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Abstract

We present a general analysis of the cooling produced by losses on condensates or quasi-
condensates. We study how the occupations of the collective phonon modes evolve in
time, assuming that the loss process is slow enough so that each mode adiabatically
follows the decrease of the mean density. The theory is valid for any loss process whose
rate is proportional to the jth power of the density, but otherwise spatially uniform. We
cover both homogeneous gases and systems confined in a smooth potential. For a low-
dimensional gas, we can take into account the modified equation of state due to the
broadening of the cloud width along the tightly confined directions, which occurs for
large interactions. We find that at large times, the temperature decreases proportionally
to the energy scale mc2, where m is the mass of the particles and c the sound velocity.
We compute the asymptotic ratio of these two quantities for different limiting cases: a
homogeneous gas in any dimension and a one-dimensional gas in a harmonic trap.
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1 Introduction

Despite their extensive use as quantum simulators or for quantum sensing, the temperatures
reached in ultracold gases are not fully understood. Careful analyses of the cooling mecha-
nisms have a long tradition in the cold atoms community, and the corresponding temperature
limits constitute important benchmarks. The role of atom losses, however, is not yet eluci-
dated, although such processes often play a role in quantum gas experiments. Different loss
processes may occur. One-body processes are always present, their origin could be for instance
a collision with a hot atom from the residual vapour. The familiar method of evaporative cool-
ing involves losses that depend on the particle energy, a case we exclude in this paper. For
clouds trapped in an internal state which is not the lowest energy state, such as low-field seek-
ers in a magnetic trap, two-body (spin flip) collisions may provide significant loss. Finally,
three-body processes where atoms recombine into strongly bound dimers are always present
and are often the dominant loss mechanism. The effect of one-body losses for an ideal Bose gas
was investigated in [1]. Loss processes involving more than one body are a source of heating
for trapped thermal clouds, since they remove preferentially atoms in dense regions where the
potential energy is low [2]. Here we are interested in the effect of losses in Bose condensates
or quasi-condensates, and we focus on low energy collective modes, whose physics is governed
by interactions between atoms.

One-body losses have recently been investigated for one-dimensional (1D) quasi-conden-
sates [3–6]. Quasi-condensates characterise weakly interacting 1D Bose gases at low enough
temperature: repulsive interactions prevent large density fluctuations such that the gas re-
sembles locally a Bose Einstein condensate (BEC), although it does not sustain true long-range
order [7,8]. The above studies have focussed on low-energy excitations in the gas, the phonon
modes. These correspond to hydrodynamic waves propagating in the condensate, where long-
wavelength phase (or velocity) modulations are coupled to density modulations. On the one
hand, losses reduce density fluctuations and thus remove interaction energy from each phonon
mode. This decrease in energy, and thus of quasiparticle occupation, amounts to a cooling of
the modes. On the other hand, the shot noise due to the discrete nature of losses feeds addi-
tional density fluctuations into the gas. This increases the energy per mode and amounts to
heating. Theoretical studies [4–6], valid for one-body losses in 1D homogeneous gases, pre-
dict that as a net result of these competing processes, the system is cooling down in such a way
that the ratio between temperature kB T and the chemical potential µ becomes asymptotically
a constant (equal to 1). Many questions remain open. For instance, the role of longitudi-
nal confinement has not been elucidated. Moreover, theoretical predictions for higher-body
loss processes are lacking, although cooling by three-body losses was recently demonstrated
experimentally [9].

In this paper, we generalise the theoretical results for one-body losses in homogeneous
1D gases and extend the analysis to a BEC or a quasicondensate in any dimension, for any
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j-body loss process, and for homogeneous gases as well as clouds confined in a smoothly vary-
ing trapping potential. We concentrate on phonon modes and the loss rate is assumed small
enough to ensure adiabatic following of each mode. Low-dimensional systems are realised
experimentally by freezing the transverse degrees of freedom with a strong transverse con-
finement. However, in many experiments the interaction energy is not negligible compared
to the transverse excitation frequencies such that the freezing is not perfect. The interactions
then broaden the wave function in the transverse directions, and phonon modes in the weakly
confined directions are associated with transverse breathing [10–12]. Our theory can take
this into account with a modified equation of state: the quantities µ and mc2, where m is the
atomic mass and c the sound velocity, equal for a strong transverse confinement, no longer
coincide. We find that the evolution produced by losses is better described by a constant ratio
kB T/(mc2) instead of kB T/µ. The asymptotic ratio kB T/(mc2) is computed for a few exam-
ples. Predictions from this paper have been tested successfully against recent experimental
results obtained at Laboratoire Charles Fabry on the effect of three-body losses in a harmoni-
cally confined 1D Bose gas [9].

2 Model

We consider a condensate, or quasi-condensate, in dimension d = 1,2 or 3. The gas is either
homogeneous or trapped in a smoothly varying potential V (r). We assume it is subject to
a j-body loss process of rate constant κ j: the number of atoms lost per unit time and unit
volume is κ jn

j where n is the density. This density includes fluctuations of quantum and
thermal nature, and its average profile is denoted n0(r, t). Instead of using involved powerful
theoretical techniques such as the truncated Wigner approach [13,14], we compute the effect
of losses in this paper with a spatially coarse-grained approach that does not rely on involved
theory and in which the approximations are made transparent. For the same pedagogical
reason, we explicitly construct the phase-density representation of the collective excitations of
the gas, in a similar way as is done for instance in [15].

