of boundary
elements along y is plotted in b).

The last tests have shown an influence of the boundary element discretization along the
profile on the accuracy of the results. The discretization of the grid perpendicular to the
profile is though not a major control, as shown in appendix B.1, figure. B.2.

Weertman crack - infinite crack with increasing internal pressure

In the previous section a constant internal pressure was acting within the crack. For
dike and sill formation processes this assumption may not be valid anymore. The density
difference between the intruding magma and the hostrock causes pressure changes within
the crack. Hence, this type of cracks is called buoyancy driven.
The pressure changes within the crack can be approximated using a constant pressure
gradient Pg. The pressure P at a location y along the profile is then calculated as:

P (y) = P0 + yPg

with P0 = aPg/2 (fig. 3.7). That leads to boundary tractions (tx, ty, tz) = (0, 0,−P ) and
consequently (tx, ty, tz) = (0, 0,−P0 − yPg).
Weertman, (1971) has proposed an analytical equation for normal dislocations ∆uz due to
a pressure gradient

∆uz = 2
1− ν
µ

(
P0 +

Pg
2

)
y
√
a2 − y2 (3.2)

with the poisson ration ν, the shear modulus µ, the observation point coordinate along the
profile with respect to the center of the crack y and the half-length of the crack a.
The shape of ∆uz is expected to be drop-like with the main opening in the part of the tip
with large overpressure. At the opposite crack tip where P (y) < 0 the fracture closes and
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∆uz ≈ 0.

The quasi-dynamic rupture model is tested for buoyancy driven fluid-filled cracks. Hence,
the effect of spatially varying boundary conditions on the boundary element method is
studied. Later asperities could be represented thereby.
A schematic image of the quasi-dynamic rupture model setup is shown in figure 3.7.
P = P (y) and no changes of the pressure occur along the x axis. The number of bound-
ary elements along the profile (y axis) is successively increased from 10 to 50 to quantify
potential errors caused by the discretization.

Fig. 3.7: Sketch of the fault model used to quantify the influence of the number
of boundary elements along the profile (y axis) on the normal dislocations ∆uz
measured at the profile (orange line). A non-uniform pressure with constant
gradient along the profile is assumed. Length and width of the fault are constant
(length/width = 5.0). The dashed lines indicate the finer discretization in y
direction. The trend of the pressure is indicated on the right. Both the x and the
z axis of the fault are parallel to N or Z respectively. y is oppositely oriented to
E.

Figure 3.8 shows both the normal dislocations ∆uz and the errors compared to the the-
oretical opening for the described setting. The general shape of the analytical solution is
reproduced by all models. Especially the parts characterized by a low or negative pressure
fit well.
Our rupture model overestimates the normal dislocations ∆uz in segments of high pres-
sures (y/a >≈ 0.2) and for a rough discretization. It coincides with the part of the highest
gradient in ∆uz. The fit of the quasi-dynamic rupture model is increased using a denser
boundary element grid, as also previous tests have shown.
The error is similar for the Weertman crack and for the crack under uniform pressure. For
50 boundary elements along the y axis the error is ≈ 0.01 considering a constant pressure
and ≈ 0.015 for the Weertman crack.
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(a)

(b)

Fig. 3.8: Comparison of the normal dislocations ∆uz caused by a non-uniform
normal traction tz calculated with eq. (3.2) (red line) and with the quasi-
dynamic rupture model (blue dots). a) shows the normalized normal dislocation
∆uz/∆uz,max along the profile for different number of boundary elements (BEs)
along y. The standard deviation depending on the number of boundary elements
along y is plotted in b).

3.2.2 Mode II crack

All previous tests have compared normal crack dislocations ∆uz due to normal tractions tz.
The response of the quasi-dynamic rupture model on shear tractions is similar if friction is
neglected. However, it is tested to verify the code. This section handles in-plane shearing,
here in y direction. The tearing mode is discussed seperately in section 3.2.3.
For the following test a constant shear traction ty is assumed. Hence, the stress conditions
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on the crack are (tx, ty, tz) = (0, const, 0).
The shear dislocation ∆uy is following the same pattern as the normal dislocation ∆uz

for a uniform internal pressure and is therefore not discussed further. Instead the normal
boundary displacements uz(y) are analyzed. These displacements are the same on both
opposing planes of the crack and lead to a shear-induced rotation of the crack.
Both the dislocation inversion and the displacement calculation implemented from Okada,
(1992) are tested with this procedure. For the given traction field first dislocations are
computed for each boundary element. They are used as the input for the displacement
forward calculation. The setup of the quasi-dynamic rupture model is shown in figure 3.9.

Fig. 3.9: Sketch of the fault model used to quantify the influence of a traction
acting along the y axis ty on normal displacements uz measured at the profile
(orange line). The profile is extended over the tips of the fault. Length and width
of the fault are constant (length/width = 5.0). Both the x and the z axis of the
fault are parallel to N or Z respectively. y is oppositely oriented to E.

Pollard et al., (1987) published an analytical solution for the displacement orthogonal to
the plane of a shear crack uz(y):

uz(y) =


1− 2ν

2µ
tyy for |y| ≤ a

1− 2ν

2µ
tya

(∣∣∣y
a

∣∣∣−√y2

a2
− 1

)
sign(y) for |y| > a

(3.3)

uz(y) is expected to be point-symmetric around y = 0.

The general comparison between the quasi-dynamic rupture model and the theoretical
solution (fig. 3.10) shows a good fit. Shape, values and trend are similar for both the
analytical solution and the quasi dynamic rupture model.
Some differences are obvious though. The displacement values along the surface of the crack
are smaller than the theoretical solution. The same observation is made for observation
points in further distance from the crack tips. A possible reason is the finite extension of
the quasi-dynamic rupture in x direction. Consequently the model includes a smaller area
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which leads to smaller and faster decreasing displacements than predicted for an infinite
crack.

Fig. 3.10: Comparison of the normal displacements uz caused by a uniform
traction in y direction ty calculated with eq. (3.3) (red line) and with the quasi
dynamic rupture model (blue dots). The standard deviation is ±0.077. Differ-
ences between both are possibly explained by the finiteness of the quasi-dynamic
rupture model.

3.2.3 Mode III crack

The mode III crack is characterized by a non-zero shear traction in x direction tx: a
tearing. Similar to the mode II test a constant traction is assumed. The traction boundary
conditions are (tx, ty, tz) = (const, 0, 0). The setup of the model is shown in figure 3.11.
Instead of focusing on the tearing dislocation ∆ux(x, y), I calculate the displacement ux(z).

The analytical solution is (Pollard et al., 1987):

ux(z) = tx
a

µ

(√(z
a

)2
+ 1−

∣∣∣z
a

∣∣∣) sign(z) (3.4)

The shear displacement ux(z) is point-symmetric.

The differences between both solutions are rather small or neglectable for observation point
distances along the profile of less than the half-length a (fig. 3.11). For greater offsets the
modeled displacements are smaller than predicted by the analytical equation though. The
explanation is again provided by the finiteness of our model. The analytical solution is
extended to infinity along the x axis and free of the crack tip influences.
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Fig. 3.11: Sketch of the fault model used to quantify the influence of a tearing
traction along the x axis on displacements along the x axis ux measured at the
profile (orange line). Length and width of the fault are constant (length/width =
5.0). Both the x and the z axis of the fault are parallel to N or Z respectively. y
is oppositely oriented to E.

Fig. 3.12: Comparison of the displacements in x direction ux(z) caused by a
uniform traction in x direction tx calculated with eq. (3.4) (red line) and with the
quasi dynamic rupture model (blue dots). The standard deviation is ±0.033.

In the last sections the quasi-static displacement or dislocation modeling was compared
to different analytical infinite 2D crack solutions. The model was able to reproduce the
analytical results. Some tests showed though that the accuracy of the model is depending
on the discretization along the profile of observation points. The dislocation gradient is
also controlling the precision of the modeling results. Regions of high dislocation changes
need a finer discretization to be well recovered.
Also the effects of the non-infinity of the quasi-dynamic rupture model on the dislocation
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results are shown. As the modeled rupture plane is always finite, absolut values of disloca-
tion and displacement are estimated smaller than by the analytical solutions. Especially
for observation points in some distance to the crack tips or for a small rupture extension
in x direction the effects are noticeable.

3.3 Static finite crack test - ‘Penny-shape’ crack with homo-
geneous internal pressure

Finally, I test the boundary element methods implementation for a finite crack (a 3D
crack). Therefore the analytical solution of a penny-shaped crack is used.

Analogue to section 3.2.1 a fluid filled crack with a constant internal pressure is modeled.
As the normal traction tz is −P0 with the constant pressure P0 the boundary tractions are
(tx, ty, tz) = (0, 0,−P0). The penny-shaped crack is radial symmetric in x and y direction.
An analytical way for normal dislocation ∆uz(y) calculation has been published by Hahn,
(1976):

∆uz(y) =
2

π

2(1− ν)

µ
tz
√
a2 − y2. (3.5)

ν is the poisson ratio, µ the shear modulus, a half the cracks radius and y which are the
observation point coordinates along the profile with respect to the center of the crack.
Compared to equation (3.1) it is differing only by the factor 2/π. Therefore the normal
dislocation ∆uz(y) along the profile shall look similar to the results for an infinite 2D crack.

A key problem when setting up the quasi-dynamic rupture model is the question of dis-
cretization. As the model is only capable of rectangular boundary elements, a complete
discretization of a circular-shaped crack is not possible without any gaps or overlaps. In
order to characterize the effects of this discretization misfits, the circular shape is approxi-
mated by an increasing number of boundary elements (fig. 3.13). That leads to a decrease of
covered and non-covered regions and, hence, should reduce errors. Each boundary element
needs to have its centre point within the crack plane (fig. 3.13).
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Fig. 3.13: Sketch of the fault model used to approximate a penny-shaped 3D
crack (black circle). The normal dislocation ∆uz(y) due to a normal traction tz
is measured at the profile (orange line). Grey surfaces show the areal differences
between the real penny-shaped crack and the quasi-dynamic rupture model. Dark
grey corresponds to areas covered by the rupture model but outside of the penny-
shaped crack area. Light grey highlights regions not covered by the discretization
but within the penny-shaped crack area. The left panel shows the set up for rough
discretization, the right panel for a finer grid. Both the x and the z axis of the
fault are parallel to N or Z respectively. y is oppositely oriented to E.

The modeling results reveal different aspects which have already been discussed (fig. 3.14).
Similiar to the case of a infinite 2D crack the accuracy of the quasi-dynamic rupture model
is highly depending on the discretization. The finer the grid of boundary elements the
smaller is the error between the penny-shaped crack solution and the modeled normal
dislocation ∆uz.
The absolute error is in the range of 0.08 to less than 0.02. That is slightly higher than
for an infinite 2D crack with errors of more than 0.06 to around 0.01 (fig. 3.6). The reason
could be the rectangular discretization. The circular shape can not be fully covered with
rectangular boundary elements without any overlaps. Therefore, always an error is induced.
As the discretization gets finer also the approximation of a circle is better. Nevertheless
the error is always finite and larger than 0 for finite boundary element sizes.
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(a)

(b)

Fig. 3.14: Comparison of the normal dislocations ∆uz(y) on a penny-shaped
crack caused by a normal traction tz calculated with eq. (3.5) (red line) and with
the quasi-dynamic rupture model (blue dots). (a) shows the normalized normal
dislocation ∆uz/∆uz,max along the profile for different number of boundary el-
ements (BEs) in diametral direction. The standard deviation depending on the
number of boundary elements is plotted in (b).
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Dynamic tests

The quasi-dynamic rupture model approximates the dynamic rupture process by a series of
quasi-static dislocation snapshots for incremental times. The quasi-static crack solutions
have been tested in the previous chapter. Hence, the goal of the checks presented in
the following sections is a better understanding of the effect of selected parameters for a
propagating rupture.
The model setup has a strong impact on the dynamic rupture parameters as dislocation,
slip and moment rates and the source time function of the model. Therefore the effects of
different model configurations regarding the boundary element size (sec. 4.1) and nucleation
point location (sec. 4.2) are discussed.

4.1 Effects of the discretization on slip rates and moment
rates

The boundary element grid size and structure are key parameters of the model setup, as
shown in chapter 3, but also the activation of boundary elements and its effects need to
be understood.
If an element is active (the rupture front has reached the centre point of the element),
the boundary traction acting on the element is taken into account for the dislocation in-
version. The influence of a new activated element on the dislocations is defined by the
coefficient matrix, but depends mainly on the distance between element and observation
point (figs. 2.7, 2.8 and 2.9).
Hence dislocation values observed in the vicinity of the rupture front are highly depending
on the number of activated elements, as the observation points are close to the activated
elements. Many activated elements will lead to higher dislocations, whereas fewer acti-
vated elements decrease the calculated dislocations. The aim is therefore to quantify the
described effect.
If the grid is set in an unfavorable way, the number of activated elements for the described
case could vary strongly between different time steps. That would lead to visible oscilla-
tions in the values of slip rate, moment rate and the source time function.

In order to qualitatively analyze the described effect, a simple rupture model is set up
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(fig. 4.1). A unidirectional rectangular rupture (according to Haskell, 1969) is modeled
characterized by a slip-pulse rupturing from the left rupture edge. The rupture velocity
is constant with 1.76 km/s. The time interval between the quasi-static slip calculations is
gained from the Green’s function database crust2 dd (compare with sec. 2.2.3) with 0.5 s.

Fig. 4.1: Rupture model used for characterization of the effects of the boundary
element discretization perpendicular to the rupture front on the moment rate. The
extension of the rupture model is 15 km x 5 km. The depth is 2 km everywhere.
Strike and dip are 0◦. The isochrones highlight the rupture front arrival time
in seconds for the chosen 100 nucleation points (red stars) evenly distributed on
the left edge of the rupture. The used constant rupture velocity of 1.76 km/s is
color-coded. The x axis of the fault is parallel to the upper/lower edge, the y axis
oppositely oriented to the left/right edge (points upwards). z is oriented towards
the viewer.

For the chosen model the discretization along the x axis (perpendicular to the rupture
front) is varying. Two different values are used. A first number of boundary elements n1 is
determined using the total length l of the rupture, the rupture velocity vrup = const and
the sampling interval of the Green’s functions database dt = const:

n1 ≈ m
lrup
vrupdt

for m ∈ N (4.1)

The formulation is giving the number of boundary elements along the x axis as an integer
multiple of the ratio between rupture length and the rupture front propagation distance
within the time interval dt: distrup = vrupdt. Thereby always the same amount of bound-
ary elements will be activated within one time step. For a rupture length l = 15 km,
a sampling interval dt = 0.5 s and the given rupture velocity the number of boundary
elements in x direction is m · 17.05 ≈ m · 17. m was set to 3 which leads to n1 = 51.
In order to show the effects of changing activated number of boundary elements per time
interval a second model is used with a number of boundary elements along x not covered
by equation (4.1). Here n2 = 43.

