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Preface
Stochastic and Analytic Methods in Mathematical Physics

Today the stream of ideas from both mathematics and physics to mathematical physics is
increasing dramatically. The scientific meetings in such fields give excellent opportunities
for exchange of ideas and information.

The tradition of holding such forums in Armenia started in 1982 when the first con-
ference Probabilistic methods in modern statistical physics took place in Tsaghkadzor.
These regular meetings in Armenia were always supported by all the organizers of the
famous Moscow “Dobrushin-Malyshev-Minlos-Sinai Seminar”. R. L. Dobrushin, R. A.
Minlos and Y. G. Sinai were often invited by the Yerevan State University and Institute
of Mathematics of Armenian Academy of Sciences to give lecture courses on statistical
mechanics. They all had Ph.D. students working at the Institute of Mathematics in Yere-
van. They participated in two more meetings until 1988, before the collapse of the USSR.
The conferences restarted at the international level with the meeting in Nor-Amberd in
September 1995. This was one of the last conferences in which R. L. Dobrushin partici-
pated. He died soon after.

The eleventh international conference Stochastic and analytic methods in mathematical

physics was held in Yerevan from 2–7 September in 2019 (the title of the conference was
changed in 2012). It was dedicated to the memory of the great mathematician Robert
Adol’fovich Minlos who passed away in January 2018. R. A. Minlos was a permanent
member of the Programme Committee in this series of conferences. He participated with
his students in all the conferences including the one in Lake Sevan in 2006. He was one of
the main speakers who formulated new problems, generated interesting ideas, questions
and discussions. One round table entitled Robert Adol’fovich Minlos: Life, work, and

legacy was organised on Tuesday, 3 September 2019. Colleagues and former students
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were sharing their special memories of R. A. Minlos (see the commemorative chapter).
A retrospective short film about his life was presented by his son, Philip Minlos.

Scientific activities of the eleventh conference included talks and discussions of a wide
range of problems: classical and quantum statistical physics, quantum dynamics, math-
ematical methods in quantum mechanics, stochastic analysis, applications of point pro-
cesses in statistical physics. Participants were specialists from Armenia, Czech Republic,
Denmark, France, Germany, Italy, Japan, Lithuania, Russia, the UK and Uzbekistan. A
particular focus lied on young scientists’ presentations. The traditionally welcoming and
warm atmosphere at the conference made it an excellent platform for exchanging experi-
ence and generating new ideas.

At this point it is our pleasure to thank all speakers for their significant contribution to
the conference. We also would like to thank the members of the Scientific Committee and
the members of the Local Organising Committee. A particularly warm thanks to Linda
Khachatryan who made sure that the conference went smoothly for everybody. Much
gratitude to our sponsors: International Association of Mathematical Physics, the Chair
of Probability of University of Potsdam, Annales Henri Poincaré, Research Mathematics
Fund (Armenia), Science Committee of the Ministry of Education and Science of the
Republic of Armenia. Special thanks to the Akian College of Science and Engineering of
American University of Armenia which hosted the conference and provided the facilities.

Special thanks go to Mathias Rafler who supervised the edition of this book by pouring
the raw texts in its beautiful LATEXshape.

Potsdam, Yerevan, March 2020 Sylvie Rœlly, Suren Poghosyan
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Participants of the conference during the excursion at Ghegard monastery.
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“What we call the beginning is often the end

And to make an end is to make a beginning.

The end is where we start from.”

Little Gidding, T. S. Elliot

You may notice that the contributions are not in the usual alphabetical
order. Indeed, we thought to award those colleagues, who are always
placed at the end of lists because of their name, by placing them first.
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Robert Adol’fovich Minlos



Robert Adol’fovich Minlos
(1931–2018)

His Work and Legacy
The renowned mathematician Professor Robert Adol’fovich Minlos passed away on 9
January 2018, at the age of 86. An eminent researcher and outstanding teacher, he was
a world-renowned specialist in the area of functional analysis, probability theory, and
contemporary mathematical physics.

R. A. Minlos was born on 28 February 1931 into a family with a strong connection to
the humanities. His father, Adol’f Davidovich Miller, was known as a lecturer and was the
author of English dictionaries and manuals. His mother, Nora Romanovna (Robertovna)
Minlos, was a historian-ethnographer. This is perhaps why Robert Adol’fovich loved
poetry, wrote verses himself, was a fervent theater-goer from his school years, and was
began painting seriously at the age of 40.

Nothing foreshadowed a mathematical future, but when he was 15, the young Robert
accidentally saw a poster about the Moscow Mathematical Olympiad for schoolchildren.
He participated in it, obtained the second prize and, inspired by that, began to attend
the school club led by E. B. Dynkin. In 1949 Robert already entered the Faculty of
Mechanics and Mathematics of the Moscow State University. He continued to participate
in Dynkin’s seminar, which together with A. S. Kronrod’s seminar, had a great influence
on him as an undergraduate student.

R. A. Minlos prepared his first scientific paper (equivalent to a master’s degree thesis)
in 1950 while participating in the Moscow State University seminar on the theory of
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Still life with flowers. R. A. Minlos.



His Work and Legacy 3

functions of a real variable under the leadership of A. S. Kronrod. But the real scientific
interests of the young mathematics student began to form after he became acquainted
with I. M. Gelfand. Their joint publication “Solution of the equations of quantum fields”
(Doklady Akad. Nauk SSSR, n.s., 97, 209–212, 1954) became Minlos’ Diploma thesis
in mathematics. It was devoted to the functional, or, in mathematical physics language,
the path integral, which has a direct relation to quantum physics.

As Minlos himself admitted: “My further life in mathematics was predetermined by
that work, because I was subsequently mainly occupied with mathematical physics. There
were, nevertheless, more works on random processes, on measure theory, and on func-
tional analysis.” Very soon one of his papers “Extension of a generalised random process
to a completely additive measure” (Doklady Akad. Nauk SSSR, 119, 439–442, 1958)
brought Minlos worldwide fame. It became the basis of his Candidate (equivalent to PhD)
dissertation “Generalised random processes and their extension to a measure”, which was
published in Trudy MMO, 8, 497–518, 1959. This result, which is important for the the-
ory of random processes as well as for functional analysis, is now known as the Minlos

theorem on the extension of cylindrical measures to Radon measures on the continuous
dual of a nuclear space, i. e. the continuation of a process to a measure on spaces adjoint
to nuclear spaces.

The connection of Minlos to mathematical physics at that time was manifested by the
publication (jointly with I. M. Gelfand and Z. Ya. Shapiro) of the monograph “Represen-
tations of the rotation and Lorentz groups and their applications” (1958), which was later
translated from the Russian by Pergamon, London, in 1964.

From 1956 to 1992, R. A. Minlos was employed by the Department of the Theory
of Functions and Functional Analysis of the Faculty of Mechanics and Mathematics at
the Moscow State University (MSU). In that period, there was a need to organise a joint
seminar with F. A. Berezin, primarily to discuss the mathematical problems of quantum
mechanics and of quantum field theory.

A real advance of activity in the field of mathematical physics at the Faculty of Me-
chanics and Mathematics of MSU was achieved with R. A. Minlos and R. L. Dobrushin’s
organisation of a seminar on statistical physics in 1962. It soon became widely known
in the Soviet Union and abroad as the Dobrushin-Malyshev-Minlos-Sinai seminar. The
quantum aspects of statistical mechanics at the seminar were primarily associated with
the name of R. A. Minlos. The seminar lasted until 1994 and had a huge impact on the
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R. A. Minlos with H. Zessin and S. Poghosyan, Bielefeld 2005.

world of modern mathematical physics. Almost all celebrated specialists in this field
visited Moscow during the lifespan of the seminar.

The beginning of the 1960s was extremely fruitful for Robert Adol’fovich. In the first
place, this concerns new results obtained jointly with L. D. Faddeev on the quantum me-
chanical description of three particles (1961). It was followed by two articles devoted to
study of the thermodynamic limit in classical statistical physics (1967). There R. A. Min-
los suggested the first rigorous mathematical definition of the limiting Gibbs distributions
for an infinite system of interacting classical particles and also analysed the properties
of such distributions (Funct. Anal. Appl., 1, 140–150 and 206–217, 1967). This result
anticipated the origin of the Markovian understanding of the Gibbs random fields in the
sense of Dobrushin-Lanford-Ruelle (1968).

The result (together with Ya. G. Sinai) of the appearance of phase separation in lattice
systems at low temperatures (Math. USSR-Sb., 2, 335–395, 1967; Trudy MMO, 17, 213–
242, 1967 and 19, 113–178, 1968) was of fundamental importance for the mathematical
theory of phase transitions. It formed the basis of Minlos’ doctoral dissertation, which he
submitted for habilitation in 1968. In another joint work with Ya. G. Sinai (Theor. Math.
Phys., 2, 167–176, 1970) the foundation was laid for a new approach to the study of the
spectral properties of many-particle systems. In combination with the cluster expansions,
this approach drove significant progress in the description of the properties of such in-
finite systems, including the spectrum of elementary particles of quantum fields and the
mathematical description of the quasi-particle picture in statistical physics.
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R. A. Minlos with participants of the conference, Tsaghkadzor 2002.

The new powerful method of cluster expansions was, from the very beginning, central
in the list of interests of Robert Adol’fovich. He proposed to develop further the clus-
ter expansion method so that it could be applied to the study of what he called cluster
functions.

These are correlation functions, truncated correlation functions, semi-invariants and the
Ursell functions. It was his idea to use the so-called Ursell kernel for the representation of
the cluster functions. In his paper with S. Poghosyan (1977) a fundamental forest graph
estimate of the Ursell kernel, which contains as a special case the well-known tree graph
estimate, was obtained. The forest graph estimate was used later by S. Poghosyan and D.
Ueltschi to develop an abstract cluster expansion method. Similarly, S. Poghosyan and H.
Zessin developed the large volume geometric expansion of the log-partition function for
the models of classical and quantum physics and for construction of the Gibbs processes.

The results of a large series of papers on cluster expansions by R. A. Minlos, V. A.
Malyshev, and by their students have been summarised in two monographs “Gibbs ran-
dom fields: Cluster expansions” (Springer 1991, translation of 1985 Russian edition) and
“Linear infinite-particle operators” (Amer. Math. Soc. 1995, translation from the Rus-
sian edition of 1994). As was outlined in the book “Gibbs random fields”, the method
of cluster expansions provides not only a construction of the limiting Gibbs measure but
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R. A. Minlos with participants during the excursion, Tsaghkadzor 2002.
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also cluster representations of the projections of the limiting Gibbs measure onto bounded
regions.

A famous peculiarity of the Dobrushin-Malyshev-Minlos-Sinai seminar was not only
its duration of about four hours, which was amazing for foreign guests, or the assertive
directness in communicating with lecturers, but also the opportunity to obtain from the
discussions some interesting problems to be solved. In essence, the seminar was function-
ing as a machine, generating questions and a possible way to convert them into answers.
Robert Adol’fovich was always one of the sources of interesting questions and open prob-
lems. The list of projects thus originated includes, for example, the cluster expansions
and their applications to the problem of uniqueness/non-uniqueness of the Gibbs states,
the quantum three-particle problem, the Trotter product formula for Gibbs semigroups,
the study of infinite-particle operators spectra, the analysis of quasi-particle picture in
statistical physics, and many others.

In their book “Linear infinite-particle operators” V. A. Malyshev and R. A. Minlos
proposed a description of a quasi-particle picture based on the construction by cluster ex-
pansions of the lower branches of the spectrum of infinite many-body system with a good
clustering. This idea goes back to the paper by R. A. Minlos and Ya. G. Sinai “Investiga-
tion of the spectra of some stochastic operators arising in the lattice gas models” (1970).
If the system possesses a good clustering one can construct separated translation-invariant
two-, three-, and more (interacting) quasi-particles excited states, which are combinations
of branches with bands of continuum spectra. Robert Adol’fovich called this property of
excitations “The corpuscular structure of the spectra of operators describing large sys-
tems” (title of his paper in Mathematical Physics 2002, Imperial Coll. Press 2000).

In addition to the Dobrushin-Malyshev-Minlos-Sinai seminar in the 1970s, there was
a regular tutorial seminar, which was led by Robert Adol’fovich once a week. This was
a very good opportunity to learn elements of topological vector spaces, in particular the
Minlos theorem about the extension of a generalized random process to a measure on
spaces adjoint to nuclear spaces. The seminar also covered elements of mathematical
statistical physics in the spirit of the famous “Lectures on statistical physics” in Uspekhi
Math. Nauk (1968).

R. A. Minlos as well as Ya. G. Sinai and R. L. Dobrushin were often invited by the
Institute of Mathematics in Yerevan to participate in regular conferences under the name
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R. A. Minlos with participants of the conference, Lake Sevan 2006.

“Probabilistic methods in modern statistical physics”. The first one was held in 1982 and
the last one in 1988, three years before the collapse of the Soviet Union.

The conferences restarted in 1995 at the international level. Robert Adol’fovich partic-
ipated, as a rule with his students, in all of them, including the conference in Lake Sevan
in 2006.

In the early nineties Robert Adol’fovich began his collaboration with Italian institutions
and mathematicians. He was a guest of the Department of Mathematics at the university
of Rome “La Sapienza” many times, and he also visited other institutions in Trieste,
Naples, L’Aquila and Camerino.

A first result had been obtained by C. Boldrighini, I. A. Ignatyuk, V. A. Malyshev and
A. Pellegrinotti on the annealed model of a discrete-time random walk on a d-dimensional
lattice in mutual interaction with a dynamic random environment. Robert Adol’fovich
proposed to apply the results that he had obtained, together with V. A. Malyshev and
their students, on the spectral analysis of the transfer matrix for perturbed homogeneous
random fields.

Robert Adol’fovich was a wonderful teacher, a patient and wise mentor. Directness,
accessibility, and enthusiasm attracted numerous students and followers to him. Many
of his later PhD students benefited from a direct generous contact with the Master. At
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R. A. Minlos on the way to Hayravank Monastery, Lake Sevan 2006.

the Faculty of Mechanics and Mathematics at MSU the student seminar was combined
with lectures and scientific seminars guided by Robert Adol’fovich first together with F.
A. Berezin and then with V. A. Malyshev. The lecture notes gave rise to many nice and
popular tutorial books, for example “Introduction to mathematical statistical physics”,
published by R. A. Minlos in Univ. Lect. Series, vol.19, AMS 2000.

The problems related to the theory of operators and to quantum physics should be
especially noted. A long paper (“A system of three quantum particles with point-like
interactions”, Russian Math. Surveys, 69, 539–564, 2014) was published by R. A. Minlos
on this topic. His very last manuscript (with C. Boldrighini, A. Pellegrinotti, and E. A.
Zhizhina) was on the subject “Regular and singular continuous time random walk in
dynamic random environment”.

To his students and collaborators, Robert Adol’fovich was like a brilliant sculptor who,
from a shapeless block, cutting off excess, could create a mathematical masterpiece.

Robert Adol’fovich selflessly served science, and in everyday life he was a generous
and friendly person. He gladly shared his enthusiasm and energy with his students and
colleagues. In addition to the accuracy of reasoning and complicated techniques, there
is always a beautiful idea and harmony in his works. To the question “What three math-
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ematical formulas are the most beautiful?” Robert Adol’fovich gave the answer: “The
Gibbs formula, the Feynman-Kac formula and the Stirling formula.”

Always surrounded by relatives and loved ones, and also by loving pupils, colleagues,
and friends, Robert Adol’fovich Minlos lived a complete life. In each of those who knew
Robert Adol’fovich, he left a bright drop of memory of himself.

C. Boldrighini (Istituto Nazionale di Alta Matematica, Unità locale Università Roma Tre),
V. A. Malyshev (Faculty of Mechanics and Mathematics, Lomonossov MSU),
A. Pellegrinotti (Dipartimento di Matematica e Fisica, Università Roma Tre),
S. K. Poghosyan (Institute of Mathematics of the NAS RA, Yerevan),
Ya. G. Sinai (Department of Mathematics, Princeton University),
V. A. Zagrebnov (Institut de Mathématiques de Marseille),
E. A. Zhizhina (Institute for Information Transmission Problems, Moscow)

A contribution to the conference in commemoration of R. A. Minlos

Science and all of us, we have lost an outstanding mathematician. I have

lost my best friend and best co-author. But most important, Robert was a

reliable friend, kind and human in all life aspects. Nowadays in science

(as anywhere else) struggle for power, grants, academic positions, often

kills science itself. This I never saw in Robert. I often see now our com-

mon past with Robert and this provides me strength to struggle for real

science against politicians in science. I feel that he sees all of us from an-

other world. The world that we still even do not try to understand because

publishing papers for impact factors takes too much time and energy from

us. I am sure he feels strong in that world and is ready to help all of us.

Vadim Malyshev

Moscow, September 2019
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A Gibbs point process of
diffusions: Existence and

uniqueness
Alexander Zass*

Abstract. In this work we consider a system of infinitely many interact-

ing diffusions as a marked Gibbs point process. With this perspective,

we show, for a large class of stable and regular interactions, existence

and (conjecture) uniqueness of an infinite-volume Gibbs process. In

order to prove existence we use the specific entropy as a tightness tool.

For the uniqueness problem, we use cluster expansion to prove a Ru-

elle bound, and conjecture how this would lead to the uniqueness of the

Gibbs process as solution of the Kirkwood-Salsburg equation.

1 Introduction and set-up

Consider a Langevin dynamics on Rd of the form

dXs = dBs−
1
2

∇V (Xs)ds, s ∈ [0,2β ], β > 0, (1.1)

*Universität Potsdam, Institut für Mathematik, Karl-Liebknecht Str. 24–25, 14476 Potsdam, Germany;
zass@math.uni-potsdam.de
The author wishes to warmly thank S. Rœlly and H. Zessin for the many discussions and insights into the
topic. The research of the author has been partially funded by Deutsche Forschungsgemeinschaft (DFG) –
SFB1294/1-318763901 and Deutsch-Französische Hochschule (DFH) – DFDK 01-18.
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14 A. Zass: Interacting diffusions

where B is an Rd-valued Brownian motion, and V : Rd → R is an ultracontractive poten-
tial, i. e. outside of some compact subset of Rd ,

∃δ ′,a1,a2 > 0, V (x)≥ a1|x|d+δ ′ and ∆V (x)− 1
2
|∇V (x)|2 ≤−a2|x|2+2δ ′ . (1.2)

Under these conditions there exists a unique strong solution to (1.1) (see e. g. [12]), which
generates an ultracontractive semigroup (see [6],[2]). Moreover, the law of X starting at
X0 = 0 is a measure R such that, for any δ < δ ′/2,∫

e‖m‖
d+2δ
∞ R(dm)<+∞. (1.3)

For the rest of this work, let δ > 0 as above be fixed.

The question we wish to explore in this work is how to construct a physically mean-
ingful Gibbsian interaction between infinitely many such diffusions starting at random
locations. More precisely, we model such a system as a marked Gibbs point process:
locations and marks will describe, respectively, starting points and paths of these diffu-
sions. We will then solve the non-trivial questions of existence and uniqueness of the
infinite-volume measure for a large class of stable and regular path interactions.

After introducing the Gibbsian framework, we present an existence result via the en-
tropy method of [11]: we use the specific entropy as a tightness tool to prove convergence
of a sequence of finite-volume Gibbs measures and show that this limit satisfies the Gibb-
sian property (that is, the DLR equations). In Section 4 we then use the method of cluster
expansion – introduced by S. Poghosyan, D. Ueltschi, and H. Zessin in [8], [10] – and the
Kirkwood-Salsburg equation to show a Ruelle bound for a regime of small activity, and
conjecture that uniqueness of the constructed infinite-volume Gibbs process associated to
path interactions follows.

2 Gibbsian formalism for marked point processes

The state space we consider in this work is E = Rd ×C0, where C0
..= C0

(
[0,2β ];Rd

)
,

β > 0, is the set of continuous paths m : [0,2β ]→ Rd with initial value m(0) = 0. An
element x=(x,m)∈ E is identified with the path

(
x+m(t)

)
t∈[0,2β ]

of starting point x∈Rd

and trajectory m ∈C0.
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Denote by M the set of locally-finite point measures (or configurations) on E , which
are of the form γ = ∑i δ(xi,mi) ∈M ; we often identify a configuration γ with its support
{(xi,mi)}i ⊂ E .

Let Bb(Rd) be the subset of bounded Borel sets of Rd . Let M f denote the subset of
finite configurations, and for any Λ ∈Bb(Rd), let MΛ ⊂M f denote the restriction to
starting points inside Λ, and for any configuration γ ∈M , let γΛ

..= γ ∩
(
Λ×C0

)
∈MΛ.

Let P(M ) denote the set of probability measures on M : these are called marked

point processes. As reference process we consider, for any Λ ∈ Bb(Rd), the marked
Poisson point process π

z
Λ

on E with intensity measure z dxΛ⊗R(dm). The coefficient z

is a positive real number, dxΛ is the Lebesgue measure on Λ, and the probability measure
R is the path measure of the solution of (1.1) starting at 0. In other words, the starting
points are drawn in Λ according to a Poisson process, and the marks are diffusion paths
starting at these Poisson points.

We add interaction between the points of a configuration by considering an energy
functional that takes into account both the locations and the marks.

Assumption 1.1 For any finite marked point configuration γ = {x1, . . . ,xN} ∈M f , N ≥
1, its energy is given by the following functional

H(γ) =
N

∑
i=1

Ψ(xi)+
N

∑
i=1

∑
j<i

Φ(xi,x j) ∈ R∪{+∞}, (1.4)

where

� The self-potential term Ψ satisfies infx∈Rd Ψ(x,m) ≥ −kΨ‖m‖d+δ
∞ for some con-

stant kΨ > 0;

� The two-body potential Φ is defined by

Φ(xi,x j) =

(
φ(xi− x j)+

∫ 2β

0
φ̃(mi(s)−m j(s))ds

)
1{|xi−x j |≤a0+‖mi‖∞+‖m j‖∞},

(1.5)
where φ (acting on on the initial location of the diffusions) is a radial (i. e.
φ(x) = φ(|x|)) and stable R-valued pair potential in the sense of [13], with sta-
bility constant cφ ≥ 0, bounded from below, with φ(u)≤ 0 for u≥ a0 (see Figure
1.1); φ̃ (acting on the dynamics of the diffusions) is a non-negative pair potential.
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1.5 2 2.5 3

5

10
φ(u)

a0

Figure 1.1: An example of radial and
stable pair potential φ is
the Lennard-Jones potential
φ(u) = 16

(( 3/2

u
)12−

( 3/2

u
)6
)

;

its zero is at a0 = 3/2.

Remark 1.2

(i) The stability of the point-interaction potential φ and the non-negativity of the
mark-interaction potential φ̃ guarantee stability (in the sense introduced in Lemma
1.5) of the energy H of a marked-point configuration; the fact that φ is bounded
from below is used to prove the stability of the conditional energy (see Lemma
1.7).

(ii) The indicator function in (1.5) can be interpreted as follows: when the starting
points are far enough from each other, the two diffusions do not interact; if their
paths do not intersect, they may interact only if |x1− x2| ≤ a0 +‖m1‖∞ +‖m2‖∞.
See Figure 1.2. Notice that the range of interaction is finite but not uniformly
bounded.

Figure 1.2: The paths of two Langevin
diffusions in R2 which inter-
act. Each circle is centred
in the starting point, and its
radius corresponds to their
maximum displacement in
the time interval [0,1]. The
dotted circles represent the
“security” distance a0/2.



3 Existence of an infinite-volume Gibbs point process via the entropy method 17

Definition 1.3 For any Λ ∈ Bb(Rd), the free-boundary-condition finite-volume Gibbs

measure on Λ with energy H and activity z > 0 is the probability measure Pz
Λ

on MΛ

defined by

Pz
Λ
(dγ) ..=

1
Zz

Λ

e−H(γΛ) π
z
Λ
(dγ). (1.6)

In this work we investigate the existence and uniqueness, as Λ increases to cover the
whole space Rd , of an infinite-volume Gibbs measure, in the following sense:

Definition 1.4 A probability measure P on M is said to be an infinite-volume Gibbs

measure with energy H and activity z > 0, denoted by P ∈ G (H,z), if it satisfies, for
any Λ ∈Bb(Rd) and any positive, bounded, and measurable functional F : M → R, the
following DLR equation (for Dobrushin-Landford-Ruelle)∫

M
F(γ)P(dγ) =

∫
M

1
Zz

Λ
(ξ )

∫
MΛ

F(γΛξΛc)e−HΛ(γΛξΛc )
π

z
Λ
(dγ) P(dξ ), (DLR)

where HΛ(γ) is the conditional energy of the configuration γ in Λ given its exterior:

HΛ(γ) ..= lim
r→+∞

H
(
γΛ⊕B(0,r)

)
−H

(
γΛ⊕B(0,r)\Λ

)
, (1.7)

with Λ⊕B(0,r) ..=
{

x ∈ Rd : ∃y ∈ Λ, |y− x| ≤ r
}

.

3 Existence of an infinite-volume Gibbs point process via the
entropy method

Under Assumption 1.1 on the energy functional H, the following three lemmas provide
the groundwork for the existence theorem.

Lemma 1.5 The following stability condition holds: setting cH
..= kΨ∨ cφ ,

H(γ)≥−cH ∑
(x,m)∈γ

(
1+‖m‖d+δ

∞

)
, γ ∈M f . (1.8)

In order to control the support of the Gibbs point process, we define the subset of
tempered configurations as the union M temp ..=

⋃
t∈N

M t, where M t is the set of all con-

figurations γ ∈M such that, for all l ∈ N∗, ∑(x,m)∈γB(0,l)
(1+‖m‖d+δ

∞ )≤ t ld .
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Lemma 1.6 For any bounded Λ ⊂ Rd and t ≥ 1, there exists a random variable
r = r(γΛ, t)<+∞ such that the limit in (1.7) stabilises, i. e.

HΛ(γ) = H
(
γΛ⊕B(0,r)

)
−H

(
γΛ⊕B(0,r)\Λ

)
.

We say that r(γΛ, t) is the finite but random range of the interaction HΛ(γ).

Lemma 1.7 Fix Λ ∈Bb(Rd). For any t≥ 1, there exists a constant c
′(Λ, t)≥ 0 such that

the following stability of the conditional energy holds: uniformly for all ξ ∈M t,

HΛ(γΛξΛc)≥−c
′(Λ, t) ∑

(x,m)∈γΛ

(
1+‖m‖d+δ

∞

)
, γΛ ∈MΛ. (1.9)

We endow the set P(M ) of probability measures on M with the topology of local
convergence (see [4], [5]). More precisely,

Definition 1.8 A functional F on M is called local and tame if there exist a set
∆ ∈Bb(Rd) and a constant a > 0 such that, for all γ ∈ M , F(γ) = F(γ∆) and
|F(γ)| ≤ a

(
1+∑(x,m)∈γ∆

(1+‖m‖d+δ
∞ )

)
.

We denote by L the set of all local and tame functionals. The topology τL of local

convergence on P(M ) is defined as the weak* topology induced by L , i. e. the smallest
topology on P(M ) under which all the mappings P 7→

∫
F dP, F ∈L , are continuous.

Let us now recall the concept of specific entropy of a probability measure on M .

Definition 1.9 Given two probability measures Q and Q′ on M , the specific entropy of
Q with respect to Q′ is defined by

I(Q|Q′) = lim
Λn↗Rd

1
|Λn|

IΛn(Q|Q
′),

where Λn = [−n,n)d , and the relative entropy of Q with respect to Q′ on Λ is defined as

IΛ(Q|Q′) ..=


∫

log f dQΛ if QΛ 4 Q′Λ with f ..= dQΛ

dQ′
Λ

,

+∞ otherwise,

where QΛ (resp. Q′
Λ

) is the image of Q (resp. Q′) under the mapping γ 7→ γΛ.
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The specific entropy with respect to πz is well-defined as soon as Q is invariant under
translations on the lattice. Moreover, we underline that for any a > 0, the a-entropy level
set

P(M )≤a
..=
{

Q ∈P(M ) : I(Q|πz)≤ a
}

is relatively compact for the local convergence topology τL , as proved in [5].
Putting together the technical conditions described in this section yields the existence

of an infinite-volume Gibbs measure Pz, for any activity z > 0.

Theorem 1.10 For any energy functional H as in Assumption 1.1 and any activity z > 0,
there exists at least one infinite-volume Gibbs measure Pz ∈ G (H,z).

Sketch of proof.

(i) For Λn = [−n,n)d , consider the sequence (Pz
Λn
)n≥1 of finite-volume Gibbs mea-

sures, and build the empirical field (P̄z
n)n≥1 by stationarising it w.r.t. lattice trans-

lations.

(ii) Use uniform bounds on the specific entropy to show the convergence, up to a
subsequence, to an infinite-volume measure Pz.

(iii) Prove, using an ergodic property, that Pz carries only the space of tempered con-
figurations.

(iv) Noticing that P̄z
n does not satisfy the (DLR) equations, introduce a new sequence

(P̂z
n)n asymptotically equivalent to (P̄z

n)n but satisfying (DLR).

(v) Use appropriate approximation technique to show that Pz satisfies (DLR) too.

For details, see [11].

Example 1.11 Let d = 2. A concrete example of functions satisfying the above assump-
tions is as follows:

Consider as reference diffusion a Langevin dynamics with V (x) = |x|4; the diffusion is
ultracontractive with δ ′= 2. The invariant measure µ(dx)= e|x|

4
dx is a Subbotin measure

(see [15]).
Consider as self interaction Ψ(x) =−‖m‖5/2

∞ ; as interaction between the initial loca-
tions a Lennard-Jones pair potential φ(u) = au−12− bu−6, a,b > 0; as interaction be-
tween the marks any non-negative pair potential φ̃ .
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4 Uniqueness of Gibbs measure via cluster expansion

The method of cluster expansion relies on finding a regime of small activity 0 < z≤ z̄

in which the partition function Zz
Λ

can be written as the exponential of an absolutely
converging series of cluster terms. It should then be possible to write an equation (the
so-called Kirkwood-Salsburg equation, see e. g. [14]) for the correlation functions of the
infinite-volume Gibbs measure Pz constructed above. We conjecture that under some
assumptions, such an equation has a unique solution, which would lead to the uniqueness
of the infinite-volume Gibbs measure. Here we use a strategy developed in [9]. For this
section, we make the following additional

Assumption 1.12 The potential φ (on initial locations of the diffusions) is integrable

in Rd : ‖φ‖1 < +∞; the potential φ̃ (on the dynamics of the diffusions) is bounded:
‖φ̃‖∞ <+∞.

The partition function is given, for any Λ⊂ Rd , by

Zz
Λ
= 1+ ∑

N≥1

zN

N!

∫
(Λ×C0)N

exp
{
− ∑

1≤i≤N
Ψ(xi,mi)− ∑

1≤i< j≤N

(
φ
(
|xi− x j|

)
+
∫ 2β

0
φ̃
(
|mi(s)−m j(s)|

)
ds
)

1{|xi−x j |≤a0+‖mi‖∞+‖m j‖∞}

}
dx1 · · ·dxN R(dm1) · · ·R(dmN).

(1.10)

Theorem 1.13 Consider an energy functional H satisfying Assumption 1.1 and Assump-
tion 1.12. Then the two-body potential Φ satisfies a modified regularity condition. There-
fore, there exists z̄ > 0 such that, for any activity z ≤ z̄, the partition function above
converges absolutely and a Ruelle bound holds.

Proof. In order to guarantee the absolute convergence of (1.10), we check whether the
pair potential Φ satisfies a modified c-regularity for the functional a (terminology from
[10]; introduced in [8]), i. e. that for any x1 = (x1,m1), the following inequality holds

zec
∫

ea(x2)|Φ(x1,x2)|e−Ψ(x2)dx2 R(dm2)≤ a(x1). (1.11)

We consider here c= cφ , and a function of the form a(x,m) = a(m) = a1(‖m‖d
∞∨1), where

a1 = ‖φ‖1 +
(

2β‖φ̃‖∞kdbd(ad
0 +1)

)
,
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with kd such that (x + y + z)d ≤ kd(xd + yd + zd), and bd the volume of the unit ball
in Rd . Recalling that the self potential Ψ is such that Ψ(x) ≥ −kΨ‖m‖d+δ

∞ . Set

ρ :=
∫

ea1(‖m‖d∞∨1)+kΨ‖m‖d+2δ
∞ R(dm)

(1.3)
< +∞; the modified regularity condition reads

zecφ

∫
C0

ea1(‖m2‖d∞∨1)
∫
Rd

∣∣φ(x2− x1)
∣∣+(∫ 2β

0
φ̃(m2(s)−m1(s))ds

)
1{|x1−x2|≤a0+‖m1‖∞+‖m2‖∞}

dx2 ekΨ‖m2‖d+δ
∞ R(dm2)≤ a1(‖m1‖d

∞∨1).

Estimating the l. h. s. leads to the following condition:

z≤ ‖m1‖d
∞∨1

ρecφ (‖m1‖d
∞ +1)

,

which holds as soon as z≤ (2ρecφ )−1 =.. z̄ = infm1
‖m1‖d∞∨1

ρecφ (‖m1‖d∞+1)
. Applying results in [8],

this implies the absolute convergence of (1.10). Moreover, in [9] S. Poghosyan and H.
Zessin prove that a Ruelle bound also holds.

The unique step towards uniqueness which is now missing is the proof that the
Kirkwood-Salsburg equation has a unique solution. We state the following conjecture:

Conjecture 1.14 For any activity z ≤ z̄, the Kirkwood-Salsburg equation has a unique
solution.

Assuming the above conjecture holds true, we obtain the following

Corollary 1.15 For any activity z ≤ z̄, the infinite-volume measure Pz constructed in
Theorem 1.10 is the unique Gibbs measure in G (H,z).

Conclusions and outlook. In [3], D. Dereudre showed the equivalence between the law
of an infinite-dimensional interacting SDE with Gibbsian initial law, and a Gibbs point
process on the path space, with a certain energy functional.

It is a natural question to ask whether a Gibbs point process with energy functional H

as in Assumption 1.1 is the law of infinite dimensional interacting SDE. Using Malliavin
derivatives, D. Dereudre proved that Gibbs point processes with regular H are the law of
SDEs with a certain non-markovian drift. See [1] and [7] in the lattice case.

The existence and uniqueness results presented here could therefore be useful to obtain
a criterium for the solution of infinite-dimensional SDEs. This is a work in progress.
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2

Trotter product formula on Hilbert
and Banach spaces for

operator-norm convergence
Valentin Zagrebnov*

Abstract. We review results on the operator-norm convergence of the

Trotter product formula on Hilbert and Banach spaces. We concentrate

here on the problem of convergence rates. Some results concerning

evolution semigroups are also presented.

1 Introduction

The product formula for matrices A and B

e−τC = lim
n→∞

(
e−τA/ne−τB/n

)n
, τ ≥ 0, (2.1)

was established by S. Lie (1875). Here C ..= A+B. The proof of formula (2.1) can be
easily extended to bounded operators L (H) and L (X) on Hilbert (H) and Banach (X)
spaces. Moreover, a straightforward computation shows that the operator norm conver-
gence rate in (2.1) is O(1/n):

sup
τ∈[0,T ]

∥∥e−τA/ne−τB/n− e−τC/n∥∥
L ( ·) = O(1/n). (2.2)

*Institut de Mathématiques de Marseille, CMI-Technopôle Château-Gombert, 39, rue F. Joliot Curie, 13453
Marseille, France; valentin.zagrebnov@univ-amu.fr
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H. Trotter [17] has extended this result to unbounded operators A and B on Banach spaces,
but now in the (weaker) strong operator topology: s-limn→∞ An = A ⇔ limn→∞ ‖(An−
A )x‖ = 0 for any x ∈ X. He proved that if A and B are generators of contraction semi-
groups on a separable Banach space such that the algebraic sum A+B is a densely defined
closable operator and the closure C = A+B is a generator of a contraction semigroup,
then

e−τC = s-lim
n→∞

(
e−τA/ne−τB/n)n

, (2.3)

uniformly in τ ∈ [0,T ] for any T > 0. It was a long-time belief that the Trotter formula
is valid only in the strong operator topology. But in the nineties it was discovered that
under certain quite standard assumptions the strong convergence of the product formula
(2.3) can be improved to the operator-norm convergence: limn→∞ ‖An−A ‖L (H) = 0⇔
limn→∞ sup{u∈H:‖u‖=1} ‖(An−A )u‖= 0, on a Hilbert space H.

For the Trotter product formula in the trace-class ideal of L (H) we refer to [18].

2 Trotter product formula on Hilbert spaces

2.1 Self-adjoint case. Considering the Trotter product formula on a separable Hilbert
space H, T. Kato has shown that for non-negative self-adjoint operators A and B the Trotter
formula (2.3) holds in the strong operator topology if dom(

√
A)∩ dom(

√
B) is dense in

the Hilbert space and C = A+̇B is the form-sum of operators A and B. Naturally the
problem arises whether Kato’s result can be extended to the operator-norm convergence.
A first attempt in this direction was undertaken by Dzh. Rogava [16]. He claimed that
if A and B are non-negative self-adjoint operators such that dom(A) ⊆ dom(B) and the
operator-sum: C = A+B, is self-adjoint, then

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (H)

= O(ln(n)/
√

n), n→ ∞, (2.4)

holds. In [12] it was shown that if one substitutes in above conditions the self-adjointness
of the operator-sum by the A-smallness of B with a relative bound less then one, then
(2.4) is true with the rate of convergence improved to

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (H)

= O(ln(n)/n), n→ ∞. (2.5)
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The problem in its original formulation was finally solved in [7]. There it was shown
that the best possible in this general setup rate (2.2) holds if the operator sum: C =

A+B, is already a self-adjoint operator. Rogava’s result, as well as many other results
(including [12]), when the operator sum of generators is self-adjoint, are corollary of
[7]. A new direction comes due to results for the fractional-power conditions. In [14],
with elucidation in [6], it was proven that assuming: dom(Cα) ⊆ dom(Aα)∩ dom(Bα),
α ∈ (1/2,1), C = A+̇B and dom(A1/2)⊆ dom(B1/2) one obtains that

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (H)

= O(n−(2α−1)).

Notice that formally α = 1 yields the rate obtained in [7]. We remark also that the results
of [6, 14] do not cover the case α = 1/2. Although, it turns out that in this case the Trotter
product formula converges on the operator norm:

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (H)

= o(1),

if
√

B is relatively compact with respect to
√

A, i.e.
√

B(I +A)−1/2 is compact, see [13].

2.2 Non-self-adjoint case. Another direction was related with extension of the Trotter,
and the Trotter-Kato, product formulae to the case of accretive [1, 2] and non-self-adjoint
sectorial generators [4, 5]. Let A be a non-negative self-adjoint operator and let B be a
maximal accretive (Re(B f , f )≥ 0 for f ∈ dom(B)) operator, such that

dom(A)⊆ dom(B) and dom(A)⊆ dom(B∗).

If B is A-small with a relative bound less than one, then estimate (2.5) holds for generator
C which is a well-defined maximal accretive operator-sum: C = A+B, see [1].

In [2] this result was generalised as follows. Let A be a non-negative self-adjoint op-
erator and let B be a maximal accretive operator such that dom(A) ⊆ dom(B) and B is
A-small with relative bound less than one. If the condition

dom
(
(C∗)α

)
⊆ dom(Aα)∩dom

(
(B∗)α

)
, C = A+B,
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is satisfied for some α ∈ (0,1], then the norm-convergent Trotter product formula:

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (H)

= O(ln(n)/nα) ,

holds as n→ ∞. In fact, more results are known about the operator-norm Trotter product
formula convergence for non-self-adjoint semigroups with sectorial generators, but with-

out the rate estimates, see [3]. A new approach to analysis of the non-self-adjoint case
was developed in [5]. Since it is based on holomorphic properties of semigroups, one can
apply it even in Banach spaces. Therefore we postpone its presentation to Section 3.

3 Trotter product formula on Banach spaces

3.1 Holomorphic case. There are only few generalisations of the results of Section 2 to
Banach spaces. The main obstacle for that is the fact that the concept of self-adjointness
is missing. One of solutions is to relax the self-adjointness replacing the non-negative
self-adjoint generator A by a generator of the holomorphic semigroup. The following
result was proved in [5].

Theorem 2.1 ([5, Theorem 3.6 and Corollary 3.7]) Let A be a generator of a holomor-
phic contraction semigroup on the separable Banach space X and let B be generator of a
contraction semigroup on X.

i) If for some α ∈ (0,1) the condition dom(Aα) ⊆ dom(B), holds and dom(A∗) ⊆
dom(B∗) is satisfied, then the operator sum C = A+B is generator of a contraction
semigroup and for any T > 0:

sup
τ∈[0,T ]

∥∥(e−τB/ne−τA/n)n− e−τC∥∥
L (X)

= O
(

ln(n)/n1−α
)
. (2.6)

ii) If for some α ∈ (0,1) the condition dom((Aα)∗) ⊆ dom(B∗) is satisfied and
dom(A) ⊆ dom(B) is valid, then C = A+B is generator of a contraction semi-
group and

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (X)

= O
(

ln(n)/n1−α
)
, (2.7)

for any T > 0.
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Theorem 2.2 ([5, Theorem 3.6 and Corollary 3.7]) Let A be generator of a holomorphic
contraction semigroup on X and let B be generator of a contraction semigroup on X. If B

is in addition a bounded operator, then for any T > 0 :

sup
τ∈[0,T ]

∥∥(e−τB/ne−τA/n)n− e−τC∥∥
L (X)

= O
(
(ln(n))2/n

)
,

sup
τ∈[0,T ]

∥∥(e−τA/ne−τB/n)n− e−τC∥∥
L (X)

= O
(
(ln(n))2/n

)
.

