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Semi-recursive algorithm of
piecewise linear approximation of
two-dimensional function by the

method of worst segment dividing
Hayk Sukiasyan* and Tatev Melkonyan†

1 Introduction

In the numerical solution of two-dimensional non-linear boundary value problems of
mathematical physics, the finite element method is often used. This method assumes
that the domain of the boundary problem is divided into small sub-domains (elements)
within which the desired function is assumed to be linear. Thus, the desired function is
approximated by a piecewise linear function. Its graph consists of triangles, the projec-
tions of which on the OXY plane form a triangular mesh.

In recent years, meshes with variable number of nodes are often used, i.e. the process
of successive approximations extends not only to the approximated function, but also to
the corresponding grid. At the same time, additional nodes are sequentially added in the
worst (in the sense of approximation error) sub-domains. Thus, the mesh is successively
improved and the approximation error is minimised.

In [6], an algorithm for an automatic construction of piecewise linear approximations
of one-dimensional continuous functions was proposed. The algorithm minimised the
approximation error for a given number of lattice points and was based on the principle
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of the worst segment dividing. In [2], the one-dimensional algorithm proposed in [6] was
generalised for the two-dimensional case.

For practical reasons, recursive algorithms of mesh generation are preferable. In appli-
cations they are very convenient because they are easily programmed using cycle opera-
tors. However, the algorithm proposed in [2] was not recursive.

Recursive algorithms. An algorithm is called recursive, if each subsequent step does
not lead to changes in the parameters obtained in the past. In the case of the construction
of meshes with variable number of nodes, the algorithm will be recursive if the addition
of each new node leaves the old nodes and old edges (the connections between nodes) in
place.

Any one-dimensional uniform lattice cannot be constructed using a recursive algo-
rithm, since when you add a new node, all old lattice nodes are shifted. The algorithm
for automatically constructing a one-dimensional piecewise linear approximation with a
non-uniform lattice, proposed in [6], is recursive.

In the present paper, a recursive algorithm is proposed for the automated construction
of piecewise linear approximations of a two-dimensional continuous function by divid-
ing the worst segment. An improved (but not recursive) algorithm for the automated
construction of a two-dimensional piecewise linear approximation by dividing the worst
segment was also studied. The improved algorithm can be called semi-recursive, since
the addition of each new node leaves in place all the old nodes and almost all edges.

We have constructed a semi-recursive algorithm for constructing a piecewise linear ap-
proximation of a two-dimensional function by dividing the worst segment. When adding
a new vertex, all previous vertices and almost all edges remain in their places. The edge
may change if the “flip” operation is applicable to it: replacing a longer diagonal with a
shorter one in a tetragon.

2 Delaunay triangulation

Let Mn = {Pi}n
i=1 be a finite set of points in the plane. The interior of a domain D we

denote by int D. A set {D j}m
j=1 of triangles is called triangle mesh or triangle tessellation

with knots Mn, if the following conditions are fulfilled:
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1. The interiors of triangles are pairwise disjoint:

int D j ∩ int Dk = /0, j 6= k.

2. The set of all vertices of triangles is the set {Pi}n
i=1.

3. The union of triangles fills the whole of convex hull of the knots:

m⋃
j=1

D j = conv{Pi}n
i=1.

A triangle mesh {D j}m
j=1 is called Delaunay triangulation with knots Mn = {Pi}n

i=1, if
the following condition is fulfilled (see [1]):

4. For any triangle D j

int K(D j)∩{Pi}n
i=1 = /0, j = 1, . . . ,m,

where K(D) is the circumscribing circle of triangle D.

The Delaunay triangulation with the system of knots Mn we denote by D(Mn). In [1]
it was proved that for any finite set of points Mn there exists a Delaunay triangulation
D(Mn) (not necessarily unique).

3 The method of dividing the worst segment

Let F(x,y) be a two-dimensional continuous function on the plane, the domain of defini-
tion of which is the rectangle [a,b]× [c,d]. Our goal is to construct a recursive algorithm
for the automated construction of a piecewise linear approximation to the function F(x,y).

