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Abstract

Percolation process, which is intrinsically a phase transition process near the critical point, is ubiqui-

tous in nature. Many of its applications embrace a wide spectrum of natural phenomena ranging from

the forest fires, spread of contagious diseases, social behaviour dynamics to mathematical finance,

formation of bedrocks and biological systems. The topology generated by the percolation process

near the critical point is a random (stochastic) fractal. It is fundamental to the percolation theory that

near the critical point, a unique infinite fractal structure, namely the infinite cluster, would emerge. As

de Gennes suggested, the properties of the infinite cluster could be deduced by studying the dynamical

behaviour of the random walk process taking place on it. He coined the term the ant in the labyrinth.

The random walk process on such an infinite fractal cluster exhibits a subdiffusive dynamics in the

sense that the mean squared displacement grows as � t2=dw , where dw , called the fractal dimension

of the random walk path, is greater than 2. Thus, the random walk process on the infinite cluster is

classified as a process exhibiting the properties of anomalous diffusions. Yet near the critical point, the

infinite cluster is not the sole emergent topology, but it coexists with other clusters whose size is finite.

Though finite, on specific length scales these finite clusters exhibit fractal properties as well. In this

work, it is assumed that the random walk process could take place on these finite size objects as well.

Bearing this assumption in mind requires one address the non-equilibrium initial condition. Due to the

lack of knowledge on the propagator of the random walk process in stochastic random environments,

a phenomenological correspondence between the renowned Ornstein-Uhlenbeck process and the

random walk process on finite size clusters is established. It is elucidated that when an ensemble of

these finite size clusters and the infinite cluster is considered, the anisotropy and size of these finite

clusters effects the mean squared displacement and its time averaged counterpart to grow in time as

� t .dCdf .��2//=dw , where d is the embedding Euclidean dimension, df is the fractal dimension of

the infinite cluster, and � , called the Fisher exponent, is a critical exponent governing the power-law

distribution of the finite size clusters. Moreover, it is demonstrated that, even though the random walk

process on a specific finite size cluster is ergodic, it exhibits a persistent non-ergodic behaviour when

an ensemble of finite size and the infinite clusters is considered.





Abstract

Der Perkolationprozess, der nahe dem kritischen Punkt von Natur aus ein Phasenübergangsprozess

ist, ist allgegenwärtig in der Natur. Anwendungen dieses Prozesses umfassen ein breites Spektrum

natürliche Phänomene von Waldbränden, der Ausbreitung von Infektionskrankenheiten, Dynamik

des Sozialverhaltens bis hin zu der Finanzmathematik, der Bildung des von Gestein und biologische

Systemen. Die durch der Perkolationprozess nahe dem kritischen Punkt generierte Topologie, ist

ein zufälliges (stochastisches) Fraktal. Es ist eine fundamentale Aussage der Perkolationtheorie,

dass nahe dem kritischen Punkt eine eindeutige unendliche fraktale Struktur, nämlich der unendliche

Cluster, aufkommt. Wie de Gennes vorgeschlagen hat, können die Eigenschaften des unendliches

Clusters durch die Dynamik der Irrfahrt, die auf dem Cluster stattfindet, abgeleitet werden. Er erfand

den Ausdruck the ant in the labyrinth. Die Irrfahrt auf solchen unendlichen fraktalen Clustern weist

eine subdiffusive Dynamik auf, in dem Sinne, dass ihre mittlere quadratische Verschiebung wie

� tdw skaliert, wobei dw , genannt die fraktale Dimension der Zufallsbewegung, größer als 2 ist. Auf

diese Weise wird die Irrfahrt auf dem unendlichen Cluster als ein Prozess, der die Eigenschaften von

anomaler Diffusion aufweist, klassifiziert. Der unendliche Cluster ist allerdings nicht die einzige

entstehende Topologie nahe dem kritischen Punkt. Tatsächlich, koexistiert er mit anderen Clustern

deren Größe endlich ist. Obwohl sie endlich sind, weisen sie auf bestimmten Längenmaßen fraktale

Eigenschaften auf. In dieser Arbeit wird angenommen, dass die Irrfahrt auch auf diesen Clustern

stattfinden könnte. Diese Annahme verlangt, dass die Nichtgleichgewichts-Anfangsbedingung disku-

tiert wird. Aufgrund der mangelnden Kenntnisse über den Propagator der Irrfahrt in stochastischen

Umgebungen, wird in diese Arbeit eine phänomenologische Übereinstimmung zwischen dem bekan-

nten Ornstein-Uhlenbeck Prozess und der Irrfahrt auf dem endlichen Cluster hergestellt. Es wird

erläutert, dass, wenn ein Ensemble von endlichen und unendlichen Clustern zusammen betrachtet

wird, die Anisotropie und Größe der endlichen Cluster dazu führen, dass die mittlere quadratische

Verschiebung und ihr zeitgemittlertes Gegenteil mit der Zeit wie � t .dCdf .��2//=dw wachsen, wobei

d die euklidische Einbettungsdimension ist, df die fraktale Dimension und � , genannt der Fisher

Exponent, ein kritischer Exponent ist, der die Power-Law Verteilung der Clustergröße angibt. Es wird

außerdem dargestellt dass, obwohl die Irrfahrt auf einem bestimmten endlichen Cluster ergodisch ist,

er dennoch ein unergodisches Verhalten aufweist, wenn ein Ensemble von endlichen und unendlichen

Cluster betrachtet wird.





Preface

Percolation process and its geometrical beauty have been always intriguing subjects of studies
ignited by the works of Flory and Stockmayer in the 1940s on a process called gelation
where polymers by the means of cross-linking would bind to each other and form a larger
molecule which could be infinitely large compared to the size of its polymer components.
And the formation of this large molecule solely depends on the density of the polymers and
their chemical energy with respect to the solvent. For an appropriate density of polymers and
choice of a solvent, namely the gelation point, an incipient infinite molecule would emerge.
At this point, the solution’s liquid state would exhibit gel phase properties.

The beauty of this theory lies within its simple imposition and yet the complexity it
bears within. After about seven decades and its mathematical formulation by the initiative of
Broadbent and Hammersley, the problem still poses a challenge to the researchers to identify
the gelation point, namely the critical percolation density and many of the theoretical aspects
of the theory are open problems still. However, this did not impede the percolation of this
theory into different branches of science and technology and it has been applied to different
problems with different contexts ranging from stock, finance and sociology to physics and
biology.

The inflexion point of the theory was in the 1970s when de Gennes proposed that the
topological properties of media that are formed by the gelation process could be extracted
by studying the statistical properties of the random walk process; he coined the term Ant in
Labyrinth after his proposition. The commencement of this work presented here was due to a
question addressing the diffusion process of proteins in lipid membranes. Lipid membranes,
being porous media, are fine examples of a gelation process exhibiting a fractal geometry
due to the existence of voids, and proteins’ motion is an example of a random walk process
in such environments to find their way to enter the membrane and exit from the other end of
structure.

In the model considered here, not only the infinite void space was included, but also
occasions where the protein could potentially get trapped in the lipid membrane due to the
disconnectedness of the void spaces. The first attempts were to address this problem by



xiv Preface

the means of the simulations and the results were interesting enough to make an attempt to
formulate them mathematically to provide more insight into such ensembles.

Historically, in literature, the authors were mostly interested in the infinite structure
formed by the gelation process and the amount of the literature on taking into account the
coexistence of the finite and infinite structures simultaneously, barely contributes to the field.
Therefore, en route, many of the attempts to quantify the statistical properties of the Ant
in Labyrinth problem failed. It was at this point where a phenomenological approach was
considered to compare the Ant in Labyrinth process with the well-known Ornstein-Uhlenbeck
process.

The fruit of this approach is presented in this work after four years of challenges and my
wish would be that the reader would find this dissertation useful for further studies on this
topic and that the value of this work would bring the appreciation of the community. I hope I
could have had the slightest contribution to the progress in this field and shed light on some
of the not-yet-explored corners of the theory.

Yousof Mardoukhi
Potsdam January 29, 2020
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Chapter 1

Introduction

Consider a Pólya’s walk (random walk) in one dimension [1]. The particle at every instance
of time would take a step of unit length either to the left or to the right with equal probability
1=2 independently of the previous step taken by the particle. The position of the particle is
then given by a binomial distribution with zero mean and the variance n after taking n steps.
It is well-known that according to the theorem of large numbers and the central limit theorem,
when n tends to infinity, the distribution coincides with a normal distribution suggesting
that every point lying on the axis of movement is visited with probability 1 infinitely many
times [1, 2].

Now consider the same problem, yet this time, assign to every point on the axis equally
the probability of 1=2 to indicate the direction of the next step to be taken by the particle
once visited. This process continues until the very moment when the two nearby points
directing the particle oppositely. This is the terminal position of the process and contrarily
to the previous case, the distribution of such points is not binomial. It is clear that in such
a case as an instance of a percolation process, the motion of the particle is imposed by the
medium only. This description should clearly draw a line, from which one can tell apart a
percolation process from a diffusion process (refer to Fig. 1.1).

In their pre-eminent work, Broadbent and Hammersley devised the term abstract crystal,
defined as a set of atoms (representing the nodes) and bonds (representing the edges),
resembling a graph structure [3]. Each bond defines a connexion between two neighbouring
atoms. The bonds represent a pipeline infrastructure distributing water in this abstract crystal.
The sequel of blocking each bond randomly (or damming as referred by Broadbent and
Hammersley), defines a structure called random maze. Once the fluid is supplied to the
network, it can only flow through unblocked bonds.

Percolation theory concerns itself with the statistical distribution of the unblocked bonds.
The very central and fundamental question in this theory is, under which circumstances
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a)

b)

1/2 1/2

Figure 1.1 a) Pólya’s walk where taking a step to the right or the left has the probability 1/2.
b) Percolation process on a lattice where each site indicates the direction of the next steps
to be taken. Each direction appears with the probability 1/2 and the position of the red disk
is not distributed according to a binomial distribution. The red disk represents the Pólya’s
walker.

if a reservoir of fluid pumps the liquid into the structure, the liquid would wet infinitely
many atoms (it is worth to remind the reader that a crystal mathematically is defined as an
infinite set of points in space). It is also deduced immediately that the percolation problem
for a Pólya’s walk in a one dimensional random maze has a trivial solution as for any given
probability of blocking the bonds which is larger than zero, there are at least two blocked
bonds such that the pipeline would get clogged.

Amongst the many applications of the percolation theory, one could refer to some classical
examples e.g. the spread of fire in a forest. In this scenario, trees represent the nodes. The
process starts by setting a tree alight and in the next steps, nearby trees would catch fire if one
of their neighbouring trees have already caught fire. Therefore, the density of the forest i.e.
how densely the trees are covering the land, is the sole parameter which destines whether the
whole forest would burn into ashes or the fire would eventually terminate due to the sparse
population of the trees.

Another classic example of a percolation process is the spread of an epidemic in societies.
In this scenario substitute the role of the trees with people and the fire with a contagious
plague. Here, an individual represents a node and the social connexions it has with other
individuals represent the bonds in the abstract crystal. For this scenario there is a real-
life example in the history of mankind that was the most devastating epidemic the world
had ever seen up to that time; the break out of the Black Death. Originated in China, it
spread throughout Asia and Europe and took almost the life of approximately half of the
population [4, 5]. Yet, the spread of the epidemic in Europe left behind an interesting
observation. In some parts of Europe, indeed the epidemic spread out as a percolation
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Figure 1.2 The waves of the Black Death in Europe between 1347 and 1351. Note that the
majority of the Polish land and some parts of nowadays Belarus and Ukraine remained intact
by the plague. Different arrival waves of the outbreak of the plague are shown in different
colours indicated in the legend [6].

process, however, in nowadays Poland, the process terminated [6]. This is an example of a
percolation process on an inhomogeneous graph where blocking the bonds has a different
probability for different edges (see Fig. 1.2).

The reasons that are found in between the lines of history suggests that due to the
fact that the land was largely covered by forest, which further implies that the land was
sparsely populated, caused the plague not to transmit as frequently as in the other cities in
Europe [7]. Moreover, this was not the sole reason that impeded the spread of the plague,
but the precautionary measures the then King of Poland, Casimir the Great took to impose
quarantine on the trade routes and securing the borders of Poland [7, 8]. This effectively
secured the inland from being contaminated by the plague. This demonstrates that how a
wise king as Solomon could spare a nation from being humiliated and wasted by one of the
most destructive epidemic the world had ever seen till then. It is to be emphasised further
that King Casimir the III was the only king of Poland whose name bears the title the Great.

Some of the consequences of Black Death were successive and frequent wars to secure
more resources due to the lack of labourers and merchants which significantly affected the
economy of many kingdoms in that era. Furthermore, due to the lack of labourer, new classes
of societies and consequently professions were born. Such divisions and stratification in the
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Figure 1.3 Geopolitical map of Poland during the reign of Casimir the Great between 1333
and 1370. The lighter shades of red depict the conquests of Casimir the Great during his
reign. Compare this to the map of Black Death in Europe in Fig. 1.2. By imposing quarantine
at the Polish boarders, he managed to deflect the progress of the plague into the Polish
mainland [9].
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casts of society and birth of new professions in the labour market are addressed in a recent
publication by the means of the percolation model [10].

It is worthwhile to mention that in epidemic cases, like the Black Death where the scale of
the displacement of individuals is much smaller than the geographical scale, for instance the
distance between two cities, the spread of the disease emerges as a propagation of wavefronts
as depicted in Fig. 1.2. On the contrary, in the modern days when the aviation is a part
of daily life means of transportation, spread of a contagious disease is no longer bounded
by the local interaction of individuals. In their model, Hufnagel et. al. accounted for a
transition probability of a severe acute respiratory syndrome (SARS) not only between the
local individuals but between the individuals belonging to different countries. By this means
they could, to an astonishingly degree of accuracy, replicate the breakout of SARS between
2002 and 2003 [11].

Further application of the percolation theory can also be traced in the recent collaborative
works of the author as an attempt to characterise the mechanical properties of brittle rocks
based on the topological properties of the micro-cracks of the rock’s surface under surface
heat treatment [12, 13]. As the duration of the heat treatment increases, the propagation
of the micro-cracks on the surface due to the expansion creates a backbone of connexions
which once spanned the surface of the rock leads to a fracture in the rock under stress. The
percolation process here is induced by the heat applied to the surface and causes the growth
of the micro-crack structure of the surface; once reached a critical threshold, the rock is prone
to break down by a significantly smaller applied pressure [14].

The reader must have noticed by now that in all the examples given above there is
one essential measure that indicates whether a percolation process would thrive or would
terminate at some point. That one essential measure is the density e.g. in the case of a forest
fire is the density of the trees, in the case of an epidemic is the density of population or the
number of bonds between each individual and in the last case, it is the bond between the
micro-cracks. This density is the most essential quantity in the theory of percolation and it is
specific to the underlying topological structure of the graph.

As a critical phenomenon and being inherently a phase transition process, most of the
interests are attracted towards the critical density which once reached, implies that almost
surely an infinite network of wet atoms would form. Thus, most of the studies are devoted
to study these infinite objects. Despite of this fact, the aim in this dissertation is also to
address the situation where the finite networks of wet atoms coexist with the finite ones near
the critical density. In other words, central to this work, is to consider an ensemble which
constitutes the infinite and finite networks of wet atoms at the same time near the critical
density. The prime reason for this assumption is that in real world problems, finite networks
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are more probable to emerge at the critical density rather than the infinite ones. Thus, it
is more natural to consider an ensemble which encompasses both simultaneously. These
finite networks exhibit a different behaviour than the infinite ones when dynamics of the
wetting process is considered. On these finite networks, locally, for the length scales that are
smaller than the effective radius of the network, the network exhibits the same structure as
of infinite ones. Thus, for dynamical processes on these networks, where time is a relevant
quantity, on time scales which mimic the length scales smaller than the effective radius of the
network, the network would resemble the structure of an infinite structure near the critical
density. Hence, depending on the time scale, the statistical properties of such ensembles
could vary. This interconnection between the dynamical process and topological properties
of the percolation process is central in this dissertation.

This dissertation is arranged and compiled in such a way that in the next chapter a formal
mathematical definition of the percolation theory is provided to familiarise the reader with
the essentials of the theory. Furthermore, it will be demonstrated how scaling arguments
near the critical density could provide more insight into the behaviour of the percolation
process. In the second chapter, the first steps are taken to approach the problem of taking into
account the coexistence of infinite and finite networks of wet atoms and how the random walk
process on these networks reveals the topological properties of the structure by analysing the
behaviour of certain statistical quantities such as mean squared displacement. In the third
chapter, the ergodic property of the random walk process on such networks is discussed. The
fourth chapter is dedicated to the simulations that were carried out to justify the analytical
results presented in this dissertation. And finally, conclusions are drawn to provide the reader
with a clearer picture of the results yielded in this work.



Chapter 2

Mathematical Formulation of the
Percolation Theory

To mathematically formulate the description of a percolation process in two dimensions,
as the rest of this work is exclusively dedicated to the simple square lattice, consider Z2 to
be the set of points on a Euclidean plane with integral coordinates. A bond is then a line
connecting two adjacent points which have a distance 1. The distance between two points of
x and y in Z2 is defined as

ı.x;y/D

2X
iD1

jxi �yi j: (2.1)

Denote the set of the bonds with E2 then, G D .Z2;E2/ is a graph embedded in R2 which is
referred to as an abstract crystal. Define a global value 0� p � 1 which is called percolation
density. Refer to an edge e 2 E2 unblocked with probability p or blocked otherwise with
probability 1�p, independently of any other edges in E2. Consequently, the sample space
is given by � D ˝e2E2f0;1g, where for the edge e if !.e/ D 1, it is understood as the
edge is unblocked and if !.e/D 0 the edge is blocked. An instance of this sample space
is a configuration denoted by ! D .!.e/ W e 2 E2/. The very fact that each edge is either
blocked or left unblocked independently of any other edges, naturally imposes a product
measure Pp D

Q
e2E2�e on the probability space .�;F ;Pp/, where �e.!.e/D 1/D p is

the Bernoulli measure on the set f0;1g, and F is the �- field of subsets of � generated by
finite-dimensional cylinders.

A configuration ! is a percolation process on G and it is referred to as bond-percolation
model compared to the site- percolation model where instead of dealing with edges, one asso-
ciate the state of being blocked and unblocked to the sites of Z2. The neighbourhood relation
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Figure 2.1 Site-percolation on the left hand side versus the bond-percolation on the right
hand side. Every bond-percolation model has a site-percolation representation but not vice
versa. The yellow colour depicts the open sites or bonds. The red dots depict the nodes of
the lattice. Note that the depiction on the right site does not represent the site-percolation
example on the left side.

between the sites is then identified by a given rule e.g. von Neumann neighbourhood [15].
It has been proven that every bond-percolation model has an equivalent site-percolation
representation [16–18]. This map is injective meaning that not every site-percolation model
has an equivalent bond-percolation representation. Hence, site-percolation models describe a
more general class of percolation processes which will be the focus of this work as well (see
Fig. 2.1). The set of unblocked sites that are connected through a specified neighbourhood
relation (e.g. von Neumann) form an open cluster. It is clear that the larger the p is, the
appearance of such open clusters becomes more probable. The prime quantity in the percola-
tion theory is the percolation probability �.p/ of a site belonging to an infinite open cluster.
Since a lattice is an infinite set of sites, it is immediately followed that it remains invariant
under translational maps. Therefore, the quantity � for a specific site can be translated into
the percolation probability of the centre of the lattice belonging to an infinite open cluster.
Note that � for p D 1 is identically 1 and for p D 0 is admittedly 0. It is intuitive that if one
gradually increases p from 0 to 1, isolated islands of open clusters form on the lattice until a
critical value of p, denoted by pc , is reached when for the first time these isolated islands
become interconnected and an infinite open cluster spans the underlying lattice.

Denote the open cluster to which the centre of the lattice belongs by C and the number of
the open sites belonging to such a cluster with jjCjj. By definition �.p/ is given by

�.p/D Pp.jjCjj D1/; (2.2)
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and with respect to p it behaves as

�.p/

8<:D 0 p < pc;

> 0 p > pc
: (2.3)

The threshold value pc is called the critical percolation density and for any embedding
Euclidean dimension d of the lattice is defined as

pc.d/D supfp W �.p/D 0g: (2.4)

The critical percolation density pc as a function of the embedding Euclidean dimension d is
a strictly decreasing function. This is observed by referring to the coordination number of
each site; as d increases, the coordination number increases subsequently. Thus, with even a
smaller number of open sites one could form an interconnected path of open sites.

The existence of such a threshold implies that there are two phases for a percolation
process. This is true only when d � 2, as it has been shown previously that for the case of
d D 1, pc is 1 trivially. Hence, for any d � 2, for p < pc , the percolation process is called to
be in the subcritical phase and for p > pc , in the supercritical phase. In the subcritical phase,
all the open clusters have a finite size almost surely. On the other hand, in the supercritical
phase, the probability of any site of the lattice belonging to an open cluster of infinite size
is strictly larger than 0. For the proof on the existence of pc as a critical phenomenon refer
to [18]. This leads naturally to define another probability measure  .p/ which addresses the
existence of an infinite open cluster which satisfies the following

 .p/D

8<:0 if p < pc;

1 if p > pc
: (2.5)

Note that this probability measure only speaks of the existence of an infinite open cluster in
the supercritical phase, and does not guarantee the uniqueness of the infinite open cluster.
Furthermore, it does not provide any information regarding the fact that an infinite open
cluster exists at the critical probability pc or not. It is known that for d D 2, there is no such
cluster at pc , but it is left as an open question for d � 3. But there is a proof that the infinite
open cluster , if exists, is unique [18]. Moreover, proven by Kesten [19] by letting p to be
slightly different than pc one can speak of an incipient infinite cluster instead of the infinite
cluster strictly. The value of pc for some of the generic lattices in two and three dimensions
is given in Table 2.1.
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Lattice Site-percolation Bond-percolation

Honeycomb 0.6962 0.65271
Square 0.592746 0.50000
Triangular 0.500000 0.34729

Diamond 0.43 0.388
Simple cubic 0.3116 0.2488
BCC 0.246 0.1803
FCC 0.198 0.119

d = 4 hypercubic 0.197 0.1601
d = 5 hypercubic 0.141 0.1182
d = 6 hypercubic 0.107 0.0942
d = 7 hypercubic 0.089 0.0787

Table 2.1 Table of critical percolation densities pc for some two-dimensional and three-
dimensional lattices [20]. Note that as d increases, pc decreases subsequently.

2.1 Scaling Theory

Hitherto, the formal definitions were provided to make the reader familiar with the essentials
of the percolation process. As this dissertation is dedicated to the study of the percolation
process near the critical point pc , the focus henceforth is drawn towards the scaling theory
which is tightly related to the physical theory of the phase transition. It must be very clear to
the reader that for p � pc , a phase transition occurs from the subcritical phase were all the
open clusters are finite in size and isolated, to the supercritical phase where almost surely
there exists an infinite cluster. The percolation probability �.p/ then clearly behaves as the
order parameter of this phase transition. It is essential to bear in mind that the behaviour
of the macroscopic quantities suggested by the scaling theory are not yielded via rigorous
mathematical deductions. On the other hand, they are interpreted by empirical observations,
whether this observation be through a physical experiment carried in the laboratory or a
computer simulation. Thus, one should not seek a rigorous proof for them but to receive
them as conjectures.

2.1.1 Critical Exponents: Correlation Length, Fractal Dimension and
the Fisher Exponent

At the core of the scaling theory, lies the most essential macroscopic quantity called the
correlation length. Denoted by � , it is related to the concept of the probability that the origin
of the lattice and any other randomly chosen site of the lattice at distance n from the origin,
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Exponent Estimated Literature

df 1:9˙0:1 91=48

� 2:03˙0:01 187=91

dw 2:7˙0:1 2:87

Table 2.2 Table of critical exponents estimated at p D 0:6 (middle column) and near pc
(rightmost column) for the square lattice [20]. In chapter 5 it will be delineated how these
exponents are extracted by the means of simulation.

belong to the same open cluster. This probability is called the connectivity probability and
it is believed that near pc it scales as n2�d�� for some given � and any p other than 0;1
and pc . The connectivity probability scales as e�n=�.p/, where �.p/ diverges when p � pc ,
since the probability of the origin and any site of the lattice belonging to the infinite cluster
is non-zero [18]. It is fundamental to the scaling theory that irrespective of whether p
approaches pc from above or beneath, for an exponent � > 0, �.p/ scales as

�.p/� jp�pcj
��: (2.6)

The importance of �.p/ lies within the fact that it imposes naturally a length scale such that
for any length scales larger than the correlation length, the cluster which encompasses the
origin appears to be homogeneous. For any length scales smaller than �.p/, the topological
properties of the cluster differ from the topological properties of the cluster for length scales
larger than the correlation length.

Another quantity central to the scaling theory is the probability of the appearance of
the cluster C with size jjCjj. The average cluster size defined as

P
nnPpc.jjCjj D n/ at pc

diverges as the percolation theory suggests that the probability of the appearance of the
infinite cluster � pc is 1. The divergence of the average cluster size hence suggests that
Ppc.jjCjj D n/� n�� for some exponent � > 0 called the Fisher exponent after the Fisher
droplet model [20, 21].

The last but not least of the parameters that concerns with the topological properties of
the open clusters is the fractal dimension [22]. Without getting deeper into how the fractal
dimension is mathematically defined which is out of the scope of this dissertation [23, 24],
the shortest distance between two sites belonging to the same open cluster is not the shortest
distance according to the `1 norm defined by Eq. (2.1). To elaborate this further, without loss
of generality, consider a square lattice and choose a box of size L. The hypervolume of such
a box is L2. Assume that the lattice unit length to be unity, mesh the box and then observe
that with L2 boxes one can carpet the hypervolume of this box. Now consider a percolation
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process within this box, and let the edges of this box tend to infinity. Obviously, close to
pc , the infinite cluster emerges and the number of the tiles needed to cover the hypervolume
of the infinite cluster no longer scales as L2 but scales as Ldf , where in two dimensions
1 < df < 2 [20, 24]. The exponent df is called the fractal dimension. The algorithm utilised
to estimate the fractal dimension is one of the widely used ones called the Box counting
method. The dimension yielded by this method is often referred to as the box-counting
dimension or Minkowski–Bouligand dimension [25]. The estimated value of df , dw (which
will be introduced in the next section) and � for this work and their theoretical value are
provided in Table 2.2 (it will be elaborated in chapter 4 how the corresponding values of the
aforementioned exponents are extracted numerically).

2.2 Dynamical Scaling Theory

2.2.1 Ant in a Labyrinth

Another approach to extract the topological properties of the open clusters is based on the
statistical behaviour of the random walk process on such clusters known as the dynamical
scaling theory [26]. De Gennes in his seminal work suggested that asymptotic properties
of the random walk process on infinite open clusters at the percolation threshold reveal the
geometry of such clusters [27]. Since near pc the infinite cluster exhibits a fractal nature, he
devised the term ant in labyrinth1. There are two canonical modes of walks when the ant
explores an open cluster. Assuming a lattice with co-ordination number z, one denotes the
number of nearest open neighbours of the site s by Z.s/. Upon the arrival of a myopic ant
at the site s, the ant identifies the nearest open sites and in the next step, it chooses one of
them with probability 1=Z.s/. This mode of walk corresponds to the classical Pólya walk;
sometimes referred to as Pólya ant as well [29, 30]. Contrarily, the blind ant, since it is blind,
upon its arrival at the site s, chooses one of the nearest neighbour with probability 1=z for its
next step, and if that neighbouring site the ant is about to move to is occupied, it stays at the
site which it currently resides at with probability Œz�Z.s/�=z [31].

