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Abstract: In this paper, we present the convergence rate analysis of the modified Landweber method
under logarithmic source condition for nonlinear ill-posed problems. The regularization parameter
is chosen according to the discrepancy principle. The reconstructions of the shape of an unknown
domain for an inverse potential problem by using the modified Landweber method are exhibited.

Keywords: nonlinear operator; regularization; modified Landweber method; discrepancy principle;
logarithmic source condition

1. Introduction

An inverse potential problem consists in determining the shape of an unknown domain D form
measurements of the Neumann boundary values of u on ∂Ω, where the solution u of the homogeneous
Dirichlet problem fulfills

∆u = χD in ΩR \ ∂D, (1)

u = 0 on ∂ΩR (2)

where χD is the characteristic function of the domain D ⊂ ΩR = {x ∈ R2 : |x| < R}. This inverse
problem is a nonlinear severely ill-posed problem; see [1,2]. If a classical difference method is used
for solving the inverse problem, the errors can grow exponentially fast as the mesh size goes to
zero. Many regularizing methods are adopted to provide a stable solution of inverse potential
problems, e.g., a second-degree method with frozen derivatives [3], level set regularization [4],
the iteratively regularized Gauss–Newton method [5] and Levenberg–Marquardt method [1]. In this
work, we consider a discrete version analoguous to the modified asymptotic regularization proposed
by Pornsawad et al. [6] to recover the starlike shape of the unknown domain D.

In a general setting, an inverse potential problem can be formulated via a nonlinear
operator equation

F(x) = y, (3)

where y is the normal derivative of u on the boundary, ∂u
∂ν |∂ΩR , ν is the outer normal vector on ∂ΩR,

the operator F : D (F) ⊆ X → Y is a nonlinear operator on domain D (F) ⊂ X, X and Y are Hilbert
spaces, and the unknown x includes the information of the domain D ⊂ ΩR. For convenience in
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this article, the indices of inner products 〈·, ·〉 and norms ‖ · ‖ are neglected but they can always be
identified from the context in which they appear. Due to the nonlinearity of Equation (3), we assume
all over that Equation (3) has a solution x+ which needs not to be unique. We have the disturbed data
yδ with

∥∥∥yδ − y
∥∥∥ ≤ δ (4)

where δ > 0 is a noise level. If one solves Equation (3) by traditional numerical method, high oscillating
solutions may occur. Thus, one needs a regularization to minimize the approximation and data error.

One well-known continuous regularization is Showalter’s method or asymptotic regularization [7],
where an approximate solution is obtained by solving an initial value problem. Later, a second-order
asymptotic regularization for the linear problem Ax = y was investigated in Zhang and Hofmann [8],
where the optimal order is obtained under the Hölder type source condition and a conventional
discrepancy principle as well as a total energy discrepancy principle. Recently, the study of modified
asymptotic regularization is reported in Pornsawad et al. [6] where the term x̄ − xδ(t), xδ(0) = x̄,
is included to the method proposed by Tautenhahn [7], i.e.,

ẋδ(t) = F′(xδ(t))∗[yδ − F(xδ(t))]− (xδ(t)− x̄), 0 < t ≤ T. (5)

A discrete version analogue to Equation (5) is successfully developed in Pornsawad and Böckmann [9],
where the whole family of Runge–Kutta methods is applied and one obtaines an optimal convergence
rate under Hölder-type sourcewise condition if the Fréchet derivative is properly scaled and locally
Lipschitz continuous.

It is well known that, for many applications such as the inverse potential problem and the inverse
scattering problem [5], the Hölder type source condition in general is not fulfilled even if a solution is
very smooth. It is applicable only for mildly ill-posed problems [1,10,11]. Therefore, the convergence
rate analysis of an explicit Euler method presented by

xδ
n+1 = xδ

n + F′(xδ
n)
∗(yδ − F(xδ

n))− αn(xδ
n − x0) (6)

is considered in this article under the logarithmic source condition in Equation (7) and the properly
scaled Fréchet derivative ‖F′(x+)‖ ≤ 1. The method in Equation (6) is a particular method of the
iterative Runge–Kutta-type method [9], where τn = α−1

n is the relaxation parameter obtained by
discretization of conventional asymptotic regularization [7]. We define

f = fp, fp(λ) :=

{(
ln e

λ

)−p for 0 < λ ≤ 1

0 for λ = 0
(7)

with p > 0 and the usual sourcewise representation

x+ − x0 = f
(

F′(x+)∗F′(x+)
)

w, w ∈ X (8)

where ‖w‖ is sufficiently small. The method in Equation (6) is also known as the modified Landweber
method [12] which has the rate O(

√
δ) under the Hölder-type source condition and general discrepancy

principle. The convergence rate analysis under the logarithmic source condition in Equation (7) has
been successfully studied by Hohage [5] for the iteratively regularized Gauss–Newton method and
by Deuflhard et al. [13] for Landweber’s iteration. Current studies of source condition may be found,
e.g., in Romanov et al. [11], Bakushinsky et al. [14], Schuster et al. [15] and Albani et al. [16].

The purpose of this work is to present the convergence rate analysis of the iterative scheme
of Equation (6) under the logarithmic source condition in Equation (7) with 1 ≤ p ≤ 2 and
to recover the shape of an unknown domain D for an inverse potential problem (Equations (1)
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and (2)). Thus, in Section 2, a preliminary result is prepared. As usual, the Fréchet derivative
of F needs to be scaled. Furthermore, we assume a nonlinearity condition of F in a ball
Bρ(x0) = {x ∈ X : ‖x− x0‖ ≤ ρ}, ρ > 0, which is given in Assumption 1. It is well known that,
without the additional assumption on the nonlinear operator, the convergence rate cannot be provided.
The following assumption has been used in many works [5,17], i.e., there exists a bounded linear
operator R : Y → Y and Q : X → Y such that

F′(x̃) = R(x̃, x)F′(x) + Q(x̃, x)

‖I − R(x̃, x)‖ ≤ CR

‖Q(x̃, x)‖ ≤ CQ‖F′(x†)(x̃− x)‖

with nonnegative constants CR and CQ. However a weaker condition will be used in this work.
This will be shown in Assumption 1. In Section 3, the convergence rate of the modified Landweber
method under the logarithmic source condition is presented. Application of the modified Landweber
method to an inverse potential problem is provided in Section 4.

2. Preliminary Results

In this section, preliminary results are prepared to provide the convergence analysis of the
modified Landweber method.

