Dissertation
 Investigating the role of regulatory genes in heterosis for superior growth and biomass production in Arabidopsis thaliana

 vorgelegt an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam
von Anna Blacha

geb. in Ząbkowice Śląskie (Polen)
zur Erlangung des akademischen Grades
Doktors der Naturwissenschaften (Dr. rer. nat.)

Wissenschaftsdisziplin:
Molekulare Biologie und Genetik von Pflanzen
Potsdam, 2009

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2010/4614/
URN urn:nbn:de:kobv:517-opus-46146
http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-46146
'Everything is simpler than you think and at the same time more complex than you imagine.'

TABLE OF CONTENTS

COMMONLY USED ABBREVIATIONS 6

1. INTRODUCTION 7
1.1. Heterosis 7
1.1.1. Definitions and heterotic traits 7
1.1.2. Applications of heterosis 8
1.1.3. Hypotheses to explain heterosis 8
1.1.4. Arabidopsis as a model plant to study heterosis 10
1.1.5. Molecular approaches, tools and technologies to study heterosis 11
1.1.5.1. Mapping of quantitative trait loci (QTL mapping) 11
1.1.5.2. Introgression lines 12
1.1.5.3. Gene expression profiling 13
1.1.5.4. RNA interference technology as a reverse-genetics approach 14
1.1.6. Summary 14
1.2. Genes involved in this study on heterosis 14
1.2.1. Review of transcription factors (TFs) in Arabidopsis. 14
1.2.1.1. A qRT-PCR platform for TFs 18
1.2.2. Epigenetic control of gene expression 18
1.2.3. RNA silencing in plants 19
1.2.3.1. Chromatin-targeted RNA silencing 19
1.2.3.2. MicroRNAs 20
1.2.4. Ribosomal RNA/DNA in relation to increased growth rate 20
1.2.5. Role of FRIGIDA and FLOWERING LOCUS C 21
1.3. Objectives of the study 23
2. MATERIALS AND METHODS 24
2.1. Plant material 24
2.1.1. Plant growth conditions 24
2.1.2. Technique of crossing 24
2.1.3. Methods of biomass difference determination 25
2.2. Commonly used equipment and various consumables 25
2.2.1. Equipment 25
2.2.2. Consumables 26
2.2.2.1. Enzymes and kits 26
2.3. RNA methods 27
2.3.1. RNA extraction protocol 27
2.3.2. Assays of RNA amount and quality 28
2.3.3. Removal of genomic DNA contamination from RNA samples 28
2.3.4. Northern blotting with a DIG-system (based on Roche manual) 28
2.3.4.1. RNA electrophoresis and transfer to a membrane 28
2.3.4.2. Labelling of probes with dioxygenin-11-dUTP 29
2.3.4.3. Pre-hybridisation and hybridisation conditions 29
2.3.4.4. Detection 29
2.4. DNA methods 30
2.4.1. cDNA synthesis and quality check 30
2.4.2. DNA isolation and quantity/quality assays 31
2.4.3. pAGRIKOLA clones validation via DNA sequencing and PCR amplification 31
2.4.4. Primer design for qPCR 32
2.4.5. PCR protocols 32
2.4.5.1. Q-PCR analysis condition and settings 32
2.4.5.2. pAGRIKOLA clones validation via PCR amplification and PCR-based screening for AGRIKOLA RNAi plant lines 33
2.4.5.3. Semi-qPCR analysis 33
2.5. Transformations 33
2.5.1. Transformation of bacteria 33
2.5.2. Plant transformation and selection of plant transformants 34
2.6. Metabolite analysis 34
2.6.1. Fatty acids 34
2.6.1.1. Extraction and derivatisation protocol 34
2.6.1.2. Data analysis 34
2.6.2. Extraction of metabolites from the polar phase and GC-MS data analysis 34
2.7. Preparation, flow cytometric analysis and sorting of nuclear suspensions 35
2.8. Silver staining 36
2.9. Microscopy methods and analysis 36
2.10. Transcript data analysis 36
2.10.1. Data normalisation 36
2.10.2. Melting curve analysis 37
2.10.3. Statistical methods 38
2.10.4. Expression patterns 39
3. RESULTS 40
3.1. Determination of the developmental time point at which differences between F1 and parents are first manifested 40
3.1.1. Comparison of germination time and early seedling development in parents and hybrids 40
3.1.2. Comparison of seed storage reserve mobilisation in parents and hybrids via microscopic analysis 42
3.1.3. Comparison of metabolite levels in hybrids and parents during germination and early growth 43
3.1.3.1. Measurement of global metabolites via GC-MS 43
3.1.3.2. Analysis of fatty acid content via GC 44
3.2. Identification of heterosis candidate genes / reverse genetic approach 46
3.2.1. Efficacy test of qPCR primers of novel reference genes in the four genotypes 46
3.2.2. Identification of candidate genes in experiment 1 48
3.2.2.1. Determination of the most stable reference gene(s) for transcript data normalisation 48
3.2.2.2. Candidate gene selection criteria 48
3.2.3. Identification of candidate genes in experiment 2 49
3.2.3.1. Identification of TF candidates and selection criteria 49
3.2.3.2. Identification of heterosis candidates from a group of 'chromatin-related' genes via qRT-PCR 49
3.2.4. Selection of a final list of candidate genes for possible involvement in heterosis 54
3.3. Characterisation of selected candidate genes 54
3.3.1. Analysis of expression patterns of candidate genes 54
3.3.2. Rank of statistical significance of candidate genes ('statistical categories') 56
3.3.3. Biological significance of candidate genes 62
3.3.4. Review of publicly available expression data for heterosis associated candidate genes 69
3.4. Validation of selected candidate genes 74
3.4.1. Co-localisation of candidate genes with QTLs for heterosis of biomass and growth, and biomass QTL per se 74
3.4.2. Expression analysis of candidate genes at early stages of heterosis establishment 75
3.4.3. Expression analysis of candidate genes of different Arabidopsis accessions 81
3.5. Exploring of the possible role of rDNA genes in heterosis 83
3.5.1. Expression analysis of rRNA genes 83
3.5.2. Comparison of nucleolus area 84
3.5.3. Analysis of endoreduplication (endoreplication) 85
3.6. Characterisation of FRIGIDA (AT4G00650) in relation to heterosis 86
3.6.1. Analysis of an IL line carrying a segment containing FRIGIDA 86
3.6.2. Creation and analysis of RNAi lines suppressing FRIGIDA 87
3.6.2.1. Validation of pAGRIKOLA clones via sequencing analysis 88
3.6.2.2. PCR screen and selection of $F R I /$ RNAi lines of Col-0 and C24 background 89
3.6.2.3. Analysis of the expression of $F R I$ in selected RNAi lines 89
4. DISCUSSION 90
4.1. Determination of a divergence point between hybrids and parents 90
4.2. Reliability of expression data 91
4.3. Significance of candidate genes 92
4.4. Investigation of a role of 'chromatin-related' genes in growth heterosis 101
4.5. Investigation of a role of ribosomal genes in growth heterosis 103
4.6. Investigation of a possible role of FRIGIDA and FRI-FLC interaction in heterosis 104
4.7. Further directions in heterosis study 106
5. SUMMARY 110
REFERENCES 113
LIST OF FIGURES 129
LIST OF TABLES 130
Annex A. List of primer sequences 131
Annex B. Microscopic pictures 163
Annex C. Summarised GC-MS data 175
ACKNOWLEDGEMENTS 182
CURRICULUM VITAE of Anna Blacha 184

COMMONLY USED	ABBREVIATIONS
ANOVA	- Analysis of variance
bp	- Base pair
cDNA	- Complementary DNA
chromDB	- The Chromatin Database
C_{T}	- Cycle threshold (number of cycles required for fluorescent signal to cross the set threshold)
DAS	- Days after sowing
DATF	- A Database of Arabidopsis Transcription Factors
DEPC	- Diethyl pyrocarbonate
dNTP	- Deoxyribonucleotriphosphate
DW	- Dry weight
EtBr	- Etidium bromide
F1	- First filial generation, produced by crossing two parental lines
FA(s)	- Fatty acid(s)
FDR	- False discovery rate
gDNA	- Genomic DNA
HAS	- Hours after sowing
IL	- Introgression line
MIR(s), miRNA(s)	- microRNA(s)
MPH	- Mid-parent heterosis
NCBI	- National Centre for Biotechnology Information
NOR	- Nucleolar organiser region
PCA	- Principal component analysis
Q-PCR/qPCR	- Quantitative polymerase chain reaction (real time PCR)
Q-RT-PCR/qRT-PCR	- Quantitative reverse transcription polymerase chain reaction (also called a real time RT-PCR)
QTL	- Quantitative trait locus
rRNA/rDNA	- Ribosomal RNA/ ribosomal DNA
$\Delta \mathrm{R}_{\mathrm{n}}$	- Fluorescence signal
RNAi	- RNA interference
self	- An inbred line propagated by selfing (e.g. Col-0 self $=\mathrm{Col}-0 \mathrm{xCol}-0$)
TAIR	- The Arabidopsis Information Resource
TC(s)	- Test-cross(es)
TF(s)	- Transcription factor(s)
T_{m}	- Melting temperature

1. INTRODUCTION

1.1. Heterosis

1.1.1. Definitions and heterotic traits

The word 'heterosis' is derived from the Greek word 'heteroiōsis' meaning 'different in kind'. It is more than hundred years since the first examination of heterosis was published (Darwin, 1876) although it might have been observed by humans long before then. The definition of heterosis is one of the most difficult and controversial in genetic terminology (Tsaftarsis, 1995). Hoecker et al., (2008) defined heterosis as superior performance of heterozygous F1 hybrid plants compared to the average of their homozygous parental inbred lines after Shull (1952), and Falconer and Mackay (1996). The term 'heterosis' was used first by Shull in 1908 to describe the superiority of hybrids over their inbred parents in terms of size, vigour, and yield (East, 1908; Shull, 1908). Later, this definition was extended by evolutionary biologists to include heterosis for survival i.e. adaptive, selective, and reproductive advantage (Dobzhansky, 1950) or superiority of quantitative traits such as yield (Griffin, 1953), leaf area (Titok et al., 1994), biomass (Liu et al., 2002) or growth rate (Rao et al., 1992). Heterosis can occur for all known characteristics of cultivars and can be observed in mature plants (Figure 1.1 a ; Hochholdinger and Hoecker, 2007), embryos (Meyer et al., 2007) or seedlings (Figure 1.1 b; Hochholdinger and Hoecker, 2007).

Figure 1.1. Phenotypic manifestation of heterosis in maize (Hochholdinger and Hoecker, 2007)
(a) Cob size and yield - examples of adult traits,
(b) Seedling development - example of 'early' traits.

Within a given hybrid the amount of heterosis can vary for different traits (Springer and Stupar, 2007) and its relative amount usually increases with the complexity of trait
(Becker, 1993). The degree of phenotypic difference of a trait in a hybrid compared to its parental inbred lines can be described as mid-parent heterosis (MPH) or best-parent heterosis (BPH). MPH exists when the average value of the trait for F1 hybrids is greater than the average value of the parents and is mostly of scientific interest. BPH exists when the trait level of the hybrids exceeds the best parent and is most important from an agronomical point of view. Maximum heterosis is observed in F1 hybrids and is lost in subsequent generations obtained through selfing (Meyer et al., 2004) Heterosis was observed to be largest in allogamous (reproducing by cross-fertilization/cross-pollination) plants and smallest in autogamous (selffertilising) species (Barth et al., 2003).

1.1.2. Applications of heterosis

Heterosis or hybrid vigour has been utilised in plant and animal breeding programs for at least 90 years. Examples of plant hybrids used in agriculture include maize (corn), rice, sorghum, sunflower and alfalfa. Typically, hybrids grow faster and yield more biomass including seed. Application of heterosis in USA agricultural production is a multi-billion dollar undertaking, and nearly all field corn are hybrids (Swanson-Wagner et al., 2006). By the end of the $21^{\text {st }}$ century, 65% of maize production worldwide was hybrid-based with a similar proportion for other crops, such as sunflower or sorghum. Heterosis typically leads to increases in yield of up to 65% (Springer and Stupar, 2007) and 10-20\% (Li et al., 2008) in corn and rice, respectively, and it is therefore considered a major asset in meeting the world's food needs (Duvick, 1999). Many of traits of value to humans, such as plant disease resistance, tolerance to abiotic stress, and nutrient content may be subject to heterosis. Generally, it is believed that an understanding of the molecular basis of heterosis will enhance our ability to create superior new genotypes that may be used directly as F1 hybrids or form the basis for the future selection programmes (Tsaftarsis, 1995).

1.1.3. Hypotheses to explain heterosis

The genetic basis of heterosis has been discussed for nearly a century (Shull, 1908; Bruce, 1910; Jones, 1917). Multiple models have been proposed to explain heterosis (Birchler et al., 2003). The most predominant quantitative genetic hypotheses to explain heterosis are 'dominance' (or complementation) and 'overdominance'. The dominance (Figure 1.2 a) hypothesis explains heterosis by the action of superior dominant alleles from both parents at multiple loci, which complement corresponding unfavourable alleles leading to improved vigour of hybrids. Such complementation may result in characteristics being equal to or better than the better of the two parents. Overdominance (Figure 1.2 b) postulates that diverse alleles
interact to create a superior function than that which could happen with homozygous alleles. It is a situation, in which heterozygosity for small regions of a genome produce a heterotic response. Other hypotheses to explain heterosis also exist like pseudo-overdominance (Figure 1.2 c), which is a genetic intermediate of dominance and overdominance. It can be considered as a simple case of dominance, in which the two recessive loci ('a' from P1 and 'b' from P2) are linked in repulsion (or 'in trans' and there is a 'trans hybrid'). This type of complementation in the hybrid resembles overdominance due to tight chromosomal linkage. Additionally, the multiple non-allelic genes can interact in ways that mask the action of each other in the process of epistasis (Powers, 1944). The relative contribution to heterosis of each of those mechanisms remains unclear (Birchler et al., 2006; Lippman and Zamir, 2006; Hochholdinger and Hoecker, 2007).
(a) Dominance

F1

(b) Overdominance

\downarrow

(c) Pseudooverdominance

F1

Figure 1.2. Scheme of main genetic models for heterosis (Lippman and Zamir, 2006)
There exist also molecular or physiological hypotheses to explain heterosis, including:

1. Heterosis may be a result of interactions of genetic and environmental stimuli (Jinks and Perkins, 1968; Parsons 1971; Griffing and Zsiros, 1971). Heterosis is 'multiplicative' or 'geometric' because it is based on complex interactions across development between various phenotypic components, each with their own inheritance, that are dynamically influenced by the environment (Williams, 1959; Griffing, 1990; Schnell and Cockerham, 1992; Lippman and Zamir, 2006).
2. Heterosis may be influenced by parental genetic distance. A positive correlation between genetic distance of parents and hybrid vigour has been reported (Melchinger, 1999; Barbosa et al., 2003).
3. Heterosis may be dependent on epigenetic phenomena (Swanson-Wagner et al., 2006).
4. Heterosis may be caused by differential accumulation of allele-specific transcripts in hybrids (Swanson-Wagner et al., 2006).
5. In higher plants, at a functional level heterosis appears to be the result of a faster cell division rate rather than superior cell size or cell expansion (Srivastava, 1983). Ashby (1937) suggested that heterosis effects in tomato were associated with greater embryo weight and size due to larger cell number.

1.1.4. Arabidopsis as a model plant to study heterosis

Arabidopsis thaliana (common name: thale cress) was the first plant genome to be completely sequenced, in part because of its small genome size (Meinke et al., 1998; AGI, 2002). There were collected over 750 natural ecotypes (accessions) of this plant from around the world (Passardi et al., 2006). Among them Columbia (Col, and its different variations i.e. Col-0, Col-2), which was sequenced in the Arabidopsis Genome Initiative together with Cl-0, C24, Landsberg erecta (Ler) and Niederzenz (Nd) are accepted as the standards for experimental analysis. Despite lack of agronomic importance, Arabidopsis has become the model system of choice for research on plant development, physiology, genetics, and biochemistry. Many tools, methods and technologies have been developed for Arabidopsis in these fields. Additionally, much data about Arabidopsis and analytical tools have been integrated in various international, publicly available, often interactive, databases such as The Arabidopsis Information Resource - TAIR (http://www.arabidopsis.org/index.jsp; Huala et al., 2001). One of the original ideas behind using Arabidopsis as a model system was to facilitate the identification of related genes of importance in crop plants. Arabidopsis was proposed as a model species for investigating the molecular causes of heterosis by Somerville and Somerville, (1999) and The Multinational Arabidopsis Steering Committee (2002). Heterosis in Arabidopsis was reported for the traits of agronomic importance, including: rosette diameter (El Asmi, 1974 and 1975), stem length and biomass yield (Rédei, 1962; Griffing and Langridge, 1963; Li and Rédei, 1969; Corey and Matzinger, 1973; Corey et al., 1976), seedling viability (MitchellOlds, 1995), seed number (Alonso-Blanco et al., 1999) and phosphate acquisition efficiency (Narang and Altman, 2001). Additionally, heterosis between two divergent accessions of

Arabidopsis, Col-0 and C24 has been shown for biomass (Meyer et al., 2004). In initial growth experiments under controlled, long day conditions, F1 reciprocal crosses between Col0 and C24 displayed increased plant size and weight compared to parents. This was not due to differences in seed size, which was comparable in the hand-pollinated parent controls and the F1 hybrids. Detailed analysis revealed mid-parent biomass heterosis (MPH; the increase of a hybrid for a given character above the mean of its parents) of $40-60 \%$ for 10 DAS (days after sowing) seedlings grown at $120 \mu \mathrm{E}$. Differences in relative growth rate were only observed in the early phases of growth at the lower light intensities. Significant differences in seedling biomass were detected as early as 8 DAS (Figure 1.3).

1.1.5. Molecular approaches, tools and technologies to study heterosis

In the last few years a variety of functional genomics and applied genetics tools and methods were developed to improve our understanding of basic plant processes, including those, like heterosis, that are important for crop improvement. Genetic mapping tools, gene expression profiling, and gene knock-out technology belong to this tool kit. The essential challenge in molecular plant breeding is to identify the genes underlying the trait/phenotype/phenomenon in question and define their interactions. A gene that is identified as related to a particular trait is considered as a candidate gene for that trait. There are two categories of such candidates: positional and functional. The first are genes that are associated with the trait via QTL or map-based cloning approaches. The second are genes whose function has something in common biologically with the trait under investigation and are identified through transcriptomics, for example the function of candidate genes and the relationship to the trait of interest can be verified by functional genomics methods.

Figure 1.3. Differences in size between F1 hybrid and parental seedlings at 8 DAS (days after sowing) when grown in soil (Altmann T., Meyer R. - personal communication)

1.1.5.1. Mapping of quantitative trait loci (QTL mapping)

One of the most important tools to identify candidate genes (QTGs - quantitative trait genes), which might be involved in a certain quantitative trait/phenotype is QTL analysis or

QTL mapping (Doerge, 2002). A QTL or quantitative trait locus is a genomic region associated with a particular trait/phenotype that contains gene(s) affecting that trait. Complex phenotypic traits are usually determined by many genes (almost always interacting with environmental influences) generally located at multiple QTLs, which can be located on different chromosomes. To identify QTL, individuals in mapping population are first phenotyped for a trait(s) (i.e. each trait is measured or assayed) and genotyped at markers across the genome. Next, a genome-wide scan is performed, looking for statistical association between marker type and trait(s) values. QTL are identified as intervals across chromosomes, with high probability of association or linkage between markers and the trait of interest used in the mapping experiment. When mechanistically related traits map to similar map positions, this might suggest that variation for these traits at this locus is controlled by the same gene (El-Lithy et al., 2004). QTL mapping has been broadly used in attempts to identify genes underlying heterotic loci (Xiao et al., 1995; Li et al., 2001; Luo et al., 2001; Hua et al., 2003). An achievement of gust work in crops was discrimination between classical genetic models for heterosis based on various modes of inheritance of gene expression i.e. dominance, overdominance, and epistatic interactions. However, further progress in identification of genes underlying heterosis has been hampered by the complexity of the genetic and environmental interactions that define the trait (Lippman and Zamir, 2006).

Different RIL (recombinant inbred line) populations have been developed for QTL mapping in plants. In Arabidopsis, several well characterised RIL populations now exist, including lines derived from Col-0/C24 crosses (Törjék et al., 2006). Such lines are generated by self-pollinating an F2 population for at least six generations to obtain lines that differ from each other but that are homozygous at 99% of loci. The variation among lines is immortalised and RIL lines can be propagated and multiplied. A set of probes that cover the genome and distinguish alleles from the two parents provide map positions for the genes controlling the traits of interest (Burr et al., 1988; Maloof, 2003; Hake and Rocheford, 2004).

1.1.5.2. Introgression lines

QTL mapping with a segregating population provides only approximate positions of QTL (Kearsey, 2002), which is why a new set of lines to characterise and confirm the contributing individual loci is required (Koornneef et al., 1997). Introgression lines (ILs) are of great use for this purpose. Such plant lines carry single homozygous, marker-defined chromosome segments introduced from a donor parent in the genetic background of a recurrent parent and result from successive backcrossing of initial F1 hybrids to the recurrent parent. Lines
of an introgression population have a common recurrent genotype, but different, short, donor segments from another line giving the ability to focus precisely on every desired region of the genome (Eshed and Zamir, 1995). Like RILs, ILs are homozygous and immortal because they can be maintained by self-pollination. The use of ILs is straightforward because of the fact that any phenotypic difference between an IL and the recurrent parent is attributed to the introgressed chromosomal segment. This eliminates most of the whole-genome epistatic interactions and the resulting need for complicated statistical analyses (Lippman and Zamir, 2006). ILs are highly effective for identifying QTL contributing to heterosis, particularly those showing overdominant effects (Semel et al., 2006). However, a limitation is that epistatic interactions, which are important in heterosis, cannot be directly estimated (Li et al., 2001; Luo et al., 2001). IL lines were developed for different crop species and Arabidopsis. A new large set of reciprocal ILs covering the entire genome and a population of sub-ILs (smaller introgression regions) between the Arabidopsis accessions Col-0 and C24 were developed recently by Törjék and Meyer et al., (2008).

1.1.5.3. Gene expression profiling

Gene expression profiling was one of the earliest technologies developed for functional genomics and allows measurements of transcript levels for thousands of genes from a single sample. Microarray technologies are based mostly on oligonucleotide chips (short oligos from 20-25 bases or longer from 50-70), which are used mainly for expression profiling studies of known sequences. Microarray data from various organisms and conditions is being integrated in different databases, which additionally provide a range of bioinformatic tools to interrogate the data. For example, GENEVESTIGATOR (Zimmermann et al., 2004) helps to find a shared biological role (similar pathways and biosynthetic cycles) for multiple genes/proteins based on correlations of transcript levels. Much microarray research was focused on Arabidopsis. The Affymetrix ATH1 GeneChip 22K probe array contains approximately 22,750 probe sets for Arabidopsis. Certain genes like those encoded transcription factors, which are generally expressed at low levels in plants or in a cell-type or tissue-specific manner and only transiently during development, require more sensitive methods than microarrays to be detected. Q-RT-PCR is estimated to be at least 100 -fold more sensitive than DNA arrays in detecting transcripts (Horak and Snyder, 2002). In 2004 Czechowski et al. showed that qRT-PCR provides extraordinary sensitivity, great dynamic range and high robustness (detection limit: 1 transcript molecule in 1000 cells), and has higher precision than the Affymetrix technology (ATH1 22K), especially for low-abundance transcripts.

