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Zusammenfassung

Firmen entwickeln Prozessmodelle um ihre Geschäftstätigkeit explizit zu beschreiben.
Geschäftsprozesse müssen verschiedene Arten von Compliance-Anforderungen einhalten.
Solche Compliance-Anforderungen entstammen einer Vielzahl von Quellen, z.B. Verord-
nung wie dem Sarbanes Oxley Act von 2002, interne Richtlinien und Best Practices. Die
Nichteinhaltung von Compliance-Anforderungen kann zu gesetztlichen Strafen oder dem
Verlust von Wettbewerbsvorteilen und somit dem Verlust von Marktanteilen führen.

Im Gegensatz zu dem klassischen, domänen-unabhängigen Begriff der Korrektheit
von Geschäftsprozessen, sind Compliance-Anforderungen domain-spezifisch und än-
dern sich im Laufe der Zeit. Neue Anforderungen resultieren aus neuen Gesetzen und
der Einführung neuer Unternehmensrichtlinien. Aufgrund der Vielzahl der Quellen für
Compliance-Anforderungen, können sie unterschiedliche Ziele verfolgen und somit wider-
sprüchliche Aussagen treffen. Schliesslich betreffen Compliance-Anforderungen ver-
schiedene Aspekte von Geschäftsprozessen, wie Kontrollfluss- und Datenabhängigkeiten.
Auf Grund dessen können Compliance-Prüfungen nicht direkt Hard-coded werden.
Vielmehr ist ein Prozess der wiederholten Modellierung von Compliance-Regeln und
ihrer anschliessenden automatischen Prüfung gegen die Geschäftsprozesse nötig.

Diese Dissertation stellt einen formalen Ansatz zur Überprüfung der Einhaltung
von Compliance-Regeln während der Spezifikation von Geschäftsprozessen vor. Mit
visuellen Mustern ist es möglich, Compliance-Regeln hinsichtlich Kontrollfluss- und
Datenabhängigkeiten sowie bedingte Regeln zu spezifizieren. Jedes Muster wird in eine
Formel der temporalen Logik abgebildet. Die Dissertation behandelt das Problem der
Konsistenzprüfung zwischen verschiedenen Compliance-Anforderungen, wie sie sich
aus unterschiedlichen Quellen ergeben können. Ebenfalls zeigt diese Dissertation, wie
Compliance-Regeln gegen die Geschäftsprozesse automatisch mittels Model Checking
geprüft werden. Es wird aufgezeigt, dass zusätzliche Domänen-Kenntnisse notwendig
sind, um richtige Entscheidungen zu treffen.

Der vorgestelle Ansatz ermöglicht nützliches Feedback für Modellierer im Fall eines
Compliance-Verstosses. Das Feedback wird in Form von Teilen des Prozessmodells
gegeben, deren Ausführung die Verletzung verursacht. In einigen Fällen ist der vorgestelle
Ansatz in der Lage, den Compliance-Verstoss automatisch zu beheben.
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Abstract

Companies develop process models to explicitly describe their business op-
erations. In the same time, business operations, business processes, must adhere
to various types of compliance requirements. Regulations, e.g., Sarbanes Oxley
Act of 2002, internal policies, best practices are just a few sources of compliance
requirements. In some cases, non-adherence to compliance requirements makes
the organization subject to legal punishment. In other cases, non-adherence to
compliance leads to loss of competitive advantage and thus loss of market share.

Unlike the classical domain-independent behavioral correctness of business
processes, compliance requirements are domain-specific. Moreover, compliance
requirements change over time. New requirements might appear due to change in
laws and adoption of new policies. Compliance requirements are offered or enforced
by different entities that have different objectives behind these requirements. Finally,
compliance requirements might affect different aspects of business processes, e.g.,
control flow and data flow. As a result, it is infeasible to hard-code compliance
checks in tools. Rather, a repeatable process of modeling compliance rules and
checking them against business processes automatically is needed.

This thesis provides a formal approach to support process design-time com-
pliance checking. Using visual patterns, it is possible to model compliance re-
quirements concerning control flow, data flow and conditional flow rules. Each
pattern is mapped into a temporal logic formula. The thesis addresses the problem
of consistency checking among various compliance requirements, as they might
stem from divergent sources. Also, the thesis contributes to automatically check
compliance requirements against process models using model checking. We show
that extra domain knowledge, other than expressed in compliance rules, is needed
to reach correct decisions.

In case of violations, we are able to provide a useful feedback to the user. The
feedback is in the form of parts of the process model whose execution causes the
violation. In some cases, our approach is capable of providing automated remedy of
the violation.
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Chapter 1

Introduction

With the start of the new millennium, a number of financial scandals in many places of
the world, ending with the financial crisis from the year 2008, have drawn attention to
the severe impact of lack of control over business. Fraudulent business transactions, lack
of trusted reporting mechanism of companies and uncontrolled money transfer are just
a few examples for what lack of control can lead to. As a reaction, several regulations,
e.g., SOX [99], and financial guidelines, e.g., BASELII [101], were established to force
organizations to have internal controls over their business and be able to show that to
authorities. The objective behind these regulations and guide lines is of course to avoid
such scandals and to safeguard the economic system.

For instance, the Sarbanes-Oxley Act of 2002 [99] is a United States federal law. It
was enacted in 2002 as a reaction to a number of major corporate and accounting scandals
including those affecting Enron, Tyco International, Adelphia, Peregrine Systems and
WorldCom. These scandals, which cost investors billions of dollars when the share
prices of affected companies collapsed, shook public confidence in the nation’s securities
markets. The Act consists of several titles and sections which regulate the structure of
financial disclosures. Section 302 of the Act obliges companies to establish and maintain
internal controls, to evaluate the effectiveness of internal controls and to report on their
conclusions about the effectiveness of their internal controls.

Compliance checking and enforcement is the act of establishing internal controls with
which adherence to regulations is guaranteed. Compliance management is the ongoing
process of identifying relevant regulations to the organization; assessing the risk of not
obeying the identified compliance requirements; establishing effective internal controls to
prevent/avoid/detect violations to compliance; maintain the effectiveness of these controls.
A compliance officer is a new role created within the organization structure to be in charge
of managing and following up the compliance status assessment of the organization.

Compliance requirements might not just stem from regulations. Rather, an organiza-
tion might want to establish controls for its own internal policies and to benefit from best
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4 CHAPTER 1. INTRODUCTION

practices in the business domain. Moreover, compliance is a domain-specific problem
where requirements vary from one domain to another. For instance, Sarbanes-Oxley
act [99] is concerned with regulating companies, Anti Money Laundering [25] guidelines
are relevant to financial institutions. This calls for a repeatable compliance checking and
enforcement processes within the organization.

Internal controls are meant to limit the way organizations are allowed to act. The
restrictions can affect different aspects. For instance, in financial institutions like banks, a
control objective could be to report large amount deposits coming from foreign banks.
This control objective could be established to mitigate the risk of financing criminal
acts, e.g. terroristic attacks. Other compliance requirements could restrict the usage of
clients personal data within an organization. Table 1.1 lists a few examples of compliance
requirements.

Domain Risk Internal Control
Banking False identity Identity of new customers have

to be checked before opening a
new bank account

Banking Untrusted customers If the customer’s certificate is
false, a bank account must never
be opened

Procurement Fraudulent purchases A purchase request is approved
by a person other than the re-
quester

Clinic Unwanted side effects For patients older than 60 years
an additional tolerance test is re-
quired before surgery

Table 1.1: Sample compliance requirements

Achieving compliance requires massive effort and costs a lot of money [57]. Currently,
compliance is achieved by hiring expensive auditors who typically use a heuristic approach
to select and investigate audit trails to show evidence about compliance. An audit trail
could be any evidence on a business activity, e.g., bills, bank statement, or logs of
information systems. In addition to the impact on the organization’s budget, compliance
checking with this approach incurs a large overhead in terms of time consumed to check
for compliance. Moreover, the check is always of a detective nature. That is, an auditor
can detect violations. In this case, organizations might be subject to penalties due to
non-compliance or due to being late to declare compliance.

The external auditing is necessary as a proof of organization compliance for authorities
and regulatory bodies. However, external auditing does not help the organization have a
self-assessment and continuously repeatable evaluation of its compliance status. Thus, it
is necessary for the organization to introduce approaches that help assess the compliance
status internally.
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Process models are developed as a means to document the operational activities
of an organization. With the maturity of workflow systems, process models are the
first steps to automate the day-to-day business operations. With the guide of these
models, organizations can realize how business objectives are achieved, align their IT
infrastructure, estimate resources, people, time and material, required to accomplish
processes. Thus, a considerable amount of research has been devoted to check several
correctness criteria of process models.

With the explicit view business process models provide over business activities,
business process models are good candidates to check the effectiveness of established
internal controls [65]. This means, business processes are confronted with new correctness
criteria, imposed by compliance requirements. Unlike classical correctness criteria, e.g.,
the different notions of soundness [3, 30, 111, 87] and correct data flow[120, 134],
compliance requirements are considered as semantic constraints over the way processes
behave. Compliance requirements vary from one domain to the other. Also, these
requirements can change due to new laws, policies or other types of constraints. As a
response to the nature of change, new approaches and tools have to be developed where
compliance rules, are no longer hard coded. Moreover, compliance management is seen as
a lifetime process. That is, at different phases of a business process life cycle, compliance
follow up takes different forms. This increases the complexity of the compliance process
and in the mean time makes the need for automation stronger.

In addition to business experts and practitioners, we assume the role of a compliance
officer. A compliance officer is responsible for reviewing laws and legislative documents,
may be with the help of lawyers, to extract compliance requirements. The compliance
officer establishes internal controls that translate compliance requirements into the orga-
nization’s terms; discuss these controls with other people like stakeholders and business
experts to agree upon internal controls’ relevance and importance.

1.1 Problem Statement

This thesis introduces a compliance management framework and an approach to automate
the checking of compliance requirements against process models. We provide users,
compliance officers, with means to express internal controls (compliance rules) and check
them against business process models.

On the one hand, the automation of compliance checking calls for formal approaches
where compliance requirements and process models are represented in a mathematical
form. On the other hand, compliance officers need to represent these internal controls
in a way comprehensible by stakeholders and business experts who not necessarily have
a sufficient mathematical background to understand mathematical formulas. Thus, one
question to be addressed by this thesis is how to find a balance between formalization
and readability of compliance requirements?

Usually, organizations maintain their business process models in repositories. A
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compliance officer not necessarily knows before-hand which process models are subject
to check against which compliance rules. Another question to be addressed is how to
help the compliance officer correlate internal controls to business processes.

Building on the fact that a compliance officer lacks a priori knowledge about investi-
gated processes, upon finding violations to compliance requirements, we are concerned
with the question of how to provide the user with helpful feedback about the violation?
Violation explanation is required for many reasons. First, localizing the problematic part
of a process helps focus the discussion between compliance officers and business experts.
Second, in large business processes, it is tedious and time consuming to manually track
problematic parts of the process. Third, this helps develop semi automated approaches to
resolve the violation. Resolving violations is also a question of interest to the thesis. That
is, how is it possible to provide automated resolutions of violations? What knowledge
needs to be explicitly collected in order to achieve automated resolution of violations?

Compliance requirements might affect more than one business process. In the mean
time, a business process might be subject to checking against several compliance require-
ments. This calls for the separate maintenance of compliance requirements as independent
artifacts from process models. This thesis raises the need to maintain compliance reposi-
tories as well as the need to maintain business process model repositories.

As compliance requirements might stem from different sources and, yet, are subject
to check against a common set of business processes, it is likely to have inconsistencies
among these compliance requirements. Inconsistency can be in the form of redundancy
or conflicts. This calls for not only correlating compliance requirements and business
processes, but also correlating compliance requirements with other compliance require-
ments. This thesis addresses the problem of deciding about inconsistency among related
compliance requirements as prerequisite to check compliance against business processes.

1.2 Scope of the Thesis

This section sets the scope of the contributions in this thesis. We discuss this scope
from two points of view. The first viewpoint is concerned with the phases to establish
compliance requirements. The second viewpoint is concerned with the lifecycle of the
business processes.

The different phases for compliance requirements establishment span the whole
spectrum between the discovery of relevant regulations, standards, etc., to the point of
assessment of compliance to compliance requirements.

Figure 1.1 depicts the phases of compliance requirements establishment [119]. The
first phase is to discover relevant regulations,e.g. SOX [99], standards, e.g., ISO family,
contracts, or any other source of information that might require ensuring controls over
the business. Usually these requirements are stated informally in natural language. Thus,
an effort has to be done to extract a specific set of compliance requirements to formalize
it. Priorities of compliance requirements vary. Thus, risk assessment has to be conducted
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Figure 1.1: Phases of compliance requirements establishment

in order to evaluate the threat of not obeying these requirements. Thereafter, internal
controls are designed in order to realize compliance requirements. As internal controls
stem from different requirements, it is crucial to assess the consistency among these
requirements. At this point, the organization has to assess its compliance status with these
internal controls. The whole sequence of phases is repeated each time the organization is
obliged to adhere to new compliance requirements. Nevertheless, subsequences of these
phases could be executed as well. For instance, due to entering a new market, risk has to
be reassessed and this causes redesign of compliance rules and so forth.

Steps 1-3 are human-centric activities by nature[119]. Human experts, e.g., compli-
ance officers, have to identify what is relevant to the organization from the set of laws
and regulations. They have to assess the risk of not obeying these requirements and have
to develop internal controls that detect and/or prevent violations to such requirements.
These steps are out of scope of the thesis. Nevertheless, we discuss how our approach
helps users track and link compliance rules to their sources.

The objective of this thesis is to give automated support for the steps 4-6. Modeling
internal controls (compliance rules), checking their consistency and verifying them against
process models constitute the scope of the thesis. The assessment of compliance rule,
step 6, can be applied to different artifacts within the organization. Business processes,
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IT-systems or audit trails can all be subject to compliance assessment. This is the step
where compliance requirements can be linked to business processes.

The business process lifecycle is the other scope on the work in this thesis. Figure 1.2
shows the different stages of business process lifecycle. Within the design and analysis
phase, new process model are identified and created or existing ones are adapted to cope
with the new situation. Afterwards, the process model is configured and deployed. Then,
a process is enacted on a specific execution platform. The execution might be monitored.
Afterwards, executed processes are evaluated against several metrics, e.g., performance.

Design and Analysis

ConfigurationEnactment

Evaluation

Figure 1.2: Business process lifecycle

In this regard, the thesis scope is limited to the design and analysis phase of the
business process lifecycle. The support for checking compliance at design time would
give a bottom line guarantee of compliance, if the organization is committed to do
business in the way stated in process models. Moreover, we are addressing compliance
requirements related to control and data flow aspects of business processes, e.g., activity
execution ordering [159]. We believe that there has been work addressing other aspects
of compliance as will be pointed out in Chapter 3.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 discusses compliance aspects that
can be addressed on the business process model level. Moreover, it sets the requirements
framework that guided the contributions of the thesis. Finally, it gives an overview of the
approach contributed in this thesis.

Related work is discussed in Chapter 3 where other approaches to compliance man-
agement of business processes are evaluated against the requirements we established.

Chapter 4 describes the foundations of the work done in the thesis. It describes
concepts and techniques existing in literature and techniques developed by the author of
the thesis.

Chapters 5-7 describe the contribution of the thesis. The contents of these chapters will
be briefly described in Section 2.3 after the description of our requirements framework,
so that the contribution is clear to the reader.
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A prototype was implemented as a proof of the contributions of this thesis. Chapter 8
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Michael zur Muehlen, editors, The Impact of Governance Risk and Compliance on
Information Systems (GRCIS), volume 459, pages 18-32. CEUR-WS.org, 2009.
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Business Process Models. In Enterprise Distributed Object Computing Conference
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• Ahmed Awad, Gero Decker, and Mathias Weske. Efficient Compliance Checking
Using BPMN-Q and Temporal Logic. In Marlon Dumas, Manfred Reichert, and
Ming-Chien Shan, editors, Business Process Management (BPM), volume 5240 of
Lecture Notes in Computer Science, pages 326-341. Springer, 2008.

• Ahmed Awad. BPMN-Q: A Language to Query Business Processes. In Manfred
Reichert, Stefan Strecker, and Klaus Turowski, editors, Enterprise Modeling and
Information Systems Architecture (EMISA), volume P-119 of LNI, pages 115-128.
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Chapter 2

Requirements for Compliance
Management

The need to ensure compliance is an ongoing effort where several roles within the
organization are involved. Its ongoing nature calls for automated approaches that allow
effective assessment of the compliance status of the organization. The involvement
of people with different backgrounds requires that internal controls are represented in
different forms in order to allow people to negotiate about them.

Since compliance management is an enterprise wide problem, it is hard to cover all
its aspects in a single study. Thus, as was stated earlier, we limit ourselves to compliance
management on the level of business processes. Moreover, we are concerned with
design-time checking of compliance aspects, especially control and data flow aspects.

In Section 2.1 we discuss the different aspects of compliance management on business
processes. The section gives an overview on the different aspects, not necessarily checked
only at design time. Requirements for a design time compliance management for business
processes are discussed in Section 2.2.

Based on the requirements discussed in Section 2.2, an overview of the contribution
of the thesis is given in Section 2.3. We provide the compliance management framework.
Also, we justify our choices of tools and techniques to realize the different components
of the framework.

2.1 Categories of Compliance Requirements

Compliance requirements affect the aspects that can be modeled in a business process,
control flow, data flow, resources, and timing [121, 159].

11



12 CHAPTER 2. REQUIREMENTS FOR COMPLIANCE MANAGEMENT

2.1.1 Control Flow

Compliance rules might require that certain activities must be executed in the course of
a business process. For instance, an anti money laundering requires "reporting a large
deposit transaction by a bank" [25]. In some other rules, dependency between activities
must exist. For instance, in an "open account" process, "customer identity checking step
must precede the step of opening an account". We believe that this type of compliance
rules must be checked and enforced at process design time. With a process model correctly
designed to satisfy these compliance requirements and assuming a faithful execution of
these processes, it is not possible to violate compliance at run time, unless for exceptional
situations.

2.1.2 Data Flow

One aspect of compliance is to ensure that business objects are manipulated by process
models as expected. Also, data and control flow aspects can be mixed to define so-called
conditional flow rules. An example of conditional rule is "If the customer identity check
fails; the customer must be added to a black list". We call this type of compliance
rules "conditional" because the dependency between activities depends on conditions.
Conditional flow rules are, of course, more expressive than plain control flow rules. That
is, conditional rules are able to catch finer compliance rules. However, the level of details
about data in process models and compliance rules might vary. Thus, it is necessary to
guarantee a uniform level of data abstraction at checking time between business processes
and compliance rules. This type of rules is also addressed by our framework as they
can be efficiently checked at design time and compliance at process run time can be
guaranteed if the execution respects the process model.

2.1.3 Human Resources

Security policies regarding "who will execute what" are seen as compliance requirements.
Mainly, the separation of duty principle is of major importance to prevent fraud. That is,
the initiator of a request cannot be the same person to approve that request. We believe
that sufficient work has been done to verify such human resource constraints at process
design time [153, 152]. However, we argue that correctly modeling these compliance
requirements is not enough. This is due to the human factor in this situation where run
time monitoring is needed to ensure compliance.

2.1.4 Timing

Service level agreement constraints fall under the fourth category. Also, it might be
required that certain activities must be completed within k units of time. Moreover, some
compliance requirements might stress that customer records must be kept for at least m
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years. Typically, these rules are monitored at run time. Thus, they are out of scope of our
work.

Collectively, we can notice two differences between compliance rules under the
control and data flow categories on one hand and the resource and time categories on
the other hand. Resource and time constraints are of local nature. That is, checking and
enforcement is achieved at process design time by explicitly modeling the compliance
control. For instance, explicitly modeling a separation of duty between two tasks or
explicitly adding a timing constraint on a specific activity. On the other hand, control
and data rules most of the time, as will be shown later, are concerned with dependencies
which requires the study of the process behavior in order to determine compliance. Thus,
in these situations, automated checking is needed to guarantee compliance.

2.2 Requirements

In this section we discuss the set of requirements that guided the contributions of the
thesis. To come up with these requirements, we checked several compliance requirements
documents, e.g., the guideline for Anti Money Laundering [25]. Also, we integrated
requirements from other proposals for compliance management frameworks [81, 68].
The requirements take into consideration the two worlds of compliance rules and business
processes that have to be linked together. Also, it is oriented to providing the highest
degree of automation for compliance support. The requirements aim at an intelligent
systems that extends compliance support beyond a yes/no answer about compliance status
of business processes to the support of explaining violations and trying to automatically
resolve them.

2.2.1 Req. 1: Formal Specification of Compliance Rules

In order to allow automated reasoning about the compliance status of business processes
formal approaches have to be adopted. Checking approaches should be selected/developed
in the way that provides the highest degree of automation. Moreover, analysis algorithms
must be efficient. Also, the chosen formalism must be capable of supporting the level
of abstraction needed by compliance rules. Usually, compliance rules address a specific
situation, e.g., dependency between activities, and abstract from other details. On the
contrary, process models are detailed, as they need to be operational, and are more generic
than compliance rules. For instance, a compliance rule might be concerned with the
situation of handling fraudulent insurance claims, while an insurance claim handling
process has to deal also with sound claims.

The checking approach must be transparent to the user. That is, the mapping of
business process models and compliance requirements into a specific formalism must be
achieved automatically. This allows a wider set of users to participate in the compliance
rules modeling and checking.
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2.2.2 Req. 2: Compliance Rules are First Class Citizens

Compliance rules must be explicitly maintained in separate constraints repositories.
Although rules are to be checked against processes, they must not be implicitly attached
to and hidden within process definitions. The separate maintenance of rules is needed for
several reasons.

Firstly, a compliance rule is subject to checking against several process models. So,
if compliance rules are replicated as attachments to each related process model, there is a
chance for inconsistency if compliance rules are updated only in a subset of the related
process models. Thus, compliance rules must be maintained separately and be linked
to process models. Another necessity for separately maintaining compliance rules is
the need to attach arbitrary metadata to them. For instance, metadata about the source
legislation, the date from which it is effective, comments from compliance officers and
other stakeholders can be attached to compliance rules. Moreover, Compliance rules
might not be active all the time. For instance, compliance rules might be deactivated.
An example would be disabling some internal policies to provide flexibility. All these
situations call for keeping compliance rules separated from process definitions.

Separately storing compliance rules also allows support for sophisticated maintenance
approaches like versioning that allows to trace the progress of compliance rules and also
allows to foresee any future enhancement. Moreover, it is possible to group related rules
to allow further analysis on them, e.g., consistency checking as will be discussed in Req.

3. Also, it is possible to come with complex rules out of simple rules in a dynamic way.
For instance if we have three basic compliance rules r1,r2 and r3, we can come up with
a complex rules cr1 = (r1∧ r2)∨ r3. In this case, any changes to the basic rules will be
propagated to cr1 automatically, thus, avoiding problems of outdated rule definitions.

2.2.3 Req. 3: Consistency Checking of Compliance Rules

With the possible divergent sources of compliance requirements, it is likely to have
inconsistencies among a set of compliance rules. Also, the human interpretation of juridic
documents might increase the chance of inconsistencies. Thus, it is necessary to establish
mechanisms to decide about inconsistencies among compliance rules. Inconsistency can
be attributed to conflict, redundancy or both. Conflicts among a set of rules indicates that
it is not possible at all to come up with a process model that realizes all of them. On the
other hand, redundancy is about having two or more rules describing the same situation.

Without the ability to decide about consistency of a set of related rules, a precious
time and effort could be spent trying to check/enforce conflicting or redundant com-
pliance requirements. It might take several cycles of updating process models before
figuring out that the compliance requirements are conflicting, especially when checks of
conflicting rules are done by different people. This necessitates resolving the conflict
among compliance rules before proceeding to checking them on process models.

Also, it is necessary to establish resolution approaches for conflicts among compliance
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rules. However, not in every case the resolution is automated. One possibility of resolution
is to identify priorities between conflicting rules.

2.2.4 Req. 4: Correlating Processes to Compliance Rules

(Semi) automatic identification of process models subject to checking in a repository
of business process models is a must. Within large business process repositories, it is
tedious and error prone to manually scan process models to decide about their relevance to
certain compliance rules. Providing tools and techniques that help systematically access
a process repository and query for processes based on a specific criteria is considered as a
valuable aid in the process of compliance management to establish correlation between
processes and rules.

This correlation allows the automated checking of rules against processes. Yet, in
a loosely coupled fashion. That is, whenever a rule is changed the compliance officer
is informed about process models needed to be checked. Also, it is guaranteed that all
processes subject to investigation are checked against the same version of the compliance
rule. Similarly, a change of the process model determines which rules need to be
(re)checked.

2.2.5 Req. 5: Providing Information About Compliance

Req. 1 stated that compliance rules must be expressed in a formal language to automati-
cally check whether they are satisfied by a business process. In the current requirement,
we are concerned with a more advanced situation. That is, if a process model p is compli-
ant with a rule r, the compliance approach must be able to decide about the nature of the
compliance.

Usually, compliance rules are on the form s → q. Where s is the condition of the rule
and q is the consequent. When a rule r is correlated to a process model p, it is required
that p will behave in a way that makes s true and thus q must also be true, in order to be
compliant. However, if the process p never exhibits s then p is also compliant. In this
case p vacuously satisfies r. Thus, it is important that the compliance checking approach
to inform the user, e.g. compliance officer, if a rule r is vacuously satisfied by a process p
as this might help identify logical deficiencies in the design of p. The resolution of these
deficiencies is out of scope.

2.2.6 Req. 6: Providing Useful Feedback in Case of Violation

The localization of problematic parts of the process models helps business experts focus
their discussion and take corrective actions. Thus, the binary decision about the compli-
ance status of a business process to a compliance rule is not helpful enough. Whenever a
process model fails the compliance checking with a rule, an explanation of the possible
violation(s) must be reported to the user. The reported violation must be in a form that is
readable to the user who is not necessarily a technical expert. Thus, the explanation must
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be in business terms rather than in technical terms. This complements Req. 1in the sense
that underlying formal checking must be transparent to the user.

The violation explanation approach must be exhaustive. That is, every possible
violation of a compliance rule must be detected. If only a subset of violations is found,
this will necessitate the call for a second round of verification after fixing the so-far-found
error. But, if all violations are guaranteed to be found, they can be fixed in a single round.
This exhaustive violation explanation saves the time and effort of business experts and
compliance officers.

The violation explanation procedure should be automatically invoked at the time the
verification procedure determines non-compliance. The final result to the user should be
either that the process is compliant, or it is not compliant along with the explanation.

2.2.7 Req. 7: Resolution of Violations (Optional)

It is preferable to suggest remedies to compliance violations when possible. These
remedies are in the form of process model reforming to be compliant. While resolving
violations can be seen as a pure human expert’s task, it might be possible to partially
automate violation resolution.

In the situation where trivial updates to the process need to be taken to enforce
compliance, automation can relief the expert and let him focus on the more complex
situations. On the other hand, when automated resolution is not possible, the user
is informed about what is missing in order to resolve violations. The identification
of missing information can be seen as an aid to estimate the effort needed to restore
compliance. This is especially true in situations where the business objective behind a
business process contradicts the compliance rule. For instance, providing flexibility of
receiving money after sending goods against the firm requirement of not sending out
goods before receiving the payment.

Automating violation resolution depends on the domain knowledge. Thus, expert
system approaches could be used to extract business expert knowledge and encode them
in a way that allows their reuse. While extracting the knowledge is out of scope, the
encoding of this knowledge should be in a formal and technology independent way. The
formality allows automated reasoning; the technology independent representation allows
the reuse of this knowledge in different situations and for different purposes.

Suggested remedies must respect correctness and operation-ability of business pro-
cesses. This stems from the different natures of rules and processes as discussed earlier.
Rules are focused on a specific situation, while processes contain sufficient details to be
operational. The resolution approach must fill this gap. That is, violation resolution must
suggest remedies in details sufficient for keeping the process operational. In the mean
time, the merge of these remedies within the process should keep it consistent and correct.
For instance, if a violation can be fixed by inserting some activity in the process model, it
is necessary to be sure that all prerequisites for this activity will be present at the activity
execution in order to avoid deadlocks.
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2.2.8 Req. 8: Triggering of Compliance Checking

Usually checking is triggered by users. The compliance support system should be
proactive in telling the user about the need to (re)check. This requirement is based on
Req. 4. Each time a rule or a process is changed, the system may suggest a rerun of
checking. This allows an instant response to changes in the rule repository or the process
repository and providing a tight follow up on the compliance status of processes.

2.2.9 Req. 9: Graphical Representation of Compliance Rules

While formal representation of compliance rules allows for automated reasoning, it limits
the accessibility only to technical experts. However, for business people, it is necessary
to discuss about these compliance requirements before putting them into production.
Thus, compliance requirements need to be presented in a way comprehensible to business
experts and stakeholders. On the other hand, discussing compliance requirements in
their juridic form is not preferable as well. In many cases, the terms are ambiguous and
are not in the business terms. Thus, an intermediary representation of these compliance
requirements, preferably in business terms, is needed to ensure the highest possibility of
uniform perception and to reduce chances of conflicts.

2.3 Contribution of the Thesis

In this section we layout the contribution of the thesis to come up with an approach for
compliance management of business processes at design time. Our approach realizes the
set of requirements discussed in Section 2.2. However, we might assume some techniques
or a level of maturity to exist in order to the proposed approach to work, we discuss
relaxations to these assumptions in Chapter 9.

The choice of a verification approach to a large extent controls the level of automation
that can be achieved. Thus, a careful choice of that verification technique will drive
the decision about subsequent steps of, for instance, automated reasoning, violation
explanation and consistency checking.

Of course, another factor to choose a specific verification approach, and thus a specific
formalism, is the targeted compliance aspects to be checked. As stated in Section 1.2,
we are concerned with static verification of control and data flow compliance aspects of
business processes. In this regard, for a design time checking there are three possibilities:
1) simulation 2) model checking 3) logical inference via theorem proving. Simulation
effectiveness is bounded by the experience and skills of the user. Thus, it is a manual
approach that is not guaranteed to cover all possible executions of a process model. The
other two approaches provide a level of automation above simulation.

Model checking [24] algorithms depend on the exhaustive state space search in order
to prove the satisfiability of a property specified as a temporal logic formula. In some
cases, model checking performance suffers from state space explosion. On the other hand,
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theorem provers use logical inference techniques to decide whether a property expressed
with first order logic is derivable from the knowledge about the investigated system. Thus,
theorem provers do not suffer from the state space explosion problem. However, in many
situations, human intervention is required to help theorem provers reach a decision [102].
This intervention is expected from a person who has a deep knowledge about logic and
capable of handling complex logical formulas.

For the case of compliance rules verification, we believe that model checking is
preferable over theorem proving. Firstly, the nature of compliance requirements ad-
dressed by this thesis, e.g., dependency between activities, can be well represented as
temporal logic formulas. Secondly, the execution semantics of business processes have
been always interpreted in terms of states which makes the choice of model checking
intuitive. Thirdly, the problem of state space explosion for model checking can be worked
around in a number of ways: 1) Symbolic approaches for representing the state space of
systems provide a compact way that avoids state explosion. 2) Employing state reduction
techniques based on the verified property. Fourthly, model checking is fully automated.

In the business process management community, process models’ behavioral sound-
ness have been heavily studied, e.g. [3, 30]. One benefit is that formal execution seman-
tics have been assigned to the different process modeling elements e.g., semantics of
EPCs [137], semantics of BPMN [31], etc. However, these semantics were only con-
cerned with control flow aspects. As we are concerned with data access semantics also,
we had to provide a formal access semantics that integrates well with existing control
flow semantics. The discussion about process models and their execution semantics is
given in greater details in Chapter 4.

To define a compliance rule to be checked against a process model via model checking,
the user has to represent the compliance rule as a temporal logic formula. It is not possible
to assume that every person involved in compliance management is aware of such complex
mathematical notation. Moreover, in Req. 9 "Graphical representation of compliance
rules", we argued that compliance rules should be represented in a way readable to a
user who is usually more on the business side. In [39, 76] the authors proposed a visual
language that allows the users to express compliance rules in a graphical way while
encapsulating the formal property and generating it transparently to the user. We believe
that this approach provides a balance between expressiveness and formality on the one
hand and ease of use on the other hand. Thus, we will provide the user with a set of
visual patterns to model compliance rules and an approach to extend these patterns. The
approach is to define a visual pattern and assign it a temporal logic template. With this
approach, we have a formal representation of compliance requirements, Req. 1, a visual
representation easy to use by the compliance officer and business experts, Req. 9, and
we are able to automatically decide about (vacuous) satisfiability of compliance rules,
Req. 5.

To represent a compliance pattern, compliance rule type, we use BPMN-Q [7, 124].
Originally, BPMN-Q was designed as a visual language to query repositories of business
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process models. BPMN-Q provides a set of abstract concepts, as will be discussed in
Section 4.2, that are adequate to express compliance requirements. While BPMN-Q is
similar to BPMN [1] in notation, we explain in Chapter 4 that our approach is indeed
generic.

With the use of BPMN-Q queries as a means to express compliance rules, we can
store these compliance queries as separate artifacts, Req. 2. Arbitrary metadata describing
any kind of attributes of interest to the compliance officer can be attached to queries. A
metamodel describing how to track compliance related artifacts can be found in [64].

To correlate compliance rules to other compliance rules and to business processes,
Req. 4, we currently assume a common set of tags that are used to annotate both com-
pliance rules, i.e. queries, and business processes. In the simplest form, tags are short
text that have common interpretation within the organization. For instance, a tag "claim
handling" is interpreted equally both by business expert and compliance officer. The
availability of common interpretation of these tags is considered as a level of maturity
that we assume to exist within the organization. With the use of tags, we can automate
the correlation between processes and rules, yet, in a loosely coupled way. Any change to
the process, the rule, their tags would flag the need to rerun checks, cf. Req. 8.

As rules can be correlated to each other, it is possible to identify sets of related
rules by means of finding a common set of tags. To this end, consistency checking
among them can be conducted, Req. 3. As we said earlier, the choice of the formal
language determines the level of automation. As temporal logic is the formalism to
express compliance requirements, consistency checking to a large extent benefits from
well established approaches in that regard. However, as we will show, these approaches
are useless unless domain specific knowledge is well reflected in checking for consistency.

Whenever a compliance rule is not satisfied by a process model, the user must receive
an intelligible feedback explaining how the violation occurred, Req. 6. In this regard,
we benefit from the querying nature of BPMN-Q and define violation scenarios as anti
patterns, in contrast to compliance patterns. For each compliance pattern a set of anti
patterns is defined. Each anti pattern is represented also as a BPMN-Q query. When the
anti pattern query is structurally matched to the business process, the matching part of the
process highlights execution paths that caused the violation.

Finally, to suggest remedies, Req. 7, we employ another toolset where we depend
on a structural analysis of business processes. Based on this analysis, we devise a set of
compliance resolution algorithms that depend on automated planning [97].

Figure 2.1 summarizes our approach for compliance management. First and foremost,
the user, e.g., compliance expert, models the compliance rule by instantiating a compliance
pattern. In addition to instantiation, the user assigns a set of tags to the compliance
rule. With the tags assigned, the system can identify related compliance rules and
business processes respectively. The details of modeling compliance rules, checking their
consistency and checking them against business processes are given in Chapter 5.

Whenever, a compliance rule checking is negative, the system generates the corre-
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sponding anti patterns, matches the anti patterns to the process models and present the
user with the parts of the process causing the violation. Chapter 6 covers the details of
obtaining anti patterns and representing them as queries.

The next and last step is to suggest remedies, if possible, to the user. This is covered
in Chapter 7.

Figure 2.1: Compliance management approach

Assumptions

We assume a set of facts upon which our approach depends:

• A central process repository: As indicated in Figure 2.1, we assume process models
subject to compliance check to reside in a central repository.

• Correct process models: we assume investigated process models to be correct in
the sense that they are free from modeling errors causing deadlocks, live locks. We
can justify our assumption with the fact that compliance requirements are some sort
of a next step correctness criteria. Thus, it is logical to check first level correctness,
e.g., deadlock freedom, before checking advanced correctness criteria imposed by
compliance rules.

• A common set of tags to be assigned for process models and rules to achieve
correlation: This is a reasonable assumption as it is common that business pro-
cesses and compliance requirements refer to the same business concepts and terms.
Actually, in the phases of discovery and extraction of compliance requirements,
cf. Figure 1.1, the identification and internalization of requirements is based on
identifying relevant business terms [71].
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• A common set of activity and business object labels: this is related to the above
assumption. We assume that whenever a business activity label appears in a process
model or compliance rule, they reflect the same business semantics. For instance,
“Process purchase request” means the same thing for both business process modeler
and compliance rule modeler.

• Explicit domain knowledge: Figure 2.1 indicates the importance of domain-specific
knowledge in order to automate the checking, explanation and resolution steps.
We assume this knowledge to be present and encoded in the way we discuss it in
Section 4.4.

In Chapter 9 we discuss approaches to relax these assumptions.