For both ni the boundary element wise moment rates and the source time function (mo-
ment rate) of the whole rupture are derived (fig. 4.2). For a well chosen boundary element
discretization (n1 = 51) a smooth and continuous source time function is derived. Also

40



DYNAMIC TESTS

the displayed time snapshots of neighboring time intervals show only little variation. The
dislocations of the boundary elements in the vicinity of the rupture front are similar.
The different setting of n2 = 43 leads to different results. The source time function is os-
cillating which appears at the sparse sampling points as if it is splitted into two branches.
The function jumps between the larger values approaching Ṁ0(t)/Ṁ0(t)max ≈ 1.0 and the
smaller values reaching Ṁ0(t)/Ṁ0(t)max ≈ 0.65. It is interesting to notice that the aver-
age source time function approaches roughly the same value as the largest moment rate
observed for the discretization with 51 boundary elements. That indicates that smoothing
and averaging the moment rates can lead to more realistic results in case of sparse spatial
sampling. The snapshots of the boundary element wise moment rate differ strongly from
one time interval to the next and show also the mentioned oscillation.

(a) Ṁ0(t)norm for n1 = 51 (b) Ṁ0(t)norm for n2 = 43

(c) t = 3.5 s (d) t = 3.5 s
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(e) t = 4.0 s (f) t = 4.0 s

Fig. 4.2: Characterization of the effects of the boundary element grid on the
boundary element wise moment rate and source time function (STF). The left
images show results for 51 boundary elements along x (eq (4.1)), the right uses 43.
The uppermost panels show the normalized STFs (normalized to their maximum
of 2.81 · 1016 Nm/s for 51 elements and 3.33 · 1016 Nm/s for 43 elements). The
red curve in the right panel indicates the result of a moving average smoothing
(2 elements). Below two snapshots of the boundary element wise moment rates
are shown for (c), (d) 3.5 s and (e), (f) 4.0 s. For 51 elements discretization
the STF is smooth and the moment rates in the vicinity of the rupture front
between two time steps are rather similiar. For 43 elements the STF seems to
consist of two branches with one approaching Ṁ0(t)/Ṁ0(t)max = 1. and the other
Ṁ0(t)/Ṁ0(t)max ≈ 0.65. Also the moment rate snapshots show the strong changes
from one time step to the next.

The shown comparison has revealed a significant impact of the choice of the boundary
element grid on the dynamic rupture features as the source time function. The used
relation between numbers of boundary elements perpendicular to the rupture front and
the given rupture parameters as length, sampling rate and rupture velocity is performing
well and leads to a smooth source time function. The derived average source time function
is roughly equal for both cases which implies that the overall seismic moment of the rupture
is the same (will be discussed in chapter. 5).
Nevertheless the discussed case is very idealistic. The rupture velocity is constant and the
rupture propagation is unilateral as a planar line front. That simplifies the application
of equation (4.1). For more complicated cases with rupture velocity changes or curved
rupture fronts a more complex boundary element grid with changing spacing would be
needed to fulfill the relation, but is not implemented to keep the model simple.
It has to be beared in mind though that the discretization may lead to some artifacts in
slip, moment rates and the source time function.

4.2 Effects of the nucleation point location on slip and mo-
ment rates with respect to the boundary element grid

The quasi-dynamic rupture model is capable for nucleation points placed at arbitrary
locations on its rupture plane. The rupture front propagation is always adapted for any
location. If the rupture geometry is not changed, the boundary element grid stays the
same though. Hence, a changed nucleation point location leads to a different rupture front
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propagation and therefore a different time-dependent activation of the boundary elements
(fig. 4.3).
The boundary element wise slip and moment rates as well as the source time function are
also time-dependent, as they show the rupture slip and moment evolution over time. A
changed nucleation point might therefore influence the shape of the slip and moment rate
functions and introduce artifacts.

(a) Nucl. point at boundary elements edge (b) Nucl. point at boundary elements centre

Fig. 4.3: Effect of the choice of the nucleation point on the activation of boundary
elements. The rupture is discretized by two boundary elements (grey rectangles)
with their centre points (grey “X”). The rupture propagates from the nucleation
point (orange star) with the rupture front as dashed contours for different times
t. In the left panel the nucleaction point is located at the edge between both
elements. Both elements are hence activated at the same time t2. In the right
panel the nucleation point is moved onto the centre point of the right element.
Therefore the right element is activated at the beginning whilst the left boundary
element stays inactive up to the time t3 >> t2. As the slip rate function is time-
dependent, the slip rate will show different behaviour for both presented cases
due to the activation time differences.

That is tested using two different fault models (fig. 4.4 (a) and (b)). A first model has the
nucleation point placed at the centre of a boundary element (at -5.0 km, 2.5 km), whereas
the nucleation point of the second model (at -5.0625 km, 2.5 km) has an offset of ≈ 62 m

to the centre point of the closest boundary element. Otherwise all rupture parameters are
constant:

length = 15 km,

width = 5 km,

depth = 2 km,

strike = 0.0◦,

dip = 0.0◦,

boundary element grid size = 40 x 15,

boundary tractions (tx, ty, tz) = (0, 0, 0.5 MPa),

rupture velocity = 1.76 km/s

poisson ratio ν = 0.25

shear modulus µ = 32.0 · 109 Pa

1st lamés parameter λ =
2νµ

1− 2ν
= 32.0 · 109 Pa.

For both tested models the slip rate was analyzed along a profile from the left to right

43



DYNAMIC TESTS

rupture edge through the nucleation point. In figure 4.4 (c) and (d) the modeled slip
rates along the profile are shown for a time interval between 0.5 and 1.0 s. The shape is
comparable between both slip rate results. Both show the bilateral rupture propagation
with two slip-pulses traveling in both directions along the profile away from the nucleation
point.
Nevertheless the slip rate function for a centred nucleation point is showing a symmetric
shape whilst the non-centred nucleation point leads to a asymmetric behaviour of the slip
rate function.

(a) Nucl. point at boundary elements centre (b) Nucl. point at boundary elements edge

(c) Symmetric slip rate function (d) Asymmetric slip rate function

Fig. 4.4: Effects of the nucleation point loation with respect to the boundary
element grid on the dislocation. The left images show (a) the rupture setup and
(c) the slip rate along a profile parallel to the x axis of the fault through the
nucleation point for t = 1.0 s for a single nucleation point located at the centre
of a boundary element. Same structure is chosen for the shown images on the
right, but with an offset between the boundary elements centre and the nucleation
point. The rupture propagation patterns are similar, as the nucleation point is
just moved by about 60 m. The slip rate recorded on a profile from the left to
right rupture edge through the nucleation point shows significant differences. The
slip rate function is symmetric for a centred nucleation point. An offset between
nucleation point and boundary elements centre introduces asymmetric behaviour.

Similar to the previously discussed effects of the discretization on slip and moment rates
also the choice of the nucleation point with respect to the boundary element grid can lead
to errors or artifacts. For later times and, hence, more activated boundary elements the
influence is getting smaller though. Therefore a correction of possible misleading features
within the slip and moment rate curves is not applied. However, for an interpretation of
the model results the described effects need to be taken into account.
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Chapter 5

Applications

So far only the numerical stability of the model was analyzed. Our model is additionally
applied to different cases for a better understanding of its physical behaviour. The results
are shown in this chapter.
The usage of a half-space displacement and strain calculation by Okada, (1992) requires
a quantification of the effects of the free surface on the modeling results (sec. 5.1). In
section 5.2 the reproduction of different rupture front propagation types (uni- or bilateral)
is tested. Thereafter the combined crack-like/slip-pulse model (Haskell, 1969; Sato et
al., 1973; Dahm, 2018) is introduced and similiarities and differences in the slip and slip
rate evolution to the quasi-dynamic model are highlighted (sec. 5.3). The moment rate
calculation is tested in section 5.4 with the widely used solutions from Brune, (1970). In
section 5.5 the rupture model is applied to the 2015 Illapel thrust earthquake at the Chilean
trench.

5.1 Quantification of the free surface effect

The linear coefficients which link the boundary tractions with the resulting dislocations
are calculated using a half-space solution by Okada, (1992). The free surface is therefore
influencing the coefficients and the dislocations obtained by our model. Hence, it is im-
portant to quantifiy this effect.

The free surface effect is studied using a rectangular fault which is located in different
depths between 50 and 0.001 km below the surface. The final static dislocations of the
whole rupture are compared with the results of a 100 km deep fault plane. Thereby rel-
ative changes compared to a deep fault are obtained. The other fault parameters are
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independent of the chosen depth and constant. They are set to:

length = 15 km,

width = 5 km,

strike = 0.0◦,

dip = 0.0◦,

boundary element grid size = 41 x 15,

boundary tractions (tx, ty, tz) = (0, 0, 0.5 MPa),

rupture velocity = 1.76 km/s

poisson ratio ν = 0.25

shear modulus µ = 32.0 · 109 Pa

1st lamés parameter λ =
2νµ

1− 2ν
= 32.0 · 109 Pa.

The influence of the free surface on ∆uz is discussed. The described effects appear also at
the other dislocation components though (appendix C.1).

A decreasing rupture depth influences both the absolut dislocations and the overall slip
distribution (fig. 5.1). Compared with the solution for 100 km depth ∆uz increases with
shallower depths. The maximum slip is about 0.04 in 100 km depth, 0.3 m in 1 km depth
and more than 15 m for a shallow fault in 0.25 km depth.
Decreasing depths cause a slip concentration at the centre part of the rupture and lead
to an increased slip gradient from the margins towards the centre segment of the rupture
plane.
The standard deviation of the slip compared to the results of 100 km highlights the trend
of increased slips for shallower depths (fig. 5.1). The error increases exponentially. As seen
in figure 5.1 the effect of the free surface is noticeable comparing the 100 and 1 km results.
The difference corresponds to an error of about 1 m. Strong error increases from about
1 m to more than 105 m characterize the shallowest 1 km.
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(a) ∆uz for 100 km depth (b) ∆uz for 10 km depth

(c) ∆uz for 1 km depth (d) ∆uz for 0.25 km depth

Fig. 5.1: Static final normal dislocations ∆uz in meter calculated for different
rupture plane depths between a) 100 and d) 0.25 km and a 0◦ dipping rupture.
The dislocation increases for shallower depths. Also stronger gradients from the
margins to the centre segment are nocticable for decreasing depths. e) shows the
misfit of the normal dislocations ∆uz compared to the solution for 100 km depth
for a 0◦ dipping rupture. The error increases exponentially for decreasing depths.
Significant changes are seeable in the uppermost 1 to 2 km.

For a rupture plane close to the free surface also the relative orientation of the rupture
to the free surface could change the modeled dislocations. Therefore the described test
is repeated for different dips of 0, 30, 60 and 90◦. All other rupture parameters remain
constant. Only ∆uz is described here (other components in appendix C.1).

Different features appear for non-zero dipping rupture planes. For a decreasing top edge
depth and a dip of 30, 60 and 90◦ the dislocation maximum moves towards the upper
rupture edge (figs. 5.2, 5.3, 5.4). The effect of the free surface is stronger on the rupture
top segment than on the bottom part.
The deviation between the deep 100 km dislocation solution and the shallow modeling
results gets smaller for increasing dips (figs. 5.2, 5.3, 5.4). The standard deviation for
shallow rupture depths decreases from more than 105 m for 0◦ dip to less than 10−1 m for
90◦ dip.
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(a) ∆uz for 100 km depth (b) ∆uz for 10 km depth

(c) ∆uz for 1 km depth (d) ∆uz for 0.25 km depth

Fig. 5.2: Static final normal dislocations ∆uz calculated for different rupture
plane depths between a) 100 and d) 0.25 km and a 30◦ dipping rupture. The dis-
location increases for shallower depths. Also stronger gradients from the margins
to the centre segment are nocticable for decreasing depths. The maximum moves
updip for shallower depths. e) shows the misfit of the normal dislocations ∆uz
compared to the solution for 100 km depth for a 30◦ dipping rupture. The error
increases exponentially for decreasing depths. Significant changes are seeable in
the uppermost 1 to 2 km.
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(a) ∆uz for 100 km depth (b) ∆uz for 10 km depth

(c) ∆uz for 1 km depth (d) ∆uz for 0.25 km depth

Fig. 5.3: Static final normal dislocations ∆uz calculated for different rupture
plane depths between a) 100 and d) 0.25 km and a 60◦ dipping rupture. The dis-
location increases for shallower depths. Also stronger gradients from the margins
to the centre segment are nocticable for decreasing depths. The maximum moves
updip for shallower depth. e) shows the misfit of the normal dislocations ∆uz
compared to the solution for 100 km depth for a 60◦ dipping rupture. The error
increases exponentially for decreasing depths. Significant changes are seeable in
the uppermost 1 to 2 km.
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(a) ∆uz for 100 km depth (b) ∆uz for 10 km depth

(c) ∆uz for 1 km depth (d) ∆uz for 0.25 km depth

Fig. 5.4: Static final normal dislocations ∆uz calculated for different rupture
plane depths between a) 100 and d) 0.25 km and a 90◦ dipping rupture. The
dislocation increases for shallower depths. Only small differences in value and
shape between the different depths are noticeable. The maximum moves updip
for shallower depths. e) shows the misfit of the normal dislocations ∆uz compared
to the solution for 100 km depth for a 90◦ dipping rupture. The error increases
exponentially for decreasing depths. Most significant changes are seeable in the
uppermost 1 to 2 km.

The free surface effect is very strong and appear even for larger depths. Nevertheless,
significant changes in the slip distribution are present for depths smaller than 5 to 2 km.
The impact of the free surface is also dip-dependent and varies extremely for different dips.
Hence, the modeling of shallow ruptures is highly influenced by the free surface effect. That
needs to be considered in the error estimation of further applications.
Also applied shear tractions need to be used in the future for a complete set of free surface
effect studies.

5.2 Rupture front propagation type modeling

In chapter 4 numerical effects due to the boundary element grid and the relative positioning
of the nucleation point compared to the boundary elements have been treated. The choice
of nucleation point location(s) defines the type of rupture front propagation (uni-, bilateral
or circular) and could consequently influence the overall slip, moment rates and the source
time function.
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The effect is studied using a set of two rectangular fault models with different nucleation
point locations. The first is characterized by a nucleation point close to the left edge (at
-6.0 km, 0.5 km) (fig. 5.5a). Hence, the rupture front is propagating circular, but mainly
unilateral towards the right edge. The second model has its nucleation point in the vicinity
of the rupture centre (at 0.75 km, 2.75 km) to simulate a circular and bilateral expanding
rupture (fig. 5.5b). The other rupture parameters are:

length = 15 km,

width = 5 km,

depth = 2 km,

strike = 0.0◦,

dip = 0.0◦,

boundary element grid size = 40 x 15,

boundary tractions (tx, ty, tz) = (0, 0, 0.5 MPa),

rupture velocity = 1.76 km/s

poisson ratio ν = 0.25

shear modulus µ = 32.0 · 109 Pa

1st lamés parameter λ =
2νµ

1− 2ν
= 32.0 · 109 Pa.