1.1.5.4. RNA interference technology as a reverse-genetics approach

Reverse genetics is the process of determining the function of selected target genes by inferring with gene expression using mutants or other approaches. RNA interference (RNAi) technology is one such approach, which activates a naturally occurring post-transcriptional gene silencing (PTGS) mechanism that degrades target RNA via a double stranded RNA 'trigger' (Tijsterman et al., 2002). In RNAi technology, dsRNA can be delivered e.g. by stably transforming plants with transgenes that encode hpRNA (hairpin RNA) (Helliwell and Waterhouse, 2003). One of the high-throughput applications of this technology was the AGRIKOLA project, which used recombinational cloning of gene-specific tags (GSTs) into the RNAi expression vector, pAGRIKOLA, to generate more than 20,000 plasmids. Each of these can be used to reduce or eliminate expression of a single Arabidopsis gene by PTGS (Hilson et al., 2004).

1.1.6. Summary

Despite a hundred years or more of exploiting heterosis in breeding and agricultural programs, and the diversity of hypotheses about heterosis, and a variety of research initiatives aimed explaining the genetic/molecular basis of heterosis, the phenomenon remained a mystery at the beginning of this project.

1.2. Genes involved in this study on heterosis

This PhD project focused on an investigation of the role of transcription factors, which play a role in orchestrating gene expression, microRNAs involved in gene regulation, selected genes encoding proteins involved in the epigenetic control of gene expression and/or chromatin modification processes (called 'chromatin-related' in this work) and a group of genes with potential roles in growth because of our expectation that they might play key roles in heterosis.

1.2.1. Review of transcription factors (TFs) in Arabidopsis

Transcription factors are master control proteins that regulate gene expression levels by binding to specific DNA sequences in the promoters of target genes, thereby enhancing or repressing their transcriptional rates. There are two types of TFs, so called general, and regulatory or specific. General TFs are a small set of proteins required for the initiation of transcription, e.g. the TATA-box binding protein. Together with RNA polymerase they form the basal transcription complex. Specific TFs contain one or more DNA binding domains that attach to specific sequences of DNA adjacent to the genes that they regulate. These TFs bind proximal or distal (up- or downstream) of the basal transcription complex and act either as
constitutive or inducible factors. These proteins influence initiation of transcription by contacting members of the basal complex. They may also interact with chromatin remodelling proteins and other transcription factors. There are also TF hierarchies where relatively few 'master' transcription factors control expression of other TF genes (Ratcliffe and Riechmann, 2000; Riechmann et al., 2002; Riaño-Pachón et al., 2007). TFs contain several functional domains: (1) an activation domain that interacts with other parts of the transcription machinery (RNA polymerase or other TFs); (2) a DNA binding domain, which recognises specific bases near the start of transcription; (3) a nuclear localisation domain that targets the protein to the nucleus after being synthesised in the cytoplasm; and sometimes (4) a dimerisation domain, which enables formation of functional dimmers from inactive monomers. Regulatory TFs are far more numerous than general TFs and account for approx. 2000 proteins in Arabidopsis.

The Database of Arabidopsis Transcription Factors (DATF at http://datf.cbi.pku.edu.cn/; Guo et al., 2005) was the main point of reference on TFs for this thesis. It collects 1922 loci for transcription factors ($\sim 7 \%$ of all Arabidopsis genes) and classifies them into 64 families. Although regulatory type transcription factors can be classified according to mechanism of action or their regulatory function (Brivanlou and Darnell, 2002), family classification is based on their structure and mainly on their DNA binding domains (Luscombe et al., 2000). Figure 1.4 shows transcription factor classification and connections between families.

The five largest transcription factors families present in Arabidopsis are the MADS (MADS-box), AP2-EREBP (APETALA2/Ethylene Responsive Element Binding Protein), MYB, bHLH (Basic Helix-Loop-Helix), and C2H2 families. The largest transcription factor families in Arabidopsis also appear to be the most prevalent ones in monocotyledonous plants such as rice or maize. TFs that belong to the same family often regulate similar physiological processes even among very different plant species. Overall regulation of most biological processes in the plant cell can be linked to one or more TF families (Century et al., 2008). At least 45% of all TFs are plant-specific. Among the families found only in plants are: AP2EREBP, NAC, WRKY, Trihelix, ARFs (Auxin Response Factors), the Aux-IAA (Auxin/Indole-3-Acetic Acid) proteins, which do not bind to DNA themselves but interact with the ARF proteins, and other small families (Ratcliffe and Riechmann, 2000).

Figure 1.4. The Arabidopsis complement of transcription factors (Riechmann, 2002)
Gene families are represented by circles, whose size is proportional to the number of members in the family. Domains that have been shuffled, and that therefore 'connect' different groups of transcription factors are indicated with rectangles, whose size is proportional to the length of the domain. DNA binding domains are coloured; other domains (usually protein-protein interaction domains) are shown with hatched patterns. Dashed lines indicate that a given domain is a characteristic of the family or subfamily to which it is connected. Gene names are written in italics (Riechmann, 2002).

TFs play fundamental roles in the life cycle of higher plants controlling or influencing almost all biological processes, including cell cycle progression, metabolism, growth and development, and responses to the environment (Riechmann and Ratcliffe, 2000). It is assumed that they have immensely important functions in the evolution of species. Development is based on the cellular capacity for differential gene expression, which is often controlled by TFs acting as switches of regulatory cascades. TF genes are generally expressed at low levels in plants, often in a cell-type or tissue-specific manner, and often only transiently during development. Many, if not most TF genes are themselves regulated at the level of transcription, so determining where and when TFs are transcribed, and how such transcription is affected by internal or external stimuli is valuable in elucidating the specific roles of cognate proteins. Since the identification of the first TF, TF1, from a bacteriophage SPO1 in the 1970s (Wilhelm et al., 1972), knowledge about these proteins has increased rapidly resulting in
thousands of reports. About 10\% of Arabidopsis TFs have been characterised functionally (Qu and Zhu, 2006). The importance of TFs is underlined by an increasing number of databases focused on this class of genes, for example: AGRIS with AtTFDB and AtcisDB (http://arabidopsis.med.ohio-state.edu; Davuluri et al., 2003; Palaniswamy et al., 2006), TrSDB (http://bioinf.uab.es/trsdb; Hermoso et al., 2004), Athena (http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl; O'Connor et al., 2005), DATF (http://datf.cbi.pku.edu.cn/; Guo et al., 2005), RARTF (http://rarge.gsc.riken.jp/rartf/; Iida et al., 2005), TRANSFAC (http://www.gene-regulation.com/pub/databases.html; Matys et al., 2005) AthaMap (http://www.athamap.de/index.php; Steffens et al., 2004 and 2005; Bülow et al., 2006; Galuschka et al., 2007), PlnTFDB (http://plntfdb.bio.unipotsdam.de/v2.0/; Riaño-Pachón et al., 2007), PlantTFDB (http://planttfdb.cbi.pku.edu.cn/; Guo et al., 2008). This allows exchange of knowledge and access to updated information and acceleration of worldwide TF research. Numerous reports have shown that change in activity of a single TF can have a profound effect on plant biology, causing phenotypic changes. Identification and functional characterisation of TFs is essential for the reconstruction or modelling of transcriptional regulatory networks. Diversity of transcription factors and the cis- acting elements that they bind are the source for an enormous combinatorial complexity, which allows fine-tuning of gene expression and gives rise to a huge spectrum of developmental and physiological phenotypes (Riaño-Pachón et al., 2007). Identification of regulatory genes and networks that control agronomically important traits like biomass, growth rate, yield, and stress resistance may allow the modification of complex traits to improve crop plants. TFs have already played major roles in crop improvement via domestication and breeding, generally by way of increasing intrinsic yield through modification of plant architecture (Doebley et al., 2006; Kovach et al., 2007; Pourkheirandish and Komatsuda, 2007). TFs have also been identified in QTL analysis of some traits of agricultural importance in rice (Konishi et al., 2006). Jiang (2004) showed that HERCULES1 (HRC1), an AT-hook family TF, increases plant organ size and yield when overexpressed in Arabidopsis, with associated increases in cell size and number. Oh et al., (2005) reported enhanced drought tolerance in rice plants that constitutively overexpressed either CBF3 or ABF3 (Arabidopsis TF of bZIP family), with no obvious negative side effects. There is also some evidence that altering expression patterns of the E2F TF genes from Arabidopsis can benefit cell division and cell size, potentially increasing biomass and yield (Beemster et al., 2005; Van Camp, 2005). In parallel with the work presented in this thesis, the latest studies on heterosis identified TFs among differentially expressed genes in hybrids (Wu et al., 2003; Swanson-Wagner et al., 2006; Meyer et al., 2007).

Taking this wide background into account, an obvious question related to hybrid vigour is what is the role of TFs in heterosis? This is one of the questions addressed in this thesis.

1.2.1.1. A qRT-PCR platform for TFs

The Udvardi \& Scheible groups at the MPI-MP designed and tested around 2000 pairs of gene-specific primers for qRT-PCR of all TF and putative TF genes of Arabidopsis. A subset of these (1465 primer pairs) was used to demonstrate the high sensitivity and specificity of qRT-PCR, and to identify root- and shoot-specific TF genes (Czechowski et al., 2004). This was a key enabling technology for the project proposed here and can provide valuable information about transcription factors in a rapid, systematic, and comprehensive manner.

1.2.2. Epigenetic control of gene expression

Epigenetic phenomena are heritable changes in gene expression that occur without a change in DNA sequence, and gene expression level can be regulated by epigenetic modification via covalent modification of DNA or histones (Habu et al., 2001). Chromatin structure is an important element of the mechanisms that determine gene expression patterns in eukaryotes, because nucleosome assembly eliminates the accessibility of promoter sequences to the basal transcription machinery. Gene expression requires unfolding of packed chromatin and, conversely, repression requires the formation and maintenance of condensed chromatin structures (Riechmann, 2002). The Chromatin Database (Chrom.DB at http://www.chromdb.org; Gendler et al., 2008) contains lists of chromatin proteins in plants and classifies them into nine groups. DNA methyltransferases (METs, CMTs, DRMs) are enzymes that methylate DNA in various patterns, Methylcytosine Binding Domain Proteins (MBDs) are thought to bind to methylated DNA to mediate other chromatin modifying events, Histone Acetyltransferases (HACs) are enzymes that add acetyl groups to histones, Histone Deacetylases (HDAs) are enzymes that remove acetyl groups from histones, Chromatin Remodelling Activities (CHR, CHB, CHC etc.) are large multi-protein complexes that use energy derived from the hydrolysis of ATP to alter the positioning of nucleosomes on DNA, SET Domain Containing Proteins (SDGs) are proteins that methylate histones, Chromodomain Containing Proteins are histone-binding repressor proteins, Bromodomain Containing Proteins are proteins that bind acetylated lysines, and High Mobility Group (HMG) Proteins are abundant non-histone chromosomal proteins that bind and bend DNA, serving 'architectural' roles. Because of their role in transcription regulation, genes encoding these proteins (called 'chromatin-related' in this work) are interesting targets for heterosis research.

1.2.3. RNA silencing in plants

RNA silencing, which in plants is has also been called post-transcriptional gene silencing (PTGS), was mentioned above in the context of RNAi technology. RNA silencing refers to diverse RNA-based processes that all result in sequence-specific inhibition of gene expression, either at the transcriptional, mRNA-stability, or translational levels. A couple of different RNA silencing pathways have been characterised (for review see Brodersen and Voinnet, 2006). Nonetheless, these processes are still not fully discovered.

1.2.3.1. Chromatin-targeted RNA silencing

Chromatin-targeted RNA silencing is a gene silencing pathway in which chromatin structure and histone modifications play a role. Typically, short interfering RNA (a type of small RNA) guides the formation of heterochromatin, which is transcriptionally silent. Some proteins involved in this process belong to the putative chromatin proteins compiled by ChromDB. The two schemes of this silencing are shown in Figure 1.5.

Figure 1.5. Chromatin-targeted RNA silencing schemes (Brodersen and Voinnet, 2006)
(a) A nascent Pol II or Pol III transcript is cleaved through the action of siRNA-programmed $A G O 4$, resulting in a truncated RNA that is converted into dsRNA by the action of RDR2. The dsRNA is then processed by DCL3 into 24-nt siRNAs that direct further cleavage of nascent transcripts and might possibly guide sequential activities of histone deacetylases (e.g. HDAO),
histone methyl-transferases (e.g. KYP or SUVH2) and/or DNA methyl-transferases (CMT3 or a $D R M$). It is unclear whether histone modification precedes DNA methylation or not. The process might also involve siRNA-directed chromatin remodelling factors, such as $\operatorname{DRD1}$. The positions of Pol IVa and Pol IVb in those reactions are currently ill defined.
(b) The same effectors are involved but, in this scenario, $R D R 2$ uses nascent transcripts as templates and siRNA-loaded AGO4 is recruited to guide chromatin modifications rather than RNA cleavage.

1.2.3.2. MicroRNAs

Plant microRNAs (miRNAs) are another type of small RNAs, 70% of which were predicted to have TFs as targets (Steimer et al., 2004). They are single-stranded 20-24 nt molecules, excised from endogenous non-coding transcripts with extensive fold-back structure. They cause gene silencing by acting in trans on cellular target transcripts to induce their degradation via cleavage, or by attenuating translation and protein production (Brodersen Voinnet, 2006). Most identified plant miRNAs have near-perfect complementarity to their targets. Approximately 100 miRNA genes have been identified in Arabidopsis and classified into 22 families (Xie et al., 2005). MicroRNAs have important roles in plant development: they control key regulatory elements of plant response to auxin, take part in P-regulation (Bari et al., 2006; Pant et al., 2008), regulate accumulation of TFs involved in defining the identity or number of floral organs, leaf shape, and lateral root formation, and they are involved in primary and secondary metabolism. It is also predicted that miRNAs play roles in environmental adaptation (Brodersen Voinnet, 2006).

Insight into the importance of miRNA in gene regulation, plant physiology and development has increased rapidly (Hunter and Poethig, 2003; Dugas and Bartel, 2004; Steimer et al., 2004; Kidner and Martienssen, 2005). This background makes miRNA an interesting target in study heterosis in plants. In 2007, the research group of Wolf-Ruediger Scheible at the MPI-MP designed and tested primer pairs for all 118 known miRNA genes of Arabidopsis for qRT-PCR (Datt Pant and Musialak-Lange et al., 2009). This platform was used in this work.

1.2.4. Ribosomal RNA/DNA in relation to increased growth rate

There is substantial evidence that the rate in ribosome synthesis in meristem has a strong impact on growth (Kojima et al., 2007). Elser et al., (2000) shown that the growth rate of organisms is correlated with cellular ribosomal RNA (rRNA) content, with higher levels enabling faster protein synthesis and growth. Genetic mechanisms that may account for increased cellular rRNA levels include changes in rDNA structure/organisation, e.g. expansion of rDNA amount, and an increase in the transcription rate per gene of rDNA (Elser et al., 2000). Endoreduplication may be one of possible ways that plant cells achieve this (Rogers and Bendich, 1987). Additionally, Kondorosi et al., (2000) showed that increased DNA con-
tent or ploidy level correlates with increase in cell size, which may contribute to elevated hybrid growth. The bigger nuclei of polyploid cells meet the requirements of a higher metabolic activity, rRNA synthesis and transcriptional activity in larger cells (Weiss et al., 2005). Another mechanism that may influence cellular rRNA levels is epigenetic regulation of transcription via covalent modification of DNA or histones (Habu et al., 2001; Meyer, 2001). Results from genetic mapping indicated a biomass QTL (Lisec et al., 2008) located in the top region of chromosome IV, which contains one of the two nucleolar organiser regions (NORs) with $\mathrm{rDNA} / \mathrm{rRNA}$ genes (Figure 1.6). The nucleolus, which is created around those genes, is a key cellular structure that coordinates the synthesis and assembly of ribosomal subunits, plays a role in cell cycle regulation, and its function is tightly linked to cell growth and proliferation (Andersen, 2005). Total nucleolar size is an indicator of rRNA gene activity as shown in the study of Delany et al., (1994). Thus, rRNA genes are an interesting target for research on heterosis for enhanced seedling growth rates in Arabidopsis.

Figure 1.6. Organisation of the NORs at the top of A. thaliana chromosomes II and IV (Copenhaver and Pikaard, 1996b)

NOR2 and NOR4 are each $\sim 4 \mathrm{Mbp}$ in size, including $\sim 350-400$ rRNA genes at each locus

1.2.5. Role of FRIGIDA and FLOWERING LOCUS C

FRIGIDA (FRI, AT4G00650) and FLOWERING LOCUS C (FLC, AT5G1014) are known to control flowering time variation in Arabidopsis thaliana. FLC is a MADS-box transcription factor that blocks the transition from vegetative to reproductive development (He et al., 2003). FRI is a gene of unknown biochemical function (Veley and Michaels, 2008) and the FRI protein is predicted to contain coiled-coil domains in two positions (Johanson et al., 2000). FRI (AT4G00650) acts epistatically to FLC causing its up-regulation (Shindo et al.,

2005; Michaels and Amasino, 1999). Up-regulation of FLC by FRI differs depending on the activity of both genes and is different for various genotypes. FRI was found to be functional in C24 but not in Col-0, whereas FLC is strong in Col-0 but weak in C24 (Gazzani et al., 2003).

Figure 1.7. Scheme of FRI-FLC interactions (modified from Poduska et al., 2003)
Studying FRI in relation to biomass heterosis seemed to be interesting since it is located in the biomass QTL 'hot-spot' at the top of chromosome IV (Lisec et al., 2008). Moreover, Caroline Dean and co-workers have demonstrated the up-regulation of $F L C$ expression by FRI in the shoot and root meristematic regions of Ler seedling (data publicly available at the Caroline Dean's website www.jic.bbsrc.ac.uk/staff/caroline-dean/index.htm, 2007), which could contribute to biomass vigour of hybrid seedlings. Finally, Korves et al., (2007) showed via association studies that the FRI FLC genotype (functional FRI in various FLC backgrounds) is associated with rosette growth. Boss et al., (2004) emphasised that FLC integrates signals from the autonomous pathway (Figure 1.7), which stimulates flowering partially based on plant size. Although the FRI was not discussed in literature in the context of rosette growth, FRI FLC genotypes may differ in interactions with the autonomous pathway so the effects of $F L C$ variation on rosette growth might be worth studying (Korves et al., 2007). Furthermore, they also suggested that the specific FRI FLC genotype may be associated with very high water use efficiency, which may have contributed to slower plant growth in the studied conditions. All these considerations seemed to be a good basis for FRI FLC studies in the context of biomass heterosis.

1.3. Objectives of the study

I. The major goal of this PhD study was to provide an input into studies on molecular mechanisms underlying heterosis via determination of the role that regulatory (i.e. TFs and microRNAs), and additional genes of interest (i.e. 'chromatin-related' genes, FRIGIDA, and ribosomal genes) play in heterosis for biomass/growth in Arabidopsis thaliana.
II. The specific goals were:

1. To determine the time in development at which the F1 hybrids and parents diverge phenotypically,
2. To identify differentially expressed regulatory genes and additional genes of interest in F1 hybrids when compared to parents, before the point of divergence determined in point 1 (selection of candidate genes),
3. Determine expression patterns (expression phenotypes) of selected candidate genes,
4. To profile the expression of candidate genes at different time points of early development and compare their expression patterns,
5. To determine, whether any of the candidate genes identified in point 2 map to the same chromosomal location as QTLs for growth and/or biomass heterosis, and for biomass per se (determined by others, Melchinger and Altmann),
6. To validate the expression of a subset of candidate genes (from point 2) in crosses of other Arabidopsis accessions that exhibit biomass heterosis,
7. To modify the expression of selected candidate gene(s) (from point 2) or additional genes of interest, using RNAi constructs in transgenic Col-0 or C24, to determine whether individual gene(s) contribute significantly to heterosis of biomass or growth,
8. To analyse introgression lines (ILs) with an introgression containing selected candidate gene(s) or additional genes of interest in relation to biomass and biomass heterosis,
9. To evaluate the possible role of rRNA/rDNA in growth/biomass heterosis using additional approaches.

2. MATERIALS AND METHODS

2.1. Plant material

- Arabidopsis accessions:
- Arabidopsis thaliana (L.) ecotype Col-0
- Arabidopsis thaliana (L.) ecotype C24
- Arabidopsis thaliana (L.) ecotype Cl-0
- Arabidopsis thaliana (L.) ecotype Ler
- Arabidopsis thaliana (L.) ecotype Nd
- Parental inbred lines:

Col-0xCol-0, C24xC24, Cl-0xCl-0, LerxLer, NdxNd, N88/2/1/10 from generation BC5F3

- Reciprocal F1 hybrids:

Col-0xC24, C24xCol-0, NdxCl-0, Cl-0xNd, LerxC24, C24xLer

- Test crosses (TCs) of introgression line (IL):

Col-0xN88/2/1/10 and C24xN88/2/1/10

2.1.1. Plant growth conditions

- Early stages of development - until 10 DAS (days after sowing):

Plantlets were grown in Petri dishes and fine soil mixture (content as given below) was covered with nylon net. Plates were divided into four equal parts so that parental and hybrid seeds could be sown on the same plate. Up to 5 mg of seeds per genotype were sown on one plate to avoid tight growing.

- 15 DAS:

Plants were grown in a Latin square plot design with six replicates. Six plants of the same line were grown per well in 96-well-trays or per separate small pot.

Plants were grown in a 1:1 mixture of GS 90 soil and vermiculite. All seeds were germinated in a growth chamber at $4^{\circ} \mathrm{C}$ for two days and were then transferred to a long-day regime (16 h fluorescent light $120 \mathrm{~mol} /\left(\mathrm{m}^{2} \mathrm{~s}\right)$ at $20^{\circ} \mathrm{C}$ and 60% relative humidity $/ 8 \mathrm{~h}$ dark at $18^{\circ} \mathrm{C}$ and 75% relative humidity). To avoid position effects, trays/plates were rotated around the growth chamber every two days.

2.1.2. Technique of crossing

All the crosses were made according to Meyer et al., (2004) to obtain seeds of all genotypes identical in size and mass: parental lines were inbred lines obtained by self pollina-
tion; five to six flowers per plant were left. Reciprocal hybrids and test crosses of ILs were produced by hand-pollinating emasculated flowers of the respective mother plant.

2.1.3. Methods of biomass difference determination

Prior to each experiment, hybrids of all crossing batches were tested to confirm biomass heterosis. Plants were grown until 15 DAS and then rosettes were harvested, and kept to dry in an oven at $80^{\circ} \mathrm{C}$ for 4 days for DW (dry weight) determination. Subsequent weighing was performed on a very sensitive balance (AX 205-balance, Metter Toledo) and statistical determination of DW differences via Student's t-test was performed in Excel (MS Office). Mid-Parent Heterosis (MPH) was used as a measure of a biomass increase level in hybrids vs. parents, and it was calculated according to the following formula:

MPH (\%) = (mean DW of F1s - mean DW of Ps) / (mean DW of Ps)*100,
F1s - reciprocal F1 hybrids, Ps - parental inbred lines.
Only F1 hybrids of biomass levels that were significantly higher than those of parental plants i.e. showing at least 40% MPH were used for experiments.