Chapter 3

Related Work

While this thesis is concerned with design-time compliance management of business
processes, in this chapter, we widen the scope of related work to include support of
compliance at the different phases of a business process life cycle. We will extensively
discuss approaches concerned with design-time compliance management and will evaluate
each against compliance requirements introduced in Section 2.2. Section 3.1 discusses
other compliance management frameworks proposed for business processes. Design-time
compliance management approaches are detailed in Section 3.2. Section 3.3 discusses
approaches for monitoring the adherence to compliance requirements at process execution.
Compliance auditing is discussed in Section 3.4.

3.1 Compliance Management Frameworks

In [161] authors discussed how risk management can be integrated in the business process
management life cycle. The authors have identified a set of risk factors and defined
general strategies to deal with them. Noncompliance to regulations is a risk factor. Thus,
it is necessary to establish measurements for risk of that type, to document it, and to
establish control objectives that ensure compliance and avoid that risk. In this section
we give an overview on compliance management frameworks that addressed the issue of
documenting and tracking compliance requirements. Note that we are not concerned with
how control objectives are realized or checked; rather, we focus on the concepts of risk,
regulation and internal controls.

In [121] authors introduce the notion of a control directory as a means to manage
compliance requirements. Moreover, the authors correlate the control management life
cycle with the business process management life cycle. Within a control directory, each
entry is described by the control requirement, the risk the organization takes in case
of violation and the internal control that must be established in order to be compliant.
The work in [95, 94] extends the work discussed above by describing the different roles

23
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involved in compliance management, namely business process expert, compliance expert
and the external auditor. Moreover, the authors discuss different recovery actions in case
of violation that can be attached to each control objective. Finally, the authors classify
the control objectives into patterns that they claim to occur frequently in regulations. The
framework is oriented to runtime monitoring of control objectives. The authors agree with
our view about the need to maintain a separate control directory, what we call compliance
rules repository. However, the framework does not discuss the need to develop mechanism
to decide inconsistency between related compliance requirements, Req. 3. While the
framework supports run time compliance management, Req. 6 and Req. 7 regarding
providing useful feedback and supporting automated resolution of violations are not
relevant. The framework puts the task of correlating processes to compliance rules totally
on the human side, Req. 4. The framework proposes the formal contract language (FCL)
to represent compliance rules. The language, as the name tells, is a technical one. We
believe that the use of technical representation only limits the chance to argue about the
rules.

[127] discusses an ontology based approach to represent both processes and com-
pliance requirements. The approach classifies compliance requirements into syntactic,
semantic and pragmatic. The compliance checking then is reduced to the problem of
checking whether the process ontology instance realizes the compliance ontology. The
work in [69] follows a similar approach. The two frameworks, thus, support Req. 1,
which allows to formally reason about compliance. Also, developing compliance specific
ontology could be seen as a satisfaction of the separate maintenance of compliance rules,
Req. 2. However, it is not clear whether the frameworks allow to attach metadata to
track the sources of the compliance requirements and risk factors attached to them. The
frameworks support neither providing useful feedback in case of violation, Req. 6, nor
automated resolution of violations, Req. 7. However, consistency issues among compli-
ance rules, Req. 3, can be identified while building the compliance ontology. Correlation
between processes and rules, Req. 4, is achieved on the ontology level.

Authors of [155] provide a methodology to semi automatically extract and document
compliance requirements. To extract compliance requirements, natural language process-
ing techniques are used to identify relative terms. Later on, the extracted terms are put
into a taxonomy. This framework is oriented to support the automation of compliance
requirements extraction from legislative documents. Thus, it does not intersect with the
scope of this thesis. However, consistency checking mechanisms can be applied early at
that stage.

[96] discusses the challenge imposed on organizations to come up with internal
controls to ensure that business operations comply with requirements. The internal
control is itself a process that includes: identification of significant accounts, definition of
control objectives, Req. 2, identification of relevant processes, Req. 4, and risks behind
not obeying them. Challenges of compliance management can be attributed to two factors.
First, the realization and testing of internal controls is known to be an expensive and a
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time-consuming operation. Second, the compliance requirements are usually very high
level and without any recommendation on how to realize these requirements. The authors
discuss high level concepts like, a control objective, a business process and a risk. The
authors relate these concepts to each other. However, the authors do not discuss how or
when to check compliance rules against business processes. Moreover, the authors do
not propose a specific formalism to express compliance rules, thus, requirements Req.

1, Req. 6, Req. 9 and 7 were not addressed. Moreover, consistency checking among
compliance requirements were not addressed.

The work in [69, 70] discusses a framework to define and integrate compliance
requirements within the organization by means of policies. As compliance is a vertical
concern, i.e., it is approached at different levels of details, the authors propose the use
of ontologies as a means to control the level of abstraction needed for both business
processes and compliance requirements. As compliance requirements are abstract, e.g.,
laws, the authors propose to integrate them in the organizations goals and strategies.
This will reflect compliance requirements on finer-grain levels like operational processes,
business objects and security policies. The authors suggest the use of business rules as
a means to realize policies and to monitor the enforcement of compliance requirements
on process models and on process execution. To this end, consistency checking among
compliance rules, Req. 3, the need to explain violations and provide useful feedback,
Req. 6 and support for suggesting resolutions to violations, Req. 7 were not recognized
by that framework.

Ly et al. [81, 84] introduce SeaFlows, a compliance management framework sup-
porting so-called lifetime compliance. The framework points out the need for a separate
constraint repository. SeaFlows distinguishes itself in support to design time validation
and the support of controlling instance adaptation at runtime. To support design time
validation, SeaFlows allows more than the binary yes/no decision about compliance. That
is, the framework can identify full compliance, definite violation and conditional violation.
The framework supports providing the user with textual description of violations. How-
ever, it is not clear how the framework supports consistency checking among compliance
rules, Req. 3. Moreover, the correlation of rules to processes is left to humans with no
automated support, Req. 4.

In [19] the authors develop an enterprise-wide approach to help assess risk and achieve
agreement among different stakeholders about regulations and the controls to be created
to realize these regulations. The authors determine the relationship between the number
of regulations, disagreement between stakeholders, risks, controls, costs and compliance
degree. Based on these terms and their relationships, authors came up with a model to
track compliance by means of identifying business units that have to show compliance
to certain regulations. To achieve compliance, control activities are established. These
controls are realized via IT solutions. The framework focuses on achieving agreement
among different stakeholders regarding a specific regulation on a high level. Thus, none
of the compliance requirements discussed in Section 2.2 are addressed by that framework.
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Service oriented architecture (SOA) is seen as an implementation architecture for
business processes. To ensure governance of compliance, the compliance-driven models,
languages, and architectures for services (COMPAS) [2] project aims at providing a
life-time support for compliance for processes implemented as services. The overall
architecture and the research objectives of the project is described in [27]. To support
compliance at process design time, COMPAS follows a compliance-driven approach.
That is, process fragments are designed to be compliant with rules of interest. To come
up with operational processes, process fragments are enriched with sufficient details that
make them operational and are deployed. At runtime, compliance is monitored by means
of logging events from both processes and execution engines. Later on, these events are
audited to assess the compliance state of the organization.

Evaluating COMPAS against our requirements discussed in Section 2.2, we can see
that Req. 1, formal specification of compliance rules, is not considered as the framework
tends to build process fragments that are compliance-driven. However, due to the changing
nature of compliance requirements, it is necessary to identify the compliance status of
already developed processes to new requirements. Consequently, Req. 6, providing useful
feedback, and Req. 7, resolution of violation, are not addressed as the framework tends
to compliance-driven process design. Also, the notion of consistency checking between
different compliance rules is not addressed, Req. 3.

Table 3.1 summarizes the evaluation of the above mentioned frameworks against our
requirements for a compliance management framework. For each approach we describe
the formal language being used to represent compliance rules, the support for separate
rule base, the awareness of the need to check consistency, the approach to correlate
rules to processes, the ability to report about vacuous compliance, the ability to explain
violations, the ability to suggest remedies to violations and the representation of rules to
users. The use of +,+/-, or - indicates full, partial or lack of support to a specific feature.
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All frameworks recognize the need to separately maintain compliance rules. However,
only a subset discusses the need to establish consistency checking mechanisms among
them. Depending on the formalism for capturing compliance rules, consistency checking
can be gained. For instance, using business rules, one can benefit from well established
approaches for consistency checking [49].

None of the approaches envisioned the support for vacuous satisfiability, violation
explanation and violation resolution except for the SeaFlows [84], where the framework
provides textual explanation of compliance violation. Textual explanation might be hard
to reflect, by the user, on the process level, in case the process is large or that it has
multiple appearances of the violation. In the latter case, there is a threat of incompleteness
of identifying problematic parts of the process.

Most of the approaches do not distinguish between the formal representation of
the rule and the representation for business users. This is a limitation as it hinders the
understandability of non-technical users. When rules are negotiated on a business level,
compliance expert has to provide a manual mapping from formal representation to a
notation understood by business people.

3.2 Design Time Compliance Checking

Process design time compliance can be categorized into compliance-driven process design
and compliance verification. Compliance-driven design aims at enforcing compliance
and ensuring it while a business process is being designed. In compliance verification,
processes are designed independently from compliance awareness and are checked later
for compliance.

Compliance-driven design guarantees violation prevention as both the business expert
and the compliance expert are involved in that step. However, compliance-driven process
design cannot be fully automated. This approach is useful in specific cases where
processes are derived from a certain specification, e.g., business contracts, and are kept
for a predefined duration, e.g., the duration of a business contract.

On the other hand, compliance verification allows more flexibility and a higher degree
of automation. Process design and compliance checking are decoupled. This allows to
automate and repeat the check each time a compliance requirement is added or changed,
or a process is added or changed. However, this approach requires a higher degree of
maturity in order to automate in terms of means to correlate compliance requirements to
business processes. For this approach, automated verification tools can be employed to
accelerate the checking process and have accurate results. However, still the resolution of
violation is to a large extent on the human side.

In the rest of this section we will explore literature following the above classifica-
tion. We start by approaches supporting compliance-driven design and then we discuss
approaches for compliance verification. For each approach we describe the language or
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tool used to represent the compliance rules, the reasoning approach, and the category of
compliance requirements, cf. 2.1, addressed.

3.2.1 Compliance-driven Design

Goedertier and Vanthienen introduced an approach to support compliance-driven business
process design in [50]. The authors propose the use of business rules as a means to
guarantee compliance with regulations in a flexible way. Business rules reflect the
requirements imposed by either external regulations or internal policies. Thus, there is
no need to hard code these requirements directly in the process control flow. To express
policies, the authors developed "Process ENtailment from the ELicitation of Obligations
and PErmissions" (PENELOPE) as a declarative language to capture obligations and
permissions imposed by business policies in the form of temporal deontic expressions
that are focussed on sequencing and timing constraints between activities in a business
process. To guarantee a compliant process, the authors provide an algorithm that generates
a compliant process model from a set of PENELOPE rules. However, the authors clearly
indicate that the generated compliant process model is not intended for execution; rather
it is intended as an aid to the user to verify executable processes against it. The approach
focuses on compliance with control flow aspects. We believe that the generation of a
process template is an unnecessary step. Processes could be verified directly against rules
in PENELOPE. Nevertheless, PENELOPE can identify conflicts among rules, Req. 3.

Another approach to support compliance-driven design is presented by Milosevic et
al. in [92, 93] where authors use the formal contract language (FCL), introduced in [52],
to express contract permissions, obligations and prohibitions as a set of FCL rules. The
generation of compliant business processes is achieved in a progressive manner. At the
abstract level, interactions among business partners of the contract are identified. In the
next step, internal details for each partner’s process are added. These details depend on
the activities mentioned on the partner’s side in the business contract. The authors claim
to cover the four different aspects of compliance for business processes, cf. Section 2.1.
This is achieved via annotating individual tasks within business processes with predicates
describing each aspect. For instance, if a task duration is not allowed to exceed 3 days;
it is annotated with predicate max_duration(task,3,days). The annotation is
meant to help in monitoring the generated processes at run time.

In the field of service composition, a framework for guiding service compositions
based on PROPOLS [55] proactively suggests next step activities in a composition in
order not to violate temporal business rules. While building a service composition, e.g.
a business process, is considered as a human task. PROPOLS interactively suggests,
based on predefined temporal business rules, to insert, delete and/or reorder activities
to be compliant. Design mistakes, i.e., contradicting to the business rules, are identified
on the fly and the designer is informed about the error. To achieve this, a finite state
automata (FSA) is derived from the set of temporal business rules and the currently
developed process schema. Thus, deviations and possible future moves can be identified.
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The approach focuses on control flow aspects regarding sequencing and occurrences of
activities. While it is beneficial to proactively guide the designer, the in-progress model
checking would be of too much overhead regarding processing time to reconstruct the
FSA with each update made to the process model. The algorithm to suggest valid next
steps depends on traversing all paths within the partially developed process FSA until the
currently selected activity. This incurs a huge overhead as this step is repeated with each
insertion of a new activity. For suggesting remedies to violations the same approach of
traversing process FSA is employed to identify erroneous paths. However, these paths are
identified on the state level rather than on the process structure level, in contrast to Req.

6. Moreover, the performance of path finding will degrade severely with the existence
of concurrent paths within the process definition. Additionally, the suggested remedies
are bound only to the knowledge encoded in the business rules. However, there might be
other activities needed to be inserted or deleted to keep the business process operational.
The need for this domain knowledge is not recognized by the approach, we elaborate
more on that in Chapters 4 and 7. In [156, 157] the authors extend the use of PROPOLS
to a semi-automatic compliance-driven business process design.

During the execution of business processes, data elements are manipulated to deter-
mine next steps. In general, business processes manipulate business objects, e.g., order,
insurance claim. These objects are described, among other aspects, by their allowed
states and transitions among them. To this end, Kuster etl al. [74] describe an approach
to generate business process models that are compliant with business objects life cycles.
This is useful as usually the definition of object life cycles are driven by organization’s
internal policies and external regulations. To generate compliant processes, individual
activities in a process are the means to bring a business object from one state to the
other. The generated process models are guaranteed to leave the data objects in one of
the prescribed final acceptable states. However, the approach is not fully automated as in
case of several input object life cycles, synchronization points among them have to be
defined manually.

Schleicher et al. [125] propose the preparation of process templates that are implicitly
compliant. Later on, these templates are modified by process experts to adapt them to
certain business needs. To ensure compliance, the adapted templates have to be rechecked
for compliance to assert that no violations are possible due to modifications made by the
process expert. The authors devote an algorithm to ensure compliance after inserting
details in the process template to be operational.

Evaluation

Most of the compliance-driven approaches aim at generating process templates that are
compliant with certain regulations. These templates are adapted by users for certain
business objectives by means of adding more details to make them operational. To
this end, a posteriori checking is needed to ensure that the business processes are still
compliant and no violation is introduced due to an unintentional breaking of compliance
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by a designer. Also, each time regulations change there is a need to a posteriori check to
ensure compliance. Thus, we believe that compliance-driven process design is useful in
specific cases where processes can be fully derived from a specification, like a business
contract. Otherwise, there is always a need to recheck.

3.2.2 Compliance Verification

In [39, 40, 41], Forster et al. proposed the Process Pattern Specification Language (PPSL)
as an approach to visually express quality, compliance and constraints regarding the
process behavior. PPSL is an extension of UML Activity Diagrams [100] that extends
edges with the <<after>> stereotype to indicate that two activities are not necessarily
are required to be in strict order. Moreover, they are able to express complex constraints
with all types of logical connectors. To verify properties, PPSL patterns are translated into
temporal logic that are model checked against the process model. Execution semantics
of process models are given via so-called dynamic metamodeling [131, 36] which in a
way is similar to the token flow semantics of Petri nets. The approach focuses on control
flow aspects of compliance rules. PPSL uses temporal logic as a formal background,
cf. Req. 1. Also PPSL patterns are visually represented in way close to that of UML
Activity Diagrams, Req. 9. This gives a great chance for business expert to define and
argue about compliance requirements. From an expressiveness point of view, patterns
are not capable of expressing negation. That is, certain activities must never be executed
when other activities have already been executed. Moreover, the approach is limited to
defining rules concerning control flow aspects only. Also, no support is given beyond
verification. That is, there is no helpful feedback given to the user in case of violation, cf.
Req. 6. Let alone the suggestion of remedies to violation, Req. 7.

Taking business contracts as the source for compliance requirements, the authors
in [53] used FCL to formally measure the compliance between a business contract and
a business process. As stated earlier, it is possible to express obligations prohibition
and permissions within a FCL rule. Moreover, it is possible to express several levels of
exception handling when the basic behavior is violated by the business process. FCL is
further used in [80, 79] to help business process designer quantitatively assess the degree
of compliance of a process with a rule. Based on a compliance rule, a process can be
either ideal, sub-ideal or non-ideal. To reason about the idealism of a process against an
FCL rule set, the authors in [54] provide an algorithm that follows a theorem proving
approach to verify the rule against the process. To reach this, activities with a process
are annotated with certain effects [51] upon which the algorithm reasons. The current
reasoning algorithm does not support loops within process models. A similar approach to
verify contract regulated service composition can be found in [77]. The level of idealism
reported for a business process against a rule can be seen as a support for explaining the
compliance status of a business process, Req. 6. However, the approach does not support
the notion of violation resolution, Req. 7. Moreover, FCL rules are represented purely as
textual formulas. This limits to a great extent the ability of business experts to understand,
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develop and argue about these compliance requirements.

Approximate compliance checking for annotated process models is discussed in [148,
58]. The authors argue that verifying a process against a compliance requirement is
an NP-hard problem and thus approximate approaches are needed as a work around
that limitation. The authors provide an approach that is in general neither sound nor
complete. That is, in some cases they are able to find some of the violations. In some
other cases they cannot identify non-compliance. Also, the verification algorithms are
limited to process models without loops. The verification is in a form of theorem proving
and thus needs to propagate the effects of activities throughout states. One merit of
that approach is the ability to trace back from the violating state to the activity that
caused the violation. However, this is only useful to compliance rules of local nature,
e.g., restrictions on resource allocations like separation of duty. However, violation
to execution ordering compliance rules cannot benefit from this diagnosis feature. The
approach seeks compliance rules with effects local to specific activities within the process.

Another approach that addresses compliance verification using ontologies is presented
in [56]. The paper describes a prototypical implementation of checking compliance of
business processes, annotated with ontological terms, against business rules capturing
compliance requirements. Upon violation, the tool is able to highlight the activity that
caused the violation. The approach addresses compliance issues related to existence of
specific activities within the process. Compliance requirements related to the execution
ordering between activities are not covered. There is no support for resolving violations.

In [76], a formal approach based on model checking was given to check for compli-
ance of processes defined in BPEL against constraints defined in the Business Property
Specification Language (BPSL) that are translated to linear temporal logic. The approach
supports both control and data flow aspects for compliance checking. Similar work that
verifies BPEL processes is described in [158] where authors propose their own language
PROPOLS to capture patterns to be checked against a business process. Upon a violation
detection, the authors in [76] show the user execution traces on the state level that caused
the violation. As known from standard model checking algorithms, these execution traces,
also called counter examples, are automatically given by the model checker. In compar-
ison to Req. 6, providing useful feedback in case of violation, the state-level counter
example is not useful to the user as it is presented in technical terms. Moreover, counter
examples are not complete, as they report the first met violation only, we elaborate more
on that in Chapter 6. The requirement to provide remedies for violation is not addressed
by that work. Moreover, BPSL patterns seem not to support modeling negation.

Ly et. al [82, 83] discuss an approach for managing and verifying semantic con-
straints within adaptive process management [150, 139]. The authors describe semantic
constraints as a form to express compliance rules. The approach extends earlier work on
supporting adaptivity and change propagation from process models to instances, and vice
versa, from a syntactical correctness [112, 114] to a semantical one. The extension is in
the form of formalizing and integrating domain knowledge within process management
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systems. To verify constraints, the authors depend on execution traces. An execution
trace is a finite sequence of events. An event corresponds to the completion of a task. The
constraints are checked against these traces for satisfiability. The approach is concerned
with control-flow aspects of compliance. The approach for verification is limited to
processes without loops. Also, the need to provide useful explanation of violation is not
supported. Let alone the suggestion of remedies.

In [72], the authors present an approach to model business processes and verify
their behavior against compliance rules based on a formal language called Reo. Process
modeling constructs, e.g., activities, choice, parallelism, are mapped to Reo circuits. A
Reo circuit is a sort of logical circuit. Constraint automata (CA), a special type of finite
state machines, are derived from Reo circuits in order to enable the reasoning about the
process behavior. The approach is claimed to cover all aspects of compliance modeling
by means of utilizing special extension of the (CA) for the specific aspects, for instance
TCA extension can be used to address compliance rules related to timing and deadlines
of activities. Evaluating the approach against our requirements, the automated support
is limited to verification. That is, there is no support for providing useful information
in case of violation. Also, the compliance rule is assumed to be written directly in the
respective formal language used for verification. So, a user-friendly representation is not
considered. Also, there is no means to support resolution violation.

In [46] Ghose and Koliadis propose an approach to check compliance of business
processes and to resolve violations. In order to determine the compliance status of a
business process, activities within the process must be annotated with their immediate
effects. An annotated process is then mapped to so called semantic process networks
(SPN). SPN is a directed graph that serves as an input to the verification algorithm
against compliance rules. Authors provide their own algorithms to verify properties
related to execution ordering of activities. To resolve violations, heuristics are used. The
approach is focused on control-flow aspects. Also, the approach is not fully automated
as a business analyst is required to manually accumulate activities’ effects throughout
the whole process model, in contrast to automated propagation discussed in [148]. This
cumulative propagation of activity effects is needed by the verification algorithms since it
is designed to check compliance locally at each single activity. Of course, with medium
to large process models, the chance to forget or to mis-propagate the effects is very
likely. Thus, the result of verification cannot be trusted. While explaining violations is
not addressed. There is a limited support for resolving violations by suggesting adding,
removing, or reordering of activities to gain compliance. These suggestions do not take
into consideration dependencies between activities. For instance, the approach might
suggest to reorder activities A and B in a way that A executes after B while there is a
data dependency from B on A. In such case, reordering will make the process compliant
but will not be operational since the execution will deadlock due to unfulfilled data inputs
of B.

Kumar and Lui in [73] address the resource aspects of compliance. Using a pattern
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based approach, the authors express role based access controls to tasks in a process model.
The authors discuss how variants of the separation of duty principle can me modeled in
Prolog and verified against process models, where activities are annotated with roles that
will perform them. A similar work is discussed in [153] where Wolter et al. provide an
extension of BPMN [1] that allows the user to visually specify task based authorization
constraints. In [152] Wolter et. al use model checking to verify whether a process model
satisfies security constraints like separation and bind of duty. In [89] Mendling et. al
study the different ways to express separation of duty constrains using BPEL4People [4].

Table 3.2 summarizes our evaluation of compliance verification approaches. The
evaluation is based on satisfaction of compliance requirements discussed in Section 2.2.
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3.3 Runtime Compliance Monitoring

In this section we give an overview of business process compliance monitoring at process
runtime. With monitoring we mean instant monitoring of running process instances.
Monitoring takes place by a process execution engine that notifies interested agents about
the occurrence of specific events during the process execution.

A business contract defines the duties and the rights of the contracting parties. In
real life, violations are subject to penalties. In an e-business environment it is crucial to
define and monitor the satisfaction of so-called e-contracts. [91, 52] discuss the problem
of following up the execution of e-contracts. One of the mechanisms it discusses is the
monitoring of contract execution. By monitoring of significant events, the comparison
of actual behavior to the expected behavior is possible. In case of violation, several
resolution mechanisms are offered depending on the severity of the violations. For
instance, a notification can be used to alert contract participants about possible upcoming
violations, e.g., in contract between an enterprise and an Internet service provider the
service might be allowed to fail no longer than 4 hours a week; otherwise ISP is subject
to penalties. In this case, a contract execution monitor might send reminders for the
ISP if the 4 hours allowance is about to expire. When a deviation takes place, i.e., the
notification did not help prevent that deviation, mediation mechanisms try to find an
agreement between contracting parties in order to put contract execution back into order.
Finally, arbitration is the step to do when no mediation possible. Similar approaches can
be found in [62, 116, 6].

In [149], Weigand et al. similarly take business contracts as the basis to align work-
flows of partner enterprises into a virtual workflow for the virtual enterprise. The virtual
enterprise is modeled using a component definition language (CDL). Each component
represents a partner. Later on, the workflow of each enterprise is linked to the business
contract. Thus, a contract defines the legal interactions between components. To ex-
press the mutual commitments among parties, business objects are used to describe the
semantics of cooperation in business terms, e.g., Customer, Order. To work on these
business objects, business tasks are defined in a way that accesses and transforms these
objects. Finally, business tasks are assigned to roles within organizations and their order
of execution is defined, the workflow. To monitor the execution and adherence to the
business contract, control workflows are defined. Control workflows define the sequence
and direction of exchanged messages, according to the contract. Thus, a global contract
object coordinates the execution of the various cooperating workflows. Although the
approach provides a practical solution for virtual enterprises, the authors did not illustrate
which partner owns the contract object.

Giblin et al. [47, 48] propose REALM as a metamodel to express compliance policies
covering all aspects of compliance discussed above. A policy is a rule set that has a scope
of applicability. Rules are expressed by means of real-time temporal object logic. This
gives expressiveness not only to capture ordering between events; rather, the actual times
of their occurrences. This is necessary to express timing constraints, e.g., an activity must
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not take more than two days. In addition to enforcing these rules on process definitions,
they are monitored at runtime. This is important for time constraints, as design time
verification might not be sufficient.

Ontology languages are used by ExPDT [63] to express privacy compliance rules.
With ExPDT, security policies concerning both data and access to them by business
processes can be expressed. The language seems to cover three aspects of compliance.
That is, one can express a ExPDT rule indicating conditions on the user, the data and
the action taken in the business process. The rules are monitored at runtime to enforce
compliance.

The work in [78] discusses the achievement of IT-controls as means to monitor
compliance of SOA-based business systems. The IT-control is a software artifact that can
interact with automated business processes. The approach focuses on security related
controls. To enable monitoring, the authors propose an architecture that extends a SOA by
components for signaling and monitoring events caused by services, for their aggregation
and analysis with respect to control objectives

3.4 Compliance Auditing

Usually, the proof of compliance of some organization to regulations is done by an
external auditor. The external auditor randomly collects, based on experience, audit trails
and logs from the different sectors of the organization for inspection. This step is usually
manual and its duration depends on the auditors team, their experience and the maturity
of the organization. However, it is possible to speedup this step by providing automated
tools that scan system logs, especially process execution engines, to collect evidences
about the compliance status of the company.

Process mining [135] is an approach to synthesize process models out of execution
logs. To this end, process mining enables organizations to assess the way their processes
were actually executed. Based on the extracted processes, auditing can be automated.
In [140], Aalst et al. provide an automated approach to detect violations based on
workflow logs. Audit checks are formalized in linear temporal logic (LTL) formulas that
are model checked against the mined processes. The approach supports the check of
control flow aspects of compliance.

The work in [141] uses process mining to discover anomalous process execution
regarding security constraints. Security constraints are interpreted as requirements to
have certain activities executed in a certain order. It is a two-step approach. The first
step is to mine an acceptable log. The result of the step is a structured workflow net.
To discover anomalous executions, the second step, logs of newer process instances are
checked for conformance against the mined workflow net. Although the paper assumes
that logs are described not only in terms of activities, but also performers and time stamps
for start and end of an activity, security breaches due to, e.g., violation of separation of
duty constraints were not discussed.
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Doganata and Curbera [32] discuss an approach to semi automatic auditing in cases
where there is no process execution engine, so-called unmanaged processes. Business
provenance is the means to automate auditing of unmanaged processes.

3.5 Other Approaches

In general, the identification of compliance requirements relative to the organization is
a pure human task. Compliance experts along with lawyers have to inspect legislative
documents to extract control requirements. In [71], Kiyavistskya et al. provide an
approach to help automate the step of compliance requirements identification. The
approach is focussed on regulations regarding data privacy and obligations. The authors
propose a three-step approach. First, regulation text is annotated to identify fragments
describing actors, rights, obligations, etc. Second, a semantic model is constructed from
these annotations. Third, the semantic model is transformed into a set of functional and
nonfunctional requirements.

Saeki and Kaiya [123] propose an approach to guarantee compliance of developed
software systems, e.g., process models in early stage of requirements elicitation. The
authors follow an incremental approach where new requirements are examined against
the available set of regulations and requirements. In case of conflicts, the user, software
engineer, is informed and the tool suggests changes to the requirement in order to keep
compliance with regulations.

In [5] Agrawal et al. propose a solution to automate compliance with Sarbanes-
Oxley [99] act based on database technology. The approach targets the continuous
evaluation of the compliance status by two different ways depending on the maturity of
the organization. The first way is via automated auditing of activity logs that are stored
in database tables. An auditor can either issue a mining or a querying task against the
logs. With mining tasks the auditors reconstruct the actual way business routines were
performed and thus can manually determine the deviation from expected behavior. On
the other hand, with querying, the auditor can express violations and check the log for
their occurrences. The other approach for continuous evaluation is active enforcement.
In this case, the business routines are modeled as workflows in a way that guarantees
compliance. At enactment time, actual instances are compared against the prescribed
workflows to check for compliance. Database technology is used to reflect the prescribed
workflows as a set of constraints expressed on the database level. Thus, there is no need
to deploy process execution engines.

zur Muehlen et al. [162] argue that a combination of a process modeling language
and a business rules language is necessary to cover all concepts needed for compliance
management. Specifically, zur Muehlen et al. propose to use a combination of BPMN
and Simple Rule Markup Language (SMRL) to model compliance requirements.

In [45] the authors provide a framework to track the compliance with health care
regulations. The framework proposes to firstly model business processes of a hospital
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and model regulations. Later on, the two models are linked together. The paper focuses
on a requirements management framework to establish different types of links between
hospital business processes and privacy legislations imposed by health care regulation
bodies. While establishing these links, the framework helps identify missing steps, within
a hospital business process, to be compliant with regulations.





Chapter 4

Foundations

In this chapter we discuss background and foundations for our work. We discuss concepts
and techniques that describe the domain of business processes as well as formal ap-
proaches that will be used to address the compliance problem. Some of these foundations
are contributions of the author in the course of approaching the compliance problem.

The rest of this chapter is organized as follows. First, we briefly introduce the concepts
of business process models in Section 4.1. Sections 4.2 and 4.3 discuss the founding
contribution of business process model query language. The notion of domain knowledge,
another founding contribution, is detailed in Section 4.4. Finally, model checking is
discussed in Section 4.5.

4.1 Business Process Modeling

Currently, there are two major paradigms for modeling business process models. Tradi-
tional modeling is concerned with imperatively describing process models. Activities and
their control flow and data flow dependencies are described. A process definition, model,
is enumerating all allowable execution scenarios for process instances. On the other hand,
declarative approaches for process modeling [106, 142] give more flexibility for process
modeling by just constraining forbidden situations and allowing everything else.

In this thesis, we are concerned with imperative process models. We believe that
they are the dominating modeling paradigm. However, we include a discussion about
incorporating compliance requirements with declarative process models in Chapter 9.

Imperative process models can also be classified into graph based modeling languages,
e.g., BPMN [1], EPCs [67] and UML ADs [100] and text based languages that depend
on process algebra [17], e.g, π-Calculus [90]. For the same reason of dominance, we are
concerned with graph based modeling languages. We discuss how the contributions of
the thesis can fit with text-based modeling languages in Chapter 9.

41
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4.1.1 Process Modeling Concepts

Currently, there is a number of graph-based business process modeling languages, e.g.,
BPMN [1], EPCs [67] and UML ADs [100]. Despite their variance in expressiveness and
modeling notations, they all share a core set of concepts. All process modeling languages
are capable of expressing concepts of activities, the individual steps that represent the
added value of a business process. They are also capable of expressing execution ordering
between activities, control flow. Sequential order, choice, and parallel threads are all
control flow ordering that are expressible by these languages. Moreover, these languages
provide support for the modeling of data flow in addition to that of control flow. By data
flow, we mean the data elements and their values (states) that are needed as input for an
activity, as a routing condition and/or as an output from an activity.

In this thesis, we focus on the core set of concepts; from which, business process
models can be composed. Within graph-based process modeling languages, elements for
modeling business processes are divided into two categories, nodes and edges respectively.
Nodes, in turn, are divided into control objects, nodes that would correspond to active
elements in a process, and data objects, passive data elements that are read or updated
during the execution of a process. A control object is the general concept for activities,
events, and control routing (gateways). Activities represent process steps, tasks, or a
functions that are atomic and executable during a process instance ∗. Similarly, events
are things/flags that are signaled during the process execution. Finally, control routing
gives more expressiveness for the ordering of control objects other than sequencing. The
XOR and AND control routing carry the respective execution semantics implied by their
names that are largely accepted in the business process management community, formal
execution semantics will be considered in subsequent sections.

Activities might occur multiple times within a process model, e.g., two nodes have the
same label. However, it is of great importance for our work to distinguish these activities,
especially when we discuss explanation of compliance violation in Chapter 6. Thus, we
assume that each activity is assigned a unique identifier.

Data objects are used to represent data elements accessed during the process execution.
In general, data elements can have domains that are infinite in nature, e.g., the domain of
integer numbers. In this thesis, we use data objects to represent business objects handled
throughout the process. A business objects has a finite set of states that represents an
acceptable abstraction over underlying, possibly infinite, domain of values. Thus, at any
point of the process execution, a data object can assume one state.

Edges are used to connect the nodes to create a process model. There are basically
two types of edges, control flow and data flow edges. Control flow edges connect between
control objects to model the ordering between them. On the other hand, data flow edges
connect either data objects to control objects, to model the reading of data, or they connect
control objects to data objects, to model the updating of data.

Process models described above, can be formalized as follows:

∗For this thesis, we do not need to distinguish tasks from sub-processes
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Definition 4.1. [Business Process model] A business process model is a tuple
P = (A, E ,D,G,S,DataState, CF ,DF , CFC, ID)where:

• A is a finite set of activities,

• E is a finite set of events where Es, Ee represent the start and end events, respectively.
Other events are called intermediate events,

• D is a finite set of data objects,

• G is a finite set of control flow routing gateways. This set is further subdivided into
GX and GA, representing XOR and AND gateways respectively. GX ∩ GA = ∅,

• S is a finite set of data states,

• DataState ⊆ D × S is the relation between data objects and states,

• CF ⊆ (A ∪ G ∪ (E \ Ee))× (A ∪ G ∪ (E \ Es) is the control flow relation,

• DF ⊆ (DataState ×A) ∪ (A× DataState) is the data flow relation between
activities, data objects, and states,

• CFC : CF → 22
DataState

is a function associating control flow edges with data
conditions. An empty condition is interpreted as true. Each data condition is
assumed to be in a disjunctive normal form,

• ID : A ∪ E ∪ G → N is a function that assigns a unique ID for each node.

Definition 4.1 allows to assign explicit data conditions to control flow edges. However,
to describe complex conditions, we require the data condition to be in a disjunctive normal
form. For instance, a condition that refers to two data objects “Order” and “Bill” can be
(((Order, confirmed) ∧ (Bill, issued)) ∨ ((Order, cancelled))).

Definition 4.1 allows process models of arbitrary structure. In order to correctly
reason about the behavior of these models, we need to consider well formed process
models. We use the notation in(x) to denote the set of incoming control flow edges for a
control node x, a control flow node is either an activity, an event or a gateway. Similarly,
out(x) denotes the set of outgoing control flow edges for a control node x. Moreover, the
set stated = {s : (d, s) ∈ DataState} identifies for each data object d the set of data
states it can assume.

Definition 4.2. [Well formed process model] A business process model
P = (A, E ,D,G,S,DataState, CF ,DF , CFC, ID) is well formed if and only if:

• There is exactly one start event, |Es| = 1,

• There is exactly one end event, |Ee| = 1,

• A start event has no incoming edges, ∀e ∈ Es : |in(e)| = 0,
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• An end event has no outgoing edges, ∀e ∈ Ee : |out(e)| = 0,

• Any activity, non-start event has exactly one incoming control flow edge, ∀n ∈
A ∪ (E \ Es) : |in(n)| = 1,

• Any activity, non-end event has exactly one outgoing control flow edge, ∀n ∈
A ∪ (E \ Ee) : |out(n)| = 1,

• Explicit splits and joins, ∀g ∈ G : (|in(g)| = 1 ∧ |out(g)| > 1) ∨ (|in(g)| >
1 ∧ |out(g)| = 1), no mixed gateway,

• Each data object has an initial state. ∀d ∈ D∃i ∈ stated where i indicates the
initial state of the data object,

In addition to the properties discussed in Definition 4.2, we require process models to
be correct. By correctness we mean lack of deadlocks and livelocks either due to control
flow modeling error [3, 122] or data flow modeling errors [120, 8, 134]. Moreover, no
dead activities are present in the model due to never-satisfied data conditions. This is a
reasonable assumption since compliance requirements are domain-specific correctness
criteria while deadlock and livelock freedom is a domain-independent one.