First, consider the following recursive algorithm for constructing a sequence of knots
Mn = {P1,P2, . . . ,Pn} and the corresponding mesh Sn. On the rectangle [a,b]× [c,d],
consider the primary set of knots M4, consisting of 4 vertices: P1 = (a,c), P2 = (b,c),
P3 = (b,d), P4 = (a,d) and the primary mesh S4 consisting of two triangles ∆P1P2P3 and
∆P1P3P4 (see Figure 3.1).
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Figure 3.1: The primary mesh S4.

Note that the mesh S4 is a Delaunay triangulation with four knots P1, . . . ,P4, i.e. S4 =

D(M4). Suppose that the set of nodes Mn−1 = {P1,P2, . . . ,Pn−1} and the corresponding
triangle mesh Sn−1 have already been built. Construct the next point Pn as follows.

Two knots Pi and Pj are called neighbouring and denoted by Pi ∼ Pj, if they are the
endpoints of a side of some triangle of the mesh. Note that in the primary mesh S4, all
pairs of nodes are neighbouring, except for the pair P2 and P4.

The pairs of neighbouring knots we call the edges of the mesh. Denote by R(Sn−1) the
set of edges of Sn−1, i.e.

R(Sn−1) = {(Pi,Pj) : Pi ∼ Pj}.

For any edge e = (Pi,Pj) from R(Sn−1) with vertices Pi and Pj we calculate the difference
|zi− z j|, where zi = F(xi,yi) is the value of our function F at the point Pi, and (xi,yi) are
Cartesian coordinates of vertex Pi.

The edge e = (Pi,Pj) ∈ R(Sn−1) we call the worst edge, if it gives the maximum value
of differences |zi− z j|. In the middle of this edge we add a new node, this is the desired
node Pn.

We determine what new edges will appear at the mesh Sn when adding a new vertex
Pn. Denote by conv(Mn) the convex hull of the points Mn = {P1,P2, . . . ,Pn}. Two cases
are possible:

1) the new vertex Pn belongs to the interior of the hull conv(Mn). In this case we call
Pn an internal knot, and the corresponding worst edge is called diagonal. In this
case, when adding a new vertex, two new edges appear (see Figure 3.2);
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Figure 3.2: The case of an internal knot,
the worst edge is P2P4.

Figure 3.3: The case of a boundary
knot, the worst edge is P1P2.

2) the new vertex Pn lies on the boundary of the hull conv(Mn). In this case we call Pn

a boundary knot, and the corresponding worst segment is called a boundary edge.
In this case, when adding a new vertex, one new edge appears (see Figure 3.3).

We will continue to add knots by dividing in half the worst edge Pi,Pj corresponding
to the largest of the values of the differences |zi− z j| until the number of knots reaches a
given value n. Note that the resulting mesh from the application of the proposed recursive
algorithm will not necessarily be a Delaunay triangulation, it depends on the form of the
approximate function F(x,y). So the mesh in Figure 3.2 is a Delaunay triangulation,
while the mesh in Figure 3.3 is not a Delaunay triangulation.

Having a triangular mesh Sn with a system of knots Mn = {P1,P2, . . . ,Pn}, we construct
the approximation Fn(x,y) to the function F(x,y) as follows. The approximation Fn(x,y)

is a piecewise linear function; its graph consists of flat triangles whose projections onto
the coordinate plane OXY form the mesh Sn. At the points P1,P2, . . . ,Pn the values of the
functions F(x,y) and Fn(x,y) coincide. By En we denote the approximation error:

En = max
a≤x≤b, c≤y≤d

|F(x,y)−Fn(x,y)|.

