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Abstract

Complex network theory provides an elegant and powerful framework to statistically investi-
gate the topology of local and long range dynamical interrelationships, i.e., teleconnections,
in the climate system. Employing a refined methodology relying on linear and nonlinear
measures of time series analysis, the intricate correlation structure within a multivariate
climatological data set is cast into network form. Within this graph theoretical framework,
vertices are identified with grid points taken from the data set representing a region on the
the Earth’s surface, and edges correspond to strong statistical interrelationships between
the dynamics on pairs of grid points. The resulting climate networks are neither perfectly
regular nor completely random, but display the intriguing and nontrivial characteristics
of complexity commonly found in real world networks such as the internet, citation and
acquaintance networks, food webs and cortical networks in the mammalian brain. Among
other interesting properties, climate networks exhibit the “small-world” effect and possess a
broad degree distribution with dominating super-nodes as well as a pronounced community
structure.

We have performed an extensive and detailed graph theoretical analysis of climate networks
on the global topological scale focussing on the flow and centrality measure betweenness which
is locally defined at each vertex, but includes global topological information by relying on the
distribution of shortest paths between all pairs of vertices in the network. The betweenness
centrality field reveals a rich internal structure in complex climate networks constructed from
reanalysis and atmosphere-ocean coupled general circulation model (AOGCM) surface air
temperature data. Our novel approach uncovers an elaborately woven meta-network of highly
localized channels of strong dynamical information flow, that we relate to global surface
ocean currents and dub the backbone of the climate network in analogy to the homonymous
data highways of the internet. This finding points to a major role of the oceanic surface
circulation in coupling and stabilizing the global temperature field in the long term mean (140
years for the model run and 60 years for reanalysis data). Carefully comparing the backbone
structures detected in climate networks constructed using linear Pearson correlation and
nonlinear mutual information, we argue that the high sensitivity of betweenness with respect
to small changes in network structure may allow to detect the footprints of strongly nonlinear
physical interactions in the climate system.
The results presented in this thesis are thoroughly founded and substantiated using a
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hierarchy of statistical significance tests on the level of time series and networks, i.e., by
tests based on time series surrogates as well as network surrogates. This is particularly
relevant when working with real world data. Specifically, we developed new types of network
surrogates to include the additional constraints imposed by the spatial embedding of vertices
in a climate network.

Our methodology is of potential interest for a broad audience within the physics community
and various applied fields, because it is universal in the sense of being valid for any spatially
extended dynamical system. It can help to understand the localized flow of dynamical
information in any such system by combining multivariate time series analysis, a complex
network approach and the information flow measure betweenness centrality. Possible fields
of application include fluid dynamics (turbulence), plasma physics and biological physics
(population models, neural networks, cell models). Furthermore, the climate network
approach is equally relevant for experimental data as well as model simulations and hence
introduces a novel perspective on model evaluation and data driven model building. Our
work is timely in the context of the current debate on climate change within the scientific
community, since it allows to assess from a new perspective the regional vulnerability and
stability of the climate system while relying on global and not only on regional knowledge.
The methodology developed in this thesis hence has the potential to substantially contribute
to the understanding of the local effect of extreme events and tipping points in the earth
system within a holistic global framework.



Zusammenfassung

Die Theorie komplexer Netzwerke bietet einen eleganten Rahmen zur statistischen Untersu-
chung der Topologie lokaler und langreichweitiger dynamischer Zusammenhänge (Telekonnek-
tionen) im Klimasystem. Unter Verwendung einer verfeinerten, auf linearen und nichtlinearen
Korrelationsmaßen der Zeitreihenanalyse beruhenden Netzwerkkonstruktionsmethode, bilden
wir die komplexe Korrelationsstruktur eines multivariaten klimatologischen Datensatzes auf
ein Netzwerk ab. Dabei identifizieren wir die Knoten des Netzwerkes mit den Gitterpunkten
des zugrundeliegenden Datensatzes, während wir Paare von besonders stark korrelierten
Knoten als Kanten auffassen. Die resultierenden Klimanetzwerke zeigen weder die perfekte
Regularität eines Kristallgitters, noch eine vollkommen zufällige Topologie. Vielmehr wei-
sen sie faszinierende und nichttriviale Eigenschaften auf, die charakteristisch für natürlich
gewachsene Netzwerke wie z.B. das Internet, Zitations- und Bekanntschaftsnetzwerke, Nah-
rungsnetze und kortikale Netzwerke im Säugetiergehirn sind. Besonders erwähnenswert ist,
dass in Klimanetzwerken das Kleine-Welt-Phänomen auftritt. Desweiteren besitzen sie eine
breite Gradverteilung, werden von Superknoten mit sehr vielen Nachbarn dominiert, und
bilden schließlich regional wohldefinierte Untergruppen von intern dicht vernetzten Knoten
aus.
Im Rahmen dieser Arbeit wurde eine detaillierte, graphentheoretische Analyse von Kli-

manetzwerken auf der globalen topologischen Skala durchgeführt, wobei wir uns auf das
Netzwerkfluss- und Zentralitätsmaß Betweenness konzentrierten. Betweenness ist zwar lokal
an jedem Knoten definiert, enthält aber trotzdem Informationen über die globale Netzwerkto-
pologie. Dies beruht darauf, dass die Verteilung kürzester Pfade zwischen allen möglichen
Paaren von Knoten in die Berechnung des Maßes eingeht. Das Betweennessfeld zeigt reich-
haltige und zuvor verborgene Strukturen in aus Reanalyse- und Modelldaten der erdoberflä-
chennahen Lufttemperatur gewonnenen Klimanetzen. Das durch unseren neuartigen Ansatz
enthüllte Metanetzwerk, bestehend aus hochlokalisierten Kanälen stark gebündelten Infor-
mationsflusses, bringen wir mit der Oberflächenzirkulation des Weltozeans in Verbindung. In
Analogie mit den gleichnamigen Datenautobahnen des Internets nennen wir dieses Metanetz-
werk den Backbone des Klimanetzwerks. Unsere Ergebnisse deuten insgesamt darauf hin,
dass Meeresoberflächenströmungen einen wichtigen Beitrag zur Kopplung und Stabilisierung
des globalen Oberflächenlufttemperaturfeldes leisten. Wir zeigen weiterhin, dass die hohe
Sensitivität des Betweennessmaßes hinsichtlich kleiner Änderungen der Netzwerktopologie die
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Detektion stark nichtlinearer physikalischer Wechselwirkungen im Klimasystem ermöglichen
könnte.
Die in dieser Arbeit vorgestellten Ergebnisse wurden mithilfe statistischer Signifikanz-

tests auf der Zeitreihen- und Netzwerkebene gründlich auf ihre Robustheit geprüft. In
Anbetracht fehlerbehafteter Daten und komplexer statistischer Zusammenhänge zwischen
verschiedenen Netzwerkmaßen ist diese Vorgehensweise besonders wichtig. Weiterhin ist die
Entwicklung neuer, allgemein anwendbarer Surrogate für räumlich eingebettete Netzwerke
hervorzuheben, die die Berücksichtigung spezieller Klimanetzwerkeigenschaften wie z.B. der
Wahrscheinlichkeitsverteilung der Kantenlängen erlauben.

Unsere Methode ist universell, weil sie zum Verständnis des lokalisierten Informationsflusses
in allen räumlich ausgedehnten, dynamischen Systemen beitragen kann. Deshalb ist sie inner-
halb der Physik und anderer angewandter Wissenschaften von potentiell breitem Interesse.
Mögliche Anwendungen könnten sich z.B. in der Fluiddynamik (Turbulenz), der Plasmaphy-
sik und der Biophysik (Populationsmodelle, neuronale Netzwerke und Zellmodelle) finden.
Darüber hinaus ist der Netzwerkansatz für experimentelle Daten sowie Modellsimulationen
gültig, und eröffnet folglich neue Perspektiven für Modellevaluation und datengetriebene
Modellierung. Im Rahmen der aktuellen Klimawandeldebatte stellen Klimanetzwerke einen
neuartigen Satz von Analysemethoden zur Verfügung, der die Evaluation der lokalen Vulne-
rabilität und Stabilität des Klimasystems unter Berücksichtigung globaler Randbedingungen
ermöglicht. Die in dieser Arbeit entwickelten und untersuchten Methoden könnten folglich
in der Zukunft, innerhalb eines holistisch-globalen Ansatzes, zum Verständnis der lokalen
Auswirkungen von Extremereignissen und Kipppunkten im Erdsystem beitragen.
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CHAPTER 1
Introduction

Alles ist in Wechselwirkung.
Alexander von Humboldt, “Kosmos” (1845)

During the last decade, the development and application of complex network theory generated
a wealth of novel insights into the nature of complex systems in various areas of science,
e.g., the internet and world wide web in computer science, food webs, gene expression and
neural networks in biology and citation networks in social science (Watts and Strogatz
(1998), Newman (2003), Albert and Barabási (2002)). The intricate interplay between the
structure and dynamics of real world networks has received considerable attention (Boccaletti
et al. (2006)). Particularly, synchronization arising by the transfer of dynamical information
in complex network topologies has been studied intensively (Arenas et al. (2008)). The
application of complex network theory to climate science is a very young field, where only
few studies have been reported recently (Tsonis and Roebber (2004), Tsonis et al. (2006),
Tsonis et al. (2008b), Tsonis and Swanson (2008), Yamasaki et al. (2008), Gozolchiani et al.
(2008), Donner et al. (2008), Donges et al. (2008), Donges et al. (2009)). The vertices of a
climate network are identified with the spatial grid points of an underlying global climate
data set. Edges are added between pairs of vertices depending on the degree of statistical
interdependence between the corresponding pairs of anomaly time series taken from the
climate data set.
When studying networks in the climate system, one has to assume that its dynamics

can be approximated reasonably well by a grid of low dimensional nonlinear dynamical
systems interacting only with their spatial neighbors according to the locality principle
of classical physics. Note that this assumption is made implicitly, when the fundamental
partial differential equations of fluid mechanics are discretized and integrated in large scale
climate simulations by the coupled atmosphere-ocean general circulation models (AOGCMs)
used in weather forecasting and climate science. Due to the continuity of the underlying
physical fields, such as temperature or pressure, neighboring grid points are dynamically
correlated; these trivial local correlations usually decay quickly within a typical length
scale. Additionally, richly structured long range correlations appear, that were named
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teleconnections by the climatological community and have been studied extensively since the
end of the 19th century.
The climate network approach enables novel insights into the topology and dynamics of

the climate system over many spatial scales ranging from local properties as the number of
first neighbors of a vertex v to global network measures, such as the clustering coefficient
or the average path length. The local degree centrality and related measures have been
used to identify super-nodes (regions of high degree centrality) and to associate them with
teleconnection patterns in the atmosphere, most notably the North Atlantic Oscillation
(NAO) (Tsonis and Roebber (2004), Tsonis et al. (2006), Tsonis et al. (2008b)). On the
global scale, climate networks were found to possess “small-world” properties due to long
range connections (edges linking geographically very distant vertices), that stabilize the
climate system and enhance the information transfer within it (Tsonis and Roebber (2004),
Tsonis et al. (2006), Tsonis et al. (2008b)). We stress, that the transfer of information in any
complex physical system, e.g., the climate system studied here, will be carried by a flow of
matter and energy. By studying the prevalence of long range connections in El Niño and La
Niña climate networks (Tsonis and Swanson (2008)) and the time dependence of the number
of stable edges (Yamasaki et al. (2008), Gozolchiani et al. (2008)), it has been shown very
recently, that the El Niño-Southern Oscillation (ENSO) has a strong impact on the stability
of the climate system.
This thesis is organized as follows: First we introduce the necessary elements of complex

network theory (Chap. 2) and present a refined method of climate network construction
and analysis (Chap. 3). In Chap. 4, we describe a hierarchy of surrogates on the time
series and network level, some of which were developed specifically for this work, and explain
how they can be used to test the statistical significance of our results. In the following, we
give an account of our central result, the detection of the backbone of the climate network
formed by a network of channels of high dynamical information flow in the global surface air
temperature (SAT) field (Chap. 5). We also touch upon the extension of our methodology
to spatially regional and temporally seasonal climatological data sets and report interesting
results on the seasonality of a regional SAT climate network encompassing the Indian Ocean
basin (Chap. 6). Finally, we give some concluding remarks and an outlook in Chap. 7.



CHAPTER 2
Elements of complex network theory

Complex network theory in general and inevitably this study of complex networks in
the climate system in particular are founded on graph theory. The latter is a branch of
mathematics that studies graphs: structures used to model pairwise relations between objects
taken from some collection. One of the first works in the domain of graph theory was the
famous solution of the Königsberg bridge problem presented by Leonhard Euler in 1736
(Euler (1736)). We use it as an example in Sect. 2.1 to illustrate the fundamental definitions
provided there, that we rely on many times in the course of this thesis. For a detailed account
on the theory, algorithms and applications of (di)graphs we refer to (Bang-Jensen and Gutin
(2006)).

Since Euler’s time, graph theory was mainly concerned with the properties of ordered
graphs, prominent examples being the graphs used to model crystal lattices, a chessboard
or the hexagonal arrangement of combs in the hives of bees. It took more than 200 years
until two hungarian mathematicians, Paul Erdős and Albért Rényi, guided the attention of
the scientific community towards the opposite end of the spectrum of regularity, ranging
from perfect order to complete randomness. From the late 1950’s to the mid 1960’s they
developed the theory of random graphs in eight seminal papers (Erdős and Rényi (1959,
1960, 1961a,b, 1963, 1964, 1966, 1968)). In the spirit of Erdős and Rényi, scientists from
disciplines as diverse as social science, electrical engineering and biology now began to
regard their subjects of study, e.g., acquaintance networks, power grids and food webs, as
entirely random networks 1. Alas, in the course of the following decades it was realized that
this description of natural networks was not satisfactory either. Neither perfect order, nor
complete randomness appeared to be promising paradigms to gain a deeper understanding
of complex network-structured systems found in the real world.
Finally, Duncan Watts and Steven Strogatz in 1998 published the small-world network

model, that in one of its flavors equips a regular network with additional random edges
(Watts and Strogatz (1998)). By combining order and randomness elegantly, the model

1 We introduce Erdős-Rényi random graphs as well as various generalizations, and discuss their use as
models of real world networks in Chap. 4.



4 2. Elements of complex network theory

was able to describe some of the properties of complex real world networks that had been
perceived as paradoxical before. The work of Watts and Strogatz launched a great effort
of research on what came to be known as complex network theory. It is important to note
that the networks found in nature are typically too large to simply draw them on a piece
of paper and then to extract all properties of interest by just looking at them long enough.
Bearing this fact in mind it is straightforward to understand the dominance of physicists in
the field of complex network theory: It was necessary to introduce statistical concepts to
the study of networks that are abundant in all modern theories of physics, e.g., quantum
mechanics, thermodynamics, statistical mechanics or solid state physics. Hence, the present
work on complex climate networks also relies heavily on statistical network measures, that we
introduce in Sect. 2.2 and Sect. 2.3. The development of complex network theory continues
to the time of writing of this thesis and has spawned applications in many different branches
of science, including climate science (Tsonis and Roebber (2004), Tsonis et al. (2006), Tsonis
et al. (2008b), Tsonis and Swanson (2008), Yamasaki et al. (2008), Gozolchiani et al. (2008),
Donner et al. (2008), Donges et al. (2008), Donges et al. (2009)).

Several reports on the (then) current state of complex network theory have been published
in the form of review papers (Albert and Barabási (2002), Newman (2003), Boccaletti et al.
(2006)). A useful survey of the plethora of network measures is presented by (da F. Costa
et al. (2007)). Furthermore there are some noteworthy popular accounts on the emerging
field of complex network theory, its history and applications (Barabási (2002), Buchanan
(2002), Watts (2003)).

In this chapter we first give a brief introduction into some basic concepts of graph theory
in Sect. 2.1. Sect. 2.2 contains definitions of general network measures, whereas Sect. 2.3
presents measures tailored for spatially embedded complex networks.

2.1. Foundations of graph theory
Legend holds that during the early 18th century, the citizens of Königsberg mused on an
entertaining question: Could an ambler go on a round trip of old Königsberg, starting and
arriving at the same location and crossing each of the seven bridges across the river Pregel
exactly once? Leonhard Euler realized that the exact location and shape of the four land
areas and seven bridges was not of interest for the solution. In fact, the essential structure
underlying the Königsberg bridge problem is the topology of connections of land areas and
bridges (Fig. 2.1). To model this situation, one can construct a graph by assigning vertices
to the land areas and edges to the bridges.

Definition 2.1.1 (Graph) An undirected graph or network is defined as an ordered pair
G := (V,E) containing a finite set V = {1,...,N} of vertices or nodes together with a finite set
E of edges or links {i,j} with i,j ∈ V , which are 2-element subsets of V . N = |V | denotes
the size (number of vertices) of G, L = |E| the number of edges of G. A graph is called
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dense, if L is close to the maximum number of edges Lmax. It is called sparse, if L� Lmax.
The following types of graphs are considered in this work:

(i) In a simple graph, one and only one edge {i,j} ∈ E can exist between a pair of vertices
and self-loops of the type {i,i} are not allowed.

(ii) A weighted simple graph possesses an associated mapping E → R : {i,j} 7→ Wij

assigning a real number Wij ∈ R to each edge {i,j} ∈ E. W is referred to as the weight
matrix of G.

(iii) For a directed graph or digraph, E is a set of directed edges, directed links or arcs (i,j)
that are ordered pairs of elements of V .

(iv) A spatially embedded graph carries a mapping V → S : i 7→ ri assigning each vertex
i ∈ V to an element ri ∈ S of a metric vector space S and a metric l : S × S → R :
(ri,rj) 7→ lij. ri is called the coordinate vector of a vertex i.

Naturally, graphs can be used to construct mathematical models of any collection of
objects equipped with pairwise relations. Their application may range from networks of
sexual contacts of university students to a co-ownership network of Silicon Valley high
tech companies. In the context of climate networks, vertices are associated to geographical
regions, whereas edges represent significant statistical interrelationships of some climatological

(a)

1

2

{1,2}

{1,2} 4
{1,4}

3
{2,3}

{2,3}

{2,4}

{3,4}

(b)

Figure 2.1 (a) Engraving of the prussian city of Königsberg in 1652 by Mattheus Merian-Erben
(Merian-Erben (1652)). Four distinct land areas separated by the river Pregel were connected
by seven bridges. (b) Representation of the Königsberg graph GK := (VK ,EK) of N = 4
vertices and L = 7 edges. VK = {1,2,3,4}, EK = {{1,2},{1,2},{1,4},{2,3},{2,3},{2,4},{3,4}}.
Circles symbolize vertices, the lines connecting them represent edges. The Königsberg graph is
undirected. It is neither weighted nor simple, since multiple edges exist between vertices 1,2
and 3.
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observable between a pair of regions. Now let us return to the bridge problem. If the task
was to solve it for a much larger city with many rivers, channels and bridges 1, it might be a
good idea to divide the city into smaller districts that can be analyzed separately. In the
context of graph theory this corresponds to the introduction of subgraphs.

Definition 2.1.2 (Subgraph) A subgraph G′ := (V ′,E ′) of a graph G := (V,E) contains
a vertex set V ′ ⊂ V and an edge set E ′ ⊂ E, where ∀{i,j} ∈ E ′ : i,j ∈ V ′.

Note that in the Königsberg picture, a simple graph models a city where every pair of land
areas is connected by at most one single bridge. A directed graph could be used to capture
the traffic rules of old Königsberg: Some bridges might have allowed traffic to pass in one
direction only, others in both (Fig. 2.2(a)). A weighted graph would be able to describe the
carrying capacity of the bridges or the duties imposed on any traverser by the city council
(Fig. 2.2(b)). We display the relation between the various types of simple graphs used in
this thesis in Fig. 2.3.

To perform computations on a simple graph, it can be represented by an adjacency matrix.
This type of representation is computationally feasible on current desktop computers only
for relatively small and dense graphs with N ≤ 104, one major reason being that the memory
needed to store the adjacency matrix on a computer grows as N2. Therefore we use the matrix
representation mainly for illustrative purposes in this work, internally most calculations rely
on an adjacency list representation of graphs (Bang-Jensen and Gutin (2006) and Appx. E).

Definition 2.1.3 (Adjacency matrix) A simple directed graph G := (V,E) can be repre-
sented by an adjacency matrix A ∈ GLN(R) with elements

Aij =

0 (i,j) /∈ E
1 (i,j) ∈ E,

(2.1)

where i,j ∈ V . For an undirected graph, A is symmetric.

Now that we have defined graphs we are in a position to describe mathematically a
stroller’s trajectory on the Königsberg graph by introducing the concept of a walk.

Definition 2.1.4 (Walk) A walk on the graph G := (V,E) is an alternating sequence of
vertices and edges, that starts and ends with a vertex. The vertices that precede and follow
an edge in the sequence are the end vertices of that edge. A walk is called

(i) open, if its start and end vertices are different,

(ii) closed, if its start and end vertices are identical,

1 Just think of Venice or Amsterdam.
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Figure 2.2 In this thesis we use undirected graphs (Fig. 2.1(b)), directed graphs and undirected
weighted graphs. We stress that in contrast to the Königsberg example, all climate networks
are simple graphs. (a) Illustration of a Königsberg digraph. (b) A weighted version of the
Königsberg graph.

(iii) simple, if no vertex (and therefore no edge) is visited more than once,

(iv) directed, if it is defined on a digraph and contains arcs instead of edges.

