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On direct and inverse
problems in the description

of lattice random fields
Linda Khachatryan* and Boris Nahapetian†

Abstract. Various systems of finite-dimensional distributions parame-

terised by boundary conditions are considered. For such systems so-

lutions to direct and inverse problems of description of lattice random

fields are given.

1 Introduction

Let P be a random field on the integer lattice Zd (d ≥ 1) with state space X , that is, a
probability measure on the σ -algebra generated by all cylinder sets of XZ

d
.

Since it is quite difficult to work directly with the probability measure P defined on the
infinite product of state space X (often called infinite-volume measure), its study usually
reduced to the analysis of a suitable system QP of probability distributions generated by P

and defined on finite products of X . The natural requirement for such a system QP is that
QP must uniquely determine (restore) the random field P, i. e., any random field P′ such
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that QP′ = QP must coincide with P. In this case it is necessary to note that the random
field P was restored by the system QP, we will use the following notation: PQP .

For a given random field P, the problem of the existence of a system QP for which
PQP = P we call the direct problem in the description of random fields. We will say that a
system QP is a solution to the direct problem for a given random field P if PQP = P. Note
that for a given random field there may exist various solutions to the direct problem.

If the direct problem is solved, the following question naturally arises: does the system
QP possess such specific properties (consistency conditions) which allow restoring the
random field P without taking into account the fact that the elements of QP are generated
by the random field P? In the case such consistency conditions are found, it is quite
possible that for any system Q endowed by these properties, there exists a random field P

whose system of finite-dimensional distributions QP coincides with Q.

For a given system Q of finite-dimensional distributions, the problem of the existence
of a random field P for which QP = Q we call the inverse problem in the description of
random fields. We will say that a random field P is a solution to the inverse problem for
a given system Q if QP = Q. For a given system Q, any solution to the inverse problem
will be denoted by PQ, so that QPQ = Q.

By solving the direct problem, we obtain the possibility to define classes of random
fields and to study their main properties; while the solution to the inverse problem makes
it possible to construct models of random fields with required properties.

Historically, Kolmogorov was the first one who considered both the direct and the
inverse problems of description of random processes (see [7], originally published in
German in 1933). His subject of consideration was a consistent system of unconditional
finite-dimensional distributions. This system, which uniquely determines a random field,
is a very general one, and specific classes of random processes are defined by the cor-
responding restrictions on its elements. For example, by corresponding restrictions on
Kolmogorov’s system, classes of Gaussian processes, processes with independent incre-
ments as well as stationary processes are defined.

Over time, it became clear that in many cases it is convenient to impose restrictions not
only on unconditional distributions but also on their relations, that is, on conditional dis-
tributions. This type of restrictions leads to other important classes of random processes,
namely Markov processes, Gibbs random fields, martingales, etc.
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It should be noted that, generally speaking, an inverse problem may have more than
one solution, i. e., be incorrect. If for a given system Q the inverse problem of description
of random fields is correct (has a unique solution), we will say that the system Q specifies

(uniquely defines) a random field. Note, that Kolmogorov’s system characterises a ran-
dom field. However, in some cases incorrect problems lead to very interesting and useful
results. For example, in the Dobrushin’s theory of description of Gibbs random fields, the
non-correctness of the inverse problem (non-uniqueness of its solution) is interpreted as
the presence of a phase transition in the model under study (see the seminal paper [6]).

In the present work we restrict ourselves to the case of positive lattice random fields
with finite state space X . We consider various systems of conditional distributions gen-
erated by a random field as well as autonomously defined consistent systems of finite-
dimensional distributions parametrised by boundary conditions. For such objects solu-
tions to the direct and the inverse problems in the description of random fields are given.

2 Preliminaries

Let S ⊂ Zd and let W (S) = {V ⊂ S,0 < |V | < ∞} be the set of all (non-empty) finite
subsets of S. For S = Zd we use a simpler notation W . In some cases the braces in the
notation of one-point sets {t}, t ∈ Zd , are omitted. For any function f (Λ), Λ ∈W (S), the
notation lim

Λ↑S
f (Λ) = a will mean that for any increasing sequence {Λn}n≥1 of finite sets

converging to S (that is, Λn ∈W (S), Λn ⊂ Λn+1 and
∞⋃

n=1
Λn = S), we have lim

n→∞
f (Λn) = a.

Denote by XS = {(xt , t ∈ S)}, xt ∈X , the set of all functions (configurations) on S taking
values in X . If S = /0, we assume X /0 = {o}, where o is the empty configuration. For any
S,T ⊂ Zd such that S∩T = /0 and any x ∈ XS, y ∈ XT we denote xy the concatenation of
x and y defined as the configuration on S∪T equal to x on S and to y on T . If T ⊂ S, by
xT we denote the restriction of the configuration x ∈ XS on T .