Lemma 1. Let A be a linear operator with ‖A‖ ≤ 1. For n ∈ N with n > 1, e0 := f (λ)w with f given by
Equation (7) and p > 0, there exist positive constants c1 and c2 such that

∥∥∥∥∥
n−1

∏
i=0

(1− αi)(I − A∗A)ne0

∥∥∥∥∥ ≤ c1(ln(n + e))−p‖w‖ (9)

and
∥∥∥∥∥A

n−1

∏
i=0

(1− αi)(I − A∗A)ne0

∥∥∥∥∥ ≤ c2(n + 1)−1/2(ln(n + e))−p‖w‖ (10)

with 0 < αi ≤ 1, i = 0, 1, 2, . . . , n.

Proof. By spectral theory and Equations (7), (A1), and (A2), we have
∥∥∥∥∥

n−1

∏
i=0

(1− αi)(I − A∗A)ne0

∥∥∥∥∥ ≤
n−1

∏
i=0

(1− αi)‖(I − A∗A)n f (A∗A)‖‖w‖

≤ sup
λ∈(0,1]

|(1− λ)n(1− ln λ)−p|‖w‖

≤ c1(ln(n + e))−p‖w‖ (11)

for some constant c1 > 0. Similary, spectral theory and Equations (7), (A3), and (A4) provides
∥∥∥∥∥A

n−1

∏
i=0

(1− αi)(I − A∗A)ne0

∥∥∥∥∥ ≤
n−1

∏
i=0

(1− αi)‖(I − A∗A)n(A∗A)1/2 f (A∗A)‖‖w‖

≤ sup
λ∈(0,1]

|(1− λ)nλ1/2(1− ln λ)−p|‖w‖

≤ c2(n + 1)−1/2(ln(n + e))−p‖w‖ (12)

for some constant c2 > 0.
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Proposition 1. Let A be a linear operator with ‖A‖ ≤ 1. For n ∈ N with n > 1, e0 := f (λ)w with f given
by Equation (7) and p = 2ψ, for some ψ ∈ [1/2, 1], there exist positive constants c̃1 and c̃2 such that

∥∥∥∥∥
n−1

∑
j=0

αn−j−1(I − A∗A)j
j

∏
i=1

(1− αn−i)e0

∥∥∥∥∥ ≤ c̃1(ln(n + e))−p‖w‖ (13)

and

‖A
n−1

∑
j=0

αn−j−1(I − A∗A)j
j

∏
i=1

(1− αn−i)e0‖ ≤ c̃2(n + 1)−1/2(ln(n + e))−p‖w‖ (14)

for αi =
1
2 (i + l0)−ψ, i = 0, 1, 2, . . . , n and l0 ≥ 2.

Proof. We will prove by induction that, for some c ∈ R , the inequality

∥∥∥∥∥
k−1

∑
j=0

αn−j−1(I − A∗A)j
j

∏
i=1

(1− αn−i)e0

∥∥∥∥∥ ≤ c(ln(k + e))−p‖w‖ (15)

is true. Note that
p
ψ
= 2 ≤ ln 2

ln(ln(1 + e))
and l0 ≥ 2 provide

p
ψ

ln(ln(1 + e)) ≤ ln 2 ≤ ln l0 ≤ ln(l0 + n− 1).

This means that (ln(1 + e))−p ≥ (l0 + n− 1)−ψ. Using Equation (7), we have

‖αn−1(I − A∗A)0e0‖ ≤
1
2
(n− 1 + l0)−ψ sup

λ∈(0,1]
|(1− ln λ)−p|‖w‖

≤ 1
2
(ln(1 + e))−p‖w‖.

Thus, Equation (15) holds for k = 1. Next, we assume that Equation (15) holds for k− 1 < n for some
constant c. Applying Lemma 1, we obtain

∥∥∥∥∥
k

∑
j=0

αn−j−1(I − A∗A)j
j

∏
i=1

(1− αn−i)e0

∥∥∥∥∥

≤
∥∥∥∥∥

k−1

∑
j=0

αn−j−1(I − A∗A)j
j

∏
i=1

(1− αn−i)e0

∥∥∥∥∥+
∥∥∥∥∥αn−k−1(I − A∗A)k

k

∏
i=1

(1− αn−i)e0

∥∥∥∥∥

≤ c(ln(k + e))−p‖w‖+ 1
2
(n− k− 1 + l0)−ψ

∥∥∥(I − A∗A)k f (A∗A)w
∥∥∥

≤ c(ln(k + e))−p‖w‖+ c1

2
(n− k− 1 + l0)−ψ(ln(k + e))−p‖w‖. (16)

By Figure 1, we observe that

1
2
(n− k− 1 + l0)−ψ(ln(k + e))−p ≤ (ln(k + 1 + e))−p.
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Figure 1. Plot of (ln(k + 1 + e))−p and 1
2 (n − k − 1 + l0)−ψ(ln(k + e))−p with n = 1000, l0 = 10,

and (left) ψ = 1 and (right) ψ = 0.5.

Moreover, in Figure 2, the graph of

(
ln(k + 1 + e)

ln(k + e)

)p

+ 1 has a maximum at k = 1 and p = 2 and

the maximum value is

(
ln(2 + e)
ln(1 + e)

)2

+ 1 = 2.3956. Thus, Equation (16) becomes

∥∥∥∥∥
k

∑
j=0

αn−j−1(I − A∗A)j
j

∏
i=1

(1− αn−i)e0

∥∥∥∥∥

≤ max{c, c1}(ln(k + 1 + e))−p‖w‖
(

(ln(k + e))−p

(ln(k + 1 + e))−p + 1
)

≤ c̃1(ln(k + 1 + e))−p‖w‖

for some constant c̃1. Thus, the induction is complete.

Figure 2. Plot of

(
ln(k + 1 + e)

ln(k + e)

)p

+ 1.

We prove Equation (14) by induction in the same manner as Equation (13).
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Assumption 1. There exist positive constants cL, cR, and cr and linear bounded operator Rx : Y → Y such
that, for x ∈ Bρ(x0), the following condition holds

F′(x) = RxF′(x+) (17)

‖Rx − I‖ ≤ cL
∥∥x− x+

∥∥ (18)

|‖Rx‖ − ‖I‖| ≥ cR (19)

‖Rx‖ ≤ cr (20)

where x+ is the exact solution of Equation (3).

