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Activity expansions for Gibbs
correlation functions

Sabine Jansen* and Leonid Kolesnikov†

Abstract. We consider Gibbs point processes with non-negative pair

potentials. For small activities, a cluster expansion allows us to express

the corresponding correlation functions by (multivariate) power series

in the activity around zero. We characterise the domain of absolute

convergence of those series and derive from this characterisation a new

sufficient condition in the setting of abstract polymers improving the

known bounds for the convergence radii.

1 Introduction

Proving convergence conditions for cluster expansions is a classical problem with a long
history – see [1, 6] and the references therein. Recent developments include a novel
convergence condition by Fernández-Procacci [3] that improves the classical Kotecký-
Preiss criterion [5] as well as Dobrushin’s criterion [2]. We present a new necessary
and sufficient convergence condition that improves on the above-mentioned criteria. The
criterion applies to non-negative pair potentials for systems both continuous and discrete.
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146 Jansen, Kolesnikov: Activity expansions

After describing the general setting in Section 2, we proceed to introduce a system of
integral equations satisfied by the activity expansions ρ , the so-called Kirkwood-Salsburg
equations, in Section 3. In Section 4, we consider a sign-flipped version of those equa-
tions to prove our main result – Theorem 14.7 – characterising the domain of absolute
convergence of ρ; moreover, we are able to use Theorem 14.7 to prove a new sufficient
condition for systems of abstract polymers (Proposition 14.8).

2 The setting: Definitions and notations

Let (X,X ) be a measurable space, λ a σ -finite reference measure, and v a non-negative
pair potential, i. e., v :X×X→R+∪{∞} is measurable and symmetric (in the sense that
v(x,y) = v(y,x) for all x,y ∈ X). Mayer’s f function associated with the potential v is
given by

f (x,y) ..= e−v(x,y)−1.

An activity function is a measurable map z : X→ R. We define the measure λz on X by

λz(B) ..=
∫

B
z(x)λ (dx), B ∈X .

The weight of a graph G with vertex set [n] = {1, . . . ,n} and edge set E(G) is

w(G;x1, . . . ,xn) ..= ∏
{i, j}∈E(G)

f (xi,x j), x1, . . . ,xn ∈ X.

Let Gn be the set of all graphs with vertex set [n], Cn ⊂ Gn the set of connected graphs and

ϕ
T
n (x1, . . .xn) ..= ∑

G∈Cn

w(G;x1, . . . ,xn)

the n-th Ursell function. For k ∈ N and 1 ≤ k ≤ n, let Dk,n ⊂ Gn the collection of all
graphs G such that every vertex j ∈ {k+1, . . . ,n} connects to at least one of the vertices
i ∈ {1, . . . ,k}. We call such graphs multi-rooted graphs on [n] with k roots. Consider the
functions

ψk,n(x1, . . . ,xn) ..= ∑
G∈Dk,n

w(G;x1, . . . ,xn).

For k = 1, the functions coincide with the standard Ursell functions, i. e., ψ1,n = ϕT
n . We

are interested in the associated series
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ρk(x1, . . . ,xk;z) ..= z(x1) · · ·z(xk)

(
ψk,k(x1, . . . ,xk)

+
∞

∑
n=1

1
n!

∫
Xn

ψk,k+n(x1, . . . ,xk,y1, . . . ,yn)λ
⊗n
z (dyyy)

)
.

The series ρk corresponds to the k-point correlation function of a grand-canonical Gibbs
measure [8, Eq. (4-7)], see also [4] – it is precisely the expansion of the correlation
function in the activity z around zero. Proposition 14.1 provides some intuition for why
ρ = (ρk)k∈N is the right candidate for those activity expansions.

We say that the series ρk(x1, . . . ,xk;z) is absolutely convergent if

∞

∑
n=1

1
n!

∫
Xn

∣∣∣ψk,k+n(x1, . . . ,xk,y1, . . . ,yn)z(x1) · · ·z(xk)z(y1) · · ·z(yn)
∣∣∣λ⊗n(dyyy)< ∞.

Our main goal is to provide necessary and sufficient conditions on z ensuring that ρ

converges absolutely, i. e., that the series ρk converge absolutely on Xk for all k ∈ N.

3 Preparations

Some preparations are required before we can state our main results. The following
representation of the activity expansions ρ – in the spirit of Equation (2.11) in [1] –
turns out to be quite useful for deriving properties of interest (e. g., the signs of the series
ρk alternating in k ∈ N (see Proposition 14.3) or their connection to the k-correlation
functions of the corresponding Gibbs point process mentioned in the introduction).