Let P be a random field, that is, a probability measure on XZ
d
. We denote by PV the

restriction of P on XV , i. e., PV (A) =
(
P
)

V (A) = P
(
{x ∈ XZ

d
: xV ∈ A}

)
, where A⊂ XV ,

V ∈W . A random field P is called positive if PV (x)> 0 for all x ∈ XV and V ∈W .

For a positive random field P, its conditional probability Qz
V on XV under finite con-

dition z ∈ XS, S ∈W (Zd\V ), is defined as Qz
V (x) = PV∪S(xz)

/
PS(z), x ∈ XV , V ∈W .

In the case of infinite boundary condition z ∈ XS, S ⊂ Zd\V , S /∈ W (Zd\V ), we put
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Qz
V (x) = lim

Λ↑S
QzΛ

V (x), x ∈ XV , V ∈W , where the limit exists for almost all (with respect to

P) configurations z.

3 Kolmogorov’s system

In [7] Kolmogorov showed that any random field P is determined by its system of finite-
dimensional unconditional distributions KP = {PV ,V ∈W}, and thus KP is a solution to
the direct problem.

Among the properties of the restoring system KP, Kolmogorov singled out the follow-
ing one as a consistency condition: for all V, I ∈W , V ∩ I = /0 and x ∈ XV

∑
y∈X I

PV∪I(xy) = PV (x). (10.1)

He proved that the system K = {pV ,V ∈W} of probability distributions pV on XV , V ∈W ,
whose elements are consistent in the sense (10.1), characterises a random field PK , i. e.,
there exists a unique solution to the inverse problem for the system K.

4 Systems of probability distributions parameterised by
boundary conditions

Below we examine both the direct and the inverse problems for various consistent systems
of finite-dimensional distributions parameterised by boundary conditions.

Note that if a system Q defines a random field PQ then the system QPQ (which coincides
with Q) is a solution to the direct problem for the random field PQ. Thus, further, we will
mainly focus on the inverse problem.

4.1 Conditional distribution of a random field

In this section we consider the widest system of conditional probability distributions gen-
erated by a random field.



4 Systems of probability distributions parameterised by boundary conditions 111

For a random field P, the system QP = {Qz
V ,z ∈ XS, /0 6= S ⊂ Zd\V,V ∈W} of con-

ditional probabilities Qz
V on XV under boundary conditions z outside V , V ∈W , we call

conditional distribution of the random field P.

Any random field P is restored by its conditional distribution QP. Thus, the conditional
distribution QP of a random field P is a solution to the direct problem. Now let us consider
the inverse problem.

We call a set Q = {qz
V ,z ∈ XS, /0 6= S ⊂ Zd\V,V ∈W} of probability distributions qz

V

on XV parametrised by boundary conditions z outside V , V ∈W , (general) specification

if its elements satisfy the following consistency conditions:

1. for any disjoint sets V, I ∈W , /0 6= S⊂ Zd\(V ∪ I) and x ∈ XV , y ∈ X I , z ∈ XS

qz
V∪I(xy) = qz

V (x)q
zx
I (y); (10.2)

2. for all V ∈W and /0 6= S⊂ Zd\V it holds

qz
V (x) = lim

Λ↑S
qzΛ

V (x), x ∈ XV , z ∈ XS. (10.3)

The consistency condition (10.2) in the case of infinite boundary conditions was con-
sidered for the first time in [1]. A specification Q will be called positive if all its elements
are strictly positive.

It is not difficult to see that for any random field P, the elements of its conditional distri-
bution QP satisfy the consistency conditions (10.2) and (10.3) for almost all (with respect
to P) boundary conditions. However, any random field has a version of its conditional
distribution QP being the specification.

For a given specification, there is a unique solution to the inverse problem of descrip-
tion of random fields.

Theorem 10.1 Let Q be a positive specification. Then there exists a unique random field
P such that its conditional distribution QP coincides with Q.

Proof. For any V ∈W put

pV (x) =
qy

V (x)
qx

I (y)

(
∑

α∈XV

qy
V (α)

qα
I (y)

)−1

, x ∈ XV , (10.4)
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where y ∈ X I , I ∈W (Zd\V ). Using (10.2) one can show that the function pV does not
depend on the choice of I and y. It is not difficult to see that the system of probability
distributions {pV ,V ∈W} is consistent in Kolmogorov’s sense and hence defines a unique
random field P such that KP = {pV ,V ∈W}. Moreover, it can be shown that QP = Q.

4.2 One-point conditional distribution

For a given random field P, the system Q1(P) = {Qz
t ,z ∈ XS, /0 6= S⊂ Zd\{t}, t ∈ Zd} we

call one-point conditional distribution of the random field P. Any random field P can be
restored by its one-point conditional distribution Q1(P).