The equilibrium probability distribution is reached differently for these two modes of
walk. For the blind ant, denoting the probability of the ant to be at site s by P.sjs0/ given
that it started initially at site s0, and the number of sites of the open cluster by jjCjj. The
probability distribution function after taking n steps would be given by

P.sjs0/D 1=jjCjj; (2.7)

1The labyrinth is a well-known fractal structure due to its scale-free geometry [28]
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for all n after reaching equilibrium state. Meanwhile, for the myopic ant, this probability
can depend on whether the number it has taken is even or odd; it also depends on the initial
site s0 of the ant [26, 32]. If the underlying lattice is bipartite, then one can deterministically
identify on which sub-lattice the ant is, given that the number of the steps the ant has already
taken is even or odd.

The distinction becomes apparent once matrix transfer formalism is exploited to analyse
the eigenvalue spectrum of the matrix associated with the distribution of the obstacles on
a given lattice [32]. By decomposing the eigenvalue of the matrix, three different classes
of eigenvalues may appear, positive, negative and complex. Since the matrix is real, the
complex eigenvalues must appear in pair conjugates. Moreover, for the blind ant, since
the matrix is symmetric all the eigenvalues and their corresponding eigenvectors must be
real. For the myopic ant, conversely, the transfer matrix is not symmetric, nonetheless, it
was proven that there exists a transformation such that the transfer matrix for the myopic
ant could be converted into a symmetrical one [32] (Jacobs cited a private communication
he had with N. Fuchs). Hence, the same statement regarding the existence of the complex
eigenvalues extends to the myopic ant. As previously mentioned, if in an occasion in which
the underlying lattice is bipartite, the coexistence of negative and positive eigenvalues for
the myopic ant indicates consecutive jumps from one sub-lattice to the other, corresponding
to the odd or even steps taken by the ant. Yet for blind ant, as well as for myopic ant on
a non-bipartite lattice, all the eigenvalues are positive, since one cannot deterministically
identify whether the ant is taking its odd or even step. By comparing the differences between
these two modes of the walk, quoting Hughes, apparently many authors have claimed that
blind ant mode is more natural to study the random walk process in randomly obstructed
environments( [26] p. 438). Therefore, the mode chosen here, as well, is the blind ant and
what is presented henceforth, discusses the scaling behaviour of this mode of walk on open
clusters appearing near critical percolation density pc .

2.2.2 Mean Squared Displacement

One of the statistical quantities of interest for the random walk process is the mean squared
displacement. Abbreviated as MSD, for an ensemble of random walk processes on a given
open cluster C it is defined as ˝

r2C .t/
˛
D

Dˇ̌
r.t/� r.0/

ˇ̌2E
; (2.8)

where r.t/ denotes the spatial position of the random walk process at time t . For a random
walk process after taking t steps on an incipient infinite cluster MSD scales as t2=dw , where
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dw is called the fractal dimension of the random walk path [26, 33]. For the Bernoulli
percolation model used in this work, dw > 2 which further implies that the exponent of t is
smaller than unity. This suggests that the random walk process in such random environments
are subdiffusive [34]. Nevertheless, there are other measures than the Bernoulli probability
measure or other types of dynamical interaction between the random walk process and the
random environment which could lead to superdiffusive dynamics where the exponent of
t is larger than unity [35]. Moreover, it is noteworthy to mention that the random walk
process in random environments is not the only model of anomalous diffusion. Others
such as diffusing diffusivity, random walk in heterogenous media, continuous random walk
(CTRW) and fractional Brownian motion are a few to name which reproduce subdiffusive
or superdiffusive dynamics [36–39]. Another quantity of interest is the number of distinct
visited sites which after t steps, on statistical average, scales as tds=2 where ds is called the
spectral dimension (also harmonic dimension) [26, 33]. The fractal dimension of the open
cluster, the fractal dimension of the random walk path and the spectral dimension are related
through the following

ds D 2df =dw ; (2.9)

known as Alexander-Orbach scaling law [40]. As mentioned earlier, the intention of this
work is not to only study the topological properties of the incipient infinite clusters, but
to take into account the contribution of all possible realisations of the open clusters with
different sizes. Dynamical scaling theory provides one with the essential means for relating
the statistical properties of the random walk process averaged on all open clusters with
different sizes to the geometrical exponents of the infinite cluster near the critical point. The
main driver for this intention is that in experimental setups, all the open clusters are finite
in size. Yet, concerning the time scale of the experiment, the open clusters may appear as
an incipient infinite cluster. To elaborate this further, consider a realisation of a percolation
process on a two-dimensional square lattice. Assume that the centre of the lattice belongs to
an open cluster C and that the cluster is finite in size. Consider a random walk process on
this open cluster; the MSD of such a process scales as˝

r2C .t/
˛
� t2=dw ; (2.10)

for time scales that are firstly, sufficiently smaller compared to the size of the cluster, such
that the random walk process would not reach the boundary of the cluster and secondly,
mimic length scales for which the cluster appears to be homogeneous. Nonetheless, it is
evident that as t grows, the random walk process would eventually sample all the accessible
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open sites within the cluster and MSD would reach its terminal value. Denote this terminal
value by R21, where the subscript denotes the radius explored by the random walk process
after taking infinitely many steps. It is held such that [26]

R21�
˝
r2C .t/

˛
R21

� exp
�
�

�
t

�

�w�
; (2.11)

where � is the characteristic time required for the random walk process to reach the boundary
of the open cluster. Obviously, this characteristic time solely depends on the size of the
open cluster, namely jjCjj. The exponent w is smaller than unity and determines how fast
the MSD of the random walk process reaches its terminal value. A glance reveals that for
time scales t � �, MSD should monotonically increase as the dynamical scaling theory
predicts. Thus, it is evident that w is indeed 2=dw . This has been also proven by the means of
numerical simulations and further was justified by the means of the matrix transfer formalism
that w D 2=dw . But historically, w was assigned to unity which by the means of numerical
simulations was defied [41–43].

For a given open cluster C and an ensemble of random walk processes, the equilibrium
initial condition is fulfilled if the ant parachutes randomly with the equal probability 1=jjCjj
on each site of the open cluster. Recall that this is the probability distribution of the ant being
at a specific site after reaching the stationary state. Thence follows immediately that R21 is
nothing but twice the second power of the radius of gyration of the cluster C. To arrive at
this conclusion, assume the equilibrium initial condition and let the ant takes infinitely many
steps on this very open cluster. After certain elapse of time which is comparable to �, all the
sites of the open cluster will be visited equally with the probability 1=jjCjj. This is identified
as the stationary state of the random walk process. Whence, it is a simple exercise to prove
that for the ensemble of random walk processes, MSD is nothing but 2R2g , where Rg is the
radius of gyration of cluster C which is defined as

R2g D
1

2jjCjj2
X
i;j

jri � rj j2; (2.12)

where ri and rj are the vectors pointing to the position of the sites of cluster C indexed by i
and j respectively. An instance of such an open cluster with size jjCjj D 793 is demonstrated
in Fig 2.2 alongside with its radius of gyration and the centre of mass. Recall the definition
of MSD which is given by

˝
jr.t/� r.0/j2

˛
. When t !1, r.t/ could be any of the sites lying

within the cluster C with the probability 1=jjCjj. Furthermore, assume the equilibrium initial
condition which implies that r.0/ could also be any of the sites within the cluster C with
probability 1=jjCjj. Therefore,
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Centre

of

Mass

Figure 2.2 An instance of a finite size open cluster with size 793 near the critical point. The
cluster is identified by its Oxford blue colour. The sky blue represents other vacant sites
which do not belong to the concerned open cluster. The white-off powder blue sites are
blocked. The radius of the gyration is depicted by the red arrow and the corresponding circle
is depicted with red dashed-line whose centre is the centre of mass of the open cluster.

lim
t!1

˝
r2C .t/

˛
D lim
t!1

Dˇ̌
r.t/� r.0/

ˇ̌2E
D

X
i;j

ˇ̌̌̌
ri
jjCjj �

rj
jjCjj

ˇ̌̌̌2
D

1

jjCjj2
X
i;j

jri � rj j2 D 2R2g :

Thus, through Eq.(2.11), MSD will be identified to be

˝
r2C .t/

˛
eq D 2R

2
g

 
1� exp

"
�

�
t

�

�2=dw#!
; (2.13)

where the subscript ’eq’ indicates that the equilibrium initial condition is asserted.
In the expression above, Rg and � can be expressed in term of the cluster size jjCjj by

exploiting the scaling theory and the dynamical scaling theory respectively. Recall that in
dynamical scaling theory the number of distinct visited sites by a random walk process on an
incipient infinite cluster with respect to time scales as S.t/� tdf =dw . Thus, the time required
by the ant to visit all the sites within the open cluster is given by jjCjjdw=df . To relate Rg to
the size of the cluster, assume a circle with radius R. If one tiles the area of this very circle
with squares of unit area, then the number of tiles encircled by the perimeter is proportional
to R2, where the exponent is the Euclidean dimension of the disk. For a finite size open
cluster, since it exhibits fractal nature, the relevant topological dimension would be df . Thus



2.3 Phenomenological Approach 17

the number of sites included within the radius of gyration of the cluster scales as jjCjj2=df .
Subsequently, Eq. (2.13) can be rewritten as

˝
r2C .t/

˛
eq D 2h

2
jjCjj2=df

�
1� exp

�
�

Dt2=dw
jjCjj2=df

��
; (2.14)

where h and D are dimensional constants defined through Rdfg D hdf jjCjj and �2=dw D
DjjCjj2=df respectively.

Nonetheless, this very expression is not pertinent to the main objective of this work. As
it will be delineated in the following chapters, the procedure chosen here to simulate such an
ensemble is to force the ant to parachute always at the centre of the lattice. This is to due to
some practical limitations imposed by the complexity of the percolation process. Specifically,
fulfilling the equilibrium initial condition for significantly large clusters is computationally
an exhaustive task. Furthermore, for many experimental set-ups in laboratories, it is more
natural to fix spatially the initial condition. Thus, the initial condition of the random walk
processes is always affixed to the centre of the lattice which would negate the assumption of
the equilibrium initial condition. Consequently, one has to seek an expression for MSD when
the constraint of the equilibrium initial condition is lifted. Notwithstanding, this is proved to
be non-trivial. The reason that the deduction of such an expression is laborious lies within
the fact that, contrary to many other random walk or stochastic processes, the probability
density function of the random walk process in random environments, due to the complexity
of the topology of the support, remains unknown [44, 45]. Despite this fact, the random walk
process on deterministic fractals has exact solutions [46, 47]. To rephrase it, no systematic
way, such as solving the stochastic differential equation of the random walk process on
incipient infinite clusters has been developed. In this regard, here, a phenomenological
approach is suggested to overcome this difficulty and by claiming a conjecture, an expression
is deduced such that it could arguably describe the behaviour of MSD in the absence of the
criterion of equilibrium initial condition for the problem of the Ant in the Labyrinth.

2.3 Ornstein-Uhlenbeck Processes and Ant in Labyrinth:
Phenomenological Approach

A closer look at Eq. (2.11) draws one’s attention towards the similarity between the random
walk process on finite size open clusters and the renowned Ornstein-Uhlenbeck process [48].
Simply substitute the exponent w by 1 and then one immediately recovers the MSD for the
Ornstein-Uhlenbeck process with the equilibrium initial condition asserted [49].
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The Ornstein-Uhlenbeck process belongs to the class of the Gauss-Markov processes,
which implies that it is simultaneously identified as a Gaussian and a Markov process [48].
The fact that it is a Gaussian process, implies that the covariance function of the process fully
defines the process if the mean is assumed to be zero [50]. Furthermore, the process has a
unique strong stationary solution.

Although the two processes have different supports - infinite for the Ornstein-Uhlenbeck
process and finite for the random walk process on finite-size open clusters - both processes
are Markovian ([26] p.438) with finite first and second moments of statistics. Another
difference between the two cases is that the metric imposed by the geometry in the case of the
Ornstein-Uhlenbeck process is Euclidean while for the latter, it is dictated by the Hausdorff
measure. That being said, it seems that a rescaling relation could be made between the two by
facilitating the scaling and dynamical scaling theory. To demonstrate this further, recall that
the stochastic differential equation for the Ornstein-Uhlenbeck process in two dimensions is
given by

dr
dt
D�

r
�
C����.t/; (2.15)

where rD .rx; ry/, and � and � are positive definite parameters. The stochastic function
���.t/ is the Gaussian white noise with zero-mean and the correlation function satisfying˝

�i.t1/�j .t2/
˛
D ıij ı.t1� t2/I i;j 2 fx;yg;

where ıij is the Kronecker delta and ı.x/ is the Dirac delta function. The solution of the
differential Eq. (2.15) is found to be

r.t/D e�t=�
�

r0C�
Z t

0

es=����.s/ds

�
; (2.16)

where r0 is the initial condition of the process. From the equation above one deduces that the
mean and the position autocorrelation function of the process are given by

hri.t/i D
˝
r i0
˛
e�t=� (2.17)

hri.t1/ri.t2/i D

�D
r i0
2
E
�
��2

2

�
e�.t1Ct2/=�C

��2

2
e�jt1�t2j=�; (2.18)
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where i 2 fx;yg. Thus, one arrives at the following expression for the MSD of the process˝
r2.t/OU

˛
D

Dˇ̌
r.t/� r.0/

ˇ̌2E
D
˝
r20
˛�
1� exp

�
�

�
t

�

���2
C��2

�
1� exp

�
�2

�
t

�

���
: (2.19)

The equilibrium initial condition for r0 is a is a normal distribution N .0;�2/, where the
variance is simply concluded to be ��2 by recalling Eq. (2.16) and infer that,

r i0 D �

Z 0

�1

es=��i.s/ds;D
r i0
2
E
D �2

Z 0

�1

e2s=�ds D
�2�

2
:

Readily, Eq. (2.19), once equilibrium initial condition is assumed, would simplify to the
following expression

˝
r2.t/OU

˛
eq D 2��

2

�
1� exp

�
�

�
t

�

���
: (2.20)

Now compare the equation above with Eq. (2.13) and identify the exponent w is unity for
the Ornstein-Uhlenbeck process and 2=dw for the random walk process on finite size open
clusters. The base of this work for further analyses is founded upon the following conjecture
after the observation of the similarity between the Ornstein-Uhlenbeck process and the
random walk process on finite size open clusters.

Conjecture: Random walk process on a finite size open cluster C is analogous to Ornstein-
Uhlenbeck process with the positive definite parameters � and � where Rg is the radius of
gyration of the cluster C satisfying R2g D ��

2, and the time t is rescaled as t2=dw .

The conjecture above paves the way to adopt Eq. (2.19) and transform it accordingly by
scaling the time, to identify an expression for MSD of random walk process on finite size
open clusters when the equilibrium initial condition is not fulfilled. Therefore, MSD for an
ensemble of random walk processes on a finite size open cluster is concluded to be

˝
r2C .t/

˛
D
˝
r20
˛�
1� exp

�
�

Dt2=dw
jjCjj2=df

��2
C2h2jjCjj2=df

�
1� exp

�
�
2Dt2=dw
jjCjj2=df

��
: (2.21)
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Note that Rg and � are written in term of the size of the cluster C. It is worthy to mention
that r0 is given in the reference frame of centre of mass coordinate of the open cluster.
As mentioned earlier, when the equilibrium initial condition is met - when the ant could
parachute on any open site of the cluster C -

˝
r20
˛

is simply 2R2g and the equation above
reduces to Eq. (2.13) subsequently.

This conjecture should conclude this chapter by providing the means to establish an
analogy between the well-known stochastic process of Ornstein-Uhlenbeck process and the
random walk process on finite size open cluster. In the following chapter, this would provide
a firm ground to address the ergodic property of an ensemble of random walk processes in an
ensemble of open clusters near the critical point pc .



Chapter 3

Ergodic Property of the Random Walk
Process near the Critical Point

As discussed earlier, the random walk process on finite size open clusters near the critical
point pc has a stationary state after sufficient elapse of time which is dictated by the size of
the cluster. The statistical properties of the stationary process remain invariant under time
shifts. Therefore, ensemble averaged quantities and their equivalent time averaged quantities
are statistically equivalent [51]. This implies that the process is ergodic in the sense that
the statistical properties of an ensemble of random processes can be inferred by having an
instance of them which is sufficiently long. For further clarification, assume a stationary
random process X.t/ and identify the mean and the autocovariance of the process as

�X.t/D hX.t/i ;

CovX.�/D h.X.tC�/��X.tC�//.X.t/��X.t//i :

Then the process is mean and autocovariance ergodic if it holds such that

�X D
1

T

Z T

0

X.t/dt D �X.t/;

CovX.�/D
1

T ��

Z T��

0

ŒX.tC�/��X.tC�/�ŒX.t/��X.t/�dt D CovX.�/

where the overline indicates the time average, T is the measurement time and � is called the
lag time.

The equivalency between the ensemble averages and time averages is essential in single
particle tracking as it is not always possible to repeat an experiment due to laboratorial
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limitations. Thus, the only possible solution is to have a sufficiently long trajectory and infer
the statistical properties of the process with a single trajectory in hand.

3.1 Time Averaged Mean Squared Displacement

Time averaged mean squared displacement, abbreviated as TAMSD, is one of such quantities
from which one can deduce statistical properties of a certain process from a sufficiently long
trajectory [52, 53]. It is defined asD

ı2C.�/
E
D

1

T ��

Z T��

0

Dˇ̌
r.tC�/� r.t/

ˇ̌2E
dt; (3.1)

where T is the length of the trajectory and � is called the lag time which indicates the time
difference between two spatial points visited during the course of the process. Assuming the
equilibrium initial condition, the process would be stationary for all t � 0 and it immediately
follows from the equivalency between MSD and TAMSD that1

D
ı2C.�/

E
D 2h2jjCjj2=df

�
1� exp

�
�
D�2=dw
jjCjj2=df

��
: (3.2)

Yet, the initial position of the random walk process is attached to the centre of the lattice
and is fixed. For this case where the equilibrium initial condition is not met, the process is
not stationary and thus, one should seek a suitable expression for TAMSD. Once more, by
assuming the validity of the conjecture, one could solve TAMSD for the Ornstein-Uhlenbeck
process for the case of the non-equilibrium initial condition and rescale time to arrive at an
expression for the TAMSD of random walk process on finite size open clusters. Solving
TAMSD for the Ornstein-Uhlenbeck process yieldsD

ı2OU.�/
E
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�
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���
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�˝

r20
˛
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�
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�2
�
T��
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�i
2
�
T��
�

� 1A : (3.3)

1This statement holds true for the Markovian processes only. For the significance of the initial condition in
non-Markovian processes refer to [54].
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Once the equilibrium initial condition is asserted, implying that
˝
r20
˛
D ��2, one recovers the

stationary Ornstein-Uhlenbeck process and TAMSD would be deduced to beD
ı2OU.�/

E
eq
D 2��2

�
1� exp

�
�

�
�

�

���
: (3.4)

Compare to the Eq. (2.20) and observe that they are equivalent, which affirms the earlier
statement that the Ornstein-Uhlenbeck process is ergodic and stationary. This also can be
inferred solely by perceiving the fact that if the equilibrium initial condition is satisfied, the
position autocorrelation function of Eq. (2.18) is reduced to

hr.t1/ � r.t2/i D ��2ejt1�t2j=�; (3.5)

where � is the inner product defined as a �bD
P
i aib

�
j , where a and b are vectors, i 2 fx;yg

and � is the complex conjugate. Note that, since the correlation between the positions
depends solely on the time difference, the process is ergodic and stationary.

Now by invoking the earlier conjecture, one arrives atD
ı2C.�/

E
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1� exp
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2D.T��/2=dw
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2D.T��/2=dw
jjCjj2=df

1A : (3.6)

For the random walk process on finite size open clusters, some subtleties should be addressed
regarding the asymptotes of Eq. (2.21) and Eq. (3.6) once the process reaches its stationary
state. The stationary state for both MSD and TAMSD is attained when t !1 and T !1
respectively. In those limits

lim
t!1

˝
r2C .t/

˛
D
˝
r20
˛
CR2g ; (3.7)

lim
T!1

D
ı2C.�/

E
D

8<:2R2g if � <�� T˝
r20
˛
CR2g if �! T

: (3.8)

Note that, when equilibrium initial condition is fulfilled, regardless of the time scale of �,
MSD and TAMSD approach the same asymptote namely 2R2g . Yet, if the equilibrium initial
condition is not asserted, there is a gap of magnitude jR2g �

˝
r20
˛
j between MSD and TAMSD

when � < �� T . This is due to the intrinsic way MSD and TAMSD are defined. A closer
look reveals that, MSD is a measure which quantifies the dispersal of an ensemble of a
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stochastic process till time t . On the other hand, TAMSD is a measure which quantifies the
growth of the increments of the process that are apart from each other by the time difference
�. These are generic definitions of the two aforementioned quantities and it is evident that
they are not compatible. An attempt to define a set of generalised definitions for MSD and
TAMSD is addressed in [54] which is out of the scope of this work. The caveat here is that
the apparent gap between MSD and TAMSD when the equilibrium initial condition is not
asserted should not be interpreted as a non-ergodic property of the random walk process on
finite size open clusters. As mentioned earlier, it is crystal clear that such a process has a
stationary state once all the open sites of the open cluster are visited by the ant. The same
discrepancy also applies to the case of the Ornstein-Uhlenbeck process, and the gap is still
observable if the equilibrium initial condition is not assumed, although, it is known that the
Ornstein-Uhlenbeck process is stationary and ergodic and the appearance of this gap between
MSD and TAMSD is solely the consequence of their incompatible definitions.

Now that a plausible expression for TAMSD has been concluded, time is ripe to address
the ergodic property of single particle trajectories in an ensemble of finite size open clusters
near the critical point. This paves the way to further study how asymptotically the random
walk process in an ensemble of finite size open clusters reach the ergodic limit.

3.2 Disorder Average: Anisotropy and Cluster Size Aver-
ages

It was mentioned earlier, and it will be elaborated in the following chapter, that the ensemble
of concern here does not only consist of samples of the random walk process on a specific
cluster but also clusters with different sizes. In other words, each random walk process takes
place on different open clusters which are different in shape and size, which subsequently
implies that their geometrical properties vary case to case. Open clusters of the same size
could have different shapes. For instance, a cluster of size three could be a straight line or
could have a bend. This demonstrates that the clusters are anisotropic with respect to the
centre of the lattice. And obviously, clusters have different sizes which as it was addressed in
the earlier chapter, near the critical point, the distribution of the clusters concerning their size
follows a power-law distribution. Therefore, averaging over the ensemble of clusters consists
of two steps; first averaging over the clusters which have the same size but obviously possess
different shapes and, the second step is averaging over the size of the clusters. The former
one is referred to as anisotropy average and the latter one is called cluster size average. The
procedure of taking the two averages consecutively is called disorder average.
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3.2.1 Anisotropy Average

Clusters having the same size are different in shapes. Open sites could be symmetrically
distributed around the centre of the lattice or could be asymmetrical. Therefore, it is
necessary to take this into account when the ensemble average is taken over the set of
clusters. Anisotropy average yields an interesting result which is equivalent to asserting
equilibrium initial condition. To prove this, first, recall Eq. (3.6) and bear in mind that

˝
r20
˛

is
given in the reference frame of the centre of mass coordinate. Consider the set of all clusters
with size three which are depicted in Fig. 3.1. There are two classes of such clusters, one
that constitutes clusters of straight line, which is denoted by Œ�� and is depicted in the first
row of Fig. 3.1, and one that consists of clusters with a sharp corner, which are depicted in
the lower row of the same figure and the class is denoted by Œ⌞�. The rest of the clusters are
identified by applying the symmetry groups of the square lattice. The clusters are shown
with green borders and the centre of the lattice is distinguished by the red colour. Each one
of these clusters is equally probable to appear as the percolation model considered here is
the Bernoulli percolation model. Recall that the ant always parachutes at the centre of the
lattice. The only parameter that varies in these different realisations, is the centre of the mass
of these clusters; it shifts case to case. Hence, one can assume the centre of mass can be
chosen randomly to be any of the open sites of these clusters depicted in Fig. 3.1. Therefore˝
r20
˛
D
˝
jr.0/� rcmj

2
˛

is identified to be nothing but the radius of gyration of that specific
class of clusters once averaged over the anisotropy. This can also be shown by a simple
calculation. Consider the first row of Fig. 3.1 and find out that8<:r20 D .0�1/2 D 1
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Now average over r20 and deduce that anisotropy average yields
˝
r20
˛
D

2
3
DR2g . This at the

first glance my seem surprising, but bear in mind that since lattices remain invariant under
translational transformation along the lattice primitive vectors. Thus, anisotropy average is
equivalent to let the ant parachute with equal probability 1=jjCjj on each open site of the
cluster C. The only difference here is that the role of r.0/ and rcm is exchanged. Basically,
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instead of letting the ant parachute randomly on each open site of the cluster, shift the
underlying lattice and observe that the centre of the lattice is now associated with another
open site of the cluster which consequently represents another possible configuration with a
displaced centre of mass of the same cluster. Thus, taking anisotropy average over TAMSD
for the set of clusters of size jjCjj, yieldsD

ı2C�.�/
E
D 2h2jjCjj2=df

�
1� exp

�
�
D�2=dw
jjCjj2=df

��
; (3.9)

which is indeed the expression for TAMSD when equilibrium initial condition is asserted
(refer to Eq. (3.2)). The subscript C� indicates that anisotropy average has been taken into
account for clusters having size jjCjj. This result is of utmost importance in the sense that it
reveals how the concept of topology and time are intertwined. It is noteworthy to mention
that averaging over the anisotropy of the clusters with the same size yields essentially a
geometry which is homogeneous and isotropic and its effective radius is identified by Rg .
Further, one should bear in mind that recovering the stationary solution of TAMSD is the
antecedent of the translational invariance of the lattice structure.

It is also of importance to mention that sampling all the possible configurations of the
clusters with the same size is of practical impossibility, due to the computational limitations.
For instance, the number of the total possible configurations for the clusters with size 24 is
of the order of 103 [55]. Then it is evident that the realisation of all possible configurations
of clusters with size 100 and above is almost impossible in a given finite amount of time.

It should be emphasised also that
D
ı2C�.�/

E
, viewed as a set of random variables, obeys a

power law distribution. The distribution can be inferred by exploiting the conservation law
of probability between the cluster size distribution and the probability distribution of the
TAMSDs after the anisotropy average being taken. This yields the following

P
�D
ı2C�.�/

E�
� jjCjj2�2=df �� : (3.10)

Instances of TAMSDs for open clusters with different sizes are depicted in Fig 3.2. Observe
that although on finite size open clusters the TAMSD saturates, the disorder averaged TAMSD
(which will be discussed in the following section) is monotonically and linearly increasing in
the logarithmic scales.
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Figure 3.1 Demonstration of the two classes of clusters of size 3. The upper row depicts
the clusters that are straight with respect to the horizontal line. The lower row depicts the
clusters that have a sharp corner. The other configurations of the clusters with size 3 are
attained by applying the symmetry groups of the square lattice. The clusters are shown with
green edges and the centre of the lattice is shown by red colour.