The error En can be estimated using the variation Vn, i.e. the largest difference of the
values of the function F(x,y) at the knots of the mesh Sn:

Vn = max
Pi∼Pj
|zi− z j|,
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Figure 3.4: Flip operation: long diagonal is replaced by shorter.

where zi = F(xi,yi) and the maximum is taken over all pairs of neighbouring knots of
the mesh Sn. It is easy to see that for the proposed recursive algorithm, the sequence Vn

monotonically decreases with increasing number of knots n.

Observe that if the sequence Vn tends to zero, then the error En may not tend to zero. To
ensure that the error tends to zero, we must additionally require the condition of mono-
tonicity.

Proposition 3.1 Let F(x,y) be a smooth function monotonic in both variables. Then for
sufficiently large n we have En ≈Vn, therefore the recursive algorithm leads to vanishing
approximation error En.

4 Semi-recursive algorithm

Now we modify the proposed recursive algorithm for automated construction of a
piecewise-linear approximation of a two-dimensional continuous function by dividing
the worst segment by allowing the flip operation, if applicable.

The operation of replacing a longer diagonal in a tetragon with a shorter one is called a
“flip” (Figure 3.4). In the mesh in Figure 3.2 there are not four vertices for which the flip
operation is applicable, while in Figure 3.3 there is one such set for four knots – these are
the vertices P2,P3,P4,P5. Applying the flip operation to this set of four knots, we obtain
the triangulation shown in Figure 3.5. Here the old edge P2P4 is replaced by the shorter
P3P5.

The modified algorithm can be called semi-recursive, since adding each new vertex
leaves all old knots and almost all old edges in place, except for one. It is easy to see
that the largest edge of the mesh obtained as a result of the semi-recursive algorithm with
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Figure 3.5: The triangulation from Figure 3.3 after the flip operation.

the addition of the flip operation is less than that of the same mesh obtained as a result of
the recursive algorithm without the flip operation. Since for smooth monotonic functions
F(x,y), the approximation error En decreases with decreasing length of the largest edge,
we can make the following conjecture.

Conjecture 3.2 As increasing number of knots, the approximation error, resulting from
the work of a semi-recursive algorithm for automated construction of a piecewise-linear
approximation of a two-dimensional monotonic function by dividing the worst segment
with the addition of the flip operation, tends to zero faster than the error obtained as a
result of the recursive algorithm without flip operation.

Conjecture 3.2 intuitively seems true and successfully passed the test with numerous
practical examples, however the rigorous proof remains open.

It was shown in [3, 4] that the flip operation reduces the sum of the cotangents of the
inner angles of a triangular mesh. It is also proved that Delaunay triangulation minimises
the sum of the cotangents of the inner angles of the triangulation. From this we obtain
the following statement.

Theorem 3.3 For any approximated function and any number of vertices, the mesh re-
sulting from the operation of the semi-recursive algorithm is a Delaunay triangulation.
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Figure 3.6: The solution of a magnetic field problem.

Figure 3.7: The corresponding mesh is Delaunay triangulation.
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5 Applications to mathematical physics

Let F(x,y) be an unknown solution of a boundary value problemL
(
F(x,y)

)
= 0, (x,y) ∈ D,

F(x,y) = f , (x,y) ∈ ∂D,

where L is a differential operator acting on rectangle D with boundary ∂D.
Assume that we can construct the piecewise linear approximation of F for given mesh

Sn, and we can determine the worst segment of the mesh Sn. Then using the semi-
recursive algorithm we obtain a new method of solution of boundary value problem using
the meshes with variable number of vertices.

Theorem 3.4 ([5]) For given points, the best mesh for the finite elements approximation
for the Maxwell equation of the magnetic field is a Delaunay triangulation.

By Theorems 3.3 and 3.4 we obtain

Theorem 3.5 For the construction of a mesh for the numerical approximation of the
Maxwell equation of the magnetic field by the finite elements method, the semi-recursive
algorithm is better than algorithms that do not lead to Delaunay triangulation.

Example 3.6 We solve the Maxwell equation for magnetic field using the semi-recursive
algorithm. Figure 3.6 shows the solution, while Figure 3.7 shows the corresponding mesh.
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