We call a system Q1 = {qz
t ,z∈XS, /0 6= S⊂Zd\{t}, t ∈Zd} of one-point probability dis-

tributions parametrised by boundary conditions (general) 1-specification if its elements
satisfy the following consistency conditions:

1. for all t,s ∈ Zd , S⊂ Zd\{t,s} and x,u ∈ X{t}, y,v ∈ X{s}, z ∈ XS

qzy
t (x)qzx

s (v)q
zv
t (u)qzu

s (y) = qzx
s (y)q

zy
t (u)qzu

s (v)qzv
t (x); (10.5)

2. for all t ∈ Zd , /0 6= S⊂ Zd\{t} and x ∈ X{t}, z ∈ XS it holds qz
t (x) = lim

Λ↑S
qzΛ

t (x).

Theorem 10.2 Let Q1 be a positive 1-specification. Then there exists a unique random
field P such that its one-point conditional distribution Q1(P) coincides with Q1.

Proof. Let us construct a Kolmogorov’s system KQ1 = {pV ,V ∈W} as follows. For
V = {t}, t ∈ Zd , put

pt(x) =
qy

t (x)
qx

s(y)

(
∑

α∈X{t}

qy
t (α)

qα
s (y)

)−1

, x ∈ X{t}, (10.6)

where y ∈ X{s}, s ∈ Zd\{t}. Further, for any V ∈W , t ∈ Zd\V and x ∈ XV , z ∈ X{t} put

pt∪V (zx) = pt(z)qz
V (x),

qz
V (x) =

n

∏
j=1

q
z(xu) j
t j (xt j)

q
z(xu) j
t j (ut j)

·

 ∑
α∈XV

n

∏
j=1

q
z(αu) j
t j (αt j)

q
z(αu) j
t j (ut j)

−1

. (10.7)
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Here (xu) j = xt1 . . .xt j−1ut j+1 . . .utn for 1< j < n and (xu)1 = ut2 . . .utn , (xu)n = xt1 . . .xtn−1 ,
n = |V |, V = {t1, t2, . . . , tn} is some enumeration of the points of the set V , and u ∈ XV is
an arbitrary configuration. By virtue of (10.5), pt and qz

V are correctly defined. It is not
difficult to see that the elements of the system KQ1 are consistent in Kolmogorov’s sense,
and hence KQ1 defines a random field P such that KP = KQ1 . Moreover, one can verify
that Q1(P) = Q1.

4.3 Finite-conditional distribution of a random field

For a given random field P, the system Qfin(P) = {Qz
V ,z ∈ XS,S ∈W (Zd\V ),V ∈W},

introduced in [3], is called finite-conditional distribution of the random field P. The
system Qfin(P) restores the random field P.

We call a set Qfin = {qz
V ,z ∈ XS,S ∈W (Zd\V ),V ∈W} of probability distributions

parametrised by finite boundary conditions specification with finite boundary conditions

if its elements satisfy the following consistency condition: for any disjoint sets V, I,S∈W

and configurations x ∈ XV , y ∈ X I , z ∈ XS it holds qz
V∪I(xy) = qz

V (x)q
zx
I (y).

Theorem 10.3 Let Qfin be a positive specification with finite boundary conditions. Then
there exists a unique random field P such that Qfin(P) = Qfin.

The proof of this result is similar to the proof of Theorem 10.1.

4.4 One-point finite-conditional distribution of a random field

For a given random field P, the system Qfin
1 (P) = {Qz

t ,z ∈ XS,S ∈W (Zd\{t}), t ∈ Zd},
introduced in [4], is called one-point finite-conditional distribution of the random field P.
The system Qfin

1 (P) restores the random field P.
We call a set Qfin

1 = {qz
t ,z ∈ XS,S ∈W (Zd\{t}), t ∈ Zd} of one-point probability dis-

tributions parametrised by finite boundary conditions 1-specification with finite boundary

conditions if its elements satisfy the following consistency condition: for all t,s ∈ Zd ,
S ∈W

(
Zd\{t,s}

)
and x,u ∈ X{t}, y,v ∈ X{s}, z ∈ XS

qzy
t (x)qzx

s (v)q
zv
t (u)qzu

s (y) = qzx
s (y)q

zy
t (u)qzu

s (v)qzv
t (x). (10.8)

Theorem 10.4 Let Qfin
1 be a positive 1-specification with finite boundary conditions.

Then there exists a unique random field P such that Qfin
1 (P) = Qfin

1 .
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The proof of this result is similar to the proof of Theorem 10.2.
Note that in [4] the inverse problem for the system Qfin

1 was solved under the following
(equivalent to (10.8)) consistency conditions:

1. for all t,s ∈ Zd , S ∈W
(
Zd\{t,s}

)
and x ∈ X{t}, y ∈ X{s}, z ∈ XS

qz
t (x)q

zx
s (y) = qz

s(y)q
zy
t (x);

2. for all t,s ∈ Zd and x,u ∈ X{t}, y,v ∈ X{s}

qy
t (x)q

x
s(v)q

v
t (u)q

u
s (y) = qx

s(y)q
y
t (u)q

u
s (v)q

v
t (x).