2.2. Commonly used equipment and various consumables

2.2.1. Equipment

- Agilent Technologies, Santa Clara, CA USA: Agilent 6890 GC gas chromatograph with 7683 Autosampler, Agilent GC 6890N coupled with mass spectrometer,
- Applied Biosystems (\& Perkin Elmer), Foster City, USA: ABI Prism 2X ABI Prism 7900HT Sequence Detection System and 7300 real-time PCR,
- Beckman Instruments Inc., Fullerton, USA: Avanti J30I centrifuge,
- Biometra, Göttingen, Germany: TGradient Thermal Cycler,
- Bio-Rad Laboratories, Hercules, USA: electrophoresis chambers, Power Pac 300,
- Becton-Dikinson, San Jose, USA: FACStar ${ }^{\text {PLUS }}$ flow cytometer,
- Dumont, Montignez, Switzerland: sharpened and unsharpened microscopic tweezers of different sizes,
- Eppendorf, Hamburg, Germany: pipettes, microcentrifuges: 5417, 5417C, 5417R, thermomixer, centrifuge tubes, PCR tips with filters,
- Gilson, France: pipettes,
- Hamamatsu Photonics, Herrsching Ammersee, Germany: ultra sensitive CCD camera,
- Leco, St. Joseph, MI, USA: Leco Pegasus III TOF MS mass spectrometer,
- Leica, Heidelberg, Germany: binoculars, stereomicroscopes supplied with cameras, microtome,
- Metter Toledo, Singapore, China: AX 205-balance,
- NanoDrop, Wilmington, USA: NanoDrop ${ }^{\text {TM }}$ ND-1000 spectrophotometer,
- Retsch, Haan, Germany: MM200 homogeniser,
- Sorvall, Langenselbold, Germany: centrifuge RC5B Plus,
- Stratagene, Heidelberg, Germany: UV- crosslinker.

2.2.2. Consumables

- Applied Biosystems (\& Perkin Elmer), Foster City, USA: 384-well Clear Optical Reaction Plates with Barcode PCR compatible DNA/RNA/RNase free with optical adhesive foil covers,
- Biozym Diagnostik, Hess. Olendorf, Germany: agarose,
- Eppendorf, Hamburg, Germany: centrifuge tubes, special PCR tips with filters,
- Eurogentec, Seraing, Belgium: 96 well PCR Plates with caps, oligonucleotides,
- Fermentas, St. Leon-Rot, Germany: O'RangeRuler DNA Ladder ${ }^{\text {TM }}$ - various sizes of DNA ladders, 6X Orange DNA Loading Dye ${ }^{\text {TM }}$,
- Invitrogen, Karlsruhe, Germany: 10 mM dNTPs Mix, 0.24-9.4 kb RNA-ladder,
- Merck, Darmstadt, Germany: other chemicals,
- Invitrogen/Molecular Probes, Karlsruhe, Germany: DAPI (4‘-6-diamidino-2phenylindole) stain,
- Qiagen, Hilden, Germany: Oligo (dT) ${ }_{16}$ primer $^{\mathrm{TM}}$,
- Pharmacia, Freiburg, Germany: EtBr, other chemicals,
- Roth, Karlsruhe, Germany: phenol/chloroform/isoamyl alcohol 25:24:1 for DNA/RNA isolation, $\mathrm{pH} \sim 8.00$, and other chemicals,
- Sefar, Heiden, Schwizerland: nylon net,
- Sigma-Aldrich, Taufkirchen, Germany: highly positively charged Nytran ${ }^{\circledR}$ SuPerCharge Nylon Membrane, diethylpirocarbonate (DEPC), basic chemicals,
- Shott Scientific Glass, Parkersburg, USA: glass tubes with caps and teflon discs, GC tubes.

2.2.2.1. Enzymes and kits

- Ambion, Huntingdon, Cambridgeshire, UK: TURBO ${ }^{\text {TM }}$ DNase,
- Applied Biosystems (\& Perkin Elmer), Foster City, USA: 2X SYBR Green® PCR Master Mix reagent and Power SYBR Green® PCR Master Mix reagent,
- Machery-Nagel, Düren, Germany: Nucleobond AX plasmid purification kit ${ }^{\mathrm{TM}}$,
- Invitrogen, Karlsruhe, Germany: Superscript III H ${ }^{-}$Reverse Transcriptase ${ }^{\text {TM }}$ (supplied with components: 5X First-Strand Buffer and 0.1 M DTT), Random Primers,
- Promega, Mannheim, Germany: RNasin ${ }^{\circledR}$ Ribonuclease Inhibitor ${ }^{\mathrm{TM}}$,
- Roboklon, Berlin, Germany: OptiTaq DNA Polymerase ${ }^{\mathrm{TM}}$ with corresponding buffers,
- Roche (Applied Science), Hague Road, USA: DIG-labelling system ${ }^{\text {TM }}$, antibiotics.

2.3. RNA methods

2.3.1. RNA extraction protocol

The following protocol was a modification of Weber and Weschke RNA extraction method (IPK-Gatersleben, Germany). All solutions used for RNA extraction were prepared using autoclaved DEPC-water and were pre-chilled on ice before use; EtOH was kept at $-20^{\circ} \mathrm{C}$. Frozen tissue (50-150 mg FW or 40 mg DW) was ground using a retch-mill and quenched in liquid $\mathrm{N}_{2} .700 \mu \mathrm{~L}$ of extraction buffer (1 M Tris - $\mathrm{pH} 9.0,1 \%$ SDS, 10 mM EDTA, β-ME $-5 \mu \mathrm{~L} / \mathrm{mL}$ added prior to RNA isolation) were added, the sample was thoroughly mixed by vortexing, $700 \mu \mathrm{~L}$ of phenol/chloroform/isoamyl alcohol (PCI, 25:24:1, pH ~ 8.00; Roth) were added and the sample were again vortex-mixed. Samples were centrifuged at $4^{\circ} \mathrm{C}$ for 15 min at $13,000 \mathrm{rpm}$. The aqueous phase was transferred into a new tube, $700 \mu \mathrm{~L}$ of PCI was added and vortexed, and the mixture was centrifuged at $13,000 \mathrm{rpm}$ for 15 min at $4^{\circ} \mathrm{C}$. The aqueous phase was transferred to a new tube, centrifuged at $13,000 \mathrm{rpm}$ for 5 min at $4^{\circ} \mathrm{C}$. The supernatant was transferred to a fresh tube and $1 / 10$ of $3 \mathrm{M} \mathrm{Na}-\mathrm{Ac}, \mathrm{pH} 5.2$ and 2.5 volume of the absolute EtOH added. The tube was three times mixed by inversions, incubated at $-80^{\circ} \mathrm{C}$ for $30-45 \mathrm{~min}$, and then centrifuged at $13,000 \mathrm{rpm}$ for 10 min at $4^{\circ} \mathrm{C}$. The supernatant was carefully removed. The precipitate was dissolved in $200 \mu \mathrm{~L}$ of DEPC-water and spun down at $13,000 \mathrm{rpm}$ for 1 min at $4^{\circ} \mathrm{C} .200 \mu \mathrm{~L}$ of 4 M LiCl were then added and thoroughly mixed by gentle pipetting. Samples were left to stand on ice overnight in a refrigerated room at $4^{\circ} \mathrm{C}$. On the next day, all samples were centrifuged at $13,000 \mathrm{rpm}$ for 15 min at $4^{\circ} \mathrm{C}$. The liquid was removed very carefully, 1 mL of 2 M LiCl was added, the tube inverted once and centrifuged at $13,000 \mathrm{rpm}$ for 15 min at $4^{\circ} \mathrm{C}$. Liquid was removed very slowly and carefully. The pellet was washed twice with $70 \% \mathrm{EtOH}$, centrifuged at $10,000 \mathrm{rpm}$ for 5 min at $4^{\circ} \mathrm{C}$ and the residual solution was removed. The resulting RNA pellet was stored in $500 \mu \mathrm{~L}$ of
$70 \% \mathrm{EtOH}$ at $-80^{\circ} \mathrm{C}$. Before use, the pellet was re-centrifuged, air-dried and dissolved in $40 \mu \mathrm{~L}$ of DEPC-water (approximately $1 \mu \mathrm{~g} / \mu \mathrm{L}$ of RNA).

2.3.2. Assays of RNA amount and quality

RNA concentration and purity was determined by photometric measurements at 230, 260 and 280 nm using a very sensitive NanoDrop ${ }^{\text {TM }}$ spectrophotometer. RNA quality was judged by two ratios: A260/280 (values in the range of 1.8-2.0 indicate low protein contamination) and A260/230 (ratios ≥ 2.0 indicate low polysaccharide contamination). RNA integrity was ascertained on a $1.5 \%(\mathrm{w} / \mathrm{v})$ agarose gel stained with EtBr .

2.3.3. Removal of genomic DNA contamination from RNA samples

To remove all traces of DNA contamination, up to $10 \mu \mathrm{~g}$ of total RNA was digested with TURBO ${ }^{\text {TM }}$ DNAse (Ambion), according to the manufacturer's instructions. RNAse inhibitor (Promega) was added to the sample in the proportion of $1 \mathrm{U} / \mu \mathrm{L}$ of RNA. Afterwards, RNA integrity was ascertained on a 1.5% (w/v) agarose gel stained with EtBr after DNAse digestion. The absence of genomic DNA contamination was subsequently confirmed by qPCR, using primers designed on an intron sequence of a control gene $A G L 68$, (AT5G65080; primer sequences in Annex A); $1 \mu \mathrm{~L}$ aliquot of RNA solution per $10 \mu \mathrm{~L}$ reaction volume was applied in each of four technical replicates. For all reactions set up, a negative control (using $1 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$ instead of RNA solution), and a positive control ($1 \mu \mathrm{~L}$ of $5 \mathrm{ng} / \mu \mathrm{L}$ of genomic DNA instead of RNA solution) were included into additional plate wells. If the amplification was detected earliest after 38 cycles, the RNA sample was considered as genomic DNA-free.

In case of total RNA samples used further to prepare a cDNA to measure the rRNA expression level the above mentioned procedure was modified. $1 \mu \mathrm{~g}$ of total RNA was digested with TURBO ${ }^{\mathrm{TM}}$ DNAse (Ambion). The absence of genomic DNA contamination was confirmed by qPCR, using primer pairs designed on sequences of 25 S rDNA, 18 S rDNA and 5.8S rDNA (primers sequences in Annex A) and applying a $1 \mu \mathrm{~L}$ of 100 times diluted RNA solution per $10 \mu \mathrm{~L}$ reaction volume. This was a crucial step because in higher plants ribosomal genes are present in multiple copies (Saini et al., 2000). If the amplification was detected earliest after 38 cycles, the RNA sample was considered as genomic DNA-free.

2.3.4. Northern blotting with a DIG-system (based on Roche manual)

2.3.4.1. RNA electrophoresis and transfer to a membrane

$6 \mu \mathrm{~g}$ of total RNA isolated via RNA extraction protocol (described in section 2.3.1), were separated by gel electrophoresis under denaturing conditions: 1.5% (w/v) agarose gel
contained $2 \% ~(\mathrm{w} / \mathrm{v})$ formaldehyde (Lehrach et al., 1977). RNA was later transferred directly from the gel to a highly positively charged Nytran ${ }^{\circledR}$ SuPerCharge Nylon Membrane (SigmaAldrich) and was fixed using a UV transluminator for 4 min at the wavelength of 302 nm .

2.3.4.2. Labelling of probes with dioxygenin-11-dUTP

Probes were labelled during PCR amplification of 10 ng of gDNA using gene specific primers. The PCR mixture contained all nucleotides at a concentration of $100 \mu \mathrm{M}$ plus $17.5 \mu \mathrm{M}$ dioxygenin-11-2'-deoxy-uridine-5'-triphosphate alkaline labile (dioxygenin-11dUTP, Roche), and $82.5 \mu \mathrm{M}$ dTTP. The following PCR program was used: 1 cycle of $95^{\circ} \mathrm{C}$ for $1 \mathrm{~min} ; 30$ cycles of $\left\{95^{\circ} \mathrm{C}\right.$ for $1 \mathrm{~min}, 55^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 1 min$\}$, and 1 cycle of $72^{\circ} \mathrm{C}$ for 5 min . T_{m} of the primers was calculated from the following formula:
$\mathrm{T}_{\mathrm{m}}=2 * \mathrm{GC}+4 * \mathrm{AT}$.
Labelling efficiency was verified via agarose gel electrophoresis by monitoring the shift to the larger DIG-labelled DNA band, compared to the control PCR reactions (without dioxygenin-11-dUTP). Probes were used for hybridisation at a concentration $2 \mu \mathrm{~L} / \mathrm{mL}$ of DIG Easy $\mathrm{Hyb}^{\mathrm{TM}}$ solution.

2.3.4.3. Pre-hybridisation and hybridisation conditions

Filters were pre-hybridised for 30 min at $50^{\circ} \mathrm{C}$ in pre-warmed DIG Easy Hyb ${ }^{\mathrm{TM}}$ solution in hybridisation tubes. The PCR DIG-labelled probe (see above) was diluted in $50 \mu \mathrm{~L}$ of $\mathrm{ddH}_{2} \mathrm{O}$ and denatured at $95^{\circ} \mathrm{C}$ for 5 min . The probe was then immediately chilled on ice and added to fresh pre-warmed $\left(50^{\circ} \mathrm{C}\right)$ DIG Easy Hyb ${ }^{\mathrm{TM}}$ solution. The pre-hybridization solution was then replaced with 3.5 mL hybridization solution $/ 100 \mathrm{~cm}^{2}$ membrane, containing the probe, and hybridization was performed overnight at $50^{\circ} \mathrm{C}$. Afterwards, the hybridization solution was decanted and stored at $-20^{\circ} \mathrm{C}$. The blot was washed twice in low stringency buffer ($2 \mathrm{X} \mathrm{SSC}, 0.1 \% \mathrm{SDS}$) for 5 min at room temperature, and then twice in pre-warmed, high stringency buffer ($0.5 \% \mathrm{SSC}, 0.1 \% \mathrm{SDS}$) for 15 min at $50^{\circ} \mathrm{C}$.

2.3.4.4. Detection

Blots were washed in 250 mL of maleic acid buffer (0.1 M maleic acid, 0.15 M NaCl , $\mathrm{pH} 7.5,0.3 \%$ Tween 20) for 2 min at room temperature, than blocked in 250 mL of Blocking Solution (Roche) for 30 min at room temperature. 20 mL of antibody solution (diluted 1:15,000 in Blocking Solution) was then added and the membrane incubated at room temperature for 30 min . The membrane was washed twice for 15 min in maleic acid buffer and equilibrated with 20 mL of detection buffer (0.1 M Tris- $\mathrm{HCl} \mathrm{pH} 9.5,0.15 \mathrm{M} \mathrm{NaCl}$) for 3 min and
then briefly dried. The membrane was placed (facing up a DNA/RNA side) in a plastic bag and $500 \mu \mathrm{~L} / 100 \mathrm{~cm}^{2}$ drops of CDP-Star ${ }^{\mathrm{TM}}$ (Roche) were evenly applied to the surface of the blot. The plastic bag was laid for 5 min , any excess liquid was squeezed out, the bag was sealed and the membrane was incubated in room temperature for 1 h . A chemiluminescent signal was detected using an ultra sensitive CCD camera (Hamamatsu Photonics) with an acquisition time in the 'dynamic' mode for photon acquisition ranging between 10 min up to 2 h . The camera sensitivity was set to level equal to 255 and the threshold for background subtraction was 30 . Images were analysed using HPD-LIS ${ }^{\text {TM }}$ luminescence imaging software (Hamamatsu Photonics).

2.4. DNA methods

2.4.1. cDNA synthesis and quality check

Reverse transcription (RT) reactions were performed using $5 \mu \mathrm{~g}$ of total RNA with SuperScript ${ }^{\mathrm{TM}}$ III Reverse Transcriptase (Invitrogen) according to the manufacturer's instructions. The efficiency of cDNA synthesis was assessed by qPCR amplification of control genes encoding AT1G13440 or GAPC2 (primer sequences in Annex A). Each $10 \mu \mathrm{~L}$-reaction contained $1 \mu \mathrm{~L}$ of a 10 -fold diluted cDNA sample. Negative ($1 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$ instead of cDNA solution), and positive ($1 \mu \mathrm{~L}$ of $5 \mathrm{ng} / \mu \mathrm{L}$ of genomic DNA instead of cDNA solution) controls were included into additional plate wells. Only cDNA preparations that yielded similar values of cycle threshold $\left(\mathrm{C}_{\mathrm{T}}\right)$ for the control genes were used for subsequent comparison. Additionally, a quality of each cDNA sample was tested in technical triplicates based on the GAPC2 amplification with two other primer pairs: designed on the 3^{\prime} and on the 5^{\prime} end of this gene sequence. The following ratio was the measure of the fold difference between both ends present in a given cDNA pool:
C_{T} GAPC2_3'/ C_{T} GAPC2_5' $=2^{\left(\text {CT GAPC2_5 }^{\prime}-\mathrm{CT} \text { GAPC2_3' }\right) .}$
A ratio of 1-3 was the accepted threshold. Samples showing higher values meant that 5 'cDNA ends were underrepresented in the pool and were not considered for further analyses. Appropriate cDNA samples could be further diluted to the range of $\mathrm{C}_{\mathrm{T}} \sim 18-19$. cDNA samples were stored in $-80^{\circ} \mathrm{C}$ prior to further analyses.

For a synthesis of cDNAs used to measure expression levels of genes transcribed without subsequent polyA tail addition (e.g. ribosomal genes), Random Primers ${ }^{\mathrm{TM}}$ (Invitrogen) were used. For these RT reactions, 1 ng of RNA was used and reactions were performed according to the manufacturer's (Invitrogen) instructions. Only cDNA preparations that
yielded similar C_{T} values for the control gene (see above) were used for subsequent comparison.

2.4.2. DNA isolation and quantity/quality assays

Genomic DNA was isolated from the youngest rosette leaf of 4-week old plants (for RNAi plants analysis) and from seedling at 6 DAS of different Arabidopsis ecotypes (for use as positive controls in qPCR) according to standard CTAB method (Sambrook et al., 2000). The alkaline lysis method (Sambrook et al., 2000) was used to extract plasmid from transformed Agrobacterium tumefaciens and Escherichia coli. The concentration and purity of DNA samples were determined by photometric measurements at 230, 260 and 280 nm using a NanoDrop ${ }^{\mathrm{TM}}$ spectrophotometer. Plasmid DNA integrity was tested on the 1.5% (w / v) agarose gel stained with EtBr . The Nucleobond ${ }^{\mathrm{TM}}$ AX plasmid purification kit with a protocol according to manufacturer's instructions was used to purify the plasmid DNA from E. coli prior to sequencing.

2.4.3. pAGRIKOLA clones validation via DNA sequencing and PCR amplification

pAGRIKOLA clones of Agrobacterium were validated according to AGRIKOLA (http://www.agrikola.org/) protocol 'Validating the pAGRIKOLA_clones' given at http://www.agrikola.org/index.php?o=/agrikola/html/pAGRIKOLA_validation. PCR conditions were modified and the touch-down PCR protocol was as follows: 1 cycle of $94^{\circ} \mathrm{C}$ for 5 $\min , 29 \times\left[1\right.$ cycle of $\left\{94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{sec}, 59^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 min$\}, 1$ cycle of $\left\{94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{sec}, 57^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 min$\}, 1$ cycle of $\left\{94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{sec}, 55^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 min$\}, 1$ cycle of $\left\{94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{sec}, 51^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 min$\left.\}\right], 1$ cycle of $72^{\circ} \mathrm{C}$ for 5 min . The reaction mix with a final volume $50 \mu \mathrm{~L}$ consisted of $5 \mu \mathrm{~L}$ of 10 X Buffer B (Roboklon), $41 \mu \mathrm{~L}$ of $\mathrm{ddH}_{2} \mathrm{O}$, and a mix of equal volumes of four AGRIKOLA primers (Agri 51, Agri 56, Agri 64, Agri 69; primer sequences in Annex A) at a final concentration of 0.1 $\mu \mathrm{M}$ each, $1 \mu \mathrm{~L}$ of plasmid DNA template, 2.5 U of polymerase OptiTaq (Roboklon), and 0.1 $\mu \mathrm{M}$ of dNTPs (final concentration).

The sequencing of pAGRIKOLA clone plasmid was performed by AGOWA GmbH (Berlin, Germany) using Big Dye ${ }^{\mathrm{TM}}$ chemistry on a Perkin Elmer ABI Prism 377 DNA sequencer. As previously suggested by AGRIKOLA (http://www.agrikola.org/), there was used a sequencing method protocol developed by Esposito et al., (2003) to prevent a hairpin creation during sequencing through inverted repeats. Sequencing chromatograms were analysed using Chromas v. 1.45 software. The obtained sequence was further compared with the one
deposited in the TAIR database. Plasmid clones with sequence identical to the one in TAIR and validated by PCR amplification were used to transform plants.

2.4.4. Primer design for qPCR

All qPCR primers were designed using the Primer Express 2.0 software (Applied Biosystems) with the following parameters: melting temperatures $\mathrm{T}_{\mathrm{m}}=60 \pm 2^{\circ} \mathrm{C}$, primer lengths of 20-24 nucleotides, guanine-cytosine (GC) content of 45-55\%, and PCR amplicon lengths of $60-150$ base pairs. In addition, when possible at least one primer of a pair was designed to cover an exon-exon junction, according to the gene structure models at TAIR (http://www.arabidopsis.org) or NCBI (http://www.ncbi.nlm.nih.gov/) for ribosomal genes. If possible, primers were designed close (no more than 500 bp) from the 3 ' end of longest gene transcript annotated in TAIR. Primer sequences were further blasted against the Arabidopsis genome sequence using BLAST a tool of TAIR with standard parameters to check their specificity. For the experiments concerning the FRIGIDA (AT4G00650) expression study, the primers were designed on the part of gene sequence which was identical in Col-0 and C24. Sequence for the gene in C24 was provided to a laboratory of Thomas Altmann from laboratory of Caroline Dean (John Innes Centre Norwich, UK). The sequences of all primers used in this work were collected in Annex A.

