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Abstract 
 

Flood design necessitates discharge estimates 

for large recurrence intervals. However, in a 

flood frequency analysis, the uncertainty of 

discharge estimates increases with higher re-

currence intervals, particularly due to the small 

number of available flood data. Furthermore, 

traditional distribution functions increase un-

limitedly without consideration of an upper 

bound discharge. Hence, additional informati-

on needs to be considered which is representa-

tive for high recurrence intervals. 

Envelope curves which bound the maximum 

observed discharges of a region are an adequa-

te regionalisation method to provide additional 

spatial information for the upper tail of a dist-

ribution function. Probabilistic regional enve-

lope curves (PRECs) are an extension of the 

traditional empirical envelope curve approach, 

in which a recurrence interval is estimated for 

a regional envelope curve (REC). The REC is 

constructed for a homogeneous pooling group 

of sites. The estimation of this recurrence in-

terval is based on the effective sample years of 

data considering the intersite dependence a-

mong all sites of the pooling group. 

The core idea of this thesis was an improve-

ment of discharge estimates for high recurren-

ce intervals by integrating empirical and pro-

babilistic regional envelope curves into the 

flood frequency analysis. Therefore, the me-

thod of probabilistic regional envelope curves 

was investigated in detail. Several pooling 

groups were derived by modifying candidate 

sets of catchment descriptors and settings of 

two different pooling methods. These were 

used to construct PRECs. A sensitivity analysis 

shows the variability of discharges and the 

recurrence intervals for a given site due to the 

different assumptions. The unit flood of record 

which governs the intercept of PREC was de-

termined as the most influential aspect.  

By separating the catchments into nested and 

unnested pairs, the calculation algorithm for 

the effective sample years of data was refined. 

In this way, the estimation of the recurrence 

intervals was improved, and therefore the use 

of different parameter sets for nested and un-

nested pairs of catchments is recommended. 

In the second part of this thesis, PRECs were 

introduced into a distribution function. Whe-

reas in the traditional approach only discharge 

values are used, PRECs provide a discharge 

and its corresponding recurrence interval. Hen-

ce, a novel approach was developed, which 

allows a combination of the PREC results with 

the traditional systematic flood series while 

taking the PREC recurrence interval into con-

sideration. An adequate mixed bounded distri-

bution function was presented, which in addi-

tion to the PREC results also uses an upper 

bound discharge derived by an empirical enve-

lope curve. By doing so, two types of additio-

nal information which are representative for 

the upper tail of a distribution function were 

included in the flood frequency analysis. The 

integration of both types of additional informa-

tion leads to an improved discharge estimation 

for recurrence intervals between 100 and 1000 

years. 
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Zusammenfassung 
 

Abschätzungen von Abflüssen mit hohen 

Wiederkehrintervallen werden vor allem für 

die Bemessung von Extremhochwässern benö-

tigt. In der Hochwasserstatistik bestehen insbe-

sondere für hohe Wiederkehrintervalle große 

Unsicherheiten, da nur eine geringe Anzahl an 

Messwerten für Hochwasserereignisse verfüg-

bar ist. Zudem werden zumeist Verteilungs-

funktionen verwendet, die keine obere Grenze 

beinhalten. Daher müssen zusätzliche Informa-

tionen zu den lokalen Pegelmessungen berück-

sichtigt werden, die den Extrembereich einer 

Verteilungsfunktion abdecken. 

Hüllkurven ermitteln eine obere Grenze von 

Hochwasserabflüssen basierend auf beobachte-

ten maximalen Abflusswerten. Daher sind sie 

eine geeignete Regionalisierungsmethode. 

Probabilistische regionale Hüllkurven sind eine 

Fortentwicklung des herkömmlichen Ansatzes 

der empirischen Hüllkurven. Hierbei wird ei-

ner Hüllkurve einer homogenen Region von 

Abflusspegeln ein Wiederkehrintervall zuge-

ordnet. Die Berechnung dieses Wiederkehrin-

tervalls basiert auf der effektiven Stichproben-

größe und berücksichtigt die Korrelationsbe-

ziehungen zwischen den Pegeln einer Region. 

Ziel dieser Arbeit ist eine Verbesserung der 

Abschätzung von Abflüssen mit großen Wie-

derkehrintervallen durch die Integration von 

empirischen und probabilistischen Hüllkurven 

in die Hochwasserstatistik. Hierzu wurden 

probabilistische Hüllkurven detailliert unter-

sucht und für eine Vielzahl an homogenen 

Regionen konstruiert. Hierbei wurden ver-

schiedene Kombinationen von Einzugsgebiets-

parametern und Variationen von zwei Gruppie-

rungsmethoden verwendet. Eine Sensitivitäts-

analyse zeigt die Variabilität von Abfluss und 

Wiederkehrintervall zwischen den Realisatio-

nen als Folge der unterschiedlichen Annah-

men. Die einflussreichste Größe ist der maxi-

male Abfluss, der die Höhe der Hüllkurve be-

stimmt. 

Eine Einteilung in genestete und ungeneste 

Einzugsgebiete führt zu einer genaueren Er-

mittlung der effektiven Stichprobe und damit 

zu einer verbesserten Abschätzung des Wie-

derkehrintervalls. Daher wird die Verwendung 

von zwei getrennten Parametersätzen für die 

Korrelationsfunktion zur Abschätzung des 

Wiederkehrintervalls empfohlen. 

In einem zweiten Schritt wurden die probabi-

listischen Hüllkurven in die Hochwasserstatis-

tik integriert. Da in traditionellen Ansätzen nur 

Abflusswerte genutzt werden, wird eine neue 

Methode präsentiert, die zusätzlich zu den 

gemessenen Abflusswerten die Ergebnisse der 

probabilistischen Hüllkurve – Abfluss und 

zugehöriges Wiederkehrintervall - berücksich-

tigt. Die Wahl fiel auf eine gemischte begrenz-

te Verteilungsfunktion, die neben den probabi-

listischen Hüllkurven auch eine absolute obere 

Grenze, die mit einer empirischen Hüllkurve 

ermittelt wurde, beinhaltet. Damit werden zwei 

Arten von zusätzlichen Informationen verwen-

det, die den oberen Bereich einer Verteilungs-

funktion beschreiben. Die Integration von bei-

den führt zu einer verbesserten Abschätzung 

von Abflüssen mit Wiederkehrintervallen zwi-

schen 100 und  1000 Jahren. 
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2 

1 Introduction 

1.1 Motivation 

1.1.1 Flood risk analysis 

The flood in August 2002 along the Elbe and 

the Danube rivers emphatically revealed that 

extreme floods are a relevant natural hazard in 

Germany. More than one hundred dikes 

breached and created large inundations along 

the Elbe river and its tributaries (e.g. Vo-

rogushyn et al., 2010), which caused damages 

of a severity never observed before in Ger-

many (damage costs of 11.6 billion EUR and 

21 fatalities, e.g. Thieken et al., 2005). 

In Germany, the 2002 flood had an espe-

cially large effect on the federal state of 

Saxony. The highest ever measured maximum 

discharges, also called floods of record, were 

exceeded at several gauges, especially in the 

Mulde and in the western tributaries to the 

Elbe, and discharges up to six times larger than 

the former floods of record were observed.  

A probability of a specific discharge occur-

ring and the resulting inundation area which is 

affected by this flood magnitude are designated 

as flood hazards. In a flood risk analysis not 

only the flood hazard, but also the vulnerability 

are considered, which includes the exposure of 

the given assets and the damage which is 

caused due to a certain degree of inundation 

(susceptibility) (see Fig. 1.1, Apel et al., 2004; 

Merz and Thieken, 2004; Merz, 2006). 

Floods are one among several natural haz-

ards which might evoke severe damages. To 

consider the risk reduction potential efficiently, 

the damages which are caused by different 

natural hazards needs to be compared (Dur-

ham, 2003). Grünthal et al. (2006) compared 

the risks of storms, floods and earthquakes for 

Cologne/ Western Germany and estimated that 

earthquakes are the dominant natural hazard 

for recurrence intervals larger than 200 years. 

For smaller recurrence intervals, floods caused 

the largest loss. 
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Fig. 1.1: Flood risk chain from (Merz et al., 2007).  
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Based on this, the CEDIM project “Synopsis 

of natural hazards in Saxony” was realised, in 

which the risks caused by earthquakes, winter 

storms and floods for each Saxon community 

were compared. This thesis is embedded in the 

flood part of this project and is only focused on 

flood frequency analyses, the first step of flood 

hazard estimation (see Fig. 1.1). Merz et al. 

(2002) and Merz et al. (2008) pointed out that 

the largest uncertainty in flood risk estimations 

is related to the flood frequency analysis when 

estimating floods with a large recurrence inter-

val. 

 

1.1.2 Flood frequency analysis – Limits 

in the discharge estimation for 

large recurrence intervals 

In a flood frequency analysis, the probability 

of a given flood magnitude is estimated based 

on the available measured discharges at a 

gauge. Traditionally, the annual maximum 

series (AMS), i.e. the largest discharges of 

each hydrological year, is used and illustrated 

as plotting positions (empirical probabilities) 

(e.g. Cunnane, 1978). An appropriate distribu-

tion function provides flood quantiles, i.e. pairs 

of a discharge and the corresponding recur-

rence interval, along the whole range of recur-

rence intervals for this site under study 

(Fig. 1.2) (e.g. Stedinger et al., 1993).  

The accuracy of the flood quantile estimates 

depends on the available number of flood data. 

The uncertainty of discharge estimates in-

creases with large recurrence intervals (e.g. 

Merz and Thieken, 2005; Chbab et al., 2006). 

The example of a flood frequency analysis 

(Fig. 1.2) illustrates the effect of the selection 

of a distribution function: With increasing 

recurrence intervals, the four adequate distribu-

tion functions spread out. Hence, the discharge 

estimations of larger T are considerably af-

fected by the selection of the distribution func-

tion. Furthermore, it is shown that the largest 

flood is not very well represented by the pro-

posed distribution functions.  

There are 30 – 100 years of observations for 

the majority of the gauges. However, for flood 

design estimates, discharges which are repre-

sentative for extreme events (T = 1000 -

 10,000) are of major interest and need to be 

calculated (e.g. Büchele et al., 2006; Petrow et 

al., 2006). Hence, the available data length 

contrasts with target recurrence intervals of at 

least hundred years and in several cases thou-

sand or even more years. 

When estimating very large recurrence inter-

vals, it is worth mentioning that traditional 

distribution functions increase unlimitedly 

without consideration of an upper bound. This 

implies that the distribution function may esti-

mate discharges for large recurrence intervals 

which can be assumed as unrealistically large 

due to the hydro-meteorological situation in 

the catchment of interest (Enzel et al., 1993), 

especially in the case of a high skewness. 
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Fig. 1.2: Example of a flood frequency analysis for the site Hainsberg 3 
in Saxony. Four distribution functions are shown (GEV = Generalised 
Extreme Value, GL = Generalised Logistic, GP = Generalised Pareto, 
LN3 = Log-Normal with three parameters). The observed flood data are 
illustrated as Hazen plotting position (PLP Hazen). 

 

The critical point of an unlimited increase of 

unbounded distribution functions was taken 

into consideration by using a distribution func-

tion with an upper bound. A couple of bounded 

distribution functions have been presented 

(Kanda, 1981; Eliasson, 1994; Francés and 

Botero, 2003; Jensen et al., 2004). These dis-

tribution functions differ from the traditional 

ones by introducing an upper bound as addi-

tional information, which prevents the function 

from an unlimited increase. However, by using 

an upper bound, no representative flood data 

for recurrence intervals in the order of 1000 

years is included. 

In this context, it is interesting to compare 

the flood frequency analysis with the storm 

and earthquake research. For storm frequency 

analysis, there is a comparable number of data 

available which also leads to an increasing 

uncertainty for larger recurrence intervals 

(Pandey et al., 2001). In contrast, the earth-

quake research is concentrated on very large 

recurrence intervals in the order of 500 to 

10,000 years (Grünthal and Wahlström, 2006; 

Grünthal et al., 2006). For a consistent risk 

comparison with earthquake estimates in the 

CEDIM project, quantile estimates in the flood 

and storm research are required for up to 1000-

years events.  

It hence becomes apparent that for discharge 

estimations of large recurrence intervals, addi-

tional information besides the at-site flood data 

needs to be included in a flood frequency 

analysis. This is required both for flood design 

estimations and for a comparison with other 

natural hazards. Furthermore, it is especially 

important to integrate information which is 

representative for the target recurrence inter-

val, i.e. in our case for T between 100 and 

1000 years. 
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1.1.3 Flood regionalisation 

In hydrologic research, three types of addi-

tional information to extend the available data 

are separated. These are spatial (flood region-

alisation), temporal (historical data) and causal 

(flood generation processes) information (Merz 

and Blöschl, 2008a, b). In this thesis, only 

spatial additional information is considered. In 

a flood regionalisation, flood data from 

neighbouring sites is used in addition to the at-

site data based on the principle of „trading 

space for time“ (Stedinger et al., 1993).  

A flood regionalisation includes two steps 

(e.g. GREHYS, 1996b). First, a homogeneous 

group of sites is formed (pooling group). This 

means that sites which are characterised by 

similar hydrologic conditions as the site of 

interest are selected. Therefore, relevant hydro-

logic parameters need to be determined, con-

trolling catchment behaviour. A similarity in 

these parameters leads to the assumption that 

these sites could be collected together in a 

pooling group with the aim of a larger amount 

of flood data available (e.g. Acreman and Sin-

clair, 1986; Burn, 1997; Castellarin et al., 

2001). 

Second, a suitable regionalisation method 

which controls the transfer of information from 

the neighbouring sites to the site of interest is 

applied for this pooling group (e.g. GREHYS, 

1996a, b). During the last decades, a couple of 

pooling grouping methods (e.g. cluster analy-

sis, Region of Influence) and regionalisation 

approaches (e.g. index flood, multiple regres-

sions, geostatistical approaches (Top-kriging)) 

have been developed and several studies con-

sidered their use for flood regionalisation (e.g. 

Mosley, 1981; Burn, 1990b; GREHYS, 1996a, 

b; Ouarda et al., 2001; Merz and Blöschl, 

2005; Rao and Srinivas, 2006; Skoien et al., 

2006; Ouarda et al., 2008). The benefit of 

flood regionalisation in comparison to at-site 

flood statistics was shown in several studies. It 

was noted that even when only a small number 

of neighbouring sites is available or in the case 

of slightly heterogeneous regions, regional 

estimates outperform at-site estimates (e.g. 

Cunnane, 1988; Stedinger and Lu, 1995; 

GREHYS, 1996a; Madsen and Rosbjerg, 

1997b; Kjeldsen and Rosbjerg, 2002). 

When adding data from neighbouring sites, 

the novel information is not necessarily identi-

cal with the data length. A neighbouring site 

can include the same flood events in its AMS. 

In this case, the additional gain of information 

is less than the length of the added flood series 

due to the cross-correlations among the flood 

series. The effective data length is lower than 

the total data length and needs to be considered 

to express the real information content of the 

data (Matalas and Langbein, 1962). Hence, 

intersite dependence among the sites needs to 

be taken into account in a flood frequency 

analysis (e.g. Stedinger, 1983; Madsen and 

Rosbjerg, 1997a; Castellarin et al., 2008).  

The selection of adequate pooling grouping 

procedures and flood regionalisation methods 

depends on the research question. This study 

aims at estimating discharges for large recur-

rence intervals. Hence, a regionalisation 

method which is focused on the estimation of 

large flood quantiles needs to be selected.  
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1.1.4 Empirical and probabilistic regi-

onal envelope curves 

Envelope curves are one possibility to re-

gionalise maximum flood discharges. The 

method of envelope curves estimates an upper 

bound discharge (Jarvis, 1925). For this, the 

floods of record are normalised by their catch-

ment sizes and related to the catchment size. 

Then, an upper line is drawn above all floods 

of record and an upper bound discharge is de-

rived for all sites of a specific region (e.g. 

Crippen and Bue, 1977; Herschy, 2002; Castel-

larin et al., 2005).  

Empirical envelope curves are based on ob-

served discharge data only, and their magni-

tude is determined by the largest unit flood of 

record within the data. Due to the limited 

amount of available data, it is doubtful if the 

envelope curve really represents an upper 

bound discharge which might not be exceeded 

in future. In fact, it is recommended to update 

the empirical envelope curves at regular inter-

vals (Crippen and Bue, 1977; Matalas, 1997). 

There are two possibilities to resolve this 

methodical limit. First, an exceedance prob-

ability, i.e. the inverse of the recurrence inter-

val, needs be assigned to the envelope curve. 

The lack of an exceedance probability is con-

sidered as a limit of empirical envelope curves 

(Castellarin et al., 2005; Gaume et al., 2010).  

Alternatively, a larger flood data set from a 

wider geographical context can be used. Fur-

ther, causal information needs to be considered 

which helps to explain that the envelope curve 

based on a larger data set can be assumed as an 

absolute upper bound for the study region. 

Recently, the first of these limits was inten-

sively considered, and in this way the concept 

of envelope curves was significantly improved 

by proposing a probabilistic approach for re-

gional envelope curves (Castellarin et al., 

2005). In this method, a recurrence interval is 

assigned to the regional envelope curve (REC).  

The method of probabilistic regional enve-

lope curves (PRECs) is based on a stricter 

definition of regional homogeneity within the 

pooling group of sites. To adequately consider 

the neighbouring concept of flood regionalisa-

tion, a pooling group is required which is ho-

mogeneous according to the index flood con-

cept, meaning that the flood series of all sites 

of the pooling group normalised by the mean 

of their AMS can be represented by the same 

distribution function (Dalrymple, 1960; 

Robson and Reed, 1999). 

The determination of the recurrence interval 

is based on the effective data length of the 

pooling group. The core point of the calcula-

tion of the effective data length is an accurate 

estimation of the intersite dependence among 

all sites of the pooling group (Castellarin et al., 

2005; Castellarin, 2007). 

Finally, a PREC derives a pair consisting of 

a discharge and its corresponding recurrence 

interval (PREC flood quantile) for each site of 

the pooling group. Since this PREC flood 

quantile is representative of a large recurrence 

interval, this method is related to discharge 

estimates of large recurrence intervals. 

Whereas a distribution function provides dis-

charges for all recurrence intervals (with in-

creasing uncertainty for larger T), a PREC 

derives the discharge of one specific recur-
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rence interval only. Its adequacy as a flood 

regionalisation method was confirmed by Cas-

tellarin (2007) by comparing PREC flood 

quantiles with the traditional index flood 

method. 

 

1.2 Research question and objec-

tives 

Based on the introducing statements, the core 

research question of this thesis is emphasised. 

It was highlighted that discharge estimates for 

large recurrence intervals are uncertain. How-

ever, accurate estimates are required for flood 

design as well as for a comparison of natural 

hazards. To improve the estimations, addi-

tional information which is adequate for large 

recurrence intervals needs to be considered. 

Hence, this thesis aims at resolving the follow-

ing research question: 

 
 

Can the estimation of large flood quantiles 

be improved by the integration of empirical 

and probabilistic regional envelope curves 

into the flood frequency analysis? 

 

For this, six sub-questions were selected, 

which were separately considered in two parts. 

First, probabilistic regional envelope curves 

are examined in detail. In the second part, 

PREC flood quantiles as well as an upper 

bound discharge derived from an empirical 

envelope curve are inserted into the flood fre-

quency analysis. 

 

First part: 

Whereas empirical envelope curves are a 

well-known method, probabilistic regional 

envelope curves were only applied in one ini-

tial study with fixed homogeneous regions 

(Castellarin, 2007). The effect of different 

constitutions of the regions on PREC flood 

quantiles was not investigated. To resolve the 

research question, the PREC concept needs to 

be examined in detail to assess the value of the 

PREC flood quantiles as additional spatial 

information for a FFA. It is necessary to exam-

ine the influence of the most relevant methodi-

cal aspects and to estimate the variability of the 

probability estimations of the PRECs using 

different assumptions. 

 

For this, PRECs are investigated in two steps 

according to the PREC concept. The first step 

is the construction of a REC which is mostly 

affected by the formation of the pooling group, 

i.e. the determination of the neighbouring sites 

which were used to construct the REC.  

The second step is an assignment of the re-

currence interval to the REC. It is particularly 

related to the estimation of the effective sam-

ple of years of data which considers the effect 

of intersite dependence and which is a prereq-

uisite for the calculation of the recurrence in-

terval of a PREC. Thus, it is relevant to exam-

ine the cross-correlations among the sites accu-

rately to express the real information content 

of the data of the pooling group. 
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Thus, three sub-questions which consider the 

major aspects of the two PREC steps need be 

resolved: 

 
1. Which pooling method is appropriate 

to construct RECs? 

 

2. How large is the effect on the flood 

quantiles estimated by probabilistic 

regional envelope curves when modi-

fying the constitution of the pooling 

group? 

 

3. How large is the effect on the recur-

rence interval of PREC when refining 

the estimation of the effective sample 

years of data? 

 
These points were examined in chapters two 

and three, which correspond to the first and 

second paper, respectively: 

 
In the first paper, the first step of the PREC 

concept, i.e. the construction of the regional 

envelope curve, is the focus of research. Here, 

the influence of the formation of homogeneous 

regions on the PREC flood quantiles is exam-

ined. Hence, two pooling methods (cluster 

analysis, Region of Influence) are applied. For 

both methods, pooling groups are constructed 

based on candidate sets of suitable catchment 

descriptors. By using different candidate sets, 

several pooling groups are formed for each 

site. This approach makes it possible to deter-

mine the effect of the construction of the pool-

ing groups on the derivation of PREC flood 

quantiles for the sites under study. 

 

The second paper is tailored to the second 

step of the PREC concept, i.e. the determina-

tion of the effective sample years of data and 

the recurrence interval, which is assigned to 

the REC. Its estimation considers the intersite 

dependence and therefore requires an accurate 

estimation of the cross-correlation. The role of 

cross-correlations among flood series within 

the PREC concept is hence investigated. 

Therefore, all pairs of catchments are subdi-

vided into nested and unnested pairs of catch-

ments, based on the assumption that nested 

catchment structures are higher correlated than 

unnested ones. In this chapter the nested-

unnested approach is compared with the tradi-

tional one, which uses only one global cross-

correlation function by calculating the effec-

tive sample years of data and the recurrence 

interval of PRECs for both approaches. By 

keeping all aspects constant except for the 

parameter sets of the cross-correlation func-

tion, the influence of this single aspect on the 

flood quantile estimation were considered in 

isolation. 

 

Second part: 

Flood quantile estimates should benefit from 

using the PREC flood quantiles as additional 

information for a flood frequency analysis. 

Since PRECs provide a discharge with a large 

recurrence interval, a PREC flood quantile 

presents additional information for the upper 

tail of a distribution function. This part of a 

distribution function in particular is generally 

not well represented by available flood data.  

Since PREC flood quantiles have not yet been 

used as additional information, it is required to 
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identify a method to integrate them into a flood 

frequency analysis. In traditional flood fre-

quency analysis, discharge values, i.e. the 

AMS, without an assigned recurrence interval 

are used exclusively. In contrast to that, the 

PREC flood quantile consists of a discharge 

and its corresponding recurrence interval. 

Hence, a distribution function which uses the 

PREC flood quantiles in addition to the sys-

tematic time series of observed flood data 

needs to be selected. In addition to PREC flood 

quantiles, an upper bound discharge derived by 

an empirical envelope curve should also be 

integrated into the selected distribution func-

tion.  

 

Thus, these three sub-questions are consid-

ered in the second part: 

 

4. How can PREC flood quantiles be 

combined with measured flood data us-

ing the additional information of the 

recurrence interval? 

 

5. Which distribution function is suitable 

to integrate the PREC flood quantiles 

as well as an upper bound discharge? 

 

6. How large is the effect of the integra-

tion of PREC flood quantiles on the de-

termination of a discharge with a re-

currence interval of 1000 years? 

These three points were investigated in chapter 

four, which corresponds to the third paper: 

 

This paper aims at inserting PREC flood 

quantiles into a flood frequency analysis. A 

method allowing this was developed. In this 

way, the additional information of the recur-

rence interval of PREC is used. A mixed 

bounded distribution function which in addi-

tion to PREC flood quantiles also considers an 

upper bound derived by an empirical envelope 

curve of a wider geographical context is pre-

sented. 

 

1.3 Structure of this thesis and 
author’s contributions 

 
This dissertation thesis is written cumula-

tively. Three papers are presented in the chap-

ter’s two to four (see Fig. 1.3). They were pub-

lished in or submitted to, respectively, interna-

tional peer-reviewed journals. These three 

chapters correspond to the three papers. A few 

exceptions were made. A final reference list 

for all chapters together is presented at the end 

of this thesis and the citations are adapted to 

this reference list. Figure sizes were adapted to 

the layout of this thesis. To keep the design 

consistent, some aspects such as the abbrevia-

tion of tables were modified. 
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Chapter 2: B. Guse, A. H. Thieken, A.