Proposition 14.1 (Exponential representation of ρ) Suppose that all series ρk(z) are
absolutely convergent on Xk for some activity function z. Then

ρk(x1, . . . ,xk;z) = z(x1) · · ·z(xk) ∏
1≤i< j≤k

(
1+ f (xi,x j)

)
× exp

(
∞

∑
n=1

1
n!

∫
Xn

(
∏

1≤i≤k
1≤ j≤n

(
1+ f (xi,y j)

)
−1

)
ϕ
T
n (y1, . . . ,yn)λ

⊗n
z (dyyy)

)
,

for all k ∈ N and (x1, . . . ,xk) ∈ Xk.
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Sketch of proof. Under the assumption of the proposition this identity on the level of
generating functions can be reduced to the following identity on the level of coefficients
given by sums over weighted graphs:

ψk,n(x1, . . . ,xn) = ∏
1≤i< j≤k

(
1+ f (xi,x j)

)
× ∑
{V1,...,Vr}

r

∏
`=1

(
∏

1≤i≤k,
j∈V`

(
1+ f (xi,x j)

)
−1

)
ϕ
T
|V`|
(
(x j) j∈V`

)
(14.1)

where the sum runs over all set partitions {V1, . . . ,Vr} of non-root vertices {k+1, . . . ,n}.
The latter identity (on the combinatorial level) can be shown simply by exploiting the

structure of multi-rooted graphs and their relation to connected graphs.

Corollary 14.2 (Alternating sign property) We have

ψk,n(x1, . . . ,xn) = (−1)n−k∣∣ψk,n(x1, . . . ,xn)
∣∣

for all n ∈ N, all k ∈ {1, . . . ,n}, and all (x1, . . . ,xn) ∈ Xn.

Sketch of proof. The statement follows directly from the identity (14.1) and the well-
known alternating sign property of the Ursell functions ϕn, which holds by a tree-graph
equation à la Penrose (e. g., see [3]).

We use the observation captured by Corollary 14.2 to introduce the sign-flipped version
of the activity expansions ρ .

Corollary 14.3 (Introducing ρ̃) Let z be a non-negative activity function. Then, the
series ρk(−z) converge for all k ∈N if and only if the series ρk(z) converge absolutely for
all k ∈ N. Moreover, define ρ̃(z) by setting

ρ̃k(x1, . . . ,xk;z) ..= (−1)k
ρk(x1, . . . ,xk;−z)

for all k ∈ N and (x1, . . . ,xk) ∈ N. Then

ρ̃k(x1, . . . ,xk;z) =
k

∏
i=1

z(xi) ∑
n≥0

1
n!

∫
Xn

∣∣ψk,k+n(x1, . . . ,xk,y1, . . . ,yn)
∣∣λ⊗n

z (dyyy)
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holds for all k ∈ N and (x1, . . . ,xk) ∈ N.

Sketch of proof. The statement follows directly from the alternating sign property given
by Corollary 14.2.

Now we are ready to introduce systems of integral equations satisfied by the activity ex-
pansions – the so-called Kirkwood-Salsburg equations. Notice the close relation between
those and the GNZ equations (named after Georgii, Nguyen and Zessin; e. g., see [4]),
which can serve to define grand-canonical Gibbs measures. In general, the Kirkwood-
Salsburg relations for the correlation functions follow from the GNZ equations and even
the equivalence holds under additional assumtions (e. g., see [4, Lemma 3.1] and the dis-
cussion thereafter.)

Definition 14.4 (Kirkwood-Salsburg operators) Given a fix activity function z, define
Kz by the following formal expressions: For a = (ap)p∈N such that ap : Xp→ R is mea-
surable for all p ∈ N, set

(
Kza
)

p+1(x0,x1, . . . ,xp) ..= z(x0)
p

∏
i=1

(
1+ f (x0,xi)

)
×

ap(x1, . . . ,xp)+
∞

∑
k=1

1
k!

∫
Xk

k

∏
j=1

f (x0,y j)ap+k(x1, . . . ,xp,y1, . . . ,yk)λ
⊗k(dyyy)

 ,

where we use the natural convention a0
..= 0 for the case p = 0.

Similarly, define K̃z by

(
K̃za
)

p+1(x0,x1, . . . ,xp) ..= z(x0)
p

∏
i=1

(
1+ f (x0,xi)

)
×

ap(x1, . . . ,xp)+
∞

∑
k=1

1
k!