Theorem 2.2 becomes false if the condition that A is generator of a holomorphic semi-
group is dropped.

3.2 Non-holomorphic: evolution semigroup. Let A and operators {B(t)}t∈[0,T ] be gen-
erators of holomorphic semigroups on a separable Banach space X. Consider non-
autonomous Cauchy problem for u0

..= u(0):

∂tu(t) =−
(
A+B(t)

)
u(t), t ∈ [0,T ], (2.8)

Assumptions:
(A1) Operator A≥ I is generator of a holomorphic contraction semigroup in X.

(A2) Let {B(t)}t∈[0,T ] be a family of closed operators such that for a.e. t ∈ [0,T ] and
some α ∈ (0,1) the condition dom(Aα)⊂ dom(B(t)) is satisfied such that

Cα
..= ess sup

t∈[0,T ]

∥∥B(t)A−α
∥∥

L (X)
< ∞ .

(A3) Let {B(t)}t∈[0,T ] be a family of generators of contraction semigroups in X such
that the function [0,T ] 3 t 7→

(
B(t)+ ξ I

)−1x ∈ X is strongly measurable for any
x ∈ X and any ξ > b for some b > 0.

(A4) We assume that dom(A∗)⊂ dom(B(t)∗) and

C∗1 ..= ess sup
t∈[0,T ]

∥∥B(t)∗(A∗)−1∥∥
L (X∗) < ∞,

where A∗ and B(t)∗ denote operators which are adjoint of A and B(t), respectively.

(A5) There exists β ∈ (α,1) and a constant Lβ > 0 such that for a.e. t,s ∈ [0,T ] one has
the estimate: ∥∥A−1(B(t)−B(s)

)
A−α

∥∥
L (X)

≤ Lβ |t− s|β .
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(A6) There exists a constant L1 > 0 such that for a.e. t,s ∈ [0,T ] one has the estimate:∥∥A−α
(
B(t)−B(s)

)
A−α

∥∥
L (X)

≤ L1|t− s|.

The evolution equation (2.8) is associated with family {C(t)}t∈[0,T ], C(t) = A+B(t).

We consider the Banach space Lp([0,T ],X) for p ∈ [1,∞) and introduce in this space
the multiplication operators A and B generated by A and {B(t)}t∈[0,T ], see [8, 15]. Simi-
larly, one can introduce the multiplication operator C induced by the family {C(t)}t∈[0,T ]

which is also a generator of a holomorphic semigroup. Notice that C = A +B and
dom(C ) = dom(A ). Let D0 the generator of the right-shift nilpotent semigroup on
Lp([0,T ],X), i.e.

(
e−τD0 f

)
(t) = χ[0,T ](t− τ) f (t− τ), f ∈ Lp([0,T ],X).

Next, we consider the operator

K̃ f = D0 f +A f +B f ,

f ∈ dom(K̃ ) = dom(D0)∩dom(A )∩dom(B).
(2.9)

Assuming (A1)–(A3) it was shown in [11] that the operator K̃ is closable and its closure
K is generator of the evolution semigroup {e−τK }τ≥0 [8, 15], which is also nilpotent
and consequently a non-holomorphic semigroup. Further we set K̃0 f = D0 f +A f for
f ∈ dom(K̃0) = dom(D0)∩dom(A ).

In contrast to the Hilbert space the operator K̃0 is not necessary generator of a semi-
group. However, the operator K̃0 is closable and its closure K0 is a generator. Note that
K coincides with the algebraic sum: K = K0 +B.

Theorem 2.3 ([11, Theorem 7.8]) Let the Assumptions (A1)–(A4) be satisfied for some
α ∈ (0,1). If (A5) holds, then one gets for n→ ∞ the asymptotic:

sup
τ∈[0,T ]

∥∥(e−τB/ne−τK0/n)n− e−τK
∥∥

L (Lp([0,T ],X))
= O

(
1/nβ−α

)
. (2.10)

Assuming instead of Assumption (A5) the Assumption (A6) one finds

Theorem 2.4 ([9, Theorem 5.4]) Let the Assumptions (A1)–(A4) be satisfied for some
α ∈ (1/2,1). If (A6) is valid, then for n→ ∞ one gets the asymptotic:

sup
τ∈[0,T ]

∥∥(e−τB/ne−τK0/n)n− e−τK
∥∥

L (Lp([0,T ],X))
= O

(
1/n1−α

)
. (2.11)
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3.3 Convergence rate for propagators. To construct approximations of solution op-
erators (propagators) for the Cauchy problem (2.8), we apply to the problem (2.8) the
evolution semigroup approach developed in [8, 15, 11]. The idea is to transform the non-

autonomous Cauchy problem (2.8) into an autonomous problem generated by evolution
semigroup {e−τK }τ≥0.

Definition 2.5 ([8, 15]) Linear operator K in Lp([0,T ],X), p∈ [1,∞), is called evolution

generator if for multiplication operator M(φ):
(i) dom(K )⊂C([0,T ],X) and M(φ)dom(K )⊂ dom(K ) for φ ∈W 1,∞([0,T ]);

(ii) K M(φ) f −M(φ)K f = M(∂tφ) f for f ∈ dom(K ) and φ ∈W 1,∞([0,T ]);

(iii) the domain dom(K ) has a dense cross-section, i.e. for each t ∈ (0,T ] the set

[dom(K )]t ..= {x ∈ X : ∃ f ∈ dom(K ) such that x ∈ f (t)},

is dense in X. Here for any φ ∈ L∞([0,T ]) we denote by M(φ) a bounded
multiplication operator on Lp([0,T ],X) defined as

(
M(φ) f

)
(t) = φ(t) f (t), f ∈

Lp([0,T ],X).

One can check that the operator K defined as the closure of K̃ (2.9) is an evolution
generator, cf. [11, Theorem 1.2]. Evolution generators are related to propagators, which
are defined as follows.

Definition 2.6 Let {U(t,s)}(t,s)∈∆, ∆ = {(t,s) ∈ (0,T ]× (0,T ] : s≤ t ≤ T}, be a strongly
continuous family of bounded operators on X. If the conditions

U(t, t) = I for t ∈ (0,T ], (2.12)

U(t,r)U(r,s) =U(t,s) for t,r,s ∈ (0,T ] with s≤ r ≤ t, (2.13)

‖U‖∆
..= sup

(t,s)∈∆

‖U(t,s)‖L (X) < ∞ (2.14)

are satisfied. If u(t) =U(t,0)u0, t ≥ 0, for u0 ∈ dom(A), is solution of the Cauchy prob-
lem (2.8), then {U(t,s)}(t,s)∈∆ is called solution operator, or propagator.

It is known [8, Theorem 4.12] that there is an one-to-one correspondence between the
set of all evolution generators on Lp([0,T ],X) and the set of all propagators in the sense
of Definition 2.6. It is established by equation

(
e−τK f

)
(t) =U(t, t− τ)χ[0,T ](t− τ) f (t− τ), f ∈ Lp([0,T ],X). (2.15)
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Let K0 be generator of evolution semigroup {U0(τ)}τ≥0 and let B be multiplica-
tion operator induced by a measurable family {B(t)}t∈[0,T ] of generators of contrac-
tion semigroups. Note that in this case the multiplication operator B is a generator of
a contraction semigroup

(
e−τ B f

)
(t) = e−τ B(t) f (t), on the Banach space Lp([0,T ],X).

Since {U0(τ)}τ≥0 is the evolution semigroup, then by (2.15) there exists propagator
{U0(t,s)}(t,s)∈∆ such that the representation:

(
U0(τ) f

)
(t) =U0(t, t−τ)χ[0,T ](t−τ) f (t−

τ), f ∈ Lp([0,T ],X), is valid for a. e. t ∈ [0,T ] and τ ≥ 0. Then we define

Q j(t,s;n) ..=U0

(
s+ j (t−s)

n ,s+( j−1) (t−s)
n

)
e
− (t−s)

n B
(

s+( j−1)
(t−s)

n

)

where j ∈ {1,2, . . . ,n}, n ∈ N, (t,s) ∈ ∆, and we set for approximants {Vn(t,s)}n≥1:

Vn(t,s) ..=
n←

∏
j=1

Q j(t,s;n), n ∈ N, (t,s) ∈ ∆,

where the product is increasingly ordered in j from the right to the left. Then by (2.15) a
straightforward computation shows that the representation((

e−τK0/ne−τB/n
)n

f
)
(t) =Vn(t, t− τ)χ[0,T ](t− τ) f (t− τ) ,

f ∈ Lp([0,T ],X), holds for each τ ≥ 0 and a.e. t ∈ [0,T ].

Similarly we can introduce

G j(t,s;n) = e−
t−s

n B
(

s+ j t−s
n

)
U0
(
s+ j t−s

n ,s+( j−1) t−s
n

)
where j ∈ {1,2, . . . ,n}, n ∈ N, (t,s) ∈ ∆. Now let the approximants be defined by

Un(t,s) ..=
n←

∏
j=1

G j(t,s;n), n ∈ N, (t,s) ∈ ∆,

where the product is again increasingly ordered in j from the right to the left. Note that((
e−τB/ne−τK0/n

)n
f
)
(t) =Un(t, t− τ)χ[0,T ](t− τ) f (t− τ) ,

f ∈ Lp([0,T ],X), holds for each τ ≥ 0 and a.e. t ∈ [0,T ].
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Proposition 2.7 ([10, Proposition 2.1]) Let K and K0 be generators of evolution semi-
groups on the Banach space Lp([0,T ],X) for some p ∈ [1,∞). Further, let {B(t))}t∈[0,T ]

be a strongly measurable family of generators of contraction on X. Then for n ∈ N,

sup
τ∈[0,T ]

∥∥∥e−τK −
(

e−τK0/ne−τB/n
)n∥∥∥

L (Lp([0,T ],X))
= ess sup

(t,s)∈∆

‖U(t,s)−Vn(t,s)‖L (X),

sup
τ∈[0,T ]

∥∥∥e−τK −
(

e−τB/ne−τK0/n
)n∥∥∥

L (Lp([0,T ],X))
= ess sup

(t,s)∈∆

‖U(t,s)−Un(t,s)‖L (X).

From Theorem 2.3 and Proposition 2.7 one obtains the following assertion.

Theorem 2.8 ([11, Theorem 1.4]) Let the Assumptions (A1)–(A4) be satisfied. If (A5)
holds, then for n→ ∞ one gets the rate:

ess sup
(t,s)∈∆

‖Un(t,s)−U(t,s)‖L (X) = O
(
1/nβ−α

)
. (2.16)

On the other hand, from Theorem 2.4 and Proposition 2.7 we get

Theorem 2.9 ([9, Theorem 5.6]) Let the Assumptions (A1)–(A4) be satisfied for some
α ∈ (1/2,1). If (A6) is valid, then for n→ ∞ one obtains a better rate:

ess sup
(t,s)∈∆

‖Un(t,s)−U(t,s)‖L (X) = O
(
1/n1−α

)
.

4 Example of sharpness

We study bounded perturbations of the evolution generator D0. To this aim we consider
X= C and we denote by L2([0,1]) the Hilbert space L2([0,1],C).

For t ∈ [0,1], let q : t 7→ q(t)∈ L∞([0,1]). Then q induces on the Banach space L2([0,1])
a bounded multiplication operator Q defined as(

Q f
)
(t) ..= q(t) f (t), f ∈ L2([0,1]).

For simplicity we assume that q ≥ 0. Then Q generates on L2([0,1]) a contraction
semigroup {e−τQ}τ≥0. Since generator Q is bounded, the closed operator K ..= D0 +Q,
with domain dom(K ) = dom(D0), is generator of a semigroup on L2([0,1]). By [17] we
get

s-lim
n→∞

(
e−τD0/ne−τQ/n

)n
= e−τ(D0+Q).
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One can easily check that K is an evolution generator. A straightforward computation
shows that (

e−τ(D0+Q) f
)
(t) = e−

∫ t
t−τ q(y)dy

χ[0,1](t− τ) f (t− τ).

This yields that the propagator corresponding to K is given by

U(t,s) = e−
∫ t

s q(y)dy, (t,s) ∈ ∆.

Now a simple computation shows that((
e−τD0/ne−τQ/n

)n
f
)
(t) =.. Vn(t, t− τ)χ[0,T ](t− τ) f (t− τ).

Then by straightforward calculations we find that

Vn(t,s) = e−
t−s

n ∑
n−1
k=0 q(s+k t−s

n ), (t,s) ∈ ∆.

Theorem 2.10 ([10, Proposition 3.1]) Let q ∈ L∞([0,1]) be non-negative. Then

sup
τ∈[0,1]

∥∥∥e−τ(D0+Q)−
(

e−τD0/ne−τQ/n
)n∥∥∥

L (L2([0,1]))

≤ O

(
ess sup
(t,s)∈∆

∣∣∣∫ t

s
q(y)dy− t− s

n

n−1

∑
k=0

q(s+ k t−s
n )
∣∣∣) ,

as n→ ∞.

Note that by Theorem 2.10 the operator-norm convergence rate of the Trotter product
formula for the pair {D0,Q} coincides with the convergence rate of the integral Darboux-
Riemann sum approximation of the Lebesgue integral.

Theorem 2.11 ([10, Theorem 3.2]) If the function: q ∈C0,β ([0,1]), β ∈ (0,1], is non-
negative, then for n→ ∞ one gets

sup
τ∈[0,1]

∥∥∥e−τ(D0+Q)−
(

e−τD0/ne−τQ/n
)n∥∥∥

L (L2([0,1]))
= O

(
1/nβ

)
.

Theorem 2.12 ([10, Theorem 3.3]) If q ∈C([0,1]) is continuous and non-negative, then
for n→ ∞ ∥∥∥e−τ(D0+Q)−

(
e−τD0/ne−τQ/n

)n∥∥∥
L (L2([0,1]))

= o(1) . (2.17)

It follows that the convergence to zero in (2.17) may be arbitrarily slow.
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Theorem 2.13 ([10, Theorem 3.4]) Let δn > 0 be a sequence with δn → 0 as n→ ∞.
Then there exists a continuous function q : [0,1]→ R such that

sup
τ∈[0,1]

∥∥∥e−τ(D0+Q)−
(

e−τD0/ne−τQ/n
)n∥∥∥

L (L2([0,1]))
= ω(δn) , (2.18)

as n→ ∞. Here ω is the Landau symbol: ω(δn)⇔ limsupn→∞ |ω(δn)/δn|= ∞ .

If q is only measurable, it can happen that the Trotter product formula for that pair
{D0,Q} does not converge in the operator-norm topology:

Theorem 2.14 ([10, Theorem 3.5]) There is a non-negative measurable function q ∈
L∞([0,1]), such that

liminf
n→∞

sup
τ∈[0,1]

∥∥∥e−τ(D0+Q)−
(

e−τD0/ne−τQ/n
)n∥∥∥

L (L2([0,1]))
> 0. (2.19)

Theorem 2.14 does not exclude the convergence in the strong operator topology.
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3

Semi-recursive algorithm of
piecewise linear approximation of
two-dimensional function by the

method of worst segment dividing
Hayk Sukiasyan* and Tatev Melkonyan†

1 Introduction

In the numerical solution of two-dimensional non-linear boundary value problems of
mathematical physics, the finite element method is often used. This method assumes
that the domain of the boundary problem is divided into small sub-domains (elements)
within which the desired function is assumed to be linear. Thus, the desired function is
approximated by a piecewise linear function. Its graph consists of triangles, the projec-
tions of which on the OXY plane form a triangular mesh.

In recent years, meshes with variable number of nodes are often used, i.e. the process
of successive approximations extends not only to the approximated function, but also to
the corresponding grid. At the same time, additional nodes are sequentially added in the
worst (in the sense of approximation error) sub-domains. Thus, the mesh is successively
improved and the approximation error is minimised.

In [6], an algorithm for an automatic construction of piecewise linear approximations
of one-dimensional continuous functions was proposed. The algorithm minimised the
approximation error for a given number of lattice points and was based on the principle

*Institute of Mathematics, National Academy of Sciences, Yerevan, Armenia; haik@instmath.sci.am
†National Polytechnic University of Armenia, Yerevan, Armenia; t.r.melkonyan@gmail.com
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of the worst segment dividing. In [2], the one-dimensional algorithm proposed in [6] was
generalised for the two-dimensional case.

For practical reasons, recursive algorithms of mesh generation are preferable. In appli-
cations they are very convenient because they are easily programmed using cycle opera-
tors. However, the algorithm proposed in [2] was not recursive.

Recursive algorithms. An algorithm is called recursive, if each subsequent step does
not lead to changes in the parameters obtained in the past. In the case of the construction
of meshes with variable number of nodes, the algorithm will be recursive if the addition
of each new node leaves the old nodes and old edges (the connections between nodes) in
place.

Any one-dimensional uniform lattice cannot be constructed using a recursive algo-
rithm, since when you add a new node, all old lattice nodes are shifted. The algorithm
for automatically constructing a one-dimensional piecewise linear approximation with a
non-uniform lattice, proposed in [6], is recursive.

In the present paper, a recursive algorithm is proposed for the automated construction
of piecewise linear approximations of a two-dimensional continuous function by divid-
ing the worst segment. An improved (but not recursive) algorithm for the automated
construction of a two-dimensional piecewise linear approximation by dividing the worst
segment was also studied. The improved algorithm can be called semi-recursive, since
the addition of each new node leaves in place all the old nodes and almost all edges.

We have constructed a semi-recursive algorithm for constructing a piecewise linear ap-
proximation of a two-dimensional function by dividing the worst segment. When adding
a new vertex, all previous vertices and almost all edges remain in their places. The edge
may change if the “flip” operation is applicable to it: replacing a longer diagonal with a
shorter one in a tetragon.

2 Delaunay triangulation

Let Mn = {Pi}n
i=1 be a finite set of points in the plane. The interior of a domain D we

denote by int D. A set {D j}m
j=1 of triangles is called triangle mesh or triangle tessellation

with knots Mn, if the following conditions are fulfilled:
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1. The interiors of triangles are pairwise disjoint:

int D j ∩ int Dk = /0, j 6= k.

2. The set of all vertices of triangles is the set {Pi}n
i=1.

3. The union of triangles fills the whole of convex hull of the knots:

m⋃
j=1

D j = conv{Pi}n
i=1.

A triangle mesh {D j}m
j=1 is called Delaunay triangulation with knots Mn = {Pi}n

i=1, if
the following condition is fulfilled (see [1]):

4. For any triangle D j

int K(D j)∩{Pi}n
i=1 = /0, j = 1, . . . ,m,

where K(D) is the circumscribing circle of triangle D.

The Delaunay triangulation with the system of knots Mn we denote by D(Mn). In [1]
it was proved that for any finite set of points Mn there exists a Delaunay triangulation
D(Mn) (not necessarily unique).

3 The method of dividing the worst segment

Let F(x,y) be a two-dimensional continuous function on the plane, the domain of defini-
tion of which is the rectangle [a,b]× [c,d]. Our goal is to construct a recursive algorithm
for the automated construction of a piecewise linear approximation to the function F(x,y).

First, consider the following recursive algorithm for constructing a sequence of knots
Mn = {P1,P2, . . . ,Pn} and the corresponding mesh Sn. On the rectangle [a,b]× [c,d],
consider the primary set of knots M4, consisting of 4 vertices: P1 = (a,c), P2 = (b,c),
P3 = (b,d), P4 = (a,d) and the primary mesh S4 consisting of two triangles ∆P1P2P3 and
∆P1P3P4 (see Figure 3.1).
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Figure 3.1: The primary mesh S4.

Note that the mesh S4 is a Delaunay triangulation with four knots P1, . . . ,P4, i.e. S4 =

D(M4). Suppose that the set of nodes Mn−1 = {P1,P2, . . . ,Pn−1} and the corresponding
triangle mesh Sn−1 have already been built. Construct the next point Pn as follows.

Two knots Pi and Pj are called neighbouring and denoted by Pi ∼ Pj, if they are the
endpoints of a side of some triangle of the mesh. Note that in the primary mesh S4, all
pairs of nodes are neighbouring, except for the pair P2 and P4.

The pairs of neighbouring knots we call the edges of the mesh. Denote by R(Sn−1) the
set of edges of Sn−1, i.e.

R(Sn−1) = {(Pi,Pj) : Pi ∼ Pj}.

For any edge e = (Pi,Pj) from R(Sn−1) with vertices Pi and Pj we calculate the difference
|zi− z j|, where zi = F(xi,yi) is the value of our function F at the point Pi, and (xi,yi) are
Cartesian coordinates of vertex Pi.

The edge e = (Pi,Pj) ∈ R(Sn−1) we call the worst edge, if it gives the maximum value
of differences |zi− z j|. In the middle of this edge we add a new node, this is the desired
node Pn.

We determine what new edges will appear at the mesh Sn when adding a new vertex
Pn. Denote by conv(Mn) the convex hull of the points Mn = {P1,P2, . . . ,Pn}. Two cases
are possible:

1) the new vertex Pn belongs to the interior of the hull conv(Mn). In this case we call
Pn an internal knot, and the corresponding worst edge is called diagonal. In this
case, when adding a new vertex, two new edges appear (see Figure 3.2);



3 The method of dividing the worst segment 39

Figure 3.2: The case of an internal knot,
the worst edge is P2P4.

Figure 3.3: The case of a boundary
knot, the worst edge is P1P2.

2) the new vertex Pn lies on the boundary of the hull conv(Mn). In this case we call Pn

a boundary knot, and the corresponding worst segment is called a boundary edge.
In this case, when adding a new vertex, one new edge appears (see Figure 3.3).

We will continue to add knots by dividing in half the worst edge Pi,Pj corresponding
to the largest of the values of the differences |zi− z j| until the number of knots reaches a
given value n. Note that the resulting mesh from the application of the proposed recursive
algorithm will not necessarily be a Delaunay triangulation, it depends on the form of the
approximate function F(x,y). So the mesh in Figure 3.2 is a Delaunay triangulation,
while the mesh in Figure 3.3 is not a Delaunay triangulation.

Having a triangular mesh Sn with a system of knots Mn = {P1,P2, . . . ,Pn}, we construct
the approximation Fn(x,y) to the function F(x,y) as follows. The approximation Fn(x,y)

is a piecewise linear function; its graph consists of flat triangles whose projections onto
the coordinate plane OXY form the mesh Sn. At the points P1,P2, . . . ,Pn the values of the
functions F(x,y) and Fn(x,y) coincide. By En we denote the approximation error:

En = max
a≤x≤b, c≤y≤d

|F(x,y)−Fn(x,y)|.

The error En can be estimated using the variation Vn, i.e. the largest difference of the
values of the function F(x,y) at the knots of the mesh Sn:

Vn = max
Pi∼Pj
|zi− z j|,
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Figure 3.4: Flip operation: long diagonal is replaced by shorter.

where zi = F(xi,yi) and the maximum is taken over all pairs of neighbouring knots of
the mesh Sn. It is easy to see that for the proposed recursive algorithm, the sequence Vn

monotonically decreases with increasing number of knots n.

Observe that if the sequence Vn tends to zero, then the error En may not tend to zero. To
ensure that the error tends to zero, we must additionally require the condition of mono-
tonicity.

Proposition 3.1 Let F(x,y) be a smooth function monotonic in both variables. Then for
sufficiently large n we have En ≈Vn, therefore the recursive algorithm leads to vanishing
approximation error En.

4 Semi-recursive algorithm

Now we modify the proposed recursive algorithm for automated construction of a
piecewise-linear approximation of a two-dimensional continuous function by dividing
the worst segment by allowing the flip operation, if applicable.

The operation of replacing a longer diagonal in a tetragon with a shorter one is called a
“flip” (Figure 3.4). In the mesh in Figure 3.2 there are not four vertices for which the flip
operation is applicable, while in Figure 3.3 there is one such set for four knots – these are
the vertices P2,P3,P4,P5. Applying the flip operation to this set of four knots, we obtain
the triangulation shown in Figure 3.5. Here the old edge P2P4 is replaced by the shorter
P3P5.

The modified algorithm can be called semi-recursive, since adding each new vertex
leaves all old knots and almost all old edges in place, except for one. It is easy to see
that the largest edge of the mesh obtained as a result of the semi-recursive algorithm with
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Figure 3.5: The triangulation from Figure 3.3 after the flip operation.

the addition of the flip operation is less than that of the same mesh obtained as a result of
the recursive algorithm without the flip operation. Since for smooth monotonic functions
F(x,y), the approximation error En decreases with decreasing length of the largest edge,
we can make the following conjecture.

Conjecture 3.2 As increasing number of knots, the approximation error, resulting from
the work of a semi-recursive algorithm for automated construction of a piecewise-linear
approximation of a two-dimensional monotonic function by dividing the worst segment
with the addition of the flip operation, tends to zero faster than the error obtained as a
result of the recursive algorithm without flip operation.

Conjecture 3.2 intuitively seems true and successfully passed the test with numerous
practical examples, however the rigorous proof remains open.

It was shown in [3, 4] that the flip operation reduces the sum of the cotangents of the
inner angles of a triangular mesh. It is also proved that Delaunay triangulation minimises
the sum of the cotangents of the inner angles of the triangulation. From this we obtain
the following statement.

Theorem 3.3 For any approximated function and any number of vertices, the mesh re-
sulting from the operation of the semi-recursive algorithm is a Delaunay triangulation.
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Figure 3.6: The solution of a magnetic field problem.

Figure 3.7: The corresponding mesh is Delaunay triangulation.
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5 Applications to mathematical physics

Let F(x,y) be an unknown solution of a boundary value problemL
(
F(x,y)

)
= 0, (x,y) ∈ D,

F(x,y) = f , (x,y) ∈ ∂D,

where L is a differential operator acting on rectangle D with boundary ∂D.
Assume that we can construct the piecewise linear approximation of F for given mesh

Sn, and we can determine the worst segment of the mesh Sn. Then using the semi-
recursive algorithm we obtain a new method of solution of boundary value problem using
the meshes with variable number of vertices.

Theorem 3.4 ([5]) For given points, the best mesh for the finite elements approximation
for the Maxwell equation of the magnetic field is a Delaunay triangulation.

By Theorems 3.3 and 3.4 we obtain

Theorem 3.5 For the construction of a mesh for the numerical approximation of the
Maxwell equation of the magnetic field by the finite elements method, the semi-recursive
algorithm is better than algorithms that do not lead to Delaunay triangulation.

Example 3.6 We solve the Maxwell equation for magnetic field using the semi-recursive
algorithm. Figure 3.6 shows the solution, while Figure 3.7 shows the corresponding mesh.
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4

Pinned Gibbs processes
Mathias Rafler*

Abstract. Finite Gibbs processes are conditioned on the barycentre of

the point configurations being at a certain location. An integration-by-

parts formula is derived from a classical one for such a pinned Gibbs

process along with a characterisation. This entails a stochastic dom-

ination result for the total number of points as well as a simulation

scheme for conditioned point processes.

1 Pinning Gibbs processes

Classical integration-by-parts formulas for point processes give a dynamic view on point
processes identifying certain ones as reversible laws of spatial birth-and-death processes
with given birth and death rates. Usually existing points are chosen to disappear indepen-
dently of each other at rate 1, see e. g. [2] for further possible choices. If, in addition, new
points appear independent of the current point configuration, this characterises a Poisson
process with intensity given by the birth rate. This property is summarised in Mecke’s
formula. If this intensity is modified with a term depending on the configuration of points,
this yields more general Gibbs processes.

Conforti et al. studied (finite) Poisson processes subject to a pinning of the first mo-
ment of the point configurations, i. e. the Poisson process conditioned on an event of
probability zero [1]. Clearly, such a conditioned Poisson process cannot satisfy Mecke’s
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formula, since typically removing or adding a point changes the first moment of a point
configuration. However, they introduced a new kind of dynamic keeping the given con-
dition invariant: They merge three steps of a birth-and-death process, which, suitably
chosen, conserve the given condition. Either one point is removed in favour of two new
ones, or two points are removed in favour of one new point. Hence, the total number of
points increases or decreases by one only.

The idea presented in [1] may be generalised in several ways. Firstly, points may be
allowed to interact with each other, i. e. the finite Poisson process is replaced by a finite
Gibbs process. Secondly, point configurations are conditioned on a fixed barycentre.
Such a condition fails to be linear and transformations need to chosen more carefully.

2 Transformations and invariance

For some d ∈ N, denote by M ·· the set of locally finite point measures on Rd as well as
M ··

f its subset of finite point measures, both are Polish spaces. For any atom x ∈ Rd of a
point measure µ ∈M ··

f , i. e. µ({x})> 0, write x ∈ µ .

Denote by b : M ··
f → Rd the functional assigning the barycentre to a finite point con-

figuration, i. e.

bµ ..=
1

µ(X)

∫
x µ(dx).

The barycentre of the empty configuration will be understood as some special element o

not contained in Rd .

Of particular interest are transformations replacing a single point by two new ones
while leaving the barycentre invariant. A short computation shows that for z ∈ µ ,

b(µ +δx +δy−δz) = bµ ⇐⇒ z = x+ y−bµ. (4.1)

Whenever a functional is invariant under such a transformation, this pair of functional
and transformation is called compatible.
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3 Integration by parts

3.1 Unpinned Gibbs processes

Let φ1 : Rd → (−∞,∞] and φ2 : Rd ×Rd → (−∞,∞] be potentials of single points and
pairs of points, both being bounded from below. Then the energy U of a finite point
configuration µ is given by

U(µ) =
∫

φ1(x)µ(dx)+
1
2

∫
φ2(x,y)µ(2)(dx,dy),

where µ(2)(dx,dy) ..=
(
µ−δx

)
(dy)µ(dx) is the second factorial measure of µ . Integration

with respect to µ(2) means to sum with respect to all pairs of distinct points respecting
possible multiplicities. Observe that if µ(Rd) < 2, then µ(2) = 0, and there is no con-
tribution of a pair interaction. The energy of a point x ∈ Rd given a point configuration
µ ∈M ··

f is

U(x |µ) = φ1(x)+
∫

φ2(x,y)µ(dy).

A finite point process N is a random element in M ··
f , and for a measurable set B⊆Rd ,

NB is the number of points of N in B. Here both, N and its law P, are called point process.
A finite point process N with law P is called Gibbs process with potentials φ1 and φ2, if
its Campbell measure CP satisfies the (classical) integration-by-parts formula∫

hdCP ..=
∫∫

h(x,µ)µ(dx)P(dµ) =
∫∫

h(x,µ +δx)exp
(
−U(x |µ)

)
dxP(dµ) (4.2)

for all non-negative, measurable functions h. Equivalently, Equation (4.2) may be written
as

E
[∫

h(x,N)N(dx)
]
= E

[∫
h(x,N +δx)exp

(
−U(x |N)

)
dx
]
.

Equation (4.2) has a solution if e. g. exp(−φ1) is integrable and φ2 is stable [3]. Subse-
quently, the potentials shall be chosen such that a finite point process exists as a solution.
Note that there is a natural choice of a spatial birth-and-death process on Rd such that
P is a reversible distribution: Points die independently of each other at rate one, while
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new points appear at a rate given by the exponential, see [2] for a discussion. An explicit
representation of P in terms of the kernel is available and given in [4].

Of particular interest is the second order reduced Campbell measure given by

∫
hdC(2)

P
..= E

[∫
h(x,y,N−δx−δy)N(2)(dx,dy)

]
.

Note that a finite point process P can be reconstructed from C(2)
P only on {NRd ≥ 2}.

Subsequently, simplify notation and denote by b the barycentre of the point configura-
tion µ . Assume that

U(z− y+b |µ−δz +δy)+U(y |µ−δz)< ∞ =⇒ U(z |µ−δz)< ∞, z ∈ µ,

which means that allowing to add points at y and z− y+b with a finite energy needs to
allow adding a point at z with a finite energy as well.

Proposition 4.1 Let N be a finite Gibbs process with potentials φ1 and φ2. Then

E
[∫

F(x,y,N)N(2)(dx,dy)
]

=
∫

E
[∫

F
(
z− y+b,y,N +δz−y+b+δy−δz

)
σ(N,y,z)N(dz)

]
dy (4.3)

for all non-negative, measurable functions F , where

σ(µ,y,z) ..= exp
(
−U(z− y+b |µ−δz +δy)−U(y |µ−δz)+U(z |µ−δz)

)
, z ∈ µ.

Proof. The statement is proven straight forward by an application of integration by parts
followed by the substitution x = z− y+b and an integration by parts backwards.

3.2 Pinned Gibbs processes

For a finite point process N with law P denote by τ ..= P◦b−1 the distribution of b under
P. τ is a distribution on Rd ∪ {o} and concentrated on Rd if and only if N does not
charge the empty configuration. Let Pa ..= P( · |b= a) be law of the pinned point process
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Na. Note that in any case, if a ∈ Rd , then necessarily Na 6= 0 almost surely. By the
Equivalence (4.1), x, y and z are chosen such that the mapping

M ··
f →M ··

f , µ 7→ µ +δy +δz−y+bµ −δz, z ∈ µ,

keeps the barycentre invariant.

Proposition 4.2 Let P be a finite Gibbs process with potentials φ1 and φ2. Then for τ-a.e.
a ∈ Rd , Pa solves (4.3).

Proof of Proposition 4.2. Let f : Rd ∪ {o} → R be τ-integrable. Then the statement
follows from∫

f (a)
∫

h(x,y,µ)C(2)
Pa (dx,dy,dµ)τ(da) =

∫
f (bµ)h(x,y,µ)C(2)

P (dx,dy,dµ)

by applying Equation (4.3) respecting the invariance of b, and the disintegration with
respect to τ .

The pinned point processes inherit the property of solving the second order integration-
by-parts formula (4.3). Hence, Equation (4.3) has besides the unpinned Gibbs process at
least the parametric family of pinned Gibbs processes as solutions. However, the main
statement is that Equation (4.3) together with this pinning characterises the pinned Gibbs
processes.

Theorem 4.3 Let Q be a finite point point process such that

1) Q solves (4.3),

2) Q(b= a) = 1 for some a ∈ Rd .

Then Q is a pinned Gibbs process subject to the pinning b= a.

The main steps to prove Theorem 4.3 may be of interest and shall be given and com-
mented on here without too many details.

For a finite point process N, let N− be the diminished point process, that is N with
a uniformly chosen point removed. Since the empty configuration cannot be reduced,
it is mapped to a tomb ∆ as an extra state added to M ··

f . Note that since Na 6= 0 a.s,
(Na)− 6= ∆ a.s. and its distribution (Pa)− is a probability measure concentrated on M ··

f .
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The surprising result is that the law of the diminished pinned Gibbs process has a density
with respect to the law of the unpinned Gibbs process.

Proposition 4.4 Let N be a finite Gibbs process with distribution P. Then for τ-a.e.
a ∈ Rd , (Pa)−� P, and the density is given by

exp
[
−U
((

µ(Rd)+1
)
·a−µ(Rd) ·b(µ)

∣∣∣µ)]
τ(a)

, (4.4)

where 0 ·b(0) = 0.

Observe that the density is essentially an energy, and the argument in the potential shall
be interpreted as follows: µ is a diminished point configuration, hence

(
µ(Rd)+ 1

)
· a

is the first moment of a point configuration of the Gibbs process pinned at a. Since
µ(Rd) · b(µ) is the first moment of the diminished point configuration, their difference
is the location of the removed point. Consequently, each point configuration is weighted
with a factor containing the energy to add the point to get the correct barycentre.

In [1], an approximation argument is used to derive this statement for a certain class of
Poisson processes with an absolutely continuous intensity measure. The following sketch
of proof uses conditional expectations allowing to replace the absolute continuity with
respect to the Lebesgue measure with some reference measure.

Sketch of proof. Let f : Rd ∪ {o} → R be τ-integrable with f (o) = 0 and F be P-
integrable, then mixing with respect to τ , integration by parts followed by a disintegration
yields

∫
f (a)E

[
F
(
(Na)−

)]
τ(da)=

∫
f
(
b(µ+δx)

) F(µ)

µ(X)+1
exp
(
−U(x |µ)

)
Pa(dµ)τ(da)dx

+
∫

f
(
b(µ +δx)

) F(µ)

µ(X)+1
exp
(
−U(x |µ)

)
Po(dµ)τ(o)dx.

Since Po charges the empty configuration only, f
(
b(µ+δx)

)
= f (x) Po-a.s, and replacing

x by b yields that the second integral may be turned into

∫∫
f (b)F(µ)

exp
(
−U(b |µ)

)
τ(b)

Po(dµ)τ(o)τ(b)db.
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The first integral is evaluated with the aid of two transformations, where the first one pins
b(µ + δx) at some b ∈ Rd and thus expresses a in terms of b and x, and the second one
shifts this expression to a new variable y replacing x.

An essential observation is that the density (4.4) is positive under the diminished law.

Lemma 4.5 Under the reduced pinned law (Pa)−,

U
((

µ(Rd)+1
)
·a−µ(Rd) ·b(µ)

∣∣∣µ)< ∞

for (Pa)−⊗ τ(da)-a.e. (µ,a), hence the energy is positive almost surely.

Proof. This is shown by proving that the event

A ..=
{
(y,µ) ∈ Rd×M ··

f |U(y |µ) = +∞
}

has measure 0. Since Na is pinned at a, Na
X · a− (Na

X − 1) · b(Na− δy) = y. Mixed with
respect to τ

∫ (
Pa)−(A)τ(da) = E

[
1

NX

∫
1A

(
y,N−δy

)
N(dy) ·1N>0

]
= E

[
1

NX +1

∫
1π(N,y)=0π(N,y)dy

]
.

Since the inner integral vanishes, the claim follows.

Let Q be a solution of Equation (4.3) such that Q(b = a) = 1 for some a ∈ Rd . Then
one shows that Q−� P with the density given in (4.4).

Proposition 4.6 Let Q be a finite point process which solves (4.3) and satisfies Q(b =

a) = 1 for some a ∈ Rd . Then Q̃ given by

Q̃(dµ) ..=
τ(a)

exp
{(

(µ
(
Rd)+1

)
·a−µ(Rd) ·b(µ)

∣∣∣µ)}Q−(dµ)

is a Gibbs process with potentials φ1 and φ2.

The proof is straightforward by showing that the reduced Campbell measure of Q̃ sat-
isfies a classical integration-by-parts formula (4.2). Note that the Campbell measure of Q̃

turns into a second order Campbell measure for Q allowing the application of (4.3).
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What remains is to reconstruct the finite point process Q, or equivalently its reduced
Campbell measure from Q−. Its proof is already given in [1].

Proposition 4.7 Let Q be a finite point process such that Q(b= a) = 1 for some ∈Rd . If
Q− = P−, where P is a Gibbs process with potentials φ1 and φ2 conditioned on {b= a},
then Q = P.

4 Applications

4.1 Stochastic domination

A distribution p dominates a distribution q, if the tails of p are heavier than those of q.
As shown in [1], a sufficient condition for positive law p on N dominating q is

q(k+1)p(k)≤ q(k)p(k+1) for all k ≥ 1.

Such an inequality can be shown for the law of the total number of points of a pinned
Gibbs process Na and a Poisson distribution conditioned to be positive once

E
[
F(Na

Rd ) ·Na
Rd

]
≤ K ·E

[
F(Na

Rd +1)
]

(4.5)

is shown for some K > 0. The domination then follows in choosing the indicators F(n) ..=

1{n+1} for any n ∈ N and completing the conditioned Poisson weights with parameter K.
Equation (4.5) follows from the integration-by-parts formula by choosing functions

depending on its parameters via Na
Rd only, i. e.

E
[
g(Na

Rd )(Na
Rd −1)Na

Rd

]
= E

[
g(Na

Rd +1)
∫∫

σ(Na,y,z)dyNa(dz)
]
,

and the innermost integral can shown to be bounded from above uniformly by K. For a
hard-core interaction of particles inside some bounded box, this is satisfied automatically
since

U(z− y+b |µ−δz +δy)+U(y |µ−δz)−U(z |µ−δz)≥ 0.

A domination result with the roles exchanged can be shown as soon as the innermost
integral is bounded from below by a positive constant.
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4.2 Monte Carlo subject to conditions

The integration-by-parts formula allows a dynamic approach to sample approximately
from the law of the conditioned point process Na by running a continuous time Markov
chain starting from a single point at a ∈ Rd . If µ is the current point configuration, then
the following jumps occur at the following rates:

1) With rate one each, a pair of distinct points x,y ∈ µ is chosen and removed in
favour of a single point at x+ y−a.