2.4.5. PCR protocols

2.4.5.1. Q-PCR analysis condition and settings

PCR reactions were performed in an optical 384-well plate with an ABI PRISM® 7900 HT Sequence Detection System (Applied Biosystems), using SYBR® Green to monitor dsDNA synthesis. Reactions contained $5 \mu \mathrm{~L}$ of Power or 2 X SYBR® Green Master Mix reagent (Applied Biosystems), 1.0 ng cDNA and 200 nM of each gene-specific primer in a final volume of $10 \mu \mathrm{~L}$. Typically, $9 \mu \mathrm{~L}$ of a 'master-mix' consisted of $4 \mu \mathrm{~L}$ of $0.5 \mu \mathrm{M}$ genespecific primers (forward and reverse primers were mixed) and $5 \mu \mathrm{~L}$ of Power or 2X SYBR® Green Master Mix reagent, which was first dispensed into individual wells. Afterwards, $1 \mu \mathrm{~L}$ of cDNA template was pipetted in. The 'master-mix' was prepared to reduce pipetting errors and ensure that each reaction contained an equal amount of cDNA. Precise pipettes (MultiPro ${ }^{\text {TM }}$ Pipettes, Eppendorf) with sterile tips with filters were used (Eppendorf) to aliquot the reagents and template to reduce possible air/pipette contamination. The following standard thermal profile was used for all PCR reactions: $50^{\circ} \mathrm{C}$ for $2 \mathrm{~min} ; 95^{\circ} \mathrm{C}$ for $10 \mathrm{~min} ; 40$ cycles of $\left\{95^{\circ} \mathrm{C}\right.$ for 15 sec , and $60^{\circ} \mathrm{C}$ for 1 min$\}$. To generate a baseline-subtracted plot of the logarithmic increase in fluorescence signal $\left(\Delta R_{n}\right)$ versus cycle number, baseline data were col-
lected between cycles 3 and 15 (3-10 for rRNA genes). To obtain cycle threshold $\left(\mathrm{C}_{\mathrm{T}}\right)$ values, all amplification plots were analysed with a set threshold of fluorescence signal $R_{n}=0.1$. During qPCR analysis, melting curves were automatically created for each reaction by plotting fluorescence as a function of temperature as the thermal cycler heats through the dissociation temperature of the product. All data were generated and analysed using the SDS v. 2.1 software (Applied Biosystems).
2.4.5.2. pAGRIKOLA clones validation via PCR amplification and PCRbased screening for AGRIKOLA RNAi plant lines
Validation of pAGRIKOLA construct in of BASTA-selected RNAi plants (plant transformants, T 1 generation) was performed via PCR amplification according to AGRIKOLA (http://www.agrikola.org/) protocol 'Validating AGRIKOLA RNAi lines' given at http://www.agrikola.org/index.php?o=/agrikola/html/seeds_validation. The AGRIKOLA primers (Agri 51, Agri 56, Agri 64, Agri 69; primer sequences are given in Annex A) and modified PCR protocol were the same as given in section 2.4.3; genomic DNA was a PCR template.

2.4.5.3. Semi-qPCR analysis

The reaction mix (total volume $50 \mu \mathrm{~L}$) consisted of: $5 \mu \mathrm{~L}$ of 10X Buffer B (Roboklon), $41 \mu \mathrm{~L}$ of $\mathrm{ddH}_{2} \mathrm{O}$, forward and reverse primer mix for FRIGIDA (AT4G00650; primer sequences in Annex A) each at a final concentration $0.1 \mu \mathrm{M}, 1 \mu \mathrm{~L}$ of cDNA template (undiluted sample obtained in a reverse transcription of $1 \mu \mathrm{~g}$ of total RNA), 2.5 U of OptiTaq polymerase (Roboklon), $0.1 \mu \mathrm{M}$ of dNTPs (final concentration). PCR conditions were as follows: 1 cycle of $94^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 35$ cycles of $\left\{94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{sec}, 55^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 $\min \}$, and 1 cycle of $72^{\circ} \mathrm{C}$ for 5 min .

2.5. Transformations

2.5.1. Transformation of bacteria

For the purpose of sequencing the plasmid extracted from pAGRIKOLA clones of Agrobacterium were transformed ('back-transformed') into Escherichia coli strain DH5 α using the heat shock method (Hanahan, 1983).
E.coli transformants ('back-transformants') and pAGRIKOLA clones of Agrobacterium (obtained from Magdalena Weingartner from AGRIKOLA project) were grown in LB media (Sambrook et al., 2000) with the appropriate antibiotics (for growth on solid media, 1.5% agar was added). Filter-sterilised antibiotics were added at the following concentrations:
kanamycin $50 \mu \mathrm{~g} / \mathrm{mL}$ gentamycin $25 \mu \mathrm{~g} / \mathrm{mL}$, rifampicin $50 \mu \mathrm{~g} / \mathrm{mL}$ and tetracycline $5 \mu \mathrm{~g} / \mathrm{mL}$ (for E. coli only the first antibiotic was used).

2.5.2. Plant transformation and selection of plant transformants

Transformation of wild type Col-0xCol-0 and C 24 xC 24 (inbred lines) Arabidopsis thaliana plants with Agrobacterium tumefaciens was performed using the floral-dip method (Clough and Bent, 1998).

Transformants (T1 generation) were selected in soil-grown plants by spraying with herbicide BASTA ($40 \mathrm{mg} / \mathrm{L}$) according to a protocol 'Selection of transformants' given at http://www.agrikola.org/index.php?o=/agrikola/html/transformation of AGRKOLA project (http://www.agrikola.org/).

2.6. Metabolite analysis

2.6.1. Fatty acids

2.6.1.1. Extraction and derivatisation protocol

Lipids were extracted and fatty acids derivatised to form the corresponding methyl esters using a 'FAME (Fatty Acid Methyl Esters) procedure' (Browse et al., 1986). Typically, 5 seeds or seedlings were collected from a Petri dish for each sample and put directly in glass tube filled with 1 mL of 1 N HCl in $\mathrm{MetOH}, 0.9 \% \mathrm{NaCl}$ and $100 \mu \mathrm{~L}$ of internal standard $\left(50 \mu \mathrm{~g} / \mathrm{mL}\right.$ in MetOH of pentadecanoic acid, 15:0). Glass tubes were incubated at $80^{\circ} \mathrm{C}$ for 1.5 h . After cooling to a room temperature, equal volumes of $0.9 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}$ and hexane were added to each sample. The samples were shaken vigorously by hand for 1-2 min and centrifuged at $1,000 \mathrm{rpm}$ for 3 min . The FAME, which always partitions to the upper hexane phase, was transferred directly into fresh glass tube. The FAME was later slightly concentrated in a N_{2} stream. The resulting solution (about $200 \mu \mathrm{~L}$), was transferred directly into GC vials and the samples were further analysed by GC chromatograph (Agilent Technologies).

2.6.1.2. Data analysis

Individual fatty acids were identified and quantified on the basis of chromatogram analysis according to Browse et al., (1986). The differences in fatty acids level between parents and F1 hybrids were determined via the Student's t-test in Excel (MS Office). Each hybrid was compared to each parent at a significance threshold of P -value <0.05.

2.6.2. Extraction of metabolites from the polar phase and GC-MS data analysis

Plant material was harvested and immediately frozen and stored at $-80^{\circ} \mathrm{C}$ until further processing. For each sample preparation, 40 seeds or seedlings were used. The frozen tissue
was ground in liquid nitrogen and 1 mL of pre-chilled extraction solvent mixture $\left(\mathrm{H}_{2} \mathrm{O}\right.$: Me$\mathrm{tOH}: \mathrm{CH}_{3} \mathrm{Cl}$ mixed (v / v) in the proportions $1: 2.5: 1, \mathrm{pH} 7.0$) was added to each sample. Care was taken to prevent thawing (even partial). The mixture was vortexed for 10 sec , shaken for $4-6 \mathrm{~min}$ at $4^{\circ} \mathrm{C}$ and centrifuged at $14,000 \mathrm{rpm}$ for 2 min . Afterwards, $500 \mu \mathrm{~L}$ of the supernatant were transferred into 1.5 mL conical Eppendorf tubes under argon gas. $200 \mu \mathrm{~L}$ of ultrapure water was added, the new mixture was vortexed for 10 sec and then centrifuged at $14,000 \mathrm{rpm}$ for 2 min . The upper layer (polar phase) was collected and transferred into GCMS vials. In parallel, several negative blank controls applying the total procedure without a biological sample were prepared. All samples were run on the GC-MS (Leco and Agilent). Raw data was normalised according to Fiehn et al., (2000). The final data was presented as relative amount of metabolites in a time course as ratio of mean values of hybrids to mean values of parental lines, derived from peak areas detected in GC-MS. Annex C presents the summarised GC-MS data for 103 (26% of all detected compounds) metabolites which could be classified into chemical groups when using representative masses.

2.7. Preparation, flow cytometric analysis and sorting of nuclear suspensions

Parental and reciprocal F1 hybrid seedlings grown from three independent seed lots (as three biological replicates) were cultivated under standard conditions. 5-10 seedlings per genotype were harvested at different developmental stages namely at $4,6,10$ and 15 DAS to prepare fresh extracts. First leaves and cotyledons at 15 DAS were harvested separately. Initially, the plant material was treated with fixative solution (10 mM Tris, $10 \mathrm{mM} \mathrm{Na}{ }_{2}$ EDTA, $100 \mathrm{mM} \mathrm{NaCl}, 4 \%$ formaldehyde, 0.1% Triton X-100, pH 7.5) for 5 min in cold vacuum then for 10 min in a shaker, and was followed by two washing steps of 10 min each in washing solution (10 mM Tris, 10 mM Na 2 EDTA, $100 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ Triton X-100, pH 7.5) at $4^{\circ} \mathrm{C}$. Afterwards, the plant material was applied onto pre-cooled Petri dish and $700 \mu \mathrm{~L}$ of separation buffer (15 mM Tris, 2 mM Na 2 EDTA, 0.5 mM Spermin, $80 \mathrm{mM} \mathrm{KCl}, 20 \mathrm{mM} \mathrm{NaCl}$, $15 \mathrm{mM} \beta-\mathrm{ME}, 0.1 \%$ Triton $\mathrm{X}-100, \mathrm{pH}=7.5$) were added. The plant material in this solution was chopped into very thin pieces with a sharp razor blade. The resulting suspension was filtered through fine-mesh filter tubes. $7 \mu \mathrm{~L}$ of DAPI stain was added and the whole mixture was applied into flow cytometer (Becton-Dikinson) to sort the nuclei according to different ploidy level. Peak heights in histograms obtained were directly proportional to the number of nuclei of the corresponding ploidy level. The differences in ploidy level between parents and hybrids were determined with the Student's t-test in Excel (MS Office). Each hybrid was compared to each parent at a threshold of significance of P -value <0.05. Additionally, nuclei
of 2C and 4C DNA content were flow sorted from 6 DAS seedlings and applied directly onto microscopic slides containing one droplet of sucrose buffer (100 mM Tris, 50 mM KCl , $2 \mathrm{mM} \mathrm{MgCl}, 0.05 \%$ Tween-20, 5% sucrose). Three slides of 2C and 4C ploidy level were prepared per genotype. Approximately 1,200 nuclei were collected on every slide, each of which was previously supplied with a droplet of a of sucrose buffer. All slides were kept at room temperature for drying.

2.8. Silver staining

Air-dried microscopic slides were quenched in $4^{\circ} \mathrm{C}$ borate buffer (0.01 M boric acid, pH 9.2) for 10 min , and $100 \mu \mathrm{~L}$ of silver nitrate (50% of silver nitrate solution in $\mathrm{ddH}_{2} \mathrm{O}$ whose pH was equilibrated to $4-5$ using formic acid) was applied onto the sucrose buffer droplet and covered with a nylon mesh. Slides were incubated for 2 h at $65^{\circ} \mathrm{C}$ to dry. Later, they were washed and anti faint glycerol was applied before covering the slides prior to microscopic analysis. Slides were placed under the microscope and searched for good nuclei to measure their area using AnalySIS ${ }^{\mathrm{TM}}$ software (Olympus). The areas of 100-150 nuclei were measured per genotype.

2.9. Microscopy methods and analysis

The plant material was fixed with 4% paraformaldehyde and 0.2% of glutaraldehyde in PBS, pH 7.2 at room temperature for 4 h . After dehydration with ethanol and xylol at room temperature, the material was embedded in paraffin. The plant material was sectioned using a microtome and five to ten individuals per genotype and developmental time point were subjected into microscopic analysis. The prepared sections were later stained with mixture of 1% aqueous toluidine blue 0 (for visualisation of cell wall, membranes, and nuclei) and 1% aqueous acid fuchsin for the detection of proteins. Lipids were determined by cytochemical staining with mixture of Sudan III and Sudan IV. Qualitative analysis of the spatial distribution and pattern of mobilisation of reserves was performed on the basis of microscopic studies of cells during reserve mobilisation in Arabidopsis (Mansfield and Briarty, 1996).

2.10. Transcript data analysis

2.10.1. Data normalisation

In order to compare data from different qPCR runs or cDNA samples, a C_{T} value of each of analysed gene was normalised to a C_{T} value of a reference gene. Four different reference genes were always included into each qPCR run. In the $1^{\text {st }}$ transcript profiling experiment (refer to section Results), the most constant (AT3G01150 or PTB) of the four house-
keeping genes (AT4G05320 or UBQ10; AT1G13440 or GAPC2/GAPDH ${ }^{\prime}$; AT2G28390 or 'SAND family'; and AT3G01150 or $P T B$) was selected for the normalisation. In the $2^{\text {nd }}$ transcript profiling experiment and all other qPCR analyses, a geometric mean of C_{T} values obtained for all four house-keeping genes (AT2G28390 or 'SAND family'; AT1G13320 or $P D F 2 / P P 2 A / P P 2 A A 3^{2}$; AT3G01150 or $P T B$; and AT1G13440 or $G A P C 2 / G A P D H$) was used. Gene expression was normalised by subtracting the C_{T} value of the reference gene (or geometric mean of C_{T} of four reference genes) from the C_{T} value of a gene of interest and is represented by $\Delta \mathrm{C}_{\mathrm{T}}$. The average C_{T} value for $U B Q 10$ (AT4G05320) or GAPC2/GAPDH (AT1G13440) was $19.00(+/-1)$ for all plates/templates measured in all experiments.

A PCR efficiency estimation method was based on data obtained from the exponential phase of each individual amplification plot and the equation (Czechowski et al., 2004):
$(1+\mathrm{E})=10^{\text {slope }}$, E- amplification efficiency
E value was derived from the log slope of the fluorescence versus cycle number curve for a particular primer pair (Ramakers et al., 2003). E = 1 meant 100% primer efficiency and the amount of cDNA was doubled in each reaction cycle.

Expression ratios of sample A to sample B (fold-change in expression) were obtained from the equation:
$\mathrm{A} / \mathrm{B}=(1+\mathrm{E})^{-\Delta \Delta \mathrm{CT}}$, where $\Delta \Delta \mathrm{C}_{\mathrm{T}}=\Delta \mathrm{C}_{\mathrm{T}_{-} \mathrm{A}}-\Delta \mathrm{C}_{\mathrm{T}_{-} \mathrm{B}}$
The relative expression value of an individual gene and genotype was calculated from the formula:

Relative expression $=(1+E)^{-\Delta C T}$
The qPCR efficiency values were calculated and loaded via the LinRegPCR software (Ramakers et al., 2003). Regardless from cDNA genotype origin, genes for which the primer efficiency was below 70% were not considered in overall data analysis.

2.10.2. Melting curve analysis

For all qPCR reactions the melting curves of PCR products generated by SDS v. 2.1 software were analysed. This analysis was performed on the basis of work of Ririe et al., (1997) showing that shape and position of this DNA melting curve are typically functions of the GC/AT ratio, length, and sequence, and can be used to differentiate amplification products separated by less than $2^{\circ} \mathrm{C}$ in melting temperature. Desired products can be distinguished from undesired products, in many cases eliminating the need for gel electrophoresis. Genes,

[^0]for which a shape and position of dissociation curve together with specific melting temperature of PCR product varied between genotypes, were discarded from further analysis.

2.10.3. Statistical methods

Comparison statistics was applied to identify differentially expressed genes. Comparison tests required replicates and used variability within the replicates to assign a confidence level as to whether the gene is differentially expressed. As a fold change does not address the reproducibility of the observed difference, it could not be used to determine the statistical significance (Draghici, 2002). Thus, 1-factorial ANOVA (Zar, 1999) was calculated using generalised linear model (GLM) function with the following models:

Relative expression \approx Genotype \times Time point \times Replica,
Relative expression \approx Genotype \times Replica.
Analyses were conducted with the R (v. 2.1), SAS v. 9.2, and GeneStat v. 2.0 software. The differences in expression that could be explained by the effect of genotype were considered as 'significant samples'. Further, expression data was subjected into a false discovery rate (FDR) test of Benjamini-Hochberg (B-H), (Benjamini and Hochberg, 1995), and significance level of P -value <0.05 was chosen to select candidate genes. FDR is the adjustment of the P-values obtained by ANOVA, which reduces the amount of false positives in the list (it is a correction for multiple testing performed in ANOVA). The post-hoc tests were performed to determine, which of the six possible comparisons between both parents and hybrids processed by ANOVA showed a significant difference. For this purpose, least significant difference test (LSD test; NIST/SEMATECH e-Handbook of Statistical Methods, 20032006) in GeneStat v. 2.0 software was performed. A significance level of P -value <0.05 was chosen to select candidate genes.

In addition to ANOVA analysis, Student's t-tests were performed in R (v.2.1) software for data obtained in the experiments (chapters 3.3.2, Results section) to select genes differentially expressed in hybrid(s) when compared to parent(s). A significance level of P -value <0.05 was chosen to select candidate genes.

Principal component analysis (PCA) analysis was performed in R (v. 2.1) software and was used to investigate trends in the data by suggesting the sources of highest data variation. In the cases where only two biological replicas were acceptable, the missing replica in the graph was represented by the mean of two present ones.

2.10.4. Expression patterns

The assignment of expression patterns was performed with the use of TIGR_MeV v. 3.0 software (The Institute of Genomic Research Multiple Experiment Viewer; Saeed et al., 2003). Candidate genes were analysed for patterns of gene expression. The median of three expression values per genotype was calculated and relative expression values were calculated by subtracting the median expression value across the four genotypes from the individual median expression value of each genotype. Only the median of three arrays per genotype and the function Pavlidis Template Matching (PTM; Pavlidis and Noble, 2001) was used to assign expression values to predefined patterns (P -values <0.05). The defined patterns and PTM inputs are given in Table 2.1. If several expression patterns were significant for a gene, the one with the highest significance was retained.

Table 2.1. PTM function inputs to TIGR_Mev software

Template Number	Expression Pattern	Col-0xCol-0	ColxC24	C24xCol-0	C24xC24
1.	Intermediate_C24xC24_high	0	0.5	0.5	1
2.	Intermediate_Col-0xCol-0_high	1	0.5	0.5	0
3.	Overdominant (F1 high)	0	1	1	0
4.	Underdominant (F1 low)	1	0	0	1
5.	Dominant_C24xC24_high	0	1	1	1
6.	Dominant_Col-0xCol-0_low	0	0	0	1
7.	Dominant_C24xC24_low	1	0	0	0
8.	Dominant_Col-0xCol-0_high	1	1	1	0
9.	Maternal_C24xC24_high	0	0.2	0.8	1
10.	Maternal_Col-0xCol-0_high	1	0.8	0.2	0
11.	Paternal_C24xC24_high	0	0.8	0.2	1
12.	Paternal_Col-0xCol-0_high	1	0.2	0.8	0

3. RESULTS

At the start of this project, it was not clear from published data whether there were significant differences between the F1 hybrids (Col-0xC24 and C24xCol-0), and Col-0 or C24 prior to and during germination or at the early growth stages. As pointed out in Materials and Methods, seed size and mass were comparable for the four genotypes: Col-0xCol-0, $\mathrm{C} 24 \mathrm{xC} 24, \mathrm{Col}-0 \mathrm{xC} 24$ and $\mathrm{C} 24 \mathrm{xCol}-0$. However, there may have been differences in embryo development or in the nature of seed reserves, the rate of germination, the rate of seed reserve mobilisation and utilisation, or a combination of these and other factors in the F1 hybrid seed, which could explain elevated growth of hybrid seedlings. Differences in the rate of cell division, cell sizes, specific metabolite composition, or gene expression pattern could conceivably lead to increased growth heterosis in F1 hybrids.

3.1. Determination of the developmental time point at which differences between F1 and parents are first manifested

3.1.1. Comparison of germination time and early seedling development in parents and hybrids

Germination rate and post-germinative growth of parents and hybrids were measured to identify any differences in parents and hybrids at the early stages. Prior to sowing, a seed material was stored for two months to break dormancy in C24xC24. Additionally, stratification allowed for synchronisation of seed germination. Typical early developmental behaviour of parents and hybrids is shown in Figures 3.1 A-D and the resulting growth heterosis, which was clearly visible in seedlings at 8 DAS, is shown in Figure 3.2.

Figure 3.1. Photographs of a typical germination course and post-germinative growth in parents and their F1 hybrids

A - 36 DAS (1.5 DAS) Seed or seedling layout:
B -48 HAS (2 DAS)
row 1: Col-0xCol-0
C -72 HAS (3 DAS)
row 2: C 24 xC 24
D - 96 HAS (4 DAS)
row 3: Col-0xC24
row 4: C24xCol-0

Figure 3.2. Photograph of parental and hybrid seedlings at 8 DAS. F1 hybrids outperformed parents in growth (heterosis)

```
Seedling layout:
row 1: C24xC24
row 2: C24xCol-0
row 3: Col-0xCol-0
row 4: Col-0xC24
```

The first observations revealed that C 24 xC 24 seed required more time (over 48 hours, Figure 3.1 B) to germinate than Col- $0 \mathrm{xCol}-0$ or the reciprocal F1 hybrids (around 36 hours, Figure 3.1 A). The end of this phase is defined as radical protrusion through the seed coat according to Bewley and Black (1994) marks the onset of seedling growth. Heterotrophic growth (Eastmond and Graham, 2001) of C24xC24 continued until 72 HAS (germinated seed with root hair grown on hypocotyl), whereas the F1 hybrids and Col-0xCol-0 parent had proceeded to autotrophic growth by this time (Figure 3.1 C). Although all genotypes had progressed to photosynthesising seedlings by around 96 HAS (Figure 3.1 D), the delay of

Early development - time course

Figure 3.3. Schematic representation of differences observed in germination and post-germinative growth between F1 hybrids and their parents under typical experimental conditions

C 24 xC 24 in germination should be taken into account when considering further data. To conclude, the C 24 xC 24 was delayed in comparison to Col-0xCol-0 parent and both F1 hybrids (Figure 3.3), which were all three similar in germination rate. This difference disappeared by 96 HAS, at which point all genotypes had greened and were autotrophic (Figure 3.1 D).

3.1.2. Comparison of seed storage reserve mobilisation in parents and hybrids via microscopic analysis

Mobilisation of the main seed storage reserves in F1 hybrids and parents was investigated via microscopic imaging. The major seed storage reserves in Arabidopsis are lipids. They are stored in cytosolic organelles known as liposomes or oil bodies. Cells are packed full of oil bodies which occupy about 60% of the cell volume in the cotyledons of mature embryos (Mansfield and Briarty, 1992; Penfield et al., 2005). Arabidopsis seeds also contain storage proteins, which are stored in membrane-bound compartments called protein bodies in cells of hypocotyls and cotyledons (Müntz et al., 2007; Bentsink and Koornneef, 2002). Seeds and seedlings were sectioned and five to ten individuals per genotype and developmental time

Figure 3.4. A fragment of microscopic cross-section from Col-0xCol-0 hypocotyl at 24 HAS

$$
\text { Scale bar }=10 \mu \mathrm{~m}
$$

point were subjected to microscopical analysis. It was possible to detect the lipid bodies (small brownish dots) and separate protein bodies (bigger vacuolar structures containing pinkish protein globules) using appropriate dyes (Figure 3.4). F1 hybrids were compared to parents at the control stage of mature seed prior to imbibition (0 HAS), and $24,36,48,72$, and 96 HAS. Representative pictures collected in Annex B show one section per genotype at each time point. Qualitative analysis of the spatial distribution and pattern of mobilisation of reserves was performed in all genotypes at each developmental stage. The comparative analysis did not reveal any differences in storage mobilisation between parents and hybrids.