3.2.2 Cluster Size Average

After taking the anisotropy average over clusters with the same size, define the cluster size
average for the set of an ensemble of isotropic and homogeneous clusters denoted by fC�g as

BD
ı2C.�/

E
D

X
fC�g

P .jjCjj/
D
ı2C�.�/

E
; (3.11)

where P .jjCjj/ is the probability of the ant to land on a cluster with size jjCjj. Near the
critical point pc according to the scaling theory, it is known that the probability of a cluster
with size jjCjj to appear at the centre follows a power law distribution and it scales as jjCjj�� ,
where the exponent � as mentioned earlier is called the Fisher exponent. But this is only
the probability of the appearance of such a cluster at the centre. Also, one has to take
into account the probability of the ant to parachute on such a cluster at the centre which is
proportional to the size of the cluster. Thus, the probability P .jjCjj/ is found to scale as
jjCjj1�� . Consequently, the equation above can be identified as

BD
ı2C.�/

E
D„

1X
jjCjjD1

D
ı2C�.�/

E
jjCjj1�� ; (3.12)
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Figure 3.2 Individual TAMSDs (grey lines) versus lag time � at pc D 0:6. in logarithmic
scale. Note that TAMSDs due to finite support saturate where the level of the saturation is
imposed by the size of the cluster. The disorder average of the TAMSDs (thick black line) on
the contrary increases monotonically.

where „ is a normalisation constant and bear in mind that the summation starts from the
smallest possible cluster size which in discrete lattice space is unity. It is worth mentioning
that, summation (integration) over power-law distributions diverges unless a minimum lower
cut-off is assumed for the distribution. The lower cut off is naturally introduced by noticing
that the probability space is devoid of clusters with size zero. By taking the continuum limit
of Eq. (3.12) and by substituting

D
ı2C�.�/

E
with the expression given in Eq. (3.9), one arrives

at the following integral
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where jjcjj is the smallest cluster size in fC�g in the continuum limit. Furthermore,„
R1
jjcjj
jjCjj1�� D

1, which yields „D .� �2/jjcjj��2. Subsequently, the integral above yields the following
result for the disorder averaged TAMSD;
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The expression above is the chief result describing the behaviour of an ensemble of random
walk processes in an ensemble of open clusters near the critical point. A closer look at
the equation above reveals some interesting observations. There is a natural time scale
emerging for the set of all clusters which is given by jjcjj2=df =D. For any�2=dw significantly
larger than this scale, disorder averaged TAMSD scales as a power of �, where the power
is identified to be 2Cdf .2��/

dw
. Moreover, for time scales smaller than the aforementioned

natural time scale, disorder averaged TAMSD has a lower bound (the first term in the curly
bracket) whose value is identified by only knowing the geometrical properties of the smallest
cluster jjcjj. Not surprisingly, thanks to the anisotropy average, disorder averaged TAMSD
is independent of the measurement time T . In other words, one can compensate for the
limitations in laboratories for generating long trajectories by sampling more percolation
processes (sampling more random clusters).

The result above could be further simplified when the embedding Euclidean dimension
is 2. This follows after exploiting the hyperscaling relation implied by the scaling theory.
Hyperscaling relations are those that connect the critical exponents through the embedding
Euclidean dimension d . One of such relations establishes an identity between the fractal
dimension df and the Fisher exponent � and is given by � D d=df C1. By substituting this
in Eq. (3.14) and recalling that ds=2D df =dw , one arrives at the following
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�
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2

)
: (3.15)

This result holds true if and only if d D 2 and imposes that, regardless of the underlying
lattice structure, in two dimensions, disorder averaged TAMSD for large lag times grows as
�ds=2 since ds, the spectral dimension, is the same for all two dimensional lattices [26, 40]2.

3.3 Normalised Variance of Disorder Averaged TAMSDs

One interesting measure to quantify how each anisotropy averaged TAMSDs are scattered
around the mean is the normalised variance. It is tightly related to the ergodicity breaking
parameter addressed and introduced in [52, 56–58] to measure the tendency of a stochastic
process to its ergodic behaviour. For the sake of consistency and simplicity and to avoid

2This may hold true for the homogeneous class of fractals. Random fractals that are generated by the means
of a Bernoulli percolation process belong to such a class. Sierpinski lattice (not to be confused with Sierpinski
gasket) is a counter example of homogeneous fractals.
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possible ambiguities, henceforth normalised variance is referred to as ergodicity breaking
parameter. Denoted by EB it is defined as

EB.�;T /D
VarŒX�
EŒX�2

; (3.16)

where EŒ:� denotes the expectation value and VarŒ:� denotes the variance. The time dependent
random variable X depends on � and T . Albeit it is historically defined for TAMSD, any
variable X could be substituted in the equation above. To perceive better what does EB
measure, consider the normal Brownian motion in two dimensions for which EBD 4�

3T
. This

indicates that after sufficiently large measurement time T , EB asymptotically approaches
zero; an indication that fluctuations due to finite measurement time T would vanish as
T becomes larger and larger and ensemble averaged quantities coincide with their time
averaged counterparts (this is the consequence of the fact that Brownian motion has stationary
increments).

To quantify how scattered are the anisotropy averaged TAMSDs with respect to the
cluster size distribution, invoke the expression given by Eq. (3.16) and deduce that
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CD
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E2
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ı2C.�/

E2 : (3.17)

Since anisotropy averaged TAMSDs are independent of the measurement time T , evidently
EB does not have the dependency on T as well and it solely depends on the lag time �. To
calculate EB, the second moment of the disorder averaged TAMSD must be calculated. The
result is yielded by the evaluation of the following integral
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which yields
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It holds equally true as for the first moment of the disorder averaged TAMSD that, when
�2=dw is significantly larger than jjcjj2=df =D, the second moment of the disorder averaged
TAMSD scales as a power of � where the power is given by 4Cdf .2��/

dw
.

It is evident that the full expression for EB is too cumbersome to be written in a full
closed analytical form, nor would it provide much insight regarding its behaviour. Yet, there
are two essential conclusions one could draw from the generic expression governing the
behaviour of EB. Firstly, EB is independent of the measurement time T as both the first and
second moments of disorder averaged TAMSD are independent of T . Secondly, for large lag
times �, EB scales as

EB� A�df .��2/=dw �1; (3.20)

where A is a constant. From the first observation one concludes that for an ensemble of
random walk processes in an ensemble of open clusters near the critical point, the fluctuation
of time averaged quantities is independent of the measurement time T and it is persistent.
The amplitude of these fluctuations depends solely on � and grows as a power of �. The
second observation is that the exponent of � is smaller than unity, implying that the larger
� becomes, EB becomes more insensitive to the alternation in the lag time3. Furthermore,
by invoking the hyperscaling relation mentioned earlier, the exponent of � in the equation
above can be rewritten as

EB� A�.d�df /=dw �1: (3.21)

It is noteworthy to mention that the exponent of � in the equation above depends only on
the topological factors. Moreover, observe that for large � the ratio of the second and first

3� cannot be arbitrarily large as it is bounded by T from above. Secondly, in order to have a plausible
statistical inferences for the first moment of TAMSD, � must be smaller than T=2 [49]. Generally, for the 2m
moment of TAMSD, � must be smaller than T=2m where m 2 ZC.
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moments of disorder averaged TAMSD scales as ��2=dw . As predicted by the dynamical
scaling theory [18], this exponent is called the gap exponent which suggests that the ratio
of different moments of a specific quantity concerning the independent variable scales as
a power of that variable and the exponent is given by the gap exponent. In this case the
gap exponent is 1=dw and since the first and second moments of disorder averaged TAMSD
measure the second and fourth power of the position, the ratio between them yields twice the
gap exponent.

Interestingly, the exponent of � in Eq. (3.20) is the same as the one suggested in [59] to
tell apart a fractional Brownian motion from a random walk process on an incipient infinite

cluster. The authors therein, suggested a log
�
S.t/=

D
ı2C�.�/

Ed=2�
as a measure to distinguish

the two processes. For a random walk process on an incipient infinite cluster near the critical
point, this measure is found to be .d �df /=dw ¤ 0. Obviously, when the topology of the
phase space is Euclidean, df D 2 and thus this measure would be zero; this would be the
case for the fractional Brownian motion.



Chapter 4

Simulation Results

4.1 Simulation Parameters

As it was mentioned throughout the earlier chapters, the lattice considered for the simulations
is the square lattice. To study the behaviour of disorder averaged MSD and TAMSD in an
ensemble of open clusters near the critical point, the size of the lattice is set to 4096�4096
augmented by the periodic boundary condition.

The critical percolation density pc for the square lattice is 0.59279 [20]. To fulfil the
Kesten theorem [19] p is set to 0:6. For each realisation of a percolation process, each site
of the lattice is assigned to be in the state of being unblocked with probability p or left in
the state of being blocked with the probability 1�p. The centre of the lattice is then either
occupied - in this case, the nearest open site is chosen for the ant to parachute - or it is open.
In either case, the site on which the ant has parachuted may belong either to a finite size open
cluster or to the incipient infinite one. An instance of an incipient infinite cluster is depicted
in Fig. 4.1. For the illustration of a finite size open cluster refer to Fig. 2.2. For simulating
random walk processes, the landed ant takes T steps which is referred to as the length of the
trajectory and is set to 106. On each realisation of a percolation process, 5�102 random walk
processes are simulated for numerically analysing the MSD and TAMSD. These trajectories
are recorded for each realisation of a percolation process. In total 104 percolation processes
were simulated and subsequently, MSDs and TAMSDs were averaged to yield the disorder
averaged MSD and TAMSD for this ensemble of open clusters.

To analyse the exponent of � which governs the growth of disorder averaged TAMSD,
it is necessary to numerically estimate the Fisher exponent � , the fractal dimension df
and the random walk dimension dw . To extract the value of � , for each realisation of
a percolation process, the frequency of open clusters appearing with different sizes was
counted. Afterwards, by recalling that near the critical point, scaling theory predicts that the
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Figure 4.1 An instance of an incipient infinite cluster on a square lattice at p D 0:6, depicted
in copper orange. The size of the lattice is 4096�4096. The other unblocked sites are not
shown.
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cluster size distribution should scale as a power law i.e. jjCjj�� , a fit was made to find the
value of � . In total, from 104 percolation processes � was estimated to be 2:03˙0:01. Bear
in mind that the theoretical value agreed upon is 187=91� 2:05 for the square lattice [20].

Estimating numerically the values of dw and df is more cumbersome as one has to
evaluate their values for the incipient infinite clusters. In order to identify the incipient
infinite clusters for each percolation process, Hoshen-Kopelman algorithm [60] was used
to first label each open cluster in a percolation process and then select the largest cluster
in that realisation. Since labelling each site of a percolation process is computationally
expensive, the size of the lattice in this particular case is set to 1024�1024. In total 7�102

of such clusters were extracted. The fractal dimension of these incipient infinite clusters
were estimated by utilising the box-counting method [25]. The fractal dimension was found
to be 1:9˙0:1 whereas theoretically it is 91=48� 1:89 [20]. On each one of these clusters
5�102 random walk processes were simulated to estimate dw since it is predicted by the
dynamical scaling theory that MSD scales as t2=dw . By this means, dw was estimated to be
2:7˙0:1 compared to the widely accepted value 2:87 [33].

4.2 Phenomenological Analogy: Ornstein-Uhlenbeck Pro-
cess and Random Walk Process on Finite Size Open
Clusters

After extracting these essential exponents, the next step would be to justify the phenomeno-
logical conjecture raised regarding the analogy between the Ornstein-Uhlenbeck process
and the random walk process on finite size open clusters. To conclude the validity of the
expressions of MSD and TAMSD given in Eq. (2.21) and Eq. (3.6) respectively, the cluster
shown in Fig. 4.2 was chosen. The centre of the mass of this cluster was found to be located
at .513:74;518:20/ along the x and y axes. The second power of the radius of gyration,
R2g , was also found to be 346:33. Two initial conditions were considered to validate the
aforementioned expressions for MSD and TAMSD (i) fixed initial condition where the ant
always parachutes at the centre of the lattice (ii) the ant could parachute randomly and land
on any of the available open sites within the boundary of the cluster with the probability
1/793 which refers to the equilibrium initial condition. In this scenario, 8�103 random walk
processes were simulated for each one of the initial conditions. As the cluster is distinct
from the topological structure of the incipient infinite clusters, the exponent df and dw
are different. By fitting the expression given in Eq. (2.21), it was found for this particular
open cluster df � 1:60, dw � 2:44, D � 1:60 and h� 0:29. The numerical result and the
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Figure 4.2 MSD and TAMSD for a cluster of size 793 depicted in Fig. 2.2. On the right
side the initial condition is fixed to the centre of the lattice. Contrarily, on the left side
the equilibrium initial condition is asserted. In total 8�103 random walk processes were
simulated.

analytical expressions given by Eq. (2.21) and Eq. (3.6) for MSD and TAMSD respectively
are demonstrated in Fig. 4.2 on the left panel. The visible gap between MSD and TAMSD
for the case where the initial condition is fixed to the centre of the lattice originates from the
way they are defined. On the other hand, this gap vanishes if the equilibrium initial condition
is asserted which is evident on the right panel of Fig. 4.2. Under equilibrium initial condition,
observe that Eq. (2.21) and Eq. (3.6) are simplified to Eq. (2.13) and Eq. (3.2) respectively
and MSD and TAMSD coincide. All in all, this simulation result should justify the validity of
the conjecture which implies the analogy between the Ornstein-Uhlenbeck and the random
walk process on finite size open clusters [63].

4.2.1 Disorder Averaged TAMSD and the Ergodic Property of the Ran-
dom Walk Process

For capturing the behaviour of the first and second moments of disorder averaged TAMSD,
approximately 5�106 trajectories, which together encompasses 104 percolation processes
and 5�102 random walk processes were simulated. Refer to Eq. (3.14) and Eq. (3.19) and
observe that for large lag times�, the first and second moments of disorder averaged TAMSD
grow as a power of �. Therefore, in logarithmic scale, their growth versus � must be linear
which is evident in Fig. 4.3. The figure further demonstrates that the estimated values for
df , dw and � have sufficient precision to estimate the exponent of � for the first and second
moments of disorder averaged TAMSD such that one could grasp fully their linear trend in
logarithmic scale. The lag time spans an interval between 102 to 105. The lower bound is to
ensure that the ant has been given enough time to perceive the fractal structure of the cluster
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Figure 4.3 First moment (right) and second moment (left) of disorder averaged TAMSD in
logarithmic scale. It is clear that their trend is linear with respect to � and the slope of the
straight lines are 2Cdf .2��/

dw
and 4Cdf .2��/

dw
respectively.

Figure 4.4 EB versus � in logarithmic scale. The simulation result is depicted by black
triangles while the analytical result is achieved by substituting Eq. (3.14) and Eq. (3.19)
into Eq. (3.17). There is a slight discrepancy between the two results. The blue solid line
represents the analytical result shifted downwards. It indicates that the trend is captured
correctly.

(recall that the cluster becomes homogeneous for length scales larger than the correlation
length) and the upper bound is to limit � to values smaller than T=2 [49].

Furthermore, the behaviour of EB versus � is demonstrated in Fig. 4.4 in a logarithmic
scale for the same time span of �. Therein, it is seen that there is a slight discrepancy
between the analytical expression of EB, which is achieved by substituting Eq. (3.14) and
Eq. (3.19) into Eq. (3.17), and the simulation result. The solid blue line represents exactly
the analytical curve shown by the dashed red line but shifted downwards to lie on top of
the simulation curve to demonstrate that the analytical expression governing the behaviour
of EB in terms of � captures the trend plausibly. Further, notice that since the exponent
of � is relatively small, the growth of EB is very slow. Moreover, to demonstrate that EB
is independent of the measurement time T , Fig. 4.5 is provided to show that EB versus T
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sharply drops to a terminal value which solely depends on �. One may infer that EB still
depends on T but it has to be emphasised that, as mentioned earlier, sampling all the possible
configurations of clusters with the same size is computationally impossible and further, note
that the disorder averaged TAMSD is independent of T if the anisotropy average could have
been taken over all possible configurations of clusters with the same size. Therefore, a slight
dependence of EB on T is expected.

Figure 4.5 The dependence of EB on the measurement time T . The measurement time varies
from 104 to 106 while the lag time � is set to 102. Observe the insignificant change in
EB while T changes two orders of magnitude which implies that EB is insensitive to T or
in other words independent of it. The variation in EB could be inferred as the imperfect
anisotropy average. The dashed red line is a cubic spline interpolation of the simulation
result.



Chapter 5

Conclusions

To address and provide an analytical solution for MSD and ensemble averaged TAMSD for the
random walk process on finite-size open clusters near the critical point, a phenomenological
analogy was made to the Ornstein-Uhlenbeck process. It was justified by the means of
simulations that such an analogy is sound and sensible. To establish this analogy, space and
time were rescaled according to the Hausdorff measure. The rescaling of space and time is
dictated explicitly by the parameters df and dw respectively. This approach is quite similar
to the renormalisation approach bearing in mind that the measure suitable for space and time
is the Hausdorff measure.

The possibility to establish such an analogy between the two processes, provides the
means to model systems in which crowded environments impose a geometry constraint on
the dynamics of the diffusive particles, which quite often, this topology exhibits a fractal
nature. Nonetheless, it is worth mentioning that there are other models to address the motion
of such particles in crowded environments, such as fractional Brownian Motion where the
driving noise is modelled by the fractional Gaussian Noise [61, 39]. Interestingly, the
velocity autocorrelation function of the random walk process in topologies modelled by
the percolation process is cunningly similar to the case of fractional Brownian Motion [62].
It becomes even more interesting to remind the reader that the random walk process on
finite-size open clusters is a Markov process, au contraire, fractional Brownian motion is
non-Markovian. Also to explore further the difference between the two cases, the author tried
to address some of the essential behaviours of the fractional Ornstein-Uhlenbeck process,
which is addressed in [63].

Another interesting result which was central to this work, was the interplay and inter-
connection between the measurement time T and the anisotropic (topological) property
of the finite size open clusters. Even though it was demonstrated that starting with a non-
equilibrated initial condition, ensemble averaged TAMSD on a finite-size open cluster with a
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certain size depends on the measurement time T , averaging over all other configurations of
the clusters with the same size, the anisotropy averaged TAMSD does no longer depend on
time T . In other words, for such an ensemble, anisotropy averaged TAMSD corresponds to
an ergodic-stationary system. This property, as mentioned earlier is the sole consequence of
translational invariance of the lattices. Due to this invariance, averaging over clusters of the
same size but with different configurations resembles the equilibrium initial condition.

Though ergodic on the level of anisotropy average, another interesting observation was
that the EB parameter had a persistent value, independent of the measurement time T . The
finite value of EB depends on the power of the lag time �. The power of � given by
.d �df /=dw indicates that this growth is very weak as the difference between the embedding
Euclidean dimension d and the fractal dimension df is very small. Furthermore, rewriting
this exponent in terms of the spectral dimension reveals that invariably of the underlying
lattice structure, the persistent value of EB at a given � for a given d remains the same.
The same behaviour was observed for the disorder averaged TAMSD but only in the case
of d D 2, where the exponent of � solely depended on the spectral dimension ds. This
implies that disorder averaged TAMSD when d D 2, exhibits the same behaviour for large �
regardless of the underlying lattice structure.

As a closure to this work, some remarks are mentioned that could possibly be guidelines
for further research and investigations. The conjecture made to establish the phenomenologi-
cal correspondence between the Ornstein-Uhlenbeck process and the random walk process
in random fractal environments is of utmost importance. It must be either proven or rejected
rigorously. If the conjecture holds true, it would provide a powerful tool to approach the ant
in labyrinth problem. As the second remark, it should be noted that the random walk process
in random environments is ubiquitous in biological realm [64]. The crowd which hinders
the movement of the particles could be considered as a dynamical percolation model [65].
The author would like to claim audaciously that the model presented here, though static,
corresponds to this dynamical model. This further, could be extended to a dynamical perco-
lation model where the diffusion coefficient would be temporarily and spatially dependent.
Such a model could be considered as a generalisation of diffusing diffusivity and random
walk processes in heterogeneous environments [66]. Another interesting observation is the
appearance of the least fluctuation in Eq. (3.14) and Eq. (3.19) which solely depends on the
size of the smallest cluster in the continuum limit, df and � . The physical significance of this
least contribution remains unknown to the author and a further investigation on its meaning
could provide insights into the behaviour of the random walk process within the smallest
time and length scales of the process.
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With these remarks I would conclude this chapter and dissertation with the hope it would
lead to opening new chapters of research and investigations in this labyrinth.
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Fluctuations of random walks in critical
random environments

Yousof Mardoukhi,a Jae-Hyung Jeon,bc Aleksei V. Chechkinad and Ralf Metzler *a

Percolation networks have been widely used in the description of porous media but are now found to be

relevant to understand the motion of particles in cellular membranes or the nucleus of biological cells.

Random walks on the infinite cluster at criticality of a percolation network are asymptotically ergodic. On any

finite size cluster of the network stationarity is reached at finite times, depending on the cluster’s size. Despite

of this we here demonstrate by combination of analytical calculations and simulations that at criticality the

disorder and cluster size average of the ensemble of clusters leads to a non-vanishing variance of the time

averaged mean squared displacement, regardless of the measurement time. Fluctuations of this relevant

experimental quantity due to the disorder average of such ensembles are thus persistent and non-negligible.

The relevance of our results for single particle tracking analysis in complex and biological systems is discussed.

I. Introduction

Fractals gained immense popularity after Benoı̂t Mandelbrot
published his famous book The fractal geometry of nature which
contains the by now iconic phrase ‘‘Clouds are not spheres,
mountains are not cones, coastlines are not circles, and bark is
not smooth, nor does lightning travel in a straight line’’.1

Indeed, natural objects in most cases cannot be characterised
by a single scale but exhibit some sort of statistical self-
similarity. For instance, the length of the coastlines of Britain
or Norway varies as function of the applied yard stick, and
similar features appear on different scales.1–3

Yet self-similarity is typically not sufficient to describe natural
objects, either. Thus, mathematical (deterministic) fractals such
as the well known Cantor set (or the multi-dimensional Cantor
dust),4 the von Koch snowflake,5 or the Sierpiński gasket6 are
composed of exact iterations of an identical operation, such as
the removal of the middle third of a line segment for the Cantor
set. The resulting symmetries appear artificial. To combine
self-similarity—on a statistical, not deterministic sense—with
the non-perfect structures of mountains or coastlines, random
fractals have been considered such as landscapes created by
(fractional) Brownian trajectories.1,2

A breakthrough in statistical physics was the conception
of percolation theory originally proposed by Broadbent and
Hammersley.7 In the language of site percolation, imagine that

on a discrete lattice each lattice site is occupied with probability
p and left vacant otherwise. Nearest occupied (or vacant)
neighbours on the lattice are considered to be connected, and
each set of connected occupied (or vacant) lattice sites forms an
occupied (or vacant) cluster. Here we will focus on open clusters
C formed by vacant sites, their size being denoted by Ck k.
Statistical analysis shows that there exists a critical percolation
probability pc at which an open cluster arises which spans the
entire lattice, the incipient infinite percolation cluster. If we
place a particle randomly on a vacant lattice site, it will either
be on the infinite cluster or on any of the finite-sized open
clusters. Notably, at criticality the percolation network is a
random fractal whose Hausdorff dimension can be calculated
for a number of lattice types and dimensions by renormalisation
arguments.2,8 On a square lattice, the centre of the current study,
the fractal dimension is df = 91/48, while the distribution of
cluster sizes is characterised by the Fisher exponent t = 187/91.9

An example for a finite open cluster is shown in Fig. 1.
A random walker moving on fractal open clusters at criticality

continuously encounters dead ends and has to pass through
bottlenecks, a situation that was pictorially characterised as the
motion of ‘‘an ant in a labyrinth’’ by de Gennes.10 In fact the
fractal nature of the geometric constraints effect a power-law
growth of the mean squared displacement (MSD)

h|r(t) � r(0)|2i C ta, (1)

on the infinite cluster, where the scaling exponent can be expressed
as a = 2/dw in terms of the fractal walk dimension dw E 2.87 on the
square lattice.9 The resulting value a E 0.70 demonstrates that the
motion of the random walker is subdiffusive,11 that is, indicating
less efficient spreading than on a fully accessible Euclidean lattice,
for which dw = 2 and thus the diffusion is normal, a = 1.
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The emerging subdiffusion on a critical percolation network on a
square lattice was demonstrated experimentally by field gradient
NMR methods of water diffusion in thin plastic sheets, into which
the cluster geometry was milled.12,13

Percolation networks have classically been used as model
systems for porous media.8,14,15 More recently single particle
tracking experiments monitoring the motion of protein channels
in membranes of living biological cells showed that these
particles were confined to move on a fractal, percolation-like
support.16 From a modelling perspective percolation networks
have been employed to characterise the diffusive motion of,
typically submicron, tracer particles in the crowded cytoplasm of
biological cells or in their membranes.17–20 We also mention
applications of studies on adaptive growth and branching of
plants in heterogeneous environments21 and to labour division
in economic contexts.22 While the majority of studies focuses on
the motion on the infinite cluster, only relatively few consider
the impact of the co-existing finite sized clusters.8,23

To analyse particle tracking experiments or simulations involving
percolation networks at criticality, it is important to have available
precise analytical tools to quantify the observed dynamics. Typically,
single particle trajectories are evaluated in terms of time averaged
mean squared displacements (TAMSDs),24–28 see eqn (3) below. The
prime question in this context is whether the information encoded
in the TAMSD is equivalent to that of the ensemble MSD (1) or not.
This question is related to ergodicity in the weaker sense that
sufficiently long time averages of a physical quantity are equivalent
to the corresponding ensemble average.24,25,29

Non-stationary anomalous diffusion processes such as the
famed continuous time random walk, in which successive
motion events are interspersed with immobile periods with
scale-free distribution of waiting times15,25,30 or heterogeneous
diffusion processes with space-dependent mobility31–33 are
inherently non-ergodic and exhibit fundamental differences

between the MSD and TAMSD,24,25,34–36 which was indeed
shown experimentally.16,37–39 They also exhibit pronounced
ageing effects.16,25,38–43 Conversely, processes dominated by
viscoelastic effects driven by long-range correlated fractional
Gaussian noise—stationary in their increments—are ergodic
and do not age.16,37,44–48

Random walks on the infinite percolation cluster were
demonstrated to be ergodic.49,50 Moreover, it was shown that
the increment correlation function for diffusion on a critical
square percolation network is indistinguishable from the one
for (overdamped) viscoelastic diffusion.49,50 In our previous
analysis51 we went one step further and took all, incipient
infinite and the full ensemble of finite clusters into account.
We demonstrated that below, above, as well as at the percolation
threshold the average over TAMSDs over a large set of particles
indeed converged to the MSD. However, we also showed that due
to the random seeding, the TAMSDs of those particles diffusing
on finite clusters were eventually dominated by the finite size,
and thus intrinsically different from each other. As a particle
seeded on a finite cluster cannot jump to another cluster this is
some form of strong ergodicity breaking in the sense that the
phase space is topologically disconnected. Only the disorder
average including the full ensemble of geometries restores
ergodicity on this level. In particular, we obtained that even after
both ensemble and disorder averages were taken, the amplitude
fluctuations of the TAMSD quantified by the ergodicity breaking
parameter were characterised by a finite variance.