For both fault models the slip rate is computed for incremental times on a profile between
the left and the right edge of the rupture at a constant width of 2.5 km. The total seismic
moment rate (the source time function) is also derived and compared for both cases.
It is expected that the unilateral rupture model develops a single slip-pulse behind the
rupture front which propagates in one direction while the bilateral model has two pulses
moving in opposite directions (similar to fig. 4.4). Due to the central nucleation point
location, the total rupture duration of the bilateral rupture model will be shorter than for
the unilateral case.
Both rupture models have the same applied tractions, elastic parameters and cover the
same area. Therefore the conservation of seismic moment should be valid. Hence, larger
moment rates within the source time function distributed over a shorter time interval are
expected for the bilateral model compared with the source time function of the unilateral
rupture.

The computed results (figs. 5.6, 5.7) show the expected characteristics. The unilateral
rupture model has a rupture duration of more than 8.0 s. Its slip rate along a profile from
the left to the right edge of the rutpture shows the expected pattern of a single slip-pulse
(fig. 5.6a). After the rupture front reaches the boundary elements on the profile line, a
single slip-pulse travels towards the right edge. It has a sharp increase and is decaying log-
arithmically behind the peak. The normalized slip rate approaches its maximum rapidely.
The maximum slip rate is about 0.33 m/s.
The normalized source time function (Ṁ0(t)max = 3.35 · 1016 Nm/s) is characterized by
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an increase in moment release between rupture start and about 2.5 s (fig. 5.7a). After-
wards the moment rate is nearly constant with a slight decrease up to 7.0 s, followed by a
sharp decrease for the last two moment rate measurements. The shape of the source time
function is trapezoidal (as classified by Lay et al., 1995).

(a) Unilateral rupture growth - rupture front propagation

(b) Bilateral rupture growth - rupture front propagation

Fig. 5.5: (a) Unilateral and (b) bilateral rupture model used for characterization
of the effects of the nucleation point on the moment rate and slip distribution. The
extension of the rupture model is 15 km x 5 km. The depth is 2 km everywhere.
Strike and dip are 0.0◦. The isochrones highlight the rupture front arrival time
in seconds for the chosen nucleation point (red star). The used constant rupture
velocity of 1.76 km/s is color-coded. The x axis of the fault is parallel to the
upper or lower edge, the y axis oppositely oriented to the left/right edge (points
upwards). z is oriented towards the viewer. The rupture propagation type in (a)
is dominated by a unilateral growth towards the right edge of the rupture. In (b)
bilateral rupture evolution towards both the left and the right rupture edges is
seen.

The obtained results for the bilateral rupture model are rather different. The duration of
4.8 seconds is much smaller than for the unilateral rupture model. A maximum slip rate
of about 0.33 m/s is observed (fig. 5.6b) which is in the same range as for the unilateral
rupture. The slip rate plots reveal two oppositely moving slip-pulses which evolve towards
both edges of the rupture. That emphasizes the bilateral type of rupture propagation.
Both slip-pulses show a similar slip rate which is rather constant for early times. For later
times (4.0 s after rupture initiation) the right slip-pulse has reached the right edge of the
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rupture. It leads to an increase of the slip rate at the not finished left pulse.
Also the source time function shows a different behaviour than for a unilateral rupture
growth (fig. 5.7b). The normalized moment rate increases up to its maximum at about
2 to 3 s (half the rupture duration). It is followed by a strong decrease until the end of
rupture. The shape of the source time function is rather triangular (Lay et al., 1995; Vallée
et al., 2016). The maximum moment rate is Ṁ0(t)max = 6.07 · 1016 Nm/s which is nearly
double the maximium moment rate observed for the unilateral rupture.
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(a) Unilateral rupture growth - slip rate

(b) Bilateral rupture growth - slip rate

Fig. 5.6: Slip rates along a profile from the left to the right rupture edge at a
constant width of 2.5 km for the (a) unilateral and (b) bilateral rupture model
and different time intervals between 1.0 and 4.0 s after rupture initiation. The
sampling interval is 0.5 s. The unilateral rupture growth is characterized by a
single slip-pulse moving towards the right rupture edge. The bilateral rupture is
characterized by two oppositely traveling slip-pulses of the same size.
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(a) Unilateral rupture growth - source time function

(b) Bilateral rupture growth - source time function

Fig. 5.7: Source time functions for the (a) unilateral and (b) bilateral rupture
model. The sampling interval is 0.5 s. The modeled moment rate is given with
blue dots. The red curve shows the moving average of the moment rates with a
window size of 2. The unilateral rupture has a trapezoidal source time function
shape with a maximum between 2.5 and 7.0 s. The source time function of the
bilateral rupture has a pronounced maximum at about 2.0 to 3.0 s. The shape is
rather triangular.

The models of both the uni- and bilateral rupture behave as predicted by the uni- and
bilateral Haskell model (Haskell, 1969). The single or double slip-pulse respectively is well
defined and clearly seeable. The examples prove that the observed slip and moment rate
functions depend on the locations of the observation point(s) and the nucleation point. The
observation points are equal for both compared models. As the nucleation point changes,
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the slip rate functions are different though.
Nevertheless, the maximum slip rate is not changing (for both models 0.33 m/s). For
the same rupture model geometry and boundary tractions, the maximum slip rate is not
influenced.

The unilateral rupture shows a smaller maximum seismic moment rate than the bilateral,
but for a longer duration. Hence the criteria of seismic moment conservation is also full-
filled. That is also proven by the dislocation field. After the rupture is finished both models
show the same dislocation field (example for the normal dislocation ∆uz in fig. 5.8), as
the same elastic rupture parameters are used. As the seismic moment is the sum of the
slip at each boundary element area multiplied with the shear modulus and the average slip
(eq. (2.19)), it is the same for both models.

(a) Unilateral rupture growth - final normal dislocation ∆uz

(b) Bilateral rupture growth - final normal dislocation ∆uz

Fig. 5.8: Final normal dislocation ∆uz for the (a) unilateral and (b) bilateral
rupture model. The final dislocation field is independent of the nucleation point
(also valid for ∆ux and ∆uy). Hence, the conservation of seismic moment is valid
for the quasi-dynamic rupture model.

5.3 Comparison with the combined unilateral-circular crack
model

A large variety of kinematic rupture models is used to understand and model the dynamics
of rupture processes. Two commonly used ones are the slip-pulse model by Haskell, (1969)
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and the circular crack-like model by Sato et al., (1973). Both models differ in the assumed
shape of the rupture plane and the way of rupture growth.
Haskells slip-pulse model assumes a rectangular fault with a planar rupture front propa-
gating from one to the opposing edge of the rupture plane. The resulting slip rate function
is a pulse travelling through the medium. The shape of the pulse depends on the chosen
moment rate function. Once the whole slip-pulse has passed a point on the rupture, no
more slip is accumulated there. Summarizing, the slip depends on the chosen moment rate
function.
The circular crack model models a crack-like circular rupture process. The rupture nucle-
ation point is located at the centre of the circular rupture plane causing a ciruclar rupture
front (assuming a uniform rupture velocity). The slip process is always ongoing for each
point within the crack. The larger the crack gets, the higher the final maximum slip.
Consequently the slip of the crack-like rupture model depends on the size of the rupture
plane.
A combination of both the crack-like and the slip-pulse model (Dahm, 2018) is used for a
first visual classification of the quasi-dynamic rupture model results. The general shape of
the rupture front evolution is analyzed as well as the shapes of both the slip and the slip
rate functions.

The combined crack-like/slip-pulse model is characterized by a rectangular rupture plane
with an aspect ratio larger than 1 and a nucleation point located on the rupture part left
of the centre (fig. 5.9a). The isochrones of the rupture front arrival indicate the transition
from a crack-like model with circular-shaped rupture fronts to a slip-pulse model with a
unilateral rupture front propagation.
Both slip and slip rate combine the characteristics of the the crack-like and the slip-pulse
model (fig. 5.9b). For early times the slip is increasing everywhere on the already rupturec
part of the plane with largest slip rates at the crack tips. The maximum slip occurs at the
centre of the crack. This behaviour is also observed using the crack model by Sato et al.,
(1973). In a later stage of rupturing the slip changes in a narrow band behind the rupture
front. It is not exceeding the maximum slip which was reached at the end of the circular
rupture growth. The time between rupture front arrival and the complete slipping at a
point is the rise time. It is constant for all points.
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(a)

(b)

Fig. 5.9: Schematic image of the combined crack-like/slip-pulse rupture model
for a constant rupture velocity (modified after Dahm, 2018). In a) the rupture
plane (black rectangle) and several isochrones for the rupture front arrival times
(ti) are shown. For a certain nucleation point (orange star) the crack is first
growing circular (t < t2). For t > t2 it turns into an unilateral rupture. The slip
and slip rate measured along the profile (orange line) highlights that (b). First
the slip grows everywhere with largest slip rates at the crack tips and maximum
slip in the centre of the crack. For times t > t2 the maximum slip stays constant
and the rupture is moving forward with a slip-pulse characterized by a certain
rise time.

For a good comparison of the quasi-dynamic rupture model with the described crack-
like/slip-pulse rupture model combination, our model is set up in a similar way (fig. 5.10).
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The rupture is rectangular with the larger extension in length (15 km) than in width
(5 km). It is located in 2 km depth. Strike and dip are 0.0◦. The nucleation point is
located on the left side of the rupture (-5.0 km, 2.5 km). The rupture velocity is constant
with 1.76 km/s for a chosen linear factor γ = vrup/vs = 0.8. The chosen boundary element
grid contains 40 boundary elements in x (length) by 15 in y (width) direction. The traction
boundary conditions are (tx, ty, tz) = (0.0, 0.0, 0.5 MPa).

Fig. 5.10: Rupture model used for comparison with combined crack-like/slip-
pulse rupture model. The extension of the rupture model is 15 km x 5 km. The
depth is 2 km everywhere. The strike and dip are 0.0◦. The isochrones highlight
the rupture front arrival time in seconds for the chosen nucleation point (red star
at -5.0 km, 2.5 km). The used constant rupture velocity of 1.76 km/s is color-
coded. The x axis of the fault is parallel to the upper or lower edge, the y axis
oppositely oriented to the left/right edge (points upwards). z is oriented towards
the viewer.

Some similarities are identifiable when comparing the quasi-dynamic rupture model results
(fig. 5.11) with the combined crack-like/slip-pulse model (fig. 5.9 (b)).
The shapes of both the slip and slip rate functions along the profile are reproduced well.
The slip calculated with the quasi-dynamic rupture model shows an overall increase in the
stage of circular growth (t < 1.5 s) with largest slips in the crack centre and highest slip
rates at the crack tip. Also the slip-pulse propagation for later times along the profile fits
well with the combined crack-like/slip-pulse model.
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(a) Cumulative slip

(b) Slip rate

Fig. 5.11: Results of slip and slip rate modeling from the quasi-dynamic rupture
model used to model the combined crack-like/slip-pulse model (fig. 5.9). Both the
normalized slip (a) and normalized slip rate (b) show a behaviour as predicted
by the analytical rupture model. Slip and slip rate do not reach their maximum
values at the transition of circular to unilateral crack (t ≈ 1.5 s) though, but 4.0 s
after nucleation time. The slightly higher slip rates for t = 3.0 s are artifacts
caused by the discretization.

Although the general fit is quite well, the slip and slip rates obtained from quasi-dynamic
rupture modeling differ from the combined crack-like/slip-pulse model. Instead of reaching
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their maxima at the circular to unilateral rupture transition, both slip and slip rates calcu-
lated with the quasi-dynamic rupture model are still increasing afterwards. After 4 s the
slip is reaching its maximum. The slip rate has its maximum at 3 s and decreases slightly
afterwards. The long and non-constant rise time of the slip-pulse depending on the time
interval is another difference to the idealized crack-like/slip-pulse model.
The named differences can be explained by different numerical and analytical features of
the quasi-dynamic rupture model. The large slip rates at 3 s followed by a decrease express
numerical limits, so the choice of the boundary element grid (ch. 4). The boundary element
wise slip rates of the total rupture in figure 5.12 show a different fault patch activation
pattern at the rupture front depending on the time. Therefore the number of close and
active boundary elements at the rupture front is minimally larger for t = 3.0 s than for
t = 4.0 s. That leads to slightly larger slip values observed at 3 s. As the slip rate is just
the calculation of slip differences per time and the difference at 3 s is increased, the slip
rate is higher (a similar case is discussed in sec. 4.1).
The rise time obtained by our model is not constant. That is caused by the boundary
element method based slip calculation. Therein, a traction applied at any boundary el-
ement has always an effect on the other boundary elements. Within the quasi-dynamic
dislocation calculation new boundary elements are added to the calculation for each time
increment. Their influence even on distant elements is not completely negelectable and
causes the further increase for boundary elements far away from the rupture front.

(a) t = 2.5 to 3.0 s
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(b) t = 3.5 to 4.0 s

Fig. 5.12: Two snapshots of the boundary element wise slip rates for the time
intervals a) t = 2.5 to 3.0 s and b) t = 3.5 to 4.0 s. The front of active boundary
elements is differing between both snapshots. In a) some extra elements are
already active in the centre of the rupture compared to b). The increase in close
patches leads to a larger slip rate in a) than seen in b).

The quasi-dynamic rupture model is able to calculate slip rates and cumulative slips similar
to the crack-like/slip-pulse model. Slip-pulses and their decay in slip rate are reproduced
well. Also the overall slip distribution with maximum slip in the rupture centre and a slip
decay towards the rupture edges is comparable with the crack-like/slip-pulse model results.

A constant shaped slip-pulse in the stage of unilateral growth as predicted by the crack-
like/slip-pulse model is not seen in our modeling results. This might be related to the
boundary element method setup, as no elements are deactivated. The assumption that the
time and area of circular rupture growth define the maximum reachable slip is also not
reproduced by our model.

5.4 Comparison with the Brune model

The seismic moment rate function of an earthquake rupture process, the source time func-
tion (STF) of the point source, is a measure for the time-dependent moment release during
the rupture observed in the far field. Hence the STF is an important feature of a rupture.
Consequently quasi-dynamic STF modeling is interesting and is tested in the following.

