Universitätsverlag Potsdam

Article published in:

Sylvie Roelly, Mathias Rafler, Suren Poghosyan (Eds.)

Proceedings of the XI international conference stochastic and analytic methods in mathematical physics

Lectures in pure and applied mathematics ; 6

2020 - xiv, 194 p.
ISBN 978-3-86956-485-2
DOI https://doi.org/10.25932/publishup-45919

Suren Poghosyan | Mathias Rafler | Sylvie Roelly (Eds.)
Proceedings of the XI international conference Stochastic and Analytic
Methods in Mathematical Physics

Lectures in Pure and Applied Mathematics | 6

Suggested citation:
Valentin Zagrebnov: Trotter product formula on Hilbert and Banach spaces for operator-norm convergence, In: Sylvie Roelly, Mathias Rafler, Suren Poghosyan (Eds.): Proceedings of the XI international conference stochastic and analytic methods in mathematical physics (Lectures in pure and applied mathematics ;6), Potsdam, Universitätsverlag Potsdam, 2020, S. 23-34.
DOI https://doi.org/10.25932/publishup-47197
This work is licensed under a Creative Commons License: Attribution-Share Alike 4.0 This does not apply to quoted content from other authors. To view a copy of this license visit: https://creativecommons.org/licenses/by-sa/4.0/

Trotter product formula on Hilbert and Banach spaces for operator-norm convergence

Valentin Zagrebnov*

Abstract. We review results on the operator-norm convergence of the Trotter product formula on Hilbert and Banach spaces. We concentrate here on the problem of convergence rates. Some results concerning evolution semigroups are also presented.

1 Introduction

The product formula for matrices A and B

$$
\begin{equation*}
e^{-\tau C}=\lim _{n \rightarrow \infty}\left(e^{-\tau A / n} e^{-\tau B / n}\right)^{n}, \quad \tau \geq 0 \tag{2.1}
\end{equation*}
$$

was established by S. Lie (1875). Here $C:=A+B$. The proof of formula (2.1) can be easily extended to bounded operators $\mathscr{L}(\mathfrak{H})$ and $\mathscr{L}(\mathfrak{X})$ on Hilbert (\mathfrak{H}) and Banach (\mathfrak{X}) spaces. Moreover, a straightforward computation shows that the operator norm convergence rate in (2.1) is $O(1 / n)$:

$$
\begin{equation*}
\sup _{\tau \in[0, T]}\left\|e^{-\tau A / n} e^{-\tau B / n}-e^{-\tau C / n}\right\|_{\mathscr{L}(\cdot)}=O(1 / n) \tag{2.2}
\end{equation*}
$$

[^0]H. Trotter [17] has extended this result to unbounded operators A and B on Banach spaces, but now in the (weaker) strong operator topology: s-lim $n \rightarrow \infty \mathscr{A}_{n}=\mathscr{A} \Leftrightarrow \lim _{n \rightarrow \infty} \|\left(\mathscr{A}_{n}-\right.$ $\mathscr{A}) x \|=0$ for any $x \in \mathfrak{X}$. He proved that if A and B are generators of contraction semigroups on a separable Banach space such that the algebraic sum $A+B$ is a densely defined closable operator and the closure $C=\overline{A+B}$ is a generator of a contraction semigroup, then
\[

$$
\begin{equation*}
e^{-\tau C}=\mathrm{s}-\lim _{n \rightarrow \infty}\left(e^{-\tau A / n} e^{-\tau B / n}\right)^{n} \tag{2.3}
\end{equation*}
$$

\]

uniformly in $\tau \in[0, T]$ for any $T>0$. It was a long-time belief that the Trotter formula is valid only in the strong operator topology. But in the nineties it was discovered that under certain quite standard assumptions the strong convergence of the product formula (2.3) can be improved to the operator-norm convergence: $\lim _{n \rightarrow \infty}\left\|\mathscr{A}_{n}-\mathscr{A}\right\|_{\mathscr{L}(\mathfrak{H})}=0 \Leftrightarrow$ $\lim _{n \rightarrow \infty} \sup _{\{u \in \mathfrak{H}:\|u\|=1\}}\left\|\left(\mathscr{A}_{n}-\mathscr{A}\right) u\right\|=0$, on a Hilbert space \mathfrak{H}.

For the Trotter product formula in the trace-class ideal of $\mathscr{L}(\mathfrak{H})$ we refer to [18].