Castellarin and B. Merz

J. Hydrol.

Deriving probabilistic

regional envelope curves

with two pooling methods

Chapter 3: B. Guse, A. Thieken

and B. Merz

Hydrol. Earth Syst. Sci.

Castellarin, A. H.

Effects of intersite dependence of

nested catchment structures on

probabilistic regional envelope

curves

First part: Investigation of probabilistic regional envelope curves

Chapter 1: Introduction

Second part: Benefits of empirical and probabilistic regional envelope
curves for the flood frequency analysis

Chapter 4: B. Guse, T. Hofherr and B. Merz

Introducing empirical and probabilistic regional envelope curves into

a mixed bounded distribution function

Hydrol. Earth Syst. Sci. Discussions (in review in HESS)

Chapter 5: Discussion and conclusion
 

Fig. 1.3: Structure of this thesis. 
 

The mentioned co-authors contributed to the 

conceptual design of the papers and to the dis-

cussion of the results as well as to the final 

formulations of the manuscript.  

The PREC method was developed by Attilio 

Castellarin. There was an intense exchange of 

the PREC method and its calculation algo-

rithms during the work on this thesis. Further-

more, Attilio Castellarin significantly contrib-

uted to the introduction of chapter two. The 

adequacy test of the GEV for the selected flood 

series was done by Attilio Castellarin. 

Thomas Hofherr developed the mixed 

bounded distribution function, which was used 

in a refined version for the flood research 

(chapter four).  
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2 Deriving probabilistic regional envelope curves with two 
pooling methods 

 

 

Abstract 

A probabilistic regional envelope curve (PREC) assigns a recurrence interval to a regional enve-

lope curve. A central point of this method is the determination of homogeneous regions according 

to the index flood hypothesis. A flood discharge associated with the recurrence interval (PREC 

flood quantile) is estimated for each gauge of a homogeneous region. In this study, the influence of 

two pooling methods on PREC for a large group of catchments located in the south-east of Ger-

many is investigated. Firstly, using cluster analysis, fixed homogeneous regions are derived. Sec-

ondly, the Region of Influence (RoI) approach is combined with PREC. The sensitivity of PREC 

flood quantiles with respect to pooling groups is evaluated. Different candidate sets of catchment 

descriptors are used to derive pooling groups for both pooling methods. Each pooling group is 

checked by a homogeneity test. PRECs are then constructed for all homogeneous regions. The en-

semble of PREC realisations reveals the sensitivity of the PREC flood quantiles. A comparison 

with the traditional index flood method ascertains the suitability of the pooling methods. A leave-

one-out jackknifing procedure points out a similar performance of cluster analysis and RoI. Fur-

thermore, a comparison of different degrees of heterogeneity for deriving pooling groups reveals 

that the performance of PREC for ungauged catchments decreases in more heterogeneous pooling 

groups.  

 

 

 

 

 

 

 

 

 

 

Published as: 

Guse, B., Thieken, A. H., Castellarin, A., and Merz, B., 2010. Deriving probabilistic regional enve-

lope curves with different pooling groups, J. Hydrol., 380(1-2), 14-26. 
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2.1 Introduction 

For flood risk analyses and estimations of de-

sign floods it is fundamental to accurately 

quantify the discharges of rare events, i.e. 

flood events with recurrence intervals of 100 

years or more. The well-established methods 

of flood frequency analysis (FFA) are ham-

pered by the uncertainty that occurs particu-

larly for estimates of high recurrence intervals 

due to limited observation data (e.g. Robson 

and Reed, 1999; Merz and Thieken, 2005). 

Regional Flood Frequency Analysis (RFFA) is 

widely employed in the estimation of design 

floods when dealing with data record lengths 

that are too short compared to the recurrence 

interval of interest (e.g. Hosking and Wallis, 

1997). Still, most methods of FFA and RFFA 

do not consider an upper bound of the flood 

discharges. 

Regional envelope curves (RECs) are a tradi-

tional, deterministic method for representing 

the upper bound of the maximum floods ob-

served in a distinct region. A REC bounds the 

largest floods of each gauge, termed floods of 

record, of a region. Since their first introduc-

tion (Jarvis, 1925), RECs have been applied to 

different regions and scales. Traditionally, they 

refer to administrative units (e.g. China and 

USA (Costa, 1987), Europe and World 

(Herschy, 2002)). RECs have also been con-

structed for hydro-meteorological regions with 

different climatic conditions and, conse-

quently, different flood regimes (e.g. 17 re-

gions in the USA (Crippen and Bue, 1977); 

north-western and western Greece (Mimikou, 

1984)).  

A main criticism on RECs relates to their de-

terministic view and their need to be checked 

routinely for being exceeded by recent events 

(e.g. Crippen and Bue, 1977; Castellarin et al., 

2005). The applicability of RECs to engineer-

ing problems, such as flood design, is limited 

by the lack of an exceedance probability (or a 

recurrence interval) that can be assigned to the 

envelope curves. To overcome this deficiency, 

Castellarin et al. (2005, 2007), Castellarin 

(2007), and Vogel et al. (2007) proposed a 

probabilistic interpretation of RECs which, 

besides the magnitude, also considers the fre-

quency of a REC.  

Probabilistic regional envelope curves 

(PRECs) are based on the well-known index 

flood method (Dalrymple, 1960), which is 

often applied in flood regionalisation studies 

(e.g. GREHYS, 1996b; Hosking and Wallis, 

1997; Robson and Reed, 1999). Only if a re-

gion is homogeneous as defined by the index 

flood hypothesis, a PREC can be constructed 

and an exceedance probability can be assigned 

to the curve. A flood discharge associated with 

the exceedance probability, termed PREC 

flood quantile, was derived for each site of a 

homogeneous region. 

According to Castellarin et al. (2005), the es-

timation of the exceedance probability of a 

PREC further requires the evaluation of the 

overall sample years of the underlying data 

which in turn depends on the intersite or cross 

correlation amongst the annual maximum se-

ries (AMS) of flood flows observed at different 

gauges. It is important to emphasise that the 

exceedance probability of a PREC always dif-



Chapter 2 – Deriving probabilistic regional envelope curves with two pooling methods 
 

 

14 

fers from zero which highlights the difference 

between PRECs and Probable Maximum 

Floods. A PREC provides one recurrence in-

terval without an extrapolation and, in princi-

ple, enables one to estimate the design flood at 

ungauged sites as a function of the drainage 

area (e.g. Castellarin, 2007) or of a set of suit-

able physiographic and climatic catchment 

descriptors (e.g. Castellarin et al., 2007). 

PRECs should be seen as complements to 

RFFA. They can provide additional informa-

tion on plausible values of extreme floods and 

the corresponding exceedance probability in 

gauged and ungauged basins. A leave-one-out 

jackknifing approach has shown that PREC 

flood quantiles have a similar reliability as the 

traditional index flood method (Castellarin, 

2007).  

Similarly to RFFA, the construction of a 

PREC requires the identification of hydrologi-

cally homogeneous regions or pooling groups 

(GREHYS, 1996b; Castellarin et al., 2001). 

Catchments with similar hydrological behav-

iour can be classified into one group, and the 

hydrometric information collected at all gauges 

that belong to the pooling group can be used to 

improve the accuracy of the design flood esti-

mates for all gauges of the group. The homo-

geneity of a pooling group can be assessed by 

statistical tests (e.g. Viglione et al., 2007; Cas-

tellarin et al., 2008). 

The requirement of homogeneity and the 

need for sufficient data within a group are of-

ten conflictive. On the one hand, a larger num-

ber of observations reduces the uncertainty in 

estimating high recurrence intervals (Robson 

and Reed, 1999). On the other hand, a larger 

number of gauges in the pooling group gener-

ally results in a higher hydrological heteroge-

neity of the group. Several studies highlight the 

relevance of regional homogeneity for RFFA 

(e.g. Lettenmaier et al., 1987; Stedinger and 

Lu, 1995) and, more recently, for PRECs (Cas-

tellarin, 2007). Therefore, an appropriate clas-

sification technique is required for the identifi-

cation of pooling groups.  

Flood regionalisation studies propose two ap-

proaches for deriving pooling groups: the de-

lineation of a subdivision of the study area into 

fixed homogeneous regions and the neighbour-

hood approach or Region of Influence ap-

proach (RoI) (Burn, 1990b; GREHYS, 1996b; 

Ouarda et al., 2001). In fixed homogeneous 

regions, each gauging station definitely be-

longs to one and only one region. A traditional 

approach to identify fixed homogeneous re-

gions is a separation in administrative units, 

where all gauging stations are geographically 

connected, e.g. in adjacent sub-catchments. 

This method has been replaced by others that 

enhance the hydrological similarity within a 

fixed region (Acreman and Sinclair, 1986). 

Cluster analysis is an objective procedure that 

can be applied to subdivide the study area into 

clusters of catchments (fixed regions) on the 

basis of a suitable set of climatic and physi-

ographic catchment descriptors (predictor vari-

ables). The goal of the procedure is to maxi-

mise the similarity within a cluster and the 

dissimilarity between the clusters (e.g. Mosley, 

1981). The catchments of one cluster are not 

necessarily geographically connected.  
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The RoI approach identifies a pooling group 

separately for each gauging station (site of 

interest) without explicit spatial connection 

within the RoI (Burn, 1990b). Gauging stations 

for a RoI are selected according to their simi-

larity to the site of interest using a suitable set 

of predictor variables (Zrinji and Burn, 1994). 

In a hybrid RoI approach, the RoI is derived by 

considering the geographical distance between 

the sites in addition to the predictor variables 

(Eng et al., 2007).  

Up to now, PRECs were applied in northern 

Italy with a relatively limited number of gaug-

ing stations grouped into three different fixed 

homogeneous regions (Castellarin, 2007). This 

paper presents the application of the PREC 

approach in Germany, considering a rather 

large number of sites. The main aim of the 

study is to verify, whether the utilisation of the 

RoI approach in the formation of homogeneous 

pooling groups may improve the reliability of 

the design flood estimates that can be retrieved 

from PRECs for ungauged sites. To address 

this issue, we construct PRECs for the study 

area using fixed homogeneous regions and 

RoIs. In particular, we form several PRECs for 

each gauging site on the basis of the data col-

lected in homogeneous fixed regions and RoIs 

with different sizes and catchment descriptors. 

A sensitivity analysis enables us to consider 

the sensitivity of PREC flood quantiles to dif-

ferent constitutions of the pooling group. By 

means of “leave-one-out” cross-validation 

procedure, we simulate the ungauged condi-

tions at all considered sites during the con-

struction of each PREC as proposed by Castel-

larin (2007). All flood estimates are compared 

with the corresponding estimates (i.e. flood 

quantiles associated with the same values of 

the recurrence interval) obtained by applying a 

traditional regionalisation approach. The com-

parison enables us to better understand and 

quantify (1) the suitability of the two different 

pooling methods (i.e. cluster analysis and RoI) 

in the context of probabilistic regional enve-

lope curves, and (2) the accuracy of flood 

quantiles retrieved from PRECs for ungauged 

basins. 

 

2.2 Methods 

Since the construction of pooling groups is a 

prerequisite for the application of PREC, it is 

advisable to quantify the sensitivity of PREC 

to the formation of pooling groups. For both 

pooling methods (cluster analysis and RoI), the 

sensitivity of PREC results was determined by 

considering several variations of pooling 

groups derived in a three-step-procedure.  

 

1. Formation of candidate sets of catchment 

descriptors. 

2. Construction of homogeneous regions 

using two pooling methods. 

3. Test on homogeneity of each pooling 

group. 

 

Finally a specific PREC was constructed for 

each homogeneous region. To compare the 

different results some performance measures 

were analysed. Each step of the procedure is 

described in the remainder of this section. 
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2.2.1 Candidate set of catchment de-

scriptors 

Different catchment descriptors were used as 

predictor variables to derive homogeneous 

regions. In a first step all catchment descriptors 

were standardised to a mean value of zero and 

a standard deviation of one. This standardisa-

tion allows a comparison between the predictor 

variables and avoids the influence of different 

value scales (see e.g. Nathan and McMahon, 

1990).  

The catchment descriptors were combined by 

summing up the standardised values for each 

site. This approach is only applicable, if all 

standardised variables have a positive correla-

tion with the unit index flood, i.e. the index 

flood normalised by the catchment size. In 

order to get only positive correlations, stan-

dardised variables with a negative correlation 

to the unit index flood were multiplied with -1. 

This implies, for instance, that the fraction of 

the area, which is not covered by arable land, 

was used instead of the fraction of arable land 

for selecting candidate sets of catchment de-

scriptors.  

A full enumeration approach was used to 

consider all possible subsets of the catchment 

descriptors with one to three predictor vari-

ables. A larger number of catchment descrip-

tors within one candidate set could provide 

small additional information, but could also 

lead to multi-collinearity (Merz and Blöschl, 

2005). Thus variants with more than three pre-

dictor variables were not taken into account.  

With regard to the selection of suitable sets of 

predictor variables, it is worth noting that we 

were interested in assessing the sensitivity of 

PRECs and of flood quantiles derived from 

these PRECs with respect to different pooling 

groups. To this aim, we looked for several 

good combinations of predictor variables 

rather than the optimal set. It was assumed 

that, next to the best subset of catchment de-

scriptors, other ‘good subsets’ have a similar 

explained variance. Since PREC is based on 

the assumption of a scaling of the index flood 

(mean of the annual maxima series), it seemed 

reasonable to perform a preliminary identifica-

tion of candidate sets of catchment descriptors 

by looking at the explained variance of the 

empirical index flood values. Therefore, can-

didate sets of catchment descriptors were iden-

tified on the basis of this criterion.  

The correlation coefficient between a subset 

of catchment descriptors and the unit index 

flood was used as goodness-of-fit criterion, as 

in other studies (e.g. Burn, 1990b; Uhlenbrook 

et al., 2000) under the assumption that a high 

correlation is a good indicator for a sufficient 

explained variance of the selected subset (Merz 

and Blöschl, 2004).  

All subsets of catchment descriptors were se-

lected that showed a correlation coefficient of 

more than 0.60. This threshold was assumed as 

sufficient, because the correlation coefficient 

was only used for a pre-selection of subsets of 

catchment descriptors.  

All selected subsets were checked for multi-

collinearity between the catchment descriptors 

using the variance inflation factor (VIF) 

(Hirsch et al., 1992) (Eq. (2.1)).  
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VIF
−

=   (2.1) 

rk
2 stands for a multiple correlation coeffi-

cient, which was calculated by a regression of 

variable k using all other variables as predictor 

variables. To avoid multi-collinearity, all sub-

sets with VIF > 5 were omitted. Montgomery 

et al. (2001) and Eng et al. (2005) recom-

mended a threshold between 5 and 10. 

 

2.2.2 Formation of homogeneous re-

gions 

To assess the influence of homogeneous re-

gions on PREC, two different approaches for 

the derivation of pooling groups were applied. 

These methods were fixed homogeneous re-

gions derived by a cluster analysis and the 

Region of Influence (RoI) method. To ensure 

an appropriate comparison of both methods, 

the same candidate sets of catchment descrip-

tors were used.  

 

Fixed homogeneous regions using cluster 

analysis 

Fixed homogeneous regions were derived by 

cluster analysis with the K-means algorithm, 

which had already been used in flood fre-

quency analysis (e.g. Burn, 1989; Burn and 

Goel, 2000) and very recently in a flood sea-

sonality study (Beurton and Thieken, 2009). 

The cluster analysis was performed allowing 

three to seven clusters, and was therefore ap-

plied five times to each subset of predictor 

variables. The different number of clusters 

considers the trade-off between the homogene-

ity within a cluster and the number of sites 

within one group. 

 

Region of Influence (RoI) 

The approach “Region of Influence” (Burn, 

1990b) constructs an individual region (group 

of gauging sites) for each gauge by finding 

stations that are similar to the characteristics of 

the station under study (site of interest). The 

RoI was determined by the similarity of gaug-

ing stations in the physiographical space of the 

selected catchment descriptors. Similarity was 

assessed by the Euclidean distance between 

each site and the site of interest in the physi-

ographical space. The Euclidean distance has 

been used in several RoI approaches (e.g. 

Zrinji and Burn, 1994; Castellarin et al., 2001; 

Gaál et al., 2008), although other similarity 

measures are possible (see e.g. Cunderlik and 

Burn, 2006). 

All gauging stations which are closer to the 

site of interest than a specific threshold of the 

Euclidean distance in the physiographical 

space were assigned to the RoI of the site of 

interest. The higher the threshold, the larger is 

the number of sites within a region (Burn, 

1990b). Different similarity measure thresh-

olds to derive RoIs were investigated by Gaál 

et al. (2008). To account for the sensitivity of 

the results to the threshold, three thresholds for 

the similarity measure (0.5, 1 and 2) were ap-

plied in this study. In contrast to RoI ap-

proaches in frequency analysis (Burn, 1990b), 

the sites were not weighted according to their 

closeness to the site of interest in the physi-

ographical space. The original RoI method was 
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varied, because the intercept of PREC is only 

determined by one pair of unit flood of record 

and drainage area (see “Probabilistic regional 

envelope curve”). Consequently, a weighting 

scheme would not affect the magnitude of the 

regional envelope curve. 

Traditionally, a fixed number of sites is tar-

geted at when deriving a RoI (Burn, 1997). 

This target number is a function of the aspired 

return period. In our case a target number of 

sites cannot be determined, since the recur-

rence interval T associated with the PREC is 

not known a priori. Therefore, the maximum 

number of sites in the RoI was identified on 

the basis of the hydrological affinity with the 

site of interest.  

 

2.2.3 Homogeneity test 

Each pooling group was checked for homo-

geneity by applying the heterogeneity measure 

of Hosking and Wallis (1997) (Tab. 2.1). The 

H1-test calculates the variability of the L-

coefficient of variation (L-CV). The sample L-

CV is compared with an expected value for a 

homogeneous region obtained by a Monte-

Carlo simulation. The second and third hetero-

geneity measures H2 and H3 consider the L-CV 

and the L-skewness as well as the L-skewness 

and the L-kurtosis, respectively. A more de-

tailed explanation of L-moments and the het-

erogeneity measure is given by Hosking and 

Wallis (1997).  

Since the homogeneity test for the L-CV (H1) 

is a more significant test than the tests with 

higher moments (H2 and H3) (Castellarin et al., 

2001, 2007; Hosking and Wallis, 1997), this 

study focused on the H1-test using the hw.test 

(Viglione, 2008, implemented in R). All re-

gions with a H1 value lower than 2 were used 

for deriving a PREC.  

Tab. 2.1: Interpretation of the heterogeneity meas-
ure (Hosking and Wallis, 1993; Robson and Reed, 
1999). 

Heterogeneity 
measure 

Interpretation Review 

< 1 Homogeneous Not required 
1 – 2 Possibly hetero-

geneous 
Optional 

2 – 4 Heterogeneous Desirable 
> 4 Strongly hetero-

geneous 
Essential 

 

2.2.4 Probabilistic regional envelope 

curve 

The method of probabilistic regional enve-

lope curves (PREC) is based on two principles. 

In the first place, all gauging stations of a re-

gion have to be homogeneous in terms of the 

index flood hypothesis. Secondly, the index 

flood μX (mean of the annual maxima series) is 

related to the drainage area A (Eq. (2.2), 

adopted from Castellarin, 2007). Under these 

assumptions the index flood scales with the 

drainage area and depends only on the drain-

age area (Castellarin, 2007): 

1* += b
X ACμ  (2.2) 

To derive a regional envelope curve, all 

floods of record QFOR of a region are normal-

ised by their corresponding catchment area A 

to the unit flood of record qFOR and are related 

to A in a double-logarithmic scale (Eq. (2.3), 

adopted from Castellarin et al., 2005). The 

regional envelope curve bounds all unit floods 
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of record of a region and is defined by its slope 

b and the intercept a:  

)log(*log Aba
A

QFOR +=⎟
⎠
⎞

⎜
⎝
⎛  (2.3) 

The slope b is derived by a regression of the 

unit index flood against the drainage area 

(Fig. 2.1). The intercept a is determined by a 

parallel upshift of the regression until the enve-

lope curve bounds all unit floods of record 

(Castellarin et al., 2005). In a homogeneous 

region the index floods of all gauges are close 

to the regression line. In this study, a PREC 

was determined for each region with at least 

four sites. It was assumed that a lower number 

of sites is not representative for a regression 

analysis. 

An exceedance probability is assigned to that 

particular data pair of unit flood of record and 

its drainage area that determines the intercept 

of the envelope curve. This exceedance prob-

ability is valid for the range of catchment sizes 

covered in the pooling group. For this, the 

AMS of all gauging stations of that region 

were considered. The total number of sample 

years of data was reduced to an effective num-

ber of sample years of data, by accounting for 

cross-correlated sites (Castellarin, 2007). Sev-

eral studies have shown that the correlation of 

annual maximum series decreases with the 

distance of the catchments (see e.g. Hosking 

and Wallis, 1988; Troutman and Karlinger, 

2003). Under these assumptions, a regional 

cross-correlation function by Tasker and 

Stedinger (1989) (Eq. (2.4), from Castellarin, 

2007) was optimised using the distances be-

tween catchment centroids, the correlation 

coefficients between the AMS and the lengths 

of overlapping time series.  
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Fig. 2.1: Example of a Regional Envelope Curve. 
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d is the distance between catchment cen-

troids, ρ the correlation coefficient, λ1, λ2 the 

parameters, and i,j are the index denoting pairs 

of catchments. 

In comparison to Castellarin (2007), the 

method for considering intersite correlations 

was changed in this paper due to the larger 

number of catchments available and the pres-

ence of numerous nested catchments, i.e. gaug-

ing stations along the same river. Troutman 

and Karlinger (2003) emphasised that the cor-

relation between the AMS of nested catch-

ments was higher than for unnested catch-

ments. Guse et al. (2009) showed that distinct 

parameter sets for nested and unnested catch-

ments led to a reduction of the recurrence in-

terval of PRECs due to larger correlations be-

tween nested catchments. Hence, specific pa-

rameters of the cross-correlation function were 

used for nested and unnested catchments.  

Considering the intersite correlation, the 

overall effective sample years of data neff were 

calculated by an empirical relationship, which 

was determined by Castellarin et al. (2005) and 

Castellarin (2007) in Monte-Carlo simulations 

(Eq. (2.5)). This approach is based on the aver-

age correlation coefficient ρ (see Eq. (2.4)). 

Castellarin (2007) proposed an algorithm that 

can be applied for real world datasets with Y 

years, in which the record lengths of the 

gauges varies. In the first step of the algorithm, 

the number of years n1 was identified in which 

only one gauging station had a measured dis-

charge. These observations n1 were reasonably 

effective. The remaining years Y-n1 were di-

vided in )( 1nYYsub −≤  subsets with the same 

gauging stations Ls and the length ls. Next, for 

each subset s of ls years, the effective number 

of observations neff,s was calculated separately. 

Finally, the effective samples for all subsets 

were summed up. The number of effective 

sample years of data for the whole regional 

data set neff includes n1, the years with one 

observations, and the sum of neff,s (Eq. (2.5), 

adopted from Castellarin, 2007).  
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In this way the effective sample years of data 

is equivalent to the number of independent 

observations. This reduction of the regional 

plotting position determines the information 

content of the collected data (Castellarin, 

2007).  

The next step is a selection of an appropriate 

plotting position depending on an adequate 

distribution function to estimate the recurrence 

interval of the PREC. Castellarin (2007) rec-

ommended the use of the Hazen plotting posi-

tion (Eq. (2.6), from Castellarin (2007)) in 

order to get unbiased flood quantiles, when the 

Generalised Extreme Value (GEV) distribution 

is a suitable parent distribution. Its suitability 

for the case study is reported in “Study area 

and data”. As a result, the recurrence interval 

TPREC is twice as high as the number of effec-

tive observations neff. 

effPREC nT *2=  (2.6) 
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The exceedance probability is greatly influ-

enced by the formation of homogeneous re-

gions. Adding or removing only one gauging 

station to/from a homogeneous group modifies 

the effective sample years of data and hence 

the exceedance probability of the PREC. 

The discharge associated with the exceedance 

probability for a specific site is determined by 

the intercept of the drainage area and the re-

gional envelope curve. It is worth noting that 

the gauging stations within a region have a 

different influence on the exceedance probabil-

ity of the PREC. Due to the fact that the inter-

cept of the PREC is determined by the data 

pair of the highest unit flood of record and its 

drainage area, this gauging station is the most 

decisive. This aspect highlights the particular 

importance of a consistent assignment of gaug-

ing stations to pooling groups. 

A discharge QPREC and a recurrence interval 

TPREC were derived for all gauging stations of a 

region. TPREC is constant for all gauging sta-

tions in the region. Since the PREC was only 

calculated for homogeneous regions, the num-

ber of PREC realisations is different for the 

gauging stations. It depends on the number of 

homogeneous regions in which the specific 

gauging station is included.  