In the language of graph theory, Euler was posed the question whether a simple and closed
walk existed on the Königsberg graph. Simple walks are referred to as paths and play an
essential role in the definition of distances between the vertices of a graph. The simple and
closed walk of the Königsberg bridge problem is known today as an Eulerian cycle, a graph
containing an Eulerian cycle is called Eulerian.

Definition 2.1.5 (Path) A path π(i,j) is a simple walk on the graph G := (V,E) from
start vertex i ∈ V to end vertex j ∈ V . i is said to be reachable from j, if a path containing
both vertices exists on G. The length of the path |π(i,j)| is defined as the number of edges
the path contains. We denote the set of all existing different paths from i to j by P(i,j). The
shortest path length from i to j is then given by dij = minπ(i,j)∈P(i,j) |π(i,j)|. In this work,
we generally use Dijkstra’s algorithm to calculate the topological distance matrix dij (Dijkstra
(1959)).

Definition 2.1.6 (Cycle) A cycle is a simple and closed walk on a graph G.

Euler was able to prove that an Eulerian cycle does not exist on the Königsberg graph.
Finally consider a city including some small islands that are only reachable by boat. Some
of these islands may be connected by bridges, some of them may not. In this case, the city’s
connectivity graph contains collections of land areas which are not connected among each
other by bridges. We refer to these unconnected subgraphs as components. Many graphs
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Weighted digraph

Unweighted digraph

Threshold

Weighted graph

Symmetry

Unweighted graph

Symmetry

Threshold

Figure 2.3 This diagram illustrates the structural relationships between the different types of
simple graphs considered in this work (da F. Costa et al. (2007)). The operation symmetry
transforms a simple (weighted) digraph into a simple (weighted) graph by symmetrizing the
adjacency matrix A 7→ Θ

(
A + AT

)
(and the weight matrix W 7→ W + WT ), where MT

denotes the transpose of a square matrix M and Θ(x) is the Heaviside function. The operation
threshold transforms a weighted simple (di)graph into a simple (di)graph by thresholding the
weight matrix Aij 7→ Θ (Wij − τ). All edges with a weight Wij > τ will be included in the
unweighted simple (di)graph, where τ ∈ R is an arbitrary threshold value.

found in nature contain one component that is much larger than all other components and
includes nearly all of the graph’s vertices. In the case of a city connectivity graph, this giant
component may correspond to the main land area, while the other small components model
islands.

Definition 2.1.7 (Component) A component is a maximally connected subgraph G′ :=
(V ′,E ′) of a graph G := (V,E). That is, all vertices in V ′ are reachable from all other vertices
in V ′ and no vertex i ∈ V \V ′ is reachable from any vertex j ∈ V ′. We refer to the largest
component of G with size O(N ′) = N as the giant component.

2.2. Topological network measures
The edge density of an undirected network is given by

ρ = L(
N
2

) = 〈kv〉v
N

, (2.2)

L being the number of edges in the network and 〈kv〉v the mean vertex degree.
(
N
2

)
=

N(N − 1)/2 gives the maximally possible number of edges. The network measures defined
below were selected for this study, because they allow us to compare different aspects
of climate network topology on local, mesoscopic and global scales (Table 2.1) and are
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Table 2.1 Two dimensional classification of network measures into topological scales vs. fields,
distributions and scalar measures.

local mesoscopic global
field kv, AWCv, AEDv, RWBv Cv CCv, BCv
distribution p(k), pE(l)
scalar H(A,B) C L

well established in the literature (Newman (2003), Albert and Barabási (2002), Boccaletti
et al. (2006), Freeman (1979)). Degree centrality, the related area weighted connectivity,
random walk betweenness and the Hamming distance use only local information on the direct
neighborhood of a vertex v. In contrast, closeness and betweenness centrality as well as
the average path length include global topological information by relying on shortest paths
between pairs of vertices in the network. This is why we refer to the latter three as global
measures. On the mesoscopic scale, the local and average clustering coefficient depend only
on information about neighbors and next neighbors of vertices. The concept of topological
scales is elaborated in greater detail in Zamora-López (2008). We refer to measures assigning
a real number gv ∈ R to each vertex v ∈ V via a mapping V → R : v 7→ gv as fields. Scalar
measures produce a single real number for the whole graph.

2.2.1. Local measures

2.2.1.1. Degree centrality

The degree or degree centrality (Freeman (1979)) kv gives the number of first neighbors of a
vertex v and can be calculated from the network adjacency matrix Aij using

kv =
N∑
i=1

Avi. (2.3)

Vertices with exceptionally high degree centrality are usually referred to as hubs or super-
nodes. We extend the use of this term to regions of spatially adjacent vertices with high
degree centrality.

2.2.1.2. Degree distribution

The degree distribution p(k) is of great interest in the analysis of complex networks and will
be used in this work to study the role of super-nodes in seasonal climate networks (Chap. 6).
p(k) is an estimator of the probability density function (PDF) of degree centrality kv, hence
it gives the probability to find a vertex with degree k when drawing randomly from the
vertex set V . Networks having a power-law degree distribution p(k) ∝ k−γ with exponent
γ are commonly referred to as scale-free networks (Newman (2003)). Since there has been
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frequent misuse of this term in the literature (Li et al. (2005)), great care should be taken
when assigning the scale-free property to real world finite networks. We therefore prefer
to speak of a fat-tailed degree distribution in the context of this work, even though it has
been claimed that climate networks are scale-free (Tsonis and Roebber (2004), Tsonis et al.
(2006), Tsonis and Swanson (2008), Tsonis et al. (2008b)).

2.2.1.3. Random walk betweenness

Complementary to the shortest path betweenness centrality (Eq. 2.14), it is interesting to
study the centrality of a vertex v with respect to the average flow of random walkers on the
network. Here we derive random walk betweenness within the framework of the more general
search centrality developed by Arenas et al. (2003). Note that an equivalent measure was
later independently introduced by Newman (2005).
We focus on a single information packet at vertex i whose destination is vertex k, i.e., a

packet searching for k. The probability for the packet to go from i to a different node j on
its way to k is denoted by pkij. Note that the packet is removed as soon as it arrives at its
destination k, i.e., pkkj = 0, ∀j. The precise form of pkij depends on the search algorithm. For
an absorbing random walk we obtain

pkij = (1− δik)
Aij
hi
, (2.4)

where hi = ∑N
j=1Aij denotes the degree of i and δik the Kronecker delta. The first factor of

the product takes care of the absorption of the randomly walking information packet at the
target vertex k, while the second describes that the packet can otherwise proceed to any of
the neighbors of i with equal probability h−1

i in the next time step. The probability of the
random walker to go from i to j in n steps is given by

P k
ij(n) =

∑
l1,l2,...,ln−1

pkil1p
k
l1l2 . . . p

k
ln−1j, (2.5)

because all single steps are independent. The sum is taken over all walks (i,l1, . . . ,ln−1,j) of
length n between vertices i and j. Defining the matrices pk and Pk(n) with elements pkij
and P k

ij(n) respectively yields

Pk(n) =
(
pk
)n
. (2.6)

We can now consider the average number of times bkij, that an information packet generated
at i and with destination k passes j. Introducing the matrix bk with elements bkij,

bk =
(
1− pk

)−1
pk (2.7)
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holds1, where 1 represents the identity matrix. The effective random walk betweenness

RWBj =
∑
ik

bkij (2.8)

can be calculated from the bk by summing over all pairs of source and target vertices i,k. To
calculate RWBj numerically, N matrix inversions of an N ×N matrix have to be performed,
each of which scales as O(N3) when using Gaussian elimination. The overall computational
complexity of the algorithm is thus O(N4). Note that RWBj has to be calculated separately
for each component if the network is not connected, because in this case pk does not have
full rank and hence cannot be inverted.

2.2.1.4. Hamming distance

The Hamming distance H(A,B) of two labeled simple graphs with adjacency matrices Aij
and Bij measures the fraction of edges that have to be changed to transform one graph into
the other (Hamming (1950)). Both graphs must contain the same number of vertices N .
Specifically, H(A,B) is given by

H(A,B) = 〈XOR(Aij, Bij)〉ij , (2.9)

where

XOR(Aij, Bij) =

1 Aij 6= Bij

0 else.
(2.10)

Hamming distance is bounded by 0 ≤ H(A,B) ≤ 1 and measures the global probability
of non-equal entries in the two adjacency matrices. In our application we calculate the
Hamming distance of two graphs with approximately equal edge density ρ.
To evaluate the significance of this measurement, we compare it with the expected

Hamming distance HR(ρ) of two independent Erdős-Rényi random graphs of edge density ρ
(Erdős and Rényi (1959)). The probability that the entries Aij and Bij differ between the
two random graph adjacency matrices is given by p (Aij 6= Bij) = p (Aij = 1) p (Bij = 0) +
p (Aij = 0) p (Bij = 1) = ρ(1− ρ) + (1− ρ)ρ = 2ρ(1− ρ). Since all entries are independent,
taking the expectation value reveals the given expression HR(ρ) = 〈p (Aij 6= Bij)〉ij =
2ρ(1− ρ). The expected Hamming distance HR(ρ) gives a reference point against which to
judge the similarity of two graphs. We will make use of it in Sect. 3.3.3 to compare the
performance of two correlation measures in climate network construction.

1 Specifically, bk =
∑∞

n=1 Pk(n) =
∑∞

n=1
(
pk
)n =

∑∞
n=0

(
pk
)n − 1 =

(
1− pk

)−1 − 1 =
(
1− pk

)−1 pk.
For the geometric series of matrices to converge as

∑∞
n=0

(
pk
)n =

(
1− pk

)−1, all eigenvalues µi of pk

have to fulfill |µi| ≤ 1.
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2.2.2. Mesoscopic measures

2.2.2.1. Local clustering coefficient

We refer to Cv as the local topological clustering coefficient or Watts-Strogatz clustering
coefficient (Watts and Strogatz (1998)) of a vertex v. It gives the probability, that two
randomly chosen first neighbors of v are also neighbors. With Γv being the set of first neighbors
of v and e(Γv) the number of edges connecting the vertices within the neighborhood Γv, the
clustering coefficient can be written as

Cv = e(Γv)(
kv

2

) , (2.11)

where the binomial coefficient
(
kv

2

)
= 1

2kv(kv − 1) gives the maximum number of edges in Γv.
The local clustering coefficient is normalized to 0 ≤ Cv ≤ 1.

2.2.2.2. Global clustering coefficient

We speak of the (global) clustering coefficient C as the mean Watts-Strogatz clustering
coefficient

C = 〈Cv〉v . (2.12)

2.2.3. Global measures

2.2.3.1. Closeness centrality

Closeness centrality CCv measures the inverse average topological distance of vertex v to all
others in the network (Freeman (1979)),

CCv = N − 1∑N
i=1 dvi

, (2.13)

where the topological distance or shortest path length dij is the minimum number of edges
that have to be crossed to travel from vertex i to vertex j (dvv = 0 by definition). If i and
j are not connected, the maximum topological distance in the graph dij = N − 1 is used
in the sum. Closeness centrality is normalized to 0 ≤ CCv ≤ 1. Following our definition,
CCv is large, when v is topologically close to the rest of the network. One should bear this
in mind, because some researchers have used the inverse of our definition (Freeman (1979),
Zamora-López (2008)).

2.2.3.2. Betweenness centrality

Assume that information travels through the network on shortest paths. There are σij
shortest paths connecting two vertices i and j (Fig. 2.4). We then regard a vertex v to be
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Figure 2.4 We use this simple graph of N = 7 and L = 9 to illustrate the numbers σij and
σij(v), that are important for the calculation of betweenness centrality. There are three shortest
paths of length d14 = 3 connecting vertices 1 and 4, hence σ14 = 3. In contrast, there is only
one shortest path of length d16 = 2 between 1 and 6, i.e., σ16 = 1. Vertex 2 is contained in two
of the three shortest paths between 1 and 4, thus σ14(2) = 2.

an important mediator for the information transport in the network, if it is traversed by a
large number BCv of all existing shortest paths. Mathematically, the betweenness BCv can
be expressed by

BCv =
N∑

i,j 6=v

σij(v)
σij

, (2.14)

where σij(v) gives the number of shortest paths from i to j, that include v (Freeman (1977,
1979)). Here the contribution of shortest paths is weighted by their respective multiplicity
σij. For the calculation of betweenness we rely on the fast O(LN) algorithm introduced by
Newman (Newman (2001a,b)).

2.2.3.3. Average path length

The average or characteristic path length L of a graph is defined as the average topological
distance between all pairs of vertices,

L = 1(
N
2

) ∑
i<j

dij. (2.15)

Disconnected pairs of vertices are not included in the average, for a detailed discussion see
(Newman (2003)).

2.3. Spatially embedded networks and associated measures
The climate networks studied in this work are constructed from two dimensional fields of
climatological observables (Chap. 3), that can be approximated to reside on a spherical
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surface centered at the Earth’s center of mass 1. They therefore have to be treated as networks
spatially embedded on the 2-sphere of radius Rearth in R3, i.e., S = S2(Rearth). Vertex v
has an associated two dimensional coordinate vector rv = (λv,φv) with λv ∈ [−90◦,90◦] and
φv ∈ [0◦,360◦] denoting latitude and longitude respectively. As the metric l we choose the
great circle distance

lij = Rearth arccos(sin(λi) sin(λj) + cos(λi) cos(λj) cos(φi − φj)), (2.16)

where the edge distance lij corresponds to the geodesic distance of vertices i,j on S2.
For the study of complex networks embedded on a spherical surface in three dimensional

space it is useful to introduce network measures, that take this geographical nature into
account explicitly (Boccaletti et al. (2006)). The embedding induces additional spatial
constraints to the network topology and evolution (Rozenfeld et al. (2002), Warren et al.
(2002), Kosmidis et al. (2008)). We assess the effect of these spatial contraints, e.g., a given
edge distance distribution or average edge distance field, on the topological network measures
defined above by designing novel classes of spatially constrained surrogate network models
(Sect. 4.2.4). As previous results show, some of the most interesting features of climate
networks are detectable only by geographical measures (Tsonis et al. (2006), Tsonis and
Swanson (2008)).

Note that for the data sets analyzed here (Sect. 3.1), vertices are not distributed homoge-
neously on the earth’s surface. The density of vertices increases from the equator towards the
poles. This induces an inherent bias in the network measures studied, which prompts to use
area weighted generalizations of the standard complex network measures, e.g., area weighted
connectivity is the generalization of degree centrality. We have performed extensive studies
of climate networks constructed from data interpolated to different grids and resolutions
and find, that our results (Sect. 3.3) are not altered significantly by the vertex density bias
(Sexton et al. (2009)). This holds particularly for the highly interesting path based measures
on the global topological scale.
Within the classification scheme for network measures introduced in Sect. 2.2, the

geographical measures defined below all belong to the local topological scale (Table 2.1).
The reason is, that area weighted connectivity, average edge distance and the edge distance
distribution depend exclusively on the lengths of single edges and the local topological
adjacency relations between vertices.

1 This is only an approximation, since within the same two dimensional gridded climatological field, grid
points v may lie at different distances rv from the Earth’s center of mass. For example, surface air
temperature and pressure are defined to be measured two meters above the Earth’s surface, with rv

depending on the local surface topography. However, the spherical shell is very good approximation,
because the typical vertical separation of grid points is much smaller than their horizontal distance.
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2.3.1. Area weighted connectivity
The area weighted connectivity

AWCv =
∑N
i=1Avi cos(λi)∑N
i=1 cos(λi)

, (2.17)

is closely related to the degree centrality kv of v. It corrects for the fact that in geographical
networks defined on a grid, vertices correspond to regions of different area on the earth’s
surface. For the angularly equidistant grids considered in this work, the corresponding area
of vertex v is proportional to the cosine of latitude λv (see Sect. 3.1.1). AWCv can be
interpreted as the fraction of the earth’s surface area a vertex is connected to (Tsonis et al.
(2006)). AWC is thus normalized to 0 ≤ AWCv ≤ 1.

2.3.2. Average edge distance
Average edge distance AEDv measures the average angular great circle distance to the first
neighbors of vertex v (Tsonis et al. (2006), Jones (2007)),

AEDv = 1
kv

1
N

∑N
i=1 lvi

N∑
i=1

Avilvi. (2.18)

The average edge distance is normalized such that ALDv = 1,∀v ∈ V for a fully connected
graph to correct for geometric biases in regional climate networks.

2.3.3. Edge distance distribution
The edge distance distribution pE(l), the PDF of edge distance lij calculated for all pairs
{i,j}, allows to assess the tendency of long distance links to arise in a climate network and
enables the quantitative comparison of different climate networks concerning this central
property. It is important to realize that for a geographical network, pE(l) has a purely
geometric component pgeom(l) and a component pnet(l) describing the intrinsic properties of
the underlying network structure. Assuming independence

pE(l) = pgeom(l)pnet(l), (2.19)

one obtains pE(l) by dividing the empirically found link distance distribution by the geometric
distribution. We speak of pnet(l) as the intrinsic edge distance distribution. For a global
network, pgeom(l) can be derived analytically (see below)

pgeom(l) = 1
2 sin

(
l

Rearth

)
, (2.20)

whereas it is calculated numerically from the edge distance matrix lij of all possible vertex
pairs {i,j} for regional networks with a lower degree of symmetry. In this work we use pnet(l),
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l

Rearth

P

Figure 2.5 Schematic sketch for the derivation of pgeo(l) for a global network.

because it enables an objective comparison of climate networks with different geometries,
i.e., regional and global, and reflects the network property of interest.

Derivation of pgeo(l) for a global network Considering a network embedded on S2 with a
homogenous vertex density, each geodesic distance l is weighted by the circumference of a
circle with radius r(l) = Rearth sin (l/Rearth) (Fig. 2.5). Because of symmetry it is sufficient
to perform the calculation for one arbitrary point P on the spherical surface. One obtains

pgeo(l) = 2πr(l)∫ π
0 dl2πr(l)

= 1
2 sin

(
l

Rearth

)
. (2.21)

2.4. Summary
In this chapter, we have first outlined the development of complex network theory starting
from the solution of the Königsberg bridge problem by Leonhard Euler. We have then
defined a minimal set of concepts drawn from graph theory and in the following introduced
the required measures of complex network theory for pure as well as spatially embedded
networks. Their classification into local, mesoscopic and global topological scales serves to
tame the plethora of complex network measures employed in this work by allowing a well
structured discussion of our results.



CHAPTER 3
Construction of climate networks

. . .we seem to live in a universe where orderly structures
form whenever there is a flow of energy.

Erich Jantsch, “The Self-organizing Universe” (1980)

In this chapter we present the refined climate network construction methodology developed
during the writing of this thesis. In all earlier related works (Tsonis and Roebber (2004),
Tsonis et al. (2006), Tsonis et al. (2008b), Tsonis and Swanson (2008), Yamasaki et al.
(2008), Gozolchiani et al. (2008), Donner et al. (2008)), researchers have used the linear
cross-correlation function of pairs of anomaly time series to quantify the degree of statistical
interdependence between different spatial regions. But the highly nonlinear processes at
work in the climate system call for the application of nonlinear methods to obtain more
reliable results. In a recent work on structures in the betweenness centrality field of climate
networks (Donges et al. (2008)), we have introduced mutual information (Kantz and Schreiber
(2004)) as a measure of statistical interdependence to climate network construction. The
mutual information allows to capture nonlinear relationships between time series. We found
that, while many properties of climate networks generated using the Pearson correlation
and the mutual information at zero lag are qualitatively and quantitatively similar, the
betweenness centrality field shows much greater deviations between the two construction
methods. To check the possibility, that these pronounced differences are a signature of
nonlinear processes in the climate system, and to bridge the gap between our nonlinear
network construction method and the techniques previously used, we present a systematic
statistical similarity study of the resulting climate networks. We show, that over a wide
range of relevant edge densities (the fraction of the maximum number of possible edges
present in the network), a high degree of similarity is maintained on local and mesoscopic
topological scales. Furthermore, we address some of the more pronounced differences on the
global topological scale, that are uncovered by betweenness centrality, and their possible
relation to nonlinear processes in the climate system.
The organization of the chapter is the following: We first describe the data and the

filtering and normalization procedures applied to it (Sect. 3.1). We proceed to develop in
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detail the method of climate network construction (Sect. 3.2). In Sect. 3.3, we present
the systematic comparison of the measures obtained from Pearson correlation and mutual
information climate networks, respectively. Furthermore we provide a concise climatological
interpretation of our results (Sect. 3.4). The conceptual shortcomings of our method
are discussed in some detail in Sect. 3.5, where we particularly focus on the transitivity
problem. We also provide an account of the formal relationships of our climate network
construction method to classical methods of multivariate climate data analysis (Sect. 3.6).
Some conclusions are drawn in Sect. 3.7.

3.1. Data

3.1.1. Description
We utilize the monthly averaged global surface air temperature (SAT) field for climate
network construction to maintain consistency with earlier works that analyzed the same field
(Tsonis and Roebber (2004), Tsonis et al. (2006), Tsonis et al. (2008b), Tsonis and Swanson
(2008), Yamasaki et al. (2008), Gozolchiani et al. (2008), Donges et al. (2008)). The SAT
field allows to directly capture the complex dynamics on the interface between ocean and
atmosphere due to heat exchange and other local processes1. SAT therefore enables us to
study atmospheric as well as oceanic dynamics within a common framework. Note that in
principle we could use data from any climatological field for climate network construction,
e.g., surface air pressure, precipitation, air moisture content, sea surface temperature and
salinity.
We use reanalysis data provided by the National Center for Environmental Predic-

tion/National Center for Atmospheric Research (NCEP/NCAR) (Kistler et al. (2001))
and model output from the World Climate Research Programme’s (WCRP’s) Coupled Model
Intercomparison Project phase 3 (CMIP3) multi-model data set (Meehl et al. (2007)). For
optimal comparability with the reanalysis data, we choose a 20th century reference run2 by
the Hadley Centre HadCM3 model (Fig. 3.1). A data set consists of a regular spatiotemporal
grid with time series xi(t) associated to every spatial grid point i at latitude λi and longitude
φi. Start and end dates, length of time series T , latitudinal resolution ∆λ, longitudinal
resolution ∆φ and the number of vertices of the corresponding global climate network N are
given in Table 3.1. Note that we remove the polar grid points at λ ∈ {−90◦,90◦} from the
data sets, since the poles are represented by rows of grid points with identical dynamics.