2 Trotter product formula on Hilbert spaces

2.1 Self-adjoint case. Considering the Trotter product formula on a separable Hilbert space \mathfrak{H}, T. Kato has shown that for non-negative self-adjoint operators A and B the Trotter formula (2.3) holds in the strong operator topology if $\operatorname{dom}(\sqrt{A}) \cap \operatorname{dom}(\sqrt{B})$ is dense in the Hilbert space and $C=A \dot{+} B$ is the form-sum of operators A and B. Naturally the problem arises whether Kato's result can be extended to the operator-norm convergence. A first attempt in this direction was undertaken by Dzh. Rogava [16]. He claimed that if A and B are non-negative self-adjoint operators such that $\operatorname{dom}(A) \subseteq \operatorname{dom}(B)$ and the operator-sum: $C=A+B$, is self-adjoint, then

$$
\begin{equation*}
\left\|\left(e^{-\tau A / n} e^{-\tau B / n}\right)^{n}-e^{-\tau C}\right\|_{\mathscr{L}(\mathfrak{H})}=O(\ln (n) / \sqrt{n}), \quad n \rightarrow \infty \tag{2.4}
\end{equation*}
$$

holds. In [12] it was shown that if one substitutes in above conditions the self-adjointness of the operator-sum by the A-smallness of B with a relative bound less then one, then (2.4) is true with the rate of convergence improved to

$$
\begin{equation*}
\left\|\left(e^{-\tau A / n} e^{-\tau B / n}\right)^{n}-e^{-\tau C}\right\|_{\mathscr{L}(\mathfrak{H})}=O(\ln (n) / n), \quad n \rightarrow \infty . \tag{2.5}
\end{equation*}
$$

The problem in its original formulation was finally solved in [7]. There it was shown that the best possible in this general setup rate (2.2) holds if the operator sum: $C=$ $A+B$, is already a self-adjoint operator. Rogava's result, as well as many other results (including [12]), when the operator sum of generators is self-adjoint, are corollary of [7]. A new direction comes due to results for the fractional-power conditions. In [14], with elucidation in [6], it was proven that assuming: $\operatorname{dom}\left(C^{\alpha}\right) \subseteq \operatorname{dom}\left(A^{\alpha}\right) \cap \operatorname{dom}\left(B^{\alpha}\right)$, $\alpha \in(1 / 2,1), C=A \dot{+} B$ and $\operatorname{dom}\left(A^{1 / 2}\right) \subseteq \operatorname{dom}\left(B^{1 / 2}\right)$ one obtains that

$$
\sup _{\tau \in[0, T]}\left\|\left(e^{-\tau A / n} e^{-\tau B / n}\right)^{n}-e^{-\tau C}\right\|_{\mathscr{L}(\mathfrak{H})}=O\left(n^{-(2 \alpha-1)}\right)
$$

Notice that formally $\alpha=1$ yields the rate obtained in [7]. We remark also that the results of $[6,14]$ do not cover the case $\alpha=1 / 2$. Although, it turns out that in this case the Trotter product formula converges on the operator norm:

$$
\sup _{\tau \in[0, T]}\left\|\left(e^{-\tau A / n} e^{-\tau B / n}\right)^{n}-e^{-\tau C}\right\|_{\mathscr{L}(\mathfrak{H})}=o(1)
$$

if \sqrt{B} is relatively compact with respect to \sqrt{A}, i.e. $\sqrt{B}(I+A)^{-1 / 2}$ is compact, see [13].
2.2 Non-self-adjoint case. Another direction was related with extension of the Trotter, and the Trotter-Kato, product formulae to the case of accretive [1,2] and non-self-adjoint sectorial generators $[4,5]$. Let A be a non-negative self-adjoint operator and let B be a maximal accretive $(\operatorname{Re}(B f, f) \geq 0$ for $f \in \operatorname{dom}(B))$ operator, such that

$$
\operatorname{dom}(A) \subseteq \operatorname{dom}(B) \quad \text { and } \quad \operatorname{dom}(A) \subseteq \operatorname{dom}\left(B^{*}\right)
$$

If B is A-small with a relative bound less than one, then estimate (2.5) holds for generator C which is a well-defined maximal accretive operator-sum: $C=A+B$, see [1].

In [2] this result was generalised as follows. Let A be a non-negative self-adjoint operator and let B be a maximal accretive operator such that $\operatorname{dom}(A) \subseteq \operatorname{dom}(B)$ and B is A-small with relative bound less than one. If the condition

$$
\operatorname{dom}\left(\left(C^{*}\right)^{\alpha}\right) \subseteq \operatorname{dom}\left(A^{\alpha}\right) \cap \operatorname{dom}\left(\left(B^{*}\right)^{\alpha}\right), \quad C=A+B
$$

is satisfied for some $\alpha \in(0,1]$, then the norm-convergent Trotter product formula:

$$
\sup _{\tau \in[0, T]}\left\|\left(e^{-\tau A / n} e^{-\tau B / n}\right)^{n}-e^{-\tau C}\right\|_{\mathscr{L}(\mathfrak{H})}=O\left(\ln (n) / n^{\alpha}\right)
$$

holds as $n \rightarrow \infty$. In fact, more results are known about the operator-norm Trotter product formula convergence for non-self-adjoint semigroups with sectorial generators, but without the rate estimates, see [3]. A new approach to analysis of the non-self-adjoint case was developed in [5]. Since it is based on holomorphic properties of semigroups, one can apply it even in Banach spaces. Therefore we postpone its presentation to Section 3.