The STF of the whole rupture model is the sum of the moment rates of each boundary
element (sec. 2.2.3). Each boundary element can be seen as an individual rupture and
should therefore show a reasonable individual STF.
Hence, the STF of individual boundary elements is compared to a known moment rate
solution. Here a relation of both the normalized moment and the normalized moment rate
for shear ruptures by Brune, (1970, 1971) is taken. It is widely accepted and used. They
derive the normalized moment rate as:

Ṁ0(t)

M0
=

[
4π2te−2πt/td

t2d

]
H(t) (5.1)
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with

H(t) =

0 for t− tarr < 0,

1 for t− tarr ≥ 0.

The normalized moment rate Ṁ0(t)/M0 is given using the time after rupture initiation t,
the rupture front arrival time at the boundary element tarr, the Heaviside function H(t)

and the rise time of the boundary element td. td is the time difference between the rupture
front arrival and the end of slipping and moment release at the boundary element. The
solution indicates the maximum moment rate in the beginning of the rupture followed by
an exponential moment rate decay (compare with Dahm, 2018).
The corresponding normalized moment release function is:

M0(t)

M0
=

[
1−

(
1 +

2πt

td

)
e−2πt/td

]
H(t). (5.2)

It states the major moment release of a rupture in the first time after the rupture starts.
Thereafter the moment release is successively approaching its maximum for times larger
than the rise time.

The calculation of boundary element wise STFs is done for a rectangular rupture model of
15 km length and 5 km width (fig. 5.13). Strike and dip are 0.0◦. The depth is constant
using 2 km. The rupture velocity is constant as well: vrup = γ · vs = 0.8 · 2.2 km/s =

1.76 km/s. As Brunes solution is derived for shear rupture the used boundary tractions
are (tx, ty, tz) = (0.5 MPa, 0.0, 0.0). The rupture plane is discretized by a grid of 53 x 15
boundary elements.
The number of 53 elements along the x axis of the fault is chosen on the base of equa-
tion (4.1)to minimize artifacts from the discretization.
100 nucleation points aligned on the left edge of the fault are used to model a unilateral
rupture front propagation as in the Haskell model (Haskell, 1969). Thereby effects from
curved rupture fronts on the moment rate calculation shall be diminished.
One boundary element is chosen for which the moment rate is measured and compared.
It is located at (-3.25 km, 2.5 km) (fig. 5.14). It is positioned in some distance from the
nucleation points, but is also active for several seconds before the rupture stops. Hence,
effects from the rupture initiation as a smooth rupture pulse buildup are reduced, but also
a long recording of the moment rate changes is guaranteed.
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Fig. 5.13: Rupture model used for comparison with Brunes moment rate func-
tion. The extension of the rupture model is 15 km x 5 km. The depth is 2 km
everywhere. Strike and dip are 0.0◦. The isochrones highlight the rupture front
arrival time in seconds for the chosen 100 nucleation points (red stars aligned at
the left edge -7.5 km, [0.0 km, ..., 5.0 km]). The used constant rupture velocity
of 1.76 km/s is color-coded. The x axis of the fault is parallel to the upper or
lower edge, the y axis oppositely oriented to the left/right edge (points updip). z
is oriented towards the viewer.

The moment rate model from Brune, (1970, 1971) for the chosen boundary element needs
both an arrival and a rise time. The arrival time is derived from the distance of the
boundary elements centre to the left rupture edge and the rupture velocity.
The setting of the rise time td is more complex. Brune, (1970, 1971) and Dahm, (2018)
define it as the time interval of the complete moment release. The moment rate before
and after this interval is zero. The slip rate and the moment rate modeled with our quasi-
dynamic model are just approaching zero for already active boundary elements due to
distant boundary element effects as discussed in section 5.3. Therefore td was determined
using different time intervals, for which 70 to 95 % of the total moment of the boundary
element are released.
Hence, different rise times are derived depending on the chosen minimum percentage of
released moment (fig 5.15). With an arrival time of the rupture front of 2.09 s, the rise
time td is varying between 1.91 and 3.91 s for minimum normalized moment releases of 70
to 95 %.
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Fig. 5.14: Moment rate snapshot of the rupture model used for comparison
of the boundary element wise moments and moment rates with Brunes moment
and moment rate functions. The normalized moment rate per boundary element
is calculated for the slip changes between 2.5 and 3.0 s after rupture initiation.
The normalization is done using the largest observable moment rate of 2.797 ·
1014 Nm. Further settings of the model are explained in fig. 5.13. The red star
marks the boundary element centre point, for which the moment and moment
rate comparison with Brunes model is done.

The comparison of results from our model with the analytical solutions from Brune, (1970,
1971) shows a good fit for both the normalized moment and the moment rate (fig. 5.15).
The moment rate pulse with the following by strong decay as predicted by Brune, (1970,
1971) is reproduced by our model. Also the shape is estimated well.
The choice of the rise time is an essential factor. Smaller rise times lead to a better fit
between the estimates for the earlier times characterized by a large moment release. Larger
rise times increase the fit for later times instead.

(a) Normalized cumulative moment
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(b) Normalized moment rate

Fig. 5.15: Snapshot of the normalized (a) moment and (b) moment rate depend-
ing on the time after rupture initiation for a single boundary element (blue dots)
compared to the Brune moment rate (red line) calculated for different rise times
td. The normalized moment/moment rate is modeled in time intervals of 0.5 s.
The normalization is done using the largest modeled moment (5.445 · 1014 Nm/s)
or moment rate (2.27 · 1014 Nm/s). Further settings of the model are explained
in fig. 5.13. The chosen boundary element is highlighted in fig. 5.14. Different
rise times td = (1.41 s, 1.91 s, 2.91 s, 3.91 s) are chosen corresponding to moment
releases of 70, 80, 90 and 95 % of the maximum moment. Using small rise times
gives a good estimate of moment and the moment rates for early times after the
boundary elements started rupturing. Larger rise times provide a better fit for
later times.

The previous section has shown that a moment rate estimate similar to the known and
wideley used model by Brune, (1970, 1971) is possible with the quasi-dynamic rupture
model. For the observed case of a unilateral rupture growth with a homogeneous velocity
model the moment pulse can be modeled with similar shape and characteristics as pre-
dicted by Brune, (1970, 1971).

After the numerical tests of the quasi-dynamic rupture model for static cases (chapter 3
and 4), the previous sections focussed on applications of our model and comparisons to
other analytical models. It could be shown that the conservation of moment is valid for
our model. Thereafter a qualitative comparison was performed with two different rupture
models (the crack-like/slip-pulse and the Brune model). The tests showed a good fit in
general, but could also highlight some differences.
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5.5 Case study - The 2015 Mw 8.3 Illapel earthquake

So far purely hypothetical examples were treated. Additionally the slip distribution for
the well studied 2015 Mw 8.3 Illapel earthquake is modeled.
Different catalogs as GEOFON (GFZDataServices, 2015), GCMT (Dziewoński et al., 1981;
Ekström et al., 2012) and USGS ((U.S. Geological Survey), 2015) detected the earthquake.
It was caused by the collision and subduction of the Nazca plate beneath the South Amer-
ican plate as the Nazca plate moves by around 75 mm/year towards eastnortheast with
respect to the South American continent (e.g. USGS, Hayes, 2017) (fig. 5.16). The earth-
quake led to a tsunami with run-up heights up to 10 m.
The plate interaction results in a regular occurence of large thrust earthquakes as the 1985
Mw 8.0 Valparaiso earthquake, the 2010 Mw 8.8 Maule earthquake, the Mw 8.2 Iquique
earthquake in 2015 or the Mw 9.5 Valdivia earthquake (the great Chilean earthquake) (e.g.
Kanamori et al., 1975; Duputel et al., 2012, 2015).
The rupture process of the Illapel earthquake is well understood, as it has been studied
using a large variety of technics (sec. 5.5.1). The guiding question is, if a simple quasi-
dynamic forward-modeling can explain the main features of the Illapel earthquake? This
question is adressed by a forward-modeling of the final static slip, but also of the slip
evolution (sec. 5.5.2). The final slip is compared qualitatively with literature values. The
source time function is derived and discussed as well as the rupture front propgation.

(a) (b)

Fig. 5.16: Overview maps of the 2015 Mw 8.3 Illapel earthquake of a) its location
at the Chilean trench and b) the modeled rupture plane (orange square approx-
imated after USGS, Melgar et al., 2016; Tilmann et al., 2016b; Hayes, 2017)
with dashed depth contours which indicate eastward dipping. The roughly north
striking Chilean trench is marked with a grey line (with triangles). There the east-
moving Nazca Plate is subducted under the South American Plate. The city of
Illapel is highlighted with the red circle. The possible nucleation points (GCMT,
GEOFON, USGS, Tilmann et al., 2016b; Hayes, 2017) are shown by red stars.
The GCMT focal mechanism is shown at the rupture centroid.
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5.5.1 Overview on the earthquake and its major features

Many different methods such as e.g. a tsunami run-up inversion, backprojection of high
frequent seismic radiation, finite fault modeling of the teleseismic body waves and geode-
tic slip modeling have been used to get a deeper insight in the rupture process and the
slip distribution of the Illapel earthquake. This section summarizes the results of several
studies. First some general information on the rupture location and the radiated energy
are outlined followed by results regarding the dynamic processes of rupturing.

Rupture geometry

The Illapel earthquake occured the 16. September 2015 at 22:54:32 (UTC) (e.g. GCMT,
GEOFON, USGS, Melgar et al., 2016; Hayes, 2017; Herman et al., 2017) with a magnitude
Mw 8.1 to 8.3 at the plate boundary of the Nazca and the South American plate offshore
the city of Illapel.
The emitted seismic moment M0 was in the range of 2.5− 5.6 · 1021 Nm with higher like-
lihoods for the interval of 2.5 − 3.7 · 1021 Nm. The centroid focal mechanism solutions
reveal centroid depths of 23 - 30 km and have a preferred nodal plane with a striking of
351◦ to 7◦ which alignes roughly with the striking of the trench (fig. 5.17). The dip ranges
from 16◦ to 23◦ and is slightly larger than the average dip of the seismogenic zone of about
15◦ (Hayes et al., 2018). Rakes of 83◦ up to 106◦ indicate oblique thrust movement of
the South American plate with respect to the subducted Nazca plate (GCMT, GEOFON,
USGS, Ye et al., 2016; Herman et al., 2017).

The ruptured area was an about 200 to 250 km long and 150 km wide north striking section
of the Chilean trench (USGS, Melgar et al., 2016; Ye et al., 2016; Hayes, 2017). Tilmann
et al., (2016a) suggest a circular geometry of the rupture plane with a diameter of approx-
imately 100 km which has its centre below the middle slope of the forearc (fig. 5.18).
A maximum slip of around 6 m (Fuentes et al., 2016; Tilmann et al., 2016a,b), 8 m (USGS)
or 10 m (Melgar et al., 2016; Ye et al., 2016; Hayes, 2017) close to the trench in shallow
depths of less than 15 km (USGS, Melgar et al., 2016; Tilmann et al., 2016b) was de-
rived (fig. 5.18). Also a deeper main asperity characterized by large slip values could be
present (Melgar et al., 2016).
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Fig. 5.17: Focal mechanisms for the 2015 Mw 8.3 Illapel earthquake by Herman
et al., (GCMT, USGS, 2017) (shaded areas). They were derived using either the
W-phase or body and/or surface wave moment tensor inversions. The intensity of
shading indicates likelihoods for the observations. The median solution (median
strike, dip and rake) is highlighted with the red lines. All solutions have a north
striking nodal plane shallowly dipping towards east by about 20◦ which corre-
sponds to mean orientations of the Chilean seismogenic zone (Hayes et al., 2018).
The sense of motion is dominated by thrusting with a slight oblique component.

Dynamic rupture characteristics

The rupture is mostly described as a single source event with a nucleation point close to
the Chilean shore line at −31.6◦,−71.6◦ (GCMT, GEOFON, USGS, Hayes, 2017; Herman
et al., 2017) in a depth of roughly 40 km (Herman et al., 2017). A W-phase moment tensor
inversion indicates that the Illapel earthquake consisted of two sub-events though (Herman
et al., 2017). A first Mw 7.2 sub-event occured close to the nucleation point, followed by a
larger Mw 8.2 sub-event 50 s later. This second sub-event nucleated from a point further
updip and northwestward (−31.1◦,−71.2◦, 24 km depth) compared to the rupture origin
(fig. 5.16).
The centroid of the rupture is shifted about 65 km northwestward from the single source
earthquake epicentre (GCMT, GEOFON, USGS, Ye et al., 2016; Herman et al., 2017).

The rupture propagated northward from the nucleation point with about 2.0 to 2.2 km/s.
The upward propagation velocity slowed down to 1.6 km/s when the rupture front reached
a depth of 16 km and shallower (Melgar et al., 2016).
Due to the velocity gradient the rupture front bended upwards and arrived nearly perpen-
dicular at the trench (the top edge of the rupture plane) (Tilmann et al., 2016b). The
rupture front propagated within about 80 s along the whole rupture plane (fig. 5.18 and
Tilmann et al., 2016b). The rupture duration was about 120 - 140 s (USGS, Melgar et al.,
2016; Tilmann et al., 2016b) with major moment releases at about 30 to 60 s after rupture
initiation (Melgar et al., 2016; Tilmann et al., 2016b; Herman et al., 2017). Peak moment
rates of 6.97 − 8.0 · 1019 Nm/s were reached within these intervals (USGS, Melgar et al.,
2016; Tilmann et al., 2016b; Ye et al., 2016; Herman et al., 2017).
Tilmann et al., (2016b) and Ye et al., (2016) have calculated the high frequency seismic
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radiation (HFSR) from back projected high frequent body wave energy measured at tele-
seismic distance. It was emitted mainly by the deep rupture segments characterized by
large rupture velocities and small rise times. The HFSR emittance stoped earlier than
the complete source time function and also reached its maximum earlier. Tilmann et al.,
(2016b) conclude that long rise times characterize especially the shallow parts of the rup-
ture (also Bilek et al., 2004). Hence, less high frequent seismic energy was emitted from
these rupture segments.

Fig. 5.18: Rupture front propagation (contour lines) and final shear slip map
(color-coded) of the 2015 Mw 8.3 Illapel earthquake (modified after Tilmann et
al., 2016b). The rupture front was derived from subfault wise slip rates inverted
from GPS measurements. Slip rates larger than zero are used as an indicator for
the rupture front arrival. The nucleation point is marked with a red star. The
shear dislocation concentrates on the northern and updip segments of the fault
model. No slip occurs at the deepest segments. The slip distribution is crack-like
with maximum values of up to 6 m in the upper central segment of the rupture.
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Fig. 5.19: Source time function approximation (STF - grey shaded area) and the
high frequency seismic radiation (HFSR) curve derived from high frequent body
wave energy back projection (red line) modeled and replotted after Tilmann et
al., (2016b). The HFSR curve is plotted in arbitrary units. The STF indicates a
rupture duration of 120 s. Its shape is rather triangular with the major moment
release between 30 and 60 s. The HFSR curve has its sharp maximum at 30 s
followed by a strong decrease though. Only few energy is emitted in the last 30 -
50 s of rupturing.