1 Surface air temperature (SAT) is defined as the air temperature at a height of 2 m above the surface.
2 20c3m, as defined in the IPCC AR4 (Intergovernmental Panel on Climate Change (2007)).
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Figure 3.1 The mean surface air temperature field 〈SATi(t)〉t calculated from the HadCM3
SAT data set (Meehl et al. (2007)), both taken from the 20th century reference run described
in Sect. 3.1.1.

3.1.2. Filtering and normalization
To minimize the bias introduced by the external solar forcing common to all time series in the
data set, we calculate anomaly values, i.e., remove the mean annual cycle by phase averaging.
Relabeling the time series by month m ∈ {1, . . . ,12} and year y mapping xi(t)→ xi(y,m)
one obtains anomaly time series ai(y,m) = xi(y,m) − 〈xi(y,m)〉y, that are consequently
subjected to the inverse mapping ai(y,m)→ ai(t). Here and in the following 〈f(x)〉x denotes
the expectation value of observable f taken with respect to the variable x. Note that the
anomaly time series already have zero mean. We furthermore normalize the anomaly time

Table 3.1 Properties of global model and reanalysis surface air temperature data sets.

NCEP/NCAR reanalysis HadCM3
Temporal coverage Jan 1948 - Dec 2007 Jan 1860 - Dec 1999
T [months] 720 1680
∆λ [◦] 2.5 2.5
∆φ [◦] 2.5 3.75
N 10224 6816
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series to unit variance. Up to this point, we follow the method used previously by (Tsonis
and Swanson (2008), Yamasaki et al. (2008)). It is known, that the annual cycle induces
higher order effects such as seasonal variability of anomaly time series variance. We find
that using only data from a particular season to avoid biases due to this effect does not alter
our results substantially, so that we choose to use the whole data set for a more accurate
evaluation of statistical interdependence.

3.2. Constructing climate networks
To clarify the physical rational behind our method of climate network construction, we
discuss it within the framework of synchronization from dynamical systems theory (Pikovsky
et al. (2001)). In a discretized model of the climate system, dynamical correlations can be
envisioned as arising by (partial) synchronization of nonlinear oscillators on the grid that
physically form a locally connected network. Even this simple network topology can generate
nontrivial spatial patterns of synchronization (Arenas et al. (2008), Blasius and Tönjes (2005),
Tönjes (2007)). The same is true for the synchronization of modes of variability in spatially
continuous systems as the underlying fields of fluid- and thermodynamics (Boccaletti et al.
(2002)), e.g., SAT. Many measures of synchronization have been proposed and used to infer
coupling strength and direction between connected nonlinear oscillators (Pikovsky et al.
(2001), Rosenblum et al. (1996)). The Pearson correlation coefficient (Zhou et al. (2007))
and the mutual information (Schmidt et al. (2008)) were successfully employed to retrieve
the network topology from the dynamics on the vertices alone.

The concept of synchronization provides a powerful paradigm to guide the enhancement of
our understanding of the formation of (nonlinear) teleconnections in the climate system, and
to stimulate the development of more advanced measures to detect these effects in measured
data (Pikovsky et al. (2001), Boccaletti et al. (2002)). We hence propose that research
aiming to construct networks from multivariate climatological data should be embedded
within the framework of synchronization in complex networks (Arenas et al. (2008)).

3.2.1. Correlation measures
In the spirit of simplicity facing comparably short time series and desiring consistency with
the literature, we choose to first use the standard Pearson correlation coefficient and then
cross-check the results by introducing mutual information to climate network construction.
The mutual information will allow to investigate nonlinear dynamical relationships (nonlinear
teleconnections) that are not fully detectable by using the linear Pearson correlation coefficient
(Brockwell and Davis (2002)). Note that we evaluate both measures at zero lag between time
series. In principle, one can calculate a time delayed Pearson correlation (the cross correlation
function) and mutual information (Kantz and Schreiber (2004)). This is appropriate when
studying climate networks on smaller time scales using data sets with (sub-)diurnal resolution
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(Yamasaki et al. (2008), Gozolchiani et al. (2008), Donner et al. (2008)). However, in the
present work, we intend to study long term structural properties of the climate system on
a scale of O(102) years using monthly averaged data. Most physical mechanisms of global
information transfer in the SAT field, such as traveling Rossby waves, heat exchange between
ocean and atmosphere or the advection of heat by surface currents in the ocean, act on
time scales of less than one month. Therefore, it is reasonable to calculate the correlation
measures at zero lag between anomaly time series.

3.2.1.1. Pearson correlation coefficient

The parametric empirical Pearson correlation coefficient Rij = 〈âi(t)âj(t)〉t = Rji estimates
the strength of a linear relationship between two normalized time series âi and âj , given those
are normally distributed. It produces spurious results for not normally distributed observables
and nonlinear relationships. Consequently it should be used with care when constructing
climate networks. The non-parametric Spearman rank order correlation coefficient, that
does not depend on the assumption of normally distributed observables, and Rij are found
to converge to the same value for nearly all pairs of time series taken from the data sets
introduced in Sect. 3.1. The corresponding climate networks hence display close to identical
network measures at all topological scales and we conclude, that utilizing the Pearson
correlation coefficient to study linear climate networks is statistically justified here.

In contrast to the standard definition of teleconnectivity (Wallace and Gutzler (1981)), we
do not limit our analysis to strongly negative correlations. As in earlier works on climate
networks, we use the absolute value of Pearson correlation Pij = |Rij| = Pji to construct
climate networks, since both large negative and positive values of Pearson correlation are
indicative of a strong linear statistical interdependence.

3.2.1.2. Mutual information

In climate science, nonlinear measures of statistical interdependence have been successfully
applied to uncover strongly nonlinear relationships of climate observables, e.g., the phase
coherence between ENSO and the Indian Monsoon (Maraun and Kurths (2005)). Mutual
information from information theory is another nonlinear measure now widely applied in
many fields of science, ranging from linguistics (Church and Hanks (1990)) to computational
neuroscience (Schmidt et al. (2008)). The mutual information Mij can be interpreted as
the excess amount of information generated by falsely assuming the two time series âi and
âj to be independent, and is able to detect nonlinear relationships (Kantz and Schreiber
(2004)). By definition, Mij is large if the two time series are highly linearly (anti)correlated.
In contrast, a strongly nonlinear relationship between âi and âj yields large Mij, but small
Pij (see the upper left quadrant in Fig. 3.2(c)). The mutual information can be estimated
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using

Mij =
∑
µν

pij(µ, ν) log pij(µ, ν)
pi(µ)pj(ν) , (3.1)

where pi(µ) is the probability density function (PDF) of the time series âi, and pij(µ, ν) is
the joint PDF of a pair (âi,âj)1. By definition, Mij is symmetric, so that Mij = Mji. The
standard unit of measurement of mutual information is the bit, if logarithms to base 2 are
used.

We use a simple histogram approach with equally sized bins for all pairs {i,j} to estimate
the probability densities. Because the estimator (Eq. 3.1) is known to depend on bin
size and partitioning (Schwarz et al. (1993), Hegger et al. (1999), Papana and Kugiumtzis
(2008)), we use an identical partitioning for all {i,j} to guarantee an optimal comparability
of the Mij. We select a bin number of 64, i.e., µ,ν ∈ {1, . . . ,64}, that meets the Cochran
criterion of at least 5 samples per bin for a typical time series length of O(103). The basic
algorithm applied here is computationally much less expensive than more advanced methods
proposed in the literature (Papana and Kugiumtzis (2008), Kraskov et al. (2004)), which is
an important advantage when dealing with up to O(108) pairs in a global climate network.
Our algorithm is feasible, since the application to network construction requires only the
correct estimation of relative differences of Mij between all pairs of time series. In other
words, in our application systematic under- or overestimation of mutual information is not a
problem, as long as the error stays approximately constant across all pairs.

3.2.2. Obtaining the network adjacency matrix
We now construct the climate network by thresholding the correlation measure matrix Cij
(Cij = Pij or Cij = Mij), i.e., only pairs of vertices {i,j} that satisfy Cij > τ are regarded as
linked. By definition Cij ≥ 0, ∀{i,j} (see Sect. 3.2.1). Using the Heaviside function Θ(.),
the adjacency matrix Aij of the climate network is then given by

Aij = Θ (Cij − τ) . (3.2)

Note that Aij inherits its symmetry from Cij and the resulting climate network is an
undirected and unweighted simple graph.

3.2.3. Choosing the threshold
The last but nontrivial step in climate network construction is the selection of a threshold τ ,
above which we consider a pair of vertices to be connected. From a statistical point of view

1 The indices µ and ν label the bins of the histograms that we use to estimate the N PDFs pi(µ) and the
N(N − 1)/2 joint PDFs pij(µ,ν).
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(a) (b)

(c)

Figure 3.2 (a,b) Frequency plot in the space of correlation measure Cij and edge distance
lij for all N(N − 1)/2 = 23,228,928 pairs of time series in the global HadCM3 SAT data set.
The apparent oscillations with edge distance are an artifact of the finite spatial resolution of
the underlying grid. (c) Frequency plot in the space of Pearson correlation Pij and mutual
information Mij . All plots are based on 2D-histograms with 104 equally sized rectangular bins.
The color bars indicate the common logarithm of frequency. Vertical and horizontal lines mark
the thresholds corresponding to edge density ρ = 0.005 for Pij and Mij (Fig. 3.3). The asterisk
in (c) delineates the quadrant containing edges that exist in the mutual information, but not in
the Pearson correlation network of ρ = 0.005, and hence are candidates for strongly nonlinear
connections.
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it is desirable to only maintain connections that are statistically significant with respect to
some reasonable test and reject those not meeting this criterion. Classical significance tests
and randomization experiments have been used to assess the value of τ for climate networks
constructed using the Pearson correlation coefficient (Tsonis and Roebber (2004), Tsonis
et al. (2006), Tsonis and Swanson (2008)). We built on these results testing against randomly
shuffled time series, Fourier surrogates and twin surrogates (Thiel et al. (2006)). Twin
surrogates correspond to the null hypothesis of trajectories with random initial conditions
on the attractor of the original time series and are found to give the strictest bounds on
the significance of network connections detected using Pearson correlation and mutual
information (Sect. 4.1.4).

3.2.3.1. On the role of teleconnections

From the perspective of complex network theory, we intend to uncover interesting structures
in the topology of the climate network. Different features of the underlying correlation
measure matrix Cij will be revealed at different thresholds τ . Consequently, the choice of τ
has to reflect a trade-off between the statistical significance of connections and the richness
of network structures unveiled. For example, note the potentially interesting long distance
edges with high Pearson correlation and mutual information at edge distance l & 15000km
in the global HadCM3 SAT data set (Fig. 3.2(a) and 3.2(b)). They will only be included
in the climate network, if the threshold τ . 0.65 for the Pearson correlation network, or
τ . 0.3 in the case of the mutual information network. Long distance edges with high
correlation measure or teleconnections are responsible for all interesting and non-trivial
features of climate networks, such as “small-world” behavior, super-nodes or betweenness
structures. Without them serving as spatial short cuts in the network, only the locally
connected underlying grid remains. Ergo the inclusion of teleconnections must be a necessary
criterion in the choice of the threshold in order to obtain interesting results in climate network
analysis.

3.2.3.2. Dependence of network measures on edge density

Systematic studies show a smooth dependence of most climate network measures on τ in
the range of edge densities considered in this work. This implies that small uncertainties in
the choice of the threshold will not lead to strongly deviating results within the complex
network framework. Here we discuss the threshold dependence of edge density ρ(τ), and the
edge density dependence of clustering coefficient C(ρ), average path length L(ρ), number
of components nc(ρ), relative giant component size S(ρ) and average relative non-giant
component size 〈s(ρ)〉 (Fig. 3.4). Here a component constitutes a maximally connected
subset of vertices of the network, i.e., a connected subset of vertices that is not reachable
from any other vertex in the network. The term giant component is usually reserved for the
largest component containing nearly all of the vertices in the network (Newman (2003)).
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(a) (b)

Figure 3.3 PDF p(C) of the correlation measure matrices Cij for the HadCM3 SAT data set.
The vertical line indicates the threshold τ yielding an edge density ρ(τ) = 0.005, that is equal
to the shaded area. (a) Pearson correlation, τ = 0.682, b) mutual information, τ = 0.398.

S(ρ) in turn always measures the relative size of the largest component, even if its size
becomes comparable to that of other components.

The edge density ρ(τ) decays approximately exponentially due to the shape of the PDF of
the absolute value of the correlation measure p(C) (in the following we abbreviate Cij by C),

ρ(τ) =
∞∫
τ

dCp(C). (3.3)

Note that ρ(τ) is a monotonic decreasing function of τ . Correlation measure distributions
found empirically from climate data generally have a connected support (Fig. 3.3), so that
ρ(τ) is strictly monotonic decreasing and induces a one to one correspondence between
threshold τ and edge density ρ (Fig. 3.4(a)).

The clustering coefficient C is found to stay approximately constant at intermediate values
of ρ and decays to zero for small ρ (Fig. 3.4(b)), when the network decomposes into a larger
number nc (Fig. 3.4(d)) of smaller components (Fig. 3.4(e) and 3.4(f)). The average path
length L decays approximately as a power law with growing ρ and has discontinuities at edge
densities ρµ, where τµ = τ(ρµ) equals the correlation measure Cij of edges {i,j} with a high
edge betweenness centrality Newman (2003), i.e., that lie on many shortest paths between
pairs of vertices (Fig. 3.4(c)). When τ ≥ τµ, these shortest paths become considerably longer
and components might decouple from the network’s giant component. This effect leads to a
decrease of L for small ρ since the network decomposes into smaller disconnected components
(Fig. 3.4(f)) and path lengths are measured only within the components. The formation of a
giant component encompassing nearly all vertices at ρ ≈ 0.0012, where the giant component
size increases from S ≈ 0.5 to S ≈ 1 (Fig. 3.4(e)), goes along with discontinuities of L and
〈s(ρ)〉. Note that all vertices have joined the giant component at ρ ≈ 0.020 for the HadCM3
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4 Network measures as a function of threshold and edge density for global HadCM3
SAT networks constructed using Pearson correlation. (a) Threshold dependence of edge density
ρ(τ), (b) edge density dependence of clustering coefficient C(ρ) and (c) average path length
L(ρ). (d) Edge density dependence of the number of components nc(ρ), (e) giant component
size S(ρ) and (f) average non-giant component size 〈s(ρ)〉. The vertical lines indicate edge
densities of ρ = 0.005 and ρ = 0.01 and corresponding thresholds.
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SAT Pearson correlation network (Fig. 3.4(d)) and at ρ ≈ 0.028 for the corresponding
mutual information network (not shown here).
At all edge densities considered in Sect. 3.3 the giant component size is of O(1). The

influence of the non-giant components on measures such as average path length and closeness
centrality is therefore negligible in the regime studied here, since larger deviations are only
expected for ρ < ρ. This range of edge densities in turn is not relevant for the conclusions
drawn from the comparison presented in Sect. 3.3. To study this regime of very small
edge densities in detail, measures more robust to disconnected components such as the
local efficiency (related to closeness centrality) and global efficiency (related to average path
length) should be considered (Newman (2003)). We chose the definitions given in Chap. 2
to maintain consistency with the existing literature on climate networks.

3.2.3.3. Pragmatic choice of τ

We think that the problem of selecting exactly the right threshold is not as severe as might be
thought. Climate network analysis deals with topological properties of correlation measure
matrices and aims at gaining new insights heeding this paradigm. In the climate system, it is
furthermore not immediately evident which physical entities should take the role of vertices
and edges in a complex network. This constitutes the main conceptional difference between
our method and attempts of recovering an unknown physically existent network structure
from vertex dynamics as in the study of the brain (Zhou et al. (2007), Schmidt et al. (2008),
Rabinovich et al. (2006), Zhou et al. (2006), beim Graben et al. (2008)), where one can
argue that a more natural identification of neurons and axons with the vertices and edges
of a neural network exists. It is known that in the classical local description of geophysical
fluid dynamics of atmosphere and oceans, i.e., the Navier-Stokes equations combined with
thermodynamic equations, the network of physical interaction has the structure of a regular
grid (Vallis (2006)). In a discretized model, the dynamics at each grid point is only coupled
to the grid points in the immediate neighborhood. The complex topology observed in climate
networks should therefore be treated as a manifestation of structure formation, that allows
for uncertainties in the choice of parameters such as τ .
In the spirit of the ideas elaborated in the above paragraphs, we choose to fix the edge

density ρ when comparing the properties of climate networks generated using different
correlation measures. This will result in different thresholds τ , because the empirical
correlation measure distribution p(C) clearly differs between linear Pearson correlation and
nonlinear mutual information (Fig. 3.3). The selection of ρ is in each case guided by the
principle of balancing between structural richness and statistical significance outlined above.



28 3. Construction of climate networks

3.3. Comparison of Pearson correlation and mutual information
climate networks

After having introduced our methodology for climate network construction, we proceed to
the main aim of this study: A comparison of networks generated using the linear Pearson
correlation coefficient and the nonlinear mutual information on local, mesoscopic and global
topological scales. The edge density ρ is varied between ρmin = 0 and ρmax = 0.1 in equally
sized steps. Recall, that small edge densities correspond to high thresholds (Sec. 3.2.3). For
increasing edge density, edges with decreasing correlation measure are added to the network.
Consequently, climate networks with a very high edge density ρ ≥ 0.1 are not expected
to contain meaningful information for climate data analysis, because they contain many
connections that are not statistically significant, i.e., that are much more likely to arise by
chance. For example, Tsonis et al. use the Pearson correlation coefficient and a threshold of
τ = 0.5 in all of their works (Tsonis and Roebber (2004), Tsonis et al. (2006), Tsonis et al.
(2008b), Tsonis and Swanson (2008)), which corresponds to an edge density of ρ ≈ 0.01 for
the global HadCM3 SAT data set analyzed here. They report that according to the Student’s
t test, a value of Pij = 0.5 is statistically significant above the 99% level. In our recent work,
we use an edge density of ρ = 0.005 (Donges et al. (2008)). This larger threshold corresponds
to an even higher significance level, because it is less likely to be exceeded by the correlation
measures calculated from pairs of one original and one surrogate time series.
We compare the properties of the complex networks obtained at each edge density level

on local, mesoscopic and global topological scales. We enable a qualitative discussion of
similarity by plotting the fields of area weighted connectivity (Fig. 3.5), local clustering
coefficient (Fig. 3.6), closeness (Fig. 3.7) and betweenness centrality (Fig. 3.8) on a world
map at fixed edge density ρ = 0.005. The local deviations of these fields calculated for
Pearson correlation and mutual information climate networks are highlighted by normalized
difference fields (Fig. 3.9). For a quantitative comparison at all edge densities considered, we
calculated the Spearman rank order correlation coefficient or Spearman’s Rho rs(ρ) of the
corresponding fields taken from the Pearson correlation and mutual information networks
(Fig. 3.10(d) and Fig. 3.11(d)). We chose to use the Spearman’s Rho instead of the Pearson
correlation coefficient for this task, because it is known to be more reliable when applied
to data with non-Gaussian PDF. This is an important property, considering that some of
the fields we are interested in have a highly non-normal frequency distribution (Sect. 3.3.1
and Sect. 3.3.3). Furthermore at each edge density step, we consider the Hamming distance
between the networks on the local topological scale, whereas on the mesoscopic and global
scale we compare global clustering coefficient and average path length.

In the following we will illustrate the comparison for the HadCM3 SAT data set in detail
(Sect. 3.3.1, 3.3.2, 3.3.3 and Fig. 3.5, 3.6, 3.7, 3.8, 3.9, 3.10). Only the quantitative
comparison is presented for the NCEP/NCAR reanalysis SAT data set (Fig. 3.11), since we
are lead to the same conclusions as for the model data set. Finally we present climatological
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interpretations of the observed network structures (Sect. 3.4).

3.3.1. Local comparison
On the local topological scale, we find that Pearson correlation and mutual information
climate networks are very similar at low edge densities. At ρ = 0.005, the area weighted
connectivity (Fig. 3.5) field shows only small deviations by visual inspection, that are most
pronounced in the tropics (Fig. 3.9(a)). The rank order correlation coefficient rAWC

s reaches
a maximum between ρ = 0.005 and ρ = 0.01 and decays for larger edge densities (Fig.
3.10(d)). We obtain high values for ρ = 0.005 and ρ = 0.01 (Table 3.2). Note that for the
climate networks studied, area weighted connectivity has a fat tailed PDF (Tsonis et al.
(2006)).