3 Trotter product formula on Banach spaces

3.1 Holomorphic case. There are only few generalisations of the results of Section 2 to Banach spaces. The main obstacle for that is the fact that the concept of self-adjointness is missing. One of solutions is to relax the self-adjointness replacing the non-negative self-adjoint generator A by a generator of the holomorphic semigroup. The following result was proved in [5].

Theorem 2.1 ([5, Theorem 3.6 and Corollary 3.7]) Let A be a generator of a holomorphic contraction semigroup on the separable Banach space \mathfrak{X} and let B be generator of a contraction semigroup on \mathfrak{X}.
i) If for some $\alpha \in(0,1)$ the condition $\operatorname{dom}\left(A^{\alpha}\right) \subseteq \operatorname{dom}(B)$, holds and $\operatorname{dom}\left(A^{*}\right) \subseteq$ $\operatorname{dom}\left(B^{*}\right)$ is satisfied, then the operator sum $C=A+B$ is generator of a contraction semigroup and for any $T>0$:

$$
\begin{equation*}
\sup _{\tau \in[0, T]}\left\|\left(e^{-\tau B / n} e^{-\tau A / n}\right)^{n}-e^{-\tau C}\right\|_{\mathscr{L}(\mathfrak{X})}=O\left(\ln (n) / n^{1-\alpha}\right) . \tag{2.6}
\end{equation*}
$$

ii) If for some $\alpha \in(0,1)$ the condition $\operatorname{dom}\left(\left(A^{\alpha}\right)^{*}\right) \subseteq \operatorname{dom}\left(B^{*}\right)$ is satisfied and $\operatorname{dom}(A) \subseteq \operatorname{dom}(B)$ is valid, then $C=A+B$ is generator of a contraction semigroup and

$$
\begin{equation*}
\sup _{\tau \in[0, T]}\left\|\left(e^{-\tau A / n} e^{-\tau B / n}\right)^{n}-e^{-\tau C}\right\|_{\mathscr{L}(\mathfrak{X})}=O\left(\ln (n) / n^{1-\alpha}\right), \tag{2.7}
\end{equation*}
$$

for any $T>0$.

Theorem 2.2 ([5, Theorem 3.6 and Corollary 3.7]) Let A be generator of a holomorphic contraction semigroup on \mathfrak{X} and let B be generator of a contraction semigroup on \mathfrak{X}. If B is in addition a bounded operator, then for any $T>0$:

$$
\begin{aligned}
& \sup _{\tau \in[0, T]}\left\|\left(e^{-\tau B / n} e^{-\tau A / n}\right)^{n}-e^{-\tau C}\right\|_{\mathscr{L}(\mathfrak{X})}=O\left((\ln (n))^{2} / n\right), \\
& \sup _{\tau \in[0, T]}\left\|\left(e^{-\tau A / n} e^{-\tau B / n}\right)^{n}-e^{-\tau C}\right\|_{\mathscr{L}(\mathfrak{X})}=O\left((\ln (n))^{2} / n\right) .
\end{aligned}
$$

Theorem 2.2 becomes false if the condition that A is generator of a holomorphic semigroup is dropped.
3.2 Non-holomorphic: evolution semigroup. Let A and operators $\{B(t)\}_{t \in[0, T]}$ be generators of holomorphic semigroups on a separable Banach space \mathfrak{X}. Consider nonautonomous Cauchy problem for $u_{0}:=u(0)$:

$$
\begin{equation*}
\partial_{t} u(t)=-(A+B(t)) u(t), \quad t \in[0, T] \tag{2.8}
\end{equation*}
$$

Assumptions:

(A1) Operator $A \geq I$ is generator of a holomorphic contraction semigroup in \mathfrak{X}.
(A2) Let $\{B(t)\}_{t \in[0, T]}$ be a family of closed operators such that for a.e. $t \in[0, T]$ and some $\alpha \in(0,1)$ the condition $\operatorname{dom}\left(A^{\alpha}\right) \subset \operatorname{dom}(B(t))$ is satisfied such that

$$
C_{\alpha}:=\underset{t \in[0, T]}{\operatorname{ess} \sup }\left\|B(t) A^{-\alpha}\right\|_{\mathscr{L}(\mathfrak{X})}<\infty .
$$