3.1.3. Comparison of metabolite levels in hybrids and parents during germination and early growth

3.1.3.1. Measurement of global metabolites via GC-MS

GC-MS analysis of plant metabolites (Fiehn et al., 2000) was performed on mature seeds and on seedlings at $12,24,36,48,72$ and 96 HAS. Data for each time point combined

Figure 3.5. Differences between hybrids and parents in the level of three metabolites
$\mathrm{F} 1 \mathrm{~s} / \mathrm{Ps}$ - the relative amount of metabolites in a time course shown as ratio of mean values of hybrids to mean values of parental lines from the peak area detected in GC-MS mature - ungerminated seed
four biological replicates obtained in four independent experiments. 75 (around 20\%) compounds were assigned a chemical structure by comparison with a METAB LIBRARY (Fiehn., 2000), and 103 (26%) compounds were classified into chemical groups by using representative masses. These metabolites mostly represented amino acids, sugars, amines and organic acids. Significant differences were found in levels of some metabolites between F1 hybrids and parents within the time course (Annex C. Summarised GC-MS data). Some compounds differed in amount in mature seeds prior to germination, for example pelargonic acid (Fig-
ure 3.5 A) and an unknown sugar (Figure 3.5 B). Other metabolites had similar levels in the seed of hybrid and parent but changed in relative level during germination (e.g. unknown sugar_034, Figure 3.5 C).

3.1.3.2. Analysis of fatty acid content via GC

Arabidopsis seed accumulates lipids in the form of triacylglycerols (TAGs), esters of glycerol and fatty acids (FAs). TAGs are broken down during germination, providing both carbon skeletons and energy resources for the developing seedling (Mansfield and Briarty, 1992). GC measurements (Browse et al., 1986) were performed to compare FA levels in F1 hybrids and parents at different developmental stages between 0-8 DAS. Three biological

Figure 3.6. The content of fatty acids (FAs) in parents and F1 hybrids shown as \% of the sum of total FAs measured by GC in the time course of 0 (mature seeds), $0.5,1,1.5,2$, $3,4,5,6$, and 8 DAS

Figure 3.6. The content of fatty acids (FAs) in parents and F1 hybrids shown as \% of the sum of total FAs measured by GC in the time course of 0 (mature seeds), $0.5,1,1.5,2$, $3,4,5,6$, and 8 DAS
replicates from three independent experiments were analysed. Reduced levels of 20:1, 18:0, 18:1 and 18:2 (Figures $3.6 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$, and D, respectively) were observed for all genotypes as early as 4 DAS. Levels of 18:3, 16:1 and 16:2 FAs increased by 4 DAS (Figure 3.6 E, F and G, respectively), while 16:0 FA increased by 6 DAS in both parents and F1 hybrids (Figure 3.6 H). Levels of 16:3 FA, which is synthesised de novo and present only in leaves (Browse et al., 1986) increased by day 4 and continued to increase through 6 and 8 DAS in all genotypes, although levels were significantly higher in hybrids than in parents at 6 and 8 DAS (Figure 3.6 I). Eicosenoic acid (Figure 3.6 A) is a marker for storage lipids and is present only in seeds (Lemieux et al., 1990). Levels of 20:1 FA were lower in hybrids than in parents at 6 DAS, consistent with the greater increase in 16:3 FA in hybrids (Figure 3.6 I). To summarise: the switch to photoautotrophic growth marked by increases in chloroplast lipid such as 16:3 FA occurred in both parents and hybrids around 3-4 DAS. Differences in the synthesis or utilisation of FAs between hybrids and parents were apparent around 4-6 DAS.

3.2. Identification of heterosis candidate genes / reverse genetic approach

The results of metabolite level comparisons between F1 hybrids and parents at early development guided the choice of time point for transcript profiling. Differences in expression of transcription factors and other gene of interest between F1 hybrids and their parents were further studied at 4 DAS. Two independent experiments with two different gene platforms for each were preformed.

3.2.1. Efficacy test of qPCR primers of novel reference genes in the four genotypes

The efficacy of primer pairs of the novel reference genes used to normalise the expression of genes in a qRT-PCR approach (Czechowski et al., 2005) was tested in the four genotypes. cDNAs were synthesised from comparable amounts of RNA extracted from seedlings at 4 DAS. Each sample was measured in three technical replicates. The majority of genes showed similar performance in both parents and F 1 hybrids i.e. a comparable C_{T} value, PCR efficiency (Figures 3.7 and 3.8, respectively) and melting temperature (data not shown). Five genes were chosen for further normalisation of gene expression. These were: UBQ10 (AT4G05320), 'SAND family' (AT2G28390), PTB (AT3G01150), GAPC2/GAPDH (AT1G13440), and PP2AA3 (AT1G13320).

Additionally, for GAPC2 three different primer pairs were tested. They were marked in the figures as AT1G13440*, AT1G13440**, and AT1G13440***. The last two primer pairs were also used to estimate the quality of each newly synthesised cDNA prior its use in
expression profiling (see details about AT1G13440**/AT1G13440* ratio in Materials and Methods section). To test the efficacy of UBQ10 two different primer pairs were used. The

Figure 3.7. Comparison of transcript levels of reference genes in parents and hybrids
Error bars show SD
first, labelled AT4G05320^ was designed on sequences of three out of five polyubiquitin genes present in A. thaliana and worked well in all four genotypes. The second, labelled AT4G05320^^ was designed on five polyubiquitin genes and did not amplify the cDNA from C24 ecotype, as indicated by the low transcript level (Figure 3.7).

Figure 3.8. Comparison of PCR efficiencies of reference genes in parents and hybrids

3.2.2. Identification of candidate genes in experiment 1

The expression levels of 1198 TF and putative TF genes detected at 4 DAS were compared in F1 hybrids vs. parents.

3.2.2.1. Determination of the most stable reference gene(s) for transcript data normalisation

The most stable reference gene among 12 cDNA samples (3 biological replicas x 4 genotypes) was chosen on the basis of an algorithm developed by Vandesompele et al., (2002). The gene expression stability measure, which was represented by M value generated by gNORM software, was calculated based on the assumption that the expression ratio of two ideal internal reference genes was identical in all samples, regardless of the experimental condition or the cell type. The most stable reference genes within this experiment were PTB (AT3G01150) and 'SAND family' (AT2G28390), (Figure 3.9). Eventually, the PTB transcript levels were used for all data normalisations.

Comparison of expression stability of best reference genes

Figure 3.9. The outcome of gNORM calculation
The 'SAND family' and PTB genes were the most stable across all of the replicates in the gene profiling experiment 1

3.2.2.2. Candidate gene selection criteria

ANOVA was performed on the normalised data for 1198 TF and putative TF genes. 188 genes were selected as a differentially expressed in parents and hybrids on the basis of a significance threshold of uncorrected (for multiple testing) P-values <0.05 (79 genes) and/or of 3-fold difference in expression between parents and hybrids (109 genes). This group was further re-analysed via qPCR using a more sensitive reaction kit: Power SYBR Green. From this gene group, only those of uncorrected P -values <0.05 and of 4 -fold difference in expression between F1 hybrids and parents were selected. In total, 22 candidate genes were targeted
for further study (genes marked in bold in Tables 3.2 and 3.4). The annotations of two of them were later re-annotated in TAIR to SET-domain genes.

3.2.3. Identification of candidate genes in experiment 2

A second gene profiling experiment to identify heterosis candidates was performed using an updated set of primers for all known and putative TF genes as well as primers for microRNAs, and a subset of genes involved in the epigenetic control of gene expression and/or chromatin modification processes (called further 'chromatin-related'), especially from chro-matin-targeted RNA silencing pathways (Annex A. List of primer sequences).

3.2.3.1. Identification of TF candidates and selection criteria

The expression levels of 1469 detected TF and putative TF genes were compared between F1 hybrids and parents. Gene profiling covered major protein families and around 80% of all known or putative TFs. ANOVA analysis of normalised expression data yielded 43 differentially expressed genes (Tables 3.2 and 3.4) with P -values <0.05 significance threshold after Benjamini-Hochberg (BH) correction for multiple testing (Benjamini and Hochberg, 1995). These genes were targeted for further study.

3.2.3.2. Identification of heterosis candidates from a group of 'chromatinrelated' genes via qRT-PCR

A set of 58 genes encoding proteins involved in the epigenetic control of gene expression and/or chromatin-modification processes (Brodersen and Voinnet, 2006; ChromDB at www.chromdb.org, Gendler et al., 2008) including DNA methyltransferases (METs, CMTs, DRMs), histone deacetylases (HDAs), SET domain (containing) proteins (SDGs), and proteins of chromatin remodelling activities (CHR, CHB, CHC) were targeted for qRT-PCR analysis (Table 3.1 and Annex A. List of primer sequences). According to the comprehensive ChromDB database classification, these genes encoded the following protein groups: DNA modifying, histone modifications, nucleosome organisation: assembly and displacement, and RNAi components. Protein categories omitted in this study were: histones and histone linker proteins, histone modification-associated proteins and complexes, modified-histone binding proteins, non-histone DNA binding proteins, and proteins involved in chromosome dynamics. Expression data analysis was performed together with TF data analysis. The expression levels of 54 detected genes (93%) were compared between F1 hybrids and parents. Only one gene (AT5G43990 [52] or SUVR2; Table 3.4) was found to be significantly differentially expressed in hybrids when compared to parents.
Table 3.1. Set of 'chromatin-related' genes selected for expression profiling to identify heterosis candidate genes

No.	AGI code	Name(s)	ChromDB Protein Group	Additional Description of ChromDB or TAIR
1.	AT1G01920	SDG42, SET42	SET Domain Protein Superclass B	SET domain protein
2.	AT1G04050	SUVR1, SDG13, SET13	ARATH_SUVR4	$\mathrm{Su}(\mathrm{var})$ 3-9 group of confirmed and predicted histone H3 lysine 9 methyltransferases
3.	AT1G14030	SDG43, SET43	SET Domain Protein Superclass B	SET domain protein
4.	AT1G17770	SUVH7, SDG17, SET17	SUVH1/SUVH3	Su(var)3-9 group; plant specific sub-group with YDG_SRA, Pre- SET, and SET domains
5.	AT1G24610	X	NOT PRESENT	(TAIR: SET domain-containing protein; similar to ribulose-1,5 bisphosphate carboxylase oxygenase large subunit N methyltransferase)
6.	AT1G48410	AGO1	AGO1 (Dicots and Monocots)	A PIWI/PAZ domain containing member of the Argonaute gene family involved in RNA silencing
7.	AT1G63020	NRPD1A, NRPDA1, SDE4	ARATH_NRPD1A	One of two large subunits of a plant-specific RNA polymerase IV required for posttranscriptional gene silencing
8.	AT1G69770	CMT3, DMT6	DNA methyltransferases	Class II DNA methyltransferase; a DNA methyltransferase containing a chromodomain (chromomethylase)
9.	AT1G73100	SUVH3, SDG19, SET19	SUVH1/SUVH3	Su(var)3-9 group; plant specific sub-group with YDG_SRA, PreSET, and SET domains
10.	AT1G76710	ASHH1, SDG26, SET26	ARATH_ASHH1	predicted histone H3 lysine 36 histone methyltransferase; ASH1 group
11.	AT1G77300	ASHH2, SDG8, EFS, SET8	ARATH_EFS	Arabidopsis EARLY FLOWERING IN SHORT DAYS protein, a histone H3 lysine 36 histone methyltransferase
12.	AT1G80740	CMT1, DMT4	DNA methyltransferases	Class II DNA methyltransferase - a putative DNA methyltransferase containing a chromodomain (chromomethylase)
13.	AT2G05900	SUVH10, SDG11, SET11	ARATH_SUVH	Su(var)3-9 group; plant specific sub-group with YDG_SRA, PreSET, and SET domains
14.	AT2G16390	DRD1, CHR35, CHA35	SNF2 super family (Snf2, Ris1, Rad26 superclasses)	SNF2 Superfamily; RAD26 Superclass; DRD1 class
15.	AT2G17900	ASHR1, SDG37, SET37	S-ET interrupted and unclassified	S-ET protein containing an interrupted SET domain
16.	AT2G18850	X	NOT PRESENT	(TAIR: similar to SET domain-containing protein)
17.	AT2G19640	ASHR2, SDG39, SET39	S-ET interrupted and unclassified	SET domain proteins; Homology Subgroup S-ET; protein containing an interrupted SET domain
18.	AT2G22740	SUVH6, SDG23, SET23	ARATH_SUVH5/SUVH6	SUVH6; Su(var)3-9 group; plant specific sub-group with YDG_SRA, Pre-SET, and SET domains

No.	AGI code	Name(s)	ChromDB Protein Group	Additional Description of ChromDB or TAIR

No.	AGI code	Name(s)	ChromDB Protein Group	Additional Description of ChromDB or TAIR

No.	AGI code	Name(s)	ChromDB Protein Group	Additional Description of ChromDB or TAIR
54.	AT5G43990	SUVR2, SDG18, SET18	ARATH_SUVR4	Su(var)3-9 group of confirmed and predicted histone H3 lysine 9 methyltransferases
55.	AT5G49160	MET1, DDM2, DMT1	DNA methyltransferases	DNA methyltransferase related to the mammalian DNMT1 methyl- transferases
56.	AT5G55760	SRT1,HDA12	Histone deacetylases (SIR2 family)	SIR2 Homology Group; probable ortholog of yeast SIR2, an NADH dependent Histone Deacetylase
57.	AT5G63110	$H D A 6$	Histone deacetylases (Rpd3/HDA1 superfamily)	Class I RPD3 type histone deacetylase protein
58.	AT5G66750	DDM1, CHR1,CHA1	SNF2 super family (Snf2, Ris1, Rad26 superclasses)	SWI2/SNF2 chromatin remodelling protein involved in the mainte- nance of DNA methylation

Legend:
X - does not exist

3.2.4. Selection of a final list of candidate genes for possible involvement in heterosis

A final list of heterosis candidate regulatory genes was compiled from both independent qRT-PCR profiling experiments, described in sections 3.2.2 and 3.2.3. The final list consisted of 61 genes including 57 putative or known TFs, three SET-domain genes (AT1G26760 [4], AT4G13460 [29], and AT5G43990 [52]), and one microRNA (AT5G08712 [36]); (Tables 3.3 and 3.4).

3.3. Characterisation of selected candidate genes

3.3.1. Analysis of expression patterns of candidate genes

The PTM (Pavlidis Template Matching) function within TIGR_MeV v. 3.0 software package was used to visualise expression patterns (or expression phenotypes) of candidate genes based on specific expression level relations in parents and hybrids (details are present Materials and Methods, section 2.10.4). Expression patterns could be classified into two general groups: additive and non-additive (Hoecker et al., 2008). The additive pattern, synonymous to 'intermediate' pattern in this work, was defined for (or assigned to) these candidate genes, in which gene expression levels in hybrids fell in a range of average expression value of the two parental inbred lines (mid-parent expression value or MP). The non-additive patterns were defined for (or assigned to) these candidate genes, in which gene expression levels in hybrids were significantly different than the MP. The group of non-additive effects included 'dominant' (transcript levels in hybrids were on the level of one of the parents), 'overdominant' and 'underdominant' (transcript levels in hybrids were higher or lower than in parents, respectively), 'maternal' (hybrid transcript level was on the level of corresponding mother parent), and 'paternal' (hybrid transcript level was on the level of corresponding father parent) patterns. All the patterns were further discriminated in relation to expression level of a parent e.g. a 'dominant_C24xC24_low' pattern meant that the hybrid expression levels were on a level of C24xC24, and these three levels were lower than of Col-0xCol-0. Description of specific patterns is portrayed in Figure 3.10 and Table 3.2.

Most candidate genes (75\%) fell into specific expression categories (or displayed expression patterns) that were defined in this thesis work (Figure 3.10). The most representative pattern was an intermediate (around 30\%), following by a dominant (23\%). Among candidate genes were also found maternal (19\%) and paternal patterns (3\%); (Table 3.2).

Additive expression patterns:

Intermediate

Expression Patterns

Non-additive expression patterns:

Figure 3.10. Templates scheme for expression patterns assigned to candidate genes

Colour bars represent the genotypes and their position indicates a transcript level
Col-0xCol-0
Col-0xC24
C24xCol-0
C24xC24

Table 3.2. Representation of expression patterns among candidate genes at 4 DAS

Template Number	Gene Expression Patterns	Candidate Genes [AGI order number]	\% Candi- dates (rounded)	Sum \% per Ex- pression Pattern
1.	Intermediate_C24xC24_high	$[3],[18],[19],[45],[46],[49]$, $[56]$	11	29
2.	Intermediate_Col-0xCol-0_high	$[\mathbf{6]},[10],[11],[16],[22],[28]$, $[38],[47],[50],[52]^{*},[59]$	18	
3.	Overdominant (F1 high)	x	x	0
4.	Underdominant (F1 low)	x	x	
5.	Dominant_C24xC24_high	$[37],[58]$	3	23
6.	Dominant_Col-0xCol-0_low	$[43]$	2	
7.	Dominant_C24xC24_low	$\left[\mathbf{2 0]},[36]^{* *},[40],[61]\right.$	7	
8.	Dominant_Col-0xCol-0_high	$[1],[4]^{*},[24],[26],[29]^{*},[44]$, $[53]$	11	
9.	Maternal_C24xC24_high	$[41],[54]$	3	19
10.	Maternal_Col-0xCol-0_high	$[5],[13],[14],[23],[27],[31]$, $[33],[39],[55],[57]$	16	
11.	Paternal_C24xC24_high	$[51]$	2	3
12.	Paternal_Col-0xCol-0_high	$[8]$	2	

Legend:

* candidate SET-domain gene (a member of the 'chromatin-related' group of genes)
** candidate micro-RNA
[AGI order numbers] in bold - candidate genes with the highest ranking group number (I) in the group of 'statistical category' (refer to section 3.3.2)
x - not present

3.3.2. Rank of statistical significance of candidate genes ('statistical categories')

As described in previous chapters, pairwise comparisons of gene expression levels in different genotypes were performed using ANOVA to identify differences between parents and hybrids and select heterosis candidate genes. Note that although ANOVA analysis can identify difference between the mean of two or more groups, it cannot identify what means there is a significant difference between. For this reason, to validate expression patterns visualised by TIGR_Mev v. 3.0 some additional statistical analyses were required. A type of posthoc analysis, a least significant difference (LSD) test was used to make pairwise comparisons among means of different genotypes. The results were shown as LSD P-values in Table 3.3 (columns 3-8). An LSD significance threshold of a P-value <0.05 was applied (Table 3.3 fields in grey colour). There was also performed an additional ANOVA test to find significant differences between expression level of each of the hybrids and a mid-parent expression value (an average of the parental expression level or MP) to validate non-additive effects statistically (columns 9 and 10 of Table 3.3). These results were also shown as P -values and the same threshold was applied to determine a significant difference. Based on the results obtained from both of the above mentioned statistical analyses, it was possible to estimate a sig-
nificance level of the selected heterosis candidate genes and create their rank of significance (Table 3.3, the last column). The slower rank number of a group that candidate gene belongs, the more significant candidate gene is. The criteria of the rank classification were defined as follows:

- Ranking group I ('statistical category' I) - included 20 candidate genes ($\sim 33 \%$), for which the assigned expression pattern could be validated in all of the performed statistical tests. (All the candidate genes of ranking group I were marked in bold in Table 3.2). The example may be given by AT4G29190 [31] (row no. 19 of Table 3.3), which was assigned by TIGR_Mev v. 3.0 tools to a non-additive, maternal_Col-0xCol0 high pattern. To validate the maternal expression patterns defined in this work (template 10 of Figure 3.10), the significant difference between expression levels should hold true in the same time when the parents are compared between themselves, the hybrids are compared between themselves, Col- 0 xC 24 is compared to C 24 xC 24 , and $\mathrm{C} 24 \mathrm{xCol}-0$ to Col- $0 \mathrm{xCol}-0$ (columns $3,4,7$ and 8). In parallel a significant difference between expression level of each of the two hybrids and MP should be found (columns 9 and 10).
- Ranking group II ('statistical category’ II) - included 26 candidate genes ($\sim 42 \%$), for which the assigned expression pattern could not be validated in all of the performed statistical tests. The example may be given by AT1G72650 [13] (row no. 37 of Table 3.3), which was assigned by TIGR_Mev v. 3.0 tools to a non-additive, maternal_Col-0xCol-0_high pattern. To validate the maternal expression patterns defined in this work (template 10 of Figure 3.10), the same conditions as in the Ranking group I should be fulfilled however in this case, when one of the hybrids was compared to MP (column 9) the significant difference could not be found in the performed statistical tests. Thus, in contrast to above mentioned AT4G29190 [31], the AT1G72650 [13] could not be 'fully validated'.
- Ranking group III ('statistical category’ III) - included 15 candidate genes ($\sim 25 \%$) that do not exhibited any of defined expression patterns discussed above (Figure 3.10 and Table 3.3) and the results of required statistical comparisons represented unclear picture.
Table 3.3. 'Statistical categories' (ranking groups of significance) represented among heterosis candidate genes

No.	AGI code	$\begin{gathered} \hline \text { P-values } \\ \text { Col- } \\ \text { 0xCol-0 } \\ \text { vs. } \\ \text { C24xC24 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-values } \\ \text { Col- } \\ \text { 0xC24 vs. } \\ \text { C24xC24 } \end{gathered}$	$\begin{gathered} \text { P-values } \\ \text { C } 24 \times \mathrm{Col}-0 \\ \text { vs. } \\ \text { C24xC24 } \end{gathered}$	$\begin{gathered} \hline \text { P-values } \\ \text { Col- } \\ \text { 0xC24 } \\ \text { vs. Col- } \\ \text { 0xCol-0 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { P-values } \\ & \text { C24xCol-0 } \\ & \text { vs. Col- } \\ & \text { 0xCol-0 } \end{aligned}$	$\begin{gathered} \text { P-values } \\ \text { Col-0xC24 } \\ \text { vs. } \\ \text { C } 24 \times \text { Col- } \end{gathered}$	$\begin{gathered} \text { P-values } \\ \text { Col- } \\ \text { 0xC24 } \\ \text { vs. MP } \end{gathered}$	$\begin{aligned} & \text { P-values } \\ & \text { C } 24 \times \text { Col- } \\ & \text { vs. MP } \end{aligned}$	Expression Pattern Type		Ranking Group of Candidate Gene Significance
1	2	3	4	5	6	7	8	9	10	11	12	13
1.	AT5G25810 [43]	0.000	0.001	0.001	0.156	0.324	0.604	0.047	0.020	Dominant_Col-0xCol- 0 low	Nonadd.	I
2.	AT2G45660 [20]	0.000	0.696	0.532	0.000	0.000	0.808	0.004	0.003	Dominant_C24xC24_low	Nonadd.	I
3.	AT5G08712 [36]*	0.000	0.496	0.558	0.000	0.000	0.918	0.001	0.001	Dominant_C24xC24_low	Nonadd.	I
4.	AT5G67480 [61]	0.000	0.469	0.374	0.000	0.000	0.858	0.011	0.014	Dominant_C24xC24_low	Nonadd.	I
5.	AT1G12800 [1]	0.000	0.000	0.000	0.435	0.415	0.138	0.011	0.001	Dominant_Col-0xCol0 high	Nonadd.	I
6.	AT4G13460 [29]**	0.000	0.001	0.000	0.268	0.836	0.354	0.031	0.008	Dominant_Col-0xCol0 high	Nonadd.	I
7.	AT2G39250 [19]	0.000	0.003	0.023	0.006	0.001	0.149	0.785	0.155	$\begin{gathered} \text { Intermedi- } \\ \text { ate_C } 24 \mathrm{xC} 24 \text { _high } \end{gathered}$	Add.	I
8.	AT5G32460 [46]	0.000	0.020	0.017	0.001	0.001	0.913	0.062	0.072	Intermediate C 24 xC 24 high	Add.	I
9.	AT5G39760 [49]	0.000	0.002	0.001	0.004	0.008	0.589	0.636	0.291	$\begin{aligned} & \text { Intermedi- } \\ & \text { ate_C } 24 \times \mathrm{x} 24 \text { high } \end{aligned}$	Add.	I
10.	AT5G57390 [56]	0.000	0.001	0.000	0.000	0.001	0.446	0.925	0.431	Intermedi- ate_C 24 xC 24 high	Add.	I
11.	AT1G32870 [6]	0.000	0.018	0.017	0.001	0.001	0.965	0.119	0.128	Intermediate Col-0xCol0 high	Add.	I
12.	AT1G58220 [11]	0.000	0.005	0.004	0.003	0.004	0.777	0.794	0.947	Intermediate_Col-0xCol0 high	Add.	I
13.	AT1G77080 [16]	0.000	0.006	0.003	0.004	0.007	0.664	0.868	0.735	Intermediate Col-0xCol0 high	Add.	I
14.	AT4G12020 [28]	0.000	0.005	0.009	0.002	0.001	0.630	0.692	0.355	Intermediate Col-0xCol0 high	Add.	I

