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Trotter product formula on Hilbert
and Banach spaces for

operator-norm convergence
Valentin Zagrebnov*

Abstract. We review results on the operator-norm convergence of the

Trotter product formula on Hilbert and Banach spaces. We concentrate

here on the problem of convergence rates. Some results concerning

evolution semigroups are also presented.

1 Introduction

The product formula for matrices A and B

e−τC = lim
n→∞

(
e−τA/ne−τB/n

)n
, τ ≥ 0, (2.1)

was established by S. Lie (1875). Here C ..= A+B. The proof of formula (2.1) can be
easily extended to bounded operators L (H) and L (X) on Hilbert (H) and Banach (X)
spaces. Moreover, a straightforward computation shows that the operator norm conver-
gence rate in (2.1) is O(1/n):

sup
τ∈[0,T ]

∥∥e−τA/ne−τB/n− e−τC/n∥∥
L ( ·) = O(1/n). (2.2)
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24 Zagrebnov: Trotter product formula

H. Trotter [17] has extended this result to unbounded operators A and B on Banach spaces,
but now in the (weaker) strong operator topology: s-limn→∞ An = A ⇔ limn→∞ ‖(An−
A )x‖ = 0 for any x ∈ X. He proved that if A and B are generators of contraction semi-
groups on a separable Banach space such that the algebraic sum A+B is a densely defined
closable operator and the closure C = A+B is a generator of a contraction semigroup,
then

e−τC = s-lim
n→∞

(
e−τA/ne−τB/n)n

, (2.3)

uniformly in τ ∈ [0,T ] for any T > 0. It was a long-time belief that the Trotter formula
is valid only in the strong operator topology. But in the nineties it was discovered that
under certain quite standard assumptions the strong convergence of the product formula
(2.3) can be improved to the operator-norm convergence: limn→∞ ‖An−A ‖L (H) = 0⇔
limn→∞ sup{u∈H:‖u‖=1} ‖(An−A )u‖= 0, on a Hilbert space H.

For the Trotter product formula in the trace-class ideal of L (H) we refer to [18].

2 Trotter product formula on Hilbert spaces

2.1 Self-adjoint case. Considering the Trotter product formula on a separable Hilbert
space H, T. Kato has shown that for non-negative self-adjoint operators A and B the Trotter
formula (2.3) holds in the strong operator topology if dom(

√
A)∩ dom(

√
B) is dense in

the Hilbert space and C = A+̇B is the form-sum of operators A and B. Naturally the
problem arises whether Kato’s result can be extended to the operator-norm convergence.
A first attempt in this direction was undertaken by Dzh. Rogava [16]. He claimed that
if A and B are non-negative self-adjoint operators such that dom(A) ⊆ dom(B) and the
operator-sum: C = A+B, is self-adjoint, then

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (H)

= O(ln(n)/
√

n), n→ ∞, (2.4)

holds. In [12] it was shown that if one substitutes in above conditions the self-adjointness
of the operator-sum by the A-smallness of B with a relative bound less then one, then
(2.4) is true with the rate of convergence improved to

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (H)

= O(ln(n)/n), n→ ∞. (2.5)
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The problem in its original formulation was finally solved in [7]. There it was shown
that the best possible in this general setup rate (2.2) holds if the operator sum: C =

A+B, is already a self-adjoint operator. Rogava’s result, as well as many other results
(including [12]), when the operator sum of generators is self-adjoint, are corollary of
[7]. A new direction comes due to results for the fractional-power conditions. In [14],
with elucidation in [6], it was proven that assuming: dom(Cα) ⊆ dom(Aα)∩ dom(Bα),
α ∈ (1/2,1), C = A+̇B and dom(A1/2)⊆ dom(B1/2) one obtains that

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (H)

= O(n−(2α−1)).

Notice that formally α = 1 yields the rate obtained in [7]. We remark also that the results
of [6, 14] do not cover the case α = 1/2. Although, it turns out that in this case the Trotter
product formula converges on the operator norm:

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (H)

= o(1),

if
√

B is relatively compact with respect to
√

A, i.e.
√

B(I +A)−1/2 is compact, see [13].

2.2 Non-self-adjoint case. Another direction was related with extension of the Trotter,
and the Trotter-Kato, product formulae to the case of accretive [1, 2] and non-self-adjoint
sectorial generators [4, 5]. Let A be a non-negative self-adjoint operator and let B be a
maximal accretive (Re(B f , f )≥ 0 for f ∈ dom(B)) operator, such that

dom(A)⊆ dom(B) and dom(A)⊆ dom(B∗).

