
Universitätsverlag Potsdam

Article published in:

Suggested citation:
Pierre Houdebert: Numerical study for the phase transition of the area-interaction model, In: Sylvie 
Roelly, Mathias Rafler, Suren Poghosyan (Eds.): Proceedings of the XI international conference sto-
chastic and analytic methods in mathematical physics (Lectures in pure and applied mathematics 
;6), Potsdam, Universitätsverlag Potsdam, 2020, S. 165–174.
DOI https://doi.org/10.25932/publishup-47217

This work is licensed under a Creative Commons License: Attribution-Share Alike 4.0
This does not apply to quoted content from other authors. To view a copy of this license visit:
https://creativecommons.org/licenses/by-sa/4.0/

Suren Poghosyan | Mathias Rafler |  Sylvie Roelly (Eds.)

Proceedings of the XI international 
conference Stochastic and Analytic 
Methods in Mathematical Physics

Potsdam University Press

Lectures in Pure and Applied Mathematics | 6

Sylvie Roelly, Mathias Rafler, Suren Poghosyan 
(Eds.)

Proceedings of the XI international confer-
ence stochastic and analytic methods in 
mathematical physics

Lectures in pure and applied mathematics ; 6

2020 – xiv, 194 p. 
ISBN 978-3-86956-485-2 
DOI https://doi.org/10.25932/publishup-45919



16

Numerical study for the
phase transition of the
area-interaction model

Pierre Houdebert*

Abstract. In this paper we present numerical analysis of the phase

transition of the area-interaction model, which is a standard model of

Statistical Mechanics. The theoretical results are based on a recent pa-

per [4] which provides a complete phase diagram except on a bounded

(implicit) domain. With our numerical analysis we give an approxima-

tive explicit description of this domain. Furthermore our numerical re-

sults confirm the still unproven conjecture stating that non-uniqueness

holds if and only if z = β is large enough, with a value of the threshold

obtained from the simulation of βc ' 1.726.

1 Introduction

The finite volume area-interaction measure (also called Widom-Rowlinson measure) on
a bounded window Λ ⊂ Rd is defined as modification of the stationary Poisson Point
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166 Houdebert: Phase transition area-interaction model

process of intensity z. Its unnormalised density is given by exp
(
−βL d

(
B1(ω)

))
where

B1(ω) is the union of the unit balls centred at each point of the configuration ω and L d

is the Lebesgue measure on Rd . The parameter β ≥ 0 is called inverse temperature and
the interaction is getting more and more attractive as β is large. The parameter z, called
activity, is related to the intensity of the model.

In the infinite volume regime a global density is senseless and area-interaction mea-
sures are defined through equations specifying their conditional laws. But a solution of
these equations can heuristically be seen as the limit of a finite volume area-interaction
measure on increasing windows, with an additional boundary condition. In this paper
we are interested in the uniqueness/non-uniqueness (called phase transition) of area-
interaction measures for given parameters z and β . Earlier work of Ruelle [15] proved
that in the symmetric case z = β , phase transition occurs when z = β is large enough. A
modern proof of this result, based on percolation tools, was done in [1]. Until recently
almost nothing was proven for the case z 6= β , and it is conjectured that phase transi-
tion (i. e. non-uniqueness) occurs if and only if z = β large enough. This conjecture is
based on similar result for the Ising model, see [6]. But to the best of our knowledge, no
numerical study has been done in order to observe if this conjecture is true.

Recently it was proven in [4] that uniqueness of the area-interaction measure is valid
for z< z̃a

c(β ,1), where β 7→ z̃a
c(β ,1) is a non-decreasing function which is the percolation

threshold corresponding to the area-interaction model. Furthermore this function satisfies
z̃a

c(β ,1) ≡ β for β large enough. With some duality property of the model, it provides
an almost complete picture of the phase diagram of the model. But on a bounded region
of the parameters (z,β ) it is still not proved whether there is phase transition or not. We
refer to this region as the unknown region. This result is rigorously stated in Theorem 16.6
and a sketch of the proof is provided. Finally the theoretical phase transition diagram is
provided in Figure 16.1.