The Hamming distance H(ρ) is always smaller than the expected distance HR(ρ) of two
random networks at edge density ρ (Fig. 3.10(a)). It is notable, that H(ρ) seems to go
to zero tangentially to the ρ-axis, i.e., H ′(ρ)|ρ=0 ≈ 0, whereas HR(ρ)|ρ=0 = 2. Therefore
most of the edges with the highest Pearson correlation and mutual information values must
coincide. From analytical considerations and Monte-Carlo simulations we find that the
standard deviation of the PDF of Hamming distance between the two random networks
is of O(N−1) for N � 1. This means that the expected deviations from the mean HR(ρ)
are of O(10−4) for the climate networks considered here. The difference between measured
Hamming distance and HR(ρ) is by one order of magnitude larger than these expected
deviations (Table 3.2). We hence conclude that the observed similarity of Pearson correlation
and mutual information networks can be considered statistically significant, with respect to
the null hypothesis of random networks of the same size N , at all edge densities considered.
Particularly, the results elaborated in this section show, that at the edge densities used in
earlier works on climate networks (Tsonis and Roebber (2004), Tsonis et al. (2006), Tsonis
et al. (2008b), Tsonis and Swanson (2008), Donges et al. (2008)), Pearson correlation and
mutual information give very similar results on the local topological scale.

Table 3.2 Spearman’s Rho rs(ρ) of area weighted connectivity (AWC), local clustering coeffcient
(C), closeness centrality (CC) and betweenness centrality (BC) fields and Hamming distances
H(ρ) and HR(ρ) calculated from Pearson correlation and mutual information networks at edge
densities ρ = 0.005 and ρ = 0.01 for the global HadCM3 SAT data set.

ρ = 0.005 ρ = 0.01
rAWC
s 0.95 0.88
rCs 0.80 0.81
rCCs 0.98 0.95
rBCs 0.70 0.59
H 0.001 0.003
HR 0.010 0.02
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(a)

(b)

Figure 3.5 Area weighted connectivity fields for global HadCM3 SAT networks at ρ = 0.005
(linear color scale) obtained using a) Pearson correlation, b) mutual information. The rank
order correlation between the two fields is rAWC

s (0.005) = 0.95.
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3.3.2. Mesoscopic comparison
The local and global clustering coefficients also reveal a high degree of similarity on the
mesoscopic topological scale. Analogous to AWC, the local clustering coefficient fields are
nearly indistinguishable (Fig. 3.6). However, the largest deviations appear to cluster along
coastlines (Fig. 3.9(b)). This interesting finding can be understood by considering the
qualitatively different dynamics of SAT over oceans and continents, e.g., the on average
much larger seasonal variability over continents. Along coastlines, the correlation length of
the SAT field is thus smaller than that expected over continents or the ocean away from
the coast. Hence Pearson correlation and mutual information have a higher probability to
disagree on the existence of edges between spatially adjacent vertices (local edges) along the
coastline. These local and mesoscopic deviations in network structure are detected by the
local correlation coefficient Cv, that is by design particularly sensitive on the mesoscopic
topological scale (Sect. 3.4).

The rank order correlation coefficient reaches a maximum between ρ = 0.005 and ρ = 0.01
and decays for larger edge densities (Fig. 3.10(d)). We obtain high values for ρ = 0.005 and
ρ = 0.01 (Table 3.2). The global clustering coefficients show only small deviations of O(10−2)
at all edge densities considered (Fig. 3.10(b)). We get CP (0.005) = 0.682, CM (0.005) = 0.678
and CP (0.01) = 0.657, CM(0.01) = 0.668. The local clustering coefficient field is close to
normally distributed.

3.3.3. Global comparison
We observe more interesting behavior at the global topological scale. Closeness centrality
at ρ = 0.005 does not deviate much qualitatively and quantitatively across the two types
of networks considered (Fig. 3.7), the largest differences are detected in the tropics with a
tendency to decrease with latitude towards the poles, and most notably over South America
(Fig. 3.9(c)). The betweenness centrality field shows more pronounced qualitative regional
differences (Fig. 3.8). For example, note the differing high betweenness structures over the
oceans, particularly over the East Pacific, the North Atlantic and arctic regions (Fig. 3.9(d)).
The rank order correlation coefficients rCCs and rBCs decay more quickly than the ones on
the local and mesoscopic topological scale and fluctuate around values of rCCs ≈ 0.1 and
rBCs ≈ 0.4 for larger edge densities (Fig. 3.10(d)). At ρ = 0.005 and ρ = 0.01, rBCs is notably
smaller than the Spearman’s Rho of the other fields considered, while rCCs is close to unity
(Table 3.2). Confirming earlier studies, we find that betweenness follows a fat tailed PDF
(Goh et al. (2002)), whereas the closeness field is normally distributed.

These results indicate, that betweenness centrality may quantify the local differences
between networks constructed using Pearson correlation and mutual information at the
global topological scale, that could be traces of nonlinear physical processes in the climate
system. That the greatest deviations are found between the betweenness centrality fields
is plausible, because betweenness is by definition a very sensitive measure and can locally
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(a)

(b)

Figure 3.6 Local Watts-Strogatz clustering coefficient fields for global HadCM3 SAT networks
at ρ = 0.005 (linear color scale) obtained using a) Pearson correlation, b) mutual information.
The rank order correlation between the two fields is rCs (0.005) = 0.81.
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depend heavily on the existence or non-existence of a small number of edges in the network
(Albert et al. (2004)). Consider for example a small set of edges, that are the only connections
between two large communities in a network. The vertices on either end of these edges have
a high betweenness centrality, because all shortest paths between the two communities must
contain them. If the bridging edges are removed, the betweenness centrality of the beachhead
vertices must decrease significantly, since they can now only participate in shortest paths
within their own community. This sensitivity of betweenness leads to a large dynamic range
of 20 orders of magnitude for the global HadCM3 SAT network, that calls for a logarithmic
scale to properly visualize the betweenness distribution (Fig. 3.8).
The average path length (Fig. 3.10(c)) agrees closely, with deviations of O(10−1). We

obtain LP (0.005) = 13.4, LM(0.005) = 13.5 and LP (0.01) = 8.5, LM(0.01) = 8.5.
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(a)

(b)

Figure 3.7 Closeness centrality field for global HadCM3 SAT networks at ρ = 0.005 (linear
color scale) obtained using a) Pearson correlation, b) mutual information. The rank order
correlation between the two fields is rCCs (0.005) = 0.98. The white regions on the map
correspond to vertices that are disconnected from the network’s giant component.
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(a)

(b)

Figure 3.8 Betweenness centrality fields for global HadCM3 SAT networks at ρ = 0.005
(logarithmic color scale) obtained using a) Pearson correlation, b) mutual information. The
rank order correlation between the two fields is rBCs (0.005) = 0.70.
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(a) (b)

(c) (d)

Figure 3.9 Normalized difference fields ∆gv = |gPv − gMv |/
√
〈gPw 〉w 〈gMw 〉w of network measure

fields gPv and gMv , calculated from Pearson correlation and mutual information HadCM3 SAT
climate networks at ρ = 0.005. (a) Area weighted connectivity, (b) local clustering coefficient,
(c) closeness and (d) betweenness.
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(a) (b)

(c) (d)

Figure 3.10 Results for the quantitative comparison of Pearson correlation and mutual
information climate networks for the global HadCM3 SAT data set, shown as a function of edge
density ρ (100 edge density steps). (a) Hamming distance H(ρ) (continuous line) and expected
random Hamming distance HR(ρ) (dashed line) between the two networks. The expected
deviations from HR(ρ) are of O(10−4) (Sect. 3.3.1). (b) Global clustering coefficient CP (ρ)
of the Pearson correlation (continuous line) and CM (ρ) of the mutual information network
(dashed line). (c) Average path length LP (ρ) of the Pearson correlation (continuous line) and
LM (ρ) of the mutual information network (dashed line). (d) Spearman rank order correlation
coefficients rAWC

s (ρ) for the area weighted connectivity (continuous line), rCs (ρ) for the local
clustering coefficient (crosses), rCCs (ρ) for the closeness centrality (dash-dotted line) and rBCs (ρ)
for the betweenness centrality fields (dotted line).



38 3. Construction of climate networks

(a) (b)

(c) (d)

Figure 3.11 This figure shows the same statistics as Fig. 3.10, but evaluated for the global
NCEP/NCAR reanalysis SAT data set.
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3.4. Climatological interpretation
We give brief climatological interpretations of the network properties unveiled by our approach,
since the main aim of this study is the comparison of linear and nonlinear climate network
construction methods (Sect. 3.2). Super-nodes found in the AWC field (Fig. 3.5) over
the tropics and locally the mid-latitudes, were shown to be related to major atmospheric
teleconnection patterns (Tsonis et al. (2008b)). For example, the region of increased AWC
in the North East Pacific is associated to the well-known Pacific North-American (PNA)
pattern (Wallace and Gutzler (1981)). The El Niño cold tongue in the tropical East Pacific
is clearly visible in the AWC field, as well as in all other fields considered (Fig. 3.6, 3.7 and
3.8).

The local clustering coefficient is found to be of O(1) in a connected region in the equatorial
Pacific as well as locally along continental coastlines (Fig. 3.6). The former indicates a
high degree of dynamical similarity in the tropical Pacific (Tsonis et al. (2006), Tsonis et al.
(2008b)), that is possibly related to ENSO. The latter are more likely to be a signature of
our climate network construction method along the coastline and visible on the mesoscopic
scale only, that we discuss in Sect. 3.3.2.
The contouring of the closeness field (Fig. 3.7) nicely shows the latitudinally growing

influence of the Coriolis force. Pressure gradient forces are balanced by the Coriolis force
in the mid-latitudes for large scale atmospheric flows. This balance vanishes in the tropics,
because the Coriolis force decays as sin(λ) when latitude λ approaches the equator. The
closeness field also shows that the tropics form the center of SAT climate network, the
associated vertices being topologically closer to the rest of the network than vertices in the
mid-latitudes and arctic regions. This finding can be explained by considering the comparably
regular dynamics of the tropical SAT field leading to many edges between tropical vertices,
and the more irregular dynamics in the mid-latitudes and arctic regions that results in fewer
edges within the mid-latitudes and arctic as well as between these regions and the tropics
(von Bloh et al. (2005)). In a global climate network, it is hence more probable to find shorter
shortest paths starting from tropical vertices, while shortest paths originating in mid-latitude
and arctic vertices are on average longer. Moreover, we point out the lower closeness over
Australia and Greenland indicating that these land-masses also form pronounced clusters
in the SAT climate network, even though the local clustering coefficient field shows that
they are not as highly locally interconnected as the equatorial Pacific. These differences in
local connectedness among the detected dynamical clusters are caused by the qualitatively
different dynamics over land and oceans (Sect. 3.3.2). The land-sea difference is globally
detected by closeness centrality and AWC: Vertices over land masses are found to be on
average less well connected and topologically more remote than those over the oceans.
We observe highly localized linear structures in the betweenness field (Fig. 3.8), some

of which appear to resemble major surface ocean currents such as the California and Peru
currents following the western coastline of the Americas, or the East Greenland, Norwegian
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and Canary currents. Note that some of these current resembling structures are particularly
visible in the betweenness difference field (Sect. 3.3.3), indicating that nonlinear processes
might be involved in the formation of some of the structures. In analogy to the major
communication channels of the internet, we refer to these betweenness structures as the
backbone of the climate network, because a large fraction of the dynamical information
exchanged via topologically shortest paths between all possible pairs of vertices {i,j} must
pass the high betweenness regions. This is particularly true for information transported by
advective processes, where the assumption of information traveling on shortest paths can be
substantiated by extremalization principles. In our recent work we report the discovery of
the backbone and its possible role in stabilizing the climate system (Donges et al. (2008)
and Chap. 5).
Note that the region very close to the equator in the tropical East Pacific has a compar-

atively low AWC, closeness and betweenness, but a high local clustering coefficient. This
indicates that this region forms a internally densely connected cluster in a network sense, i.e.,
it is dynamically highly interrelated but nearly detached from the rest of the network. We
interpret it as a pronounced manifestation of the equatorial Coriolis barrier (Vallis (2006)),
that can also be observed weakly over the equatorial Indian and Atlantic Oceans.

In agreement with (Tsonis and Roebber (2004), Tsonis et al. (2006), Tsonis et al. (2008b))
we find that Pearson correlation and mutual information climate networks possess properties
of “small-world” networks (Watts and Strogatz (1998), Milgram (1967)), i.e., a small average
path length L � N and a large clustering coefficient of O(1) (Table 3.2, Fig. 3.10 and 3.11).
Complex “small-world” networks with comparable global properties are frequently found
in nature, e.g., the internet, power grids, social and neural networks, and constitute the
subject of study of an equally diverse collection of sciences. The small average path length
can be explained by the influence of teleconnections. This indicates that perturbations of the
regional dynamics (vertex dynamics) can on average quickly affect the whole globe via paths
consisting of statistically highly interrelated pairs of regions (edges). It has been argued
that this serves to stabilize the climate system and to enhance the information transfer
within it (Tsonis and Roebber (2004), Tsonis et al. (2006), Tsonis et al. (2008b), Tsonis and
Swanson (2008)). If the climate network was only locally connected, in other words if all
teleconnections were removed from it, the average path length would be of O(N) as that of a
regular grid. The high clustering coefficient is due to the spatial continuity of the underlying
physical fields (e.g., SAT), that leads to a prevalence of local triangles (Tsonis et al. (2008a)).

3.5. The transitivity problem
The transitivity problem constitutes one potentially serious conceptual flaw of the climate
network construction methodology presented earlier in this chapter. Envision a subgraph of
order 3 depicting the topology of physical interactions within some climatological field between
three spatially well separated regions on the Earth’s surface, that are represented by vertices
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Figure 3.12 Illustration of the transitivity problem. Vertices represent spatially separated
regions on the Earth’s surface. Straight lines indicate direct physical interactions between
regions within some climatological field, e.g., Rossby waves, prevailing winds or surface ocean
currents. Dashed lines depict false edges in a climate network not corresponding to any direct
physical interaction, that arise due to the transitivity of correlation measures such as Pearson
correlation and mutual information. (a) Simplest manifestation of the transitivity problem
(first order) in a subgraph of three regions. (b) A higher order version of the transitivity
problem setting forth the influence of noise and of dynamical sources external to the “horseshoe”
4− 2− 1− 3− 5.

(Fig. 3.12(a)). While region 1 can exchange dynamical information directly with regions 2
and 3 via Rossby waves, prevailing winds, surface ocean currents or other physical processes,
regions 2 and 3 may be separated by a grand mountain chain inhibiting direct interaction.
Nevertheless, because of the influence of region 1, a strong statistical interrelationship may
be detected between 2 and 3 by Pearson correlation or mutual information. In other words,
these two measures possess the property of transitivity: If the time series â1(t) is found to be
linearly or nonlinearly related to â2(t) and â3(t), this relationship also holds for the pair â2(t)
and â3(t). One can see this geometrically by treating the normalized anomaly time series
âi(t) as elements of a T -dimensional vector space RT . Pearson correlation Rij corresponds
to the scalar product of this space and measures the degree of parallelism of the vectors âi(t)
and âj(t), where Rij = ±1 if they are parallel or antiparallel. Hence, if two vectors are close
to parallel to a third vector, they also must be close to parallel to each other.
Starting from the triangle (Fig. 3.12(a)), higher order manifestations of the transitivity

problem have to be considered, e.g., the “horseshoe” of direct interactions 4− 2− 1− 3− 5
in Fig. 3.12(b). It is reasonable to assume that the addition of noise along each edge and
the influence of other regions acting as sources of dynamical information external to the
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“horseshoe” lead to a lower probability of falsely adding edge {4,5} to the climate networks
as compared to the triangle case. We generally think of the probability of falsely adding
edges as decreasing with the length of the path of indirect interaction 1. In conclusion,
the transitivity problem can effect local and mesoscopic network properties, whereas the
path-based measures on the global topological scale should be more robust.

To avoid the transitivity problem, more advanced measures have to be introduced to climate
network construction, that allow to differentiate between direct and indirect interactions in
multivariate dynamical systems. Promising candidates are Granger causality (Granger and
Hatanaka (1964)), conditioned transfer entropy (Schreiber (2000)) and partial coherence
(Schelter et al. (2006)). The former two concepts have already been applied within the realm
of climate science (e.g., Mosedale et al. (2006), Kleeman (2007), Verdes (2005)).

3.6. Relationship to standard methods of teleconnection analysis
Here we briefly address the formal relationship of climate networks to two of the most widely
used methods for the determination of teleconnection patterns: Correlation analysis (CA)
and empirical orthogonal function (EOF) analysis (von Storch and Zwiers (1999)). We will
show that both can be embedded in the framework of complex network theory. Note that the
two classical methods allow only to study linear statistical interrelationships within gridded
climatological fields and are limited to the local topological scale, since they are concerned
with the dynamics of single grid points and pairs of these. Complex network theory allows to
naturally extend the ideas behind CA and EOF to include nonlinear relationships between
the dynamics on grid points, to the interesting mesoscopic and global topological scales as
well as to systematically illuminate the interaction of two or more observables, e.g., climate,
vegetation and land use in the domain of Earth system analysis (Schellnhuber and Wenzel
(1998)).

Let us consider a fully connected and weighted climate network Gw := (Vw,Ew) constructed
from and weighted by Pearson correlation, i.e., wij = Rij,∀{i,j} ∈ Vw×Vw. To obtain a fully
connected network within our method, it is sufficient to set the threshold to τ = minij Cij.
The intensity

hi =
N∑
j=1

AijWij (3.4)

of vertex i is defined as the sum of the weights of the edges attached to it (Arenas et al.
(2008)).

1 The length of the path of indirect interaction is 2 for the triangle (Fig. 3.12(a)) and 4 for the “horseshoe”
(Fig. 3.12(b)).
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3.6.1. Correlation analysis
The jth row or column rj ∈ RN of the Pearson correlation matrix R is referred to as a
correlation map (von Storch and Zwiers (1999)). There are N such maps containing the
estimated linear Pearson correlation from base point j to all other grid points (Fig. 3.13(a)).
In the language of complex network theory, the correlation map rj corresponds to the ordered
set of weights (Wij)i of the edges attached to vertex j in the weighted network Gw. The
vertex intensity hj is proportional to the mean of correlation map j, i.e., hj = N 〈rj〉.

Correlations between spatially adjacent grid points are usually positive and large due to the
continuity of the underlying physical fields, while dipole-like interactions in the atmosphere
may give rise to pronounced negative correlations between very distant grid points. A
well-known example for a dipole-like oscillation in the pressure field is the North Atlantic
Oscillation pattern (NAO) with a center of action over the Azores and one over Iceland
(Wallace and Gutzler (1981)). The teleconnectivity map T is particularly useful to visualize
these dipole-like patterns and to summarize the information contained in the correlation maps,
its local minima revealing the potential centers of action of the teleconnection patterns (von
Storch and Zwiers (1999)). Its elements Tj are defined to be the most negative correlation
between grid point j and all others, i.e.,

Tj = min
i
Rij = min

i
(rj)i. (3.5)

In other words, the teleconnectivity map gives the minimum weight attached to vertex j for
all j ∈ Vw, that is to say Tj = miniWij.

3.6.2. Empirical orthogonal function analysis
Empirical orthogonal function (EOF) analysis presents an elegant and widely used method
for finding the most dominant, linearly uncorrelated spatial and temporal structures within
the anomaly field a(t) of some climatological observable (von Storch and Zwiers (1999)) and
hence well suited for the study of teleconnection patterns. EOF analysis is an indispensable
linear tool for dimensionality reduction of high dimensional climatological data sets like the
ones analyzed in this work, because in many cases the sum of a small set of static orthogonal
spatial patterns ej with time dependent coefficients αj(t) can explain most of the variance
contained in the data set. We can expand the anomaly field as

a(t) =
N∑
j=1

αj(t)ej. (3.6)

The EOFs ej are chosen to maximize the variance of the anomaly field projected onto the
respective subspace spanned by ej . They are ordered such that e1 explains most of the total
variance of the multivariate data set, e2 explains less and so on until finally eN accounts for
the smallest fraction of the total variance. Specifically, for the first EOF this amounts to
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(a) (b)

Figure 3.13 Correlation and teleconnectivity maps for the HadCM3 SAT data set. (a)
Correlation map of a grid point over Potsdam, Germany at λ = 52.5◦N and φ = 11.25◦E .
Note the wave train patterns over the northern hemisphere and the weak structures south of
Australia in the mid-latitudes of the southern hemisphere. (b) Teleconnectivity map integrating
information from all N correlation maps. For example, the local minimum south of Greenland
is a center of action of the North Atlantic Oscillation (NAO), while the three local minima
in the North Pacific at approximately (45◦N, 150◦W ), (30◦N, 167◦E) and (20◦N, 135◦E) are
associated to the Pacific North America Pattern (PNA) (Wallace and Gutzler (1981)).

(a) (b)

Figure 3.14 Comparison of (a) the first EOF (leading eigenvector) of the Pearson correlation
matrix R and (b) Newman’s unweighted eigenvector centrality ECv of the Pearson correlation
climate network at ρ = 0.01, calculated from the HadCM3 SAT data set. Both fields have been
normalized, so that the largest element is equal to unity. Note that as expected, the strongest
features of the first EOF are also found in the eigenvector centrality field (Sect. 3.6.2).
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minimizing the error
〈
||a(t)− 〈a(t),e1〉 ||2

〉
t
.

The EOFs can be calculated as the eigenvectors of the Pearson correlation matrix R, i.e., as
solutions of the equation

Rej = νjej, (3.7)

the associated eigenvalues νj giving the variance explained by the EOF ej. The dominating
EOF e1 is hence the eigenvector corresponding to the largest eigenvalue ν1.