Here we further analyse the fluctuations of the TAMSD on a
critical percolation network. We carefully separate the behaviour of
the trajectory on a single cluster, from that of the disorder averaged
dynamics. In what follows, after defining the fundamental quan-
tities of MSD and TAMSD on a given topology we conjecture the
analogy of the current problem with the Ornstein–Uhlenbeck
process. This formal correspondence is then used to calculate the
ensemble averages of the MSD and TAMSD. In a further step we
then take the disorder average, based on which we quantify the
amplitude fluctuations of the TAMSD. Our results are put into
perspective in the Discussion section, particular, with respect to
single particle tracking analysis in complex and biological systems,
before collecting some details in the Methods section.

II. Results
A. Random walks and percolation

For an ensemble of random walkers on a given open cluster C of
the percolation network the MSD is defined as

rC
2ðtÞ

� �
¼ rðtÞ � rð0Þj j2
D E

; (2)

where the angular brackets indicate an ensemble average over
random walks sampled over that specific cluster. The TAMSD
for the same ensemble of random walks on this cluster is
defined as24,25,34

dC2ðDÞ
D E

¼ 1

T � D

ðT�D
0

rðtþ DÞ � rðtÞj j2
D E

dt; (3)

Fig. 1 Finite open cluster of size Ck k ¼ 793 represented by Oxford blue on
a square lattice at criticality. The arrow starts at the centre of mass of the
cluster, and its tip defines a circle whose radius is the radius of gyration Rg

of the open cluster. The co-ordinates show the lattice points of the entire
network. Sky blue sites represent other vacant lattice sites, the powder
blue (off-white) sites are occupied. Note that we consider the motion of
particles on connected vacant lattice sites.
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where T is the overall length of the measured time series and D
is called the lag time.

An essential complication for evaluating these quantities is the
lack of full knowledge of the probability density function for
diffusion on random fractals. Despite scaling arguments based on
the radial distribution of the mass of the fractal support52 or
attempts to reproduce the scaling behaviour of the probability
density function in terms of fractional diffusion equations,53,54 this
question has remained elusive. A more promising approach is based
on dynamical scaling theories, which address questions on the
scaling behaviour of statistical quantities of random walks averaged
over all clusters, relating them to the geometrical exponents of
percolation clusters.9,55 This is basically the approach chosen here
to study random walk processes for the full ensemble of clusters at
criticality.

Assume an ensemble of open clusters onto which random
walkers parachute. Randomly, they may either land on the
incipient infinite cluster or on a finite-sized open cluster. Denote
the linear size explored by a random walker after infinitely many
steps by RN, then the MSD assumes the value,55,56

R1
2 � rC

2ðtÞ
� �

R12
� exp � t

w

� �w� �
: (4)

Here w is a positive definite exponent which depends on the
underlying topology only, and w is a characteristic time needed
by the random walkers such that they will eventually feel the
effective linear size of the underlying cluster C.55 Note that when
the underlying cluster tends to be the incipient infinite cluster,
then w - N and one observes that rC

2ðtÞ
� �

’ tw.
In their work Mitescu et al. originally assumed w to be unity,57

but later simulation studies of Fassnacht and Pandey revealed a
value smaller than unity in three dimension.58,59 While the general
form of eqn (4) was qualitatively confirmed by simulations,
numerical analyses performed by Jacobs et al., based on transi-
tion probability matrix formalism, estimated w to be 2/dw.56

For a finite size cluster C it is evident that the MSD or
TAMSD will eventually reach a saturation plateau, the time
needed to reach the plateau depending on the size of the
cluster. For such a cluster, at saturation the MSD, averaged
over equilibrium initial positions with equal weight 1= Ck k is
twice the squared of the radius of gyration Rg of that cluster.60,61

Hence we rewrite eqn (4) in the form

rC
2ðtÞ

� �
¼ 2Rg

2 1� exp � t

w

� �2=dw
" # !

: (5)

Here the subscript eq. refers to the equilibrium initial condition.

Due to the time invariance at equilibrium the TAMSD dC2ðDÞ
D E

is identical to rC
2ðtÞ

� �
, with time t replaced by lag time D,

dC2ðDÞ
D E

¼ 2Rg
2 1� exp � D

w

� �2=dw
" # !

: (6)

Analogy between Ornstein–Uhlenbeck process and random
walks on finite size open clusters. However, what happens
when the initial seeding of random walkers is different from

the above-assumed equilibrium initial condition? This situation
will be of relevance for many real systems whose experimental
preparation coincides with the start of the measurement at t = 0.
For instance, in a porous matrix a single colloidal particle is
released at a specific point on the cluster, a drop of a tracer
chemical trickles down into a soil aquifer from above, or a
neuronal synapse sends a signal pulse in a neural network. In
our simulations delineated below we adopt this non-equilibrium
stance and always seed the random walker at the centre of the
lattice. We therefore need to seek a new set of equations for the
MSD and TAMSD to address non-equilibrium initial conditions,
the purpose of this section. We achieve this by using the analogy
between the generic Ornstein–Uhlenbeck processes and random
walks on finite size open clusters based on the universal form of
eqn (4).

As discussed earlier the precise form of the probability
density function for diffusion on a random fractal is unknown.
That makes it arduous to approach random walk processes on
finite size open clusters by standard methods such as solving the
stochastic differential equation associated to the processes and its
corresponding Fokker–Planck equation with appropriate boundary
conditions, or to employ path integral methods. Looking at eqn (4)
one may note that such a form for the MSD for w = 1 corresponds to
the relaxation dynamics of a random walker in the Ornstein–
Uhlenbeck process (diffusion in an harmonic potential).62,63

As addressed in ref. 63 the Langevin equation for the
Ornstein–Uhlenbeck process in two dimensions with positive
parameters w and s and a randomly distributed initial condi-
tion r0 in the presence of the white and zero-mean Gaussian
noise n(t) is given by

dr

dt
¼ � r

w
þ snðtÞ; xi t1ð Þxj t2ð Þ

� �
¼ dijd t1 � t2ð Þ; i; j 2 fx; yg:

(7)

For such processes the MSD and TAMSD are found to be63

rOU
2ðtÞ

� �
¼ r0

2
� �

1� exp � t

w

� �� �� �2

þ ws2 1� exp �2 t

w

� �� �� �
;

(8a)

dOU
2ðDÞ

D E
¼ 2ws2 1� exp � D

w

� �� �� �
þ r0

2
� �

� ws2
� 	

� 1� exp � D
w

� �� �� �2 1� exp �2 T � D
w

� �� �
2

T � D
w

� �
0BB@

1CCA:
(8b)

To identify the similarity between Ornstein–Uhlenbeck processes
and random walks on finite size open clusters, it is sufficient to
consider the equilibrium initial condition for r0, which implies
hr0

2i = ws2.63 Such a condition then yields

rOU
2ðtÞ

� �
eq:
¼ 2ws2 1� exp � t

w

� �� �� �
; (9a)
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dOU
2ðDÞ

D E
eq:
¼ 2ws2 1� exp � D

w

� �� �� �
: (9b)

One then can immediately relate this set of equations to expressions
(5) and (6). Additionally, eqn (8a) and (8b) provide a clear
clue to conjecture a new set of relations for the MSD and
TAMSD for random walks in finite random environments when
the equilibrium initial condition is not satisfied. Thus assume
that a random walk on a cluster C with gyration radius Rg and
characteristic time w is analogous to an Ornstein–Uhlenbeck
process with parameters w and s, in which Rg

2 = ws2 and time t

is rescaled as t2/dw. Thus we arrive at the following expressions,

rC
2ðtÞ

� �
¼ r0

2
� �

1� exp � t

w

� �2=dw
" # !2

þ Rg
2 1� exp �2 t

w

� �2=dw
" # !

;

(10a)

dC2ðDÞ
D E

¼ 2Rg
2 1� exp � D

w

� �2=dw
" # !

þ r0
2

� �
� Rg

2
� 	

1� exp � D
w

� �2=dw
" # !2

�
1� exp �2 T � D

w

� �2=dw
" #

2
T � D

w

� �2=dw

0BBBB@
1CCCCA:

(10b)

We now show that expressions (10), deduced from analogy
with the Ornstein–Uhlenbeck process, are consistent with the
known limiting behaviours of both the MSD and the TAMSD.
Below we will also demonstrate good agreement with simulations
results. In the limit of short times t { w we recover the expected

free anomalous diffusion behaviour rC
2ðtÞ

� �
’ t2=dw of the MSD,

while for D { w the TAMSD becomes dC2ðDÞ
D E

’ D2=dw .

Conversely, in the long time limit t, T - N, eqn (10) have
the following asymptotes,

lim
t!1

rC
2ðtÞ

� �
¼ r0

2
� �

þ Rg
2 (11a)

lim
T!1

dC2ðDÞ
D E

¼
2Rg

2; if woD� T

r0
2

� �
þ Rg

2; if D! T

8<: : (11b)

This limit indeed produces the expected values.
These asymptotes can alternatively be derived by invoking

the generic definition of the MSD and TAMSD given by relations (2)
and (3). To demonstrate this for the TAMSD consider a finite size
open cluster C. According to eqn (3) for lag times D- T the TAMSD
saturates at a certain level, assuming that w{ T, which guarantees

that the random walker would have enough time to visit each site
of the cluster equally. Then

lim
D!T

dC2ðDÞ
D E

¼ lim
D!T

1

T � D

ðT�D
0

rðtþ DÞ � rðtÞj j2
D E

dt

¼ rðTÞ � rð0Þj j2
D E

:

In the centre of mass co-ordinate system, used here for con-
venience,

rðTÞ � rð0Þj j2
D E

¼ rðTÞ � rC;cm þ rC;cm � rð0Þ


 

2D E

; (12)

where rC;cm ¼
1

Ck k
PCk k
s¼1

rC;s is the centre of mass of the finite

size open cluster. Here rC;s represents the spatial position of
site s in the cluster C. In the limit N - N, where N is the
number of random walk processes on a given cluster, due to
the finite cluster size visiting any site sj 2 C becomes equally
probable. Thus r(T) would be any rC;s, where the probability of
visitation is 1= Ck k. Therefore the ensemble average would
be equivalent to taking an average over different cluster
sites. Hence,

lim
D!T

dC2ðDÞ
D E

¼ 1

Ck k
XCk k
s¼1
jrC;s � rC;cmj2 þ jrC;cm � rð0Þj2
�

þ 2 rC;s � rC;cm
� 	

� rC;cm � rð0Þ
� 	�

:

(13)

In the equation above, the square root of the first term is
simply the definition of the radius of gyration Rg for a given
cluster C and the third term vanishes. This yields

dC2ðDÞ
D E

¼ Rg
2 þ rC;cm � rð0Þ



 

2D E
; D! T ; (14)

where rð0Þ � rC;cm


 

2 (equivalent to r0

2 in eqn (11a)) is a random

variable which depends on the initial position of the random
walkers.

In the current form of eqn (10a) and (10b) the dependence of
w and Rg on C is not evident. To find the relation between these
quantities, dynamical scaling theory is exploited. The time
which is required by a random walker to reach the linear length
scale of a cluster C can be approximated as follows: on length
scales smaller than Rg the boundaries of the underlying finite
cluster can not yet be reached by the walker, and thus

rC
2ðtÞ

� �
¼ Dt2=dw , where D is the anomalous diffusion

coefficient.8,55 Therefore the typical time scale w required for

a random walker to reach a length scale comparable to
ffiffiffiffiffiffiffiffiffiffi
2Rg

2
p

,

scales as w ¼ 2

D

� �dw=2

Rdw
g . From this scaling relation and the

scaling relation for the mass distribution of fractal objects,

Rdf
g ¼ hdf Ck k (where h is a dimensional constant),9 on the time
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scale w one attains w2=dw ¼ 2h2

D
Ck k2=df . Including this relation

into eqn (10a) and (10b), we obtain the modified relations

rC
2ðtÞ

� �
¼ r0

2
� �

1� exp � Dt2=dw

Ck k2=df

� �� �2

þ h2 Ck k2=df 1� exp � 2Dt2=dw

Ck k2=df

� �� �
;

dC2ðDÞ
D E

¼ 2h2 Ck k2=df 1� exp �DD2=dw

Ck k2=df

� �� �
(15a)

þ r0
2

� �
� h2 Ck k2=df

� �
1� exp �DD2=dw

Ck k2=df

� �� �2

�
1� exp �2DðT � DÞ2=dw

Ck k2=df

� �
2D
ðT � DÞ2=dw
Ck k2=df

0BBB@
1CCCA:

(15b)

Here we introduced D = D/(2h2). For validation of this approach
based on the analogy with the Ornstein–Uhlenbeck process, by
extensive Monte Carlo simulations we refer to Fig. 5.

B. Disorder average: anisotropy and cluster size average

In an ensemble of open clusters, it is not only the size of the
clusters that matters but also their topological structure and
the distribution of their mass around their centre of mass.
These two factors together define the disorder average. Indeed,
averaging over the anisotropy of same-sized open clusters yields
a result, which is equivalent to averaging over the randomly
distributed initial position of the random walks, producing an
equilibrium situation. This observation simplifies the rest of
the calculations regarding the cluster size average over the
ensemble of finite size open clusters.

Anisotropy average of the TAMSD over all possible same-
sized clusters. We take a disorder average of the TAMSD in two
steps. First we average over all possible clusters of the same
size, then we average over the distribution of cluster sizes. In
the first step we note that averaging over hr0

2i yields exactly Rg
2,

which is intuitively clear (see also the Methods section). The
TAMSD (15b) after anisotropy averaging returns expression (6)
corresponding to equilibrium initial conditions.

It is interesting to observe that due to this averaging the T

dependence of dC2ðDÞ
D E

disappears. Indeed, this is not surprising

as the average over all clusters of the same size is equivalent to the
averaging over the equilibrium initial condition corresponding to
the specific system. To clarify the equivalence between these two,
recall that the equilibrium initial condition for a cluster C is
realised once the random walk process is initiated randomly with
equal weight 1= Ck k at any possible site in C. Now, instead of
choosing the initial position randomly, shift the underlying
lattice and choose randomly the centre of the lattice within the
cluster C while keeping the initial position of the random walk at
the centre of the lattice. Since the lattice remains the same under
translational transformations the new configuration is equal to

realisations of different clusters with the same size and shape.
Therefore one observes that randomly choosing the initial posi-
tions of random walkers is equivalent to randomly choosing the
centre of the lattice within the cluster by shifting the underlying
lattice. In the Methods section a more formal proof is provided
for the anisotropy average over clusters of size three. There it will
be demonstrated further that in the simulations this claim also
holds true.

Cluster size average of dC2ðDÞ
D E

. For the ensemble of finite

size open clusters Cf g the cluster size average of dC2ðDÞ
D E

(eqn (6)) is given by

e
dC2ðDÞ
D E

¼
X
fCg
P Ck kð Þ dC2ðDÞ

D E
; (16)

where P Ck kð Þ is the probability for a random walker to land on
cluster C. This probability is simply given by the probability of
the appearance of such a cluster in a specific realisation of the
underlying percolation network, multiplied by the probability
that the centre of the lattice would belong to this cluster. The
probability distribution for the cluster C to appear in a specific
lattice realisation at the critical percolation density is ’ Ck k�t,
where t is a scaling exponent called the Fisher exponent.9

Therefore, the probability that the centre of the lattice would
belong to this cluster scales as Ck k1�t,8 such that

e
dC2ðDÞ
D E

¼ X
X1
Ck k¼1

dC2ðDÞ
D E

Ck k1�t: (17)

Here X is a normalisation constant. Taking the continuum
limit of the summation (see ref. 9, eqn (21)) and substituting
relation (6), the evaluation of the integral yields the cluster size

average of dC2ðDÞ
D E

,

e
dC2ðDÞ
D E

¼ X
ð1

ck k
2h2 1� exp �DD2=dw

Ck k2=df

� �� �
Ck k2=dfþ1�td Ck k;

(18)

where ck k is the smallest cluster in Cf g. Substituting the
argument of the exponential function we evaluate the integral,
producing

e
dC2ðDÞ
D E

¼ðt�2Þ ck kt�2 � 2dfh
2

2þdfð2�tÞ
ck k2dfþ2�t

�

�dfh2D1þdf
2
ð2�tÞg �1�df

2
ð2�tÞ;DD2=dw

ck k2=df

� �
D
2þdf ð2�tÞ

dw

�
;

(19)

where g(a,x) represents the lower incomplete gamma function.

Normalised variance of dC2ðDÞ
D E

. To evaluate the variance of

the TAMSD we need to evaluate the cluster size average of

dC2ðDÞ
D E

2. After following the same procedure carried out for
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e
dC2ðDÞ
D E

, we find

e
dC2ðDÞ
D E

2 ¼ ðt� 2Þ ck kt�2 �4dfh
4 ck k4dfþ2�t

4þ dfð2� tÞ � 4dfh
4D

2þ
df

2
ð2�tÞ

8<:
� �21þ

df
2 ð2�tÞg �2� df

2
ð2� tÞ; 2DD2=dw

ck k2=df

� ��

þ g �2� df

2
ð2� tÞ;DD2=dw

ck k2=df

� ��
D
4þdf ð2�tÞ

dw

�
:

(20)

In eqn (18) we might set the lower limit of the integral to
zero, ck k ¼ 0, as the integral converges. We however find that
taking into account the existence of the smallest cluster size ck k
is necessary to grasp the numerical results below. When fitting
eqn (19) and (20) to the simulation data with ck k ¼ 0, the
remaining two free parameters h and D were found to be
insufficient to provide sufficiently good descriptions fore
dC2ðDÞ
D E

and
e
dC2ðDÞ
D E

2. Once a smallest cluster size is con-

sidered (we here choose the physical value ck k ¼ 1) h and D can
be optimised simultaneously to achieve a good fit to the
simulations data.

Eqn (19) and (20) deserve two pertinent remarks. First, it is

seen that when DD2=dw � ck k2=df in the argument of the incom-

plete gamma function g, then the quantities
e
dC2ðDÞ
D E

ande
dC2ðDÞ
D E

2 grow as a power of D. Within the same limit, division

of
e
dC2ðDÞ
D E

2 by
e
dC2ðDÞ
D E

yields an exponent for D which is

twice the gap exponent 1/dw, predicted by dynamical scaling

theory.8,64 In particular, both
e
dC2ðDÞ
D E

and
e
dC2ðDÞ
D E

2 are

independent of the measurement time T. This is due to the
averaging over all same-sized open clusters, as already alluded
to above. To justify the validity of these scaling relations, D and
h were optimised simultaneously for the two equations to
achieve the best fit to the simulations results, represented by
the dotted line in Fig. 2. The qualitative match between results
(19) and (20) with the simulation results in Fig. 2 is quite good,
given the conjectural arguments above.

The normalised variance of dC2ðDÞ
D E

for an ensemble of

finite size open clusters is given by

EBðDÞ ¼

e
dC2ðDÞ
D E

2

� �
� edC2ðDÞD E� �2

e
dC2ðDÞ
D E� �2

� 0; (21)

which is a measure to quantify the amplitude fluctuations of
individual results for the TAMSD at a given lag time D. We
emphasise that in this expression for EB no T-dependence
remains due to the anisotropy average over finite-sized open
clusters, as discussed above. Apart from the disorder average e�
the quantity (21) has a similar structure as the ergodicity

breaking parameter introduced and studied in ref. 24, 25, 34,
44 and 65.

Substituting expressions (19) and (20) into eqn (21) we arrive
at an analytical expression for EB. This expression contains a
large number of cross-correlation terms such that we restrict

ourselves to the limiting behaviour in the case DD2=dw � ck k2=df
in which the incomplete gamma functions reduce to complete
gamma functions. We then find that

EB E ADdf(t�2)/dw � 1, (22)

where A is a constant. The same result yields from eqn (18) by
setting the lower integral limit to zero. Employing the hyper-
scaling relation between df and t = d/df + 1 where d is the
embedding Euclidean dimension,9 the above expression can be
written exclusively in terms of df and d. Interestingly, the
resulting form

EB E AD(d�df)/dw � 1, (23)

has the same exponent of D as the form for the parameter S
proposed by Meroz et al.49,50 to distinguish non-ergodic pro-
cesses from ergodic ones. The difference is that here the
ensemble is constituted by a cluster ensemble of different sizes,
in contrast to the case addressed in ref. 49 and 50 where only
incipient infinite clusters were considered.

The analytical solution (21) for EB with the fit parameters
from Fig. 2 is plotted as function of lag time D in Fig. 3 along
with the results of our Monte Carlo simulations. The match is
indeed rather good. What is clear from the double logarithmic
plot in Fig. 3 is that for the displayed lag time values we see a
crossover to the long-D scaling. The intermediate scaling at
shorter D has a steeper slope.

Another interesting observation is that the exponent of the lag
time D in eqn (19) can be rewritten in terms of the spectral
dimension ds = 2df/dw.8,66 Recalling the hyperscaling relation stated
earlier between df and the Fisher exponent t, the expression of the
disorder averaged TAMSD of eqn (19) can be rewritten as

e
dC2ðDÞ
D E

¼ ðt� 2Þ ck kt�2 �2h2 ck k2dfþ2�t � dfh
2Ddf=2

h
� g �df

2
;
DD2=dw

ck k2=df

� �
Dds=2

�
:

(24)

We emphasise that regardless of the type of the underlying lattice,
in two dimensions and for long lag times, D - N, the disorder
averaged TAMSD grows as Dds/2. This sole dependence on the
spectral dimension ds is a consequence of the two-dimensional
embedding.

III. Discussion

We studied the amplitude fluctuations of the TAMSD typically
measured in single particle tracking experiments or simula-
tions for diffusion processes on a square percolation network at
criticality. In particular we took all clusters of the network into
account, not solely the incipient infinite cluster. Based on the
conjectural analogy of this process with an Ornstein–Uhlenbeck
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process whose known results were rescaled in time we obtained the
MSD and TAMSD for the diffusion on the ensemble of percolation
clusters, under non-equilibrium initial conditions. The latter are
appropriate for many single particle experiments and simulations,
in which a tracer is put at a specific place on the percolation
network initially. The results based on the analogy with the
Ornstein–Uhlenbeck process were shown to be fully consistent
with our simulations. Moreover, the expected analytical short and
long time behaviours were recovered from the resulting expres-
sions. In addition, it was shown that averaging over the anisotropy
of clusters with a specific size yields an expression for the TAMSD
which in this anisotropy-averaged sense is independent of the
measurement time T. This consequently yielded a result for the
normalised variance for the TAMSD, the ergodicity breaking para-
meter, which is independent of T, as well.

Let us briefly dwell on the connection with our earlier result.
Thus, in ref. 51 we empirically suggested from simulations
results that EB decays algebraically in T towards a residual
value EBN in the form

EBðDÞ ¼ k
D
T

� �g

þEB1ðDÞ; (25)

where k is a constant and g a scaling exponent, whose value for
the square lattice was estimated to be 0.8. The constant EBN

was found to be an increasing function of the lag time D and
the percolation density p, as well as to acquire a non-zero value
when p approaches the critical value pc.51 This form was
proposed based on earlier analytical results for other stochastic
processes such as Brownian motion, fractional Brownian
motion, scaled Brownian motion, and continuous time random
walks:25,34,67–70 there EB decays as a power of T, with different
scaling exponents, and, in some cases, attains a residual value.
Here we demonstrate that the T dependence vanishes after
taking the anisotropy average corresponding to an equilibrium
initial condition, for which the dynamics is stationary. Due to
computational limitations, however, it is impossible to sample
all cluster configurations of the same size by means of Monte
Carlo simulations. For instance, even for a small cluster of size
24 there are 103 configurations.71 This is the reason why in our
simulations we could observe a T dependence of EB, albeit this
dependence is rather weak. This fact is illustrated in Fig. 4
which demonstrates that EB remains practically constant when
T varies from 104 to 106.

It will be interesting to extend the current study to other
types of lattices and dimensions. For lattices embedded in two
dimensions we would expect that the results obtained here can
be transferred to other cases such as the triangular lattice. In
higher dimensions it will have to be seen whether the residual,
asymptotic value of EB is still relevant, and how the lag time
scaling of the different averages of the TAMSD is modified.

As we discussed in the introduction, percolative systems are
used as models for the study of protein diffusion in the
chromatin of living cells or in the cellular cytoplasm.18,20 Here
the percolation network models areas of the cell that are
inaccessible due to molecular crowding. Following recent
simulations studies, in particular, in two spatial dimensions
demonstrate that in crowded environments the size of the
tracer particle itself may renormalise the accessible space.72

Such effects may be included in more realistic percolation
simulations. Moreover, it was shown that essential features of
two-dimensional membrane systems consisting of small lipid
molecules and large proteins, both mobile, can be mimicked
by a static excluded volume system,73 thus rendering static

Fig. 2
e
dC2ðDÞ
D E

(left) and
e
dC2ðDÞ
D E

2 (right) versus D. Dashed lines indicate the theoretical expressions (19) and (20). The simulation time was T = 106.

The ensemble consists of 5 � 102 lattices of size 4096 � 4096, on each lattice 50 random walks were simulated with D = 0.827 and h = 0.375.

Fig. 3 Ergodicity breaking parameter EB versus lag time D. The red dashed
line represents eqn (21) based on results (19) and (20). The values of the
adjustable parameters are D = 0.827 and h = 0.375, the fit values being taken
from Fig. 2. The blue full line is the scaling form of EB given by result (22)
with the fitted value A = 0.98. The ensemble in the simulations consists of
5 � 102 lattices, where on each 50 random walks were simulated.
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approaches such as the percolation network applicable also to
intrinsically dynamic systems.

Concluding, we are convinced that our results will be of
interest not only to the further understanding of dynamics on
percolation networks but of special relevance for the interpreta-
tion of single particle tracking experiments. In realistic situa-
tions one does not always have the flexibility to measure
systems under equilibrium initial conditions, and averages
of dynamic quantities are affected by inherent disorder in
the system. Here our results of physical observables such as
the MSD and the amplitude variations expressed in terms of the
ergodicity breaking parameter will be easy to implement in data
analysis. A particularly relevant area of current research is the
single particle tracking of channel proteins in the membranes
of living biological cells for which random fractal patterns have
been unveiled from the trajectories.74,75 This behaviour was
associated with the self-similar compartmentalisation of the
cortical actin meshwork.76 Similarly relevant will be single
particle tracking studies in the nucleus of living cells.18

IV. Methods
A. Simulation Scheme

The simulations were carried out on a square lattice, and the
nearest neighbours of each site were identified by the von
Neumann neighbourhood. The size of the lattice was set to
4096 � 4096, unless otherwise specified, when the size is set to
1024 � 1024. Each cell of the lattice is then attributed to be
occupied with the percolation probability p or is left vacant
otherwise. For the square lattice the critical percolation density
pc is not known analytically but it is, by the means of simula-
tions, confirmed that pc = 0.407254 (note that vacant sites are of
interest here).8,9 In the simulations carried out here we used
pc = 0.4.