 

2.2.5 Sensitivity analysis 

The effect of pooling groups on PREC flood 

quantiles (QPREC, TPREC) was examined by a 

sensitivity analysis. Pooling groups of both 

pooling methods were derived for all candidate 

sets of catchment descriptors with a correlation 

coefficient to the unit index flood >0.60. For 

each candidate set of catchment descriptors, 

cluster analysis was applied five times (allow-

ing three to seven clusters) and the Region of 

Influence approach three times (with different 

thresholds in the physiographical space) (see 

“Formation of homogeneous regions”). These 

predefined number of clusters and thresholds 

in the physiographical space led to several 

candidate solutions of pooling groups. Ulti-

mately all pooling groups with a heterogeneity 

measure H1 < 2 were used to derive a PREC. 

Each PREC realisation led to a pair of QPREC 

and recurrence interval TPREC (PREC flood 

quantile) for each gauge of the pooling group.  

The rationale behind this scheme is that dif-

ferent constitutions of the regions lead to dif-

ferent realisations of PREC. The application of 

several candidate sets of catchment descriptors 

allows a quantification of the sensitivity of the 

PREC results in terms of the pooling method 

and the selected subset of catchment descrip-

tors. However, it is worth noting that the un-

certainty of the ensemble of PRECs results is 

not estimated by this procedure. 

 

2.2.6 Performance criteria 

The performance of PREC flood quantiles 

was evaluated by comparing them with a tradi-

tional index flood approach.  

The index flood method is based on the as-

sumption that a regional growth curve is valid 

for all sites of a pooling group. For this, the 

AMS was normalised by the index flood μX. 

To calculate the T-year flood X(T), a regional 
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quantile xT was scaled to at-site conditions by 

the index flood μX (Eq. (2.7)). 

TX xTX *)( μ=  (2.7) 

The GEV was also used for the index flood 

approach. The parameters were estimated with 

regional L-moments, by weighting at-site L-

moments of all gauges according to the data 

length (Robson and Reed, 1999). 

In order to assess the accuracy of PREC for 

ungauged catchments, a cross-validation pro-

cedure was applied. The PREC was recalcu-

lated following a leave-one-out jackknifing 

algorithm (Castellarin, 2007; Castellarin et al., 

2007), termed PREC-JK: (1) A pooling group 

with M sites, which fulfilled the homogeneity 

criteria, was selected. (2) A site m was ex-

cluded from this pooling group. (3) For the 

remaining M-1 stations the PREC-JK was cal-

culated and the recurrence interval of PREC-

JK (TPREC-JK) was determined. (4) The dis-

charge of PREC-JK QPREC-JK was evaluated for 

the given drainage area of the site m. Since site 

m was not included in the calculation, the 

PREC-JK result was considered as ungauged. 

(5) The index flood method was applied for the 

same pooling group. In this case the site m was 

included. The flood quantile for the given re-

currence interval TPREC-JK was calculated by the 

index flood method (QIF (TPREC-JK)). In this 

context the index flood method was assumed 

as the ‘true’ result. To get a perfect estimator 

for ungauged conditions, QPREC-JK(TPREC-JK) 

was compared with QIF (TPREC-JK) (Eq. (2.8), 

adopted from Castellarin, 2007).  
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 The cross-validation was performed for all 

homogeneous regions. It was repeated M-times 

for all sites within a cluster. In the case of a 

RoI, the jackknifing approach was only applied 

once for the site of interest. The relative error 

of PREC-JK in comparison to the index flood 

method enables us to compare the two pooling 

methods.  

 

2.3 Study area and data 

The study area is the federal state of Saxony 

in the south-east of Germany (Fig. 2.2). 

Saxony is characterised by the mountain range 

of the Erzgebirge in the south-west with eleva-

tion up to 1214 m above sea level (Fichtel-

berg) and a mean annual precipitation up to 

1244 mm (at the synoptic station Carlsfeld). 

The highest monthly precipitation occurs in 

summer (Flemming, 2001). The river Elbe 

with a drainage area of about 52,000 km² at the 

gauge Dresden is the biggest river in Saxony. 

Several feeder rivers originating in the Erzge-

birge flow into the Elbe, the most important 

one is the river Mulde (Fig. 2.2). The mountain 

range east of the Elbe has a lower elevation 

than the Erzgebirge. Towards the north the 

elevation flattens. The north-western and 

north-eastern parts of Saxony are influenced by 

mining activities.  

 



2.3 Study area and data 

 

23

 
Fig. 2.2: Study area: Elevation above sea level in the federal state of Saxony, Germany, and available 
discharge gauging stations coloured by the unit flood of record. 

 

In Saxony, several severe floods occurred in 

the past. Ulbrich et al. (2003) distinguished 

between flash floods along the tributaries of 

the rivers Elbe and Mulde and slowly rising 

river floods along the Elbe. The Erzgebirge 

was affected by local (e.g. in 1927, 1957) and 

regional floods (e.g. in 1954, 1958, 2002) 

(Pohl, 2004; Thieken et al., 2007). Among the 

regional floods, especially the recent destruc-

tive flood of 2002 along the rivers Elbe and 

Mulde and their tributaries from the Erzge-

birge is still present in people’s minds. During 

this event a record-breaking daily precipitation 

of 312 mm/day was measured at the synoptic 

station Zinnwald-Georgenfeld, which is lo-

cated in the upper stream of the Müglitz (Ul-

brich et al., 2003). For the 2002 flood, IKSE 

(2004) estimated recurrence intervals up to 

200 - 500 years at some tributaries of the Elbe 

river, e.g. at the rivers Mulde, Müglitz and 

Weisseritz.  

One hundred and seventeen discharge gaug-

ing stations from all over Saxony with the 

maximum discharges for each month were 

provided by Saxon authorities. For the catch-

ment of the Weisse Elster, which is only partly 

located in Saxony, additional data was pro-

vided by authorities of Thuringia and Saxony-

Anhalt. The gauging stations are evenly dis-

tributed throughout the area of this study 

(Fig. 2.2). All major rivers are included in the 

data set. Observation periods range from 20 to 

150 years with a mean length of 50 years. This 

data set includes extreme floods with local as 

well as regional spatial extent. The highest unit 

discharges were observed in the western tribu-
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taries of Elbe (i.e. at the rivers Gottleuba and 

Müglitz) and in the river Pliessnitz, a tributary 

of the Lausitzer Neisse near the German-Polish 

border (Fig. 2.2). Due to a few very extreme 

floods, the series of annual maximum floods 

show a high skewness, especially in the Erzge-

birge (Petrow et al., 2007).  

Since the index flood hypothesis requires a 

strong homogeneity within a region, only 

gauging stations were used that represented the 

regional hydrological situation. Thus, the 

available data set was reduced, i.e. gauges of 

heavily influenced rivers due to mining activi-

ties (four sites), gauging stations directly 

downstream of a dam (two sites) and very 

small catchments (<10 km2) (four sites) were 

discarded. Furthermore, only gauging stations 

with at least 30 years of data were used. Due to 

these restrictions the number of gauging sta-

tions was reduced to 95. 

The construction of pooling groups (see “For-

mation of homogeneous regions”) requires the 

derivation of different catchment descriptors. 

These predictor variables were pre-selected 

based on a literature review (e.g. Wiltshire, 

1986; Pitlick, 1994; GREHYS, 1996b; Castel-

larin et al., 2004; Merz and Blöschl, 2005). 

Those catchment descriptors were applied, 

which have yielded good results in flood re-

gionalisation studies (Tab. 2.2). All catchment 

descriptors are catchment averages. 

Tab. 2.2: List of catchment descriptors. 

Abbreviation Catchment descriptors 
MAP Mean annual precipitation (mm) 
MAXDAY Maximum daily precipitation (mm) 
P50 Annual frequency of days with precipitation of more than 50 mm/d (%) 
MAX5DAY Maximum precipitation in 5 days (mm) 
PAMS Mean of the annual maximum series of daily precipitation (mm) 
ELEV Mean elevation of the catchment (m asl) 
SLOPE Mean slope of the catchment (%) 
RANGE_NORM Range of catchment elevation, normalised with the catchment size (10-3m-1) 
ARABLE Fraction of arable land coverage (%) 
URBAN Fraction of urban land coverage (%) 
MINING Fraction of mining activities (%) 
BEDROCK Fraction of bedrock areas (%) 
KF_LOW Fraction of low permeability areas (%) 

 

Precipitation data with a daily resolution in 

and around Saxony was provided by the Ger-

man Weather Service (DWD). Precipitation 

indices were derived on the basis of 453 sta-

tions with at least 30 years of data in order to 

ensure a sufficient sample size. The second 

constraint was that the time series endured at 

least up to 2002. This year was selected be-

cause of the severe flood event in August 

2002. In order to optimise the spatial distribu-

tion of precipitation stations, 23 stations with 

an observation period of less than 30 years 

were additionally used to derive the maximum 

daily precipitation and the 5-day-precipitation 

sum. These stations were added, because the 

year of the maximum daily precipitation coin-

cided with the flood of record of the down-

stream gauging station. In these cases, it was 
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assumed that the maximum precipitation was 

representative for this catchment. The precipi-

tation values were interpolated for the different 

precipitation indices using ordinary kriging. In 

the next step the catchment boundaries were 

superimposed on the precipitation map and the 

mean value was derived for each catchment.  

The mean elevation of the catchments was 

derived from a digital elevation model for 

Saxony with a grid size of 25 m. Outside 

Saxony the SRTM-DEM (Jarvis et al., 2008) 

with a grid size of 90 m was resampled to 

25 ms. A mean slope was derived from this 

combined DEM. The DEM also provided the 

catchment centroids, from which the distances 

between the catchments were calculated, which 

were then used to optimise the theoretical 

cross-correlation function (see Eq. (2.4)). The 

digital landscape model ATKIS (BKG Geo-

DataCentre, 2005) was used to derive land-

scape parameters such as the fraction of urban 

area. The hydrogeological map HÜK200 

(1:200,000) of the Saxon State Agency of En-

vironment and Geology provided the fraction 

of bedrock and low permeability area. The 

hydrogeological map HÜK200 distinguished 

between bedrock and unconsolidated rock. 

Permeability was classified in eleven classes. 

Low permeability was assessed for all rocks 

with permeability <10-7 (AG Boden, 1994). 

Soil parameters were not used in this study, 

since for example Merz (2006) has emphasised 

the low performance of soil parameters in mul-

tiple regressions without a hydrological soil 

classification such as the Hydrology of Soil 

Types (HOST) classification in the United 

Kingdom (Boorman et al., 1995). The drainage 

area itself was not used as variable, because it 

is already included in the concept of regional 

envelope curves. 

Among the available data for the catchment 

descriptors only the DEM covered the catch-

ments outside of Saxony. Therefore, catch-

ments with insufficient information for the 

other catchment descriptors were omitted. This 

led to a further reduction of the data set. In 

total, all thirteen catchment descriptors listed 

in Tab. 2.2 were determined for 89 gauging 

stations shown in Fig. 2.2. Their catchment 

size varies between 13 (Rennersdorf 2/ Pli-

essnitz river) and 6170 km² (Bad Düben/ 

Mulde river). 

For each of the 89 gauges the flood of record 

QFOR was determined. In a further step, the 

annual maximum series (AMS), which contain 

the highest discharge for each hydrological 

year (1st November to 31th October), was 

calculated. Independence between flood events 

in the AMS was ensured by a time gap of at 

least 7 days between consecutive annual 

maxima (GREHYS, 1996b). L-moment ratio 

diagram (see e.g. Vogel and Fennessey, 1993; 

Peel et al., 2001) clearly indicates that the 

GEV is a suitable parent distribution function 

for the whole study area.  

 

2.4 Results 

2.4.1 Suitable candidate sets of catch-

ment descriptors 

Considering the 13 catchment descriptors 

listed in Tab. 2.2, 13 subsets with one, 78 with 
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two and 286 with three catchment descriptors 

resulted. Among the 377 possible subsets of 

one, two and three catchment descriptors, 39 

subsets have a correlation coefficient to the 

unit index flood higher than 0.6. All subsets 

with three catchment descriptors were checked 

for redundancy compared with the subsets with 

two catchment descriptors. The rationale be-

hind this approach was that an additional pa-

rameter ought to lead to a higher proportion of 

explained variance. Consequently, subsets with 

three catchment descriptors were only used (a) 

if they did not include two catchment descrip-

tors, which formed one of the selected subsets 

with two catchment descriptors, or (b) if the 

correlation coefficient was higher than this 

subset with two catchment descriptors. This 

procedure reduced the number of subsets from 

39 to 20. The test of multi-collinearity by the 

VIF-test resulted in no further reduction.  

Table 2.3 illustrates that the correlation coef-

ficient to the unit index flood of the 20 subsets 

differed between 0.60 and 0.70. All 20 subsets 

were considered as candidate set and were 

used to form homogeneous regions and to de-

rive a PREC. The selected subsets contain two 

or three catchments descriptors. Among the 

catchment descriptors precipitation and to-

pographic indices have a higher explanatory 

power than land use and geologic parameters. 

The maximum of the 5-day-precipitation sum 

(MAX5DAY), the range of elevation within 

the catchment (RANGE_NORM) and the frac-

tion of urban land coverage (URBAN) were 

most often included. 

Tab. 2.3: Selected subsets of catchment descriptors (CD) and the corre-
lation coefficient (COR) to the unit index flood of all gauging stations. 

CD1 CD2 CD3 COR 
MAX5DAY ELEV RANGE_NORM 0.70 
MAX5DAY RANGE_NORM URBAN 0.69 
MAP MAX5DAY RANGE_NORM 0.69 
MAX5DAY RANGE_NORM  0.68 
MAX5DAY ELEV URBAN 0.68 
ELEV RANGE_NORM URBAN 0.66 
PAMS RANGE_NORM URBAN 0.64 
MAX5DAY ELEV  0.64 
ELEV RANGE_NORM  0.64 
MAP MAX5DAY URBAN 0.64 
MAP MAX5DAY  0.62 
MAP RANGE_NORM  0.62 
PAMS RANGE_NORM  0.62 
P50 RANGE_NORM URBAN 0.61 
MAX5DAY ARABLE URBAN 0.61 
MAXDAY RANGE_NORM URBAN 0.61 
MAX5DAY URBAN BEDROCK 0.61 
MAX5DAY PAMS URBAN 0.61 
RANGE_NORM URBAN BEDROCK 0.60 
RANGE_NORM BEDROCK  0.60 
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2.4.2 Results for the best subset of 

catchment descriptors 

The best subset of predictor variables con-

tains MAX5DAY, the mean elevation (ELEV) 

and RANGE_NORM with a correlation coeffi-

cient of 0.70 (Tab. 2.3). The pooling groups 

derived by cluster analysis are illustrated in 

Tab. 2.4, using the solution with seven clusters 

as an example. The heterogeneity measure of 

the cluster analysis shows that there are four 

(H1 < 2) homogeneous regions (clusters 1, 2, 4, 

and 6) (Tab. 2.4). Clusters 3 and 7 are strongly 

heterogeneous. The H1-test was not applied for 

cluster 5, because there are only two sites in 

this cluster. For these three regions the as-

sumptions of PREC are not fulfilled. Thus a 

PREC was only calculated for the clusters 1, 2, 

4 and 6.  

The RoI approach provides one region for 

each of the 89 gauging stations. As outlined in 

“Formation of homogeneous regions”, three 

different thresholds of the similarity measure 

were applied. The total number of PREC reali-

sations is lower than 89, because in several 

cases the number of sites in the RoI is lower 

than four (Tab. 2.5). Only for 50 sites, there 

are at least four sites in the physiographical 

space with a Euclidean distance lower than 0.5. 

It becomes apparent that, also for the RoI ap-

proach, the method of PREC is not applicable 

for all gauging stations. 

 In summary, with both pooling methods het-

erogeneous regions were constructed, for 

which it was impossible to calculate a PREC. 

As mentioned before, this deficiency could 

partly be compensated by the use of different 

subsets of catchment descriptors. 
 

Tab. 2.4: Results of heterogeneity measure and of PREC method for the best subset of catchment 
descriptors, derived by cluster analysis for the seven-cluster solution. 

Cluster 1 2 3 4 5 6 7 
Number of gauges 7 24 10 18 2 8 20 
H1 0.6 0.8 7.8 1.5  -1.4 9.3 
Number of observations 277 1471  1326  498  
Effective number of observations 160 483  403  202  
Recurrence interval [a] 320 966  805  403  

 
Tab. 2.5: Number of sites below and above 
the threshold (H1=2) of the heterogeneity 
measure for the best subset of catchment de-
scriptors constructed by the Region of Influ-
ence approach using different thresholds of 
the Euclidean distance. 

Threshold H1 < 2 H1 > 2 Sum 
0.5 28 22 50 
1 27 49 76 
2 14 74 88 

 

 

2.4.3 Analysis of homogeneous regions 

for different candidate sets of 

catchment descriptors 

Since 20 subsets of catchment descriptors 

were selected and the cluster analysis was per-

formed five times (number of clusters from 3 

to 7), altogether 500 regions were constructed 

and checked for homogeneity by the Hosking-

Wallis test. The fraction of homogeneous re-

gions (H1 < 2) is in the range between 43% 
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(3 cluster) and 54% (7 cluster) for the different 

numbers of clusters (Tab. 2.6). 

With the RoI approach, one region was 

formed for each gauging station and each sub-

set of catchment descriptors. The fraction of 

homogeneous regions is strongly influenced by 

the threshold of the Euclidean distance in the 

physiographical space. The number of homo-

geneous regions decreases from 54% for a 

threshold of 0.5 to 12% for a threshold of 2. As 

expected, both methods reveal that the fraction 

of homogeneous regions increases with a de-

creasing number of gauging stations (higher 

number of clusters, lower RoI-threshold).  

The distribution of the relative number of 

homogeneous regions shows a spatial pattern 

for both pooling methods (Fig. 2.3). The gaug-

ing stations in the Erzgebirge are mostly 

grouped in homogeneous regions. In contrast, 

there are no or only a low number of homoge-

neous regions for several gauges in the Weisse 

Elster subbasin and east of the Elbe. The rela-

tive number of homogeneous regions is larger 

for the cluster analysis than for the RoI ap-

proach. This can be explained by the low num-

ber of homogeneous regions that were con-

structed for a threshold of two in the RoI ap-

proach (Tab. 2.6).  

 

Fraction of homogeneous regions
Catchments

Pooling method

Region of Influence

Cluster analysis

Elbe

Elbe tributaries

Schwarze Elster

Mulde

Weisse Elster

Spree

Lausitzer Neisse0 10 20 30 405
Kilometers

50%

0%

100%

Sources: 
Geoinformation © BKG (2005)

CCM River and Catchment Database © European Commission - JRC, Vogt et al. (2007)  
Fig. 2.3: Fraction of homogeneous regions (H1<2) [%] by cluster analysis and Region of Influence for the 
gauging stations in the study area. 
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Tab. 2.6: Number of homogeneous regions derived by cluster analysis 
and Region of Influence (RoI). 

Number of clusters H1 < 2 H1 > 2 H1 < 2 [%] 
3 26 34 43.3 
4 35 44 44.3 
5 48 47 50.5 
6 58 55 51.3 
7 67 58 53.6 
    
RoI-threshold    
0.5 575 493 53.8 
1 628 1002 38.5 
2 212 1539 12.1 

The H1-test was not applied for pooling groups with less than four sites. 

 

2.4.4 PREC results for candidate sets 

of catchment descriptors 

Due to the fact that one PREC is provided for 

each homogeneous region, it is not possible to 

show all PREC realisations for all sites. All 

PREC realisations for the gauging station 

Dohna/Müglitz are shown as an example in 

Fig. 2.4. In addition, the pairs of the unit flood 

of record and the drainage area, which deter-

mine the intercept of PREC, are highlighted by 

black circles. The site itself is indicated sepa-

rately. Both figures illustrate the influence of 

different subsets of catchment descriptors and 

pooling methods on the results of PREC.  

Besides the slope and the intercept, also the 

range of the catchment size that is covered by 

the PREC depends on the constitution of the 

pooling group. As expected, the slope de-

creases with catchment size with two excep-

tions for RoI. In the example shown in Fig. 2.4 

four sites govern the intercept of PREC includ-

ing the selected site itself for both pooling 

methods.  
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Fig. 2.4: All PREC realisations for the gauge Dohna in homogeneous regions derived by cluster analysis 
(left) and RoI (right). 
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As illustrated in Fig. 2.5, the results of PREC 

for the gauge Dohna differ in discharge 

(400-630 m³/s) and recurrence interval 

(300-1200 years) for the two pooling schemes, 

as well as for different subsets of catchment 

descriptors. As expected, the discharge aug-

ments with increasing recurrence interval. The 

site itself has only a minor influence on the 

recurrence interval, because all AMS of the 

region are collected together (overall sample 

years of data).  
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Fig. 2.5: Pairs of discharges and recurrence inter-
vals for all PREC realisations of the gauge Dohna. 

 Both pooling methods show the influence of 

the pair of the unit flood of record and drain-

age area, which determines the intercept of 

PREC. All discharges are at least 400 m³/s, 

which is the flood of record at the gauge 

Dohna. In this example the PREC results of 

both methods are scattered in three groups. In 

the first group, the gauge Dohna itself deter-

mines the intercept of PREC. The gauge Dip-

poldiswalde and Rehefeld or Hainsberg 1 in 

the case of the cluster analysis or RoI, respec-

tively, have the highest unit flood of record for 

the PREC realisations of the second group, 

where the discharge varies between 400 and 

480 m³/s (Figs. 2.4 and 2.5).  

In the third group, the discharge of PRECs 

for the gauge Dohna is between 580 and 

630 m³/s. The intercept of these PRECs is de-

termined by the gauge Neundorf and in two 

cases for the cluster analysis also by Rehefeld. 

The range is caused by the different slopes of 

the PRECs, which were derived for pooling 

groups with different combinations of gauges. 

The higher the difference in the catchment size 

(e.g. Rehefeld (15 km²) and Dohna (198 km²), 

(see Fig. 2.4)), the larger is the PREC dis-

charge affected by a variation of the slope. 

The three groups of PREC realisations show 

that the inclusion of a gauge with a high unit 

flood of record (here: Neundorf) results in an 

upshift of the PREC. The extent of the upshift 

depends on the difference between the unit 

flood of record of the site of interest and the 

highest unit flood of record in the homogene-

ous group. It is important to highlight that 

Dohna and Neundorf have a relatively high 

unit flood of record. For a gauging station with 

a lower unit flood of record, the difference 

between the unit flood of record and the re-

gional envelope curve discharge might be sig-

nificantly higher, if the PREC is also deter-

mined by Neundorf.  

 

2.4.5 Performance evaluation of PREC 

The reliability of the PREC was evaluated by 

a leave-one-out jackknifing procedure 

(PREC-JK). The relative error of the PREC-JK 

to the index flood method was calculated for 
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each gauging station (see Eq. (2.8)). In 

Fig. 2.6, only those gauging stations were con-

sidered, which had at least eight PREC-JK 

realisations. This criterion was fulfilled for 68 

(Cluster analysis) and 61 sites (RoI), with on 

average 44 and 21 PREC-JK realisations, re-

spectively. 

The PREC-JK approach for both pooling 

methods illustrates that the median of the rela-

tive error is in most cases positive (Fig. 2.6). A 

high positive relative error indicates a high 

over-estimation of the discharge of PREC-JK 

for this recurrence interval in comparison to 

the index flood method. A negative relative 

error occurs for the gauging stations which 

determine the intercept of REC or which are 

close to the REC (see Fig. 2.7). Comparing the 

pooling methods, the relative errors (median of 

the box) as well as the scatter (size of the box) 

are similar for cluster analysis and RoI 

(Fig. 2.6).  

The relative error between PREC-JK and the 

index flood method depends on the position of 

the gauging station in the ‘unit discharge-area 

plot’ (Fig. 2.7). If the unit flood of record qFOR 

of a gauging station is close to the regional 

envelope curve, the unit discharge qPREC-JK 

derived from the regional envelope curve for 

this station is similar to or lower than that of 

the index flood method. In contrast, the higher 

the difference between the regional envelope 

curve qPREC and the flood of record discharge 

qFOR for a gauging station, the higher the rela-

tive error of PREC-JK in comparison to the 

index flood method. This relationship has a 

correlation coefficient of 0.73 (see Fig. 2.7).  
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Fig. 2.6: Relative error of the PREC realisations for the two pooling methods cluster analysis (top) and Re-
gion of Influence (bottom) for the 89 sites of the study area. The boxplot edges are formed by the 25th and 
75th percentiles. Outliers are illustrated with red crosses. 
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Fig. 2.7: Relative error of PREC-JK versus the 
distance of the unit flood of record qFOR to qPREC for 
pooling groups identified by cluster analysis and 
the Region of Influence approach. 
 