Lemma 2. Let the Assumption 1 be assumed. Then, we have

∥∥∥(1− αn)I − R∗xδ
n

∥∥∥ ≤ 1
2

KR ‖en‖ (21)

for some constant KR > 0 with en = x+ − xδ
n.

Proof. We note that the reverse triangle inequality and Equation (19) guarantee the estimates

1 ≤ ‖Rx − I‖
|‖Rx‖ − ‖I‖| ≤ c−1

R ‖Rx − I‖ (22)

and

‖I + R∗x‖ ≤
1

|‖Rx‖ − ‖I‖| × ‖I − R∗x‖ ‖I + R∗x‖ ≤ c−1
R ‖I − R∗x‖ ‖I + R∗x‖ . (23)

Using the estimates in Equations (18), (20), (22), and (23) and the triangle inequality, we now have

∥∥∥(1− αn)I − R∗xδ
n

∥∥∥ =

∥∥∥∥
1
2

[
(1− (1 + αn))(I + R∗xδ

n
)
]
+

1
2

[
(1 + (1− αn))(I − R∗xδ

n
)
]∥∥∥∥

≤ 1
2

[
αnc−1

R

∥∥∥I + R∗xδ
n

∥∥∥+ |2− αn|
] ∥∥∥I − R∗xδ

n

∥∥∥

≤ 1
2

KR ‖en‖

with the positive constant KR =
[
αnc−1

R (‖I‖+ cr) + |2− αn|
]

cL.

Proposition 2. Let the conditions in Equations (17) and (18) in Assumption 1 be true. Then,

∥∥∥F(xδ
n)− F(x+)− F′(x+)(xδ

n − x+)
∥∥∥ ≤ 1

2
cL ‖en‖ ‖Ken‖ (24)

for x ∈ Bρ(x0) with K = F′(x+) and en = x+ − xδ
n.

Proof. Define wt = x+ + t(xδ
n − x+) as 0 ≤ t ≤ 1. Using the mean value theorem with

Equations (17) and (18), we obtain

∥∥F(xδ
n)− F(x+)− F′(x+)(xδ

n − x+)
∥∥ =

∥∥∥
∫ 1

0

[
F′(x+ + t(xδ

n − x+))− F′(x+)
]
(xδ

n − x+)dt
∥∥∥

≤
∫ 1

0 ‖Rwt − I‖
∥∥F′(x+)(xδ

n − x+)
∥∥ dt

≤ 1
2 cL ‖en‖ ‖Ken‖ .

(25)
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3. Convergence Analysis

To investigate the convergence rate of the modified Landweber method under the logarithmic
source condition, we choose the regularization parameter n according to the generalized discrepancy
principle, i.e., the iteration is stopped after N = N(yδ,δ) steps with

∥∥∥yδ − F(xδ
N)
∥∥∥ ≤ τδ <

∥∥∥yδ − F(xδ
n)
∥∥∥ , 0 ≤ n < N (26)

where τ > 2−η
1−η is a positive number. In addition to the discrepancy principle, F satisfies the local

property in the open ball Bρ(x0) of radius ρ around x0

∥∥F(x)− F(x̃)− F′(x)(x− x̃)
∥∥ ≤ η ‖F(x)− F(x̃)‖ , η <

1
2

(27)

with x, x̃ ∈ Bρ(x0) ⊂ D (F). Utilizing the triangle inequality yields

1
1 + η

∥∥F′(x)(x− x̃)
∥∥ ≤ ‖F(x)− F(x̃)‖ ≤ 1

1− η

∥∥F′(x)(x− x̃)
∥∥ (28)

to ensure at least local convergence to a solution x+ of Equation (3) in B ρ
2
(x0).

Theorem 1. Assume that the problem in Equation (3) has a solution x+ in B ρ
2
(x0), yδ fulfills Equation (4),

and F satisfies Equations (17) and (18). Assume that the Fréchet derivative of F is scaled such that ‖F′(x)‖ ≤ 1
for x ∈ B ρ

2
(x0). Furthermore, assume that the source condition in Equations (7) and (8) is fulfilled and that the

modified Landweber method is stopped according to Equation (26). If ‖w‖ is sufficiently small, then there exists
a constant K2 depending only on p and ‖w‖ with

‖en‖ ≤ K2(ln n)−p (29)

and
∥∥∥yδ − F(xδ

n)
∥∥∥ ≤ 4K2(n + 1)−1/2(ln n)−p.

Proof. We give the abbreviation en := x+ − xδ
n for the error of the nth iteration xδ

n of Equation (6) and
K := F′(x+). We can rewrite Equation ( 6) into the form

x+ − xδ
n+1 = (1− αn)(x+ − xδ

n) + F′(xδ
n)
∗(F(xδ

n)− yδ)− αn(x0 − x+).
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Since en := x+ − xδ
n and K := F′(x+), we present en as

en+1 = (1− αn)en + F′(xδ
n)
∗(F(xδ

n)− yδ)− αn(x0 − x+)

= (1− αn)(I − K∗K)en + (1− αn)K∗Ken + F′(xδ
n)
∗(F(xδ

n)− yδ)− αn(x0 − x+)

= (1− αn)(I − K∗K)en + (1− αn)K∗
[

F(xδ
n)− F(x+)− K(xδ

n − x+)
]

+
[
K∗ − F′(xδ

n)
∗
] (

yδ − F(xδ
n)
)
− αnK∗(yδ − F(xδ

n)) + (1− αn)K∗(y− yδ)

− αn(x0 − x+)

= (1− αn)(I − K∗K)en + (1− αn)K∗
[

F(xδ
n)− F(x+)− K(xδ

n − x+)
]

+
[
K∗ − K∗R∗xδ

n

] (
yδ − F(xδ

n)
)
− αnK∗(yδ − F(xδ

n)) + (1− αn)K∗(y− yδ)

− αn(x0 − x+)

= (1− αn)(I − K∗K)en + (1− αn)K∗
[

F(xδ
n)− F(x+)− K(xδ

n − x+)
]

+ K∗
[
(1− αn)I − R∗xδ

n

] (
yδ − F(xδ

n)
)
+ (1− αn)K∗(y− yδ)

− αn(x0 − x+). (30)

Rewritting Equation (30), we have

en+1 = (1− αn)(I − K∗K)en + (1− αn)K∗(y− yδ)− αn(x0 − x+) + K∗zn (31)

where

zn = (1− αn)(F(xδ
n)− F(x+)− K(xδ

n − x+)) + [(1− αn)I − R∗xδ
n
](yδ − F(xδ

n)).