The initial position of the random walker is located at the
centre of the lattice, which may belong to an open cluster or it is
an occupied site. In the latter case, the nearest vacant site is
chosen as the initial position. Therefore whether a random walker
parachutes onto a finite size open cluster or onto an incipient

infinite cluster, is random and the associated probability related to
the given cluster size Ck k. For an illustration of such clusters see
Fig. 1. The simulation time T is set to 106. It is variable only when
the dependence of the variance of the disorder averaged TAMSD on
T is analysed, when it varies from 104 to 106. The minimum lag
time is D = 102 to guarantee that the topology of the underlying
open clusters are sufficiently sampled.

The fractal dimension df was estimated as follows. An
ensemble of 7 � 102 incipient infinite clusters are analysed. It
is clear that it is not readily observable whether the centre of
the lattice belongs to a finite size cluster or to the incipient
infinite cluster. Therefore to identify the open clusters and
sieve the incipient infinite ones in a lattice realisation, the
Hoshen–Kopelman algorithm is used.77 Afterwards, the box
counting method was used to estimate their fractal dimension
df.

78 On average its corresponding value was found to be
df = 1.9 	 0.1, which compares favourably with the predicted
value df = 91/48 E 1.90. Yet it should be understood that every
cluster has its own fractal dimension due to the unique
anisotropy and inhomogeneity of the topology. The same
applies to the random walk dimension dw. To estimate dw

eqn (1) was used to extract the anomalous diffusion exponent
a for the incipient infinite clusters, and it was estimated as
2.7 	 0.1, compared to the known value 2.87. The Fisher
exponent t of the cluster size distribution at pc is set to
2.03 	 0.01 based on earlier analyses on the distribution of
finite size open clusters.51 Again, this compares well with the
literature value of t = 187/91 E 2.05.

Simulation validation of phenomenological approach. To
verify the validity of eqn (5), (6), (10a) and (10b), analyses were
performed on some finite size open clusters. Here for instance,
a sample open cluster of size 793 on a lattice of size 1024 �
1024 is demonstrated, see Fig. 1. Two initial conditions were
considered: (i) the random walker was fixed to the centre of the
underlying lattice at (512, 512), or (ii) the initial position was
randomly chosen to be any site within the finite cluster. In total
8 � 103 random walks were simulated and the result is shown
in Fig. 5. In the left panel, corresponding to the fixed initial
position, we note the gap of width Rg

2 between the MSD and the
TAMSD. This is the immediate consequence of how these

Fig. 4 EB versus T at D = 102. The number of lattices in the ensemble is 103 on each of which 2 � 102 random walks were simulated. Note the slight
changes in EB while T varies between 104 to 106.
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quantities are defined in eqn (2) and (3); this is a well known
disadvantage of these definitions for the stationary state of a
diffusion process, see, for instance, ref. 25 and 79. In contrast,
in the right panel, where the initial position was chosen
arbitrarily, both reach the same asymptote, namely 2Rg

2. In
the procedure df E 1.60 was estimated by the box counting
method; the values dw E 2.44, D E 0.27, and h E 0.29 were
determined by best fit with the analytical expressions.

Anisotropy average over same-sized open clusters. To
demonstrate that hr0

2i, once averaged over the anisotropy of
clusters of the same size, is simply Rg

2, an analytical proof for
the case of clusters of size three is provided here. There are two
classes of clusters with the size three which are presented in
Fig. 6. Note that clusters formed by applying the symmetry
groups of the square lattice again belong to these two classes.
Define these two classes with [–] and [

0

] (the upper row and the
lower row in Fig. 6, respectively).

Consider the class [–], then the following are the calculated
values hr0

2i and Rg
2 for the three possible configurations that

appear at the centre of the lattice presented on the leftmost,
middle, and rightmost panels of the first row of Fig. 6:

r0
2

� �
¼ ð0� 1Þ2 ¼ 1

Rg
2 ¼ 1

3
ð0� 1Þ2 þ ð1� 1Þ2 þ ð2� 1Þ2
� �

¼ 2

3

9>=>;ðLeftmostÞ

(26)

r0
2

� �
¼ ð0� 0Þ2 ¼ 0

Rg
2 ¼ 1

3
ð�1� 0Þ2 þ ð0� 0Þ2 þ ð1� 0Þ2
� �

¼ 2

3

9>=>;ðMiddleÞ

(27)

r0
2

� �
¼ ð�1� 0Þ2 ¼ 1

Rg
2 ¼ 1

3
ð�2þ 1Þ2 þ ð�1þ 1Þ2 þ ð0þ 1Þ2
� �

¼ 2

3

9>=>;ðRightmostÞ

(28)

Then the anisotropy average over hr0
2i yields

1þ 1þ 0

3
¼ 2

3
,

which is equal to Rg
2. The same applies to the [

0

] class.
Therefore it is supported that in eqn (15b) the quantity hr0

2i
is indeed equal to Rg

2, once averaged over the anisotropy. This
should not be surprising since this average is equivalent to an
average over different initial positions of the random walks.
However, to proof this numerically is practically impossible.
For instance among the 9780 lattice realisations only 4 clusters
of size 100 were identified. Thus the ensemble of finite clusters
with size ranging from 100 to 149 comprised altogether 75.

Although the size of these clusters varies somewhat, dC2ðDÞ
D E

maintains practically stationary property for this very ensemble.

In Fig. 7 we depict dC2ðDÞ
D E

of these clusters (grey lines).

Alongside dC2ðDÞ
D E

is shown (thick black line). Note that there

Fig. 5 MSD and TAMSD for fixed initial position (left) and arbitrary initial position (right) on a finite cluster of size 793. 8 � 103 random walks were
simulated. The x and y axes components of the co-ordinate of the centre of mass were found to be 513.74 and 518.20, respectively. Rg

2 was measured to
be 346.33.

Fig. 6 Two classes of clusters of size three with their different sites
positioned at the centre of the lattice. Other clusters which are formed
by applying the symmetry groups of the square lattice are equivalent to
these two. The x and y axes show the positive direction of the Cartesian
co-ordinate, and the red square cell is the centre of the lattice located at
(0, 0).
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are two types of dC2ðDÞ
D E

distinguished by their tail, which

either ascends or descends (the red and yellow curves). The
former corresponds to situations when the topological shape of
the cluster is highly anisotropic (Fig. 7 right panel top) and
consequently hr0

2i 4 Rg
2. The latter case corresponds to situa-

tions when the finite cluster is distributed evenly around the
centre of the lattice (Fig. 7 right panel bottom). Such cases imply
that hr0

2i o Rg
2. The tails of the resulted anisotropy averaged

TAMSDs stays constant implying that the quantity (6) is indeed
independent of T.
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Geometry controlled anomalous diffusion in
random fractal geometries: looking beyond the
infinite cluster

Yousof Mardoukhi,†ab Jae-Hyung Jeon†bc and Ralf Metzler*ab

We investigate the ergodic properties of a random walker performing (anomalous) diffusion on a

random fractal geometry. Extensive Monte Carlo simulations of the motion of tracer particles on an

ensemble of realisations of percolation clusters are performed for a wide range of percolation densities.

Single trajectories of the tracer motion are analysed to quantify the time averaged mean squared

displacement (MSD) and to compare this with the ensemble averaged MSD of the particle motion. Other

complementary physical observables associated with ergodicity are studied, as well. It turns out that

the time averaged MSD of individual realisations exhibits non-vanishing fluctuations even in the limit

of very long observation times as the percolation density approaches the critical value. This apparent

non-ergodic behaviour concurs with the ergodic behaviour on the ensemble averaged level. We

demonstrate how the non-vanishing fluctuations in single particle trajectories are analytically expressed

in terms of the fractal dimension and the cluster size distribution of the random geometry, thus being of

purely geometrical origin. Moreover, we reveal that the convergence scaling law to ergodicity, which is

known to be inversely proportional to the observation time T for ergodic diffusion processes, follows a

power-law BT�h with h o 1 due to the fractal structure of the accessible space. These results provide

useful measures for differentiating the subdiffusion on random fractals from an otherwise closely related

process, namely, fractional Brownian motion. Implications of our results on the analysis of single particle

tracking experiments are provided.

1 Introduction

Roughly a century after Jean Perrin’s groundbreaking experiments
on Brownian motion using an elaborate single particle tracking
method in 1908,1 nowadays sophisticated single particle tracking of
submicron tracer particles and even single molecules have become
a routine tool in the study of passive and active transport dynamics
in living biological cells as well as in various crowded fluids
in vitro.2 Distinguished from traditional ensemble averaging
experiments single particle tracking enables one to directly
access the diffusive properties of the tracer particles without
any loss of information due to ensemble averaging. Based on the
single particle tracking technique it was revealed that the tracer
motion in ‘superdense’3 biological or complex environments
often exhibits anomalous diffusion such that its ensemble averaged

mean squared displacement (MSD) grows non-linearly with
time in the form

hr2(t)i C ta (1)

with the anomalous diffusion exponent a. We distinguish
subdiffusion for 0 o a o 1 and superdiffusion with a 4 1.
Examples for subdiffusion include the diffusion of messenger
RNA molecules3 and lipid granules in living cells,4–7 and the
motion of phospholipid molecules and proteins in the membranes
of living cells or in silico membranes.8–12 As examples from in vitro
systems we mention the anomalous diffusion of microbeads in
polymer networks or gels13–16 and in artificially crowded media17,18

as well as colloidal suspensions.19,20 Examples for superdiffusion
due to active motion in living cells were provided in ref. 21–25.
Effective superdiffusion on surfaces is also observed due to bulk
mediation effects.26,27

Theoretically an anomalous diffusion process characterised
by the law (1) may be governed by different stochastic models,
each of them underlying a unique physical process.28–30 Despite
the common scaling (1) of the ensemble averaged MSD some of
these processes are ergodic in the Boltzmann–Khinchin sense
that the long time average of physical observables such as the
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MSD converges to the corresponding ensemble average while in
other, weakly non-ergodic processes both kinds of averages
remain disparate.28–32 One process, that was identified as
stochastic mechanism behind the motion of tracers in living
biological cells and structured environments is the continuous
time random walk.33 Continuous time random walks give rise to
weakly non-ergodic subdiffusion due to multiple binding or caging
events characterised by a long-tailed distribution of waiting times
between successive motion events which features a diverging
mean waiting time.28,29,31 Fractional Brownian motion and the
associated fractional Langevin equation describe Gaussian pro-
cesses in which the power-law correlated displacements give rise
to anomalous diffusion.34–40 Such self-affine Gaussian processes
have a fractal path and are ergodic, and they were shown to occur
in viscoelastic environments.40,41 Another popular ergodic model,
which in many ways appears similar to fractional Brownian
motion, are random walks on fractal structures.28–30,42,43 Fractals
with their scale-free geometry were popularised by Mandelbrot
in the 1980’s to more closely resemble natural objects such as
mountains or coastlines than do classical geometrical bodies.44

De Gennes coined the concept of ant in the labyrinth:45 random
fractals such as the statistically self-similar continuum or
discrete percolation models effect the subdiffusion of a random
walker due to the existence of bottlenecks and cul-de-sacs on all
scales.42,43,46–49 Among a variety of applications, this model was
used to describe the obstructed diffusion in highly crowded
random environments, for instance, the cytoplasm of cells, cell
nuclei, and biological membranes.15,50–55 Recently models of mixed
origins of anomalous diffusion processes were also suggested.29

Following the advances in single particle tracking techniques
it has become possible to garner sufficient evidence to diagnose
the statistical characteristics of a stochastic process on the single
trajectory level. To identify a specific anomalous diffusion process
behind observed data allows one to learn more about the
physical nature of the system and predict secondary quantities
such as the first passage behaviour responsible for (bio)chemical
reactions.29,31,56–59 Weakly non-ergodic processes in Bouchaud’s
sense exhibit the above-mentioned disparity between the ensemble
averaged MSD (1) and the time averaged MSD defined below, even
in the limit of long measurement times. Moreover, these processes
exhibit ageing, the dependence of observables on the time span
between initiation of the process and start of the measurement,
and the amplitude of individual time averages fluctuates
significantly. This behaviour is shared by continuous time
random walks31,60–64 and its variants65–67 as well as heterogeneous
diffusion processes with space dependent diffusivity.68–70 In con-
trast, stochastic motion driven by power-law correlated Gaussian
noise and the random motion on fractals are the key ergodic
anomalous diffusion processes.29,71 Another class of weakly non-
ergodic processes corresponds to scaled Brownian motion with a
power-law time dependent noise strength.72–75 It is known that the
discrimination between them based on data analysis is challen-
ging, as both models share the same asymptotic scaling behaviour
of the velocity autocorrelation functions.76 Theoretical tests differ-
entiating the two were recently proposed on the ground that the
fractal dimension—or the number of visited sites—is smaller than

the dimensionality of the embedding Euclidean space—or the
total number of sites in space.56,77 We here explore in more detail
the exact ergodic properties of de Gennes’ random ant-in-the-
labyrinth motion. Specifically, we analyse the single particle diffu-
sion on two-dimensional percolation clusters at varying densities.
Special emphasis is put on the ergodic properties of the motion
revealed by the time averaged MSD. Remarkably, our simulations
reveal that the fluctuations in the time averaged MSD have a
unique statistical feature of geometrical origin which is signifi-
cantly different from that of fractional Brownian motion.

This paper is organised as follows. In Section 2 we gather the
information on the simulation procedure, the definitions of the
averaging procedures used in our analysis, and the well known
diffusion dynamics on percolation clusters in the framework of
ensemble averages. In Section 3 we present our simulation
results on the single trajectory level including the time averaged
MSD, the amplitude scatter distribution of the time averaged
MSD, and the ergodicity breaking parameter. In particular,
we analyse the rôle of clusters other than the infinite cluster.
In Section 4 we discuss our results and conclude.

2 Methods
2.1 Simulation scheme

Our study is based on a two-dimensional square lattice with periodic
boundary conditions, as commonly used in other studies.50,77,78

On this underlying structure we generate our random percolation
environments. The system size varies depending on the load of
the simulations. For instance, to simulate individual trajectories
for analysis in terms of the time averaged MSD a lattice of 4096 �
4096 is considered whereas in more computationally expensive
simulations such as labelling clusters with different sizes, the
lattice size is set to 1024 � 1024. Each site is either filled with
probability p or vacant with probability 1 � p. Here we follow
the convention that p refers to the obstacle density in space.50

Percolation theory states that as the percolation density p
approaches the critical value pc from above—that is for decreasing
obstacle size—separated finite clusters merge and the correla-
tion length �x of clusters diverges as �xB |p� pc|

�n with n = 5/36.48

At the percolation threshold pc and for lower obstacle densities
p o pc there exists an infinite cluster of empty sites spanning
the entire volume.42,48 The probability that a given site belongs
to the infinite cluster at criticality scales as PNB ( p� pc)

b where
b = 43/18.42,48 Concurrently as p - pc the crossover length rc

from anomalous to normal diffusion used below diverges as
rc B | p � pc|�n+b/2. Thus at p = pc anomalous diffusion of the
form (1) prevails at all times.42,48,50 Simultaneously the percolation
geometry forms scale-free fractal objects over all length scales
larger than the lattice constant.42,48,50,79 ‡ For obstacle percola-
tion considered here the critical percolation threshold is pc =
0.407256.48 § This critical case is depicted in Fig. 1.

‡ Note that for finite sized fractals with lower and upper bound the power-law
behaviour levels off at both ends in sigmoidal fashion.80

§ Often one considers the percolation of accessible sites, in that case the
percolation threshold is 1 � pc E 0.59.
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In our simulations, after a random geometry with label z of
given density p is generated a tracer particle starts to diffuse at its
centre if it is vacant. Otherwise a randomly chosen vacant site close
to the centre is chosen. In our Monte Carlo simulation, at every unit
time step dt = 1 the tracer particle jumps to the nearest vacant
site with probability 1/4 on our two-dimensional lattice. Uniform
random numbers were generated by the ranðÞ function taken
from Numerical Recipes.81 On an isolated unit cluster no move is
allowed and the random walker becomes completely localised. In
the limit of p - 0 the diffusivity of the tracer particle is that of a

free two-dimensional lattice, K ¼ a2

4dt
where a is the lattice con-

stant. Our typical simulation time was 106 time steps, unless
indicated otherwise. For the evaluation of physical observables Nz

random percolation geometries were generated at a given percola-
tion density p, and N tracer trajectories for each percolation
geometry were recorded. For the efficiency of the simulation study,
the number Nz was varied from 50 to 10 000 and N from 3 to 1000
depending on the observables. In each case sufficiently large
samples were chosen to ensure a proper statistical convergence.
Information on Nz and N used in the evaluation of each observable
are provided in the text and in the figure captions.

2.2 Ensemble averaged mean square displacement

Let us first address the potential ambiguity in defining ensemble
averages in percolation systems.42 For a given fractal geometry z
the MSD of an ensemble of particles starting at the origin at time
t = 0 is given by

rðtÞ2
� �

z¼
1

N

XN
i

riðtÞ2 (2)

where we choose the coordinate systems such that ri(0) = 0. The
MSD hr(t)2iz will in general assume different values for different
realisations z.¶ To avoid the dependence on the specific realisation,
an additional (disorder) average of the form

gr2ðtÞh i ¼ 1

Nz

XNz

z

rðtÞ2
D E

z
; (3)

is defined, where Nz counts the different realisation z over which
the average is taken. In what follows we refer to this quantity as the
ensemble averaged MSD. We note that we did not average over
initial positions for a given realisation z, however, we expect this
averaging to be equivalent to the disorder averaging over different
z. We also note that similar questions on the averaging arise in the
analysis of diffusion in quenched energy landscapes.82

Prior to our study of single trajectories below we here briefly
summarise the ensemble averaged MSD for particles diffusing
in percolation geometries, and we compare these results with
our current Monte Carlo simulation. The ensemble averaged
MSD has two distinct scaling regimes over time for percolation
densities below the percolation threshold pc, namely42,43,47,48,50

gr2ðtÞh i ’
t2=dw ; jrjo rc

t; jrj4 rc

(
: (4)

Thus, the diffusion is transiently anomalous below the cross-
over length rc( p), corresponding to times shorter than the

crossover time tc ’ rdwc . Here the classical notation involves
the walk dimension dw of the diffusing particle. Generally
dw 4 2 implying subdiffusion with 0 o a = 2/dw o 1. In the
simplest case when we have no obstacles ( p = 0) all sites are
accessible to the random walker and we have normal diffusion
at all times. In this case the crossover length rc vanishes. This
case is shown in Fig. 2(a). At finite percolation densities below
the percolation threshold, 0 o p o pc, the crossover length
roughly corresponds to the average cluster size of locally fractal
structures: local bottlenecks and cul-de-sacs generate anomalous
diffusion, which eventually crosses over to normal diffusion
when the typical distance travelled by the random walker exceeds
rc. This case is shown in Fig. 2(b). We note that compared to the
obstacle-free case p = 0, the effective diffusion coefficient in the
case 0 o p o pc has a reduced value. At the percolation
threshold p = pc E 0.407256 the percolation geometry is fractal
on all available scales, and the crossover length rc diverges.
Concurrently, the anomalous diffusion regime ranges over all
time scales.8 For the square lattice the anomalous diffusion
exponent is 2/dw E 0.7,50 which is again confirmed by our
simulations, see Fig. 2. Indeed, Fig. 2(c) documents the anomalous
diffusion at criticality. Anomalous diffusion in effectively two
dimensional geometries was indeed verified by NMR measurements

Fig. 1 Sample realisation of a random percolation geometry at the percolation
threshold p = pc on a square lattice of size 1024 � 1024. The copper coloured
structure representing the vacant sites of an infinite cluster accessible to the
random walker constitutes a statistically scale-free, fractal object.

¶ Only for random walker exclusively seeded on the infinite cluster, that is, for
obstacle percolation densities p r pc, the MSD hr(t)2iz for different realisations z
of the geometry will converge to approximately the same value.
8 More accurately, anomalous diffusion is observed when the random walker
samples distances above several lattice constants a and will be eventually
terminated in our periodic boundary conditions when the percolation structure
is fully sampled.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
O

ct
ob

er
 2

01
5.

 D
ow

nl
oa

de
d 

on
 2

/9
/2

02
0 

11
:2

1:
53

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

66



This journal is© the Owner Societies 2015 Phys. Chem. Chem. Phys., 2015, 17, 30134--30147 | 30137

in computer generated percolation clusters milled into stacked
plastic sheets.83,84 Above the percolation threshold the diffusion
is more and more reduced. In particular, only finite, disjunct
clusters remain such that the MSD eventually saturates to a
plateau, see Fig. 2(d).

3 Probing the ergodic behaviour of
diffusion on percolation geometries
3.1 Time averaged mean squared displacement

To explore the ergodic properties of the diffusion process on
percolation clusters in addition to the ensemble averaged MSD
we now consider the time averaged MSD defined in terms of the
moving average

d2ðDÞ ¼ 1

T � D

ðT�D
0

½rðtþ DÞ � rðtÞ�2dt (5)

of a single trajectory r(t).28,29,31 Here D is the lag time corresponding
to the width of the window slid along the time series, and T is the
total observation (measurement) time. The time averaged MSD (5)
provides information on the diffusive properties of a single particle
and is routinely applied to evaluate experimental single particle
tracking data. Typically diffusive processes, that are ergodic in the
Boltzmann–Khinchin sense, have the property that for sufficiently
long observation times T (formally, T - N), the time and
ensemble averaged MSDs converge to each other,

lim
T!1

d2ðDÞ ¼ r2ðDÞ
� �

: (6)

In agreement with previous numerical studies,77 our simulations
indeed demonstrate that this ergodicity relation is satisfied for our
random walker on the percolation geometry for any percolation
density if we average the time averaged MSD over both N individual
simulated trajectories (index i) and over an ensemble of Nz

percolation geometries z,

g
d2ðDÞ
D E

¼ 1

N �Nz

X
i;z

di;z2ðDÞ: (7)

As seen in Fig. 2, this mean time averaged MSD—represented by
the yellow solid line—coincides with the ensemble averaged MSD
(black circles) for all cases. The equivalence between the two
quantities for Nz = 50 is not significantly improved when the
sample size is increased tenfold to Nz = 500 (not shown).

However, the equality between the ensemble averaged MSD
(7) and individual long time averaged MSDs is not always
fulfilled. To demonstrate this fact we show in Fig. 3 individual

time averaged MSD traces d2ðDÞ along with the ensemble

average
g
d2ðDÞ
D E

(black solid line) from Fig. 2. As long as p o

pc the individual d2ðDÞ follow nicely the mean
g
d2ðDÞ
D E

except

for long lag times D E T when the statistic for the time
averaging becomes insufficient (Fig. 3(a) and (b)). In this case
the cluster turns from a fully accessible two-dimensional lattice
at p = 0 to a geometry with growing but localised clusters of
obstacles at 0 o p o pc. The connectivity remains high such
that, independent of the initial position, eventually the random
walker explores the entire structure, apart from inaccessible
areas of sufficiently small measure. Right at the percolation
threshold p = pc shown in Fig. 3(c) we already observe signifi-

cant deviations from the mean
g
d2ðDÞ
D E

: a smaller number of

Fig. 2 Ensemble averaged MSD gr2ðtÞh i (black circles) and mean time

averaged MSD
g
d2ðDÞ
D E

(yellow solid line) for four different percolation

densities: (a) p = 0, (b) p o pc, (c) p E pc, and (d) p 4 pc. In each panel the

inset depicts gr2ðtÞh i
.
t versus t on a double logarithmic scale, the slope is

a � 1. Note the terminal Brownian scaling for p o pc with a reduced
diffusivity for the finite percolation density (b). The numbers of the random
geometries and trajectories used for the plot are Nz = 50 and N = 1000.

Fig. 3 Individual time averaged MSD curves d2ðDÞ and their mean
g
d2ðDÞ
D E

(thick black curve, as already shown in Fig. 2). In each panel the variation of
the individual time averaged MSD curves represents 10 different trajectories
on each of the overall 50 different simulated percolation geometries.
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traces d2ðDÞ show confinement leading d2ðDÞ to enter a plateau

much earlier than the crossover time of
g
d2ðDÞ
D E

. This is due to

the fact that at criticality, when the percolation geometry is
fractal, the size of the accessible regions is scale-free and finite
accessible clusters of all sizes are created in addition to the
incipient infinite cluster. When seeded on such a finite cluster
the time averaged MSD of the emanating trajectory will show
a plateau depending on the very size of the visited cluster. We
thus encounter a non-ergodic scenario in which the irreproducibility
of trajectories stems from the quenched geometry. This non-ergodic
behaviour is strengthened above the percolation threshold, p 4 pc,

as shown in Fig. 3(d). Individual traces d2ðDÞ exhibit a pronounced

scatter around the average
g
d2ðDÞ
D E

. In the sense of Bouchaud’s

definition32 the fact that once seeded on a specific cluster the
random walker cannot pass to an unconnected cluster is referred
to as strong ergodicity breaking. It denotes the case when the
phase space of a system consists of disjoint subvolumes and
access to each subvolume is determined by the initial position of
the particle. It is intrinsic for the percolation system in that it is
reproducible when simulations are performed with the same
number of runs for given trajectory length T. Moreover, a typical
scatter of amplitudes of the plateaus always occurs at any
trajectory length T. It is in fact noteworthy that albeit these
features of individual tracer motion the ensemble average
remains ergodic within the error of our simulations.

Subdiffusive continuous time random walks31,60,65,67,85,86

show ageing in the sense that the particle encounters longer
and longer waiting times on its motion due to the scale free
nature of the distribution of waiting times. The amplitude of
the time averaged MSD given by the effective diffusivity there-
fore becomes a decaying function of the observation time T.
Analogous ageing effects occur for scaled Brownian motion,87

heterogeneous diffusion processes,68 and their combination.
Apart from transient ageing88 the Gaussian processes with
correlated increments of the fractional Brownian motion and
fractional Langevin equation motion types do not exhibit such
effects.9 In Fig. 4 we analyse the dependence of the time
averaged MSD on the observation time T using the data from
Fig. 3 for fixed lag time D = 100. As can be seen no significant
ageing can be detected, the traces settle towards a constant

function of T. The figure also illustrates the relatively small
amplitude scatter below and at the percolation threshold, p r
pc, as compared to the behaviour at the higher percolation
density, p 4 pc.

3.2 Time averaged occupation probability

To gather more quantitative clues on the above observations of
the time averaged MSD we determine the profile of individual
time averaged MSDs and explore how it is related to the
particles’ random paths on a given percolation geometry z. To
this end we introduce the time averaged occupation probability

PzðrÞ at the lattice point r for a given fractal geometry z in
the form

PzðrÞ ¼
tr

T
(8)

where tr is the accumulated residence time of the particle at the
lattice site r averaged over the observation time T.