(A3) Let $\{B(t)\}_{t \in[0, T]}$ be a family of generators of contraction semigroups in \mathfrak{X} such that the function $[0, T] \ni t \mapsto(B(t)+\xi I)^{-1} x \in \mathfrak{X}$ is strongly measurable for any $x \in \mathfrak{X}$ and any $\xi>b$ for some $b>0$.
(A4) We assume that $\operatorname{dom}\left(A^{*}\right) \subset \operatorname{dom}\left(B(t)^{*}\right)$ and

$$
C_{1}^{*}:=\underset{t \in[0, T]}{\operatorname{ess} \sup }\left\|B(t)^{*}\left(A^{*}\right)^{-1}\right\|_{\mathscr{L}\left(\mathfrak{X}^{*}\right)}<\infty,
$$

where A^{*} and $B(t)^{*}$ denote operators which are adjoint of A and $B(t)$, respectively.
(A5) There exists $\beta \in(\alpha, 1)$ and a constant $L_{\beta}>0$ such that for a.e. $t, s \in[0, T]$ one has the estimate:

$$
\left\|A^{-1}(B(t)-B(s)) A^{-\alpha}\right\|_{\mathscr{L}(\mathfrak{X})} \leq L_{\beta}|t-s|^{\beta} .
$$

(A6) There exists a constant $L_{1}>0$ such that for a.e. $t, s \in[0, T]$ one has the estimate:

$$
\left\|A^{-\alpha}(B(t)-B(s)) A^{-\alpha}\right\|_{\mathscr{L}(\mathfrak{X})} \leq L_{1}|t-s| .
$$

The evolution equation (2.8) is associated with family $\{C(t)\}_{t \in[0, T]}, C(t)=A+B(t)$.
We consider the Banach space $L^{p}([0, T], \mathfrak{X})$ for $p \in[1, \infty)$ and introduce in this space the multiplication operators \mathscr{A} and \mathscr{B} generated by A and $\{B(t)\}_{t \in[0, T]}$, see [8, 15]. Similarly, one can introduce the multiplication operator \mathscr{C} induced by the family $\{C(t)\}_{t \in[0, T]}$ which is also a generator of a holomorphic semigroup. Notice that $\mathscr{C}=\mathscr{A}+\mathscr{B}$ and $\operatorname{dom}(\mathscr{C})=\operatorname{dom}(\mathscr{A})$. Let D_{0} the generator of the right-shift nilpotent semigroup on $L^{p}([0, T], \mathfrak{X})$, i.e. $\left(e^{-\tau D_{0}} f\right)(t)=\chi_{[0, T]}(t-\tau) f(t-\tau), \quad f \in L^{p}([0, T], \mathfrak{X})$.

Next, we consider the operator

$$
\begin{align*}
\widetilde{\mathscr{K}} f & =D_{0} f+\mathscr{A} f+\mathscr{B} f, \\
f \in \operatorname{dom}(\widetilde{\mathscr{K}}) & =\operatorname{dom}\left(D_{0}\right) \cap \operatorname{dom}(\mathscr{A}) \cap \operatorname{dom}(\mathscr{B}) . \tag{2.9}
\end{align*}
$$

Assuming (A1)-(A3) it was shown in [11] that the operator $\widetilde{\mathscr{K}}$ is closable and its closure \mathscr{K} is generator of the evolution semigroup $\left\{e^{-\tau \mathscr{K}}\right\}_{\tau \geq 0}[8,15]$, which is also nilpotent and consequently a non-holomorphic semigroup. Further we set $\widetilde{\mathscr{K}_{0}} f=D_{0} f+\mathscr{A} f$ for $f \in \operatorname{dom}\left(\widetilde{K_{0}}\right)=\operatorname{dom}\left(D_{0}\right) \cap \operatorname{dom}(\mathscr{A})$.

In contrast to the Hilbert space the operator $\widetilde{\mathscr{K}}_{0}$ is not necessary generator of a semigroup. However, the operator \widetilde{K}_{0} is closable and its closure \mathscr{K}_{0} is a generator. Note that \mathscr{K} coincides with the algebraic sum: $\mathscr{K}=\mathscr{K}_{0}+\mathscr{B}$.

Theorem 2.3 ([11, Theorem 7.8]) Let the Assumptions (A1)-(A4) be satisfied for some $\alpha \in(0,1)$. If (A5) holds, then one gets for $n \rightarrow \infty$ the asymptotic:

$$
\begin{equation*}
\sup _{\tau \in[0, T]}\left\|\left(e^{-\tau B / n} e^{-\tau \mathscr{K}_{0} / n}\right)^{n}-e^{-\tau \mathscr{K}}\right\|_{\mathscr{L}\left(L^{p}([0, T], \mathfrak{X})\right)}=O\left(1 / n^{\beta-\alpha}\right) . \tag{2.10}
\end{equation*}
$$

Assuming instead of Assumption (A5) the Assumption (A6) one finds
Theorem 2.4 ([9, Theorem 5.4]) Let the Assumptions (A1)-(A4) be satisfied for some $\alpha \in(1 / 2,1)$. If (A6) is valid, then for $n \rightarrow \infty$ one gets the asymptotic:

$$
\begin{equation*}
\sup _{\tau \in[0, T]}\left\|\left(e^{-\tau B / n} e^{-\tau \mathscr{K}_{0} / n}\right)^{n}-e^{-\tau \mathscr{K}}\right\|_{\mathscr{L}\left(L^{p}([0, T], \mathfrak{X})\right)}=O\left(1 / n^{1-\alpha}\right) . \tag{2.11}
\end{equation*}
$$