If B is A-small with a relative bound less than one, then estimate (2.5) holds for generator
C which is a well-defined maximal accretive operator-sum: C = A+B, see [1].

In [2] this result was generalised as follows. Let A be a non-negative self-adjoint op-
erator and let B be a maximal accretive operator such that dom(A) ⊆ dom(B) and B is
A-small with relative bound less than one. If the condition

dom
(
(C∗)α

)
⊆ dom(Aα)∩dom

(
(B∗)α

)
, C = A+B,
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is satisfied for some α ∈ (0,1], then the norm-convergent Trotter product formula:

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (H)

= O(ln(n)/nα) ,

holds as n→ ∞. In fact, more results are known about the operator-norm Trotter product
formula convergence for non-self-adjoint semigroups with sectorial generators, but with-

out the rate estimates, see [3]. A new approach to analysis of the non-self-adjoint case
was developed in [5]. Since it is based on holomorphic properties of semigroups, one can
apply it even in Banach spaces. Therefore we postpone its presentation to Section 3.

3 Trotter product formula on Banach spaces

3.1 Holomorphic case. There are only few generalisations of the results of Section 2 to
Banach spaces. The main obstacle for that is the fact that the concept of self-adjointness
is missing. One of solutions is to relax the self-adjointness replacing the non-negative
self-adjoint generator A by a generator of the holomorphic semigroup. The following
result was proved in [5].

Theorem 2.1 ([5, Theorem 3.6 and Corollary 3.7]) Let A be a generator of a holomor-
phic contraction semigroup on the separable Banach space X and let B be generator of a
contraction semigroup on X.

i) If for some α ∈ (0,1) the condition dom(Aα) ⊆ dom(B), holds and dom(A∗) ⊆
dom(B∗) is satisfied, then the operator sum C = A+B is generator of a contraction
semigroup and for any T > 0:

sup
τ∈[0,T ]

∥∥(e−τB/ne−τA/n)n− e−τC∥∥
L (X)

= O
(

ln(n)/n1−α
)
. (2.6)

ii) If for some α ∈ (0,1) the condition dom((Aα)∗) ⊆ dom(B∗) is satisfied and
dom(A) ⊆ dom(B) is valid, then C = A+B is generator of a contraction semi-
group and

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (X)

= O
(

ln(n)/n1−α
)
, (2.7)

for any T > 0.
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Theorem 2.2 ([5, Theorem 3.6 and Corollary 3.7]) Let A be generator of a holomorphic
contraction semigroup on X and let B be generator of a contraction semigroup on X. If B

is in addition a bounded operator, then for any T > 0 :

sup
τ∈[0,T ]

∥∥(e−τB/ne−τA/n)n− e−τC∥∥
L (X)

= O
(
(ln(n))2/n

)
,

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (X)

= O
(
(ln(n))2/n

)
.

Theorem 2.2 becomes false if the condition that A is generator of a holomorphic semi-
group is dropped.

3.2 Non-holomorphic: evolution semigroup. Let A and operators {B(t)}t∈[0,T ] be gen-
erators of holomorphic semigroups on a separable Banach space X. Consider non-
autonomous Cauchy problem for u0

..= u(0):

∂tu(t) =−
(
A+B(t)

)
u(t), t ∈ [0,T ], (2.8)

Assumptions:
(A1) Operator A≥ I is generator of a holomorphic contraction semigroup in X.

(A2) Let {B(t)}t∈[0,T ] be a family of closed operators such that for a.e. t ∈ [0,T ] and
some α ∈ (0,1) the condition dom(Aα)⊂ dom(B(t)) is satisfied such that

Cα
..= ess sup

t∈[0,T ]

∥∥B(t)A−α
∥∥

L (X)
< ∞ .

(A3) Let {B(t)}t∈[0,T ] be a family of generators of contraction semigroups in X such
that the function [0,T ] 3 t 7→

(
B(t)+ ξ I

)−1x ∈ X is strongly measurable for any
x ∈ X and any ξ > b for some b > 0.

(A4) We assume that dom(A∗)⊂ dom(B(t)∗) and

C∗1 ..= ess sup
t∈[0,T ]

∥∥B(t)∗(A∗)−1∥∥
L (X∗) < ∞,

where A∗ and B(t)∗ denote operators which are adjoint of A and B(t), respectively.