2.4.6 Assessing the effect of the thresh-

old of the heterogeneity measure 

The homogeneity of a pooling group is a fun-

damental assumption of PREC. The influence 

of the degree of homogeneity on PREC was 

determined by varying the threshold of the 

heterogeneity measure. In order to consider the 

influence of the threshold on PREC, the sensi-

tivity analysis was repeated for stronger 

(H1 < 1) and weaker (H1 < 4) thresholds of the 

Hosking-Wallis test. Following the classifica-

tion of Hosking and Wallis (1997), a threshold 

of H1 < 1 means that ‘possibly homogeneous 

regions’ (1 < H1 < 2) are excluded (Tab. 2.1). 

By increasing the threshold to four, also 

‘slightly heterogeneous regions’ (2 < H1 < 4) 

are included. In this case only ‘strong hetero-

geneous regions’ (H1 > 4) are excluded. The 

influence of the relative number of homogene-

ous regions for different thresholds of the 

Hosking-Wallis test has been discussed by 

Cunderlik and Burn (2002). An increase of H1 

from 2 to 4 results in a larger number of ho-

mogeneous regions (Fig. 2.8). This is espe-

cially relevant for those gauging stations, 

which were only seldom grouped in a homo-

geneous region when applying the strict defini-

tions of homogeneity. 
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Fig. 2.8: Relative number of homogeneous regions for different thresholds of heterogeneity 
for cluster analysis and Region of Influence. 
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A comparison of the mean absolute relative 

error for the three thresholds illustrates that 

an increase in the degree of heterogeneity 

leads to a higher mean absolute relative error 

for most of the gauging stations and for both 

pooling methods (Fig. 2.9, Tab. 2.7). In addi-

tion, there are more results of the mean abso-

lute relative error for H1 < 4 because of the 

higher number of PREC realisations.  

Considering that the relative error was calcu-

lated with the index flood method as reference, it 

is necessary to mention that the index flood es-

timate is subject to a higher uncertainty due to 

the higher degree of heterogeneity.  
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Fig. 2.9: Mean absolute relative error of PREC-JK for both pooling methods (cluster analysis, Region of 
Influence (RoI)) using different thresholds of the heterogeneity measure H1. The mean absolute relative error 
is illustrated for sites with at least four PREC-JK realisations. 
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Tab. 2.7: Overall performance indices of the jackknifing procedure for both pooling methods and the dif-
ferent thresholds of the heterogeneity measure. 

 Cluster analysis Region of Influence 
H1 < 1: n = 57   
Mean of the mean absolute relative error 0.54 0.54 
Mean of the standard deviation of absolute relative error 0.21 0.26 
H1 < 2: n = 70   
Mean of the mean absolute relative error 0.81 0.69 
Mean of the standard deviation of absolute relative error 0.36 0.40 
H1 < 4: n = 75   
Mean of the mean absolute relative error 1.12 0.88 
Mean of the standard deviation of absolute relative error 0.56 0.53 

n = Number of sites with at least four PREC realisations 

 
An overall performance indice was calculated 

as follows. All sites were selected which had at 

least four realisations for both pooling methods 

(see Tab. 2.7). The mean and the standard de-

viation of the absolute relative errors were 

calculated for all PREC realisations of these 

sites (n in Tab. 2.7). Both were averaged over 

the n sites. These performance indices increase 

with a higher degree of heterogeneity 

(Tab. 2.7). The result emphasises the relevance 

of the homogeneity criteria for PREC. The two 

performance indices are similar for the cluster 

analysis and RoI for the three thresholds of 

heterogeneity. 

 

2.5 Discussion 

The method of probabilistic regional enve-

lope curves (PREC) derives a flood discharge 

and its recurrence interval for a homogeneous 

group of discharge gauges. One main assump-

tion is its applicability in a homogeneous re-

gion in terms of the index flood method. 

By using different subsets of catchment de-

scriptors and two pooling methods (cluster 

analysis and RoI), a large number of homoge-

neous regions, which fulfilled the heterogene-

ity measure of Hosking and Wallis (1993), was 

derived for the mountainous catchments in 

Saxony. In contrast, the gauges located in the 

lowlands were mostly grouped in heterogene-

ous regions, which mean that the method of 

PREC could not be applied.  

The reliability of PREC was assessed by a 

cross-validation procedure and a comparison 

with the index flood method. For a better un-

derstanding of the cross-validation results, it is 

worth emphasising an important difference 

between the index flood method and the 

PRECs. The index flood method represents the 

mean flood behaviour in a homogeneous re-

gion by a regional growth curve. Under this 

assumption it is expected that there are very 

small differences between the at-site flood 

behaviour and the regional distribution func-

tion in a homogeneous region. In contrast, the 

regional envelope curve is governed by the 

highest flood of record in a homogeneous re-

gion. Under the assumption that the estimation 

of the flood of record is more uncertain than 

the estimation of the index flood, the PREC is 

more sensitive to gauging stations with a high 

difference of an at-site flood of record to 

PREC than the index flood estimation. 
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The results of the PREC can be compared 

with a traditional at-site flood frequency analy-

sis. The example of Dohna shows that most of 

the PREC realisations are close to the GEV 

distribution function (Fig. 2.10). This fact en-

hances the accuracy of the flood quantile esti-

mates for high recurrence intervals. If there 

were large deviations between PREC and at-

site flood frequency analysis, a more detailed 

consideration of the hydrologic situation at this 

gauge would be required. 
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Fig. 2.10: Comparison of PREC results of both 
pooling methods with at-site flood frequency analy-
sis (GEV) for Dohna. 
 

It is important to highlight an essential differ-

ence of the PREC in comparison to other re-

gionalisation methods. The magnitude of the 

recurrence interval of a PREC is mainly gov-

erned by one data point, i.e. the pair of the 

maximum unit flood of record and its drainage 

area. Castellarin et al. (2005) emphasised that a 

discordant site might reduce the use of the 

PREC method, since the recurrence interval is 

governed by the largest standardised maximum 

flood.  

In other flood regionalisation methods (e.g. 

index flood, multiple regressions) commonly 

all sites have the same influence or their influ-

ence is weighted according to a selected 

weighting scheme. Sites, which are closer to 

other stations in a real or physiographical 

space, have higher weights. Consequently, the 

effect of a discordant site could be reduced by 

weighting the sites according to their similarity 

to the considered site or by averaging the val-

ues for all sites of a region. However, in the 

PREC concept weighting or averaging of sites 

is not possible when deriving the intercept of 

the PREC. Thus, in the PREC concept, the site 

that determines the intercept, plays an excep-

tional role. Because of that, an appropriate 

construction of homogeneous pooling groups 

is extremely important for PRECs. 

The explicit estimation of a recurrence inter-

val in the PREC scheme is another difference 

to traditional regional flood frequency meth-

ods. Whereas a target recurrence interval might 

be predefined in traditional approaches, the 

recurrence interval of PREC could only be 

approximately approached by the number of 

sites within a pooling group. 

 

2.6 Conclusion 

In this study the method of probabilistic re-

gional envelope curves (PREC) was applied 

for the first time outside the original study area 

in Italy. It was shown that the transfer of this 

method to another region with different geo-

graphical conditions is possible. The goal of 

this paper was to quantify the influence of the 

pooling methods on PREC and to determine 

the sensitivity of PREC flood quantiles within 
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different pooling groups. A combination of 

PREC and the RoI approach was introduced 

and compared with fixed homogeneous re-

gions.  

The main outcomes of this study are: 

 
(1) The number of homogeneous regions 

strongly depends on the physiographic 

conditions of the catchment. The applica-

tion of both pooling methods with differ-

ent candidate sets of catchment descrip-

tors leads to a high number of homoge-

neous regions for the mountainous catch-

ments and to a lower number for gauges 

in the lowlands and the eastern part of 

Saxony.  

(2) A sensitivity analysis illustrates that 

PREC flood quantiles change in dis-

charge as well as in the assigned recur-

rence interval depending on the constitu-

tion of the pooling group. It is thus rec-

ommended to compare different subsets 

as demonstrated in this study instead of 

using only the best subset of predictions. 

(3) A leave-one-out jackknifing approach for 

ungauged conditions emphasises a simi-

lar relative error of the PREC results for 

both pooling methods (cluster analysis, 

RoI). An overall performance indice also 

affirms an increasing absolute relative er-

ror for different degrees of heterogeneity. 
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3 Effects of intersite dependence of nested catchment struc-
tures on probabilistic regional envelope curves 

 

Abstract 

This study analyses the intersite dependence of nested catchment structures by modelling cross-

correlations for pairs of nested and unnested catchments separately. Probabilistic regional envelope 

curves are utilised to derive regional flood quantiles for 89 catchments located in Saxony, in the 

Southeast of Germany. The study area has a nested structure and the intersite correlation is much 

stronger for nested pairs of catchments than for unnested ones. Pooling groups of sites (regions) are 

constructed based on several candidate sets of catchment descriptors using the Region of Influence 

method. Probabilistic regional envelope curves are derived on the basis of flood flows observed 

within the pooling groups. Their estimated recurrence intervals are based on the number of effec-

tive sample years of data (i.e. equivalent number of uncorrelated data). The evaluation of the effec-

tive sample years of data requires the modelling of intersite dependence. We perform this globally, 

using a cross-correlation function for the whole study area as well as by using two different cross-

correlation functions, one for nested pairs and another for unnested pairs. In the majority of the 

cases, these two modelling approaches yield significantly different estimates for the effective sam-

ple years of data, and therefore also for the recurrence intervals. The reduction of the recurrence 

interval when using two different cross-correlation functions is larger for larger pooling groups and 

for pooling groups with a higher fraction of nested catchments. A separation into nested and un-

nested pairs of catchments gives a more realistic representation of the characteristic river network 

structure and improves the estimation of regional information content. Hence, applying two differ-

ent cross-correlation functions is recommended. 
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3.1 Introduction 

The estimation of flood quantiles is a major 

topic in hydrologic research and engineering 

practise. Due to the uncertainty in the estima-

tion of flood discharges with large recurrence 

intervals T (e.g. T>100 years) by an at-site 

flood frequency analysis, several gauges may 

be pooled together in a pooling group follow-

ing the principle ‘trading space for time’ (e.g. 

Stedinger et al., 1993; Robson and Reed, 

1999). Therefore, it is assumed that analysis 

results, e.g. results of a regional flood fre-

quency analysis (RFFA), are valid for all 

gauges of a specific pooling group. RFFA aims 

at improving the estimation of flood quantiles 

by using the larger number of flood data. 

However, an improvement can only be reached 

by increasing the effective sample years of 

data (i.e. the number of independent observa-

tions). The increase in the effective sample 

years of data when adding a new site to a pool-

ing group can be assessed by considering the 

intersite correlations or cross-correlations 

among all gauges in a pooling group (Matalas 

and Langbein, 1962). 

A pooling group comprises catchments of 

similar hydrologic behaviour. In flood region-

alisation studies, fixed homogeneous regions 

are traditionally used, whereby each site is 

explicitly assigned to one region, e.g. through 

cluster analysis (e.g. Acreman and Sinclair, 

1986; Nathan and McMahon, 1990; Rao and 

Srinivas, 2006). In contrast, the Region of the 

Influence (RoI) approach (e.g. Burn, 1990a,b; 

Zrinji and Burn, 1994) constructs a separate 

pooling group for each site in the region under 

study.  

Several methods and many studies on re-

gional flood frequency analysis have been 

presented (e.g. Cunnane, 1988; GREHYS, 

1996a,b; Robson and Reed, 1999; Merz and 

Blöschl, 2005; Ouarda et al., 2008). A com-

mon application is the widely used index flood 

approach, which assumes that a regional 

growth curve is representative for all sites of a 

homogeneous region. The at-site flood quan-

tiles vary only in the scale factor index flood 

(e.g. Dalrymple, 1960; Stedinger and Lu, 1995; 

Robson and Reed, 1999). Linear regression 

models relate catchment descriptors (e.g. 

drainage area, precipitation indices) to a prede-

fined flood quantile (e.g. Rosbjerg and 

Madsen, 1995; Kroll and Stedinger, 1998; 

Robson and Reed, 1999; Reis et al., 2005). 

Recently, geostatistical methods (e.g. Top-

Kriging) were introduced to regionalise flood 

quantiles (Merz and Blöschl, 2005; Skoien et 

al., 2006).  

Regional envelope curves (REC) are a variant 

of linear regression models which only use the 

size of the drainage area to estimate the maxi-

mum flood discharge (e.g. Crippen and Bue, 

1977; Herschy, 2002). A shortcoming of the 

traditional REC method is, however, that no 

recurrence interval can be assigned to the 

maximum discharge. Therefore, Castellarin et 

al. (2005) proposed the method of probabilistic 

regional envelope curves (PREC), which en-

hance the traditional REC approach with a 

probabilistic interpretation. The method of 

PREC requires a pooling group, which fulfils 
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the homogeneity criteria of the index flood 

method. The recurrence interval of PREC is 

directly related to the effective sample years of 

data. Hence, its calculation algorithm explicitly 

considers the effect of cross-correlated sites in 

a pooling group of data.  

Several studies have demonstrated the rele-

vance of intersite correlation for regional flood 

estimates (e.g. Stedinger, 1983; Hosking and 

Wallis, 1988; Madsen and Rosbjerg, 1997a; 

Vogel et al., 2001). Matalas and Langbein 

(1962) introduced the concept of regional in-

formation content to determine the effect of 

intersite correlation within flood sequences. 

The regional information content expresses the 

number of independent discharge observations. 

The authors showed that the variance of the 

regional mean increases for cross-correlated 

sites. 

Kuczera (1983) assessed that a low number 

of observations and the presence of intersite 

correlation leads to a larger uncertainty of an 

empirical Bayes estimator. Stedinger (1983) 

demonstrated that the variance of the regional 

variance and skewness increases due to inter-

site correlation. Hosking and Wallis (1988) 

pointed out that cross-correlation among sites 

leads to less accurate estimates of regional 

flood quantiles; however, the influence of re-

gional heterogeneity is more significant. Ap-

plying hydrologic linear regression models, 

Stedinger and Tasker (1985) introduced inter-

site correlation by extending the weighted least 

square (WLS) to the generalised least square 

(GLS) method, which explicitly considers the 

impact of cross-correlated sites. Several studies 

confirmed that the GLS estimator outperforms 

the WLS or the ordinary least squares (OLS) 

estimator for the application of linear regres-

sion models in the case of cross-correlated 

sites (see e.g. Stedinger and Tasker, 1985, 

1986; Kroll and Stedinger, 1998; Reis et al., 

2005).  

The impact of intersite correlation on regional 

estimates was analysed for Partial Duration 

Series by Madsen and Rosbjerg (1997a, b) and 

for Annual Maxima Series by Kjeldsen and 

Rosbjerg (2002) and Kjeldsen and Jones 

(2006). Madsen and Rosbjerg (1997a) pointed 

out that intersite correlation needs to be con-

sidered to accurately assess the uncertainty of 

the regional estimator. It has recently been 

demonstrated by Castellarin et al. (2008) that 

intersite correlation affects the heterogeneity 

measure of Hosking and Wallis (1993), which 

estimates the hydrologic heterogeneity of a 

region. 

The distance between two catchments is gen-

erally assumed to be the most important factor 

for intersite correlation resulting in different 

cross-correlation models. In these models, the 

correlation coefficient decreases as a function 

of the distance between the catchments (see 

e.g. Tasker and Stedinger, 1989; Troutman and 

Karlinger, 2003).  

The effects of the river network structure and 

mutual location of catchments were considered 

by Troutman and Karlinger (2003). They 

pointed out that peak flows between nested 

catchments, i.e. catchments along the same 

stream, are more correlated than peak flows 

between unnested catchments. In terms of 
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flood regionalisation methods Skoien et al. 

(2006) demonstrated the better performance of 

Top-Kriging, which considers the effect the 

river network structure, in comparison to a 

traditional Ordinary Kriging approach, which 

is based only on the distances between the 

catchments. 

Castellarin et al. (2005) developed an empiri-

cal function by using a Monte-Carlo simulation 

to reveal the reduction of the overall sample 

years of data in a pooling group due to intersite 

correlation, and to obtain the effective number 

of sample years of data for estimating the re-

currence interval of a PREC. This is equivalent 

to the number of independent data associated 

with the concept of information content by 

Matalas and Langbein (1962). Castellarin 

(2007) examined the accuracy of PREC flood 

quantiles by comparing different cross-

correlation functions for an Italian data set. 

Owing to the small number of nested catch-

ments, different cross-correlation functions for 

nested and unnested catchment relationships 

were not estimated.  

In this study, we assess the impact of differ-

ent approaches to model regional cross-

correlation structure with respect to their im-

pact on the effective number of observations 

and the recurrence interval of probabilistic 

regional envelope curves (PREC). First, a 

global approach is considered, in which the 

cross-correlation function is identified for the 

whole study area. Second, the method of 

PREC as described by Castellarin et al. (2005) 

and Castellarin (2007) is extended by deriving 

two different cross-correlation functions, one 

for nested pairs of catchments and one for un-

nested ones. While applying both approaches 

we did not vary any other aspect of flood re-

gionalisation (e.g. selection of catchment de-

scriptors, pooling method, etc.), since our in-

vestigation mainly focuses on the correlation 

structure for nested and unnested pairs of 

catchments. Significant factors, which influ-

ence the effect of intersite correlation on 

PREC, are determined. The study region, 

Saxony in south-eastern Germany, includes 

several pairs of nested catchments and enables 

us to examine in detail the effect of nested 

catchment structures on PREC flood quantiles, 

whose importance was not adequately ac-

knowledged in previous studies. 

 

3.2 Methods 

3.2.1 Regional information content and 

number of effective observations 

The regional information content (IC) can be 

defined as the ratio of the effective sample 

years of data neff to the total sample years of 

data n. The effective sample years of data 

represents the equivalent number of independ-

ent observations within a pooling group 

(Eq. 3.1). 

n
n

IC eff=  (3.1) 

The core idea of regional information content 

(Matalas and Langbein, 1962) is that a corre-

lated site gives a lower degree of additional 

information to the site being studied than an 

uncorrelated site. Hence, the additional infor-

mation decreases for a higher intersite correla-
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tion. An IC of 1 means that these sites are 

completely uncorrelated (independent), imply-

ing that the total flood sequence gives addi-

tional information ( nneff = ). In contrast, a 

small value of IC indicates that there is only 

low additional information within the time 

series (Matalas and Langbein, 1962). 

On the basis of the regional information con-

tent, Castellarin et al. (2005) and Castellarin 

(2007) estimated the exceedance probability of 

a regional envelope curve. The effective sam-

ple years of data neff, hereafter also referred to 

as the number of effective observations, were 

calculated by reducing the total sample years 

of the AMS of all gauges in two steps (Castel-

larin, 2007). First, the intersite correlation be-

tween the different AMS was modelled as a 

function of the distance between the catchment 

centroids. Second, the results of the cross-

correlation function were used to estimate the 

number of effective observations. 

(1) A regional cross-correlation function 

(Eq. 3.2, from Castellarin, 2007), proposed by 

Tasker and Stedinger (1989), was applied, 

which estimates the cross-correlation as a func-

tion of the distance. 
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d= distance between catchment centroids, ρ= 

correlation coefficient by Pearson, λ1, λ2= pa-

rameters, i, j= index denoting pairs of catch-

ments 

Therefore, empirical cross-correlation coeffi-

cients between the AMS were related to the 

distances between the catchment centroids. By 

using catchment centroids the river network 

structure is incorporated in the distance calcu-

lation (e.g. Troutman and Karlinger, 2003). 

The parameters 1λ and 2λ  of the cross-

correlation function were fitted by a weighted 

optimisation, in which empirical coefficients 

were weighted proportionally to the length of 

the overlapping time series.  

(2) The number of effective observations was 

calculated by an empirical relationship, which 

incorporated the theoretical average cross-

correlation values from Eq. (3.2). The data set 

of a specific pooling group comprises M times 

AMS with a variable length, but not more than 

Y years. The length of the AMS varies due to 

missing observations or different observations 

periods. In a first step, all years n1 with only 

one observation among the M discharge time 

series were considered separately. In these 

years, all other (M-1) gauging stations have no 

discharge measurements. The n1 observations 

are certainly effective, because there is only 

one discharge value within the pooling group 

for this year (Castellarin, 2007). 

After this, the Y–n1 remaining years were 

analysed. These years were split into Ysub sub-

sets with Ysub≤ (Y-n1). In each of these subsets 

(denoted as s), there were Ls flood sequences 

with an equal length of years ls with Ls≤M. 

The number of effective observations of a sub-

set neff,s was calculated for each subset s sepa-

rately. Then, the numbers of effective observa-

tions neff,s were summed up for all subsets. In 

the last step, the number of effective sample 

years of data neff comprises the n1 years with 

one observation and the sum of the numbers of 

effective observations neff,s for all Ysub subsets. 
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The number of effective observations was cal-

culated by an empirical relationship derived by 

Castellarin et al. (2005) and Castellarin (2007) 

from Monte-Carlo simulations (Eq. (3.3), 

adopted from Castellarin, 2007).  
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where the term [ ] sL denotes that the average 

values βρ and 376.0)1( ρ−  are calculated for the 

Ls annual flood sequences. 

It becomes apparent that different parameter 

values for λ1 and λ2 directly affect the results 

of Eq. (3.2) and therefore also of Eq. (3.3). 

Consequently, the number of effective obser-

vations neff is affected by using different pa-

rameter sets for the cross-correlation function. 

Equation (3.3) illustrates that the magnitude of 

neff depends on the size of the available data set 

and their cross-correlation characteristics. 

 

3.2.2 Probabilistic Regional Envelope 

Curves 

The calculation of the number of effective 

sample years of data is a fundamental step 

towards the estimation of the exceedance prob-

ability of a regional envelope curve. A regional 

envelope curve (REC) is determined by relat-

ing all floods of record QFOR normalised by the 

drainage area A to A (Eq. (3.4), adopted from 

Castellarin, 2007). The flood of record is the 

largest discharge of each time series. 

)log(*log Aba
A

QFOR +=⎟
⎠
⎞

⎜
⎝
⎛  (3.4) 

a= intercept of REC, b = slope of REC.  

The concept of the probabilistic regional en-

velope curve (PREC) requires that two basic 

assumptions are fulfilled: Firstly, PREC is 

based on the index flood hypothesis. The index 

flood method (Dalrymple, 1960) requires that 

all selected flood series constitute a homoge-

neous region. These flood series are identically 

distributed, i.e. have the same growth curve, 

except for the scale parameter, the index flood 

(e.g. Robson and Reed, 1999). In this study, 

the mean of the AMS was used as index flood. 

Secondly, there is a scaling of the index flood 

μX to the drainage area (A) (Eq. (3.5), from 

Castellarin et al., 2005). The index flood de-

pends on the drainage area alone. 

1* += b
X ACμ  (3.5) 

A regional envelope curve can be derived in 

two steps. First, the slope b is estimated by a 

regression analysis (orange line in Fig. 3.1). 

The second step is a parallel upshift of the 

regression line up to the intercept a. Then all 

floods of record are bounded by REC (blue 

line in Fig. 3.1) (Castellarin et al., 2005).  

Since the PREC method is based on the index 

flood hypothesis, the derivation of a pooling 

group which fulfils the homogeneity criteria of 

the index flood hypothesis is an essential step 

in the PREC concept. In this work, PREC was 

applied for all regions with at least four sites. 
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Fig. 3.1: Example of a Regional Envelope Curve 
(REC)  

The core idea of PREC is the assignment of 

an exceedance probability to a REC. The ex-

ceedance probability is estimated for that par-

ticular data pair (i.e. the unit flood of record 

and associated drainage area) which deter-

mines the intercept of REC. This is the ex-

ceedance probability of the largest unit flood 

of record in the region. 

For this purpose, the plotting position of the 

maximum unit flood of record was used, which 

was determined by the number of effective 

observations neff (Eq. 3.3) and the Hazen func-

tion (Eq. (3.6), from Castellarin, 2007). 

effnT *2=  (3.6) 

Castellarin (2007) showed that the Hazen 

function is a suitable quantile unbiased plotting 

position when the Generalised Extreme Value 

(GEV) distribution is an adequate parent dis-

tribution. The suitability of the GEV for this 

study is discussed in section 3.3. Equa-

tion (3.6) implies that the reduction effect of 

intersite correlations on neff directly affects the 

estimation of T. The recurrence interval T, i.e. 

the inverse of the exceedance probability, is 

derived for the entire pooling group and there-

fore is identical for all gauges. Its validity is 

restricted to the range of the catchment size 

within the pooling group, i.e. from the smallest 

to the largest catchment size. Thus, the use of 

different parameter values for the cross-

correlation function affects T in the same way 

as neff. We referred to Castellarin et al. (2005), 

Castellarin (2007) and Castellarin et al. (2007) 

for more detailed information of the PREC 

concept. 