We define P to be the set of all process models, the repository of process models (cf.
Section 2.3). Every process model p ∈ P is well formed.

4.1.2 BPMN as a Process Modeling Language

Business Process Modeling and Notation (BPMN) [1] is the defacto standard for modeling
business processes. We use the BPMN notation to visually represent the modeling
concepts described above. Figure 4.1 describes the concrete syntax of these concepts in
the BPMN notation.

(a) Start event s ∈
Es

(b) End event e ∈
Ee

(c) Activity a ∈ A (d) XOR gateway
gx ∈ GX

(e) AND gateway
ga ∈ GA

(f) Data object
data ∈ D
in a state
(data, state) ∈
DataState

(g) Control
flow cf ∈
CF

(h) Control flow
with a condition
cfc ∈ CFC

(i) Data
flow
df ∈ DF

Figure 4.1: Process modeling constructs expressed in BPMN notation
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4.1.3 Execution Semantics

In order verify properties of the process behavior, formal execution semantics must
be assigned to the different modeling concepts of a process model. In literature, Petri
nets [113] have been widely used to formalize execution semantics of control flow aspects
of different process modeling languages [143, 137, 31], to name just a few . Moreover,
there are approaches to formalize data access semantics in process models [120, 133, 8].

In this thesis, we use the formalization of control flow introduced in [31]. Also, we
use the data access semantics we developed in [8]. The advantage is that both approaches
use place/transitions Petri nets as the formal background.

Definition 4.3 (Petri net). A Petri net is a tuple PN = [P, T, F,m0] where P and T

are finite disjoint sets of places and non-empty set of transitions, respectively, F ⊆
(P × T ) ∪ (T × P ) is a flow relation, and m0 : P → N is an initial marking.

For a node x ∈ P ∪ T , we define •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}.
A transition t is enabled by a marking m (denoted m

t−→) if m(p) > 0 for all p ∈ •t.
An enabled transition can fire in m (denoted m

t−→ m′), resulting in a successor marking
m′ with m′(p) = m(p) + 1 for p ∈ t• \ •t, m′(p) = m(p) + 1 for p ∈ •t \ t•, and
m′(p) = m(p) otherwise. Moreover, we define a function TID : T → N that assigns
each transition an identifying number. This function plays an important role for the
mapping of process models to Petri nets.

4.1.3.1 Control Flow Formalization

In this section we describe the mapping [31] of the business process control flow to
place/transition Petri nets [113]. According to Definition 4.1 and Definition 4.2, we can
have the following mapping patterns as shown in Figure 4.2.

Each event or activity is mapped to a single transition t and two places pi, po where
pi ∈ •t and po ∈ t•. The difference is that the input place for the start event transition has
no incoming edges, denoted by the solid border of the place. Similarly, the output place
of the end event transition has no outgoing edges. Other types of events and activities can
share their input/output places with other preceding/succeeding nodes respectively.

An AND split gateway is mapped to a transition t, an input place pi and a set of output
places {po1, po2, . . . , pon} according to the number of outgoing edges of the split. Both
input/output places are shared with preceding/succeeding nodes respectively. On the other
hand, an AND join is mapped to a transition t, a set of input places {pi1, pi2, . . . pin} and
a single output place po.

An XOR split is mapped to a shared place ps, a set of transitions {t1, t2, . . . , tn}
according to the number of outgoing edges of the XOR split and a set of places
{po1, po2, . . . , pon} also according to the number of outgoing edges of XOR split. The
place ps is shared among the set of transitions. Place poi is the output place of transition
ti. An XOR join is mapped to a shared place pj , a set of transitions {t1, t2, . . . , tn} and a



46 CHAPTER 4. FOUNDATIONS

(a) Start and end events

(b) Activity and intermediate event

(c) AND splits and joins

(d) XOR splits and joins

Figure 4.2: Control flow execution semantics by mapping to Petri nets, adapted from [31]
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set of places {pi1, pi2, . . . , pin}. Each transition tx and place pix represent an input edge
of the XOR join.

To correlate transitions to their original nodes in the process model, we assign
the same identifier for the transition as the node, i.e., TID(tn) = ID(n) where n ∈
A ∪ E ∪ G ∧ tn ∈ T .

4.1.3.2 Data Flow Formalization

First of all, we assume a single copy of each data object that is handled within the
process. This single copy is assumed to exist from the moment of process instantiation.
At instantiation, the data object has the specific initial state initial. Here, we can establish
the analogy between a computer program and business process; where all variables are
statically allocated at the instantiation of the program. Moreover, each variable is in a
known initial value. Multiple data object shapes with the same label are considered to
refer to the same data object.

On the other hand, each data object is in a certain state at any time during the execution
of the process, e.g., an order is created, processed, confirmed, cancelled, etc. This data
object changes its state only through the execution of activities. It can be specified which
state a data object must be in before an activity can start (precondition) and which state a
data object will be in after having completed an activity (effect). This is represented via
data flow. A directed data flow from a data object to an activity symbolizes a precondition
and a data flow leaving an activity towards a data object symbolizes an effect.

While often it is required that a data object is in exactly one state before being able to
execute an activity, it might also be allowed that the data object is in any state of a set
of states. This is symbolized through multiple data flow edges targeting an activity and
that each originate in a data object shape referring to the same data object but in different
states (cf. Figure 4.3(a))†. An analogous representation applies for alternative effects (cf.
Figure 4.3(b)).

If multiple data objects are required as input (as in Figure 4.3(c)), then it is interpreted
as a precondition that data object D1 is in state n and data object D2 is in state m.
The same principle is applied in case of outputting multiple data objects Figure 4.3(d).
Figure 4.3(e) describes the union of the other situations when an activity has complex
pre/postconditions on data objects. In that specific case, activity A requires that data
object D1 to be in either state n or m and data object D2 to be in either state s or t. After
activity A completes, it changes the state of data object D1 to either o or p and changes
the state of data object D2 to either state u or v.

Another interpretation for multiple data objects input/output could be the disjunction.
I.e., an activity requires either D1 or D2 in order to execute. Although this might be
the case in some situations, our interpretation is also possible. More modeling concepts
are needed to let the modeler express his intent, e.g., by inputting of D1 and D2 to

†It is also possible to represent the different input states as single shape for data object D1 and the states
are [m],[n]
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AND/XOR join and then inputting that to the activity. However, employing any of the
interpretations will not affect the contribution of this thesis.

(a) Activity A can only be exe-
cuted if D1 is either in state n or
m

(b) After the execution of activ-
ity A, D1 will be in either state
n or m

(c) Activity A can only be exe-
cuted if D1 is in state n and D2
is in state m

(d) After the execution of activ-
ity A, D1 will be in state m and
D2 will be in state n

(e) Complex precondition and postcondition involving data objects D1
and D2

Figure 4.3: Assumptions about data access semantics

In order to reason about the change of data values through the process execution,
formal data access semantics must be given to data objects and their reading/updating
by activities. We assign this formal semantics by mapping [8] data objects states and
access by activities to place/transition Petri nets as well. Fig. 4.4 illustrates the mapping.
Each data object is mapped to a set of places. Each place represents one of the states the
data object can be in. Activities with preconditions or effects are modeled as transitions.
Depending on the kind of preconditions and effects, an activity can be represented by one
or a set of transitions in the data flow model. Arcs connect these places with transitions,
again depending on the preconditions and effects.

The simplest case is represented as in Figure 4.4(a). Here, an activity A reads a data
object in state 1 and changes it to state n. This is represented as consuming a token
from place [Data object, state1] and producing a token on [Data object, staten]. The
case in Figure 4.4(b) represents a generalization of the previous case where an activity
can have a complex precondition and can update the state of the data object to only one of
the output states. In this case, activity A is represented with multiple transitions to reflect
all possible combinations between precondition and effect states for the data object. The
case in Figure 4.4(c), executing activity A does not have any effect on the data objects.
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(a) Update from a state to another state

(b) Update from one of states to one of other states

(c) Conditional Read Only

(d) Unconditional Update

(e) Edge Conditions

Figure 4.4: Data access semantics by mapping to Petri nets
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However, it requires the data object to be in one of the specified states. This is modeled
using a bi-flow in the Petri net: The transition consumes and produces a token from the
same place. Notice that activity A might also be represented by many transitions if a data
object is expected to be in one of many states.

The case in Figure 4.4(d) displays that the data object is changed to a certain state
(other_state) when executing activity A. Multiple transitions are used as the data object
can be in a number of previous states. For each previous state a transition models the
change to the new state. In this case, it does not make any difference if the data object is
used as input (without constraint on the state) or not at all. Finally, the case in Figure 4.4(e)
illustrates how data object states can also be used in branching conditions.

4.1.3.3 Formalizing Process Model to Petri Net Mapping

So far, we have shown how the control flow as well as the data flow of a well formed
process model, see Definition 4.2, can be mapped into a place transition Petri net. How-
ever, in order to reason about the behavior of the net, and so about the behavior of the
process, we have to determine the initial marking of the net. In our case, the start event of
the process determines the initiation of a process instance control flow. On the other hand,
for data aspects, we assume that at the very beginning of the process each data object is
in an initial state. Thus, the initial marking of the net is determined by putting a token
in the input place of transition tstart corresponding to the start event. And for each data
object initial state place a token is put.

Definition 4.4 formalizes the generation of a Petri net from a given well-formed
process model. The formalization consolidates the different mappings provided in Fig-
ures 4.2,4.4. The set of places in the resulting Petri net consists of a place for each data
state s ∈ S in the given process model. In addition, control flow places are added for
start events, control flow between nodes in the model, end events respectively.

Activities that require neither data input nor data output are represented with a single
transition each. On the other hand, those having either input or output data requirements
are represented with multiple transitions. Each of the transitions represents one of the
possible input/output conditions for the activity.

Connectivity between places and transitions comes from the control and data flow
dependency between nodes in the process model. For input data dependency, each data
state place is connected as an input place for the corresponding activity transition. The
same case for output data dependency, where transitions are connected as incoming
transitions for the corresponding output data states.

Definition 4.4. [Process model to Petri net mapping] Let
P = (A, E ,D,G,S,DataState, CF ,DF , CFC, ID) be a well formed process model.



4.1. BUSINESS PROCESS MODELING 51

The Petri Net (P,T,F,m0) resulting from mapping is:

P = {p(d,s)|(d, s) ∈ DataState}∪ states of data objects

{ps|s ∈ Es}∪ start event

{pe|e ∈ Ee}∪ end event

{p(x,y)|(x, y) ∈ CF} control flow

T = {ta|a ∈ (A ∪ E ∪ GA) ∧ @(_, a), (a, _)‡ ∈ DF}∪

data-independent activities

{t(d,s,a,s′)|a ∈ A, d ∈ D, s, s′ ∈ S ∧ s ̸= s′ ∧ ((d, s), a), (a, (d, s′)) ∈ DF}∪

activities that change data objects states

{t(d,s,a)|a ∈ A, d ∈ D, s ∈ S ∧ ((d, s), a) ∈ DF ∧ @(a, (d, _)) ∈ DF}∪

read only activities

{t(x,y)|x ∈ GX ∧ (x, y) ∈ CF ∧ |in(x)| = 1 ∧ CFC((x, y)) = true}∪

branches of XOR splits without data conditions

{t(x,y,cond)|a ∈ GX ,∧(x, y) ∈ CF ∧ |in(x)| = 1 ∧ cond ∈ CFC((x, y))}∪

branches of XOR splits with data conditions

{t(x,y)|y ∈ GX ∧ (x, y) ∈ CF ∧ |out(x)| = 1}

branches of XOR joins

F = {(ps, ts)|s ∈ Es ∧ ps ∈ P ∧ ts ∈ T}∪

start event

{(te, pe)|e ∈ Ee ∧ pe ∈ P ∧ te ∈ T}∪

end event

{(tx, p(x,y))|(x, y) ∈ CF}∪

control flow

{(p(x,y), ty)|(x, y) ∈ CF}∪

control flow

{(p(d,s), t(d,s,a)), (t(d,s,a), p(d,s))|(d, s) ∈ DataState, a ∈ A,

((d, s), a) ∈ DF ,∧@(a, (d, _)) ∈ DF , p(d,s) ∈ P, t(d,s,a) ∈ T}∪
‡We use (a,_) to indicate that a is related to some element. Similarly is (_,a)
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read only activities

{(p(d,s), t(d,s,a,s′)), (t(d,s,a,s′), p(d,s′))|(d, s), (d, s′) ∈ DataState, a ∈ A,

((d, s), a), (a, (d, s′)) ∈ DF , p(d,s), p(d,s′) ∈ P, t(d,s,a,s′) ∈ T}∪

activities that update data object state

{(p(d,s), t(x,y,cond)), (t(x,y,cond), p(d,s))|(d, s) ∈ cond, cond ∈ CFC((x, y)), x ∈ GX ∧
|in(x)| = 1}

XOR split edges conditions

The initial marking m0 is determined as ∀p ∈ P ∧ • p = ∅ m0(p) = 1

control flow initial marking

∀p ∈ P where p is an initial state data place m0(p) = 1

data flow initial marking

In this section we discussed business process modeling elements and their execution
semantics. In the next two sections, we introduce the concepts process models query
language BPM-Q.

4.2 BPM-Q

The Business Process Model Query (BPM-Q) language was designed to help business
process designers access repositories of graph-based business process models [7, 117].
Thus, the language supports querying on the core concepts discussed in the previous
section. Moreover, the language introduces a set of new abstraction concepts.

A BPM-Q model is called a query. In addition to the core business process mod-
eling concepts, BPM-Q introduces new concepts, as will be discussed later. A query
declaratively describes a structural connectivity that must be satisfied by a process model.
To answer a query, it is matched to the process models in the repository. The matching
determines the process (sub) graph that is the refinement of the query, details of matching
will be discussed later.

BPM-Q was applied to detect modeling errors [11, 75], e.g., deadlocks. Also, it was
applied to find semantically similar process models [10].

In this thesis, we use BPM-Q concepts to model compliance requirements. Thus,
we discuss the subset of BPM-Q concepts that are useful to the compliance use case,
interested readers can refer to [7, 117] for mode details.

In the following subsections we introduce a subset of the new concepts in BPM-Q
useful for the compliance use case. Also, we describe the steps of matching a query to a
process model.
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4.2.1 BPM-Q Concepts

In addition to the core concepts of process modeling, activities, events, control flow, data
flow, etc. BPM-Q has two major new concepts (constructs) that will be used for modeling
compliance requirements, the path edge and the anonymous activity. Both concepts are
means to provide abstraction over process model details. This matches the abstract nature
of compliance requirements as will be shown in Chapter 5.

• Path edges: a path edge connecting two nodes in a query represents an abstraction
over whatever control nodes could be in between in the process model. Moreover,
a path edge has an exclude property. When the exclude property is set to some
node(s), the evaluation of the path edge succeeds only if there are sequences of
nodes between the source and destination nodes to whom excluded node(s) do not
belong.

• Anonymous activities: Are meant to abstract from activities. For instance, a query
could be “what activities read/update the insurance claim data object?”. Since, the
user does not know that activity, he/she can start its label with the ’@’ symbol to
declare it as an anonymous activity.

4.2.2 Matching Queries to Processes

A BPM-Q query is matched to a process via a set of refinements to the query. With each
refinement nodes/edges in a query are replaced with nodes/(nodes,edges) of the matching
process model. This operation is repeated until either a node/edge cannot be resolved,
or all nodes/edges have been resolved. The match to the query, its final refinement, is a
sub-graph of the process model.

Next, we formalize the notion of a BPM-Q query and the notion of matching a query
to a process. We define a BPM-Q query as follows.

Definition 4.5. [BPM-Q query] a BPM-Q query is a tuple
Q = (AQ, EQ,DQ,GQ,SQ,DataStateQ,PQ,DFQ, isAnonymous,X , IDQ) where:

• AQ is a finite set of activities in a query,

• EQ is a finite set of events in a query. EQ = EQs ∪ EQe where EQs is the set of
start events and EQe is the set of end events in a query, EQs ∩ EQe = ∅,

• DQ is a finite set of data objects in a query,

• GQ is a finite set of control flow routing gateways. This set is further subdivided into
GQX and GQA, representing XOR and AND gateways respectively. GQX ∩ GQA =

∅,

• SQ is a finite set of states(values) data objects assume within a query,
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• DataStateQ ⊆ DQ × SQ is the data state relation in a query,

• PQ ⊆ (AQ ∪ EQ) × (AQ ∪ EQ) is the path relation between activity and event
nodes in a query,

• DFQ ⊆ (DataStateQ × AQ) ∪ (AQ × DataStateQ) is the data flow relation
between activities and data objects with states,

• isAnonymous : AQ → {true, false} determines whether activities in a query
are anonymous,

• X : PQ → 2AQ∪EQ is the exclude property for path edges,

• IDQ : AQ ∪ EQ ∪ GQ → N is a function that assigns an identifier to each control
flow node in the query.

We assume the set Q to be the universal set of queries. Since BPM-Q is designed
to match queries to process definitions in a repository, it is necessary to identify a
candidate set of process models that might have the chance to provide a match to the
query, rather than scanning the whole repository [128]. To achieve this, we assume
a common ontology TAG is used to annotate both processes [130] and queries. The
function annotate : P ∪Q → 2TAG assigns tags to processes and queries.

Definition 4.6. [Candidate match] a process model
P = (A, E ,D,G,S,DataState, CF ,DF , CFC, ID) is said to be relevant to a query
Q = (AQ, EQ,DQ,GQ,SQ,DataStateQ,PQ,DFQ, isAnonymous,X , IDQ)

if annotate(P) ∩ annotate(Q) ̸= ∅. Thus, the set PQ = {p ∈ P : p is relevant to Q}
represents the candidate match processes to a query.

After identifying the candidate match set of processes, the query processor continues
by doing the following steps in sequence for each of the candidate match processes. If
any of the steps fails, the processor drops the investigated process. The steps are detailed
as follows:

1. Resolving non anonymous activities.

2. Resolving data objects.

3. Resolve gateway nodes

4. Resolving events.

5. Resolving anonymous activities.

6. Substituting path edges.
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We start with an unrefined query. This is a query whose nodes are all assigned the
value 0 as an identifier. With each of the steps above, some nodes are resolved. Resolution
is done by binding a node in the query to a node in the process model. This binding
occurs simply by assigning the node in the query the same identifier of the node in the
process model.

To help describe the resolution of activities and data object nodes, we assume a
function label. label is used to find activity and data object nodes in a process that can
be matched to those of a query. It is possible that an activity node in a query has more
than one match activity node in a process, in case a process has multiple occurrences of
the same activity. For each possible resolution node np of a query node nq, the query
processor generates a new copy of the query where nq is assigned the same identifier
as np. The new identifier of nq is propagated to all its control flow, data flow, or paths
relations. If for any node nq in a query we cannot find a resolution np, the matching of a
query to a process is dropped. The resolution of events is simple. Each event node in the
query has to have a counterpart in the candidate process model, this is guaranteed in the
case of well formed process models cf. Definition 4.2.

Resolving anonymous activities is achieved by finding an activity in the candidate
process model for which all relations of the anonymous activity in the query are satisfied.
For instance, if some anonymous activity ‘@A’ has a data flow edge to some data object
‘D’ in the query, activity ‘M’ in the candidate process model is a resolution to ‘@A’ iff
there is a data flow edge to ‘D’ in the process. In case that an anonymous activity in a
query has no data flow relationships, the query processor tries all available activities in
the process model. Each time an anonymous activity is resolved, the query processor
generates a new copy of the query where the anonymous activity is replaced with the
resolvant activity. Also, this replacement is propagated to all relations of the anonymous
activity. Gateways are resolved in the same way.

Note that our description about matching a query to a process is limited to the subset
we use in this thesis. More details can be found in [7, 117]

As mentioned above, the query processor generates a new copy of the query when it
binds a node. A query that has a subset of its nodes bound is called a partially refined
query. On the other hand, when all resolution steps are completed, all queries are refined,
i.e., all nodes are bound. We can notice that the resolution steps are of combinatorial
nature, as the query processor has to find all possible bindings to every node. However,
it is possible to start the query processing by a partially or completely refined query,
we will use this feature heavily in Chapter 6 when we talk about compliance violation
explanation.

Finally, for each refined query the query processor substitutes path edges in a query
with the set of nodes and edges in the process model that constitute the process sub-graph
in which the target node of the edge is reachable from its source.

To help explain how path edges are substituted, we define the transitive closure over
the control flow relation.
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Definition 4.7. [Transitive closure over control flow]
Let P = (A, E ,D,G,S,DataState, CF ,DF , CFC, ID) be a well-formed process
model. The transitive closure over the control flow relation is defined as CF∗. For
each node n ∈ A∪G ∪ E , we define the set of reachable nodes from n as [[n]]CF∗ = {m :

(n,m) ∈ CF∗}.

Based on the above definition, we can define the reachable nodes from some node x

under different conditions. For instance [[x]](CF\{(x,y)})∗ defines the reachable node from
node x where we removed the edge (x, y) from the control flow relation CF .

With the help of Definition 4.7, we can explain how path edges are evaluated. A
path edge (source, target, EXC) evaluates to a sub-graph in which all nodes are 1)
reachable from source node 2) target node is reachable from every node 3) every node
e ∈ EXC is not in the sub-graph and every node solely reachable by e is not in the
sub-graph either 4) edges between nodes in the sub-graph are those between these nodes
in the process model.

Definition 4.8. [Subgraph] Let N = A ∪ E ∪ G be the set of control flow nodes in a
process model P = (A, E ,D,G,S,DataState, CF ,DF , CFC, ID). Let EXC be the
set of nodes to be excluded from a path evaluation. Let CFEXC = CF \ {(x, y) : y ∈
EXC ∧ (x, y) ∈ CF} be the control flow relation without edges incoming to excluded
nodes. A function subgraph (a, b, EXC) := (N ′, E′), where a, b ∈ N , and EXC is the
set of nodes to be excluded, constructs the process sub-graph where:

• N ′ = {n : n ∈ [[a]]CF∗
EXC

∧ b ∈ [[n]]CF∗
EXC

},

• E′ = {(x, y) : x, y ∈ N ′ ∧ (x, y) ∈ CF}.

If N ′ = ∅, the subgraph is empty.

A candidate process model is said to match the refined query if it satisfies all path
edges and data flow dependencies as in Definition 4.9.

Definition 4.9. [Matching a query to a business process model]
A candidate process model P = (A, E ,D,G,S,DataState, CF ,DF , CFC, ID)

matches a query
Q = (AQ, EQ,DQ,GQ,SQ,DataStateQ,PQ,DFQ, isAnonymous,X , IDQ) if :

• ∀aq ∈ AQ ∧ isAnonymous(a) = false ∃ap ∈ A : label(aq) = label(ap). Each
non-anonymous activity must have at least one activity in the process model with
the same label,

• ∀e ∈ EQ∃e′ ∈ E where e′ is a resolvant for e. Each event in the query must have a
counterpart event in the process,

• ∀dq ∈ DQ∃dp ∈ D : label(dq) = label(dp). Each data object in the query must
have a data object in the process with the same label,
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• DataStateQ ⊆ DataState. Data object states in a query must be in the process
model,

• {((a,m), (n, a) : (a,m), (n, a) ∈ DFQ, a ∈ AQ∧isAnonymous(a) = false} ⊆
DF . All data flow relations for a non-anonymous activity in a query must be in-
cluded in the process model,

• ∀aq ∈ AQ∧ isAnonymous(a) = true∃ap ∈ A : ((aq,m) ∈ DFQ → (ap,m) ∈
DF) ∧ ((n, aq) ∈ DFQ → (n, ap) ∈ DF . All data flow edges must be satisfied
for anonymous activities,

• ∀(n,m) ∈ PQ → subgraph(n,m,X ((n,m))) ̸= ∅. a process must have a non
empty subgraph matching paths in the query.

4.3 BPMN-Q

BPM-Q by itself lacks a concrete syntax (visual notation). Thus, to be used, concepts have
to be given a visual notation. Figure 4.5 summarizes the symbols used to represent the new
concepts in the BPM-Q in the BPMN [1] syntax, introducing the visual query language
BPMN-Q. However, other modeling languages can be used as well. The overhead will
be to define visualization for the new concepts of BPM-Q in the selected language, e.g.,
EPC-Q, etc.

(a) Anonymous Ac-
tivity

(b) Path Edge (c) Path Edge with
Exclude

Figure 4.5: BPM-Q concepts expressed in BPMN notation (BPMN-Q)

After describing the concepts of BPM-Q and its visual representation as BPMN-Q,
we illustrate, through an example, the approach of query matching to a process. Figure 4.6
shows a process model where activity B occurs twice. The number attached to each node
is its identifier.

The query in Figure 4.7 looks for activities B, D with a path in between. To match
that query to the process model in Figure 4.6, the query processor starts with resolving
nodes in the query. Based on the resolution approach described above, we end up with
two refined queries as shown in Figure 4.8.

There are two refinements because activity B has two occurrences in the model while
activity D has only one occurrence. In the first refinement of Figure 4.8(a) activity B in
the original query was bound to activity B with ID 4 in the process model. In the second
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Figure 4.6: A process model with repeated activities

Figure 4.7: A BPMN-Q query

refinement of Figure 4.8(b) activity B of the original query was bound to activity B in
the process model with ID 7. In both refinements D was bound to activity D with ID 6.

(a) Refinement 1

(b) Refinement 2

Figure 4.8: Refinements of BPMN-Q in Figure 4.7

The final step to complete the matching is to substitute the path edge in the query
with its matching subgraph in the process. For the first refinement, the path edge is
matched to activity C with ID 5, the two control flow edges from B4 to C5 and from C5

to D6. However, the path edge in the second refinement does not find a match. There
is no sequence of nodes for which B7 and D6 belong. Thus, the query processor drops
the second refinement. At the end, the query processor returns the match to the first
refinement as the match to the original query.
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4.4 The Business Knowledge

As stated earlier, compliance management is a knowledge-intensive problem. The more
knowledge can be collected and encoded; the more automation we can achieve. Domain
knowledge reflects the way a business provides its added value. Moreover, it could
be seen as the unified view of the domain among the participants, e.g., stakeholders,
practitioners, business analysts, compliance officers, etc. The knowledge is a global
process-independent description of the business activities and objects. In this setting,
each business process can be seen as a composition of business activities and business
objects to achieve a set of business goals. Thus, it is rational to argue that each process
model should be consistent with the domain knowledge.

Each business activity provides a value by its own [151]. For instance, an activity Pay
back claim to customer by bank transfer provides the value of transferring the amount
of money claimed by a customer as its effect. However, for such an activity to perform
its job, there has to be a valid claim as an input. Moreover, having another activity Pay
back claim by a cheque, we could derive, based on the domain knowledge, that it is not
possible for the two payment activities to be both executed in the same process instance.

To make the concept more familiar, one might think of the notion of service reg-
istries [98] in service oriented architecture as a sub-concept for the domain knowledge.
There, each service is described independently in terms of its inputs and outputs on a
syntactical level. In a business domain knowledge, business activities are the counterpart
of services in a registry.

Aspects are the means to describe the various relations within a business domain.
Besides activities, aspects might consider data objects used in the business domain. Thus,
the domain knowledge does not specify all valid execution scenarios globally, but defines
constraints locally for each single activity. Therefore, it is independent of any concrete
process model.

Definition 4.10. [Domain knowledge]
The domain knowledge C is a 7-tuple

(Nact, A, T, asptype, cont∈T , pret∈T , postt∈T ), where:

• Nact is the set activities used within the business domain to accomplish atomic
actions that add value within a business process,

• A is the set of objects, which define model aspects. It describes the artifacts used
within the business domain,

• T is the set of aspect types,

• asptype : A → T is the function assigning aspect types to objects,

• cont : (Nact×Nact)∪({a : ∀a ∈ A, asptype(a) = t}×{a : ∀a ∈ A, asptype(a) =

t}) is the contradiction relation between activities and objects of the same aspect
type.
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• pret∈T ⊆ Nact × 2{a:∀a∈A,asptype(a)=t} is the relation defining the prerequisites of
activity execution in terms of objects.

• postt∈T ⊆ Nact×2{a:∀a∈A,asptype(a)=t} is the relation defining the result of activity
execution in terms of objects. Postconditions of an activity can be divided into
positive and negative, i.e.,postt∈T = post+t∈T ∪ post−t∈T

One aspect of a context is a tuple (Nact, At, t, asptype, cont, pret, postt), where t ∈
T ∧At = {a : a ∈ A, asptype(a) = t}.

Definition 4.10 captures aspects with three elements: sets A, T and function asptype.
Set A is the set of objects, describing the business environment from a certain perspective,
e.g., dependencies of activities on data objects or their semantic annotations. Set T
consists of the object types; an example is T = {activity, data, semantic Annotation}.
Function asptype specifies a type (element of set T ) for an element of A. Typification
of objects allows distinguishing aspects, e.g., distinguishing data flow from semantic
description of a process.

The three basic relations are pre, post, and con. They respectively describe pre-
conditions, postconditions, and contradiction relations. The pre relation describes what
objects with different (types) aspects that are required for a certain activity in order to
execute it. Similarly, the post relation specifies what are the effects of executing a certain
activity. For each activity there might be different sets of pre/post conditions to resemble
the notion of alternation. Taking data as an aspect to describe such relations, predata
would describe the precondition of each activity in terms of data elements. The con

relation describes contradictions between activities as well as other aspects in the context.
If two activities are known to be contradicting, at most one is allowed to appear in any
process instance. With these three relations, pre, post, and con we are able to express the
dependency and mutual exclusion between business activities and business objects which
are necessary for automating compliance checking [82], explanation and resolution.

We assume process models to be consistent with the domain knowledge: at least one
precondition for any activity in the model must be satisfied. Also, activities are assumed
to produce the effect, post condition(s), as described in the context. Moreover, for any
two contradicting activities, there must be no chance to execute both of them in a single
instance.

We assume the business knowledge to be present. We depend on this knowledge
to correctly model compliance requirements, explain violations, and to give automated
support, if possible, to resolve violations, if any.

4.5 Model Checking

Model checking [24] is a static verification technique where a behavioral system is
investigated to satisfy a property by exhaustively searching its state space. In case that a
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property is not satisfied, a model checker generates a counter-example. A counter-example
is a finite sequence of system states that violates the property.

Despite the various syntax of input languages for model checkers to describe systems,
they all adhere to a structure called the Kripke structure. A Kripke structure is a special
type of finite state machines where nodes represent states of the system, edges represent
possible transitions between states. Moreover, each state is associated with a set of
propositions that are true in that state. Over a Kripke structure, model checking algorithms
can construct the state space in order to check the property. Kripke structures are used to
describe systems with finite states and infinite transitions over these states.

The second input to the model checker, the property, is usually described in a temporal
logic language. The following subsections will provide more details about generating a
Kripke structure from a process model and about temporal logic languages respectively.

Definition 4.11. [Kripke Structure] Let AP be a set of non-empty atomic propositions.
A Kripke structure is a tuple M = (S, si, R, L) where:

• S is a finite set of states,

• si is a dedicated initial state,

• R ⊆ S×S is a transition relation, for which it holds that ∀s ∈ S∃s′ ∈ S : (s, s′) ∈
R

• L : S → 2AP is a labeling function associating a set of propositions with each
state.

Temporal Logic (TL) is an extension of classical proposition calculus that allows
checking the truth value of propositions according to time. It is a variation of modal logic
where new operators are used to allow expressing properties based on time. Temporal
logic was first introduced by Arthur Prior in the sixties of the last century. It was further
developed by computer scientists. Currently, there are two major variants of temporal
logic linear temporal logic LTL [109] and computational tree logic CTL [35]. The
expressiveness of the two logics is incomparable. We will briefly introduce both LTL,
with both future and past time operators, and CTL as they are the foundation for formal
compliance checking approaches contributed within this thesis.

4.5.1 Linear Temporal Logic

Linear temporal logic was first introduced by Pnueli [109]. In the original setting
of LTL, temporal operators were concerned only with the future direction time. A
major development was by the introduction of past time operators [160]. With LTL, the
execution of a system, a process in our case, is seen as sequences, of states. For an LTL
property to hold, it has to be satisfied by all execution sequences of the system.
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Assuming a set of atomic propositions AP that describe facts about behavior of a
system, LTL defines a set of temporal operators in addition to classical logical operators
(¬,∨,∧,→)

Definition 4.12. [LTL Syntax] Let AP be a set of atomic propositions. LTL for-
mulas can be defined according to the grammar θ ::= ⊤|⊥|p|¬θ|θ ∧ θ|θ ∨ θ|θ →
θ|Fθ|Gθ|θUθ|Oθ|θSθ, where p ∈ AP .

These operators are used to describe the truth value of propositions describing the
behavior of a system over time. So, an execution of the system M = (S, si, R, L)

can be seen as a trace, a sequence of states, σ = s0, s1, . . . where each state si, i > 0,
is associated with a set of propositions L(si) that are true in that state. We say that
proposition p ∈ P is true at state si by si |= p.

Informally, the semantics of the different temporal operators are defined as follows

• F(θ): in some future state of the system θ will hold.

• G(θ): θ hold in the current state and in every future state.

• ωUθ: ω is true in all states until the point (state) θ becomes true. There has to be a
state where θ becomes true.

• O(θ): O is the history-looking counterpart of the F operator. That is, at the state
evaluating O(θ), there must have been some previous state where θ was true.

• ωSθ: similarly, S is the history-looking counter part of the U operator. That is, at
the state evaluating ωSθ, ω was true since the state where θ was true.

Definition 4.13 formally describes the semantics of the LTL operators.

Definition 4.13. [LTL Semantics] Let σ = s0, s1, . . . be a word in Σ∗ with Σ = 2P . Let
θ be an LTL formula. Given a trace σ and a position i The relation σ.i |= θ is defined as:

• σ.i |= ⊤ for any i,

• σ.i ̸|= ⊥ for any i,

• σ.i |= p if p ∈ L(si),

• σ.i |= ¬θ1 if σ.i ̸|= θ1,

• σ.i |= θ1 ∧ θ2 if σ.i |= θ1 and σ.i |= θ2,

• σ.i |= θ1 ∨ θ2 if σ.i |= θ1 or σ.i |= θ2,

• σ.i |= θ1 → θ2 if σ.i ̸|= θ1 or σ.i |= θ2,

• σ.i |= Fθ if ∃k ≥ i : σ.k |= θ,
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• σ.i |= Gθ if ∀k ≥ i : σ.k |= θ,

• σ.i |= θ1Uθ2 if ∃k ≥ i : σ.k |= θ2 and ∀j, i ≤ j < k, : σ.j |= θ1,

• σ.i |= Oθ if i ≥ 1,∃k < i : σ.k |= θ,

• σ.i |= Hθ if i ≥ 1,∀0 ≤ k ≤ i : σ.k |= θ,

• σ.i |= θ1Sθ2 if ∃k ≤ i, σ.k |= θ2 and ∀k < j ≤ i, σ.j |= θ1.

If the behavior of a system M is nondeterministic, a set of sequences Ω represents
the different possibilities of execution. For a system M to satisfy an LTL formula θ,
written as M |= θ, all sequences of M have to satisfy θ.

Definition 4.14. [LTL property satisfaction] Let Ω be the set of traces of a system M.
M is said to satisfy an LTL formula θ, M |= θ if ∀σ ∈ Ω∃i : σ.i |= θ.

4.5.2 Computational Tree Logic

Computational tree logic (CTL) is another language to express properties for model
checking. Unlike LTL, CTL is designed to handle nondeterminism in the behavior of a
system M. Thus, in addition to introducing temporal operators; it also introduces global
and existential quantifiers.

Definition 4.15. [CTL Syntax] Let AP be a set of atomic propositions. CTL formulas can
be defined according to the grammar θ ::= ⊤|⊥|p|¬θ|θ∧θ|θ∨θ|θ → θ|AFθ|EFθ|AGθ

|EGθ|A[θUθ]|E[θUθ], where p ∈ AP .

With respect to a system M = (S, si, R, L), for each state s ∈ S, there could be
more than one subsequent state. Recursively, for each subsequent state there could be
more than one subsequent state, etc. Thus, starting at any state s ∈ S we could have
multiple paths to go. CTL gives the possibility to express temporal formulas over all of
these paths or some of these paths.