4.5 Palm-type conditional distribution of a random field

For a given random field P, the system QΠ(P) =
{

Qz
V ,z ∈ X{t}, t ∈ Zd\V,V ∈W

}
of con-

ditional probabilities under condition at a point we call Palm-type conditional distribution

of the random field P. The system QΠ(P) restores the random field P.
We call a set QΠ =

{
qz

V ,z ∈ X{t}, t ∈ Zd\V,V ∈W
}

of probability distributions parametrised
by boundary condition at a point Palm specification if its elements satisfy the following
consistency conditions:

1. for any disjoint sets V, I ∈W and z ∈ X{t}, t ∈ Zd\(V ∪ I)

∑
y∈X I

qz
V∪I(xy) = qz

V (x), x ∈ XV ; (10.9)

2. for any t,s ∈ Zd , V ∈W (Zd\{t,s}) and x ∈ X{t}, y ∈ X{s}, u ∈ XV

qy
t (x)q

x
s∪V (yu) = qx

s(y)q
y
t∪V (xu). (10.10)

Theorem 10.5 Let QΠ be a positive Palm specification. Then there exists a unique ran-
dom field P such that QΠ(P) = QΠ.

Proof. For any V ∈W put pV (x)= pt(xt)q
xt
V\{t}(xV\{t}), x∈XV , t ∈V , where pt is defined

by (10.6). By virtue of (10.10), the probability distribution pV does not depend on the
choice of the point t ∈ V . According to (10.9), the system {pV ,V ∈W} is consistent
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in Kolmogorov sense, and hence there exists a unique random field P such that KP =

{pV ,V ∈W}. Moreover, it can be shown that QΠ(P) = QΠ.

4.6 Dobrushin’s conditional distribution of a random field

Among the conditional distributions of a random field P under infinite boundary condi-
tions, there is a system, introduced by Dobrushin in [5], which has a special place.

For a given random field P, the system QD(P) = {Qz
V ,z∈XZ

d\V ,V ∈W} of conditional
probabilities on XV under a boundary condition everywhere outside V , V ∈W , we call
Dobrushin’s conditional distribution of the random field P.

Generally speaking, Dobrushin’s system does not solve the direct problem, since
there may exist various random fields with the same Dobrushin’s conditional distribu-
tion (see [6]). However, there are random fields which can be restored by Dobrushin’s
conditional distributions (see Theorem 2 in [5]).

We call a set QD = {qz
V ,z∈ XZ

d\V ,V ∈W} of probability distributions parametrised by
infinite boundary conditions Dobrushin’s specification if its elements satisfy the follow-
ing consistency condition: for all disjoint sets V, I ∈W and x ∈ XV , y ∈ X I , z ∈ XZ

d\(V∪I)

qz
V∪I(xy) = qzx

I (y) ∑
v∈X I

qz
V∪I(xv).

For a given specification QD, Dobrushin in [5] presented a condition (quasilocality) un-
der which there exists a random field P such that QD(P) = QD. But there may exist more
than one random field whose conditional distribution QD(P) coincides with QD, i. e., for
Dobrushin’s specification the inverse problem is incorrect. However, there are conditions
under which such a random field is unique (see, for example, Theorem 2 in [5]).

4.7 One-point Dobrushin-type conditional distribution of a random field

For a given random field P, the system QD
1 (P) = {Q

z
t ,z∈ XZ

d\{t}, t ∈Zd} was considered
in [2]. We will call it one-point Dobrushin-type conditional distribution of the random

field P. The system QD
1 (P), generally speaking, does not solve the direct problem for the

random field P.
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We call a set QD
1 = {qz

t ,z ∈ XZ
d\{t}, t ∈ Zd} of one-point probability distributions

parametrised by infinite boundary conditions Dobrushin-type 1-specification if its el-
ements satisfy the following consistency condition: for all t,s ∈ Zd and x,u ∈ X{t},
y,v ∈ X{s}, z ∈ XZ

d\{t,s}

qzy
t (x)qzx

s (v)q
zv
t (u)qzu

s (y) = qzx
s (y)q

zy
t (u)qzu

s (v)qzv
t (x).

In [2] it was shown that for a given quasilocal Dobrushin-type 1-specification QD
1 there

exists a random field P such that QD
1 (P) = QD

1 ; the conditions of uniqueness of P are the
same as for QD.

Authors are grateful to S. Rœlly for useful remarks.
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