2) A rejection method is applied to remove one point in favour of two new points, so
assume that σ(µ,y,z)≤ K for some constant K. At rate K ·µ(Rd), choose a point
y uniformly. Choose z ∈ µ uniformly, and toss a coin with success probability

σ(µ,y,z)
K

.

In case of success, remove z from µ and add points at y and z− y+a. Otherwise,
reject any jump.

The barycentre at a is a conserved quantity and does not need to be computed at each
step.
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Construction of limiting Gibbs
processes and the uniqueness of

Gibbs processes
Suren Poghosyan* and Hans Zessin†

Abstract. For a pair potential Φ in a general phase space X satisfying

some natural and sufficiently general stability and regularity conditions

in the sense of Poghosyan and Ueltschi we define by means of the so-

called Ursell kernel a function r which is shown to be the correlation

function of a unique infinitely extended process P. Finally, under more

restrictive assumptions, we show that the Gibbs process for Φ, if it

exists, coincides with P. Here we use the classical method of Kirkwood-

Salsburg equations.

1 Preliminaries

Let (X ,B(X),B0(X)) be the underlying phase space where X is a locally compact,
second countable Hausdorff topological space, B(X) its Borel σ -field and B0(X) its
bounded Borel sets. Let ρ be a Radon measure on X .

Let M ··(X) be the space of Radon point measures on X and X be the collection of
all finite point measures (finite configurations) ξ in X . X+ denotes the collection of all
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non-empty ξ in X. For A ∈B0(X) let X(A) be the set of finite point measures supported
by A. Let M ·

R(X), R > 0, be the space of simple point measures µ on X having the
property that the minimal distance of every pair of points in any configuration µ is R, i. e.
(x,y ∈ µ,x 6= y⇒ d(x,y)> R) where d is a metric on X . Here all Dirac measures εx at
the point x ∈ X and the zero measure o are elements of X and M ·

R(X).

We call a subset X′ of X an environment in X if (η ∈ X′,ξ � η ⇒ ξ ∈ X′). Here ξ � η

if ξ (x)≤ η(x) for all x ∈ X . Examples are X and XR = M ·
R(X)∩X.

We denote by F+ the space of [0,+∞]-valued measurable functions on the correspond-
ing space and by K we denote the collection of continuous functions with compact
support. Define a locally finite measure Λρ on X by

Λρ ϕ = ϕ(o)+
∞

∑
n=1

1
n!

∫
X
· · ·
∫

X
ϕ(εx1 + . . .+ εxn)ρ(dx1) · · ·ρ(dxn), ϕ ∈ F+.

For a given configuration µ ∈M ·· we define the following measure on X:

Λ
′
µ(h) =

∞

∑
n=0

1
n!

∫
Xn

h(εx1 + . . .+ εxn) µ̃
n(dx1, . . . ,dxn), h ∈ F+, where

µ̃
n(dx1, . . . ,dxn) =

(
µ− εx1 − . . .− εxn−1

)
(dxn) · · ·

(
µ− εx1

)
(dx2)µ(dx1).

µ̃n is called the factorial measure of µ of order n, and Λ′µ the compound factorial measure

built on µ . The term n = 0 of the sum is h(o). Also, Λ′o(h) = h(o).

Below we often use the following important equation, the Minlos’ formula [3]:∫
X

∫
X

h(ξ ,ν−ξ )Λ
′
ν(dξ )Λρ(dν) =

∫
X

∫
X

h(ξ ,ν)Λρ(dξ )Λρ(dν), h ∈ F+, (5.1)

which is valid for all h integrable with respect to the measure on the left-hand or the
right-hand side of the equation.

Let P be a point process in X that is a probability on M ··(X). The moment measure of

P of order k is the measure on Xk defined by

ν
k
P f =

∫
M ··(X)

µ
⊗k( f )P(dµ), f ∈K (Xk),
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whereas the correlation measure (also called factorial moment measure) of P of order k

is the measure given by

ν̃
k
P( f ) =

∫
M ··(X)

µ̃
k( f )P(dµ), f ∈K (Xk).

If ν̃k
P has a density rk

P with respect to some product measure ρ⊗k, where ρ is a Radon
measure on X , then we say that rk

P is a correlation function of P of k-th order. The
process P is called of order k if νk

P is a Radon measure. P is called of infinite order if it is
of order k for every k.

2 Ruelle’s algebraic approach

We here follow Ruelle [10]. Let A be the set of all measurable complex functions on X.
We define a ?-multiplication of two functions h1,h2 ∈A by

h1 ?h2(ξ ) =
∫
X

h1(ν)h2(ξ −ν)Λ
′
ξ
(dν), ξ ∈ X. (5.2)

With the ?-product A becomes a commutative algebra with the unit 1(ξ ) = δo(ξ ). Let
A0 = { f ∈A | f (o) = 0}. We define the mapping Γ : A0→ 1+A0 (algebraic exponent)
by

Γh = 1+h+
1
2!

h?2 + . . .+
1
n!

h?n + . . . , h ∈A0. (5.3)

Let Φ be a measurable symmetric function Φ : X×X→]−∞,+∞], a pair potential in X .
E(ξ ) ..= ∑1≤i< j≤n Φ(xi,x j) is the energy of the configuration ξ = εx1 + . . .+εxn ; B ..= e−E

is called the Boltzmann factor. The conditional energy at x given the configuration ξ is
given by WΦ(x,ξ ) ..=

∫
X Φ(x,y)ξx(dy), where ξx = ξ if x /∈ ξ and ξ = ξ − εx otherwise.

We assume that Φ is b-stable, i. e. there exists a measurable function b : X → [0,+∞)

such that E(ξ )≥−∑x∈ξ b(x), ξ ∈ X.
We consider also P-stable1 Φ with stability function b in the environment X′. This

means that there exists a measurable function b : X → [0,+∞) such that WΦ(x,ξx) ≥
−b(x), x ∈ ξ ∈ X′, ξx = ξ − εx. If Φ is P-stable with function b, then it is b-stable.

Any non-negative Φ is P-stable in the environment X. Another important example
is the Penrose potential [7] (see also [5]). Let (X ,ρ) be the d-dimensional Euclidean

1This notion goes back to Oliver Penrose [7].
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space with Lebesgue measure. Let c,ε,R > 0 be constants. Φ is the following hard-
core potential: If |x− y| < R then Φ(x,y) = +∞; and if |x− y| ≥ R then |Φ|(x,y) ≤
c|x− y|−(d+ε). As Penrose has shown this potential is P-stable in the environment XR

with a constant stability which can be calculated explicitly.

The Boltzmann factor B = e−E is an element of the algebra (A ,?) having an inverse
with respect to the ? multiplication, which is denoted by B−1

? . Another important element
U of the algebra A is the Ursell function given by

U(o) = 0, U(εx) = 1, U(εx1 + . . .+ εxn) = ∑
γ∈Cn

∏
(i, j)∈γ

ω(xi,x j), n≥ 2, (5.4)

where Cn denotes the set of all simple, unoriented, connected graphs γ with n vertices, the
product is taken over all edges (i, j) in γ and ω(x,y) = e−Φ(x,y)−1 is the Mayer function.

Note that U ∈A0 and the following important relation is valid B = ΓU .

3 Ursell kernel
Representation of the correlation function

Here we follow the work of Minlos, Poghosyan [4]. Let z : X → [0,+∞) be measurable.
We consider Radon measures of the form z.ρ = ρz, where ρ is Radon measure and z is a
density function.

Given A ∈B0(X) we define the finite volume Gibbs process in A as the probability
Qz,A on X(A) which is given by

Qz,A(dξ ) =
1

Ξ(z,A)
e−E(ξ ) ·Λz.ρA(dξ )

where ρA = 1A ·ρ and the normalising constant (the partition function) is given by

Ξ(z,A) =
∫
X(A)

∏
x∈η

z(x)e−E(η)
ΛρA(dη).

By stability Ξ(z,A)≤ exp
(∫

A eb(x)z(x)ρ(dx)
)
< ∞.
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It is well known that the correlation function of the Gibbs process Qz,A is given by

rz,A(ξ ) =
∏x∈ξ z(x)

Ξ(z,A)

∫
X(A)

e−E(ξ+η)
Λz.ρA(dη), ξ ∈ X(A).

Proposition 5.1 The correlation function has the following remarkable representation:

rz,A(ξ ) = ∏
x∈ξ

z(x)
∫
X(A)

G(ξ ,η)Λz.ρA(dη), ξ ∈ X(A) (5.5)

where the Ursell kernel G : X2→R is given by G(ξ ,η) = (B−1
? ?Dξ B)(η), ξ ,η ∈X and

Dξ B(ν) = B(ξ + ν), ν ∈ X. In particular G(εx,η) = U(εx +η) where U is the Ursell
function.

For the proof we note that by the Minlos’ formula

1
Ξ(z,A)

Λz.ρA(Dξ B) =
1

Ξ(z,A)
Λz.ρA(B?B−1

? ?Dξ B) = Λz.ρA(B
−1
? ?Dξ B).

For a given pair potential Φ let Φ = Φ if Φ is finite and Φ = 1 if Φ =+∞. Let a, b, c
be non-negative functions on X . We will say that Φ satisfies

� c-regularity, if there exists a function a such that∫
X

∣∣ω∣∣(x,y)e(c+a)(y)
ρz(dy)≤ a(x), x ∈ X . (5.6)

� Modified b-regularity, if there exists a function a such that∫
X

∣∣Φ∣∣(x,y)eb(y)+a(y)
ρz(dy)≤ a(x), x ∈ X . (5.7)

Both assumptions (5.6) and (5.7) are introduced in [8].

Theorem 5.2 Let Φ be a b-stable pair interaction. Assume also that Φ is 2b-regular for
a. Then the function

rz(ξ ) = ∏
x∈ξ

z(x)
∫
X

G(ξ ,η)Λρz(dη), ξ ∈ X (5.8)



60 Poghosyan, Zessin: Construction of Gibbs processes

is well defined and satisfies the following Ruelle bound

rz(ξ )≤∏
x∈ξ

z(x)
∫
X

∣∣G∣∣(ξ ,η)Λρz(dη)≤∏
x∈ξ

z(x)e(2b+a)(x), ξ ∈ X. (5.9)

If Φ is P-stable and b-regular for a then (5.9) holds with e(b+a)(x) instead of e(2b+a)(x).
Moreover rz(ξ ) = limA↑X rz,A(ξ ).

The proof of this theorem is based on the so-called forest graph estimate. For ξ ,η ∈X
let F (ξ ,η) be the collection of forests with the set of vertices ξ +η and roots ξ . An
unoriented simple graph is called rooted forest if its connected components are rooted

trees, i. e. trees where one vertex is specified as a root.
We consider the case of b-stable Φ. The P-stable case is entirely the same, one only

needs to replace e2b by eb. If Φ is modified regular, then one has to pass from ω to Φ

using the formula
∣∣ω∣∣(x,y)≤ ∣∣Φ∣∣(x,y)eΦ−(x,y).

Lemma 5.3 ([4]) For ξ 6= o,

∣∣G∣∣(ξ ,η)≤ ∏
x∈ξ+η

e2b(x)
∑

γ∈F (ξ ,η)
∏

(x,y)∈γ

∣∣ω∣∣(x,y). (5.10)

Denoting the right-hand side of (5.10) by H(ξ ,η) one can show that

H(εx1 + . . .+ εxn ,η) = H
(
x1, ·

)
? · · ·?H

(
xn, ·

)
(η).

Then an application of the Minlos’ formula and Theorem 2.1 from [8] completes the
proof of Theorem 5.2.

In particular Lemma 5.3 gives the famous tree graph estimate of the Ursell function:

∣∣U∣∣(η) =
∣∣G∣∣(εx,η− εx)≤∏

x∈η

e2b(x)
∑

γ∈T (η)
∏

(x,y)∈γ

∣∣ω∣∣(x,y), x ∈ η . (5.11)

Here T (η) is the set of trees with the set of vertices η .

4 Construction of limiting Gibbs processes

Theorem 5.4 Let Φ be a P-stable pair potential in X which is b-regular for a. If eb+aρ

is a Radon measure, then there exists a unique process Pz in X of infinite order having
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correlation function rz, which is the limiting Gibbs process of the sequence (Qz,An)n in
the weak sense.

The proof of this theorem is based on the following lemma.

Lemma 5.5 ([11]) Let (Pn)n be a sequence of point processes in X of infinite order
satisfying the conditions: for each k the limits ν̃k( f ) = limn→∞ ν̃k

Pn
( f ), f ∈K (Xk), exist

and ∑
∞
`=1 ν`(A`)−

1
2` = +∞ for each bounded A. Here ν`(A`) = ∑J ν̃ |J |(A|J |), where

the summation is over all partitions of {1, . . . , `} into non-empty subsets. Then there
exists one and only one point process P in X of infinite order such that Pn ⇒ P and
ν̃k
P = ν̃k for each k.

Lemma 5.5 combined with the Ruelle bound completes the proof of Theorem 5.4. We
consider below the case where z(x)≡ z > 0, x ∈ X .

Proposition 5.6 Under the conditions of Theorem 5.4, rz(ξ ) = z|ξ |
∫
X G(ξ ,η)Λρz(dη)

satisfies the Kirkwood-Salsburg (K-S) equation:

(KΣzρ) rz(ξ ) = ze−WΦ(x,ξ ) ·
∫
X

K(x,η)rz(ξx +η)Λρ(dη), x ∈ ξ 6= o,

where K(x,η) ..= ∏y∈η ω(x,y).

The proof follows from Theorem 5.2, Minlos’ formula and the fact that the Ursell
kernel satisfies the equations ([PU09], [Ru69]): G(o,η) = δo,η and

G(ξ ,η) = e−WΦ(x,ξx)
∫
X

K(x,ν)G(ξx +ν ,η−ν)Λ
′
η(dν), x ∈ ξ 6= o.

Theorem 5.7 Let Φ be a P-stable b-regular potential for a. If eb+aρ is a Radon measure
and supx a(x) =C <∞ and if the activity satisfies 0< z< (eC)−1, the (KΣzρ) equation has
a unique solution and the correlation function rz of the process Pz is this unique solution.

Proof. We follow [10] and [3]. Let Eδ , δ > 0, be the Banach space of all complex valued
measurable functions ϕ : X+→ C such that

‖ϕ‖δ = sup
ξ∈X+

|ϕ|(ξ )
δ |ξ |∏x∈ξ e(a+b)(x)

<+∞, (5.12)

where |ξ | = ξ (X) denotes the number of particles in ξ . Since rz satisfies the Ruelle

bound (5.9), the correlation function rz belongs to Eδ with the norm ≤ 1 if z≤ δ .
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We define on Eδ the linear operator K by

Kϕ(εx) = z
∫
X+

K(x,η)ϕ(η)Λρ(dη), x ∈ X , (5.13)

Kϕ(ξ ) = ze−WΦ(x,ξ ) ·
∫
X

K(x,η)ϕ(η +ξx)Λρ(dη), x ∈ ξ 6= o. (5.14)

Using the operator K, we can write the K-S equation as an integral equation in the
Banach space Eδ : rz = Krz +αz, where αz(ξ ) = 0 if ξ (X) > 1 and αz(εx) = z. For
sufficiently small z > 0 the operator K is bounded. Indeed let ϕ ∈ Eδ with ‖ϕ‖ ≤ 1. Then
by P-stability and b-regularity of Φ for every x ∈ ξ ∈ X,

∣∣(Kϕ)
∣∣(ξ )≤ zeb(x)

∫
X

∣∣ωx
∣∣(η)δ |η |+|ξ |−1e(η+ξx)(b+a)

Λρ(dη)

≤ zδ
|ξ |−1eξ (b+a) · exp

(
δρ
(
|ωx|eb+a

))
≤ zeδC

δ
δ
|ξ |eξ (b+a).

Thus, if the parameters z and δ satisfy the condition zeδCδ−1 < 1, then ‖K‖δ < 1 and
the K-S equation has a unique solution. In particular, if we take δ = 1

C , this condition on
z becomes 0 < z < (eC)−1. A more detailed discussion of the choice of δ can be found
in [3].

5 Uniqueness of Gibbs processes

In a final step we show that Gibbs processes G for Φ with activity z have correlation
functions which solve the K-S equation in the same range of the parameter z. This implies
that the Gibbs process G, if it exists, coincides with Pz.

We use the notion of Gibbs process introduced in [6] as a solution of an integration-
by-parts formula. A point processes G is called a Gibbs process for (Φ,ρ), if for all
h ∈ F+

(Σρ)
∫

M ··

∫
X

h(x,µ)µ(dx)G(dµ) =
∫

M ··

∫
X

h(x,µ + εx)exp
(
−WΦ(x,µ)

)
ρ(dx)G(dµ).

We then write G ∈ G (Φ,ρ). This is equivalent to saying that G is a Gibbs process for
(Φ,ρ) in the sense of Dobrushin, Lanford and Ruelle, cf. [6].
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From now on we assume that Φ is P-stable, modified b-regular for a and eb+aρ is a
Radon measure. Then

Lemma 5.8 ([6]) Every G ∈ G (Φ,ρz) is of infinite order and its correlation function is
given by

gz(ξ ) = z|ξ |
∫

M ··
exp
(
−WΦ(ξ ,µ)

)
G(dµ), ξ ∈ X. (5.15)

Furthermore, G is uniquely determined by its correlation functions.

Note that by modified regularity of Φ the conditional energy WΦ(x,µ) can be extended
to the whole M ··(X) and remains P-stable with the same function b. Due to the P-
stability, the Ruelle bound takes the form gz(ξ ) ≤ z|ξ |∏x∈ξ eb(x). Using ideas of Sabine
Jansen [1], we then obtain

Proposition 5.9 Let Gz be a Gibbs process in X for (Φ,ρz). Then its correlation function
gz solves the (KΣzρ) equation.

In the view of the Ruelle bound we are in the situation as we had been above for the
correlation function rz.

Lemma 5.10 Let Φ be a P-stable pair potential satisfying above mentioned conditions.
Assume also 0 < z < (eC)−1. Then gz coincides with rz which implies that Gz coincides
with the limiting Gibbs process Pz.

Thus we arrive at the main result of this paper

Theorem 5.11 For all 0< z< (eC)−1 the collection G (Φ,ρz) of Gibbs processes is either
empty or the singleton {Pz}.

For a large class of hard-core potentials we show in [9] that indeed for all 0 < z <

(eC)−1 the set G (Φ,ρz) is not empty and therefore reduced to a unique element con-
structed as the limiting Gibbs process.
Acknowledgement. The authors are grateful to the referee for several proposals which
improved the presentation of our contribution.
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6

Non-local convolution type
parabolic equations with fractional

and regular time derivative
Andrey Piatnitski* and Elena Zhizhina†

Abstract. This note deals with the fundamental solutions of parabolic

equations for convolution type non-local operators. Our goal is to com-

pare the large time asymptotics of these fundamental solutions with that

of the classical Gaussian heat kernel. A similar problem is considered

for evolution equations with a fractional time derivative.

1 Introduction

Parabolic equations with non-local elliptic operators play an important role in the study
of population dynamics models. The presence of a non-local operator on the right-hand
side of the equation reflects the fact that the interaction in these models has a non-local
character. One of these models is the so-called contact model in Rd , see e. g. [5, 6]. It
is a continuous time birth and death Markov process in a continuum defined on the space
of infinite (but locally finite) configurations γ ∈ Γ lying in the space Rd : γ ⊂ Rd . The
process is characterised by the birth and death rates. Each point x ∈ γ of a configuration
γ might create an offspring y independently of other points of the configuration. The

*The Arctic University of Norway, Campus Narvik, Norway; Institute for Information Transmission Prob-
lems, Moscow, Russia; apiatnitski@gmail.com

†Institute for Information Transmission Problems, Moscow, Russia; ejj@iitp.ru
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offspring location is distributed in the space with the density a(x−y) (so-called dispersal
kernel), and we assume

∫
Rd a(z)dz = 1. In addition, any point of the configuration has an

independent exponentially distributed random life time determined by the mortality rate
m(x)> 0, and in the general case the mortality rate is a spatially inhomogeneous function
m(x)≥ 0. The formal generator of the dynamics of this process takes the form

LF(γ) = ∑
x∈γ

∫
Rd

a(x− y)
(
F(γ ∪ y)−F(γ)

)
dy+ ∑

x∈γ

m(x)
(
F(γ\x)−F(γ)

)
.

The case of homogeneous mortality m(x)≡ κ has been studied in detail in the paper [5].
In the most interesting case κ = 1 (the critical regime) a family of stationary distributions
exist.

One of the remarkable properties of the contact model is the fact that the first correla-
tion function ρ(x) (the so-called density of configurations) satisfies an evolution equation
which is decoupled and can be considered separately. It should be noted that evolutions
of the higher order correlation functions have more complicated hierarchical structure.

The dynamics of the first correlation function is described by the following Cauchy
problem:

∂ρ

∂ t
= Aρ, ρ = ρ(t,x), x ∈ Rd , t ≥ 0, ρ(0,x) = ρ0(x)≥ 0, where (6.1)

Aρ(x) =−m(x)ρ(x)+
∫
Rd

a(x− y)ρ(y)dy. (6.2)

If m(x)≡ 1, then the operator A takes the form

Aρ(x) =−ρ(x)+
∫
Rd

a(x− y)ρ(y)dy =
∫
Rd

a(x− y)
(
ρ(y)−ρ(x)

)
dy. (6.3)

Thus we obtain parabolic equation (6.1) with a convolution operator on the right-hand
side.

Notice that correlation functions in the contact model, as well as in other models of
the population dynamics, need not vanish at infinity. Thus to study the behaviour of
correlation functions we have to consider the Cauchy problem for evolution equations
(6.1)–(6.3) in the classes of functions that satisfy suitable growth conditions at infinity.
Then the information about the point-wise asymptotics or two-sided bounds of the corre-
sponding fundamental solution becomes very important not only in the region where the
central limit theorem applies but also in other space-time regions.

In this note we compare the large time behaviour of the fundamental solutions of prob-
lem (6.1)–(6.3) with that of the classical Gaussian heat kernel.
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We also make a similar comparison of the Gaussian heat kernel and the fundamental
solution of evolution equations with a fractional time derivative.

An essential part of the estimates used in this note is borrowed from our previous works
[4] and [7]. However, the lower bounds for the studied fundamental solutions in the region
of super-large deviations are new. For these bounds we provide a detailed proof.

2 Convolution type operators
We consider a zero order convolution type operator A in L2(Rd), d ≥ 1, defined by

A f (x) =
∫
Rd

a(x− y)
(

f (y)− f (x)
)
dy,

where the convolution kernel a is a non-negative integrable function. If
∫
Rd a(z)dz =

1, then A is the generator of a continuous time Markov jump process with the jump
distribution a(z): A f = a ∗ f − f . We assume that the convolution kernel a( ·) has the
following properties:

� Boundedness
a(x)≥ 0, a(x) ∈ L∞(Rd)∩L1(Rd). (6.4)

� Symmetry
a(x) = a(−x) for all x ∈ Rd . (6.5)

� Normalisation and second moments∫
Rd

a(x)dx = 1,
∫
Rd
|x|2a(x)dx < ∞. (6.6)

� (Super)exponential decay

0≤ a(x)≤Ce−b|x|p , with p≥ 1, b > 0,C > 0, (6.7)

we also consider the case of compactly supported a(x).

3 Non-local parabolic problem
We study the large time behaviour of the fundamental solution of the following parabolic
problem

∂tu(x, t) = Au(x, t) = a∗u−u, (x, t) ∈ Rd× (0,+∞),

u(x,0) = δ (x).
(6.8)
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Remark 6.1 Let ξ 0(t) be a continuous time jump Markov process with jump intensity
equal to 1 and with jump distribution a( ·), and assume that ξ 0(0) = 0. Then u( · , t) is the
law of ξ 0(t).

Since A is a bounded operator in L2(Rd) we have

etA = e−t eta? = e−t
∞

∑
k=0

tk a?k

k!
= e−t1+ e−t

∞

∑
k=1

tk a?k

k!

and

u(x, t) = etA
δ (x) = e−t

δ (x)+ e−t
∞

∑
k=1

tk

k!
a?k(x). (6.9)

Observe that u(x, t) consists of a singular part at zero e−tδ (x) and a regular part v(x, t) ∈
L∞(Rd)∩L1(Rd):

v(x, t) = e−t
∞

∑
k=1

tk

k!
a?k(x). (6.10)

We focus on obtaining point-wise upper and lower bounds for the regular part v(x, t) as
t→ ∞.

Let us briefly recall some of the existing results on heat kernels. The heat kernel of the
classical heat equation in Rd

∂tg−∆g = 0, g|t=0 = δx,

is given by the Gauss-Weierstrass function

gt(x,y) =
1

(4πt)d/2
exp

(
−|x− y|2

4t

)
. (6.11)

For the heat kernel of a more general parabolic equation ∂tg−Lg = 0 with a uniformly
elliptic second-order divergence form operator L the well-known Aronson estimates hold,
see [1],

gt(x,y)�
C

td/2
exp

(
−|x− y|2

ct

)
.

One of the simplest non-local heat equation is

∂tg+(−∆)
α/2 g = 0, where 0 < α < 2.

Its heat kernel satisfies the following estimates, see e. g. [2],

gt(x,y)�
C

td/α

(
1+
|x− y|

t1/α

)−(d+α)

(6.12)
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Remark 6.2 Note that (−∆)
α/2 is an integro-differential operator of the form

(−∆)
α/2 f (x) = cd,α p.v.

∫
Rd

f (x)− f (y)

|x− y|d+α
dy. (6.13)

The heavy tail of the heat kernel in estimate (6.12) is a consequence of slow decay of the
integral kernel in (6.13).

4 Asymptotics of v(x, t) as t→ ∞

In this section we present results from the paper [4], where the large time behaviour of the
fundamental solution to the problem (6.8) has been obtained. This asymptotic behaviour
depends crucially on the relation between |x| and t. We consider separately four different
regions in the (x, t) space. Namely,

I. |x| ≤ r t1/2
(
1+o(1)

)
(standard deviations region)

II. |x|= r t1+δ/2
(
1+o(1)

)
, δ ∈ (0,1) (moderate deviations region)

III. |x|= r t
(
1+o(1)

)
(δ = 1) (large deviations region)

IV. |x|= r t1+δ/2
(
1+o(1)

)
, δ > 1 (“extra-large” deviations region)

4.1 Normal and moderate deviations region

We begin with the case when x belongs to regions I. or II.

Theorem 6.3 (see [4]) Assume that a( ·) satisfies conditions (6.4)–(6.7). Then for the
function v(x, t) defined by (6.10) the following asymptotic relation holds as t→ ∞:

1) if |x| ≤ r t1/2 for some r > 0, then

v(x, t) = (2πt)−d/2
(
det(σ)

)−1/2 e−
(σ−1x,x)

2t
(
1+o(1)

)
(6.14)

with σ
i j =

∫
Rd

xix j a(x)dx.

2) if x = r t1+δ/2
(
1+o(1)

)
with 0 < δ < 1 and r ∈ Rd\{0}, then the following asymp-

totic relation holds as t→ ∞:

v(x, t) = e−
(σ−1x,x)

2t (1+o(1)) = e−
1
2 (σ

−1r,r) tδ (1+o(1)). (6.15)
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It should be noted that the Gaussian form of the asymptotics (6.14) in the region of
standard deviations is the immediate consequence of the local limit theorem for processes
with independent increments. Formula (6.14) can also be derived from the asymptotic
representation of the corresponding Fourier transform. In the moderate deviations region
the asymptotics (6.15) of the fundamental solution still coincide with that in the standard
deviations region, but only in the logarithmic order. For the pre-exponential factor we can
only state the sub-exponential rate of decay.

4.2 Large deviations region

In order to formulate the result in the region |x| ∼ t we should first introduce a number of
auxiliary quantities. Let X be a random vector in Rd with distribution a( ·). If condition
(6.7) is fulfilled with some p ≥ 1 then X has finite exponential moment Λ(γ) = Eeγ·X at
least for small enough γ ∈ Rd .

We define the cumulant generating function L(γ) = lnΛ(γ), and introduce I(r), r ∈Rd ,
as its Legendre transform: I(r) = sup

γ

(
γ · r− L(γ)

)
, r,γ ∈ Rd . Denote by ξr a positive

solution of the equation

lnξ = I(ξ r)−ξ r ·∇I(ξ r), ξ ∈ R.

Lemma 6.4 Let a(x) satisfy conditions (6.4)–(6.7). Then for any r ∈ Rd\{0} the above
equation has a unique solution ξr, and 0 < ξr < 1.

Let us define the rate function

Φ(r) = 1− 1
ξr

(
1+ lnξr− I(ξrr)

)
. (6.16)

We introduce now some additional technical conditions on the kernel.

(A1) p = 1 and for any b1 > b and any θ ∈ Sd−1 we have Eeb1(X ,θ) = ∞, where b is the
same constant as in (6.7).

(As
1) p = 1 and E|X |eb(X ,θ) = ∞ for any θ ∈ Sd−1.

(Ap) p > 1 and for any θ ∈ Sd−1

L(γ) = lnEeγ(X ,θ) =C(b, p)|γ|p/(p−1)(1+o(1)
)
, as |γ| → ∞,

where C(b, p) = p−1
p (bp)−1/(p−1) is a constant appearing in the logarithmic

asymptotics of the Laplace transform of e−b|x|p .
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Remark 6.5 Condition (Ap), p≥ 1, can be treated as a sort of soft lower bound for a(x).
In particular, it holds if a(x) satisfies the following two-sided estimate

C0e−b|x|p ≤ a(x)≤C1e−b|x|p , p≥ 1. (6.17)

Also, Condition (Ap) implies that a(x) could not have a bounded support.

Theorem 6.6 (see [4]) Let conditions (6.4)–(6.7) be fulfilled, and assume additionally
that in the case p = 1 condition (As

1) holds. Then for x = rt
(
1+o(1)

)
with r ∈ Rd\{0}

we have
v(x, t) = e−Φ(r)t(1+o(1)) as t→ ∞, (6.18)

where Φ(r) is defined by (6.16).

The rate function Φ(r) possesses the following important properties: Φ is a convex
function, Φ(0) = 0, Φ(r)> 0 for r 6= 0, and

Φ(r) =
1
2

σ
−1r · r

(
1+o(1)

)
, as r→ 0; (6.19)

Φ(r)→ ∞, as r→ ∞. (6.20)

If a(x) has a finite support, then

Φ(r)≥ c|r| ln |r|, as |r| → ∞.

Furthermore, if p = 1 and condition (A1) holds, then

Φ(r) = b|r|
(
1+o(1)

)
, as |r| → ∞; (6.21)

if p > 1 and condition (Ap) holds, then

Φ(r) =
p

p−1
(
b(p−1)

)1/p|r|(ln |r|)
p−1

p
(
1+o(1)

)
, as |r| → ∞. (6.22)

Remark 6.7 It should be also emphasised that in the case p = 1 conditions (A1), (As
1) are

required for proving the main result on the asymptotics of the heat kernel, while in the
case p > 1 condition (Ap) is only used for determining the asymptotic behaviour of the
function Φ(r) for large r.

4.3 Extra-large deviations region

In the region |x| � t only an upper bound for v(x, t) was obtained in [4].
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Theorem 6.8 (see [4]) Assume that a(x) satisfies conditions (6.4)–(6.7). Then for |x| =
rt1+δ/2

(
1+o(1)

)
with δ > 1 and r 6= 0 the following asymptotic upper bound holds:

v(x, t)≤ e−cptδ+1/2(ln t)p−1/p(1+o(1)) as t→ ∞, (6.23)

where the constant cp = cp(b,r) depends on b, r and p. If a( ·) has a finite support, then
for |x|= rtδ+1/2

(
1+o(1)

)
with δ > 1 we have

v(x, t)≤ e−c̃ tδ+1/2 ln t(1+o(1)) as t→ ∞,

where c̃ depends on r, δ and the support of a( ·).

Here, for a(x) satisfying two-sided estimate (6.17), we prove that a similar lower bound
holds.

Theorem 6.9 Let Conditions (6.4)–(6.6) be fulfilled, and assume that bound (6.17) holds.
Then in the region of “extra-large” deviations with |x| � t the following two-sided bound
holds for all sufficiently large t:

exp

{
−C̃1|x|

(
ln
∣∣∣x
t

∣∣∣) p−1
p

}
≤ v(x, t)≤ exp

{
−C̃2|x|

(
ln
∣∣∣x
t

∣∣∣) p−1
p

}
. (6.24)

Proof. The upper bound in (6.24) is a direct consequence of estimate (6.23). To obtain
the lower bound in (6.24) we consider an auxiliary operator(

Ãu
)
(x) =

∫
Rd

C0ãp(x− y)u(y)dy−C1

∫
Rd

ãp(y)dy ·u(x),

where ãp(x) = e−b|x|p and C0, C1 are the same constants as in (6.17). Let us represent
ũ(x, t) = etÃδ (x) in the same way as (6.9):

ũ(x, t) = e−C1αpt
δ (x)+ e−C1αpt

∞

∑
k=1

(C0t)k

k!
ã?k

p (x),

where αp =
∫
Rd ãp(y)dy. Thus the regular part of ũ(x, t) equals to

ṽ(x, t) = e−C1αpt
∞

∑
k=1

(C0t)k

k!
ã?k

p (x), (6.25)

and we conclude using (6.17) that v(x, t) ≥ ṽ(x, t) for all x ∈ Rd . Therefore, it suffices
to obtain the lower bound in (6.24) for the function ṽ(x, t). To this end we first estimate

ã?k
p (x) for k =

(
ln |x|t

)−1/p
|x|. Divide the one-dimensional segment [0,x] into k equal
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parts and denote by z j, j = 1, . . . ,k, the centers of corresponding subsegments [r j−1,r j],
r j =

x
k j. Notice that

|r j− r j−1|=
|x|
k

=
(

ln
|x|
t

)1/p
→ ∞ as t→ ∞.

Let B1(z) ⊂ Rd be a ball of the unit volume with the center at z. If x j ∈ B1(z j), x j−1 ∈
B1(z j−1), then

|x j− x j−1| ≤ |r j− r j−1|+2 =
|x|
k

(
1+o(1)

)
.

Consequently

ã?k
p (x)≥

∫
B1(z1)

· · ·
∫

Bk(zk)

e−|x1−x2|p−...−|xk−x|pdx1 · · ·dxk ≥ e−c1

(
|x|
k

)p
k (6.26)

with some constant c1 > 0. Finally keeping in representation (6.25) for ṽ(x, t) only one
term with k =

(
ln |x|t

)−1/p|x| and considering estimate (6.26) we obtain the desired low
bound in (6.24).

5 Time fractional equations

In this section we present results of our work [7] where the asymptotic behaviour of
solution wα(x, t) of the following fractional time parabolic problem has been studied

∂
α
t wα = a∗wα −wα , wα

∣∣
t=0 = δ0.

Here ∂ α
t is the fractional derivative (the Caputo derivative) of the order α , 0 < α < 1, and

a(x) is the same convolution kernel as that in Section 2.
As follows from [3] the solution wα(x, t) admits the following representation in terms

of the fundamental solution u(x, t) of a non-local heat equation:

wα(x, t) =
∫

∞

0
u(x,r)drP(Sr ≥ t) =

∫
∞

0
u(x,r)Gα

t (r)dr,

here S = {Sr,r ≥ 0} is the α-stable subordinator with the Laplace transform Ee−λSr =

e−rλ α

, and Gα
t (r) = dr Pr{V α

t ≤ r} is the density of the inverse α-stable subordinator V α
t .

Using the representation for the Laplace transform of V α
t : Ee−λV α

t = Eα(−λ tα), Eα is
the Mittag-Leffler function, and representation (6.9) for the non-local heat kernel

u(x, t) = e−t
δ0(x)+ v(x, t) with v(x, t) =

∞

∑
k=1

a∗k(x)
k!

tk e−t
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we obtain wα(x, t) = Eα(−tα)δ0(x)+ pα(x, t), where the regular part of wα(x, t) equals

pα(x, t) =
∞

∑
k=1

a∗k(x)
k!

tαk E(k)
α (−tα)

It turned out that in contrast with the equations studied in Section 4.1 in the case of
equations with fractional time derivatives we should divide (x, t) space in 6 regions in
order to describe the large time behaviour of the corresponding fundamental solutions.
These regions are

� |x| is bounded;

� (Subnormal deviations) 1� |x| � t
α
2 or equivalently, |x(t)| → ∞ and there exists

an increasing function r(t), r(0) = 0, lim
t→∞

r(t) = +∞ such that r(t)≤ |x| ≤
(
r(t)+

1
)−1tα/2 for all sufficiently large t;

� (Normal deviations) x = vtα/2
(
1+o(1)

)
with an arbitrary v ∈ Rd \{0};

� (Moderate deviations) x = vtβ
(
1+o(1)

)
with α

2 < β < 1 and v ∈ Rd \{0};

� (Large deviations) x = vt
(
1+o(1)

)
with v ∈ Rd \{0};

� (Extra large deviations) |x| � t, i. e. lim
t→∞

|x(t)|
t = ∞.

The main result from [7] is the following point-wise asymptotic formula for pα(x, t) as
t→ ∞.

� If |x| is bounded, then

c−t−α/2 ≤pα(x, t)≤ c+t−α/2 if d = 1,

c−t−α log t ≤pα(x, t)≤ c+t−α log t if d = 2,

c−t−α ≤pα(x, t)≤ c+t−α if d ≥ 3.

� If 1� |x| � tα/2, then

c−t−α/2 ≤pα(x, t)≤ c+t−α/2 if d = 1,

c−t−α log
tα

|x|2
≤pα(x, t)≤ c+t−α log

tα

|x|2
if d = 2,

c−t−α |x|2−d ≤pα(x, t)≤ c+t−α |x|2−d if d ≥ 3.
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� If x = vtα/2
(
1+o(1)

)
with v ∈ Rd \{0}, then

pα(x, t) = t−
dα
2

∫
∞

0
Wα(s)Ψ(v,s)ds

(
1+o(1)

)
, where

Ψ(v,s) =
1

|detσ |1/2(2πs)d/2
exp
(
− (σ−1v,v)

s

)
and Wα(s) is the Wright function that is expressed via the density Gα

t (r) of the
inverse subordinator.

� If x = vtβ
(
1+o(1)

)
with α/2 < β < 1 and v ∈ Rd \{0}, then

pα(x, t) = exp
{
−Kv t2β−α/2−α

(
1+o(1)

)}
with a constant Kv depending on α and v.

� If x = vt
(
1+o(1)

)
with v ∈ Rd \{0}, then

pα(x, t) = exp
{
−F(v)t

(
1+o(1)

)}
.

� If |x| � t, then, combining the approach developed in [7] with the statement of
Theorem 6.9, we obtain

exp
{
−c− |x|

(
log
∣∣∣x
t

∣∣∣)p−1/p
}
≤ pα(x, t)≤ exp

{
−c+ |x|

(
log
∣∣∣x
t

∣∣∣)p−1/p
}
.

6 Conclusions

1. Comparing classical heat kernel (6.11) and the regular part of the fundamental
solution of the non-local parabolic problem (6.8) we observe that crucial modi-
fications of the Gaussian form of the asymptotics occurs in the region of large
deviations, when x = rt. It is there, at the distances of order t, that the non-local
character of the operator A starts to play an important role. As seen from (6.19),
the fundamental solution is still close to the Gaussian function for small r, but it
differs essentially from the corresponding Gaussian function for sufficiently large
r, see (6.21), (6.22). In the “extra-large” deviations region this difference is further
enhanced. It follows from estimate (6.24) that the non-local fundamental solution
v(x, t) has more heavy tail at infinity than the classical heat kernel (6.11).

2. Comparing pα(x, t) and v(x, t) we notice that
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� in the regions of normal and moderate deviations the asymptotics of pα(x, t)

strongly depends on α , and in the region of subnormal deviations it addi-
tionally depends on the dimension;

� in the region of large deviations |x| ∼ t the form of the asymptotics of pα(x, t)

is similar to that of v(x, t), however the rate functions are different;

� in the region of extra large deviations the asymptotic upper bounds for
pα(x, t) and for v(x, t) are the same.
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Large emissions. Hawking-Penrose
black hole model

Eugeny Pechersky*, Sergei Pirogov† and Anatoly Yambartsev‡

Abstract. We propose a formalism about the large deviations of emis-

sions. As an example we study the large deviations asymptotics for an

introduced stochastic version of the Hawking-Penrose black hole model

with special attention to the large emission regime. One of our goals is

to find the most probable trajectory corresponding to a certain amount

of the emission during the time interval.

1 Introduction

This paper is devoted to applications of the large deviations theory. The large devia-
tions theory is an area of probability theory studying rare events with vanishing positive
probability. It means that such an event may occur but very rarely. It can happen as a
catastrophic event like an overload of the queueing system or a crisis phenomenon in the
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economy. Rare events also naturally appear in nature. Perhaps there are processes with a
stochastic component in their dynamics such that some rare event drastically changes the
behaviour of the process forever.