In the present paper we provide a numerical study of the area-interaction model in
order to experimentally plot the curve β 7→ z̃a

c(β ,1) to observe the region which is not
covered by Theorem 16.6; we validate experimentally the conjecture and find an approx-
imative value of the threshold. Our simulations are done in dimension d = 2 using a
standard birth and death MCMC algorithm, as presented in [11]. To implement it we
used the so-called Fortuin-Kasteleyn representation of the area-interaction model, which
provides a construction of the model using the generalised Continuum Random Cluster
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Model (gRCM), which was recently introduced in [9]. The definition of the gRCM and
the Fortuin-Kasteleyn representation is done at the beginning of Section 4. From our
numerical study we compute the value of the percolation threshold z̃a

c(β ,1) for several
values β and provide a plot of the function β 7→ z̃a

c(β ,1), see Figure 16.2 and Figure
16.3. From this we observe that the unknown region is really small. Furthermore from
our simulation we can validate the conjecture, see Figure 16.4, with an approximative
threshold βc ' 1.726. This value matches with numerical studies that have been done in
the symmetric case, see [7, 10].

2 Preliminaries

Let us consider the state space Rd . Let Ω be the set of locally finite configurations ω

on Rd . This means that #(ω ∩Λ) < ∞ for every bounded Borel set Λ of Rd , with #ω

being the cardinality of the configuration ω . We write ωΛ as a shorthand for ω ∩Λ. To
a configuration ω ∈ Ω we associate the germ-grain structure Br(ω) ..=

⋃
x∈ω

Br(x), where

Br(x) is the closed ball centred at x with radius r > 0. Let πz be the distribution on Ω

of the standard homogeneous Poisson point process with intensity z > 0. For Λ ⊂ Rd

bounded, we denote by π
z
Λ

the restriction of πz on Λ.

2.1 Area-interaction measures

The area-interaction measures – also called Widom-Rowlinson measures – are defined
through the standard Gibbs DLR formalism prescribing the conditional probabilities. For
a bounded Λ⊂Rd , we define the Λ-Hamiltonian HΛ(ω) ..=L d

(
B1(ωΛ)\B1(ωΛc)

)
. The

area specification on a bounded Λ⊆ Rd with boundary condition ωΛc is defined by

Pz,β
Λ,ωΛc (dω

′
Λ)

..=
e−βHΛ(ω

′
Λ

ωΛc )

Zarea
z,β ,Λ,ωΛc

π
z
Λ
(dω

′
Λ)

with the standard partition function Zarea
z,β ,Λ,ωΛc

..=
∫

Ω
e−βHΛ(ω

′
Λ

ωΛc )π
z
Λ
(dω ′

Λ
) which is al-

ways non-degenerate (i. e. 0 < Zarea
z,β ,Λ,ωΛc

<+∞). Let us point out that for β = 0, we have

Pz,β
Λ,ωΛc ≡ π

z
Λ

.
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Definition 16.1 A probability measure P on Ω is an area-interaction measure of activity
z and inverse temperature β , written P ∈ G area

z,β , if for every bounded Borel set Λ ⊂ Rd

and every bounded measurable function f ,∫
Ω

f dP =
∫

Ω

∫
Ω

f (ω ′ΛωΛc)Pz,β
Λ,ωΛc (dω

′
Λ)P(dω). (16.1)

Equations (16.1), for all bounded Λ, are called DLR equations, after Dobrushin, Lanford
and Ruelle. Those equations prescribe the conditional probabilities of a Gibbs measure.

Heuristically a solution of the DLR equations can be seen as the limit of Pz,β
Λn,ωΛc

n
for

an increasing sequence Λn and some boundary condition ω . There is phase transition,
i. e. non-uniqueness, if the limit depends on the boundary condition ω .

2.2 Percolation

The theory of percolation studies the connectivity in random structures and is a crucial
tool to prove phase transition of the area-interaction measure.

Definition 16.2 Let r > 0. A configuration ω is said to r-percolate if the germ-
grain structure Br(ω) has at least one unbounded connected component. Further-
more a probability measure P on Ω is said to r-percolate (resp. to not percolate) if
P
(
{ω r-percolates}

)
= 1 (resp. P

(
{ω r-percolates}

)
= 0).