5.5.2 Quasi-dynamic rupture modeling

The previously discussed studies show several features of the Illapel earthquake (sec. 5.5.1).
Now a simple quasi-dynamic rupture model setup is tested with the goal to generate
qualitativeley comparable results with a forward-model. First the parameter choice is
discussed, followed by a comparison of the modeled final quasi-static slip with results
from Melgar et al., (2016) and Tilmann et al., (2016b). Finally also different parts of the
quasi-dynamic results are presented.

Modeling parameter choice

Most of the needed a priori information for quasi-dynamic forward-modeling is gained from
previous studies (sec. 5.5.1), as the orientation of the rupture plane. I derived it from the
different known focal mechanisms (fig. 5.17). The median values in strike and dip from the
east-dipping nodal planes are taken as the rupture plane orientation.
The top edge centre latitude and longitude are defined based on Melgar et al., (2016) and
Tilmann et al., (2016b). Their results also led to the rupture extension setting.
The top edge depth of the rupture plane is defined following Tilmann et al., (2016b) who
suggest a rupture up to the vicinity of the trench. Hence I choose (1) a shallow top edge
depth of 2 km below the trench as well as (2) a surface rupture with a depth of 0 km.
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Thereby the free surface effect on the modeling results shall be studied.
The boundary element grid contains 600 elements. The number of elements is mainly
limited by the computation speed. A higher boundary element density would improve the
resolution and probably the accuracy of the results though.
Summarizing the following rupture parameters are used:

top edge centre latitude = −31.5◦,

top edge centre longitude = −72.6◦,

length = 220 km,

width = 145 km,

top edge depth = 0/2 km,

strike = 359.0◦,

dip = 20.0◦,

rake = 93.0◦

boundary element grid size = 30 x 20

boundary tractions (tx, ty, tz) = (−0.04 MPa, 0.799 MPa, 0).

Besides the rupture parameters also the ground model is generated (complete model in
appendix C.2.1). I used a model combining the CRUST2.0 (Bassin et al., 2000) and ak135
model (Kennett et al., 1995) which was generated and used by Cesca et al., (2016) for
analysis of the 2014 Iquique earthquake (fig. 5.20).
Some refinements are done for the shallow layers of the model using P-wave velocities
from Contreras-Reyes et al., (2017) and densities from Maksymowicz et al., (2015). Their
studies focused on the region of the Mw 8.8 Maule mega-thrust earthquake (south of
Illapel), but with a higher resolution in the upper crust then the original model.
The original ground model shows a vp/vs ratio of about 1.71. It is used to calculate the
S-wave velocities in the updated model from the P-wave velocities.
The used ground model leads to an average poisson ratio of about 0.2459 and a mean shear
modulus of 31.61 GPa.

The linear factor between shear wave velocity and rupture propgation speed is set to
γ = 0.6. That leads to rupture velocities of 0.54 - 0.84 km/s in 0 to 2 km depths (fig. 5.20).
2 km/s are reached in 20 km depth, followed by a smooth increase up to 2.34 km/s in 46 km
depth and deeper.
The rupture velocities for the crust deeper than 6 km fit with the observations by Melgar
et al., (2016) and Ye et al., (2016). For shallower depths the quasi-dynamic rupture model
is characterized by significantly smaller values down to 0.54 - 0.84 km/s depending on the
chosen top edge depth of the rupture plane.
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Fig. 5.20: Plot of different depth-dependent parameters of the used Green’s
function database. Both the P- (upper left panel) and S-wave velocity (upper
right panel) are linked using a vp/vs ratio of 1.71. The P-wave velocities are
updated for the uppermost kilometers using Contreras-Reyes et al., (2017). The
density (bottom left panel) is refined with values from Maksymowicz et al., (2015).
The rupture velocity in the bottom right plot is linked with the S-wave velocity
by a linear factor of 0.6.

Thereafter the boundary traction field is defined. As the tractions acting during the earth-
quake are not known, different simple models are tested. The initial traction field has
constant shear tractions of 0.8 MPa everywhere (fig 5.21 a) and b)). The traction of
0.8 MPa is in good agreement with tractions for large earthquakes derived by Kanamori et
al., (1975) and Kanamori, (1994). The shear traction is splitted into an updip and an along
strike component based on the median rake of the known focal mechanisms (fig. 5.17).
The traction field is refined assuming small stress accumulation in the uppermost layers (0
to 5 km depth) as this layers are probably less solidified than the deeper segments of the
seismogenic zone. Hence, the tractions in these segment are set to zero, but the boundary
elements in the slip inversion are kept (fig 5.21 c) and d)).
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(a) 0 km depth, uniform traction (b) 2 km depth, uniform traction

(c) 0 km depth, traction free shallow seg-
ment

(d) 2 km depth, traction free shallow seg-
ment

Fig. 5.21: Different chosen traction regimes and depth settings tested in the
forward-modeling of the 2015 Mw Illapel earthquake. Depths are highlighted
with dashed contour lines. The total traction is color-coded. Both uppermost
panels show a uniform traction field for a rupture top edge depth of a) 0 and
b) 2 km. The bottom panels show a setting where no traction is applying on
boundary elements with a centre depth less than 5 km for a rupture top edge
depth of c) 0 and d) 2 km.

Due to the large load on the seismogenic zone caused by depths of down to 50 km a
significant opening is unlikely. Therefore, no opening is considered and only shear tractions
and slips are used in the slip inversion.

Rupture propagation modeling results

The rupture velocity was calculated based on the chosen linear factor γ (fig. 5.22).

74



APPLICATIONS

Fig. 5.22: Modeled 2015 Mw 8.3 Illapel earthquake rupture front propgation for
a rupture plane with a top edge depth of 0 km. The rupture front propagation
times from the nucleation point (red star) are given with solid contour lines based
on the rupture velocities (color-coded). The rupture front is bending upwards due
to the velocity gradient. That leads to an oblique arrival at the top edge of the
rupture plane.

The modeled rupture duration is about 103 to 108 s (depending on the top edge rupture
depth) which is 15 to 35 s shorter than USGS, Melgar et al., (2016) and Tilmann et al.,
(2016b) suggest. The reason might be that the quasi-dynamic rupture model does not take
any further rupturing into account after the rupture front has traveled along the whole rup-
ture plane.
Nevertheless the rupture front arrival times are comparable with Tilmann et al., (2016b)
(fig. 5.18). Hence the estimation of γ = 0.6 is reasonable and leads to well constrained
rupture front propagation times together with the used Green’s function database.

The shape of the rupture front is similar to earlier studies. The fast northward propaga-
tion (Melgar et al., 2016; Tilmann et al., 2016b) is reproduced by the model. The rupture
front reaches the northern rupture boundary earlier in depth than on the shallow segments.
Also both the upward bending of the rupture front and the oblique rupture front incidence
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at the rupture top edge are observeable with the quasi-dynamic model.

Slip modeling results

Different traction fields and rupture top edge depths have been defined (fig 5.21). The
final quasi-static dislocations (fig. 5.23) of the different settings are compared qualitatively
to the results from Melgar et al., (2016) and Tilmann et al., (2016b).
The quasi-static dislocations depend on the chosen depth of the rupture top edge. Using a
top edge depth of 0 km leads to total shear dislocations of more than 6 m for the uniform
traction regime and more than 5 m assuming reduced traction in the uppermost layers.
The dislocation is mainly concentrated on the upper central boundary elements, likely
caused by the influence of the free surface (sec. 5.1).
For a top edge depth of 2 km the free surface effect is reduced leading to maximum
dislocations of 4 (uniform traction) or 3.5 m (reduced traction in the upper layer). The
slip distribution shows largest slip in the centre of the fault plane with an updip shifted
maximum.
Compared with the slip distributions by Melgar et al., (2016) and Tilmann et al., (2016b)
a better fit of both absolut values and shape is observed for models with a rupture top edge
of 0 km due to the impact of the free surface. The assumption of a traction free shallow
layer is also leading to an increase in accuracy, as the slip maximum in the centre of the
fault plane can be modeled better.
Summarizing, a reduced traction in the uppermost layer combined with a rupture top edge
depth of 0 km is reproducing the known slip distributions the best. These settings are
used for a closer look on the quasi-dynamic slip evolution (further static slip solutions for
further depths and traction fields in appendix C.2.2).

(a) 0 km depth, uniform traction (b) 2 km depth, uniform traction
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(c) 0 km depth, traction free shallow seg-
ment

(d) 2 km depth, traction free shallow seg-
ment

Fig. 5.23: Final quasi-static slip depending on the different chosen traction
regimes and depth settings. The slip is color-coded and highlighted with solid
contour lines. The colorscale is individual for each plot. Both uppermost panels
show the results for a uniform traction field and a rupture top edge depth of a) 0
and b) 2 km. The bottom panels show the slip for applied traction on boundary
elements with a centre depth less than 5 km and a rupture top edge depth of c)
0 and d) 2 km.

The quasi-dynamic slip evolution for the chosen traction and depth settings indicate both
circular rupture growth in the first 20 s and unilateral rupture front propagation (fig. 5.24).
Small slips occur within the first 40 s of the rupture. After reaching the shallow rupture
segments at about 60 s the maximum slip increases from around 3 m to more than 4 m
rapidely.
Also a reslip induced by the large, shallow slips into the deeper segments can be seen
between the slip solutions of 60 and 70 s (fig. 5.24d, e).

(a) t = 20 s (b) t = 40 s
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(c) t = 50 s (d) t = 60 s

(e) t = 70 s (f) t = 80 s

Fig. 5.24: Forward-modeled quasi-dynamic shear slip for different times after
rupture nucleation at the nucleation point (red star). The rupture front is indi-
cated by a dashed line. Small slips are encountered for the first 40 s of rupture.
For later stages (bottom panels) large slip increases are observed in the vicinity
of the rupture front.

For a better understanding of the rupture process and features such as the reslip, the
slip rates have been computed. Thereby, fast changing segments of the rupture shall be
described better.
The slip rate is mainly depth-dependent (fig. 5.25). As the slip is not increasing rapidely
during the first 40 to 50 s of the rupture, the normalized slip rate is rather small (maximum
of 0.5). When hitting the upper rupture edge, normalized slip rates up to 1 are reached.
The slip rate within the first 20 s is non-zero at each ruptured boundary element which
indicates circular rupture growth and supports the observations made for the slip. For
later times a slip-pulse is observed with major slip rates at the tip of the rupture front (see
also 5.26).

78



APPLICATIONS

(a) t = 20 s (b) t = 40 s

(c) t = 50 s (d) t = 60 s

(e) t = 70 s (f) t = 80 s

Fig. 5.25: Slip rates for different times after rupture nucleation at the nucleation
point (red star). The rupture front is indicated by a dashed line. The snapshots
are made for comparable times to figure 5.24. The slip rate shows a strong depth
dependency and reaches maximum values at the shallowest rupture segment which
is reached after 60 s.
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The reslip of deeper rupture segments at about 60 s is seeable in the slip rate map
(fig. 5.25d). The effect is characterized by rather small slip rates compared to the ma-
jor primary slip at the rupture front and is mainly overprinted.

Fig. 5.26: Modeled slip rates for a profile along the 24 km depth isoline for
the 2015 Mw 8.3 Illapel earthquake. At 10 s the rupture has not reached the
profile (upper left panel). At 20 s slipping at each ruptured boundary element
occurs which is crack-like (upper right panel). The bottom panels show a right
(northward) propagating single slip-pulse indicated by large slip rates close the
rupture front and an exponential decrease.

Source time function modeling results

In the previous paragraphs spatial and temporal distributions of both slip and slip rate
have been studied. Here the cumulative seismic moment changes of all boundary elements
are used to calculate an approximation of the source time function (STF) of a point source
in teleseismic distance (sec. 2.2.3).

The modeled cumulative moment rate, as shown in figure 5.27, is nearly triangluar shaped
(Lay et al., 1995; Vallée et al., 2016). The seismic moment rate increases up to a maximum
of 6.34 · 1019 Nm at 65 s which is about 10 to 15 s later than suggested by Tilmann et al.,
(2016b). The maximum modeled moment rate is about 85% of the maximum moment
rate computed by Melgar et al., (2016), Tilmann et al., (2016b), and Herman et al., (2017,
USGS,). From 60 to 75 s the quasi-dynamic rupture model indicates the major seismic
moment release leading to normalized moment rates larger than 0.8. This plateau was also
modeled by Tilmann et al., (2016b), but about 15 s earlier and slightly stronger.

The modeled cumulative moment release is about 3.054·1021 Nm. This estimation matches
with suggested seismic moments by Ye et al., (2016) and Herman et al., (2017, GCMT,
GEOFON, USGS,). A second STF curve was modeled using only the cumulative moment
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Fig. 5.27: Modeled source time function (STF) of the 2015 Mw 8.3 Illapel earth-
quake (blue dots) and smoothed STF (red curve). The grey shaded area indicates
the STF function derived using finite fault modeling (FFM) by Tilmann et al.,
(2016b). The plot is normalized to the maximum modeled moment rate. The gen-
eral trend and the triangular shape are comparable between both models. The
quasi-dynamic models maximum is less pronounced and later than Tilmann et al.,
(2016b) suggest.

rates of boundary elements with a centre point depth larger than 40 km (fig 5.28). That
corresponds to the boundary elements down dip of the nucleation point. The derived STF
has its maximum at about 20 s (much earlier than the main STF) followed by a plateau
between 30 and 80 s. The plateau is characterized by oscillating values which are probably
discretization artifacts (sec. 4.1).
This STF is partially comparable to the high frequent seismic radiation (HFSR) calculated
from back projected high frequent body waves measured at teleseismic distance (fig. 5.19)
by Tilmann et al., (2016b). Their HFSR is also showing an earlier maximum at ca. 30 s, but
followed by a sharp decrease. Hence our simulation can partially support Tilmann et al.,
(2016b) who suggest the deep rupture segments with higher rupture velocity as the main
source of the high frequent body waves. The forward-modeling with the quasi-dynamic
rupture model was able to reproduce features known from literature using a simple setup.
The chosen traction of 0.8 MPa leads to reasonable maximum shear dislocations which are
in the range of results from literature. Both the major slip in the vicinity of the trench
and also the oblique to perpendicular rupture front arrival at the top edge of the rupture
imply an tsunami excitation (which actually happened at the Illapel earthquake (Fuentes
et al., 2016)).
Especially the derived STF approximation, but also the HFSR curve show similarities with
known moment rate functions from kinematic wave form inversions. The modeled total
seismic moment is in the range of earlier results. Our model predicts a smaller maximum
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Fig. 5.28: Modeled high frequent seismic radiation (HFSR) of the 2015 Mw 8.3
Illapel earthquake (blue dots) with the smoothed curve (red) derived from the
cumulative sum of moment changes for all boundary elements with centre point
depths larger than 40 km. The grey shaded area indicates the HFSR function
derived via the back projection of high frequent body wave energy by Tilmann
et al., (2016b). Units are arbitrary. Our curve has its maximum at 20 s followed
by a long plateau up to 75 s, whereas back projection leads to a sharp maximum
at 30 s followed by a strong decrease in energy emittance.

moment rate and a different shape of the HFSR though. Refinements in the shape of the
rupture plane (further extension towards south as indicated e.g. by Tilmann et al., 2016b)
could lead to more comparable results.
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Chapter 6

Discussion and outlook

6.1 Summary of the results

Our quasi-dynamic rupture model was compared to different well known static analytical
slip calculations for both finite and infinite rupture plane extensions. Thereby, numerical
features and the implementation of our model could be verified. One remarkeable effect
was outlined regarding the boundary element discretization: Large slip gradients require a
dense discretization to cover the changes well and model the slip unbiased.