By recurrence and Equation (31), we obtain the closed expression for the error

en =

[
n−1

∏
i=0

(1− αi)(I − K∗K)n +
n−1

∑
j=0

αn−j−1(I − K∗K)j
j

∏
i=1

(1− αn−i)

]
e0

+

[
n

∑
j=1

(I − K∗K)j−1
j

∏
i=1

(1− αn−i)

]
K∗(y− yδ)

+
n−1

∑
j=0

n−1

∏
i=n−j

(1− αi)(I − K∗K)jK∗zn−j−1. (32)

Moreover, it holds

Ken =

[
K

n−1

∏
i=0

(1− αi)(I − K∗K)n + K
n−1

∑
j=0

αn−j−1(I − K∗K)j
j

∏
i=1

(1− αn−i)

]
e0

+ K

[
n

∑
j=1

(I − K∗K)j−1
j

∏
i=1

(1− αn−i)

]
K∗(y− yδ)

+ K
n−1

∑
j=0

n−1

∏
i=n−j

(1− αi)(I − K∗K)jK∗zn−j−1. (33)

Next, for 0 ≤ n < N, using the discrepancy principle, triangle inequality, Equation (28), and τ > 2−η
1−η ,

we get ∥∥∥yδ − F(xδ
n)
∥∥∥ ≤ 2

∥∥∥yδ − F(xδ
n)
∥∥∥− τδ ≤ 2

∥∥∥y− F(xδ
n)
∥∥∥ ≤ 2

1− η
‖Ken‖ . (34)
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Using Lemma 2, Proposition 2, and Equation (34), we obtain

‖zn‖ ≤ (1− αn)
∥∥∥F(xδ

n)− F(x+)− K(xδ
n − x+)

∥∥∥+
∥∥∥(1− αn)I − R∗xδ

n

∥∥∥
∥∥∥yδ − F(xδ

n)
∥∥∥

≤ 1
2
(1− αn) ‖en‖ ‖Ken‖ cL +

1
2

KR ‖en‖ (
2

1− η
) ‖Ken‖

≤ ĉ1 ‖Ken‖ ‖en‖ (35)

where ĉ1 = cL
2 + KR

1−η , and we use the fact that 1− αn ≤ 1.
It holds that ‖en‖ is decreasing independently of the source condition for 0 ≤ n < N; see
Proposition 2.2 in Scherzer [12].

Next, we show by induction that

‖en‖ ≤ K̂2(ln(n + e))−p (36)

and

‖Ken‖ ≤ K̂2(n + 1)−1/2(ln(n + e))−p (37)

hold for all 0 ≤ n < N with K̂2 being a positive constant which does not depend on n. It is obvious for
n = 0. Assuming that Equations (36) and (37) are true for all k with 0 ≤ k < n < N, we have to show
that Equations (36) and (37) are true for all k = n. We rewrite Equation (32) as follow

‖en‖ ≤
∥∥∥∥∥

n−1

∏
i=0

(1− αi)(I − K∗K)ne0

∥∥∥∥∥

+

∥∥∥∥∥
n−1

∑
j=0

αn−j−1(I − K∗K)j
j

∏
i=1

(1− αn−i)]e0

∥∥∥∥∥

+

∥∥∥∥∥
n

∑
j=1

(I − K∗K)j−1
j

∏
i=1

(1− αn−i)K∗(y− yδ)

∥∥∥∥∥

+

∥∥∥∥∥
n−1

∑
j=0

n−1

∏
i=n−j

(1− αi)(I − K∗K)jK∗zn−j−1

∥∥∥∥∥ . (38)

By assumption ‖K‖ ≤ 1 (see, e.g., Louis [18] or Vainikko and Veterennikov [19] cited
in Hanke et al. [20]), we have

∥∥∥∥∥
n−1

∑
k=0

(I − K∗K)kK∗
∥∥∥∥∥ ≤
√

n,

and
∥∥∥(I − K∗K)jK∗

∥∥∥ ≤ (j + 1)−1/2, j ≥ 1.

Consequently,

∥∥∥∥∥
n

∑
j=1

(I − K∗K)j−1
j

∏
i=1

(1− αn−i)K∗(y− yδ)

∥∥∥∥∥ ≤
∥∥∥∥∥

n

∑
j=1

(I − K∗K)j−1K∗
∥∥∥∥∥
∥∥∥y− yδ

∥∥∥

≤
√

nδ (39)
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and
∥∥∥∥∥

n−1

∑
j=0

n−1

∏
i=n−j

(1− αi)(I − K∗K)jK∗zn−j−1

∥∥∥∥∥ ≤
n−1

∑
j=0

∥∥∥(I − K∗K)jK∗
∥∥∥
∥∥zn−j−1

∥∥

≤
n−1

∑
j=0

(j + 1)−1/2‖
∥∥zn−j−1

∥∥ . (40)

Using Lemma 1 for n > 1, Proposition 1, and Equations (39) and (40) to Equation (38), we obtain

‖en‖ ≤ c1(ln(n + e))−p‖w‖+ c̃1(ln(n + e))−p‖w‖+
√

nδ

+
n−1

∑
j=0

(j + 1)−1/2 ∥∥zn−j−1
∥∥ . (41)

Then, using Equation (35) to estimate the last term of Equation (41), we obtain

n−1

∑
j=0

(j + 1)−1/2 ∥∥zn−j−1
∥∥ ≤ ĉ1

n−1

∑
j=0

(j + 1)−1/2 ∥∥Ken−j−1
∥∥ ∥∥en−j−1

∥∥ . (42)

We apply the assumption of the induction in Equations (36) and (37) into Equation (42):

n−1

∑
j=0

(j + 1)−1/2 ∥∥zn−j−1
∥∥

≤ ĉ1

n−1

∑
j=0

(j + 1)−1/2 ∥∥Ken−j−1
∥∥ ∥∥en−j−1

∥∥

≤ ĉ1K̂2
2

n−1

∑
j=0

(j + 1)−1/2(n− j)−1/2(ln(n− j− 1 + e))−2p

= ĉ1K̂2
2

n−1

∑
j=0

(
j + 1
n + 1

)−1/2 ( n− j
n + 1

)−1/2
(ln(n− j− 1 + e))−2p

(
1

n + 1

)
. (43)