(A5) There exists β ∈ (α,1) and a constant Lβ > 0 such that for a.e. t,s ∈ [0,T ] one has
the estimate: ∥∥A−1(B(t)−B(s)

)
A−α

∥∥
L (X)

≤ Lβ |t− s|β .
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(A6) There exists a constant L1 > 0 such that for a.e. t,s ∈ [0,T ] one has the estimate:∥∥A−α
(
B(t)−B(s)

)
A−α

∥∥
L (X)

≤ L1|t− s|.

The evolution equation (2.8) is associated with family {C(t)}t∈[0,T ], C(t) = A+B(t).

We consider the Banach space Lp([0,T ],X) for p ∈ [1,∞) and introduce in this space
the multiplication operators A and B generated by A and {B(t)}t∈[0,T ], see [8, 15]. Simi-
larly, one can introduce the multiplication operator C induced by the family {C(t)}t∈[0,T ]

which is also a generator of a holomorphic semigroup. Notice that C = A +B and
dom(C ) = dom(A ). Let D0 the generator of the right-shift nilpotent semigroup on
Lp([0,T ],X), i.e.

(
e−τD0 f

)
(t) = χ[0,T ](t− τ) f (t− τ), f ∈ Lp([0,T ],X).

Next, we consider the operator

K̃ f = D0 f +A f +B f ,

f ∈ dom(K̃ ) = dom(D0)∩dom(A )∩dom(B).
(2.9)

Assuming (A1)–(A3) it was shown in [11] that the operator K̃ is closable and its closure
K is generator of the evolution semigroup {e−τK }τ≥0 [8, 15], which is also nilpotent
and consequently a non-holomorphic semigroup. Further we set K̃0 f = D0 f +A f for
f ∈ dom(K̃0) = dom(D0)∩dom(A ).

In contrast to the Hilbert space the operator K̃0 is not necessary generator of a semi-
group. However, the operator K̃0 is closable and its closure K0 is a generator. Note that
K coincides with the algebraic sum: K = K0 +B.

Theorem 2.3 ([11, Theorem 7.8]) Let the Assumptions (A1)–(A4) be satisfied for some
α ∈ (0,1). If (A5) holds, then one gets for n→ ∞ the asymptotic:

sup
τ∈[0,T ]

∥∥(e−τB/ne−τK0/n)n− e−τK
∥∥

L (Lp([0,T ],X))
= O

(
1/nβ−α

)
. (2.10)

Assuming instead of Assumption (A5) the Assumption (A6) one finds

Theorem 2.4 ([9, Theorem 5.4]) Let the Assumptions (A1)–(A4) be satisfied for some
α ∈ (1/2,1). If (A6) is valid, then for n→ ∞ one gets the asymptotic:

sup
τ∈[0,T ]

∥∥(e−τB/ne−τK0/n)n− e−τK
∥∥

L (Lp([0,T ],X))
= O

(
1/n1−α

)
. (2.11)
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3.3 Convergence rate for propagators. To construct approximations of solution op-
erators (propagators) for the Cauchy problem (2.8), we apply to the problem (2.8) the
evolution semigroup approach developed in [8, 15, 11]. The idea is to transform the non-

autonomous Cauchy problem (2.8) into an autonomous problem generated by evolution
semigroup {e−τK }τ≥0.

Definition 2.5 ([8, 15]) Linear operator K in Lp([0,T ],X), p∈ [1,∞), is called evolution

generator if for multiplication operator M(φ):
(i) dom(K )⊂C([0,T ],X) and M(φ)dom(K )⊂ dom(K ) for φ ∈W 1,∞([0,T ]);

(ii) K M(φ) f −M(φ)K f = M(∂tφ) f for f ∈ dom(K ) and φ ∈W 1,∞([0,T ]);

(iii) the domain dom(K ) has a dense cross-section, i.e. for each t ∈ (0,T ] the set

[dom(K )]t ..= {x ∈ X : ∃ f ∈ dom(K ) such that x ∈ f (t)},

is dense in X. Here for any φ ∈ L∞([0,T ]) we denote by M(φ) a bounded
multiplication operator on Lp([0,T ],X) defined as

(
M(φ) f

)
(t) = φ(t) f (t), f ∈

Lp([0,T ],X).

One can check that the operator K defined as the closure of K̃ (2.9) is an evolution
generator, cf. [11, Theorem 1.2]. Evolution generators are related to propagators, which
are defined as follows.