Interestingly, the first EOF e1 finds its equivalent in complex network theory in Newman’s
weighted eigenvector centrality ECv calculated for the fully connected and Pearson correlation
weighted network Gw (Newman (2004)). ECv of vertex v is defined to be proportional to
the sum of the weighted eigenvector centralities of the vertex’s neighbors multiplied by the
weights of the edges connecting them. This allows a vertex to obtain a high ECv by either
being adjacent to many other vertices or by being strongly connected (with high edge weight)
to a smaller set of vertices that themselves have a high weighted eigenvector centrality 1.
This consideration yields the eigen-equation

ECv = χ−1
N∑
i=1

AivWivECi, (3.8)

where the desired weighted eigenvector centrality ECv can be shown to be given by the
leading eigenvector of the weighted adjacency matrix with elements WijAij (Friedkin (1991)).
For Gw, WijAij = Rij and therefore ECv = (e1)v for all v ∈ Vw. The eigenvector centrality
field of an unweighted and thresholded climate network at low edge density, i.e., withWij = 1
for all {i,j}, is still expected to resemble the first EOF, because only the edges with highest
weight remain in the network that contribute most to the sum in Eq. 3.8 (Fig. 3.14).

3.7. Conclusions and summary
In summary, we have performed a systematic study of the similarity of climate networks
constructed using the linear Pearson correlation and the nonlinear mutual information across
local, mesoscopic and global topological scales. First, we have motivated the comparison
of the two types of networks at equal edge densities. We have considered only low edge
densities, that were shown to yield networks containing statistically highly significant edges
as established on the basis of various significance tests. It has been then consistently shown
for AOGCM and reanalysis surface air temperature data, that the networks agree well on

1 Note that this is the central idea of the “PageRank” algorithm, that the search engine Google is founded
on (Brin and Page (1998)).
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the local and mesoscopic topological scales. Using the surface pressure field to construct
climate networks also yields qualitatively similar results and identical conclusions on these
scales. For the surface air temperature data sets, we have found some interesting qualitative
and quantitative deviations at the global scale using betweenness centrality. Even though
there still is a high degree of similarity, the deviations are highly localized and structured
pointing at a possible involvement of nonlinear processes in their formation.
This work also demonstrates, that our method of calculating mutual information for

relatively short time series is reliable at least for the strongly linear interrelations detected
by the Pearson correlation coefficient. The global topological scale is of particular interest,
since it opens novel perspectives for the understanding of climatological phenomena. For
example, as applied to the climate networks discussed in this article, betweenness centrality
allows to measure the importance of localized regions on the earth’s surface for the transport
of dynamical information within a climatological field in the long term mean (Donges et al.
(2008) and Chap. 5). Further work is needed to establish, whether the observed deviations
on the global topological scale could be due to nonlinear physical processes in the climate
system, that are only detectable using mutual information. In the future, we plan to assess
this problem by constructing climate networks using a novel method based on statistical
significance, i.e., by adding edges to the climate network depending on the significance
level of the correlation measure with respect to reasonable null hypotheses. One could
then identify candidates for nonlinear interrelationships as edges that have an associated
significant mutual information and a Pearson correlation that is not significant.



CHAPTER 4
Surrogate data sets and network models

As with EOFs and other patterns, there is a tendency to
confuse physical and statistical significance of
teleconnection patterns. In general, the patterns are worthy
of physical interpretation when the basic structure is not
strongly affected by sampling variability ( i.e., when there is
reproducibility).

Hans von Storch and Francis W. Zwiers, “Statistical
Analysis in Climate Research” (1999)

In essence, out method of climate network construction introduced in Chap. 3 presents a
sophisticated nonlinear filter transforming a multivariate data set of N anomaly time series
into the complex network domain. The resulting climate networks inevitably depend on
systematic and random errors present in the source data set, e.g., inhomogeneous sampling in
space and time for reanalysis data or the parameterization of small scale physical processes1 for
AOGCM data constitute systematic errors. Given the presence of these intrinsic uncertainties,
we need to assess the robustness of our results, a prototypical example being the delicate
structures in the betweenness centrality field described in detail in Chap. 5. In other words,
applying Occam’s razor we seek the simplest statistical model able to explain the structures
extracted from the original data set. Once such a statistical model is found, we only accept
physical interpretations of these structures which are compatible with the assumptions
made in the construction of the statistical model, i.e., that do not require additional or
contradictory presumptions. The statistical models employed in this work are all based on
constrained randomization schemes, that is some properties of the observed entity are held
(approximately) constant while an as great as possible degree of randomness is maintained
otherwise. The conserved properties correspond to the assumptions that we impose on the
statistical model and against which we judge the robustness of our results.
In our application we introduce statistical models at two levels of abstraction. Firstly,

1 Notable examples are turbulence and cloud formation.
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we can generate model or surrogate data sets on the level of time series analysis, where
each time series in the original data set is modeled by a univariate surrogate (Schreiber and
Schmitz (2000)). Surrogate data sets can be used to assess the significance of the statistical
interrelationships of pairs of time series detected in the original data set and shed light on
which model assumptions may be sufficient to explain certain observed climate network
properties (Sect. 4.1). Secondly, in the complex network domain we study network models
or surrogates that present generalizations of the Erdős-Rényi random graph (Sect. 4.2) and
particularly allow us to relate the elaborate betweenness structures found in surface air
temperature climate networks (Chap. 5) with the results from earlier studies of climate
networks (Tsonis and Roebber (2004), Tsonis et al. (2006), Tsonis et al. (2008b)). We
furthermore introduce surrogate network ensembles and related concepts (Sect. 4.3).

It should be noted that while a well established theoretical framework for univariate time
series surrogates exists (Schreiber and Schmitz (2000)), to our best knowledge this is so
far not the case for network models (Zamora-López (2008)). Furthermore within this first
iteration of climate network research, the introduction and study of multivariate time series
surrogates appeared to be impractical for conceptional and computational reasons given
large data sets of N ≈ 104 time series. We hence followed an explorative approach when
comparing the measured properties of data sets (Sect. 4.1) and climate networks (Sect. 4.2)
to those of various surrogates. Particularly, giving “numbers” such as confidence intervals or
significance levels proved to be out of scope for most measured properties in the context of
this thesis. To develop the conceptual foundations to meaningfully be able to provide such
“numbers” is highly desirable and should receive increased attention in future research. As a
first step in this direction we introduce the concept of surrogate network ensembles and the
Z-score (Sect. 4.3) and conclude with a short summary (Sect. 4.4).

4.1. Surrogates for univariate time series
We generate surrogate time series si(t) from the normalized anomaly time series âi(t) obtained
from a climatological data set (Sect. 3.1.2) relying on a hierarchy of statistical models ranging
from shuffled time series surrogates (Sect. 4.1.1) over Fourier surrogates (Sect. 4.1.2) to

Table 4.1 Time series properties (approximately) conserved by shuffled surrogates, Fourier
surrogates and twin surrogates. Exactly conserved properties are marked by ♣, those approx-
imately conserved by ♦. p(â) denotes the PDF of time series â(t), while Pâ(ω) and Mâ(t)
respectively indicate its power spectrum and self mutual information.

Shuffled Fourier Twin
p(â) ♣ ♦
Pâ(ω) ♦ ♦
Mâ(t) ♦
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twin surrogates (Sect. 4.1.3). In this order the surrogates preserve an increasing number of
statistical time series properties such as the probability density function (PDF) p(âi), the
power spectrum Pâi

(ω) or the self-mutual information Mâi
(t) of âi(t) (Table 4.1). We make

use of these types of surrogates to assess the significance of statistical interrelationships
between pairs of anomaly time series as measured by Pearson correlation and mutual
information in Sect. 4.1.4.

4.1.1. Shuffled surrogates
A shuffled surrogate sR(t) is generated by randomly permuting the anomaly time series â(t)
in the time direction, i.e., by applying a random permutation matrix Πij to the anomaly
time series,

sR(t) =
T −1∑
j=0

Πtj â(j), (4.1)

where T gives the length of the time series. The sR(t) therefore conserve only the PDF
p(â) of the original anomaly time series exactly. Shuffled surrogates hence correspond to
realizations of white noise with a given PDF p(â). A shuffled surrogate together with the
original time series is shown in Fig. 4.1(a).

4.1.2. Fourier surrogates
We produce Fourier surrogates sF (t) by randomizing the phases of the anomaly time series
â(t), so that the power spectrum Pâ(ω) or equivalently the linear autocorrelation function
remain approximately unchanged. Specifically, we compute the discrete Fourier transform

(F(â))(f) =
T −1∑
t=0

e2πi tf
T â(t) (4.2)

of â(t) for all f ∈ {0, . . . ,T − 1}. We then add random phases Φf drawn from a uniform
distribution over the interval [0,2π] to each element of the time series in Fourier space and
transform back into the time domain to obtain

sF (t) = 1
T

T −1∑
f=0

e−2πi tf
T +iΦf (F(â))(f). (4.3)

Because of the finite length of the time series involved, the power spectrum is only preserved
imperfectly using this simple, but computationally effective approach. More elaborate
techniques, that are furthermore able to preserve the PDF of â(t) have been proposed in
the literature (Schreiber and Schmitz (2000)). The Fourier surrogates introduced above
correspond to realizations of colored noise with a given power spectrum Pâ(ω). A Fourier
surrogate together with the original time series is shown in Fig. 4.1(b).
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(a)

(b)

(c)

Figure 4.1 Segment of a normalized anomaly time series (blue) and the corresponding surrogate
(green) for a grid point at (−37.5◦N, 67.5◦E), taken from the HadCM3 SAT data set. The
panels display the comparison with (a) a shuffled surrogate, (b) a Fourier surrogate and (c) a
twin surrogate.
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4.1.3. Twin surrogates
We generate twin surrogate time series sT (t) from the normalized anomaly time series â(t)
using the twin surrogate algorithm proposed by Thiel et al. (2006). This algorithm is based
on the recurrence structure of the original anomaly time series â, that is captured by the
recurrence matrix Rij (Marwan et al. (2007)). Since the anomaly time series provides only a
one dimensional representation of the dynamics at a specific grid point, we generally have
to try to reconstruct the complete phase space dynamics by time-delay embedding with
embedding dimension m and time delay τ . We thus use the reconstructed phase space
trajectory â(t) = (â(t− (m−1)τ), â(t− (m−2)τ), . . . , â(t)) ∈ Rm to calculate the recurrence
matrix

Rij = Θ(δ − ||â(i)− â(j)||), (4.4)

where Θ(.) denotes the Heaviside function, ||.|| the maximum norm and δ a predefined
threshold. We then refer to twins as points â(i) and â(j) in the embedded time series that
correspond to identical columns in the recurrence matrix, i.e., Rki = Rkj∀k. Note that even
though twins share a common neighborhood on the reconstructed attractor, they generally
have different pasts and futures. Hence randomness can be introduced by randomly choosing
from the future of point â(i) and the futures of its twins when building up the m-dimensional
surrogate trajectory sT (t). Specifically, following Thiel et al. (2006) and Marwan et al. (2007)
we proceed as follows:

(i) Find all pairs of twins â(i),â(j) satisfying Rki = Rkj∀k with a minimum temporal
separation ∆t, i.e., |i− j| ≥ ∆t1.

(ii) Select an arbitrary starting point â(j) and set sT (1) = â(j). Set index i = 2.

(A) IF â(j) has no twins, set sT (i) = â(j + 1),
(B) IF â(j) has at least one twin, choose between â(j + 1) and the futures of the twins

of â(j) with equal probability. E.g., if â(j) has one twin â(k), set sT (i) = â(j + 1)
or sT (i) = â(k + 1) with equal probability.

(iii) Increase i→ i+ 1 and return to step (iii), until sT (t) has the same length as â(t).

To obtain a one dimensional twin surrogate sT (t) it is sufficient to use an arbitrary single
component of the m-dimensional surrogate trajectory sT (t). Since twin surrogates correspond
to the null hypothesis of shadowing typical trajectories on the same attractor as the original
data with random initial conditions, they conserve all linear and nonlinear properties of
single time series in the limit of infinitely many samples. Therefore, they allow for stronger

1 The minimum temporal separation ∆t is introduced to avoid false twins due to oversampling of the
attractor along the trajectory.
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and more meaningful tests than those based on randomly shuffled time series (corresponding
to the null hypothesis of a random process with the same probability distribution as the
original time series) and Fourier surrogates (corresponding to the null hypothesis of a random
process having the same power spectrum as the original time series).

A twin surrogate together with the original time series is shown in Fig. 4.1(c). It should
be noted that twin surrogates were used successfully to test for phase synchronization (Thiel
et al. (2006)) and coupling asymmetries (Romano et al. (2007)) between two time series by
testing one original time series against twin surrogates of the other and vice versa.
Note that considering all statistical tests using twin surrogates performed for this thesis

we first did not embed the time series, i.e., chose the trivial embedding parameters m = 1
and τ = 0, because the determination of optimal embedding parameters ’by hand’ (Kantz
and Schreiber (2004)) is not feasible for the large number of time series analyzed here
and automated embedding schemes are out of the scope of this work. We have however
experimented with other embedding parameters, e.g., m = 3 and τ = 2, and found that the
test results are robust with respect to reasonable parameter choices. However to further
increase the test power, it is desirable to in the future employ algorithms for the automated
selection of optimal embedding parameters for each time series separately (Marwan et al.
(2007)).

4.1.4. Significance of statistical interrelationships
We would like to evaluate to which degree the strong statistical interrelationships corre-
sponding to edges in our climate networks are statistically significant, e.g., how likely they
are to arise by chance. Particularly, our null hypothesis is that the anomaly time series
âi(t),âj(t) are statistically independent for all ordered pairs (i,j). We test this null hypothesis
by generating n realizations of univariate time series surrogates sµi (t), µ = 1, . . . ,n, for all
anomaly time series âi(t) and calculating the correlation measure Cµ

ij between âi(t) and
sµj (t) for all n realizations of surrogates. Then, the PDF p(Cs

ij) of Cµ
ij over all realizations

µ is estimated. If Cij is found to be very unlikely to be drawn from the PDF p(Cs
ij), we

can reject the null hypothesis for the pair of anomaly time series âi(t),âj(t) with respect
to the assumptions implicitly contained in the choice of surrogate type. In this work, the
correlation measure Cµ

ij can be chosen from Pearson correlation and mutual information at
zero lag (Sect. 3.2.1). Note that in general the test matrix Cµ

ij will not be symmetric.
We now estimate the PDF p(Cs

ij) of the resulting n test matrices and compare it to the
PDF p(Cij) of the correlation measure calculated within the original data set. We generally
find that the thresholds used for generating the low edge density climate networks studied in
this thesis lie far removed from the compact support of p(Cs

ij) (Fig. 4.2). This implies that
for all of the strong statistical interrelationships included in our climate networks as edges,
the null hypothesis of statistical independence can be rejected safely at a high confidence
level. Specifically, testing with the three types of surrogates described above shows that
high values of the correlation measure Cij do not arise as artifacts of the PDF, the power
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(a)

(b)

(c)

Figure 4.2 Comparison of the distributions p(Cij) of the correlation measure Cij calculated
from the original data set (solid lines) and that of the test matrix p(Csij) calculated from
n = 100 realizations of surrogates (dashed lines) for the HadCM3 SAT data set. Pearson
correlation was used as the correlation measure here. (a) Comparison for shuffled surrogates,
(b) Fourier surrogates and (c) twin surrogates with m = 1, τ = 0, δ = 0.1 and ∆t = 7. The
vertical lines indicate the threshold corresponding to an edge density of ρ = 0.005. For all
types of surrogates, the probability that Csij exceeds the threshold is essentially zero.
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spectrum or the geometry of the attractor of the single anomaly time series âi(t),âj(t). We
hence conclude that on the level of (univariate) time series, the edges included in our climate
networks are highly unlikely to arise by chance.

It should be pointed out, that the power of the statistical test against the null hypothesis
of independent time series increases within the hierarchy of time series, i.e., the maximum
value of Cs

ij, max(Cs
ij), depends on the type of time series surrogate used (Fig. 4.2). The

power of the test increases with max(Cs
ij), because a statistical interrelationship Cij has

to be larger to be considered significant, when max(Cs
ij) is larger. In this sense, Fourier

surrogates are more powerful than shuffled surrogates, and twin surrogates are more powerful
than shuffled surrogates and Fourier surrogates. This observation is plausible, because an
increasing amount of single time series properties is conserved when moving upwards in the
surrogate hierarchy (Table 4.1). Since they allow for the most powerful tests, we hence use
twin surrogate data sets in all further statistical tests on the time series level (e.g., Chapter
5).

4.1.5. Surrogate data sets
In addition to comparing original and surrogate time series, it is interesting to study which
properties of a particular climate network can be explained by generating climate networks
from an ensemble of surrogate data sets. A surrogate data set µ is a collection of surrogate
time series sµi (t), i = 1, . . . , N of the same type (Table 4.1), one for each anomaly time series
in the original gridded data set. We can then construct an ensemble of n climate networks
Gµ from n independently generated surrogate data sets sµi (t), where µ = 1, . . . ,n. In Sect.
4.3 we show how the resulting surrogate data set network ensemble can be used to assess the
significance of any network property of interest, that is observed in the original network.

Table 4.2 Network properties (approximately) conserved by Erdős-Rényi graphs, the config-
uration model, random link switching and geographical models I and II. Exactly conserved
properties are indicated by ♣, those approximately conserved by ♦.

Erdős-Rényi Config. Rand. link switch. Geo. I Geo. II
N ♣ ♣ ♣ ♣ ♣
L ♦ ♦ ♣ ♣ ♣
p(k) ♦ ♣ ♣ ♣
kv ♦ ♣ ♣ ♣
pE(l) ♦ ♦
AEDv ♦
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4.2. Network models
Analogously to our treatment of univariate time series surrogates, we present a hierarchy of
undirected network models or surrogates by imposing an increasing number of constraints on
the topology and spatial embedding of the otherwise random networks (Table 4.2). While
Erdős-Rényi graph and configuration model belong to the class of constructive network
models starting from an empty network of N initially unconnected vertices, random link
switching and the geographical models I and II start from the original network and repeatedly
make constrained changes until the desired randomness is sufficiently introduced. All network
models introduced in this section can be straightforwardly generalized to directed networks
(Appx. B).

4.2.1. Erdős-Rényi graphs
The network model we refer to as the Erdős-Rényi graph was introduced independently by
Solomonoff and Rapoport (1951) and Erdős and Rényi (1959). N vertices are initially left
unconnected. Each pair of vertices i,j is then independently connected by an edge {i,j} with
probability p (Fig. 4.3(a)). This leads to an expected number of edges L = p

(
N
2

)
= pN(N−1)

2
and a binomial degree distribution p(k), that converges to a poissonian distribution in the
thermodynamic limit N →∞ and p→ 0,

p(k) =
(
N

k

)
pk(1− p)N−k → zke−z

k! . (4.5)

The degree distribution is therefore sharply peaked, with small fluctuations around the
mean degree z = 〈kv〉v = L/N = p(N − 1)/2. Because edges are added to the network
independently, the expected clustering coefficient is simply given by C = p, thus for fixed
mean degree z it is of O(N−1) in the thermodynamic limit. The average path length can
be shown to go as L ≈ lnN/ ln z (Newman (2003)). The most interesting property of the
Erdős-Rényi graph is a phase transition at z = 1, where a giant component forms in the
network1.

Since the Erdős-Rényi graph conserves only the number of vertices N and the number of
links L (or equivalently the edge density ρ = p) it presents the simplest network null-model
(Table 4.2), that is of limited use when assessing the significance of climate network properties.
Particularly, none of the most interesting local network properties, e.g., centrality fields, can
be reproduced (Fig. 4.4).

1 Compare this with the begin of the sharp increase in giant component size S(ρ) for the HadCM3 SAT
Pearson correlation climate network at ρ′ ≈ 0.0002 (Fig. 3.4(e)). This corresponds to an average degree
z′ = Nρ′ ≈ 6816× 0.0002 = 1.36. The Erdős-Rényi model is hence compatible with this ’phase transition’
found in our climate network construction method.
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Figure 4.3 Visualization of two different types of random networks of order N = 50 using
the Fruchterman-Reingold graph layout algorithm (Di Battista et al. (1998)). (a) Erdős-Rényi
random graph with edge density ρ = 0.05, its binomial degree distribution is sharply peaked
around the mean degree 〈kv〉v = ρN = 2.5. (b) A configuration model random network with
edge density ρ = 0.10 following a scale-free degree distribution p(k) ∝ k−2. Some high degree
vertices (hubs) dominate the network, while most others have a very low degree. The network
is not simple, it contains multiple edges and self-loops illustrating the greatest problem of the
configuration model.

4.2.2. Configuration model
The configuration model allows to construct random surrogate networks with a prescribed
number of vertices N and degree centrality field kv. Each vertex v is first assigned the
degree kv; graphically this results in kv ’stubs’ of edges-to-be with free ends sticking out
of vertex v. In the following, pairs of free ends are selected randomly and joined to form
edges. It can be demonstrated that this procedure generates every possible topology of
a network with given degree centrality field kv with equal probability (Newman (2003)).
Alas, the configuration model ensemble also encompasses networks that are not simple, since
’stubs’ are joined independently (Fig. 4.3(b)). To obtain the simple networks needed for our
application, we could repeatedly generate configuration model networks until a simple one is
produced. Because non-simple networks are highly likely to be drawn from the configuration
model ensemble, this recipe proves to be computationally not feasible. We have to resort to
simplifying the resulting random network, i.e., removing self-loops and joining multiple edges
to one single edge. This obviously introduces imperfections: The degree field kv and thus the
degree distribution p(k) and the number of links L of the original graph are not conserved
exactly any more (Table 4.2). Particularly, the bias introduced by the simplification increases
with degree k, because high degree vertices initially possess more ’stubs’ and hence a greater
probability to have self-loops and multiple edges attached to them.
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Figure 4.4 The area weighted connectivity field for a realization of the Erdős-Rényi graph
with N = 6816 and ρ = 0.005, i.e., the same parameters as those of the HadCM3 SAT climate
network studied throughout this thesis. It is obvious that the Erdős-Rényi graph is not suitable
for the study of local properties of climate networks.