The rupture physics of the model seem reasonable. Tests proved that the conservation of
moment is valid for our model. The quasi-static final dislocation is, hence, independent
from the rupture nucleation point location and the rupture front propagation pattern.
Classical rupture models as the slip-pulse (Haskell, 1969) or the circular crack-like model (Sato
et al., 1973) could be reproduced. Both the final slip distribution and the time-dependent
slip rate are comparable with the known solutions. The rise time of the model could be de-
rived automatically from the boundary elements slip rate function. Nevertheless, an effect
of the boundary element setup was recognized leading to shape changes of the slip-pulse
and non-constant rise times.
Extracted moment rate and moment functions are similar to known theoretical (Brune,
1970, 1971) and empirical solutions as from Vallée et al., (2016).

A final application led to good results for the quasi-dynamic slip modeling of the 2015 Mw

8.3 Illapel earthquake at the Chilean trench. Assuming a simple rupture geometry and
simple traction regimes it was possible to forward-model the time-dependent slip distri-
bution. The comparison with known literature results let us conclude that the traction
release during the rupture could have been focused on every but the shallowest segments.
Our slip distribution shows values in the range of results by Tilmann et al., (2016b) both
at the center of the rupture and close to the trench. The latter can explain the excitation
of a tsunami, as it was observed.
Moreover, a simplified source time function approximation was derived which is compa-
rable to known results from literature. Our rough model discretization in time and space
reduced the resolution of our STF though.

83



DISCUSSION AND OUTLOOK

6.2 Strengths of our model

Our model is capable to produce robust results based on only few parameters. Most of
them can be defined using a priori information as moment tensor inversions for rupture
orientations and the scalar seismic moment. The usage of precalculated Green’s function
databases is also reducing the number of parameters. That increases the robustness of the
slip inversion.

As the slip inversion is performed using a simple least-squares minimization, less assump-
tions regarding the slip distributions are made. Neither a smoothing nor any limitations
for the slip are set which simplifies our model and leads to a higher uniqueness of the
modeled results.

Our model shows a physically consistent behaviour, as the conservation of moment is valid.
It is also possible to approximate theoretical and empirical source time functions without
any assumptions regarding the rise time.

Small computation times of our models implementation within the pyrocko python package
are achieved. Thats allows future applications of our model as a source inversion with a
Bayesian error analysis.

6.3 Weaknesses of our model

Nevertheless several tests have revealed limitations of our model. The numerical imple-
mentation, especially the finite boundary element discretization leads to biased results in
areas of large slip gradients. A rough discretization is, hence, decreasing the sharpness of
e.g. observed slip-pulses. In some cases artifacts as oscillations are induced into the slip
rate and source time function calculation. A smoothing of the results is needed then.

As our model is deriving a series of quasi-static slip inversions no dynamic effects as stress
propagation are considered. That may lead to artifacts and differences in rupture modeling
between our model and known solutions.

The boundary elements within our model are activated once the rupture front has reached
their centre point, but are never reactivated again. That induces biases and leads to higher
slips and slower slip rate decays in case of slip-pulse events. This needs to beared in mind
or assessed in future modeling applications.

One model application showed a strong effect of the free surface on the results leading to
high results for ruptures with extensions up to the surface. The effect of the half-space
on the results is strong and also dip-dependent. The effect was not fully assessed in this
thesis. The effect for shear ruptures should be studied more carefully in future works and
applications of our model.

The modeling result is depending linearly on the chosen traction field. Hence, a reason-
able choice of applied tractions is crucial to obtain reasonable results within the forward-
modeling. Nevertheless, it is not possible to know the location-dependent traction field.
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Therefore, the used estimated traction regimes and the following results need to be ana-
lyzed carefully to reduce traction field induced errors. A comparison with known rupture
models, as derived by finite fault modeling, must be done to estimate the traction values.

6.4 Conclusions and outlook

In my opinion the presented model is performing well even though different limitations
are present. As it is working in a both fast and stable manner, a possible application
might be a fast post-earthquake rupture process modeling to support public authorities in
earthquake aid coordination.

Nevertheless there are different aspects of our model which have not been studied yet.
Within the forward-modeling the stress propagation can be implemented to get a more
complete picture of tractions and stress changes during the earthquake rupture. Also the
implementation of frictions for a more dynamic model could be done to study its effects
on our model results.

Within this thesis our model was used for forward-modeling of the slip based on a known
traction. Next steps would include forward-modeling of waveforms within pyrocko and also
a quasi-dynamic source inversion based on synthetic and real waveform data. Thereby, the
use of our quasi-dynamic model for real-world examples can be quantified.

The source inversion could be also extended to invert for the nucleation point location
and the traction field. That would allow to understand not just the kinematic rupture
parameters as the slip distribution, but also dynamic features as the tractions.

Within all presented forward-models no Bayesian error estimation was performed. That is
part of the upcoming usage of our model, as outlined already in the introduction. Hence,
an implementation of a Bayesian error estimation with the quasi-dynamic rupture model
is needed.
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Appendix A

Methods

A.1 Derivation of Somigliana’s Identiy

The elastic theory provides the equilibrium condition for body forces and derivatives of
stresses in an arbitrary, finite volume (Aki et al., 2002; Müller, 2007; Dahm, 2018):

0 =
∂σij
∂xj

+ fi. (A.1)

σij are components of the stress tensor on the jth plane pointing in direction of i, ∂/∂xj is
the derivative with respect to the jth direction and Fi are the body forces such as intertial
force, gravitation, etc.. The summation convention is applied in eq. (A.1) and in general.
The constitutive relation for an elastic isotropic volume is:

σij = λδijθ + 2µεij

with εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

(A.2)

It is Hooke’s law formed with the two Lamés elasticity constants λ, µ, the volumetric
dilatation θ = ε11 + ε22 + ε33, the strain tensor components εij and the displacements ui
in ith direction.
Combining the equations (A.1), (A.2) and the Gaussian divergence theorem (describing
the outward flux of a vector field through a closed surface as the integral over sources
within the volume), Betti’s reciprocity theorem is gained (Aliabadi et al., 1991):∫

Ω
f∗i uidΩ +

∫
Γ
t∗iuidΓ =

∫
Ω
fiu
∗
i dΩ +

∫
Γ
tiu
∗
i dΓ. (A.3)

It describes the connection of two states in equilibrium with displacements ui and u∗i ,
tractions ti and t∗i (ti = σijnj) and body forces fi and f∗i respectivley within the volume
Ω with the tractions acting on the closed surface Γ. ui, ti and fi represent the inital state
while the work performed by one state on the displacements of the other state are equal.
It should be pointed out that the second state is actually acting within the infinite volume
Ω∗ on the infinite surface Γ∗. In the further derivation the body forces of the initial state
fi are assumed to be zero.
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The second state (u∗i , t
∗
i , f
∗
i ) is assumed to be the superposition of the effect by directional

and positive unit point forces. The parameters of the second state can be then described
as:

u∗i = Uij(~x, ~x
′)δijei

t∗i = Tij(~x, ~x
′)δijei

f∗i = δij(~x− ~x′)ei.

Uij(~x, ~x
′) and Tij(~x, ~x′) are Green’s functions. They contain the components of displace-

ment and the traction vector observed at point ~x in the jth direction caused by a unit
point force at the source point ~x′ in the ith direction. δij is Dirac delta function.

The listed properties are used together with equation (A.3) to derive:

ui(~x) =

∫
Γ
Uij(~x, ~x

′)tj(~x
′)− Tij(~x, ~x′)uj(~x′)dΓ(~x′), (A.4)

which is known as Somigliana’s identity (Somigliana, 1886). Each component of the dis-
placement vector observed at ~x is described by the superposition of the effects of all sources
on the surface Γ. Their boundary values uj and tj are weighted by the Green’s functions
Uij and Tij . Hooke’s law (eq. (A.2)) connects thereby the traction vector and the Green’s
function Tij with the partial spatial derivatives of the displacement and the Green’s func-
tion Uij .

Somigliana’s identity (eq. (A.4)) is just valid for observation points ~x within the volume Ω.
For observation points on the surface Γ of the volume a smoothing coefficient c(~x) needs
to be multiplied to left side of the equation. Then c(~x)ui(~x) is a continous differentiable
surface function. c(~x) is determined according to Aliabadi et al., (1991):

c(~x) =


δij for ~x within volume Ω,

0.5δij for ~x on surface Γ,

0 for ~x outside volume Ω.

(A.5)

Equation (A.4) is then written as:

c(~x)ui(~x) =

∫
Γ
Uij(~x, ~x

′)tj(~x
′)− Tij(~x, ~x′)uj(~x′)dΓ(~x′). (A.6)
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Appendix B

Tests

B.1 Influence of discretization along strike on crack disloca-
tions

A comparison of our quasi-static forward-modeling with the analytical static dislocation
calculation by Pollard et al., (1987) presented in equation (3.1) was performed (fig. B.1).
Within this test the number of boundary elements perpendicular to the profile was varied
between 1 and 50 to quantify possible effects on the normal dislocation ∆uz(y).
Nearly no difference is recognizeable (fig. B.2). All tests show almost the same normal
dislocation ∆uz(y). The error is decreasing, but within a very narrow interval. Hence, the
influence of the number of boundary elements perpendicular to the measured profile seems
to be neglectable.

Fig. B.1: Sketch of the fault modell used to quantify the influence of the number
of boundary elements perpendicular to the profile on the normal dislocation ∆uz
measured at the profile (orange line). Length and width of the fault are constant
(length/width = 5.0). The dashed lines indicate the finer discretization in x
direction. Both the x and the z axis of the fault are parallel toN or Z respectively.
y is oppositely oriented to E.
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(a)

(b)

Fig. B.2: Comparison of the normal dislocations ∆uz caused by a normal traction
tz calculated with eq. (3.1) (red line) and with the quasi-dynamic rupture model
(blue dots). (a) shows the normalized normal dislocation ∆uz/∆uz,max along
the profile for different numbers of boundary elements (BEs) in x direction. The
standard deviation depending on the number of boundary elements is plotted
in (b).
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Applications

C.1 Free surface influence

In section 5.1 the depth-dependency of our model due to the used half-space solution
by Okada, (1992) was tested. Here the striking and tearing components of the dislocation
and their associated misfits are shown for the used settings:

length = 15 km,

width = 5 km,

strike = 0.0◦,

dip = 0.0◦/30.0◦/60.0◦/90.0◦,

boundary element grid size = 41 x 15,

boundary tractions (tx, ty, tz) = (0, 0, 0.5 MPa),

rupture velocity = 1.76 km/s

poisson ratio ν = 0.25

shear modulus µ = 32.0 · 109 Pa

1st lamés parameter λ =
2νµ

1− 2ν
= 32.0 · 109 Pa.
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C.1.1 Tearing

(a) ∆ux for 100 km depth (b) ∆ux for 10 km depth

(c) ∆ux for 1 km depth (d) ∆ux for 0.25 km depth

(e) Standard deviation of ∆ux compared to ∆ux(100 km)

Fig. C.1: Static final tearing ∆ux calculated for different rupture plane depths
between a) 100 and d) 0.25 km and a 0◦ dipping rupture. The dislocation increases
for shallower depths. Also stronger gradients within the fault plane from the
margins to the slip extrema are nocticable for decreasing depths. e) shows the
misfit compared to ∆ux for 100 km depth for a 0◦ dipping rupture. The error
increases exponentially for decreasing depths. Significant changes are seeable in
the uppermost 1 to 2 km.
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(a) ∆ux for 100 km depth
(b) ∆ux for 10 km depth

(c) ∆ux for 1 km depth (d) ∆ux for 0.25 km depth

(e) Standard deviation of ∆ux compared to ∆ux(100 km)

Fig. C.2: Static final tearing ∆ux calculated for different rupture plane depths
between a) 100 and d) 0.25 km and a 30◦ dipping rupture. The dislocation
increases for shallower depths. Also stronger gradients within the fault plane
from the margins to the slip extrema are nocticable for decreasing depths. e)
shows the misfit compared to ∆ux for 100 km depth for a 30◦ dipping rupture.
The error increases exponentially for decreasing depths. Significant changes are
seeable in the uppermost 1 to 2 km.
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(a) ∆ux for 100 km depth
(b) ∆ux for 10 km depth

(c) ∆ux for 1 km depth (d) ∆ux for 0.25 km depth

(e) Standard deviation of ∆ux compared to ∆ux(100 km)

Fig. C.3: Static final tearing ∆ux calculated for different rupture plane depths
between a) 100 and d) 0.25 km and a 60◦ dipping rupture. The dislocation
increases for shallower depths. Also stronger gradients within the fault plane
from the margins to the slip extrema are nocticable for decreasing depths. e)
shows the misfit compared to ∆ux for 100 km depth for a 60◦ dipping rupture.
The error increases exponentially for decreasing depths. Significant changes are
seeable in the uppermost 1 to 2 km.
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(a) ∆ux for 100 km depth (b) ∆ux for 10 km depth

(c) ∆ux for 1 km depth (d) ∆ux for 0.25 km depth

(e) Standard deviation of ∆ux compared to ∆ux(100 km)

Fig. C.4: Static final tearing ∆ux calculated for different rupture plane depths
between a) 100 and d) 0.25 km and a 90◦ dipping rupture. The dislocation
increases for shallower depths. Also stronger gradients within the fault plane
from the margins to the slip extrema are nocticable for decreasing depths. e)
shows the misfit compared to ∆ux for 100 km depth for a 90◦ dipping rupture.
The error increases exponentially for decreasing depths. Significant changes are
seeable in the uppermost 1 to 2 km.