2.1 Stochastic dynamics of the particle density

Let us first consider the sole effect of losses and fix a cell of the gas of volume∆, small enough
so that the density of the (quasi)condensate is about homogeneous in this volume, but large
enough to accommodate many atoms. The atom number in the cell is N = N0 + δN where
N0 = n0∆ and δN � N0 since the gas lies in the (quasi)condensate regime. (We drop the
position dependence n0 = n0(r) for the moment.) Since typical values of δN are much smaller
than N0, one can assume without consequence that δN is a variable that takes discrete values
between −∞ and∞. Hence, one can define a phase operator θ , whose eigenvalues span the
interval [0, 2π[ and that is canonically conjugate to δN . Losses will affect both the density
fluctuations and the phase fluctuations.

We first concentrate on the effect of losses on density fluctuations. Consider a time step d t,
small enough that the change dN in atom number is much smaller than N , but large enough
such that dN is much larger than 1. After the time step, we have

dN = −K jN
jd t + dξ, (1)

where K j = κ j/∆
j−1. Here, dξ is a random number with vanishing mean value that translates

the shot noise associated with the statistical nature of losses. The number of loss events during
the small step d t is Poisson distributed so that the variance of dξ relates to the mean number
of lost atoms by

〈dξ2〉= jK jN
jd t ' jK jN

j
0 d t , (2)
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the factor j coming from the fact that at each event, j atoms are lost. The evolution of fluctu-
ations in the atom number is obtained from dδN = dN − dN0, where dN0 is the change of the
mean number, equal to dN0 = −K jN

j
0 d t in the lowest order in δN . Expanding N j in Eq.(1) to

first order in δN , we obtain the following evolution for the density fluctuation δn= δN/∆:

dδn= − jκ jn
j−1
0 δn d t + dη, (3)

where dη = dξ/∆ is a random variable of variance 〈dη2〉 = jκ jn
j
0d t/∆. The first term in

the r.h.s, the drift term, decreases the density fluctuations. It will thus reduce the interaction
energy associated to fluctuations in the gas and produce cooling. The second term on the other
hand increases the density fluctuations in the gas which leads to heating.

2.2 Shot noise and phase broadening

We now compute the effect of losses on the phase fluctuations, following an approach similar to
Ref. [16]. For this purpose, one imagines that one records the number of lost atoms during d t.
This measurement increases the knowledge about N , and thus δN . To quantify this increase
of knowledge, we use the Bayes formula

P(δN |Nl) =
P(δN)
∫

d(δN ′)P(Nl |δN ′)
P(Nl |δN), (4)

where P(δN) is the initial probability of having an atom number N = N0+δN , and P(Nl |δN)
is the probability that a number Nl of atoms will be lost, given that the initial atom number was
N0 + δN . Finally, P(δN |Nl) is the probability that the final number is N0 − Nl + δN , knowing
the fact that Nl atom have been lost. As argued above, the Poissonian nature of the loss process
and the assumption that the number of lost atoms is large compare to one, imply the Gaussian
distribution

P(Nl |δN)'
1

p
2πσl

e−(Nl−K j N
j d t)2/(2σ2

l ) , (5)

where N = N0 + δN and σ2
l = jK jN

j
0 d t. Expanding N j around N j

0 and introducing

δN = Nl/( jK jN
j−1

0 d t)− N0/ j, one has

(Nl − K jN
jd t)2

σ2
l

'
(δN −δN)2

σ2
δN

, (6)

where

σ2
δN =

N0

jK jN
j−1

0 d t
. (7)

Thus, according to Eq.(4), the width of the distribution in δN is multiplied by a function of rms
width σδN after recording the number of lost atoms. This narrows the number distribution
and must be associated with a broadening in the conjugate variable, θ , lest the uncertainty
relations are violated. The phase broadening must be equal to

〈dθ2〉=
1

4σ2
δN

=
jκ jn

j−1
0

4n0∆
d t . (8)

This spreading of the phase results from the shot noise in the loss process.
In the following, keeping in mind that only length scales larger than the interparticle dis-

tance have to be considered, we go to the continuous limit. The factors 1/∆ in the variance
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for dη in Eq.(3) and in the phase diffusion of Eq.(8) then turn into

〈dη(r)dη(r′)〉 = jκ jn
j
0δ(r− r′)d t, (9)

〈dθ (r)dθ (r′)〉 =
j
4
κ jn

j−2
0 δ(r− r′)d t. (10)

Both diffusion terms are due to the quantised nature of the bosonic field, namely the discrete-
ness of atoms. Their effects become negligible compared to the drift term in Eq. (3) in the
classical field limit, i.e. n0→∞ at fixed typical density fluctuations δn/n0. Note finally that
these results could also have been obtained using a truncated Wigner approach [13,14], using
approximations based on the relation δn� n0.

Before going on, let us make a remark concerning gases in reduced dimension. An effec-
tive 1D (resp. 2D) gas is obtained using a strong transverse confinement in order to freeze the
transverse degree of freedom: the atoms are in the transverse ground state of the confining
potential, of wave function ψ(x⊥). In the case of j-body losses with j > 1, the loss process
a priori modifies the transverse shape of the cloud since it occurs preferentially at the center,
where the density is the highest. In other words, it introduces couplings towards transverse ex-
citations. We assume here the loss rate to be much smaller than the frequency gapω⊥ between
the transverse ground and first excited states. Then the coupling to transverse excitations has
negligible effects, and the above analysis of the effect of losses also holds for the effective 1D
(resp. 2D) gas, provided κ j = κ3D

j

∫

d2 x⊥|ψ(x⊥)|2 j (resp. κ j = κ3D
j

∫

d x⊥|ψ(x⊥)|2 j), where

κ3D
j is the rate constant coefficient for the 3D gas.