Definition 4.16. [CTL Semantics] Let M = (S, si, R, L) be a transitions system. Let θ
be a CTL formula and s ∈ S. M, s |= θ is defined as:

• M, s |= ⊤,

• M, s ̸|= ⊥,

• M, s |= p if p ∈ L(s),

• M, s |= ¬θ if M, s ̸|= θ,

• M, s |= θ1 ∧ θ2 if M, s |= θ1 and M, s |= θ2,

• M, s |= θ1 ∨ θ2 if M, s |= θ1 or M, s |= θ2,
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• M, s |= θ1 → θ2 if M, s ̸|= θ1 or M, s |= θ2,

• M, s |= AFθ if ∀ path p = s, s2, s3, . . . there is a state sj such that M, sj |= θ,

• M, s |= EFθ if ∃ path p = s, s2, s3, . . . there is a state sj such that M, sj |= θ,

• M, s |= AGθ if ∀ path p = s, s2, s3, . . . for each state sj on each p M, sj |= θ,

• M, s |= EGθ if ∃ path p = s, s2, s3, . . . and for each state sj on that path
M, sj |= θ,

• M, s |= A[θ1Uθ2] if ∀ path p = s, s2, s3, . . . there is a state sj such that M, sj |=
θ2 and ∀i < j,M, si |= θ1,

• M, s |= E[θ1Uθ2] if ∃ path p = s, s2, s3, . . . there is a state sj such that M, sj |=
θ2 and ∀i < j,M, si |= θ1

CTL and LTL expressiveness is incomparable [146]. However, there is a common
set of specifications that can be expressed in both LTL and CTL [85]. For this common
space, CTL and LTL model checkers practically perform similarly [18].

While both LTL and CTL are capable of formalizing compliance requirements, as
will be discussed in Chapter 5, CTL can formalize violations scenarios, as will be shown
in Chapter 6, due to the ability to express existential formulas.

There are well-known logical equivalences in CTL§. We list some of them useful for
the work presented in this thesis.

AGθ ≡ ¬EF(¬θ) (4.1)

AFθ ≡ ¬EG(¬θ) (4.2)

A[θ UΨ] ≡ ¬(F[(¬Ψ)U ¬(θ ∨Ψ)] ∨EG(¬Ψ)) (4.3)

4.5.3 Temporal Logic Querying

Usually, model checking is an iterative process where the modeler gains more under-
standing of the system each time a property is violated. To enhance the understanding
of system behavior and to gain more feedback, Chan [21] proposed to develop temporal
logic queries (TLQ). In temporal logic queries, user puts a placeholder ?; the query
solver has to find the strongest propositional formula p, formula composed of atomic
propositions and classical logical connectors, that replaces the placeholder and make
the resulting formula true. For instance, the query AG(?) simply asks about the model
invariants. This mechanizes and speeds up the trial and error effort of analyzing a de-
sign [20]. To help the user focus more on specific properties, temporal logic queries

§These equivalences can be proved by contradiction in a straightforward manner
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can be restricted(projected) on a specific set of propositions. For instance AG(?x,y) is
restricted version of the previous query where result is a propositional formula based
on x, y only. Model checking is a subproblem of temporal logic querying. In model
checking, we ask only Boolean queries.

Temporal logic queries are also of great value to explain violations. Consider a CTL
formula AG(x ∧ y → AF(z)) that is checked against some system M = (S, si, R, L).
In case of violation, model checkers generate counter examples. However, counter
examples are not always useful. It simply finds a sequence of states that causes the
violation. In our case, there is some state sj ∈ S where x, y ∈ L(sj) and there is no
further state sk reachable from sj where z ∈ L(sk). Suppose that the user issues the
following temporal logic query AG(? → AF(z)). The solver returns x ∧ y ∧ r as a
value for ?. In this case, the user got more useful feedback and learned more about the
model.

Definition 4.17. [Temporal Logic Query Checking] Let AP be a set of non-empty atomic
propositions and AP ′ ⊂ AP . Let PF be the set of propositional formulas the can
be made from atomic propositions in AP . Let M be a Kripke structure and let φ be
a temporal logic query, both are defined over AP . The query checking problem is to
compute the set {ϵ ∈ PF (AP ′)|M |= φ[ϵ]}.

Definition 4.17 formally describes the problem of temporal logic query checking.
The set AP ′ represents the atomic propositions relevant to the query. Thus, the query
solver (checkers) finds the set of strongest propositional formulas ϵ that would make the
Kripke structure M satisfy the temporal logic formula φ[ϵ] obtained by substituting ϵ for
the place holder in the query φ.

Generally, the temporal logic query solving can be reduced to several model checking
problems [21, 20]. The worst case complexity for a TLQ solver is to model check 22

|AP ′|

formulas with length at most |φ|+O(2|AP ′|). However, there were research on developing
more efficient solvers [22].

In Chapter 6, we employ temporal logic querying techniques to help explain and
provide useful feedback to the user. As will be discussed, when data related compliance
rules are violated; temporal logic queries are issued to extract specific data conditions
that caused the violation. Thus, the user focuses on parts of the process model that needs
consideration. Also, we show how domain-specific knowledge can be used to simplify
solving temporal queries to linear time model checking rather than its doubly exponential
nature.





Chapter 5

Modeling and Checking
Compliance Rules

The core objective of this thesis is to support automated checking of compliance rules
against business process models at design-time. In this situation, control flow and data
flow aspects are feasible to check. In many cases, it is necessary to ensure that certain
activities exist in the process model. Also, execution ordering between activities must be
verified. Moreover, execution ordering might be required to hold only under certain data
conditions. Thus, the control flow, the data flow and the interplay between them need to
be expressed in compliance rules.

Model checking [24] provides a formal approach for static verification with acceptable
performance [154, 34]. However, an obstacle for directly employing the model checking
approach is that the specification language for rules, i.e., temporal logic, is too technical
to be used by business people. Moreover, it gives a very wide range of rules to be
specified. However, certain patterns of rules might be sufficient to express compliance
requirements [33, 39, 94].

To overcome this obstacle, we provide the users with a simple visual language to
express compliance rules, BPMN-Q. As was discussed in Section 4.3, BPMN-Q is a
visual language to query the structure of process models. It uses notations very similar to
that used for designing process models. Also, BPMN-Q provides means for abstraction
over process models details, e.g., path edges and anonymous activities. This matches the
abstract and declarative nature of compliance rules, cf. Req. 1.

We follow a pattern-based approach to express compliance rules [42, 33]. Each
pattern is expressed visually in BPMN-Q. Thus, it helps the user specify rules without
dealing with complexity of formal languages [9, 16, 14]. On the other hand, each pattern
is mapped into a formula in temporal logic, enabling automated verification. Patterns
are mapped into computation tree logic CTL [35] and past time linear temporal logic
PLTL [160]. The purpose of providing these various mappings is to ensure independence
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from a specific model checking software (cf. Spin [59] vs. Nusmv [23]). Meanwhile, we
will benefit from certain mappings when discussing issues about consistency checking
among rules.

The rest of the chapter is organized as follows. We discuss the different categories of
compliance rules we address in Section 5.1. Section 5.2 explains how rules are modeled as
BPMN-Q queries and what are their counterpart temporal logic formulas. In Section 5.3
we address the issue of consistency checking among related rules. Checking rules against
processes is discussed in Section 5.4. In Section 5.5 we give an example case study for
modeling and checking compliance that we extracted from guidelines for anti money
laundering [25]. Section 5.6 summarizes the chapter and links to the next chapter.

5.1 Categories of Compliance Rules

Compliance rules can be divided into three categories a) Control flow rules b) Data flow
rules c) Conditional control flow rules.

5.1.1 Control Flow Rules

Control flow rules focus on activities and their execution relationships. For instance,
certain activities must be present or absent in process models. An example would be
“Complaints must always be archived”. Regarding to relationships, activities might be
required to execute in a certain order or must be exclusive to each other.

Based on work in [33], we can further categorize rules according to the concept of
a scope. A scope has a temporal duration that might be lower- or upper-bounded. A
scope is either global, before, after, or between. Activities, and later on data conditions,
determine the boundary of a scope. A global-scope is bounded by the start and end
of the process respectively, the whole process. An after-scope is lower-bounded by
some activity. A before-scope is upper-bounded with an activity. Between-scope is both
lower- and upper-bounded with activities. Within a scope, an activity may be required to
exist/absent. Depending on the scope execution ordering between two activities maybe
either precedence (execution history) or response (execution future). Figure 5.1 describes
the different scopes.

Figure 5.1: Scopes for compliance rules
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5.1.2 Data Flow Rules

It might be necessary to check that certain data conditions must hold at a specific point in
a process model, e.g., the point an activity is about to execute. An example would be at
shipping time of goods payment must have been received. Also, to evaluate whether the
process model always achieves the specified goals, such rules can be employed.

5.1.3 Conditional Control Flow Rules

Conditional control flow rules are variants of control flow rules, cf. 5.1.1 where the
ordering is only required to hold under certain data conditions. Several data conditions
might be required to hold in order to trigger the checking of such rules. Also, data
conditions can play the role of a scope for the checking of the compliance rule.

5.2 Modeling Compliance Rules

We use BPMN-Q, the concrete syntax of BPM-Q using BPMN notation, to visually
express compliance requirements as queries. As stated earlier, this helps the modeler
abstract from the technical details of temporal logics. However, in order to express the
different semantics of compliance requirements, we had to extend BPMN-Q elements.

5.2.1 Extensions of BPMN-Q

Originally, BPMN-Q was developed to express queries on the structure of process models,
see Section 4.2. However, for compliance checking, we need to express queries not only
on the structure of business processes but also on their behavior. Thus, we extended
BPMN-Q by stereotyping some of its elements.

The path edge of BPMN-Q is a means to abstract over process details between two
nodes. However, for reasoning about the behavior of the process between two nodes, path
edge is not sufficient. For instance, to distinguish between the precedence and response
patterns, discussed later, we stereotype the path edge with «Precedes» and «Leads To» to
express the difference between precedence and response patterns respectively.

Data flow rules require to check whether specific data conditions hold at the point
an activity is about to execute. Nevertheless, it is not necessary that these conditions are
explicitly mentioned in the process model. On the other hand, some conditional rules, for
instance, require that in case an activity A executes and produces a specific data result,
then activity B is required to occur. In this situation, an explicit data flow is targeted. To
distinguish between explicit and implicit data flow, we extend the data flow edge with the
behavioral stereotype.

We reflect these extensions on the formal definition of BPMN-Q queries by adding
a new function T YPE : PQ ∪ DFQ → {none, leadsto, precedes, behavioral} where
path and data flow edges can be annotated with either none, reflecting the structural
paths and data flow edges, leadsto to reflect the path edge looks for response between
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its source and target nodes respectively, precedes to reflect that the path edge looks for
precedence between its source and target nodes respectively, or behavioral to indicate
that the data flow edge is for behavioral preconditions as will be discussed later. Thus, a
behavioral BPMN-Q query is
Q = (AQ, EQ,DQ,SQ,DataStateQ,PQ,DFQ, isAnonymous,X , T YPE).

5.2.2 Predicates Used in the Formalization

We use the temporal operators discussed in Section 4.5. In addition, to reason about
the states of execution of activities and data states for data objects we use the following
predicates:

• The predicate state(dataObject, stateV alue) describes the fact that a data object
assumes a certain state.

• The predicates ready(activity) and executed(activity) state that a certain activity
is ready to be executed or has already been executed, respectively.

• The predicates start and end to indicate the start and end of execution of the
process respectively.

Usually an activity life cycle consists of several states, e.g., initial, ready, running,
executed, with transitions indicating the possible changes among states. This detailed
activity life cycle is adequate for a process execution engine. We follow a simple activity
life cycle for the verification purpose. That is, an activity has two possible states ready
and executed, as described above, with one transition from ready to executed. Also,
we assume that process models are compliant with the data objects’ life cycle [74]. That
is, the data object state changes by the execution of activities respect the object life cycle.

5.2.3 Modeling Control Flow Rules

We introduce seven patterns describing the presence/absence of activities within a scope.

5.2.3.1 Global-scope Presence

A single activity might be required to execute in all process instances, e.g., in a shipment
process the received packets must be inspected in every case. Thus, we call such pattern
a global presence as shown in Figure 5.2.

Figure 5.2: Global-scope presence pattern
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The PLTL formula for global-scope presence is

G(start → F(executed(A))) (5.1)

The above formula is not the only way to model that pattern. Simply the sub formula
F(executed(A)) is equivalent. This is true since start holds only in one state through the
execution of the process, process initiation, and there is no chance for it not to hold, as
we consider well formed process models. However, the reason to model the pattern that
way is to establish a generic template in which the change of pattern scope is achieved by
changing formula’s condition part, see after-scope presence pattern below.
The CTL formula for global-scope presence is

AG(start → AF(executed(A))) (5.2)

The two formulas above formally reflect that requirement of executing a certain activity
in all instances. Since start is guaranteed to occur in any process, the process has to
execute activity A in order to be compliant.

5.2.3.2 Global-scope Absence

It might be the case that certain activity must never execute, i.e., such an activity is absent
from the process model. This is called the global absence as shown in Figure 5.3.

Figure 5.3: Global-scope absence pattern

The PLTL formula for global-scope absence is

G(start → ¬executed(A)U end) (5.3)

The CTL formula for global-scope absence is

AG(start → A[¬executed(A) U end]) (5.4)

Both formulas express the requirement of not executing an activity by assuring that
there is no state of the process execution, from start to end, where A was executed.

5.2.3.3 Before-scope Presence

Before-scope presence, also known as precedence [33], rules require that the execution of
an activity, B, is preceded by the execution of another activity, A. This requirement does
not mean that B must be immediately preceded by A. There might be other activities in
between. However, each time B is ready to execute, A must have had executed before.
Figure 5.4 shows the BPMN-Q query to represent this pattern.
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Figure 5.4: Precedence pattern

The PLTL formula for before-scope presence is

G(ready(B) → O(executed(A))) (5.5)

Formula 5.5 expresses the precedence relation by checking that each time activity B

is about to execute ready(B), activity A must have been executed at least once before,
the temporal operator O. It is possible to represent this pattern in LTL without past
operators. But with the use of past operators we can produce shorter specifications that
are easier to understand.
The CTL formula for before-scope presence is

¬E[¬executed(A)U ready(B)] (5.6)

CTL has no past operators. However, we can still describe the precedence relation by
ensuring that there is no execution path where B can be ready to execute without having
A executed before.

5.2.3.4 Before-scope Absence

An activity A might be required to be absent before the execution of another activity
B. An example rule is “if you pay claim then there must not be any fraud investigation
before", this type of rules is addressed in the BPMN-Q query in Figure 5.5.

Figure 5.5: Before-scope absence pattern

The PLTL formula for before-scope absence is

G(ready(B) → ¬executed(A) S start) (5.7)

The formula states that each time B is ready to execute it must be true that A was
never executed since the start of the process.
The CTL formula for before-scope absence is

¬EF(start ∧EF(executed(A) ∧EF(ready(B)))) (5.8)
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Here we express the fact that A must never be executed before B by stating that: there
must be no execution path that goes from the start of the process to activity A and
eventually to the activity B.

5.2.3.5 After-scope Presence

The after-scope presence, also known as response, pattern states that after the execution
of an activity, A, activity B has to eventually be executed. For instance, for each claim
received; a reply has to be sent to the customer. Within the scope lower bounded with A,
B must be executed at some point. The representation of such a pattern in BPMN-Q is
shown in Figure 5.6.

Figure 5.6: Response pattern

Formalization

The PLTL formula for this pattern is

G(executed(A) → F(executed(B))) (5.9)

The CTL formula is

AG(executed(A) → AF(executed(B))) (5.10)

Both formulas simply state that after activity A is executed; activity B must be
eventually executed.

5.2.3.6 After-scope Absence

Similar to the before-scope absence pattern, it might be required to express that certain
activities are forbidden to be executed after execution of another activity. For example,
after confirming a purchase order; it cannot be cancelled. The query in Figure 5.7 shows
a BPMN-Q query to capture this requirement.

Figure 5.7: After-scope absence pattern
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The PLTL formula for after-scope absence pattern is

G(executed(A) → ¬executed(B)U end) (5.11)

The CTL formula for that pattern is

AG(executed(A) → A[¬executed(B) U end]) (5.12)

Both formulas state that after execution of activity A there is no chance to execute B in
the remaining part of the process. Note the analogy between the above two formulas on
the one hand and Formulas 5.3, 5.4, respectively, on the other hand.

5.2.3.7 Between-scope Absence

An example of this rule is “When a new order is received; it is not allowed to forward it
to finance department until its bill of material is calculated". In this situation, between the
execution of two activities, it is forbidden to execute certain other activities. However, the
emphasis maybe put on one of the two boundary activities. This is reflected in Figure 5.8.
In Figure 5.8(a), activity C is required to execute after A while in between there is no
chance to execute B. We call this pattern response with absence. On the other hand, we
might want to express precedence with absence. That is, we need to check that whenever
C is executed; A must have been executed before without executing B in between. The
BPMN-Q query for the latter case is shown in Figure 5.8(b).

(a) Response Pattern with Absence = Between-scope Absence Type I

(b) Precedence Pattern with Absence = Between-scope Absence Type II

Figure 5.8: Between-scope absence pattern

The PLTL formula for response with absence (between-scope absence type I) pattern
is

G(executed(A) → ¬executed(B)U executed(C)) (5.13)

The formula 5.13 is a variant of formula 5.11 where end is replaced with executed(C) to
set the upper bound of a scope lower bounded with executed(A).
The PLTL formula for precedence with absence (between-scope absence type II) pattern
is

G(ready(C) → ¬executed(B) S executed(A))) (5.14)
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Similarly, this formula is a variant of the formula 5.7.
The CTL formula for response with absence (between-scope absence type I) pattern is

AG(executed(A) → A[¬executed(B) U executed(C)]) (5.15)

The CTL formula for precedence with absence (between-scope absence type II) pattern is

¬E[¬executed(A)U ready(C)]∧
¬EF(executed(A) ∧EF(executed(B) ∧EF(ready(C))))

(5.16)

The above CTL formula captures the history-looking nature of the rule by stating
that it is not possible to find any execution path in which A is not executed before C

is reached. And, it also not possible to find an execution path where A executes and B

afterwards and finally C is reached.

5.2.4 Modeling Data Flow Rules

To ensure compliance, it might be interesting to be sure that data manipulated by a certain
business process will always have certain values at some point of the process execution,
e.g., when an activity is about to execute. This, for instance, could be a way to measure
the compliance of a process with an object life cycle [118].

To express data conditions, the data object notation is used in BPMN-Q to express
condition of data values (states). In process models there must be explicit data flow edges
from/to data elements/activities to express preconditions/effects respectively. However,
it is possible in a compliance rule to check a data condition at the start of execution
of an activity that is not explicitly mentioned in the process. To differentiate between
explicit and implicit data conditions, we extended BPMN-Q with a new type of edge
called behavioral data flow edges, cf. Section 5.2.1. This type of edges is distinguished
by the double arrow head on the edge. Figure 5.9 shows data flow rules as BPMN-Q
queries.

(a) Activity (b) End Event

Figure 5.9: Data flow pattern
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If it is required to model a complex data condition involving several data objects, a
data object node is added for each data object state, cf. Figure 4.3. Also, a behavioral data
flow edge is added to connect the data object to the activity. Moreover, activity symbol
can be replaced with an event, Figure 5.9(b), to indicate the point in the process where
the condition has to hold.

Formalization

Recalling the discussion about data objects and their access semantics in Section 4.1.3.2,
a data condition on a single data element d can generally be expressed as

dataConditiond =


(d,s)∈DataStateQ

state(d, s) (5.17)

This means, we can express that the data object d is required to be in any of the sates
relevant to the compliance rule. Having multiple behavioral data flow edges from different
data objects is interpreted as the conjunction of conditions on the different data objects
states. Thus, the general data condition form is shown in Formula 5.18, based on the
single data object condition from Formula 5.17.

dataCondition =


d∈DQ

dataConditiond (5.18)

The PLTL formula for the data flow pattern is

G((ready(A)/end) → dataCondition) (5.19)

The CTL formula can be derived by adding CTLA quantifiers

AG((ready(A)/end) → dataCondition) (5.20)

Both formulas check that in each state the activity is ready to execute, or the process
terminates, the data condition has to hold. In the above and upcoming formulas, we use
the notation (p/q) to indicate that either p or q can appear in the formula. We use this
notation to reduce the number of formulas.

5.2.5 Modeling Conditional Control Flow Rules

By attaching data conditions to activities appearing in control flow rules, we can get
several variants that refine the situations in which presence or absence of activities within
scopes is required to hold. Also, in some cases, the compliance officer might be interested
in the occurrence of the data condition without having to explicitly state which activity
caused it. Figure 5.10 shows the possible data refinements for future-looking («Leads to
»paths) control flow rules.

As shown in Figure 5.10, it is possible to attach data conditions to the source (an-
tecedent) of the rule, or to the target (consequent) of the rule. Data refinement is repre-
sented as output data resulting from activities. Activities with “@” symbol are called
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Figure 5.10: Possible data refinements for future-looking control flow rules

anonymous activities. With an anonymous activity associated with a data condition, the
modeler abstracts from specific activities and focuses on the data condition of interest.
Note also that for data conditions at the consequent (target) part of the rule, it is possible
only to use anonymous rather than specific activities. However, not every combination
of source, path edge, and target in Figure 5.10 makes sense. For instance, having a
conditional activity at the source with the upper path edge and an end event as the target
carries no useful property for compliance modeling. We discuss the combinations of
interest in the rest of this section.

Figure 5.11: Possible data refinements for history-looking control flow rules

On the other hand, Figure 5.11 shows the possible data conditions refinement for
history-looking («Precedes »paths). For the source (consequent) of the rule, it is possible
to attach data conditions to both activities and anonymous activities. For the target
(antecedent) of the rule, only input data conditions are allowed. Also meaningful combi-
nations of sources and targets are discussed in the rest of this section.
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In either cases future or history looking, absence patterns, where the exclude property
refers to an activity, could as well refer to data conditions.

5.2.5.1 Effect Rules

In Section 5.2.3.1 we discussed the global-scope presence pattern where an activity is
required to be executed in any process instance. Utilizing data conditions, we can derive
the effect presence pattern as shown in Figure 5.12. By effect, we mean a data condition
(result) that is required.

Figure 5.12: Global-scope effect presence pattern

To show the use for that new pattern, imagine a claim handling situation where a
compliance rule requires that “for each claim there has to be a reply to the customer”.
One possibility is to model that rule as a “Reply Customer” activity is response to the
“Start” event. However, checking this rule against the process model in Figure 5.13 fails.
However, semantically, the model satisfies the requirement. On the other hand, if the rule
is modeled using the effect presence, the requirement is better captured and the process is
now compliant.

Figure 5.13: A claim handling process

The global-scope effect absence case could be modeled similar to the one in Figure 5.3.
The difference is that the to-be-absent activity is replaced with the data condition (effect)
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to be absent.
After-scope variants of this pattern can be obtained by replacing the start event in

Figure 5.12 with an activity. Figure 5.14 shows the after-scope effect presence pattern.
The after-scope effect absence could be derived in the same way as global-scope effect
absence.

Figure 5.14: After-scope effect presence pattern

Formalization

As we discussed, the effect is merely a data condition that is expected to occur. For-
mula 5.18 describes how the effect is represented.

The PLTL formula for the global/after -scope effect presence is

G((start/executed(A)) → F(effect)) (5.21)

We can notice that the only difference between the above the formula and Formu-
las 5.1, 5.9 is that the target activity is replaced with the data effect.
The CTL formula for global/after -scope effect presence is

AG((start/executed(A)) → AF(effect)) (5.22)

Similarly, the PLTL formula for global/after -scope effect absence is

G((start/executed(A)) → ¬effect U end) (5.23)

The CTL formula for global/after -scope effect absence is

AG((start/executed(A)) → A[¬effect U end]) (5.24)

5.2.5.2 Conditional After-scope Presence

It might be required to execute a certain activity as a response to occurrence of a certain
data condition. For instance, in a banking process, a rule could be “In case that a due
diligence evaluation fails, the respondent back must be added to a black list”. Figure 5.15
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Figure 5.15: conditional after-scope presence pattern

shows a BPMN-Q query capturing conditional presence pattern. This pattern could also
be referred to as response to condition.

To model the occurrence of the data condition; an (anonymous) activity @A/A is
associated to the data condition. The use of anonymous activity gives the modeler the
means to abstract from the specific activity responsible for generating this condition.
Activity B is required as a response for that condition.

This pattern can be considered as a refinement for the global-scope and after-scope
presence patterns discussed in Sections 5.2.3.1, 5.2.3.5 respectively.

Similar to the discussion in Section 5.2.5.1 a data effect, i.e., an anonymous activity
attached to an effect, could be modeled as a response to a data condition.

Formalization

The formalization of this pattern is not straightforward. The problem is that inappropriate
modeling of data conditions might lead to false alarms during checking. For instance,
consider the process excerpt in Figure 5.16. A rule could be that whenever activity A

is executed and state(D, bad) results as the effect of A, C must be executed thereafter.
Formally, G(executed(A) ∧ state(D, bad) → F(executed(C))).

Model checking this formula with the process excerpt in Figure 5.16 results in a false
alarm. That is, the model checker decides that the formula is not satisfied. To explain
this, consider the case where A is executed for the first time and results in state(D, bad).
At this execution state, the model checker records that the condition for the rule is true.
Afterwards, the process executes B and decides to take the yes branch of the XOR
decision. At this point the process executes A again with the decision to set D to good.
From that point, the process continues without executing C at all making the model
checker to signal the violation.

The problem with the false alarm is that the formula is under-specified. The data
condition is not well specified. In other words, we require that C executes only when D

takes the value bad and never takes the value good afterwards. We can say that bad and
good are contradicting data states. We assume the knowledge about contradicting data
states to be available in the domain knowledge, cf. Section 4.4. For each data state s,
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Figure 5.16: A process excerpt with a false alarm

we can find the set of contradicting data states CONs. Thus, we need to explicitly add
contradicting conditions to the formula.

contraCondition(d,s) = G(


s′∈CONs

¬state(d, s′)) (5.25)

The correct data condition for this case would be

stableConditionLTL =


d∈DQ

(


(d,s)∈DataStateQ

(state(d, s)∧G(


s′∈CONs

¬state(d, s′))))

(5.26)
Now, model checking the formula G(executed(A) ∧ state(D, bad)

∧ G¬state(D, good) → F(executed(C))) gives a positive result. However, if we ab-
stract from specifying the execution of activity A and focus only on the data condition, i.e.,
we model check the formula G(state(D, bad)∧G¬state(D, good) → F(executed(C)))

we get a negative result. The reason for this negative answer is the fact that whenever
state(D, bad) ∧ G¬state(D, good) holds true for some state it will remain true in all
subsequent states until the data object D changes its value to some other value or will
remain ever so. Referring to Figure 5.16, for the execution state that occurs immediately
after the XOR join, call it sj , sub-formula state(D, bad) ∧ G¬state(D, good) is true,
since no activity changes the value of D. Thus, at that state sj the model checker records
that the condition is true. However, assuming that no further execution of C, model
checker fails to find any future execution state where executed(C) will hold. Thus,
signaling violation to the formula.
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Conceptually, the model is correct since C is executed in response to the first occur-
rence of the data condition state(D, bad) ∧G¬state(D, good). The fact that the data
condition holds true afterwards must not indicate failure. There are two possibilities to get
rid of this false alarm. The first way is to be sure of having the predicate executed(act)
always as part of the rule’s condition. Even if the user uses an anonymous activity at
rule specification time, it is always possible at checking time against a specific process
model to resolve the activity(ies) that generate that data condition. Assuming a function
update(d,s) that returns all activities in a process model that update the data object d
to the state (value) s, we can have the following representation of conditional presence
pattern.
The PLTL formula for conditional presence pattern is

G((


A∈


(d,s)∈DataStateQ
update(d,s)

executed(A)) ∧ stableConditionLTL →

F(executed(B)/effect)) (5.27)

The stableConditionLTL in the above formula refers to Formula 5.26. In all subse-
quent formulas where stableDataConditionLTL appears, it refers to Formula 5.26.

The same correct data condition above can be used within CTL formulas. However, a
small syntactical change has to be done by adding the for all quantifier before the global
operator.

stableConditionCTL =


d∈DQ

(


(d,s)∈DataStateQ

(state(d, s)∧AG(


s′∈CONs

¬state(d, s′))))

(5.28)
The CTL formula for conditional presence pattern is

AG((


A∈


(d,s)∈DataStateQ
update(d,s)

executed(A)) ∧ stableConditionCTL →

AF(executed(B)/effect)) (5.29)

The stableConditionCTL in the above formula refers to Formula 5.28. In all subse-
quent formulas where stableDataConditionCTL appears, it refers to Formula 5.28.

The other possibility to reflect that response is needed only for the first occurrence
of the data condition, in case that the user abstracts from a specific activity, is to ex-
plicitly model that in the temporal logic formula. Referring to the process excerpt of
Figure 5.16 and the LTL formula we had so far G(state(D, bad)∧G¬state(D, good) →
F(executed(C))), we can modify that LTL formula to look like G(state(D, bad) ∧
G¬state(D, good) ∧ ¬O(state(D, bad) ∧ G¬state(D, good)) → F(executed(C))).
We modified the condition of the formula by looking for the very first state in which the
data condition holds. That is the state which is not preceded by any other state where the
data condition held. To represent the checking for the first state in which the data condition
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holds in CTL, we need to think it differently in the absence of past time operators in CTL.
That is, we require the negation of the data condition to hold until a state where the
condition holds and C executes thereafter, or the condition never holds. In other words,
we must not find any sequence of states where the condition ceases from holding and in
some states it holds without C executing afterwards. Formally, ¬E[¬(((state(D, bad) ∧
G(¬state(D, good))))∧AF(executed(C)))U (((state(D, bad)∧G(¬state(D, good))))∧
¬(((state(D, bad) ∧G(¬state(D, good)))) ∧AF(executed(C))))].

5.2.5.3 Conditional Before-scope Presence

There are many ways where the before-scope presence (precedence) pattern , see Sec-
tion 5.2.3.3, can be refined with data conditions. A data condition could be attached to
the source, target activity, or both.

Precedence to conditional activity execution is one case where we need to be sure
that an activity A has been executed before another activity B executes under a data
condition. An example, “before archiving confirmed order; a copy must have been sent to
the marketing department”. This pattern is captured in Figure 5.17.

Figure 5.17: Precedence to conditional activity execution pattern

Conditional Precedence is another case where the execution of activity B must have
been preceded by execution of an activity A that resulted in a data condition. In some
cases, we can abstract from the specific activity A using anonymous activity. This is
captured in the BPMN-Q query shown in Figure 5.18.

Figure 5.18: Conditional precedence pattern
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Finally, both cases discussed above can be merged by attaching data conditions on
both activities.

The PLTL formula for precedence to conditional activity execution is

G(ready(B) ∧ dataCondition → O(executed(A))) (5.30)

The CTL formula for precedence to conditional activity execution is

¬E[¬executed(A)U (ready(B) ∧ dataCondition)] (5.31)

In the above two formulas dataCondition refers to Formula 5.18.
The PLTL formula for conditional precedence pattern is

G(ready(B) → O((executed(A)/true) ∧ stableConditionLTL)) (5.32)

The CTL formula for conditional precedence pattern is

¬E[¬((executed(A)/true) ∧ stableConditionCTL) U ready(B)] (5.33)

The stableConditionCTL refers to the general form of data condition of Formula 5.28.
In all subsequent formulas where the term stableDataConditionCTL appears, it refers
to Formula 5.28.

5.2.5.4 Conditional Before-scope Absence

Before-scope absence rules as introduced in Section 5.2.3.4 can be refined with data
dependencies as follows: In case an activity is about to execute and a certain data condition
holds; it is required that some other activity must have not been executed before. For
instance, in an order processing process, it is required that at the time of executing the
“archive order” activity where the order is cancelled; the “ship order” activity must have
never been executed. Figure 5.19 shows the BPMN-Q query capturing this pattern.

Figure 5.19: Conditional before-scope absence pattern
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The PLTL formula for the conditional before-scope absence pattern is

G(ready(B) ∧ dataCondition → ¬(executed(A)/effect) S start) (5.34)

Notice that in the above formula, we might require a certain effect (data condition)
to be absent rather than a specific activity. Both dataCondition and effect refer to
Formula 5.18.
The CTL formula for conditional before-scope absence is

¬EF(start∧EF((executed(A)/effect)∧EF(ready(B)∧dataCondition))) (5.35)

The CTL formula reflects the history-looking requirement by stating that it is not
possible to reach an activity A, or a data effect, from which activity B and the
dataCondition are reachable. Both dataCondition and effect refer Formula 5.18.

5.2.5.5 Conditional After-scope Absence

In the same fashion, process models might be prohibited from executing certain activities
when some data condition becomes true. Figure 5.20 shows the BPMN-Q query to
capture this pattern.

Figure 5.20: Conditional absence pattern

Also, this pattern is considered as a refinement on the global-scope absence and
after-scope absence patterns , discussed in Sections 5.2.3.2, 5.2.3.6 respectively, where
an activity must not be executed based on a condition. It is also possible to model the
absence by the data effect to be absent rather than a specific activity.

Following the same discussion about the contradicting data values and representation
of data conditions, see Section 5.2.5.2 , the formalization of conditional absence rules is
as follows.

The PLTL formula for conditional after-scope absence is

G((


A∈


(d,s)∈DataStateQ
update(d,s)

executed(A)) ∧ stableConditionLTL →

¬(executed(B)/effect) U end) (5.36)



86 CHAPTER 5. MODELING AND CHECKING COMPLIANCE RULES

The CTL formula for that pattern is

AG((


A∈


(d,s)∈DataStateQ
update(d,s)

executed(A)) ∧ stableConditionCTL →

A[¬(executed(B)/effect) U end]) (5.37)

5.2.5.6 Conditional Between-scope Absence

There are several ways to refine the between-scope absence discussed in Section 5.2.3.7
with data conditions. As discussed for conditional presence and precedence patterns, data
conditions could be attached to source, target, or both activities.

The case of Figure 5.21(a) represents a situation where a conditional execution of an
activity C must be preceded with an execution of another activity A; in between activity
B, or a data effect, never occurs. The case of Figure 5.21(b) is a variant of the first
case where the unconditional execution of an activity C must be preceded with another
activity A with a specific output data condition. In between activity B, or a data effect,
is not allowed to occur. It is possible to attach data conditions to both source and target
activities.

The pattern in Figure 5.21(c) shows another case where the concern is to check that
after the execution of an activity A resulting in a specific data condition, it must be
followed with execution of activity C, or an effect, in between activity B or another data
effect is not allowed to execute.

The PLTL formula for conditional between-scope absence type I is

G(ready(C) ∧ dataCondition → ¬(executed(B)/effect) S executed(A)) (5.38)

The CTL formula for conditional between-scope absence type I is

¬E[¬executed(A)U ready(C) ∧ dataCondition])∧
¬EF(executed(A) ∧EF((executed(B)/effect) ∧EF(ready(C) ∧ dataCondition)))

(5.39)

The PLTL formula for conditional between-scope absence type II is

G(ready(C) → ¬(executed(B)/effect) S

((executed(A)/true) ∧ stableDataConiditionLTL)) (5.40)

The CTL formula for conditional between-scope absence type II is

¬E[¬((executed(A)/true) ∧ stableConditionCTL) U ready(C)]∧
¬EF((executed(A)/true) ∧ stableConditionCTL)∧

EF((executed(B)/effect) ∧EF(ready(C))) (5.41)
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(a) Type I

(b) Type II

(c) Type III

Figure 5.21: Conditional between-scope absence patterns

The PLTL formula for conditional between-scope absence type III is

G((


A∈


(d,s)∈DataStateQ
update(d,s)

executed(A)) ∧ stableConditionLTL →

¬(executed(B)/effect) U (executed(C)/effect2)) (5.42)

The CTL formula for conditional between-scope absence type III is

AG((


A∈


(d,s)∈DataStateQ
update(d,s)

executed(A)) ∧ stableConditionCTL →

A[¬(executed(B)/effect) U (executed(C)/effect2)]) (5.43)
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5.2.6 Modeling Complex Rules

So far, we have shown basic patterns to express the various types of rules concerning
control flow, data flow, and conditional flow. However, it is possible to compose these
patterns together to make complex rules. As an example, we might want to state that
activities A and B are mutually exclusive. We can model this rule as shown in Figure 5.22
by using the before-scope absence pattern type I and the after-scope absence pattern. A

Figure 5.22: Mutual exclusion between A and B

complex rule will be decomposed into the basic rules and its TL formula will be the
conjunction of the TL of its basic rules. To prevent arbitrarily composed complex rules,
we require a complex rule to be a well formed one.

Definition 5.1. [Well formed behavioral queries] A behavioral BPMN-Q query Q =

(AQ, EQ,DQ,SQ,DataStateQ,PQ,DFQ, isAnonymous,X , T YPE) is well formed
query if:

• ∀n ∈ (AQ ∪ EQ) : (n, _) ∈ PQ ∨ (_, n) ∈ PQ ∨ (((d, s), n) ∈ DFQ :

T YPE(((d, s), n)) = behavioral). Each node must be a source or a target of a
path edge or receiving a behavioral data flow edge,

• ∀p ∈ PQ T YPE(p) ∈ {precedes, leadsto}. All path edges must be stereotyped
with either precedes or leads to,

• ∀(a, (d, s)) ∈ DFQ : T YPE((a, (d, s))) = structural. No behavioral data flow
edges allowed to be outgoing from activities,

• ∃aAQ : isAnonyomous(a) = true ↛ ∃((d, s), a) ∈ DFQ : T YPE(((d, s), a)) =
behavioral. No behavioral data flow edges allowed to be incoming into anonymous
activities,

• ∃((d, s), a) ∈ DFQ : T YPE(((d, s), a)) = structural → ∃(o, a) ∈ PQ :

T YPE((o, a)) = precedes. Incoming data flow to an activity must have a pre-
cedes path associated to the activity where it is the target,

• ∃((d, s), a) ∈ DFQ : T YPE(((d, s), a)) = structural ↛ ∃(o, a) ∈ PQ :

T YPE((o, a)) = leadsto. Incoming data flow to an activity must have no leads
to path where the activity is the target,
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• ∃(a, (d, s)) ∈ DFQ ∧ T YPE((a, (d, s))) = structural∧ isAnonymous(a) =

true ↛ ∃(o, a) ∈ PQ ∧ T YPE((o, a)) = precedes. Outgoing data flow from
an anonymous activity must have no precedes path where the activity is the target.