103



APPLICATIONS

C.1.2 Shearing

(a) ∆uy for 100 km depth
(b) ∆uy for 10 km depth

(c) ∆uy for 1 km depth (d) ∆uy for 0.25 km depth

Fig. C.5: Static final shearing ∆uy calculated for different rupture plane depths
between a) 100 and d) 0.25 km and a 0◦ dipping rupture. The dislocation in-
creases for shallower depths. Also stronger gradients within the fault plane from
the margins to the slip extrema are nocticable for decreasing depths. e) shows
the misfit of the shearing ∆uy compared to the solution for 100 km depth for
a 0◦ dipping rupture. The error increases exponentially for decreasing depths.
Significant changes are seeable in the uppermost 1 to 2 km.
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(a) ∆uy for 100 km depth
(b) ∆uy for 10 km depth

(c) ∆uy for 1 km depth (d) ∆uy for 0.25 km depth

Fig. C.6: Static final shearing ∆uy calculated for different rupture plane depths
between a) 100 and d) 0.25 km and a 30◦ dipping rupture. The dislocation
increases for shallower depths. Also stronger gradients within the fault plane
from the margins to the slip extrema are nocticable for decreasing depths. e)
shows the misfit of the shearing ∆uy compared to the solution for 100 km depth
for a 30◦ dipping rupture. The error increases exponentially for decreasing depths.
Significant changes are seeable in the uppermost 1 to 2 km.
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(a) ∆uy for 100 km depth
(b) ∆uy for 10 km depth

(c) ∆uy for 1 km depth (d) ∆uy for 0.25 km depth

Fig. C.7: Static final shearing ∆uy calculated for different rupture plane depths
between a) 100 and d) 0.25 km and a 60◦ dipping rupture. The dislocation
increases for shallower depths. Also stronger gradients within the fault plane
from the margins to the slip extrema are nocticable for decreasing depths. e)
shows the misfit of the shearing ∆uy compared to the solution for 100 km depth
for a 60◦ dipping rupture. The error increases exponentially for decreasing depths.
Significant changes are seeable in the uppermost 1 to 2 km.
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(a) ∆uy for 100 km depth (b) ∆uy for 10 km depth

(c) ∆uy for 1 km depth (d) ∆uy for 0.25 km depth

Fig. C.8: Static final shearing ∆uy calculated for different rupture plane depths
between a) 100 and d) 0.25 km and a 90◦ dipping rupture. The dislocation
increases for shallower depths. Also stronger gradients within the fault plane
from the margins to the slip extrema are nocticable for decreasing depths. e)
shows the misfit of the shearing ∆uy compared to the solution for 100 km depth
for a 90◦ dipping rupture. The error increases exponentially for decreasing depths.
Significant changes are seeable in the uppermost 1 to 2 km.

C.2 2015 Mw 8.3 Illapel earthquake modeling

Different settings and results of further tested rupture geometries are presented which are
not included in the main text.

C.2.1 1D earth model

The used 1D ground model is based on both the CRUST2.0 (Bassin et al., 2000) and the
ak135 model (Kennett et al., 1995). It has been derived for the area of the 2014 Iquique
earthquake in northern Chile by Cesca et al., (2016).
The Illapel earthquake occured about 2◦ further south. Therefore, the upper layers have
been refined using densities by Maksymowicz et al., (2015) and seismic P-wave velocities
by Contreras-Reyes et al., (2017) derived for the region of the 2010 Maule earthquake
(south of the Illapel rupture zone). The needed shear wave velocities for the refined layers
have been calculated based on a vp/vs ratio of 1.71 which was already used in the original
ground model.
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Tab. C.1: Layered 1D earth model

depth [km] P-wave vel. [km/s] S-wave vel. [km/s] density [kg/m3]
crust:

0. 1.5 0.9 1800
2. 2.5 1.4 1900
2. 2.5 1.4 2300
6. 4. 2.3 2600
6. 4. 2.3 2600

22. 6. 3.5 2700
22. 6.4 3.7 2850
46. 6.4 3.7 2850
46. 7.1 3.9 3100
70. 7.1 3.9 3100

mantle:
70. 8.044 4.488 3514
77.5 8.045 4.49 3500
77.5 8.045 4.49 3500

120. 8.05 4.5 3427
120. 8.05 4.5 3427
165. 8.175 4.509 3371
210. 8.301 4.518 3324
210. 8.3 4.519 3323
300. 8.628 4.679 3401
410. 9.03 4.87 3506
410. 9.36 5.08 3929
660. 10.2 5.611 3918
660. 10.79 5.965 4240

Layered 1D velocity and density model used for the calculation of the space-
dependent rupture front propagation and of the elastic parameters used for the
Illapel earthquake modeling. The model is based on the CRUST2.0 (Bassin et
al., 2000) and the ak135 model (Kennett et al., 1995) combined by Cesca et al.,
(2016) and refined in the uppermost layers with density values from Maksymowicz
et al., (2015) and seismic velocities based on Contreras-Reyes et al., (2017). A
vp/vs ratio of 1.71 is used for S-wave velocity calculation.

C.2.2 Further static modeling results

Within chapter 5.5.2 different traction regimes and rupture plane top edge depths were
tested. They were quantified by comparing the final static slip with results obtained
by Tilmann et al., (2016b). Here complementary slip modeling results are shown.
The traction regime is layered with a zero-traction segment down to 5 km depth followed
by a uniform layer with a shear tractions of 0.8 MPa. For different rupture plane top edge
depths of 1 and 3 km the dislocation fields where calculated (fig. C.9).
Also the influence of an extended zero-traction layer down to 10 km depth was tested
(fig. C.10).

108



APPLICATIONS

(a) 1 km depth, traction free shallow seg-
ment

(b) 3 km depth, traction free shallow seg-
ment

Fig. C.9: Overview maps showing the static total slip depending on the rupture
top edge depth. The slip is color-coded and highlighted with solid contour lines.
The colorscale is individual for each plot. The images show the slip for tractions
applied on boundary elements with a centre depth larger than 5 km and a rupture
top edge depth of a) 1 and b) 3 km. Results for top edge depths of 0 and 2 km
are shown in figure 5.23.

(a) 0 km depth, extended traction free shal-
low segment

(b) 2 km depth, extended traction free shal-
low segment

Fig. C.10: Overview maps showing the static total slip depending on the rupture
top edge depth for an extended traction free layer. The slip is color-coded and
highlighted with solid contour lines. The colorscale is individual for each plot.
The images show the slip for tractions applied on boundary elements with a
centre depth larger than 10 km and a rupture top edge depth of a) 0 and b) 2 km.
Slip results for different traction regimes with an absent layering or a traction
free layer down to 5 km depth and a top edge depth of 0 and 2 km are shown in
figure 5.23.
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Software

D.1 Used external software packages

This is a list of the used software packages. Their contribution to my thesis is shortly
described:

pyrocko is an open source seismological toolbox written in python and published by
Heimann et al., (2017). For my work the implemented Eikonal solver (based on Sethian,
1996; Heimann, 2011) was used for the rupture front propagation time calculation. I used
1D layered earth models to describe the ground based on the Green’s function databases
as used in pyrocko and described by Heimann et al., (2019).

DC3D is a Fortran code written to calculate strains and displacements in the elastic
half-space due to a dislocation on a rectangular plane measured at a point by Okada,
(1992). We translated it to C and implemented it as an extension within a development
branch of pyrocko. The code was extended to be capable for arbitrary striking of the fault
plane and geographic cartesian coordinates. For better performance a parallization was
implemented as well.

D.2 Implementation of the quasi-dynamic rupter model in
pyrocko

The pyrocko software package (Heimann et al., 2017) is an open source python toolbox
designed for seismological applications as data processing and analysis, Green’s function
calculation and seismic source characterization. The quasi-dynamic rupture model is in-
tegrated within this frame and extends the seismic source model database. The following
paragraphs shall highlight the different functions and their use for the quasi-dynamic rup-
ture model setup within pyrocko.

Different routines have been added to the structure of pyrocko (the used pyrocko version
is provided on the disc). The calculation of displacements and displacement derivatives as
the key feature (compare with sec. 2.1.4) has been provided by Okada, (1992) in Fortran.
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It has been translated into a C extension (mainly by S. Heimann) and rewritten to take
several boundary elements and/or receiver points into account within one function call. A
rotation algorithm was also added. Thereby the source patches and receiver point coor-
dinates can be given in geographical cartesian coordinates. The basic function has been
parallelized for a faster and more efficient calculation.
A python wrapper for the extension has been build and tested. It is the base for the
new PseudoDynamicRupture class added to the Green’s functions subpackage of pyrocko.
The PseudoDynamicRupture contains all properties of the quasi-dynamic rupture model.
Within the class the general rupture geometry can be set. For a given Green’s function
database (Heimann et al., 2019) the travel time grid is automatically computed and in-
terpolated onto the boundary elements (sec. 2.2). In the next step the coefficient matrix
is computed (sec. 2.1.6). Thereafter the least squares quasi-static dislocation inversion is
performed for a given traction field and time (sec. 2.1.7). Also the slip and seismic moment
rate functions are provided.
Beside its use for travel time calculation the Green’s function store supplies the PseudoDy-
namicRupture also with shear moduli and poisson ratios. They are interpolated from the
Green’s functions grid onto each boundary element. An average poisson ratio and shear
modulus are used as the elastic parameters for the coefficient matrix calculation.

As the dislocation field calculation for any time between rupture initiation and rupture
stop is quasi-static, the dislocation field is assumed to be in equilibrium with the traction
field at any stage of the rupture process. The tractions at each active boundary element
are in balance with the dislocations at each active element. Hence, some effects of a dy-
namic rupture process as stress propagation onto not yet ruptured parts are not taken into
account.
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DGG contribution

Our boundary element modeling approach and first tests of the quasi-dynamic model were
presented at the anual meeting of the german geophysical society (DGG) 4. to 7.3.2019 in
Braunschweig. The following page shows the presented poster.
Also the report for the magazine of the DGG (Rote Blätter) about the poster and this
thesis is included.
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Testing a simple,

self-similar dynamic rupture model
M. Metz (mmetz@gfz-potsdam.de)1,2 , S. Heimann2 , T. Dahm1,2

1 Universität Potsdam, 2 GFZ German Research Centre For Geosciences, Potsdam

  

 

 

Kinematic modeling of rupture processes 
for arbitrary shaped rupture planes,

Development of a simple, dynamic 
rupture model depending on only few free 
parameters as the nucleation location and 
time,

Combining the Eikonal rupture model and 
the Boundary Element Method (BEM)6 in 
one self-similar rupture model to invert 
for the slip from stress drop and rupture 
velocity.

1 Haskell, N. A. (1969). "Elastic displacements in the near-field of a propagating fault". In: Bull. Seismol. Soc. Am. 59.2, pp. 865-908 
2 Heimann, S. (2011). "A Robust Method To Estimate Kinematic Earthquake Source Parameters". PhD thesis, Universiät Hamburg, p. 161
3 Heimann, S., Kriegerowski, M., Isken, M. et al. (2017). "Pyrocko - An open-source seismology toolbox and library"
4 Okada, Y. (1992). "Internal Deformation due to Shear and Tensile Faults in a Half-Space". In: Bull. Seismol. Soc. Am. 82.2, pp. 1018-1040

The goal is retrieving a self-similar crack solution for the slip distribution on a 
rupture plane in a half space. 
Input parameters needed are partially gained from a moment tensor inversion 
(strike, dip, rake, time, seismic moment). The stress drop and rupture 
velocity structure are also needed (Fig. 2-I). The stress drop structure and the 
total seismic moment controll the size of the rupture plane. Starting from the 
nucleation point, the rupture front arrival is determined (Fig. 2-II) with the 

Eikonal equation for discrete rectangular patches (patch centres correspond to 
points in Fig. 2-III).
For discrete times t0 the Boundary Element Method6 is used to invert for the slip 
using the stress drop (Fig. 2-III). The source time function and the slip 
evolution over time depend on nucleation point, stress drop structure and 
rupture velocity of the fault. The final slip distribution is controlled by the stress 
drop and the moment release, but not by the nucleation point.

Build BEM source model within pyrocko.gf framework for calculating synthetic 
seismograms and inverting for rupture parameters with real data

⦁

⦁

⦁

⦁

⦁

⦁

⦁

Implementation of the Eikonal Solver for a discretized source in the 
pyrocko.gf package (already done by S. Heimann2,3),

Usage of Okada4 for calculation of displacements and stresses along the 
fault (needed for Green's Functions in BEM),

Development of an interactive visualization tool in pyrocko (sparrow) for the 
display and real-time testing of source parameter changes.

5 Sato, T. and Hirasawa, T. (1973). "Body Wave Spectra from Propagating Shear Cracks". In: J. Phys Earth 21, pp. 
415-431
6 Thorwart, M. 2000). "3D-Randelementmethode zur Simulation von Faults und Rissen im Halbraum". PhD thesis. 
Johann Wolfgang Goethe-Universiät Frankfurt (Main), p. 71 
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Fig. 2: Synthetic example for dynamic slip calculation on a strike-slip fault. I) 
shows some input parameters: a) the rupture velocity model, b) the stress 
drop (here with lateral stress change). Further parameters as strike, dip, rake, 
time and moment are gained from a moment tensor inversion. In II) the 
propagation of the rupture front retrieved from the Eikonal equation is 
displayed. III) presents the slip distribution for discrete times calculated with 

the BEM. The slip distribution images features as the layered rupture velocity 
structure (faster rupture in greater depth) or the lateral stress drop change 
(slip value higher for larger than for smaller stress drop). Also slip back mig-
ration (larger slip leads to a rerupture of already ruptured parts) is observable. 
The final slip distribution is independend on the nucleation point. The orange 
star shows the nucleation point (modified after T. Dahm - pers. com.).

 

Fig. 4: Example of source models usage in the pyrocko.gf frame to calculate 
synthetic seismograms. The BEM source model is highlighted. It shall be used 
for forward modeling of seismograms. Also the inversion of rupture parameters 
(not shown) shall be tested and used, as the combined Eikonal rupture model 
with BEM require just few parameters (modified after S. Heimann - pers. com.). 

Fig. 3: Screenshot 
of the sparrow 
main window with 
a rectangular dis-
cretized source. 
Surface displace-
ment and rupture 
front propagation 
can be displayed. 
Source parame-
ters are change-
able by the user to 
see their effects.