2.3 Collective excitations

Let us now take into account the dynamics of the gas. Under the effect of losses the profile
n0(r, t) evolves in time and, except for a homogeneous system, a mean velocity field appears,
generated by a spatially dependent phase θ0(r, t). Here we assume the loss rate is small enough
so that, at any time, n0(r) is close to the equilibrium profile. We moreover assume the potential
varies sufficiently smoothly such that the equilibrium profile is obtained with the local density
approximation. Then, at any time, n0(r) fulfills

µ(n0(r)) = µp − V (r), (11)

where µ(n) is the chemical potential of a homogeneous gas of density n and µp is the peak
chemical potential, which fixes the total atom number 1. In most cases µ = gn where g is
the coupling constant. In 3D condensates, g = 4πħh2a/m where a is the scattering length
describing low-energy collisions. In situations where two (resp. one) degrees of freedom are
strongly confined by a transverse potential of frequency ω⊥, µ depends on a, on the linear
(resp. surface) density n, and on ω⊥. As long as ħhω⊥ � µ, the transverse cloud shape is
close to that of the transverse ground state 2, and one recovers the expression µ = gn where
the effective 1D (resp. 2D) coupling constant g depends only on a and on ω⊥ [17, 18]. At
large densities, ħhω⊥ ∼ µ, the transverse degrees of freedom are no longer completely frozen:
interactions broaden the transverse wave function, and µ is no longer linear in n [11,12]. We
discuss one example in Sec.3.2.

To treat the dynamics around the average density n0(r, t), a Bogoliubov approximation
is valid since the gas is in the (quasi)condensate regime: one can linearise the equations of
motion in the density and phase fluctuations δn(r) andϕ(r) = θ−θ0 [15,19]. These equations

1The peak density is reached at the position rp where V reaches its minimum value. We impose V (rp) = 0.
2We assume here that the transverse width of the cloud fulfills l⊥� a such that the effect of interactions is well

captured treating the gas as a 3D gas.
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involve the mean velocity field ħh∇θ0/m. Here we assume the loss rate is small enough so that
such terms are negligible. We moreover consider only length scales much larger than the
healing length. Then, as detailed in Appendix A, the dynamics of δn(r) and ϕ(r) is governed
by the hydrodynamic Hamiltonian

Hhdyn =
ħh2

2m

∫

ddr n0 (∇ϕ)
2 +

m
2

∫

ddr
c2

n0
δn2. (12)

Here the speed of sound c = c(r) is related to the local compressibility, mc2 = n0∂nµ, eval-
uated at n0(r). At a given time, Hhdyn can be recast as a collection of independent collective
modes. The collective modes are described by the eigenfrequencies ων and the real functions
gν [details in Appendix B]. They obey

∇ ·
�

n0∇(
c2

n0
gν)
�

= −ω2
νgν, (13)

and are normalised according to

δν,ν′ =
m
ħhων

∫

ddr
c2

n0
gν(r)gν′(r) . (14)

Then Hhdyn =
∑

νHν where

Hν =
ħhων

2
(x2
ν + p2

ν). (15)

The dimensionless canonically conjugate quadratures xν and pν are related to δn and ϕ re-
spectively. More precisely,







δn(r) =
∑

ν xνgν(r)

ϕ(r) =
mc2

n0

∑

ν

pν
gν(r)
ħhων

,
(16)

which inverts into






xν =
m
ħhων

∫

ddr
c2

n0
δn(r)gν(r)

pν =
∫

ddrϕ(r)gν(r).
(17)

At thermal equilibrium, the energy in the mode ν is equally shared between both quadratures
and, for temperatures T � ħhων, one has 〈Hν〉= T .

3 Cooling dynamics

3.1 Evolution of the excitations

Let us consider the effect of losses on the collective modes. The loss process modifies in time
the mean density profile and thus the two functions of r, n0 and c, that enter into the Hamilto-
nian Eq. (12). We however assume the loss rate is very low compared to the mode frequency
and their differencesων−ων′ , so that the system follows adiabatically the effect of these mod-
ifications. As a consequence, equipartition of the energy holds at all times for any collective
mode ν, and the adiabatic invariant Aν = 〈Hν〉/(ħhων) is unaffected by the slow evolution of
n0. The dynamics of Aν is then only due to the modifications of δn(r) and ϕ(r) induced by the
loss process (subscript l), namely

dAν
d t
=

1
2

�d〈x2
ν〉l

d t
+

d〈p2
ν〉l

d t

�

. (18)
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Injecting Eq. (3) into Eq. (17), we obtain for the ‘density quadrature’

(d xν)l =
m
ħhων

∫

ddr
c2

n0
gν(r)
�

− jκ jn
j−1
0 δn(r)d t + dη(r)

�

. (19)

Using the mode expansion (16) for δn(r) in the first term, we observe the appearance of
couplings between modes. In the adiabatic limit (loss rate small compared to mode spacing),
the effect of these couplings is however negligible. Then, Eq. (19) leads to

d〈x2
ν〉l

d t
= −

2 jκ jm

ħhων
〈x2
ν〉
∫

ddr c2n j−2
0 g2

ν +
jκ jm

2

(ħhων)2

∫

ddr c4n j−2
0 g2

ν . (20)

Let us now turn to the phase diffusion associated with losses. It modifies the width of the
conjugate quadrature pν, according to

d〈p2
ν〉l

d t
=

jκ j

4

∫

ddr n j−2
0 g2

ν . (21)

The hydrodynamic modes are characterised by low energies, ħhων � mc2, when the speed of
sound is evaluated in the bulk of the (quasi)condensate. Then d〈p2

ν〉l/d t gives a contribution
that scales with the small factor (ħhων/mc2)2 compared to the second term of Eq. (20). In other
words one expects that the phase diffusion associated to the loss process gives a negligible
contribution to the evolution of Aν [Eq.(18)] for phonon modes 3.