4.2.3. Random link switching
Using random link switching to generate networks with a given number of vertices N and
degree centrality field kv overcomes the limitations of the configuration model (Table 4.2).
In each switching step, two edges {i1,j1} and {i2,j2} are selected randomly from the original
network and rewired as {i1,j2} and {i2,j1}, if the new edges did not already exist before or
introduce self-loops (Fig. 4.5). The price one has to pay for the exact conservation of kv,
p(k) and L is an increased computational cost as compared to the configuration model. We
have to rewire at least nr = L times to generate a maximally random network with given kv,
i.e., to destroy any additional internal structure (Zamora-López (2008) and Fig. 4.5).

4.2.4. Surrogates for spatially embedded networks
When studying centrality fields, e.g., closeness and betweenness, on the global topological
scale (Sect. 2.2.3) in spatially embedded networks (Sect. 2.3) it is desirable to have surrogate
networks at hand, that conserve the most basic spatial network statistics, i.e., the edge
distance distribution pE(l) and the average edge distance field AEDv. For this purpose we
propose a generalization of the random link switching procedure outlined above (Sect. 4.2.3)
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i1

j1{i1,j1}

j2

{i1,j2}

i2

{i2,j1}

{i2,j2}

Figure 4.5 Illustration of the random link switching algorithm. The original edges {i1,j1}
and {i2,j2} (continuous lines) are replaced by new edges {i1,j2} and {i2,j1} (dashed lines) in
one rewiring step.

(a) (b)

Figure 4.6 Convergence of (a) average path length L and (b) clustering coefficient C to
the maximally random state with number of rewiring steps over number of links nr/L using
geographical model I with ε = 0.1. While L and C decrease sharply during the first L rewiring
steps, they approach their limits much more slowly for nr/L > 1. The test network is a
regional Pearson correlation climate network encompassing the mid-latitudes of the Southern
Hemisphere (Fig. 5.5), that was constructed from the HadCM3 SAT data set at ρ = 0.005.
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coming in two flavors. The geographical model I conserves pE(l) additionally to the random
link switching method, while geographical model II conserves pE(l) as well as AEDv (Table
4.2). Again, more than nr = L edges have to be rewired to obtain a maximally random
network, with a correspondingly large computational cost1 (Fig. 4.6).

4.2.4.1. Geographical model I

To approximately conserve the edge distance distribution pE(l) we have to ensure that the
rewired edges {i1,j2} and {i2,j1} contribute to the same bins in the edge distance histogram
as the original edges {i1,j1} and {i2,j2}. Specifically, this amounts to imposing the condition

C1 := (|li1j1 − li1j2| < ε ∧ |li2j2 − li2j1| < ε) ∨ (|li1j1 − li2j1| < ε ∧ |li2j2 − li1j2| < ε) ,

and is achieved by the following algorithm:

(i) Start with a spatially embedded network G := (V,E). Set index k = 0.

(ii) IF k < nr:
(A) Randomly choose two edges {i1,j1} and {i2,j2} from V .
(B) IF edges {i1,j2} and {i2,j1} do not exist AND i1 6= i2 6= j1 6= j2 AND C1 is

TRUE: Rewire the edges {i1,j1}, {i2,j2} → {i1,j2}, {i2,j1} and increase the index
k → k + 1.

(C) Jump to step (ii).

(iii) Return the rewired network G′.

Note that the only parameter this algorithm depends on is the tolerance ε, determining
the quality of conservation of pE(l). The run-time of this algorithm increases sharply with
decreasing tolerance ε, since the probability of finding edges that are suitable for rewiring in
each step also decreases.

4.2.4.2. Geographical model II

To additionally conserve the average edge distance field AEDv, we have to demand that the
rewired edges {i1,j2} and {i2, j1} have approximately the same length, i.e.,

C2 := |li1j2 − li2j1 | < ε′.

1 One can think of a variant of the configuration model here, where the free ends of the ’stubs’ attached to
randomly selected vertices i and j are joined with probability p = pE(lij). Repeating this operation until
no free stubs remain would allow to generate random networks with approximately conserved p(k) and
pE(l) at lower computational cost, but with the same problems as the configuration model.
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C2 together with C1 corresponds to the condition, that all of the involved edges {i1,j1},
{i2, j2}, {i1,j2} and {i2, j1} have approximately the same length. We impose C2 at step (iiB)
of the algorithm described above, before condition C1 is evaluated. This is more efficient
since checking C1 is computationally more costly than evaluating C2. Hence, if C2 is FALSE,
we can skip testing for C1 and return directly to step (ii). For convenience, we set ε′ = ε.

4.3. Ensembles of surrogate networks
We refer to an ensemble of surrogate networks as a collection of n complex networks Gµ,
µ = 1, . . . ,n, independently generated from surrogate data sets (Sect. 4.1.5) or by a particular
network model (Sect. 4.2). Any network property ξµ of interest can then be calculated for
each ensemble member Gµ. Subsequently, the PDF of ξµ and its moments are estimated from
the network ensemble using a Monte-Carlo approach1. For example, we can use the ensemble
mean mr(ξ) = 〈ξµ〉µ and the ensemble standard deviation σr(ξ) =

√
〈(ξµ −mr(ξ))2〉µ of ξµ

to calculate the Z-score

Z(ξ) = ξ̄ −mr(ξ)
σr(ξ)

, (4.6)

that allows us to assess the statistical significance of the measurement ξ̄ from the original
network with respect to the network model2 that was used to generate the ensemble (Zacharias
et al. (2002)). In other words, the Z-score Z(ξ) quantifies by how many ensemble standard
deviations the original network property and its ensemble mean differ. If therefore |Z(ξ)| � 1,
we can consider the measured network property to be significant with respect to the chosen
network model. It should be pointed out, that the Z-score Z(ξ) necessarily has the same
dimensionality as the measurement ξ itself, i.e., it will either be a scalar, a 1D function or
a 2D field. We will use the Z-score in later chapters to test our results from real networks
against various types of surrogate networks.

4.4. Summary
We have introduced a hierarchy of three types of univariate time series surrogates: Shuffled
surrogates, Fourier surrogates and twin surrogates. We have used them to show that within
the power of the statistical test used, all edges in the low edge density climate networks
considered in this thesis correspond to statistically significant interrelationships between the

1 Using Monte-Carlo sampling is necessary, since in general the distribution of some property ξ of a certain
type of network model is not derivable analytically. Considering the network models presented here, some
analytical results are known for the Erdős-Rényi graph and the configuration model (Newman (2003)).

2 Zacharias et al. (2002) in their seminal paper use random link switching (Sect. 4.2.3) to create the
surrogate network ensemble.
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dynamics on pairs of grid points. In addition we have developed a hierarchy of surrogate
networks and particularly proposed a two-flavored algorithm designed to create surrogates
for spatially embedded networks, such as climate networks. Finally, we have commented
on the possibility to use surrogate network ensembles together with the Z-score to assess
the statistical significance of any measured network property ξ with respect to the null
hypothesis implicitly given by the choice of the type of surrogate network. Surrogate networks
constructed from surrogate data sets correspond to the null hypothesis that the time series
of the original data set are statistically independent under the constraint of given PDF p(â)
(shuffled surrogates), power spectrum Pâ(ω) (Fourier surrogates) and attractor geometry
(twin surrogates). In similar fashion, on the network level surrogate networks reflect the
null hypothesis that the original network is random under the constraint of given number
of vertices N and edges L (Erdős-Rényi graph), degree field kv and degree distribution
p(k) (Configuration model and random link switching), edge distance distribution pE(l)
(Geographical model I) and average edge distance field AEDv (Geographical model II). The
latter models also maintain the properties conserved by the former ones (Table 4.2).





CHAPTER 5
The backbone of the climate network

Here we report on how by combining our linear and nonlinear network construction tech-
niques with advanced topologically global centrality measures, we uncover peculiar wave-like
structures in the betweenness1 fields of climate networks constructed from monthly aver-
aged reanalysis and atmosphere-ocean coupled general circulation model (AOGCM) surface
air temperature (SAT) data (Sect. 5.1). Akin to the homonymous data highways of the
internet, these betweenness structures form the backbone of the SAT network, bundling
most of the information flow between remote regions. Some major features of the backbone
appear to be closely related to surface ocean currents pointing to an essential role of the
oceanic surface circulation in stabilizing the climate system by promoting the global flow of
dynamical information (Sect. 5.2). Note that these insights are conceptually new and cannot
be obtained using classical methods of climatology such as principal component analysis
(PCA) or singular spectrum analysis (SSA) of anomaly fields (von Storch and Zwiers (1999)),
because these are by design local in a network sense and are not suitable to study local flow
measures depending on a global network topology (Sect. 3.6).

We describe our results (Sect. 5.1) and give a physical interpretation of betweenness and
the related concepts of dynamical information and information in the context of climate
networks (Sect. 5.2). We have performed intensive statistical tests with various types of
surrogates to ensure the robustness of our results (Sect. 5.3) and finish with our conclusions
and an outlook (Sect. 5.4).

5.1. Results for AOGCM and reanalysis data
Following the method outlined in Chap. 3, we uncover peculiar wave-like structures of high
betweenness in maps of both reanalysis and model SAT climate networks (Fig. 5.1). In
analogy with the internet, we call the network of these channels of high information flow the
backbone of the climate network. We observe that prominent mainly meridional features of

1 Whenever we speak simply of betweenness, we refer to the shortest path betweenness (Eq. 2.14).
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Figure 5.1 a) Betweenness for the NCEP/NCAR reanalysis SAT network at ρ = 0.004. b)
Betweenness for the HadCM3 SAT network at ρ = 0.005. Note that some features of the
HadCM3 backbone in b) correspond closely to ocean surface currents shown in Fig. 5.2, e.g.,
the California, Peru and Canary currents.
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the backbone tend to approach the equator tangentially, as one would expect from modes
of the atmospheric and oceanic general circulation due to the vanishing coriolis force at
the equator (Vallis (2006)). There is also a qualitative agreement on the location of major
backbone structures for both reanalysis (Fig. 5.1(a)) and model networks (Fig. 5.1(b)), e.g.,
the high betweenness channel over the Atlantic Ocean and the backbone structures over the
eastern Pacific Ocean, both connecting the Arctic with the Antarctic. It is important to
stress that some backbone structures, e.g., the channel over the South Atlantic, disappear in
climate networks constructed from the same model and reanalysis data sets, but using the
linear Pearson correlation. This indicates, that nonlinear physical processes are important
for the information transport within the climate system which are captured using the mutual
information for network construction, but not by linear measures (Sect. 3.3).

Note that the strongest backbone structures lie mainly over the ocean and avoid to cross
the land in both model and reanalysis climate networks. Therefore a physical mechanism
involving an atmosphere-ocean coupling might be responsible for the information transport
in the SAT field measured by betweenness. Indeed, some of the strongest features found in
the HadCM3 betweenness field (Fig. 5.1(b)) as well as in the NCEP/NCAR betweenness field
(Fig. 5.1(a)) resemble closely major surface ocean currents (Fig. 5.2). For example, note the
strong betweenness structures off the west coast of North and South America that resemble
the Alaska and Peru current, and the backbone feature along the west coasts of Africa and
Europe following the path of the Canary and Norwegian currents. These observations can be
understood considering the strong coupling between sea surface temperature (SST) and SAT
over the ocean via heat flux (Stewart (2005)). Temperature anomalies in SST are advected by
the surface ocean currents and transfered to the SAT field via heat flux coupling. Therefore,
ocean currents provide a physical mechanism for the transport of dynamical information
on localized linear structures over large distances. However, no clear traces of the strong
western boundary currents (WBCs) such as the Gulf Stream or the Kuroshio are visible in
the backbone structure (Fig. 5.1(b)). This might be due to the fact, that WBCs are much
narrower than the eastern boundary currents discussed above (Vallis (2006)), so that the
effect of WBCs is not resolved by the grid underlying the HadCM3 climate network (see
Table 3.1). Using higher resolution SAT data taken from the AOGCM ECHAM5 developed
by the Max Planck Institute for Meteorology in Hamburg (Meehl et al. (2007)), we find that
our method does indeed seem to detect WBCs (Appx. D).

To exclude the possibility that the observed backbone structures over the ocean might be
simply due to local anomalies in the SST-SAT gradient caused by surface currents, we have
calculated the gradient field from the model run that we used to construct the HadCM3
climate network, and found that the SST-SAT gradient and betweenness are not correlated
strongly (Fig. 5.3). Because of the questionable quality of measured oceanic data for the
period of time considered, we did not attempt the corresponding analysis for reanalysis data.

Furthermore, the backbone is neither seen in fields of degree nor closeness centrality (Sect.
3.3) and no clear statistical relationship between these centrality measures and betweenness
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Figure 5.3 The mean SAT-SST gradient field 〈∆Tv(t)〉t = 〈SATv(t)〉t− 〈SSTv(t)〉t calculated
from the HadCM3 SAT and SST data sets (Meehl et al. (2007)), both taken from the 20th
century reference run described in Sect. 3.1.1. 〈∆Tv(t)〉t shows no structure remotely resembling
the backbone, but we can interpret tongues of negative SAT-SST gradient, e.g., off the east
coast of Canada and in the Norwegian Sea, as traces of surface ocean currents carrying warm
water, particularly the North Atlantic Current (or North Atlantic Drift). The mean SST field
〈SSTv(t)〉t was interpolated to match the grid of the SAT data set for this analysis. Note
that the anomalously large positive gradient along the land-sea interface is an artifact of the
interpolation and hence does not have a physical meaning.

can be detected (Fig. 5.4). Therefore we conclude that the backbone structures observed in
model and reanalysis networks are neither a trivial response to local anomalies in the SST-
SAT gradient nor artifacts of chains of super-nodes with high degree and closeness centrality.
In contrast, the vertices of highest betweenness are found in the range 0 ≤ kv . 50 of low
degree centrality (Fig. 5.4(a)). This indicates that not the super-nodes, but inconspicuous
vertices with a comparably small number of neighbors are most essential for the efficient
information transport in the climate network and could be referred to as information hubs.
Comparing Fig. 5.4(a) with Fig. 5.1(b) we can see that the vertices forming the backbone
are information hubs, i.e., have a relatively low degree centrality. The remarkable presence



68 5. The backbone of the climate network

of information hubs is a hint to the existence of a community structure in the SAT climate
network (Appx. A), since it is plausible that low degree hubs topologically lying between
strongly connected communities should have a high betweenness centrality (Sect. 3.3.3).
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(a)

(b)

Figure 5.4 Scatter plots of betweenness BCv against degree kv and closeness CCv for the
HadCM3 SAT Pearson correlation climate network at ρ = 0.005, where betweenness is plotted
on a logarithmic scale. There is no obvious apparent statistical relationship that could
be read off the scatter plots. Specifically, the Spearman’s rho of the centrality fields are
rs(kv,BCv) = 0.4594 and rs(CCv,BCv) = 0.0069.
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5.2. Physical interpretation of betweenness
When seeking a physical interpretation of betweenness in the context of climate networks,
we first have to clarify what we mean by information and information flow. Consider two
regions, the dynamics of which are found to be significantly statistically interrelated. In
order for region i to “know” what region j is doing, there has to be some physical mechanism
for the transfer of dynamical information in the climatological field. We can think of this
information flow as the spread of perturbations in a spatiotemporal system (Vastano and
Swinney (1988)). Now one can ask, how a perturbation of the dynamics of i would spread in
the complex network until it reaches j. Depending on the physical mechanisms involved it
could preferentially travel on topologically shortest paths, that due to our method network
construction correspond to the most direct connection between i and j in terms of average
dynamical interrelationships. It is plausible that this optimal mode of information transport
is approximately realized by advective processes in the climate system, e.g., ocean currents
or jet streams in the atmosphere. In contrast, diffusive modes of the spread of perturbations
can be envisioned as randomly walking packages of dynamical information on the complex
network. When studying global climate networks, turbulence is the most likely candidate for
a diffusive physical process promoting the spread of perturbations, while molecular diffusion
is negligible (Vallis (2006)).

Following this reasoning it is plausible that the shortest path betweenness field BCv (Eq.
2.14) displays backbone structures related to advective physical processes, i.e., surface ocean
currents, since BCv is a measure of information flow centrality. While it is thus reasonable
to regard shortest path betweenness as a measure of advective information flow centrality,
random walk betweenness (Sect. 2.8) quantifies the importance of a region v for diffusive
information flow in the climate network. In other words, shortest path betweenness assumes
a local knowledge of the global network topology1, whereas random walk betweenness just
presumes that the local topology, i.e., the neighbors, are locally known at vertex i. Ergo, the
two betweenness measures give complementary information and should both be studied and
compared to yield a more comprehensive picture of the spatial distribution of information
flow within a climate network.
Because the computational complexity of our algorithm to calculate random walk be-

tweenness scales as O(N4), whereas Newman’s shortest path betweenness algorithm scales

1 This assumption need not lead to unphysical results, since similar situations arise in many physical
systems obeying some extremalization principle. For example, the refraction of light on the interface
between two transparent media can be described by minimizing the time needed for the light to travel
from medium A to medium B. Of course this does not imply, that a single photon locally ’knows’ the
optimal trajectory of minimal travel time and follows it. Even though the physical system as a whole
behaves as if this was the case, we cannot project the globally appropriate extremalization principle to
its local constituents. It is hence justified to use shortest path betweenness as a measure of information
flow mediated by physical processes in a climate network, that do not violate the locality principle of
classical physics.
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(a)

(b)

Figure 5.5 Comparison of betweenness measures for a HadCM3 SAT Pearson correlation
climate network at ρ = 0.005. The network is geographically restricted to the mid-latitudes
of the southern hemisphere with −66.6◦ ≤ λ ≤ −23.5◦ and N = 1824. (a) shows the shortest
path betweenness field, while (b) displays the spatial distribution of random walk betweenness.
Note the high shortest path betweenness band in the Southern Ocean resembling the Antarctic
Circumpolar Current, that is not visible in the random walk betweenness field. This points to
an advective physical process involved in the formation of the shortest path betweenness band.

as O(LN), we were yet unable to provide a comparison of both measures for global climate
networks. Therefore we present some results for regional climate networks here. Considering
the mid-latitudes of the southern hemisphere, we observe a band of high shortest path
betweenness over the Southern Ocean resembling the Antarctic Circumpolar Current (Fig.
5.5(a)). That this structure is not seen in the random walk betweenness field gives further
evidence, that an advective physical process such as a surface ocean current could be involved
in its formation (Fig. 5.5(b)).

5.3. Significance testing
Here we present tests of the robustness of the observed backbone structures using twin
surrogate networks on the time series level as well as the configuration model and geographical
model I on the network level. While only the results considering the model SAT network are
discussed below, we have performed the statistical tests for both the reanalysis and model
SAT climate networks and came to the same conclusions.
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5.3.1. Twin surrogate network ensemble
To test the statistical robustness on the time series level we develop the null hypothesis that
the time series of the SAT data set are pairwise independent. Specifically, we generate 100
twin surrogates from the original time series at each grid point (Sect. 4.1.3), that were shown
to allow for the most powerful tests of this null hypothesis among the types of surrogates
considered here (Sect. 4.1.4). We then construct an ensemble of 100 networks from the
surrogate data sets (Sect. 4.1.5), fixing the edge density of the original climate network,
and compute the ensemble mean AWC field and ensemble mean betweenness field. While
interestingly, the ensemble mean AWC field closely resembles the AWC field of the climate
network (Fig. 5.6(a)), the ensemble mean betweenness field is again highly correlated to
the ensemble mean AWC field and contains no backbone structures (Fig. 5.6(b)). The
corresponding Z-score is Z(rs(kv,BCv)) ≈ −422. This highlights that while the network
ensemble generated from twin surrogate data sets is able to explain the local network topology
to some degree, it does not account for the delicate structures on the global topological scale.
Based on these observations, we reject the null hypothesis that the time series of the SAT
data set are pairwise independent and infer, that the backbone indeed characterizes the
intrinsic complex topology of dynamical interrelationships.

5.3.2. Configuration model ensemble
To ensure the statistical robustness of our results on the network level, we test the null
hypothesis, that the climate network is a random graph with a given degree field. Using
the configuration model (Sect. 4.2), we generate a Monte Carlo ensemble of 100 surrogate
networks, that have approximately the same degree field as the original climate network.
We find that in sharp contrast to the original network, the ensemble mean betweenness
field is highly correlated to the degree field, and does not display the backbone structures
observed in the original climate network. More precisely, we introduce the Spearman’s
rho rs(kv,BCv) of the degree and betweenness fields as a network observable1. We obtain
r̄s(kv,BCv) = 0.4594 for the original network and rs(kv,BCv) = 0.9813 ± 0.0011 from the
configuration model ensemble. The corresponding Z-score Z(rs(kv,BCv)) ≈ −474 shows
impressively that the low correlation observed in the original network cannot be explained
by the configuration model ensemble. Calculating the Z-score field Z(BCv) of betweenness
with respect to the configuration model ensemble gives a similar picture (Fig. 5.7). For most
regions or vertices, Z(BCv) is so large that we need a logarithmic color scale to visualize it
properly. The betweenness structures have a particularly large Z-score and can hence be
seen clearly in the Z-score field. Based on this evidence we reject the null hypothesis that
the climate network is random under the constraint of a given degree field and conclude,

1 Again we choose the Spearman’s Rho instead of the Pearson correlation coefficient because of its robustness
with respect to the non-normal PDF’s of kv and BCv generally found in our climate networks (Sect. 3.3).
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that the backbone is unlikely to be a trivial consequence of the degree field.