3.3 Convergence rate for propagators. To construct approximations of solution operators (propagators) for the Cauchy problem (2.8), we apply to the problem (2.8) the evolution semigroup approach developed in [8, 15, 11]. The idea is to transform the nonautonomous Cauchy problem (2.8) into an autonomous problem generated by evolution semigroup $\left\{e^{-\tau \mathscr{K}}\right\}_{\tau \geq 0}$.
Definition $2.5([8,15])$ Linear operator \mathscr{K} in $L^{p}([0, T], \mathfrak{X}), p \in[1, \infty)$, is called evolution generator if for multiplication operator $M(\phi)$:
(i) $\operatorname{dom}(\mathscr{K}) \subset C([0, T], \mathfrak{X})$ and $M(\phi) \operatorname{dom}(\mathscr{K}) \subset \operatorname{dom}(\mathscr{K})$ for $\phi \in W^{1, \infty}([0, T])$;
(ii) $\mathscr{K} M(\phi) f-M(\phi) \mathscr{K} f=M\left(\partial_{t} \phi\right) f$ for $f \in \operatorname{dom}(\mathscr{K})$ and $\phi \in W^{1, \infty}([0, T])$;
(iii) the domain $\operatorname{dom}(\mathscr{K})$ has a dense cross-section, i.e. for each $t \in(0, T]$ the set

$$
[\operatorname{dom}(\mathscr{K})]_{t}:=\{x \in \mathfrak{X}: \exists f \in \operatorname{dom}(\mathscr{K}) \text { such that } x \in f(t)\}
$$

is dense in \mathfrak{X}. Here for any $\phi \in L^{\infty}([0, T])$ we denote by $M(\phi)$ a bounded multiplication operator on $L^{p}([0, T], \mathfrak{X})$ defined as $(M(\phi) f)(t)=\phi(t) f(t), f \in$ $L^{p}([0, T], \mathfrak{X})$.
One can check that the operator \mathscr{K} defined as the closure of $\widetilde{\mathscr{K}}(2.9)$ is an evolution generator, cf. [11, Theorem 1.2]. Evolution generators are related to propagators, which are defined as follows.

Definition 2.6 Let $\{U(t, s)\}_{(t, s) \in \Delta}, \Delta=\{(t, s) \in(0, T] \times(0, T]: s \leq t \leq T\}$, be a strongly continuous family of bounded operators on \mathfrak{X}. If the conditions

$$
\begin{array}{rlrl}
U(t, t) & =I & & \text { for } t \in(0, T] \\
U(t, r) U(r, s) & =U(t, s) & & \text { for } t, r, s \in(0, T] \text { with } s \leq r \leq t \\
\|U\|_{\Delta} & =\sup _{(t, s) \in \Delta}\|U(t, s)\|_{\mathscr{L}(\mathfrak{X})}<\infty & \tag{2.14}
\end{array}
$$

are satisfied. If $u(t)=U(t, 0) u_{0}, t \geq 0$, for $u_{0} \in \operatorname{dom}(A)$, is solution of the Cauchy problem (2.8), then $\{U(t, s)\}_{(t, s) \in \Delta}$ is called solution operator, or propagator.

It is known [8, Theorem 4.12] that there is an one-to-one correspondence between the set of all evolution generators on $L^{p}([0, T], \mathfrak{X})$ and the set of all propagators in the sense of Definition 2.6. It is established by equation

$$
\begin{equation*}
\left(e^{-\tau \mathscr{K}} f\right)(t)=U(t, t-\tau) \chi_{[0, T]}(t-\tau) f(t-\tau), \quad f \in L^{p}([0, T], \mathfrak{X}) . \tag{2.15}
\end{equation*}
$$

Let \mathscr{K}_{0} be generator of evolution semigroup $\left\{\mathscr{U}_{0}(\tau)\right\}_{\tau \geq 0}$ and let \mathscr{B} be multiplication operator induced by a measurable family $\{B(t)\}_{t \in[0, T]}$ of generators of contraction semigroups. Note that in this case the multiplication operator \mathscr{B} is a generator of a contraction semigroup $\left(e^{-\tau \mathscr{B}} f\right)(t)=e^{-\tau B(t)} f(t)$, on the Banach space $L^{p}([0, T], \mathfrak{X})$. Since $\left\{\mathscr{U}_{0}(\tau)\right\}_{\tau \geq 0}$ is the evolution semigroup, then by (2.15) there exists propagator $\left\{U_{0}(t, s)\right\}_{(t, s) \in \Delta}$ such that the representation: $\left(\mathscr{U}_{0}(\tau) f\right)(t)=U_{0}(t, t-\tau) \chi_{[0, T]}(t-\tau) f(t-$ $\tau), f \in L^{p}([0, T], \mathfrak{X})$, is valid for a. e. $t \in[0, T]$ and $\tau \geq 0$. Then we define