• ∀s ∈ EQs : @(o, s) ∈ PQ. Start events cannot be targets to any path edge.

• ∀e ∈ EQe : @(e, o) ∈ PQ. End events cannot be sources to any path edge.

• ∀(o, e) ∈ PQ : e ∈ EQe → T YPE((o, e)) = leadsto ∧ X (o, e) ̸= ∅. An end
event in a query can be only a target of a leads to path and the exclude property of
the path edge must not be empty.

5.3 Consistency Checking Among Rules

With the divergent sources of compliance requirements, it is likely to have redundant
or conflicting compliance requirements [19]. Redundant requirements would consume
more effort verifying the same property. On the other hand, conflicting requirements
would consume a lot of effort before figuring out that it is not possible to satisfy them
collectively.

While it is hard to derive a consistent subset of rules, it is inevitable to check for
inconsistency [49]. In Section 5.3.1 we discuss various types of redundancy and how to
check them. In Section 5.3.2 we address the issue of conflict detection and provide means
to decide about conflicts.

Recall that Q is the set of all BPMN-Q queries, P is the set of all business process
models and TAG is the set of all tags that can be used to annotate queries and processes.

Definition 5.2. [Related compliance rules] for a specific set of tags T ⊆ TAG the set
qT ⊂ Q contains all queries that are assigned this set of tags, ∀q ∈ qT(T ⊆ annotate(q))

Definition 5.2 states that qT contains compliance rules (queries) that have the same
set of tags. Therefore, the requirements imposed by these rules have to be checked for
consistency before proceeding to check them against process models.

5.3.1 Redundancy Checking

Redundancy occurs when two or more rules are logically equivalent [49]. Deciding about
redundant rules helps remove them from checking and save effort without losing any
compliance requirement.

Definition 5.3. [Redundancy] A rule ri is redundant within rule set R if and only if for
any arbitrary process model p: p |=


rk∈R\{ri} rk ↔ p |=


rj∈R rj

According to Definition 5.3 the redundancy is a property for a collection of compliance
rules and is independent from the set of process models under investigation.
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Considering the compliance patterns discussed in Section 5.2, redundancy can occur
in any of the following situations:

1. (Duplication) Two rules R1 and R2 state the same requirements. This might occur
due to two different developments of compliance rules.

2. (Subsumption) An example is a response pattern R1 on the form G(executed(a) →
F(executed(b))) that is subsumed by a between-scope absence rule R2 on the form
G(executed(a) → ¬executed(c)U executed(b)).

3. (Mutual Exclusion) A rule R1: G(executed(a) → (¬executed(b)S start) ∧
(¬executed(b)U end)) is redundant to R2 : G(executed(b) →
(¬executed(a)S start)∧(¬executed(a)U end)) since R1 states that executed(a)
and executed(b) are mutually exclusive. R2 also tells that executed(b) and
executed(a) are mutually exclusive. The redundancy is because of the commuta-
tive nature of mutual exclusion relation.

4. (Contrapositive) Two rules state the same requirements differently. For instance R1

states the “open account if the risk is low”; while R2 states “if risk is high never
open an account”. This could be considered as a special type of mutual exclusion
that could be expressed in different ways.

In the first case, there is a duplication of rules and rules are equivalent. It is trivial to
detect this case and only one copy of the rule is retained and all other copies are removed.

The subsumption case occurs when some rule states a stronger conclusion than
the other. For instance a response rule R1:G(executed(a) → F(executed(b))) and
a between-scope absence R2:G(executed(a) → ¬executed(c)U executed(b)). It is
obvious that the satisfaction of R1 ∧R2 is determined by R2. That is, there is no chance
that R1 is false and R2 is true. Thus, R1 is unnecessary. For the case of mutual exclusion,
it is sufficient to ensure that executed(a) is mutually exclusive to executed(b) without
the other way around. The last case is another sort of equivalence similar to logical
equivalence between an implication p → q and its contrapositive ¬q → ¬p.

Duplicate and mutual exclusion redundancy can be detected easily. However, sub-
sumption and contrapositive redundancy need further investigation about different patterns
causing them in addition to domain knowledge. It is necessary to get rid of redundant
rules prior to checking them against process models in order to reduce checking effort.

In general, a rule R1 subsumes another rule R2 when the condition of R2 logically
implies the condition of R1, i.e., R1 has a weaker or equivalent condition than R2 and
the consequent of R1 logically implies the consequent of R2, i.e., R1 states a stronger
or equivalent conclusion than R2. Table 5.1 summarizes the possible occurrences of
subsumption redundancies among the compliance patterns discussed in Section 5.2.
Notice that only patterns with possibility of subsumption redundancies are mentioned.

Obviously, every control flow pattern subsumes its conditional counterpart. For in-
stance, an after-scope presence rule G(executed(a) → F(executed(b))) subsumes a con-
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Pattern After Before Cond. Prec. Cond. Cond. Cond. Cond. Cond.
Pres. Pres. Pres. Cond. Prec. Before After Bet. Abs. Bet. Abs.

Exec. Abs. Abs. Type 1 Type 3
After Pres. •
After Abs. •
Before Pres. •
Before Abs. •
Response • • •
with Abs.
Prec. with Abs. • • •
Cond. Prec. •
Cond. Bet. •
Abs. Type 1
Cond. Bet. •
Abs. Type 2
Cond. Bet. •
Abs. Type 3

Table 5.1: Possible subsumption redundancies

ditional presence rule G(executed(a)∧ cond → F(executed(b))) since executed(a)∧
cond → executed(a) and the consequent of both patterns is the same. Also, a response
with absence rule R1 G(executed(a) → ¬executed(c)U executed(b)) subsumes an
after-scope presence rule R2 G(executed(a) → F(executed(b))) because the condition
part of both rules is the same and the consequent of R1 is stronger than that of R2. The
previous response with absence rule R1 also subsumes a conditional presence rule R3

G(executed(a) ∧ cond → F(executed(b)). In this case both the condition of R1 is
weaker than that of R3 and the consequent of R1 is stronger than that of R3. In the same
way, other subsumption redundancy cases can be described.

Contrapositive redundancy is seen as some sort of logical equivalence between
compliance rules in case one rule is on the form p → q and the other is on the form
¬q → ¬p. It is not possible to have contrapositive redundancy for control flow rules
as it is not possible to state negations in rule conditions. Contrapositive redundancy
occurs among certain conditional rules and under certain domain knowledge. Table 5.2
summarizes the situations where contrapositive redundancy is possible.

The case of conditional presence redundancy to conditional before absence could be
exemplified with a rule R1: G(state(Claim, fraudulent) →
F(state(Investigation, started))) and R2: G(¬state(Investigation, started) →
¬state(Claim, fraudulent)S start). R1 states that in any case where an insurance
claim is found to be fraudulent, a investigation must follow. On the other hand, R2 states
that not initiating an investigation means that the claim is not fraudulent.

Redundancy between conditional precedence and after absence in a situation where
there is a rule R3: G(state(Account, open) → O(state(Risk, low)
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Pattern Cond. Prec. Cond. Cond. Cond.
Presence Cond. Prec. Before After

Execution Abs. Abs.
Cond. Presence •
Prec. Cond.
Execution •
Cond. Prec. •
Cond. Before Abs. • • •
Cond. After Abs. • • •

Table 5.2: Possible contrapositive redundancies

∧G(¬state(Risk, high)))) and R4: G(state(Risk, high)∧G(¬state(Risk, low)) →
¬state(Account, open)U
end). R3 requires that whenever the account is opened, its risk assessment must have
been low, and never high. R4 states the same requirement but in a different way. That
is, whenever the risk assessment is found to be high, there is no chance to open the bank
account.

However, it is not always explicitly stated in rules the condition and its negation. For
example, the last two rules stated above R3, R4. One rule states that if the account to be
open then the risk must have been low and never high. The other states the same fact but
the other way around. That is, if the risk is high and never low then there is no chance to
open the account during the remainder of the process.

Next, we will prove the logical equivalence between rules like R3 and R4 under the
domain knowledge of contradicting data values. Other cases, could be proved using the
same argument.

Theorem 5.1. [Redundant Conditional Rules] A conditional after-scope absence rule on
the form G(contraCond∧G(¬cond) → (¬action)U end) is redundant to a conditional
precedence on the form G(action → O(cond ∧G(¬contrCond))) if and only if cond
and contraCond are contradicting.

Proof. Before we prove Theorem 5.1 we need to do some inference and rewriting of the
rules above. If cond and contraCond are known to be contradicting, we can infer that
cond ≡ ¬contraCond. Similarly, we can infer that contraCond ≡ ¬cond.

Also, to ease the proof without changing the semantics we can rewrite the conditional
after-scope absence as G(contraCond ∧G(¬cond) → G(¬action)). We replaced the
U operator with a G where they give the same meaning, as end logically means the
termination of process execution.

Based on that inference, we can rewrite the modified conditional after-scope absence
as G(G(¬cond) → G(¬action)), let it be R1. We can rewrite the conditional prece-
dence rule using future-only temporal operators as F(action) → ¬actionUG(cond),
let it be R2. we prove Theorem 5.1 by contradiction.
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Let a system M |= R1. Thus s0 |= R1. I.e., ∃sm : s0, . . . , sm ∧ cond /∈ L(sm) ∧
action /∈ L(sm) and ∀sk that come after sm also cond /∈ L(sk) ∧ action /∈ L(sk).

Assume that M ̸|= R2. Thus, ∃sv : s0, . . . , sv where sv is the very first state
where action ∈ L(sv). Then, for M ̸|= R2 to hold, there must be some state st
where s0 . . . , st, . . . , sv ∧st ̸|= G(cond). I.e., cond /∈ L(st). But, since M |= R1.
We can derive that action /∈ L(st). and for all states that come after st, including sv,
action /∈ L(sv). Thus we reach a contradiction where we require action ∈ L(sv) and
action /∈ L(sv)

5.3.2 Conflict Checking

While redundancy checking is needed to reduce effort, conflict checking is needed to
decide the satisfiability of these related compliance requirements. For a conflict free
set of compliance rules, it is possible to find a process model that satisfies all of these
requirements.

To decide about conflict freedom, we utilize existing approaches for LTL model
checking. We depend on the fact that for each LTL formula, it is possible to find a
computation that satisfies this formula, in case there is one. Thus, we can construct the
conjunction of these individual LTL formula and look for a computation that satisfies
them. However, we show that to reach a correct decision about conflict-freedom, we need
to add extra information to the satisfiability check [15].

5.3.2.1 LTL to Büchi Automaton

It is possible for each LTL formula to generate a Büchi automaton that represents a
computation to satisfy the formula, if there is one. The Büchi automaton describes
systems with infinite behavior. An LTL formula is satisfiable if its Büchi automaton has
accepting runs and thus a non-empty set of accepting states [24]. Approaches like [44, 43]
are capable of generating a Büchi automaton for a given LTL formula. The difference is
in the efficiency of the algorithms behind each of them.

LTL to Büchi automaton is an intermediate step in LTL model checking. LTL model
checking is done by first negating the LTL formula. A Büchi automaton is generated for
the negated formula. In the mean time a Büchi automaton is generated for the system
under investigation. If there are common words that can be accepted by both automata,
this means that the system can behave in a way that satisfies the negated formula. Thus, it
violates the original formula under investigation.

Related to compliance rules, one can check conflicts among a set of rules by formu-
lating a conjunction of their LTL counterparts, generating a Büchi automaton for it and
finally checking for accepting states. However, we will show that in order to correctly
utilize that approach, we have to add domain specific knowledge, expressed as LTL
formulas to the conjunction.
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5.3.2.2 Detecting Conflicts between Compliance Rules

The approach to detect conflicts among compliance rules in qT depends on the conjunction
of the LTL formulas of such rules in addition to any related knowledge that is specific to
the domain. Also, knowledge about execution environment is relevant. The conjunction
of such formulas is then input to an algorithm that generates a corresponding Büchi
automaton. In case that the resulting automaton has no accepting states, we can conclude
that the compliance rules are conflicting, the compliance officer is informed about this
to take correcting actions. The notion of conflict comes from the fact that there is no
possible computation (process model) that is capable of generating such behavior stated
in the rules and in the mean time consistent with the domain-specific knowledge.

The purpose of this section is to show the knowledge to be included about the domain
to help reach correct decisions about conflict freedom. It is of crucial importance to
include correct assumptions about the system/domain under investigation in order to
correctly decide about the conflict-freedom of a specification [28, 37]. We will describe
how such assumptions are derived from the domain knowledge and from the behavior
of process models. This knowledge is encoded as LTL formulas that are added to the
conjunction to be checked for conflicts.

We start with a set of pairs of exemplary compliance rules. We illustrate the resulting
Büchi automaton for the conjunction of compliance rules for each pair. Of course, one
assumes the compliance rules to be conflict free, if the Büchi automaton has accepting
runs, whereas inconsistent compliance rules are indicated by an automaton that has
no accepting runs. However, our examples show that detection of conflict is not as
straight-forward as expected.

Example 1. (Cyclic Dependency) Imagine two rules that are related to registration
of foreigners at Police. Let the first rule R1 state that obtaining a health insurance
precedes registration, whereas the second rule R2 states the opposite, i.e., registration
precedes obtaining health insurance. If we represent the registration activity with a and
the obtaining health insurance activity with b, the corresponding LTL formulas would be
G(executed(b) → O(executed(a))) and G(executed(a) → O(executed(b)))∗.

Figure 5.23: Automaton for the conjunction of rule R1 and R2

∗We deviate a bit from the original template of before-scope presence to simplify the discussion
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The Büchi automaton generated for the conjunction of both formulas is illustrated in
Figure 5.23†. Although both rules, R1 and R2, are conflicting due to cyclic dependency,
the respective Büchi automaton has two accepting runs. In particular, the following runs
are possible.

1. Neither a nor b are executed at all, which is represented by the transition from state
init to itself.

2. Both activities, a and b are executed in a single step, which is represented by the
transition from init to state 1.

The phenomenon that led to the first accepting run is vacuous satisfiability [28]. The
rules R1 and R2 are satisfied by all process models that do not contain both activities
a and b. We have discussed vacuous satisfiability before and we pointed out that it is
not the type of satisfiability we expect. That is, we expect process models to exhibit a
behavior where both the condition and the consequent of a rule are satisfied.

The second accepting run in Figure 5.23 is also invalid in our context. The execution
semantics we adopt (cf. Section 4.1.3) assumes interleaving semantics. That is, two
activities cannot complete their execution at the very same time. That, in turn, is reflected
in any behavioral model of a process model, which is derived by transformation to some
intermediary representation, for instance, Petri nets. These models do not contain a single
state transition, in which two activities finish their execution.

Example 2. (Contradictions) Imagine two rules describe the relation between receiving
payment and shipment of goods. Rule R3 specifies that the reception of payment
leads to the activity of sending goods by DHL. A second rule R4, in turn, states that
after the reception of payment by a premium customer, the goods have to be sent by
express delivery. Let a be the activity of receiving the payment, while the send activities
are represented by b in case of DHL, and c in case of express delivery, respectively.
Then, the resulting LTL formula would be R3 G(executed(a) → F(executed(b))) ∧
G(executed(a) ∧ premium → F(executed(c))). Of course, the Büchi automaton,
which was omitted due to its size, has accepting runs, owing to the phenomena discussed
for the first example, i.e., vacuous satisfiability and state transitions with more than one
activity being executed at a time. However, there are further accepting runs that might
not be traced back to these phenomena. These runs correspond to scenarios, in which
activity a is executed and thereafter activity b is executed and c is conditionally executed,
as shown in Figure 5.24. It is obvious that the process fragment does not make sense as it
requires to send the goods twice in case of premium customer. In this situation we have
to explicitly add the knowledge about contradicting activities as they are defined as part
of the domain knowledge, see Section 4.4.

†The symbols !, & are used to represent negation and conjunctions respectively.
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Figure 5.24: An inconsistent process fragment

Example 3. (Data Issues) The aforementioned aspects of process execution and con-
tradictions are also of relevance for data-related rules. Consider a compliance rule
R5 that requires a purchase request to be in state archived when the case is closed,
i.e., G(ready(close) → state(purchase request, archived)). Further on, a second
rule R6 requires a purchase request to be either in state accepted, or rejected, i.e.,
G(ready(close) → state(purchase request, accepted) ∨ state(purchase request,

rejected)), when the case is about to be closed.
Not surprisingly, the Büchi automaton for the conjunction of these two rules, the

automaton was omitted due to its size, has a lot of accepting runs, even though both rules
are inconsistent. That results from the phenomena that have already been discussed above
for activities. That is, accepting runs violate the requirement of exclusive data states,
require data objects to be in no state, vacuous satisfiability as explained in Example 1 for
activities, or are invalid from a business perspective, e.g, the state of the purchase request
might be set to both, accepted and rejected.

The above examples showed that domain knowledge have to be explicitly added to the
conjunction of LTL formulas representing compliance rules in order to receive a correct
decision about conflicts. Moreover, we need to enforce the Büchi automaton to behave in
way that it executes the conditions of the compliance rules. This extra knowledge can be
classified into:

• Separate execution states of activities;

• Separate data states of data objects;

• Enforcing non-vacuous satisfaction;

• Including knowledge about contradicting activities and data objects

The first three classes are generic and must be applied for any check for conflicts.
On the other hand, the fourth class applicability depends on the rules to be checked. We
formalize the knowledge in the above four classes as LTL formulas.

Definition 5.4. [Separate execution states] Any two activities a, b cannot complete their
execution simultaneously, G(¬(executed(a) ∧ executed(b))).
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Definition 5.5 formalizes the nature of interleaving execution by not allowing a state
where any two activities a and b can complete their execution. This can be applied also to
the case of data object states, where a data object can assume only value at a time.

Definition 5.5. [Separate data object states] For any data object d having a finite set
of states Sd, d can assume exactly one state at a time ∀s ∈ Sd : G(state(d, s) →

s′∈Sd\{s} ¬state(d, s′))

To enforce non-vacuous satisfaction, for each compliance rule on the form p → q we
enforce the execution of p by adding F(p) to the conjunction.

Definition 5.6. [Non Vacuous Satisfiability] A compliance rule r has to be non-vacuously
satisfied by adding F(a) to the conjunction to be checked if and only if a appears in the
condition of r.

To reflect contradictions between activities, as can be derived from the domain
knowledge, we add an LTL formula that insures that the execution of one activity a can
never be followed by the execution of any of its contradicting activities.

Definition 5.7. [Contradicting Activities] If two activities a and b are known to be con-
tradicting, exclusive, from the domain knowledge, this is reflected as G(executed(a) →
G(¬executed(b))).

The LTL formula from Definition 5.7 is added to the conjunction for each activity a

that appears in the compliance rules and all of its contradicting activities as defined in the
domain knowledge.

Theorem 5.2. A set of activity execution ordering compliance rules R are consistent
under the domain knowledge rules D, where elements of both sets are LTL formulas, if
and only if the Büchi automaton generated for their conjunction has at least one accepting
run.

Proof. If the generated Büchi automaton has an accepting run then there is a computation,
sequence of execution, in which the formulas are satisfied. On the other hand, lack of
any accepting runs implies the impossibility of finding a computation that satisfies the
conjunction of formulas.

Theorem 5.2 implies that the decision about conflict freedom is bound to the availabil-
ity of sufficient domain knowledge. That is, for instance, if we lack the knowledge about
contradiction between two activities, we can decide conflict freedom of two rules that
require them to execute non-exclusively. Still, the approach of utilizing Büchi automata
may help construct the domain knowledge. This could be achieved by synthesizing
process fragments out of the Büchi automaton and negotiating whether it is acceptable
with domain experts and business analysts. At that point, domain experts are able to
identify conflicts and the domain knowledge must be updated. The synthesis of process
fragments is out of scope of the thesis.
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5.4 Checking Rules Against Processes

In this section we discuss in detail the checking of a compliance rule, a BPMN-Q
behavioral query, against a process model. According to our approach, see Section 2.3,
the first step to checking is to identify a set of process models that are related to the
rule. This is done by means of tagging, see Section 4.2. In general, we can decide on
compliance of a process model to a rule, query, by reducing the compliance checking to
a model checking problem. As was discussed in Section 4.5, a model checker receives
two inputs; the Kripke structure, which is a special type of annotated automaton and
the temporal logic formula to be checked against the Kripke structure. However, model
checking is known to suffer from state space explosion [24]. To work around this problem,
model checkers apply advanced techniques to reduce the state space [60], use less memory
to do the reachability analysis [132], or use symbolic model checking approaches [88].
These are considered as domain-independent approaches to reduce the complexity of
model checking. However, it is also possible to use the domain-specific knowledge
to simplify the problem more, or even avoid the model checking totally. Figure 5.25
summarizes our approach for compliance checking.

Figure 5.25: The checking process of compliance rules against process models

Our compliance checking process starts with the compliance query and the process
model as input. In the first step, we generate so-called implicit structural query from the
behavioral query. Next, we try to early decide about compliance by investigating some
structural aspects of the process based on both behavioral and structural queries. As a
result of this step we might decide structural non-compliance, vacuous compliance, or
we are unable to decide. In the latter case, we have to do behavioral analysis, i.e., model
checking. To do model checking, we generate the Kripke structure from the process (cf.
Section 5.4.3). Meanwhile, the temporal logic formula is derived from the compliance
query as discussed in Section 5.2.
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5.4.1 Implicit Structural Queries

A behavioral BPMN-Q query contains two pieces of information. Firstly, it contains a
structural query, the nodes and edges. This structural query will be used to check whether
we can structurally decide about compliance, non-compliance. Secondly, it contains the
temporal logic formula that would be model checked against the process. We showed how
behavioral queries map to temporal logic formulas in Section 5.2. Also, we discussed in
Section 4.2 how a structural query is matched to a process model. Here, we need to show
that obtaining a structural query from a behavioral query is not straightforward.

All compliance rules discussed earlier describe ordering between nodes in a process.
For instance, global-scope presence requires that certain activity has to occur somewhere
after the start of the process. Thus, finding a path , sequence of nodes, between the source
and target nodes provides the first step to check for compliance, by considering execution
semantics of those nodes in between. This means, if we cannot find any paths between
the source and target nodes, we can structurally decide about non compliance, since no
execution ordering is guaranteed.

To obtain a structural query from a well formed behavioral one, we use the same set of
nodes as in the behavioral query. All paths specified in the behavioral query are mapped to
similar structural paths, i.e., without the behavioral stereotypes. If a path in the behavioral
query has an exclude property, this is neglected in the structural counterpart. Similarly,
behavioral data flow edges are dropped since they cannot be decided structurally.

5.4.2 Structural Investigation about Compliance

Up to this point, we have three pieces of information in hand, the process model, the
behavioral query, and the implicit structural queries. In this step we want to run structural
investigations to see whether we can early decide about compliance.

Depending on the rule r, we can decide on the compliance of a process model p to r.
For instance, the case of global-presence, see Section 5.2.3.1, a process p can be judged
as structurally non-compliant if it lacks any occurrence of the activity a specified in r.
Conversely, is the case of global-absence.

Another example is the after-scope presence pattern, cf. Section 5.2.3.5. Consider r
to be G(executed(a) → F(executed(b)). In this case a process model p is structurally
non-compliant if it has an occurrence of a and:

• It has no occurrence of b, or,

• It has an occurrence of b but with no execution path from a to b

Such structural investigations can be done efficiently. Checking of activity occur-
rences can be done in linear time to the number of activities in a process. Checking
execution paths can be achieved by matching the structural query to the process. This is
achieved also in a low polynomial time. We can decide about non-compliance due to lack
of execution paths if the matching returns an empty sub-graph. If the matching sub-graph
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is not empty, we cannot structurally decide about compliance and model checking has to
take place.

Definition 5.8. [Structural non-compliance] A process model
P = (A, E ,D,G,S,DataState, CF ,DF , CFC, ID) is structurally non compliant to a
BPMN-Q behavioral query
Q = (AQ, EQ,DQ,SQ,DataStateQ,PQ,DFQ, isAnonymous,X , T YPE) if:

• ∃(x, y) ∈ PQ : T YPE((x, y)) = leadsto ∧ isAnonymous(y) = false @z ∈
(A ∪ E) : label(y) = label(z). No occurrences of target nodes for the leads to
paths in the investigated process,

• ∃(x, y) ∈ PQ∧T YPE((x, y)) = precedes ∧isAnonymous(x) = false ̸ ∃z ∈
(A ∪ E) : label(x) = label(z). No occurrences of source nodes for the precedes
paths in the investigated process,

• The implied structural query has no matches within the process.

Another interesting issue is the ability to decide about vacuous compliance. An
example situation for vacuous compliance is the rule r above. A process model p
vacuously satisfies this rule if it lacks any occurrence of activity a. Reporting vacuous
compliance may be important for experts so that they update their rules or have further
investigations about the process [28]. Of course, vacuous compliance can be detected via
model checkers. However, this calls for generating specific vacuity compliance testing
formulas, which will be discussed later.

Definition 5.9. [Structural vacuous compliance] A process model
P = (A, E ,D,G,S,DataState, CF ,DF , CFC, ID) is structurally vacuous compliant
to a BPMN-Q behavioral query
Q = (AQ, EQ,DQ,SQ,DataStateQ,PQ,DFQ, isAnonymous,X , T YPE) if:

• ∀(x, y) ∈ PQ : T YPE((x, y)) = leadsto ∧ isAnonymous(y) = false @z ∈
(A ∪ E) : label(x) = label(z). No occurrences of source nodes for the leads to
paths in the investigated process model,

• ∀(x, y) ∈ PQ : T YPE((x, y)) = precedes ∧ isAnonymous(y) = false @z ∈
(A ∪ E) : label(y) = label(z). No occurrences of target nodes for the precedes
paths in the investigated process model.

5.4.3 Model Checking Rules

When it is not possible to structurally decide about compliance/non-compliance, we
have to do an exhaustive state space analysis, i.e., model checking. As was discussed in
Section 4.5, we need two inputs; the temporal logic formula to be checked, the compliance
rule in our case, and the system to check, the process model.
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In Section 5.2 we showed how to obtain for each compliance rule, pattern, an equiv-
alent temporal logic formula. In this section, we describe how to derive the Kripke
structure, cf. Definition 4.11, from process models.

In Section 4.1.3.3, we discussed how to derive a Petri net from a well-formed process
model. In this section we build on that and show how to derive a Kripke structure
M = (S, si, R, L) from the reachability graph of a Petri net.

Definition 5.10. [Reachability Graph] The reachability graph of a Petri net PN =

[P, T, F,m0] is a tuple RG = (V, TR, v0) where V is the set of states, markings. TR ⊆
V × V is the transition relation between states, caused by firing transitions in T . v0 is
the initial state of RG which is equal to m0.

The Petri net PN = [P, T, F,m0] obtained from a process model
P = (A, E ,D,G,S,DataState, CF ,DF , CFC, ID) according to Definition 4.4 al-
ready determines the initial marking of the net. Thus, we can compute the reachability
graph RG of the net using the firing of transitions [113]. Each time a transition fires,
the state of the net changes, the marking of places. For our case we are interested in
the marking of three different types of places. Firstly, data places which correspond
to the data value(state) assumed by a data object. In Section 4.1.3.2 we showed that a
data object is mapped to a set of places corresponding to its set of states. Thus, each
time a data place, say dob1_state3, contains a token; the predicate state(dob1, state3)
holds. The other two types of places correspond to control flow. Since any activity is
assigned exactly one input control flow place and one output control flow place, we can
determine whether an activity a is ready,ready(a), or executed, executed(a), in any Petri
net marking mj if pi ∈ •ta ∧mj(pi) > 0 or po ∈ •ta ∧mj(po) > 0 respectively.

The proposition start holds in the initial marking where the input place for the
transition ts, corresponding to the start event of the process, has a token. Similarly, the
proposition end holds when the output place of transition te, corresponding to the end
event of the process, has a token, indicating the termination of execution.

The set of atomic propositions AP is constructed as follows

Definition 5.11. [Atomic propositions for compliance checking] The set of atomic propo-
sitions AP is constructed from a process model
P = (A, E ,D,G,S,DataState, CF ,DF , CFC, ID) as follows: AP = {ready_a :

a ∈ A} ∪ {executed_a : a ∈ A} ∪ {state_d_s : (d, s) ∈ DataState}∪{start, end}

Definition 5.12. [Generating Kripke structure from process models] A Kripke structure
M = (S, si, R, L) can be obtained from the reachability graph RG = (V, TR, v0) of a
Petri net PN = [P, T, F,m0] generated from a process
P = (A, E ,D,G,S,DataState, CF ,DF , CFC, ID) with respect to a set of atomic
propositions AP as follows:

• S = V ,
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• si = v0,

• R = TR ∪ {(v, v) : v ∈ V ∧ @r ∈ V : (v, r) ∈ TR},

• ∀s ∈ S :

– start ∈ L(s) if and only if s = si. The start proposition holds in the initial
state of the execution,

– end ∈ L(s) if and only if @(s, _) ∈ TR. The end proposition holds for states
in the reachability graph with no outgoing edges to other states,

– ready_a ∈ L(s) if and only if ms(p(_,a)) = 1 ∧ p(_,a) ∈ •ta where a ∈ A.
The ready proposition holds in state s for each Petri net transition, representing
a process activity, having its input control flow place marked,

– executed_a ∈ L(s) if and only if ms(p(a,_)) = 1 ∧ p(_,a) ∈ ta
• where

a ∈ A. The executed proposition holds in state s for each Petri net transition,
representing a process activity, having its output control flow place marked,

– state(data, state) ∈ L(s) if and only if ms(p(data,state)) = 1 where
(data, state) ∈ DataState. The proposition state(data, value) holds in
each execution state s where its corresponding place is marked.

After obtaining the Kripke structure, the compliance rule can be model checked
against it. Also, we can run a vacuous compliance test. In Section 5.4.2, we discussed
how vacuous compliance can be checked on the structure of the business process, cf
Definition 5.9. However, when it comes to data and conditional compliance rules, it might
not be possible to decide vacuous compliance on a process structure. Thus, we need to
run this check against the Kripke structure obtained from the process model.

A vacuous compliance check simply tests whether a compliance rule’s condition will
ever be enabled during the execution of a process. That is, we need to find at least one
execution state in which the condition part of the rule will be true. For instance, if we take
a conditional after-scope presence rule on the form AG(state(d1, s1) ∧ state(d2, s3) →
AF(executed(act1))), a vacuous compliance check would be EF(state(d1, s1) ∧
state(d2, s3)). We can notice that CTL not LTL is capable of expressing vacuous
compliance checking due to its support to existential quantifiers over execution paths.

From a processing cost point of view, the checking for vacuous compliance is,
theoretically, much cheaper than checking the rule itself, due to its existential nature.
Thus, once a vacuous compliance checking fails, we do not need to check the original
rule itself as we know it is vacuously satisfied.

5.5 Example

This section introduces a process model along with a set of compliance requirements
related to this process model in order to illustrate the applicability of our approach. We
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focus on a process model from the financial domain, Figure 5.26 shows the process of
opening a correspondent bank account, expressed in BPMN.

This correspondent account is a type of bank accounts that is opened by a bank
(respondent bank), in some country, in another bank, in another country, to ease and
speed the operation of money transfer. The process starts with “Receive correspondent
Account open request” to open an account. Bank Identity looked up in activity “Identify
Respondent Bank” in order to go on with the procedure of opening the account . If this is
the first time such respondent bank requests to open an account, a new record for that
bank is created and some checks must take place. The bank to open the account needs to
conduct a study about the respondent bank due diligence “Conduct due diligence study”
where the Respondent bank may pass of fail this study. In case the respondent bank
fails the evaluation of due diligence, the bank inquires one of its partner banks about the
respondent bank then there is a decision made whether to make an extra study, activity
“Lookup Partner Banks”. If the decision is that it deserves an extra evaluation, the process
loops; otherwise the process proceeds. It is also needed to assess the risk of opening
an account for that Respondent Bank “Assess Respondent Bank risk” with the resulting
risk assessment categorized as either high or low. In the mean time, respondent bank
certificate is checked for validity in order to proceed with opening the account. If the
due diligence study evaluation fails, the Respondent Bank is added to a black list. On
the other hand, if such respondent bank has a record with the bank, these checks are
skipped. In any of the cases, the bank has to obtain a report about the performance of the
Respondent Bank “Obtain Respondent Bank Annual Report”. This report is analyzed by
the Bank “Analyze Respondent Bank annual report”, and the Respondent Bank rate is
reviewed “Review Respondent Bank rating”. If the respondent bank passes the checks,
i.e., it passes the due diligence evaluation and its rating is accepted or there is already a
record for the respondent bank an account is opened “Open Correspondent Account”.

The process is subject to the following compliance requirements [25]:

• R1: We have to obtain and analyse the respondent bank report.

• R2: If the respondent bank evaluation fails, it must be added to a black list.

• R3: Opening an account must be of low risk.

• R4: Before opening an account, the respondent bank rating must have been ac-
cepted.

• R5: If it is the first time to deal with the respondent bank, advanced due diligence
study must be conducted.

• R6: If the respondent bank rating is rejected, an account must never be opened.

In the following we utilize the patterns described in Section 5.2 to express these com-
pliance requirements. Afterwards, we check their consistency and report the compliance
status of the process in Figure 5.26 to them.
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Figure 5.26: A process model to open a bank account
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R1 : We have to obtain and analyse the respondent bank report

R1 requires both activities “Obtain Respondent Bank Annual Report”, “Analyze Respon-
dent Bank Annual Report” to occur in the process model. Moreover, it might require
order between them.‡ Thus, we represent these requirements as shown in Figure 5.27

Figure 5.27: Representation of R1 in BPMN-Q

R1 was represented by using global-scope presence and after-scope presence patterns.
The corresponding PLTL formula is

G(start → F(executed(Obtain Respondent Bank Annual Report)))∧
G(start → F(executed(Analyze Respondent Bank Annual Report)))∧
G(executed(Obtain Respondent Bank Annual Report) →
F(executed(Analyze Respondent Bank Annual Report)))

R2 : If the respondent bank evaluation fails, it must be added to a black list

R2 can be represented by a conditional response pattern as shown in Figure 5.28 where
activity “Add Respondent Bank to Black List” is the response to the condition that
“Evaluation” fails.

Figure 5.28: Representation of R2 in BPMN-Q

The PLTL formula for R2 is

G(executed(Conduct due diligence study) ∧ state(Evaluation, failed)∧
G(¬state(Evaluation, passed)) → F(executed(Add Respondent Bank to Black list)))

‡The interpretation of the informal requirements, e.g., legislation text, into formal requirements is out of
scope of this thesis.
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R3 : Opening an account must be of low risk

This rule can be represented as a data flow rule, see Section 5.2.4. The rule above is
expressed as a BPMN-Q query as shown in Figure 5.29 where the requirement that “Risk”
data object must be in state low when the “Open Correspondent Account” activity is
about to execute, is represented by a behavioral association between the data object and
the activity.

Figure 5.29: Representation of R3 in BPMN-Q

The PLTL formula for R3 is

G(ready(Open Correspondent Account) → state(Risk, low))

R4 : Before opening an account, the respondent bank rating must have been
accepted

We can express this rule using the conditional precedence pattern discussed in Sec-
tion 5.2.5.3. The BPMN-Q compliance query for this rule is shown in Figure 5.30.

Figure 5.30: Representation of R4 in BPMN-Q

The PLTL formula for that rule is

G(ready(Open Correspondent Account) →
O(state(Rating, accepted) ∧G(¬state(Rating, rejected))))

R5 : If it is the first time to deal with the respondent bank, advanced due
diligence study must be conducted

This rule can be also represented as a conditional response pattern. We can reflect the
requirement of being the first time to deal with the bank using the state created of the “R
Bank Record” data object.
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Figure 5.31: Representation of R5 in BPMN-Q

The PLTL formula for R5 is

G(executed(Identify respondent bank) ∧ state(Record, created) →
F(executed(Conduct advanced due diligence study)))

R6 : If the respondent bank rating is rejected, an account must never be
opened

This rule can be modeled using the conditional after-scope absence pattern, see Sec-
tion 5.2.5.5. Figure 5.32 realizes this rule as a BPMN-Q query.