Fig. 5 presents typical patterns of the time average PzðrÞ
obtained from simulations with N = 104. For the fully accessible
two-dimensional lattice ( p = 0) the time averaged occupation
probability is smoothly spread out from the origin with a
uniform radial distribution of bell shape. This is a typically
expected result for Brownian motion as well as for other ergodic
processes in which the ensemble averaged occupation prob-
ability hPz(r)i is identical with its time averaged counterpart.
This case is shown in Fig. 5(a). For growing percolation
densities below the percolation threshold we therefore observe
similar patterns, albeit local fine structure will appear due to
the existence of a finite correlation range of obstacles measured
by the radius rc introduced above. In particular, growing p will
increasingly limit the accessible range for the random walker,
that is, the occupation probability at finite T will decay faster
from the initial position. At the percolation threshold p = pc the

pattern of the time averaged occupation probability PzðrÞ
exhibits a structural fingerprint of the specific underlying

fractal geometry. Interestingly, we find that PzðrÞ may assume
two distinct patterns at the percolation threshold. Thus, while
Fig. 5(b) reveals an emerging fractal spreading pattern, Fig. 5(c)
shows a uniform distribution within a localised region—note
the different scales of the panels. How can this come about?
This phenomenon is again related to the fractal nature of the

Fig. 4 Time averaged MSD curves d2ðDÞ at fixed lag time D as a function of the observation time T for Nz = 2000 and N = 3. We here plot the same data
as in Fig. 3, for (a) p = 0.3, (b) 0.4, and (c) 0.5. For all cases D = 100 was chosen. No significant dependence on T is visible for any sufficiently small value of
D/T. The distinct, much lower lines in (a) corresponds to a very rare case of confinement. These cases become increasingly likely in (b) and (c).
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percolation geometry at criticality. In the former case, the tracer
particle diffuses on the infinite incipient fractal cluster of
vacant sites whose linear size is only limited by the size of
the simulated lattice. Thus the corresponding time averaged
MSD exhibits the anomalous scaling law (1) and the ergodic

property limT!1 d2ðDÞ ¼ r2ðDÞ
� �

is satisfied.77 The quantity

PzðrÞ also provides information on how the tracer particle
diffuses away from its starting site. It is noteworthy that the

spatial gradient of PzðrÞ has no obvious discontinuous shape.
This means that there are no sites at which the particle is
significantly trapped for much longer times than at other
neighbouring sites. In contrast to this, the latter case corres-
ponding to Fig. 5(c) represents the case in which over the
observation time T the particle visits repeatedly a small range
of sites. These are either extremely poorly connected to the
infinite cluster or completely separated. Accordingly the corres-
ponding time averaged MSD saturates (outset). As seen in our
previous analysis above the percentage of such complete con-
finement is relatively low compared to the situation above the
percolation threshold. In the latter case p 4 pc confinement
will always occur, as no infinite cluster of vacant sites remains.
Patterns such as those shown in Fig. 5(c) will then emerge for
clusters of varying size. On average clusters of decreasing size
emerge when p is increased (not shown).

3.3 Amplitude scatter distribution

We now quantify the amplitude fluctuations of individual time
averaged MSDs seen in Fig. 3 by measuring the normalised
distribution f(x) as functions of the lag time D and the observation
time T in terms of the dimensionless variable28,29,60,89

x ¼ d2ðDÞg
d2ðDÞ
D E: (9)

Fig. 6 shows the variation of the scatter distribution f(x) at two
different values of D and for fixed T = 106. As anticipated from the
time averaged MSD traces in Fig. 3 the distribution for p o pc

represented by Fig. 3(a) and (b), has a narrow, bell-shaped form.

Its centre is located at the ergodic value x = 1, and the width
becomes broader at larger lag times. This is a typical behaviour for
ergodic diffusion.89 At and above the percolation threshold p Z pc

this behaviour changes drastically, and the scatter distribution
reveals unique features that are not expected from an ergodic
diffusion process, nor are these features known from other weakly
non-ergodic processes. Consider first the longer lag time D = 103 at
p = pc. We first observe an additional peak showing up at around
x = 0 (Fig. 6(c)). This means that there is a finite contribution from
traces in which the particles undergo severely confined diffusion on
finite clusters of vacant sites. This peak corresponds to the localised
and uniformly distributed time averaged occupation probabilities

PzðrÞ shown in Fig. 5(c). Note that this peak at x = 0 is not a
statistical error due to an insufficient number of simulation runs.

Fig. 5 Time averaged occupation probability PzðrÞ, eqn (8), distributed over three given percolation geometries. This quantity is sampled from an
ensemble of 104 particle traces on the same percolation geometry z starting from the same initial site. We show results for a two-dimensional lattice
corresponding to (a) p = 0.1, (b) at the percolation threshold with p = pc with an emerging fractal pattern, and (c) at the percolation threshold with a
localised pattern. The outsets show examples of the corresponding time averaged MSD curves for those particles.

Fig. 6 Normalised scatter distribution f(x) as function of the dimension-
less variable x ¼ d2ðDÞ

� g
d2ðDÞ
D E

for four different percolation densities. In
each panel the curves represent f(x) for the lag times D = 10 (black) and
103 (yellow), each obtained from 30 000 simulation runs corresponding to
Nz = 10 000 random geometries and N = 3 different trajectories performed
on each geometry. Each single run is of length T = 106.
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Our further investigation demonstrates that this peak is still
observed in larger simulation sets. Second, the position of the
main peak is shifted to a larger value above x = 1 while the bell-
shaped profile is preserved. For the shorter lag time D = 10 the shift
is less severe, however, one can distinguish a fine structure of
different peaks for x values closer to zero. These correspond to
clusters of different size, which can be resolved here when the
overall values of the MSD are smaller.

Remarkably, when the percolation density exceeds the critical
value pc the profile of f(x) changes again significantly. In this
overcrowded situation vacant sites exist in the form of finite
clusters, forcing the tracer particles to undergo confined diffusion.
At the shorter lag time, over which the tracer’s motion is not
seriously hampered by confinement corresponding to Fig. 6(d) at
D = 10, the distribution f has a dominant contribution at x E 1.
Concurrently, several peaks close to x = 0 reveal again a distribution
of cluster sizes. However, at longer lag times the main peak
disappears, and the distribution is monotonically decreasing with
x: localised motion becomes dominant for the statistic.

In Fig. 7 we investigate the variation of the scatter distribu-
tion at the percolation threshold, p = pc with changing observa-
tion times T for fixed lag time. It shows that the position of the
main peak remains largely unchanged while the peak gets
increasingly sharper as T is increased. In contrast the height
and width of the peak at x E 0 is quite insensitive to T. Naively
speaking this population splitting of different trajectories into a
distribution around ergodic motion x = 1 and an almost
immobile fraction again results from the coexistence of the two
distinct diffusion modes induced by the geometry: unrestricted
motion on large (infinite) clusters and confined diffusion on small,
finite clusters. The propensities of occurrence depend on the lag
time D as well as the percolation density p. At criticality both modes
are significant. We note that this behaviour is a geometry controlled

analogue of the dynamic population splitting into mobile and
immobile particles in subdiffusive continuous time random
walks85,86 and heterogeneous diffusion processes.90

Let us spin this idea forward with some analytical considera-
tions based on the cluster size (area) distribution (s). Imagine the
situation in which a random walker moves on a finite cluster of size

s and radius of gyration Rs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2s2ð Þ �
Ps
i;j

ri � rj
�� ��2s

.48 In the limit

of sufficiently long trajectories (T - N) and for lag times D Z Ds,

where Ds is implicitly defined by the equivalence d2 Dsð Þ ¼ Rs
2 of

the time averaged MSD and the squared gyration radius, the time

averaged MSD is saturated to the value d2ðDÞ ’ Rs
2. As the cluster

appears fractal on length scales smaller than Rs, it can be reason-

ably assumed that the size of the cluster is s ’ Rdf
s close to the

percolation threshold, where df is the fractal dimension. We then
relate the distribution of the saturation value of the time averaged
MSD to the cluster size distribution P(s) in terms of

P d2
� �

’ df

2
s2�2=dfPðsÞ; (10)

where we used that d2 ’ s2=df omitting a proportionality constant.
Given this latter scaling relation between the saturation value of the
time averaged MSD and the size of a cluster, we can use both
quantities interchangeably.

Now assume that there are N long (T - N) trajectories of
tracer particles that performed a random walk on a randomly

generated fractal cluster and have a value d2 governed by the
distribution P. At a given finite lag time D, a tracer particle will

perform anomalous diffusion of the form d2D � 4KaDa as long as
the walker has not yet fully sampled the cluster of size s or,

equivalently, the time averaged MSD d2D has not reached the

saturation value d2. Among N sample trajectories the fraction
showing unrestricted anomalous diffusion will be

Nu ¼
dfN

2

ð1
d2D

d2df�1P d2df=2
� �

dd2: (11)

The remainder N � Nu then corresponds to saturated diffusion.
As demonstrated in Fig. 7 the scatter distribution for the free
diffusion part will be a d peak as T is increased to infinity. Thus
in the long time limit this part corresponds to the contribution
Nu

N
d d2 � d2D
� �

. For the complementary, confined fraction the

scatter distribution will be proportional to 1�Nu

N

	 

P d2
� �

.

Therefore the normalised scatter distribution in the long time
limit can be written as

f d2
� �

¼

Nu

N
d d2 � d2D
� �

þ 1�Nu=N

N

�d2df�1P d2df=2
� �

; d2 � d2D

0; d2 4 d2D

8>>>>>><>>>>>>:
(12)

Fig. 7 Dependence of the scatter distribution f(x) on the observation
time T at the percolation threshold p = pc and for the lag time D = 102.
Each distribution was obtained from 30 000 sample trajectories. The inset
shows the double-logarithmic plot of the part of the scatter distribution at
small x for T = 106. The straight line is a fit with the power-law function x�b,
see text.
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in terms of the variable d2. Here

N ¼
ðd2D
0

d2df�1P d2df=2
� �

dd2 (13)

is a normalisation constant. From eqn (12) the averaged value
of the time averaged MSD is calculated to be

g
d2ðDÞ
D E

¼
ð1
0

f d2
� �

d2dd2

¼ Nu

N
d2D þ

1�Nu=N

N

�
ðd2D
0

d2dfP d2df=2
� �

dd2:

(14)

Although the exact form of P is unknown, the fact that P(s)
is a monotonically decaying distribution leads to the relationg
d2ðDÞ
D E

o d2D found in Fig. 6 and 7. Eqn (12) tells us that the

fluctuations of the time averaged MSD given by f is fully
determined by the cluster size P distribution as well as the
lag time D. In percolation theory the form

P(s) p s�tf [( p � pc)ss] (15)

based on the scaling function f (x) is invoked where t and s are
two scaling exponents.48,91 At the percolation threshold p = pc

the cluster size distribution asymptotically has the power-law
form P(s) C s�t with 2 o t o 3.48 Using this information we
find that

Nu ’
N

t� 2
d2D

df ð2�tÞ=2 ’ Dadf ð2�tÞ=2: (16)

Thus Nu slowly decreases with increasing D as t = 187/91 E 2.05
at p = pc on the square lattice. The sharp peak in f(x) is observed
even for long lag times, as evidenced in the plot for p = pc in
Fig. 6. For the distribution of finite size clusters, with the above
we find the following simplified expression of eqn (10),

P d2
� �

¼ df

2
d2df ð2�tÞ=2�1: (17)

The theoretical value of the scaling exponent of d2 in this relation
can be evaluated from the numerical estimation of df and t in
our simulations. From approximately 25 000 clusters of various
size s extracted from 9480 percolation geometries z, the fractal

dimension df is estimated via the scaling law s ’ Rdf
s of the

gyration radius as df E 1.865 with the confidence interval (1.824,
1.905) and t E 2.03 from eqn (15).** This measurement leads to
the prediction that the exponent is given by �1.028 with the
confidence interval (�1.027, �1.029). In the inset of Fig. 7 the
decaying part of the distribution f(x) at D = 103 is plotted in on a
logarithmic scale (black circles). The slope of the linear fit (blue
line) is �1.063 with the confidence interval (�1.226, �0.899),
agreeing well with the theoretically predicted value.

Above the obstacle percolation threshold, p 4 pc, when only
finite, disjunct cluster remain, the cluster size distribution P(s)
has the asymptotic form

P(s) C s�te�cs (18)

where 1/c is the characteristic cluster size.48 From this result we
obtain that

Nu ¼ Nct�2G 2� t; cd2D
df=2

� �
’ Nct�2G 2� t; cd2D

� �
; (19)

in terms of the incomplete Gamma function G(�,�). The last
transformation follows from the fact that for p 4 pc the fractal
dimension df = 2 equals the embedding Euclidean dimension,
that is d = 2 here, corresponding to the locally fully connected,
finite clusters. Consequently in this situation we face the
scaling d2 ’ s. At large lag times D satisfying the criterion

d2D � 1=c, Nu is approximated as

Nu 	
N

c
d2D

1�t exp �cd2D
� �

; (20)

and thus we obtain Nu { N. Therefore in eqn (12) the second
term involving the cluster size distribution P will dominate the
scatter distribution f. This argument supports the monotonically
decaying profiles of f at D = 103 and 105 in the plot for p = 0.5
displayed in Fig. 7 which is accordingly the very profile of P.

This also underlines the fact that at time scales for which d2D �
1=c almost all tracer particles undergo confined diffusion. In

the opposite case, at short lag times satisfying d2D 
 1=c, we see

that Nu 	
N

t� 2
d2D

2�t, which is the same as Nu at p = pc with the

replacement df - 2. This means that there are particles
performing free diffusion over short lag times D. Thus f should
have a peak around the ergodic value, as shown in the case of
D = 10 for p = 0.5 in Fig. 6.

3.4 Ergodicity breaking parameter

We now study the functional behaviour of the fluctuations of
the time averaged MSD as the observation time T is increased.
For this purpose, we use the ergodicity breaking (EB) para-
meter28,29,31,60

EBðDÞ ¼

g
d2ðDÞ
� �2� �

� g
d2ðDÞ
D E	 
2

g
d2ðDÞ
D E	 
2

¼gx2h i � 1: (21)

Here the ensemble average fh�i again means the ensemble
average over the set of trajectories as well as over the fractal
geometries z at given lag time D and the observation time T,
similar to our definition of the ensemble averaged MSDgr2h i above.

Fig. 8 shows the EB parameter as function of the observation
time T for four distinct cases. In each panel two EB curves are
plotted at lag times D = 10 and 102. At given percolation density
p the EB curves are shown on linear (left column) and double
logarithmic (right column) scales. At p = 0 when the accessible

** The box counting method gives the estimation df � 1.9191 � 0.0095 from
10 000 infinite clusters in our simulation while the accepted values in literatures
are df = 91/48 and t = 187/91 E 2.05495, respectively.
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space is the full two-dimensional square lattice the EB para-
meter displays the theoretically expected scaling behaviour

EBðDÞ � 2

3

D
T

for two-dimensional Brownian motion shown by

the dashed slope in the double logarithmic panel for p = 0, see
Fig. 8(b).29,92 In this case the fluctuation of the time averaged
MSD tend to zero as T - N: for this ergodic process the time
averaged MSD becomes identical to the ensemble averaged
MSD. This conventional convergence continues if the space is
filled with obstacles with a concentration p well below the
percolation threshold pc, as evidenced for the case p = 0.3 in
Fig. 8(d).

However, the convergence of the EB parameter behaves
quite differently when we approach the percolation threshold

at p = pc. In this case EB does not converge to zero when T goes
to infinity but, as demonstrated in Fig. 8(d), EB converges to the
finite residual value

EB1 ¼
ð1
0

x2fðxÞdx� 1 (22)

shown by the dotted horizontal line. This value was numerically
estimated from the scatter distribution in Fig. 6. The geome-
trically induced fluctuations in the time averaged MSD due to
the existence of finite clusters do not vanish even in the limit of
infinite observation time.

The EB curves shown in Fig. 8 converge towards EBN in
good agreement with the algebraic form

EBðDÞ ¼ k
D
T

	 
h

þEB1: (23)

Here h and EBN Z 0 are, respectively, the associated scaling
exponent and the limiting value of EB at T - N, and k is a
proportionality constant. In Fig. 10 we show the functional
relations of the exponent h and of EBN versus the percolation
density p as estimated from the EB curves. In Fig. 8 (left) the
solid lines depict the best fit to eqn (23). We mention the
following noteworthy aspects of the results: (i) for percolation
densities p sufficiently below the percolation threshold pc the
EB parameter follows that of normal Brownian diffusion, that
is, h = 1 and EBN = 0, as mentioned above. (ii) For the opposite
regime of high obstacle densities, p 4 pc, we find h = 1 and a
non-zero value EBN of the residual EB parameter that tends to
increase with the percolation density p. In this regime the
Brownian convergence speed EB B T�1 is derived from the long
time confined Brownian motion of tracer particles. The value
EBN a 0 is attributed to the heterogeneity of the saturation values
of the time averaged MSD and is thus geometry controlled. This
statement is also consistent with the fact that EBN depends on the
lag time D in Fig. 8(g) and (h), due to the different resolution set

by the value d2D. (iii) Close to the percolation threshold pc the
behaviour of the EB parameter is distinguished from these two
regimes. As p is increased towards the critical point pc, h consis-
tently decreases from unity. Thus when the space becomes fractal
on all length scales we find that h E 0.80 and EBN a 0.

We emphasise that the estimated value h o 1 at pc is a
genuine convergence property due to the fractal structure of
the explored space. To rule out the possibility that the value
h E 0.8 o 1 is due to the small finite clusters responsible for
EBN a 0, we plot in Fig. 9 the EB curves after excluding the
contribution of the smallest clusters of size s = 1. The unit sized
clusters are the most dominant contribution among the finite
clusters, see the form of P(s), and results in the vanishing time

averaged MSD, d2 ¼ 0. Fig. 9 shows that after removing these
unit size clusters the EB parameter always converges to EBN = 0
for all p values. However, the convergence exponent h remains
at h E 0.8, compare also Fig. 10. We note that the convergence
law of the EB parameter is not the same as that of fractional
Brownian motion, although both models share the same
anomalous diffusion scaling (1) and are ergodic (for the present

Fig. 8 Ergodicity breaking parameter EB on linear scales (left column) and
on double logarithmic scales (right column) as function of the observation
time T. The red curves correspond to D = 102 and the blue curves
represent D = 103. The black solid lines depict the best fits with eqn (23).
The grey lines in the double logarithmic plot for p = 0 (b), correspond
to the EB parameter for normal Brownian motion with D = 102 and 103.
The dashed lines in the double logarithmic plots show the asymptotic
behaviour of EB. The results are from Nz = 3000 percolation geometries
and N = 3 trajectories.
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case in the sense of the disorder average). For fractional
Brownian motion EB was found to have the convergence form

EB � D
T

for 0o ao
3

2
, EB � D

T
logT for a ¼ 3

2
, and EB �

D
T

	 
4�2a
for

3

2
o ao 2.92–94 Thus, compared to fractional Brow-

nian motion the fractal geometry-induced subdiffusion has a
slower convergence to ergodicity. The observed characters of
the EB parameter also differ from those of other diffusion
models such as scaled Brownian motion, heterogeneous diffu-
sion processes, and continuous time random walk.60,68,95

Therefore, the EB convergence law provides useful information
for unveiling the physical origins of anomalous diffusion
processes found in complex random media.

4 Conclusion

Based on extensive Monte Carlo simulations we studied the
ergodic properties of single particles diffusing in random two-
dimensional fractal geometries modelled by a percolation
geometry at varying percolation density of obstacles. While
the asymptotic equality between the ensemble averaged MSDgr2ðDÞh i and the time averaged MSD

g
d2ðDÞ
D E

averaged over all

individual trajectories and many percolation geometries is
observed at any percolation density, individual time averaged
MSDs do not always behave like this average and are thus non-
ergodic. As we showed here this non-ergodic behaviour is
geometry controlled and thus corresponds to strong ergodicity
breaking due to a topologically disconnected phase space.
Thus, at low obstacle densities p { pc the single particle
diffusion exhibits typical ergodic behaviour as seen in the
scaling law of the time averaged MSDs, their scatter distribu-
tion, and the ergodicity breaking parameter. In this case, the
ensemble averaged MSD shows no disparity with individual
time averaged MSDs as long as the observation time is suffi-
ciently long. Close to the percolation threshold p E pc, how-
ever, such a typical ergodic character is no longer observed.
There exists a fraction of time averaged MSDs which signifi-

cantly deviate from the averaged curve
g
d2ðDÞ
D E

. Using the time

averaged occupation probability PzðrÞ we demonstrated that
these outliers correspond to trajectories when the particles
motion is restricted on finite clusters of gyration radius Rs

significantly smaller than the system size. Other particles
moving on the infinite cluster at criticality, however, do show

the convergence to the ensemble averaged MSD gr2ðDÞh i on the
single trajectory level. We thus observe ergodic motion for a
fraction of particles conditioned to move on the infinite

Fig. 9 Ergodicity breaking parameter as a function of the observation
time T when clusters with s = 1 are removed. The double logarithmic plot
shows a linear behaviour of EB versus the observation time T, independent
of the percolation density p. The red curve corresponds to D = 102 and the
blue curve represents D = 103. The black solid lines for the linear scales
plots are the best fits to eqn (23), the dashed black lines in the double
logarithmic plots show the slope of the EB curves. Same numbers for Nz

and N as in Fig. 8.

Fig. 10 (a) Variation of the scaling exponent h and (b) the residual ergodicity
breaking parameter EBN as function of the percolation density p. Values from
fit of the scaling function (23) to the EB curves in Fig. 8 and 9. The results are
reported for D = 10. Red diamonds: fit from Fig. 8 including the smallest
clusters of size s = 1. Blue circles: fit from Fig. 9 neglecting the smallest clusters.
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incipient cluster, as reported earlier.77 Due to the mix of confined
and freely diffusing trajectories, the scatter distribution of the
amplitudes of individual time averaged MSDs shown in Fig. 6 and
7 acquires an asymmetric bell shaped form around the main peak at

d2ðDÞ
� g

d2ðDÞ
D E

¼ 1 and a second peak at d2ðDÞ
� g

d2ðDÞ
D E

� 0.

As shown in Fig. 7, upon increase of the observation time T the latter
part is preserved while the main peak around the ergodic value

d2ðDÞ
� g

d2ðDÞ
D E

¼ 1 becomes a sharp, almost d function like peak.

Relating the cluster size distribution to the distribution of the time
averaged MSDs by eqn (12) we qualitatively explained the observed
behaviour of the scatter distribution f. An interesting behaviour is
also observed for the ergodicity breaking parameter defined in
eqn (21). From numerical analysis we found that EB generally
follows an algebraic decay [EB(D) � EBN] B T�h( p) towards the
finite residual EB parameter EBN reached at T - N, and h is a
scaling exponent. The exact value of EBN depends on the percola-
tion density p. As p is increased to pc the decay of the EB parameter
thus deviates from that for typical ergodic diffusion, for which h = 1
and EBN = 0. Importantly, on approximating the percolation thresh-
old, p E pc, the EB parameter has a slower convergence with scaling
exponent h E 0.8 o 1 as well as a nonzero value EBN 4 0 due to
the contribution of confined particles.

Above pc the particle diffusion always takes place on con-

fined clusters. Large fluctuations from the average
g
d2ðDÞ
D E

are

present in individual time averaged MSDs. The profile of the scatter
distribution f(x) is quite different from those for critical and lower
than critical percolation densities, see Fig. 6. At sufficiently long lag
times D the distribution decays almost monotonically with the
variable x, due to the exclusive presence of finite clusters with an
exponentially decaying distribution of cluster sizes. This is a purely
geometrical effect, as revealed in the distribution of the time
averaged MSD which turns out to be independent of the observation
time T. In both Fig. 8 and 9 the EB parameter was shown to decay as
T�1, corresponding to the convergence to zero of a Brownian
particle. This is due to the fact that in this overcrowded obstacle
regime the particle explores small clusters with local Euclidean
geometries. We note that while the specific values for the scaling
exponents and percolation thresholds vary for different lattice types
and dimensionality of the embedding dimension the generic
features revealed here remain unchanged. This claim is supported
by preliminary studies on cubic and hexagonal lattices (not shown).

Anomalous diffusion in a fractal geometry is a non-Gaussian
process42,43,48 and therefore different from the Gaussian frac-
tional Brownian motion on a fundamental level. However,
except for the Gaussianity the difference between these two
processes has not been studied in detail. In particular, it has
been said that both models share the same ergodic behaviour.
However, as revealed in our study the ergodic properties of
diffusion on fractals displays distinctly different behaviour due
to the quenched nature of the underlying geometry. Only in
certain cases (low obstacle concentration or conditional seed-
ing of the particle exclusively on the infinite cluster close to
criticality) we observe ergodic behaviour. While the statistical

fluctuations in the time averaged MSD are homogeneous for
fractional Brownian motion, the fractal geometry-induced
anomalous diffusion is heterogeneous, and the strength and
character of the heterogeneity depend on the obstacle density.
Therefore the detailed analysis of the ergodic properties is
indeed a useful measure to differentiate the type of ant-in-
the-labyrinth motion from other models, along with recently
developed theoretical tools estimating the fractal dimension
df.

56,77 An advantage of the method developed herein studying
ergodic properties is more feasible than estimating the fractal
dimension df.

As experimental single particle tracking studies become
increasingly popular our results are expected to be helpful in
analysing and interpreting experimental results for various
problems of anomalous diffusion in complex environments.
In the case of lateral diffusion in phospholipid membranes
some recent simulation studies reported that lipid diffusion
is a two dimensional fractional Brownian motion9,37 while
conventionally it was understood as diffusion on fractal
lattices.43,50,96 In addition for more complex membranes the
lateral diffusion exhibits non-ergodic continuous time random
walk type motion97 or was identified as the combination of
motion on a fractal and continuous time random walks.8 Also
fairly complex non-Gaussian ergodic motion types were
reported.98 Such a stochastic variety in the lateral diffusion
dynamics seems to be natural given the fact that biological
membranes have a composition dependent, wide range of
structural complexities. From the trajectory analyses presented
in this work one can have additional insight about the lateral
dynamics and static structural complexity of a membrane
system under investigation. For instance, if the plot of EB
versus T gives the scaling exponent h o 1 it gives a signature
that the lateral anomalous diffusion is not of fractional Brow-
nian motion type. Then the ageing test for the time averaged
MSDs along with the moment ratio evaluation further differ-
entiates the fractal induced subdiffusion from non-ergodic
continuous time random walk process. The distribution of
saturated TA MSDs and a non-vanishing EBN may be used to
obtain information on the size distribution of confining
domains in a membrane, if any. Our analysis can also be
applied to nano-particle transport in porous media.52,99 From
the profile of the distribution of the time averaged MSD one
may obtain information on the pore size distribution as well as
the porosity of a medium. Additionally the ageing test for the
time averaged MSD shown in Fig. 4 appears to be informative to
examining the nano-particle-pore interactions: if the motion
exhibits features of ageing it is likely that there are nonspecific
interactions between the particles and a porous medium which
give rise to the temporal heterogeneity in the time averaged MSD.
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Abstract. The Ornstein-Uhlenbeck process is a stationary and ergodic Gaussian
process, that is fully determined by its covariance function and mean. We show
here that the generic definitions of the ensemble- and time-averaged mean squared
displacements fail to capture these properties consistently, leading to a spurious
ergodicity breaking. We propose to remedy this failure by redefining the mean
squared displacements such that they reflect unambiguously the statistical properties
of any stochastic process. In particular we study the effect of the initial condition
in the Ornstein-Uhlenbeck process and its fractional extension. For the fractional
Ornstein-Uhlenbeck process representing typical experimental situations in crowded
environments such as living biological cells, we show that the stationarity of the process
delicately depends on the initial condition.