Rewritting Equation (43), we have

n−1

∑
j=0

(j + 1)−1/2 ∥∥zn−j−1
∥∥

= ĉ1K̂2
2(ln(n + e))−2p

n−1

∑
j=0

(
j + 1
n + 1

)−1/2 ( n− j
n + 1

)−1/2 ( 1
n + 1

) [
ln(n + e)

ln(n− j− 1 + e)

]2p

≤ ĉ1K̂2
2(ln(n + e))−p

n−1

∑
j=0

(
j + 1
n + 1

)−1/2 ( n− j
n + 1

)−1/2 ( 1
n + 1

) [
ln(n + e)

ln(n− j− 1 + e)

]2p
. (44)

The next idea is similar to the proof of Lemma A.5 in Deuflhard et al. [13]. Firstly,
n− j ≥ 1 provides

ln
(

n + 1
n− j− 1 + e

)
ln(n− j− 1 + e) ≥ ln

(
n + 1

n− j− 1 + e

)
.
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For 0 ≤ j ≤ n− 1, the properties of the logarithm provide

ln(n + e)
ln(n− j− 1 + e)

=
ln(n + e)
ln(n + 1)


1 +

ln
(

n+1
n−j−1+e

)

ln(n− j− 1 + e)




≤ E
(

1 + ln
(

n + 1
n− j− 1 + e

))
(45)

with a generic constant E < 2 which does not depend on n ≥ 1.
Accordingly, Equation (44) can be estimated as follows:

n−1

∑
j=0

(j + 1)−1/2 ∥∥zn−j−1
∥∥

≤ ĉ1E2pK̂2
2(ln(n + e))−p

n−1

∑
j=0

(
j + 1
n + 1

)−1/2 ( n− j
n + 1

)−1/2 ( 1
n + 1

) [
1 + ln

(
n + 1

n− j− 1 + e

)]2p

≤ ĉ1E2pK̂2
2(ln(n + e))−p

n−1

∑
j=0

(
j + 1
n + 1

)−1/2 ( n− j
n + 1

)−1/2 ( 1
n + 1

) [
1− ln

(
n− j
n + 1

)]2p
. (46)

The last summation is bounded since, with s := 1
2(n+1) , the integral

∫ 1−s

s
x−1/2(1− x)−1/2(1− ln(1− x))2pdx

is bounded from above by a positive constant Ep independently of n. Substituting the above estimation
into Equation (41) yields

‖en‖ ≤ c1(ln(n + e))−p‖w‖+ c̃1(ln(n + e))−p‖w‖+
√

nδ

+cpK̂2
2(ln(n + e))−p

= [(c1 + c̃1)‖w‖+ cpK̂2
2](ln(n + e))−p +

√
nδ (47)

with cp = ĉ1E2pEp.
Similarly, Equation (33) can be rewritten as

‖Ken‖ ≤
∥∥∥∥∥K

n−1

∏
i=0

(1− αi)(I − K∗K)ne0

∥∥∥∥∥+
∥∥∥∥∥K

n−1

∑
j=0

αn−j−1(I − K∗K)j
j

∏
i=1

(1− αn−i)e0

∥∥∥∥∥

+

∥∥∥∥∥K
n

∑
j=1

(I − K∗K)j−1
j

∏
i=1

(1− αn−i)K∗(y− yδ)

∥∥∥∥∥

+

∥∥∥∥∥K
n−1

∑
j=0

n−1

∏
i=n−j

(1− αi)(I − K∗K)jK∗zn−j−1

∥∥∥∥∥ . (48)

By assumption ‖K‖ ≤ 1 (see, e.g., Louis [18] or Vainikko and Veterennikov [19] cited
in Hanke et al. [20]), we have

∥∥∥(I − KK∗)jKK∗
∥∥∥ ≤ (j + 1)−1

and
∥∥∥∥∥K

n−1

∑
k=0

(I − K∗K)kK∗
∥∥∥∥∥ ≤ ‖I − (I − KK∗)n‖ ≤ 1.
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Consequently,

∥∥∥∥∥K
n

∑
j=1

(I − K∗K)j−1
j

∏
i=1

(1− αn−i)K∗(y− yδ)

∥∥∥∥∥ ≤
∥∥∥I − (I − KK∗)k

∥∥∥ δ ≤ δ (49)

and ∥∥∥∥∥K
n−1

∑
j=0

n−1

∏
i=n−j

(1− αi)(I − K∗K)jK∗zn−j−1

∥∥∥∥∥ ≤
n−1

∑
j=0

(j + 1)−1 ∥∥zn−j−1
∥∥ . (50)

Using Lemma 1 for n > 1 and Proposition 1 and applying Equations (49) and (50) to Equation (48),
we get

‖Ken‖ ≤ c2(n + 1)−1/2(ln(n + e))−p‖w‖+ c̃2(n + 1)−1/2(ln(n + e))−p‖w‖

+δ +
n−1

∑
j=0

(j + 1)−1 ∥∥zn−j−1
∥∥ . (51)

We may estimate the last term of Equation (51) by using Equations (35) and (45) and the fact that
(ln(n + e))−p ≤ 1 as follows:

n−1

∑
j=0

(j + 1)−1 ∥∥zn−j−1
∥∥

≤ ĉ1

n−1

∑
j=0

(j + 1)−1 ∥∥Ken−j−1
∥∥ ∥∥en−j−1

∥∥

≤ ĉ1K̂2
2

n−1

∑
j=0

(j + 1)−1(n− j)−1/2(ln(n− j− 1 + e))−2p

= ĉ1K̂2
2(n + 1)−1/2(ln(n + e))−p

×
n−1

∑
j=0

(
j + 1
n + 1

)−1 ( n− j
n + 1

)−1/2 ( ln(n + e)
ln(n− j− 1 + e)

)2p
(ln(n + e))−p 1

n + 1

≤ ĉ1EK̂2
2(n + 1)−1/2(ln(n + e))−p

×
n−1

∑
j=0

(
j + 1
n + 1

)−1 ( n− j
n + 1

)−1/2 (
1− ln

(
n− j
n + 1

))2p 1
n + 1

. (52)

The last summation is bounded because, with s := 1
2(n+1) , the integral

∫ 1−s

s
x−1(1− x)−1/2(1− ln(1− x))2pdx ≤ Ẽp (53)

with a positive constant Ẽp independently of n. Substituting above information into (51) yields

‖Ken‖ ≤ c2(n + 1)−1/2(ln(n + e))−p‖w‖+ c̃2(n + 1)−1/2(ln(n + e))−p‖w‖
+δ + c̃pK̂2