Figure 5.32: Representation of R6 in BPMN-Q

R6 PLTL formula is

G(executed(Review respondent bank rating) ∧ state(Rating, rejected)∧
G(¬state(Rating, accepted)) → ¬executed(Open Correspondent Account) U end)

Checking Rules Consistency

It is obvious that rule R1 by its own contains a transitive redundancy. However, as
we discussed earlier, this type of redundancy can only be determined at checking time.
Moreover, rules R4 and R6 contain a contrapositive redundancy, see Section 5.3.1. Thus,
we can arbitrarily drop any of them from the checking, we drop rule R4.
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To check for conflicts, we add the extra domain knowledge, as was discussed in
Section 5.3.2, to the conjunction of rules R1-R3,R5-R6. Because of space, we give
symbols for the different activities as follows:

• ObRe : Obtain Respondent Bank Annual Report

• AnRe : Analyze Respondent Bank Annual Report

• ADBL : Add Respondent Bank to Black List

• OCA : Open Correspondent Account

• CdD : Conduct due diligence study

• CAdD : Conduct Advanced due diligence study

• RRBR : Review Respondent Bank Rating

• Eval_failed: (Evaluation,failed)

• Eval_passed: (Evaluation,passed)

• R_Bank_Rec_created: (R Bank Record,created)

• Rate_rejected: (Rating,rejected)

• Rate_accepted: (Rating,accepted)
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To check for consistency, the extra formulas to be added to the conjunction are

G(¬(executed(ObRe) ∧ executed(AnRe)))

Separate execution states

G(¬(executed(ObRe) ∧ executed(ADBL)))

Separate execution states

...

G(¬(executed(OCA) ∧ executed(CAdD)))

Separate execution states

G(¬(state(Eval_failed) ∧ state(Eval_passed)))

Separate execution states

G(¬(state(Rate_rejected) ∧ state(Rate_accepted)))

Separate execution states

F(executed(CdD)∧
state(Eval_failed) ∧G(¬state(Eval_passed)))

Non vacuous statisfiability

F(ready(OCA)) Non vacuous statisfiability

F(state(R_Bank_Rec_created))

Non vacuous statisfiability

F(executed(RRBR) ∧
state(Rate_rejected) ∧G(¬state(Rate_accepted)))

Non vacuous statisfiability

G(state(Eval_failed) → G(¬state(Eval_passed)))

Contradicting states

G(state(Eval_passed) → G(¬state(Eval_failed)))

Contradicting states

G(state(Rate_rejected) → G(¬state(Rate_accepted)))

Contradicting states

G(state(Rate_accepted) → G(¬state(Rate_rejected)))

Contradicting states

Checking consistency of the whole conjunction yielded a Büchi automaton with
accepting states. Thus, there are no conflicts among the rules.
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Checking Rules Against Process

Once we are sure that the rule set is consistent, we can proceed with checking the
rules against the process. We can decide that R5 is structurally non-compliant (cf.
Definition 5.8) since the process model in Figure 5.26 has no occurrence of activity
“Conduct advanced due diligence study“ at all. For the other rules R1-R3 and R6 we
cannot structurally decide about either non-compliance or vacuous compliance. Thus, we
have to model check them against the process.

The result of model checking is

• R1 is satisfied.

• R2 is satisfied.

• R3 is not satisfied.

• R6 is satisfied.

5.6 Summary & Outlook

In this chapter we discussed how compliance rules are modeled using a pattern-based
approach. Each pattern is visualized as a BPMN-Q behavioral query; each pattern has a
counterpart temporal logic formula. Patterns were categorized as control flow patterns,
data flow patterns and conditional patterns. For (conditional) control flow patterns, we
showed how can presence, absence, and execution ordering relations could be expressed.
Conditional control flow patterns provided more expressiveness and capability to address
cases that were not addressable using pure control flow patterns, see Section 5.2. To
formalize patterns, we provided mappings to LTL and CTL. One reason for these two
mappings is to allow the choice among a wider range of model checker, depending on the
temporal logic they support. Nevertheless, there is another pragmatic justification. We
benefit from LTL model checking techniques to check conflicts. The use of CTL will be
explained more in the next chapter.

We addressed consistency checking among rules, see Section 5.3. A consistent set
of rules should have no redundancies and must have no conflicts among its elements.
We were interested in discovering types of redundancy, duplicate, mutual exclusion
or contrapositive redundancy, that could be discovered before checking rules against
processes. For the case of conflict checking, we showed that execution environment
assumptions and domain-specific knowledge inclusion was necessary to correctly decide.
Finally, we showed how rules can be checked against process models, see Section 5.4.
We showed that for some rules, we can structurally decide about compliance. If it
is not possible to structurally decide; we go for model checking. Also, we pointed
the importance of reporting about vacuous compliance. This is the situation where a
compliance rule is satisfied by a process model when the rule’s condition never holds.
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In Section 5.5, we had a case study where we modeled and checked a set of anti money
laundering compliance rules.

In the next chapter, we will describe an approach to provide useful feedback, explana-
tion, to the user in case a process model violates rule(s).





Chapter 6

Explaining Compliance Rules
Violations

So far, compliance rules addressing control and data flow aspects of process models have
been modeled and verified. In general, when a property is not satisfied by the system under
investigation, the model checker generates a counterexample. Such a counterexample is a
sequence of states which shows how the property was violated.

This is another interesting question; how can we explain violations to the user? A
starting point could be using the counterexample generated from the model checker
(cf. [38]). The drawbacks of such an approach are manifold. Firstly, the generated coun-
terexamples are given in terms of transitions, i.e., the sequence of states in the investigated
finite state machine. This endures a cost of re-translating such traces backwards into
the structure of process models, it might not always be possible to generate meaningful
representation that the user can easily understand, e.g., the handling of parallel threads.
Secondly, the generated counterexample is not exhaustive, i.e., not every possible vio-
lation is detected by the model checker. Rather, only the first met violation is reported.
Thirdly, the translation will be dependent on both the output of the model checker as
well as the visual notation the user understands. Each time the model checker software is
changed; the translation component has to be adapted. Finally, in the previous chapter,
we showed that we can structurally decide about non-compliance, in this case, there is no
counterexample generated at all.

Our objective in this chapter is to provide the user with a useful feedback in the
form of parts of the process model whose execution causes violation to a certain rule.
By locating parts of the process whose execution causes the violation, we save users
effort to locate such causes and also avoid the threat of missing an unanticipated violation
scenario.

We will show in the rest of this chapter that violating scenarios can be declaratively
described as BPMN-Q structural queries. We call queries describing violation scenarios,

113
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anti-pattern queries. For each compliance pattern we derive anti-pattern query(ies)
describing the violation. Based on the pattern, derivation of the anti pattern queries might
examine process-specific conditions, via temporal logic querying.

We start by describing our approach of deriving anti patterns in Section 6.1. Ex-
plaining control flow violations comes in Section 6.2. Explaining violations to data
flow rules is covered in Section 6.3. Section 6.4 covers the explanation of conditional
rules violation. Section 6.5 shows how we can simplify the complexity of evaluating the
temporal logic queries using domain-specific knowledge. Limitations of our approach
to explain violations is discussed in Section 6.6. Section 6.7 builds on the example we
introduced in Section 5.5. Finally, Section 6.8 summarizes this chapter and links to the
next chapter.

6.1 Deriving Anti Patterns

The question of how violation occurred needs to be explained to the user in a comprehen-
sible way. Our approach to answer such a question depends on analyzing the temporal
logic formulas corresponding to the various compliance patterns discussed in Chapter 5.
For each pattern, the possible causes of violations are derived by negating the CTL
formula of the pattern. For each possible violation scenario a structural BPMN-Q query
is developed. Such queries are called anti pattern queries. The reason of this naming
is that these queries represent the unwanted behavior, i.e., behavior that if exposed by
the process the violation occurs . The use of BPMN-Q queries visualizes the violation
scenario to the user on a process model level, rather than the underlying transition system,
by highlighting parts in the model whose execution causes the violation. Depending on
the type of compliance rules being either control flow, data flow, or conditional rules,
the generation of such anti pattern queries might investigate the behavioral model of a
process, via temporal logic querying.

The generation of anti pattern queries starts only after the process model is known to
be violating the rule. For each anti pattern we provide a CTL formula that formalizes the
anti pattern. This anti pattern formula has two roles. First, it guides the design of the anti
pattern query as it declaratively describes the violation. Second, in some cases, as will be
discussed later, there might be more than one possibility to violate a compliance rule. In
such cases, we have to model check the separate causes of violation in order to match the
correct anti pattern query to the process to locate the error.

6.2 Control Flow Rules Violations

6.2.1 Global-scope Violation

The violation to global-scope presence occurs whenever there is a chance not to exe-
cute the to-be-present activity. Formally, the violation can be described by negating
Formula 5.2. The negated CTL formula which describes the violation for global-scope
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presence is
¬AG(start → AF(executed(a)))

Using the temporal logic equivalences discussed in Section 4.5.2, the formula looks
like

EF(start ∧EG(¬executed(a))) (6.1)

Formula 6.1 declaratively describes the violation scenario by finding at least one
execution path where the process starts and in some possible following path there is no
chance to execute A,∧EG(¬executed(a)), at all. We can notice the existential nature of
violation scenarios.

We can express this violation via a structural BPMN-Q query. The query in Figure 6.1
describes the violation scenario by finding an execution path from the start of the process
to its end without visiting activity A. Here, the exclude property of the path edge is set to A.
All process models that are related to the compliance rule and lack any occurrences of A
would be matched to that anti pattern, recall structural non-compliance (cf. Definition 5.8).
Also, any related process model that has a chance to skip the execution of any of the
occurrences of activity A is matched.

Figure 6.1: Global-scope presence anti pattern

The case of global-scope absence violation occurs when there is a chance to exe-
cute the to-be-absent activity. That is, the investigated process model has at least one
occurrence of the to-be-absent activity. Formally, the anti pattern CTL formula is

EF(start ∧ (E[¬end U (executed(a) ∧ ¬end)] ∨EG(¬end))) (6.2)

Based on Formula 6.2, the violation could occur in one of two cases. The first case is
the chance to execute A before the end of the process, E[¬end U (executed(a)∧¬end)].
The second case is not to terminate the process, EG(¬end), at all. For the process
models we consider, well formed processes, we know that the latter case cannot occur,
processes have to terminate. Thus, the only possible violation is that there is a chance to
execute the to-be-absent activity. That is, there is an execution path form the start of the
process to an occurrence of the to-be-absent activity A. This is captured by the query in
Figure 6.2.

6.2.2 Before-scope Violation

The before-scope presence pattern requires that an activity A is always executed before
another activity B. So, the violation occurs when there is a chance to reach activity B

without executing A at all before. Formally, the violation is defined as

E[¬executed(a) U ready(b)] (6.3)
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Figure 6.2: Global-scope absence anti pattern

To capture this violation on the process structure, we define the anti pattern query
shown in Figure 6.3. The query declaratively describes the violation scenario where B

is reachable from the start of the process, path edge, without visiting A, the exclude
property.

Figure 6.3: Before-scope presence anti pattern

On the other hand, violation to the before-scope absence pattern occurs when the to-
be-absent activity A has the chance to execute before activity B. Formally, the violation
is defined as.

EF(start ∧EF(executed(a) ∧EFready(b))) (6.4)

In Formula 6.4, the violation occurs when there is a chance to start the process,
execute A and eventually reach activity B. However, the actual violation occurs whenever
after execution of A we can reach B. This is the part of the anti pattern interesting to the
violation scenario. The first interpretation for this formula is to find an execution path
where A occurs and B occurs thereafter. This is correct on the behavioral level where the
CTL formula fits. However, on the process structural level, there are other possibilities.
The anti-pattern in Figure 6.4 is the first glance representation of the negated formula.

Figure 6.4: Incomplete before-scope absence anti pattern

However, this anti pattern does not find matches in the process of Figure 6.5. That is
because the anti pattern assumes that there is a structural execution path between activity
A and activity B. In that process, the concurrent execution of the two activities is also a
violation, since they can be executed in an arbitrary order.

The anti-pattern of Figure 6.6 detects violations due to parallel execution of activities.
With a path from an AND split to activity A, we declaratively describe that activity A
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Figure 6.5: A sample non-compliant process

is not necessarily the very first activity to be executed on the parallel thread. Moreover,
A might be nested in some arbitrary structure within the thread. With respect to the
well-formed processes we address, these are the only two possibilities to violate the
before-scope absence pattern on the model structure.

Figure 6.6: Another before-scope absence anti pattern

6.2.3 After-scope Violation

The violation for the after-scope presence takes place in a process instance when activity
A executes but never B afterwards. The CTL formula for the after-scope presence anti
pattern is:

EF(executed(a) ∧ EG(¬executed(b))) (6.5)

This violation is captured by the query in Figure 6.7 by looking an occurrence of
activity A from which the end of the process is reached, the path edge, without executing
B, the exclude property of the path edge.

On the other hand, the after-scope absence pattern is violated if there is a chance to
execute activity B after activity A has been executed. Formally, the after-scope absence
anti pattern is:

EF(executed(a) ∧ (E[¬end U (executed(b) ∧ ¬end)] ∨EG(¬end))) (6.6)
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Figure 6.7: After-scope presence anti pattern

Following the same discussion for global-scope absence anti pattern, the formula
above is similar to formula 6.2 where start is replaced with executed(a). However, to
locate the violation on the process structure, we can reuse the anti pattern queries for
before-scope absence in Figures 6.4, 6.6. In case that A and B are executed in parallel
and/or B executes after A violation occurs.

6.2.4 Between-scope Violation

The violations of the between-scope absence patterns are variants of the anti patterns
discussed above. The difference is in the upper and lower bounds of the scopes.

The between-scope absence type I violation occurs in one of two cases. Firstly,
after executing activity A; activity B executes and activity C afterwards. The second
possibility of violation is that activity C may never be executed after A. The anti pattern
CTL formula for between-scope absence type I is:

EF(executed(a) ∧E[¬executed(c)U (executed(b) ∧ ¬executed(c))])∨
EF(executed(a) ∧EG(¬executed(c)))

(6.7)

The formula above is a variant of after-scope absence anti pattern, see Formula 6.6.
However, the difference is that in the formula above, both cases of violations, the two
disjuncts, are possible to occur.

The first possibility of violation is declaratively described as the case that activity A

executes; afterwards B executes and finally C executes. This is clear on the execution
traces of the process. However, there are many structural combinations of A, B, and C

that are capable of generating that execution trace. At the first glance, activities A, B, and
C execute in a sequence, not necessarily one after the other. However, having A and B

executing in parallel, where C executes afterwards, also satisfies the first disjunct above.
Also, having B and C executing in parallel, where A executes before, also satisfies the
first disjunct above. Finally, having all of them execute in parallel also satisfies the first
disjunct. However, having A and C executing in parallel satisfies the second disjunct
above. Thus, we can exclude it from the causes of the first possibility at that point.

Anti pattern queries in Figure 6.8 detect the different cases of violation causing the
behavior in the first disjunct. The anti pattern query in Figure 6.8(a) detects the case where
activities A, B and C execute in sequence. Figure 6.8(b) depicts an anti pattern query
that looks for a parallel execution between B and C. Meanwhile, activity A executes
before C. Notice that this anti pattern query matches process models where activity A
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(a) A, B and C execute in sequence

(b) B and C execute in parallel

(c) A and B execute in parallel

Figure 6.8: Between-scope absence type I anti patterns

executes either before the parallel threads or it belongs to the same thread as activity C.
Finally, the anti pattern query in Figure 6.8(c) detects the violation where A and B run
in parallel and C executes after A. The matches to the last two anti pattern queries are
not disjoint. Moreover, the last anti pattern matches any process where C executes after
joining all parallel threads or it executes within the same parallel thread of A.

The second possibility of violation is similar to the violation to after-scope presence.
So, we can reuse the anti pattern query in Figure 6.7. Note that this anti pattern also
matches processes where activities A and C execute in parallel.

In order to decide about which of the anti pattern queries to match to the process. We
have to identify the exact cause of a violation. That is, whether the process has a violation
due to executing B between A and C or because C is never executed after an activity A

is executed. To determine this, we model check each disjunct in Formula 6.7 separately
against the process. For each disjunct satisfied by the process, its corresponding anti
pattern queries are matched to the process. This approach will be followed for all anti
pattern formulas that describe several possibilities of violation.
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The case of between-scope absence type II violation is similar. However, it looks at
the history of execution. Thus, the violation of such rule occurs in two cases. The first
case is similar to the one above, activity A and B execute before activity C executes. The
second case of violation occurs when activity C might be reached without executing A

before it. Formally, the between-scope absence type II anti pattern is expressed in CTL as

EF(executed(a) ∧EF(executed(b) ∧EFready(c)))∨
E[¬executed(a)U ready(c)]

(6.8)

The anti pattern queries in Figure 6.8 still fit to detect the first possibility of violation.
For the second possibility of violation, we can use the anti pattern query for before-scope
presence of Figure 6.3 replacing the activity B with C. Again, we have to model check
each disjunct in Formula 6.8 to determine which anti pattern queries to be matched to the
process.

6.3 Data Flow Rules Violations

One common feature of control flow anti patterns is that their derivation depends only on
the compliance rule (pattern). For data flow rules and conditional rules, the derivation of
anti pattern is more complicated. In many cases, we have to investigate the process model-
specific data conditions that caused the violation. Thus, the derivation of anti patterns
depends on both the rule and the investigated process model. To help discover violating
data conditions, we depend on temporal logic queries, see Section 4.5.3. Afterwards,
based on violating data conditions, we formulate BPMN-Q anti pattern queries that would
capture execution paths of the process that cause the violation.

In the rest of this section we focus on deriving anti patterns for data flow rules. In the
next section we discuss deriving anti patterns for conditional rules.

A data flow compliance rule, cf. Formula 5.20, is violated if there is an execution
state in which the respective activity A is ready to execute, ready(a) holds, but the data
condition is not fulfilled. Formally the data flow anti pattern is

EF(ready(a) ∧ ¬dataCondition) (6.9)

The violation occurs because of ¬dataCondition. That is, the data object(s) relevant
to the compliance rule assume other states (values) rather than specified in the rule. To
discover these unwanted data values, for each data object d mentioned in the rule, we
issue the following temporal logic query against the investigated process

AG(ready(a) → state(d, ?s)) (6.10)

With Formula 6.10, we are asking about the data states (values) that d assumes at the
point ready(a) holds. Here, the symbol d is a placeholder for the data object mentioned
in the compliance rule while ?s is the placeholder for its states. In general, the answer to
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such a query delivers the different data object states that make the statement hold. The
general form of the query result complies with Formula 5.18. We can exclude the data
object values mentioned in the compliance rule from those returned as the temporal logic
query answer. For each remaining value sr, we seek to build a BPMN-Q anti pattern
query that highlights the execution path from the point d was assigned that value sr until
the activity A is reached.

Recall that each data object d assumes a finite set of states. Also, for each data object
we assume a known initial state. To help explain how anti patterns are derived, we use
an example. Consider the banking business process in Figure 5.26 that handles the “Risk”
data object. the set of possible states for the “Risk” object is {initial, high, low}. Now,
consider the data flow compliance rule

AG(ready(Open Correspondent Account) → state(Risk, low))

which we discussed in Section 5.5. We learned that the above rule is violated by the
banking process model. Issuing the temporal logic query

AG(ready(Open Correspondent Account) → state(Risk, ?s))

we receive the following answer to the query

state(Risk, initial) ∨ state(Risk, high) ∨ state(Risk, low)

We can discard state(Risk, low) from the answer since it is the value required by the
rule. Having this state in the query answer means that there are some cases where the
“Open Correspondent Account” activity is ready to execute while the “Risk” object takes
the low value.

The other two data states, namely initial and high, are the causes of the violations.
The value initial in the query answer tells us that there are execution path(s) where the
“Risk” data object was not updated at all. That is, it keeps its initial state until the “Open
Correspondent Account” activity is reached. To capture this situation on the process
structure, we need to formulate an anti pattern query where there is an execution path from
the start of the process to the “Open Correspondent Account” activity that excludes all
activities updating the “Risk” object. It is easy to investigate the process model for those
activities that update the “Risk” object. We call this set of activities updateRisk. With
this information in hand, we can formulate an anti pattern BPMN-Q query as shown in
Figure 6.9 where d is replaced with “Risk” and A is replaced with “Open Correspondent
Account”.

The other cases of violations occur due to setting the data object to some unwanted
state that is kept until the activity in the compliance rule is reached. For the case in hand,
The “Risk” object could be set to high and it keeps that value until “Open Correspondent
Account” is reached. Thus, on the process structure, we need to find an execution path
from some activity that sets the “Risk” to high to the open account activity. However, to
highlight correct parts of the process, we have to be sure to exclude any activity on the
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Figure 6.9: Anti pattern for data flow violation, initial value

path that set the “Risk” to low. We refer to the set of activities updating the “Risk” to
state low as update(Risk,low). The anti pattern for such case is shown in Figure 6.10, we
will return to this example with more details in Section 6.7.

Figure 6.10: Anti pattern for data flow violation, unwanted value

6.4 Conditional Control Flow Rules Violations

Depending on the conditional rule, the generation of the anti pattern might investigate
process-specific violation conditions. This is true for conditional rules that have the data
condition as part of its consequent.

6.4.1 Effect Rules Violation

A violation for effect presence pattern, see Section 5.2.5.1, occurs whenever there is
no activity that executes after the condition of the rule whose execution produces the
required effect. Thus, the violation detection is similar to global-scope and after-scope
presence violations. Formally, the violation is described as follows

EF((start/executed(c)) ∧EG(¬effect)) (6.11)

The effect propositional formula refers to Formula 5.18. However, to build the
BPMN-Q anti pattern query, we have to investigate the process model for activities
that are responsible for producing that effect. For each data object d and its set of
states Sd mentioned in effect, we can lookup activities that produce these effects

s∈Sd
update(d,s). At this point, we can use anti patterns in Figures 6.1, 6.7. But, we set

the exclude property to the set of activities


s∈Sd
update(d,s). We repeat the generation

of these anti pattern queries for each data object mentioned in effect.



6.4. CONDITIONAL CONTROL FLOW RULES VIOLATIONS 123

On the other hand, the effect absence violation occurs when the to-be-absent effect
has a chance to occur. This situation is formalized as follows

EF((start/executed(a)) ∧ (E[¬end U (effect ∧ ¬end)] ∨EG(¬end))) (6.12)

Therefore, the anti pattern is similar to those of global-scope absence, after-scope
absence respectively. The anti pattern queries will be similar to the ones shown in
Figures 6.2, 6.4, 6.6 respectively. However, the to-be-absent activity is replaced with the
to-be-absent effect. To represent the effect in the anti pattern query, for each data state of
a data object, we introduce an anonymous activity that is attached to that data value.

6.4.2 Conditional Presence Violation

The violation of conditional (after-scope) presence is similar to the violation of global-
scope (effect) presence and after-scope (effect) presence, the violation occurs whenever
there is a chance to skip the execution of the response activity or the activity(ies) respon-
sible for the response effect. Formally the anti pattern can be expressed as

EF((executed(a)/true)∧stableDataConditionCTL∧EG(¬(executed(b)/effect)))
(6.13)

We can notice that the anti pattern formula above detects a similar violation like
Formula 6.1. Thus, the anti pattern query looks for a path from the point where the
condition occurred, i.e., executed(a) ∧ stableDataConditionCTL with no chance to
execute B, effect, afterwards to the end of the process, as shown in Figure 6.11.
Following the same discussion for effect presence violation, we can deduce from the
process models the set of activities that are responsible for producing the effect.

Figure 6.11: Conditional presence anti pattern

6.4.3 Conditional Precedence Violation

As discussed in Section 5.2.5.3, there are two cases for conditional precedence. The first
case is for precedence to conditional activity execution, cf. Formula 5.31. The violation
to this case is similar to the violation to the before-scope presence discussed above. That
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is, the violation occurs whenever there is a chance to skip the execution of the precedent
activity before reaching the conditionally executed activity. Formally, the anti pattern for
precedence to conditional activity execution is defined as

E[¬executed(a)U ready(b) ∧ dataCondition] (6.14)

The dataCondition above refers to Formula 5.18.
The anti pattern query to detect this violation is shown in Figure 6.12. The path edge,

excluding A, between the start event and activity B highlights the part of the process
causing the violation. The other path connecting the anonymous activity with the data
condition to activity B highlights the part of the process where the conditional activity
execution occurs. In case the data condition refers to more than one data object, an
anonymous activity is added to the anti pattern query for each data object referred to in
the data condition. Each of these anonymous activities has an outgoing data flow edge to
the respective data object.

Figure 6.12: Conditional activity Execution anti pattern

Unlike precedence to conditional activity execution, detection of conditional prece-
dence (cf. Formula 5.33) violation requires querying the behavioral model of the investi-
gated process model. Formally, the violation occurs as follows

E[¬((executed(a)/true) ∧ stableDataConditionCTL) U ready(b)] (6.15)

According to Formula 6.15, the violation occurs because (executed(a)/true) ∧
stableDataConditionCTL did not occur before activity B is reached. Recalling the
definition of stableDataConditionCTL in Formula 5.28, the violation might be traced
back to any of the following reasons:

1. Either activity A was not executed at all, or
2. The data condition


(d,s)∈DataStateQ state(d, s) was not fulfilled for any of the

data objects mentioned in the compliance rule, or
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3. AG(


s′∈CONs
¬state(d, s′)) was not fulfilled. That is, the state of the data object

had been altered to a contradicting value.
Note that in case an anonymous activity was used in the rule, we can drop the case of

executed(a) from violation explanation.
In order to identify the exact reason for the violation, we have to issue a sequence of

TL queries. Depending on their results we can derive the BPMN-Q query that shows how
the violation occurred.

We start by the case of an anonymous activity is mentioned in the rule, focus is on
data conditions. For each data object d ∈ DQ, we investigate the process model for those
activities that update d to any of the required data states, mentioned in the compliance rule.
This set is obtained from


(d,s)∈DataStateQ update(d,s). Afterwards, we check whether

any of these activities always executes before B. That is, we check the less strict form of
before-scope presence, see Section 5.2.3.3. Formula 6.16 describes the TL query at this
stage.

¬E[¬(


a∈


(d,s)∈DataStateQ
update(d,s)

executed(a))U ready(b)] (6.16)

If Formula 6.16 is satisfied, we know that data conditions are the causes of the
violation. On the other hand, if Formula 6.16 is not satisfied, we can use the anti pattern
for before-scope presence of Figure 6.3 to highlight the violation on the process structure.

Second, we investigate for data conditions violations, cases 2, 3 listed above. Using
the set of updating activities


(d,s)∈DataStateQ update(d,s) described above, we can issue

the following TL query for each data object d mentioned in the data condition.

EF(executed(a) ∧ state(d, ?s) ∧EF(ready(b))) (6.17)

where a ∈


(d,s)∈DataStateQ update(d,s).
The temporal logic query in Formula 6.17 simply asks for whatever data values

the data object d can take at the moment an updating activity completes execution and
afterwards activity B is reached. The answer for this query would be on the form shown
in Formula 5.17. However, it is possible for some updating activities that the answer is
empty. This means, for that specific updating activity, it is not the case that it executes
before B.

For each reported data state that is not included in the compliance rule, we formulate
an anti pattern query as shown in Figure 6.13.

Finally, the violation could be due to the fact that the data object changes its value
to any of the contradicting values. To discover those contradicting values specific to the
process model we issue a TL query in Formula 6.18.

EF(executed(a) ∧


(d,s)∈DataStateQ

(state(d, s) ∧EF(state(d, ?s′))) ∧EFready(b))

(6.18)
Where we look for specific values for s′ that would make the whole formula true when
model checked against the process model. For each reported value for s′, we can issue
the anti pattern query shown in Figure 6.14.
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Figure 6.13: Conditional precedence anti pattern

Figure 6.14: Conditional precedence anti pattern

6.4.4 Conditional Before-scope Violation

The case of conditional before-scope presence violation was already covered in Sec-
tion 6.4.3. Here, we discuss the violation of conditional before-scope absence. This
pattern requires that whenever an activity B is ready to execute under certain condition,
another activity A must have never been executed before. Thus, the violation is similar
to the general before-scope absence control flow pattern, there is a chance to execute A

before B executes. Formally, the anti pattern CTL formula is

EF(start ∧EF((executed(a)/effect) ∧EF(ready(b) ∧ dataCondition))) (6.19)

Following the same discussion in Section 6.2.2, it is not necessary that activity A, or
activities producing the effect, is in sequence with B. Rather, it might be in a parallel
thread to B. Thus, we can reuse the anti patterns for before-scope absence. However,
we need to update these anti patterns to highlight the parts of the process producing the
dataCondition up to the point activity B is reached. These updated anti pattern queries
are shown in Figure 6.15. The anonymous activity @W , attached to the data condition,
has a path edge to activity B to highlight the execution path in the process through which
B is ready to execute under the data condition. For each state(d, s) appearing in the data
condition, an anonymous activity with a data flow edge to that state(d, s) is added to the
anti pattern query with a path edge connecting it to activity B.



6.4. CONDITIONAL CONTROL FLOW RULES VIOLATIONS 127

(a) A and B execute in sequence

(b) A and B execute in parallel

Figure 6.15: Conditional before-scope absence anti pattern

6.4.5 Conditional After-scope Violation

Violation to conditional after-scope (effect) presence was already discussed in Sec-
tion 6.4.2. In this section we discuss the case of after-scope (effect) absence violation.
The CTL formula for such anti pattern is

EF(executed(a) ∧ stableDataConditionCTL∧
(E[¬end U ((executed(b)/effect) ∧ ¬end)] ∨EG(¬end)))

(6.20)

From the formula above we notice that the violation occurs in the same case as for
the control flow after-scope absence anti pattern, see Formula 6.6. The difference is that
in the conditional case we require activity B, or an effect, to be absent only if activity
A results in a certain data condition. Thus, we can derive the same anti pattern query
to detect the violation on the structure of the process. The difference is that we need to
highlight the resulting data condition of activity A. The updated anti pattern queries are
shown in Figure 6.16.
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(a) A and B execute in sequence

(b) A and B execute in parallel

Figure 6.16: Conditional after-scope absence anti pattern

In the above BPMN-Q query, activity B could be replaced with the effect, an anony-
mous activity attached to the data effect, to capture the violation to conditional effect
absence pattern.

6.4.6 Conditional Between-scope Violation

There are three different patterns to express conditional between-scope absence compli-
ance rules, cf. Section 5.2.5.6. Violation to these patterns have some commonalities to
anti patterns discussed above.

The conditional between-scope absence type I, cf. Formula 5.39 requires that at the
time an activity C is ready to execute and some dataCondition holds; another activity
A must have been executed before. Moreover, between A and C activity B must have
never been executed. The CTL formula for this anti pattern is

EF(executed(a) ∧EF((executed(b)/effect) ∧EF(ready(c) ∧ dataCondition)))∨
E[¬executed(a)U ready(c) ∧ dataCondition]

(6.21)

The violation for this pattern is similar to the violation of the control flow between-
scope absence type II discussed in Section 6.2.4. Also, this anti pattern is similar to
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the before-scope absence anti pattern. That is, absence is required only under certain
data conditions. To detect the first possibility of violation in Formula 6.21, we reuse
between-scope anti patterns in Figure 6.8. However, to highlight the data condition
attached to activity C, we need to explicitly add that data condition to the anti pattern
query as we did in Figure 6.15.

It is also possible to violate this pattern in a process model by reaching activity C and
the dataCondition is true but activity A was not executed before. In this case, the anti
pattern in Figure 6.12 detects this case of violation.

The violation to conditional between-scope type II, cf. formula 5.41, occurs if the
data condition does not hold once before reaching activity C or there is a chance to
execute activity B in between. Formally, the anti pattern is captured in CTL as

E[¬(executed(a) ∧ stableDataConditionCTL) U ready(c)] ∨
EF(executed(a) ∧ stableDataConditionCTL ∧EF((executed(b)/effect)∧
EFready(c)))

(6.22)

In part, the violation of this pattern is similar to violation to conditional precedence
discussed in section 6.4.3, the first part of Formula 6.22. So, the discussion about the
derivation of anti pattern queries for conditional precedence is also valid in the current
case. All anti pattern queries derived for the conditional precedence can be employed to
detect violation to type II between-scope absence violation.

To detect the other possibility of violation, i.e., the chance that activity B, or activities
producing the effect, executes in between, the anti patterns for between-scope absence,
in Figure 6.8, are reused. However, we need to update them by attaching the data condition
to activity A, as we did in Figure 6.16.

Finally, the violation to type III conditional between-scope absence can be derived
from the anti pattern CTL formula

EF(executed(a) ∧ stableDataConditionCTL ∧
E[¬(executed(c)/effect) U (executed(b)/effect2 ∧ ¬executed(c)/effect)])∨
EF(executed(a) ∧ stableDataConditionCTL ∧EG(¬(executed(c)/effect)))

(6.23)

Either activity B executes, to-be-absent effect occurs, in between A and C or there is
no chance to execute activity C (required effect) after the data condition holds. The anti
patterns for between-scope absence, in Figure 6.8, can be reused. However, we need to
update them by attaching the data condition to activity A. To detect the latter possibility
of violation, the anti pattern for conditional presence can be reused, see Figure 6.11.

As discussed in Section 6.2.4, we have to model check the different causes of viola-
tions, disjuncts in Formulas 6.21,6.22 and 6.23, in order to determine which anti pattern
query will be matched to the process to locate the violation.
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6.5 Evaluation of Temporal Logic Queries

We have seen that for some data-dependent compliance rules; it is necessary, in order to
explain violation, to investigate the process behavior for data conditions causing violation.
For this, temporal logic queries are the means. In this section, we shed light on evaluation
of temporal logic queries. This is necessary to make the visualization of violation for
data-dependent rules possible.

Although there seems to be a generic temporal logic query solver [22], there were
no publicly available prototype. However, according to [21, 20], it is possible to reduce
the temporal logic query solving problem to 22

|AP |
model checking problems, where AP

is the set of atomic propositions used to express properties. We used that approach to
implement a problem-specific temporal logic query solver for the explanation of data-
dependent rules violations discussed in Sections 6.3, 6.4. We will show that we can
reduce the temporal logic query solving problem into a linear number of model checking
problems, using domain-specific knowledge.

From the discussion of violations for data-dependent rules, we need to issue temporal
logic queries to explain violations in the following cases:

1. Data flow rules.

2. Conditional precedence rules.

3. Conditional between-scope absence type II .

The cases 2, 3 are quite similar.

6.5.1 Evaluating Data Flow Temporal Logic Queries

In Section 6.3 we showed that in order to discover violating data conditions we have
to issue the temporal logic query of Formula 6.9. That is, we have to find what values
(states) a data object d may assume each time some activity A is ready to execute. At
a first glance, we can issue up to 2|stated| model checking questions representing the
different disjunctions sd of data object states on the form∗

AG(ready(a) →

s∈sd

state(d, s))

However, there is a chance to simplify this problem due to expressiveness of CTL as
well as the nature of data states. From the discussion of Section 4.1.3.2, we know that in
any execution state a data object can take exactly one value, i.e., data state. Moreover,
with CTL one can issue existential formulas on the form, “Is there a chance to reach some
state?”. Exploiting this knowledge, we can issue much simpler model checking questions
to answer the temporal logic query of Formula 6.9. The simpler form is

EF(ready(a) ∧ state(d, s)) (6.24)
∗Recall that stated is the set of all states a data object d can assume
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With Formula 6.24, we check whether there is a reachable state where both propositions
ready(a) and state(d, s) hold true. For each s ∈ stated where the corresponding formula
is satisfied, state(d, s) is added to the disjunction representing the final answer to the
temporal logic query (cf. Formula 5.18). Thus, we can answer the data flow anti pattern
temporal logic query by a linear number of model checking problems rather than the
doubly exponential number in the general case.

6.5.2 Evaluating Conditional Precedence Temporal Logic Queries

For the case of conditional precedence, as well as conditional between-scope absence
type II, we have two temporal logic queries to answer (cf. Formulas 6.17, 6.18).

To solve the query of Formula 6.17, we follow the same argument followed in the
previous subsection. Thus, we can answer the query by means of issuing a linear number
of model checking problems. However, we can reduce the actual number of model
checking questions exploiting the domain-specific knowledge. Recalling the notion of the
domain knowledge, Section 4.4, each activity has postconditions representing its effect.
Since we expect process models to be consistent with the context, any activity must
produce the effect described in the domain knowledge. That is, to answer the temporal
logic query of Formula 6.17, we need only to check the data states that are defined as
postconditions for the activity rather than the whole set of data states a data object can
assume.

To answer the temporal logic query of Formula 6.18, we already know from the
domain knowledge the set of contradicting data states to a given data state state(d, s).
Thus, we can issue a number of model checking problems equal to the number of the
contradicting states.

6.6 Matching Anti Pattern Queries to Process Models With
Multiple Activity Occurrences

The approach to highlight problematic parts of the process by means of BPMN-Q anti
patterns queries works well in case that process models contains at most one occurrence
of any activity. However, if it happens that activities have multiple occurrences, applying
the approach as is might result in some false negatives. That is, it might highlight parts of
the process as problematic while they are not. But, all problematic areas will be detected.
We give an example to illustrate this situation. Consider the process model in Figure 6.17.