No.	AGI code	$\begin{gathered} \hline \text { P-values } \\ \text { Col- } \\ \text { 0xCol-0 } \\ \text { vs. } \\ \text { C24xC24 } \end{gathered}$	$\begin{gathered} \text { P-values } \\ \text { Col- } \\ \text { 0xC24 vs. } \\ \text { C24xC24 } \end{gathered}$	$\begin{gathered} \text { P-values } \\ \text { C24xCol-0 } \\ \text { vs. } \\ \text { C24xC24 } \end{gathered}$	P-values Col- 0xC24 vs. Col- 0xCol-0	P-values C24xCol-0 vs. Col-0xCol-0	P-values Col-0xC24 vs. C24xCol-0	$\begin{gathered} \text { P-values } \\ \text { Col- } \\ \text { 0xC24 } \\ \text { vs. MP } \end{gathered}$	$\begin{aligned} & \text { P-values } \\ & \text { C24xCol-0 } \\ & \text { vs. MP } \end{aligned}$	Expression Pattern Type		Ranking Group of Candidate Gene Significance
1	2	3	4	5	6	7	8	9	10	11	12	13
15.	AT5G11270 [38]	0.000	0.002	0.001	0.013	0.047	0.360	0.291	0.061	Intermediate_Col-0xCol0 high	Add.	I
16.	AT5G38860 [47]	0.000	0.006	0.015	0.002	0.001	0.502	0.523	0.184	Intermediate_Col-0xCol- 0 _high	Add.	I
17.	AT5G43990 [52]**	0.000	0.001	0.001	0.019	0.027	0.797	0.184	0.120	Intermediate_Col-0xCol- $0 _$high	Add.	I
18.	AT5G63080 [59]	0.000	0.004	0.022	0.005	0.001	0.220	0.904	0.195	Intermediate_Col-0xCol0 high	Add.	I
19.	AT4G29190 [31]	0.000	0.000	0.751	0.775	0.000	0.000	0.004	0.009	Maternal_Col-0xCol- 0 _high	Nonadd.	I
20.	AT5G01160 [33]	0.004	0.001	0.152	0.376	0.001	0.000	0.009	0.004	$\begin{gathered} \text { Maternal_Col-0xCol- } \\ 0 \text { _high } \\ \hline \end{gathered}$	Nonadd.	I
21.	AT1G26760 [4]**	0.002	0.006	0.001	0.307	0.583	0.141	0.124	0.010	Dominant_Col-0xCol- 0 _high	Nonadd.	II
22.	AT3G50890 [24]	0.004	0.005	0.001	0.750	0.389	0.253	0.065	0.010	$\begin{gathered} \text { Dominant_Col-0xCol- } \\ 0 \text { _high } \\ \hline \end{gathered}$	Nonadd.	II
23.	AT4G04880 [26]	0.015	0.031	0.007	0.592	0.538	0.269	0.244	0.036	Dominant_Col-0xCol0 high	Nonadd.	II
24.	AT1G73830 [14]	0.000	0.002	0.351	0.130	0.001	0.005	0.091	0.028	Maternal_Col-0xCol- 0 high	Nonadd.	II
25.	AT1G47760 [8]	0.001	0.119	0.000	0.006	0.055	0.001	0.229	0.001	Paternal_Col-0xCol- 0 _high	Nonadd.	II
26.	AT5G10140 [37]	0.000	0.043	0.244	0.000	0.000	0.252	0.000	0.000	Dominant_C24xC24_high	Nonadd.	II
27.	AT5G17300 [40]	0.000	0.009	0.137	0.000	0.000	0.086	0.009	0.001	Dominant_C24xC24_low	Nonadd.	II
28.	AT2G28160 [18]	0.000	0.002	0.002	0.054	0.075	0.824	0.152	0.105	Intermedi- ate_C 24 xC 24 high	Add.	II
29.	AT5G41920 [50]	0.000	0.010	0.057	0.005	0.001	0.230	0.707	0.101	Intermediate_Col-0xCol0 high	Add.	II
30.	AT5G27580 [45]	0.015	0.130	0.667	0.155	0.026	0.241	0.943	0.203	Intermedi- ate_C 24 xC 24 high	Add.	II

No.	AGI code	$\begin{gathered} \hline \text { P-values } \\ \text { Col- } \\ \text { 0xCol-0 } \\ \text { vs. } \\ \text { C24xC24 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-values } \\ \text { Col- } \\ 0 \times \mathrm{C} 24 \text { vs. } \\ \text { C24xC24 } \end{gathered}$	$\begin{gathered} \text { P-values } \\ \text { C24xCol-0 } \\ \text { vs. } \\ \text { C24xC24 } \end{gathered}$	$\begin{gathered} \hline \text { P-values } \\ \text { Col- } \\ \text { 0xC24 } \\ \text { vs. Col- } \\ \text { 0xCol-0 } \end{gathered}$	P-values C24xCol-0 vs. Col-0xCol-0	$\begin{gathered} \text { P-values } \\ \text { Col-0xC24 } \\ \text { vs. } \\ \text { C } 24 \times \mathrm{Col}-0 \end{gathered}$	$\begin{aligned} & \text { P-values } \\ & \text { Col- } \\ & \text { 0xC24 } \\ & \text { vs. MP } \end{aligned}$	$\begin{aligned} & \text { P-values } \\ & \text { C } 24 \times \text { Col-0 } \\ & \text { vs. MP } \end{aligned}$	Expression Pattern Type		Ranking Group of Candidate Gene Significance
1	2	3	4	5	6	7	8	9	10	11	12	13
31.	AT1G53160 [10]	0.021	0.071	0.029	0.392	0.801	0.535	0.491	0.186	Intermediate_Col-0xCol0 high	Add.	II
32.	AT3G46090 [22]	0.329	0.037	0.738	0.966	0.230	0.354	0.323	0.766	Intermediate_Col-0xCol0 high	Add.	II
33.	AT5G61420 [58]	0.000	0.039	0.986	0.001	0.000	0.040	0.113	0.003	Dominant_C24xC24_high	Nonadd.	II
34.	AT1G20696 [3]	0.000	0.003	0.001	0.001	0.010	0.035	0.669	0.036	$\begin{gathered} \text { Intermedi- } \\ \text { ate_C } 24 \mathrm{xC} 24 \text { _high } \end{gathered}$	Add.	II
35.	AT5G17320 [41]	0.001	0.015	0.828	0.048	0.001	0.020	0.622	0.021	Maternal_C24xC24_high	Nonadd.	II
36.	AT1G28370 [5]	0.000	0.016	0.929	0.010	0.000	0.018	0.822	0.008	Maternal_Col-0xCol0 high	Nonadd.	II
37.	AT1G72650 [13]	0.000	0.000	0.012	0.010	0.000	0.006	0.061	0.046	Maternal_Col-0xCol0 high	Nonadd.	II
38.	AT3G49530 [23]	0.000	0.012	0.429	0.017	0.000	0.005	0.888	0.003	Maternal_Col-0xCol0 high	Nonadd.	II
39.	AT5G13790 [39]	0.000	0.001	0.056	0.003	0.000	0.010	0.522	0.011	Maternal_Col-0xCol0 high	Nonadd.	II
40.	AT5G47370 [55]	0.000	0.004	0.156	0.022	0.001	0.027	0.428	0.045	Maternal_Col-0xCol0 high	Nonadd.	II
41.	AT5G59820 [57]	0.000	0.012	0.438	0.014	0.000	0.005	0.954	0.003	Maternal_Col-0xCol- 0 _high	Nonadd.	II
42.	AT5G25830 [44]	0.039	0.185	0.032	0.302	0.891	0.250	0.838	0.143	Dominant_Col-0xCol0 high	Nonadd.	II
43.	AT5G44080 [53]	0.000	0.001	0.004	0.001	0.000	0.138	0.993	0.097	Dominant_Col-0xCol0 high	Nonadd.	II
44.	AT5G46690 [54]	0.000	0.001	0.015	0.024	0.001	0.044	0.143	0.257	Maternal_C24xC24_high	Nonadd.	II
45.	AT4G08250 [27]	0.000	0.001	0.012	0.004	0.000	0.030	0.306	0.077	Maternal_Col-0xCol- 0 high	Nonadd.	II
46.	AT5G43170 [51]	0.000	0.041	0.001	0.001	0.016	0.026	0.077	0.250	Paternal_C24xC24_high	Nonadd.	II

No.	AGI code	$\begin{gathered} \text { P-values } \\ \text { Col- } \\ \text { 0xCol-0 } \\ \text { vs. } \\ \text { C24xC24 } \\ \hline \end{gathered}$	$\begin{gathered} \text { P-values } \\ \text { Col- } \\ 0 \times \mathrm{C} 24 \text { vs. } \\ \text { C24xC24 } \end{gathered}$	$\begin{gathered} \text { P-values } \\ \text { C24xCol-0 } \\ \text { vs. } \\ \text { C24xC24 } \end{gathered}$	$\begin{gathered} \hline \text { P-values } \\ \text { Col- } \\ \text { 0xC24 } \\ \text { vs. Col- } \\ \text { 0xCol-0 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { P-values } \\ & \text { C24xCol-0 } \\ & \text { vs. Col- } \\ & \text { 0xCol-0 } \end{aligned}$	$\begin{gathered} \text { P-values } \\ \text { Col-0xC24 } \\ \text { vs. } \\ \text { C24xCol-0 } \end{gathered}$	$\begin{gathered} \text { P-values } \\ \text { Col- } \\ \text { 0xC24 } \\ \text { vs. MP } \end{gathered}$	$\begin{aligned} & \text { P-values } \\ & \text { C } 24 x \text { Col- } \\ & \text { vs. MP } \end{aligned}$	Expression Pattern Type	Ranking Group of Candidate Gene Significance
1	2	3	4	5	6	7	8	9	10	11	13
47.	AT1G42990 [7]	0.000	0.007	0.940	0.012	0.000	0.006	0.809	0.004	No match	III
48.	AT1G76590 [15]	0.000	0.021	0.185	0.001	0.000	0.093	0.103	0.007	No match	III
49.	AT3G25990 [21]	0.015	0.446	0.059	0.043	0.001	0.020	0.354	0.004	No match	III
50.	AT4G14560 [30]	0.000	0.005	0.114	0.002	0.000	0.048	0.636	0.015	No match	III
51.	AT5G04760 [34]	0.000	0.012	0.182	0.001	0.000	0.002	0.128	0.000	No match	III
52.	AT1G16530 [2]	0.053	0.036	0.007	0.783	0.160	0.237	0.137	0.018	No match	III
53.	AT2G15580 [17]	0.299	0.091	0.018	0.415	0.082	0.273	0.147	0.022	No match	III
54.	AT5G07690 [35]	0.096	0.532	0.184	0.238	0.013	0.073	0.721	0.028	No match	III
55.	AT5G17810 [42]	0.016	0.144	0.645	0.154	0.009	0.074	0.978	0.048	No match	III
56.	AT1G51070 [9]	0.000	0.002	0.001	0.045	0.073	0.736	0.157	0.089	No match	III
57.	AT3G53370 [25]	0.000	0.001	0.000	0.001	0.005	0.097	0.699	0.112	No match	III
58.	AT4G37610 [32]	0.000	0.018	0.043	0.002	0.001	0.520	0.252	0.086	No match	III
59.	AT5G63160 [60]	0.027	0.034	0.034	0.878	0.875	0.991	0.187	0.188	No match	III
60.	AT1G69490 [12]	0.022	0.072	0.475	0.405	0.060	0.205	0.486	0.404	No match	III
61.	AT5G39610 [48]	0.036	0.030	0.343	0.816	0.420	0.342	0.217	0.991	No match	III

[^1]
3.3.3. Biological significance of candidate genes

Annotations of 61 heterosis candidate genes were collected in Table 3.4, which also provided a specific reference for each known gene, where possible. For uncharacterised genes (30) a description of the gene family was given. According to the most comprehensive information source for TF genes which is a DATF database (Guo et al., 2005), the candidate genes included 51 TF or putative TF genes. Figure 3.11 unveils a variety of TF families represented among the identified heterosis candidate genes. MADS, bHLH, AP2-EREBP and NAM families were highly represented.

Figure 3.11. TF families represented by the identified candidate genes
The classification of AT4G13460 [29] and AT5G43990 [52] was questionable due to discrepancies that occur between databases referred in this work, a DATF (PcG TF family) and ChromDB (SET-domain family), respectively. There were also cases, in which a certain gene could not be found neither in DATF (the TF database of main reference for this work) nor in ChromDB (the reference database for 'chromatin related' genes), thus the TAIR database information was considered. All these candidate genes for which database information was not consistent or it was limited to a one source were collected in a Table 3.5. A final classification that have been approved for this work resulted in 57 TF or putative TF genes, the one microRNA, and the three SET-domain genes.
Table 3.4. Annotations and published information about heterosis candidate genes

No.	AGI code [AGI order number]	Ranking Group of Candidate Gene Significance	$\begin{gathered} \text { DATF } \\ \text { Gene Name(s) } \end{gathered}$	DATF Gene Family	Gene Function/Process Involvement in Arabidopsis	Literature GeneSpecific	Literature FamilySpecific
1.	AT1G12800 [1]	I	N/P	N/P	UNKNOWN	N/A	N/A
2.	AT1G32870 [6]	I	ANAC13	NAM/NAC	ultraviolet-B regulated	Safrany et al., 2008	
3.	AT1G58220 [11]	I	x	MYB-related	UNKNOWN	N/A	Martin and Paz-Ares, 1997; Jin and Martin, 1999; Stracke et al., 2001
4.	AT1G77080 [16]	I	$\begin{gathered} \text { AGL27, FLM, } \\ M A F 1 \end{gathered}$	MADS	inhibitor of flowering	$\begin{gathered} \hline \text { Scortecci } \text { et al., } \\ 2003 \end{gathered}$	
5.	AT2G39250 [19]	I	SNZ	AP2-EREBP	regulation of flowering	Schmid et al., 2003	
6.	AT2G45660 [20]	I	AGL20, SOCI	MADS	flowering control, floral pathway integrator; affects determinacy of all meristems; prevention of secondary growth and longevity in annual life forms	Lee et al., 2000; Moon et al., 2003; Simpson and Dean 2002; Mouradov et al., 2002; Melzer et al., 2008	
7.	AT4G12020 [28]	I	MAPKKK11, WRKY19	WRKY	UNKNOWN	N/A	Eulgem et al., 2000
8.	AT4G13460 [29]	I	SUVH9	PcG	epigenetic control of gene expression	$\begin{gathered} \hline \text { Baumbusch et al., } \\ 2001 ; \mathrm{Ng} \text { et al., } \\ 2007 \\ \hline \end{gathered}$	
9.	AT4G29190 [31]	I	x	C3H	UNKNOWN	N/A	Wang et al., 2008
10.	AT5G01160 [33]	I	N/P	N/P	UNKNOWN	N/A	Chrispeels et al., 2000

No.	AGI code [AGI order number]	Ranking Group of Candidate Gene Significance	$\begin{gathered} \text { DATF } \\ \text { Gene Name(s) } \end{gathered}$	DATF Gene Family	Gene Function/Process Involvement in Arabidopsis	Literature GeneSpecific	Literature FamilySpecific
11.	AT5G08712 [36]	I	N/P	N/P	targets genes that regulate diverse aspects of plant development, including apical and lateral meristem formation, leaf polarity, and vascular development; regulation of shoot apical meristem and floral development in Arabidopsis	$\begin{gathered} \text { Jung and Park, } \\ 2007 \end{gathered}$	
12.	AT5G11270 [38]	I	N/P	N/P	mediates resistance to infection by necrotrophic pathogens	Coego et al., 2005	
13.	AT5G25810 [43]	I	TNY, TINY	AP2-EREBP	might play a role in the cross-talk between abioticand biotic-stress-responsive gene expressions	Sun et al., 2008	
14.	AT5G32460 [46]	I	N/P	N/P	UNKNOWN	N/A	Franco-Zorrilla et al.,2002
15.	AT5G38860 [47]	I	BIM3	bHLH	UNKNOWN	N/A	Toledo-Ortiz et al., 2003
16.	AT5G39760 [49]	I	ATHB23	ZF-HD	establishing polarity during leaf development	Kim et al., 2007	
17.	AT5G43990 [52]	I	SUVR2	PcG	epigenetic control of gene expression and possible involvement in regulation of rRNA expression	Baumbusch et al., 2001; Thorstensen et al., 2006	
18.	AT5G57390 [56]	I	AIL5	AP2-EREBP	roles in specification of meristematic or divisioncompetent states especially in young tissues	Nole-Wilson et al., 2005	
19.	AT5G63080 [59]	I	x	JUMONJI	UNKNOWN	N/A	Noh et al., 2004
20.	AT5G67480 [61]	I	BT4	TAZ	$\mathrm{Ca}^{2+} /$ Calmodulin-binding	Du and Poovaiah, 2004	
21.	AT1G26760 [4]	II	N/P	N/P	UNKNOWN	N/A	

No.	AGI code [AGI order number]	Ranking Group of Candidate Gene Significance	$\begin{gathered} \text { DATF } \\ \text { Gene Name(s) } \end{gathered}$	DATF Gene Family	Gene Function/Process Involvement in Arabidopsis	Literature GeneSpecific	Literature FamilySpecific
22.	AT1G47760 [8]	II	x	MADS	UNKNOWN	N/A	Parenicova et al., 2003; Becker and Theissen, 2003; Messenguy and Dubois, 2003; Kaufmann et al., 2005
23.	AT1G73830 [14]	II	BEE3	bHLH	brassinosteroid signalling, required for normal growth	Friedrichsen et al., 2002	
24.	AT3G50890 [24]	II	ATHB28	ZF-HD	UNKNOWN	N/A	Windhovel et al., 2001
25.	AT4G04880 [26]	II	N/P	N/P	UNKNOWN	N/A	x
26.	AT2G28160 [18]	II	$\begin{gathered} \hline \text { BHLH029, FIT1, } \\ \text { FRU } \end{gathered}$	bHLH	required for the iron deficiency response	Colangelo and Guerinot, 2004	
27.	AT5G10140 [37]	II	AGL25, FLC, FLF	MADS	flowering control	Michels and Amasino, 1999; Sheldon et al., 1999	
28.	AT5G17300 [40]	II	X	MYB-related	UNKNOWN	N/A	Martin and Paz-Ares, 1997; Jin and Martin, 1999; Stracke et al., 2001;
29.	AT5G41920 [50]	II	x	GRAS	UNKNOWN	N/A	Pysh et al., 1999
30.	AT1G53160 [10]	II	SPL4	SBP/SPL	UNKNOWN	Yamasaki, 2004	
31.	AT3G46090 [22]	II	X	C2H2	key role in the defence response of Arabidopsis to salinity stress	$\begin{aligned} & \text { Ciftci-Yilmaz et } \\ & \text { al., } 2007 \end{aligned}$	
32.	AT5G27580 [45]	II	x	MADS	UNKNOWN	N/A	Parenicova et al., 2003; Becker and Theissen, 2003; Messenguy and Dubois, 2003; Kaufmann et al., 2005
33.	AT1G20696 [3]	II	HMGB3, NFD3	HMG	UNKNOWN	N/A	Gupta et al., 1997; Ya-maguchi-Shinozaki and Shinozaki, 1992
34.	AT1G28370 [5]	II	ERF11	AP2-EREBP	possible involvement in ABA and glucose responses	$\begin{gathered} \hline \text { De Luna et al., } \\ 2007 \\ \hline \end{gathered}$	

No.	AGI code [AGI order number]	Ranking Group of Candidate Gene Significance	$\begin{gathered} \text { DATF } \\ \text { Gene Name(s) } \end{gathered}$	DATF Gene Family	Gene Function/Process Involvement in Arabidopsis	Literature GeneSpecific	Literature FamilySpecific
35.	AT1G72650 [13]	II	TRFL6	MYB-related	UNKNOWN	N/A	Martin and Paz-Ares, 1997; Jin and Martin, 1999; Stracke et al., 2001;
36.	AT3G49530 [23]	II	ANAC062	NAM/NAC	UNKNOWN	N/A	Duval et al., 2002
37.	AT5G13790 [39]	II	AGL15	MADS	recruitment of histone deacetylase complex components, promotes somatic embryo development	Hill et al., 2008; Harding et al., 2003	
38.	AT5G17320 [41]	II	x	HB/HD-Zip	UNKNOWN	N/A	Sessa et al., 1997; Kim et al., 2008
39.	AT5G47370 [55]	II	HAT2	HB/HD-Zip	regulation of auxin-mediated morphogenesis in shoot and root	Sawa et al., 2002	
40.	AT5G59820 [57]	II	RHL41, ZAT12	C2H2	plays a central role in reactive oxygen and abiotic stress signalling, influences freezing tolerance, important component of the oxidative stress response signal transduction network	Davletova et al., 2005; Vogel et al., 2005; Rizhsky et al., 2004	
41.	AT5G61420 [58]	II	MYB28	MYB	regulator of methioninederived glucosinolate biosynthesis	Gigolashvili et al., 2007b	
42.	AT4G08250 [27]	II	x	GRAS	UNKNOWN	N/A	Pysh et al., 1999
43.	AT5G25830 [44]	II	X	C2C2-GATA	N/A	N/A	Teakle et al., 2002
44.	AT5G43170 [51]	II	AZF3	C2H2	water-stress response in an ABA-dependent or independent pathway		
45.	AT5G44080 [53]	II	x	bZIP	UNKNOWN	N/A	Jakoby et al., 2002
46.	AT5G46690 [54]	II	x	bHLH	UNKNOWN	N/A	Toledo-Ortiz et al., 2003
47.	AT1G42990 [7]	III	ATBZIP60	bZIP	endoplasmic reticulum stress response	Iwata and Koizumi, 2005	
48.	AT1G76590 [15]	III	x	PLATZ	UNKNOWN	N/A	Nagano et al., 1991