2(n + 1)−1/2(ln(n + e))−p

≤
[
(c2 + c̃2) ‖w‖+ c̃pK̂2

2

]
(n + 1)−1/2(ln(n + e))−p + δ (54)

with c̃p = ĉ1E2pẼp.
Setting c∗ := max{c1 + c̃1, c2 + c̃2}, Equations (47) and (54) become

‖en‖ ≤
[
c∗‖w‖+ cpK̂2

2

]
(ln(n + e))−p +

√
nδ (55)
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and

‖Ken‖ ≤
[
c∗ ‖w‖+ c̃pK̂2

2

]
(n + 1)−1/2(ln(n + e))−p + δ. (56)

Because of Equations (26) and (28) we have

τδ ≤
∥∥∥yδ − F(xδ

n)
∥∥∥ ≤ δ +

1
1− η

‖Ken‖

Moreover,

(1− η)(τ − 1)δ ≤ ‖Ken‖ ≤
[
c∗ ‖w‖+ c̃pK̂2

2

]
(n + 1)−1/2(ln(n + e))−p + δ. (57)

Due to τ > 2−η
1−η , we have Θ = (1− η)(τ − 1)− 1 > 0. We can rewrite Equation (57) as follows:

δ ≤ 1
Θ

[
c∗ ‖w‖+ c̃pK̂2

2

]
(n + 1)−1/2(ln(n + e))−p. (58)

Applying Equation (58) to Equation (55), we get

‖en‖ ≤
(

1 +
1
Θ

) [
c∗‖w‖+ ĉpK̂2

2

]
(ln(n + e))−p (59)

with ĉp = max{cp, c̃p}.
In similar manner, Equation (56) can be written as

‖Ken‖ ≤
(

1 +
1
Θ

) [
c∗ ‖w‖+ c̃pK̂2

2

]
(n + 1)−1/2(ln(n + e))−p. (60)

Finally, we select ‖w‖ such that
(

1 + 1
Θ

) [
c∗ ‖w‖+ c̃pK̂2

2

]
≤ K2. This is always possible for sufficiently

small ‖w‖, [13]. Therefore, the induction is completed. Using Equation (36), we have

‖en‖ ≤ K̂2

(
ln n

ln(n + e)

)p
(ln n)−p ≤ K2(ln n)−p (61)

and similarly, by using Equation (34), we have

∥∥∥yδ − F(xδ
n)
∥∥∥ ≤ 2

1− η
K2(n + 1)−1/2

(
ln n

ln(n + e)

)p
(ln n)−p ≤ 4K2(n + 1)−1/2(ln n)−p.

Thus, the assertion is obtained.

Theorem 2. Under the assumptions of Theorem 1 and 1 ≤ p ≤ 2, we have

N1/2(ln N)p ≤ c
δ

and
∥∥∥x+ − xδ

N

∥∥∥ ≤ C(− ln δ)−p

with some constant c, C > 0.
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Proof. We recall Equation (32) and e0 = x+ − x0 = f (K∗K)w selected from a source condition in
Equation (7). Therefore,

en =

[
n−1

∏
i=0

(1− αi)(I − K∗K)n +
n−1

∑
j=0

αn−j−1(I − K∗K)j
j

∏
i=1

(1− αn−i)

]
f (K∗K)w

+
n

∑
j=1

(I − K∗K)j−1
j

∏
i=1

(1− αn−i)K∗(y− yδ)

+
n−1

∑
j=0

n−1

∏
i=n−j

(1− αi)(I − K∗K)jK∗zn−j−1.

Then,

eN = f (K∗K)wN +

[
N

∑
j=1

(I − K∗K)j−1
j

∏
i=1

(1− αN−i)K∗
]
(y− yδ) (62)

where

wN =

[
N−1

∏
i=0

(1− αi)(I − K∗K)N +
N−1

∑
j=0

αN−j−1(I − K∗K)j
j

∏
i=1

(1− αN−i)

]
w

+
N−1

∑
j=0

N−1

∏
i=N−j

(1− αi)(I − K∗K)j f̃ (K∗K)z̃N−j−1

with
∥∥z̃N−j−1

∥∥ =
∥∥zN−j−1

∥∥ , j = 0, 1, 2, . . . , N − 1

and f̃ (K∗K) :=
∫ 1

0 λ1/2(1− ln λ)pdEλ.
Applying Equation (A4) with q = −p, we have

∥∥∥(I − K∗K)j f̃ (K∗K)
∥∥∥ ≤ c3(j + 1)−1/2(ln(j + 1))p (63)

for some constant c3 > 0. Using Equation (A9) by setting N − 1 = k, we have

N−1

∑
j=0

(j + 1)−1/2(ln(j + 1))p(N − j)−1/2(ln(N − j− 1 + e))−2p

=
k−1

∑
j=0

(j + 1)−1/2(ln(j + 1))p(k + 1− j)−1/2(ln(k− j + e))−2p

+(k + 1)−1/2(ln(k + 1))p

≤ D + (N)−1/2(ln N)p. (64)
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From Equations (35), (36), (37), (63), and (64), we obtain

‖wN‖ ≤
∥∥∥∥∥

N−1

∏
i=0

(1− αi)(I − K∗K)Nw

∥∥∥∥∥+
N−1

∑
j=0

αN−j−1

j

∏
i=1

(1− αN−i)
∥∥∥(I − K∗K)jw

∥∥∥

+
N−1

∑
j=0

N−1

∏
i=N−j

(1− αi)
∥∥∥(I − K∗K)j f̃ (K∗K)

∥∥∥
∥∥z̃N−j−1

∥∥

≤ (N + 1) ‖w‖+ c2

N−1

∑
j=0

(j + 1)−1/2(ln(j + 1))p ∥∥z̃N−j−1
∥∥

≤ (N + 1) ‖w‖+ ĉ1c2

N−1

∑
j=0

(j + 1)−1/2(ln(j + 1))p ∥∥KeN−j−1
∥∥ ∥∥eN−j−1

∥∥

≤ (N + 1) ‖w‖

+c2 ĉ1K̂2
2

N−1

∑
j=0

(j + 1)−1/2(ln(j + 1))p(N − j)−1/2(ln(N − j− 1 + e))−2p

≤ (N + 1) ‖w‖+ D + (N)−1/2(ln N)p. (65)

From Equation (62) we conclude that

‖eN‖ ≤ ‖ f (K∗K)wN‖+
∥∥∥∥∥

N−1

∑
k=0

(I − K∗K)kK∗
∥∥∥∥∥ δ ≤ ‖ f (K∗K)wN‖+

√
Nδ.