$$
Q_{j}(t, s ; n):=U_{0}\left(s+j \frac{(t-s)}{n}, s+(j-1) \frac{(t-s)}{n}\right) e^{-\frac{(t-s)}{n} B\left(s+(j-1) \frac{(t-s)}{n}\right)}
$$

where $j \in\{1,2, \ldots, n\}, n \in \mathbb{N},(t, s) \in \Delta$, and we set for approximants $\left\{V_{n}(t, s)\right\}_{n \geq 1}$:

$$
V_{n}(t, s):=\prod_{j=1}^{n \leftarrow} Q_{j}(t, s ; n), \quad n \in \mathbb{N},(t, s) \in \Delta
$$

where the product is increasingly ordered in j from the right to the left. Then by (2.15) a straightforward computation shows that the representation

$$
\left(\left(e^{-\tau \mathscr{K}_{0} / n} e^{-\tau \mathscr{B} / n}\right)^{n} f\right)(t)=V_{n}(t, t-\tau) \chi_{[0, T]}(t-\tau) f(t-\tau),
$$

$f \in L^{p}([0, T], \mathfrak{X})$, holds for each $\tau \geq 0$ and a.e. $t \in[0, T]$.
Similarly we can introduce

$$
G_{j}(t, s ; n)=e^{-\frac{t-s}{n} B\left(s+j \frac{t-s}{n}\right)} U_{0}\left(s+j \frac{t-s}{n}, s+(j-1) \frac{t-s}{n}\right)
$$

where $j \in\{1,2, \ldots, n\}, n \in \mathbb{N},(t, s) \in \Delta$. Now let the approximants be defined by

$$
U_{n}(t, s):=\prod_{j=1}^{n \leftarrow} G_{j}(t, s ; n), \quad n \in \mathbb{N},(t, s) \in \Delta
$$

where the product is again increasingly ordered in j from the right to the left. Note that

$$
\left(\left(e^{-\tau \mathscr{B} / n} e^{-\tau \mathscr{K}_{0} / n}\right)^{n} f\right)(t)=U_{n}(t, t-\tau) \chi_{[0, T]}(t-\tau) f(t-\tau),
$$

$f \in L^{p}([0, T], \mathfrak{X})$, holds for each $\tau \geq 0$ and a.e. $t \in[0, T]$.

Proposition 2.7 ([10, Proposition 2.1]) Let \mathscr{K} and \mathscr{K}_{0} be generators of evolution semigroups on the Banach space $L^{p}([0, T], \mathfrak{X})$ for some $p \in[1, \infty)$. Further, let $\left.\{B(t))\right\}_{t \in[0, T]}$ be a strongly measurable family of generators of contraction on \mathfrak{X}. Then for $n \in \mathbb{N}$,

$$
\begin{aligned}
& \sup _{\tau \in[0, T]}\left\|e^{-\tau \mathscr{K}}-\left(e^{-\tau \mathscr{K} \mathscr{K}_{0} / n} e^{-\tau \mathscr{B} / n}\right)^{n}\right\|_{\mathscr{L}\left(L^{p}([0, T], \mathfrak{X})\right)}=\underset{(t, s) \in \Delta}{\operatorname{ess} \sup }\left\|U(t, s)-V_{n}(t, s)\right\|_{\mathscr{L}(\mathfrak{X})}, \\
& \sup _{\tau \in[0, T]}\left\|e^{-\tau \mathscr{K}}-\left(e^{-\tau \mathscr{B} / n} e^{-\tau \mathscr{K} / n}\right)^{n}\right\|_{\mathscr{L}\left(L^{p}([0, T], \mathfrak{X})\right)}=\underset{(t, s) \in \Delta}{\operatorname{ess} \sup }\left\|U(t, s)-U_{n}(t, s)\right\|_{\mathscr{L}(\mathfrak{X})} .
\end{aligned}
$$

From Theorem 2.3 and Proposition 2.7 one obtains the following assertion.
Theorem 2.8 ([11, Theorem 1.4]) Let the Assumptions (A1)-(A4) be satisfied. If (A5) holds, then for $n \rightarrow \infty$ one gets the rate:

$$
\begin{equation*}
\underset{(t, s) \in \Delta}{\operatorname{ess} \sup }\left\|U_{n}(t, s)-U(t, s)\right\|_{\mathscr{L}(\mathfrak{X})}=O\left(1 / n^{\beta-\alpha}\right) . \tag{2.16}
\end{equation*}
$$

On the other hand, from Theorem 2.4 and Proposition 2.7 we get
Theorem 2.9 ([9, Theorem 5.6]) Let the Assumptions (A1)-(A4) be satisfied for some $\alpha \in(1 / 2,1)$. If (A6) is valid, then for $n \rightarrow \infty$ one obtains a better rate:

$$
\underset{(t, s) \in \Delta}{\operatorname{ess} \sup }\left\|U_{n}(t, s)-U(t, s)\right\|_{\mathscr{L}(\mathfrak{X})}=O\left(1 / n^{1-\alpha}\right)
$$

4 Example of sharpness

We study bounded perturbations of the evolution generator D_{0}. To this aim we consider $\mathfrak{X}=\mathbb{C}$ and we denote by $L^{2}([0,1])$ the Hilbert space $L^{2}([0,1], \mathbb{C})$.