 

3.2.3 Pooling scheme 

The method of PREC is based on the index 

flood hypothesis. This implies the need of 

pooling groups fulfilling the homogeneity cri-

teria of the index flood method. In this case, 

the PREC concept is valid for all sites of the 

pooling group. This study is tailored to assess 

the impact of different approaches to the mod-

elling of the regional cross-correlation struc-

ture on several PREC applications. For this 

purpose several pooling groups, derived using 

the Region of Influence (RoI) method, are 

needed. We derived several candidate sets of 

catchment descriptors instead of one ‘best sub-

set’, because the use of a ‘best subset’ neglects 

that different subsets of catchment descriptors 

could have a similar performance. The pooling 

groups were constructed by the following six 

steps: 

(1) we selected meaningful predictor vari-

ables which were standardised (mean=0, 

std=1) to allow a comparison between 

them. We combined the standardised 

catchment descriptors to create all possi-
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ble subsets with one, two and three 

catchment descriptors.  

(2) We defined only those subsets of catch-

ment descriptors as candidate sets, which 

had the largest correlation to the empiri-

cal unit index floods. A correlation coef-

ficient of 0.6 was selected as threshold. 

Index flood values were used as ex-

plained variable because the PREC 

method is based on a scaling of the index 

flood values with the drainage area (see 

Eq. 3.5). 

(3) We then checked all candidate sets with 

three catchment descriptors on redun-

dancy compared to the selected subsets of 

two catchment descriptors. We only 

maintained candidate sets with three 

catchment descriptors which led to a lar-

ger proportion of explained variance 

(higher correlation coefficient).  

(4) We checked all subsets on multicollinear-

ity by the Variance Inflation Factor (VIF) 

(Hirsch et al., 1992) and removed them if 

the VIF was larger than five.  

(5) Each remaining candidate set was used to 

derive a Region of Influence (RoI) (Burn, 

1990a,b). The RoI method identifies a 

specific pooling group of sites (region in 

the widest sense) for each gauge (site of 

interest). The rationale behind this ap-

proach is that the specific hydrologic 

conditions of the site of interest are con-

sidered to select hydrologically similar 

gauges. Instead of the geographical dis-

tance, a physiographical space was 

formed by the catchment descriptors of a 

selected subset. By selecting sites close to 

the site of interest in the physiographical 

space, adequate sites were determined for 

constructing a RoI. We used the Euclid-

ean distance in the physiographical space 

between the sites to evaluate their simi-

larity to the site of interest (Burn, 

1990a,b). RoIs were formed by assessing 

three different thresholds (0.5, 1 and 2) of 

the Euclidean distance. The different 

thresholds reflect the trade-off between 

the size and the regional homogeneity of 

a pooling group (e.g. Burn, 1990a, Cas-

tellarin et al., 2001). In a preliminary 

analysis, another RoI variant was also 

applied as proposed by Gaál and Kyselý 

(2009). Thereby, we started with a RoI 

which includes the ten most similar sites. 

The size of the RoI was determined by it-

eratively adding sites to the RoI until the 

threshold of H1<2 was exceeded or in the 

case of an initially heterogeneous RoI by 

removing sites until the H1-test falls be-

low the threshold (step-wise approach) 

(see e.g. Zrinji and Burn, 1994, Castel-

larin et al., 2001, Gaál and Kyselý, 2009). 

Since we found no significant variations 

in the results, we only report here the re-

sults of the first RoI variant. 

 (6) The pooling groups constructed by RoI 

were tested on homogeneity by the het-

erogeneity measure (H-test) of Hosking 

and Wallis (1993). The H-test compares 

the regional heterogeneity of a pooling 

group in terms of the variability of L-

moment ratios with simulated synthetic 

time series calculated by a Monte-Carlo 
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simulation. The H1-test focuses on the 

sample variability of the L-coefficient of 

variation (L-CV). Since synthetic time 

series generated in the test are independ-

ent by definition, intersite correlation in-

troduces some bias in the H1-test results 

(Castellarin et al., 2008). Hosking and 

Wallis (1997) mentioned that a very low 

value of their heterogeneity measure 

(H1<-2) indicates a high intersite correla-

tion. All regions with H1-values lower 

than 1 are acceptably homogeneous and 

with H1-values between 1 and 2 are pos-

sibly heterogeneous (Hosking and Wallis, 

1997). This means that a modification of 

the region is not required or optional, re-

spectively. The H1-test was performed 

with the hw.test (Viglione, 2008, imple-

mented in R). We used each RoI with 

H1<2 to form a pooling group and to de-

rive a PREC. Hence, the number of 

PREC realisations was identical with the 

number of homogeneous RoIs.  

 

3.2.4 Application and interpretation of 

different cross-correlation func-

tions 

The number of effective observations was 

calculated using the cross-correlation function 

(see Eq. 3.2) with separately optimised pa-

rameter sets. In a first approach, the number of 

effective observations (see Eq. 3.3) was calcu-

lated by using one cross-correlation function 

for the whole study area (global approach, 

termed: neff,G). Second, the cross-correlation 

function was applied with different parameter 

sets for nested and unnested catchments 

(nested approach, termed: neff,N). The parame-

ter set for nested structures was used for the 

pairs of catchments which are in an upstream-

downstream relationship, termed PN. For all of 

the others, the unnested parameter set was 

employed. The numbers of the effective obser-

vations neff,G and neff,N were compared for the 

same pooling groups. Therefore, the informa-

tion content (IC), i.e. the fraction of the effec-

tive observations neff to the total observations 

n, was calculated according to Eq. (3.1) for the 

global case (ICG) and the nested-unnested 

(ICN) approach. In a next step, the ratio RN was 

calculated as a function of the differences be-

tween neff,N and neff,G using neff,G as reference 

(Eq. 3.7).  
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The ratio RN facilitates the interpretation of 

the influence of the different parameter sets on 

the number of effective observations. Further-

more, the study focuses on the recurrence in-

terval T of PREC, which, according to 

Eq. (3.6), is twice as high as the number of 

effective observations. Consequently, the ratio 

RN is identical when using T instead of neff 

(Eq. 3.7). 

The effect of the nested structure on T was 

investigated by calculating a degree of nesting 

DN (Eq. 3.8). It is defined as the ratio between 

nested catchment pairs PN and all pairs of 

catchments P in a pooling group. 
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The nested catchment structure was estimated 

separately for each year. The years with a sin-

gle observation (n1 in Eq. 3.3) were not con-

sidered in this approach. Ultimately, the mean 

degree of nesting DN for the Y-n1 years (see 

Sect. 3.2.1) was calculated for each RoI. 

Finally, since the estimation of flood quan-

tiles derived by PRECs is affected by intersite 

correlation (through the different parameter 

sets of the cross-correlation function), but also 

by regional heterogeneity (through the thresh-

old adopted for the heterogeneity measure H1), 

we analysed the influence of different thresh-

olds of H1 on RN. As regional homogeneity is a 

fundamental prerequisite for applying PREC 

(see Castellarin et al., 2005; Castellarin 2007), 

we considered two different thresholds, H1<1 

and H1<2, that according to Hosking and Wal-

lis (1997) refer to ‘acceptably homogeneous’ 

and ‘possibly heterogeneous’ regions, in this 

order. Following the main hypotheses for ap-

plying PREC, we did not consider larger 

thresholds (i.e. larger heterogeneity degrees). 

 

3.3 Study area and data 

The federal state of Saxony in the south-

eastern Germany has a size of about 

18.400 km² and is characterised by higher ele-

vations in the Southwest (Erzgebirge) and 

lower elevations in the northern parts 

(Fig. 3.2). The Elbe is the largest river with a 

catchment size of about 52,000 km² at Dresden 

gauge. There are five large catchments in 

Saxony (Weisse Elster, Mulde, Schwarze El-

ster, Spree and Lausitzer Neisse, from west to 

east) and several tributaries to the River Elbe 

(Western and Eastern tributaries) (Fig. 3.2). 
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Fig. 3.2: Elevation and gauging stations in Saxony, Germany. The colour scale indicates the unit 
flood of record at each gauge. 
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We only used gauges that (1) had a time se-

ries of more than 29 years, (2) were not 

strongly influenced by mining activities, (3) 

had a catchment size larger than 10 km², and 

(4) were not located directly downstream of a 

dam. Furthermore, we omitted gauges whose 

catchments were mostly outside of Saxony. 

Ultimately, we considered 89 gauges as indi-

cated in Fig. 3.2. Most of the gauges have a 

few nested catchment relationships. Nested 

catchment structures are especially located in 

the Mulde catchment. All tributaries of the 

Mulde catchments originating in the Erzge-

birge are related to the two most downstream 

gauges (sites 34-35 in Fig. 3.2). 

We derived the annual maxima series (AMS) 

as well as the highest observed discharge, the 

flood of record QFOR, for all gauges. The suit-

ability of the GEV as parent distribution for the 

89 gauges was checked by a L-moment ratio 

diagram (see e.g. Vogel et al., 1993; Peel et al., 

2001). It clearly stated that the use of the GEV 

was adequate. 

Climatic, geologic and land-use data were 

used to derive catchment descriptors as basis 

for pooling catchments into homogeneous 

regions. Precipitation data was provided by the 

German Weather Service (DWD). We esti-

mated precipitation indices from 453 stations 

in and around Saxony which had a record 

length of at least 30 years and still existed in 

2002. We selected this year because of a se-

vere wide-spread flood which occurred in 

2002, in particular along the Elbe and Mulde. 

During this flood the highest daily precipita-

tion ever recorded in Germany was measured. 

Therefore it is important to include the pre-

cipitation values of this year, e.g. to calculate 

the maximum daily precipitation. Additional 

precipitation stations were used to calculate the 

maximum daily precipitation and the maxi-

mum five-day precipitation sum. To better 

cover the spatial variability of precipitation, we 

improved the spatial resolution of precipitation 

stations by adding precipitation time series 

shorter than thirty years when the flood of 

record of the downstream gauge occurred dur-

ing the period covered by the shorter precipi-

tation time series. This led to 23 additional 

precipitation stations (476 in total) which could 

be used to calculate the maximum daily pre-

cipitation and the maximum five-day precipi-

tation sum. All precipitation indices were in-

terpolated by ordinary kriging. 

Mean elevation, mean slope and catchment 

centroids were derived from digital elevation 

models. In Saxony a grid size of 25 meters was 

used, whereas the digital elevation model from 

the Shuttle Radar Topographic Mission 

(SRTM) with a grid size of 90 meters (Jarvis et 

al., 2008) was resampled to a grid size of 25 

meters for the areas outside of Saxony. Catch-

ment centroids were required for the optimisa-

tion of the cross-correlation function (see 

Eq. 3.2). Furthermore, landscape parameters 

were derived from the digital landscape model 

ATKIS (BKG GeoDataCentre, 2005) and hy-

drogeological parameters were taken from the 

hydrogeological map (HÜK200) by the Saxon 

State Agency of Environment and Geology. 

Altogether, 13 catchment descriptors were 

selected (Tab. 3.1). 
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Tab. 3.1: List of catchment descriptors 

Abbreviation Catchment descriptors 
MAP Mean annual precipitation [mm] 
MAXDAY Maximum daily precipitation [mm] 
P50 Annual frequency of days with precipitation of more than 50 mm/d [%] 
MAX5DAY Maximum precipitation in five days [mm] 
PAMS Mean of the annual maximum series of daily precipitation [mm] 
ELEV Mean elevation of the catchment [m] 
SLOPE Mean slope of the catchment [%] 
RANGE_NORM Range of catchment elevation, normalised with the catchment size [10-3m-1] 
ARABLE Fraction of arable land coverage [%] 
URBAN Fraction of urban land coverage [%] 
MINING Fraction of mining activities [%] 
BEDROCK Fraction of bedrock areas [%] 
KF_LOW Fraction of low permeability areas [%] 

 

3.4 Results 

3.4.1 Intersite correlation in the study 

area 

Figure 3.3 illustrates the variability of em-

pirical correlation coefficients for pairs of an-

nual flood sequences in the study area. The 

heterogeneity of the correlation pattern be-

comes apparent when comparing empirical 

correlation coefficients higher than 0.8 (e.g. 

Mulde gauges, sites 

34-60 in Fig. 3.3), 

as well as very low 

correlation coeffi-

cients (e.g. Mulde 

vs. Spree gauges 

(sites 71-83)). The 

gauges of the 

Mulde catchment 

and the western 

tributaries to the 

Elbe River originat-

ing in the Erzge-

birge are character-

ised by large empirical correlation coefficients 

also beyond their catchment boundaries. The 

correlation coefficients of neighbouring 

catchments are larger than coefficients across 

the catchment boundaries. This correlation 

pattern demonstrates that AMS of neighbour-

ing catchments are more correlated. Among 

the 3916 possible pairs of catchments, there are 

179 nested (5%) and 3737 unnested ones. 

 

Fig. 3.3: Empirical cross-correlation coefficients for AMS of Saxon gauges. 
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3.4.2 Cross-correlation functions 

The cross-correlation function (Eq. 3.2) was 

optimised for global, nested and unnested 

catchment relationships. The different parame-

ter sets for the cross-correlation function are 

given in Tab. 3.2. The parameters for the 

global and unnested cases are similar, whereas 

the parameters for nested catchments are no-

ticeably different. 

The relationship of the correlation coefficient 

to the distance of the catchment centroids for 

all pairs of sites shows that the correlation 

coefficients vary between -0.25 and 1 

(Fig. 3.4). As expected, the correlation de-

creases with increasing distance. Due to the 

structure of the river network in Saxony, all 

distances between the centroids of nested 

catchments are lower than 50 km, whereas 

unnested catchment relationships reach up to a 

distance of more than 200 km. Figure 3.4 illus-

trates that the cross-correlation functions for 

the global and the unnested case are very simi-

lar, whereas the nested cross-correlation func-

tion strongly differs from them.  

The global and the unnested cross-correlation 

functions clearly decrease up to a distance of 

about 50 km between the catchment centroids. 

The slope of the functions decreases slightly 

for larger distances. The differentiation in 

nested and unnested catchments shows a re-

markable difference in terms of average cross-

correlation. As expected, the cross-correlation 

function for nested catchments yields higher 

correlations than the function for unnested 

ones, with differences of up to 0.2. To give an 

example, at a distance of 40 km, there is a cor-

relation coefficient of 0.7 for nested catch-

ments, but only 0.5 for unnested catchments 

(Fig. 3.4).  
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Fig. 3.4: Cross-correlation functions fitted to global, unnested and nested 
catchment structures (T&S: cross-correlation function by Tasker and 
Stedinger (1989)). 
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Tab. 3.2: Parameters ( 1λ , 2λ ) of the cross-
correlation function by Tasker and Stedinger 
(1989) and available sample size (m) for different 
catchment structures 

 Global Nested Unnested 

1λ  0.021 0.012 0.022 

2λ  0.009 0.012 0.011 

m 3916 179 3737 

The scattering in the correlation-distance plot 

(Fig. 3.4) illustrates that the distance between 

the catchment centroids is not the only relevant 

explanatory variable (see Troutman and Kar-

linger, 2003). However, the distance has a high 

explanatory power for this study area due to 

the significant decrease of the correlation coef-

ficients with increasing distance. 

 

3.4.3 Region of Influence 

20 candidate sets listed in Tab. 3.3 met the 

criteria of the pooling scheme (see Sect. 3.2.3 

(1)-(4)). They were used to construct Regions 

of Influence (RoI) and to derive the corre-

sponding probabilistic regional envelope 

curves. 

The RoI approach was applied to each of the 

89 gauges separately, using the 20 candidate 

sets of catchment descriptors and the three 

different thresholds in the physiographical 

space. This led to a maximum possible number 

of 5340 pooling groups. The maximum num-

ber was not reached, since regions which were 

heterogeneous (H1>2) or had a small number 

of sites within a RoI (n<4) were omitted. Ulti-

mately, 1415 pooling groups with on average 

13 sites fulfilled the assumption of the PREC 

concept and were used further. 
 

Tab. 3.3 Subsets of catchment descriptors (CD) and the correlation coefficient 
(COR) to the index flood of the annual maxima series of all gauges. 

CD1 CD2 CD3 COR 
MAX5DAY ELEV RANGE_NORM 0.70 
MAX5DAY RANGE_NORM URBAN 0.69 
MAP MAX5DAY RANGE_NORM 0.69 
MAX5DAY RANGE_NORM  0.68 
MAX5DAY ELEV URBAN 0.68 
ELEV RANGE_NORM URBAN 0.66 
PAMS RANGE_NORM URBAN 0.64 
MAX5DAY ELEV  0.64 
ELEV RANGE_NORM  0.64 
MAP MAX5DAY URBAN 0.64 
MAP MAX5DAY  0.62 
MAP RANGE_NORM  0.62 
PAMS RANGE_NORM  0.62 
P50 RANGE_NORM URBAN 0.61 
MAX5DAY ARABLE URBAN 0.61 
MAXDAY RANGE_NORM URBAN 0.61 
MAX5DAY URBAN BEDROCK 0.61 
MAX5DAY PAMS URBAN 0.61 
RANGE_NORM URBAN BEDROCK 0.60 
RANGE_NORM BEDROCK  0.60 
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3.4.4 Influence of intersite correlation 

on information content 

The number of effective observations was 

calculated for all 1415 pooling groups with the 

global parameter set (neff,G) for the cross-

correlation function as well as with the sepa-

rate parameter sets for nested and unnested 

catchment structures (neff,N). Figure 3.5 illus-

trates that, as it is expected, the number of 

effective observations is lower than the number 

of total observations for all pooling groups. It 

further indicates that the ratio of the number of 

effective observations to the number of total 

observations - information contents ICG (global 

approach) and ICN (nested-unnested approach) 

- decreases as the number of total observations 

increases. To give an example, while the in-

formation content is about 0.5 for data sets 

with 600 total observations, it decreases to 

only 0.3 in the case of 2000 total observations. 

These results show how the information con-

tent decreases when an additional site is added. 

The larger the number of sample years of data, 

the lower is the additional gain of information 

by adding one site to the pooling group. Fur-

thermore, the additional gain of information is 

lower for nested catchments. Hence, the reduc-

tion effect of cross-correlated sites on neff be-

comes larger as the number of total observa-

tions n increases. 
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Fig. 3.5: Number of effective observations vs. sample years of data within the pooling groups for 
a global cross-correlation function and separate cross-correlation functions for nested and un-
nested catchments. 
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3.4.5 Recurrence interval 

While a comparison of the effective sample 

years of data to the total sample years of data 

already illustrates the effect of intersite corre-

lation on the information content, the recur-

rence interval T of PREC shows this effect 

more clear, since T is directly related to flood 

quantile estimates (see Eq. 3.6).  
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Fig. 3.6: Difference in recurrence intervals be-
tween a single cross-correlation function (global) 
and separated cross-correlation functions 
(nested-unnested). 

A comparison of TG and TN reveals that the 

recurrence interval is higher in most cases 

when the global cross-correlation function is 

used (Fig. 3.6). The range of the ratio RN is 

between -23 and 3% (Fig. 3.7a). In other 

words, the recurrence interval is up to 23% 

lower when using separate parameter sets for 

nested and unnested catchment relationships. 

The difference increases with increasing re-

currence intervals (Fig. 3.6), but the ratio RN 

does not show a distinct relation to the recur-

rence interval (Fig. 3.7a).  

 
3.4.6 Degree of nesting 

The calculation of TG differs from TN only 

in the parameter set for the cross-correlation 

function. Since there are large differences 

between the parameter sets for nested catch-

ments on the one hand and for unnested 

catchments and the global approach on the 

other hand (see Tab. 3.2), it is interesting to 

look at the nested catchment structure in the 

study area. Therefore the ratio RN is related 

to the degree of nesting DN, i.e. the relative 

number of nested catchments within a pool-

ing group (see Eq. 3.8). It is expected that RN 

is mainly affected in pooling groups with a 

large degree of nesting. 
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Fig. 3.7: Ratio of recurrence interval RN vs. the recurrence interval estimated by a global cross-correlation 
function TG (a) and degree of nesting DN (b). 
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RN decreases with a higher degree of nest-

ing (Fig. 3.7b). There is a particularly strong 

decrease of RN for DN between 0 and 0.2. 

This implies that even a small degree of nest-

ing affects the recurrence interval of the 

PREC appreciably. However, a certain de-

gree of nesting is required to estimate large 

differences between the recurrence intervals 

for the global TG and the nested-unnested 

approach TN. For example, RN<-10 is ob-

served for DN>0.1. RN decreases up to a de-

gree of nesting of about 0.4. 

Positive values of RN are observed for a de-

gree of nesting lower than 0.15 and therefore 

for pooling groups without or with only a few 

nested catchments. In the most extreme case 

(DN=0), the parameter set for unnested catch-

ment relationships is always used in the 

nested-unnested approach. Figure 3.4 has 

shown that the cross-correlation function for 

unnested catchments leads to the smallest 

correlation values. Consequently the correla-

tion among sites is lower if only unnested 

catchments were used compared with the 

global approach using all catchments. Hence, 

the lower correlation between unnested 

catchments leads to a higher recurrence in-

terval (TN>TG) resulting in a positive value of 

RN (see Eq. 3.7). 

 

3.4.7 Different thresholds of the het-

erogeneity measure 

The threshold of the heterogeneity measure 

was varied to investigate the effect on the 

formation of pooling groups and, in particu-

lar, on the recurrence interval of the PREC. 

The procedure for H1<2 was repeated for 

H1<1. A lower threshold of the heterogeneity 

measure leads to less pooling groups and thus 

to less realisations of PRECs. 

0-200 200-400 400-600 600-800 800-1000 1000-1200 1200-1400 1400-1600

-20

-15

-10

-5

0

Recurrence interval (global) TG

H1< 1

R
at

io
R

N
[%

]

0-200 200-400 400-600 600-800 800-1000 1000-1200 1200-1400 1400-1600

-20

-15

-10

-5

0

Recurrence interval (global) TG

H1< 2

R
at

io
R

N
[%

]

 
Fig. 3.8: Ratio of recurrence interval RN vs. the recurrence interval estimated by a global 
cross-correlation function TG for different thresholds of the heterogeneity measure. 
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The comparison of the ratio RN with TG re-

veals that RN decreases with increasing TG for 

both thresholds of the heterogeneity measure 

(Fig. 3.8). This relationship is illustrated in 

equidistant intervals of the recurrence inter-

vals. We only show the results for cases with 

more than ten pooling groups within the equi-

distant interval. The number of pooling groups 

decreases for a lower threshold because of the 

stricter homogeneity criterion. While different 

thresholds for the heterogeneity measure lead 

to a different number of pooling groups, and 

therefore affect the results, they do not influ-

ence the general statements.  

 

3.5 Discussion  

Our goal was to estimate the impact of the 

intersite dependence of nested catchment struc-

tures on the effective sample years of data and 

the recurrence interval of PREC. Therefore, 

nested and unnested pairs of catchments were 

treated with separate parameter sets for the 

cross-correlation function. This enabled us to 

compare the nested approach with the tradi-

tional one using a global cross-correlation 

function.  

There are three interesting aspects to discuss. 

These are (1) the differences between the three 

cross-correlation function applications (global, 

nested, unnested); (2) the link of a differentia-

tion in nested and unnested catchments to dif-

ferent hydrologic situations, and (3) the impact 

of the two different approaches of the cross-

correlation function (global vs. nested-

unnested) on the effective sample years of data 

and the recurrence interval derived by PRECs 

and its relevance for this study area. 

The heterogeneity in the correlation matrix 

(see Fig. 3.3) leads to a scattering of the em-

pirical correlation coefficients in relationships 

to the distance (see Fig. 3.4). Madsen and 

Rosbjerg (1997a) determined a scattering due 

to the heterogeneity of the region. Whereas we 

separated the catchment relationships into 

nested and unnested catchment relationships, 

Madsen and Rosbjerg (1997a) divided the 

study area in two regions and estimated sepa-

rate regional correlation functions for each 

region. By doing so, they estimated that a sepa-

rate consideration of two regions led to a larger 

average intersite correlation than an overall 

approach. In our study, we also estimated lar-

ger intersite correlations for the nested-

unnested approach than for the global approach 

for most of the pooling groups. A lower inter-

site correlation is found for the nested-

unnested approach in specific cases (e.g. a low 

degree of nesting) 

Figure 3.4 demonstrates that there is a large 

decrease of the cross-correlation functions for 

the unnested and global approaches up to a 

distance of about 50 km. Merz and Blöschl 

(2003) assumed that catchments whose cen-

troids have a distance less than 50 km are fre-

quently affected by the same event, resulting in 

a relatively large correlation between their 

flood sequences. Catchments with larger dis-

tances are affected by different events, and 

consequently the discharge time series are less 

correlated. 
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The relevance of separate parameter sets for 

the cross-correlation function for nested and 

unnested catchments depends on the spatial 

extent of floods and consequently on the pre-

vailing flood regime. Large-scale precipitation 

events may lead to larger intersite correlations 

than local convective rainfalls. In regions that 

are mainly influenced by long precipitation 

events, widespread floods may occur at 

neighbouring gauges across catchment bounda-

ries, independently of the catchment structure. 