∫
Xk

k

∏
j=1

∣∣ f (x0,y j)
∣∣ap+k(x1, . . . ,xp,y1, . . . ,yk)λ

⊗k(dyyy)

 .

Furthermore, for all (x1, . . . ,xp) ∈Xp set
(
ez
)

1(x1) ..= z(x1) and
(
ez
)

p(x1, . . . ,xp) ..= 0 for
p≥ 2.
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Proposition 14.5 (Kirkwood-Salsburg equations for ρ) Assume that ρ(z) converges
absolutely for some activity function z (i. e., the series ρp(x1, . . . ,xp;z) are absolutely
convergent for all p ∈ N and all (x1, . . . ,xp) ∈ Xp), then

ρ(z) = Kzρ(z)+ ez, (14.2)

in the sense that ρp(x1, . . . ,xp;z) =
(
Kzρ(z) + ez

)
p(x1, . . . ,xp) for all p ∈ N and all

(x1, . . . ,xp) ∈ Xp.

Sketch of proof. Following the proof by Jansen in [4], one uses the structure of multi-
rooted graphs to show that ρ(z) is given (pointwise) by the limit of the Picard iterates of
the map a 7→ Kza+ ez, which by a slight abuse of notation we denote Kz + ez, starting in
ez (i. e. ρ(z) = limn→∞(Kz + ez)

nez, where (Kz + ez)
n denotes the n-fold composition of

Kz + ez with itself).

Furthermore, for the sign-flipped functions ρ̃k(z), a system of integral equations in
terms of the sign-flipped operator K̃z can be derived from the original Kirkwood-Salsburg
equations for ρk(z).

Proposition 14.6 (Kirkwood-Salsburg equations for ρ̃) Assume that ρ̃(z) converges
for some non-negative activity function z (i. e., the series ρ̃p(x1, . . . ,xp;z) are convergent
for all p ∈ N and all (x1, . . . ,xp) ∈ Xp), then

ρ̃(z) = K̃zρ̃(z)+ ez, (14.3)

in the sense that ρ̃p(x1, . . . ,xp;z) =
(
K̃zρ̃(z) + ez

)
p(x1, . . . ,xp) for all p ∈ N and all

(x1, . . . ,xp) ∈ Xp.

Sketch of proof. The statement follows directly from Proposition 14.5 by the definition
of ρ̃(z) and the alternating sign property from Corollary 14.2.

4 Main results

Now we are ready to state our main result – a condition both necessary and sufficient
for absolute convergence of ρ(z) – inspired by the extended Gruber-Kunz approach as
introduced by Bissacot et al. in [1].
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Theorem 14.7 Let z be a non-negative activity function. Then the following statements
are equivalent:

1) ρ̃(z) converges.

2) There exists a sequence of non-negative measurable functions a, such that

K̃za+ ez ≤ a. (14.4)

Sketch of proof. The implication 1)⇒ 2) is given by Proposition 14.6. For the converse,
we notice that ρ̃(z) is – if convergent – equal to the Neumann series ∑

∞
n=0 K̃n

z ez, since the
latter is also given by the unique limit of the Picard iterates of K̃z + ez starting in ez, i. e.,

∑
∞
n=0 K̃n

z ez = limn→∞(K̃z + ez)
nez = ρ̃(z). Following a proof by Fernández and Procacci

(see [1]) one can exploit certain positivity and monotonicity properties of K̃z to show that
2) implies the convergence of the Neumann series ∑

∞
n=0 K̃n

z ez.

Given Theorem 14.7, proving sufficient conditions for absolute convergence of the
activity expansions can be reduced to finding appropriate ansatz functions a satisfying
the system of Kirkwood-Salsburg inequalities (14.4). We demonstrate how this can be
done by considering the classical criteria:

1) Kotecký-Preiss criterion: First introduced by Kotecký and Preiss in [5] for abstract
polymers, the criterion was generalised for the setup of repulsive pair interactions
by Ueltschi in [9]; its generalised version can be formulated as: If there exists
µ : X→ [0,∞), such that for all x0 ∈ X

z(x0)e
∫
| f (x0,y)|µ(y)λ (dy) ≤ µ(x0), (14.5)

then the activity expansions ρ(z) converge absolutely.

In this case, choose a = (ap)p∈N to be given by ap(x1, . . . ,xp) ..= ∏
p
i=1 µ(xi) for

some µ ≥ 0 satisfying condition (14.5). Just by using the uniform bound |1+ f | ≤
1 (repulsive interactions) one immediately confirms that this choice of a satisfies
the inequalities (14.4).