1. Introduction

The Ornstein-Uhlenbeck process is one of the most fundamental physical processes,
originally devised to describe the velocity distribution and relaxation of a Brownian
particle under the influence of a velocity-dependent friction. The Ornstein-Uhlenbeck
process belongs to the class of Gaussian and Markovian processes, and it is described
in terms of the stochastic Langevin equation [1, 2, 3]‡

dx+ λxdt = σdBt. (1)

Here dBt is the increment of the well-known Brownian motion (Wiener process) Bt,
and λ and σ are positive constants. 1/λ defines a natural dynamic time scale, and
σ is the intensity of the fluctuations. Under certain conditions discussed below the
Ornstein-Uhlenbeck process is the only non-trivial process in the class of Gauss-Markov
processes that has a stationary solution [5]. Physically, overdamped Brownian particles
in an optical tweezers trap [6] or tethered to an anchor by a flexible polymer [7]

‡ In the original notation, the Langevin equation is formulated for the velocity co-ordinate. Having
contemporary optical tweezers experiments in mind we use the overdamped formulation in terms of
the position co-ordinate. We also note that in mathematical finance the Langevin equation (1) with an
additional drift µ, dx+ λ(x− µ)dt = σdBt is used [4].
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are adequately described in terms of an Ornstein-Uhlenbeck process. The Ornstein-
Uhlenbeck process is also used as a phenomenological model for the confinement
observed in the tracer diffusion in critical random environments [8]. A wide field of
applications of the Ornstein-Uhlenbeck process lies in finance. The Ornstein-Uhlenbeck
process was adopted in 1970s by Vašíček to model the evolution of the interest rate of
financial markets [4]. Extending this Vašíček model, Hull and White took into account
explicitly time dependent µ and λ [9]. There are other variants of the Vašíček model, for
instance, the jump-extended Vašíček model in which an exponential jump noise following
a Poisson distribution is added to equation (1) [10]. There also exist extensions of the
Ornstein-Uhlenbeck process to non-Gaussian processes with applications in finance [11],
including such option pricing [12], commodity derivative pricing [13] and electricity
pricing [14]. They have also been utilised to model neural activity [15] or to study
the statistics of neuron spikes [16]. The Ornstein-Uhlenbeck process corresponds to the
continuous-time analogue of a discrete-time autoregressive AR(1)-process [17, 18, 19].

In a direct extension of the Ornstein-Uhlenbeck process (1) one replaces the white
Gaussian noise dBt by power-law correlated fractional Gaussian noise [20]. In absence
of the damping term this so-called fractional Brownian motion captures the motion
of diffusive particles in viscoelastic environments, such as artificially crowded media
[21, 22, 23], lipid bilayer membranes [24, 25, 26], or the cytoplasm of living biological
cells [27, 28, 29]. The correlations in the noise effect anomalous diffusion of the form
〈x2(t)〉 ≃ tα [30, 31]. Combined with a Hookean restoring force exerted by optical
tweezers a tracer particle in a biological cell [28, 32] then follows the fractional Ornstein-
Uhlenbeck process [33]. Formally, the fractional Ornstein-Uhlenbeck process is still
Gaussian and stationary, yet it is strongly non-Markovian. As we will see this causes
fundamental differences.

With modern microscopic technology it is possible to track single sub-micron tracer
particles and even single molecules through complex media such as live biological cells
[6, 34]. The time-series extracted from such single-particle trajectories are typically
evaluated in terms of time-averaged physical observables [35, 36]. To address the motion
of a Brownian or fractional Brownian particle under the action of an external potential
by analysing a single trajectory of its movement, it is essential to understand whether the
physical process governing the motion of the particle is ergodic, or not [31, 37, 38]. To
infer the ergodic property of a given Gaussian process it is sufficient that the associated
two-time covariance function solely depends on the difference of the two times [39]. This
property rests on the fact that for Gaussian processes all properties can be deduced from
the mean and covariance function [40, 41]. An indirect approach to deduce the ergodic
property of the process is to compare the behaviour of the mean squared displacement
(MSD) and the time averaged MSD [31, 42, 43, 44].

We here scrutinise the exact ergodic and stationary behaviour of the regular and
fractional Ornstein-Uhlenbeck processes and show that they fundamentally differ in
some of their behaviour, despite of the fact that both are ergodic. In particular, we
elucidate the precise role of the initial condition and invalidate the general belief that the
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assertion of an equilibrium initial condition necessarily recovers the stationary property
of the process. We first analyse the detailed statistical properties from the covariance of
the Ornstein-Uhlenbeck process in section 2, including the ensemble- and time-averaged
MSDs and the effect of the initial condition. Section 3 provides an analogous analysis
for the fractional Ornstein-Uhlenbeck process. In section 4 we discuss our results and
conclude. Some mathematical details are deferred to the appendix.

2. Ornstein-Uhlenbeck Process

We define the Ornstein-Uhlenbeck process in terms of the stochastic differential equation
(1), in which dBt is the increment of Brownian motion Bt with the covariance function
[45]

Cov(Bt, Bs) =
〈(

Bt − 〈Bt〉
)(

Bs − 〈Bs〉
)〉

= min(t, s). (2)

In this formulation, Gaussian white noise corresponds to the time derivative of the
increment, dBt/dt. After solving the stochastic differential equation (1), x(t) is formally
obtained as

x(t) = e−λt

(
x0 + σ

∫ t

0

eλsdBs

)
, (3)

where x0 = x(t = 0) defines the initial condition. Since Bt is a continuous process, via
integration by parts the above equation is recast into

x(t) = e−λt

(
x0 − σλ

∫ t

0

Bse
λsds

)
+ σBt, (4)

with B0 = 0. The MSD for a random process x(t) is defined as

〈Ω2(t)〉 = 〈[δx(t)− δx0]
2〉, (5)

where δx(t) = x(t) − 〈x(t)〉. The MSD can also be written in terms of the covariance
function,

〈Ω2(t)〉 = Cov(x(t), x(t)) + Cov(x0, x0)− 2Cov(x(t), x0). (6)

For the Ornstein-Uhlenbeck process the MSD then assumes the following expression,

〈Ω2(t)〉 = Var(x0)
(
1− e−λt

)2
+

σ2

2λ

(
1− e−2λt

)
, (7)

where Var(X) stands on the variance of a random variable X. Note that in the limit
λ → 0 of free Brownian motion this notation leads to the MSD limλ→0〈Ω2(t)〉 = σ2t.
The time-averaged MSD (TAMSD) is defined as [31, 35, 42]§

〈
δ2(∆)

〉
=

1

T −∆

∫ T

0

〈(
δx(t +∆)− δx(t)

)2〉
dt, (8)

§ Note that for simplicity we use the term TAMSD for expression (8). More precisely, the definition
without the angular brackets is called TAMSD, and the angular brackets denote an additional average
over an ensemble of individual trajectories [31, 35, 42].
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where T is the total measurement time and ∆ is called the lag time. For the Ornstein-
Uhlenbeck process, the TAMSD yields in the form
〈
δ2(∆)

〉
=

σ2

λ

(
1− e−λ∆

)
+

(
Var(x0)−

σ2

2λ

)(
1− e−λ∆

)2 1− e−2λ(T−∆)

2λ(T −∆)
. (9)

2.1. Properties of the Ornstein-Uhlenbeck process

Since the Ornstein-Uhlenbeck process is a Gaussian process, it suffices to know the
covariance function and mean to infer its properties. The mean of x(t) according to
equation (4) is 〈x(t)〉 = e−λt〈x0〉. The covariance function of the process is

Cov
(
x(t1), x(t2)

)
=

(
Var(x0)−

σ2

2λ

)
e−λ(t1+t2) +

σ2

2λ
e−λ|t2−t1|. (10)

Recall that a Gaussian process is stationary and ergodic if the covariance function at two
times exclusively depends on the time difference, that is, Cov(x(t1), x(t2)) = G(|t2− t1|)
in terms of the continuous function G. The covariance (10) satisfies the requirements
of stationarity if (i) t1 or t2 are significantly larger than 1/λ, or (ii) if Var(x0) = σ2

2λ
.

The first condition is asymptotic with respect to 1/λ: the process loses the memory of
its initial condition after the correlation time 1/λ. The second condition is valid for all
times, it corresponds to starting the process with the equilibrium distribution.

The equilibrium stationary distribution can be deduced from Fokker-Planck
equation of the Ornstein-Uhlenbeck process [46]

∂P (x, t)

∂t
= λ

∂

∂x

(
xP (x, t)

)
+

σ2

2

∂2

∂2x
P (x, t), (11)

where P (x, t) is the probability density function of the process. The solution for P (x, t)

is [3, 46]

P (x, t) =

√
λ

πσ2 (1− e−2λt)
exp

(
− λ

σ2

(x− x0e
−λt)2

1− e−2λt

)
. (12)

In the stationary limit t ≫ 1/λ the stationary probability density function is given by
P (x) = [λ/(πσ2)]−1/2 exp(−λx2/σ2), for which the variance becomes

Var(x) =

∫ ∞

−∞
P (x)x2dx−

(∫ ∞

−∞
P (x)xdx

)2

=

∫ ∞

−∞

√
λ

πσ2
e−

λx2

σ2 x2dx =
σ2

2λ
. (13)

Assume that the distribution of x0 satisfies the stationary distribution, Var(x0) =

σ2/(2λ), from equations (7) and (9) one arrives at

〈Ω2(t)〉 = σ2

λ

(
1− e−λt

)
(14)

〈
δ2(∆)

〉
=

σ2

λ

(
1− e−λ∆

)
. (15)

The fact that MSD and TAMSD are equivalent for an equilibrium stationary initial
distribution is the direct consequence of the stationary property of the process, that
can be directly inferred from the covariance (10). Thus, MSD and TAMSD indeed
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coincide. Yet there exists an intrinsic problem regarding the way MSD and TAMSD are
defined, and the equivalency between the two is only valid under the strict conditions
that the equilibrium initial condition is met and that the process is both Gaussian and
Markovian, see the next section for the non-Markovian fractional Ornstein-Uhlenbeck
process.

Compare the pairs of equations (7) and (9) as well as (14) and (15). In the first
pair, (7) and (9), we note the existence of two time scales in the TAMSD, ∆ and T ,
the latter of which does not exist in the definition of the MSD. This effects a disparity
in inferring the stationary state in a consistent way from MSD and TAMSD. From the
MSD, the stationary state is reached when the expression ceases to depend on t, that
is when t ≫ 1/λ. In contrast, for the TAMSD the stationarity condition depends on
the interplay between lag time ∆ and measurement time T . The observation time T

identifies the total time the process has been monitored to evolve, and one identifies
the stationary state of the process when T ≫ 1/λ. Yet ∆ signifies the magnitude
of the time window in the sliding average, comparing two instances of the process.
Necessarily, ∆ < T , however, also the lag time ∆ needs to be compared with the
natural dynamical time scale imposed by 1/λ. There exist two distinct regimes: (i) if ∆
is much smaller than 1/λ the fluctuations present in the system during this time interval
have not relaxed. Therefore any statistical inference cannot be justified although the
overall process has reached stationarity for T ≫ 1/λ. (ii) Stationarity is reached when
T ≫ 1/λ and ∆ ≫ 1/λ, as long as ∆ ≪ T is simultaneously fulfilled. Obviously, for
the trivial case T < 1/λ the process cannot be stationary. When the initial condition
is chosen to be the equilibrium distribution, Var(x0) = σ2/2λ, we see from equations
(14) and (15) that the situation is different: here stationarity is reached once t ≫ 1/λ

for the MSD and ∆ ≫ 1/λ for the TAMSD. Note that the signature of T disappears
(an indication of stationarity). The caveat here is that, for the MSD, asserting the
equilibrium initial condition, which implies the stationary property of the process, does
not imply the independence of the MSD of t, in contrast to the case of the TAMSD, in
which the dependency on T disappears.

This discrepancy also manifests itself in the asymptotes of MSD and TAMSD when
the equilibrium initial condition is not asserted. The asymptotes of MSD and TAMSD
in the stationary state read

lim
t≫1/∆

〈Ω2(t)〉 = Var(x0) +
σ2

2λ
, (16)

lim
T≫∆≫1/λ

〈
δ2(∆)

〉
=

σ2

λ
. (17)

Indeed, for the MSD the stationary value asymptote depends on the variance Var(x0)

of the chosen initial distribution. This contradicts the common intuition that, once the
process reaches its stationary state, any trace of the initial condition must have vanished.
In contrast, Var(x0) is absent from the limiting value of the TAMSD. Knowing that
the Ornstein-Uhlenbeck process is stationary and ergodic, these observables, suggesting
non-ergodic behaviour, are thus unsuitable. In particular, the above difference could
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potentially lead to wrong conclusions for the ratio of noise strength σ2 and trap strength
λ depending on which measure is chosen for the evaluation of an experiment.

This discussion elucidates the fundamental difference between the generic
definitions of the MSD and the TAMSD, essentially quantifying different properties of a
random process. Thus, while the MSD quantifies the dispersal of an ensemble of walkers
at a given time instant t with respect to the initial condition, the TAMSD quantifies
how increments of the process evolve as function of the lag time. We now embark
for modified definitions of these most widely used physical observables for stochastic
processes for the case of the Ornstein-Uhlenbeck process.

2.2. Generalised definitions of the ensemble-averaged MSD

We propose to recalibrate the definition of the MSD in the generalised form

〈Ω2
∆(t)〉 =

〈(
δx(t +∆)− δx(t)

)2〉
, (18)

where the subscript ∆ indicates the generalisation. This modified MSD describes the
dispersal of the process from time t to t+∆; in other words, the dispersal of increments
in which the mean effect of the initial condition and the drift are removed. We can
rewrite expression (18) in terms of the covariance function in the form

〈Ω2
∆(t)〉 = Cov

(
x(t +∆), x(t+∆)

)
+ Cov

(
x(t), x(t)

)
− 2Cov

(
x(t +∆), x(t)

)

=
σ2

λ

(
1− e−λ∆

)
+

(
Var(x0)−

σ2

2λ

)(
1− e−λ∆

)2
e−2λt. (19)

In the limit λ → 0 of free Brownian motion, this definition produces limλ→0〈Ω2
∆(t)〉 =

σ2∆, which is the same expression as obtained for the classical definition, albeit with
t replaced by ∆. In this generalised formulation the integrand of the TAMSD (8) is
exactly the generalised expression of the MSD given by equation (18), that is,

〈
δ2(∆)

〉
=

1

T −∆

∫ T−∆

0

〈
Ω2

∆(t)
〉
dt (20)

which readily yields equation (9). We observe that for equilibrium initial conditions,
Var(x0) = σ2/2λ, the generalised expressions for MSD and TAMSD yield exactly the
same result (σ2/λ)[1− exp(−λ∆)].

3. Fractional Ornstein-Uhlenbeck Processes

The fractional Ornstein-Uhlenbeck process is the extension of the normal Ornstein-
Uhlenbeck process (1), in which the increments of Brownian motion are substituted by
the increments of fractional Brownian motion, BH

t . Here H is the Hurst exponent, which
is allowed to vary in the interval H ∈ (0, 1] [20]. The fractional Ornstein-Uhlenbeck
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process is therefore given by the stochastic differential equation [33]‖

dx+ λxdt = σdB̃H
t . (21)

Here dB̃H
t is the increment of fractional Brownian motion B̃H

t .¶ The tilde is introduced
here to denote the extension of fractional Brownian motion to the negative time domain,
such that

B̃H
t =

{
BH

t , if t ≥ 0

BH
−t, otherwise

. (22)

Fractional Brownian motion with Hurst parameter H ∈ (0, 1], is a continuous centred
Gaussian process defined by the covariance function [20]

Cov
(
B̃H

t1 , B̃
H
t2

)
=

1

2

(
|t1|2H + |t2|2H − |t1 − t2|2H

)
. (23)

For H = 1/2, B̃1/2
t reduces to conventional Brownian motion. From the definition above

the following properties are deduced in one dimension, (i) BH
0 = 0 and

〈
B̃H

t

〉
= 0 for all

t ∈ R. (ii) B̃H
t has stationary increments and

〈(
B̃H

t

)2〉
= |t|2H . (iii) The trajectories

of B̃H
t are continuous.
For t ∈ [0,∞), the formal solution of the equation (21) is

x(t) = e−λt

(
x0 + σ

∫ t

0

eλt
′
dBH

t′

)
. (24)

Since fractional Brownian motion is a continuous process this integral exists [53].
Integrating by parts the equation above can be rewritten in terms of BH

t in the form

x(t) = e−λt

(
x0 − σλ

∫ t

0

BH
t′ e

λt′dt′
)
+ σBH

t . (25)

Then the covariance function becomes

Cov
(
x(t1), x(s2)

)
= e−λ(t1+t2)Var(x0) + σe−λt1

〈
x0B

H
t2

〉
+ σe−λt2

〈
x0B

H
t1

〉

−σλe−λ(t1+t2)

(∫ t1

0

eλt
′
1

〈
x0B

H
t′1

〉
dt′1 +

∫ t2

0

eλt
′
2

〈
x0B

H
t′2

〉
dt′2

)

−σ2λe−λt1

∫ t1

0

eλt
′
1

〈
BH

t′1
BH

t2

〉
dt′1 − σ2λe−λt2

∫ t2

0

eλt
′
2

〈
BH

t′2
BH

t1

〉
dt′2

+σ2λ2e−λ(t1+t2)

∫ t1

0

∫ t2

0

eλ(t
′
2+t′1)

〈
BH

t′1
BH

t′2

〉
dt′2dt

′
1 + σ2

〈
BH

t1
BH

t2

〉
. (26)

‖ This is sometimes called fractional Ornstein-Uhlenbeck process of "the first kind". The fractional
Ornstein-Uhlenbeck process of "the second kind" is a Gaussian process that is the integral of Doob’s
transformation of fractional Brownian motion [47].
¶ Note that this process should not be confused with the "fractional Ornstein-Uhlenbeck" process based
on continuous time random walks with scale-free, power-law distributed waiting times or jump lengths.
In these cases, in the Fokker-Planck equation (11) the time derivative or the second-order spatial
derivative, respectively, are replaced by a fractional differential operator [30, 31, 48, 49, 50, 51, 52].
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We note that while free fractional Brownian motion, corresponding to the limit λ → 0,
is ergodic [43, 54, 55], transient non-ergodicity occurs when the process is confined.
Namely, for an harmonic external confinement (the Ornstein-Uhlenbeck process, that
is) it was shown analytically and experimentally that the relaxation of the MSD is
exponential while a slower power-law relaxation is observed for the TAMSD [23, 56]

When x0 is fixed or the distribution of x0 is independent of the fractional Brownian
motion all terms involving

〈
x0B

H
t

〉
vanish. Therefore the covariance function simplifies

to

Cov
(
x(t1), x(t2)

)
= e−λ(t1+t2)Var(x0)

−σ2λe−λt1

∫ t1

0

eλt
′
1

〈
BH

t′1
BH

t2

〉
dt′1 − σ2λe−λt2

∫ t2

0

eλt
′
2

〈
BH

t′2
BH

t1

〉
dt′2

+σ2λ2e−λ(t1+t2)

∫ t1

0

∫ t2

0

eλ(t
′
2+t′1)

〈
BH

t′1
BH

t′2

〉
dt′2dt

′
1 + σ2

〈
BH

t1B
H
t2

〉
. (27)

After calculating the integrals (see Appendix A for details) the covariance of the
fractional Ornstein-Uhlenbeck process reads

Cov
(
x(t1), x(t2)

)
=

[
Var(x0) +

σ2

2
eλt1t2H1

(
1 +

λt1e
λt1

2(2H + 1)
M(2H + 1, 2H + 2,−λt1)

− λt1e
−λt1

2(2H + 1)
M(2H + 1, 2H + 2, λt1)

)

+
σ2

2
eλt2t2H2

(
1 +

λt2e
λt2

2(2H + 1)
M(2H + 1, 2H + 2,−λt2)

− λt2e
−λt2

2(2H + 1)
M(2H + 1, 2H + 2, λt2)

)]
e−λ(t1+t2)

−σ2

2
|t2 − t1|2H

(
1− λ|t2 − t1|e−λ|t2−t1|

2(2H + 1)
M (2H + 1, 2H + 2, λ|t2 − t1|)

+
λ|t2 − t1|eλ|t2−t1|

2(2H + 1)
M (2H + 1, 2H + 2,−λ|t2 − t1|)

)
, (28)

where M(a, b, z) is Kummer’s function of the first kind (the confluent hypergeometric
function of the first kind [57]). The integral representation of this function is given by

M(a, b, z) =
Γ(b)

Γ(b− a)Γ(a)

∫ 1

0

eztta−1(1− t)b−a−1dt. (29)

For H = 1/2 the covariance function (28) consistently reduces to expression (10) of the
regular Ornstein-Uhlenbeck process (note that M(2, 3, x) = 2(1− ex + xex)/x2).

On closer inspection of the covariance function, unlike for the case of the regular
Ornstein-Uhlenbeck process above, in which the equilibrium distribution of the initial
condition yields a stationary covariance function (see equation (10)), we notice that there
is no possible form for Var(x0) such that the covariance function (28) would exclusively
depend only on the time difference between the two time points of the process. In other
words, there is no initial condition, such that Cov(x(t1), x(t2)) = G(|t2 − t1|) for any
given t1 and t2. Asserting equilibrium initial condition does not fulfil the requirement
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of an ergodic and stationary process for any t ≥ 0. Indeed, let us assume that the x0

have an equilibrium distribution corresponding to the normal distribution N (0, ξ2) with
variance [33, 47, 53],

ξ2 =
σ2Γ(2H + 1) sin(πH)

πλ2H

∫ ∞

0

|x|1−2H

1 + x2
=

σ2

2λ2H
Γ(2H + 1). (30)

Here the integral is calculated in Appendix D. This result can also be obtained by
recalling that

x0 = σe−λt

∫ 0

−∞
eλt

′
dB̃H

t′ . (31)

Integration by part leads to the expression
〈
x2
0

〉
=

σ2λ2

2

∫ 0

−∞

∫ 0

−∞

〈
B̃H

t1 B̃
H
t2

〉
dt1dt2, (32)

which yields the results (30). Observe that by substituting the variance of x0 in equation
(28) the covariance function would still depend on the absolute times t1 and t2. To
provide a hint why this is the case, recall our earlier assumption on x0. Our assumption
that x0 and BH

t are not correlated yielded a covariance function which is not stationary
for finite t1 and t2. It asymptotically approaches the stationary covariance function when
t1 and t2 tend to infinity. Furthermore, observe that x0 and B̃H

t are correlated in the
case of fractional Ornstein-Uhlenbeck process, since the driving noise has a long-range
memory.

This is also reflected in the generalised MSD and TAMSD. Since the closed
analytical expressions for the generalised MSD and TAMSD are too cumbersome to
be presented here, we refer to Appendix B and observe that indeed the generalised
expressions for MSD and TAMSD differ from one another. As we show now, in the
stationary state ergodicity is indeed fulfilled.

To proceed, we note that the fractional Ornstein-Uhlenbeck process has the
stationary solution [47]

xs(t) = e−λtσ

∫ t

−∞
eλt

′
dB̃H

t′ , (33)

indicated by the subscript s. Note that to achieve this stationary solution the domain
of t has been changed to t ∈ (−∞,∞). For this case

lim
t→∞

[xs(t)− x(t)] = lim
t→∞

[
e−λt (xs(0)− x(0))

]
= 0, (34)

from which it is inferred that every stationary solution xs(t) of the Langevin equation
(21) has the same distribution as x(t) in the long-time limit. Consequently, we deduce
that the covariance function for the stationary solution is given by (see Appendix C for
details)

Cov
(
xs(t1), xs(t2)

)
= −σ2

2
|t2 − t1|2H

+
σ2

4λ2H
e−λ|t2−t1|

(
Γ(2H + 1) +

(λ|t2 − t1|)2H+1

2H + 1
M(2H + 1, 2H + 2, λ|t2 − t1|)

)
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+
σ2

4λ2H
eλ|t2−t1|

(
Γ(2H + 1)− (λ|t2 − t1|)2H+1

2H + 1
M(2H + 1, 2H + 2,−λ|t2 − t1|)

)
. (35)

Obviously, the covariance function for the stationary solution depends only on the time
difference between the two time points. With the use of equations (19) and (35) the
generalised MSD and TAMSD are given by

〈Ω2
∆(t)〉 =

〈
δ2(∆)

〉
=

σ2

λ2H
Γ(2H + 1)

(
1− cosh(λ∆)

)
+ σ2∆2H

−σ2λ∆2H+1

2(2H + 1)

(
e−λ∆M(2H + 1, 2H + 2, λ∆)− eλ∆M(2H + 1, 2H + 2,−λ∆)

)
. (36)

From this equivalency we conclude that the fractional Ornstein-Uhlenbeck process is
ergodic in the sense of the generalised MSD.

Figure 1 details the functional behaviour of the different MSDs. In the left panels
for the non-stationary case, as expected the disparity between the generic MSD (5)
and the TAMSD (8) is distinct. In contrast, using the generalised MSD (18) for the
stationary solution the expected ergodic behaviour is restored.

For completeness, figure 2 shows how the two different versions of the MSD and
the TAMSD approach the plateau value for different values of H . As can be seen for
normal diffusion with H = 1/2 the relaxation is always exponential. In contrast, we
recover a power-law relaxation for the TAMSD and for the generalised definition of the
MSD. While this power-law form for the TAMSD was discussed earlier [56] and verified
experimentally [23], the full agreement between the TAMSD and the generalised MSD
is a distinct behaviour following from our definition (18) here.

4. Conclusions

It is commonly assumed that asserting equilibrium initial condition is sufficient and
necessary for a confined stochastic process to remain stationary at all times t ≥ 0. We
here demonstrated that for the case of the fractional Ornstein-Uhlenbeck process this is
in fact not true. Generally, for any process which is not a Markov process one should bear
in mind that due to long range correlations the assumption that the process is stationary
requires one to take into account the entire history of the system. Therefore, asserting
any assumption on the initial condition of the process would perturb the stationary state
of the process, even in the case when this initial condition is the equilibrium distribution.

Moreover, we revealed another subtle point on how to define the stationary state
of the process based on generalised definitions of the MSD and the TAMSD. While it
is often believed that the sufficient condition to infer that the process has reached its
stationary state when in the TAMSD the observation time tends to infinity. In this
statement, though, it is neglected that ∆ needs to be considered, as well. Indeed, while
the lag time should remain significantly below the observation time, ∆ ≪ T , the lag time
needs to be much larger than the natural dynamic time scale of the process, ∆ ≫ 1/λ.