In this paper, we briefly review our previous results and continue our research on rare
large emissions [8]–[7]. In general, the emission can be represented as a function of a base
(original) process: the emission counts the occurrence of some set of specific transitions
of an original process. Conditioning on a large emission event changes the behaviour
of the original process. This change is characterised by a rate function. We study here
the rate function for the proposed stochastic version of the Hawking-Penrose black hole
model.

2 General settings

Markov processes. Markov processes ξ are the basic object of our studies in this work.
The processes are pure jumps on the finite time interval [0,T ]. We consider the processes
having a finite state spaceN = {0,1, . . . ,N}. The process paths are right-continuous step
functions

x ∈ X; x : [0,T ]→N .

The jumps of any x ∈ X are equal to −1 or +1 only. We suppose that the corresponding
rate transitions can be represented in the following form: for any state k ∈N

r+(k,N) = λNkγ+u+(k,N)
(
1−δ (N− k)

)
, (7.1)

r−(k,N) = µNkγ−u−(k)
(
1−δ (k−1)

)
, (7.2)

where δ (m) = 1 for m = 0 and δ (m) = 0 otherwise. The power functions kγ+ and kγ−

describe the main functional part of the intensities of the jumps. Real numbers λN > 0
and µN > 0 depend on N only. The functions u+(k,N) and u−(k) present some linear
dependence on N and k of the intensities. We will restrict ourselves here only to two cases
for the functions u±: u+(k,N) = N−k or u+(k,N)≡ 1, and u−(k) = k or u−(k)≡ 1. The
multipliers

(
1−δ (N− k)

)
and

(
1−δ (k−1)

)
do not allow the process to go out of N .

The rate r+(k,N) corresponds to the jump k→ k+1, and the rate r−(k,N) corresponds
to the jump k→ k−1. The infinitesimal operator on the function set F; f ∈ F : N →R is

L f (k) = r+(k,N)
[

f (k+1)− f (k)
]
+ r−(k,N)

[
f (k−1)− f (k)

]
. (7.3)
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Particle systems. Particle systems are the main interpretation of the studied Markov
processes. The particle system is a set P of N = |P| particles. Each particle p ∈P can
be in one of two states from S = {0,1}. Let sp ∈ S be the state of the particle p. The state
sp = 0 is a ground state of the particle p. The state sp = 1 is an excited state of the particle.
The state sp of any particle is random variable changing over time, sp ≡ sp(t). For this
settings, the values of the Markov process ξ are the number of the excited particles

ξ (t) = ∑
p∈P

sp(t).

The physical terminology is commonly used in order to characterise the particle state.
This terminology is related to the energy of the system. However, in our example of the
stochastic version of the black hole, the state of a particle will be interpreted in other
terms: the excited state 1 means that the particle is located inside of the black hole, and
the ground state 0 means that the particle is out of the black hole.

Large deviations. Our aim is to study an emission of the particle system. More exactly,
we would like to understand behaviour of the probability of the large emission on the
interval [0,T ]. The emissions in terms of the process ξ (t) are negative jumps of the
process: the emission occurs at the moment τ ∈ [0,T ] means that ξ (τ)−ξ (τ−0) =−1.

We introduce a process η(t), t ∈ [0,T ], of the emissions in the following way. Let

Θ−(t) = {ti : ti ≤ t and ξ (ti)−ξ (ti−0) =−1}

be the set of the time instances of the emissions during [0, t], t ≤ T . Then

η(t) = |Θ−(t)| (7.4)

is the number of the emissions occurred during [0, t]. The process η(t) takes its values in
Z+ and it is the monotone increasing process. Further, we consider the pair

(
ξ (t),η(t)

)
of dependent processes. The infinitesimal generator of the joint process is

Lr f (k,m)= r+(k,N)
[

f (k+1,m)− f (k,m)
]
+r−(k,N)

[
f (k−1,m+1)− f (k,m)

]
, (7.5)

where k ∈N ,m ∈ Z+.

The large emission, which we study, is the event{
η(T )≥ B̃T

}
, (7.6)

where B̃ > 0 is large. The event (7.6) is a rare event arising during stochastic dynamics
of the processes

(
ξ (t),η(t)

)
. The study of rare events is the subject of the large devia-
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tions theory. The answer which can be obtained by this theory has an asymptotic form.
Therefore instead of one process, a sequence of scaled processes is considered, where the
sequence is defined by a scaling parameter connected to the original process. In the large
deviation theory, the probabilities of the rare events are being found asymptotically under
the scaling parameter. We will take as the scaling parameter for our case the number N

of the particles in the system.

Therefore we will consider the scaled version of our problem where the scaling is taken
by growing N, N→ ∞. The scaled processes are(

ξN(t),ηN(t)
)
=

(
ξ (t)
N

,
η(t)

N

)
. (7.7)

The jumps of ξN(t) are ± 1
N and the jumps of ηN(t) are equal to 1

N .

The intensities of the processes
(
ξN(t),ηN(t)

)
are as follows

R+

(
k
N
,N
)
= λNNγ++e+u+

(
k
N
,1
)(

k
N

)γ+
(

1−δ

(
1− k

N

))
,

R−

(
k
N
,N
)
= µNNγ−+e−u−

(
k
N

)(
k
N

)γ−(
1−δ

(
k−1

N

))
,

where

e+ =

1, if u+(k,N) = N− k,

0, if u+(k,N)≡ 1,
e− =

1, if u+(k) = k,

0, if u+(k)≡ 1.
(7.8)

It is convenient to put B̃ = NB in the scaled version of the system, where B > 0 is large
enough. The large emission B̃ is large if NB is large which is the same as large N. In
terms of the scaled processes the event (7.6) is{

ηN(T )≥ BT
}
, (7.9)

where B is large enough.

The theory of the large deviations also allows to extract a large deviation path of the
process which produces the given deviation of the large emissions during the interval
[0,T ]. We apply the large deviations theory in a topological space of paths F2 : D→R on
[0,T ], whereD= [0,1]×R+. The paths

(
x( ·),y( ·)

)
∈F2 satisfy the following conditions

1) the paths
(
x( ·),y( ·)

)
are real-valued right-continuous paths defined on [0,T ] with

left-hand limits;

2) the path y( ·) is non-negative and non-decreasing;
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3) a topology in F2 is defined by Lindvall metric ([1]).

The theory of large deviations allows one to solve both mentioned tasks: to find the
asymptotics of the large emission probability as N→∞ as well as the path of the dynamics
that realises the large deviation on the interval [0,T ]. Solving these problems by the
method of large deviations we follow constructions and results in [3].

Further, we assume that

lim
N→∞

λNNγ++e+−1 = λ
R, lim

N→∞
µNNγ−+e−−1 = µ

R,

where λ R > 0 and µR > 0 are parameters of the model.

For any x ∈ (0,1), sequences of integers k such that k
N → x as N→ ∞ then

R+(x) ..= lim
N→∞

R+

(
k
N
,N
)
= λ

Ru+(x)xγ+ ,

R−(x) ..= lim
N→∞

R−

(
k
N
,N
)
= µ

Ru−(x)xγ− .

(7.10)

The principle of the large deviations introduced by Varadhan is a basic construction of
the large deviations theory (see [10]). To have the large deviations principle means to
know a rate function I. In our case it is the function I : D→R+, which has the following
integral functional form

I(x,y) =
∫ T

0
sup
κ1,κ2

(
κ1ẋ+κ2ẏ−R+(x)[eκ1 −1]−R−(x)[e−κ1+κ2 −1]

)
dt. (7.11)

The function x : [0,T ] → [0,1] is a density of excited particles, the non-decreasing
function y : [0,T ] → R+ is the dynamics of the emissions. The functions κ1 and
κ2 : [0,T ]→ R are dual variables to x and y accordingly.

Generally speaking, the functions x and y from F2 can be discontinuous. However, the
rate function I in (7.11) has finite values on the absolutely continuous x and y only.

Main information on the rare events is contained in the rate function I, (7.11). Accord-
ing to the large deviations theory, we can estimate the probability of the event (7.9) by
the rate function as the following

lim
N→∞

1
N

lnPr(ηN ≥ BT ) =− inf
(x,y)∈B

I(x,y), (7.12)
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where B = {(x,y) : y(0) = 0,y(T ) = BT} is a set of the paths describing the event (7.9).
If we have found a path (xB,yB) such that

I(xB,yB) = inf
(x,y)∈B

I(x,y) (7.13)

then this path is a mean path of a conditioned process under the event (7.9).
Remark that expression (7.12) holds only if

inf
(x,y)∈Bo

I(x,y) = inf
(x,y)∈B

I(x,y), (7.14)

where Bo is interior and B is closure of B. If (7.14) does not hold we only obtain bounds
for limN→∞

1
N lnPr(ηN ≥ BT ).

The rate function (7.11) is Legendre transform of the Hamiltonian

H(x,y,κ1,κ2) = R+(x)[eκ1 −1]+R−(x)[e−κ1+κ2 −1]. (7.15)

If the pair (xB,yB) satisfies (7.13), then it is a solution of the Hamiltonian system

ẋ =
∂H
∂κ1

= R+(x)exp{κ1}−R−(x)exp{−κ1 +κ2},

ẏ =
∂H
∂κ2

= R−(x)exp{−κ1 +κ2},

κ̇1 = −
∂H
∂x

= −R′+(x)[eκ1 −1]−R′−(x)[e−κ1+κ2 −1],

κ̇2 = −
∂H
∂y

= 0,

(7.16)

where R′ω(x),ω ∈ {+,−} is the derivative over x.
To find (xB,yB), (see (7.13)) we have to solve this system under suitable boundary

conditions. For the considered cases, the boundary conditions are y(0) = 0, y(T ) = BT

and arbitrary x(0) = x0.
In many cases when R+(x) and R−(x) depend on x, finding the solution is a rather dif-

ficult problem. Peculiar properties of the system can facilitate the search of the solutions.
These facilitating properties are that the right sides of every equation do not depend on y

and that κ2 is a constant.
A general property of the solutions is in the following equation followed from (7.16)

Lemma 7.1
d
dt

ln ẏ = (ẋ+ ẏ)
d
dx

ln
(
R+(x)R−(x)

)
−R′+(x)−R′−(x). (7.17)

Proposition 7.2 If x is constant, then y is linear on [0,T ].
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For the next proposition denote A(x) = d
dx ln

(
R+(x)R−(x)

)
and C(x) = B·

d
dx ln

(
R+(x)R−(x)

)
−R′+(x)−R′−(x).

Proposition 7.3 If ẏ = B, then the solution of (7.17) in the form x(t) ≡ x0, y(t) = Bt

exists, where x0 is a root of the equation C(x) = 0.

3 Hawking-Penrose black hole

In this section, we apply the general settings described above to the Hawking-Penrose
black hole model. The goal here is to investigate of the large emissions of the black hole.
This model is one of the earliest and simplest descriptions of Schwarzschild black hole
(see [4, 9]). The black hole both emits and absorbs the matter. The absorption is the result
of the gravitation, and the emission is the result of the Hawking radiation.

The model we propose is as follows. There is the Universe composed by a finite piece
of a space and a matter in the space. The matter is a finite set P of particles. Some
part of Universe space is a specific area which is called the black hole. Some portion
P1 ⊆P of the particles of the matter is located in the black hole. The remaining portion
P2 =P\P1 is located in the Universe outside the black hole. The Schwarzschild black
hole has the shape of a ball. The radius of the ball is proportional to the number of the
particles in P1.

There is a dynamic of the particles between the parts P1 and P2.
We construct a stochastic dynamic of the particle jumps between P1 and P2. The

particle jumps are described by a Markov process. The change of the particle number
in the black hole that is of the set P1, changes the radius of the black hole. One of
the features of this stochastic dynamic is that the surface value of the black hole affects
the laws of the jumps thereby determining the properties of the Markov processes. In
physics, this feature is explained by the so-called holographic principle which means that
the black hole surface (horizon) contains all the information about the black hole state.
Our main interest is the big emission of the black hole, that is the large number of jumps
P1→P2.

Formal descriptions: Markov process. The dynamics of the particles between the sets
P1 and P2 is defined by a Markov process ξ (t), where the value of ξ (t) is number of the
particles in the set P1, ξ (t) = |P1|. We consider the jump dynamics on the finite interval
[0,T ] driven by the Markov process ξ (t) taking its values in N \ {0} = {1, . . . ,N}. It
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means that the number of the particle in Universe is N. Here we exclude the point 0 from
the state spaceN . It means that the black hole contains at least one particle, and does not
disappear.

As in the general setting described above, the jumps of the process are +1 or −1. The
jump +1 means the increment of the set P1 (the matter in the black hole) by one particle,
and −1 is the decrement of the same set by one particle.

The intensities of the jumps of ξ depend on the size of the horizon, which in turn
depends on the amount of matter in the black hole. Let ξ (t) = k, t ∈ [0,T ], that is k

particles are located in the black hole at the moment t. Then the jump intensities are

r+(k,N) = λNk2(N− k)
(
1−δ (N− k)

)
,

r−(k,N) = µNk−2(1−δ (k−1)
)
,

(cf. (7.1) and (7.2)).

For studying the large emission from the black hole, we introduce the process η(t)

(see (7.4)) as described in the section Large deviations. Next, we have to study the scaled
version of the processes (

ξN(t),ηN(t)
)
=

(
ξ (t)
N

,
η(t)

N

)
(see (7.7)). The intensities of the scaled version of the processes are

R+(x) = lim
N→∞

R+

(
k
N
,N
)
= λ

Rx2(1− x),

R−(x) = lim
N→∞

R−

(
k
N
,N
)
= µ

Rx−2,

assuming that k/N→ x ∈ (0,1).

According the general settings of Section 2, we obtain the rate function

I(x,y) =
∫ T

0
sup

κ1(t),κ2(t)

{
κ1(t)ẋ(t)+κ2(t)ẏ(t)

−λ
Rx2(t)(1−x(t))[eκ1(t)−1]−µ

R 1
x2(t) [e

−κ1(t)+κ2(t)−1]
}

dt,

(7.18)

where x(t) is a density of the particles in the black hole at the moment t ∈ [0,T ], and y(t)
is a path of the particle emission on the interval [0,T ] which means the number of the
particles emitted on the interval [0, t].
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As in the general case, the rate function is Legendre transform of the Hamiltonian

H(x,y,κ1,κ2) = λ
Rx2(1−x)[eκ1 −1]+µ

Rx−2[e−κ1+κ2 −1].

In order to find the probability Pr
(
ηN(T )≥BT

)
, and an optimal path

(
xB( ·),yB( ·)

)
on

[0,T ], we have to find a solution of the equation system with suitable boundary conditions.

ẋ =
∂H
∂κ1

= λ (1−x)x2 exp{κ1}−µ
1
x2 exp{−κ1 +κ2},

ẏ =
∂H
∂κ2

= µ
1
x2 exp{−κ1 +κ2},

κ̇1 = −
∂H
∂x

= −λ
(
2(1−x)x−x2

)
[eκ1 −1]+µ

2
x3 [e−κ1+κ2 −1],

κ̇2 = −
∂H
∂y

= 0,

(7.19)

These solutions are extremals of the integral functional (7.18). We need the solution
which finds the extremal hitting the infimum of (7.12). The event B defines the corre-
sponding boundary conditions. That is y(0) = 0, y(T ) = BT and x(0) = x0 is chosen such
that it gives the minimum of (7.18).

The solution of (7.19) under prescribed boundary conditions is a rather difficult prob-
lem because of the high non-linearity of the system.

We find the extremal determining a solution
(
xB,yB

)
, where xB is a constant and yB is

a linear function, (see Propositions 7.2 and 7.3). It means that the corresponding condi-
tional processes (ξN ,ηN) considered at large N has its average values xB and yB.

Definition 7.4 For a constant B> 0, the path (xB(t),yB(t)) is called a stationary emission

regime if

1) there is a constant xB such that xB(t)≡ xB, for all t ∈ [0,T ],

2) yB(t) = Bt, for all t ∈ [0,T ],

3) the path
(
xB(t),yB(t)

)
are extremal of I with the boundary conditions xB(0) =

xB(T ) = xB and yB(0) = 0, yB(T ) = BT .

According the above definition of stationary emission regime, using Propositions 7.2
and 7.3 we obtain the following theorem [8].
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Theorem 7.5 For any B > 0, there exists a constant xB such that the paths x(t) ≡ xB,
y(t) = Bt realise the stationary emission regime. We have xB → 0 as B→ ∞ with the
asymptotics

xB ∼
(

2µ

B

) 1
3
.
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On an approximation of 2-D
stochastic Navier-Stokes equations

Sara Mazzonetto*

Abstract. We describe a full-discrete explicit approximation scheme

for the process solution of the two-dimensional incompressible stochas-

tic Navier-Stokes equations driven by additive noise with periodic

boundary conditions. We focus on the properties which play a role

in the proof of the strong convergence towards the mild solution of the

equation.

1 Introduction

Often (stochastic) evolution equations, such as stochastic Navier-Stokes equations, are
mathematical models for dynamics and phenomena in physics. Therefore, the simulation
of the solutions with implementable approximation schemes has become of great interest.
The approximations should converge in some sense and possibly reflect the behaviour of
the solutions. A strongly convergent scheme (i. e., in mean square) “respects”, for in-
stance, the mean of the process.

In general terms, the explicit and the linear-implicit Euler schemes do not converge
strongly to the solutions of many stochastic evolution equations (see e. g. [7, Theo-
rem 2.1]) and convergent implicit schemes have higher computational costs (for more
details see, e. g. [8]). Therefore recently, different versions of the Euler method have

* Universität Potsdam, Institut für Mathematik, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany;
mazzonetto@uni-potsdam.de; https://sites.google.com/site/saramazzonettoweb/
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been proven to converge strongly for (specific cases of) evolution equations. The tech-
niques are different according to the specificity of the coefficients and the dimension:
truncation of the drift, taming, etc.

In the case of two-dimensional stochastic Navier-Stokes equations driven by additive
or multiplicative noise, several existence and uniqueness results and (strongly) convergent
approximation schemes are available. We refer to [4] and references therein for existence
and uniqueness results and an overview on numerical approximations such as the strong
convergent ones in [5] (in the additive noise case). Other relevant strongly convergent
schemes are the fully implicit and also the semi-implicit Euler schemes introduced in [3]
and the splitting scheme of [1]. This list is far from extensive. We refer for instance to
the introduction of the recent article [6] for a state-of-the-art summary.

In this article we describe an explicit full-discrete non-linearity-truncated accelerated

exponential Euler-type scheme (DTAEE scheme, see Equation (8.5) below) which has
been proven in [11] to converge strongly to the mild solutions1 of the two-dimensional
incompressible stochastic Navier-Stokes equations on the torus driven by some trace class
noise in Equation (8.3). We focus on the description of the approximation scheme stress-
ing the properties leading to the already mentioned strong convergence result. The con-
tribution of this document is therefore a deeper insight on the properties of the DTAEE
scheme.

This paper is organised as follows: We first introduce the stochastic Navier-Stokes
equations under consideration (see Section 2). In Section 3 we focus on the numerical
approximation scheme DTAEE. Finally in Section 3.2 we comment on the strong conver-
gence of the approximation towards the solution.

2 The framework: 2-D stochastic Navier-Stokes equations

2.1 The 2-D stochastic Navier-Stokes equations with periodic boundary
conditions on the torus and trace class noise

Let T ∈ (0,∞), let λ(0,1)2 denote the Lebesgue measure on (0,1)2, and let H0 ⊂H1 ⊂H ⊂
L2(λ(0,1)2 ;R2) be appropriate Hilbert subvector spaces of the Hilbert space L2(λ(0,1)2 ;R2)

1Weaker notion of solution with respect to the classical strong and weak one: any strong/weak solution is
also a mild solution.
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to be precised in Section 2.2. In particular, H is the separable Hilbert space having an
orthonormal basis consisting of divergence-free functions with periodic boundary. Let
P be the projection on H of elements of L2(λ(0,1)2 ;R2), and let W be an IdH -cylindrical
Wiener process.

Let ε0,ε ∈ (0,∞) and ξ ∈H0. It is known that the process X : [0,T ]×Ω→H1 satisfying
for all t ∈ [0,T ] that P-a.s.

Xt = etA
ξ +

∫ t

0
e(t−s)A(F(Xs)+ ε0Xs

)
ds+

∫ t

0
e(t−s)A(−A)−1/2−ε dWs (8.1)

is a mild solution to the following stochastic partial differential equation{
dXt(x) =

(
∆Xt(x)+F

(
Xt
)
(x)
)
dt +(−A)−1/2−ε dWt(x), x ∈ (0,1)2, t ∈ [0,T ],

X0 = ξ ∈ H0,
(8.2)

with incompressibility (i. e. divergence-free) condition divXt = 0 and where A = ∆− ε0,
∆ is the Laplacian with periodic boundary conditions, and F(Xs) = c1Xs+c2P(−∇Xs ·Xs)

with c1,c2 ∈ R.

This is a two-dimensional stochastic Navier-Stokes equations on the torus (0,1)2 with
periodic boundary conditions driven by some trace class noise. Indeed (−A)−1/2−ε , ε ∈
(0,∞) is a Hilbert-Schmidt operator, so we are actually considering as noise a Wiener
process on the Hilbert space H with covariance matrix (−A)−1−2ε . Note that we could
change the noise and/or the operator A up to a multiplicative constant, or consider a more
regular noise. For simplicity, from now on, we take c1 = −ε0, c2 = 1. Hence the mild
solution (8.1) rewrites

Xt = etA
ξ +

∫ t

0
e(t−s)AP(−∇Xs ·Xs)ds+

∫ t

0
e(t−s)A(−A)−1/2−ε dWs. (8.3)

To conclude, note that the mild solution expresses the process as a stochastic evolution
equation. The right-hand side of equation is the sum of a Bochner integral, resulting from
the convolution of the semigroup and the non-linearity, with a stochastic integral which
is the noise part, also called the stochastic convolution process.
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2.2 The state space

Let us now construct the Hilbert space of square-integrable divergence-free functions
with periodic boundary conditions H ⊂ L2(λ(0,1)2 ;R2). (Recall that λ(0,1)2 denotes the
Lebesgue measure on (0,1)2).

For all k ∈ Z let ϕk ∈C
(
(0,1),R

)
be the function

ϕk(x) ..= 1{0}(k)+1N(k)
√

2cos(2kπx)+1N(−k)
√

2sin(−2kπx), x ∈ (0,1).

Let the following elements of L2(λ(0,1)2 ;R2):

e0,0,0 ≡ (1,0), e0,0,1 ≡ (0,1), and ek,l,0 : (x,y) 7→
(

lϕk(x)ϕl(y)√
k2+l2

,
kϕ−k(x)ϕ−l(y)√

k2+l2

)
for all k, l ∈ Z2 \{(0,0)}.

Let H ⊆ U be the closed subvector space of L2(λ(0,1)2 ;R2) with orthonormal basis
H= {e0,0,1}∪{ei, j,0 : i, j ∈ Z}.

In addition consider the eigenvalues of the perturbed Laplace operator ε0−∆:

λe0,0,1 = λe0,0,0 = ε0, λek,l,0 = ε0 +4π
2(k2 + l2), k, l ∈ Z.

Note that the operator ε0−∆ is a diagonal operator on the basis H with point spectrum
{λh : h ∈H}: for all v in the domain of (ε0−∆)

(ε0−∆)v = ∑
h∈H

λh〈v,h〉H .

Let ρ0,ρ be positive real numbers satisfying 1/2 < ρ0 < ρ < 1/2 + ε , γ ∈ (ρ,∞),
κ ≥ 0 and let H0, H1, Hρ be respectively the domains of the following fractional
powers of the operator (κ − ∆): (κ − ∆)γ , (κ − ∆)ρ and (κ − ∆)ρ0 . Therefore
‖h‖2

H1
= ∑v∈H(κ− ε0 +λv)

2ρ〈h,v〉2 for every h∈H1. For simplicity we take here κ = ε0,
hence

‖h‖2
H1

= ∑
v∈H

λ
2ρ
v 〈h,v〉2

for every h ∈ H1.
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3 The explicit full-discrete non-linearity-truncated accelerated
exponential Euler-type scheme

In this section we will need the following notation: For every n ∈ N, let Hn be the finite
dimensional subspace of H spanned by

Hn
..= {e0,0,1}∪{ek,l,0 : k, l ∈ Z and k2 + l2 < n2} ⊆H

and Pn : H→ H the projection on Hn

Pn(u) ..= ∑
h∈Hn

〈h,u〉H h, u ∈ H.

3.1 Step-by-step construction

The DTAEE scheme approximating in the strong sense the mild solution (8.3) can be con-
structed as follows in several steps. First, one considers a spectral Galerkin approxima-

tion (see [2]) combined with truncation of the non-linearity, obtaining the approximation
scheme (8.4) below. Then one discretises the time, obtaining (8.5) below, and finally one
notices that the quantities can be computed explicitly with the known square integrable
functions belonging to the orthonormal basis H.

Let (hm)m∈N be a sequence of positive real numbers converging to 0 and let Pn be
projections on increasing finite dimensional spaces Hn ⊆H1 specified in Section 2.2. Let
On,X n : [0,T ]×Ω→Hn be the stochastic processes satisfying for all n ∈ N, t ∈ [0,T ]:

On
t =

∫ t

0
Pne(t−s)A(−A)−1/2−ε dWs +PnetA

ξ

X n
t = On

t +
∫ t

0
Pne(t−s)A

1{
‖X n
bschn

‖H1+‖O
n
bschn

‖H1≤h−χ
n

}(−∇X n
bschn
·X n
bschn

)ds
(8.4)

P-a.s., where χ ∈
(
0,min

{ 1−ρ0
5 , ρ−ρ0

3

})
, btchn

..=max
(
(−∞, t]∩{0,hn,−hn,2hn,−2hn, . . .}

)
denotes the so-called round-ground function.

The latter scheme is not full-discrete, but the fact that we know precisely how the
operator acts on elements of (the orthonormal basisH of) H yields its fully explicit space-
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time discrete version. We call it DTAEE scheme and it is derived by taking for all n ∈ N
the sequence

(
X n

(k+1)hn

)
k∈(−1,T/hn−1)∩N

and making explicit the projections Pn.

Let us first consider the time discretisation: For all n = 1,2, . . ., k ∈ (−1,T/hn−1)∩N
let Xn

0
..= On

0
..= Pnξ = ∑v∈Hn〈v,ξ 〉v and

On
(k+1)hn

= ehnAOn
khn

+
∫ (k+1)hn

khn

Pne((k+1)hn−s)A(−A)−1/2−ε dWs,

Xn
(k+1)hn

= ehnAXn
khn

+On
(k+1)hn

− ehnAOn
khn

+
∫ (k+1)hn

khn

Pne((k+1)hn−s)A
1{
‖Xn

khn
‖H1+‖O

n
khn
‖H1≤h−χ

n

}(−∇Xn
khn
·Xn

khn
)ds.

(8.5)

We can explicate further the approximation scheme in (8.5) for two-dimensional
stochastic Navier-Stokes equations. Indeed, one of the main features of the scheme (8.4)
is that it does not discretise the semigroup and yet a discretisation of the noise part is al-
lowed in the following sense. Let us consider (β v)v∈H a sequence of independent standard
Brownian motions such that the cylindrical Wiener process can be seen as W = ∑v∈Hβ vv.
Let us rewrite the approximation of the noise in (8.5) as

On
(k+1)hn

= ∑
v∈Hn

(
e−hnλv〈On

khn
,v〉+

∫ (k+1)hn

khn

e−((k+1)hn−s)λv(λv)
−1/2−ε dβ

v
s

)
v. (8.6)

For every v∈H it holds that
∫ (k+1)hn

khn

e−((k+1)hn−s)λv(λv)
−1/2−ε dβ

v
s is independent of On

khn

and is distributed as a Gaussian random variable with mean 0 and variance 1−e−2hnλv

2λ
2(1+ε)
v

.

The other term can be explicated as follows: Xn
(k+1)hn

= ∑v∈Hn〈X
n
(k+1)hn

,v〉v with

〈Xn
(k+1)hn

,v〉= e−hnλv〈Xn
khn

,v〉+ 〈On
(k+1)hn

,v〉− e−hnλv〈On
khn

,v〉+ 1− e−hnλv

λv
×

×1{√
∑w∈Hn λ

2ρ
w 〈Xn

khn
,w〉2+

√
∑w∈Hn λ

2ρ
w 〈On

khn
,w〉2≤h−χ

n

}〈−∇Xn
khn
·Xn

khn
,v〉. (8.7)

Note that this is a recursive formulation of the approximation scheme.

Finally note that the scheme in (8.4) and the derived discretised one are adaptations to
the specific stochastic Navier-Stokes equation (8.2) of a type of approximation method
which have been proven to converge strongly to a large class of infinite-dimensional



3 The accelerated exponential Euler-type scheme 93

stochastic evolution equations with non-globally monotone non-linearity (see e. g. Theo-
rem 3.5 in [10] and references therein). The specific result in the case of (8.2) is discussed
in Section 3.2.

3.2 Properties of the approximation scheme

In this section we analyse the properties of the 2-D stochastic Navier-Stokes equations
we consider and the DTAEE approximation scheme which yield the following strong
convergence result:

Theorem 8.1 (cf. [11]) Let X the mild solution in (8.3), and X n, n ∈N as in (8.4). Then
for all p≥ 1

limsup
n→∞

sup
s∈[0,T ]

E
[
‖Xs−X n

s ‖
p
H

]
= 0.

This is strong convergence uniform in time. From the statement of the result it is
clear that the same convergence holds with the (DTAEE) more explicit version of the
scheme (8.5): take Xn

t to be the process with continuous sample paths obtained, e. g., by
interpolation from Xn

hnk (given in recursive formulation in Equations (8.6)–(8.7)). Indeed,
the approximation processes have continuous sample paths which coincide a.s. on a dense
countable subset of [0,T ].

One of the difficulties in proving the strong convergence follows from the fact that
the non-linearity F , although F ∈C(Hρ ,H), is not globally Lipschitz. Indeed, it is only
Lipschitz on bounded sets: there exists a non-negative real number θ ∈ [0,∞) such that
for all v,w ∈ Hρ it holds that

‖F(v)−F(w)‖H ≤ θ
(
1+‖v‖Hρ

+‖w‖Hρ

)
‖v−w‖Hρ

< ∞

(see [11] for the proof). However note that, roughly speaking, the approximation scheme
controls the Lipschitz constant by truncating the non-linearity. In other words, the trun-
cation prevents strong divergence (see (8.8) below).

The lack of global Lipschitzianity for the non-linear functional F has been compen-
sated by the fact that the non-linearity satisfies the following coercivity-type condition.
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For all δ > 0, v,w ∈ Hρ it holds that

|〈v,F(v+w)〉H | ≤
(

3
2

ε0 +
1

2δ

[
supx∈(0,1)2 |w(x)|22

])
‖v‖2

H +2δ‖(ε0−∆)
1/2v‖2

H

+

(
ε0

2
[
supx∈(0,1)2 |w(x)|22

]
+

1
2δ

[
supx∈(0,1)2 |w(x)|42

])
,

where v,w are the continuous functions belonging to the equivalence class v,w ∈ Hρ

which exist by Sobolev’s embedding. (See [11] for the proof).

The coercivity-type condition, combined with the Lipschitzianity on bounded sets
above and some Gronwall-type argument, yields a-priori estimates for the approximation
scheme involving a transformation of the noise part On, say On (see e. g. [10, Corol-
lary 2.6]).

To prove the strong convergence based on the mentioned a-priori bounds for ‖X n
t ‖H ,

one needs to prove suitable exponential integrability properties of the process On, related
to the uniform norms involved in the coercivity-type condition. More precisely, given p>

4, there exists η ∈ [0,∞) such thatOn
t =

∫ t
0 Pn e(t−s)(A−η) (−A)−1/2−ε dWs+Pnet(A−η)ξ and

sup
m∈N

E

[∫ T

0
exp

(∫ T

s
p
(

sup
x∈(0,1)2

|Om
buchm

(x)|2
)

du

)
· max

{
1, sup

x∈(0,1)2

∣∣Om
bschm

(x)
∣∣2p

,

∥∥Om
s
∥∥p

H ,
∫ T

0

∥∥Om
u +Pm

(
eu(A−η)− euA)ξ

∥∥6p
Hρ

du
}

ds
]
< ∞.

The proof of this statement (we refer to [11]) is quite technical but kind of natural since
the noise is a Gaussian process. Indeed one of the main tools is Fernique’s theorem.

The a-priori bounds are then used to prove that the approximation scheme does not
explode:

limsup
n→∞

sup
t∈[0,T ]

E
[
‖X n

t ‖
p
H

]
< ∞, p≥ 1. (8.8)

Once obtained these uniform moments bounds for the approximation, it suffices to prove
the convergence in probability uniformly in time of X n towards the mild solution X

in (8.3) to obtain the desired strong convergence uniform in time (see [9, Proposition
4.5]).

The coercivity-type condition satisfied by the drift is not required in the proof of the
convergence in probability uniformly in time (based e. g. on [9, Proposition 3.3]). Instead,
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local Lipschitzianity and the following convergence for the noise are relevant. It can be
easily shown that supt∈[0,T ]E

[
‖Ot −On

t ‖
p
Hρ

]
converges to 0 for all p≥ 1 with an explicit

polynomial rate, where the process O denotes the sum of the initial condition and the
stochastic convolution in (8.3). This is not surprising either because the approximation of
the noise term is essentially Galerkin approximation.

We examined here the properties of the approximation scheme (8.4) relevant for the
strong convergence uniform in time towards the mild solution (8.3) of two-dimensional
Navier-Stokes equations (8.2). To conclude, we would like to mention that the rate of
convergence for this approximation scheme has not been proven yet. Recent results based
on some stochastic non-linear integration-by-parts formulas seem promising, but have not
yet been exploited in the case of 2-D Navier-Stokes equations.
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When bounded chaos
becomes unbounded

Alexander Lykov* and Vadim Malyshev†

Abstract. We consider infinite particle systems with deterministic

Newtonian dynamics. Assuming that initial conditions are uniformly

bounded, we find examples and general conditions when coordinates

and/or velocities remain bounded and when they can grow infinitely in

time.

1 Introduction

Here we present our first results in the field which could be called non-equilibrium deter-
ministic mechanics of infinite systems. We hope that this field can provide a lot of models
describing some qualitative phenomena in physical and biological systems. Obviously,
the main interesting interaction for such models is Coulomb interaction. However, it re-
mains difficult and as of yet unknown. That is why we use quadratic interaction, which
is natural when each particle spends all its time in some potential well. Assuming that
initial conditions are uniformly bounded, we find examples and general conditions when
the coordinates and velocities remain bounded and when they can grow infinitely in time.
Our conclusion is: when the initial deviations from the equilibrium strongly fluctuate,

*Faculty of Mechanics and Mathematics, Lomonosov Moscow State University; lekslyk@yandex.ru
†Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
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then they grow infinitely in time, and when they are sufficiently smooth, they stay uni-
formly bounded forever. However, we could not get necessary and sufficient conditions
for this.

We consider here a countable system of point particles with unit masses on R with
coordinates {xk}k∈Z and velocities {vk}k∈Z. We define a formal energy (hamiltonian) by
the following formula:

H = ∑
k∈Z

v2
k

2
+

ω2
0

2 ∑
k∈Z

(
xk(t)− ka

)2
+

ω2
1

2 ∑
k∈Z

(
xk(t)− xk−1(t)−a

)2
,

with parameters a> 0, ω1 > 0, ω0> 0. Particle dynamics is defined by the infinite system
of ODE:

ẍk(t) =−
∂H
∂xk

=−ω
2
0
(
xk(t)− ka

)
+ω

2
1
(
xk+1(t)− xk(t)−a

)
−ω

2
1
(
xk(t)− xk−1(t)−a

)
, k ∈ Z (9.1)

with initial conditions xk(0), vk(0). The equilibrium state (minimum of the energy) is

xk = ka, vk = 0, k ∈ Z.

This means that if the initial condition is the equilibrium state, then the system will not
evolve, i.e. xk(t) = ka, vk(t) = 0 for all t > 0. Let us introduce the deviation variables:

qk(t) = xk− ka, pk(t) = q̇k(t) = vk(t).

It is easy to see that qk(t) satisfies the following system of ODE:

q̈k =−ω
2
0 qk +ω

2
1 (qk+1−qk)−ω

2
1 (qk−qk−1), k ∈ Z. (9.2)

The system of coupled harmonic oscillators (9.2) and its generalisations is a classical
object in mathematical physics. The existence of a solution and its ergodic properties
were studied in [12]. There has been an extensive research on convergence to equilibrium
for an infinite harmonic chain coupled with a heat bath ([1, 7, 15, 2]). The property of
uniform boundedness of particle coordinates (by time t and index k) is crucial in some
applications. For instance, uniform boundedness in finite harmonic chains allows to de-
rive Euler equations and Chaplygin gas without any stochastics (see in [13]). Uniform
boundedness of a one-side non-symmetrical harmonic chain plays an important role in
some traffic flow models [14]. We should also cite some physical papers [11, 8, 9]. The
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most closely related works to our results are [5, 6], where the author studied weighted l2
norms of infinite harmonic chains, whereas our main interest is a max-norm.

Remark. Proofs of all forthcoming theorems will appear in the second issue of the new
journal “Structure of Mathematical Physics”, 2020, No. 2.

2 l2 initial conditions

Introduce the following function spaces on Z:

l∞ ..= l∞(Z) = { f : Z→ R : sup
k∈Z
| f (k)|< ∞}, | f |∞ = sup

k∈Z
| f (k)|,

l2 ..= l2(Z) = { f : Z→ R : ∑
k∈Z
| f (k)|2 < ∞}, | f |2 =

√
∑
k∈Z
| f (k)|2.

If q(0), p(0)∈ l2(Z), then there exists unique solution q(t), p(t) of (9.2) which belongs
to l2(Z), i.e. q(t), p(t) ∈ l2(Z) for all t > 0. This assertion is well known (see [12, 3, 4]),
and easily follows from the boundedness of the operator W on l2(Z):

(Wq)k =−ω
2
0 qk +ω

2
1 (qk+1−qk)−ω

2
1 (qk−qk−1).

The first question of our interest is uniform boundedness (in k and time t > 0) of |qk(t)|.
Define the max-norm of qk(t), M(t) ..= supk |qk(t)|. We shall say that the system has the
property of uniform boundedness, if supt>0 M(t)< ∞.

Theorem 9.1 The following assertions hold:

1) If ω0 > 0, then supt>0 M(t)< ∞.

2) If ω0 = 0,

then we have several results:

a) For all t > 0 the following inequality holds:

M(t)6
2
√

ω1
‖p(0)‖2

√
t +‖q(0)‖2 (9.3)

b) Suppose that ∑k 6=0 |pk(0)| ln |k|< ∞. Then there is constant c > 0 such that for all
t > 0:

M(t)6

√
2

ω1π
|P| ln(t)+‖q(0)‖2 + c, P = ∑

k
pk(0)
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c) For all δ > 1/2, there exists at least one initial condition q(0) = 0, p(0) ∈ l2(Z)
such that

lim
t→∞

q0(t)√
t

lnδ t = Γ(δ )> 0,

where Γ is the gamma function.

From case 9.1 a) we see that if ω0 = 0 and the initial velocities of the particles are all
zero, then |qk(t)| are uniformly bounded. The assertions 9.1 c) is an attempt to answer
the question on the accuracy in the basic inequality (9.3) from 9.1 a) with respect to the
rate of growth in t.

Next we will formulate theorems concerning asymptotic behavior of qk(t) in several
cases. Define Fourier transform of the sequence u = {uk} ∈ l2(Z), û(λ ) = ∑k ukeikλ ,
λ ∈ R. Note that û( ·) ∈ L2([0,2π]), i.e.

∫ 2π

0 |û(λ )|2 dλ = 2π ∑k |uk|2 < ∞.

Further on we will use the Fourier transform of the initial conditions Q(λ ) = q̂(0)(λ ),
P(λ ) = p̂(0)(λ ).

For complex valued functions f and g on R and a constant c ∈ C we will write f (x)�
c+ g(x)√

x , if f (x) = c+ g(x)√
x + ¯̄o

(
1√
x

)
as x→ ∞.

Theorem 9.2 (ω0 > 0) Suppose that ω0 > 0 and Q,P are of the class Cn(R) for some
n> 2. Then

1) For any fixed t > 0 we have qk(t) = O(k−n).

2) For any fixed k ∈ Z and t→ ∞ we have the following asymptotic formula:

qk(t)�
1√
t

(
C1 cos

(
ω1(t)

)
+S1 sin

(
ω1(t)

)
+(−1)kC2 cos

(
ω2(t)

)
+(−1)kS2 sin

(
ω2(t)

))
,

where

C1 =
1

ω1

√
ω0

2π
Q(0), S1 =

1
ω1ω0

√
ω0

2π
P(0)

C2 =
1

ω1

√
ω ′0
2π

Q(π), S2 =
1

ω1ω ′0

√
ω ′0
2π

P(π),

ω1(t) = tω0 +
π

4
, ω2(t) = tω ′0−

π

4
, ω

′
0 =

√
ω2

0 +4ω2
1 .