2) Fernández-Procacci criterion: First introduced by Fernández and Procacci in [3]
for abstract polymers, the criterion was generalised for the setup of repulsive pair
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interactions by Jansen in [4]; its generalised version can be formulated as: If there
exists µ : X→ [0,∞), such that for all x0 ∈ X

z(x0)

1+
∞

∑
k=1

1
k!

∫
Xk

k

∏
j=1

∣∣ f (x0,y j)
∣∣ ∏

1≤i< j≤k

(
1+ f (yi,y j)

) k

∏
j=1

µ(y j)λ
⊗k(dyyy)


≤ µ(x0), (14.6)

then the activity expansions ρ(z) converge absolutely.

Here we define a=(ap)p∈N by ap(x1, . . . ,xp) ..=∏1≤i< j≤p
(
1+ f (xi,x j)

)
∏

p
i=1 µ(xi)

for some µ ≥ 0 satisfying condition (14.6). Again, the uniform bound |1+ f | ≤ 1
immediately yields the inequalities (14.4) for our choice of a.

But not only can the classical convergence criteria be reconstructed by the approach
given by Theorem 14.7, also new results improving on the known bounds for the con-
vergence radii can be proven by choosing “less multiplicative” ansatz functions (no-
tice that all the ansatz functions a considered are submultiplicative – in the sense that
ap+k(x1, . . . ,xp,xp+1, . . . ,xp+k)≤ ap(x1, . . . ,xp)ak(xp+1, . . . ,xp+k) for all p,k ∈N and all
(x1, . . . ,xp,xp+1, . . . ,xp+k) ∈ Xp+k). In the following we consider the setup of abstract
polymers, in which the two classical conditions above were first introduced.

Let X be a countable set (the set of polymers), let X be the powerset of X and let λ

simply be given by the counting measure. Moreover, let R ⊂ X×X be a symmetric and
reflexive relation. We write x � y for (x,y) ∈ R and x ∼ y for (x,y) /∈ R. We set Γ(x) ..=

{y ∈ X| y� x} for any x ∈ X and extend this notation to Γ(X) ..= ∪x∈X{y ∈ X| y� x} for
any X ⊂X. Notice that we do not require Γ(x) to be finite sets and that x ∈ Γ(x) for every
x ∈ X. Finally, we consider hard-core interactions given by f (x,y) ..=−1{x�y}.

In this setting we prove the following new sufficient condition:

Proposition 14.8 Let z be a non-negative activity function. If there exists µ :X→ [0,∞),
such that for all x0 ∈ X

z(x0)

1+ ∑
k≥1

∑
Y={y1 ,...,yk}yi�x0, yi∼y j

k

∏
i=1

µ(yi) ∏
w∈Γ(Y )

eµ(w)

≤ µ(x0) ∏
w∈Γ(x0)

eµ(w), (14.7)

then the activity expansions ρ(z) converge absolutely.
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Sketch of proof. One shows that – under the assumption of the the proposition – the
ansatz functions a = (ap)p∈N, ap : X→ [0,∞), given by setting

ap(x1, . . . ,xp) ..= ∏
1≤i< j≤p

1{xi∼x j}

p

∏
i=1

µ(xi) ∏
w∈Γ(X)

eµ(w)

for some µ satisfying (14.7), any p ∈N and every (x1, . . . ,xp) ∈Xp, satisfy the system of
Kirkwood-Salsburg inequalities (14.4).

Notice how the sufficient conditions are successively improved by having the corre-
sponding ansatz functions a capture more of the structure of the expansion from Propo-
sition 14.1 (for a modified activity µ ≥ z, where the inequality is understood to hold
pointwise). To illustrate the improvement we consider the following somewhat typical
case of an abstract polymer model given by subset polymers, i. e. the polymers are given
by finite subsets of the regular lattice Zd and the relation R on the set of polymers is given
by having non-empty intersection.

Example 14.9 Consider non-overlapping (hard-core-interactions) cubes on Z2 of side-
length 2 with translation-invariant activity z. The sufficient condition on z for the absolute
convergence of ρ(z) given by the Fernández-Procacci criterion provides the bound

z≤max
µ≥0

µ

1+9µ +16µ2 +8µ3 +µ4 ≈ 0.057271,

while our condition from Proposition 14.8 provides

z≤max
µ≥0

µe9µ

1+9e9µ µ +(6e15µ +8e16µ +2e17µ)µ2 +8e21µ µ3 + e25µ µ4 ≈ 0.060833.

This corresponds to an improvement of approximately 6 percent.
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