We see from Eq.(20) that the adiabatic invariant Aν is actually changed by j-body losses.
We now show that the decrease in the energy per mode 〈Hν〉 is better captured by the energy
scale associated with the speed of sound, as their ratio will converge towards a constant during
the loss process. More precisely, we introduce

yν =
〈Hν〉
mc2

p
'

kB Tν
mc2

p
, (22)

where cp is the speed of sound evaluated at the peak density np. The second expression is
valid as long as the phonon modes stay in the classical regime, 〈Hν〉 � ħhων. From Eq. (18)
and (20), neglecting the contribution of Eq.(21), we immediately obtain

d
d t

yν = κ jn
j−1
p [−( jA −C )yν + jB] , (23)

where the dimensionless parametersA ,B and C are

A =
m
ħhων

∫

ddr
c2n j−2

0

n j−1
p

g2
ν(r) , (24)

B =
m

2ħhων

∫

ddr
c4n j−2

0

c2
pn j−1

p

g2
ν(r) , (25)

C =
d ln(mc2

p/ħhων)

dNtot

∫

ddr
n j

0

n j−1
p

. (26)

In general, all of them depend on ν but we omit the index ν for compactness. The termA is
the rate of decrease of yν induced by the reduction of the density fluctuations under the loss

3At the border of the (quasi)condensate, where the density becomes small, the condition ħhων � mc2 breaks
down, however. The effect of phase diffusion is more carefully evaluated in Sec.3.3.
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process, normalised to κ jn
j−1
p . The termB originates from the additional density fluctuations

induced by the stochastic nature of the losses. The term C arises from the time dependence
of the ratio mc2

p/ħhων. It is computed using the dependence of mc2
p/ħhων on the total atom

number, the latter evolving according to

dNtot

d t
= −
∫

ddrκ jn
j
0 . (27)

Eqs. (23–26) constitute the main results of this paper. They have been solved numerically for
the experimental parameters corresponding to the data of [9] ( j = 3 and anisotropic harmonic
confinement) and their predictions compare very well with experimental results.

We would like at this stage to make a few comments about these equations. First, the factor
ħh, although it appears explicitly in the equations, is not relevant since it is canceled by the ħh
contained in the normalisation (14) of the mode functions gν. Second, we note thatA ,B and
C are intensive parameters: they are invariant by a scaling transformation V (r)→ V (λr) and
depend only on the peak density np and on the shape of the potential. Finally, Eqs. (23–26)
depend on ν and it is possible that the lossy (quasi-)condensate evolves into a non-thermal
state where different modes acquire different temperatures. Such a non-thermal state of the
gas is permitted within the linearised approach where modes are decoupled. In the exam-
ples studied below, however, it turns out that all hydrodynamic modes share about the same
temperature4. In the following, we investigate the consequences of Eq. (23-26), considering
different situations.

3.2 Example: homogeneous gas

In this case, density n0 and speed of sound c are spatially constant. The collective modes are
sinusoidal functions, labelled by ν and of wave vector kν

5. The frequencies are given by the
acoustic dispersion relation ων = c|kν| and the mode functions gνc,s(r) are normalised to

∫

ddr g2
ν(r) =

ħhων
mc2

n0. (28)

Then Eqs.(23-26) reduce to

d
d t

y = κ jn
j−1
0

�

−y
�

j −
∂ log c
∂ log n0

�

+ j/2
�

, (29)

which is the same for all modes ν. Let us consider the limit µ = gn0, valid in 3D gases, or
in low-dimensional gases with strong transverse confinement (negligible broadening of the
transverse wave function). Then c ∝ n1/2

0 and Eq. (29) shows that y tends at long times
towards the asymptotic value

y∞ =
1

2− 1/ j
, (30)

independent of the mode energy4. For one-body losses, one recovers the result y∞ = 1 [4,5].
In the case of 3-body losses, one finds y∞ = 3/5.

Let us now consider a quasi-low-dimensional gas, where transverse broadening of the wave
function cannot be neglected. The logarithmic derivative in Eq.(29) is then no longer constant.

4 In the case of one-body losses, theories that go beyond the hydrodynamic approximation predict non-thermal
states to appear, where the high-frequency modes reach higher temperatures than the phonon modes [4,5].