5.3.3. Geographical model I ensemble
On the network level, we can furthermore test the null hypothesis that the HadCM3 Pearson
correlation climate network is random with a prescribed degree field and edge distance
distribution using geographical model I (Sect. 4.2.4.1). Because of the high computational
cost of rewiring nr > L times for a sufficient number of realizations of geographical model
I, we demonstrate this test for a regional network encompassing the mid-latitudes of the
southern hemisphere (Fig. 5.8). We find that even though appearing to be blurred, the
ensemble mean betweenness field (Fig. 5.8(a)) still contains structures resembling those
observed in the original betweenness field (Fig. 5.5(a)). The betweenness Z-scores (Fig.
5.8(b)) are seen to be smaller with respect to the dynamic range of the original betweenness
field as compared to the betweenness Z-scores calculated from a configuration model for the
global HadCM3 SAT climate network (Fig. 5.7). These findings indicate that some aspects
of the backbone structures found in the betweenness field might be explained by the simplest
spatial statistics of the climate network, i.e., the edge distance distribution pE(l) together
with the degree field kv. Building on these preliminary results, much more work is needed
to shed light on the connections between the characteristics of the spatial embedding and
global path based measures of centrality.
After the nr = 3L rewiring steps performed for each realization here, average path

length L and clustering coefficient C are found to be already very close to their maximally
random limiting values (Fig. 5.5). Nevertheless we cannot guarantee that the network
property of interest, i.e., the betweenness field, has already converged to its hypothetical
maximally random state (Zamora-López (2008)). Therefore it is highly desirable to in the
future parallelize the surrogate generation and analysis code for an efficient generation of
geographical model I and II as well as random link switching network surrogates with a
larger number of rewiring steps nr � L and a lower tolerance parameter ε. Furthermore
theoretical considerations leading to rigorous lower bounds for nr would be very helpful.
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(a)

(b)

Figure 5.6 Statistics of an ensemble of n = 100 Pearson correlation climate networks con-
structed from twin surrogate data sets (m = 1, τ = 0, δ = 0.1 and ∆t = 7) of the HadCM3
SAT data set at ρ = 0.005. (a) The ensemble mean AWC field resembling the original AWC
field (Fig. 3.5(a)). (b) The Z-score field Z(BCv) of betweenness, where the backbone is again
seen to be highly significant.
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Figure 5.7 Z-score field Z(BCv) for the betweenness field with respect to a configuration
model ensemble with n = 100 members calculated for the HadCM3 SAT Pearson correlation
climate network at ρ = 0.005. A logarithmic color scale is needed to properly visualize the
pronounced deviations of the ensemble betweenness field from that of the original network. The
backbone structures are clearly recognizable with a large Z-score, indicating a high statistical
significance with respect to the configuration model ensemble.
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(a)

(b)

Figure 5.8 Ensemble mean and Z-score of the betweenness field with respect to 100 realizations
of geographical model I (nr/L = 3, ε = 0.1) for a HadCM3 SAT Pearson correlation climate
network at ρ = 0.005. The network is geographically restricted to the mid-latitudes of the
southern hemisphere. Compare to the betweenness field calculated from the original climate
network (Fig. 5.5(a)).
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5.4. Summary
In summary, using mutual information from nonlinear time series analysis and betweenness
from complex network theory, we have uncovered novel pathways of global information flow
in the climate system, that we call the backbone of the climate network.Several conceptually
independent types of tests reveal that the backbone does not arise by chance and is not
a trivial consequence of the degree centrality field studied in previous works on climate
networks (Tsonis and Roebber (2004), Tsonis et al. (2006), Tsonis et al. (2008b), Tsonis
and Swanson (2008)), but on the contrary represents a statistically significant feature of
the underlying SAT data set. Surface ocean currents appear to play a major role in the
information transfer and hence in the dynamical stabilization of the climate system in the
long term mean (140 years for the HadCM3 model run and 60 years for the reanalysis data).
We observe similar backbone structures in AOGCM model output and reanalysis data giving
confidence that the backbone is not a model artifact.
It is important to realize that our complex network approach is an essential ingredient

in the discovery of the backbone. The main advantage of betweenness is that it takes
into account the global network topology of pairwise interrelationships between regions.
However, the classical linear methods (e.g., PCA, SSA, see von Storch and Zwiers (1999))
widely applied to disclose teleconnection patterns in climatology use information about
next neighbors at each grid point, and are therefore only local within the complex network
framework.
Our method is promising to next study the impact of extreme events such as strong

El Ninos (Appx. C), extreme Monsoons or volcanic eruptions on the topology of climate
networks. In the future it will thereby allow us to obtain new insights into the individual
local signature of changes in the information flow structure and stability of the climate
system. Our method may also be valuable to illuminate differences in the backbone structure
in different climate states of earth’s history, e.g., holocene, glacial and cretaceous, and to
assess the impact of global warming on the stability of the climate system from a different
perspective.
Until now there is to our best knowledge no other method, that is able to extract the

localized structure of (dynamical) information flow in spatially extended systems from
time series data alone. Our method offers a qualitatively new level of understanding the
dynamics of complex spatially extended systems, because by relying on paths in the network,
betweenness subsumes information on the global network topology of physical interactions
in a locally defined flow measure. The methodology presented in this chapter can hence
be considered to be universally valid for all spatially extended dynamical systems, offering
intriguing prospects for future research in other fields of physics.





CHAPTER 6
Seasonal and monsoon climate networks

As was already demonstrated in the previous chapter, climate networks can be used to
uncover interesting structure in climate dynamics by studying spatial and temporal subsets
of the complete global data set of some climatological observable. For example, Tsonis
and Swanson (2008) studied the impact of ENSO on global teleconnection patterns by
constructing two global climate networks from a monthly averaged surface air temperature
reanalysis data set: An El Niño network using concatenated data from El Niño months and
likewise a La Niña network from La Niña months. Yamasaki et al. (2008) and Gozolchiani
et al. (2008) in turn studied regional climate networks constructed from complete time series
to investigate the impact of ENSO on the number of edges or equivalently the edge density
of these regional networks. In the context of this chapter it is important to remind the reader
that Tsonis et al. have used only data from winter months in all of their studies (Tsonis
and Roebber (2004), Tsonis et al. (2006), Tsonis et al. (2008b), Tsonis and Swanson (2008))
while we processed the complete time series containing data from all months in all analyses
presented above (Sect. 3.1).
After briefly describing the methodology (Sect. 6.1), we present some interesting results

on the seasonal and monsoon variability of the spatial characteristics of a regional SAT
climate network encompassing the Indian Ocean basin (Sect. 6.2) and significance tests on
the time series and network level (Sect. 6.3). Selected results are displayed for both model
and reanalysis data. Table 6.1 summarizes information on the regional climate networks
used in this study.

6.1. Methodology
A seasonal climate network GS is constructed by calculating the correlation measure
Cij for a temporally ordered subset of the two anomaly time series âi(t) and âj(t) in-
volved, i.e., by concatenating all samples that belong to one of the four seasons, S =
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Table 6.1 Properties of regional Indian Ocean data set used for generating seasonal and
monsoon climate networks.

Indian Ocean basin
(λmin,λmax) [◦] (−45,45)
(φmin,φmax) [◦] (30,140)
NNCEP/NCAR 1665
NHadCM3 1110

{MAM,JJA, SON,DJF}1.
Likewise, we generate a monsoon climate network Gm by concatenating data from the

summer months June, July and August, when the Indian summer monsoon is strongest
(Wang (2006)). The non-monsoon state is characterized by the non-monsoon climate network
Gm̄ constructed from concatenated anomaly time series of the winter months December,
January and February.

To highlight the localized impact of the monsoon circulation on the spatial structure of
regional teleconnections within the Indian Ocean basin SAT climate network, we introduce
the notion of exclusive climate networks. Let Am and Am̄ be the adjacency matrices of
monsoon and non-monsoon climate networks, respectively. The exclusive monsoon climate
network contains only edges that are present in the monsoon network, but not in the
non-monsoon network. Its adjacency matrix Aexcl.

m is given by

Aexcl.
m = Am −Θ (Am + Am̄ − 1) , (6.1)

where Θ(.) denotes the Heaviside function (to be applied elementwise) and the second term
on the right side of Eq. 6.1, Θ (Am + Am̄ − 1), can be interpreted as the adjacency matrix
of the network of coinciding edges. Similarly, the exclusive non-monsoon climate network’s
adjacency matrix Aexcl.

m̄ is obtained by replacing m→ m̄ in Eq. 6.1.

6.2. Results

6.2.1. Seasonal climate networks
Comparing the degree and intrinsic edge distance distributions of seasonal climate networks
constructed from AOGCM and reanalysis SAT data, some pronounced deviations appear
(Fig. 6.1). Most notably, the summer HadCM3 network possesses more high degree hubs
and long range edges than the other seasonal HadCM3 networks. For the reanalysis data set

1 This corresponds to the standard definition of seasons in meteorology, i.e., spring comprises all of March,
April and May, summer all of June, July and August, fall all of September, October and November and
winter all of December, January and February. Note that maintaining our eurocentric bias we refer to
northern hemisphere summer as summer etc.
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this observation cannot be confirmed in general, but the summer network has more high
degree vertices and long range connections than the winter network. These deviations can
be thought of to partly be an imprint of higher order effects of the annual cycle that have
not been filtered out by phase averaging during the data preprocessing stage (Sect. 3.1).
Seasonal climate networks additionally show marked differences in their area weighted

connectivity (Fig. 6.2) and average edge distance fields (Fig. 6.3), where we only show
those for the HadCM3 SAT data set here. The super-nodes present in the seasonal networks
change their position, shape and intensity, e.g., the super-node with long range connectivity
over the Philippines that is only unambiguously present in the winter climate network.

6.2.2. Monsoon climate networks
To find traces of the monsoon circulation in our SAT climate networks, we compare the
monsoon (summer) and non-monsoon (winter) state by constructing exclusive monsoon
and non-monsoon networks and comparing their characteristics. The exclusive monsoon
(summer) network is found to host remarkably more high degree vertices and long range
edges than the exclusive non-monsoon (winter) network for both model and reanalysis data
(Fig. 6.4).

Comparing the AWC and AED fields of exclusive monsoon and non-monsoon climate
networks, the shifting super-nodes can be visualized very clearly. The HadCM3 exclusive
monsoon network shows pronounced centers of action of high long range connectivity, i.e.,
high AWC and AED, south of India and east of Africa (Fig. 6.5(a), 6.5(a)). While some
of these features are also found in the AWC and AED fields of the corresponding exclusive
non-monsoon network, new centers of action appear over Pakistan, the southern Indian
Ocean, over the Philippines and south of Korea over the East China Sea. It is important to
point out, that the centers of action observed in exclusive networks are build up entirely
of edges that exist exclusively in either the monsoon or the non-monsoon state. Ergo, the
edge density ρ of exclusive networks is generally smaller than that of the seasonal climate
networks from which they are constructed (Table 6.2).
Comparing the NCEP/NCAR (Fig. 6.6) and HadCM3 (Fig. 6.5) exclusive networks, we

observe a similar seasonal shift of the “center of mass” of super-nodes from the Northern
(summer) to the the Southern Hemisphere (winter). While some more localized structures

Table 6.2 Edge densities of common and exclusive monsoon and non-monsoon climate networks
for a HadCM3 SAT Pearson correlation data set encompassing the Indian Ocean basin. The
seasonal network used for their construction were fixed at edge density ρ = 0.01.

ρ HadCM3 NCEP/NCAR
Common 0.0051 0.0059
Excl. monsoon 0.0039 0.0034
Excl. non-monsoon 0.0039 0.0034
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in the AWC and AED fields also coincide to some degree, e.g., the center of action south
of Korea in the exclusive non-monsoon networks, we observe some manifest deviation. For
example, the NCEP/NCAR exclusive monsoon network possesses a strong super-node over
the Bay of Bengal, that is not seen in the HadCM3 exclusive monsoon network. The marked
localized deviations suggest that exclusive monsoon and non-monsoon climate networks
might be used in the future to evaluate the performance of AOGCMs in capturing seasonal
and monsoon variability in the tropics, but also other climate zones.
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(a) (b)

(c) (d)

Figure 6.1 (a,c) Degree distribution p(k) and (b,d) intrinsic edge distance distribution pnet(l)
for spring (blue diamonds), summer (green circles), fall (red plus signs) and winter (turquoise
dots) Indian Ocean basin climate networks at ρ = 0.01 constructed from (a,b) HadCM3 and
(c,d) SAT data sets using Pearson correlation. Considering the HadCM3 data set, the summer
network is special in the sense that among all seasonal networks it contains the hubs of highest
degree and a notably larger number of long range connections. Compare also the different color
bar scales in Fig. 6.2 and Fig. 6.3.
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(a) (b)

(c) (d)

Figure 6.2 AWC fields for (a) spring, (b) summer, (c) fall and (d) winter HadCM3 SAT
Pearson correlation climate networks at ρ = 0.01, encompassing the Indian Ocean basin. Note
that the scale of color bars it not the same for all panels.
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(a) (b)

(c) (d)

Figure 6.3 AED fields for (a) spring, (b) summer, (c) fall and (d) winter HadCM3 SAT
Pearson correlation climate networks at ρ = 0.01, encompassing the Indian Ocean basin. Note
that the scale of color bars it not the same for all panels.
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(a) (b)

(c) (d)

Figure 6.4 (a,c) Degree distribution p(k) and (b,d) intrinsic edge distance distribution pnet(l)
for monsoon (blue circles), non-monsoon (green dots), common edges (red diamonds), exclusive
monsoon (turquoise plus signs) and exclusive non-monsoon (lilac crosses) Indian Ocean basin
climate networks constructed from (a,b) the HadCM3 and (c,d) the NCEP/NCAR SAT Pearson
correlation matrix. The edge density of the monsoon and non-monsoon networks was fixed at
ρ = 0.01, resulting in lower edge densities in the range of 0.003 ≤ ρ ≤ 0.006 for the common
and exclusive networks (Table 6.2). For AOGCM and reanalysis data, the monsoon (summer)
climate network possess hubs of higher degree and more long range edges than the non-monsoon
(winter) network.
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(a) (b)

(c) (d)

Figure 6.5 AWC fields for exclusive (a) monsoon and (b) non-monsoon networks as well as
AED fields for exclusive (c) monsoon and (d) non-monsoon HadCM3 SAT Pearson correlation
climate networks, encompassing the Indian Ocean basin. The edge density of the monsoon and
non-monsoon networks was fixed at ρ = 0.01, resulting in lower edge densities in the range of
0.003 ≤ ρ ≤ 0.006 for the common and exclusive networks (Table 6.2). Note that the scale of
color bars it not the same for all panels.
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(a) (b)

(c) (d)

Figure 6.6 AWC fields for exclusive (a) monsoon and (b) non-monsoon networks as well
as AED fields for exclusive (c) monsoon and (d) non-monsoon NCEP/NCAR SAT Pearson
correlation climate networks, encompassing the Indian Ocean basin. The edge density of the
monsoon and non-monsoon networks was fixed at ρ = 0.01, resulting in lower edge densities in
the range of 0.003 ≤ ρ ≤ 0.006 for the common and exclusive networks (Table 6.2). Note that
the scale of color bars it not the same for all panels.
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6.3. Significance tests
For brevity, we demonstrate significance tests of the spatial characteristics for the all year
HadCM3 SAT Pearson correlation climate network encompassing the Indian Ocean basin
(Chap. 4). To test if the spatial network properties observed in Sect. 6.2 can be explained by
the degree field alone1, we develop the null hypothesis that the regional Indian Ocean basin
SAT network is random with a fixed degree field. Employing a configuration model network
ensemble to test this null hypothesis, we find that the intrinsic edge distance distribution
pnet(l) (Fig. 6.7(a)) and average edge distance field AEDv (Fig. 6.7(b)) of the original
climate network deviate significantly from those of the configuration model ensemble. The
approximately exponential decay of pnet(l) is much slower for the ensemble than for the
original network. The Z-scores are particularly large over the ocean, indicating a higher
significance of the observed AED patterns there. We can hence reject the null hypothesis
that the network is random with a given degree field with high confidence.
By similar arguments, we can reject the null hypothesis that the anomaly time series

of the underlying SAT data set are pairwise independent using a twin surrogate network
ensemble (Fig. 6.7(c) and 6.7(d)). This null hypothesis corresponds to the assumption that
the observed spatial properties can be explained by single time series properties such as the
PDF, power spectrum and self mutual information alone.

1 The degree and area weighted connectivity fields are nearly equivalent here, since the Indian Ocean
basin network is centered on the equator and the vertex density is nearly homogenous, i.e., cos(λ) is
comparable to one everywhere (cos(λmax ≈ 0.7)).
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(a) (b)

(c) (d)

Figure 6.7 Significance tests for (a,c) intrinsic edge distance distribution pnet(l) and (b,d)
average edge distance field AEDv for the HadCM3 SAT Pearson correlation climate network
at ρ = 0.01 over the India Ocean basin. The ensemble mean pnet(l) and AED Z-scores were
obtained from 100 realizations of (a,b) the configuration model and (c,d) twin surrogate
networks (m = 1, τ = 0, δ = 0.1 and ∆t = 7). The error bars in (a,c) indicate the respective
ensemble standard deviation for each bin.
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6.4. Summary and outlook
In summary, we have presented a case study of the application of the climate network
approach to regional and seasonal data sets. For a regional Indian Ocean basin climate
network we have uncovered interesting seasonally changing structures in AOGCM and
reanalysis surface air temperature data, some of which could be related to the monsoon
circulation. Finally we have demonstrated how the network models introduced in Chap.
4 could be applied to test the significance of the well defined spatial structures that are
observed in the original regional climate network.
It is desirable in the future to develop a well founded climatological interpretation of

the observed spatial network structures. Further work is also needed to investigate the
possible role of nonlinear physical processes involved in the monsoon circulation within the
framework of climate network analysis, e.g., by comparing mutual information and Pearson
correlation climate networks (Sect. 3.3). Finally, we suggest that coupled climate networks
building on coupled pattern analysis from climatology might be more suitable to study the
monsoon dynamics (Bretherton et al. (1992)), because they allow to simultaneously the
dynamical interrelationships between several climatological fields within a unified framework.
For example, a 3-coupled regional network constructed from surface air temperature, surface
air pressure and precipitation or air moisture content presents a promising candidate for
studying monsoon dynamics.





CHAPTER 7
Conclusions and outlook

The universe is a much more intricate place than we can
imagine. I often think our conscious minds will never
encompass more than a tiny fraction of it all and that our
comprehension of the Earth is no better than an eel’s
comprehension of the ocean in which it swims.

James Lovelock, “The Revenge of Gaia” (2006)

The work on this thesis commenced as an experimental undertaking. It was a priori not very
clear which questions to ask and what to look for on the pursuit of a deeper understanding of
climate system dynamics using time series analysis and complex network theory as the tools
at hand. Especially during the early phase of this endeavor the resulting freedom allowed
us to touch upon many ideas, some of which have found their way into the appendix in a
condensed and concise format.
While iteratively refining our methods and theoretical insight, it became apparent that

complex networks in the climate system must be understood on two levels of abstraction.
First, we envision the intricate topology of physical interactions between the different
components of the climate system, e.g., hydrosphere, atmosphere, cryosphere and biosphere,
mediated by processes such as currents, winds, waves and diffusion to form a physical complex
network. This view does not imply the denial of the locality principle of classical physics,
in contrast the physical climate network on the deepest level is formed by elementary local
interactions following the basic laws of physics. As an illustrative analogy to this idea consider
a complex electrical circuit, for example a high-end computer chip. In principle it is possible
to describe its behavior drawing on the basic laws of quantum mechanics by calculating
the time-dependent spatial probability density distribution of electrons in this elaborately
crafted system of isolating, semi-conducting and conducting solids. While the solution of this
elementary problem might be feasible in the remote future, delicately and most probably
by relying on computing machines, it would not deepen the physical understanding of the
chip as a whole. The network paradigm proves to provide a more natural description of chip
dynamics and design principles, even though it is not set at the basic level of physical theory.
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Yet usually nobody would claim that to view a computer chip as a network of interacting
electronic building blocks is unphysical. Hence it is our conviction that it is legitimate to
view the network paradigm as a valid physical description of the climate system, as it is
complementary to the classical local description relying for example on the Navier-Stokes
equations, thermodynamics and radiation balances, and has the potential to provide a new
level of understanding.
This said, we secondly turn to the more pragmatic method of climate network analysis

developed in this thesis. We think of the application of complex network theory to climate
data analysis as a computational laboratory, where the various network measures introduced
in Chap. 2 take the roles of scientific instruments. Each instrument is designed to reveal
selected aspects of the climate system’s complex dynamics that are not directly perceivable
and quantifiable by the limited human senses, e.g., by looking at a movie of the time evolution
of the surface air temperature field we can neither “see” the underlying backbone of high
dynamical information flow detected by the instrument betweenness centrality nor is it a
priori obvious that surface ocean currents seem to act as the physical carrier of this flow. The
climate network laboratory is hence crafted to trace the underlying physical climate network’s
footprints which lie implicitly hidden in multivariate time series data. Akin to physical
scientific instruments, network measures are prone to systematic and random errors. We
have tried to avoid systematic errors in network construction by carefully comparing different
climate network construction techniques and particularly by providing several criteria for the
choice of a reasonable threshold for the correlation measure matrix (Chap. 3 and paper II).
The robustness of our results against the more subtle effects of systematic and random errors
was evaluated using a hierarchy of statistical tests on the level of time series analysis and
complex network theory, where we developed and utilized novel types of network surrogates
incorporating spatial constraints (Chap. 4).