No.	AGI code [AGI order number]	Ranking Group of Candidate Gene Significance	$\begin{gathered} \text { DATF } \\ \text { Gene Name(s) } \end{gathered}$	DATF Gene Family	Gene Function/Process Involvement in Arabidopsis	Literature GeneSpecific	Literature FamilySpecific
49.	AT3G25990 [21]	III	X	Trihelix	UNKNOWN	N/A	Smalle et al., 1998
50.	AT4G14560 [30]	III	AXR5, IAA1	AUX-IAA	required for auxin response	Yang et al., 2004	
51.	AT5G04760 [34]	III	X	MYB	UNKNOWN	N/A	Martin and Paz-Ares, 1997; Jin and Martin, 1999; Stracke et al., 2001
52.	AT1G16530 [2]	III	LBD, ASL9	AS2	exclusively regulated by cytokinin	Naito et al., 2007	
53.	AT2G15580 [17]	III	N/P	N/P	UNKNOWN	N/A	Riechmann et al., 2000
54.	AT5G07690 [35]	III	MYB29	MYB	regulator of aliphatic glucosinolate biosynthesis	Gigolashvili et al., 2007	
55.	AT5G17810 [42]	III	WOX12	HB/HD-Zip	possible involvement in embryonic pattern formation	Haecker et al., 2004	
56.	AT1G51070 [9]	III	X	bHLH	UNKNOWN	N/A	Toledo-Ortiz et al., 2003
57.	AT3G53370 [25]	III	x	S1Fa-like	UNKNOWN	N/A	Zhou et al., 1995
58.	AT4G37610 [32]	III	BT5	TAZ	$\mathrm{Ca}^{2+} /$ Calmodulin-binding	Du and Poovaiah, 2004	
59.	AT5G63160 [60]	III	BT1	TAZ	$\mathrm{Ca}^{2+} /$ Calmodulin-binding	Du and Poovaiah, 2004	
60.	AT1G69490 [12]	III	$\begin{gathered} \hline \text { ANAC029, NAP, } \\ \text { AtNAP } \end{gathered}$	NAM/NAC	expression is associated with leaf senescence	Guo and Gan, 2006	
61.	AT5G39610 [48]	III	$\begin{gathered} \text { ANAC092, AT- } \\ \text { NAC2, ATNAC6 } \end{gathered}$	NAM/NAC	salt stress response and lateral root development	He et al., 2005	

[^2]Table 3.5. Candidate genes for which the annotations varied depending on database source

No.	AGI code [AGI order number]	Ranking Group of Candidate Gene Significance	$\begin{gathered} \text { DATF } \\ \text { Gene Name(s) } \end{gathered}$	$\begin{gathered} \text { DATF } \\ \text { Gene Family } \end{gathered}$	TAIR Gene Name(s)	TAIRGene Family/ Gene Prediction	ChromDB Gene Name(s)	ChromDB Protein Group
1.	AT1G12800 [1]	I	N/P	N/P	x	S1 RNA-binding do-main-containing protein	N/P	N/P
2.	AT1G58220 [11]	I	x	MYB-related	x	MYB	N/P	N/P
3.	AT4G13460 [29]	I	SUVH9	PcG	$\begin{gathered} \text { SUVH9, } \\ \text { SDG22, SET22 } \end{gathered}$	SET domain, SU(VAR)3-9 protein subgroup	$\begin{gathered} \text { SUVH9, } \\ \text { SDG22, SET22 } \end{gathered}$	ARATH_SUV H2, SUVH9
4.	AT5G01160 [33]	I	N/P	N/P	x	C2H2-type, RING-type Zinc Finger	N/P	N/P
5.	AT5G08712 [36]	I	N/P	N/P	MIR166, MIR166C	x	N/P	N/P
6.	AT5G11270 [38]	I	N/P	N/P	OCP3	Homeodomain	N/P	N/P
7.	AT5G32460 [46]	I	N/P	N/P	x	pseudogene, possible B3	N/P	N/P
8.	AT5G43990 [52]	I	SUVR2	PcG	SUVR2	$\begin{gathered} \text { SET domain, } \\ \text { SU(VAR)3-9 protein } \\ \text { subgroup } \\ \hline \end{gathered}$	$\begin{aligned} & \text { SUVR2, } \\ & \text { SDGIS } \end{aligned}$	$\begin{gathered} \text { ARATH_SUV } \\ \text { R4 } \end{gathered}$
9.	AT1G26760 [4]	II	N/P	N/P	x	SET domain	$\begin{gathered} \text { SDG35, SET35, } \\ \text { ATXR1 } \\ \hline \end{gathered}$	unclassified
10.	AT4G04880 [26]	II	N/P	N/P	x	adenosine/AMP deaminase	N/P	N/P
11.	AT5G17300 [40]	II	x	MYB-related	x	MYB	N/P	N/P
12.	AT1G72650 [13]	II	TRFL6	MYB-related	TRFL6	MYB	N/P	N/P
13.	AT2G15580 [17]	III	N/P	N/P	x	C3H (C3HC4-type RING finger)	N/P	N/P

Legend:
The genes in bold were selected from the $1^{\text {st }}$ experiment on identification of heterosis TF candidate genes N / P - genes not present in database
x - does not exist

3.3.4. Review of publicly available expression data for heterosis associated candidate genes

'Meta-profiles' tool of web-based application, a GenevestigatorV3 (Zimmermann et al., 2004 and 2008; https://www.genevestigator.com/gv/index.jsp) was used to obtain the specific expression profiles for each candidate gene. Data for 54 out of 61 candidates was available in AtGenExpress, a target database to create the gene expression profiles, and the high quality data set of 1122 arrays was selected. Categories of different organs or anatomy parts (Figure 3.12), stages of development (Figure 3.13) and stimuli (Figure 3.14) were considered. The darkest blue colour (Figures 3.12 and 3.13) corresponds to expression values

T1920696
AT5G59820 [57]
AT4G29190 [31]
AT5G43170 [51]
AT3G50890 [24]
AT5G41920 [50]
AT1G42990 [7]
AT4G14560 [30]
AT2G28180 [18]
AT4G37610 [32]
AT1G28370 [5]
AT1G58220 [11]
AT3G49530 [23]
AT5G07690 [35]
AT5G57390 [56]
AT1G72650 [13]
AT1G73830 [14]
AT1G16530 [2]
AT3G25990 [21]
AT5G47370 [55]
AT1G76590 [15]
AT1912800 [1]
AT5G04760 [34]
AT1G69490 [12]
AT5G61420 [58]
AT1G53160 [10]
AT2G15580 [17]
AT1G32870 [8]
AT5G17300 [40]
AT5G25830 [44]
AT1951070 [9]
AT5G67480 [81]
AT1G26760 [4]
AT5G63080 [59]
AT5G11270 [38]
AT5G44080 [53]
AT5G39780 [49]
AT2G39250 [19]
AT4G08250 [27]
AT4G04880 [26]
AT5G13790 [39]
AT5G01180 [33]
AT4G13460 [29]
AT5643990 [52]
AT5G32480 [46]
AT5G10140 [37]
AT3G53370 [25]
AT5¢46690 [54]
AT5G27580 [45]
AT4G12020 [28]
AT5G39610 [48]
AT2G45680 [20]
AT5G25810 [43]
AT5G17320 [41]

Figure 3.12. Candidate gene expression in different organs or anatomical parts

Figure 3.13. Candidate gene expression at different stages of development

Table 3.6. The summary of an array expression data for the previously uncharacterised candidate genes

No.	AGI code [AGI order number]	Ranking Group of Candidate Gene Significance	DATF Gene name(s)	DATF Gene family	Tissue Expression Pattern	Developmental Expression Pattern	Greater than 2.0 fold upor down-regulation of gene expression in response to a given stimulus
1.	AT1G12800 [1]	I	N/P	N/P	most tissues, highly in cotyledons, pedicel, juvenile leaf	all stages, most at seedling, developed flower	low nutrient
2.	AT1G58220 [11]	I	x	MYB-related	most tissues, a bit more in cell suspension, shoot apex and seed	most stages, bit more at germinated seed, bolting, mature siliques	N/A
3.	AT4G12020 [28]	I	MAPKKK11, WRKY19	WRKY	all tissues in similar way, a bit more in cauline and senescent leaf	all stages in similar way, a bit more at mature siliques	N/A
4.	AT4G29190 [31]	I	x	C3H	senescent leaf	developed flower, mature siliques	cold and osmotic stress, ABA treatment
5.	AT5G01160 [33]	I	N/P	N/P	all tissues in similar way, a bit more in seed	all stages in similar way, a bit more at germinated seed	N/A
6.	AT5G32460 [46]	I	N/P	N/P	N/A	N/A	N/A
7.	AT5G38860 [47]	1	BIM3	bHLH	N/P	N/P	N/P
8.	AT5G63080 [59]	I	x	JUMONJI	in most tissues in similar way	at most stages in similar way	N/A
9.	AT1G20696 [3]	II	HMGB3, NFD3	HMG	most tissues, similarly	all stages similarly	N/A
10.	AT1G26760 [4]	II	N/P	N/P	most tissues, cell suspension, highly in hypocotyl, carpel, shoot apex	most stages, highly at bolting	N/A
11.	AT1G47760 [8]	II	X	MADS	N/P	N/P	N/P
12.	AT1G53160 [10]	II	SPL4	SBP, SPL	most (apart from in seedling parts) higher in shoot apex, cauline leaf, carpel	at bolting and flower stages	N/A
13.	AT1G72650 [13]	II	TRFL6	MYB-related	most tissues, similarly	all stages, slightly more at germinated seed and mature siliques	N/A

$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \text { No. } & \begin{array}{c}\text { AGI code } \\ \text { [AGI order number] }\end{array} & \begin{array}{c}\text { Ranking Group } \\ \text { of Candidate } \\ \text { Gene Significance }\end{array} & \begin{array}{c}\text { DATF } \\ \text { Gene name(s) }\end{array} & \begin{array}{c}\text { DATF } \\ \text { Gene family }\end{array} & \begin{array}{c}\text { Tissue Expression } \\ \text { Pattern }\end{array} & \begin{array}{c}\text { Greater than 2.0 fold up- } \\ \text { Developmental } \\ \text { Expression Pattern }\end{array} \\ \hline \text { expression in response to } \\ \text { a given stimulus }\end{array}\right]$

No.	AGI code [AGI order number]	Ranking Group of Candidate Gene Significance	DATF Gene name(s)	DATF Gene family	Tissue Expression Pattern	Developmental Expression Pattern	Greater than 2.0 fold upor down-regulation of gene expression in response to a given stimulus
25.	AT1G51070 [9]	III	x	bHLH	most tissues, a bit stronger in cell suspension, radicle, hypocotyl, roots	most stages, slightly stronger at seedling and young rosette	N/A
26.	AT1G76590 [15]	III	x	PLATZ	seed, senescent leaf	mature siliques	cold and osmotic stress, hormone treatment: MJ, ABA treatment
27.	AT2G15580 [17]	III	N/P	N/P	in most tissues, a bit stronger in petiole, cauline leaf, stem, sepal and petal	at most stages, bit more at developed rosette and flower stages	N/A
28.	AT3G25990 [21]	III	x	Trihelix	senescent and cauline leaf, stem, sepal	flowers and siliques	cycloheximide
29.	AT3G53370 [25]	III	x	S1Fa-like	silique, seed, shoot apex, flower	mature siliques, germinated seed, bolting	cycloheximide
30.	AT5G04760 [34]	III	x	MYB	all tissues in similar way	most (not at silique and bolting) in similar way	salt and osmotic stress, cycloheximide treatment

[^3]intensities can be only compared between values of the same probe set/gene (Zimmermann et al., 2004 and 2008). The red-green colour system (Figure 3.14) corresponds to a fold change of gene expression in plants treated vs. controls. Various modes of gene expression were observed among candidate genes: tissue-specific; expression at certain times of development, or constitutive activity across the whole of development and in all tissues. Table 3.6 sums up the expression profiles of previously uncharacterised candidate genes which are supplemental to general information given previously in Tables 3.4 and 3.5.

3.4. Validation of selected candidate genes

3.4.1. Co-localisation of candidate genes with QTLs for heterosis of biomass and growth, and biomass QTL per se

Chromosomal locations of all the candidate genes were compared with map locations of QTLs for biomass heterosis and for leaf area/relative growth rate (RGR) (research group of

Table 3.7. List of candidate genes that co-localised with QTLs for biomass and leaf area/RGR heterosis, and biomass QTL per se

No.	AGI code [AGI order number]	Ranking Group of Candidate Gene Significance	QTL for leaf area/RGR (growth) heterosis	QTL for biomass heterosis	QTL for biomass per se
1.	AT1G12800 [1]	I	-	+	-
2.	AT1G58220 [11]	I	-	-	+
3.	AT4G12020 [28]	I	+	-	-
4.	AT4G13460 [29]*	I	+	-	-
5.	AT5G25810 [43]	I	+	-	-
6.	AT5G32460 [46]	I	+	-	-
7.	AT5G57390 [56]	I	-	+	-
8.	AT5G63080 [59]	I	-	-	+
9.	AT1G53160 [10]	II	-	+	+
10.	AT1G72650 [13]	II	-	+	+
11.	AT1G73830 [14]	II	-	+	-
12.	AT2G28160 [18]	II	-	+	-
13.	AT3G46090 [22]	II	-	+	+
14.	AT3G49530 [23]	II	-	+	+
15.	AT4G08250 [27]	II	+	-	-
16.	AT5G17300 [40]	II	+	-	-
17.	AT5G17320 [41]	II	+	-	-
18.	AT5G25830 [44]	II	+	-	-
19.	AT5G27580 [45]	II	+	-	-
20.	AT5G61420 [58]	II	-	-	+
21.	AT4G14560 [30]	III	+	-	-
22.	AT5G17810 [42]	III	+	-	-
23.	AT5G63160 [60]	III	-	-	+
24.	AT1G69490 [12]	III	-	+	+

Legend:

* - one of the three SET domain candidate genes (the 'chromatin-related' gene group)
T. Altmann - unpublished data) to obtain evidence for their relevance to heterosis. QTL data was obtained from IL and RIL populations derived from Col-0x Col-0 and C24xC24 reciprocal crosses. Nine out of 61 candidates co-localised with QTL for biomass heterosis and a further 11 co-localised with QTL for increased growth. Additionally, candidate gene locations were compared with QTL for biomass, a trait in and of itself (Lisec et al., 2008). Five out of the nine genes that mapped near biomass heterosis QTL also co-localised with biomass QTL. Four of the 61 candidate genes co-localised exclusively with biomass QTL (Table 3.7). None of candidate genes belonged to an overlapping region of both heterotic QTLs. One third of the candidate genes that co-localised with above mentioned QTLs belonged to the 'significance category' I, a half to a category II, and the remaining four genes to category III.

3.4.2. Expression analysis of candidate genes at early stages of heterosis establishment

Expression of candidate genes in F1 hybrids vs. parents was further studied at various developmental time points: at $3,6,8$, and 10 DAS. 3 DAS was a time point of developmental delay in C24xC24 (refer to section 3.1.1), accompanied with earliest changes in some FAs level in F1 hybrids when compared to parents (refer to section 3.1.3.2). The early onset of biomass hybrid vigour was associated with the 6 DAS stage (small, albeit insignificant changes in hybrid size were visible/become apparent) and at 8 DAS, where the difference in biomass between F1 hybrids and parents was statistically significant. 10 DAS was a time point where heterosis was established (Meyer et al., 2004) and it is also the stage where first two rosette leaves > 1 mm are present (Boyes et al., 2001).

At first, primarily trends present in the obtained expression data were investigated via PCA analysis since such data variation could be attributed to a given data component such as replicate, genotype or time point. The analysis yielded a good separation between parental and hybrid genotypes across all time points (Figure 3.15), which was a promising starting point for further statistical analyses. Significant difference in candidate gene expression between hybrids and parents at different time points was determined in ANOVA analysis followed by Student's t-tests (the most significant data was marked in green fields in a Table 3.8). Additionally, genes with less stringent significance criteria (Student's t-tests P value <0.05 was a significance threshold) were considered as differentially expressed in hybrids (the orange fields in a Table 3.8). Comparisons were limited to differentially expressed genes at individual time points because transcript level differences were generally not maintained over multiple stages. Eighteen candidate genes were differentially expressed in hybrids across the whole time serious, while the remaining 33 occurred only transiently. Simi-
larly, when considering only the candidate genes that were ranked to 'significance category' I (i.e. group in which candidate genes were statistically the most significant) and genes that co-localised with QTL of interest (refer to section 3.4.1) the most abundant were genes which occurred only transiently ($\sim 59 \%$ and 45%, respectively). As many as 80% of candidate genes that were identified at 4 DAS were also significant at $3 \mathrm{DAS}, 57 \%$ at $6 \mathrm{DAS}, 55 \%$ at 8 DAS , and 72% at 10 DAS. There were only five candidates that were differentially expressed in hybrids only at 4 DAS (AT1G58220 [11], AT5G57390 [56], AT1G26760 [4], AT3G49530 [23], AT5G44080 [53]).

Figure 3.15. PCA analysis of gene expression differences in parental and hybrid genotypes from developmental time series 3-10 DAS

Numbers 1-4 represent the time points: 1-3 DAS, 2-6 DAS, 3-8 DAS, and 4-10 DAS Different colours discriminate the genotypes (marked on the plot area)
Duplications or triplications of each of numbers represent two or three biological replicates, respectively

Gene expression patterns determined among candidate genes that were significantly expressed in hybrids at different time points were different than these defined at 4 DAS in almost all cases (95%, Table 3.8). Examples for changeable expression pattern across different time points are represented by Figures 3.16 A-C, and the maintained throughout time points by Figure 3.16 D. The analyses also revealed that among all the identified candidate genes, a predominant expression patterns at $3,4,8$ and 10 DAS were the non-additive, whereas 6 DAS the additive and non-additive were almost equal. These results looked different for genes of 'statistical category' I (additive effects prevalent in all of the time points) and
the genes co-localising with QTLs of interest (additive and non-additive were almost equally frequent in all of the time points).

Figure 3.16. Gene expression levels of selected candidates at different developmental stages
A - Overdominant expression pattern at 3 DAS, and underdominant at 10 DAS i
B - Underdominant expression pattern at 8 DAS in AT1G42990 [7]
C- Intermediate_Col-0xCol-0_high pattern at 3 and 6 DAS, a dominant_Col-0xCol-0_high at 8 DAS, and a dominant_C24xC24_low at 10 DAS in AT5G63080 [59]
D - Intermediate_Col-0xCol-0_high expression pattern maintained across all time points in AT1G12800 [1]
Different colours discriminate the genotypes (marked on the plot area)
The box plot consists of median expression values from replicas (horizontal line marked on the box), box area where falls the middle 50% of the data (the upper edge of the box indicates the $75^{\text {th }}$ percentile, and the lower hinge indicates the $25^{\text {th }}$ percentile of the data set, respectively), and the whiskers, which ends mark the lowest and highest expression value.
Table 3．8．Summary of data obtained from candidate gene expression analysis across the developmental time serious（columns 5－9）and in crosses of different Arabidopsis accessions at 4 DAS（in columns 10 and 11）

$\frac{2}{4} \stackrel{\vdots}{4}$	$=$	－	－		$-$	\wedge	\bigcirc	－	\sim ते	a	तो		入	－		त्वี	तิ	त	तี			－		E	－	二	
	\bigcirc	－		\sim	N			\cdots	\bigcirc	2						\sim		त्ส丅		工	\sim	－		तี			
$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\bigcirc	\sim	\cdots		\sim			＜		凩へ	厌		6	入	∞		N	\bigcirc	तี		むิ	－	\wedge	E	＋		
	∞	\sim	N		\sim			त्वै		तิ				N			∞	त्ता				気		＋	ล		
$$	r	N	N		\sim			＜	\bigcirc			N	\bigcirc				\sim	－	\bigcirc		त्สै	合	तो		त		
	\bullet	∞	\bigcirc	N	N	－	N	N	∞ 응	으응	－	\sim	\bigcirc	N	N	－	N	－	－	∞	\bigcirc	\sim	\sim	0	－	N	\bigcirc
$\begin{aligned} & \text { N } \\ & \text { n U } \\ & \text { n } \\ & \text { m } \\ & \hline 0 \\ & 0 \end{aligned}$	in	\sim	$\cdots \geq$		\sim		त	N	तो		入		\bigcirc	\sim	む		N	n	\bigcirc		तี	気	\bigcirc	\sim	\cdots	तี	
烒	－							$\left\|\begin{array}{c} \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0} \end{array}\right\|$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\left.\begin{array}{\|c\|c} \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 7 \\ 0 \\ 0 \\ 0 \\ 0} \end{array} \right\rvert\,$			$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ : 0 \\ 0 \end{array}\right\|$									biomass heterosis		碞
													－				－		$=$	$=$	＝		च	$=$	$=$	$=$	
	\sim	$\left(\begin{array}{c} \Xi \\ \vdots \\ 0 \\ 0 \\ \hline \end{array}\right.$				2 2 0 2 2 0 0 \vdots \vdots										$\begin{aligned} & n \\ & 2 \\ & \underset{n}{n} \\ & \hat{n} \\ & \hat{n} \end{aligned}$	$\left\{\begin{array}{l} n \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ n \end{array}\right.$				$\left\{\begin{array}{c} n \\ 0 \\ n \\ 0 \\ 0 \\ 0 \\ e \\ e \end{array}\right.$					$\begin{aligned} & n \\ & 2 \\ & 2 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	
$\dot{8}$	－	－	\cdots			in	$0 \cdot$	\cdots	∞	$\cdots 0^{\circ}$	\exists	บ	$\stackrel{\square}{2}$	$\stackrel{\text { d }}{ }$	\dot{y}	$\stackrel{\circ}{-}$	－	\cdots	2	－	$\stackrel{\rightharpoonup}{\mathrm{N}}$	Ṅ	べ	－	べ	ה	$\stackrel{\sim}{\sim}$

No.	AGI code [AGI order number]	```Ranking Group of Candidate Gene Significance at 4 DAS```	Gene co-localisation with QTL	$\begin{aligned} & \text { 3 DAS } \\ & \text { Col-0/C24 } \end{aligned}$	$\begin{gathered} 4 \text { DAS } \\ \text { Col-0/C24 } \end{gathered}$	$\begin{gathered} 6 \text { DAS } \\ \text { Col-0/C24 } \end{gathered}$	$\begin{gathered} 8 \text { DAS } \\ \text { Col-0/C24 } \end{gathered}$	$\begin{aligned} & 10 \text { DAS } \\ & \text { Col-0/C24 } \end{aligned}$	$\begin{aligned} & \text { 4 DAS } \\ & \text { Cl-0/Nd } \end{aligned}$	$\begin{aligned} & 4 \text { DAS } \\ & \text { C24/Ler } \end{aligned}$
1	2	3	4	5	6	7	8	9	10	11
29.	AT3G50890 [24]	II		any	8	6		any	any	7
30.	AT4G08250 [27]	II	growth heterosis	any	10		9			5
31.	AT5G10140 [37]	II		5	5	5	5	5	2	8
32.	AT5G13790 [39]	II			10	2	2	2		1
33.	AT5G17300 [40]	II	growth heterosis	10	7	10	any	7	2	
34.	AT5G17320 [41]	II	growth heterosis	any	9	6	6	1	1	2
35.	AT5G25830 [44]	II	growth heterosis	6	8	1	any	any		12
36.	AT5G27580 [45]	II	growth heterosis	any	1	1	5	1		any
37.	AT5G41920 [50]	II		any	2	any	7	2	8	5
38.	AT5G43170 [51]	II		any	11	6	any	6	2	2
39.	AT5G44080 [53]	II			8					
40.	AT5G46690 [54]	II		12	9	any	any	any	7	2
41.	AT5G47370 [55]	II		1	10			any	any	2
42.	AT5G59820 [57]	II			10	any	any		2	9
43.	AT1G16530 [2]	III		any	any					
44.	AT1G42990 [7]	III		any	any	any	4	any		any
45.	AT1G51070 [9]	III		2	any					8
46.	AT1G69490 [12]	III	biomass heterosis; biomass	any	any		7		any	7
47.	AT1G76590 [15]	III		any	any			any	8	
48.	AT2G15580 [17]	III		,	any	2	4	7		1
49.	AT3G25990 [21]	III		7	any			7		
50.	AT4G14560 [30]	III	growth heterosis	1	any	any			2	
51.	AT4G37610 [32]	III		10	any		4	any	8	10
52.	AT5G04760 [34]	III			any		any	any	any	
53.	AT5G07690 [35]	III			any	any	any	8	12	
54.	AT5G17810 [42]	III	growth heterosis	6	any	6	any	N/A	2	
55.	AT5G39610 [48]	III		any	any	9		any	any	
56.	AT5G63160 [60]	III	biomass	any	any		any		any	