3) Let t = β |k|, β > 0 and k→ ∞. Put γ(β ) = β 2ω2
1 −1−βω0.
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a) If γ(β )> 0, then

qk(t)�
1√
|k|

(
F+

k [Q]− iF−
k

[
P(λ )
ω(λ )

])
,

where for a complex valued function g(λ ) defined on the real line we intro-
duce the following functionals:

F±
k [g] = c+

(
g(µ+)eiω+(k)±g(−µ+)e−iω+(k)

)
+ c−

(
g(µ−)eiω−(k)±g(−µ−)e−iω−(k)

)
ω±(k) = k

(
µ±+βω(µ±)

)
± π

4
sign(k), c± =

1
2

√
βω(µ±)

2π∆
,

µ± =−arccos
1

β 2ω2
1
(1±∆),

∆ =
√

(β 2ω2
1 −1)2−β 2ω2

0 , ω(λ ) =
√

ω2
0 +2ω2

1 (1− cosλ ).

b) If γ(β ) = 0 and n> 3, then qk(t) = O(k−3).

c) If γ(β )< 0 then qk(t) = O(k−n) for n defined above.

Recall that a sufficient condition on z ∈ l2(Z) for ẑ ∈Cn(R) is ∑k |k|n|zk|< ∞. Thus if
the following series converge for some n> 2:

∑
k
|k|n|qk(0)|< ∞ and ∑

k
|k|n|pk(0)|< ∞,

then Theorem 9.2 holds.

Theorem 9.3 (ω0 = 0) Suppose that ω0 = 0 and Q, P ∈Cn(R), n> 6 then

1) For any fixed t > 0 we have qk(t) = O(k−n).

2) For any fixed k ∈ Z and t→ ∞ one has:

qk(t)�
P(0)
2ω1

+
(−1)k
√

t

(
C cos

(
2ω1t− π

4

)
+S sin

(
2ω1t− π

4

))
,

where
C =

1
√

πω1
Q(π), S =

1
2ω1
√

πω1
P(π).
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3 l∞ initial conditions

Our next concern will be the uniform boundedness in k and t of the solution. Denote
p(t) = q̇(t). Further on we always assume that q(0) ∈ l∞, p(0) = 0, that is supk |qk(0)|<
∞, pk(0) = 0. The following result follows from Theorem 9.1.

Proposition 9.4 Let q(0) ∈ l2(Z), p(0) = 0, then |q(t)|∞ 6 |q(0)|2.

Thus the solution will be uniformly bounded. The situation drastically changes if we
consider l∞ initial conditions. Namely, the following theorem holds.

Theorem 9.5
1) Let q(0) ∈ l∞(Z), p(0) = 0, then for any t > 0:

|q(t)|∞ 6
(√

2γω1t +2
)
|q(0)|∞,

where γ > 0 is the root of the equation 1
γ
e

1
γ = 1

e .

2) For any k∈Z there exists a constant c> 0, initial conditions q(0)∈ l∞(Z), p(0)= 0
and increasing sequence of time moments t1 < t2 < .. ., tn→∞ as n→∞ such that

qk(t2n)> c
√

t2n, qk(t2n+1)6−c
√

t2n+1, n = 1,2, . . . .

Corollary 9.6 For any k ∈ Z there is initial condition q(0) ∈ l∞(Z), p(0) = 0 such that

limsup
t→∞

qk(t)√
t

= c1 > 0, liminf
t→∞

qk(t)√
t

= c2 < 0.

for some constants c1, c2 depending on k.

Define the following operator on l∞,

(V q)k =−ω
2
1 (∆q)k =−ω

2
1 (qk+1−2qk +qk−1).

It is clear that |V |∞ 6 4ω2
1 . Thus the following operator C(t) is also bounded in l∞:

C(t)+ cos
(
t
√

V
)
=

∞

∑
k=0

(−1)k t2kV k

(2k)!
. (9.4)

Theorem 9.7 There exist constants a,b > 0 such that for all t > 0 the following inequal-
ities hold:

a
√

t +16
∣∣∣cos

(
t
√

V
)∣∣∣

∞

6 b
√

t +1
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We will need some definitions. For sequence q ∈ l∞ define new sequence:

q∆ =−∆q, q∆
k = 2qk−qk+1−qk−1, k ∈ Z.

Let l∆⊂ l∞(Z) be the set of sequences q∈ l∞(Z), for which the following conditions hold:

1) q∆ ∈ l2(Z). Then the Fourier transform of q∆, Q∆(λ ) = ∑k eikλ q∆
k belongs to

L2([0,2π]).

2) For some real number A ∈ R the function

φ(λ ) =
1

sin λ

2

(
Q∆(λ )

sin λ

2

− iA

)
(9.5)

belongs to L1[0,π], where i2 =−1, that is
∫

π

0 |φ(λ )|dλ < ∞.

Then l∆ becomes a linear vector space over R.

Theorem 9.8 Assume that q(0) ∈ l∆, p(0) = 0, then the solution {qk(t)} is uniformly
bounded that is supt>0 supk∈Z |qk(t)|< ∞.

Theorem 9.9 Assume that q(0) ∈ l∆, p(0) = 0, then there exists ν ∈ R such that for any
k ∈ Z the following equality holds: limt→∞ qk(t) = ν .

Relation of the number ν with the limit qk(0) at infinity is given in Theorem 9.11
below.

We now give examples of sequences q ∈ l∆.

1) Sign sequence. Put

qk = sign(k) =


1, k > 0,

0, k = 0,

−1, k < 0

.

It is clear that q∆
k = 0 for |k| > 1. Then q∆

1 = 1, q∆
−1 = −1, q∆

0 = 0. That is why
Q∆(λ ) =

(
eiλ − e−iλ

)
= 2isin(λ ). Put A = 4 in (9.5). Then

φ(λ ) =
1

sin λ

2

(
2sin(λ )

sin λ

2

−4

)
=

4

sin λ

2

(
cos

λ

2
−1
)
.

It is clear that φ(λ ) ∈ L1[0,π]. Thus, sign(k) ∈ l∆. See Figure 9.1 for the solution
with intial condition qk(0) = sign(k), p(0) = 0. and ω = 1/2: Both particles, (with
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Figure 9.1: Solution with initial condition qk(0) = sign(k), p(0) = 0

numbers 10 and 20), until t� 2n, oscillate around point 1 with exponentially small
amplitude. However, such fluctuations are not visible on the picture

Then they quickly fall into a regime of relaxation oscillations around the equilib-
rium point. In such a case the solution is given by the formula:

qn(t) = J0(t)+2
n−1

∑
k=1

J2k(t)+ J2n(t) = 1+ J2n(t)−2
∞

∑
k=2n

J2k(t), n> 1, (9.6)

where
Jn(t) =

1
π

∫
π

0
cos(nx− t sinx)dx, t > 0

is the Bessel function of first kind. In Equality (9.6) we used the known formula
([10]):

2
∞

∑
k=1

J2k(t)+ J0(t) = 1.

2) Now consider as example the in some sense opposite to the Sign sequence:

qk =

1, k 6= 0

b, k = 0
,
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for some b ∈ R. Then

Q∆(λ ) = eiλ (2−b−1)+2b−2+ e−iλ (2−b−1)

= 2(b−1)(1− cosλ ) = 4(b−1)sin2 λ

2
.

Put A = 0 in (9.5). Then φ(λ ) = 4(b−1). Again we see that φ(λ ) ∈ L1[0,π] and
then qk ∈ l∆.

3) Consider the sequence qk = (−1)k. Then (∆q)k = (−1)k(−1− 1− 2) = −4qk.
And thus, q /∈ l∆. Nevertheless one can prove the uniform boundedness of solution
with such initial conditions. It is known that q(t) = cos

(
t
√

V
)
q(0) and V =−ω2

1 ∆.
Thus

q(t) =
∞

∑
k=0

(−1)k t2kV k

(2k)!
q =

∞

∑
k=0

(−1)k (4ω2
1 )

kt2k

(2k)!
q = cos(2ω1t)q.

Uniform boundedness of q(t) follows.

Theorem 9.10 Assume that

∑
k 6=0
|q∆

k | · |k| ln |k|< ∞, (9.7)

then q ∈ l∆.

As an example, consider the sequence

qk =
sin
(
ln ln |k|

)
ln2(|k|) if |k|> 1

and qk = 0 for |k|6 1. It is not difficult to see that

q∆
k = O

(
1

k2 ln3 |k|

)
.

Thus the conditions of (9.7) hold, and then q ∈ l∆.

Theorem 9.11 Assume that q ∈ l∆, then there exist finite limits

lim
k→+∞

qk = L+, lim
k→−∞

qk = L−

and the following equalities hold as well:

L+−L− =
A
2
,

L++L−
2

= ν ,

where number A is defined in (9.5), and ν was introduced in Theorem 9.9.
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On direct and inverse
problems in the description

of lattice random fields
Linda Khachatryan* and Boris Nahapetian†

Abstract. Various systems of finite-dimensional distributions parame-

terised by boundary conditions are considered. For such systems so-

lutions to direct and inverse problems of description of lattice random

fields are given.

1 Introduction

Let P be a random field on the integer lattice Zd (d ≥ 1) with state space X , that is, a
probability measure on the σ -algebra generated by all cylinder sets of XZ

d
.

Since it is quite difficult to work directly with the probability measure P defined on the
infinite product of state space X (often called infinite-volume measure), its study usually
reduced to the analysis of a suitable system QP of probability distributions generated by P

and defined on finite products of X . The natural requirement for such a system QP is that
QP must uniquely determine (restore) the random field P, i. e., any random field P′ such

*Institute of Mathematics, National Academy of Science, Armenia; linda@instmath.sci.am
†Institute of Mathematics, National Academy of Science, Armenia; nahapet@instmath.sci.am
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that QP′ = QP must coincide with P. In this case it is necessary to note that the random
field P was restored by the system QP, we will use the following notation: PQP .

For a given random field P, the problem of the existence of a system QP for which
PQP = P we call the direct problem in the description of random fields. We will say that a
system QP is a solution to the direct problem for a given random field P if PQP = P. Note
that for a given random field there may exist various solutions to the direct problem.

If the direct problem is solved, the following question naturally arises: does the system
QP possess such specific properties (consistency conditions) which allow restoring the
random field P without taking into account the fact that the elements of QP are generated
by the random field P? In the case such consistency conditions are found, it is quite
possible that for any system Q endowed by these properties, there exists a random field P

whose system of finite-dimensional distributions QP coincides with Q.

For a given system Q of finite-dimensional distributions, the problem of the existence
of a random field P for which QP = Q we call the inverse problem in the description of
random fields. We will say that a random field P is a solution to the inverse problem for
a given system Q if QP = Q. For a given system Q, any solution to the inverse problem
will be denoted by PQ, so that QPQ = Q.

By solving the direct problem, we obtain the possibility to define classes of random
fields and to study their main properties; while the solution to the inverse problem makes
it possible to construct models of random fields with required properties.

Historically, Kolmogorov was the first one who considered both the direct and the
inverse problems of description of random processes (see [7], originally published in
German in 1933). His subject of consideration was a consistent system of unconditional
finite-dimensional distributions. This system, which uniquely determines a random field,
is a very general one, and specific classes of random processes are defined by the cor-
responding restrictions on its elements. For example, by corresponding restrictions on
Kolmogorov’s system, classes of Gaussian processes, processes with independent incre-
ments as well as stationary processes are defined.

Over time, it became clear that in many cases it is convenient to impose restrictions not
only on unconditional distributions but also on their relations, that is, on conditional dis-
tributions. This type of restrictions leads to other important classes of random processes,
namely Markov processes, Gibbs random fields, martingales, etc.
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It should be noted that, generally speaking, an inverse problem may have more than
one solution, i. e., be incorrect. If for a given system Q the inverse problem of description
of random fields is correct (has a unique solution), we will say that the system Q specifies

(uniquely defines) a random field. Note, that Kolmogorov’s system characterises a ran-
dom field. However, in some cases incorrect problems lead to very interesting and useful
results. For example, in the Dobrushin’s theory of description of Gibbs random fields, the
non-correctness of the inverse problem (non-uniqueness of its solution) is interpreted as
the presence of a phase transition in the model under study (see the seminal paper [6]).

In the present work we restrict ourselves to the case of positive lattice random fields
with finite state space X . We consider various systems of conditional distributions gen-
erated by a random field as well as autonomously defined consistent systems of finite-
dimensional distributions parametrised by boundary conditions. For such objects solu-
tions to the direct and the inverse problems in the description of random fields are given.

2 Preliminaries

Let S ⊂ Zd and let W (S) = {V ⊂ S,0 < |V | < ∞} be the set of all (non-empty) finite
subsets of S. For S = Zd we use a simpler notation W . In some cases the braces in the
notation of one-point sets {t}, t ∈ Zd , are omitted. For any function f (Λ), Λ ∈W (S), the
notation lim

Λ↑S
f (Λ) = a will mean that for any increasing sequence {Λn}n≥1 of finite sets

converging to S (that is, Λn ∈W (S), Λn ⊂ Λn+1 and
∞⋃

n=1
Λn = S), we have lim

n→∞
f (Λn) = a.

Denote by XS = {(xt , t ∈ S)}, xt ∈X , the set of all functions (configurations) on S taking
values in X . If S = /0, we assume X /0 = {o}, where o is the empty configuration. For any
S,T ⊂ Zd such that S∩T = /0 and any x ∈ XS, y ∈ XT we denote xy the concatenation of
x and y defined as the configuration on S∪T equal to x on S and to y on T . If T ⊂ S, by
xT we denote the restriction of the configuration x ∈ XS on T .

Let P be a random field, that is, a probability measure on XZ
d
. We denote by PV the

restriction of P on XV , i. e., PV (A) =
(
P
)

V (A) = P
(
{x ∈ XZ

d
: xV ∈ A}

)
, where A⊂ XV ,

V ∈W . A random field P is called positive if PV (x)> 0 for all x ∈ XV and V ∈W .

For a positive random field P, its conditional probability Qz
V on XV under finite con-

dition z ∈ XS, S ∈W (Zd\V ), is defined as Qz
V (x) = PV∪S(xz)

/
PS(z), x ∈ XV , V ∈W .

In the case of infinite boundary condition z ∈ XS, S ⊂ Zd\V , S /∈ W (Zd\V ), we put
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Qz
V (x) = lim

Λ↑S
QzΛ

V (x), x ∈ XV , V ∈W , where the limit exists for almost all (with respect to

P) configurations z.

3 Kolmogorov’s system

In [7] Kolmogorov showed that any random field P is determined by its system of finite-
dimensional unconditional distributions KP = {PV ,V ∈W}, and thus KP is a solution to
the direct problem.

Among the properties of the restoring system KP, Kolmogorov singled out the follow-
ing one as a consistency condition: for all V, I ∈W , V ∩ I = /0 and x ∈ XV

∑
y∈X I

PV∪I(xy) = PV (x). (10.1)

He proved that the system K = {pV ,V ∈W} of probability distributions pV on XV , V ∈W ,
whose elements are consistent in the sense (10.1), characterises a random field PK , i. e.,
there exists a unique solution to the inverse problem for the system K.

4 Systems of probability distributions parameterised by
boundary conditions

Below we examine both the direct and the inverse problems for various consistent systems
of finite-dimensional distributions parameterised by boundary conditions.

Note that if a system Q defines a random field PQ then the system QPQ (which coincides
with Q) is a solution to the direct problem for the random field PQ. Thus, further, we will
mainly focus on the inverse problem.

4.1 Conditional distribution of a random field

In this section we consider the widest system of conditional probability distributions gen-
erated by a random field.
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For a random field P, the system QP = {Qz
V ,z ∈ XS, /0 6= S ⊂ Zd\V,V ∈W} of con-

ditional probabilities Qz
V on XV under boundary conditions z outside V , V ∈W , we call

conditional distribution of the random field P.

Any random field P is restored by its conditional distribution QP. Thus, the conditional
distribution QP of a random field P is a solution to the direct problem. Now let us consider
the inverse problem.

We call a set Q = {qz
V ,z ∈ XS, /0 6= S ⊂ Zd\V,V ∈W} of probability distributions qz

V

on XV parametrised by boundary conditions z outside V , V ∈W , (general) specification

if its elements satisfy the following consistency conditions:

1. for any disjoint sets V, I ∈W , /0 6= S⊂ Zd\(V ∪ I) and x ∈ XV , y ∈ X I , z ∈ XS

qz
V∪I(xy) = qz

V (x)q
zx
I (y); (10.2)

2. for all V ∈W and /0 6= S⊂ Zd\V it holds

qz
V (x) = lim

Λ↑S
qzΛ

V (x), x ∈ XV , z ∈ XS. (10.3)

The consistency condition (10.2) in the case of infinite boundary conditions was con-
sidered for the first time in [1]. A specification Q will be called positive if all its elements
are strictly positive.

It is not difficult to see that for any random field P, the elements of its conditional distri-
bution QP satisfy the consistency conditions (10.2) and (10.3) for almost all (with respect
to P) boundary conditions. However, any random field has a version of its conditional
distribution QP being the specification.

For a given specification, there is a unique solution to the inverse problem of descrip-
tion of random fields.

Theorem 10.1 Let Q be a positive specification. Then there exists a unique random field
P such that its conditional distribution QP coincides with Q.

Proof. For any V ∈W put

pV (x) =
qy

V (x)
qx

I (y)

(
∑

α∈XV

qy
V (α)

qα
I (y)

)−1

, x ∈ XV , (10.4)
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where y ∈ X I , I ∈W (Zd\V ). Using (10.2) one can show that the function pV does not
depend on the choice of I and y. It is not difficult to see that the system of probability
distributions {pV ,V ∈W} is consistent in Kolmogorov’s sense and hence defines a unique
random field P such that KP = {pV ,V ∈W}. Moreover, it can be shown that QP = Q.

4.2 One-point conditional distribution

For a given random field P, the system Q1(P) = {Qz
t ,z ∈ XS, /0 6= S⊂ Zd\{t}, t ∈ Zd} we

call one-point conditional distribution of the random field P. Any random field P can be
restored by its one-point conditional distribution Q1(P).

We call a system Q1 = {qz
t ,z∈XS, /0 6= S⊂Zd\{t}, t ∈Zd} of one-point probability dis-

tributions parametrised by boundary conditions (general) 1-specification if its elements
satisfy the following consistency conditions:

1. for all t,s ∈ Zd , S⊂ Zd\{t,s} and x,u ∈ X{t}, y,v ∈ X{s}, z ∈ XS

qzy
t (x)qzx

s (v)q
zv
t (u)qzu

s (y) = qzx
s (y)q

zy
t (u)qzu

s (v)qzv
t (x); (10.5)

2. for all t ∈ Zd , /0 6= S⊂ Zd\{t} and x ∈ X{t}, z ∈ XS it holds qz
t (x) = lim

Λ↑S
qzΛ

t (x).

Theorem 10.2 Let Q1 be a positive 1-specification. Then there exists a unique random
field P such that its one-point conditional distribution Q1(P) coincides with Q1.

Proof. Let us construct a Kolmogorov’s system KQ1 = {pV ,V ∈W} as follows. For
V = {t}, t ∈ Zd , put

pt(x) =
qy

t (x)
qx

s(y)

(
∑

α∈X{t}

qy
t (α)

qα
s (y)

)−1

, x ∈ X{t}, (10.6)

where y ∈ X{s}, s ∈ Zd\{t}. Further, for any V ∈W , t ∈ Zd\V and x ∈ XV , z ∈ X{t} put

pt∪V (zx) = pt(z)qz
V (x),

qz
V (x) =

n

∏
j=1

q
z(xu) j
t j (xt j)

q
z(xu) j
t j (ut j)

·

 ∑
α∈XV

n

∏
j=1

q
z(αu) j
t j (αt j)

q
z(αu) j
t j (ut j)

−1

. (10.7)
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Here (xu) j = xt1 . . .xt j−1ut j+1 . . .utn for 1< j < n and (xu)1 = ut2 . . .utn , (xu)n = xt1 . . .xtn−1 ,
n = |V |, V = {t1, t2, . . . , tn} is some enumeration of the points of the set V , and u ∈ XV is
an arbitrary configuration. By virtue of (10.5), pt and qz

V are correctly defined. It is not
difficult to see that the elements of the system KQ1 are consistent in Kolmogorov’s sense,
and hence KQ1 defines a random field P such that KP = KQ1 . Moreover, one can verify
that Q1(P) = Q1.

4.3 Finite-conditional distribution of a random field

For a given random field P, the system Qfin(P) = {Qz
V ,z ∈ XS,S ∈W (Zd\V ),V ∈W},

introduced in [3], is called finite-conditional distribution of the random field P. The
system Qfin(P) restores the random field P.

We call a set Qfin = {qz
V ,z ∈ XS,S ∈W (Zd\V ),V ∈W} of probability distributions

parametrised by finite boundary conditions specification with finite boundary conditions

if its elements satisfy the following consistency condition: for any disjoint sets V, I,S∈W

and configurations x ∈ XV , y ∈ X I , z ∈ XS it holds qz
V∪I(xy) = qz

V (x)q
zx
I (y).

Theorem 10.3 Let Qfin be a positive specification with finite boundary conditions. Then
there exists a unique random field P such that Qfin(P) = Qfin.

The proof of this result is similar to the proof of Theorem 10.1.

4.4 One-point finite-conditional distribution of a random field

For a given random field P, the system Qfin
1 (P) = {Qz

t ,z ∈ XS,S ∈W (Zd\{t}), t ∈ Zd},
introduced in [4], is called one-point finite-conditional distribution of the random field P.
The system Qfin

1 (P) restores the random field P.
We call a set Qfin

1 = {qz
t ,z ∈ XS,S ∈W (Zd\{t}), t ∈ Zd} of one-point probability dis-

tributions parametrised by finite boundary conditions 1-specification with finite boundary

conditions if its elements satisfy the following consistency condition: for all t,s ∈ Zd ,
S ∈W

(
Zd\{t,s}

)
and x,u ∈ X{t}, y,v ∈ X{s}, z ∈ XS

qzy
t (x)qzx

s (v)q
zv
t (u)qzu

s (y) = qzx
s (y)q

zy
t (u)qzu

s (v)qzv
t (x). (10.8)

Theorem 10.4 Let Qfin
1 be a positive 1-specification with finite boundary conditions.

Then there exists a unique random field P such that Qfin
1 (P) = Qfin

1 .
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The proof of this result is similar to the proof of Theorem 10.2.
Note that in [4] the inverse problem for the system Qfin

1 was solved under the following
(equivalent to (10.8)) consistency conditions:

1. for all t,s ∈ Zd , S ∈W
(
Zd\{t,s}

)
and x ∈ X{t}, y ∈ X{s}, z ∈ XS

qz
t (x)q

zx
s (y) = qz

s(y)q
zy
t (x);

2. for all t,s ∈ Zd and x,u ∈ X{t}, y,v ∈ X{s}

qy
t (x)q

x
s(v)q

v
t (u)q

u
s (y) = qx

s(y)q
y
t (u)q

u
s (v)q

v
t (x).

4.5 Palm-type conditional distribution of a random field

For a given random field P, the system QΠ(P) =
{

Qz
V ,z ∈ X{t}, t ∈ Zd\V,V ∈W

}
of con-

ditional probabilities under condition at a point we call Palm-type conditional distribution

of the random field P. The system QΠ(P) restores the random field P.
We call a set QΠ =

{
qz

V ,z ∈ X{t}, t ∈ Zd\V,V ∈W
}

of probability distributions parametrised
by boundary condition at a point Palm specification if its elements satisfy the following
consistency conditions:

1. for any disjoint sets V, I ∈W and z ∈ X{t}, t ∈ Zd\(V ∪ I)

∑
y∈X I

qz
V∪I(xy) = qz

V (x), x ∈ XV ; (10.9)

2. for any t,s ∈ Zd , V ∈W (Zd\{t,s}) and x ∈ X{t}, y ∈ X{s}, u ∈ XV

qy
t (x)q

x
s∪V (yu) = qx

s(y)q
y
t∪V (xu). (10.10)

Theorem 10.5 Let QΠ be a positive Palm specification. Then there exists a unique ran-
dom field P such that QΠ(P) = QΠ.

Proof. For any V ∈W put pV (x)= pt(xt)q
xt
V\{t}(xV\{t}), x∈XV , t ∈V , where pt is defined

by (10.6). By virtue of (10.10), the probability distribution pV does not depend on the
choice of the point t ∈ V . According to (10.9), the system {pV ,V ∈W} is consistent
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in Kolmogorov sense, and hence there exists a unique random field P such that KP =

{pV ,V ∈W}. Moreover, it can be shown that QΠ(P) = QΠ.

4.6 Dobrushin’s conditional distribution of a random field

Among the conditional distributions of a random field P under infinite boundary condi-
tions, there is a system, introduced by Dobrushin in [5], which has a special place.

For a given random field P, the system QD(P) = {Qz
V ,z∈XZ

d\V ,V ∈W} of conditional
probabilities on XV under a boundary condition everywhere outside V , V ∈W , we call
Dobrushin’s conditional distribution of the random field P.

Generally speaking, Dobrushin’s system does not solve the direct problem, since
there may exist various random fields with the same Dobrushin’s conditional distribu-
tion (see [6]). However, there are random fields which can be restored by Dobrushin’s
conditional distributions (see Theorem 2 in [5]).

We call a set QD = {qz
V ,z∈ XZ

d\V ,V ∈W} of probability distributions parametrised by
infinite boundary conditions Dobrushin’s specification if its elements satisfy the follow-
ing consistency condition: for all disjoint sets V, I ∈W and x ∈ XV , y ∈ X I , z ∈ XZ

d\(V∪I)

qz
V∪I(xy) = qzx

I (y) ∑
v∈X I

qz
V∪I(xv).

For a given specification QD, Dobrushin in [5] presented a condition (quasilocality) un-
der which there exists a random field P such that QD(P) = QD. But there may exist more
than one random field whose conditional distribution QD(P) coincides with QD, i. e., for
Dobrushin’s specification the inverse problem is incorrect. However, there are conditions
under which such a random field is unique (see, for example, Theorem 2 in [5]).

4.7 One-point Dobrushin-type conditional distribution of a random field

For a given random field P, the system QD
1 (P) = {Q

z
t ,z∈ XZ

d\{t}, t ∈Zd} was considered
in [2]. We will call it one-point Dobrushin-type conditional distribution of the random

field P. The system QD
1 (P), generally speaking, does not solve the direct problem for the

random field P.
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We call a set QD
1 = {qz

t ,z ∈ XZ
d\{t}, t ∈ Zd} of one-point probability distributions

parametrised by infinite boundary conditions Dobrushin-type 1-specification if its el-
ements satisfy the following consistency condition: for all t,s ∈ Zd and x,u ∈ X{t},
y,v ∈ X{s}, z ∈ XZ

d\{t,s}

qzy
t (x)qzx

s (v)q
zv
t (u)qzu

s (y) = qzx
s (y)q

zy
t (u)qzu

s (v)qzv
t (x).

In [2] it was shown that for a given quasilocal Dobrushin-type 1-specification QD
1 there

exists a random field P such that QD
1 (P) = QD

1 ; the conditions of uniqueness of P are the
same as for QD.

Authors are grateful to S. Rœlly for useful remarks.
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The peak model for finite rank
supersingular perturbations

Rytis Juršėnas*

Abstract. We review the peak model for finite rank supersingular per-

turbations of a lower semibounded self-adjoint operator by comparing

the main aspects with the A-model. The exposition utilies the tech-

niques based on the notion of boundary triples.

1 Introduction

Given a densely defined symmetric operator in a Hilbert space, there always exists a self-
adjoint extension to a Hilbert space containing the initial one as a subspace. Adapting the
present principle to the symmetric operator which is essentially self-adjoint, non-trivial
extensions are constructed by extension-restriction procedure with respect to the triplet
extensions in scales of Hilbert spaces of an initially given self-adjoint operator. Having
found the Hilbert subspace in which the symmetric operator has non-trivial but finite
defect numbers, one extends that subspace by a suitable finite dimensional linear space,
and then considers triplet extensions restricted to the resultant space, which is equipped
with an appropriate metric.

*Vilnius University, Institute of Theoretical Physics and Astronomy, Saulėtekio ave. 3, LT-10257 Vilnius,
Lithuania; rytis.jursenas@tfai.vu.lt
The research is supported by the Research Council of Lithuania. The European Social Fund Grant No. 09.3.3-
LMT-K-712-13-0025.
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Depending on the inner structure of an additional linear space, and hence on the metric
of a resultant space, one deals with the triplet extensions restricted to either Pontryagin
or Hilbert space. Following [12], the Pontryagin space models are referred to as the
B-models, while those which admit both indefinite and non-negative metrics are called
A-models. The A- and B-models constitute the cascade models, since an additional finite-
dimensional linear space in these models contains singular elements of different order of
singularity, which therefore belong to different spaces from the scale. For the symmetric
operator with defect numbers (1,1) (in a subspace of an initial Hilbert space), the cascade
models are developed in [12, 13, 16, 7]; see also the references therein.

Due to the indefiniteness of the metric in the cascade models, the so-called peak model
was suggested in [18] as an alternative. The present model is purely Hilbert space model,
but it has its own limitations, simply because the model does not apply to all operators
(see the next paragraph for details).

In the present paper, we review the peak model for the restricted symmetric operator
with defect numbers (d,d), d ∈N, which is developed in [14]. In parallel, we remark the
key differences between the present model and the A-model. The results are presented
using the techniques from the theory of boundary triples [8, 11, 10, 9].

2 The peak model versus A-model

In this section we construct non-trivial realisations of a symmetric operator that is essen-
tially self-adjoint in the reference Hilbert space. The main results are the Krein-Naimark
resolvent formula (11.1) and the computed Weyl function (11.3).

2.1 Triplet adjoint

As is well-known, non-trivial realisations of a symmetric operator Lmin that is essentially
self-adjoint in the reference Hilbert space H0 are considered in an extended Hilbert space
by means of the compressions of their resolvents. Thus, given a self-adjoint operator L

in H0, let (Hn)n∈Z be the scale of Hilbert spaces [3, 1] associated with L. To simplify
the present exposition, the operator L is lower semibounded. The scalar product in Hn is
defined by 〈 · , · 〉n ..= 〈 · ,bn(L) · 〉0, where b0(L) ..= I and bm(L) ..= (L− z1) · · ·(L− zm) and
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b−m(L) ..= bm(L)−1 for m ∈ N. The real numbers z1, . . . ,zm from the resolvent set resL

are fixed and referred to as the model parameters.

Let Lmin ⊆ L be the symmetric restriction to Hm with defect numbers (d,d), and the
deficiency subspace spanned by the elements {Gσ (z) ∈ HmrHm+1}, z ∈ resL, with σ

ranging over an index set S of cardinality d ∈N. One considers the triplet adjoint Lmax of
Lmin for the Hilbert triple Hm ⊆H0 ⊆H−m. The operator Lmax in H−m extends L |H−m+2 to
the domain H−m+2uNz(Lmax) (direct sum), where the eigenspace Nz(Lmax) is the linear
span of the singular elements {gσ (z) ..= bm(L)Gσ (z) ∈ H−mrH−m+1}. These elements
are also represented as the generalised vectors gσ (z) = (L− z)−1ϕσ by means of linearly
independent singular functionals {ϕσ ∈ H−m−2rH−m−1}. The action of ϕσ on Hm+2 is
realised via the duality pairing 〈ϕσ , · 〉 in a usual way [2, Eq. (1.17)]. Because m ≥ 1,
rank-d perturbations of L are called supersingular [17]; this is an allusion to the heuristic
form L+∑σ ,σ ′∈S Cσσ ′ 〈ϕσ ′ , · 〉ϕσ with some matrix (Cσσ ′) in Cd . In what follows we
also use the vector notation 〈ϕ, · 〉 ..= (〈ϕσ , · 〉) : Hm+2→ Cd .

2.2 Intermediate space

To construct non-trivial realisations of Lmin, the space H−m in which Lmax is defined turns
out to be too large. Thus one defines the so-called intermediate space H , in the sense
that Hm ⊆H ⊆H−m, and considers the range restriction Amax to H of Lmax. As a linear
space, H is the direct sum of Hm and a md-dimensional linear space K⊆ H−m such that
K∩Hm−1 = {0}. Since K is in bijective correspondence with Cmd , each element k ∈ K

is uniquely determined by the vector d(k) ∈ Cmd . Depending on the inner structure of K,
the set H is made into either Hilbert or Pontryagin space by completing it with respect
to the metric

〈 f + k, f ′+ k′〉H ..= 〈 f , f ′〉m + 〈d(k),G d(k′)〉Cmd

for f , f ′ ∈ Hm and k,k′ ∈ K, and some Hermitian matrix G in Cmd , referred to as the
Gram matrix. For a suitable G , the operator Amax is the adjoint in H of a densely de-
fined, closed, symmetric, and simple operator Amin; hence one applies to Amin a standard
extension theory by means of Amin ⊆ AΘ ⊆ Amax, where a (closed) proper extension AΘ

is uniquely determined by a (closed) linear relation Θ in Cd . Let (Cd ,Γ0,Γ1) be an or-
dinary boundary triple (OBT) [11, Definition 7.11] for Amax = A∗min, let γ and M be the
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corresponding γ-field and the Weyl function; then the Krein-Naimark resolvent formula
for an extension AΘ defined on f ∈ domAmax such that (Γ0 f ,Γ1 f ) ∈Θ reads

(AΘ− z)−1 = (A0− z)−1 + γ(z)
(
Θ−M(z)

)−1
γ(z)∗ (11.1)

for z ∈ resAΘ ∩ resA0, where A0
..= A{0}×Cd is one of the two distinguished self-adjoint

extensions of Amin. From here one deduces the formula for the compression of the resol-
vent to Hm.

2.3 Gram matrix

In the cascade models, an Hermitian matrix G is initially chosen arbitrarily and the set
K is the linear span of the singular elements hα

..= b j(L)−1ϕσ ∈ H−m−2+2 jrH−m−1+2 j,
with α =(σ , j) ranging over S ×J, J ..= {1, . . . ,m}. However, the definition Amin

..=A∗max

requires in addition that G be invertible. Moreover, to make Amin symmetric, the com-
putation of the boundary form of Amax shows that G must satisfy a certain commutation
relation. For example, when d = 1 and z1 = . . . = zm, it must hold GM =M∗G with a
Hankel (anti-triangular) matrix M, i. e. the matrix with the entries M j j′

..= δ j j′z1+δ j+1, j′

( j ∈ Jr{m}, j′ ∈ J) and Mm j′
..= δ j′mz1; for m = 1 one puts M ..= z1. It follows in partic-

ular that, for m≥ 2, one cannot put G = G∗ ..=
(
〈hα ,hα ′〉−m

)
, because 〈hσ1,hσ1〉−m > 0

(this statement applies to d ∈ N; see also [15]).

In contrast, in the peak model, the origin of G is clear. Namely, the Gram matrix
G of the peak model is made of the entries Gαα ′

..= 〈gα ,gα ′〉−m, where gα
..= gσ (z j);

hence it is Hermitian and positive definite provided that z j 6= z j′ for j 6= j′. The set K
is defined as the linear span of the singular elements of the same order of singularity,
namely {gα ∈ H−mrH−m+1}. It follows that each k ∈ K is in bijective correspondence
with d(k) =

(
dα(k)

)
∈ Cmd via

k = ∑
α

dα(k)gα , dα(k) = ∑
α ′

[
G−1]

αα ′ 〈gα ′ ,k〉−m .

In particular, using that

bm(L)−1 = ∑
j

b′j(z j)
−1(L− z j)

−1, b′j( ·) ..= ∏
j′∈Jr{ j}

( · − z j′)
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and putting dσ j(k) = cσ b′j(z j)
−1 for some c= (cσ )∈Cd , one deduces that the set Kmin

..=

K∩Hm−2rHm−1 is the linear span of {bm(L)−1ϕσ}, and is referred to as the minimal
subset of K. An element k ∈ Kmin is thus of the form k = kmin(c), where

kmin(c) ..= ∑
σ

cσ bm(L)−1
ϕσ = ∑

α

[
G−1Gbc

]
α

gα .

The matrix Gb from Cd to Cmd is formed by the entries

[
Gb
]

ασ ′
..= ∑

j′
Gα,σ ′ j′ b

′
j′(z j′)

−1

and has the trivial kernel.

2.4 Symmetric operator in intermediate space

The maximal operator Amax in the peak model is then the operator in the Hilbert space H

which extends A0 to the domain domA0uNz(Amax) for z ∈ resA0 = resLr {z j | j ∈ J},
where the eigenspace of Amax coincides with that of Lmax (but for z∈ resA0). The minimal
operator Amin is made symmetric iff G is diagonal in j ∈ J, in which case Amax is closed
and equals Amax = A∗min (this is in contrast to the A-model, where Amax is automatically
closed by construction, provided that the Gram matrix of the model is invertible):

domAmin = { f # + k ∈ Hm+2uK | 〈ϕ, f #〉= G ∗b d(k)},

domAmax = domA0uNz(Amax) = Hm+2uNz(L∗min)uK

and

Amax
(

f # +Gz(c)+ k
)
= A0( f # + k)+ zGz(c)+ kmin(c), (11.2)

Gz(c) ..= ∑
σ

cσ Gσ (z), c = (cσ ) ∈ Cd , z ∈ resA0

where the self-adjoint operator A0 on domA0 = Hm+2uK is defined by

A0( f # + k) = L f # +∑
α

[
Zdd(k)

]
α

gα .

For brevity, Zd denotes the matrix direct sum of d diagonal matrices diag{z j; j ∈ J}.
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On one hand, the diagonality of G significantly simplifies the computations, but on the
other hand, the condition is not satisfied for some operators L with perturbations of class
H−m−2rH−m−1 with m≥ 2; see e. g. [15] for m = 2.

2.5 Weyl function

In the peak (resp. cascade) model, the Weyl function M is represented by the sum of a
Nevanlinna function associated with Lmin in Hm and the Krein Q-function associated with
the Gram matrix G (resp. the generalszed Nevanlinna function – due to the indefiniteness
of G – associated with the multiplication operator in a reproducing kernel Pontryagin
space [5, 4, 6]). More specifically, the γ-field and the Weyl function associated with the
OBT

Γ0( f # +Gz(c)+ k) ..= c, Γ1( f # +Gz(c)+ k) ..= 〈ϕ, f #〉+R(z)c−G ∗b d(k)

for Amax are given by

γ(z) = bm(z)−1bm(L)Gz( ·), M(z) = R(z)+QG (z) (11.3)

for z ∈ resA0. Here R is the Weyl function associated with the OBT for L∗min, which is
obtained from Γ ..= (Γ0,Γ1) by restriction to domL∗min = Hm+2uNz(L∗min). Note that the
γ-field associated with this OBT for L∗min is Gz(·). The Q-function associated with G is
the matrix in Cd whose entries are defined by

[
QG (z)

]
σσ ′

..= ∑
j

[
G ∗b
]

σ ,σ ′ j

(z j− z)b′j(z j)
= ∑

j

Gσ j,σ ′ j

(z j− z)b′j(z j)2 .

The second equality accounts for the condition that G is diagonal in j ∈ J; for d = 1, see
also [18, Theorem 6.1].

2.6 Renormalised Weyl function

Ignoring formally that G is diagonal in j for m≥ 2, one can perform a kind of renormal-
isation of QG (z). For this purpose, put z j = z1−δ j−1, δ j−1 6= 0, j ∈ Jr{1}, in the first
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formula of QG (z), take the limits δ j→ δ j−1, as well as δ1→ 0, and deduce by induction
that the matrix QG (z) is “renormalised” to the matrix Q∗(z) whose entries are given by

[
Q∗(z)

]
σσ ′

..=−∑
j

[
G∗
]

σm,σ ′ j

(z− z1)m− j+1 .

An interesting observation is that the corresponding Weyl function M, denoted now by
M∗, is, up to a constant, the Weyl function MA of Amax in the A-model with model param-
eters z j = z1, provided that the entries at the m-th row of the Gram matrix of the A-model
satisfy Gσm,σ ′ j =

[
G∗
]

σm,σ ′ j. In this case, with a suitable choice of the OBT for Amax in
the A-model, one has

M∗(z) = R∗(z1)+MA(z)

for z ∈ resLr {z1}. In the above formula R∗ is obtained from R by simply replacing all
{z j} in bm(L) by z1; that is, the entries

[
R∗(z)−R∗(z1)

]
σσ ′ = (z− z1)〈ϕσ ,bm(L)−1(L− z)−1(L− z1)

−1
ϕσ ′〉

for z∈ resL, constitute the matrix valued Q-function which is associated with Lmin in Hm,
where now bm(L) ..= (L− z1)

m.

3 Transformation preserving the Weyl function

According to [19], if Q-functions of two densely defined, closed, symmetric, and simple
operators in (possibly) distinct Hilbert spaces coincide, then the operators are unitarily
equivalent. In this paragraph we extend the latter statement to a not necessarily unitary
transformation, which becomes unitary, however, in the special case.