5For 1D gases, ν = (p,σ) where p is a positive integer and σ = c or s depending wether we consider cosine
or sine modes. The wave-vector is kν = 2pπ/L where L is the length of the box, assuming periodic boundary
conditions. This generalises to higher dimensions with ν= (p1,σ1, p2,σ2, p3,σ3) in 3D for instance.
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Figure 1: Cooling a quasi-1D gas, homogeneous along the axial direction, by three-
body losses. The density is initially so high that transverse broadening is relevant [the
chemical potential does not fulfill µ� ħhω⊥]. Left: time evolution of the temperature
(thick blue), shown versus the time decreasing density. Black dashed and thin red
lines show the intrinsic energy scales µ and mc2. The system rapidly evolves into
a dynamical state where the temperature follows the energy scale mc2, rather than
the chemical potential. Right: evolution of the ratio y = kB T/mc2 vs. the density.
The curves correspond to different initial values (marked with dots, the white dot
corresponding to the parameters on the left). The thick red line shows the function
ymin that gives the positions of lowest values taken by y in the course of cooling. In
this system (homogeneous along the axial direction), all hydrodynamic modes evolve
with the same temperature.

We will focus on the case of a quasi-1D gas, as realised experimentally for instance in [9]. The
effect of the transverse broadening is well captured by the heuristic equation of state [11,12]

µ= ħhω⊥
�p

1+ 4n0a− 1
�

, (31)

where ω⊥ is the frequency of the transverse confinement and a the 3D scattering length.
Inserting into Eq. (29), one can compute the evolution of y . The transverse broadening also
modifies the rate coefficient κ j , making it density-dependent. However, re-scaling the time

according to u=
∫ t

0 κ j(τ)n
j−1
p dτ= ln(n0(0)/n0(t)), Eq. (29) transforms into

d y
du
= −y
�

j − 1/2+
n0(0)a e−u

1+ 4n0(0)a e−u

�

+ j/2 (32)

and no longer depends on κ j . Fig.1 shows the solution of this differential equation in the case
of 3-body losses, and for a few initial situations, namely different values of y and n0a (right
plot). The asymptotic value y = y∞ is always reached at long times since the transverse
broadening then becomes negligible. Note that in distinction to pure 1D gases, the effect
of transverse broadening allows the system to reach transiently lower scaled temperatures
y < y∞, even when starting at values of y larger than y∞. More precisely, let us denote
ymin(n0) = j/2/( j − 1/2+ an0/(1+ 4an0)). When starting with y > ymin, the lowest value of
y is reached for some (non-vanishing) density, and it falls on the curve ymin. For j = 3, one
find that ymin varies between y∞ = 0.6 and 6/11 ' 0.55. Thus, the coldest temperatures in
the course of the loss process never deviate by more than 10% from the asymptotic value 0.6:
the impact of transverse swelling is relatively small. Note that, if one considered the scaled
temperature T/µ rather than y , much larger deviations would appear.
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Figure 2: Asymptotic ratio y∞ = kB T/mc2 for hydrodynamic collective modes
of a 1D quasi-condensate confined in a harmonic trap, for 1-body (red), 2-body
(blue) and 3-body (green) losses. The modes are labeled by their eigenfrequen-
cies ων = ω
p

ν(ν+ 1)/2 and we only consider ν ≥ 2. Symbols: calculation based
on the Legendre polynomials of Eq.(34), inserted into Eqs. (24, 25). Solid lines:
large-ν approximation given by Eq. (36) with values y∞ = 3/4,45/56, 525/748 for
j = 1, 2,3.

3.3 Example: 1D harmonic trap

We consider a 1D gas confined in a harmonic potential of trapping frequency ω. We assume
for simplicity a pure 1D situation with µ = gn = mc2. In the Thomas-Fermi approximation,
the mean density profile is

n0(z) = np(1− (z/R)2) , |z| ≤ R, (33)

where np is the peak density and R=
Æ

2gnp/(mω2) is the axial radius of the quasicondensate.
From Eq.(13), we recover the known result that the hydrodynamic modes are described by the
Legendre polynomials Pν, and the eigenfrequencies are ων =ω

p

ν(ν+ 1)/2 [7,20]. A trivial
calculation using Ntot = 4

3 npR ∝ c3
p and the substitution z = R cosα gives

C =
∫ π/2

0 dα sin2 j+1α = 2/3,8/15,16/35 for j = 1, 2,3. To compute A and B , one needs
the exact expression of gν, which according to the normalisation (14) can be written

gν(z) =

√

√ħhων
2gR

p
2ν+ 1Pν(z/R) . (34)

Inserting this expression, together with Eq. (33), into the integrals (24) and (25), we find that
A ,B , and C are time-independent. Thus y tends at long times towards the asymptotic value
y∞ = jB/( jA −C ). For large ν, one can use the asymptotic expansion [21]

Pν (cosα)'

�

2

π(ν+ 1
2) sinα

�1/2

cosφν, (35)

with φν = (ν+
1
2)α−

1
4π. Moreover the fast oscillations of Pν(cosα) can be averaged out in

the calculation of the coefficients A and B . Then A and B no longer depend on ν, so that
y∞ is identical for all modes, and we find

y∞ '
j
π

∫ π/2
0 dα sin2 j α

2 j
π

∫ π/2
0 dα sin2 j−2α−

∫ π/2
0 dα sin2 j+1α

. (36)
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Figure 3: Diffusion of density and phase quadratures associated with many-body
loss in a one-dimensional gas trapped in a harmonic potential. We plot the dimen-
sionless coefficients jB [Eq.(25)] and jBϕ [Eq.(37)] that are proportional to the
shot noise projected onto the corresponding quadratures. Symbols: numerically
computed mode functions, improving upon the hydrodynamic approximation. Solid
lines: approximate results based on the Legendre modes (34). Dashed lines: guide
to the eye. Parameters: strictly 1D equation of state µ= gn, peak chemical potential
µp ≈ gnp = 100ħhω.