Definition 2.6 Let {U(t,s)}(t,s)∈∆, ∆ = {(t,s) ∈ (0,T ]× (0,T ] : s≤ t ≤ T}, be a strongly
continuous family of bounded operators on X. If the conditions

U(t, t) = I for t ∈ (0,T ], (2.12)

U(t,r)U(r,s) =U(t,s) for t,r,s ∈ (0,T ] with s≤ r ≤ t, (2.13)

‖U‖∆
..= sup

(t,s)∈∆

‖U(t,s)‖L (X) < ∞ (2.14)

are satisfied. If u(t) =U(t,0)u0, t ≥ 0, for u0 ∈ dom(A), is solution of the Cauchy prob-
lem (2.8), then {U(t,s)}(t,s)∈∆ is called solution operator, or propagator.

It is known [8, Theorem 4.12] that there is an one-to-one correspondence between the
set of all evolution generators on Lp([0,T ],X) and the set of all propagators in the sense
of Definition 2.6. It is established by equation

(
e−τK f

)
(t) =U(t, t− τ)χ[0,T ](t− τ) f (t− τ), f ∈ Lp([0,T ],X). (2.15)
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Let K0 be generator of evolution semigroup {U0(τ)}τ≥0 and let B be multiplica-
tion operator induced by a measurable family {B(t)}t∈[0,T ] of generators of contrac-
tion semigroups. Note that in this case the multiplication operator B is a generator of
a contraction semigroup

(
e−τ B f

)
(t) = e−τ B(t) f (t), on the Banach space Lp([0,T ],X).

Since {U0(τ)}τ≥0 is the evolution semigroup, then by (2.15) there exists propagator
{U0(t,s)}(t,s)∈∆ such that the representation:

(
U0(τ) f

)
(t) =U0(t, t−τ)χ[0,T ](t−τ) f (t−

τ), f ∈ Lp([0,T ],X), is valid for a. e. t ∈ [0,T ] and τ ≥ 0. Then we define

Q j(t,s;n) ..=U0

(
s+ j (t−s)

n ,s+( j−1) (t−s)
n

)
e
− (t−s)

n B
(

s+( j−1)
(t−s)

n

)

where j ∈ {1,2, . . . ,n}, n ∈ N, (t,s) ∈ ∆, and we set for approximants {Vn(t,s)}n≥1:

Vn(t,s) ..=
n←

∏
j=1

Q j(t,s;n), n ∈ N, (t,s) ∈ ∆,

where the product is increasingly ordered in j from the right to the left. Then by (2.15) a
straightforward computation shows that the representation((

e−τK0/ne−τB/n
)n

f
)
(t) =Vn(t, t− τ)χ[0,T ](t− τ) f (t− τ) ,

f ∈ Lp([0,T ],X), holds for each τ ≥ 0 and a.e. t ∈ [0,T ].

Similarly we can introduce

G j(t,s;n) = e−
t−s

n B
(

s+ j t−s
n

)
U0
(
s+ j t−s

n ,s+( j−1) t−s
n

)
where j ∈ {1,2, . . . ,n}, n ∈ N, (t,s) ∈ ∆. Now let the approximants be defined by

Un(t,s) ..=
n←

∏
j=1

G j(t,s;n), n ∈ N, (t,s) ∈ ∆,

where the product is again increasingly ordered in j from the right to the left. Note that((
e−τB/ne−τK0/n

)n
f
)
(t) =Un(t, t− τ)χ[0,T ](t− τ) f (t− τ) ,

f ∈ Lp([0,T ],X), holds for each τ ≥ 0 and a.e. t ∈ [0,T ].
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Proposition 2.7 ([10, Proposition 2.1]) Let K and K0 be generators of evolution semi-
groups on the Banach space Lp([0,T ],X) for some p ∈ [1,∞). Further, let {B(t))}t∈[0,T ]

be a strongly measurable family of generators of contraction on X. Then for n ∈ N,

sup
τ∈[0,T ]

∥∥∥e−τK −
(

e−τK0/ne−τB/n
)n∥∥∥

L (Lp([0,T ],X))
= ess sup

(t,s)∈∆

‖U(t,s)−Vn(t,s)‖L (X),

sup
τ∈[0,T ]

∥∥∥e−τK −
(

e−τB/ne−τK0/n
)n∥∥∥

L (Lp([0,T ],X))
= ess sup

(t,s)∈∆

‖U(t,s)−Un(t,s)‖L (X).

From Theorem 2.3 and Proposition 2.7 one obtains the following assertion.

Theorem 2.8 ([11, Theorem 1.4]) Let the Assumptions (A1)–(A4) be satisfied. If (A5)
holds, then for n→ ∞ one gets the rate:

ess sup
(t,s)∈∆

‖Un(t,s)−U(t,s)‖L (X) = O
(
1/nβ−α

)
. (2.16)

On the other hand, from Theorem 2.4 and Proposition 2.7 we get

Theorem 2.9 ([9, Theorem 5.6]) Let the Assumptions (A1)–(A4) be satisfied for some
α ∈ (1/2,1). If (A6) is valid, then for n→ ∞ one obtains a better rate:

ess sup
(t,s)∈∆

‖Un(t,s)−U(t,s)‖L (X) = O
(
1/n1−α

)
.