In this case, the gauges might be correlated 

beyond catchment boundaries (Merz and 

Blöschl, 2003), and it is expected that there are 

only limited differences between the correla-

tion relationships within and across catchment 

boundaries. It is assumed that especially large 

floods across wide areas lead to a large correla-

tion between catchments (Hosking and Wallis, 

1988), implying that high flood quantiles are 

affected stronger by intersite correlation. This 

statement coincides with the decrease in the 

regional information content with increasing 

sample years of data (see Fig. 3.5).  

An opposite situation is given for flood re-

gimes that are dominated by local convective 

precipitation events with small spatial extent. 

A local precipitation event might evoke a flash 

flood only along the river. Then, only a few 

catchments, in particular nested catchments, 

are affected by the same flash flood and low 

correlation relationships across catchment 

boundaries are expected. In this case, the im-

pact of a separation in nested and unnested 

catchment relationships might be strong. 

In our study area, Saxony, both local floods 

(e.g. in 1927, 1957) as well as regional wide-

spread floods (e.g. in 1954, 1958, 2002) oc-

curred in the past (e.g. Pohl, 2004, Petrow et 

al., 2007). The rivers of the Erzgebirge, spe-

cifically the headwaters of the Mulde river and 

in particular the western tributaries of the Elbe 

river, were affected by flash floods (e.g. Ul-

brich et al., 2003), which in Saxony occur 

mostly in July and August. These floods pro-

duce the highest unit flood discharges in the 

study area. Due to the fast catchment response 

in the Erzgebirge, downstream gauges are 

directly affected by flash floods. In this context 

it is necessary to mention that the western 

tributaries of the Elbe are relatively small 

tributaries with only up to three gauges, 

whereas there are several nested relationships 

among the gauges of the Mulde catchment (see 

Fig. 3.2).  

Since no gauges located at the River Elbe, the 

largest river in the study area, are included in 

the analysis, the differences between the 

catchment sizes of nested catchments are not 

too large. This aspect is especially important 

for this study area, since most of the largest 

floods occurred in the western tributaries of the 

River Elbe. These rivers flow into the Elbe 

upstream of the gauge Dresden. Because of 

their relatively small catchment sizes 

(<200 km²) in comparison to the Dresden 

gauge (52.000 km²), it is not expected that the 

mean discharge at gauge Dresden is signifi-

cantly influenced by a local flood in one of the 

western tributaries only. 
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In the study area, there are only 5% of pairs 

of nested catchments. As expected, this study 

has shown significantly larger correlation 

among nested catchments than unnested ones. 

The effect of a distinction in nested and un-

nested cross-correlation functions might be 

even larger in regions with a larger number of 

nested catchment relationships. However, 5% 

of pairs of nested catchments lead to a signifi-

cant reduction in the recurrence interval of 

PREC.  

In this study, only one specific point of the 

PREC method is assessed. It is clear that the 

recurrence interval of PREC is affected by all 

steps of the PREC method. However, to de-

termine the influence of one particular step in 

the PREC concept, it is necessary that all other 

aspects are constant. This was realised in this 

study by emphasising the selection of the pa-

rameter sets for the cross-correlation function 

in a hydrologically more comprehensive way. 

The introduction of the nested structure to the 

PREC concept results in a reduction of the 

recurrence interval of up to 23% (see Fig. 3.7). 

Therefore, it is recommended to use different 

cross-correlation functions for nested and un-

nested catchments, in particularly for pooling 

groups with a large degree of nesting (see Fig. 

3.7b). In this study, there is a relevant effect 

for a degree of nesting larger than 0.15. 

 

3.6 Conclusions 

This study focused on the modelling of inter-

site dependence when estimating the recur-

rence interval of a probabilistic regional enve-

lope curve (PREC). A correct representation of 

the intersite dependence is fundamental for 

quantifying the regional information content of 

a pooling group, and therefore also for identi-

fying the effective sample years of data, which 

is a key step of the PREC concept. The re-

gional information content is defined as the 

ratio between the effective sample years of 

data (i.e. equivalent number of independent 

observations) and the overall sample years of 

data in the regional sample.  

The analysis clearly shows that the intersite 

correlation for nested pairs of catchments is 

significantly larger than for unnested pairs, 

suggesting separate cross-correlation functions 

for nested and unnested pairs of catchments. A 

separation into nested and unnested pairs of 

catchments while modelling the intersite de-

pendence represents an innovation and a re-

finement of the existing approach. 

The study adopts a cross-correlation function 

whose parameters are identified for the whole 

study area (traditional approach) as well as 

differentiated between nested and unnested 

catchment pairs (proposed approach). The 

main outcomes can be summarised as follows: 

1. the differentiation in cross-correlation 

functions for nested and unnested pairs of 

catchment enables one to improve the es-

timates of the number of effective observa-

tions;  

2. in most of the cases, the number of effec-

tive observations and, therefore, the recur-

rence interval of PREC, are reduced by 

modelling the intersite dependence for 
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pairs of nested and unnested catchments 

separately;  

3. the reduction of the estimated recurrence 

interval increases with the size of the pool-

ing group, or, evidently, with a higher de-

gree of nesting in the pooling group of 

sites; 

4. the results of the analysis are valid for 

different degrees of heterogeneity of the 

pooling group of sites. Defining the het-

erogeneity of the pooling groups in terms 

of H1-values as proposed by Hosking and 

Wallis (1993), the study shows that the 

same considerations that are valid for pos-

sibly heterogeneous pooling groups of sites 

(H1<2) still hold for acceptably homoge-

neous groups (H1<1).  

 

Because of the effect of nested catchment 

structures on the recurrence interval of PREC, 

we recommend to apply different cross-

correlation functions for nested and unnested 

catchments in PREC studies. Our study points 

out that the effect of nested structure becomes 

relevant for regions in which the number of 

nested pairs of catchments is larger than 15% 

of the total number of pairs. Separate cross-

correlation functions reflect the characteristic 

catchment structure and incorporate this struc-

ture in the estimation of flood quantiles. 
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4 Introducing empirical and probabilistic regional envelope 
curves into a mixed bounded distribution function 

 

 

Abstract 

A novel approach to consider additional spatial information in flood frequency analyses, especially 

for the estimation of discharges with recurrence intervals larger than 100 years, is presented. For 

this purpose, large flood quantiles, i.e. pairs of a discharge and its corresponding recurrence inter-

val, as well as an upper bound discharge, are combined within a mixed bounded distribution func-

tion. Large flood quantiles are derived using probabilistic regional envelope curves (PRECs) for all 

sites of a pooling group. These PREC flood quantiles are introduced into an at-site flood frequency 

analysis by assuming that they are representative for the range of recurrence intervals which is 

covered by PREC flood quantiles. For recurrence intervals above a certain inflection point, a Gen-

eralised Extreme Value (GEV) distribution function with a positive shape parameter is used. This 

GEV asymptotically approaches an upper bound derived from an empirical envelope curve. The 

resulting mixed distribution function is composed of two distribution functions, which are con-

nected at the inflection point. 

This method is applied to 83 streamflow gauges in Saxony/Germany. Our analysis illustrates that 

the presented mixed bounded distribution function adequately considers PREC flood quantiles as 

well as an upper bound discharge. The introduction of both into an at-site flood frequency analysis 

improves the quantile estimation. A sensitivity analysis reveals that, for the target recurrence inter-

val of 1000 years, the flood quantile estimation is less sensitive to the selection of an empirical 

envelope curve than to the selection of PREC discharges and of the inflection point between the 

mixed bounded distribution function.  
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4.1 Introduction 

Flood frequency analysis provides flood 

quantiles, i.e. discharges and their correspond-

ing recurrence intervals. Especially for recur-

rence intervals T >100 years, flood quantile 

estimates are very uncertain, due to the limited 

length of the measured flood series and the low 

number of representative data for extreme 

floods (e.g., Cohn and Stedinger, 1987; Merz 

and Thieken, 2005; Reis Jr. and Stedinger, 

2005).  

To reduce the estimation uncertainty of an at-

site flood frequency analysis, it is recom-

mended to use more information than the ob-

served flood series (e.g. Hosking and Wallis, 

1986a; Stedinger and Cohn, 1986; Merz and 

Blöschl, 2008a,b; Merz and Thieken, 2009). 

Since the quantile estimates become less pre-

cise with higher recurrence intervals, addi-

tional information becomes increasingly im-

portant in these cases (e.g., Hosking and Wal-

lis, 1986a). Additional information can be clas-

sified into three groups: causal, temporal (his-

toric floods) and spatial (flood regionalisation) 

information (Merz and Blöschl, 2008a,b). 

First, process understanding can be incorpo-

rated as causal information into a flood fre-

quency analysis. For example, Merz and 

Blöschl (2008a) illustrated that an investiga-

tion of event runoff coefficients helps to ex-

plain the generation processes of extreme 

floods and therefore to describe the upper tail 

behaviour of a distribution function.  

Second, systematic time series can be ex-

tended by integrating historic floods as non-

systematic data (Stedinger and Cohn, 1986). 

These historic extreme floods lead to more 

data for the estimation of large quantiles (e.g., 

England Jr. et al., 2003b; Benito et al., 2004). 

Historic observations contain considerable 

measurement errors, but due to the short sys-

tematic observation period, such additional 

information is useful (e.g., Hosking and Wal-

lis, 1986b), and an increase of the effective 

record length leads to a better estimation of 

flood quantiles (Condie and Lee, 1982; 

Stedinger and Cohn, 1986; Cohn and 

Stedinger, 1987).  

Third, flood regionalisation aims at improv-

ing flood quantile estimates by using informa-

tion from gauges with similar hydrologic char-

acteristics. In this way, the limited length of 

flood series is compensated by using regional 

flood series, following the principle of ‘trading 

space for time’ (Stedinger et al., 1993). 

Gutknecht et al. (2006) proposed to combine 

local and regional methods within a ‘multi-

pillar’-approach to reduce the uncertainty of 

flood quantile estimates for large recurrence 

intervals. 

The selection of a distribution function which 

is suitable to estimate extreme floods is diffi-

cult (e.g., Merz and Thieken, 2005; El Adlouni 

et al., 2008). Parameter estimation methods 

mostly concentrate on the central parts of the 

distribution function. The upper tail which is 

the most relevant for extreme events and is 

subject to the largest uncertainty is often not 

adequately described (Moon et al., 1993). 

Hence, for the estimation of large flood quan-

tiles, it is recommended to concentrate on ex-

treme floods and to derive as much informa-
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tion as possible from them (Naghettini et al., 

1996).  

Hydrological characteristics, e.g. generation 

mechanisms of extreme floods, might be dif-

ferent compared to those of high-frequency 

floods (e.g., Chbab et al., 2006; Gutknecht et 

al., 2006; Merz and Blöschl, 2008b). There-

fore, the use of a single distribution function to 

represent the flood behaviour across the com-

plete spectrum of recurrence intervals is criti-

cal (England Jr. et al., 2003a), which is why, 

mixed distribution functions are recommended. 

The two-component extreme value (TCEV) 

distribution (Rossi et al., 1984) includes two 

different distribution functions for normal and 

extreme events, respectively (e.g., Francés, 

1998; Fernandes and Naghettini, 2008). The 

idea of mixed distribution functions is also the 

basis of the gradex approach (Guillot and Du-

band, 1967), in which the traditional flood 

frequency curve is used up to a recurrence 

interval, at which the corresponding discharge 

leads to catchment saturation. Above that 

threshold, the flood frequency curve follows 

the rainfall frequency curve, assuming that the 

rainfall records are longer and more precise 

than flood series (e.g., Naghettini et al., 1996; 

Gutknecht et al., 2006; Merz et al., 2008).  

Traditional distribution functions with three 

parameters, such as the Generalised Extreme 

Value (GEV) or General Logistic (GL), are 

unbounded or only bounded in specific cases 

(e.g. GEV with a shape parameter k >0). This 

implies that the increase of the frequency curve 

is unlimited and that a non-zero exceedance 

probability for unrealistic large flood dis-

charges is estimated (Enzel et al., 1993). 

Distribution functions were developed which 

asymptotically approach an upper bound (e.g. 

the extreme value distribution with four pa-

rameters (EV4) Kanda, 1981; Francés and 

Botero, 2003). Francés and Botero (2003) 

combined non-systematic and systematic data 

with a bounded distribution function in their 

application of the EV4. 

Upper bound discharges can be derived, on 

the one hand, by estimating a probable maxi-

mum flood (PMF). To estimate a PMF, a prob-

able maximum precipitation (PMP) is trans-

formed into a PMF. Therefore, the most ex-

treme meteorological and hydrological condi-

tions for a given region are derived (e.g., 

Costa, 1987; Houghton-Carr, 1999; Fernandes 

et al., 2010). On the other hand, envelope 

curves provide upper bound discharges. Enve-

lope curves bound all regional unit floods of 

record, i.e. the maximum unit flood discharges, 

by relating them to their catchment sizes. The 

method of empirical envelope curves (ECs) is 

a simple method which is not based on physi-

cal assumptions (Crippen, 1982). ECs are tra-

ditionally constructed for an administrative 

region (e.g., China and USA, Costa, 1987, 

Europe and the World, Herschy, 2002). Merz 

and Thieken (2009) enlarged the European 

data set of Stanescu (2002) by German floods 

of record from the last years and derived an EC 

which was used as additional information to 

constraint the selection of distribution func-

tions. 
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Castellarin et al. (2005) and Castellarin 

(2007) extended the traditional method of en-

velope curves. They introduced the method of 

probabilistic regional envelope curves (PREC) 

which provides a large flood quantile, i.e. a 

pair consisting of a PREC discharge and its 

corresponding recurrence interval, for each 

gauge of a homogeneous pooling group of 

sites. In contrast to empirical envelope curves, 

probabilistic regional envelope curves (PREC) 

assign a non-zero exceedance probability to the 

regional envelope curve.  

This study aims at improving flood frequency 

estimates for large recurrence intervals T by 

using additional information provided by em-

pirical and probabilistic regional envelope 

curves. Since this study aims at integrating 

both, a distribution function needs to be se-

lected which considers an upper bound dis-

charge as well as large flood quantiles derived 

from PRECs. By doing so, for the first time, 

PREC flood quantiles are inserted into a flood 

frequency curve.  

This study is structured as follows: In 

Sect. 4.2, study area, Saxony/ Germany, and 

data are presented. The methods of empirical 

envelope curves and probabilistic regional 

envelope curves are briefly explained in 

Sect. 4.3. Here, we also present the results of 

previous studies, in which PREC flood quan-

tiles were derived for Saxon gauges (Guse et 

al., 2009, 2010). The novel method to improve 

the flood frequency estimates is described in 

Sect. 4.4. It is explained how large flood quan-

tiles and an upper bound discharge can be in-

troduced into a suitable distribution function. 

In Sect. 4.5, we show the results of our method 

and evaluate the sensitivity of relevant choices 

when estimating discharges with the presented 

mixed bounded distribution for a target T of 

1000 years. 

 

4.2 Study area and data 

The study area is the federal state of Saxony 

which is located in South-Eastern Germany. 

The south-western part is covered by the 

mountain range of the Erzgebirge, which has 

the largest altitudes in Saxony (Fig. 4.1). The 

Elbe is the largest river in the investigation 

area.  

The largest unit floods of record were obser-

ved at the western tributaries of the River Elbe 

coming from the Erzgebirge (e.g. gauges 9 and 

15 in Fig. 4.1) and at a tributary of the Lausit-

zer Neisse (gauges 82 and 83). In the observa-

tion period, both local and regional floods are 

included which affected in particular the Erz-

gebirge (Pohl, 2004). Extreme floods in Saxo-

ny belong to two flood types: Small tributaries 

in the mountain range of the Erzgebirge are 

affected by flash floods, while, riverine floods 

along the River Elbe are characterised by a 

slow rise of the water level (Ulbrich et al., 

2003; Petrow et al., 2006). An extreme event 

in 2002 led to severe flood damages at almost 

all tributaries originating in the Erzgebirge and 

along the rivers Elbe and Mulde (e.g., Ulbrich 

et al., 2003; Thieken et al., 2005). Particularly 

due to this flood, several Saxon flood time 

series are very skewed (Petrow et al., 2007). 

The 2002 flood led to large modifications of 

the frequency curve and especially of the shape 
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parameter at several gauges in Saxony (Schu-

mann, 2004, 2005), and revealed the uncertain-

ty of at-site flood frequency estimates without 

additional information. This confirmed the 

need for representative extreme events within 

the data series.  

The discharge gauges are distributed along all 

relevant rivers and tributaries in the investiga-

tion area. We used 83 gauges, including two 

from Thuringia (gauges 61 and 62). We se-

lected gauges with observation periods >29 

years and catchment sizes >10 km² and without 

large effects due to mining activities or dams. 

The annual maxima series (AMS) as well as 

the maximum observed discharge, i.e. the 

flood of record, were derived for all 83 gauges. 
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Fig. 4.1: Study region (Saxony/Germany) and selected discharge gauges coloured by their unit floods of 
record (modified from Guse et al., 2009). The three gauges which were used in the application (see Sect. 
4.5) are named in purple. 

 

4.3 Envelope curves  

We used upper bound discharges derived 

from empirical envelope curves (ECs) and 

large flood quantiles provided by probabilistic 

regional envelope curves (PRECs). Both meth-

ods are briefly introduced. Envelope curves 

bound the observed floods of record of re-

gional sites. Therefore, the floods of record 

QFOR are normalised by their catchment size A 

and then related to A in a double-logarithmic 

plot. Envelope curves are determined by their 

slope b and intercept a (Eq. (4.1), adapted from 

Castellarin et al., 2005). 

)log(*log Aba
A

QFOR +=⎟
⎠
⎞

⎜
⎝
⎛  (4.1) 
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4.3.1 Empirical envelope curves 

Three empirical envelope curves were con-

structed (Fig. 4.2). First, an envelope curve 

based on the Saxon floods of record only was 

derived. Second, the envelope curve for Ger-

many ECG from Stanescu (2002) was selected. 

Third, the European envelope curve ECE of 

Herschy (2002) was used.  
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Fig. 4.2: Comparison of three different envelope 
curves. The floods of record of Saxon gauges are 
additionally shown. 

In this study, an upper bound with an ex-

ceedance probability of zero for Saxony needs 

to be considered. The Saxon envelope curve 

was determined by the largest unit flood of 

record in Saxony. The floods of record of sev-

eral gauges are close to this EC. Thus, it is 

inconsistent to assume that the Saxon envelope 

curve has an exceedance probability of zero 

with respect to TPREC between 150 and 1500 

years which were estimated by PRECs for this 

study region in Guse et al. (2010) (see 

Sect. 4.3.4). For a few gauging stations, the 

discharges provided from PRECs were close to 

or even larger than the Stanescu envelope 

curve for Germany. Since it was advisable to 

take an envelope curve which is certain to be 

the upper bound of Saxon flood discharges, we 

used the European envelope curve by Herschy 

(2002). This envelope curve is expected to be 

an upper bound which might not be exceeded 

in Saxony, since it is determined by signifi-

cantly larger floods from the Mediterranean 

region. Stanescu (2002) and recently Gaume et 

al. (2009) compared ECs of European coun-

tries and determined the largest magnitude for 

Mediterranean countries. Stanescu (2002) con-

cluded that larger floods are possible around 

the Mediterranean Sea than in Central Euro-

pean countries, owing to the warmer tempera-

ture and resulting larger humidity contained in 

the air masses. The Stanescu envelope curve 

was used only to investigate the sensitivity of 

the selection of the empirical envelope curve 

(see Sect. 4.4.3). 

 

4.3.2 Probabilistic regional envelope 

curves 

Probabilistic regional envelope curves 

(PRECs) (Castellarin et al., 2005; Castellarin, 

2007) estimate an exceedance probability for a 

regional envelope curve (REC). PRECs can be 

derived for homogeneous regions as indicated 

in the index flood method (Dalrymple, 1960; 

Robson and Reed, 1999). In the case of re-

gional homogeneity, the index flood (mean of 

the annual maxima series) is a function of the 

catchment size. The slope b of REC (Eq. (4.1)) 

is determined by a regression through all index 

flood values of the pooling group (Fig. 4.3). 

The intercept a is estimated by shifting the 

regression line up to the largest unit flood of 

record. Hence, the intercept a of REC is deter-
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mined by the largest unit flood of record in the 

pooling group (Castellarin et al., 2005).  

To estimate the exceedance probability of 

REC, the overall sample years of all regional 

annual maxima series (AMS) are reduced to 

the effective sample years of data. The intersite 

dependence among the AMS is examined by 

considering the reduction of the regional in-

formation content due to cross-correlated sites. 

Castellarin (2007) presented an empirical rela-

tionship for this case. The cross-correlation 

function of Tasker and Stedinger (1989) was 

used, which describes the decrease of the 

cross-correlation between the AMS with in-

creasing distance between the catchment cen-

troids. Because of the higher correlation 

among nested pairs of catchments, different 

parameter sets for nested and unnested pairs of 

catchments are used, as proposed by Guse et 

al. (2009), instead of the initial approach with 

one parameter set for all pairs of catchments. 
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Fig. 4.3: Example of Regional Envelope Curve 
(REC) (from Guse et al., 2010). 

The exceedance probability is calculated for 

the pair of the unit flood of record and its cor-

responding catchment size, which governs the 

REC (Castellarin, 2007). The PREC provides a 

discharge QPREC for each gauge of the pooling 

group with the same recurrence interval TPREC. 

 

4.3.3 Application of probabilistic re-

gional envelope curves in Saxony 

In previous studies, several PRECs were de-

rived for Saxony (Guse et al., 2009, 2010). A 

major step in the PREC concept is the determi-

nation of the pooling group of sites. Guse et al. 

(2010) used cluster analysis and the Region of 

Influence (RoI) approach (Burn, 1990b) to 

construct several pooling groups using twenty 

candidate sets of two or three catchment de-

scriptors. An own PREC was constructed for 

each pooling group, which fulfils the homoge-

neity criteria of the heterogeneity measure 

(H1 < 2) of Hosking and Wallis (1993). Hence, 

the constitution of the homogeneous regions 

and thus PRECs differed depending on the 

grouping procedure.  

The suitability of both pooling methods to 

derive PREC flood quantiles was assessed by 

comparing the PREC method with the index 

flood method. To this end, a leave-one-out 

jackknifing approach was used to calculate the 

PREC flood quantiles for ungauged conditions, 

denoted as QPREC-JK(TPREC-JK) (Castellarin, 

2007; Castellarin et al., 2007; Guse et al., 

2010). The relative error between QPREC-JK and 

QIF, the estimated discharge for TPREC-JK with 

the index flood method, was estimated for each 

gauge of the pooling group. The comparison of 
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the relative errors for cluster analysis and RoI 

showed that both pooling methods lead to 

similar performance (Guse et al., 2010). There-

fore, PREC flood quantiles of both pooling 

methods were used. In this study, PREC flood 

quantiles with a relative error < 2 were used 

only. By doing so, PREC realisations that de-

viated strongly from the index flood method 

were not considered. This means that PREC 

flood quantiles of a site which were more than 

three times larger for ungauged conditions than 

the index flood estimates for the same TPREC 

were excluded. 

The number of PREC realisations varied 

among the gauges between 0 and 127. A site 

had a lower number of PREC flood quantiles 

when it belonged more often to heterogeneous 

regions due to the specific characteristics of 

this gauge. Of the 89 gauges available in the 

previous studies, only the 83 gauges with at 

least one PREC realisation were used for this 

study (see Fig. 4.1). In the previous study, 

TPREC varied between 150 and 1500 years with 

a mean value of 650 years (Guse et al., 2009). 

 

4.3.4 Comparison of empirical and 

probabilistic regional envelope 

curves 

When comparing the traditional empirical 

envelope curves with the probabilistic regional 

envelope curves, one has to take note of the 

differences between the two approaches. 

Several studies have illustrated the slope val-

ues of empirical envelope curves. On average, 

a slope of -0.5 is estimated with a variability 

between -0.2 and -0.7 (e.g., Herschy, 2002; 

Castellarin et al., 2005; Castellarin, 2007; 

Gaume et al., 2009). In our study, the slopes of 

the empirical envelope curves are close to -0.4. 

In contrast, the slope in the PREC approach 

has a lower negative value. Here, the slope b is 

about -0.2. This means that the effect of the 

catchment size is smaller in the PREC concept.  

Since the intercept of the empirical envelope 

curve is larger than those of the PREC realisa-

tions in this study, it follows that the discharge 

of EC is larger than in the PREC concept. This 

result is understandable given that the EC has 

an exceedance probability of zero, while that 

of the PREC lies between 6.7*10-4
 and 6.7*10-3

 

for this study region.  