Thanks to standard monotonicity arguments applied to the Gibbs specification we have:

Proposition 16.3 For all β > 0 and r > 0, there exists 0 < z̃a
c(β ,r)< ∞ such that

� for all z < z̃a
c(β ,r), every area-interaction measure P ∈ G area

z,β almost never r-
percolates, i.e P

(
{ω r-percolates}

)
= 0;

� for all z > z̃a
c(β ,r), every area-interaction measures P ∈ G area

z,β almost surely r-
percolates, i.e P

(
{ω r-percolates}

)
= 1.

A proof of this result is provided in [4, Prop. 2.7]. In the general case the only infor-
mation known about z̃a

c(β ,r) is the following bound coming from stochastic domination:

z̃a
c(0,r)≤ z̃a

c(β ,r)≤ z̃a
c(0,r)exp(βvd),
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where z̃a
c(0,r) is the percolation threshold of the Poisson Boolean model of constant radii

r. Experimental studies showed that in dimension d = 2 we have z̃a
c(0,r)' 0.359072 · r2,

see [12]. To the best of our knowledge there exists no approximation for cases β 6= 0.

3 Theoretical results

The first fundamental question in Gibbs point process theory is the existence of at least
one probability measure satisfying the DLR equations (16.1). This is an interesting
and non-trivial question treated for several kinds of interactions, see e. g. [3, 2, 5, 13].
Since the area-interaction process has a finite-range interaction, existence is long proved,
see [14].

Proposition 16.4 For all z,β ≥ 0, the set G area
z,β of area-interaction measures is non-empty.

The second question concerning the area-interaction process is its uniqueness/non-
uniqueness, known as phase transition. It is conjectured that non-uniqueness happens
if and only if z = β is large enough.

Conjecture 16.5 There exists 0 < βc < ∞ such that phase transition occurs for the area-
interaction model if and only if z = β > βc.

This conjecture is motivated by a similar result proved for the lattice Ising model, see
for instance [6, Thm. 3.28 & Thm. 3.46]. Although this conjecture is still open, the
following theorem based on our recent work [4] provides an almost complete picture of
the phase diagram, see Figure 16.1.

Theorem 16.6
1) There exists β1 < ∞ such that for z = β > β1, there is non-uniqueness of the area-

interaction measure;

2) for z,β such that z < z̃a
c(β ,1), there is uniqueness of the area-interaction measure.

Using a duality property, we obtain the same for β < z̃a
c(z,1);

3) there exists β2 ∈ [β1,∞[ such that z̃a
c(β ,1) = β for β > β2. This partially proves

the conjecture.
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Figure 16.1: Theoretical uniqueness/non-uniqueness regimes for the area-interaction
measures with parameters z,β .

Sketch of the proof. The first point was initially proved in 1971 by Ruelle (see [15]) us-
ing Peierls argument. Then a modern proof based on a Fortuin-Kasteleyn representa-
tion satisfied by the area-interaction model was provided in [1]. As a byproduct of their
construction, the authors proved that z̃a

c(β ,1/2) = β for β > β1. The second point is a
generalisation of the disagreement percolation construction introduced in [8]. The idea
of disagreement percolation is to compare the Gibbs specification Pz,β

Λ,ωΛc with the same
parameters z,β but with two different boundary conditions ω1

Λc ,ω2
Λc , using percolation

ideas. The duality property is a consequence of the representation using the Widom-
Rowlinson model, and is stated in [4, Proposition 2.5]. The third point is proved in [4,
Section 4.4.1] using the Fortuin-Kasteleyn representation introduced in [1] and an elegant
stochastic domination argument which, using the fact that as soon as z̃a

c(β ,1/2) = β for β

large, one gets that z̃a
c(β ,1) = β for β even larger.

4 Numerical study of the phase diagram

In this section we will use numerical approximation, in dimension d = 2, in order to

1) experimentally plot the curve β 7→ z̃a
c(β ,1) to see the region which is not covered

by Theorem 16.6;
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2) validate experimentally the conjecture and find an approximative value of the
threshold β1.