For one- and three-body losses, this gives y∞ = 3/4 = 0.75 and y∞ = 525/748 ' 0.701,
respectively. This asymptotic result is compared to calculations using the expression Eq. (34)
in Fig. 2. We find very good agreement as soon as the mode index is larger than 5.

To conclude this example, we come back to the diffusive dynamics of the ‘phase quadra-
tures’ pν we neglected so far. In the case of one-body losses, however, it happens that the
integral (21) does not converge: while the mode function gν(z) [Eq.(34)] remains finite at
the condensate border z→±R, the integrand n j−2

0 (z)g2
ν(z) is not integrable for j = 1. This is

actually an artefact of the hydrodynamic approximation, which breaks down at the border of
the condensate.

We have performed numerical calculations of the collective excitations by solving the Bo-
goliubov equations 6. The mode functions gν(z) are defined according to Eq.(61): they extend
smoothly beyond the Thomas-Fermi radius and match well with the Legendre polynomials (34)
within the bulk of the gas. The resulting values for the parameter B [Eq.(25)] are shown in
Fig.3: they depend very weakly on the mode index ν and are well described by the approxi-
mate calculation based on the Legendre modes mentioned after Eq.(35) (solid lines). In the
lower part of the figure, the corresponding values for the diffusion coefficient originating from
phase noise are shown, namely the parameter

Bϕ =
ħhων
8mc2

p

∫

ddr
n j−2

0

n j−1
p

g2
ν(r) . (37)

They remain at least one order of magnitude below. For losses involving more than one parti-
cle, the approximation, under which the functions gν are given by the Legendre polynomials,

6For the condensate wave-function, we also went beyond the Thomas-Fermi approximation by allowing for a
‘spill-over’ of the condensate density beyond the inverted parabola.
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gives a convergent integral in Eq.(37). The result is shown as solid lines for two- and three-
body losses, where we made the additional approximation Eq. (35) on the Legendre functions
and we averaged out the oscillating part. We find that the Legendre approximation performs
better for three-body losses than for 2-body losses, which is expected since a stronger weight
is given to the bulk rather than the edge of the condensate. In conclusion of this numerical
study, we verified the validity of the assumption that, for phonon modes, the phase diffusion
term gives negligible contribution to the evolution of y . This term becomes noticeable when
one leaves the phonon regime ħhων � mc2. Then, one should go beyond the hydrodynamic
Hamiltonian Eq.(12) to properly compute the mode dynamics.7

4 Conclusion

In this paper, we construct a stochastic model to describe the effect of losses on the hydro-
dynamic collective modes of condensates or quasicondensates. Explicit formulas for cooling
and diffusion of the density and phase quadratures are derived. They provide the behaviour
of the mode temperature T with time. We show that T becomes proportional to the energy
scale mc2 where c is the hydrodynamic speed of sound. The asymptotic ratio kB T/(mc2) is
computed explicitly in different situations and for different j-body processes. These results
are in good agreement with recent experiments performed in Laboratoire Charles Fabry [9]
where three-body losses provided the dominant loss channel.

This work raises many different questions and remarks. First, it is instructive to investigate
the evolution of the ratio D = ħh2n2/d/(mkB T ), where d is the gas dimension, since D quanti-
fies the quantum degeneracy of the gas.8 Let us focus for simplicity on a homogeneous system
and use mc2 = gn. Once the ratio kB T/(mc2) has become stationary, we find that D increases
in time for 3-dimensional gases, while it decreases for one-dimensional gases. Starting with a
1D Bose gas in the quasi-condensate regime, losses let the quantity Dγ reach a stationary value
of order one, but increase the dimensionless interaction parameter γ = mg/(ħh2n). When γ,
from values much smaller, approaches 1, the gas lies at the crossover between four regimes:
the quasi-condensate (γ� 1, D

p
γ� 1), the quantum-degenerate ideal Bose gas (D

p
γ� 1,

D� 1), the non-degenerate ideal Bose gas (Dγ2� 1, D� 1) and the Tonks-Girardeau regime
(γ� 1, Dγ2� 1). At later times, one expects the cloud to leave the quasi-condensate regime
and we believe it becomes a non-degenerate ideal Bose gas. Second, the effect of losses on
high-frequency modes, not described by our hydrodynamic model, leads a priori to higher tem-
peratures; this was investigated for 1D gases subject to one-body losses [5]. The gas is then
described by a generalised Gibbs ensemble where different collective modes experience differ-
ent temperatures. This non-thermal state is even long lived in 1D quasicondensates [5]. While
the calculations presented here are formally valid for higher dimensions, efficient coupling be-
tween modes may reduce their relevance, since such coupling favours a common temperature.
It is an open question whether our methods could be extended to the case of evaporative cool-
ing where the one-body loss rate is energy- or position-dependent. This mechanism may play
a role in experiments where temperatures as low as kB T ≈ 0.3 mc2 have been observed, lower
than the predicted temperatures for uniform losses [3]. Finally, it would be interesting to ex-
tend this work to different regimes of the gas. For instance, one may ask how the effect of
losses transforms as one goes from a quasi-condensate to the ideal gas regime. The approxi-
mation of weak density fluctuations then clearly becomes invalid. One could also investigate
losses at even lower densities, where the 1D gas enters the fermionised (or Tonks-Girardeau)

7A full treatment going beyond the hydrodynamic approximation has been performed for one-body losses in
homogeneous 1D quasi-condensates [4,5].