Checking that process against the compliance rule AG(executed(b) →
A[¬executed(c) U end]) fails. Applying the after-scope absence anti pattern in Fig-
ure 6.6 indicates the problematic part of the process as shown in Figure 6.18. The
problem with the matched part is that it contains a false negative indicating a problem
between activity B2 and C3. However, there is no chance to execute those two specific
occurrences since they reside on two different choice branches. The reason for this false
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Figure 6.17: A process model with repeated activities

negative is the nature of query matching to process models. Recalling the discussion
about query matching in Sections 4.2, 4.3, the AND split 1 has a path to B2 as well as
C3. On the other hand, the anti pattern also highlighted the actual problematic areas.
These are, parallel execution between B2 and C6. Also parallel execution of B5 and C6

was highlighted.
It is possible to avoid these false negatives. However, this comes with extra cost. To

the case in hand, we need to avoid the matching between AND split 1, B2 and C3. This is
possible if we start with a partially refined anti pattern query. As discussed in Section 4.2,
a partially refined query is the one with some of its nodes are bound to nodes in the
process model. So, having the two partially refined anti pattern queries in Figure 6.19
will not produce the false negative match. However, the identification of the specific
activity occurrences that cause the violation requires investigating the process behavioral
via temporal logic querying.

To enable querying the specific activity occurrences, the preparation of the state
transition system, i.e., the Kripke structure needs adding more details. We need to
add propositions on the form ready_activity_ID and executed_activity_ID for each
execution state where the specific activity occurrence, with a specific ID, is ready or
executed respectively. Actually, this information is already present in the mapping of
process models to Petri nets, recall that each transition is assigned an ID similar to that of
the respective control flow node in the process.

Assuming that the extra information is added, we can use temporal logic querying to
identify the exact activity occurrences that caused the violation. For the specific example
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Figure 6.18: A match with false negatives

(a) Partially Refined Anti Pattern 1 (b) Partially Refined Anti Pattern 2

Figure 6.19: Partially refined anti patterns

in hand, we start from the after-scope absence anti pattern formula, cf. Formula 6.6. We
repeat it here for ease of follow up.

EF(executed(b) ∧ (E[¬end U (executed(c) ∧ ¬end)] ∨EG(¬end)))

The anti pattern formula states that a violation occurs whenever activity B occurs and
afterwards C occurs before terminating the process. To identify the exact occurrences of
B and C that caused the violation we issue the following TL query

EF(executed(?bID) ∧EF(executed(?cID)))

In the above query ?bID indicates that we are interested in propositions executed_b_ID,
i.e., all propositions that indicate execution of specific B occurrences, similarly is ?cID
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for activity C. The answer for the above TL query against the process in Figure 6.17
yields the answer that makes the following CTL formulas true.

EF(executed_b_2 ∧EF(executed_c_6))

EF(executed_b_5 ∧EF(executed_c_6))

Based on the answer to the TL query we can formulate the partially refined queries as
those in Figure 6.19.

The approach described above can be generalized for all anti patterns discussed in
this chapter as follows:

1. Issue a temporal logic query based on the anti pattern formula.

2. Create partially refined anti pattern queries based on the result from the previous
step.

3. Match the partially refined anti pattern queries to the process model.

It is clear that to avoid the false negative there is an extra cost on the form issuing
more temporal logic queries to identify the exact cause of violations. However, there is a
processing cost saving on the side of the BPMN-Q query processor because it starts from
the partially refined queries rather than the totally unrefined one.

6.7 Back to Example

In Section 5.5, we showed how a set of compliance rules can be modeled as BPMN-Q
behavioral queries. Some of these rules were violated by the process model of Figure 5.26.
In this Section, we apply the anti patterns discussed in this chapter to explain violations
on the process model structure. Recall that rules R3, R5 were the only rules violated.
Thus, we add more rules that are intentionally violated by the model.

• R3: Opening an account must be of low risk.

• R5: If it is the first time to deal with the respondent bank, advanced due diligence
study must be conducted.

• R7: Due diligence study must always be conducted.

• R8: Before opening an account, the respondent bank certificate must be valid

In the above list we repeated rules R3, R5 for convenience. For each violated rule,
we explain the violation.
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Explaining Violations to R3

The rule R3 states that “Opening an account must be of low risk”. The rule was modeled
as the BPMN-Q query shown in Figure 5.29. This rule follows the data flow pattern. We
learned also that the rule is not satisfied by the model in Figure 5.26. To explain this
violation, we derive anti patterns according to the discussion in Section 6.3. That is we
issue the following temporal logic query

AG(ready(Open Correspondent Account) → state(Risk, ?))

Evaluating the above temporal query against the open account process yields the
following answer

state(Risk, initial) ∨ state(Risk, high) ∨ state(Risk, low)

We can exclude the value state(Risk, low) from the answer above since it is the
one originally included in the compliance rule. Now we have two remaining values,
state(Risk, initial),state(Risk, high). Thus, we generate the two anti pattern queries
of Figure 6.20.

(a) Anti Pattern Query for (Risk, initial) value

(b) Anti Pattern Query for (Risk, high) value

Figure 6.20: Anti patterns for R3

The structural matching of the query in Figure 6.20(a) to the open account process
in Figure 5.26 is shown in Figure 6.21. This match shows that it is possible open a
correspondent account where the “Risk” object is kept to its initial value. This is possible
in the cases where the open account request is received from a respondent bank for which
previous open account requests were handled.

On the other hand, matching the query in Figure 6.20(b) highlights the other possibility
of violation to R3. In this case, although risk is assessed; it is still possible to open the
account while “Risk” is high. The matching to the process is highlighted in Figure 6.22.
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Figure 6.21: An execution scenario that violates R3
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Figure 6.22: Another execution scenario that violates R3
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Model checking R3 would return only one of the two violation scenarios shown
above as a counterexample. In order to discover the other possibility of violation, the first
one had to be fixed, model checking is run again. It is obvious that our approach provides
complete feedback on all possible violations. Moreover, it requires only model checking
once.

Explaining Violations to R5

Rule R5 follows the conditional presence pattern. Thus, an anti pattern could be derived
by finding any execution path from the point where the condition holds to process end
without visiting the activity “Conduct advanced due diligence study”. The corresponding
anti pattern is shown in Figure 6.23. Moreover, in Section 5.5, we decided that rule R5

is structurally non-compliant (cf. Definition 5.8). Thus, the anti pattern would match
the whole process after activity “Identify Respondent Bank” indicating that all execution
paths from that point do not visit the “Conduct advanced due diligence study” activity.
We did not show the match to save space.

Figure 6.23: Anti pattern for R5

Explaining Violations to R7

Rule R7 is a global-presence rule. The anti pattern query of Figure 6.24 looks for
execution paths from the start of the process to its end without visiting the activity
“Conduct due diligence study” (cf. Section 6.2.1). The matching to open account process
is highlighted in Figure 6.25.

Figure 6.24: Anti pattern for R7

In the highlighted part, we can notice that not only “Conduct due diligence study”
was excluded. Rather, all branches that are running in parallel to it. This is a feature
implemented in the BPM-Q query processor. That is, whenever an activity is excluded in
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Figure 6.25: An execution scenario that violates R7
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a path, all parallel threads have to be excluded. Although structurally this is not necessary.
It is necessary to give meaningful feedback. That is, if there is an execution scenario that
skips some activity, it also skips all activities that run in parallel to it.

Explaining Violations to R8

Rule R8 could be modeled as a conditional precedence using the template in Figure 5.18,
replacing “A/@A” with “Check Respondent Bank certificate” and “B” with “Open
Correspondent Account”. The rule is violated. Thus, following the approach discussed in
Section 6.4.3, we have to check several conditions in order to derive anti pattern queries.

Checking the weaker form of the rule R8, i.e., checking whether the “Open Correspon-
dent Account” activity is always preceded by the “Check Respondent Bank certificate”
activity, fails. Thus, we can derive the anti pattern query of Figure 6.26. That is, there is
a chance to skip the execution of “Check Respondent Bank certificate” before reaching
“Open correspondent Account”. Matching that query to the open account process returns
the same result as shown in Figure 6.25.

Figure 6.26: Anti pattern for R8

To check whether there are data-dependent violations, we issue the following temporal
logic query

EF(executed(Check Respondent Bank certificate)∧
state(Certificate, ?s) ∧EF ready(Open Correspondent Account))

The formula above uses the template of Formula 6.17. The answer to the above
formula is

state(Certificate, valid) ∨ state(Certificate, invalid)

From the answer to the query we can derive the following anti pattern
The matching part of the open account process to the anti pattern in Figure 6.27

indicates that it is possible to execute “Check Respondent Bank certificate” activity with
a result of an invalid “Certificate”. Yet, the “Open Correspondent Account” activity is
still reachable. We do not show a specific figure with the highlighted matching part to
save space.

6.8 Summary & Outlook

In this chapter, we presented an approach to explain violations to the user by means of
highlighting execution paths in the process that cause the violation. Violation scenarios
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Figure 6.27: Another anti pattern for R8

were derived by negation of the CTL formula for the compliance pattern, see Section 6.1.
Based on the negated formula, one or more violation scenarios could be derived. Each
violation scenario is declaratively represented as a BPMN-Q structural query. Those
queries (violation scenarios) are called anti patterns. Structurally matching the anti pattern
query to the process directly highlights the part of the process where the problems are.
We discussed through the chapter and showed in Section 6.7 that our approach provides
exhaustive explanation to possible violations compared to interpreting the feedback of
the model checker.

In all cases, we start deriving anti patterns once we learn that the compliance rule is
not satisfied by the model. On one hand, control flow anti pattern, see Section 6.2, can
be derived directly from the corresponding pattern (rule) query. On the other hand, for
some data-dependent rules, see Section 6.3 and 6.4, the derivation of anti pattern queries
require querying the behavior of the investigated process.

Temporal logic querying was the tool to query the behavior of process models.
We showed in Section 6.5, how domain-specific knowledge reduced the complexity of
evaluating temporal logic queries.

Finally, in Section 6.7 we built on the rules introduced in Section 5.5 and applied the
approach of anti patterns to that case study.

Next, we provide a road map to (semi) automated resolution of violations.





Chapter 7

Resolution of Compliance Violation

In Chapters 5, 6, we discussed how to model, check and explain violations to compliance
rules. Model checking and temporal logics were the formal background to our approach.
In this chapter, we address the problem of providing suggestions to the user in order to
remove violations and enforce compliance. To this end, model checking and temporal
logic techniques fall short to cope with the new problem. Firstly, model checking deals
with the behavioral model of the process while making changes to the process necessitates
doing modifications on the structural level. Moreover, the changes to be made to the
process should be kept as minimal as possible; it must keep the changed process model
consistent with the domain knowledge. Finally, temporal logic is of a declarative nature
that fitted well with the nature of compliance rules. When it comes to modifying the
process structure, more details have to be added to keep the process operational. For
instance, a compliance rule which states that “for each received insurance claim there has
to be a reply sent to the client“ abstracts from details like investigating and evaluating
the claim and comparing it to the client policy before deciding to pay back the claim’s
amount. All these details must be present to make the process model operational.

While our approach in the previous two chapters was complete. That is, we were able
to decide about compliance for each rule and we were able to explain violations. In this
chapter, we give directions for automated resolution of violations. We investigate how far
the domain knowledge can be exploited to help the user find resolutions to the violations.
Even if it is not possible to automatically resolve the violation, we help the user assess
the effort needed, in terms of changes to the way business is conducted and understood,
to enforce compliance.

To simplify the discussion, we focus on resolving violations to after-scope presence,
i.e., G(executed(a) → F(executed(b))). We refer to this rule simply as A leads to B.
In this chapter, we discuss the possibilities of resolving violations to this pattern. Later
on, we discuss how resolution to violations of other patterns can be approached.

To reach this objective, the rest of this chapter is organized as follows. In Section 7.1

143



144 CHAPTER 7. RESOLUTION OF COMPLIANCE VIOLATION

we argue that we need a different tool set in order to address the violation resolution
problem. We study the possible violations to A leads to B rule on the process structural
level in Section 7.2. Based thereon, we suggest various resolutions and discuss their
applicability in Section 7.3. Directions to resolve violations to other patterns is given in
Section 7.4. Finally, Section 7.5 discusses the limitations of the approach.

7.1 Another Tool Set

We have two problems that temporal logics and model checking cannot address:

• Analyzing the violation on the structure of the process model

• Filling the gap between the abstract compliance rules and the detailed operational
process models.

In order to resolve a violation, we have to make modifications to the structure of the
process model. Modifications can be in the form of adding, removing, or moving activities
to restore compliance. This necessitates the study of the execution relation between
activities A and B, mentioned in the compliance rule. Process decomposition techniques
provide a good starting point to analyze compliance violation, and thus resolution, on
the structural level. We rely on the concept of process structure tree (PST) [144, 145],
which is the process analogue of abstract syntax trees for programs, we give more details
in Section 7.1.1.

The second problem that appears when we need to provide automated resolution is the
abstraction-level gap between compliance rules and operational process models. As stated
earlier, process models must have a sufficient amount of details to make it operational
and to meet its business objective. On the other hand, compliance requirements focus on
a specific situation and leaves all other details out. Thus, we need a technique that can
derive a detailed process that is yet compliant.

To fill the abstraction-level gap between compliance rules and detailed processes, we
depend on automated planning techniques [97]. In automated planning, the planner is
given three inputs, the initial state, the target state and the action space. It is the planner’s
task to find a sequence of actions that can make the system evolve from the initial state to
the target state, see Section 7.1.2 for more details.

7.1.1 Process Structure Tree

The concept of a process structure tree is based on the unique decomposition of a process
model into fragments. One approach is the decomposition of a model into canonical
single entry single exit (SESE) fragments, formally described in [144, 61]. Informally, a
SESE fragment is a fragment with exactly one incoming and exactly one outgoing edge.
The node sets of two canonical SESE fragments are either disjoint or one contains the
other. Following [144], we consider the maximal sequence of nodes to be a canonical
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SESE fragment. If the node set of SESE fragment f1 is the subset of the node set of SESE
fragment f2, then f1 is the child of f2 and f2 is the parent of f1. If f1 is the child of f2
and there is no f3, such that f3 is the child of f2 and f3 is the parent of f1, f1 is the direct
child of f2. Canonical SESE fragments can be organized into a hierarchy according to
the parent-child relation. The hierarchy is represented with a directed tree called process
structure tree. The tree nodes represent canonical SESE fragments. Figure 7.1 shows
an example process model along with its decomposition into SESE fragments and their
nesting.

(a) An example process model

(b) SESE fragments hierarchy (PST)

Figure 7.1: Decomposition of a process in SESE fragments and its process structure tree

Definition 7.1. [Process structure tree]

A process structure tree PST = (N,E, r, t, cond) is a tree, where:

• N is a finite set of nodes, where nodes correspond to canonical SESE fragments,

• E ⊆(N × (N \{root})) is the set of edges. Let tree nodes n1, n2 ∈ N correspond
to SESE fragments s1 and s2 respectively. An edge leads from n1 to n2 if SESE
fragment s1 is the direct parent of s2,

• r ∈ N is the root of the tree. r represents the main sequence of the process model,
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• t : N → {act,seq,and,xor,loop} is a function assigning a type to each
node in N : act corresponds to activities, seq—sequences, and, xor—blocks
of corresponding type, loop,

• cond : {n : n ∈ N ∧ t(n) ∈ {seq,loop}} → 22
Pr

is a function that assigns a
condition for sequence and loop nodes, where Pr is a set of atomic proposition.

The definition distinguishes five node types: activities, sequences of activities, parallel
blocks, exclusive choice blocks, and loops. While activities, sequences, and blocks are
natural to understand, we assume loops to be a SESE fragment containing at least two
gateways: a join and a split. The join is incident to the entry edge of the fragment, the
split—to the exit edge of the fragment. The loop has two branches: one leading from the
join to the split is always executed (we call it mandatory) and the other leading from the
split to the join may be skipped (optional). It is allowed that one branch does not contain
nodes. In the illustrations depicting PSTs, sequences are visualized with horizontal line,
blocks—with diamond-shaped figure. If the node type is unimportant it is captured as a
filled circle. Activities are leaf nodes in the tree and are represented with unfilled circles.

A process model may contain several occurrences of one activity (e.g. activity A).
Then, the model’s PST has the set of nodes which correspond to occurrences of A. To
address such a set of nodes we denote it with Na ⊂ N .

7.1.2 Automated Planning

A violation resolution often implies that a business process logic is changed. The severity
of changes may vary. The task is always to come up with a compliant model, fulfilling
the business goal. This implies that a process should be reorganized to assure that
the requirements are satisfied. Given that the set of activities required to construct a
compliant process is available, this task can be approached with techniques of automated
planning [97]. Automated planning techniques are often employed by service-oriented
architecture community for a service composition problem, e.g., in [86]. We demonstrate
how a resolution of compliance violations can be expressed in terms of automated
planning.

The problem of automated planning can be described as follows. Given a system in an
initial state it is required to come up with a sequence of actions that brings the system to the
goal state. The sought sequence of actions is called a plan. A system can be represented as
a state-transition system which is a 3-tuple Σ = (S,A, γ), where S is a finite set of states,
A is a finite state of actions, and γ : S ×A → 2S - a state transition function. A planning
task for system Σ = (S,A, γ), an initial state s0, and a subset of goal states Sg is to find
a sequence of actions ⟨a1, a2, . . . , ak⟩ corresponding to a finite sequence of transitions
(s0, s1, . . . , sk) such that s1 ∈ γ(s0, a1), s2 ∈ γ(s1, a2), . . . , sk ∈ γ(sk−1, ak) and
sk ∈ Sg.

To formalize the resolution problem in terms of automated planning we need to
explain what are Σ = (S,A, γ), s0, and Sg. The system Σ is a business environment,
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where a business process is executed and which evolves as the next activity completes.
Hence, actions in the planning task are associated with instances of activities described
by the domain knowledge, while system states—with the states of the environment
where a process executes. Function γ defines transition rules in the planning domain. In
the process domain the context defines the preconditions and effects for every activity,
Definition 4.10, which aligns with the transition function. A transition from the current
state to the next state via application of an activity results in removing all the effects
defined by the post− relation and adding the effects defined by the post+ relation. The
current state reflects the effects of all the activities which have taken place before. Initial
state s0 corresponds to the state of the environment before the first activity of the process
took place. Set Sg consists of the states in which the business goal of the process is
fulfilled and a compliance rule is not violated. The states can be described in terms of
first order logic.

A limitation in planning is that generated plans have no possibility to represent
choices. Although this is logical in plans used to move robots, it is considered a limitation
when adapting the approach to the business process field. Another limitation is that
planning algorithms always start from the initial state trying to reach the goal state. It
is not possible, for instance, to start with a partial plan which the planner tries to make
it a full plan by adding, removing, and/or reordering actions. This is only possible in
case-based planning [26] where the planner should have a large enough repository of
similar problems that are associated with their solutions. Unfortunately, this is not our
case.

7.2 Catalog of Violations

As was stated earlier, we focus on after-scope presence rules, A leads to B. In Section 6.2,
we discussed how to explain violations to these rules by anti patterns. In this section, we
analyze the violations using PSTs and present the catalog of compliance violations [13].
For each violation, we give the name and briefly discuss the problem it addresses. The
effort to resolve the violation depends on the violation scenario in the business process.
That is, if A leads to B is violated by two process models p1 and p2 where in p1 B

execution is skipped while in p2 there is no occurrence of B at all, then it is probably less
effort to resolve the violation in p1 than in p2.

Since a process model might contain more than one occurrence of the activities A
and B under investigation, we assume a priori knowledge about the pairing of such
occurrences.

The A leads to B rule is violated in two cases: either there is no path leading from A
to B, or there is a path leading from A to the process end, but not containing B. These
two cases are captured declaratively by the anti pattern of Figure 6.7. However, analyzing
the structure of a business process, using PSTs, we can derive more detailed violations.

The catalog of violation can be considered as an alternative approach to locate



148 CHAPTER 7. RESOLUTION OF COMPLIANCE VIOLATION

violations on the process structure level, in contrast to anti patterns discussed in Chapter 6.
However, we provide this catalog as the basis for the resolution algorithms discussed in
the next section.

In order to formally describe the violations, we need to define some terms. These
definitions depend on the process structure tree given in Definition 7.1.

Definition 7.2. [Path]
A path between two nodes n0, nk ∈ N , is a sequence of nodes path(n0, nk) =

(n0, n1, . . . , nk) where (ni, ni+1) ∈ E, 0 ≤ i < k. The length of the path is the number
of nodes in this path and we denote it with |path(n0, nk)|.

Since the compliance rule we address describes the execution ordering between two
activities, determination of the block type in which occurrences of A and B execute helps
determine the violations. The least common ancestor of two nodes represents the smallest
scope (block) in which the nodes occur.

Definition 7.3. [Least common ancestor]
The least common ancestor of two nodes n,m ∈ N in the PST = (N,E, r, t) is

a node lca(n,m) = p where p ∈ N ∧ p ∈ path(r, n) ∧ p ∈ path(r,m) ∧ @p′ : p′ ∈
path(r, n) ∧ p′ ∈ path(r,m) ∧ p ∈ path(r, p′).

Also, given two occurrences of A and B respectively, the order in which they appear
within a sequence block determines the possibility of violation.

Definition 7.4. [Order] The order of execution of a node n ∈ N with respect to node
p ∈ N , where (p, n) ∈ E ∧ t(p) = seq is a function:

order : N ×N → N,
where the first argument is the parent node and the second—its child.

The notion of order can be extended to all the children of a node with type seq.

Definition 7.5. [Order∗] The order of execution of a node n ∈ N with respect to node
p ∈ N where |path(p, n)| ̸= 0 ∧ t(p) = seq is a function

order∗ : N ×N → N,
defined as:

order∗(p, n) =


order(p, n) , if (p, n) ∈ E,

order(p, k) , where (p, k) ∈ E ∧ k ∈ path(p, n), if @(p, n) ∈ E.

Finally, we introduce a family of auxiliary functions exec<type>. Every function
checks if a given activity is always executed within the given fragment. To answer this
question a recursive analysis of all fragment’s children is done. The following definition
formalizes this function family in terms of PST.



7.2. CATALOG OF VIOLATIONS 149

Definition 7.6. The family of functions exec<type> : N<type>×Nact → {true, false}
is defined as:

execxor(p, a) =


true, if


∀x:(p,x)∈E exect(x)(x, a) = true,

false, otherwise.

where p ∈ Nxor and a ∈ Nact.

execand(p, a) =


true, if


∀x:(p,x)∈E exect(x)(x, a) = true,

false, otherwise.

where p ∈ Nand and a ∈ Nact.

execseq(p, a) =


true, if


∀x:(p,x)∈E exect(x)(x, a) = true,

false, otherwise.

where p ∈ Nseq and a ∈ Nact.

execloop(p, a) =


true, if for the direct child node x of p laying on

its mandatory branch holds exect(x)(x, a) = true,

false, otherwise.

where p ∈ Nloop and a ∈ Nact.

execact(p, a) =


true, if p ∈ Na,

false, otherwise.

where a, p ∈ Nact.

With the help of the above defined terms in addition to the knowledge about A and
B occurrence pairs, we can identify four ways of violating a A leads to B rule, splitting
choice, different branches, inverse order or lack of activity. In the remaining of this
section we describe each violation possibility in details.

7.2.1 Splitting Choice

This type of violation can be motivated by the following example. Assume we have
a business process, containing the fragment presented in Figure 7.2(b). The fragment
shows that once a purchase request is received, its budget should be approved; before the
approval the request can be optionally analyzed. However, one can require that every
received purchase request must be analyzed. This requirement can be formalized in the
form of a compliance rule Receive purchase request leads to Analyze request. In
the presented fragment this rule is violated, since after purchase request is received, the
analysis can be skipped.

We call this type of violation splitting choice. Leads to compliance rule has a
violation of type splitting choice if a model contains occurrences of both activities A and
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(a) PST representa-
tion

(b) Example of splitting choice violation

Figure 7.2: Splitting choice violation

(a) PST repre-
sentation

(b) Example of different branches violation

Figure 7.3: Different branches violation

B connected with a path, but this path contains an XOR split. Thus, the process model
provides an option not to execute B, once A is executed. Obviously, this contradicts to
the semantics of the leads to rule. Another possibility for splitting choice violation
occurs when activity B is on the optional branch of a loop block.

Definition 7.7. [Splitting choice violation]
A process model has a violation of compliance rule A leads to B and this violation

is of type splitting choice if the PST for this model contains nodes a and b corresponding
to activities A and B, such that s = lca(a, b)∧ ((t(s) = seq∧∃x ∈ path(lca(a, b), b) :

t(x) = xor ∧ exec(x, b) = false) ∨ (s ∈ Nloop ∧ exec(s, b) = false)).

7.2.2 Different Branches

Activities A and B can be located on different branches of a block. Independently of the
block type, compliance rule A leads to B is violated. Indeed, semantics of an and block
does not allow predicting the execution order of A and B. A xor block allows execution
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(a) PST representation (b) Example of inverse order violation

Figure 7.4: Inverse order violation

of either only A, or only B. From the structural perspective violation of a rule follows
from the fact that there is no execution path neither leading from A to B, nor from B to
A (cf. Fig. 7.3(a)).

The example of different branches violation is shown in Figure 7.3(b). notify customer
and arrange delivery activities are executed in parallel. Concurrent activities allow the
company to shorten the execution time. However, once the company policy requires to
notify a client about delivery details (i.e., Arrange delivery leads to Notify customer
compliance rule is imposed), the business process becomes non-compliant.

Definition 7.8. [Different branches violation]
A process model has a violation of compliance rule A leads to B and this violation

is of type different branches if:

• the PST for this model contains nodes a and b corresponding to activities A and B,
respectively,

• t(lca(a, b)) ∈ {and,xor}.

7.2.3 Inverse Order

Probably the most challenging violation of ruleA leads to B is the case when activities
A and B appear in the inverse order. This means that a process model contains both
activities A and B, connected with a path, but this path leads from B to A. Obviously, a
compliance rule can not hold.

The inverse order violation can be illustrated by the following example. Assume
that a company sends a notification with an order summary to the customer once the
order is prepared. Afterwards, the company contacts its logistics partner to arrange the
delivery. Fig. 7.4(b) captures a fragment of the model corresponding to this process.
New business conditions require the company to include the delivery information in the
notification, i.e. first the delivery should be organized. This requirement is captured in the
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rule organize delivery leads to notify customer. In this case inverse order violation
takes place. Fig. 7.4(a) captures this violation type in terms of PST and the following
definition formalizes it.

Definition 7.9. [Inverse order violation]
A process model has a violation of compliance rule A leads to B and this violation

is of type inverse order if:

• the PST for this model contains nodes a and b corresponding to activities A and B,
respectively,

• t(lca(a, b)) = seq,

• order∗(lca(a, b), b) < order∗(lca(a, b), a).

7.2.4 Lack of Activity

A process model is non-compliant to the A leads to B rule, if it has at least one oc-
currence of A and no occurrence of B. Consider a compliance rule Receive purchase
request leads to Close purchase request. Checking the process model fragment in
Figure 7.2(b) against this rule, we see that the rule is violated because Receive purchase
order is executed, but Close purchase order—never, since it is missing in the process
model.

Definition 7.10. [Lack of activity violation]
A process model has a violation of compliance rule A leads to B and this violation

is of type lack of activity if the PST for this model contains node a corresponding to
activity A and for this node a Nb = ∅.

7.3 Resolving Violations

In this section we explain how compliance rule violations can be resolved [12]. We
base the resolution strategy on the violations catalog discussed in Section 7.2. For each
violation case, we discuss a set of resolution alternatives. These alternatives are about
adding, removing, or moving occurrences of activities A, B, and/or other dependent
activities in order to gain compliance. The alternatives are evaluated based on the
compliance rule, the process model, and the domain knowledge, cf. Section 4.4. For each
violation case, we devote an algorithm that selects an alternative to resolve the violation,
if there is a resolution. These algorithms to a large extent exploit automated planning.

According to each violation case, automated planning will be applied to 1) decide
whether the required rule is possible to satisfy, using the available domain knowledge, 2)
find required in-between activities to make the changes to the original process consistent.
In some cases, the found resolution is valid only under restrictions to the behavior of
activities.
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We use the function findP lan(init, goal, condition, context) in our algorithms to
encapsulate the call for an AI planner. The plan is a partial ordering of activities [104]. A
partial order plan is similar to a process fragment where activities are either in sequence
or parallel blocks. The parameter init describes the initial state for the planner. The goal
parameter determines which activity(ies) that have to be executed as goals for the planner.
Moreover, the condition parameter might be used to express extra constraints on the
goal state of the planner. Finally, the context parameter is the encoding of the domain
knowledge. The domain knowledge is used by the planner to find a plan.

Before we go into details of violation resolution, we first explain about the way
initial and goal states are calculated for the findP lan function. Generally, for a rule
Source leads to Destination, the inital parameter reflects the execution of a set of
activities from starting of the process up to and including the source activity. source is
an occurrence of the Source activity in the rule, i.e., source ∈ NSource. This is due to the
fact that an activity may have more than one occurrence within the process model. We
use the notion source− to reflect the execution history before source. Thus, calculating
the initial state must include the execution history of all preceding activities from the start
of the process up to and including the source. However, there might be more than one
possible initial state. This is due to the possibility of having choice blocks before the
source activity. In this case, each possible execution instance before source is considered
as an initial state. Moreover, a plan has to be found for each of the possible instances in
order to conclude that resolution is possible.

We assume that process models are consistent with the domain knowledge. In
Section 4.4, we informally defined the notion of consistency between a process model
and the domain knowledge. Here, we formally define that notion based on the process
structure tree.

Definition 7.11. [Business process consistency with the domain knowledge]
A process model, its process structure tree, PST = (N,E, r, t, cond) are consistent

with domain knowledge
C = (Nact, A, T, asptype, contt∈T , prett∈T , posttt∈T ) if:

• Post conditions are used: ∀n ∈ Nact ∧ ∀tt ∈ T ∧ posttt ̸= ∅ ∧ ∀a ∈ A ∧
asptype(a) = tt ∧ (n, a) ∈ posttt : n ∈ N → (∃m ∈ Nact : m ∈ N ∧ (m, a) ∈
prett ∧ t(lca(m,n)) = seq ∧ order(lca(m,n), n) < order(lca(m,n),m)) ∨
(@f ∈ N : order∗(r, n) < order∗(r, f) ∧ t(f) = act),

• No two contradicting activities execute in the same instance: ∀n,m ∈ Nact ∧
(n,m) ∈ contt : Nn = ∅ ∨ Nm = ∅ ∨ ∀n′ ∈ Nn∀m′ ∈ Nmt(lca(n′,m′)) =

xor ∧ @s ∈ N(t(s) = loop ∧ s ∈ path(r, lca(n′,m′))).

Definition 7.11 ensures the consistency between a process model and its PST on
one hand, and the domain knowledge on the other hand by making sure that for any
postcondition produced by an activity n, there is an upcoming activity m that will use
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Activity Precondition
Postcondition

Negative Positive

Go to checkout order [init] order [init] order [conf]
pay. meth. [card]

Go to checkout order [init] order [init] order [conf]
pay. meth. [transfer]

Notify customer order [conf] notification [init] notification [sent]
payment [received]

Pay by pay. meth. [card] payment [init] payment [received]
credit card card data [filled]
Pay by pay. meth. [transfer] payment [init] payment [received]
bank transfer bank data [filled]
Provide pay. meth. [transfer] bank data [init] bank data [filled]
bank data bank data [init]
Provide pay. meth. [card] card data [init] card data [filled]
credit card data card data [init]
Prepare goods order [conf] goods [init] goods [prepared]
Send goods address [filled] goods [prepared] goods [sent]

payment [received]
goods [prepared]

Provide order [conf] address[init] address [filled]
shipping address address[init]
Cancel order order [init] order [init] order [canceled]
Archive order order [conf] order [conf] order [archived]

goods [sent]
payment [received]

Archive order order [canceled] order [canceled] order [archived]

Table 7.1: Pre and post relations of the example domain knowledge

that output or the activity n is one of the last activities to execute in the process model.
This indirectly states that the process will not deadlock due to unmet data conditions [8].
Also, for any two contradicting activities, there is no chance to execute them both in
the same process instance. This is guaranteed by 1) either one of them appears in the
process model, 2) if both appear they have to be on different branches of an XOR block
and without any surrounding loop blocks.

7.3.1 Example Domain Knowledge

We introduce an example, to be used throughout the rest of the chapter to illustrate the
ideas. The example includes the domain knowledge and business process fragments. The
domain knowledge is defined by the tuple (Nact, A, T, asptype, cont∈T , pret∈T , postt∈T ).
The set of activities Nact is formed by {Go to checkout, Notify customer, Pay by credit
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card, Pay by bank transfer, Provide bank data, Provide credit card data, Prepare goods,
Send goods, Provide shipping address, Cancel order, Archive order}. In the example we
consider the data aspect. Hence, set T contains one element data. The set of objects A is
the set of data objects {address, bank data, card data, goods, order, notification, payment,
payment method}∗. Subsequently, function asptype relates each of the data objects to
type data object. Table 7.1 captures pret∈T and postt∈T relations. An activity may have
more than one pre- or postcondition. For instance, activity Archive order expects either
a confirmed order, received payment, and sent goods, or it expects a canceled order. In
this way, it is possible to express disjunctive preconditions. Activities Pay by credit
card and Pay by bank transfer are the only contradicting activities. Based on the above

(a) First process fragment

(b) Second process fragment

Figure 7.5: Two process fragments consistent with the context

domain knowledge, the two process fragments shown in Figure 7.5 are consistent with
the context.

7.3.2 Resolving Splitting Choice Violation

A violation resolution implies that a process model is modified in such a way that activity
B is always executed after A. We aim at introducing local modifications to the model.
Hence, we first identify the smallest fragment of a model, whose modification can be
sufficient for the violation resolution. Afterwards, the fragment is modified in the way
that execution of B is assured. In general, the following operations allow to resolve
splitting choice violation:

1. Remove activity A from the process model;
∗We omitted the data object states to avoid duplicates as they are present in Table 7.1
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2. Move activity A to the branch with B directly before activity B;

3. Add activity B to every branch in the choice block;

4. Remove all the branches which do not contain activity B;

5. Add activity B in between activity A and the choice block, directly after A;

6. Add activity B directly after the block;

7. Move activity B in between activity A and the choice block;

8. Move activity B directly after the choice block

Removing activity A from the process model would achieve vacuous compliance.
However, apart from the inconsistency that might appear due to removing A, in the
specific case of splitting choice violation, the process logic already allows executing B

after A in some cases. Thus, we should look for a way to execute B in all cases. Thus,
the first two alternatives are not suitable in this case.

Adding B to every branch where it is missing would solve the problem. In any
exclusive thread after A there is a chance to execute B. However, we have to make sure
that there are no contradictions between B and other activities on branches lacking B, see
Definition 7.11. If for a branch it is not possible to add B, the branch has to be removed,
the fourth alternative. This could be justified by the fact that compliance requirements,
in general, restrict the behavior of processes and they are supreme to the logic in the
process. However, to guarantee consistency of the process, activities behavior, i.e., post
conditions, has to be changed to guarantee that the process does not deadlock. That is, for
each branch to be removed, the branch condition has to be analyzed in order to identify
activities which produce these conditions as effects. Afterwards, the behavior of these
activities has to be modified in order to be sure that unused effects will not be produced.
The role of automated resolution is to identify the conditions and activities respectively.
Modifications to activity behavior are considered as a task of a human expert.

The remaining alternatives duplicate or move the activity B some point after A out
of the choice block. Duplication might not be possible in every case. For instance, if
the activity B is about payment, it is not possible to duplicate it. Also, duplication or
movement raises the issue of consistency again. In both cases, there is a chance that B
will be in sequence with one of its contradicting activities on the other branches of the
choice block.