To do our numerical study we will use a birth and death MCMC algorithm to sample
the area-interaction process. The general algorithm we used for birth and death MCMC
can be found in [11]. One could have considered using an exact simulation technique, as
implemented in [7], but the computation of the percolation threshold requires to sample
the model in a large window, which would be extremely time consuming using exact
simulation techniques. We chose to sample the area-interaction model from the Fortuin-
Kasteleyn representation using the gRCM, introduced in [9].

Definition 16.7 On a bounded window Λ, the generalised Continuum Random Cluster
Model with activity parameter ρ ≥ 0 and α1,α2 ≥ 0 such that α1 +α2 = 1 is defined as
PgRCM

Λ
(dω)∼∏C

(
α#C

1 +α#C
2

)
π

ρ

Λ
(dω), where the product is over the clusters of B1/2(ω).

Proposition 16.8 Considering a configuration ω ∼ PgRCM
Λ

and removing each cluster C

of B1/2(ω) with probability α#C
2 /(α#C

1 +α#C
2 ), one obtains a configuration sampled from

the area-interaction measure Parea
Λ

(dω) ∼ exp(−β |B1(ω)∩Λ|)πz
Λ
(dω) with parameters

z = α1ρ and β = α2ρ .

This representation gives a good feeling for the third point of Theorem 16.6. Indeed, a
large cluster will be removed (resp. kept) with very high probability when α1 < α2 (resp.
α1 > α2). But percolation is highly dependent of the status of the large clusters.

In our numerical study we sample area-interaction measures in a window Λ= [0,100]2,
using a MCMC algorithm sampling the gRCM and then thinning the configuration ac-
cording to the previous proposition. We observe the experimental intensity and whereas
the center of the window is connected to its boundary in B1(ω). For each pair of parame-
ters (z,β ), we sampled the model 1000 times in order to obtain an experimental intensity
and an experimental probability of percolation. The C++ code used is accessible on
GitHub.1

In order to determine z̃a
c(β ,1), the percolation threshold of the model for a given β ,

we arbitrarily decide that the percolation threshold is the first observed value of z such
that the probability of the center of the box [0,100]2 to be connected to the boundary is
larger than 0.01. Indeed, theoretically, for the infinite volume model the threshold is the
first value of z such that the probability of the origin (or any given point) belongs to the

1https://github.com/PierreHoudebert/area perco multithread
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Figure 16.2: Percolation probability as a function of the activity z. The value correspond-
ing to the percolation threshold z̃a

c(β ,1) is the plain square.

infinite connected component is positive. But for the finite volume model this probability
is always positive.

For some values of β the percolation probability, as a function of z, is displayed in Fig-
ure 16.2. The obtained values of the percolation threshold z̃a

c(β ,1) and the corresponding
graph is displayed in Figure 16.3.

Considering the conjecture, it is known that phase transition occurs at a given pair
(z0,β0) if the intensity, as a function of z for β0 fixed, is discontinuous in z0. This is

β z̃a
c(β ,1)

0.3 0.43
0.5 0.55
0.7 0.7
1.0 0.97
1.3 1.27
1.5 1.48
1.6 1.588
1.7 1.697
1.8 1.8
2.0 2

Figure 16.3: Obtained values of the percolation threshold, and corresponding approxima-
tion curve.
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Figure 16.4: Experimental intensity as a function of z, for several values of β .

proven for the Ising model, see for instance [6], and could be proven similarly for the
area-interaction model.

As before for a given pair of parameters (z,β ), we sample the model 1000 times on the
bounded window Λ = [0,100]2, and observed the experimental intensity obtained. For
given values of β , we provide the graph of the intensity as a function of z in Figure 16.4.
We observe from Figure 16.4 that the experimental intensity is indeed discontinuous only
for z = β larger than some value βc. This amounts to saying that phase transition occurs
only for z = β , as conjectured. However from the figure it is not clear what is the exact
value of the threshold βc, but it seems to be approximately βc ' 1.726, which is coherent
with the value obtained in [10] where the authors considered only the symmetric case.
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