8Note however that the temperature used in the definition of D refers to the phononic modes only.
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regime. Here, ones expects that the losses act in a similar way as in a non-interacting Fermi
gas. One-body losses, for example, should then produce heating, since the temperature in-
creases as the degeneracy of an ideal Fermi gas decreases. Finally, it would be interesting to
investigate whether the results presented here may also cover interacting Fermi gases in the
superfluid regime.
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A Reduction to low-dimensional hydrodynamics

As mentioned in the main text, we assume the loss process is slow enough so that, first, the
mean profile at each time is very close to the equilibrium profile with the same atom number,
and second, we can safely neglect any mean velocity field when computing the time evolution
of the fluctuating fields δn, ϕ. The evolution equations ∂ δn/∂ t and ∂ ϕ/∂ t are thus, at a
given time, equal to those for a time-independent quasi-condensate. In the purely 3D, 2D and
1D cases, for contact interactions, we can use the well known results based on Bogoliubov
theory. We then find that the equation of state takes the form µ= gn and ∂ δn/∂ t and ∂ ϕ/∂ t
derive from Eq. (12) for the long-wavelength modes.

Let us now consider the case where the gas is confined strongly enough in 1 or 2 dimen-
sions, such that the relevant low-lying excitations are of planar or axial nature. We allow,
however, for a transverse broadening of the wave function under the effect of interactions.
We show below that the equations of motion for the slow phononic modes, for which the
transverse shape adiabatically follows the density oscillations, also derive from Eq. (12). The
proof given here is complementary to Refs. [10,11] because it does not need an explicit model
about the shape of the transverse wave function. In order to simplify the notations, we re-
strict ourselves to the quasi-1D situation. The derivation can be easily translated to quasi-2D
situations.

We thus consider a gas confined in a separable potential consisting of a strong transverse
confinement and a smooth longitudinal confinement. The equilibrium density distribution of
the quasi-condensate is |φ0(x , y, z)|2 where the real function φ0(x , y, z) obeys the stationary
Gross-Pitaevskii equation

�

−
ħh2

2m
∂ 2

z −
ħh2

2m
∆⊥ + V⊥(x , y) + V (z) + g|φ0|2 −µp

�

φ0 = 0. (38)

Here g = 4πħh2a/m is the 3D coupling constant with a the zero-energy scattering length.
Within the Bogoliubov theory, the evolution of excitations is governed by the equations [19]














iħh∂t f̃ + =

�

−
ħh2

2m
∂ 2

z −
ħh2

2m
∆⊥ + V⊥(x , y) + V (z) + g|φ0|2 −µp

�

f̃ −

iħh∂t f̃ − =

�

−
ħh2

2m
∂ 2

z −
ħh2

2m
∆⊥ + V⊥(x , y) + V (z) + 3g|φ0|2 −µp

�

f̃ +.
(39)

The field operators are half sum and difference of the fluctuating field operators δψ and δψ†.
f̃ + is linked to density fluctuations and f̃ − to phase fluctuations.
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Since we assume that the axial variation is slow compared to the transverse one, the solu-
tion φ0 can be approximated by a function ψ that depends on the axial coordinate z only via
a local chemical potential

φ0(x , y, z)'ψ(x , y;µ) , µ= µp − V (z). (40)

Here, ψ solves the Gross-Pitaevskii equation for an axially homogeneous system:
�

−
ħh2

2m
∆⊥ + V⊥(x , y) + g|ψ|2 −µ

�

ψ= 0. (41)

This procedure is consistent, e.g., with making the Thomas-Fermi approximation in the axial
direction. Solving this equation yields the local chemical potential as a function of the axial
(average) density µ= µ(n0) with

n0(z) =

∫

d xd y |φ0(x , y, z)|2 '
∫

d xd y |ψ(x , y;µ)|2. (42)

This motivates the following separation Ansatz for the Bogoliubov functions in Eq.(39):
�

f̃ + = ∂µψ∂nµF+

f̃ − = iφ0F−.
(43)

where the functions F+ and F− depend only on z and the derivative ∂nµ is evaluated at the
local density n0. Inserting this into the second line of Eq.(39), we find

−φ0ħh∂t F
− =

�

−
ħh2

2m
∂ 2

z −
ħh2

2m
∆⊥ + V⊥(x , y) + V (z) + 3g|φ0|2 −µp

�

�

∂µψ∂nµF+
�

. (44)

The action of this operator on ∂µψ can be worked out by differentiating Eq. (41) versus µ:
this gives

�

−
ħh2

2m
∆⊥ + V⊥(x , y) + 3g|ψ|2 −µ

�

∂µψ=ψ ' φ0. (45)

Eq.(44) thus simplifies into

−φ0ħh∂t F
− = −

ħh2

2m
∂ 2

z

�

∂µψ∂nµF+
�

+φ0∂nµF+. (46)

To find a closed equation for the axial dynamics, we multiply with ψ(x , y;µ) and integrate
over the transverse coordinates. Using Eq.(42) and its derivatives with respect to µ and z, we
find the identities
∫

d xd yφ0∂µψ=
1
2
∂µn0 =

1
2∂nµ

,

∫

d xd yφ0∂zφ0 =
1
2
∂zn0 . (47)

Using the first one, Eq.(46) becomes:

−ħh∂t F
− = −

ħh2

4mn0
∂ 2

z F+ + ∂nµF+ ' −∂nµF+, (48)

where in the second step, we took the long-wavelength limit.
Let us now insert the Ansatz (43) into the first line of Eq.(39):