Algorithm 22 provides our approach to resolve this violation. Initially, a block
enclosing occurrences of activities A and B is sought, see line 1. If the enclosing block is
a loop, the algorithm has to assure that B is executed after the loop. Automated planning
attempts to construct a plan containing activity B. If the plan is constructed, it is inserted
exactly after the loop block. Otherwise, the resolution cannot be performed. If the block is
not a loop, we seek inside it for a choice block containing b on its branch, line 9. For each
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input :m—process structure tree
input :a, b ∈ N—the occurrences of activities A and B, respectively
input :c—domain knowledge
output : (m,r)—(updated process structure tree, restriction to activities behavior or

conditions under which planning failed)
1 s = lca (a,b) ;
2 if t(s) = loop then
3 plan = findPlan (a −, b, cond (s), c);
4 if plan = ∅ then
5 add a − to r;
6 add cond (s) to r;
7 return (null,r);
8 insert plan into m exactly after the loop exit;
9 else if t(s) = seq then

10 x is the choice block containing b;
11 forall the branch is a branch of x with no b do
12 if branch has activities contradicting b then
13 remove branch from m ;
14 add cond (branch) to r ;
15 else
16 plan = findPlan (a −, b, cond (branch), c) ;
17 if plan = ∅ then
18 remove branch from m;
19 add cond (branch) to r ;
20 else
21 add plan to m merging it into branch;
22 return (m,r);

Algorithm 7.1: Resolving splitting choice violation

branch missing B, we check if it has activities contradicting B, with respect to the domain
knowledge C. If a contradiction exists, the branch is removed, line 13. Meanwhile, the
branch conditions are identified as restrictions to activity behavior, line:14. In case of
no contradictions, we use automated planning based on the information of the domain
knowledge to find a path from a to b under the branch condition, see line 16. If no
plan could be found, the branch is removed from the model and the branch condition is
added to the restrictions. Otherwise, the found plan is merged to the branch to enforce
compliance.

Let us turn to the example process fragment in Figure 7.5. The process fragment
violates the compliance rule Go to checkout leads to Notify customer. Go to checkout
activity is succeeded by the choice block. While one branch of the choice block contains
activity Notify Customer, the other does not. According to Algorithm 22, an occurrence
of activity Notify customer is added to the branch where it was missing. The occurrence
is added to the branch after activity Pay by Bank Transfer. On the other hand, a rule
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Go to checkout leads to Pay by credit card is also violated. However, to resolve
this violation using Algorithm 22, the lower branch has to be removed. In this case, the
branch condition payment method[transfer] is identified as a restriction. That
is, the resulting process is consistent only in the case that the postcondition payment
method[transfer] of activity Go to checkout is removed.

7.3.3 Resolving Different Branches Violation

As stated earlier, a violation of this type takes place if the two activities are allocated
on different branches of a block, independent of a block type, i.e., either an XOR or an
AND block. However, the resolution strategy varies depending on the block type. The
following operations allow to resolve the violation:

1. Remove activity A from the process model;

2. Add activity B to the branch with A directly after activity A (for xor block);

3. Move activity B directly after the block (for and block);

4. Move activity A directly before block (for and block)

In case that activity A and B are on different branches of an XOR block, removing A

from the process solves the problem. But, we have to remove the whole branch where
A belongs, to be sure that no remaining activities without unmet inputs. However, as
discussed earlier, removing a branch necessitates making restrictions to preceding activity
behavior. Otherwise, the process would deadlock due to unmet inputs.

The second alternative is to add B after A. This is possible in case there are no
contradicting activities to B on that branch. However, we handle these situations as a
lack of activity as we will show later. If this succeeds, it is preferable to the situation of
removing A from the process model.

In case of an AND block, the resolution strategy aims at sequentializing A and B.
To achieve the sequential execution of A and B, we move an occurrence of B from a
block branch to the position exactly after the block. However, such a manipulation with
an occurrence of B might introduce inconsistencies into the process model: there might
be activities on the branch expecting B in the initial place. Hence, we move not only an
occurrence of B, but the set of activities succeeding B on the branch and depending on
B. An alternative strategy is to move A, together with preceding activities on which A

depends, exactly before the block. The preference to one of these strategies can be given
basing on the number of activities to be moved.

Algorithm 18 summarizes the resolution for different branches violation. First, the
type of block is identified, line 1. In case of XOR block, the algorithm checks whether it
is possible to add a new occurrence of B after A, by calling the lack of activity resolution
algorithm. If there is a solution, the resulting plan is merged with the process model.
Otherwise, the branch containing A is removed. In this case, the branch condition is
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input :m—process structure tree
input :a, b ∈ N—the occurrences of activities A and B, respectively
input :c—domain knowledge
output : (m,r)—(updated process structure tree, restriction to activities behavior or

conditions under which planning failed)
1 s = lca (a,b) ;
2 switch type(s) do
3 case AND
4 PREa is the set of all nodes that execute before a within the same thread;
5 POSTb is the set of all nodes that execute after b within the same thread;
6 if |PREa| <|POSTb| then
7 move PREa before the parallel block;
8 else
9 move POSTb after the parallel block;

10 case XOR
11 forall the branch is a branch of s with a, but no b do
12 result =resolve Lack of activity violation;
13 if result =∅ then
14 remove branch from m;
15 add condition (branch) to r ;
16 else
17 merge result with m;
18 return (m,r);

Algorithm 7.2: Resolving different branches violation

identified as a restriction for activities behavior. On the other hand, if A and B are on
different branches of an AND block, they are sequentialized.

Different branches violation is shown in Fig. 7.5(b), where Pay by credit card and
Pack goods activities are executed in parallel. The resolution algorithm moves activity
Pack Goods from the lower branch of the parallel block to the position between the
AND join and Send Goods activity. Another case of different branches violation occurs
when we have a rule Pay by Bank Transfer leads to Notify Customer. In this case, a
resolution is by adding Notify Customer to the same branch as Pay by bank transfer,
this is possible since Pay by bank transfer provides the payment[received]input of
Notify Customer.

7.3.4 Resolving Inverse Order Violation

In case of inverse order violation, the process model semantics is opposite to the semantics
of the rule and the process model requires considerable modifications. In general inverse
order violation can be fixed with one of the following operations:

1. Remove activity A from the process model;

2. Add activity B directly after activity A;
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input :m—process structure tree
input :a,b ∈ N—is the occurrences of A and B for which the violation has to be

resolved
input :c—domain knowledge
output : (m,r)—(updated process structure tree,restriction to activities behavior or

conditions under which planning failed)
1 let pre be the node before b;
2 let post be the node after a;
3 plan1 = findPlan (pre −, a, ¬ b,c);
4 if plan1 = ∅ then
5 if ∃ s ∈ path(lca(a,b),a) ∧ t(s) = xor then
6 let x be the branch containing a;
7 remove x from m;
8 add condition (x) to r;
9 else

10 add pre − to r;
11 return (null,r);
12 else
13 forall the n

∈ N ∧ order(lca(a,b),b) < order(lca(a,b),n) < order(lca(a,b),a) do
14 Delete n from m;
15 Merge plan1 with m;
16 plan2 =findPlan (a −, b ∧ post, true,c);
17 Merge plan2 with m;
18 return (m,r);

Algorithm 7.3: Resolving inverse order violation

3. Move activity A to the position directly before activity B;

4. Move activity B to the position directly after A

The decision to remove activity A from the process model can be pursued in case the
removal does not affect the consistency. This could be the case where A is in an XOR
block where other branches could be taken to complete the objective behind the process.
As stated earlier, this puts restrictions on the behavior of activities. In other cases, where
A is mandatory, i.e., not in a choice block, removing A hinders the consistency of the
process model.

The second alternative, to add a new occurrence of B right after A, is not possible
in cases like duplicating payment activities. For instance, a process model that has send
goods and receive payment activities in inverse order. Otherwise, adding of a duplicate
could be reduced to a lack of activity violation.

The remaining two alternatives investigate the possibility to reorder the occurrences
of A and B. Reordering of the activities A and B is possible if there are no dependencies
of activity A on B. If a dependency exists, reordering introduces inconsistencies into
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the process model. To check whether reordering is possible, we attempt to construct a
model fragment from the process start to the point where A is executed. To come up with
this fragment, we construct a plan. In contrast to the initial model, activity B should not
appear in this plan. The initial state of the planning task reflects the process state directly
before activity B is executed. The goal state describes that activity A must be executed.
If the planner comes up with the plan, the reordering is possible. Otherwise, there is no
chance to reorder since actually A depends on the result of B.

Once reordering turns out to be possible, the resulting plan must be complemented
to assure execution of B. The second planning task’s initial state is the first plan’s goal
state. The new goal state describes the process state directly after an execution of B
in the initial process. The two plans are inserted into the model. The model is free of
contradictions and inconsistencies, since we just reordered activities, the resolution is
completed.

Algorithm 18 summarizes our approach to resolve inverse order violation. First it
tries to reorder A and B. If this is not possible and A is in a choice block. It removes A
and identifies restrictions to activity behavior that are necessary to ensure a consistent
result. On the other hand, if A is mandatory, the algorithm fails.

The inverse order violation can be illustrated by the process fragment in Fig. 7.5(a),
where the company sends a notification with an order summary to a customer. Afterwards,
the company contacts its logistics partner to pack and send goods. New business condi-
tions might require the company to include the delivery information in the notification,
i.e., first the goods should be packed. This requirement is captured in the rule Pack goods
leads to Notify customer rule. This violation is of type inverse order.

In the example of Pack goods leads to Notify customer rule violation the resolu-
tion strategy moves the occurrence of Notify Customer activity to the position after Pack
Goods activity.

7.3.5 Lack of Activity

A process model contains a violation to A leads to B of type lack of activity, if it
contains at least one occurrence of A and no occurrence of B. The following operations
allow to resolve lack of activity violation:

1. Remove activity A from the process model;

2. Add activity B directly before A

Consider a compliance rule Go to checkout leads to Archive order. Checking the
process model fragment in Fig. 7.5(a) against this rule, we see that this rule is violated,
since Archive order is missing in that fragment.

To resolve a violation of this type we introduce an occurrence of B into the process
model exactly after an occurrence of A. If the process model does not contain activities
contradicting to B, we construct a plan using findPlan(A, B, true, context). The plan
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input :m—process structure tree
input :a ∈ N—is the occurrences of A for which the violation has to be resolved
input :b ∈ N—a new occurrence of B to be added to the tree
input :c—domain knowledge
output : (m,r)—(updated process structure tree,restriction to activities behavior or

conditions under which planning failed)
1 CONb is the set of activities contradicting b based on c that appear in m;
2 if CONb ̸= ∅ then
3 forall the x ∈ CONb do
4 if type(lca(x,a)) = choice then
5 if findPlan (a −, b, true, c) ̸= ∅ then
6 insert findPlan (a −, b, true, c) after a in m;
7 else
8 add a − to r;
9 return (null,r);

10 else
11 Find pre, post;
12 if pre = null ∨ post = null then
13 add pre = null ∨ post = null to r; return (null,r);
14 FRAGx contains activity x and its tightly coupled activities;
15 FRAGb contains activity b and the results of findPlan (pre −, b,

true, c) and findPlan (b −, post, true, c);
16 insert FRAGx and FRAGb in a choice block between pre and post;
17 else
18 if findPlan (a −, b, true, c) ̸= ∅ then
19 insert findPlan (a −, b, true, c) after a in m;
20 else
21 add a − to r;
22 return (null,r);
23 return (m,r);

Algorithm 7.4: Resolving lack of activity violation

is merged into the process model directly after an occurrence of A. In case there is an
activity contradicting to B, let it be C, the resolution requires extra actions. The actions
depend on the relations between occurrences of A and C:

1. occurrences of A and C are allocated on different branches of a choice block;

2. occurrences of A and C are allocated on different branches of a parallel block;

3. an occurrence of C is allocated before A;

4. an occurrence of C is allocated after A.
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In the first case, B can be added to the process model exactly after A. As the branch
with an occurrence of A does not contain activities contradicting B, B can be introduced
to this branch without any conflicts.

In the latter three cases the process model contains occurrences of activities contra-
dicting B. We propose to introduce an occurrence of B into the model in such a way
that B and C appear on different branches of a choice block. We first seek for a SESE
fragment containing an occurrence of C and activities tightly coupled with C. Such a
process fragment contains activities which are transitively dependent on C or on which
only C transitively depends. The fragment is preceded by an activity, let it be pre, and
succeeded by an activity—post. We aim at complementing the process model with a
branch, alternative to the identified fragment with C and containing B. We can obtain
such a sequence as a result of a planning task, requiring it to fit between pre and post

and containing B. Finally, we introduce the choice block with the two branches into the
model: the branch with C and the branch with plan containing B.

Identification of the activities dependent on C is based on the analysis of the domain
knowledge and can be found as the closure of all the activities transitively depending on
C. This closure is prefixed with an activity pre. To identify pre, we start from the activity
immediately preceding C. If there is no such activity on the branch of C, we go in the
tree one level up. Either we find an activity or we reach the topmost level indicating the
start of the process. In the latter case, we cannot identify pre and thus it is not possible to
insert B as an alternative. Otherwise, from pre it is possible to find a plan where B is
executed. Similarly, we can find post, if there is one. Whenever pre or post are empty,
we are not able to proceed since the whole process in the closure of C.

As the result of the described model transformation, the violation type is no longer
lack of activity. Instead, it changes either to inverse order, splitting choice, or different
branches violation. The resolutions of these violation types have been already discussed.
Notice that a lack of activity violation can be reduced to different branches violation
and vice versa. However, there is no mutual dependency between them, as we reduce
these violations to not intersecting subcases of violations. Algorithm 23 summarizes the
approach.

Let us return to the example with a compliance rule Go to checkout leads to

Archive Order and the process fragment in Fig. 7.5(a). According to the resolution
strategy and information in the domain knowledge, activity Archive Order can be added
after goods are sent.

The resolution strategy for lack of activity violation reduces the violation to the
previous three cases: inverse order, splitting choice, and different branches. Hence, its
properties, i.e., model compliance, freedom of contradictions and inconsistencies originate
from the properties of resolution methods for the named violation types. Figure 7.6
illustrates how a lack of activity violation is reduced to other violation types and is
resolved.
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Figure 7.6: Resolving lack of activity violation in case of contradictions

7.3.6 The Overall Resolution Process

According to the discussion above, it might be the case that to resolve some violation
is to first transform it from a violation type to another. For instance, in some cases of
lack of activity violation, we transform it first to a splitting choice violation. Later on,
we apply the algorithm of splitting choice to completely resolve the violation. Thus, the
compliance violation resolution is of iterative nature. In each iteration, the violation type
is recognized and the appropriate violation resolution algorithm is applied. This process
is repeated until either no further violations are recognized or at one step the resolution
algorithm either fails to resolve the violation or to transform it to another type.

Algorithm 15 summarizes our approach to resolve compliance violations. In each
cycle, Algorithm 15 identifies the violation as either splitting choice, different branches,
inverse order or lack of activity. Afterwards, the corresponding algorithm is invoked.
Each algorithm returns a result on the form of a pair of an updated process structure
tree and a set of conditions that either represent conditions that must be taken care of as
restrictions to activity behaviors or conditions under which automated planning failed to
find a solution.

The result in each cycle can be one of three possibilities. Firstly, the resolution
algorithm returns a non empty compliant process structure tree and an empty restriction
set. This case is a complete success to resolve the violation, using the available domain
knowledge. The resulting process tree, and thus the process model, is guaranteed to be
both compliant and consistent with the domain knowledge. The second possibility is
that a non empty compliant tree and a non empty restriction set. In this case, the user
is informed about the changes that have to be made to activities, post conditions that
have to be removed in order to the returned tree to be consistent. This case actually
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input :m—process structure tree
input :A Leads to B
input :c—domain knowledge
output : (m,r)—(updated process structure tree, restrictions or conditions under

which planning failed)
1 violation=getViolationType (m,A,B);
2 while violation ̸= none do
3 switch violation do
4 case Splitting Choice
5 (m, r) = resolveSplittingChoice(m,a,b, c);
6 case Different Branches
7 (m,r)=resolveDifferentBranches (m,a,b,c);
8 case Inverse Order
9 (m,r)=resolveInverseOrder (m,a,b,c);

10 case Lack of Activity
11 (m,r)=resolveLackActivity (m,a,b,c);
12 if m =null ∨ r ̸= null then
13 return (m,r);
14 violation=getViolationType (m,A,B);
15 return (m,r);

Algorithm 7.5: Compliance violation resolution

indicates some sort of contradiction between the logic implied by the compliance rule
and the current understanding of the business domain. With this warning about possible
contradictions, users might change their perception of the domain due to new compliance
requirements or they can identify that there is a problem within the compliance rule itself.
The third and last possibility of the resolution is an empty tree and a non-empty restriction
set. In this case, the restriction set reports the conditions under which planning failed. In
this case, there is a clear contradiction between what the common understanding of the
business domain is and what is stated in the compliance rule. To overcome this obstacle,
the user has to make major changes to the domain knowledge or to the compliance rule.

7.4 Directions to Resolve Violations to Other Patterns

So far, we focused on resolving violations to the after-scope presence pattern. In this sec-
tion, we give an overview on how to approach the resolution of other patterns’ violations.

The global-scope presence pattern is similar to the after-scope pattern, where an
activity B has to be the response for the start of the process. The chances for violation
are either splitting choice or lack of activity. Algorithms 22, 23 can be applied to resolve
these violations.

The before-scope presence, A precedes B, violations are symmetric to the after-scope
presence violations. Rather, the emphasis will be on the side of the activity A. The
whole catalog of violation is applicable, with redefinition on the activity A side. However,
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to enable automated planning, the pre and post conditions of activities, in the domain
knowledge, is reversed. After a plan is found, it is reversed again to have it in the original
flow.

A violation to an absence pattern, e.g., after-scope absence, occurs when there is
a chance to execute A and B in parallel or in sequence, where A executes first. To
resolve this violation, we might check first if B is optional in the process model. If
this is the case, the whole XOR branch is removed. Following the discussion about
Algorithm 22, we can argue that this solution results in a consistent process model, under
certain restrictions. On the other hand, if B is mandatory, similar to the approach of
resolving lack of activity violation, we try to identify the scope of effect of B. Using
automated planning, we try to find a plan where B is avoided. Otherwise, it is not possible
to resolve the violation automatically. Similar strategy could be used to handle violations
to other absence patterns.

Resolving violations to conditional patterns is straightforward. Conditions can be
reflected directly in the initial and/or goal states of the required plan. However, merging
the resulting plan with the original process must explicitly add a choice block, whose
condition is the same as the conditional rule, where the missing activities are added.

7.5 Discussion

A violation resolution implies that a process model structure is changed. To control model
structural modifications we employ the concept of SESE fragments. As a consequence,
the approach is limited to process models, which are block-structured. To neglect
this limitation advanced decomposition techniques, as described in [110, 108], can be
employed. However, these approaches do not promise to reveal structure in unstructured
parts within processes. Thus, in case of unstructured parts of the process, user attention is
drawn to that problem and it is on her side to manually resolve the violation.

Besides restoring compliance in business process models, another objective is to
keep the modified process models operational. To maintain operation-ability, automated
planning was employed to 1) identify whether it is possible to restore compliance 2) find
sequences of activities that have to be added in order to restore compliance. For the first
case, if it is not possible under the given compliance rule to find a sequence of activities
execution that restores compliance, it is indicated to the user that there is an inherent
contradiction between the compliance rule and the general domain knowledge. For the
second case, if a sequence of activities is found, it is merged with the process model to
make it both compliant and operational.

Although the changes introduced by the resolution algorithms result in consistent and
compliant processes models, an updated model might look unnatural for a human reader.
For instance, sequentialization of two branches in case of different branches violation,
leaves only one branch in the parallel block. Thus, a resulting process model needs to be
refactored to develop a naturally looking process model. Process refactoring techniques
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proposed in [147] can be applied.





Chapter 8

Implementation

Developing prototypes is currently an important step for research in general and for the
business process management community in specific. With an implementation, concepts
can be better communicated with audience and more valuable feedback could be gained.
Moreover, testing with real world scenarios refines and reshapes concepts.

This chapter describes a prototypical implementation of the contributions discussed
in Chapters 4, 5 and 6. We describe an architecture where the user models compliance
rules as BPMN-Q queries and at the end receives a decision about every relevant process
whether it is compliant or not. Moreover, in case of non compliance the user is informed
about parts of the process that cause the violation. Thus, we have a set of components to
realize a compliance checking scenario. These components are

• Compliance rules editor (BPMN-Q query editor),

• BPMN-Q query processor,

• Business process model editor,

• Business process model repository,

• Mapping of process models to Petri nets,

• Petri net state space generation,

• Model checker.

Obviously, the objective is to keep implementing new components as minimal as
possible. We had to implement the query processor as it is one of the core contributions
of this thesis. Moreover, we had to implement an editor for creating compliance rules
as queries. However, we needed to access a repository of process models to query and
to check for compliance. For the process model to Petri net mapping, we followed the

169
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mapping described in Definition 4.4. Low level Petri net Analyzer (Lola) [126] is a Petri
net analysis tool and a model checker as well. Lola supports CTL model checking. Thus,
to model check, it implicitly generate the Petri net state space.

Oryx∗ [29] is a Web-based business process modeling and repository developed at the
Chair of Business Process Technology, Hasso Plattner Institute. With the front end, users
can model processes with a variety of process modeling languages, e.g., BPMN, EPC,
Petri net. Moreover, Oryx can be further extended by means of stencil sets, server-side
and client-side plugins. The extension allows integrating research prototypes in a single
framework. In our case, integrating BPMN-Q [124] and compliance checking steps into
Oryx saves us the effort of building a new editor and a process repository.

To describe how we integrated BPMN-Q into Oryx and how we realized the compli-
ance checking scenario, we start by describing the Oryx architecture and its extension
mechanisms in Section 8.1. Integrating BPMN-Q query editor and query processor along
with other software components to enable compliance checking is described in Section 8.2
also with description of the interactions between the different components. Section 8.3
describes a use case where the different steps of compliance checking are explained with
snapshots from the prototype.

8.1 Oryx Architecture and Extensions

Oryx is a Web-based graphical modeling tool and a repository for process models. Using
a standard web browser, users can login to Oryx, create, modify and share process models.
Sharing means that the model creator can give access to users as read-only, read/write
or can make process models public. Via plugins, more functionality can be added to the
editor. For instance, process models can be checked for being error-free, step through
support for process simulation, exporting process models to different formats.

Oryx does not only allow extensions by adding more functionality to existing ones.
Rather, it allows defining new modeling languages. This is achieved via stencil set
definition. A stencil set is a collection of files describing the abstract and concrete syntax
of the modeling language. JavaScript Object Notation json files describe the abstract
syntax of the language in terms of properties of nodes and edges used for modeling as
well as connectivity rules among them. To describe the concrete syntax, Scalable Vector
Graphics svg files describe how each node and edge will look like when the shape is
dragged to the drawing canvas in Oryx.

Figure 8.1 describes the architecture of Oryx. Through a Web browser, the user can
call Oryx. The core of Oryx is a set of JavaScript functions that is loaded in memory
when Oryx is called. Depending on the requested process model, the process model, the
stencil set and the associated plugins are loaded in memory. Client side plugins as well as
standard editing functionality, e.g., copy, paste, etc., can access the memory copy of the
process model. Oryx back end is the interface between the process model repository and

∗http://oryx-project.org



8.2. INTEGRATING BPMN-Q AND ENABLING COMPLIANCE CHECKING 171

Figure 8.1: Oryx architecture

the front end. Each time a server side plugin is called communication occurs between
the back end and the requester from the front end. An example server-side plugin is the
mapping of BPMN models to Petri nets. In some cases, server-side plugins need to call
external systems to Oryx.

8.2 Integrating BPMN-Q and Enabling Compliance Check-
ing

The BPM-Q query processor is implemented in Java to match queries to process models
as was described in Section 4.2.2. However, in order to let users specify compliance rules
as queries, we developed a query editor, using a BPMN similar syntax, for BPMN-Q
queries. This was achieved via defining a BPMN-Q stencil set that is available for Oryx
users. While the stencil set is at the client side and the query processor is reachable via
a server-side plugin, we implemented a client-side plugin that allows calling the query
processor at the server side.

Lola is considered as an external system to Oryx that is called by the query processor
for compliance checking. Before calling Lola, the query processor calls another sever-side
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plugin, the BPMN to Petri net mapping, in order to obtain the Petri net representation
of the process to be examined. The Petri net is then written to a .net file that is passed
to Lola. Figure 8.2 shows how BPMN-Q and components necessary for compliance
checking are fitted into Oryx architecture.

Figure 8.2: BPMN-Q architecture for Oryx

Figure 8.2 shows the static view on the components for compliance checking, in
remaining part of this section we describe the sequence of calls to the different components
in order to check for compliance.

First and foremost, the user draws the compliance query in the same way she draws a
process model. A query can be saved in the repository for later use. Moreover, the user
attaches tags to the query that will be used in identifying process models to check, as was
stated in Section 4.2. To initiate the compliance checking, the user calls , via a tool bar
button, the client-side plugin Query Evaluator Initiator. This step brings to the user a
window where she selects the type of query she wants to apply. For compliance checking,
the user has to select Process Compliance Query. After pressing the submit
button, the query is serialized and shipped to the server-side plugin Query Evaluator
Servlet as well as the querying command. That servlet instantiates the query processor
and passes the query and the command to it. Within the query processor and based on
the querying command, process models matching the tags associated with the query, cf.
Definition 4.6, are imported from the Oryx repository and translated into the internal
representation of the query processor. Complex queries are decomposed into the basic
ones as was discussed in Section 5.2.6. For each basic rule, the investigated process is
checked for structural compliance or non-compliance as was discussed in Section 5.4.2.
If for any of the basic rules no structural decision can be made, we turn to model checking.
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At that point, the query processor calls the BPMN to Petri net Mapping component, which
implements the mapping described in Section 4.1.3, to obtain the Petri net representation
for the investigated process model. In order to model check the process, we need to
generate the reachability graph of the Petri net. Lola is the means to obtain the reachability
graph as one of the things Lola can do. As stated earlier, Lola can be used as a model
checker. Lola has to be configured correctly in order to do the job. To instruct Lola to
work as a model checker, the userconfig.H file has to be edited where #define

MODELCHECKING is uncommented. Afterwards, Lola can be invoked from the query
processor with the following command lola file.net. the parameter file.net
contains the Petri net specification in Lola format and the CTL formula to be checked.
The CTL formula is obtained from the BPMN-Q query as was discussed in Chapter 5.
Moreover, the CTL formulas are expressed on the markings of the places of the Petri net.
For instance, the proposition Evaluation_failed, which describes that the “Evaluation”
data object assumes the state failed, has to be replaced on the corresponding place within
the net. Also, the proposition ready_conductDueDiligence has to be replaced with the
place whose marking means that the transition corresponding to that activity is enabled.
Also, all implications in the formula on the form p → q have to be rewritten on the form
¬p ∨ q. That is because Lola syntax does not accept implication symbols.

If model checking succeeds, i.e., the process is compliant, the process model uri and
the information that the model is compliant is send back to the Query Evaluator Servlet.
Otherwise, the query processor generates anti patterns, as was discussed in Chapter 6, for
failing rules and matches them structurally to the investigated process. At this point, the
query processor return the process model uri, the process sub-graph matching the anti
pattern and the information that there is a violation to the Query Evaluator Servlet.

The above procedure is repeated for each process to be investigated. Upon completion
of the compliance checking, the Query Evaluator Servlet receives information about
compliant and non compliant processes. To this end, the servlet invokes the Response
Presenter at the client side to screen the result to the user.

8.3 Example

In this section we describe an example starting with the modeling a compliance rule until
the feedback is returned to the user.

Figure 8.3 shows the BPMN-Q editor within Oryx. Using the stencil set, we build a
complex compliance rule. Indeed, the rule combines rules R3, R4 from Section 5.5.

To start the processing of the query, the user invokes the Query Evaluation Initiator
plugin via the tool bar. The processing options window appears as shown in Figure 8.4.

To initiate compliance checking, the process compliance query option is chosen in
the previous step. With this option, the query processor is instructed to investigate all
candidate process models for compliance. Another option is to specify the investigation
of a specific process model, Run compliance query against a specific
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process model. In the latter case, the user is asked to enter the uri pointing to that
specific process to be investigated.

With the pressing of the submit button, the query and the processing options are
shipped to the back end. After doing the steps described in the previous section for
compliance checking, the user gets feedback in the form of process model previews as
shown in Figure 8.5. By double clicking on a certain preview, the user gets the feedback
about that specific process, whether compliant or not. In case of violations, the violating
part is highlighted as shown in Figure 8.6

As can be noticed, the generation of anti patterns is totally transparent to the user.
Only the matches to the anti patterns are returned as highlighting of violating parts of the
process to the user.
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Chapter 9

Discussion

In this chapter we provide a critical discussion about the contributions in this thesis.
Our discussion will illustrate strengths and limitations of our approach and revisit the
assumptions introduced in Section 2.3. Also, we discuss how far we were aligned with
the requirements discussed in Section 2.2.

Summary

We introduced a pattern-based approach for compliance checking. Using BPMN-Q visual
queries to express compliance requirements, we have provided a graphical notation to
express compliance rules, Req. 9. The visual nature of the language, that is very close to
the way process models are expressed, makes it easy for business people to understand
and discuss about it. Also, each query is stored on its own as an artifact that can be
associated with arbitrary metadata that allows tracking of a compliance requirement, Req.

2. This helps the organization assess the number of control objectives it has established
to meet compliance requirements. Finally, formal checking is possible since each pattern
is mapped to a temporal logic formula, Req. 1.

When a set of compliance rules are related to a process model, the conjunction of these
rules are checked against the process. However, in some cases, a rule might be required
to hold when another rule does not hold. That is, the compliance to one rule is required
only when the process is violating another rule [103]. Currently this is not addressed.
Modeling this reparation relationship requires the definition of a new modeling construct.
On the technical level, we can check the disjunction of rules rather their conjunction.

Checking consistency among compliance rules, Req. 3, was divided into redundancy
and conflict checks. While conflict checking is complete, assuming that sufficient domain
knowledge is present. Redundancy checking is based on establishing a sort of logical
equivalence between the different compliance patterns. Thus, we cannot claim that
redundancy checking is complete.

179
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To explain violations to compliance rules, in general, we used a two step approach
where the first step is to query the process behavior about the causes of the violation
and in the second step BPMN-Q anti pattern queries are generated to highlight parts
of the process causing violation. Although there is a processing overhead due to the
need to issue several temporal logic queries, this could be justified by the need to be
complete. That is, we need to provide the user with every possible cause of violation,
Req. 6. This, in turn, will save and focus the effort of the user compared to the alternative
of the counterexample-driven violation explanation. In the latter case, the user has to
repeat a check-explain-resolve each time model checking identifies a violation, which
also contains a repeated cost of model checking.

To resolve violations, Req. 7, we discussed several algorithms that were dedicated
to special kinds of compliance violations. These approaches depend heavily on the
domain knowledge. This is no surprise as the very first requirement to have an effective
compliance management approach is to have a deep knowledge about the business
domain [65]. While our approach to resolve violations is not complete, it helps the user
identify areas of conflict and missing or incomplete knowledge about the domain.

Applicability

In Section 2.3, we have established a set of assumptions that make our approach applicable
in real life. Here, we discuss the relaxation of some of these assumptions and how
that relaxation affects the applicability of the approach. The success of establishing
an effective compliance management is directly related to the level of maturity of the
organization [66]. Thus, the applicability of our approach in real life depends on the level
of maturity of the organization. The entry maturity level is that organizations have explicit
views on their business operations in terms of process models [5, 65]. This has scoped
the thesis from the beginning. However, in many cases, organizations might not have
that level of maturity. In such cases, organizations might benefit from process mining
techniques [136] to help automate the discovery of business processes. Yet, this depends
on whether the organization has an automated support for its daily business operations.
If that is not the case, there is no way but starting a manual business process discovery
using traditional requirements elicitation techniques, as in [65].

To correlate compliance rules with business processes, we assumed the availability of
a common set of tags that can be used to annotate both compliance rules and business
processes. This is also is related to the level of maturity of the organization. That is,
the agreement on a set of terms that have a common meaning. If this is not the case,
users can benefit from the querying nature of BPMN-Q to identify process models that
are subject to compliance checking. However, the success of this approach assumes a
common glossary to label activities in both queries and processes.

We assume that the organization has a glossary of vocabularies, activity labels, that is
agreed upon. For instance, an activity with the label “Open account” is understood by all
people in the domain and is agreed upon its business value. If this is not the case, there
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is a range of semi automated approaches that can fill this gap. For instance, in [10], we
show how information retrieval (IR) techniques can be used to overcome this problem.
Other approaches that use semantic annotations [69, 54] can be applied to annotate both
activities in process models and in compliance queries. There are recent publications that
look up labels of activities in a repository of business process models in order to find
semantic similarity [129]. We believe that the result of such research will be beneficial to
organizations and helps accelerate building their own glossary of activity labels.

Depending on the compliance rule and the domain knowledge, we might be able to
suggest a remedy to the process model that restores compliance. With our semi automated
approach we can find, in some cases, a resolution to the violation automatically. If this is
not possible, we give the compliance officer directions about what is missing to resolve
violations. We believe that this helps the compliance officer assess the amount of change
needed within the organization’s view on the business in order to achieve compliance.
We admit that having the domain knowledge available in the form we suggest could only
be available in very highly mature organizations. However, we believe that providing a
guide about what knowledge to collect allows organizations to incrementally build their
domain knowledge. We also see that this is a necessary step that helps organization gain
more insight about its business operations and in the same time provides better capability
to respond to future compliance requirements.

Compliance for Declarative Business Processes

Declarative business process modeling is a way to allow flexibility in processes. Processes
are modeled by specifying a set of execution ordering constraints on a set of activities [107,
105]. Compliance rules discussed in this thesis can be integrated to provide a compliant
execution of process instances. In that case, having an execution engine that is faithful to
the execution constraints, including compliance rules, there is no chance for violation.
Thus, there is no need to check for violation and will be no need also to resolve them.
However, there is still the need to identify inconsistencies between rule sets.

The compliance patterns we identified overlap with those identified by Pesic in [105].
Yet, data flow and conditional rules are unique to our approach. When integrated with
declarative approaches, more expressiveness is gained to provide finer grain restrictions
on process execution.

Future Work

There are open issues that are subject to future work.

Business Process Synthesis

As compliance requirements and business objectives are developed separately, there is
a chance of conflicts. Our approach to check conflict freedom of a set of compliance
rules relied on finding computations, Büchi automaton, that satisfies the conjunction of
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the rules. The idea was to decide conflict freedom if the resulting automaton has an
accepting run. However, the decision was bound by the availability of sufficient domain
knowledge. We see an opportunity to help gain better understanding of the domain and
better communication between compliance experts on the one hand and business experts
on the other hand by means of process synthesis. From a Büchi automaton, we can
derive a process template that can serve as an artifact for the communication. Both the
compliance expert and the process expert can decide whether the resulting template is of
value. The more precise the resulting template the better communication can be reached
among experts. The technical approach to generate process template out of compliance
specification is seen as a future work.

Supporting Compliance at Other Process Life Cycle Phases

Under the assumption that organizations strictly follow their documented process models
either in the form of automated processes or by work procedures followed by employees,
we can assume a compliant execution of processes, when violations are discovered
and corrected at process definition. However, due to the dynamic nature of execution
environments, it is likely to have exceptions where violation can occur.

To guarantee compliance at automated process execution, we can foresee two direc-
tions to monitor the status of compliance. The first approach is via instant monitoring of
running processes. We believe that work in [115] constitutes the first step to realize an
instant monitoring scheme. Another approach benefits from the well developed process
mining [140, 138] techniques to assess the compliance of completed instances. The
integration with process mining can widen the scope of applicability to organizations that
do not have explicit process execution engines. The major difference between the two
approaches above is that with instant monitoring we are still able to prevent violations
or at least have an informed violation in extreme cases. On the other hand, with process
mining, we can only report about violations after they have occurred.

Using execution logs, it is also possible not only to identify violations on process
definition level, the case of process mining, but also to quantify the number of violations,
in terms of specific instances that have violations. In that case, querying rather than mining
the logs is needed. This can be approached by the notion of anti patterns introduced in
this thesis. An anti pattern can be mapped to some sort of a query that is checked against
the execution log. The number of matches identify the amount of violating instances. We
believe that this can be then integrated into business process intelligence tools to provide
top management with a realistic view of their compliance status.

Compliance Verification Enhancement

On a technical level, regarding the thesis in hand, there is a need to enhance the verification
approach discussed in this thesis. Model checking was the main technique to decide
about compliance, although we discussed simple structural checks about non compliance.
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However, model checking is known to suffer from state space explosions. Within process
models, the cause of state space explosion is having parallel threads. In literature, partial
order reduction techniques were developed to overcome this problem when verifying
properties concerned with deadlock-freedom of processes. The techniques were simply
concerned with picking only one sequence of states from the start of the parallel thread to
its end rather than needlessly investigating all possible sequences. While this is acceptable
for deadlock-freedom checking, it is not suitable for properties related to compliance
rules. For instance, if we check a rule on the form A Leads to B and it happens that A
and B are on different branches in a parallel thread, using partial order reduction can
sometimes mistakenly report compliance if the sequence in which B executes after A is
picked.

To overcome this problem, we believe that a hybrid approach for checking is needed.
That is, structural checking should be investigated first. The approach of using structural
decomposition techniques is a promising starting point. Actually, the violation catalog
discussed in Chapter 7 constitutes the starting point. Depending on the compliance rule,
e.g., control flow rules, and the degree of structuredness of business process models,
compliance can efficiently be decided. In case it is not possible to structurally decide,
only the unstructured part of the process models needs to be investigated via state space
exploration. However, there are still open points regarding conditional rules and how
to correctly map unstructured parts of the process to behavioral models. This is left for
future work.
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