Let PH be a bounded operator from a Hilbert space H−m to a Hilbert space H ; let P∗H
be its adjoint, considered as a bounded operator from H to H−m. Let Ω ..= PH bm(L)

1/2

be a bounded operator from H0 to H ; then the operator Ω∗ = bm(L)−
1/2P∗H , considered

as a bounded operator from H to H0, is the adjoint of Ω. Define also a bounded, non-
negative, self-adjoint operator in H by ι ..= ΩΩ∗ = PH P∗H .

Let AΘ be a (closed) proper extension of the symmetric operator Amin in H as de-
scribed above, and define the operator AAAΘ

..=Ω∗AΘΩ in H0 on its natural domain. A direct
computation shows that the adjoint in H0 is the operator AAAΘ∗ . Let also AAAmin

..= Ω∗AminΩ,
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and similarly for AAAmax. Then AAAΘ is a proper extension of a densely defined, closed, sym-
metric, and simple operator AAAmin. The domain of AAAΘ can be described in terms of Θ as the
set of u∈ domAAAmax such that (ΓΓΓ0u,ΓΓΓ1u)∈Θ, where ΓΓΓ ..= (ΓΓΓ0,ΓΓΓ1) : domAAAmax→Cd×Cd

is defined according to ΓΓΓ = ΓΩ. Because ΩdomAAAmax ⊆ domAmax the operator ΓΓΓ is not
surjective, in general, so the present parametrisation of domAAAΘ applies to not all Θ, and
the triple ΠΠΠ ..= (Cd ,ΓΓΓ0,ΓΓΓ1) is only an isometric boundary triple [8, Definition 1.8] for
AAAmax. To make ΠΠΠ an OBT, we assume that PH leaves domAmax invariant, because in this
case ΩdomAAAmax = domAmax. Then the following result holds.

Theorem 11.1 Let MMM be the Weyl function of AAAmin corresponding to the OBT ΠΠΠ for
AAAmax. Then MMM(z) = M(z), z ∈ resA0, iff

(∀c ∈ Cd)(∀z ∈ Σι)
[
(A0− z)−1− (ιA0− z)−1

ι
]
kmin(c)

− (ιA0− z)−1(ι− I)zGz(c) ∈ domAmin.

Here Σι
..= resA0∩ res(ιA0). For ι = I, one recovers that PH (and hence Ω) is unitary,

which is the case considered in [19, Theorem 2.2].

Proof. First, observe that Nz(ιAmax) = Hz(Cd), z ∈ Σι , where

Hz(c) ..=
[
I− z(ιA0− z)−1(ι− I)

]
Gz(c)− (ιA0− z)−1

ιkmin(c).

Indeed, since f ∈Nz(ιAmax) belongs to domAmax, it follows from (11.2) that

0 =
(
ιA0− z

)
( f # + k)+(ι− I)zGz(c)+ ιkmin(c).

By using (L− z)Gz(c) = kmin(c) the assertion follows.

Second, the graph of the γ-field γγγ associated with an OBT ΠΠΠ consists of the pairs
(c,uz) ∈ Cd ×Nz(AAAmax) such that Ωuz = Hz(c). Indeed, by definition, γγγ contains (c,uz)

such that ΓΓΓ0uz = c. Since ΩNz(AAAmax) ⊆ Nz(ιAmax), the assertion follows by using the
first claim. To verify that γγγ is the graph, let us compute its multivalued part; it is the set
of uz ∈Nz(AAAmax)∩kerΩ = ker(ΓΓΓ0 |Nz(AAAmax)) = {0}.

Third, the Weyl function MMM associated with ΠΠΠ is given by MMM(z) = Γ1Hz( ·) (on Cd) for
z ∈ Σι , which is seen from the second claim. Using in addition that

QG (z)c =−Γ1
[
(A0− z)−1kmin(c)

]
one gets that

MMM(z) = M(z)+∆(z)
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with

∆(z)c ..= Γ1
{[
(A0 − z)−1 − (ιA0 − z)−1

ι
]
kmin(c) − (ιA0 − z)−1(ι − I)zGz(c)

}
.

Thus MMM(z) = M(z) iff ∆(z) vanishes; in this case the equality for the analytic Weyl func-
tions extends to the domain of analyticity of M(z), namely, resA0.

Finally, (∀c) ∆(z)c = 0 iff the term in { }, which belongs to domA0 by construction,
also belongs to kerΓ1, i. e. iff it belongs to domA0∩kerΓ1 = domAmin.

To this end we remark that a similar theorem can be formulated in the A-model as well,
but now the situation is more delicate, because M in the A-model might belong to the class
of generalised Nevanlinna families with a finite number κ of negative squares, while MMM

associated with the OBT for the Hilbert space (i. e. H0) adjoint of a symmetric operator
belongs to the class of Nevanlinna families, i. e. κ = 0. Thus a different meaning has to
be given to the adjoint of PH (and hence Ω). The details will be presented elsewhere.
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Mayer expansion for the
Asakura-Oosawa model of

colloid theory
Sabine Jansen* and Dimitrios Tsagkarogiannis†

Abstract. We present a convergence criterion for the activity expan-

sion of the Asakura-Oosawa model of penetrable hard-spheres, a pop-

ular toy model in colloid theory. The model consists of a binary mixture

of large and small spheres where small spheres may freely overlap with

each other but the interaction is hard-core otherwise. Our convergence

criterion is formulated in terms of an effective activity for large objects

that takes into account excluded volume effects.

1 The Asakura-Oosawa model. Depletion attraction

Consider a binary mixture of small spheres of radius r > 0 and large spheres of radius
R > r, with respective activities zr > 0 and zR > 0. Two large spheres cannot overlap, a
small sphere and a large sphere cannot overlap either, but two small spheres are allowed
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to overlap. Let Λ = [0,L]d with L > 2(R+ r). The grand-canonical partition function for
the Asakura-Oosawa model [2] in the box Λ is

ΞΛ(zR,zr) =
∞

∑
n1,n2=0

zn1
R

n1!
zn2

r

n2!

∫
Λ

n1

{∫
Λ

n2

(
∏

1≤i< j≤n1

1{|xi−x j |>2R}

)

×

(
∏

1≤i≤n1
1≤ j≤n2

1{|xi−y j |>R+r}

)
dyyy

}
dxxx.

Integrals with zero integration variables are set to be equal to 1; in particular, the sum-
mand for n1 = n2 = 0 is 1.

Since small spheres do not interact, the integration over the y-variables can be carried
out explicitly, which yields

ΞΛ(zR,zr) = ezr |Λ|
∞

∑
n1=0

zn1
R

n1!

∫
Λ

n1

(
∏

1≤i< j≤n
1{|xi−x j |>2R}

)

× exp

(
−zr

∣∣∣Λ∩ n⋃
i=1

B(xi,R+ r)
∣∣∣)dx

where |A| denotes the Lebesgue measure of a set A⊂Rd , |x−y| is the Euclidean distance
inRd , and B(xi,R+r) is the closed ball of radius R+r centered at xi. In order to get rid of
the Λ-dependence inside the last exponential, we switch to periodic boundary conditions:
let d(x1,x2)≡ dL(x1,x2) ..= infk∈Zd |x1− x2 + kL| and

Ξ
per
Λ
(zR,zr) = ezr |Λ|

∞

∑
n1=0

zn1
R

n1!

∫
Λ

n1

(
∏

1≤i< j≤n
1{d(xi,x j)>2R}

)

× exp

(
−zr

∣∣∣ n⋃
i=1

Bd(xi,R+ r)
∣∣∣)dx.

Here Bd(xi,R+r) is a closed ball with respect to the metric d = dL that takes into account
the periodic boundary conditions. Set

Wk(x1, . . . ,xk;zr) ..= zr(−1)k−1
∣∣∣∣ n⋃
i=1

Bd(xi,R+ r)
∣∣∣∣.
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By inclusion-exclusion, the area covered by the union of the balls is equal to

∣∣∣∣ n⋃
i=1

Bd(xi,R+ r)
∣∣∣∣= n

∣∣Bd(0,R+ r)
∣∣+ n

∑
k=2

(−1)k−1
∑

1≤i1<···<ik≤n

∣∣∣∣ k⋂
`=1

Bd(xi` ,R+ r)
∣∣∣∣.

Further set
ẑR ≡ ẑR(zr) ..= zR exp

(
−zr

∣∣Bd(0,R+ r)
∣∣),

v(x1,x2) ..= ∞ ·1{|x1−x2|≤2R}, and

Hn(x1, . . . ,xn;zr) ..= ∑
1≤i< j≤n

v(xi,x j)+
n

∑
k=2

∑
1≤i1<...<ik≤n

Wk(xi1 , . . . ,xik ;zr).

The grand-canonical partition function with periodic boundary conditions becomes

Ξ
per
Λ
(zR,zr) = ezr |Λ|

(
1+

∞

∑
n=1

ẑR(zr)
n

n!

∫
Λn

e−Hn(x1,...,xn;zr) dx

)
.

Notice that exp
(
zr|Λ|

)
= Ξ

per
Λ
(0,zr). Thus we have found that the full partition func-

tion Ξ
per
Λ
(zR,zr), divided by the partition function Ξ

per
Λ
(0,zr) that has small spheres only,

is equal to the grand-canonical partition function of an effective model. The effective
model sees only large spheres with a new effective activity ẑR. In addition to the hard-
core interaction that large spheres may not overlap, there are multibody interaction terms
Wk( · ;zr) that correspond to effective interactions mediated by the small spheres. The ef-
fective interactions kick in only when the depletion layers B(xi,R+ r) overlap. Moreover
the new effective interaction is negative,

n

∑
k=2

∑
1≤i1<...<ik≤n

Wk(xi1 , . . . ,xik ;zr) = zr

∣∣∣∣ n⋃
i=1

Bd(xi,R+ r)
∣∣∣∣− zr

n

∑
i=1

∣∣Bd(xi,R+ r)
∣∣≤ 0,

a phenomenon called depletion attraction [2].

2 Cluster expansion

A hypergraph h is a pair h = (V,E) consisting of a finite set V and a set E ≡ E(h) ⊂
{J | J ⊂ V, #J ≥ 2}. Elements of V are called vertices, elements of E hyperedges. A
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hypergraph is connected if for every pair of vertices v,w∈V , there exists a finite sequence
J1, . . . ,J` ∈E of hyperedges such that v∈ J1, w∈ Jm, and Ji∩Ji+1 6=∅ for all i= 1, . . . , `−
1. Let Cm be the set of connected hypergraphs with vertex set {1, . . . ,n}. For h ∈ Cm and
x1, . . . ,xm ∈ Λ, define the graph weight

w(h;x1, . . . ,xm;zr) ..=

(
∏

{i, j}∈E(h)

(
e−v(xi,x j)−W2(xi,x j ;zr)−1

))
×

(
∏

J∈E(h):
#J≥3

(
e−W#J((x j) j∈J ;zr)−1

))
.

Finally let
ψ

T
m (x1, . . . ,xm;zr) ..= ∑

h∈Cm

w(h;x1, . . . ,xm;zr)

and ψT
1 (x1;zr) ..= 1.

Theorem 12.1 Assume that there exist scalars a,A≥ 0 such that zr and ẑR = ẑR(zr) satisfy∣∣B(0,2R)
∣∣eAẑR +

∣∣B(0,R+ r)\B(0,R− r)
∣∣eazr ≤ A,∣∣B(0,R+ r)\B(0,R− r)

∣∣eAẑR ≤ a.

Then for all L > R+ r,

logΞ
per
Λ
(zR,zr) = zr|Λ|+

∞

∑
m=1

ẑm
R

m!

∫
Λm

ψ
T
m (x1, . . . ,xm;zr)dx

with
∞

∑
m=2

ẑm−1
R

(m−1)!

∫
Λm−1

∣∣ψT
m (x1, . . . ,xm;zr)

∣∣ dx2 · · ·dxm ≤ eA−1 < ∞ (x1 ∈ Λ). (12.1)

The theorem should be contrasted with the convergence condition∣∣B(0,2R)
∣∣eAzR +

∣∣B(0,R+ r)
∣∣eazr ≤ A,

∣∣B(0,R+ r)
∣∣eAzR ≤ a.

obtained from a direct application of a convergence condition for non-negative pair po-
tentials by Ueltschi [6] to the original binary mixture. The latter has been extended to
attractive pair potentials by Poghosyan and Ueltschi [5], building on the method devel-
oped by Minlos and Poghosyan [3]. Our new convergence condition differs in two ways:
first, it has ẑR instead of zr; second, it has the shell B(0,R+ r)\B(0,R− r) instead of the
full ball B(0,R+ r).
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3 Proof ideas

3.1 From hypergraphs to leaf-constrained bipartite graphs

It is a matter of standard combinatorics to check that

log

(
1+

∞

∑
n=1

ẑm
R

m!

∫
Λm

e−Hm(x1,...,xm;zr) dx

)
=

∞

∑
m=1

ẑm
R

m!

∫
Λm

ψ
T
m (x1, . . . ,xm;zr)dx

holds true as an equality of formal power series in ẑR. The challenge is to prove abso-
lute convergence of the right-hand side. The first step of the proof is a mapping from
hypergraphs on m vertices to graphs with a variable number m+n of new vertices. New
vertices represent hyperedges of the original graph. Set

f (x1,x2) ..= e−v(x1,x2)−1 =−1{d(x1,x2)≤R+r}, ζ (x,y) ..=−1{d(x,y)≤2R}.

Let C ∗m,n be the set of connected graphs with vertex set {1, . . . ,m + n} such that (i)
there are no edges {i, j} linking two vertices i, j ≥ m + 1 and (ii) every vertex j ∈
{m+ 1, . . . ,m+ n} connects to at least two distinct vertices i, i′ ∈ {1, . . . ,m}. Graphs
in C ∗m,n are usual graphs with edges {i, j} (no hyperedges of cardinality #J ≥ 3). Define

ϕ
T
m,n,∗(x1, . . . ,xm;ym+1, . . . ,ym+n) ..= ∑

G∈C ∗m,n

(
∏

{i, j}∈E(G):
1≤i< j≤m

f (xi,x j)

)(
∏

{i, j}∈E(G):
i≤m< j

ζ (xi,y j)

)
.

Lemma 12.2 For all m≥ 2 and x1, . . . ,xm ∈ Λ,

ψ
T
m (x1, . . . ,xm;zr) =

∞

∑
n=0

zn
r

n!

∫
Λn

ϕ
T
m,n,∗(x1, . . . ,xm;ym+1, . . . ,ym+n)dym+1 · · ·dym+n.

Proof. Let h∈ Cm be a connected hypergraph. If J ∈ E(h) is a hyperedge with cardinality
#J ≥ 3, we expand

e−W#J((x j) j∈J ;zr)−1 =
∞

∑
kJ=1

1
kJ!
(
−W#J((x j) j∈J ;zr)

)kJ =
∞

∑
kJ=1

zkJ
r

kJ!

(∫
Λ
∏
j∈J

ζ (x j,y)dy
)kJ

.

For edges {i, j} ∈ E(h) of cardinality 2, we expand

e−v(xi,x j)−W2(xi,x j ;zr)−1 = f (xi,x j)+
(
1+ f (xi,x j)

) ∞

∑
ki j=1

z
ki j
r

ki j!

(∫
Λ

ζ (xi,y)ζ (x j,y)dy
)ki j

.

Inserting these expansions into the definition of the weight w(h;x1, . . . ,xm;zr) gives rise
to a sum over tuples (kJ)J∈E(h) of non-zero integers. We group terms with a common
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value of n = ∑J∈E(h) kJ and rearrange the powers of zr and the factorials as

∏
J∈E(h)

zkJ
r

kJ!
=

zn
r

n!
× n!

∏J∈E(h) kJ!
.

The multinomial counts the number of mappings J from the label set m+ 1, . . . ,m+ n

to the hyperedges of h such that exactly kJ labels are mapped to J. Every mapping J is
associated with a bipartite graph G with vertex set {1, . . . ,m+n} and edge set

E(G) =
{
{i, j} | i≤ m < j, i ∈J ( j)

}
,

moreover

∏
J∈E(h)

(∫
Λ
∏
i∈J

ζ (xi,y)dy
)kJ

=
∫

Λn ∏
{i, j}∈E(G′)

ζ (xi,y j)dy.

Conversely, every bipartite graph G′ such that every vertex j > m is linked to at least two
distinct vertices i, i′ ∈ J is uniquely associated with a mapping J . As a consequence, if
h has no edge of cardinality 2, then

ψ
T
m (h;x1, . . . ,xm;zr) =

∞

∑
n=0

zn
r

n!

∫
Λn

∑
G

∏
{i, j}∈E(G)

ζ (xi,y j)dy.

where the sum runs over bipartite graphs G with degree constraint as above that arise from
a mapping J : {m+1, . . . ,m+n} → E(h) such that #J −1(J)≥ 1, for all J ∈ E(h). If
h has edges of cardinality 2, a similar formula holds true but with a sum over graphs that
may have additional edges {i, j} with 1≤ i < j ≤ m, associated with an additional factor
f (xi,x j). Summation over all connected hypergraphs h translates into summation over
graphs G ∈ C ∗m,n.

3.2 Tree-graph inequality

The second ingredient to the proof of Theorem 12.1 is a variant of the classical tree-graph
inequality due to O. Penrose [4]. Set ζ̃ (xi,y) ..=−1{y∈Bd(xi,R+r)\Bd(xi,R−r)}. Notice(

1+ f (xi,x j)
)
·
∣∣ζ (xi,y)ζ (x j,y)

∣∣≤ (1+ f (xi,x j)
)
·
∣∣ζ̃ (xi,y)ζ̃ (x j,y)

∣∣. (12.2)

Indeed, if y ∈ Bd(xi,R+ r)∩Bd(x j,R+ r) and Bd(xi,R)∩Bd(x j,R) =∅, then necessarily
d(xi,y)≥ d(xi,x j)−d(x j,y)> R− r. Similarly,
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∣∣ζ (x1,y)
∣∣ ∏

1≤i< j≤k

(
1+ f (xi,x j)

)
·
∣∣∣∣( k

∏
j=2

(
1+ζ (x j,y)

)
−1
)∣∣∣∣

≤
∣∣ζ̃ (x1,y)

∣∣ ∏
1≤i< j≤k

(
1+ f (xi,x j)

)
. (12.3)

Proposition 12.3 Set T ∗
m,n ⊂ C ∗m,n be the subset of graphs G ∈ C ∗m,n that are trees. Then∣∣ϕT

m,n,∗(x1, . . . ,xm.ym+1, . . . ,ym+n)
∣∣

≤ ∑
T∈T ∗m,n

(
∏

{i, j}∈E(T ):
1≤i< j≤m

∣∣ f (xi,x j)
∣∣) ·( ∏

{i, j}∈E(T ):
i≤m< j

∣∣ζ̃ (xi,y j)
∣∣).

Proof sketch. We identify every edge {i, j} with the two-letter word ji where j ≥ i. Let
≺ be the reverse lexicographic order, i. e. ji≺ j′i′ if and only if either j≥ j′ or j = j′ and
i≥ i′. Thus

{m+n,m+n−1} ≺ {m+n,m+n−1} ≺ · · · ≺ {m+n,1} ≺ · · ·{2,1} ≺ {1,1}. (12.4)

The order lists all edges that include a vertex j > m, associated with a y-variable, before
the edges {i, j}, 1 ≤ i < j ≤ m, associated with x-variables only. If G ∈ C ∗m,n, we con-
struct a spanning tree T with Kruskal’s algorithm by going through the edges of G in the
order dictated by the total order ≺, discarding edges that create loops. In the sum over
connected graphs G defining ϕT

m,n,∗ we group together graphs that are mapped to the same
spanning tree T . The proposition follows by carefully revisiting classical arguments on
tree partition schemes, taking into account the precise choice (12.4) of the order≺ and the
inequalities (12.2) and (12.3), which allow us to replace ζ (xi,y j) with ζ̃ (xi,y j). See [1,
Proposition 5.4] for a detailed proof in a more general context.

3.3 Proof of convergence

Armed with Lemma 12.2 and Proposition 12.3 we can sketch the proof of the inequal-
ity (12.1) in Theorem 12.1. Set P ..= Λ×{R,r} and define h : P×P → [−1,0] by

h(P1,P2) ..=



f (x1,x2), P1 = (x1,R), P2 = (x2,R)

ζ̃ (x1,y2), P1 = (x1,R), P2 = (y2,r),

ζ̃ (x2,y1), P1 = (y1,r), P2 = (x2,R),

0, P1,P2 ∈ Λ×{r}.
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Further let b : P→R+ be given by b(x,R) = A and b(x,r) = a for all x ∈ Λ. For B⊂P

let λ (B) ..= ẑR
∣∣B∩ (Λ×{R})∣∣+ zr

∣∣B∩ (Λ×{r})∣∣. The conditions of the theorem ensure
that ∫

P
|h(P,Q)|eb(Q)

λ (dQ)≤ b(P),

for all P ∈P . Let T ◦
n denote the set of trees with vertex set {0,1, . . . ,n}. Proceeding as

in [6], we see that for all P0 ∈P ,
∞

∑
n=1

1
n!

∫
Pn

∑
T∈Tn

∏
{i, j}∈E(T )

∣∣h(Pi,Pj)
∣∣λ n(d(P1, . . . ,Pn)

)
≤ eb(P0)−1.

The theorem then follows from Lemma 12.2 and Proposition 12.3.
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Virial inversion for
inhomogeneous systems

Sabine Jansen*, Tobias Kuna† and Dimitrios Tsagkarogiannis‡

Abstract. We prove a novel inversion theorem for functionals given as

power series in infinite-dimensional spaces and apply it to the inver-

sion of the density-activity relation for inhomogeneous systems. This

provides a rigorous framework to prove convergence for density func-

tionals with applications in classical density function theory, liquid

crystals, molecules with various shapes or other internal degrees of

freedom.

1 Introduction

One of the main challenges in statistical mechanics is to derive functional expressions for
thermodynamic quantities from microscopic models which are based on physical prin-
ciples. In particular, for systems in classical density functional theory, liquid crystals,
heterogeneous materials, colloids and in general of molecules with internal degrees of
freedom the key point is to consider non-constant densities and hence non-translation
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invariance. One first mathematically rigorous result for homogeneous systems was the
proof of the convergence of the virial expansion by Lebowitz and Penrose in 1964 [6],
building on the previously established convergence of the activity expansion of the pres-
sure and of the density. The goal of this paper is to establish the validity of the inversion
formulas for inhomogeneous fluids with applications in the above cases. We view the
latter as systems of uncountably many species, by considering the position x ∈ Λ ⊂ Rd

as species. In this way, we can treat at the same time systems with internal degrees of
freedom without increasing the complexity of the arguments involved.

At first sight, one may try to use inverse function theorems in complex Banach spaces,
applied to the functional that maps the activity profile

(
z(x)

)
x∈Λ

to the density profile(
ρ(x)

)
x∈Λ

. This works well for inhomogeneous systems of e. g. objects of bounded size,
e. g., hard spheres of fixed radius. It turns out, however, that Banach inversion fails for
mixtures of objects of finite but unlimited size, for a precise example see [4] as well
as [3]. As a way out, mixtures of countably many species were treated with the help
of Lagrange-Good inversion in [5], leaving the case of uncountably many species wide
open.

Our main result is a novel inversion theorem (Theorem 13.3) that addresses the above-
mentioned difficulties and bypasses both Banach and Lagrange-Good inversion. The
novelty is two-fold. First, we work on the level of formal series and relate the formal
inverse to generating functions of trees or equivalently, solutions of certain formal fixed
point problems (Proposition 13.4). This part is inspired by the combinatorial proof of
the Lagrange-Good formula for finitely many variables given in [2]. Second, we provide
sufficient conditions for the convergence of the formal inverse, i. e., of a generalised tree
generating functions (Theorem 13.2).

2 Main theorem

Let (X,X ) be a measurable space and M(X,X ) the set of σ -finite non-negative mea-
sures on (X,X ). Further let MC(X,X ) be the set of complex linear combinations of
measures in M(X,X ). When there is no risk of confusion, we shall write M and MC

for short. Suppose we are given a family of measurable functions An : X×Xn → C,
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(
q,(x1, . . . ,xn)

)
7→ An(q;x1, . . . ,xn). We assume that each An is symmetric in the x j’s,

i. e.,
An(q;xσ(1), . . . ,xσ(n)) = An(q;x1, . . . ,xn), (13.1)

for all permutations σ ∈Sn. When we say that a power series converges absolutely, we
mean that

∞

∑
n=1

1
n!

∫
Xn

∣∣An(q;x1, . . . ,xn)
∣∣ |z|(dx1) · · · |z|(dxn)< ∞, (13.2)

where |z| is the total variation of z ∈MC. LetD(A)⊂MC be the domain of convergence
of the associated power series, that is z ∈D(A) if and only if the power series converges
absolutely in the above sense. We set

A(q;z) ..=
∞

∑
n=1

1
n!

∫
Xn

An(q;x1, . . . ,xn)z(dx1) · · ·z(dxn) (z ∈D(A)). (13.3)

We are interested in maps of the form

MC ⊃D(A)→MC, z 7→ ρ[z] (13.4)

given by
ρ[z](dq)≡ ρ(dq;z) ..= e−A(q;z)z(dq), (13.5)

where ρ(dq;z) is just a notation for ρ[z](dq). The latter is useful whenever one wants
to stress the q instead of the z dependence. Thus ρ[z] is absolutely continuous with
respect to z with Radon-Nikodým derivative exp

(
−A(q;z)

)
. (Note that for the case of an

inhomogeneous gas this corresponds to the one-particle density as a function of position
and activity.) We want to determine the inverse map ν 7→ ζ [ν ],

ν = ρ[z] ⇔ z = ζ [ν ].

Suppose for a moment that such an inverse map exists. Clearly z is equivalent to ν = ρ[z]

with Radon-Nikodým derivative exp(A(q;z)). Consequently we should have

ζ [ν ](dq)≡ ζ (dq;ν) = eA(q;ζ [ν ])
ν(dq). (13.6)
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This observation is the starting point for our inversion result, namely the family of power
series (T ◦q )q∈X given by

T ◦q (ν)≡ T ◦(q;ν) = eA(q;ζ [ν ]) (13.7)

should solve
ζ [ν ](dq) = T ◦q (ν)ν(dq) = eA(q;νT ◦q (ν))ν(dq) (13.8)

and therefore

T ◦q (ν) = exp

(
∞

∑
n=1

1
n!

∫
Xn

An(q;x1, . . . ,xn)T ◦x1
(ν) · · ·T ◦xn(ν)ν(dx1) · · ·ν(dxn)

)
. (FP)

In Proposition 13.4 below we provide a combinatorial interpretation of T ◦q as the exponen-
tial generating function for coloured rooted, labeled trees whose root is a ghost of colour
q (i. e., the root does not come with powers of ν in the generating function). For our
main inversion theorem, however, it is enough to know that the fixed point equation (FP)
determines the power series (T ◦q )q∈X uniquely.

Lemma 13.1 There exists a uniquely defined family of formal power series

T ◦q (ν) = 1+
∞

∑
n=1

1
n!

∫
Xn

tn(q;x1, . . . ,xn)ν(dx1) · · ·ν(dxn) (q ∈ X) (13.9)

with tn : X×Xn→ C measurable and symmetric in the x j’s, that solves (FP) in the sense
of formal power series.

As the above expressions are interpreted in the sense of formal power series, neither
the series need to converge nor the integrals need to exist.

Proof. Set t0 ..= 1. Let Bn(q;x1, . . . ,xn) be the coefficients of the series in the exponential
in (FP), i. e., each Bn : X×Xn→ C is measurable, and we have

∞

∑
n=1

1
n!

∫
Xn

Bn(q;x1, . . . ,xn)ν(dx1) · · ·ν(dxn)

=
∞

∑
n=1

1
n!

∫
Xn

An(q;x1, . . . ,xn)T ◦x1
(ν) · · ·T ◦xn(ν)ν(dx1) · · ·ν(dxn)
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in the sense of formal power series. It follows that

Bn(q;x1, . . . ,xn) =
n

∑
m=1

∑
J⊂[n]
#J=m

Am
(
q;(x j) j∈J

)
∑

(V j) j∈J :
∪̇ j∈JV j=[n]\J

∏
j∈J

t#V j

(
x j;(xv)v∈V j

)
. (13.10)

Note that the third sum is over ordered partitions (Vj) j∈J of [n]\ J, indexed by J, into #J

disjoint sets Vj, with Vj =∅ explicitly allowed. For example,

B1(q;x1) = A1(q;x1),

B2(q;x1,x2) = A2(q;x1,x2)+A1(q;x1)t1(x1;x2)+A1(q;x2)t1(x2;x1).

More generally, Bn(q; ·) depends on t1(q; ·), . . . , tn−1(q; ·) alone. This is the only aspect
of (13.10) that enters the proof of this lemma.

For n ∈ N, let Pn be the collection of set partitions of {1, . . . ,n}. The family
(T ◦q )q∈X solves (FP) in the sense of formal power series if and only if for all n ∈ N
and q,x1, . . . ,xn ∈ Xn, we have

tn(q;x1, . . . ,xn) =
n

∑
m=1

∑
{J1,...,Jm}∈Pn

m

∏
`=1

B#J`

(
q;(x j) j∈J`

)
. (13.11)

In particular,

t1(q;x1) = B1(q;x1) = A1(q;x1)

t2(q;x1,x2) = B2(q;x1,x2)+B1(q;x1)B1(q;x2)

which determines t1 and t2 uniquely. A straightforward induction over n, exploiting that
the right-hand side of (13.11) depends on t1, . . . , tn−1 alone (via B1,. . . , Bn), shows that
the system of equations (13.11) has a unique solution (tn)n∈N.

Next we provide a sufficient condition for the absolute convergence of the series T ◦q (ν).

Theorem 13.2 Let T ◦q (ν) be the unique solution of (FP) from Lemma 13.1. Assume that
for some measurable function b :X→ [0,∞), the measure ν ∈MC satisfies, for all q ∈X,

∞

∑
n=1

1
n!

∫
Xn
|An(q;x1, . . . ,xn)|e∑

n
j=1 b(x j)|ν |(dx1) · · · |ν |(dxn)≤ b(q). (Sb)
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Then, for all q ∈ X, we have that

1+
∞

∑
n=1

1
n!

∫
Xn
|tn(q;x1, . . . ,xn)| |ν |(dx1) · · · |ν |(dxn)≤ eb(q) (Mb)

and the fixed point equation (FP) holds true as an equality of absolutely convergent series.

Proof. The inductive proof is similar to [8, 7]. Let SN
q (ν), N ∈ N0, be the partial sums

for the left-hand side of (Mb),

SN
q (ν)

..= 1+
N

∑
n=1

1
n!

∫
Xn
|tn(q;x1, . . . ,xn)| |ν |(dx1) · · · |ν |(dxn).

We prove SN
q (ν) ≤ eb(q) by induction on N, building on the proof of Lemma 13.1. The

estimate for the full series then follows by a passage to the limit N→ ∞.

For N = 0, we have S0
q(ν) = 1 and the inequality S0

q(ν) ≤ exp
(
b(q)

)
is trivial. Now

assume SN−1
q (ν)≤ exp

(
b(q)

)
. The triangle inequality applied to Eqs. (13.10) and (13.11)

yields the same iterative formula for |tn(q;x1, . . . ,xn)| as for tn(q;x1, . . . ,xn) just with
An(q;x1, . . . ,xn) replaced by

∣∣An(q;x1, . . . ,xn)
∣∣. We noted before that, if we consider

SN
q (ν) and hence only |tn(q;x1, . . . ,xn)| for n ≤ N, then on the right-hand side only
|tn(q;x1, . . . ,xn)| with n ≤ N − 1 appear. However, there are some terms on the right-
hand side, which as well only contain |tn(q;x1, . . . ,xn)| with n ≤ N− 1 but which come
from some term |tn(q;x1, . . . ,xn)| on the left-hand side for n > N. Adding these missing
terms, we reconstruct an exponential on the right-hand side. As all of these additional
terms are non-negative, we get the following inequality, instead of an equality

SN
q (ν)≤ exp

(
N−1

∑
n=1

1
n!

∫
Xn

∣∣An(q;x1, . . . ,xn)
∣∣SN−1

x1
(ν) · · ·SN−1

xn (ν) |ν |(dx1) · · · |ν |(dxn)

)

≤ exp

(
N−1

∑
n=1

1
n!

∫
Xn

∣∣An(q;x1, . . . ,xn)
∣∣eb(x1)+···+b(xn) |ν |(dx1) · · · |ν |(dxn)

)
≤ eb(q).

The induction is complete. It follows that (Mb) holds true. In particular, the series T ◦q (ν)

is absolutely convergent and satisfies |T ◦q (ν)| ≤ exp
(
b(q)

)
. By condition (Sb), the right-

hand side of the fixed point equation (FP) is absolutely convergent as well. Therefore
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Eq. (FP) holds true not only as an identity of formal power series but in fact as an identity
of well-defined complex-valued functions.

Now that we have addressed the convergence of the series T ◦q , we may come back to
the inversion of the map D(A) 3 z 7→ ρ[z]. For measurable b : X→ [0,∞), let

Vb
..= {ν ∈MC | ν satisfies condition (Sb)}. (13.12)

For ν ∈Vb, define ζ [ν ] ∈MC by

ζ [ν ](dq) = ζ (dq;ν) ..= T ◦q (ν)ν(dq). (13.13)

Theorem 13.3 For every weight function b : X→ R+, there is a set Ub ⊂ D(A) such
that ρ :Ub→Vb, defined in (13.5), is a bijection with inverse ζ .

Proof. LetUb be the image ofVb under ζ . By Theorem 13.2, the setUb is contained in
D(A), in particular if z = ζ [ν ] with ν ∈Vb, then ρ[z] is well-defined with

ρ(dq;z) = e−A(q;z)z(dq) = e−A(q;ζ [ν ])
ζ (dq;ν)

= e−A(q;ζ [ν ])T ◦q (ν)ν(dq) = ν(dq).

For the last identity we have used the fixed point equation (FP). Thus we have checked
that if z = ζ [ν ], with ν ∈Vb, then ρ[z] = ν . Conversely, if ν = ρ[z] with z ∈Ub, then by
definition ofUb there exists µ ∈Vb such that z = ζ [µ], hence ν = ρ[z] = ρ[ζ [µ]] = µ ∈
Vb and z = ζ [µ] = ζ [ν ].

Finally we provide a combinatorial formula for the function T ◦q (ν) appearing in the in-
verse ζ [ν ]. Consider a genealogical tree that keeps track not only of mother-child rela-
tions, but also of groups of siblings born at the same time. This results in a tree for which
children of a vertex are partitioned into cliques (singletons, twins, triplets, etc.). Accord-
ingly for n ∈ N we define the set of enriched trees, denoted by T P◦

n, as the set of pairs(
T,(Pi)0≤i≤n

)
consisting of:

� A tree T with vertex set [n] ..= {0,1, . . . ,n}. The tree is considered rooted in 0 (the
ancestor).
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� For each vertex i ∈ {0,1, . . . ,n}, a set partition Pi of the set of children1 of i. If i is
a leaf (has no children), then we set Pi =∅.

For x0, . . . ,xn ∈ X, we define the weight of an enriched tree
(
T,(Pi)0≤i≤n

)
∈T P◦

n as

w
(
T,(Pi)0≤i≤n;x0,x1, . . . ,xn

)
..=

n

∏
i=0

∏
J∈Pi

A#J+1
(
xi;(x j) j∈J

)
(13.14)

with ∏J∈∅ = 1. So the weight of an enriched tree is a product over all cliques of twins,
triplets, etc., contributing each a weight that depends on the variables x j of the clique
members and the variable xi of the parent.

Proposition 13.4 The family of power series (T ◦q )q∈X from Lemma 13.1 is given by

T ◦q (z) = 1+
∞

∑
n=1

1
n!

∫
Xn

∑
(T,(Pi)i=0,...,n)∈T P◦n

w
(
T,(Pi)i=0,...,n;q,x1, . . . ,xn

)
zn(dxxx).

Proof. We check that the generating function of the weighted enriched trees satis-
fies (FP). Functional equations for generating functions of labeled trees are standard
knowledge [1], we provide a self-contained proof for the reader’s convenience. Define

t̃n(q;x1, . . . ,xn) ..= ∑
(T,(Pi)i=0,...,n)∈T P◦n

w
(
T,(Pi)0≤i≤n;q,x1, . . . ,xn

)
.

Further define B̃n(q;x1, . . . ,xn) but restricting the sum to enriched trees for which #P0 =

1 (all children of the root belong to the same clique). Further set t0 = 1 and B̃0 = 0.
For V ⊂ N a finite non-empty set, define T P◦(V ) in the same way as T P◦

n but with
{0,1, . . . ,n} replaced by {0}∪V . For V = ∅ we define T P◦(V ) = ∅ and assign the
empty tree the weight 1. For non-empty trees, weights w

(
R;(x j) j∈V∪{0}

)
are defined in

complete analogy with (13.14).
Clearly there is a bijection between enriched trees R ∈ T P◦

n and set partitions
{J1, . . . ,Jm} of [n] ..= {1, . . . ,n} together with enriched trees Ri ∈ T P◦(Ji), i = 1, . . . ,m
for which all children of the root are in the same clique. Indeed, the number m corre-
sponds to the number of cliques in which the children of the root are divided and the
blocks J1, . . . ,Jm group descendants of the root, where Jk contains the children of the root

1The members of the partition are assumed to be non-empty, except we consider the partition of the empty
set.
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which are in the k-th clique and all their descendants. The weight of an enriched tree R is
equal to the product of the weights of the subtrees Ri. Therefore

t̃n(q;x1, . . . ,xn) =
n

∑
m=1

∑
{J1,...,Jm}∈Pn

m

∏
`=1

B̃#J`

(
q;(x j) j∈J`

)
. (13.15)

Furthermore there is a one-to-one correspondence between, on the one hand, enriched
trees where all the children of the root are in the same clique and, on the other hand, tuples(
J,(Vj) j∈J ,(R j) j∈J

)
consisting of non-empty set J ⊂ [n], an ordered partition (Vj) j∈J of

[n]\J (with Vj =∅ allowed), and a collection of enriched trees R j ∈T P◦(Vj). Overall,
J and (Vj) j∈J give a partition of [n]. The set J consists of the labels of the children of the
root, that is the one clique which all these children form and for each j ∈ J, the set Vj

consists of the labels of the descendants of j. (Vj =∅ means that j is a leaf of the tree) It
follows that

B̃n(q;x1, . . . ,xn) =
n

∑
m=1

∑
J⊂[n]
#J=m

Am
(
q;(x j) j∈J

)
∑

(V j) j∈J :
∪̇ j∈JV j=[n]\J

∏
j∈J

t̃#V j

(
x j;(xv)v∈V j

)
. (13.16)

It follows from Eqs. (13.15) and (13.16) that the formal power series with coefficients t̃n
solves (FP), therefore Lemma 13.1 yields t̃n = tn.
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Activity expansions for Gibbs
correlation functions

Sabine Jansen* and Leonid Kolesnikov†

Abstract. We consider Gibbs point processes with non-negative pair

potentials. For small activities, a cluster expansion allows us to express

the corresponding correlation functions by (multivariate) power series

in the activity around zero. We characterise the domain of absolute

convergence of those series and derive from this characterisation a new

sufficient condition in the setting of abstract polymers improving the

known bounds for the convergence radii.

1 Introduction

Proving convergence conditions for cluster expansions is a classical problem with a long
history – see [1, 6] and the references therein. Recent developments include a novel
convergence condition by Fernández-Procacci [3] that improves the classical Kotecký-
Preiss criterion [5] as well as Dobrushin’s criterion [2]. We present a new necessary
and sufficient convergence condition that improves on the above-mentioned criteria. The
criterion applies to non-negative pair potentials for systems both continuous and discrete.
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After describing the general setting in Section 2, we proceed to introduce a system of
integral equations satisfied by the activity expansions ρ , the so-called Kirkwood-Salsburg
equations, in Section 3. In Section 4, we consider a sign-flipped version of those equa-
tions to prove our main result – Theorem 14.7 – characterising the domain of absolute
convergence of ρ; moreover, we are able to use Theorem 14.7 to prove a new sufficient
condition for systems of abstract polymers (Proposition 14.8).

2 The setting: Definitions and notations

Let (X,X ) be a measurable space, λ a σ -finite reference measure, and v a non-negative
pair potential, i. e., v :X×X→R+∪{∞} is measurable and symmetric (in the sense that
v(x,y) = v(y,x) for all x,y ∈ X). Mayer’s f function associated with the potential v is
given by

f (x,y) ..= e−v(x,y)−1.

An activity function is a measurable map z : X→ R. We define the measure λz on X by

λz(B) ..=
∫

B
z(x)λ (dx), B ∈X .