The Ornstein-Uhlenbeck process and its fractional extension are essential in
modelling physical systems in the presence of an external potential. They are Gaussian
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Figure 1. Left panels: Generic MSD and TAMSD (5) and (8) for the non-stationary
solution of the fractional Ornstein-Uhlenbeck process (24) as function of time. In all
three cases, T = 100. Right panels: Generalised MSD and TAMSD (18) and (8) for
the stationary solution of the same process. From top to bottom the rows correspond
to subdiffusion with H = 1/4, Brownian motion with H = 1/2, and superdiffusion
with H = 3/4. The parameters are σ = λ = 2 = Var(x0) = 2. Note the discrepancy
between the generic definitions of MSD and TAMSD, despite the fact that the process
has reached the stationary state.

processes with the difference that in the former case, the correlations are short-lived
(Markov process) while in the latter case the correlations are long-ranged. It was
further demonstrated that the Ornstein-Uhlenbeck process is stationary for all t ≥ 0 if
the equilibrium initial condition is asserted. In contrast, this does not hold true for the
fractional Ornstein-Uhlenbeck process due to the fact that the process is not Markovian.

These results will also be important for the correct analysis of measured trajectories
of generic processes driven by fractional Gaussian noise in terms of the TAMSD, for
instance, under confinement [58]. Moreover, the finite-time ergodic properties of the
normal Ornstein-Uhlenbeck process as studied in [59, 60] should be considered in view
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Figure 2. Relaxation dynamics of the normal and fractional Ornstein-Uhlenbeck
process as described by the standard MSD (Left panels), compared to the cases of the
generalised MSD and the TAMSD (Right panels). In all panels we plot the absolute
value of the difference of the plateau value and the respective MSD or TAMSD. From
top to bottom the corresponding Hurst coefficients are H = 1/4, H = 1/2, and
H = 3/4. For the anomalous cases in the top and bottom rows, the generalised
MSD and the TAMSD show a distinct power-law relaxation. The γ-shape for the case
H = 1/4 is due to the fact that the functions slightly overshoot the plateau value at
intermediate time scales (compare figure 1). Note the different scales (linear versus
logarithmic) of the time axis.

of the generalised definitions of the MSD and TAMSD provided here.
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Appendix A. Covariance function of the non-stationary fractional
Ornstein-Uhlenbeck process

To calculate the covariance function given by equation (27) two types of integrals need
to be calculated. One are the single integrals with respect to either t′1 or t′2. The other
is the double integral with respect to the t′1 and t′2. Throughout the integrations, it is
always assumed that t2 > t1 for simplicity. Whenever the difference between the two
times is relevant, the result is written in terms of the modulus.

The single integral with respect to t′1 is given by
∫ t1

0

eλt
′
1

(
t′2H1 + t2H2 − |t′1 − t2|2H

)
dt′1

=

∫ t1

0

eλt
′
1t′2H1 dt′1 +

(
eλt1 − 1

)
t2H2

λ
−
∫ t1

0

eλt
′
1(t2 − t′1)

2Hdt′1

= t2H+1
1

∫ 1

0

eλt1qq2Hdq +

(
eλt1 − 1

)
t2H2

λ
+

∫ t2−t1

t2

eλ(t2−q)q2Hdq

=

(
eλt1 − 1

)
t2H2

λ
+

t2H+1
1

2H + 1
M(2H + 1, 2H + 2, λt1)

− eλt2t2H+1
2

2H + 1
M(2H + 1, 2H + 2,−λt2)

+
eλt2 |t2 − t1|2H+1

2H + 1
M(2H + 1, 2H + 2,−λ|t2 − t1|). (A.1)

Following the same procedure one arrives at a similar expression for the integral with
respect to t′2 ∫ t2

0

eλt
′
2

(
t2H1 + t′2H2 − |t1 − t′2|2H

)
dt′2

=

(
eλt2 − 1

)
t2H1

λ
+

t2H+1
2

2H + 1
M(2H + 1, 2H + 2, λt2)

− eλt1t2H+1
1

2H + 1
M(2H + 1, 2H + 2,−λt1)

− eλt1 |t2 − t1|2H+1

2H + 1
M(2H + 1, 2H + 2, λ|t2 − t1|). (A.2)

The second type of the integrals appearing in the covariance of fractional Ornstein-
Uhlenbeck process is given by

∫ t1

0

∫ t2

0

eλ(t
′
1+t′2)

(
t′2H1 + t′2H2 − |t′1 − t′2|2H

)
dt′1dt

′
2

=

∫ t1

0

∫ t2

0

eλ(t
′
1+t′2)t′2H1 dt′1dt

′
2 +

∫ t1

0

∫ t2

0

eλ(t
′
1+t′2)t′2H2 dt′1dt

′
2

−
∫ t1

0

∫ t2

0

eλ(t
′
1+t′2)|t′1 − t′2|2Hdt′1dt′2
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=

(
eλt2 − 1

)
t2H+1
1

λ(2H + 1)
M(2H + 1, 2H + 2, λt1)

+

(
eλt1 − 1

)
t2H+1
2

λ(2H + 1)
M(2H + 1, 2H + 2, λt2)

−
∫ t1

0

(∫ t′1

0

eλ(t
′
1+t′2)(t′1 − t′2)

2Hdt′2 +

∫ t2

t′1

eλ(t
′
1+t′2)(t′2 − t′1)

2Hdt′2

)
dt′1.

Take the last two double integrals,

−
∫ t1

0

(∫ t′1

0

eλ(t
′
1+t′2)(t′1 − t′2)

2Hdt′2 +

∫ t2

t′1

eλ(t
′
1+t′2)(t′2 − t′1)

2Hdt′2

)
dt′1

= −
∫ t1

0

eλt
′
1dt′1

∫ t′1

0

eλ(t
′
1−q)q2Hdq −

∫ t1

0

eλt
′
1dt′1

∫ t2−t′1

0

eλ(t
′
1+q)q2Hdq

= −
∫ t1

0

e2λt
′
1dt′1

∫ t′1

0

e−λqq2Hdq −
∫ t1

0

e2λt
′
1dt′1

∫ t2−t′1

0

eλqq2Hdq

= −
∫ t1

q

e2λt
′
1dt′1

∫ t1

0

e−λqq2Hdq −
∫ t2−q

0

e2λt
′
1dt′1

∫ t2

0

eλqq2Hdq

+

∫ t2−q

t1

e2λt
′
1dt′1

∫ t2−t1

0

eλqq2Hdq

=
t2H+1
1

2λ(2H + 1)
M(2H + 1, 2H + 2, λt1)−

e2λt1t2H+1
1

2λ(2H + 1)
M(2H + 1, 2H + 2,−λt1)

+
t2H+1
2

2λ(2H + 1)
M(2H + 1, 2H + 2, λt2)−

e2λt2t2H+1
2

2λ(2H + 1)
M(2H + 1, 2H + 2,−λt2)

+
e2λt2 |t2 − t1|2H+1

2λ(2H + 1)
M(2H + 1, 2H + 2,−λ|t2 − t1|)

−e2λt1 |t2 − t1|2H+1

2λ(2H + 1)
M(2H + 1, 2H + 2, λ|t2 − t1|).

Hence we arrive at the following expression for the double integral,
∫ t1

0

∫ t2

0

eλ(t
′
1+t′2)

(
t′2H1 + t′2H2 − |t′1 − t′2|2H

)
dt′1dt

′
2

=
eλt2t2H+1

1

λ(2H + 1)
M(2H + 1, 2H + 2, λt1)−

t2H+1
1

2λ(2H + 1)
M(2H + 1, 2H + 2, λt1)

+
eλt1t2H+1

2

λ(2H + 1)
M(2H + 1, 2H + 2, λt2)−

t2H+1
2

2λ(2H + 1)
M(2H + 1, 2H + 2, λt2)

− e2λt1t2H+1
1

2λ(2H + 1)
M(2H + 1, 2H + 2,−λt1)−

e2λt2t2H+1
2

2λ(2H + 1)
M(2H + 1, 2H + 2,−λt2)

+
e2λt2 |t2 − t1|2H+1

2λ(2H + 1)
M(2H + 1, 2H + 2,−λ|t2 − t1|)

−e2λt1 |t2 − t1|2H+1

2λ(2H + 1)
M(2H + 1, 2H + 2, λ|t2 − t1|). (A.3)
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Appendix B. MSD and TAMSD of the non-stationary fractional
Ornstein-Uhlenbeck process

After arriving at the covariance function for the non-stationary solution (28) the MSD
of the fractional Ornstein-Uhlenbeck processes is deduced from

〈Ω2
∆(t)〉 = Cov

(
x(t +∆), x(t+∆)

)
+ Cov

(
x(t), x(t)

)
− 2Cov(x(t +∆), x(t)),

such that

〈Ω2(t)〉 = Var(x0)
(
1− e−λ∆

)2
e−2λt

+σ2(t +∆)2He−λ(t+∆)
[
1 +

λ(t+∆)eλ(t+∆)

2(2H + 1)
M(2H + 1, 2H + 2,−λ(t+∆)

−λ(t+∆)e−λ(t+∆)

2(2H + 1)
M(2H + 1, 2H + 2, λ(t+∆)

] (
1− eλ∆

)

+σ2t2He−λt
[
1 +

λteλt

2(2H + 1)
M(2H + 1, 2H + 2,−λt)

− λte−λt

2(2H + 1)
M(2H + 1, 2H + 2, λt)

] (
1− e−λ∆

)

+σ2∆2H
[
1− λ∆e−λ∆

2(2H + 1)
M(2H + 1, 2H + 2, λ∆)

+
λ∆eλ∆

2(2H + 1)
M(2H + 1, 2H + 2,−λ∆)

]
. (B.1)

Before calculating the TAMSD it is worthwhile checking that in the long time limit
the expression above coincides with the earlier equation (36). In the limit t → ∞ the
expression in the last square brackets remains unchanged while for the first and second
square brackets it is only the second term which contributes to a non-zero value, namely,
(t+∆)2H+1M(2H+1, 2H+2,−λ(t+∆)) and t2H+1M(2H+1, 2H+2,−λt). Considering
the latter in the aforementioned long-time limit,

lim
t→∞

t2H+1M(2H + 1, 2H + 2,−λt)

= lim
t→∞

(2H + 1)

∫ 1

0

t2H+1e−λtzz2Hdz

= lim
t→∞

(2H + 1)

∫ 1

0

e−λtz(tz)2Hd(tz) = lim
t→∞

2H + 1

λ2H+1

∫ λt

0

e−qq2Hdq

= lim
t→∞

2H + 1

λ2H+1
γ(2H + 1, λt) =

2H + 1

λ2H+1
Γ(2H + 1),

where γ(s, x) is the lower incomplete Gamma function. Therefore, in the limit t → ∞
one indeed consistently recovers the expression of the generalised MSD for the stationary
solution of the fractional Ornstein-Uhlenbeck process, equation (36).

The complexity in the integration of the generalised MSD for the TAMSD is due to
terms of the kind t2H+1M(2H + 1, 2H + 2,−λt) and t2H+1e−2λtM(2H + 1, 2H + 2, λt).
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The integration of such terms can be achieved as follows,
∫ T−∆

0

t2H+1M(2H + 1, 2H + 2,−λt)dt

= (2H + 1)

∫ T−∆

0

t2H+1

(∫ 1

0

e−λtqq2Hdq

)
dt

= (2H + 1)

∫ T−∆

0

t2H+1

(∫ λt

0

e−z
( z

λt

)2H dz

λt

)
dt

=
2H + 1

λ2H+1

∫ T−∆

0

(∫ λt

0

e−zz2Hdz

)
dt.

After changing the order of the integration,

2H + 1

λ2H+1

∫ T−∆

0

(∫ λt

0

e−zz2Hdz

)
dt

=
2H + 1

λ2H+1

∫ λ(T−∆)

0

e−zz2Hdz

∫ T−∆

z/λ

dt

=
2H + 1

λ2H+1

∫ λ(T−∆)

0

e−zz2H
(
T −∆− z

λ

)
dz

= (2H + 1)(T −∆)2H+2

∫ 1

0

e−λ(T−∆)qq2H(1− q)dq

=
(T −∆)2H+2

2H + 2
M(2H + 1, 2H + 3,−λ(T −∆)).

Similarly, the second type of integration can be performed along the following steps,
∫ T−∆

0

e−2λtt2H+1M(2H + 1, 2H + 2, λt)dt

= (2H + 1)

∫ T−∆

0

e−2λtt2H+1

(∫ 1

0

eλtqq2Hdq

)
dt

= (2H + 1)

∫ T−∆

0

e−2λtt2H+1

(∫ λt

0

ez
( z

λt

)2H dz

λt

)
dt

=
2H + 1

λ2H+1

∫ T−∆

0

e−2λt

(∫ λt

0

ezz2Hdz

)
dt

=
2H + 1

λ2H+1

∫ T−∆

z/λ

e−2λt

(∫ λ(T−∆)

0

ezz2Hdz

)
dt

= −2H + 1

2λ2H+2

∫ λ(T−∆)

0

ezz2H
(
e−2λ(T−∆) − e−2z

)
dz

=
(T −∆)2H+1

2λ

[
M(2H + 1, 2H + 2,−λ(T −∆))

− e−2λ(T−∆)M(2H + 1, 2H + 2, λ(T −∆))
]

Analogously,
∫ T−∆

0

(t+∆)2H+1M(2H + 1, 2H + 2,−λ(t+∆))dt
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= (2H + 1)

∫ T−∆

0

(t +∆)2H+1

(∫ 1

0

e−λ(t+∆)x2Hdx

)
dt

= (2H + 1)

∫ T

∆

y2H+1

(∫ 1

0

e−λyxx2Hdx

)
dy

=
2H + 1

λ2H+1

∫ T

∆

(∫ λy

0

e−zz2Hdz

)
dy

=
2H + 1

λ2H+1

(∫ T

z/λ

(∫ λT

0

e−zz2Hdz

)
dy −

∫ ∆

z/λ

(∫ λ∆

0

e−zz2Hdz

)
dy

)

=
2H + 1

λ2H+1

(∫ λT

0

e−zz2H
(
T − z

λ

)
dz −

∫ λ∆

0

e−zz2H
(
∆− z

λ

)
dz

)

= (2H + 1)T 2H+2

(∫ 1

0

e−λTqq2H(1− q)dq

)

−(2H + 1)∆2H+2

(∫ 1

0

e−λ∆qq2H(1− q)dq

)

=
T 2H+2

2H + 2
(2H + 1, 2H + 3,−λT )− ∆2H+2

2H + 2
(2H + 1, 2H + 3,−λ∆).

And lastly,
∫ T−∆

0

e−2λ(t+∆)(t +∆)2H+1M(2H + 1, 2H + 2, λ(t+∆))dt

= (2H + 1)

∫ T−∆

0

e−2λ(t+∆)(t+∆)2H+1

(∫ 1

0

eλ(t+∆)xx2Hdx

)
dt

=
2H + 1

λ2H+1

∫ T−∆

0

e−2λ(t+∆)

(∫ λ(t+∆)

0

ezz2Hdz

)
dt

=
2H + 1

λ2H+1

∫ T

∆

e−2λy

(∫ λy

0

ezz2Hdz

)
dy

=
2H + 1

λ2H+1

(∫ T

z/λ

e−2λy

(∫ λT

0

ezz2Hdz

)
dy −

∫ ∆

z/λ

e−2λy

(∫ λ∆

0

ezz2Hdzdz

)
dy

)

= −2H + 1

2λ2H+2

(∫ λT

0

ezz2H
(
e−2λT − e−2z

)
dz −

∫ λ∆

0

(
e−2λ∆ − e−2z

)
dz

)

= −2H + 1

2λ2H+2

(∫ 1

0

(λT )2H+1eλTqq2H
(
e−2λT − e−2λTq

)
dq

−
∫ 1

0

(λ∆)2H+1eλ∆qq2H
(
e−2λ∆ − e−2λ∆q

)
dq
)

= −T 2H+1

2λ

(
e−2λTM(2H + 1, 2H + 2, λT )−M(2H + 1, 2H + 2,−λT )

)

+
∆2H+1

2λ

(
e−2λ∆M(2H + 1, 2H + 2, λ∆)−M(2H + 1, 2H + 2,−λ∆)

)
.

The final result for the TAMSD is then given by
〈
δ2(T,∆)

〉
=

∫ T−∆

0

〈Ω2(t)〉dt = Var(x0)
(
1− e−λ∆

)2 1− e−2λ(T−∆)

2λ(T −∆)
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+
σ2(1− eλ∆)

T −∆

[
T 2H+1

2H + 1
M(2H + 1, 2H + 2,−λT )

− ∆2H+1

2H + 1
M(2H + 1, 2H + 2,−λ∆)

+
λΓ(2H + 1)

2Γ(2H + 3)

(
T 2H+2M(2H + 1, 2H + 3,−λT )

−∆2H+2M(2H + 1, 2H + 3,−λ∆)
)

− 1

4(2H + 1)

(
e−2λ∆∆2H+1M(2H + 1, 2H + 2, λ∆)

−∆2H+1M(2H + 1, 2H + 2,−λ∆)

− e−2λTT 2H+1M(2H + 1, 2H + 2, λT )

+ T 2H+1M(2H + 1, 2H + 2,−λT )
)]

+
σ2(1− e−λ∆)

T −∆

[
(T −∆)2H+1

2H + 1
M(2H + 1, 2H + 2,−λ(T −∆))

+
λΓ(2H + 1)

2Γ(2H + 3)
(T −∆)2H+2M(2H + 1, 2H + 3,−λ(T −∆))

− (T −∆)2H+1

4(2H + 1)

(
M(2H + 1, 2H + 2,−λ(T −∆))

− e−2λ(T−∆)M(2H + 1, 2H + 2, λ(T −∆))
)]

+ σ2∆2H

(
1− λ∆e−λ∆

2(2H + 1)
M(2H + 1, 2H + 2, λ∆)

+
λ∆eλ∆

2(2H + 1)
M(2H + 1, 2H + 2,−λ∆)

)
. (B.2)

While the expressions for the TAMSD and the generalised MSD differ, both share the
same asymptote in the long-time limit t, T → ∞. Moreover, the disparity between both
is expected when the system has not yet reached the stationarity.

Appendix C. Covariance of the stationary fractional Ornstein-Uhlenbeck
process

For the derivation of the covariance (35) we calculate the following integrals
∫ t2

−∞
eλt

′
2

(
|t1|2H + |t′2|2H − |t1 − t′2|2H

)
dt2

=
eλt2 |t1|2H

λ
+

∫ 0

−∞
eλt

′
2 |t′2|2Hdt′2 +

∫ t2

0

eλt
′
2 |t′2|2Hdt′2

−
∫ t1

−∞
eλt

′
2(t1 − t′2)

2Hdt′2 −
∫ t2

t1

eλt
′
2(t′2 − t1)

2Hdt′2

=
eλt2 |t1|2H

λ
+

∫ ∞

0

e−λt′2 |t′2|2Hdt′2 + t2H+1
2

∫ 1

0

eλt2qq2Hdq
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−
∫ ∞

0

eλ(t1−q)q2Hdq −
∫ t2−t1

0

eλ(t1+q)q2Hdq

=
eλt2 |t1|2H

λ
+

Γ(2H + 1)

λ2H+1
+

|t2|2H+1

2H + 1
M(2H + 1, 2H + 2, λt2)

−eλt1Γ(2H + 1)

λ2H+1
− eλt1(t2 − t1)

2H+1

∫ 1

0

e(t2−t1)xx2Hdx

=
eλt2 |t1|2H

λ
+

Γ(2H + 1)

λ2H+1
+

|t2|2H+1

2H + 1
M(2H + 1, 2H + 2, λt2)

−eλt1Γ(2H + 1)

λ2H+1
− eλt1 |t2 − t1|2H+1

2H + 1
M(2H + 1, 2H + 2, λ|t2 − t1|).

Subsequently, one arrives at the following expression
∫ t2

−∞
eλt

′
2

(
|t1|2H + |t′2|2H − |t1 − t′2|2H

)
dt′2

=
eλt2 |t1|2H

λ
+

Γ(2H + 1)

λ2H+1

(
1− eλt1

)
+

|t2|2H+1

2H + 1
M(2H + 1, 2H + 2, λt2)

−eλt1 |t2 − t1|2H+1

2H + 1
M(2H + 1, 2H + 2, λ|t2 − t1|). (C.1)

Following the same procedure one obtains the expression below for the integral with the
differential dt′1,∫ t1

−∞
eλt

′
2

(
|t′1|2H + |t2|2H − |t′1 − t2|2H

)
dt′1

=
eλt1 |t2|2H

λ
+

Γ(2H + 1)

λ2H+1

(
1− eλt2

)
+

|t1|2H+1

2H + 1
M(2H + 1, 2H + 2, λt1)

+
eλt2 |t2 − t1|2H+1

2H + 1
M(2H + 1, 2H + 2,−λ|t2 − t1|).

The second type of integrals appearing in the covariance function is given by
∫ t1

−∞

∫ t2

−∞
eλ(t

′
1+t′2)

(
|t′1|2H + |t′2|2H − |t′1 − t′2|2H

)
dt′1dt

′
2

=

∫ t1

−∞
eλt

′
1 |t′1|2Hdt′1

∫ t2

−∞
eλt

′
2dt′2 +

∫ t1

−∞
eλt

′
1dt′1

∫ t2

−∞
eλt

′
2 |t′2|2Hdt′2

−
∫ t1

−∞

∫ t2

−∞
eλ(t

′
1+t′2)|t′1 − t′2|2Hdt′1dt′2

=
eλt2

λ

(∫ 0

−∞
(−t′1)

2Heλt
′
1dt′1 +

∫ t1

0

t′2H1 eλt
′
1dt′1

)

+
eλt1

λ

(∫ 0

−∞
(−t′2)

2Heλt
′
2dt′2 +

∫ t2

0

t′2H2 eλt
′
2dt′2

)

−
∫ t1

−∞

∫ t′1

−∞
eλ(t

′
1+t′2)(t′1 − t′2)

2Hdt′1dt
′
2 −

∫ t1

−∞

∫ t2

t′1

eλ(t
′
1+t′2)(t′2 − t′1)

2Hdt′1dt
′
2.

98



Spurious ergodicity breaking in normal and fractional Ornstein-Uhlenbeck process 20

The first two integrals are easily evaluated. In the last two integrals, by changing of
variable t′1 − t′2 = q one arrives at

=
eλt2

λ

(
Γ(2H + 1)

λ2H+1
+

|t1|2H+1

2H + 1
M(2H + 1, 2H + 2, λt1)

)

+
eλt1

λ

(
Γ(2H + 1)

λ2H+1
+

|t2|2H+1

2H + 1
M(2H + 1, 2H + 2, λt2)

)

−
∫ t1

−∞
eλt

′
1dt′1

∫ ∞

0

eλ(t
′
1−q)q2Hdq −

∫ t1

−∞
eλt

′
1dt′1

∫ t2−t′1

0

eλ(t
′
1+q)q2Hdq.

The evaluation of the first double integral is straightforward and it yields e2λt1
2λ2H+2Γ(2H+

1). Evaluating the second double-integral requires changing the order of integration.
For the last integral one arrives at the following,

−
∫ t1

−∞
eλt

′
1dt′1

∫ t2−t′1

0

eλ(t
′
1+q)q2Hdq =

−
∫ ∞

0

eλqq2Hdq

∫ t2−q

−∞
e2λt

′
1dt′1 +

∫ t2−t1

0

eλqq2Hdq

∫ t2−q

t1

e2λt
′
1dt′1

−e2λt2

2λ

∫ ∞

0

e−λqq2Hdq +
e2λt2

2λ

∫ t2−t1

0

e−λqq2Hdq − e2λt1

2λ

∫ t2−t1

0

eλqq2Hdq.

Subsequently,

− e2λt2

2λ2H+2
Γ(2H + 1)

− e2λt2

2λ(2H + 1)
(t2 − t1)

2H+1M(2H + 1, 2H + 2, λ(t1 − t2))

+
e2λt1

2λ(2H + 1)
(t2 − t1)

2H+1M(2H + 1, 2H + 2, λ(t2 − t1)).

Summing up all the calculations, we obtain
∫ t1

−∞

∫ t2

−∞
eλ(t

′
1+t′2)

(
|t′1|2H + |t′2|2H − |t′1 − t′2|2H

)
dt′1dt

′
2

=
eλt2

λ

(
Γ(2H + 1)

λ2H+1
+

|t1|2H+1

2H + 1
M(2H + 1, 2H + 2, λt1)

)

+
eλt1

λ

(
Γ(2H + 1)

λ2H+1
+

|t2|2H+1

2H + 1
M(2H + 1, 2H + 2, λt2)

)

− e2λt1

2λ2H+2
Γ(2H + 1)− e2λt2

2λ2H+2
Γ(2H + 1)

− e2λt2

2λ(2H + 1)
|t2 − t1|2H+1M(2H + 1, 2H + 2,−λ|t2 − t1|)

+
e2λt1

2λ(2H + 1)
|t2 − t1|2H+1M(2H + 1, 2H + 2, λ|t2 − t1|). (C.2)
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π/2

π

x

y

0

C

C'

γ' γ

Figure D1. Contour of integration in equation (30.)

Appendix D. Variance of the normally distributed initial condition

We now perform the integration for the variance of the initial condition for the fractional
Ornstein-Uhlenbeck processes. The integral given by (30) reads

ξ2 =
σ2Γ(2H + 1) sin(πH)

πλ2H

∫ ∞

0

|x|1−2H

1 + x2
dx.

The integral can be calculated by the means of the theorem of residues. We substitute
x by et and arrive

∫ ∞

0

|x|1−2H

1 + x2
dx =

1

2

∫ ∞

−∞

|x|1−2H

1 + x2
dx =

1

2

∫ ∞

−∞

e(2−2H)t

1 + e2t
dx.

Now consider the complex function f(z) = exp([2−2H ]z)/(1+exp(2z)) and the contour
C ∪ C ′ ∪ γ ∪ γ′ depicted in following figure D1.

The complex function f(z) has a simple pole at z = iπ/2 within the contour.
depicted in the figure. As the theorem of residues indicates, the evaluation of the
integral in equation (30) is then

∮
e(2−2H)z

1 + e2z
dz =

∫

C

f(z)dz +

∫

γ

f(z)dz +

∫

C′
f(z)dz +

∫

γ′
f(z)dz

= Res

(
f(z),

πi

2

)
,

which is equivalent to the evaluation of the following integrals according to the geometry
of the contour in figure D1,

lim
R→∞

(∫ R

−R

e(2−2H)x

1 + e2x
dx+

∫ π

0

e(2−2H)(R+iy)

1 + e2(R+iy)
idy

+

∫ −R

R

e(2−2H)(x+iπ)

1 + e2(x+iπ)
+

∫ 0

π

e(2−2H)(−R+iy)

1 + e2(−R+iy)
idy

)

= 2πi lim
z→πi/2

(
z − πi

2

)
e(2−2H)z

1 + e2z
.
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The second and fourth integrals are identically zero when R → ∞ (note that H ∈ (0, 1)).
Hence, the equation above is simplified to

lim
R→∞

((
1− e−2πiH

) ∫ R

−R

e(2−2H)x

1 + e2x
dx

)
= 2πie−πiH ,

and consequently,
∫ ∞

−∞

e(2−2H)x

1 + e2x
dx =

2πie−πiH

1− e−2πiH
=

π

sin(πH)
.

Readily, by substituting the result above into equation (30) we deduce that

ξ2 =
σ2

2λ2H
Γ(2H + 1).
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