For $t \in[0,1]$, let $q: t \mapsto q(t) \in L^{\infty}([0,1])$. Then q induces on the Banach space $L^{2}([0,1])$ a bounded multiplication operator Q defined as

$$
(Q f)(t):=q(t) f(t), \quad f \in L^{2}([0,1]) .
$$

For simplicity we assume that $q \geq 0$. Then Q generates on $L^{2}([0,1])$ a contraction semigroup $\left\{e^{-\tau Q}\right\}_{\tau \geq 0}$. Since generator Q is bounded, the closed operator $\mathscr{K}:=D_{0}+Q$, with domain $\operatorname{dom}(\mathscr{K})=\operatorname{dom}\left(D_{0}\right)$, is generator of a semigroup on $L^{2}([0,1])$. By [17] we get

$$
\mathrm{s}-\lim _{n \rightarrow \infty}\left(e^{-\tau D_{0} / n} e^{-\tau Q / n}\right)^{n}=e^{-\tau\left(D_{0}+Q\right)}
$$

One can easily check that \mathscr{K} is an evolution generator. A straightforward computation shows that

$$
\left(e^{-\tau\left(D_{0}+Q\right)} f\right)(t)=e^{-\int_{t-\tau}^{t} q(y) d y} \chi_{[0,1]}(t-\tau) f(t-\tau)
$$

This yields that the propagator corresponding to \mathscr{K} is given by

$$
U(t, s)=e^{-\int_{s}^{t} q(y) d y}, \quad(t, s) \in \Delta
$$

Now a simple computation shows that

$$
\left(\left(e^{-\tau D_{0} / n} e^{-\tau Q / n}\right)^{n} f\right)(t)=: V_{n}(t, t-\tau) \chi_{[0, T]}(t-\tau) f(t-\tau)
$$

Then by straightforward calculations we find that

$$
V_{n}(t, s)=e^{-\frac{t-s}{n} \sum_{k=0}^{n-1} q\left(s+k \frac{t-s}{n}\right)}, \quad(t, s) \in \Delta
$$

Theorem 2.10 ([10, Proposition 3.1]) Let $q \in L^{\infty}([0,1])$ be non-negative. Then

$$
\begin{aligned}
& \sup _{\tau \in[0,1]}\left\|e^{-\tau\left(D_{0}+Q\right)}-\left(e^{-\tau D_{0} / n} e^{-\tau Q / n}\right)^{n}\right\|_{\mathscr{L}\left(L^{2}([0,1])\right)} \\
& \leq O\left(\underset{(t, s) \in \Delta}{\operatorname{ess} \sup }\left|\int_{s}^{t} q(y) d y-\frac{t-s}{n} \sum_{k=0}^{n-1} q\left(s+k \frac{t-s}{n}\right)\right|\right)
\end{aligned}
$$

as $n \rightarrow \infty$.
Note that by Theorem 2.10 the operator-norm convergence rate of the Trotter product formula for the pair $\left\{D_{0}, Q\right\}$ coincides with the convergence rate of the integral DarbouxRiemann sum approximation of the Lebesgue integral.

Theorem 2.11 ([10, Theorem 3.2]) If the function: $q \in C^{0, \beta}([0,1]), \beta \in(0,1]$, is nonnegative, then for $n \rightarrow \infty$ one gets

$$
\sup _{\tau \in[0,1]}\left\|e^{-\tau\left(D_{0}+Q\right)}-\left(e^{-\tau D_{0} / n} e^{-\tau Q / n}\right)^{n}\right\|_{\mathscr{L}\left(L^{2}([0,1])\right)}=O\left(1 / n^{\beta}\right) .
$$

Theorem 2.12 ([10, Theorem 3.3]) If $q \in C([0,1])$ is continuous and non-negative, then for $n \rightarrow \infty$

$$
\begin{equation*}
\left\|e^{-\tau\left(D_{0}+Q\right)}-\left(e^{-\tau D_{0} / n} e^{-\tau Q / n}\right)^{n}\right\|_{\mathscr{L}\left(L^{2}([0,1])\right)}=o(1) . \tag{2.17}
\end{equation*}
$$

It follows that the convergence to zero in (2.17) may be arbitrarily slow.