ħh∂µψ∂nµ∂t F
+ =

�

−
ħh2

2m
∂ 2

z −
ħh2

2m
∆⊥ + V⊥(x , y) + V (z) + g|φ0|2 −µp

�

�

φ0F−
�

. (49)

14

https://scipost.org
https://scipost.org/SciPostPhys.5.5.043


SciPost Phys. 5, 043 (2018)

The action of the operator in parentheses on φ0 simply vanishes because this is the Gross-
Pitaevskii equation (38). Since F− does only depend on the axial coordinate, we are left with:

∂µψ∂nµ∂t F
+ = −

ħh
m
(∂zφ0)∂z F− −

ħh
2m
φ0∂

2
z F−. (50)

We again project out the transverse coordinates and use the identities (47). Combining the
axial derivatives, we then have

∂t F
+ = −

ħh
m
∂z(n0∂z F−). (51)

These calculations illustrate that the Ansatz of Eq.(43) captures well the axial and transverse
dependence of the collective excitations in the low-dimensional gas. Note in particular how
the density fluctuations ( f̃ +) are accompanied by density-dependent changes in the transverse
wave function.

To make contact with the hydrodynamic Hamiltonian (12), we need to relate F+ and F−

to the low-dimensional density and phase fields, δn and ϕ. Bogoliubov theory tells us that
three-dimensional density fluctuations are linked to f̃ + via δρ = 2φ0 f̃ +. Integrating δρ over
the transverse plane, replacing f̃ + by its Ansatz (43) and using Eq. (47), we obtain

F+ = δn= n− n0. (52)

Phase fluctuations on the other hand are linked to f̃ − according to f̃ − = iφ0ϕ. [Recall that
the ansatz (43) assumes a uniform phase in the x , y plane.] Comparison with Eq. (43) gives
immediately

F− = ϕ. (53)

Then Eq.(48) and Eq.(51) are precisely the evolution equations derived from the Hamilto-
nian (12).

B Hydrodynamic Bogoliubov modes

Here we consider low-energy modes of either a three-dimensional gas or low-dimensional
gas, whose dynamics is described by the hydrodynamic approximation. More precisely, we
diagonalize the Hamiltonian (12), for a given, time-independent, equilibrium profile n0(r).
From Eq.(12) we derive the evolution equations

∂

∂ t

�

δn/
p

n0p
n0ϕ

�

=L
�

δn/
p

n0p
n0ϕ

�

, (54)

where

L =
�

0 − ħh
m
p

n0
∇ ·
�

n0∇
�

1p
n0
·
��

−mc2/ħh 0

�

. (55)

The factors
p

n0 are convenient to give the two components the same dimension and to sym-
metrize the differential operator that appears in L . The two equations derived from Eq.(54)
correspond to the hydrodynamic equations provided we identify ħh∇ϕ/m with the velocity:
the first one is the continuity equation, the second one gives the Euler equation.

We build the mode expansion on pairs of real functions that form right eigenvectors of L :

L
�

f +ν
i f −ν

�

= iων

�

f +ν
i f −ν

�

. (56)
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Due to symmetry properties of L , Eq.(56) entails the following properties: (a) ( f +ν ,−i f −ν )
is a right eigenvector of L of eigenvalue −iων; (b) (i f −ν , f +ν ) is a left eigenvector of same
eigenvalue; and (c) different right eigenvectors of L verify

∫

ddr f −ν f +
ν′
= 0. It is convenient

to consider those eigenvectors of L which are normalized according to
∫

ddr f −ν f +ν = 1. This
yields the expansions

�

δn/
p

n0p
n0ϕ

�

=
1
p

2

∑

ν

�

aν

�

f +ν
−i f −ν

�

+ a+ν

�

f +ν
i f −ν

��

, (57)

which invert into

aν =
1
p

2

∫

ddr

�

δn(r)
p

n0
f −ν (r) + i
p

n0ϕ(r) f
+
ν (r)

�

. (58)

The normalisation of the eigenvectors and the relation [δn(z),ϕ(z′)] = iδ(z − z′) ensure
[aν′ , a†

ν] = δν′,ν.
We introduce the function

gν =
p

n0 f +ν , (59)

and use the relation f −ν = mc2 f +ν /(ħhων) that follows from the eigenvalue problem (56). Then
the normalisation of gν [Eq.(14)] follows from that of ( f +ν , i f −ν ). Defining the quadratures
xν = (aν + a†

ν)/
p

2 and pν = −i(aν − a†
ν)/
p

2, the expansions (57) give Eqs.(16) of the main
text.

C Numerical calculation

For the numerical results shown in Fig.3, we have solved the Gross-Pitaevskii equation in a
1D harmonic trap by minimising the corresponding energy functional: this gives a smooth
density profile n0(z). The Bogoliubov equations are solved with a finite-difference scheme on
a non-uniform grid. We get a frequency spectrum that coincides to better than one percent
with the Legendre spectrum for all modes with ħhων ® 0.1 gnp (np is the peak density). The
traditional Bogoliubov modes uν and vν are related to the eigenfunctions of Eq.(56) by

f +ν =
p

2 (uν + vν), (60)

f −ν = (uν − vν)/
p

2. (61)

Inserting this into Eq.(59) gives the modes gν. We have checked for phonon excitations with
frequencies ħhων� gnp, that the proportionality between f + and f − [see after Eq.(59)] is an
excellent approximation in the bulk of the condensate.
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