From Equation (A8) in Lemma A2 and Equation (29) for some c4 > 0, we have

‖ f (K∗K)wN‖ ≤ c4(− ln δ)−p
[
(N + 1) ‖w‖+ D + (N)−1/2(ln N)p

]
.

Thus,

‖eN‖ ≤ c4(− ln δ)−p
[
(N + 1) ‖w‖+ D + (N)−1/2(ln N)p

]
+
√

Nδ. (66)

We apply Equation (58); then,

(N + 1)1/2(ln(N + e))p ≤ 1
Θδ

[
c∗ ‖w‖+ c̃pK̂2

2

]
=

c5

δ

or

(N + 1)(ln(N + e))2p ≤ c2
5

δ2

for some positive c5. By the fact that

N(ln N)2p ≤ (N + 1)(ln(N + e))2p ≤ c2
5

δ2 (67)

we have

N(ln N)2p ≤ c2
5

δ2 .

By Lemma A4, we have

N =
c2

6(− ln δ)−2p

δ2 (68)
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Applying Equation (68) to Equation (66), we get

‖eN‖ ≤ c4(− ln δ)−p
[
(N + 1) ‖w‖+ D + (N)−1/2(ln N)p

]

+c6(− ln δ)−p

= (− ln δ)−p
(

c4

[
(N + 1) ‖w‖+ D + (N)−1/2(ln N)p

]
+ c6

)
.

For 1 ≤ p ≤ 2, we know that N−1/2(ln N)p ≤ c7 for some c7 > 0; see Figure 3.

Figure 3. Graph of y = N−1/2(ln N)p for 1 ≤ p ≤ 2.

Thus, the assertion can be obtained.

4. Application to an Inverse Potential Problem

It is well known that an inverse potential problem is severely ill-posed. It is the problem of
determining the shape of an unknown domain D from measurements of the Neumann boundary
values of u on ∂ΩR where the solution u fulfills Equations (1) and (2). In this work, Assumption 2.1 for
the inverse potential problem cannot be presented. It fails even in the case of two concentric circles [2].
However, if we implement the method by representing the curve with a collocation basis, as will be
seen in Proposition 3, the Fréchet derivative is reformulated. Without the verification of Assumption 1,
we show a quite good performance of an approximated potential.

The nonlinear operator for an inverse potential problem is defined in the following form:

[F(x)] (t) =
1

4πR

∫ 2π

0
x2(s)ds +

∞

∑
i=1

1
πRi+1(i + 2)

∫ 2π

0
xi+2(s) cos(is)ds cos(it)

+
∞

∑
i=1

1
πRi+1(i + 2)

∫ 2π

0
xi+2(s) sin(is)ds sin(it) (69)

where F : L2[0, 2π]→ L2[0, 2π]. Moreover, the Fréchet derivative of the operator F is

[
F′(x)h

]
(t) =

1
2πR

∫ 2π

0
x(s)h(s)ds

+
∞

∑
i=1

1
πRi+1

(∫ 2π

0
xi+1(s)h(s) cos(is)ds cos(it)

+
∫ 2π

0
xi+1(s)h(s) sin(is)ds sin(it)

)
, (70)
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See Reference [1] for more details. In the presented work, we use R = 1 and x0 = δx+(s).
Since X = L2[0, 2π] and Y = L2[0, 2π], we discretized [0, 2π] into m intervals with the grid points
0 = t0, t1, . . . , tm = 2π and 0 = s0, s1, . . . , sm = 2π. Note that Xm = span

{
ϕ
(m)
j

}
and

Ym = span
{

ψ
(m)
j

}
, where the sets

{
ϕ
(m)
1 . . . ϕ

(m)
m

}
and

{
ψ
(m)
1 . . . ψ

(m)
m

}
are orthogonal bases.

The orthogonal bases are defined with respect to the step length h(m) := 2π/m, m ∈ N by the
piecewise continuous function with ϕ

(m)
j (s) = 1 for s ∈ [sj−1, sj] , ψ

(m)
j (t) = 1 for t ∈ [tj−1, tj], and

with ϕ
(m)
j (s) = 0, ψ

(m)
j (t) = 0 otherwise. The result in the next proposition provides the formula for

the calculation of xδ
n+1.

Proposition 3. Let xδ
n(s) = ∑m

j=1 u(m)
j ϕ

(m)
j (s), xδ

n+1(s) = ∑m
j=1 v(m)

j ϕ
(m)
j (s), x0 = ∑m

j=1 z(m)
j ϕ

(m)
j (s) The

coefficient vector V(m) is given by

v(m)
r = (1− αn)u

(m)
r +

1
h(m)

qr + αnz(m)
r (71)

for r = 1, . . . , m, where

qr = h(m)
m

∑
k=1

[
yδ

k(tk)− C−
∞

∑
i=1

(Dki + Eki)

] [
h(m)

4π
(xδ

n(sr−1) + xδ
n(sr))

+
∞

∑
i=1

(
h(m)

2π
Air cos(itk) +

h(m)

2π
Bir sin(itk)

)]
,

Air = (xδ
n(sr−1))

i+1 cos(sr−1) + (xδ
n(sr))

i+1 cos(isr),

Bir = (xδ
n(sr−1))

i+1 sin(sr−1) + (xδ
n(sr))

i+1 sin(isr),

C =
h

4π

m

∑
l=1

(
u(m)

l

)2
,

Dki =
h(m)

π(i + 2)

m

∑
l=1

(
u(m)

l

)i+2
cos(isl) cos(itk)

Eki =
h(m)

π(i + 2)

m

∑
l=1

(
u(m)

l

)i+2
sin(isl) sin(itk).

and

z(m)
r =

h
2
(x0(sr−1) + x0(sr)) .

Proof. The idea of the proof is analogous to Proposition 5 in Reference [21].