While our climate network laboratory produces highly interesting and robust measurements
like the backbone structures discussed in Chap. 5, one has to be aware that it is difficult to
directly relate our laboratory climate networks to the physical climate network described
above1. In this context, the largest issues are presented by the limitations of the network
construction method, e.g., the transitivity problem and the missing power to discriminate
between causal relationships and mere correlations. Furthermore, the interpretation of our
laboratory climate networks is complicated by the fact, that their vertices and edges do not
correspond to clearly defined physical entities obeying known laws, as is the case for the
vertices (transistors, capacitors, inductors, resistors etc.) and edges (wires) of the computer
chip network. Hence, climate networks should at this stage mainly be considered as a novel
paradigm in climate data analysis, that has a great potential to yield new insights into
climate system dynamics and particularly creates new perspectives for assessing the stability
and vulnerability of the climate system.

1 A similar problem is faced when electroencephalogram (EEG) data is used for the study of brain dynamics
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In this spirit, the major contribution of this work is the development of a method capable
of extracting the localized structure of dynamical information flow within a climatological
field from data alone, e.g., the backbone of the surface air temperature network (Chap. 5 and
paper I), employing a refined climate network construction method and particularly sensitive
centrality measures on the global topological scale. While we mainly relied on the surface
air temperature field as a training case, our methodology is valid for other climatological
fields, e.g., surface air pressure or moisture content as well. More generally, we emphasize
that this methodology is universal in the sense that it can in principle be applied to study
the information flow within any spatially extended dynamical system. Our results are hence
of interest for a broad audience within the physics community and various applied fields.
Possible fields of application include among others fluid dynamics (turbulence), plasma
physics, biological physics (population models, neural networks, cell models). Furthermore,
our method is equally relevant for experimental data as well as model simulations and hence
introduces a novel perspective on model evaluation and data driven model building. Note
that technical suggestions on how our methods could be extended and developed in future
research are given in the summary sections of the respective chapters.
Our work is timely in the context of the current debate on climate change within the

scientific community and hence of broad interest, since it allows to assess from a new
perspective the vulnerability and stability of the climate system regionally while relying on
global and not only on regional knowledge. The method introduced in paper I therefore
has the potential to substantially contribute to the understanding of the local effect of
extreme events and tipping points in the earth system within a holistic global framework.
In the future, it is hence desirable to extend the idea of climate network analysis to Earth
system network analysis. The notion of coupled pattern networks constitutes a first step
in this direction (Sect. 6.4). Even though this generalization may seem natural, it is
expected to be conceptually and methodologically very challenging because the subsystems
involved, i.e., atmosphere, hydrosphere, biosphere, lithosphere and anthroposphere, are
qualitatively distinct. For example, it is not a priori obvious how to measure the relationship
between the dynamics of entities belonging to different spheres when aiming to construct
a meaningful network that reflects the topology of complex interactions within the Earth
system. Nevertheless we think that the application of complex network approaches to Earth
system analysis presents a worthwhile objective for future research. In essence, complex
network theory has the potential to significantly enhance our understanding of Earth system
dynamics by integrating large amounts of data in a mathematically well-defined framework
and providing the tools to extract conceptional models in the spirit of dimensional reduction,
i.e., by outlining the essential entities and their interaction. These data driven conceptual
models could in turn be validated against independent data and finally be used to make
predictions.
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APPENDIX A
Community structure in climate networks

Here we present some hints pointing to a pronounced community structure present in the
HadCM3 SAT climate network (Sect. 3.1.1). Roughly, a subgraph of a network forms a
community, if it is internally notably more densely connected than with external vertices. In
this sense the components of a network constitute a trivial community structure. Generally,
which subgraphs we consider to form communities is not clearly defined, but depends on the
choice of some parameter or ad-hoc criterion (da F. Costa et al. (2007)). Within the framework
of climate networks, communities correspond to sets of geographical regions carrying a similar
dynamics with respect to some climatological field, e.g., surface air temperature. Studying
the community structure of climate networks we can accordingly expect to find some known
climate zones, but there is also the hope to reveal yet unknown dynamically coherent
structures. We suggest that it could in the future be particularly interesting to extract
community structure from climate networks generated using sophisticated measures of
synchronization (Sect. 3.2) and from networks extending the notion of coupled patterns
between two (or more) climatological observables (Bretherton et al. (1992)). Very recently
we came to know of a paper also studying community structure in climate networks which
was not yet published by the date of submission of this thesis (Tsonis et al. (2009)).

Average nearest neighbor degree The average nearest neighbor degree

knnv = 1
kv

N∑
i=1

Aviki (A.1)

of vertex v is a measure of degree-degree correlations in a complex network. For the HadCM3
SAT climate network we find that vertices with similar degree tend to be connected prefer-
entially among each other (Fig. A.1), i.e., the climate network is assortative. Assortativity
hints at an identifiable community structure, since vertices with a low degree can be thought
of connecting only to vertices within in the same community whereas high degree hubs link
the communities by connecting to other hubs in different communities. Only for the highest
degree nodes with k ≥ 200 the SAT climate network appears to be disassortative, i.e., knn
decays with k in this region. To reassure these results on degree-degree correlations, proper



106 A. Community structure in climate networks

Figure A.1 Average nearest neighbor degree knnv plotted against degree kv. The HadCM3
SAT Pearson correlation climate network at ρ = 0.005 clearly shows assortative behavior. The
Spearman’s Rho of kv and knnv is rs(kv,knnv ) = 0.9834.

significance tests on the network theoretical level have to be performed (Zamora-López et al.
(2008), Zamora-López (2008)).

Community structure based on modularity maximization To obtain a first impression of the
network’s community structure, we employ a fast algorithm based on greedy maximization
of modularity (Clauset et al. (2004)). The ten largest communities detected already show
some interesting characteristics (Fig. A.2). The remaining communities are very small and
most of the associated vertices are disconnected from the network’s giant component.

The communities tend to be oriented zonally, reflecting the zonal alignment of the major
climate zones. They furthermore show a preference to follow continental boundaries again
demonstrating the land-sea difference in SAT dynamics. The largest community encompasses
Africa, the Indian Ocean, the Southern Ocean and large expanses of the Atlantic Ocean.
While the Antarctic forms an isolated community, the Arctic is connected to Greenland,
Europe, large parts of Asia and North America. The community extending from the North
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Figure A.2 The ten largest communities of the HadCM3 SAT Pearson correlation climate
network at ρ = 0.005 obtained by fast and greedy maximization of modularity.

Atlantic to the Baffin, Labrador and Norwegian Seas could be an indicator of the oceanic
realm of influence of the North Atlantic Current. The Pacific Ocean is dominated by two
communities that also include Australia and South America, respectively. Note also the
more localized communities over India and South East Asia.





APPENDIX B
Towards directed climate networks

Directed networks (digraphs) extracted from multivariate time series data promise to yield
highly interesting novel insights into the dynamics of spatially extended systems, e.g.,
into that of the climate system. To explore the potential of this approach we extend the
climate network construction method presented in Chap. 3. Particularly we build on the
undirected Pearson correlation climate network by experimentally employing the average
phase shift ∆Φij = 〈Φi(ω)− Φj(ω)〉ω>0

1 between anomaly time series âi(t),âi(t) as a measure
of directionality, where Φi(ω) = arg(F(âi))(ω) and F(âi))(ω) denotes the discrete Fourier
transform of âi(t) (Eq. 4.2). It should be pointed out that ∆Φij is only easily interpretable
as an average phase shift, if the power spectra of âi(t),âi(t) are small banded.
Starting with an unconnected set of vertices, we assemble the climate digraph in the

following fashion. If âi(t) on average lags behind âj(t), i.e., if ∆Φij < 0, and Pij > τ we
create an arc (j,i). If in turn âi(t) on average runs ahead of âj(t), that is ∆Φij > 0, and
Pij > τ an arc (i,j) is established. Specifically, using the Pearson correlation Pij and average
phase shift ∆Φij matrices the adjacency matrix Aij is given by

Aij = Θ(Pij − τ)Θ(∆Φij), (B.1)

with Θ(.) the Heaviside function. Note that pragmatically, we calculate Pij and ∆Φij
simultaneously by considering the complex correlation coefficient Ca

ij =
〈
âai (t)∗âaj (t)

〉
t
of the

analytic signals âai (t),âaj (t) (Brockwell and Davis (2002), Bergner et al. (2008)). Substantially,
the analytic signal âai (t) corresponds to the time series âi(t) with its negative frequency
contributions removed. It can be shown straightforwardly that Pij = |Ca

ij| and ∆Φij =
arg(Ca

ij).
Now we can consider directed climate network measures, e.g., the topologically local in -

1 Here we use the mean of angles, i.e., 〈Φj(ω)〉ω>0 = arg
(

2/T
∑

k,ωk>0 exp(iΦj(ωk))
)
.
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area weighted connectivity (in-AWC)

AWCin
v =

∑N
i=1Aiv cos(λi)∑N
i=1 cos(λi)

, (B.2)

and the out - area weighted connectivity (out-AWC)

AWCout
v =

∑N
i=1Avi cos(λi)∑N
i=1 cos(λi)

. (B.3)

If vertex v has a large AWCin
v but a small AWCout

v , its dynamics tends to lag behind that of
its neighbors. If in contrast, v has small AWCin

v but large AWCout
v it tends to dynamically

lead its neighbors.
Note that on the global topological scale we can also calculate directed shortest path

betweenness by including only the contributions of directed paths in Eq. 2.14. Along a
directed path (i,v1,v2, . . . ,vd−1,j) of length d connecting vertices i and j, the cumulative
average phase difference increases with every arc, i.e., the directed path follows the direction
of the mean phase flow in the spatially extended dynamical system1.

The edges included in the directed HadCM3 surface air temperature climate network carry

(a) (b)

Figure B.1 Frequency plot of average phase shift ∆Φij vs. (a) edge distance lij and (b)
Pearson correlation Pij for HadCM3 SAT data set. The distributions are symmetric with
respect to the ∆Φij = 0 axis, since we compute the histogram for the complete antisymmetric
matrix ∆Φij . A histogram with 104 equally sized rectangular bins is used for this analysis.
The white horizontal line indicates the threshold of τ = 0.69 corresponding to an edge density
of ρ = 0.005 for the associated climate network. The color bar gives the logarithm of frequency.

1 Specifically, this holds for any directed path, not only the shortest directed paths wielded for the
calculation of directed betweenness centrality.
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relatively small average phase shifts of −1 < ∆Φij < 1 at an edge density of ρ = 0.005 (Fig.
B.1(b)). The dependence of ∆Φij on edge length lij is relatively homogenous, except for very
small, very large edge distances, two ’blobs’ of high frequency close to the ∆Φij = 0 axis and
one smaller high frequency region at lij ≈ 0.2 and ∆Φij = ±π (Fig. B.1(a)).

Comparing the fields of in-AWC and out-AWC (Fig. B.2) we observe that the super-nodes
found in both fields are complementary, i.e., regions with large in-AWC tend to have a small
out-AWC and vice versa. This suggests that some well defined centers of action on average
have a leading phase relationship to their neighbors, e.g., the out-AWC super-node in the
tropical East Pacific at λ ≈ −5◦N and φ ≈ 270◦E (Fig. B.2(b)), while others on average
lag behind their neighbors, e.g., the in-AWC super-node in the tropical West Pacific at
λ ≈ −5◦N and φ ≈ 180◦E (Fig. B.2(a)). There is also weaker evidence of complementary
super-nodes over the Indian Ocean. We suggest that the complementary super-nodes in the
tropical Pacific could be a footprint of ENSO in our directed SAT climate network. This is
reasonable because ENSO varies on interannual time scales of three to eight years that is
well captured by our monthly anomaly SAT data, while faster time scales are averaged out.
More specifically, some of the complementary super-nodes resemble known centers of action
of the ENSO phenomenon, e.g., the pronounced out-AWC super-node off the west coast of
South America corresponds to the warm water pool forming off the South American Pacific
coast during El Niño episodes. Again, this is conceivable because of the strong heat flux
coupling between sea surface and surface air temperature.

The directed betweenness field for the same directed climate network (Fig. B.3) possesses
backbone structures resembling those found in the undirected Pearson correlation climate
network constructed from the same data set (Fig. 3.8(a)). Given the hypothesis that
perturbations in the dynamics of the underlying SAT field are advected preferentially by
strong surface ocean currents we expect that there should on average also be a monotonous
phase evolution in the dynamics of vertices along the path of surface ocean currents. This in
turn should result in a comparable contribution of directed and undirected shortest paths
to the betweenness of these vertices, finally leading to similar backbone structures in the
fields of directed and undirected betweenness centrality. Ergo, following this reasoning the
similarity of the directed and undirected betweenness fields calculated for the HadCM3 SAT
network gives supporting evidence that shortest path betweenness can be interpreted as a
measure of advective dynamical information flow in climate networks.
One has to be aware that the purely linear analysis performed above presents just a

preliminary step towards directed climate networks, since (i) the average phase difference ∆Φij
is not suitable to study causal relationships and (ii) it is only interpretable for time series with
small banded power spectra which is not true in a strong sense for the climatological anomaly
time series studied here. Inspite of these deficiencies our simple method is able to detect
pronounced structures in directed network measure fields, i.e., in- and out-AWC and directed
betweenness. Furthermore note that we obtained similar results for the NCEP/NCAR SAT
data set substantiating their physical relevance. To construct directed climate networks
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from time series where directionality is related to causality, more sophisticated measures of
information transport and causality such as transfer entropy (Schreiber (2000)) and granger
causality (Granger and Hatanaka (1964)) or recurrence based methods (Romano et al. (2007))
could be used in the course of future research.
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(a)

(b)

Figure B.2 (a) In - and (b) out - AWC fields for a directed climate network at ρ = 0.005
constructed from the HadCM3 SAT data set using the complex correlation coefficient method.
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Figure B.3 Directed betweenness field for a directed climate network at ρ = 0.005 constructed
from the HadCM3 SAT data set using the complex correlation coefficient method.



APPENDIX C
Betweenness in El Niño and La Niña climate networks

Inspired by the work of Tsonis and Swanson (2008), we would like to check for qualitative
changes in the betweenness backbone structure of SAT climate networks (Chap. 5) with
respect to different states of the El Niño Southern Oscillation (ENSO). We first calculate
the southern oscillation index (SOI) from monthly averaged NCEP/NCAR surface pressure
(SP) data (Kistler et al. (2001)), that is provided on the same grid as the NCEP/NCAR
surface air temperature (SAT) data used to construct El Niño and La Niña climate networks
from (Table 3.1). The SOI index is defined as the normalized surface pressure difference
∆P (t) between Tahiti and Darwin (Trenberth et al. (1997)), i.e.,

SOI(t) = ∆P (t)− 〈∆P (t)〉t
STD(∆P (t)) , (C.1)

where STD(∆P (t)) denotes the standard deviation of pressure difference. The coordinates

Figure C.1 . Time evolution of the SOI index calculated from NCEP/NCAR reanalysis
surface pressure data.
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of Tahiti (T) and Darwin (D) are approximately given by (λT = −17.4◦, φT = 210.5◦) and
(λD = −12.3◦, φD = 130.5◦).

We now define the El Niño state as comprising all time series indices t satisfying SOI(t) <
−1, likewise all indices t′ with SOI(t′) > 1 are considered to belong to the La Niña state
(Fig. C.1). Using this criterion, we construct concatenated anomaly time series from the
NCEP/NCAR SAT data set, that contain only samples from the El Niño and La Niña
states, respectively. The El Niño time series contain 115 samples while the La Niña time
series consist of 124 data points. From the resulting El Niño and La Niña data sets we
generate El Niño and La Niña climate networks using the method presented in Chap. 3. We
choose Pearson correlation as the correlation measure, because the small number of samples
contained in the concatenated El Niño and La Niña time series limits our ability to calculate
a meaningful mutual information between pairs of time series.
First note, that handling climate networks with nearly four times as many vertices as

contained in the networks analyzed by Tsonis and Swanson (2008), we can confirm their
result that the La Niña network possesses a greater number of long range connections than
the El Niño network (Fig. C.2). Comparing the El Niño and La Niña betweenness fields, we
first observe that backbone structures appear in both states of ENSO (Fig. C.3). During
La Niña the backbone structures appear to be more delicate and well defined, whereas they
are broader and distorted during El Niño. This effect could be related to the more regular
(i.e., more predictable) climate during La Niña as compared to the greater irregularity (i.e.,
lower predictability) during El Niño episodes (Tsonis and Swanson (2008)). The major
backbone structures described in Chap. 5 are seen during both ENSO states when allowing
for translations, deformations and differences in relative strength1. Some more pronounced
deviations in backbone structure appear over the Indian, South Pacific and North Atlantic
Oceans.

Further work is required to consolidate these findings and relate them to known features
of ENSO dynamics. Backbone structures in the betweenness fields of El Niño and La Niña
climate networks promise to provide novel insights into changes of the information flow
structure with the SAT field during ENSO (Sect. 5.2).

1 By the strength of a backbone structure at vertex v we refer to the value of the betweenness field BCv.
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Figure C.2 Intrinsic edge distance distribution pnet(l) of El Niño and La Niña SAT climate
networks at ρ = 0.005 constructed from NCEP/NCAR reanalysis surface pressure data using
Pearson correlation. Compared to the El Niño network, the La Niña network possesses a
considerably larger number of long range teleconnections.
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(a)

(b)

Figure C.3 Betweenness fields of (a) La Niña and (b) El Niño SAT climate networks calculated
from NCEP/NCAR SAT data at ρ = 0.005 using Pearson correlation. Note that the color scale
is logarithmic.



APPENDIX D
Supplementary results from additional AOGCM runs

For reference, we provide additional betweenness fields calculated for monthly surface air
temperature (SAT) Pearson correlation climate networks generated from a representative
subset of model output from the World Climate Research Programme’s (WCRP’s) Coupled
Model Intercomparison Project phase 3 (CMIP3) multi-model data set (Meehl et al. (2007)).
As in Sect. 3.1.1, we choose 20th century reference runs for optimal comparability with
reanalysis data (Table D.1).
The betweenness fields of CCCma (Fig. D.1(a)), NCAR PCM1 (Fig. D.1(b)), CNRM

(Fig. D.2(a)) and GFDL CM2.0 (Fig. D.2(b)) all show backbone structures qualitatively
resembling those described and discussed for NCEP/NCAR reanalysis and HadCM3 SAT
climate networks in Chap. 5. Note particularly the effect of spatial resolution or equivalently
network size N on the shape of backbone structures. The lower N , the more the major
backbone structures tend to be blurred while weaker and narrower features disappear
completely. This is consistent with the hypothesis raised in Chap. 5 that western boundary
currents (WBCs) are not clearly identifiable in the betweenness fields of climate networks
studied until this point, because they are too narrow to be resolved by the coarse grids
available.

In contrast, the betweenness fields of high resolution SAT climate networks studied here,
i.e., those constructed from GFDL CM2.0 and ECHAM5 data sets, do indeed include
backbone structures along the east coasts of continental land masses resembling WBCs (Fig.
D.2(b), ??). For example, note the Gulf Stream and Brazil current along the east coast of
North and South America, the Agulhas along the east coast of Africa, the Kuroshio along
the western rim of the North Pacific and finally the East Australia current (Fig. 5.2).
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Figure D.1 Betweenness fields for (a) CCCma and (b) NCAR PCM1 SAT climate networks
at ρ = 0.005 constructed using Pearson correlation.
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Figure D.2 Betweenness fields for (a) CNRM and (b) GFDL CM2.0 SAT climate networks at
ρ = 0.005 constructed using Pearson correlation.
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APPENDIX E
Implementation

For the numerical calculations performed in this work we have created the object oriented
library “pyClimateNetworks” using the open source scripting language Python (van Rossum
et al. (1991–2009)). “pyClimateNetworks” encapsulates methods for time series analysis,
climate network construction and complex network analysis and at the same time enables a
high reusability of code together with the flexibility to generate and analyze climate networks
interactively from the Python shell. Another great advantage of using the interpreted Python
language is platform independence, we can use “pyClimateNetworks” on a great variety
of computer architectures with high efficiency without having to adjust or recompile the
source code. This will particularly allow a straightforward parallelization of our library in
the future.
Computationally expensive algorithms have been implemented by utilizing the high

performance open source libraries Numpy (Oliphant (2006)), SciPy (Jones et al. (2001–2009))
and embedded C++ code segments within SciPy.Weave. For most of the graph theoretical
computations we relied on the fast open source library iGraph and its Python interface
(Csárdi and Nepusz (2006)). For plotting on maps we employed PyNGL (Computational &
Information Systems Laboratory at the National Center for Atmospheric Research (NCAR)
(2004–2008)), the Python interface to the NCAR Command Language (NCL). We used
the open source package GraphViz for drawing graphs (AT&T Research and Bell Labs
(2004–2009)). All other figures were created using the open source Python library matplotlib
(Barrett et al. (2004)). All calculations were performed on workstations running Mac OS
10.5 and SUSE Linux.
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