The weight of a graph G with vertex set [n] = {1, . . . ,n} and edge set E(G) is

w(G;x1, . . . ,xn) ..= ∏
{i, j}∈E(G)

f (xi,x j), x1, . . . ,xn ∈ X.

Let Gn be the set of all graphs with vertex set [n], Cn ⊂ Gn the set of connected graphs and

ϕ
T
n (x1, . . .xn) ..= ∑

G∈Cn

w(G;x1, . . . ,xn)

the n-th Ursell function. For k ∈ N and 1 ≤ k ≤ n, let Dk,n ⊂ Gn the collection of all
graphs G such that every vertex j ∈ {k+1, . . . ,n} connects to at least one of the vertices
i ∈ {1, . . . ,k}. We call such graphs multi-rooted graphs on [n] with k roots. Consider the
functions

ψk,n(x1, . . . ,xn) ..= ∑
G∈Dk,n

w(G;x1, . . . ,xn).

For k = 1, the functions coincide with the standard Ursell functions, i. e., ψ1,n = ϕT
n . We

are interested in the associated series
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ρk(x1, . . . ,xk;z) ..= z(x1) · · ·z(xk)

(
ψk,k(x1, . . . ,xk)

+
∞

∑
n=1

1
n!

∫
Xn

ψk,k+n(x1, . . . ,xk,y1, . . . ,yn)λ
⊗n
z (dyyy)

)
.

The series ρk corresponds to the k-point correlation function of a grand-canonical Gibbs
measure [8, Eq. (4-7)], see also [4] – it is precisely the expansion of the correlation
function in the activity z around zero. Proposition 14.1 provides some intuition for why
ρ = (ρk)k∈N is the right candidate for those activity expansions.

We say that the series ρk(x1, . . . ,xk;z) is absolutely convergent if

∞

∑
n=1

1
n!

∫
Xn

∣∣∣ψk,k+n(x1, . . . ,xk,y1, . . . ,yn)z(x1) · · ·z(xk)z(y1) · · ·z(yn)
∣∣∣λ⊗n(dyyy)< ∞.

Our main goal is to provide necessary and sufficient conditions on z ensuring that ρ

converges absolutely, i. e., that the series ρk converge absolutely on Xk for all k ∈ N.

3 Preparations

Some preparations are required before we can state our main results. The following
representation of the activity expansions ρ – in the spirit of Equation (2.11) in [1] –
turns out to be quite useful for deriving properties of interest (e. g., the signs of the series
ρk alternating in k ∈ N (see Proposition 14.3) or their connection to the k-correlation
functions of the corresponding Gibbs point process mentioned in the introduction).

Proposition 14.1 (Exponential representation of ρ) Suppose that all series ρk(z) are
absolutely convergent on Xk for some activity function z. Then

ρk(x1, . . . ,xk;z) = z(x1) · · ·z(xk) ∏
1≤i< j≤k

(
1+ f (xi,x j)

)
× exp

(
∞

∑
n=1

1
n!

∫
Xn

(
∏

1≤i≤k
1≤ j≤n

(
1+ f (xi,y j)

)
−1

)
ϕ
T
n (y1, . . . ,yn)λ

⊗n
z (dyyy)

)
,

for all k ∈ N and (x1, . . . ,xk) ∈ Xk.



148 Jansen, Kolesnikov: Activity expansions

Sketch of proof. Under the assumption of the proposition this identity on the level of
generating functions can be reduced to the following identity on the level of coefficients
given by sums over weighted graphs:

ψk,n(x1, . . . ,xn) = ∏
1≤i< j≤k

(
1+ f (xi,x j)

)
× ∑
{V1,...,Vr}

r

∏
`=1

(
∏

1≤i≤k,
j∈V`

(
1+ f (xi,x j)

)
−1

)
ϕ
T
|V`|
(
(x j) j∈V`

)
(14.1)

where the sum runs over all set partitions {V1, . . . ,Vr} of non-root vertices {k+1, . . . ,n}.
The latter identity (on the combinatorial level) can be shown simply by exploiting the

structure of multi-rooted graphs and their relation to connected graphs.

Corollary 14.2 (Alternating sign property) We have

ψk,n(x1, . . . ,xn) = (−1)n−k∣∣ψk,n(x1, . . . ,xn)
∣∣

for all n ∈ N, all k ∈ {1, . . . ,n}, and all (x1, . . . ,xn) ∈ Xn.

Sketch of proof. The statement follows directly from the identity (14.1) and the well-
known alternating sign property of the Ursell functions ϕn, which holds by a tree-graph
equation à la Penrose (e. g., see [3]).

We use the observation captured by Corollary 14.2 to introduce the sign-flipped version
of the activity expansions ρ .

Corollary 14.3 (Introducing ρ̃) Let z be a non-negative activity function. Then, the
series ρk(−z) converge for all k ∈N if and only if the series ρk(z) converge absolutely for
all k ∈ N. Moreover, define ρ̃(z) by setting

ρ̃k(x1, . . . ,xk;z) ..= (−1)k
ρk(x1, . . . ,xk;−z)

for all k ∈ N and (x1, . . . ,xk) ∈ N. Then

ρ̃k(x1, . . . ,xk;z) =
k

∏
i=1

z(xi) ∑
n≥0

1
n!

∫
Xn

∣∣ψk,k+n(x1, . . . ,xk,y1, . . . ,yn)
∣∣λ⊗n

z (dyyy)
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holds for all k ∈ N and (x1, . . . ,xk) ∈ N.

Sketch of proof. The statement follows directly from the alternating sign property given
by Corollary 14.2.

Now we are ready to introduce systems of integral equations satisfied by the activity ex-
pansions – the so-called Kirkwood-Salsburg equations. Notice the close relation between
those and the GNZ equations (named after Georgii, Nguyen and Zessin; e. g., see [4]),
which can serve to define grand-canonical Gibbs measures. In general, the Kirkwood-
Salsburg relations for the correlation functions follow from the GNZ equations and even
the equivalence holds under additional assumtions (e. g., see [4, Lemma 3.1] and the dis-
cussion thereafter.)

Definition 14.4 (Kirkwood-Salsburg operators) Given a fix activity function z, define
Kz by the following formal expressions: For a = (ap)p∈N such that ap : Xp→ R is mea-
surable for all p ∈ N, set

(
Kza
)

p+1(x0,x1, . . . ,xp) ..= z(x0)
p

∏
i=1

(
1+ f (x0,xi)

)
×

ap(x1, . . . ,xp)+
∞

∑
k=1

1
k!

∫
Xk

k

∏
j=1

f (x0,y j)ap+k(x1, . . . ,xp,y1, . . . ,yk)λ
⊗k(dyyy)

 ,

where we use the natural convention a0
..= 0 for the case p = 0.

Similarly, define K̃z by

(
K̃za
)

p+1(x0,x1, . . . ,xp) ..= z(x0)
p

∏
i=1

(
1+ f (x0,xi)

)
×

ap(x1, . . . ,xp)+
∞

∑
k=1

1
k!

∫
Xk

k

∏
j=1

∣∣ f (x0,y j)
∣∣ap+k(x1, . . . ,xp,y1, . . . ,yk)λ

⊗k(dyyy)

 .

Furthermore, for all (x1, . . . ,xp) ∈Xp set
(
ez
)

1(x1) ..= z(x1) and
(
ez
)

p(x1, . . . ,xp) ..= 0 for
p≥ 2.



150 Jansen, Kolesnikov: Activity expansions

Proposition 14.5 (Kirkwood-Salsburg equations for ρ) Assume that ρ(z) converges
absolutely for some activity function z (i. e., the series ρp(x1, . . . ,xp;z) are absolutely
convergent for all p ∈ N and all (x1, . . . ,xp) ∈ Xp), then

ρ(z) = Kzρ(z)+ ez, (14.2)

in the sense that ρp(x1, . . . ,xp;z) =
(
Kzρ(z) + ez

)
p(x1, . . . ,xp) for all p ∈ N and all

(x1, . . . ,xp) ∈ Xp.

Sketch of proof. Following the proof by Jansen in [4], one uses the structure of multi-
rooted graphs to show that ρ(z) is given (pointwise) by the limit of the Picard iterates of
the map a 7→ Kza+ ez, which by a slight abuse of notation we denote Kz + ez, starting in
ez (i. e. ρ(z) = limn→∞(Kz + ez)

nez, where (Kz + ez)
n denotes the n-fold composition of

Kz + ez with itself).

Furthermore, for the sign-flipped functions ρ̃k(z), a system of integral equations in
terms of the sign-flipped operator K̃z can be derived from the original Kirkwood-Salsburg
equations for ρk(z).

Proposition 14.6 (Kirkwood-Salsburg equations for ρ̃) Assume that ρ̃(z) converges
for some non-negative activity function z (i. e., the series ρ̃p(x1, . . . ,xp;z) are convergent
for all p ∈ N and all (x1, . . . ,xp) ∈ Xp), then

ρ̃(z) = K̃zρ̃(z)+ ez, (14.3)

in the sense that ρ̃p(x1, . . . ,xp;z) =
(
K̃zρ̃(z) + ez

)
p(x1, . . . ,xp) for all p ∈ N and all

(x1, . . . ,xp) ∈ Xp.

Sketch of proof. The statement follows directly from Proposition 14.5 by the definition
of ρ̃(z) and the alternating sign property from Corollary 14.2.

4 Main results

Now we are ready to state our main result – a condition both necessary and sufficient
for absolute convergence of ρ(z) – inspired by the extended Gruber-Kunz approach as
introduced by Bissacot et al. in [1].
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Theorem 14.7 Let z be a non-negative activity function. Then the following statements
are equivalent:

1) ρ̃(z) converges.

2) There exists a sequence of non-negative measurable functions a, such that

K̃za+ ez ≤ a. (14.4)

Sketch of proof. The implication 1)⇒ 2) is given by Proposition 14.6. For the converse,
we notice that ρ̃(z) is – if convergent – equal to the Neumann series ∑

∞
n=0 K̃n

z ez, since the
latter is also given by the unique limit of the Picard iterates of K̃z + ez starting in ez, i. e.,

∑
∞
n=0 K̃n

z ez = limn→∞(K̃z + ez)
nez = ρ̃(z). Following a proof by Fernández and Procacci

(see [1]) one can exploit certain positivity and monotonicity properties of K̃z to show that
2) implies the convergence of the Neumann series ∑

∞
n=0 K̃n

z ez.

Given Theorem 14.7, proving sufficient conditions for absolute convergence of the
activity expansions can be reduced to finding appropriate ansatz functions a satisfying
the system of Kirkwood-Salsburg inequalities (14.4). We demonstrate how this can be
done by considering the classical criteria:

1) Kotecký-Preiss criterion: First introduced by Kotecký and Preiss in [5] for abstract
polymers, the criterion was generalised for the setup of repulsive pair interactions
by Ueltschi in [9]; its generalised version can be formulated as: If there exists
µ : X→ [0,∞), such that for all x0 ∈ X

z(x0)e
∫
| f (x0,y)|µ(y)λ (dy) ≤ µ(x0), (14.5)

then the activity expansions ρ(z) converge absolutely.

In this case, choose a = (ap)p∈N to be given by ap(x1, . . . ,xp) ..= ∏
p
i=1 µ(xi) for

some µ ≥ 0 satisfying condition (14.5). Just by using the uniform bound |1+ f | ≤
1 (repulsive interactions) one immediately confirms that this choice of a satisfies
the inequalities (14.4).

2) Fernández-Procacci criterion: First introduced by Fernández and Procacci in [3]
for abstract polymers, the criterion was generalised for the setup of repulsive pair
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interactions by Jansen in [4]; its generalised version can be formulated as: If there
exists µ : X→ [0,∞), such that for all x0 ∈ X

z(x0)

1+
∞

∑
k=1

1
k!

∫
Xk

k

∏
j=1

∣∣ f (x0,y j)
∣∣ ∏

1≤i< j≤k

(
1+ f (yi,y j)

) k

∏
j=1

µ(y j)λ
⊗k(dyyy)


≤ µ(x0), (14.6)

then the activity expansions ρ(z) converge absolutely.

Here we define a=(ap)p∈N by ap(x1, . . . ,xp) ..=∏1≤i< j≤p
(
1+ f (xi,x j)

)
∏

p
i=1 µ(xi)

for some µ ≥ 0 satisfying condition (14.6). Again, the uniform bound |1+ f | ≤ 1
immediately yields the inequalities (14.4) for our choice of a.

But not only can the classical convergence criteria be reconstructed by the approach
given by Theorem 14.7, also new results improving on the known bounds for the con-
vergence radii can be proven by choosing “less multiplicative” ansatz functions (no-
tice that all the ansatz functions a considered are submultiplicative – in the sense that
ap+k(x1, . . . ,xp,xp+1, . . . ,xp+k)≤ ap(x1, . . . ,xp)ak(xp+1, . . . ,xp+k) for all p,k ∈N and all
(x1, . . . ,xp,xp+1, . . . ,xp+k) ∈ Xp+k). In the following we consider the setup of abstract
polymers, in which the two classical conditions above were first introduced.

Let X be a countable set (the set of polymers), let X be the powerset of X and let λ

simply be given by the counting measure. Moreover, let R ⊂ X×X be a symmetric and
reflexive relation. We write x � y for (x,y) ∈ R and x ∼ y for (x,y) /∈ R. We set Γ(x) ..=

{y ∈ X| y� x} for any x ∈ X and extend this notation to Γ(X) ..= ∪x∈X{y ∈ X| y� x} for
any X ⊂X. Notice that we do not require Γ(x) to be finite sets and that x ∈ Γ(x) for every
x ∈ X. Finally, we consider hard-core interactions given by f (x,y) ..=−1{x�y}.

In this setting we prove the following new sufficient condition:

Proposition 14.8 Let z be a non-negative activity function. If there exists µ :X→ [0,∞),
such that for all x0 ∈ X

z(x0)

1+ ∑
k≥1

∑
Y={y1 ,...,yk}yi�x0, yi∼y j

k

∏
i=1

µ(yi) ∏
w∈Γ(Y )

eµ(w)

≤ µ(x0) ∏
w∈Γ(x0)

eµ(w), (14.7)

then the activity expansions ρ(z) converge absolutely.
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Sketch of proof. One shows that – under the assumption of the the proposition – the
ansatz functions a = (ap)p∈N, ap : X→ [0,∞), given by setting

ap(x1, . . . ,xp) ..= ∏
1≤i< j≤p

1{xi∼x j}

p

∏
i=1

µ(xi) ∏
w∈Γ(X)

eµ(w)

for some µ satisfying (14.7), any p ∈N and every (x1, . . . ,xp) ∈Xp, satisfy the system of
Kirkwood-Salsburg inequalities (14.4).

Notice how the sufficient conditions are successively improved by having the corre-
sponding ansatz functions a capture more of the structure of the expansion from Propo-
sition 14.1 (for a modified activity µ ≥ z, where the inequality is understood to hold
pointwise). To illustrate the improvement we consider the following somewhat typical
case of an abstract polymer model given by subset polymers, i. e. the polymers are given
by finite subsets of the regular lattice Zd and the relation R on the set of polymers is given
by having non-empty intersection.

Example 14.9 Consider non-overlapping (hard-core-interactions) cubes on Z2 of side-
length 2 with translation-invariant activity z. The sufficient condition on z for the absolute
convergence of ρ(z) given by the Fernández-Procacci criterion provides the bound

z≤max
µ≥0

µ

1+9µ +16µ2 +8µ3 +µ4 ≈ 0.057271,

while our condition from Proposition 14.8 provides

z≤max
µ≥0

µe9µ

1+9e9µ µ +(6e15µ +8e16µ +2e17µ)µ2 +8e21µ µ3 + e25µ µ4 ≈ 0.060833.

This corresponds to an improvement of approximately 6 percent.
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Phase separation and sharp
large deviations

Ostap Hryniv* and Clare Wallace†

Abstract. Using a refined analysis of phase boundaries, we derive

sharp asymptotics of the large deviation probabilities for the total mag-

netisation of a low-temperature Ising model in two dimensions.

1 Introduction

The phenomenon of “phase separation” has been at the heart of the theory of phase tran-
sitions in low-temperature lattice systems since its discovery by Minlos and Sinai [3, 4]
in the late 1960s. Under suitable conditions, it allows the description of the canonical
ensembles of such models in terms of (families of) large contours, or “phase boundaries”,
and, as a result, enables the study the limiting behaviour of the corresponding probabil-
ity distributions and their partition functions. This approach is especially successful in
two dimensions, as the resulting phase boundaries are one-dimensional contours, whose
statistical behaviour is well understood.

When combined with a careful analysis of the related variational problem, these re-
sults can provide a detailed description of the typical configurations in such ensembles.
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In the setting of the low-temperature Ising model on a two-dimensional torus, the fa-
mous Dobrushin-Kotecký-Shlosman theorem [2] rigorously justifies the so-called Wulff
construction and approximates the rescaled phase boundary by that of the Wulff shape,
a two-dimensional region enclosed by a curve with the smallest surface energy. In turn,
this determines the asymptotics of the logarithm of large deviation probabilities for the
total magnetisation of the model.

To derive a sharp large deviation principle for the total spin, one needs to carefully anal-
yse the shape dependence of the corresponding distribution. We illustrate the approach in
the case of a low-temperature Ising model in two dimensions.

2 Model

For integer N, M ≥ 1 consider a finite box

VNM
..=
{

x = (x1,x2) ∈ (Z2)∗ : |x1| ≤ N, |x2| ≤M
}

of the (dual) two-dimensional integer lattice (Z2)∗ ..= {x=(x1,x2) : x1+1/2, x2+1/2∈Z}.
To each site x ∈ VNM associate a spin σx ∈ {−1,+1} and write σ = (σx, x ∈ VNM) for a
configuration in ΩNM

..= {−1,+1}VNM . Write x ∼ y if sites x and y are neighbours in
(Z2)∗, i. e., |x− y| ..= |x1− y1|+ |x2− y2|= 1. For a subset V ⊂ (Z2)∗, use ∂V to denote
the external boundary of V , namely, the set {y ∈ (Z2)∗ \V : ∃x ∈V with x∼ y}.

Given an angle ϕ ∈ (−π/2,π/2), let σ̄ =
(
σ̄x, x ∈ (Z2)∗

)
be the two-component bound-

ary conditions, where σ̄x = +1 iff x = (x1,x2) satisfies x2 ≥ x1 tanϕ for x1 > 0 or
x2 > x1 tanϕ for x1 < 0; otherwise, put σ̄x = −1. Notice that in σ̄ the pairs of sites
which are centrally symmetric with respect to the origin (0,0) have spins of the opposite
sign, σ̄−x ≡−σ̄x for all x.

The Gibbs distribution in ΩNM with boundary conditions σ̄ is defined via

P σ̄
VNM

(σ) ..=
(
Z(VNM, σ̄)

)−1 exp
{
−βH (σ |σ̄)

}
, σ ∈ΩNM , (15.1)

where the partition function is

Z(VNM, σ̄) = ∑
σ∈ΩNM

exp
{
−βH (σ |σ̄)

}
(15.2)
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and the (joint) energy is given by

H (σ |σ̄) =−1
2 ∑
{x∼y}⊂VNM

σxσy− ∑
x∼y;x∈VNM ,y∈∂VNM

σxσ̄y , (15.3)

where the first sum runs over all pairs of neighbouring sites in VNM , while the second sum
is restricted to boundary pairs (x,y) of neighbouring sites with x ∈VNM and y ∈ ∂VNM . In
what follows we always assume that the temperature 1/β > 0 is sufficiently low.

Of key interest is the distribution of the total magnetisation SVNM
..= ∑x∈VNM σx in large

volumes, namely, the limiting behaviour of the probability

P σ̄
VNM

(bN) ..= P σ̄
VNM

(
{σ ∈ΩNM : SVNM = bN}

)
as N→ ∞, for a suitable sequence of integer values bN ; of course, for the last probability
to be positive bN must be of the same parity as the number |VNM| of sites in VNM , i. e.,
even, and satisfy the a priori bound |bN | ≤ |VNM|. In what follows we assume that bN

satisfies these constraints.

For a given ϕ ∈ (−π/2,π/2), assume additionally that (2N)−2bN→ b as N→∞ with the
limiting value satisfying |b| < b(ϕ), for a suitably chosen constant b(ϕ) > 0, see below.
Then the Dobrushin-Kotecký-Shlosman theory [2] implies that for some α ∈ (0,1)

lnP σ̄
VNM

(bN) =−2βNW (ϕ,b)+O(Nα) as N→ ∞ , (15.4)

provided β ≥ β0 with suitably chosen β0 > 0, and the aspect ratio M/N is uniformly
bounded from below by a positive constant depending on ϕ . Here ln denotes the nat-
ural logarithm, and the rate functional W (ϕ,b) can be expressed in terms of the surface
energy of the Wulff profile, a unique solution to the related variational problem, see be-
low.

Our aim here is to derive a sharp asymptotic of the probability P σ̄
VNM

(bN), equivalently,
to improve the expansion in (15.4) up to the zero order term. To state our main result, we
need to introduce some additional concepts.

Similarly to the Gibbs distribution (15.1)–(15.3) with two-component boundary con-
ditions σ̄ , consider its analogue P+

VNM
(σ), σ ∈ΩNM , where σ̄ is replaced by the constant

“plus” configuration σ+ =
(
σ+

x ,x ∈ (Z2)∗
)

with σ+
x = 1 for all x. The corresponding
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energy is defined via

H (σ |+) =−1
2 ∑
{x∼y}⊂VNM

σxσy− ∑
x∼y;x∈VNM ,y∈∂VNM

σxσ
+
y , (15.5)

and the partition function is

Z(VNM,+) = ∑
σ∈ΩNM

exp
{
−βH (σ |+)

}
.

Then the surface tension in direction of the normal nϕ to the line x2 = x1 tanϕ is

τ(nϕ) ..=− lim
N→∞

lim
M→∞

cosϕ

2βN
ln

Z(VNM, σ̄)

Z(VNM,+)
. (15.6)

Informally, τ(nϕ) is the price (per unit length) of the presence of the phase boundary
induced by the two-component boundary conditions σ̄ , relative to the constant “plus”
boundary conditions σ+. As shown in [2], τ(nϕ) also arises in the simultaneous limit
N→ ∞ and M→ ∞ in (15.6) along a sequence of suitably shaped volumes; in particular,
this holds for rectangular volumes VNM with uniform condition M ≥ (1+ | tanϕ|)N.

The related Wulff variational problem is to minimise the value of the Wulff functional,

W (γ) ..=
∫

γ

τ(ns)ds , (15.7)

in the class of all rectifiable curves γ enclosing area |V (γ)| ≥ 1. Its solution W = Wβ ,
known as the Wulff shape, is unique (up to translations), and can be constructed by a
simple geometric procedure [2, 5]. The boundary of the Wulff shape W is strictly convex
for all β ≥ β0 [2].

The rate functional W (ϕ,b) in (15.4) can be defined in terms of the surface energy of
a suitable part of the Wulff shape boundary [1]. Without loss of generality, let b < 0. By
strict convexity of the Wulff shape Wβ there is a unique position of a straight line at angle
ϕ to the horizontal intersecting Wβ , such that the area a of the top part and the horizontal
projection w of its straight boundary, see Figure 15.1, satisfy the relation

a = w2|b|/
(
2m(β )

)
, (15.8)

where the spontaneous magnetisation m(β ) is positive for all β large enough. Then,
rescaling the resulting shape (see the right part of Fig. 15.1) so that the horizontal projec-
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ϕ

a

w γ0

γ1

Figure 15.1: Construction of the Wulff profile corresponding to W (ϕ,b).

tion of γ0 equals one, we have

W (ϕ,b) = W (γ1)−W (γ0) ,

recall (15.7). The strict convexity of the surface tension τ(nϕ) implies that W (ϕ,b)≥ 0.
Let a(ϕ) be the value of the area corresponding to the straight line at angle ϕ to the

horizontal passing through the right-most point of Wβ (the dashed line on the left of
Fig. 15.1); write w(ϕ) for the horizontal projection of the resulting shape. If |a|< a(ϕ),
the tangent at every point of the boundary γ1 is non-vertical. As shown in [1], for such
a the fluctuations of the phase boundary of the Ising model (15.1)–(15.3) around the
suitably scaled curve γ1 are asymptotically Gaussian.

The maximal value b(ϕ), determining the validity of (15.4), is linked to a(ϕ) via (15.8)
with w = w(ϕ). In what follows we assume that the sequence bN of even numbers is ϕ-
admissible in that there is ε > 0 such that for all N we have (2N)−2|bN |< b(ϕ)− ε .

Theorem 15.1 Let |ϕ| < π/2 and consider a ϕ-admissible sequence bN with b =

limN→∞(2N)−2bN . Fix a sequence of volumes VNM such that M = MN with M/N→ c > 0
as N→∞, for large enough c = c(ϕ)> 0. Then there exist β0 > 0 and a positive constant
C =C(ϕ,b) such that for β ≥ β0,

P σ̄
VNM

(bN) =
C(ϕ,b)√

2πN3
exp
{
−2βNW (ϕ,b)

}(
1+o(1)

)
as N→ ∞ . (15.9)

Remark 15.2 The asymptotic (15.9) improves the error in (15.4) to 3/2 lnN + const. The
constant C(ϕ,b) can be expressed in terms of the covariances of the related tilted distri-
butions.
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3 Sketch of the proof

It is convenient to represent each configuration σ ∈ ΩNM in terms of contours, the con-
nected components of edges of Z2 separating neighbouring spins of different values, see
Figure 15.2. By the choice of the values N and M, one of the contours of σ ∈ ΩNM is
an open polygon S connecting the vertical sides of VNM (and called the phase boundary),
while all other contours, if any, are closed polygons. Let GNM be the collection of all
possible phase boundaries of configurations σ ∈ΩNM; write S∼ σ (or σ ∼ S) if S is the
phase boundary of σ . For S ∈ GNM , write {S} for the event {σ ∈ΩNM : σ ∼ S}.

To derive the sharp asymptotics (15.9), we first use the formula of total probability,

P σ̄
VNM

(SVNM = bN) = ∑
S∈GNM

P σ̄
VNM

(
SVNM = bN

∣∣{S})P σ̄
VNM

(
{S}
)
, (15.10)

study the S-dependence of the conditional probability in (15.10) and then re-sum. It is
crucial that for typical phase boundaries S decomposing VNM into two parts with fixed
cardinality ratio, the conditional probability in (15.10) regularly depends on S. In the
remainder of this section we present the main ingredients of the proof; the complete
argument will appear elsewhere.

Step I. For σ ∈ΩNM with phase boundary S= S(σ) ∈ GNM write G (σ) for the collection
of all other (closed, if any) contours in σ . Then the probabilities P σ̄

VNM
(σ) in (15.1) are

proportional to exp
{
−2β

(
|S|+∑Γ∈G (σ) |Γ|

)}
, where |Γ| denotes the length (number of

edges) of polygon Γ.

To study the behaviour of the total magnetisation one uses the tilted distribution

P σ̄
VNM ,h(σ) =

(
Z(VNM,h, σ̄)

)−1 exp
{
−β
(
2|S|+2 ∑

Γ∈G (σ)

|Γ|−hSVNM (σ)
)}

, (15.11)

with suitably defined normalisation Z(VNM,h, σ̄). This distribution, however, lacks the
necessary analyticity properties, and, as in [2], one needs to restrict attention to configu-
rations with cutoffs; subsequently, following the approach of [2, Chap. 3], one can relax
the cutoff constraint for the events of interest.

As in [2], for ωN > 0 we let

Ω
ωN
NM

..=
{

σ ∈ΩNM : ∀Γ ∈ G (σ),diamΓ≤ ωN
}
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Figure 15.2: Contour representation of the Ising model: the open contour is the phase
boundary S corresponding to the bounday conditions along the dotted line.
Left picture: a configuration with its contours. Right picture: ∆+(S) is the
collection of plus spins along S, ∆−(S) is the collection of minus spins, open
circles form V+(S) and filled circles form V−(S).

be the configurations with cutoff ωN , and for each σ ∈Ω
ωN
NM put

P σ̄
VNM ,h,ωN

(σ) =
(
Z(VNM,h, σ̄ ,ωN)

)−1 exp
{
−β

(
2|S|+2 ∑

Γ∈G (σ)

|Γ|−hSVNM (σ)
)}

,

(15.12)
with suitably defined normalisation Z(VNM,h, σ̄ ,ωN). As shown in [2, Chap. 3], if ωN ≥
K ln |VNM| with sufficiently large constant K, and if |h|ωN < c < 1, the limiting properties
of the probability distributions (15.11) and (15.12) are similar. At the same time, for the
partition function Z(VNM,h, σ̄ ,ωN) the usual low-temperature cluster expansion holds,
provided complex h satisfies |h|ωN < c < 1.

Step II. We then adapt the argument of [2, Chap. 3] to study the conditional distribution
P σ̄

VNM ,h,ωN

(
σ
∣∣{S}), generated by (15.12). Let

M(S)≡Mσ̄
VNM ,h,ωN

(S) ..= Eσ̄
VNM ,h,ωN

(
SVNM |{S}

)
(15.13)

be the expectation of the total spin SVNM with respect to P σ̄
VNM ,h,ωN

(
σ
∣∣{S}). For (even)

integer b denote

qSNM(b) ..=
2(

2π|VNM|d(β )
)1/2

exp

{
−
(
b−M(S)

)2

2|VNM|d(β )

}
, (15.14)
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where d(β ) > 0 is the specific variance of a single spin in the pure plus phase, i. e., the
limit of the Gibbs distribution P+

VNM
(σ) with plus boundary conditions.

The following analogue of Theorem 3.18 in [2] holds.

Proposition 15.3 Fix a sequence of volumes VNM as in Theorem 15.1. Let h = hN and
ωN ≥ K ln |VNM|, with K = K(β ) > 0 large enough, be such that |h|ωN < c < 1. Then
there exists β0 > 0 such that for all β ≥ β0 we have

lim
N→∞

P σ̄
VNM ,hN ,ωN

(
SVNM = b

∣∣{S})
qSNM(b)

= 1 (15.15)

for all even b satisfying |b−M(S)| ≤ K′
(
|VNM|d(β )

)1/2 with some K′ < ∞.

Remark 15.4 As shown in [2, Theorem 3.19], in the case hN ≡ 0 the Gaussian approxi-
mation (15.15) can be extended to all even bN satisfying

lim
N→∞

|bN−M(S)|
|VNM|2/3

= 0,

where M(S) is defined via (15.13) with h = 0.

The following analogue of Proposition 3.26 in [2] is also true.

Proposition 15.5 Let the cutoff levels ωN satisfy limN→∞ ωN/(ln |VNM|)3 = 0. For posi-
tive constants C and c, define

αNM(x) ..=

C exp{−cx2/|VNM|}, if |x| ≤ |VNM|/ωN ,

C exp{−c|x|/ωN}, if |x|> |VNM|/ωN .

Then there exist β0 large enough, positive constants C =C(β ) and c = c(β ) such that

P σ̄
VNM ,0,ωN

(
SVNM = b

∣∣{S})≤ αNM
(
b−M(S)

)
(15.16)

for all b, where β > β0 and M(S) is defined via (15.13) with h = 0.

As a result, the probability distribution P σ̄
VNM ,0,ωN

(
SVNM = b

∣∣{S}) is well concentrated
around the corresponding average M(S).

Step III. We next describe dependence of the average M(S) on the shape of the phase
boundary S. Let ∆+(S) (respectively, ∆−(S)) be the set of all x ∈ VNM such that σx ≡ 1
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(respectively, σx ≡ −1) for all configurations σ ∈ ΩNM compatible with S, i. e., σ ∼ S.
Then the complement VNM \

(
∆+(S)∪∆−(S)

)
decomposes into two regions, one of which

is surrounded by only plus spins for all σ ∼ S (denoted V+ = V+(S)) while the other is
surrounded by only minus spins for all σ ∼ S (and denoted V− = V−(S)), see Fig. 15.2.
Then

M(S) = |∆+(S)|− |∆−(S)|+E+
V+,h,ωN

(SV+)+E−V−,h,ωN
(SV−),

with obvious interpretation of the last two averages. It is natural to expect that for typical
S and large VNM we have

E+
V+,h,ωN

(SV+)≈ m(β )|V+|, E−V−,h,ωN
(SV−)≈−m(β )|V−|,

where m(β ) is the spontaneous magnetisation, so that

M(S)≈M∗(S) ..= |∆+(S)|− |∆−(S)|+m(β )
(
|V+|− |V−|

)
. (15.17)

A naı̈ve application of the shape dependence results from [2, Chap. 3] suggests that

|M(S)−M∗(S)| ≤ K
(
|∆+(S)|+ |∆−(S)|+N +M

)
,

with the right-hand side value of order N for typical S. At the same time, for such S the
difference δ−(S) ..= |∆+(S)|− |∆−(S)| has symmetric distribution with zero mean, and it
is intuitively “obvious” that the typical values of this difference are much smaller than

δ+(S) ..= |∆+(S)|+ |∆−(S)| ≤ 4|S| .

In fact, it is not difficult to show that for some α ∈ (1/2,1) the rescaled difference
δ−(S)N−α has exponential tails. By applying a suitably adjusted version of the clus-
ter expansions used in [1], one can verify that a similar property holds for M(S)−M∗(S),
and therefore

M(S) = m(β )
(
|V+|− |V−|

)
+O(Nα) (15.18)

for typical S ∈ GNM .

Step IV. Let q(S) ..= (|V+(S)|− |V−(S)|)/2 be the area defect created by the phase bound-
ary S, so that (15.18) becomes M(S)≈ 2m(β )q(S). Using this approximation in (15.14),
it is easy to see that the simplified version of the local CLT asymptotics (15.15) is valid for
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all b satisfying |b−2m(β )q(S)|� |VNM|2/3. When combined with the uniform estimates
(15.16) for the remaining values of b, one can see that the sum in (15.10) is essentially
reduced to the phase boundaries S satisfying q(S) = q with∣∣∣∣q− bN

2m(β )

∣∣∣∣� N4/3 . (15.19)

On the other hand, the area defect q(S) has standard deviation of order O(N3/2) and
therefore the probability of the event {q(S) = q} is almost constant for all q in (15.19).
As a result, the sum in (15.10) is well approximated by the value

P σ̄
VNM

(
q(S) = bN/2m(β )

)
,

whose asymptotic can be derived from the results in [1]. The target relation (15.9) fol-
lows.
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[2] Dobrushin, R., Kotecký, R., Shlosman, S.: Wulff construction: A global shape from

local interaction, Translations of Mathematical Monographs 104, American Math-
ematical Society, Providence, RI (1992).

[3] Minlos, R. A., Sinaı̆, J. G.: The phenomenon of “separation of phases” at low

temperatures in certain lattice models of a gas. I, Mat. Sb. (N.S.) 73(115), 375–448
(1967).

[4] Minlos, R. A., Sinaı̆, J. G.: The phenomenon of “separation of phases” at low

temperatures in certain lattice models of a gas. II, Trudy Moskov. Mat. Obšč. 19,
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Numerical study for the
phase transition of the
area-interaction model

Pierre Houdebert*

Abstract. In this paper we present numerical analysis of the phase

transition of the area-interaction model, which is a standard model of

Statistical Mechanics. The theoretical results are based on a recent pa-

per [4] which provides a complete phase diagram except on a bounded

(implicit) domain. With our numerical analysis we give an approxima-

tive explicit description of this domain. Furthermore our numerical re-

sults confirm the still unproven conjecture stating that non-uniqueness

holds if and only if z = β is large enough, with a value of the threshold

obtained from the simulation of βc ' 1.726.

1 Introduction

The finite volume area-interaction measure (also called Widom-Rowlinson measure) on
a bounded window Λ ⊂ Rd is defined as modification of the stationary Poisson Point
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process of intensity z. Its unnormalised density is given by exp
(
−βL d

(
B1(ω)

))
where

B1(ω) is the union of the unit balls centred at each point of the configuration ω and L d

is the Lebesgue measure on Rd . The parameter β ≥ 0 is called inverse temperature and
the interaction is getting more and more attractive as β is large. The parameter z, called
activity, is related to the intensity of the model.

In the infinite volume regime a global density is senseless and area-interaction mea-
sures are defined through equations specifying their conditional laws. But a solution of
these equations can heuristically be seen as the limit of a finite volume area-interaction
measure on increasing windows, with an additional boundary condition. In this paper
we are interested in the uniqueness/non-uniqueness (called phase transition) of area-
interaction measures for given parameters z and β . Earlier work of Ruelle [15] proved
that in the symmetric case z = β , phase transition occurs when z = β is large enough. A
modern proof of this result, based on percolation tools, was done in [1]. Until recently
almost nothing was proven for the case z 6= β , and it is conjectured that phase transi-
tion (i. e. non-uniqueness) occurs if and only if z = β large enough. This conjecture is
based on similar result for the Ising model, see [6]. But to the best of our knowledge, no
numerical study has been done in order to observe if this conjecture is true.

Recently it was proven in [4] that uniqueness of the area-interaction measure is valid
for z< z̃a

c(β ,1), where β 7→ z̃a
c(β ,1) is a non-decreasing function which is the percolation

threshold corresponding to the area-interaction model. Furthermore this function satisfies
z̃a

c(β ,1) ≡ β for β large enough. With some duality property of the model, it provides
an almost complete picture of the phase diagram of the model. But on a bounded region
of the parameters (z,β ) it is still not proved whether there is phase transition or not. We
refer to this region as the unknown region. This result is rigorously stated in Theorem 16.6
and a sketch of the proof is provided. Finally the theoretical phase transition diagram is
provided in Figure 16.1.

In the present paper we provide a numerical study of the area-interaction model in
order to experimentally plot the curve β 7→ z̃a

c(β ,1) to observe the region which is not
covered by Theorem 16.6; we validate experimentally the conjecture and find an approx-
imative value of the threshold. Our simulations are done in dimension d = 2 using a
standard birth and death MCMC algorithm, as presented in [11]. To implement it we
used the so-called Fortuin-Kasteleyn representation of the area-interaction model, which
provides a construction of the model using the generalised Continuum Random Cluster
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Model (gRCM), which was recently introduced in [9]. The definition of the gRCM and
the Fortuin-Kasteleyn representation is done at the beginning of Section 4. From our
numerical study we compute the value of the percolation threshold z̃a

c(β ,1) for several
values β and provide a plot of the function β 7→ z̃a

c(β ,1), see Figure 16.2 and Figure
16.3. From this we observe that the unknown region is really small. Furthermore from
our simulation we can validate the conjecture, see Figure 16.4, with an approximative
threshold βc ' 1.726. This value matches with numerical studies that have been done in
the symmetric case, see [7, 10].

2 Preliminaries

Let us consider the state space Rd . Let Ω be the set of locally finite configurations ω

on Rd . This means that #(ω ∩Λ) < ∞ for every bounded Borel set Λ of Rd , with #ω

being the cardinality of the configuration ω . We write ωΛ as a shorthand for ω ∩Λ. To
a configuration ω ∈ Ω we associate the germ-grain structure Br(ω) ..=

⋃
x∈ω

Br(x), where

Br(x) is the closed ball centred at x with radius r > 0. Let πz be the distribution on Ω

of the standard homogeneous Poisson point process with intensity z > 0. For Λ ⊂ Rd

bounded, we denote by π
z
Λ

the restriction of πz on Λ.

2.1 Area-interaction measures

The area-interaction measures – also called Widom-Rowlinson measures – are defined
through the standard Gibbs DLR formalism prescribing the conditional probabilities. For
a bounded Λ⊂Rd , we define the Λ-Hamiltonian HΛ(ω) ..=L d

(
B1(ωΛ)\B1(ωΛc)

)
. The

area specification on a bounded Λ⊆ Rd with boundary condition ωΛc is defined by

Pz,β
Λ,ωΛc (dω

′
Λ)

..=
e−βHΛ(ω

′
Λ

ωΛc )

Zarea
z,β ,Λ,ωΛc

π
z
Λ
(dω

′
Λ)

with the standard partition function Zarea
z,β ,Λ,ωΛc

..=
∫

Ω
e−βHΛ(ω

′
Λ

ωΛc )π
z
Λ
(dω ′

Λ
) which is al-

ways non-degenerate (i. e. 0 < Zarea
z,β ,Λ,ωΛc

<+∞). Let us point out that for β = 0, we have

Pz,β
Λ,ωΛc ≡ π

z
Λ

.
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Definition 16.1 A probability measure P on Ω is an area-interaction measure of activity
z and inverse temperature β , written P ∈ G area

z,β , if for every bounded Borel set Λ ⊂ Rd

and every bounded measurable function f ,∫
Ω

f dP =
∫

Ω

∫
Ω

f (ω ′ΛωΛc)Pz,β
Λ,ωΛc (dω

′
Λ)P(dω). (16.1)

Equations (16.1), for all bounded Λ, are called DLR equations, after Dobrushin, Lanford
and Ruelle. Those equations prescribe the conditional probabilities of a Gibbs measure.

Heuristically a solution of the DLR equations can be seen as the limit of Pz,β
Λn,ωΛc

n
for

an increasing sequence Λn and some boundary condition ω . There is phase transition,
i. e. non-uniqueness, if the limit depends on the boundary condition ω .