Fig. 1: Slip and slip rate derived 
from an analytical crack solution 
assuming constant stress drop and 
rupture velocity. a) shows the 
rupture propagation on the fault 
plane, b) the slip and slip rate for 
discrete times ti along x. The slip is 
behaving crack-like5 for small times 
(slip increase everywhere on the 
ruptured part), while it is similar to a 
slip pulse1 in later stage (slip change 
only at the rupture front).
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Hintergrund

Die dynamische Modellierung der Wellenanregung während eines Erdbebens erlaubt Rückschlüssse
auf  den  Bruchprozess,  insbesondere  die  Rekonstruktion  von  Spannung,  Reibung,
Bruchgeschwindigkeit  und  Bruchgeometrie.  Dynamische  Modellierungen  und  Inversionen
verwenden häufig einen räumlichen Gitteransatz auf vorgegebener Bruchgeometrie und benötigen
daher  eine  große  Anzahl  von  freien  Parametern.  Zur  Stabilisierung  des  unterbestimmten
Inversionsproblems wird oft eine Glättungsbedingung für die Slipverteilung eingeführt. Auch darf
jedes Gitterelement erst nach Ankunft der Bruchfront (konstante Bruchgeschwindigkeit) aktiviert
werden und die Sliprate soll dann nach vorgegebener Anstiegssdauer T r Null sein. Neben der Frage
der Mehrdeutigkeit der Lösung benötigen diese Ansätze viel Rechenzeit. Daher ist ein bayesischer
Ansatz zur Untersuchung von Unsicherheiten in der Praxis schwer zu realisieren. Wir untersuchen
eine  vereinfachte  Parametrisierung  des  dynamischen  Bruches,  die  auf  bruchmechanischen
Prinzipien beruht und nur wenige freie Parameter benötigt. Damit soll in Zukunft eine schnelle,
bayesische Inversion nach Bruchparametern für teleseismische Beben ermöglicht werden, ohne dass
die Bruchgeometrie vorgegeben wird. 

Methode

Der theoretische Ansatz basiert auf einer Erweiterung der kinematischen Eikonalquelle (Müller und
Dahm,  2000;  Heimann,  2011),  die  mit  einem quasi-statischen  Bruchmodell  gekoppelt  wird  (in
Anlehnung an Sato und Hirasawa; 1973, siehe auch Dahm, 2018). In meiner Masterarbeit wurde die
Implementation der Kopplung auf Basis einer eigens entwickelten Randelementmethode (angelehnt
an Thorwart, 2000) realisiert.

Das  Modell  approximiert  den  Bruch  als  inkrementell  wachsende  Bruchfläche,  die  durch  die
instantane  Bruchfront  zu  jedem  Zeitschritt  eindeutig  definiert  wird.  Die  Orientierung  der
Bruchfläche wird vorab aus der Punktquellen-Momententensorlösung für das Erdbeben extrahiert.
Die Bruchfläche wird dann in rechteckige Flächenelemente (Randelemente) unterteilt. Auf jedem
Randelement wird ein erwarteter Spannungsabfall vorgegeben (z.B. konstant, oder auf Basis eines
Krustenmodells).  Wir  geben  ebenso  die  Bruchgeschwindigkeit  als  linear  zur
Scherwellengeschwindigkeit  skalierendes  Feld  in  einem  geschichteten  Erdmodell  vor,  und
berechnen die Bruchfront zu jedem Zeitschritt durch die Lösung der 2D-Eikonalgleichung (Aki und
Richards, 1980, Müller, 2007, Heimann, 2011, Heimann et al., 2019). Für jeden Zeitschritt können
dann die Randelemente innerhalb der durch die Bruchfront definierten Fläche bestimmt und die
instantane Slipverteilung (Risslösung) mit Hilfe der Randelementmethode berechnet werden.

Die  Einflusskoeffizienten  zwischen  einzelnen  Randelementen  werden  bisher  mit  Hilfe  der
analytischen Risslösungen für einen elastischen Halbraum (Okada, 1992) bestimmt. Der Umsetzung
ist vergleichbar zu Thorwart (2000). Reibungseffekte werden bisher vernachlässigt, könnten aber
prinzipiell berücksichtigt werden. Der Slip auf einzelnen Randelementen an der Bruchfront wird
immer dann Null werden, wenn der Spannungsabfall (Randwert) auf diesen Elementen klein oder
Null wird. Dies kann z.B. im oberen Mantel vorgegeben werden, so dass in unserem Modell die



finale Größe der Bruchfläche implizit aus den Randbedingungen bestimmt wird. Dies gilt allerdings
nicht in der Nähe der freien Oberfläche.

Durch  die  Iteration  über  alle  Zeitschritte  wird  die  Bruchausbreitung  und  die  inkrementelle
Slipverteilung  berechnet.  Die  Slipverteilung  zu  jedem  Zeitschritt  wird  als  „quasi-statisch“
bezeichnet, weil in dem Modell Trägheitskräfte vernachlässigt werden, was in erster Näherung im
Hinblick auf eine teleseismische Inversion gut erfüllt ist.  

Obwohl das vorgeschlagene Bruchmodell sehr flexibel ist und viele unterschiedliche Bruchprozesse
modellieren  kann,  benötigt  es  nur  vier  freie  Parameter  zusätzlich  zur  Punktquellenlösung:  Den
Zeitpunkt  und  Ort  des  Bruchbeginns  auf  der  Bruchfläche  und  den  Skalierungsfaktor  der
Bruchgeschwindigkeit zur Schwerwellengeschwindigkeit der Kruste. 

Um  eine  effiziente  Simulation  und  Inversion  von  vollen  Wellenformen  in  der  Kugelerde  zu
ermöglichen,  wurde das  Bruchmodell  in  die  Python Toolbox „pyrocko“  (Heimann et  al.,  2017)
implementiert  und  mit  vorberechneten  Greensfunktionsdatenbanken  (Heimann  et  al.,  2019)
verknüpft. 

Synthetische Tests

In dem DGG-Poster wurden erste Vergleiche mit statischen, analytischen Risslösungen (z.B. Hahn,
1976;  Pollard  und  Segall,  1987;  Weertmann,  1971)  präsentiert,  welche  für  einfache
Bruchgeometrien und Randwerte existieren. Die Tests verifizierten die Korrektheit der numerischen
Implementierung, zeigten aber auch den Einfluss der räumlichen und zeitlichen Gitter. Auf Basis
der  Testläufe  konnten   empirische  Relationen  aufgestellt  werden,  um  die  Genauigkeit  der
numerischen Lösungen besser vorherzusagen. 

Die Ergebnisse sind vielversprechend. Insbesondere wird in dem Bruchmodell  automatisch eine
ortsabhängige Slip-Anstiegsdauer Tr bestimmt. Auch können sowohl das klassische Penny-Shaped
(Sato  und  Hirasawa.,  1973)  und Slip-Pulse  Haskell  Modell  (Haskell,  1969)  und der  Übergang
zwischen beiden erklärt werden. Die Slipratenfunktion wird nicht vorgegeben und ergibt sich für
jedes  Randelement  automatisch  aus  der  Simulation.  Wir  berechnen  aus  der  Summe  aller
Slipratenfunktionen  eine  sogenannte  äquivalente  Herdzeitfunktion  der  Punktquelle,  die  mit
theoretischen (z.B. Brune 1970, 1971) und empirischen Herdzeitfunktionen (z.B. Vallée und Douet,
2016) verglichen werden können.

Anwendung auf das Mw 8.3 Illapel (Chile) 2015 Erdbeben

Die Qualität der quasi-dynamischen Modellierung wurde für das 2015 Mw 8.3 Illapel Erdbeben an
der  chilenische  Subduktionszone  getestet.  (Abb.  1).  Verschiedene  Studien  haben  sowohl  die
Slipverteilung  als  auch  die  Herdzeitfunktion  bestimmt,  was  das  Beben  zu  einem  guten
Vergleichsobjekt macht (u.a. GCMT, USGS, GEOFON, Fuentes et al., 2016; Melgar et al., 2016;
Hayes, 2017; Herman, Nealy et al., 2017, Tilmann et al., 2016).
Als Erdmodell wurden das CRUST2.0 und das AK135 Erdmodell kombiniert (Cesca et al., 2016).
Die  erhaltene  Greensfunktionsdatenbank  wurde  zusätzlich  mit  Dichtewerten  und  seismischen
Geschwindigkeiten  aus  der  Region  des  Maule-Erdbebens  (südlich  von  Illapel)  verfeinert
(Maksymowicz et al., 2015; Contreras-Reyes et al., 2017).
Erdbebenparameter wie Orientierung und Ausdehnung der Bruchfläche wurden auf Grundlage der
veröffentlichten Momententensorlösungen und Slipverteilungen abgeschätzt. Zusätzlich wurde ein
reiner Scherriss angenommen.



Der Bruch hat am südöstlichen unteren Ende der Subduktionszone begonnen und sich dann primär
entlang der Plattengrenze nach Norden und nach oben ausgebreitet. Da die Bruchgeschwindigkeit in
geringerer  Tiefe  von  über  2  km/s  auf  etwa  1  km/s  abnimmt  (Abb.  1),  verlangsamt  sich  die
Bruchfront  in  geringerer  Tiefe,  während  sich  der  Bruch  am unteren  Ende  schnell  in  Richtung
Norden  ausgebreitet  hatte.  Dadurch  trifft  die  Bruchfront  nahezu  senkrecht  von  unten  auf  den
Tiefseegraben, was die effiziente Anregung eines Tsunamis bedeuten kann. 

Die finale Slipverteilung nach dem Beben (statische Slipverteilung, Abb. 2) wird in unserem Modell
allein durch die Geometrie der Bruchfläche und den Spannungsabbau bestimmt. Wird ein konstanter
Spannungsabbau gewählt, dann entstehen wegen des freien Oberflächeneffekts unrealistisch große
Slipwerte am Tiefseegraben. Wird ein realistischeres Spannungsmodell verwendet, wo sich in den
Sedimenten nahe des Tiefseegrabens nur geringe Scherspannungen aufbauen konnten, dann wird
der  Slip  dort  kleiner.  Wir  haben  für  unsere  Testläufe  den  Spannungsabbau  in  den  oberen
Randelementen am Tiefseegraben auf Werte nahe Null gesetzt. Da durch das Beben ein Tsnumai
ausgelöst  wurde,  also  große  Verschiebungen  overflächennah  aufgetreten  sind,  wird  die
Bruchoberkante  an  die  freie  Oberfläche  gesetzt.  Damit  erhalten  wir  eine  Slipverteilung  mit
Maximalwerten entlang des Tiefseegrabens und nahe des Zentrums der Bruchfläche. 

Abb.  1: Kartendarstellung des rechteckigen quasi-dynamischen Bruchmodells des 2015 Mw 8.3
Illapel Erdbebens. Die Bruchfläche fällt nach Osten ein, wobei gestrichelte Isolinien die Tiefe in
10  km  Intervall  anzeigen.  Momentenänderungen  der  Randelement  tiefer  als  40  km  (dicke
gestrichelte  Isolinie)  sind  für  Approximation  der  hochfrequenten  seismischen
Energieabstrahlungskurve  (HFSR-Kurve)  in  Abb.  3 benutzt  worden.  Durchgezogene  Isolinien
zeigen die Bruchfrontausbreitung in Sekunden von Nukleationspunkt (roter Stern) an. Diese ist auf
Grundlage der Bruchgeschwindigkeit (farbkodiert) bestimmt worden.



Unsere  dynamischen  Vorwärtsmodellierungen  führen  zwanglos  auf  vergleichbare  Slip-  und
Bruchausbreitungsfunktionen  wie  die  kinematischen  Inversionen  von  Melgar  et  al.  (2016)  und
Tilmann et al. (2016). 

In Abbildung  3 und  4 haben wir beispielhaft Herdzeitfunktionen extrahiert, zum einen summiert
über alle Randelemente, und zum anderen nur über die Elemente in Tiefen größer als 40 km. Der
erste Fall zeigt ein Maximum nach etwa 50-70 s und ist sehr vergleichbar mit der Herdzeitfunktion,
wie sie aus einer der kinematischen Wellenforminversion in Tilmann et al. (2016) extrahiert wurde
(Abb. 3).
Der zweite Fall zeigt ein früheres Maximum nach bereits 20 s, und dann ein Plateau zwischen 30
und 80 s Bruchdauer (Abb. 4). Tilmann et al. (2016) haben in ihrer Studie zum Illapel Beben eine
zweite Herdzeitfunktion aus der Rückprojektion von hochfrequenten Raumwellen bestimmt, die auf
weit  entfernten  Arrays  aufgezeichnet  wurden.  Diese  „Backprojection-Herdzeitfunktion“  zeigt
ebenfalls  ein  vorgezogenes  Maximum  bei  30  s,  dann  allerdings  einen  schnellen  Abfall.  Der
Vergleich mit unseren Simulationen unterstützt die Vermutung von Tilmann et al. (2016), dass die
Bruchkinematik,  die  aus  Backprojection-Ansätzen  mit  hochfrequenten  Wellenformen  extrahiert
wird,  vor  allem  abgestrahlte  Energie  aus  den  Bereichen  des  Bruches   mit  schneller
Bruchausbreitung und (in der Regel) großer Tiefe erkennt.

Abb.  2:  Kartenübersicht  der  modellierten  finalen  statischen  Slipverteilung  (farbkodiert  und
Isolinien) des 2015 Mw 8.3 Illapel Erdbebens. Die Slipverteilung ist ähnlich der von Tilmann et al.
(2016) und Melgar et  al.  (2016).  Maximale  Slipwerte  treten nahe des  Tiefseegrabens und im
Zentrum der Bruchfläche auf.



Zusammenfassung und Ausblick

Die Modellierung verschiedener sowohl statischer als auch dynamischer Erdbebenszenarios ist mit
unserem  quasi-dynamischen  Erdbebenmodell  möglich.  Dabei  können  bekannte  analytische
Lösungen mit  hoher  Genauigkeit  wiedergegeben  werden.  Auch die  Anwendung  auf  das  Illapel
Erdbeben zeigt einer große Übereinstimmung mit publizierten Studien bei der Slipverteilung und
der Herdzeitfunktion
Da das Modell sowohl für einfache synthetische wie reale Fälle gute Slipverteilungen liefert, soll es
in einem nächsten Schritt  als  Quellmodell  für  Erdbebenquellparameterinversionen innerhalb der
Python  Toolbox  “grond”  (Heimann  et  al.,  2018)  eingesetzt  werden.  Dabei  stehen  Versuche  an
synthetischen  als  auch  realen  Daten  aus.  Eventuell  sind  in  einem  weiteren  Schritt  auch
Spannungsfeldinversionen möglich.

Abb.  3:  Modellierte  Herdzeitfunktion  des  2015 Mw 8.3  Illapel  Erdbebens  aufsummiert  für  alle
Randelemente (blaue Punkte) und deren gleitenden Mittelwert (rote Linie). Grau unterlegt ist die
Herdzeitfunktion von Tilmann, et al. (2016).
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