The numerical examples for recovering the potential x+ are demonstrated in Figures 4–6.
We obtain data yδ by solving the direct problem for the test curves. The program was written in
MATLAB2018a. The results are demonstrated in Figures 4 and 5 for the first test curve x+ = 5+sin(3s)

6
and in Figure 6 for the second test curve x+ = 1− sin(s). For both examples, the number of basis
functions is 65 and the number of equidistant grid points is 200. In Figure 4, αn = 1

2 (100 + n)−0.9,
δ = 0.01, and τ = 120 provide the error 0.4197 with the residual norm 1.0792 after 8 iterations for
imax = 3 and the error 0.3911 with the residual norm 1.1171 after 8 iterations for imax = 6. In Figure 5,
αn = 1

2 (100 + n)−0.9, δ = 0.001, and τ = 1100 provide the error 0.6282 with the residual error 1.0607
after 8 iterations for imax = 3 and the error 0.5869 with the residual norm 1.0993 after 8 iterations for
imax = 6. For the second example, αn = 1

2 (1000 + n)−0.9, δ = 0.01, and τ = 3000 provide the error 0.5720
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with the residual norm 28.2597 after 13 iterations and αn = 1
2 (1000 + n)−0.9, δ = 0.001, and τ = 1700

provide the error 0.5925 with the residual norm 15.4140 after 14 iterations. Figures 4, 5b,d, and 6b show
that the curve of ln

∥∥x+ − xδ
n
∥∥ lies below a straight line with slope −p as suggested by Equation (29).

(a) (b)

(c) (d)

Figure 4. The polar plot shows the exact solution (dot line) and the computed solution (solid line)
for (a) imax = 3 and (c) imax = 6 with δ = 0.01. In (a) the thin curve is an initial value. In (c) the thin
curves are the curve of xδ

n for n = 1, . . . , 8. The error ‖x+ − xδ
n‖ versus the logarithm of the number of

iteration step using a double logarithm scale for (b) imax = 3 and (d) imax = 6 are shown. The initial
value is x0= 0.1 + 1

5 sin(3s) . The parameter αn in Equation (71) is 1
2 (100 + n)−0.9.
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(a) (b)

(c) (d)

Figure 5. The polar plot shows the exact solution (dot line) and the computed solution (solid line) for
(a) imax = 3 and (c) imax = 6 with δ = 0.001. The error ‖x+ − xδ

n‖ versus the logarithm of the number
of iteration step using a double logarithm scale for (b) imax = 3 and (d) imax = 6 are shown. The initial
value is x0= 0.1 + 1

5 sin(3s) . The parameter αn in Equation (71) is 1
2 (100 + n)−0.9.

(a) (b)

Figure 6. Cont.



Mathematics 2020, 8, 608 20 of 22

(c) (d)

Figure 6. (a) The polar plot shows the exact solution (dot line) and the computed solution (solid line)
for example 2 with (a,b) δ = 0.01 and (c,d) 0.001. In (a), the thin curve is an initial value. The error
‖x+ − xδ

n‖ versus the logarithm of the number of iteration step using a double logarithm scale is
shown in (b) and (d). The initial value is x0= 1.6− sin(s) . The parameter αn in Equation (71) is
1
2 (1000 + n)−0.9.

5. Conclusions

In this article, we show that the rate O((− ln δ)−p) of the modified Landweber method in
Equation (6) under the logarithmic source condition in Equation (7) with 1 ≤ p ≤ 2 is obtained.
The regularization parameter was chosen according to the discrepancy principle. The linearity
properties in Equations (17) and (18) of the nonlinear operator are needed although the verification
for the inverse potential problem is not possible [2]. The test examples are used to illustrate the
results in Theorem 1. For the modified Landweber regularization, the initial guess x0 is an important
information. With a good choice of initial guess, the shapes of the unknown domains D are quite good
reconstructions. The curves in Figures 4, 5b,d, and 6b confirm the result in Theorem 1, where the curve
of ln

∥∥x+ − xδ
n
∥∥ lies below a straight line with slope −p.
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Appendix A

Lemma A1. Similar to Deuflhard et al. [13]. Let p > 0 and k ∈ N0. The real-valued function

f̂ (λ) = (1− λ)k(ln
e
λ
)−p (A1)

defined on [0, 1] satisfies
f̂ (λ) ≤ C(ln(k + e))−p (A2)

with C independent of k.
Moreover, for each q ∈ R, the real-valued function

ĝ(λ) = (1− λ)kλ1/2
(

ln
e
λ

)−q
(A3)
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defined on [0, 1] satisfies

ĝ(λ) ≤ C(k + 1)−1/2(ln(k + e))−q ≤ C(k + 1)−1/2(ln(k + 1))−q (A4)

with C independent of k.

Proof. Following the proof of Deuflhard et al. [13] for 1 ≤ b, we have

f̂ (k−b) =

(
1− 1

kb

)k (
1− b ln

1
k

)−p
≤ (ln(k + e))−p (A5)

for k ≥ k0. Therefore, for any λ ∈ [0, 1] (independent of k), we have f̂ (λ) ≤ C(ln(k + e))−p. Similarly,
for a > 1, we have

ĝ2(λ) ≤
(

1− 1
ka

)2k
k−1 (1 + a ln k)−2q ≤ (k + 1)−1(ln(k + e))−2q. (A6)

Therefore, it follows that ĝ(λ) ≤ C(k + 1)−1/2(ln(k + e))−q

Lemma A2 ([13]). Let p ≥ 1, C > 0 and δ > 0 be sufficiently small such that 1 ≥ (− ln(δC))−2p ≥ δ. Let

∫ 1

0
exp(−((1− ln(λ))−2p)−1/(2p))(1− ln(λ))−2p ‖dEλw‖2 = Cδ2. (A7)

Then, ∫ 1

0
(1− ln(λ))−2p ‖dEλw‖2 ≤ C(− ln δ)−2p (A8)

with a generic constant C.

Lemma A3 ([13]). Let p ≥ 1, k ∈ N, k ≥ 2. Then, there exists a constant D, which is independent of k,
such that

k−1

∑
j=0

(
j + 1
k + 1

)−1/2 ( k− j
k + 1

)−1/2 1
k + 1

(
ln(k + 2)

ln(k− j + 1)

2p
)
≤ D

(ln(k + 2))−p
k−1

∑
j=0

(
j + 1
k + 1

)−1 ( k− j
k + 1

)−1/2 1
k + 1

(
ln(k + 2)

ln(k− j + 1)

)2p
≤ D.

Moreover, there exists a constant D (independent of k) such that

k−1

∑
j=0

(j + 1)−1/2(ln(j + 1))p(k− j + 1)−1/2(ln(k− j + 1))−2p ≤ D. (A9)

Lemma A4 ([13]). Let k̂ be a solution of

k(ln k)2p =
C
δ2 . (A10)

Then, k̂ satisfies

k̂ = O
(
(− ln δ)−2p

δ2

)
. (A11)
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