2.2 Percolation

The theory of percolation studies the connectivity in random structures and is a crucial
tool to prove phase transition of the area-interaction measure.

Definition 16.2 Let r > 0. A configuration ω is said to r-percolate if the germ-
grain structure Br(ω) has at least one unbounded connected component. Further-
more a probability measure P on Ω is said to r-percolate (resp. to not percolate) if
P
(
{ω r-percolates}

)
= 1 (resp. P

(
{ω r-percolates}

)
= 0).

Thanks to standard monotonicity arguments applied to the Gibbs specification we have:

Proposition 16.3 For all β > 0 and r > 0, there exists 0 < z̃a
c(β ,r)< ∞ such that

� for all z < z̃a
c(β ,r), every area-interaction measure P ∈ G area

z,β almost never r-
percolates, i.e P

(
{ω r-percolates}

)
= 0;

� for all z > z̃a
c(β ,r), every area-interaction measures P ∈ G area

z,β almost surely r-
percolates, i.e P

(
{ω r-percolates}

)
= 1.

A proof of this result is provided in [4, Prop. 2.7]. In the general case the only infor-
mation known about z̃a

c(β ,r) is the following bound coming from stochastic domination:

z̃a
c(0,r)≤ z̃a

c(β ,r)≤ z̃a
c(0,r)exp(βvd),
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where z̃a
c(0,r) is the percolation threshold of the Poisson Boolean model of constant radii

r. Experimental studies showed that in dimension d = 2 we have z̃a
c(0,r)' 0.359072 · r2,

see [12]. To the best of our knowledge there exists no approximation for cases β 6= 0.

3 Theoretical results

The first fundamental question in Gibbs point process theory is the existence of at least
one probability measure satisfying the DLR equations (16.1). This is an interesting
and non-trivial question treated for several kinds of interactions, see e. g. [3, 2, 5, 13].
Since the area-interaction process has a finite-range interaction, existence is long proved,
see [14].

Proposition 16.4 For all z,β ≥ 0, the set G area
z,β of area-interaction measures is non-empty.

The second question concerning the area-interaction process is its uniqueness/non-
uniqueness, known as phase transition. It is conjectured that non-uniqueness happens
if and only if z = β is large enough.

Conjecture 16.5 There exists 0 < βc < ∞ such that phase transition occurs for the area-
interaction model if and only if z = β > βc.

This conjecture is motivated by a similar result proved for the lattice Ising model, see
for instance [6, Thm. 3.28 & Thm. 3.46]. Although this conjecture is still open, the
following theorem based on our recent work [4] provides an almost complete picture of
the phase diagram, see Figure 16.1.

Theorem 16.6
1) There exists β1 < ∞ such that for z = β > β1, there is non-uniqueness of the area-

interaction measure;

2) for z,β such that z < z̃a
c(β ,1), there is uniqueness of the area-interaction measure.

Using a duality property, we obtain the same for β < z̃a
c(z,1);

3) there exists β2 ∈ [β1,∞[ such that z̃a
c(β ,1) = β for β > β2. This partially proves

the conjecture.
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Figure 16.1: Theoretical uniqueness/non-uniqueness regimes for the area-interaction
measures with parameters z,β .

Sketch of the proof. The first point was initially proved in 1971 by Ruelle (see [15]) us-
ing Peierls argument. Then a modern proof based on a Fortuin-Kasteleyn representa-
tion satisfied by the area-interaction model was provided in [1]. As a byproduct of their
construction, the authors proved that z̃a

c(β ,1/2) = β for β > β1. The second point is a
generalisation of the disagreement percolation construction introduced in [8]. The idea
of disagreement percolation is to compare the Gibbs specification Pz,β

Λ,ωΛc with the same
parameters z,β but with two different boundary conditions ω1

Λc ,ω2
Λc , using percolation

ideas. The duality property is a consequence of the representation using the Widom-
Rowlinson model, and is stated in [4, Proposition 2.5]. The third point is proved in [4,
Section 4.4.1] using the Fortuin-Kasteleyn representation introduced in [1] and an elegant
stochastic domination argument which, using the fact that as soon as z̃a

c(β ,1/2) = β for β

large, one gets that z̃a
c(β ,1) = β for β even larger.

4 Numerical study of the phase diagram

In this section we will use numerical approximation, in dimension d = 2, in order to

1) experimentally plot the curve β 7→ z̃a
c(β ,1) to see the region which is not covered

by Theorem 16.6;
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2) validate experimentally the conjecture and find an approximative value of the
threshold β1.

To do our numerical study we will use a birth and death MCMC algorithm to sample
the area-interaction process. The general algorithm we used for birth and death MCMC
can be found in [11]. One could have considered using an exact simulation technique, as
implemented in [7], but the computation of the percolation threshold requires to sample
the model in a large window, which would be extremely time consuming using exact
simulation techniques. We chose to sample the area-interaction model from the Fortuin-
Kasteleyn representation using the gRCM, introduced in [9].

Definition 16.7 On a bounded window Λ, the generalised Continuum Random Cluster
Model with activity parameter ρ ≥ 0 and α1,α2 ≥ 0 such that α1 +α2 = 1 is defined as
PgRCM

Λ
(dω)∼∏C

(
α#C

1 +α#C
2

)
π

ρ

Λ
(dω), where the product is over the clusters of B1/2(ω).

Proposition 16.8 Considering a configuration ω ∼ PgRCM
Λ

and removing each cluster C

of B1/2(ω) with probability α#C
2 /(α#C

1 +α#C
2 ), one obtains a configuration sampled from

the area-interaction measure Parea
Λ

(dω) ∼ exp(−β |B1(ω)∩Λ|)πz
Λ
(dω) with parameters

z = α1ρ and β = α2ρ .

This representation gives a good feeling for the third point of Theorem 16.6. Indeed, a
large cluster will be removed (resp. kept) with very high probability when α1 < α2 (resp.
α1 > α2). But percolation is highly dependent of the status of the large clusters.

In our numerical study we sample area-interaction measures in a window Λ= [0,100]2,
using a MCMC algorithm sampling the gRCM and then thinning the configuration ac-
cording to the previous proposition. We observe the experimental intensity and whereas
the center of the window is connected to its boundary in B1(ω). For each pair of parame-
ters (z,β ), we sampled the model 1000 times in order to obtain an experimental intensity
and an experimental probability of percolation. The C++ code used is accessible on
GitHub.1

In order to determine z̃a
c(β ,1), the percolation threshold of the model for a given β ,

we arbitrarily decide that the percolation threshold is the first observed value of z such
that the probability of the center of the box [0,100]2 to be connected to the boundary is
larger than 0.01. Indeed, theoretically, for the infinite volume model the threshold is the
first value of z such that the probability of the origin (or any given point) belongs to the

1https://github.com/PierreHoudebert/area perco multithread
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Figure 16.2: Percolation probability as a function of the activity z. The value correspond-
ing to the percolation threshold z̃a

c(β ,1) is the plain square.

infinite connected component is positive. But for the finite volume model this probability
is always positive.

For some values of β the percolation probability, as a function of z, is displayed in Fig-
ure 16.2. The obtained values of the percolation threshold z̃a

c(β ,1) and the corresponding
graph is displayed in Figure 16.3.

Considering the conjecture, it is known that phase transition occurs at a given pair
(z0,β0) if the intensity, as a function of z for β0 fixed, is discontinuous in z0. This is

β z̃a
c(β ,1)

0.3 0.43
0.5 0.55
0.7 0.7
1.0 0.97
1.3 1.27
1.5 1.48
1.6 1.588
1.7 1.697
1.8 1.8
2.0 2

Figure 16.3: Obtained values of the percolation threshold, and corresponding approxima-
tion curve.
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Figure 16.4: Experimental intensity as a function of z, for several values of β .

proven for the Ising model, see for instance [6], and could be proven similarly for the
area-interaction model.

As before for a given pair of parameters (z,β ), we sample the model 1000 times on the
bounded window Λ = [0,100]2, and observed the experimental intensity obtained. For
given values of β , we provide the graph of the intensity as a function of z in Figure 16.4.
We observe from Figure 16.4 that the experimental intensity is indeed discontinuous only
for z = β larger than some value βc. This amounts to saying that phase transition occurs
only for z = β , as conjectured. However from the figure it is not clear what is the exact
value of the threshold βc, but it seems to be approximately βc ' 1.726, which is coherent
with the value obtained in [10] where the authors considered only the symmetric case.

Bibliography
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Zero-range hamiltonians for
three quantum particles

Rodolfo Figari* and Alessandro Teta†

Abstract. Characterisation of the confined states of quantum systems

made of many particles interacting via short range forces was the main

goal for theoretical physicists investigating the structure of nuclei in the

early years of Quantum Mechanics. A rigorous formulation of the prob-

lem was given at the beginning of the sixties by the Russian school of

mathematical physics. The analysis of the three-body problem already

revealed intriguing pathologies opening at the same time promising

prospects for the future. We summarise the history and recent attempts

of this line of research.

1 Introduction

The three quantum particle problem is a line of research that Robert A. Minlos has been
following for most of his scientific career. Together with Berezin and Faddeev he framed
the problem of zero-range interactions in Quantum Mechanics inside the theory of self-
adjoint extensions of symmetric operators. He was able to formulate in a rigorous way the
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unboundedness problem for three-particle zero-range Hamiltonians and he also suggested
possible ways out of such a difficulty.

Following his suggestions, resumed later by Albeverio, Hoegh-Krohn and Wu [2], we
attempted to work out partial solutions to the problem. It is worth mentioning that nowa-
days the interest in the problem has shifted toward many other research fields, e. g. it is
actively investigated by physicists and applied mathematicians working in low tempera-
ture physics of quantum many particle systems (see e. g. [7] and reference therein). We
want first to give an outline of the way zero-range interactions and the quantum three-
body problem appeared in the physical literature.

Heuristically, point interactions are quantum interactions supported on points or “thin
sets” (e. g. low dimensional hypersurfaces). They are also called zero-range interactions
or contact interactions. They are used whenever the range of interparticle interactions is
much shorter than other relevant length scales. They have the advantage of permitting
better insight allowing for “explicit computations”: for this reason they are used in the
mathematical modeling of many natural phenomena.

Let M be a submanifold of Rd of dimension s < d. Consider the operator

H0,0
..=−∆ �C∞

0
(
Rd \M

)
As a restriction of a self-adjoint operator H0,0 is symmetric but not self-adjoint. In fact,
denoting with ( · , ·) the inner product in L2(Rd),

D(H∗0,0) =
{

ψ ∈ L2(Rd)
∣∣∣ |(ψ,−∆φ)|<C‖φ‖ ∀φ ∈C∞

0 (Rd \M )
}

includes any function in D(−∆) = H2(Rd) as well as any function ψ ∈ L2(Rd) such that

−∆ψ = ξ +T, ξ ∈ L2(Rd), T ∈ D′(Rd) with suppT ⊆M

where D′(Rd) is the vector space of distributions in Rd .

Definition 17.1 Any (non-trivial) self-adjoint extension of H0,0 (if any) will be denoted
as a Hamiltonian with zero-range interaction on M .

The simplest case is when M = y≡ {y1, . . . ,yN} ∈RNd , i. e. a discrete set of points of
Rd .
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Take ψ = Gz( · − yi) where Gz = F−1(k2− z)−1 for any z ∈ C \R+. It belongs to
L2(Rd) for d = 1,2,3 and

(
Gz( · − yi),−∆xφ

)
=
(
[−∆x− z]Gz( · − yi),φ

)
+
(
zGz( · − yi),φ

)
=
(
zGz( · − yi),φ

)
for all φ ∈C∞

0
(
Rd \{y1, . . . ,yN}

)
, which means that Gz ∈D(H∗0,0) (but it does not belong

to H2(Rd)) and that Gz( · − yi) is an eigenvector of H∗0,0 relative to the eigenvalue z. The
same result holds true for any partial derivative of Gz belonging to L2(Rd) (which is true
only for the first derivatives of Gz in d = 1).

It is possible to classify the entire family of self-adjoint extensions of H0,0 for d = 1,2
and 3. It turns out that in each dimension the family of self-adjoint extensions shows
peculiar properties. We will be interested in particular in the following operators that
can be proved (see [1]) to be a subset of the family of self-adjoint extensions of H0,0 in
L2(R3).

For any α = {α1, . . . ,αn} ∈ Rn and y = {y1, . . . ,yn} ∈ R3n, the operator Hα,y defined
by

D(Hα,y) =
{

u ∈ L2(R3)
∣∣∣u = φλ +

n

∑
k=1

qkGλ ( · − yk)φλ ∈ H2(R3),

φλ (y j) =
n

∑
k=1

[
Γα,y(λ )

]
jkqk, j = 1, . . . ,n

}
(17.1)(

Hα,y +λ
)
u =

(
−∆+λ

)
φλ (17.2)

where Gλ ≡ Gz
∣∣
z=−λ

and

[
Γα,y(λ )

]
jk =

(
α j +

√
λ

4π

)
δ jk−Gλ (y j− yk)(1−δ jk) (17.3)

vanishing at y1, . . . ,yn one has, see (17.1), qk = 0, ∀k, and then, from (17.2), Hα,yu=−∆u.

At each point y j ∈ R3 the elements of the domain satisfy a boundary condition ex-
pressed by the last equality in (17.1). If we define r j = |x− y j| it is easy to see that the
boundary condition satisfied by functions u ∈ D(Hα,y) can be equivalently written as

lim
r j→0

[
∂ (r ju)

∂ r j
−4πα j(r ju)

]
= 0, j = 1, . . . ,n. (17.4)
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This explains the term “local” given to this class of extensions.

The spectral structure of local point interaction Hamiltonians is not at all trivial and it
is easily investigated. In fact, −λ is a negative eigenvalue of the Hamiltonian Hα,y if and
only if detΓα,y(λ ) = 0 and the generalised eigenfunctions are non-trivial and explicitly
known. Details can be found in [1]. Here, we want only to point out that if two scatterer
positions come close one to the other the off-diagonal terms of the matrix (17.3) become
very large with respect to any value of the strength parameters α . It is easy to check that
in the limit of zero distance the ground state eigenvalue of the Hamiltonian is approaching
−∞ (for details when n=2, see [1]).

Let us now consider the much more difficult case of many particles. The Hamiltonians
for a system of N particles interacting via zero-range forces will be defined as any self-
adjoint extension of

−
N

∑
i=1

∆xi �C∞
0

(
RdN \

⋃
i< j

σi j

)
σi j =

{
x = (x1, . . . ,xN) ∈ RdN∣∣xi = x j

}
acting on state vectors with symmetry properties which will depend on the type of parti-
cles under investigation.

In the following, we will consider the case of N = 3 identical bosons in R3 with masses
1/2, in the center of mass reference frame. Expressed in terms of the Jacobi coordinates
(see e. g. [16])

x = x2−x3, y =
1
2
(x2 +x3)−x1, xi ∈ R3, i = 1,2,3 (17.5)

the space of square integrable functions completely symmetric in the exchange of particle
coordinates is

L2
s (R6) =

{
ψ ∈ L2(R6)

∣∣∣ψ(x,y) = ψ(−x,y) = ψ

(
1
2 x+y, 3

4 x− 1
2 y
)}

. (17.6)

Zero-range interactions among particles will be confined on the three-dimensional hy-
perplanes

Σ = {x = 0}∪{y− x/2 = 0}∪{y+ x/2 = 0}. (17.7)
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As we pointed out already, this means that we are looking for Hamiltonians in L2
s (R6)

which are non-trivial s.a. extension of the operator

H̃0 =−∆x−
3
4

∆y, D(H̃0) =
{

ψ ∈ L2
s (R6)

∣∣∣ψ ∈ H2(R6),ψ
∣∣
Σ
= 0
}
. (17.8)

The defect spaces of H̃0 are now of infinite dimensions. This makes the examination
of classes of self-adjoint extensions much more difficult and their physical interpretation
more complicated.

Ter-Martirosian and Skorniakov [17], on the basis of the analogy with the point in-
teraction potentials, proposed to define an operator Hα acting as the free Hamiltonian
outside the hyperplanes and satisfying a boundary condition close to the hyperplanes.
Specifically, they impose for the functions in the domain of the Hamiltonian the bound-
ary condition

ψ(x,y) =
ξ (y)
|x|

+α ξ (y)+o(1), for |x| → 0 and y 6= 0 (17.9)

where ξ is a function depending on ψ . The same behaviour must hold close to the other
coincidence hyperplanes for symmetry reasons. Being the singular part in (17.9), the
behaviour of the potential of a charge ξ distributed on the hyperplane, the operators Hα

and the boundary condition were expressed in terms of charge distribution potentials, i. e.
imposing that functions in the domain of Hα were the sum of a regular and a singular part
in the following way:

ψ = wλ +G λ
ξ , wλ ∈ H2(R6), (17.10)

where λ > 0 and

Ĝ λ ξ (κ,p) =
√

2
π
·

ξ̂ (p)+ ξ̂ (κ− 1
2 p)+ ξ̂ (−κ− 1

2 p)
|κ|2 + 3

4 |p|2 +λ
. (17.11)

is the (λ−) potential of a charge density ξ identically distributed on each coincidence
plane. The behaviour of the function G λ ξ (x,y) close to the planes is easily computed:

G λ
ξ (x,y) =

ξ (y)
|x|
− 1

(2π)3/2

∫
dpeip·y(T λ

ξ̂
)
(p)+o(1), (17.12)
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where

(
T λ

ξ̂
)
(p) ..=

√
3
4
|p|2 +λ · ξ̂ (p)− 1

π2

∫
dp′

ξ̂ (p′)
|p|2 + |p′|2 +p ·p′+λ

. (17.13)

In this way the boundary condition (17.9) can be rephrased as an integral equation for
the “charges” ξ (for details see [5] and references therein). As noticed by Danilov [9],
the operators constructed in this way are not self-adjoint and admit a continuum set of
eigenvalues tending to minus infinity.

2 Minlos and Faddeev seminal papers

In two fundamental papers [13, 14] on the subject Minlos and Faddeev succeeded, in
1962, in rigorously translating the attempts of Ter-Martirosian and Skornyakov in terms of
Birman’s theory of self-adjoint extensions of positive symmetric operators. They proved
that the boundary condition (17.9) about the behaviour of functions in the domain of
the Hamiltonians close to the coincidence planes was not enough to guarantee their self-
adjointness.

The final result can be summarised in the following characterisation, written in mo-
mentum space, of a two-parameter family of self-adjoint Hamiltonians:

D(Hα,β ) =
{

ψ ∈ L2
s (R6)

∣∣∣ψ = wλ +G λ
ξ , wλ ∈ H2(R6), ξ̂ ∈ D(T λ

β
),

α ξ̂ (p)+
(
T λ

ξ̂
)
(p) = ̂wλ

(
0, ·
)
(p)
}
, (17.14)

(Hα,β +λ )ψ = (H0 +λ )wλ , (17.15)

where
H0 =−∆x−

3
4

∆y, D(H0) = H2(R6), (17.16)

with

D(T λ

β
) =

{
ξ̂ ∈ L2(R3)

∣∣∣ ξ̂ = ξ̂1 + ξ̂2, ξ̂1 ∈ D(T λ ) and

ξ̂2(κ) =
c

|κ|2 +1

(
β sin

(
s0 log |κ|

)
+ cos

(
s0 log |κ|

))}
(17.17)
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where c is an arbitrary constant, s0 is the positive solution of the equation

1− 8√
3
·

sinh πs
6

scosh πs
2

= 0. (17.18)

Apart from technical complications due to the self-adjointness requirement, one should
notice the similarity between (17.14)–(17.15) and (17.1). Each function in the domain of
the Hamiltonians is the sum of a regular part and the potential of some charge density
distributed on the coincidence planes, the Hamiltonians operate as the free Hamiltonian
acting on the regular part and the boundary condition can be expressed as an equation on
the charges.

The Hamiltonians defined in the way described above were finally self-adjoint, but
Minlos and Faddeev realised that their spectral structure made those Hamiltonians un-
physical models for a three-body quantum system. In fact, the authors found that their
point spectrum contains an infinite sequence of negative eigenvalues unbounded from be-
low (see [10] for an alternative proof). The authors also suggest a possible way out of
this unboudedness pathology. In short, their hint amounts to substitute the constant α in
(17.14) with the operator A defined, in Fourier space, by

(
Aξ̂
)
(p) = αξ̂ (p)+

(
Kξ̂
)
(p) (17.19)

with α ∈ R and K the convolution operator with kernel K(p) behaving for large |p| as

K(p)∼ γ

|p|2
for |p| → ∞.

3 On the negative eigenvalues

In a private communication happened years ago between one of us and L. D. Faddeev, he
appeared absolutely confident that zero-range Hamiltonians bounded from below for the
three-body quantum system would exist. He renewed the suggestion that he and Minlos
gave in their 1962 papers, mentioning that, with regret, they were no longer involved.
On the other hand, Minlos, in the rest of his scientific career, went back occasionally to
zero-range Hamiltonians for many-particle quantum systems approaching the interesting
case of N, N ≥ 2, identical fermions interacting, via zero-range forces, with a different
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particle, making important contributions to the stability problem (see e. g. [11, 12]; for
more recent developments see [15] and references therein). Recently, we showed that at
least in the case α = 0 the strategy works very well. For details of the proof see [10].

Considering the Ter-Martirosian, Skorniakov boundary condition (17.9) for α = 0 and
adding the term suggested by Minlos and Faddeev, we have that −λ , λ > 0, is a negative
eigenvalue of the Hamiltonian if

δ

2π2

∫
dp′

ξ̂ (p′)
|p−p′|2

+

√
3
4
|p|2 +λ · ξ̂ (p)− 1

π2

∫
dp′

ξ̂ (p′)
|p|2 + |p′|2 +p ·p′+λ

= 0,

(17.20)
where δ is a real parameter.

In the rotationally invariant case ξ̂ = ξ̂ (|p|), integrating out the angular variables one
gets

δ

π

∫
∞

0
dp′ p′ξ̂ (p′) log

p+ p′

|p− p′|
+

√
3
4

p2 +λ · pξ̂ (p)

− 2
π

∫
∞

0
dp′ p′ξ̂ (p′) log

p2 + p′2 + pp′+λ

p2 + p′2− pp′+λ
= 0. (17.21)

The following statement holds true:

Proposition 17.2 Let

δ0 =

√
3

π

(
4π

3
√

3
−1
)
. (17.22)

Then for δ > δ0, Equation (17.21) has only the trivial solution.

The main technical tool used in the proof is the following change of variable (see [8])

p =
2
√

λ√
3

sinhx, x = log

(√
3p

2
√

λ
+

√
3p2

4λ
+1

)
(17.23)

which allows to diagonalise Equation (17.21) for the new function

θ(x) =

λ sinhx · coshx · ξ̂
(

2
√

λ√
3

sinhx
)

for x≥ 0

−θ(−x) for x < 0
(17.24)
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giving the following equation for the Fourier transform of the function θ(
1+2

δ sinh π

2 s−4sinh π

6 s
√

3scosh π

2 s

)
θ̂(s) = 0. (17.25)

It is then easy to conclude the proof showing that

1+2
δ sinh π

2 s−4sinh π

6 s
√

3scosh π

2 s
> 0 for δ > δ0.

Other recent attempts to obtain zero-range three-body Hamiltonians bounded from below
can be found in [3] and [4].

Dedication. The authors want to dedicate this contribution to the memory of Robert A.
Minlos, a leading mind of mathematical physics and a wonderful human being.
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1 Introduction

The problem whether there are smooth solutions of the incompressible Navier-Stokes
equations in R3 that become singular at a finite time (“blow-up”) dates back to Jean
Leray [6] who first proved a global weak existence theorem for all times and a uniqueness
and regularity theorem only for finite times. It goes under the name “Global Regularity
Problem” (GRP), and is still open, in spite of many brilliant contributions.

Leray thought that singularities exist and are related to turbulence. We now describe
turbulence as a chaotic flow with no relation to singularities, but the singular solutions,
if they exist, could provide a model for phenomena such as tornadoes, which exhibit a
rapid increase of speed in a limited region of space, and for which there is at present
no effective model. In fact we know [9] that a loss of smoothness for the NS equations
implies divergence of the velocity at some point. Proofs of a finite-time blow-up were
obtained for some variants of the dyadic model [3], a discrete model of the NS equations
which preserves energy conservation. Moreover T. Tao [10] proved a finite-time blow-up
for a NS system with a modified bilinear term satisfying the energy identity .

The evidence from computer simulations is inconclusive: a theoretical guideline on the
behaviour of singularities is needed in order to control the difficulties arising in computing
solutions of the 3-D NS equations for high values of the vorticity [4].

In 2008 Li and Sinai [7] proposed a negative answer to the GRP, i. e., a plan to construct
explicit singular solutions. As a first step they proved that there are complex singular
solutions following from initial data such that the support of the Fourier transform v(k, t)
of the velocity field u(x, t) (see below) extends rapidly to high |k|-values. The proof
relies on Renormalisation Group methods, and their approach can be applied to other
models [8] as well. The extension of their methods to real solutions requires more work.
In the meantime important indications can come from computer simulations, which, as
we explain below, if implemented in Fourier k-space, are made easier for the class of
initial data under consideration, by the fact that the extension of the support to the high
|k|-region is confined to a rather small region around a fixed axis.

The plan of the paper is as follows. We first describe the main features of the Li-Sinai
approach, also with the help of some simple new results, and discuss its extension to
real solutions. We then report results of recent simulations describing the behaviour of
a real solution related to the complex blow-up in [7]. The solution behaves very much
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tornado-like, but, as we discuss in the concluding remarks, does not blow up because of
axial symmetry and we need to consider non-symmetric solutions.

2 The Li-Sinai approach

2.1 NS in k-space

Passing to a precise formulation, we consider the incompressible Navier-Stokes equations
in the whole space R3 with no boundary conditions and external forces:

∂u
∂ t

+
3

∑
j=1

u j
∂

∂x j
u = ∆u−∇p, x = (x1,x2,x3) ∈ R3 (18.1)

∇ ·u = 0, u(·,0) = u0.

Here u : R3× [0,∞)→ R3 is the velocity field, p is the pressure and we assume for the
viscosity ν = 1, which is always possible by rescaling. Two important physical quanti-
ties are the total energy E(t) and the enstrophy S(t), which is the integral of the square
vorticity:

E(t) =
1
2

∫
R3
|u(x, t)|2dx, S(t) =

∫
R3
|ω(x, t)|2dx (18.2)

where ω(x, t) = ∇×u(x, t) is the vorticity. They are related by the energy equality

E(t)+
∫ t

0
S(s)ds = E(0), (18.3)

which implies that E(t) cannot increase. If the enstrophy is bounded, it can be shown
by an “enstrophy inequality” that global regularity holds [11], so that for a blow-up the
enstrophy must diverge in an integrable way as we approach a critical time. A divergence
of the enstrophy implies that the support is shifting to the high k-region in Fourier space,
i. e., to the fine scale structure in the physical space.

As we work in k space, we write the NS system (18.1) in terms of a modified Fourier
transform of the velocity field u(x, t)

v(k, t) =
i

(2π)3

∫
R3

u(x, t)e−i〈k,x〉dx, k = (k1,k2,k3) ∈ R3, (18.4)
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where 〈 · , · 〉 denotes the scalar product in R3. By a Duhamel formula the system (18.1)
is written as a single integral equation:

v(k, t) = e−tk2
v0(k)+

∫ t

0
e−(t−s)|k|2

∫
R3

〈
v(k− k′,s),k

〉
Pkv(k′,s)dk′ ds, (18.5)

where Pkv ..= v− 〈v,k〉|k|2 k denotes the solenoidal projector and v0 is the transform of u0. In
general v(k, t) is a complex function. Li and Sinai consider only real solutions of (18.5),
which in general correspond to complex solutions of (18.1). However if v0(k) (and hence
v(k, t) for t > 0) is antisymmetric, the solution u(x, t) is also real and antisymmetric in x.

Taking v0(k) = Av̄(k), where A is a real parameter which controls the initial energy,
and iterating the Duhamel formula, the solution of (18.5) is written as a power series:

vA(k, t) = Ag(1)(k, t)+
∞

∑
p=2

Ap
∫ t

0
e−k2(t−s)g(p)(k,s)ds, (18.6)

where g(1)(k,s) = e−sk2 v̄(k), g(2)(k,s) =
∫
R3

〈
g(1)(k−k′,s),k

〉
Pkg(1)(k′,s)dk′ and

g(p)(k,s) = ∑
p1+p2=p
p1,p2>1

∫ s

0
ds1

∫ s

0
ds2 g(p1,p2)(k,s1,s2)

+ boundary terms, p > 2 (18.7)

g(p1,p2)(k,s1,s2) =
∫
R3

〈
g(p1)(k−k′,s1),k

〉
Pkg(p2)(k′,s2)e−(s−s1)(k−k′)2−(s−s2)(k′)2

dk′

The boundary terms involve g(1) and have a slightly different form [7]. The following
lemma shows that the functions g(p) satisfy, as p→ ∞, a Gaussian bound.

Lemma 18.1 If v̄ ∈ L2(R3) is a bounded function, then the following inequalities hold

|g(p)(k, t)| ≤ K p−1 p1/2t p−3/2
φ
(p)
0 (k),

φ
(p)
0 (k) = (φ0 ∗ . . .∗φ0︸ ︷︷ ︸

p times

)(k), φ0(k) = |v̄(k)|, p≥ 2, (18.8)

where ∗ denotes convolution and K is a positive constant.

Proof. Let supα≥0 α
1/2e−α = c1

..= (2e)−1/2. It follows that

|g(2)(k,s)| ≤ c1A2s−1/2
∫
R3

φ0(k−kP)φ0(kP)dk
′
= c1A2s−1/2

φ
(2)
0 (k).
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For the terms of the sum in (18.7), using Inequality (18.8) as an ansatz, we have

∫ s

0
ds1

∫ s

0
ds2

∣∣∣g(p1,p2)(k,s1,s2)
∣∣∣

≤ c1

∫ s

0
ds1

∫ s

0

ds2√
s− s2

∫
R3
|g(p1)(k−kP,s1)| · |g(p2)(kP,s2)|dkP

≤ c1K p−2(p1 p2)
1
2

∫ s

0
s

p1−3
2

1 ds1 I p2−3
2

(s) φ
(p)
0 (k),

where Iα(s) ..=
∫ s

0
uα
√

s−u du satisfies for a semiinteger α ≥ − 1
2 the inequality Iα(s) ≤

D sα+ 1
2

α+1 , for some constant D > 0. Hence we have |g(p1,p2)(k,s)| ≤ c1D K p−2
√

p1
s

p−3
2 . The

boundary terms give a similar inequality. The conclusion now comes, for a suitable choice
of K, by observing that ∑

p
n=1

1√
n ≤ c2

√
p, for some constant c2 > 0.

By Lemma 18.1 the series (18.6) converges absolutely for small t. Moreover if the ini-
tial enstrophy is bounded, i. e.,

∫
R3 k2|v0(k)|2dk < ∞, the local variant of the central limit

theorem holds for the distribution with density φ̂0(k) = φ0(k)
N , where N =

∫
R3 φ0(k)dk.

Hence as p → ∞ the convolution on the right of (18.8) tends to the Gaussian den-
sity with average p m and covariance matrix

√
pC , where m =

∫
R3 kφ̂0(k)dk and

C = (Ci j)i, j=1,...,3, Ci j =
∫
R3(ki−mi)(k j−m j)φ̂0(k)dk.

2.2 Blow-up for complex solutions and behaviour of related real solutions

In the paper [7] Li and Sinai choose initial data with support inside a sphere KR of radius
R centered around a point k(0) with |k(0)| � R. By Lemma 18.1 the support of g(p) is
centered around pk(0) with a diameter of the order O(

√
p), so that as terms g(p) with

growing p are excited, if |k(0)| is large, the support of v(k, t) quickly extends to the high
|k| region, causing a strong increase of the enstrophy. The key for the proof of a blow-up
is the asymptotic behaviour of g(p) as p→ ∞. In view of the Gaussian dominance, Li
and Sinai introduce new functions g̃(p)(Ȳ ,s) = g(p)(pk(0)+

√
pȲ ,s) of the new variables

Ȳ = k−k0√
p , and look for initial values v0 which lead to the asymptotics

g̃(p)(Ȳ ,s)∼ p(Λ(s))p
3

∏
i=1

g(Yi)
(
H(Ȳ )+δ

(p)(Ȳ ,s)
)
. (18.9)



190 Boldrighini, Frigio, Maponi, Pellegrinotti, Sinai: Incompressible Navier-Stokes

Here H is a solution of a fixed point equation of the map L∞ ..= limp→∞ L(p) where L(p) :

g̃(p) → g̃(p+1), g(x) = e−x2
/2

√
2π

is the standard Gaussian, Λ is a strictly increasing smooth
function and δ (p)(Ȳ ,s)→ 0 as s→ ∞. (The Gaussian can always be made standard by a
change of variables.) The functions H and Λ control the excitation of the high k-modes.
As shown in [7], there are infinitely many solutions of the fixed point equation. Assuming
k(0) = (0,0,a), with a > 0, the ansatz (18.9) is proved in [7] for H = c (Y1,Y2,0) =..

H(0)(Ȳ ), with c > 0, and for a monotonic increasing function Λ. The linearisation of L∞

at H(0) has a 6-dimensional unstable subspace, a 4-dimensional neutral subspace, and an
infinite-dimensional stable one.

The main result of [7] can be formulated as follows.

Theorem 18.2 Let a > b� 1, and consider, as for (18.6), initial data v0 = Av̄ with

v̄(k) =
[(

k1,k2,−
k2

1 + k2
2

k3

)
+Φ(k1,k2,k3)

] 2

∏
i=1

g(ki)g(k3−a)χb(|k−k(0)|) (18.10)

where k(0) = (0,0,a), a > 0, g is the standard Gaussian, χb(k) is a smooth function with
χb(k) = 0 if |k| ≥ b, χb(k) = 1 if |k| ≤ b− ε , for ε small enough, Φ = Φ(1)+Φ(2), Φ(1)

is a linear combination of the unstable and neutral eigenfunctions of the linearised map
at H(0), and Φ(2) is in the stable subspace. Then if Φ(2) is small enough, there is a time
interval (S− ≤ s ≤ S+) and an open set of the parameters defining Φ(1) for which the
ansatz (18.9) with H = H(0)(Ȳ ) holds.

The blow-up is an easy consequence of Theorem 18.2. Taking A=± 1
Λ(τ) , τ ∈ (S−,S+),

and replacing g(p) by the asymptotics (18.9), it is easy to see that the series (18.6) diverges
as s ↑ τ . As the initial data (18.10) are not antisymmetric the solution u(x, t) in the
physical x-space is, as we said above, a complex function, and at the critical time τ the
energy E(t) diverges along with the enstrophy S(t) (for complex solutions the energy
equality holds but it is not coercive).

Coming to real solutions, it is natural to consider initial data obtained by antisym-
metrising the data (18.10) associated to the solutions that blow-up, i. e., of the type
v0(k) = A

(
v+(k)+v−(k)

)
, where v+ = v̄ and v−(k) =−v̄(−k). The functions g(p) are

now a sum of terms centered around the points (0,0, ` k(0)), `=−p, . . . , p. In fact, substi-
tuting in (18.7) the expressions of g(pi), i = 1,2, in terms of functions with lower indices,
down to g(1), we see that g(p)(k,s) = L

(p)
s
(
v0,v0, . . . ,v0

)
(k), where L

(p)
s is a p-linear
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functional. The expression for g(p)(k,s) breaks into 2p terms L
(p)

s
(
vi1 ,vi2 , . . . ,vip

)
(k),

iq ∈ {±}, q = 1, . . . , p, of which
( p

p−`
2

)
are centered around the point `k(0). For large p

the main contributions comes from values ` = O(
√

p), and we again have a shift of the
support to the high |k|-modes.

The analysis of the fixed points for the real solutions is more difficult. In absence
of theoretical results on the behaviour of the functions g(p) for the real antisymmetric
solutions, important information can be obtained by computer simulations, which can
also reveal physically relevant details.

3 Results of computer simulations

Computer simulations, with a new program for the numerical study of solutions of the
integral equation (18.5), were first performed for the complex functions proposed in [7]
in order to find out explicit values of the parameters leading to the blow-up and the most
relevant details of its development [1], [2]. As shown by Lemma 18.1, the solutions with
initial data of the type (18.10), extend their support in k-space inside a thin region around
the direction of k(0) = (0,0,a), which for large k3 has a transverse diameter O(

√
k3a−1).

We could then compute for values of |k| up to a few thousand, and could follow the
solutions up to times close to the blow-up.

The simulations showed that if 20≤ a≤ 40 and the initial energy E0 is of the order of
105, all initial values of the type (18.10) with Φ small, as prescribed in [7], lead to a blow
up with a critical time tc of the order of 10−4 time units. For smaller values of E0 it is also
possible that the critical time tc is larger than the available computer time. The function
Φ in (18.10) does not have much influence on the behaviour of the solution, except that it
increases the critical time tc. Therefore most simulations were done with Φ = 0.

As discussed in [1, 2], there are two types of singular complex solutions, depending on
the sign of the constant A. In both cases the divergence of the total energy and enstrophy
goes as an inverse power of t− tc, but the rate of divergence is slower for A < 0, as there
are cancellations between neighbouring terms in the series (18.6).

The initial data for the computer simulations of the real flow are obtained by an-
tisymmetrising the function (18.10) with Φ ≡ 0. The general implementation of the
numerical approach was obtained from previous simulations of the complex blow up
[1, 2]. We only report results obtained for a = 30 and E0 = 62 · 106. Recall however
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Figure 18.1: Plots of maxx |u(x, t)| (left) and of maxx |ω(x, t)|2 (right) as functions of
time.

that the NS scaling holds: If v(k, t) is a solution of (18.5), and λ > 0 then the function
v(λ )(k, t) = λ 2v(λk,λ−2t) is also a solution.

Simulations were performed on a mesh in k-space which is part of a regular lat-
tice centered at the origin with step δ = 1, and maximal configuration [−254,254]×
[−254,254]× [−3000,3000]. The velocity field at a given time is described by about
5 · 109 real numbers, close to the maximal capacity of modern supercomputers. A com-
parison of the accuracy of our program to that of finite-difference methods is under way.

As for the complex blow-up, the interesting phenomena take place in a very short time,
and in what follows time is measured in units of τ = 1.5625× 10−8. The enstrophy
S(t) grows almost threefold, from S(0) ≈ 2× 108 to S(TM) ≈ 6× 108, with TM ≈ 710τ ,
after which it decreases. The maximal values of the velocity |u(x, t)| and of the vorticity
|ω(x, t)| also grow, as shown in Figure 18.1, reaching a maximum at t ≈ 410τ and t ≈
350τ , respectively.

Figure 18.2 reports the behaviour in time of the marginal distributions of the square of
the vorticity along the symmetry axis in the physical x-space and in the Fourier k-space:

S3(k3, t) =
∫
R×R
|k|2|v(k, t)|2 dk1 dk2, S̃3(x3, t) =

∫
R×R
|ω(x, t)|2 dx1 dx2.

The behaviour of S3 shows that, as time grows, the high |k| modes are enhanced and a
modulated periodic pattern sets in for large k3 with distance of the peaks close to a = 30.
In the physical space observe that at the time t = 400τ the vorticity concentrates in sharp
peaks near the planes x3 =±x̄3 with x̄3 ≈ π

a , corresponding to the modulated periodicity.
In fact a 3-D plot would show that the high velocity and vorticity values are concentrated
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Figure 18.2: Plots of the marginal distributions S3(k3, t) (left) and S̃3(x3, t) (right) at the
times t = 0 (blue), t = 400τ (red), and t = 711τ (green).

in two “doughnuts” around the x3-axis, bisected by the planes x3 ≈±x̄3, while elsewhere
the fluid stays more or less quiet.

4 Concluding remarks

The real solution described in the previous paragraph is strongly reminiscent of tornadoes
and similar phenomena, with a sharp increase and concentration of the velocity and the
vorticity in an annular region around the symmetry axis. Similar solutions could be a
good model of such physical phenomena, and they are likely to apply also to compressible
fluids, perhaps in conditions of quasi-incompressibility.

Concerning the possibility of a blow-up, observe that our initial data are obtained by
antisymmetrising the data (18.10) with Φ = 0, and our solution is axially symmetric
around the third axis in the physical x-space (and also in Fourier k-space), with no swirl
(i. e., there is no rotation around the x3-axis). This is a consequence of the choice of the
fixed point H(0), and also by taking a small Φ 6= 0 we would stay close to axial symmetry
with no swirl, which implies global regularity, according to a recent paper by Lei and
Zang [5], in which the criticality of the axial symmetric case is also proved for the first
time.

The research should be extended to real solutions related to fixed points H 6= H(0),
which are not axial symmetric. The theoretical analysis requires the extension of the
results of Li and Sinai to such fixed points and a deeper study of the behaviour of the series
(18.6) in the real case. We also plan to obtain indications from computer simulations.
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