The PREC discharges should be lower than 

the upper bound discharge from EC in all 

cases. Hence, the consistency of PREC dis-

charges was checked for all sites of each PREC 

realisation. Since the slopes of the PRECs are 

in the majority of the cases smaller than those 

of the ECs, PRECs approach the ECs with 

increasing catchment size. PREC discharges 

which were larger than the upper bound de-

rived by the Stanescu envelope curve sites 

were removed. These cases were detected for 

sites with a large catchment size. It is assumed 

that the estimation of the empirical envelope 

curve was better than those of PREC in these 

cases with a large catchment size. In this way, 

consistency among both methods was ensured.  
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4.4 Methods  

This study aims at inserting large flood quan-

tiles and upper bound discharges as additional 

information into a distribution function to im-

prove the flood quantile estimates for 

T >100 years. For this purpose, a distribution 

function is requested, into which large flood 

quantiles derived by PRECs, i.e. QPREC and 

corresponding TPREC, as well as an upper 

bound discharge QMAX, provided by an empiri-

cal envelope curve, can be integrated. The 

method consists of two steps: 

 

(1) Integration of the PREC flood quantiles 

into the observed flood series (Sect. 4.4.1) 

(2) Application of a mixed bounded distribu-

tion function including PREC flood quan-

tiles and an empirical envelope curve dis-

charge as upper bound (Sect. 4.4.2) 

 

Figure 4.4 gives an overview about our ap-

proach, including the most relevant variables. 

The core idea is an improvement of discharge 

estimates for a target recurrence interval Tt of 

1000 years (orange line in Fig. 4.4). As addi-

tional information, PREC flood quantiles with 

recurrence intervals between 150 (lower value 

Tl) and 1500 (upper value Tu) years are used 

(dashed cyan lines) and combined with the 

observed flood series in a distribution function 

(GEVsim-prec). As second additional informa-

tion, an upper bound discharge (QMAX) (purple 

line) derived from an empirical envelope curve 

is integrated into a distribution function. The 

resulting mixed bounded distribution 

(GEVbound) consists of two distribution func-

tions, connected at the inflection point (TX) 

(dashed magenta line) and approaching the 

upper bound (QMAX) asymptotically. The 

mixed distribution function is identical with 

GEVsim-prec up to the inflection point. From this 

point on, the bounded GEV is used. 

 

4.4.1 Integration of PREC flood quan-

tiles 

In the first step, PREC flood quantiles were 

combined with the observed AMS. In a tradi-

tional regional flood frequency analysis, flood 

data from the site itself and from neighbouring 

sites are available. Since a PREC flood quan-

tile comprises of a QPREC and its corresponding 

TPREC, it was impossible to add a QPREC value 

directly to the AMS as one additional flood 

value. The additional information of the corre-

sponding TPREC needs to be considered to use 

the maximum information from PRECs. 

Hence, a novel method was developed. 

The Generalised Extreme Value (GEV) dis-

tribution was fitted to the observed AMS of 

each gauge using L-moments (Hosking and 

Wallis, 1997), denoted as GEVobs. The ade-

quacy of the GEV for the flood series in this 

study was proven by L-moment ratio diagrams 

(see e.g., Vogel and Fennessey, 1993; Peel et 

al., 2001).  
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Fig. 4.4: Scheme of the proposed method including the most relevant va-
riable names. The upper bound is illustrated in purple right of the le-
gend. GEVsim-prec is the combined distribution function of the observed 
flood series and the PREC flood quantiles. GEVbound is a bounded distri-
bution function which includes PREC flood quantiles as well as an upper 
bound discharge. 

 

The three at-site GEVobs parameters (ξ, α, k) 

were used to generate synthetic flood series. 

For this, Tu random numbers between 0 and 1 

(psim) were generated. Tu was selected, since it 

was the maximum of TPREC for the study re-

gion. These psim values were inserted into the 

GEV (Eq. 4.2) resulting in Tu simulated dis-

charge values, denoted as Q. 

[ ]k
simp

k
Q ))ln((1* −−+=

αξ  with k≠0  (4.2) 

Subsequently, the GEV was fitted to Q, de-

noted as GEVsim with a new parameter set (ξsim, 

αsim, ksim).  

To ensure consistency between GEVsim and 

GEVobs, the two should not differ considerably. 

For this, the flood quantiles for T = Tu years of 

both GEV functions were compared. It was 

decided that the discharge estimates of both 

functions should not vary more than 1% for Tu. 

If Qsim(Tu) varied more than 1% from Qobs(Tu), 

the random selection of psim and the estimation 

of Q were repeated. 

A second constraint was that there had to be 

nine or ten values, denoted as nx, larger than 

pE = 0.9933 ⎟
⎠
⎞

⎜
⎝
⎛ −=

150
11 . This value was se-

lected, because the TPREC values were larger 

than 150 years (Tl = 150). It was therefore as-

sumed that the PREC flood quantiles were 

representative for T > Tl years. A binomial 

function showed that the largest probability 

was estimated when assuming that nine or ten 

floods with T > Tl were expected to occur 

within Tu years. This constraint was considered 

to prevent an influence of a randomly selected 

number of PREC flood quantiles. Then, 

GEVsim and GEVobs were assumed as suffi-

ciently similar for using the Tu simulated flood 
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series instead of the shorter measured time 

series. 

In a next step, PREC flood quantiles were in-

tegrated into the simulated flood series Qsim. 

The random numbers psim were sorted in in-

creasing order. Among psim, the nx values larger 

than pE were removed from the simulated flood 

series Qsim and replaced by nx QPREC values.  

This approach implicitly assumed that the ob-

served flood series is appropriate up to Tl. 

However, the PREC discharges also influenced 

the combined function of observed and PREC 

discharges for T <Tl.  

Since the previous studies provided more 

than nx PREC flood quantiles for most of the 

gauges (see Sect. 3.3) (Guse et al., 2010), it 

was necessary to select nx PREC flood quan-

tiles among the PREC realisations of a given 

gauge. The nx PREC flood quantiles were se-

lected in a random process whereas the dis-

charges were weighted according to their 

TPREC. We considered the recurrence intervals 

using a binomial function B (Eq. 4.3). This 

approach was used to estimate the mean occur-

rence of a specific QPREC with a recurrence 

interval TPREC within Tu years. 

)()( 1;
mXBmXP

PREC
u T

T
===   (4.3) 

with m=1,2,…,20  

We checked m for one to twenty occurrences. 

Among these twenty results, we selected the m 

with the largest probability Pmax, i.e. the maxi-

mum likelihood, denoted as mmax. The QPREC of 

this PREC realisation was assigned mmax times 

to a vector VPREC. This implies that PREC dis-

charges with a smaller T were assigned more 

often to VPREC. In this way, the recurrence in-

terval of the PREC realisations was evidently 

considered, since a PREC flood quantile with a 

smaller TPREC was expected to occur more of-

ten than a PREC flood quantile with a larger 

one. This procedure was repeated for all PREC 

realisations of this gauge. 

The nx PREC values were then randomly se-

lected without replacement from VPREC. In 

order to adequately represent TPREC, a specific 

QPREC could be selected as many times as it 

was included in VPREC. The nx discharges de-

rived from PREC were assigned to the reduced 

simulated flood series of Tu - nx values, so that 

the new flood series comprised Tu values 

again.  

In the majority of cases, the length of VPREC 

was larger than nx, which required the random 

selection of PREC discharges. In the other 

cases, for sites with a lower number of PREC 

realisations in VPREC than nx, nx values were 

removed from the simulated flood series as 

well. Then all values from VPREC were added. 

In order to obtain Tu values again, the remain-

ing discharges to Tu were selected randomly 

from the nx discharges with T >Tl years.  

The GEV was fitted to the new flood series, 

denoted as GEVsim-prec, using L-moments. This 

approach allowed an integration of PREC 

flood quantiles in flood frequency estimations. 

Due to the random process, there might be 

differences in the magnitude of the selected 

PREC discharges, and therefore also in the 

final distribution function. Hence, we repeated 

the selection of QPREC one hundred times and 

estimated one hundred GEV parameter sets. 
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The GEV parameter sets which estimated the 

median discharge for Tt were used for the next 

steps. The corresponding GEV distribution was 

denoted as GEVsim-prec 50. The influence of the 

PREC selection on the discharge estimates was 

expressed by showing the 5%- and 95%-

quantiles of GEVsim-prec for Tt, denoted as 

GEVsim-prec 05 and GEVsim-prec 95, respectively. A 

comparison of GEVsim-prec with GEVsim illus-

trated the effect of using PREC flood quantiles 

as additional information.  

 

4.4.2 Mixed bounded distribution 

function 

We used a mixed bounded distribution func-

tion which was developed in storm research 

(Hofherr et al., 2008). The use of this distribu-

tion function enables us to integrate an upper 

bound discharge as further additional informa-

tion besides of the PREC flood quantiles.  

In this mixed bounded distribution function, 

flood quantiles up to a recurrence interval 

threshold of TX (inflection point) are estimated 

by an unbounded distribution function (here: 

GEVsim-prec with k <0), and quantiles above the 

inflection point TX are estimated by a bounded 

distribution (here: GEVbound). A higher TX was 

used, as it would be representative for the ob-

served flood series only. GEVsim-prec includes 

the PREC discharges which were representa-

tive for T between 150 and 1500 years and this 

additional information enables us to use the 

higher TX. To adequately represent the PREC 

discharges, we selected an inflection point 

TX =500 years. The sensitivity of this inflec-

tion point was analysed in Sect. 4.4.3. 

GEVbound has a positive shape parameter k 

and, hence, asymptotically approaches an up-

per bound. The three parameters of GEVbound 

(ξbound, αbound, kbound) were determined in an 

optimisation process by three constraints using 

Eqs. (4.4) - (4.6). First, the upper bound QMAX 

which was provided by an empirical envelope 

curve was inserted into the GEV upper bound 

function (Eq. 4.4). 

bound

bound
boundMAX k

Q
α

ξ +=  (4.4) 

Second, both GEV functions (GEVsim-prec, 

GEVbound) had to be identical at the inflection 

point to avoid inconsistencies. Therefore, both 

functions were equated at the inflection point 

(Eq. 4.5). 

)()( xboundxprecsim TTGEVTTGEV ===−  

 (4.5) 

The third constraint was that both GEV func-

tions had the same slope at the inflection point. 

Therefore, their derivates were equated 

(Eq. 4.6). 

)(')(' xboundxprecsim TTGEVTTGEV ===−  

 (4.6) 

In the case of a successful optimisation, 

GEVbound was fully defined, increasing mono-

tonically. 

The mixed bounded distribution function was 

not applied for sites with a positive k of 

GEVsim-prec. In these cases, the GEVsim-prec was 

already bounded. The main advantage of a 

bounded distribution function is that it avoids 

an unlimited increase up to unrealistic dis-

charge values, which was already prevented by 

the positive k values in these cases. 
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4.4.3 Sensitivity analysis 

The effect of three choices in this method was 

investigated for a target recurrence interval Tt = 

1000 years in a combined sensitivity analysis. 

The sensitivity of each choice was tested as 

follows: 

1. the magnitude of the empirical envelope 

curve discharge: German EC (ECG) 

(Stanescu, 2002) vs. European EC (ECE) 

(Herschy, 2002), 

2. the selection of PREC discharges: 5%- 

vs. 95%- of the GEVsim-prec estimates for 

Tt, 

3. and the magnitude of the recurrence in-

terval threshold (inflection point): 

TX = 200 vs. 500 years. 

 

For each choice, the four possible combina-

tions of the two other choices were checked. 

The comparison of Qbound(Tt = 1000) between 

all possible combinations of these three 

choices allowed us to evaluate their effect on 

the discharge estimations of GEVbound for Tt. 

The relative deviations are calculated for each 

choice (Eqs. 4.7 - 4.9). This procedure enabled 

us to determine the most sensitive choice of the 

discharge estimates for Tt. 
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4.5 Results  

4.5.1 Integration of PREC flood quan-

tiles 

Figure 4.5 illustrates exemplarily for the 

gauge Lauenstein (site 14 in Fig. 4.1) that 

GEVsim agrees well with GEVobs (orange and 

black lines in Fig. 4.5). The blue-coloured 

circles symbolise the PREC discharges which 

were selected for GEVsim-prec 50. Most of the 

QPREC(TPREC) are smaller than the QGEV(TPREC). 

Hence, the integration of the PREC flood 

quantiles leads to a higher k (shape parameter 

of GEV) and a lower skewness of GEVsim-prec 

compared to GEVsim. Therefore, Qsim-prec for a 

given T is smaller than Qsim.  

The PREC flood quantiles indicate that the 

skewness of the GEV might be too large when 

using the observed data only. The recurrence 

interval of the flood of record (flood discharge 

of 2002) might be larger than the at-site esti-

mate. The effect of the flood of record on the 

estimation of large quantiles within the at-site 

flood frequency analysis seems to be too high. 

The smallest PREC discharge is identical with 

the flood of record of Lauenstein. This means 

that the intercept of this REC was determined 

by the at-site flood of record. 

The shape parameter k of GEVsim-prec was 

positive for seven sites. Since they already 

approach an upper bound, even after integrat-

ing PREC discharges, the number of sites for 

which the mixed bounded distribution function 

was applied was reduced to 76. 
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Fig. 4.5: Effect of integrating PREC flood quantiles into the at-site flood fre-
quency analysis. GEVobs, GEVsim and GEVsim-prec are compared for the site Lau-
enstein. The observed flood series is illustrated as Hazen plotting position 
(PLP Hazen). The PREC flood quantiles which were selected for GEVsim-prec 50 
are coloured in blue. 

 

4.5.2 Mixed bounded distribution 

function 

GEVsim-prec was used to estimate the flood 

quantiles up to TX = 500 years in the mixed 

bounded distribution approach. From TX on, 

GEVbound was used, which asymptotically ap-

proaches the upper bound discharge derived 

from the empirical envelope curve by Herschy 

(2002). Considering GEVsim and GEVbound for 

all gauges, three cases can be distinguished, 

which are shown in Fig 4.6a-c. The variability 

due to the selection of PREC flood quantiles is 

demonstrated by adding the 5%- and 95%-

quantiles (cyan dashed line). 

In the first case (gauge Lauenstein, Fig. 4.6a), 

GEVbound estimates lower discharges than 

GEVsim for all values of T. To give an exam-

ple, GEVbound estimates a discharge of 200 m³/s 

for Tt, whereas the GEVsim discharge is about 

300 m³/s. GEVsim increases unlimitedly, 

whereas the gradient of GEVbound decreases and 

approaches the upper bound. 

Figure 4.6b shows an example (gauge Nied-

erschlema, site 33 in Fig. 4.1) where several 

PREC discharges are larger than the GEV dis-

charge estimates for the same recurrence inter-

val. However, there are also various smaller 

PREC flood quantiles. On average, 

QPREC(TPREC) is similar to QGEV(TPREC), and 

therefore Qsim-prec is similar to Qsim. The PREC 

flood quantiles support the GEV estimations, 

and the effect of the inclusion of PREC dis-

charges is low. 

In the third case, the PREC flood quantiles 

are larger than the GEV discharge estimates 

(gauge Gera in Fig. 4.6c, site 62 in Fig. 4.1). 

Here, Qbound is about 1.5 times larger than Qsim 
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for Tt. Despite the asymptotical approach to-

wards the upper bound, Qbound is larger than 

Qsim even for T=10,000 years. There are 

gauges within the pooling groups of this site 

with significantly larger unit floods of record 

than those of Gera. The regional envelope 

curve has a considerably higher flood magni-

tude than the observed discharges. The PREC 

flood quantiles indicate that a flood larger than 

the current flood of record might occur. 
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Fig. 4.6: The mixed bounded distribution function GEVbound vs. the traditional GEV (GEVsim) 
and the GEVsim-prec for the gauges (a) Lauenstein, (b) Niederschlema, (c) Gera. The blue-
coloured PREC results show the selected PREC discharges which yielded a median di-
scharge for the target recurrence interval of 1000 years among the hundred repetitions. The 
upper bound is illustrated in purple right of the legend. 
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4.5.3 Comparison of the three distribu-

tion functions 

First, we compared GEVsim and GEVsim-prec. 

After that, we examined the differences be-

tween GEVsim and GEVbound. In both cases, 

discharge estimates for Tt were compared and 

we used the median of the hundred GEV esti-

mations for GEVsim-prec and GEVbound. 

The comparison of GEVsim and GEVsim-prec 50 

shows how strongly GEVsim-prec 50 is affected by 

PREC flood quantiles. Figure 4.7 illustrates 

that the GEVsim-prec 50 estimates larger dis-

charges for almost all gauges. This result can 

be explained by the PREC flood quantiles. For 

the majority of the sites, the QPREC(TPREC) val-

ues are larger than the corresponding 

QGEV(TPREC) estimates. Hence, GEVsim-prec 50 

also estimates larger values than GEVsim (see 

Gera, see Fig. 4.6c).  

In a further step, Qsim and Qbound 50 are compa-

red (Fig. 4.8). A positive relative deviation 

indicates that Qbound 50 is larger than Qsim despi-

te the asymptotic behaviour towards the upper 

bound. The Qbound 50 exceeds Qsim, because 

QPREC(TPREC) values are mostly larger in com-

parison to the corresponding QGEV(TPREC) (see 

example of Gera (Fig. 4.6c)). This implies that 

the PREC discharges enormously affect the 

GEV and lead to larger discharges of 

GEV bound 50 than GEVsim for the same recur-

rence interval. Figure 4.8b shows that even for 

T=10,000 years a positive relative deviation is 

estimated for the half of the sites. Due to the 

asymptotic behaviour of GEVbound 50, there are 

more sites with a negative relative deviation 

for T=10,000 than for T=1000 years. 
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Fig. 4.7: Comparison of discharges estimated by GEVsim and GEVsim-prec 50 for the target recurrence interval 
of 1000 years for 83 gauges. The three sites shown in Fig. 4.6 are marked. 
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Fig. 4.8: Comparison of discharges estimated by GEVsim and GEVbound 50 for 
recurrence intervals of (a) 1000 and (b) 10,000 years. The three sites shown in 
Fig. 4.6 are marked. The seven sites with a positive k are not shown. 

 

4.5.4 Sensitivity analysis 

With a combined sensitivity analysis, the ef-

fect of the upper bound derived by the empiri-

cal envelope curve, the QPREC-selection and the 

inflection point is investigated. Figures 4.9a-c 

illustrate that the largest relative deviation is 

found when comparing the 5%- and 95%-

quantiles of GEVsim-prec and emphasise that it is 

necessary to consider different PREC selec-

tions. This variation occurs due to the random 

selection of the PREC discharges.  

The selection of the empirical envelope curve 

has the lowest relative deviation. There are 

only small differences in Fig. 4.9a. Its effect is 

slightly larger for TX = 200. The smaller TX, 

the smaller is the point at which GEVbound as-

ymptotically approaches to the upper bound 

and the stronger GEVbound is influenced by the 

empirical envelope curve discharge. 

The relative deviation due to the PREC selec-

tion is similar when varying the empirical en-

velope curve or the inflection point (Fig. 4.9b). 

Here, there is the inverse situation compared to 

the selection of the empirical envelope curve. 

The largest relative deviation is found for 

TX = 500. This can be explained by the fact 

that, GEVbound is affected from TX on also by 

the asymptotic behaviour and not only by the 

selection of QPREC. 

In Figure 4.9c, the largest deviation was es-

timated for the different TX values when using 

the 95%-quantile of GEVsim-prec. The 

GEVsim-prec 95 is higher skewed than 

GEVsim-prec 05, because of the inclusion of larger 

QPREC values. Thus, the difference between the 

two GEVbound estimates with different TX val-

ues is larger when using the 95%-quantile due 

to the higher skewness.  
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Fig. 4.9: Relative deviation between the quantile estimate of GEVbound for T=1000 years when varying 
three choices. The boxplots show the results for the 76 sites which were used in the sensitivity analysis. 
(a) Empirical envelope curves (ECG = Germany (Stanescu), ECE = Europe (Herschy)), (b) PREC flood 
discharges (95-, 5-quantiles) and (c) inflection point (TX). 



Chapter 4 – Introducing EC and PRECs into a mixed bounded distribution function 
 

 

78 

The relative importance of the three choices 

is shown for all 76 gauges (Fig. 4.10). The 

gauges are ordered by the distance between 

their unit floods of record and EEC. Figure 4.10 

shows that the effect of the selection of the 

PREC flood discharges increases with larger 

distance to the REC, whereas the effect of the 

inflection point and of the empirical envelope 

curve decreases. This pattern can be explained 

when considering the three choices in detail. 

The effect of the choice of the empirical en-

velope curve considerably influences the dis-

charge estimates for Tt only for sites with a 

small distance to the largest unit flood of re-

cord, i.e. the sites which are close to the em-

pirical envelope curve. The closer they are to 

the European one, the larger is the fraction of 

the empirical envelope curve selection.  

The intercept of a REC is defined by the larg-

est unit flood of record in the pooling group. 

The site which determines in all its PREC re-

alisations the intercept of REC (Neundorf, 

site 9 in Fig. 4.1) has a relative deviation of 

zero related to the QPREC selection (site 3 in 

Fig. 4.10), because QPREC is always equal to the 

at-site flood of record. The smaller the at-site 

unit flood of record, the larger the distance to 

the largest unit flood of record of a pooling 

group could be within a REC. Because of that, 

the possible range of PREC discharges in-

creases along with the distance between the at-

site unit flood of record and the largest re-

gional unit flood of record.  

In addition, the effect of TX is larger for sites 

with a high skewness. The larger the skewness, 

the larger are the differences between the dis-

charge estimates for T = 200 vs. T = 500 years. 

Therefore, the influence of the choice of TX 

also increases. Especially the sites with a large 

flood of record are characterised by a high 

skewness. Thus, the largest influence of the TX 

selection is found for sites with floods of re-

cord close to EC. The fraction of the inflection 

point is highly correlated with the shape pa-

rameter k. The effect of the inflection point is 

negligible for sites with a small negative k, 

whereas its effect predominates when k is 

highly negative. 
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Fig. 4.10: Fraction of the three choices to the overall absolute relative deviation. The sites are ordered by 
the distance of the unit flood of record to the unit discharge of the European envelope curve. EC = selection 
of the empirical envelope curve (ECG vs. ECE); PREC = selection of PREC flood discharges (95- vs. 5-
quantiles); TX = selection of the inflection point (TX = 200 vs. 500). 
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4.6 Discussion 

A novel method to integrate additional re-

gional information about upper tail behaviour 

into at-site flood frequency analyses was pre-

sented. This study aimed at improving the dis-

charge estimates for large T. The core ideas 

were to combine PREC flood quantiles with 

traditional flood frequency approaches and to 

introduce a mixed bounded distribution func-

tion which considers large flood quantiles as 

well as an upper bound discharge. It is interest-

ing to compare this method with the integra-

tion of historical events and to discuss the se-

lection of PREC flood quantiles and the results 

of the sensitivity analysis. 

There are some similarities between our 

method to integrate PREC flood quantiles and 

the use of historical floods as additional infor-

mation in flood frequency studies. Historical 

floods are combined as non-systematic data 

with measured flood series. Generally, a 

threshold is fixed and the number of floods 

above this threshold in the historical period is 

determined (Stedinger and Cohn, 1986; Reis 

Jr. and Stedinger, 2005). The integration of 

historical information is based on the assump-

tion that all extreme floods above the threshold 

are recorded because of the large amount of 

damages they have caused. However, in this 

approach discharge values are used only. The 

probabilities of the historic floods are unknown 

and are not considered (e.g., Martins and 

Stedinger, 2001). This is the largest difference 

to our method, which considers besides the 

discharge values also the recurrence interval of 

PRECs. Furthermore, whereas the use of his-

torical data extends the time series, the integra-

tion of PREC flood quantiles is based on sub-

stituting the time period with spatial informa-

tion.  

Because of that, a different approach than for 

the integration of historic data was chosen, 

which enabled us to use the additional infor-

mation in terms of TPREC and to integrate sev-

eral QPREC values. For this, we extended the 

flood series by using simulated flood series 

and replaced the simulated discharges above Tl 

by randomly selected QPREC values. The largest 

relative deviation between GEVsim-prec, the 

flood series which includes the PREC dis-

charges and GEVsim which is based on the 

simulated flood series only, is calculated for 

sites with a large QPREC(TPREC) in comparison 

to QGEV(TPREC).  

The selection of the PREC flood quantiles is 

the most sensitive step for Tt. As indicated, it 

was necessary to select PREC flood quantiles 

randomly, because more PREC realisations 

were provided from Guse et al. (2010) than are 

to be expected for T > Tl in a Tu year flood 

series. The influence of the random process 

depends on two aspects. First, it is affected by 

the number of PREC realisations. The more 

PREC realisations, the more combinations of 

randomly selected PREC discharges are possi-

ble. Second, the results are influenced by the 

variation of the PREC flood quantiles in QPREC 

as well as in its corresponding TPREC. Small 

differences between the PREC flood quantiles 

lead to low differences in GEVsim-prec inde-

pendently of the number of PREC realisations.  
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As illustrated in Fig. 4.2, both empirical en-

velope curves differ strongly. However, the 

sensitivity analysis shows that the effect of the 

envelope curve selection on a discharge with 

T = 1000 years is smaller than those of the 

random selection of PREC discharges or of the 

inflection point. In this context, it is worth 

noting that we predefined a target recurrence 

interval of 1000 years. Since the envelope 

curve governs the asymptotical approach to-

wards the upper bound, the influence of the 

envelope curve selection will be larger for 

increasing T. 