4 Example of sharpness

We study bounded perturbations of the evolution generator D0. To this aim we consider
X= C and we denote by L2([0,1]) the Hilbert space L2([0,1],C).

For t ∈ [0,1], let q : t 7→ q(t)∈ L∞([0,1]). Then q induces on the Banach space L2([0,1])
a bounded multiplication operator Q defined as(

Q f
)
(t) ..= q(t) f (t), f ∈ L2([0,1]).

For simplicity we assume that q ≥ 0. Then Q generates on L2([0,1]) a contraction
semigroup {e−τQ}τ≥0. Since generator Q is bounded, the closed operator K ..= D0 +Q,
with domain dom(K ) = dom(D0), is generator of a semigroup on L2([0,1]). By [17] we
get

s-lim
n→∞

(
e−τD0/ne−τQ/n

)n
= e−τ(D0+Q).
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One can easily check that K is an evolution generator. A straightforward computation
shows that (

e−τ(D0+Q) f
)
(t) = e−

∫ t
t−τ q(y)dy

χ[0,1](t− τ) f (t− τ).

This yields that the propagator corresponding to K is given by

U(t,s) = e−
∫ t

s q(y)dy, (t,s) ∈ ∆.

Now a simple computation shows that((
e−τD0/ne−τQ/n

)n
f
)
(t) =.. Vn(t, t− τ)χ[0,T ](t− τ) f (t− τ).

Then by straightforward calculations we find that

Vn(t,s) = e−
t−s

n ∑
n−1
k=0 q(s+k t−s

n ), (t,s) ∈ ∆.

Theorem 2.10 ([10, Proposition 3.1]) Let q ∈ L∞([0,1]) be non-negative. Then

sup
τ∈[0,1]

∥∥∥e−τ(D0+Q)−
(

e−τD0/ne−τQ/n
)n∥∥∥

L (L2([0,1]))

≤ O

(
ess sup
(t,s)∈∆

∣∣∣∫ t

s
q(y)dy− t− s

n

n−1

∑
k=0

q(s+ k t−s
n )
∣∣∣) ,

as n→ ∞.

Note that by Theorem 2.10 the operator-norm convergence rate of the Trotter product
formula for the pair {D0,Q} coincides with the convergence rate of the integral Darboux-
Riemann sum approximation of the Lebesgue integral.

Theorem 2.11 ([10, Theorem 3.2]) If the function: q ∈C0,β ([0,1]), β ∈ (0,1], is non-
negative, then for n→ ∞ one gets

sup
τ∈[0,1]

∥∥∥e−τ(D0+Q)−
(

e−τD0/ne−τQ/n
)n∥∥∥

L (L2([0,1]))
= O

(
1/nβ

)
.

Theorem 2.12 ([10, Theorem 3.3]) If q ∈C([0,1]) is continuous and non-negative, then
for n→ ∞ ∥∥∥e−τ(D0+Q)−

(
e−τD0/ne−τQ/n

)n∥∥∥
L (L2([0,1]))

= o(1) . (2.17)

It follows that the convergence to zero in (2.17) may be arbitrarily slow.
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Theorem 2.13 ([10, Theorem 3.4]) Let δn > 0 be a sequence with δn → 0 as n→ ∞.
Then there exists a continuous function q : [0,1]→ R such that

sup
τ∈[0,1]

∥∥∥e−τ(D0+Q)−
(

e−τD0/ne−τQ/n
)n∥∥∥

L (L2([0,1]))
= ω(δn) , (2.18)

as n→ ∞. Here ω is the Landau symbol: ω(δn)⇔ limsupn→∞ |ω(δn)/δn|= ∞ .

If q is only measurable, it can happen that the Trotter product formula for that pair
{D0,Q} does not converge in the operator-norm topology:

Theorem 2.14 ([10, Theorem 3.5]) There is a non-negative measurable function q ∈
L∞([0,1]), such that

liminf
n→∞

sup
τ∈[0,1]

∥∥∥e−τ(D0+Q)−
(

e−τD0/ne−τQ/n
)n∥∥∥

L (L2([0,1]))
> 0. (2.19)

Theorem 2.14 does not exclude the convergence in the strong operator topology.
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