Theorem 2.13 ([10, Theorem 3.4]) Let $\delta_{n}>0$ be a sequence with $\delta_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then there exists a continuous function $q:[0,1] \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\sup _{\tau \in[0,1]}\left\|e^{-\tau\left(D_{0}+Q\right)}-\left(e^{-\tau D_{0} / n} e^{-\tau Q / n}\right)^{n}\right\|_{\mathscr{L}\left(L^{2}([0,1])\right)}=\omega\left(\delta_{n}\right) \tag{2.18}
\end{equation*}
$$

as $n \rightarrow \infty$. Here ω is the Landau symbol: $\omega\left(\delta_{n}\right) \Leftrightarrow \lim \sup _{n \rightarrow \infty}\left|\omega\left(\delta_{n}\right) / \delta_{n}\right|=\infty$.
If q is only measurable, it can happen that the Trotter product formula for that pair $\left\{D_{0}, Q\right\}$ does not converge in the operator-norm topology:

Theorem 2.14 ([10, Theorem 3.5]) There is a non-negative measurable function $q \in$ $L^{\infty}([0,1])$, such that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sup _{\tau \in[0,1]}\left\|e^{-\tau\left(D_{0}+Q\right)}-\left(e^{-\tau D_{0} / n} e^{-\tau Q / n}\right)^{n}\right\|_{\mathscr{L}\left(L^{2}([0,1])\right)}>0 \tag{2.19}
\end{equation*}
$$

Theorem 2.14 does not exclude the convergence in the strong operator topology.

Bibliography

[1] Cachia V., Neidhardt H., Zagrebnov, V. A.: Accretive perturbations and error estimates for the Trotter product formula, Integr. Equ. Oper. Theory 39(4), 396-412 (2001).
[2] Cachia V., Neidhardt H., Zagrebnov, V. A.: Comments on the Trotter product formula error-bound estimates for nonself-adjoint semigroups, Integr. Equ. Oper. Theory 42(4), 425-448 (2002).
[3] Cachia V., Zagrebnov, V. A.: Operator-norm convergence of the Trotter product formula for sectorial generators, Lett. Math. Phys. 50, 203-211 (1999).
[4] Cachia V., Zagrebnov, V. A.: Operator-norm approximation of semigroups by quasisectorial contractions, J. Funct. Anal. 180(1), 176-194 (2001).
[5] Cachia V., Zagrebnov, V. A.: Operator-norm convergence of the Trotter product formula for holomorphic semigroups, J. Operat. Theor. 46(1), 199-213 (2001).
[6] Ichinose, T., Neidhardt, H., Zagrebnov, V. A.: Trotter-Kato product formula and fractional powers of self-adjoint generators, J. Funct. Anal. 207(1), 33-57 (2004).
[7] Ichinose, T., Tamura Hideo, Tamura Hiroshi, Zagrebnov V. A.: Note on the paper: "The norm convergence of the Trotter-Kato product formula with error bound" by T. Ichinose and H. Tamura, Commun. Math. Phys. 221(3), 499-510 (2001).
[8] Neidhardt, H.: On abstract linear evolution equations. I, Math. Nachr. 103, 283298 (1981).
[9] Neidhardt, H., Stephan, A., Zagrebnov, V. A.: On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations, Nanosyst. Phys. Chem. Math. 8(2), 202-215 (2017).
[10] Neidhardt, H., Stephan, A., Zagrebnov, V. A.: Remarks on the operator-norm convergence of the Trotter product formula, Integr. Equ. Oper. Theory 90:15, 1-14 (2018).
[11] Neidhardt, H., Stephan, A., Zagrebnov, V. A.: Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems, Publ. RIMS Kyoto Univ. 56, 1-53 (2020).
[12] Neidhardt, H., Zagrebnov, V. A.: On error estimates for the Trotter-Kato product formula, Lett. Math. Phys. 44(3), 169-186 (1998).
[13] Neidhardt, H., Zagrebnov, V. A.: Trotter-Kato product formula and operator-norm convergence, Commun. Math. Phys. 205(1), 129-159 (1999).
[14] Neidhardt, H., Zagrebnov, V. A.: Fractional powers of self-adjoint operators and Trotter-Kato product formula, Integr. Equ. Oper. Theory 35(2), 209-231 (1999).
[15] Neidhardt, H., Zagrebnov, V. A.: Linear non-autonomous Cauchy problems and evolution semigroups, Adv. Differ. Equ. 14(3-4), 289-340 (2009).
[16] Rogava, Dzh. L.: Error bounds for Trotter-type formulas for self-adjoint operators, Funct. Anal. Appl. 27, 217-219 (1993).
[17] Trotter, H. F.: On the product of semi-groups of operators, Proc. Amer. Math. Soc. 10, 545-551 (1959).
[18] Zagrebnov, V. A.: Gibbs Semigroups, Operator Theory Series: Advances and Applications, Vol. 273, Birkhäuser Basel (2019).

[^0]: *Institut de Mathématiques de Marseille, CMI-Technopôle Château-Gombert, 39, rue F. Joliot Curie, 13453 Marseille, France; valentin.zagrebnov@univ-amu.fr