 

4.7 Conclusion 

A novel method to improve the quantile esti-

mation for recurrence intervals larger than 100 

years by using additional information was pre-

sented. Large flood quantiles were derived by 

probabilistic regional envelope curves (PREC). 

These PREC flood quantiles were combined 

with the measured flood series. A mixed 

bounded distribution function was presented 

which considers in addition to the PREC flood 

quantiles also an upper bound discharge de-

rived by an empirical envelope curve. The 

mixed bounded distribution function avoids an 

increase up to unrealistic large discharges. 

Whereas the combination of PREC discharges 

and a simulated flood series based on at-site 

parameters was used for recurrence intervals of 

up to 500 years, a bounded distribution func-

tion was applied for larger T. 

 
The main outcomes of this study are: 

1) The use of the additional information of 

PREC flood quantiles and empirical en-

velope curves supports the estimation of 

large quantiles. 

2) The effect of PREC flood quantiles on 

the quantile estimation is especially 

relevant when the PREC discharge var-

ies largely from the at-site GEV esti-

mate for the same recurrence interval. 

3) The sensitivity of the flood quantile of 

1000 years to the selection of empirical 

envelope curves providing the upper 

bound discharge on a flood quantile of 

1000 years is smaller than the selection 

of PREC flood quantiles and of the in-

flection point between both functions of 

the mixed bounded distribution. 
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5 Discussion and conclusion 
 
5.1 Main achievements 

The core aim of this thesis was an improve-

ment of flood frequency estimates for large 

recurrence intervals. Therefore, empirical and 

probabilistic regional envelope curves were 

introduced into the flood frequency analysis. 

To resolve the core research question, six sub-

questions were posed in the introduction. In the 

following, the main achievements are empha-

sised consecutively for each sub-question. 

 

1. Appropriate pooling methods to construct 

PRECs 

Two different pooling methods (cluster 

analysis, Region of Influence) were compared 

in chapter two. The performance of the two 

pooling methods for constructing pooling 

groups in order to derive PRECs was checked 

by a cross-validation assuming ungauged con-

ditions for the site of interest and a comparison 

with the index flood method. It was concluded 

that the two pooling methods have a similar 

performance and that both are suitable to con-

struct pooling groups for PRECs. 

 

2. Effect of a modification of a pooling group 

on a PREC flood quantile 

Both different candidate sets of catchment 

descriptors and different settings within the 

pooling methods affected the determination of 

the final pooling group. Several plausible set-

tings within the PREC concept led to an en-

semble of PREC flood quantiles which varied 

in discharge and in the recurrence interval. The 

PREC flood quantiles react considerably to a 

modification of the pooling group for both 

pooling methods. It was shown that the unit 

flood of record which governs the intercept of 

PREC has the largest effect on the determina-

tion of the PREC discharge. For an accurate 

estimation of a PREC flood quantile for a 

given site, it is therefore insufficient to con-

struct only one pooling group.  

 

3. Effect on the recurrence interval of PREC 

when refining the estimation method of the 

effective sample years of data 

The differentiation into nested and unnested 

pairs of catchments is an objective criterion, 

and due to the river network system, nested 

catchments have a higher correlation than un-

nested ones. The proposed approach of differ-

ent parameter sets for the cross-correlation 

function reduces the recurrence intervals con-

siderably. This illustrates the importance of an 

accurate consideration of intersite correlation. 

The largest effect of this refinement of the 

intersite correlation approach was determined 

for pooling groups with a large amount of 

nested pairs of catchments and with a high 

number of total sample years of data. The se-

lection of one single aspect isolated its influ-

ences on the flood quantile estimates and 

showed that an improvement of this aspect led 

to more plausible results. Hence, different pa-

rameter sets for nested and unnested pairs of 

catchments are recommended for the estima-

tion of the effective sample years of data to 
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improve the estimation of the recurrence inter-

val. 

 

4. Combination of PREC flood quantiles with 

measured flood series including the addi-

tional information of the PREC recurrence 

interval 

PREC flood quantiles provide a discharge 

and its corresponding recurrence interval, 

whereas the traditional AMS includes dis-

charge values only. Therefore, an appropriate 

method was developed which enables the 

combination of PREC flood quantiles with the 

AMS. Therefore, a long flood series was gen-

erated based on the at-site parameters of a 

GEV, and discharges above a certain threshold 

were replaced by PREC discharges. The recur-

rence interval was included in this approach by 

weighting PREC discharges according to their 

recurrence intervals. By doing so, the main 

merit of the PREC approach, i.e. the additional 

information of the recurrence interval, was 

included in flood frequency analyses. In this 

way, the combination of the PREC flood quan-

tiles as a non-systematic data with the system-

atic AMS was realised. 

 

5. Suitable distribution function to integrate 

PREC flood quantiles as well as an upper 

bound discharge 

A mixed bounded distribution function was 

proposed which considers PREC flood quan-

tiles and an upper bound discharge derived 

from an empirical envelope curve. The mixed 

bounded distribution function consists of two 

GEV functions which were equated at a prede-

fined inflection point. First, the PREC flood 

quantiles were inserted into the GEV. Second, 

an upper bound discharge was included into a 

GEV with a positive shape parameter. Hence, 

the function asymptotically approaches the 

upper bound. In this way, two different types 

of additional regional information which are 

representative for the upper tail were combined 

with the measured flood series. In this way, the 

upper tail of the distribution function was sup-

ported by additional data. 

 

6. Effect of the integration of PREC flood 

quantiles on the determination of a dis-

charge with a recurrence interval of 1000 

years 

The influence of the integration of PREC 

flood quantiles into the mixed bounded distri-

bution function depends on the difference be-

tween the PREC discharges and the GEV esti-

mates. The largest differences are estimated 

when the PREC discharges are larger by a 

great amount than the GEV estimates for the 

same recurrence interval. The selection of 

PREC discharges was detected as the most 

sensitive choice for T= 1000 years in compari-

son to the empirical envelope curve and inflec-

tion point selection. 
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5.2 Discussion 

5.2.1 Improving flood quantile esti-

mates 

The NRC (1988) suggested three principles 

to improve the quantile estimates of extreme 

floods. First, the short time period of at-site 

discharge values should be supported by addi-

tional flood data from neighbouring sites 

(flood regionalisation). Second, it is recom-

mended to use more structural information. 

Third, NRC (1988) proposed a concentration 

on extreme floods to avoid a dominant effect 

of medium floods. 

The first and the third principle were already 

included in the PREC method, which is an 

adequate regionalisation method and derives a 

PREC discharge with a large recurrence inter-

val. Hence, additional information for the up-

per tail of a distribution function is provided. 

The mixed bounded distribution function con-

tains PREC flood quantiles as well as an upper 

bound discharge from an empirical envelope 

curve. The introduction of both shifted the 

focus more on large floods than on the behav-

iour of the distribution function for medium-

sized floods. The hydrologic behaviour of 

floods can vary for different recurrence inter-

vals, since the dominant hydrologic processes 

can change from medium-sized to extreme 

floods as mentioned in Sect. 4.1.  

It can be argued that also structural informa-

tion is included, because we improved the es-

timation of the effective sample-years of data 

by separation into nested and unnested catch-

ments. By doing this, the river network struc-

ture is better considered and the representation 

of the spatial correlation structure is improved 

which is especially relevant for local floods 

(see Sect. 3.5).  

For the consideration of the particular condi-

tions of the upper tail of a distribution func-

tion, it is therefore necessary to concentrate on 

extreme flood data and to include additional 

information which is representative for the 

target recurrence interval, which in this study 

was a recurrence interval of 1000 years. The 

estimation of this recurrence interval is im-

proved by a better representation of the river 

network structure.  

 

5.2.2 PRECs and the trade-off between 

the number of sites and the de-

gree of heterogeneity 

Probabilistic regional envelope curves are 

therefore a suitable regionalisation method. For 

an adequate representation of the upper tail of 

the distribution functions, it is worthwhile to 

estimate recurrence intervals as large as possi-

ble and hence to collect as many sites as possi-

ble. However, also the degree of heterogeneity 

increases with increasing number of sites 

which conflicts with the strict homogeneity 

criterion of the PREC concept. 

The trade-off between the degree of hetero-

geneity and the number of sites within a pool-

ing group is a long-lasting debate in flood re-

gionalisation. By using different settings of the 

pooling methods (number of clusters, threshold 

of the Euclidean distance), the trade-off was 

taken into consideration (see Sect. 2.2.2). Both 
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aspects and their interactions were investigated 

in chapters two and three and discussed as 

follows.  

Figure 3.5 clearly shows that the effective 

sample years of data increase when more data 

is available. Hence, the target recurrence inter-

val can also be increased. However, the addi-

tional gain of information decreases with in-

creasing total sample years of data. 

It was illustrated that relaxing of the homo-

geneity assumptions by using a higher thresh-

old of the heterogeneity measure leads to a 

higher number of available pooling groups and 

therefore of PREC realisations (see Fig. 2.8). 

However, the performance of the PREC flood 

quantile estimates decreases with an increasing 

degree of heterogeneity (see Tab. 2.7).  

The performance of PREC flood quantiles is 

especially affected by an upshift of the REC 

due to an inclusion of a site whose flood of 

record exceeds the REC. The high influence of 

the site which governs the intercept of PREC 

was emphasised in the Figs. 2.4 and 2.5. 

Hence, an inclusion of a site with a unit flood 

of record high above the flood of record of the 

site of interest lead to a higher relative error 

(see Fig. 2.7). The poorer performance of more 

heterogeneous regions can be explained with 

the increasing distance between the at-site and 

the largest unit flood of record in heterogene-

ous regions. 

Considering the trade-off between the num-

ber of sites and the degree of heterogeneity, 

this study clearly shows that a relaxing of the 

homogeneity criterion leads to a decline in the 

PREC performance for both pooling methods. 

Therefore, a heterogeneity measure of two 

seems to be an appropriate threshold. Even in 

the case of a homogeneous pooling group, it 

might not be useful to increase the number of 

sites unlimitedly because of the small addi-

tional gain of information in larger pooling 

groups. 

 

5.2.3 Sensitivity of PREC flood quan-

tiles to the largest unit flood of 

record 

In this thesis, first, the method of probabilis-

tic regional envelope curves was thoroughly 

investigated and second, the PREC flood quan-

tiles were integrated into the presented mixed 

bounded distribution function. Hence, the re-

sults and achievements of this first part affect 

the second part. All available PREC flood 

quantiles were used as additional information 

for a flood frequency analysis (chapter four) to 

express the variability in the PREC flood quan-

tiles due to differently constituted pooling 

groups.  

The magnitude of the PRECs was affected in 

particular by that PREC discharge which gov-

erns the PREC intercept. It was demonstrated 

that the inclusion of the site with the largest 

unit flood of record within the pooling group 

can significantly increase the PREC discharge 

(see Fig. 2.4) and despite of that the strict ho-

mogeneity criterion of the PREC concept can 

still be fulfilled. The high importance of the 

largest unit flood of record was already seen as 

a critical point when constructing empirical 
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envelope curves (e.g. England Jr., 2006) and it 

is still for PRECs. 

Two cases can be distinguished when consid-

ering the role of the largest unit flood of record 

within the PREC concept. First, the largest unit 

flood of record is identical in all or at least in 

the majority of the PREC realisations for a 

given site. In this case, this unit flood of record 

seems to be an adequate choice. Second, the 

sites which determine the largest unit flood of 

record differ within the PRECs. In the case of a 

large difference between the largest unit floods 

of record, there is a high variability of the 

PREC discharges for the given sites.  

The particular role of that unit flood of record 

was considered in the integration process in 

chapter four. Due to the repetition of the PREC 

discharge selection for GEVsim-prec (see 

Sect. 4.4), the effect of a single PREC dis-

charge is relatively low because of the whole 

ensemble of PREC realisations.  

The presented mixed bounded distribution 

function considers the recurrence interval and 

also the variability of PREC flood quantiles. 

By doing so, the high sensitivity of the largest 

unit flood of record is reduced at least for those 

sites with several homogeneous pooling 

groups. Because of that, it is recommended to 

use several PREC realisations when construct-

ing PRECs and using their results as additional 

information in a flood frequency analysis. 

 

5.2.4 Comparisons of PREC with at-

site and regional flood frequency 

analysis 

The benefit of PREC as a flood regionalisa-

tion method can be detected by comparing the 

PREC results with other regionalisation meth-

ods. By doing so, it is possible to determine the 

particularity of the PREC approach. In chapter 

two, the PREC flood quantiles for ungauged 

conditions were compared with those of the 

index flood method. The integration of PREC 

flood quantiles into a distribution function in 

chapter four implicitly contains a comparison 

of the PREC flood quantiles with the at-site 

flood frequency analysis. The index flood dis-

charges are not directly comparable with the 

GEV estimates because they represent the 

mean regional behaviour, whereas the GEV 

illustrates the at-site flood behaviour only. 

However, in these two cases, it was shown that 

in the majority of cases, PREC estimates larger 

discharges (see Figs. 2.6, 2.7 and 4.8). This can 

be explained by the fact that the magnitude of 

the PREC discharge is determined by the larg-

est unit flood of record, and the more it is 

above the other floods of record of the pooling 

group, the more the PREC discharge is larger 

than other local or regional estimates for the 

same recurrence interval. In chapter two, it was 

demonstrated that the difference between the 

discharge estimates of PRECs and the index 

flood approach increases with increasing dis-

tance of the at-site unit flood of record to the 

unit PREC discharge (Fig. 2.7). This aspect 

emphasises the particularity of the largest unit 

flood of record. Hence, especially the largest 
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unit flood of record needs to be considered 

accurately. 

Probabilistic regional envelope curves esti-

mate large flood quantiles, which can be used 

as additional spatial information in a flood 

frequency analysis as was illustrated in chapter 

four. By doing so, they contribute spatial in-

formation to the upper tail of a distribution 

function. It is recommended to use as much 

information as possible to reduce estimation 

uncertainty. Even when using all three types of 

information (spatial, temporal and causal), the 

upper tail benefits from adequate information. 

The introduction of PREC flood quantiles 

gives therefore precious information. Hence, it 

is proposed to use probabilistic regional enve-

lope curves as an additional regionalisation 

method in a multi-pillar approach as suggested 

by Gutknecht et al. (2006) to improve the es-

timation of large flood quantiles. 

In addition to PRECs, also empirical enve-

lope curves were used to provide an upper 

bound discharge which avoids an unlimited 

increase of the distribution function. In this 

way, a second type of spatial information is 

included. Both types of envelope curve ap-

proaches, the empirical and the probabilistic 

ones, were used complementary. Whereas the 

flood quantiles between 150 and 1500 years 

were covered by PRECs, empirical envelope 

curves determinated the upper bound dis-

charge. Hence, additional information for dif-

ferent parts of the distribution function was 

used. In chapter four, it was demonstrated that 

both envelope curve approaches benefit from a 

comparison and the inclusion of both improves 

the estimation of large flood quantiles.  

 

5.2.5 Restrictions and limitations of 

the PREC concept 

While investigating the PREC method, some 

limitations were detected, which were dis-

cussed as follows. In chapter two, it was shown 

that the number of homogeneous pooling 

groups varies highly within the study region, 

leading to a smaller number for the lowland 

sites. Even the Region of Influence approach, 

which considers explicitly the specific condi-

tions of the site of interest, could not avoid that 

there are lowland sites with only a few or no 

homogeneous regions. The use of several can-

didate sets of catchment descriptors and the 

resulting enormous number of pooling groups 

leads to an increase of the number of sites with 

PREC realisations (see Sect. 2.4). However, it 

was not possible to derive PRECs for all sites, 

and, hence, additional information was not 

available for all sites.  

It can be remarked that a small number of 

sites within the pooling group can be critical 

for the construction of a REC. It was observed 

that in rare cases, positive slopes were esti-

mated for small pooling groups, which is 

against the idea of a decrease of the unit dis-

charge with increasing catchment size. This is 

more related to the combination of sites within 

the pooling groups than a reflection of the real 

hydrologic situation. This limit can be solved 

in two ways. The minimum number of sites, 

which was set to four, can be increased to re-
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duce the number of positive slopes, or a plau-

sibility check of the REC slope can be in-

cluded. 

The spatial extent of a specific REC depends 

on the available catchment sizes within the 

pooling group, ranging from the smallest to the 

largest catchment size. This is a useful ap-

proach for pooling groups when the catchment 

sizes are log-normal distributed and/or include 

lots of gauging stations. However, in the spe-

cific situation of a small pooling group with a 

high range of catchment sizes, the discharge 

estimates might be too large for the sites with 

the largest catchment size because of the 

smaller slope in comparison to empirical enve-

lope curves. In these cases, it might be appro-

priate to consider the distribution of catchment 

sizes when deriving RECs. It could then be 

useful to remove the site with the largest 

catchment size. Then the range of catchment 

sizes is reduced and more realistic discharges 

are estimated. 

 

5.2.6 Is it possible to scale the PREC 

concept to whole Germany? 

In this thesis, for the first time, PRECs were 

extensively investigated and several PRECs 

were derived for pooling groups in Saxony. 

Since only Saxon flood series were used, it is 

interesting to discuss which aspects can affect 

the scaling of PRECs to larger regions. 

The PREC concept includes stricter assump-

tions than the empirical envelope curve ap-

proach. Empirical envelope curves were con-

structed for small regions as well as for the 

whole world. There is no limit of the spatial 

extension because of the simple approach. The 

method of PRECs is based on pooling groups 

which fulfil the homogeneity criterion of the 

index flood hypothesis and on a scaling of the 

index flood (mean annual flood) with the 

catchment size (see Sect. 2.2.4). 

Because of the homogeneity requirements, 

PRECs could not be derived for a large amount 

of heterogeneous regions in this study. When 

scaling the PREC approach to larger regions, it 

can be expected that the heterogeneity among 

the sites increases. It was concluded that a 

heterogeneity measure of two is a reasonable 

choice to fulfil the homogeneity criterion. Be-

cause of that, it might be more difficult to con-

struct homogeneous pooling groups for a larger 

region. 

The second methodical assumption of 

PRECs is the relationship of the index flood 

with the catchment size. Hence, it is required 

to include a representative number of sites 

which allows an adequate estimation of the 

mean annual flood, which is required to deter-

mine the slope of the REC. This relationship 

has to be fulfilled for the whole pooling group. 

In this study, a representative number of 

gauges of all rivers was available and all parts 

of Saxony are adequately considered. For a 

larger region, a higher amount of sites is there-

fore required. However, the number of sites 

cannot be increased unlimitedly, because the 

heterogeneity of the pooling group will in-

crease.  

It was shown that a relaxing of the homoge-

neity criterion lead to a worse performance and 

this statement might be valid for a larger re-
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gion. It is therefore expected that probabilistic 

regional envelope curves can be constructed 

for other regions in Germany with a compara-

ble spatial extent and degree of heterogeneity.  

However, it seems to be difficult to construct 

PRECs for a large region such as Germany 

based on all flood series. This is especially true 

when sites from another flood regime are in-

cluded. In this case, it is possible to construct 

pooling groups and to derive PRECs separately 

for each flood regime. 

 

5.2.7 Benefit for flood design estima-

tions 

For flood design, discharge estimates for re-

currence intervals in the order of 1000 to 

10,000 years are required. This thesis aimed at 

improving the flood quantile estimations for T 

= 1000 years, which was selected because of 

the recurrence intervals estimated by PRECs in 

this study. There is data available up to the 

maximum PREC recurrence interval (here: 

1500 years). The estimation of larger flood 

quantiles was also affected by the introduction 

of PRECs. The use of a bounded distribution 

function which includes an upper bound dis-

charge gives even more information and avoids 

the estimation of unrealistic large discharges. 

In this context, it is worth mentioning that for 

discharges with T = 10,000, no representative 

data was included. However, the area of the 

distribution function which is not supported by 

information is reduced. 

It is also interesting to discuss a maximum 

recurrence interval which can be estimated by 

PRECs. It is clear that it is impossible to esti-

mate an exact value, since the determination of 

the recurrence interval depends on data avail-

ability and regional conditions. However, fig-

ure 3.5 shows that the additional gain of in-

formation decreases with increasing total sam-

ple years of data. An approach to a limit at 

which the additional gain is close to zero can 

be assumed. 

Hence, PRECs are an appropriate regionali-

sation method for flood quantiles in the order 

of 1000 years. However, it is not expected that 

PREC can be used to estimate discharges with 

recurrence intervals of 10,000 years. 

 

5.3 Remarks on the CEDIM-

project 

The thesis was embedded in a synoptic view 

on three different natural hazards (earthquakes, 

storms, floods). There was an interaction 

among the three CEDIM research groups. Due 

to the underlying processes of the natural haz-

ards, the hazard estimation of storms is closer 

to those of floods than for earthquakes (see 

Grünthal et al., 2006). A mixed bounded dis-

tribution function was used for the flood esti-

mation which was also successfully applied in 

the winter storm estimation (see chapter four). 

The distribution function from the storm re-

search was adjusted for the flood application. 

Storm frequency analyses are often character-

ised by a negative skewness (e.g. An and 

Pandey, 2007), which is also the case for the 

Saxon measurement stations. This implies that 

the GEV approaches an upper bound. For the 

storm research, the statistical upper bound 
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from the GEV was replaced by an estimated 

one which was used within the mixed bounded 

distribution function (Hofherr et al., 2008). 

Therefore, there is no transition from a positive 

to a negative skewness as it is in the flood case 

at the inflection point. In contrast, flood series 

has mostly a positive skewness. 

The mixed bounded distribution function in 

this study uses additional spatial information, 

which was not included in the storm applica-

tion. The introduction of PREC flood quantiles 

gives more information and therefore a larger 

inflection point can be selected. The inflection 

point was set to a recurrence interval of twenty 

years in the initial storm study (Hofherr et al., 

2008). Owing to the PREC flood quantiles, this 

value was increased to 500 years. Even without 

additional information, it seems appropriate to 

use an inflection point of one hundred years for 

the flood frequency analysis due to the flood 

data availability. 

The results in chapter four show that dis-

charge estimates of up to T = 1000 years are 

possible due to the additional spatial informa-

tion. This was the requirement for the flood 

hazard estimation to allow flood risk estimates 

for this recurrence interval and a consistent 

comparison with the risk of earthquakes. 

 

5.4 Further research 

The improved discharge estimates for a given 

recurrence interval (e.g. T = 100, 200, 500 and 

1000 years) can be used for flood risk analy-

ses. Therefore, it is necessary to consider the 

whole flood risk chain and to include flood 

hazard estimation as well as the vulnerability 

of the inundated area (see Fig. 1.1). First, the 

improved at-site estimates by a flood fre-

quency analysis need to be regionalised along 

the whole river system. The Topkriging-

approach (Skoien et al., 2006) is therefore an 

adequate geostatistical regionalisation method 

which extended the traditional kriging ap-

proach by the inclusion of the river network 

system in the interpolation process. Second, 

the resulting inundation area has to be calcu-

lated. An inundation model for Germany is 

currently under development. As soon as this 

model is presented, it might be possible to use 

the regionalised improved flood quantile esti-

mates in combination with the inundation 

model. Third, the inundated areas can be cou-

pled with a damage estimation model such as 

FLEMOps (Thieken et al., 2008), which esti-

mates the probable loss of a given recurrence 

interval (see Fig. 1.1). 

Thus, the effect of the use of the mixed 

bounded distribution on the flood loss estima-

tion can be shown by a comparison with the 

loss estimates based on the quantile estimates 

of a traditional distribution function. The final 

loss estimates, which include the flood hazard 

estimates based on the mixed bounded distri-

bution function, can be compared with the loss 

estimates of storm and earthquakes. 
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5.5 Concluding remarks 

This thesis improved the estimation of large 

flood quantiles. This was realised by using 

PREC flood quantiles and an upper bound 

discharge as additional spatial information. 

The main relevant details of the PREC concept 

were investigated and its principal influential 

aspects on the estimation of the PREC flood 

quantiles were emphasised. The variability of 

PREC flood quantiles due to a modification of 

the pooling group was estimated by a sensitiv-

ity analysis. The refinement of the intersite 

correlation approach leads to better estimates 

of the recurrence interval. The benefit of 

PRECs for flood frequency analyses was dem-

onstrated by introducing PREC flood quantiles 

into the at-site flood frequency analysis. By 

doing so, and also under consideration of an 

upper bound discharges derived by an empiri-

cal envelope curve, flood quantile estimates for 

recurrence intervals of 1000 years were im-

proved by the inclusion of these two different 

types of additional information for the upper 

tail of the distribution function. 
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