Legend:

$$
\begin{aligned}
& \text { Legend: } \\
& \text { Field colours: } \\
& \text { grey - gene co-localisation with a given QTL, } \\
& \text { dark or light green fields - candidate gene differentially expressed in the hybrid(s) when compared to parents confirmed via ANOVA and Student's t-test, } \\
& \text { orange fields - candidate confirmed only via Student's t-test, } \\
& \text { yellow fields - candidate confirmed only via ANOVA analysis, } \\
& \text { white fields - no differential expression of candidate gene between hybrid(s) and parent(s). } \\
& \text { N/A - data not available } \\
& \text { * - microRNA } \\
& \text { ** - SET domain genes (a member of the 'chromatin-related' group of genes) } \\
& \text { Expression patterns were following: } \\
& \text { any - gene expression did not match any of specific patterns defined in this work, } \\
& 1-12 \text { - template numbers (for details refer to section 3.3.1). }
\end{aligned}
$$

Template	Col-0/C24	Cl-0/Nd	C24/Ler
Number	Gene Expression Patterns	Gene Expression Patterns	Gene Expression Patterns
1.	Intermediate_C24xC24_high	Intermediate_Nd_high	Intermediate_Ler_high
2.	Intermediate_Col-0xCol-0_high	Intermediate_Cl-0_high	Intermediate_C24_high
3.	Overdominant (F1 high)	Overdominant (F1_high)	Overdominant (F1 high)
4.	Underdominant (F1 low)	Underdominant (F1 low)	Underdominant (F1 low)
5.	Dominant_C24xC24_high	Dominant_Nd high	Dominant_Ler high
6.	Dominant_Col-0xCol-0_low	Dominant_Cl-0_low	Dominant_C24_low
7.	Dominant_C24xC24_low	Dominant_Nd_low	Dominant_Ler_low
8.	Dominant_Col-0xCol-0_high	Dominant_Cl-0_high	Dominant_C24_high
9.	Maternal_C24xC24_high	Maternal_Nd_high	Maternal_Ler_high
10.	Maternal_Col-0xCol-0_high	Maternal_Cl-0_high	Maternal_C24_high
11.	Paternal_C24xC24_high	Paternal_Nd_high	Paternal_Ler_high
12.	Paternal_Col-0xCol-0_high	Paternal_Cl-0_high	Paternal_C24_high

3.4.3. Expression analysis of candidate genes of different Arabidopsis accessions

Candidate genes that were previously selected in Col-0/C24 crosses at 4 DAS were further validated in 4 DAS hybrids of different Arabidopsis accessions showing negative (Cl-0 crossed to Nd) and positive (Ler crossed to C24) heterosis of biomass (Figure 3.17).

Differences in biomass in crosses of other ecotypes at 21 DAS

Figure 3.17. Biomass heterosis in Ler/ C 24 and $\mathrm{Nd} / \mathrm{Cl}-0$ crosses determined at 21 DAS
The expression data obtained for parental and hybrid seedlings at 4 DAS were first subjected into PCA analysis. It yielded a good separation between parental and hybrid genotypes in both sets of crosses (Figures 3.18 A and B), which was a promising starting point for further statistical analyses.

Figure 3.18. PCA separation of different genotypes resulting from crosses of other Arabidopsis accessions

A - Cl-0 with Nd , B - Ler with C24
Numbers 1-3 represent biological replicates
Different colours discriminate the genotypes (marked on the plot area)

The candidate genes of a main focus in a validation analysis were exhibiting dominant expression pattern when hybrid expression levels were compared to parental in Col-0/C24 crosses at 4 DAS (refer to section 3.3.1). The scheme of the analysis performed to validate these candidate genes is given in Figure 3.19. The candidate gene was considered to be validated if it exhibited the same dominant pattern in the crosses of positive biomass heterosis (Ler/C24 and Col-0/C24, Figure 3.19) and 'the opposite dominant pattern' in the crosses of negative biomass heterosis ($\mathrm{Cl}-0 / \mathrm{Nd}$, Figure 3.19). The analysis was based on the assumption that if a candidate gene in question influences a biomass increase in the heterotic hybrids, a correlation between hybrid expression level in the range of a 'higher parent' and a biomass increase should be followed by a correlation between hybrid expression level in the range of a 'lower parent' and a decrease in hybrid biomass. The analysis resulted in confirmation of dominant expression patterns in only three from 12 candidate genes profiled in the Ler/C24 crosses (AT2G45660 [20] - a 'significance category’ I, AT5G10140 [37] - a ‘significance category' II, AT5G17300 [40] - a significance category' II and co-localisation with growth heterosis). Unfortunately, the opposite effects in the $\mathrm{Cl}-0 / \mathrm{Nd}$ crosses could not be found (Table 3.8 , columns 10 and 11).

Figure 3.19. The analysis scheme for a validation of candidate genes with dominant expression patterns

Additionally, the remaining 44 candidates were expression-profiled in the same set of crosses of positive and negative biomass heterosis. Thirty nine candidate genes were differentially expressed in hybrids when compared to parents in Ler/C24 crosses (green and orange fields, Table 3.8). In this group nine genes (AT2G28160 [18] - a 'significance category' II/co-localisation with biomass heterosis, AT5G17300 [40] - a 'significance category' II/colocalisation with growth heterosis, AT1G32870 [6] - a 'significance category’ I, AT1G77080 [16] - a ‘significance category’ I, AT2G45660 [20] - a ‘significance category' I,

AT4G12020 [28] - a 'significance category' I/co-localisation with growth heterosis, AT5G10140 [37] - a 'significance category' II, AT5G38860 [47] - a 'significance category' I, AT5G59820 [57] - a 'significance category' II) exhibited the same expression pattern as in C24/Col-0 crosses (3 dominant, 5 intermediate and one maternal; Table 3.8). Eighteen out of 39 candidate genes that were differentially expressed in the hybrids of Ler/C24 crosses (green and orange fields) were not differentially expressed in hybrids of $\mathrm{Cl}-0 / \mathrm{Nd}$ crosses. Surprisingly, there were also found 10 candidate genes differentially expressed in hybrids of negative heterosis crosses but not of positive crosses.

3.5. Exploring of the possible role of rDNA genes in heterosis

Different approaches were taken to test if the increased growth of the F1 hybrids is correlated with the rDNA activity. The following parameters were measured and compared in hybrids and parents: expression level of rRNA genes (section 3.5.1), nucleolus area (section 3.5.2), and ploidy level (section 3.5.3).

3.5.1. Expression analysis of rRNA genes

To test whether F1 hybrids have enhanced levels of rRNA per cell which could account for increased early growth rates the expression of $25 \mathrm{~S}, 18 \mathrm{~S}$, and 5.8 S subunits were measured via qRT-PCR in parental and hybrid seedlings at 4 DAS (Figure 3.20). No significant difference in the expression level of any of these genes was found between hybrids and parental lines.

Figure 3.20. Comparison of transcript levels of ribosomal genes in parents and hybrids at 4 DAS

One unit corresponds to 2 -fold difference in gene expression level. Here, a $\Delta \mathrm{C}_{\mathrm{T}}$ was given as $\Delta \mathrm{C}_{\mathrm{T}}=\mathrm{C}_{\mathrm{T} \text { gene }}-\mathrm{C}_{\mathrm{T} \text { reference gene }}$ due to high ribosomal gene expression, which is higher than that of reference gene.

3.5.2. Comparison of nucleolus area

Measurement of nucleolus area in F1 hybrids and parents was performed as a proxy for rDNA activity. Increased rDNA transcription leads to increased nucleolus area (Delany et al., 1994). The suspended nuclei of 6 DAS seedlings were stained with fluorescent DAPI and subjected into flow cytometry to sort nuclei according to ploidy level. A ploidy level was determined on the basis of obtained histograms where relative fluorescence intensity represented a relative DNA content. At least 100 nucleoli of 2C (i.e., one unreplicated copy of the nuclear DNA) and 4C DNA content were flow sorted onto microscopic slides and silver stained (Figure 3.21) to perform measurements of nucleolus area. Unfortunately, the variability in nucleolus area within genotypes was greater than any difference between genotypes (Figure 3.22). Therefore, no significant difference was found in nucleolus size between hybrids and parents.

Figure 3.21. Col-0xC24 at 4C ploidy level
Nucleolus area was measured after the silver staining.
A - nucleus area
B - nucleolus area ($5.22 \mu \mathrm{~m}^{2}$)

Figure 3.22. Comparison of nucleolus area at 2C and 4C ploidy level

3.5.3. Analysis of endoreduplication (endoreplication)

Changes in endoreduplication level across a developmental time serious were followed by measuring ploidy level in F1 hybrids and parents (the ploidy level was determined in the

Figure 3.23. Ploidy level in the cells of parents and hybrids determined by flow cytometry

- Col-0xCol-0Col-0xC24C $24 \times \mathrm{xCol}-0$
C 24 xC 24
A - whole seedlings at 4 DAS
$\mathrm{B}-$ whole seedlings at 6 DAS
C - cotyledons of seedlings at 10 DAS
D - cotyledons of plantlets at 15 DAS
E - secondary leaves of plantlets at 15 DAS
same way as described in the previous chapter). An increase in ploidy level was observed for all genotypes from 4 DAS till 6 DAS (the whole seedlings; Figures 3.23 A-D) and from 10 to 15 DAS (cotyledons; Figures 3.23 C and D). Ploidy levels were higher in cotyledons at 15 DAS than in young leaves of the same plantlet for all genotypes (Figures 3.23 D and E). However, no significant differences in ploidy level were observed between hybrids and parents at any developmental stage (Figure 3.23).

3.6. Characterisation of FRIGIDA (AT4G00650) in relation to heterosis

The direction of PhD study, which was investigation of a role that selected regulatory genes play in heterosis, was further driven to an analysis of the possible involvement of the FRIGIDA gene (FRI) in biomass heterosis.

3.6.1. Analysis of an IL line carrying a segment containing FRIGIDA

The influence on plant dry weight (DW) of a C24 donor segment carrying FRIGIDA in both homozygous and heterozygous backgrounds, and a possible interaction with the $F L C$ gene was examined. For this purpose introgressions line (IL) N88/2/1/10 BC5F3 and its test

Parental homozygous lines
Test crosses

Figure 3.24. Schematic representation of chromosome IV in the IL line N88/2/1/10 and test crosses
crosses (IL crossed to Col-0xCol-0 and to C 24 xC 24) were studied, (Figure 3.24). The substitutions were introgressed close to the top of chromosome (chr) IV where a QTL for biomass heterosis was identified (research group of Altmann T. - unpublished data). IL N88/2/1/10

BC5F3 was a homozygous line (Figure 3.24), in which the C24 segment of 340 loci was introgressed into Col-0xCol-0 background. It is known, that up-regulation of $F L C$ by $F R I$ differs depending on the activity of both genes and is different for various genotypes; FRI was found to be functional in C24 but not in Col-0 ecotype, whereas FLC is strong in Col-0 but weak in C24 (Gazzani et al., 2003). This IL line carried functional FRI alleles from chr IV of $\mathrm{C} 24\left(F R I_{\mathrm{C} 24} / F R I_{\mathrm{C} 24}\right)$ and strong $F L C$ alleles from chromosome V of $\mathrm{C} 24\left(F L C_{\mathrm{C} 24} / F L C_{\mathrm{C} 24}\right)$ and its DW was significantly greater than that of either Col-0xCol-0 or C24xC24 (Student's ttest P -values <0.05 were used as a significance threshold in this experiment). There was a significant difference in DW between N88/2/1/10 progeny of test crosses and the Col-0xCol-0 and C24xC24 controls (Figure 3.25). Additionally, the biomasses of Col-0xN88/2/1/10, $\mathrm{C} 24 \times \mathrm{N} 88 / 2 / 1 / 10$ and N88/2/1/10 IL line were similar. In the both test crosses at least one of the two loci from $F R I$ or $F L C$ was represented by strong dominant allele (heterozygosity), whereas in both parents $F L C$ and $F R I$ loci came from the same ecotype (homozygosity). These results suggest that an introgressed region, and possibly the interaction of the strong dominant $F R I$ allele from $\mathrm{C} 24 \mathrm{xC} 24\left(F R I_{\mathrm{C} 24}\right)$ with the strong dominant $F L C$ allele from Col-0xCol-0 (FLC $C_{\text {Col-0 }}$) might be involved in the observed biomass increase.

Figure 3.25. Comparison of biomasses in N88/2/1/10 IL, Col-0xCol-0 and C24xC24 homozygous lines and their test crosses

3.6.2. Creation and analysis of RNAi lines suppressing FRIGIDA

A reverse genetics approach was used to investigate the parental contribution of FRIGIDA to biomass and growth heterosis. The approach involved RNAi suppression of $F R I$ expression in both Col-0xCol-0 and C24xC24 backgrounds. For creation and analysis of RNAi lines resources of AGRIKOLA project (www.agrikola.org; Hilson et al., 2004) such as Agrobacterium tumefaciens colonies carrying hpRNA plasmid and required protocols set up and were implemented.

3.6.2.1. Validation of pAGRIKOLA clones via sequencing analysis

Agrobacterium tumefaciens strain GV3101 carrying hpRNA expression plasmid (Hilson et al., 2004) for suppression of FRIGIDA was obtained from the AGRIKOLA project (http://www.agrikola.org). The hairpin (hp) construct of AGRIKOLA plasmid contained a GST (gene specific tag) with the length of 400 bp (CATMA ID: 4a00720). The GST was cloned on both sides of the intron spacer in inverted orientation to express hairpin (Figure 3.26 B). The clone validation (Figure 3.26 A) was based on PCR analysis according to AGRIKOLA validation protocols (Selection and validation of individual Agrobacterium clones; http://www.agrikola.org/index.php?o=/agrikola/html/transformation) and a sequencing analysis. Bacterial colonies verified for a desired hpRNA construct (Figure 3.26) were used to transform seeds from Col-0xCol-0 and C24xC24 plants.

Figure 3.26. PCR verification of A. tumefaciens transformants (www.agrikola.org; Hilson et al., 2004)
A. PCR products of expected length obtained from amplification of hpRNA expression plasmid with a set of AGRIKOLA primers (Agri 51/56/64/69). The four primers were positioned in such a way that the GST subunits present in hairpin cassette of the hpRNA expression plasmid (panel B) were easily distinguished by size in agarose gel electrophoresis.
B. The structure of the recombined hairpin cassette with the inverted GST repeats.

3.6.2.2. PCR screen and selection of $F R I / R N A i$ lines of Col-0 and C24 background

Transgenic FRI RNAi T1 lines in Col-0xCol-0 background were produced and screened according to AGRIKOLA protocols (PCR on genomic DNA using primers Agri 51/56/64/69; www.agrikola.org) to validate the hpRNA construct in the same way as for bacterial plasmids. From these, 20 lines with desired construct were selected for further analysis.

Attempts to obtain FRI RNAi T1 lines in C24xC24 background failed. The subsequent trials and transformation protocol improvements allowed obtaining not more than 20 plants; however, in any of them construct could be validated. These plants did not survive even to reach the stage of fully developed rosette (Boyes et al., 2001).

3.6.2.3. Analysis of the expression of $F R I$ in selected RNAi lines

It was not possible to prove the silencing effect on $F R I$ expression in RNAi T1 lines (Col-0xCol-0 background) at the developmental stage described by Shindo et al., (2005) using the following methods: Northern blotting, semi-qPCR, and qRT-PCR expression analysis (Figure 3.27).

Expression level of FRIGIDA in WT and RNAi lines

Figure 3.27. Levels of FRIGIDA suppression in RNAi lines
One unit on y-axis represents a two-fold difference of expression level.
No potential phenotypic differences between FRI RNAi and wild type plants were observed in the first three to four weeks following germination in plants grown in a greenhouse.

4. DISCUSSION

4.1. Determination of a divergence point between hybrids and parents

The first objective of this work was the identification of time point of the earliest divergence between F1 hybrids and parental inbred lines based on microscopic and biochemical studies of early development. The increased relative growth rate and biomass of young hybrid seedlings observed by Meyer et al., (2004) could be explained, for example, by differences in the nature of seed reserves in the F1 seed, but not size and mass because these were identical in the four genotypes, as pointed out in the Materials and Methods. Additional observations and analyses on early development could provide insights into whether differences in seedling establishment resulted from faster germination, more rapid mobilisation and utilisation of seed reserves, or some physiological and developmental processes that follow the transition to photo-autotrophic growth. Because the earliest differences between hybrids and parents could potentially be driven by differential expression of regulatory genes such as TFs, which play master roles in the control of development, the identification of a time point of divergence was essential to select an appropriate time point for gene expression profiling to identify regulatory genes potentially involved in heterosis.

Observations performed in this study on germination and early seedling development suggested that the germination rate does not explain the differences in growth rate between parents and hybrids reported at 8 DAS. The markedly slower growth of C 24 xC 24 manifested at 3 DAS was not apparent at 4 DAS (Figure 3.1), where development of all four hybrid and parental genotypes was homogenous.

While light microscopy revealed mobilisation of reserve material during seed germination (Microscopic pictures of mature seeds followed by stages 24-96 HAS in Annex B), resolution was insufficient to identify significant differences in the rate of mobilisation in the different genotypes. More sophisticated microscopic methods, including transmission electron microscopy (TEM) and the use of dyes of higher sensitivity (Mansfield and Briarty, 1996) could be used in the future to quantify any differences in sizes, numbers or structure of storage organelles of hybrid and parental seed during germination. Substantial increases in the volume of cells or vacuoles, plastids and other cell compartments are correlated with the mobilisation of storage reserves (Mansfield and Briarty, 1996).

Significant differences in metabolite levels between F1 hybrids and parents were detected at all time points (including mature seeds) via GC-MS and GC (Tables 1-2 in Annex C, and Figures 3.5 and 3.6). However, the most informative data concerning the point of diver-
gence between genotypes was obtained from fatty acid analysis, which revealed that the switch to photoautotrophic growth occurred in both parents and hybrids around 3-4 DAS and that differences in the synthesis or utilisation of FAs between F1 hybrids and parents were found at 4-6 DAS.

Taken together, the cellular and metabolite data prompted us to choose the stage 3-4 DAS as the most promising for gene expression profiling to reveal underlying genetic differences between genotypes. To avoid potential effects of non-homogenous development of C 24 xC 24 on gene expression, the 4 DAS time point was selected in preference to 3 DAS. Another rational for this choice was the need for sufficient material for qRT-PCR, which required microgram quantities of high quality of RNA for cDNA synthesis.

4.2. Reliability of expression data

High-throughput qRT-PCR developed by Czechowski et al., (2004) was used to study the expression of transcription factors and other genes selected in this work. Sample preparation and testing procedures including testing of gene-specific primers, were carried out previously for the Columbia genotype (Czechowski et al., 2004). However, the methods and especially the gene-specific primers had to be tested on the C24 genotype used in this work. Based on sequence data, it was estimated that Columbia and C24 differ on average by 1 in 430 bp in coding regions (Thomas Altmann, personal communication). The most pessimistic estimates indicated that less than 10% of PCR reactions using C24 cDNA would be affected by single nucleotide polymorphisms between Columbia and C24. In fact, experimental testing showed that 98% of 380 randomly-chosen TF primer pairs designed on the Columbia sequence also worked on C24 (data not shown). Differences in the efficiency of cDNA amplification between reference cDNA obtained from Columbia and cDNA from other genotypes were determined from the kinetics of target amplification. In addition, amplification products of C24 were compared to those of Columbia, using dissociation/melting curve data (Ririe et al., 1997). Every gene for which a significant difference in primer efficiency or amplification product was found between Columbia and C24 was excluded from overall data analysis. Among the genes excluded were those expressed at very low levels ($\mathrm{C}_{\mathrm{T}}>35$). This 'filter' reduced technical variation in the data generated. Excluded genes constituted 22% of TFs, 25% of microRNAs, and 7% of 'chromatin-related' genes covered by gene-specific primers. As reference genes for transcript normalisation, four primer pairs from a set of reference gene primers available for qRT-PCR analysis (Czechowski et al., 2005) were selected based on
experimental tests of cDNA from both Columbia and C24. These primers performed very well on cDNA from other genotypes used in this work.

Apart from the technical resources discussed above, appropriate experimental design and selection of the most suitable statistical methods for high throughput experiments (refer to sections of Materials and Methods, and Results) increased the reliability of expression data presented in this work. Additionally, analyses of three biological replicates (in almost all cases) allowed for more accurate estimation of expression values, as demonstrated by Lee et al., (2000).

4.3. Significance of candidate genes

The complex phenomenon of heterosis was expected to involve global changes in gene expression. Several early studies in maize have shown that heterosis is accompanied by changes in gene expression, both at the RNA and protein levels (Leonardi et al., 1987, 1988, and 1991; Romagnoli et al., 1990; Tsaftaris and Polidoros, 1993; Tsaftaris 1995; Xiong et al., 1998; Wu et al., 2001). In this study, transcript abundances between parental inbred lines and their reciprocal hybrids were compared in order to identify regulatory genes potentially involved in the heterosis of relative growth rate and consequently biomass. Regulatory genes that were subjected to the analysis included known as well as putative transcription factors (expression of 1469 genes in total was detected via qRT-PCR in 4 DAS seedlings) and microRNAs (87). In addition, expression profiling of genes encoding proteins involved in the epigenetic control of gene expression and/or chromatin modification processes (58 'chroma-tin-related' genes, Table 3.1) was performed. A set of 61 heterosis-related gene candidates were identified including 57 TF or putative TF genes, three SET-domain genes, and one candidate microRNA gene. The TF group included six genes of uncertain or updated annotation, where AT4G04880 [26] was re-annotated as an adenosine/AMP deaminase (Table 3.5). As the last gene fell beyond category of regulatory genes, it was not considered further in the discussion. This section of Discussion focuses on the 57 candidate regulatory genes consisting of 56 TFs (or putative TFs) and one microRNA, whereas 'chromatin related' genes are focused on in chapter 4.4.

To date, no reports have dealt specifically with the role of TFs or microRNAs in heterosis although some reports have identified TFs among differentially expressed genes in the maize hybrids (Swanson-Wagner et al., 2006; Meyer et al., 2007; Użarowska et al., 2007; Stupar et al., 2008; Pea at al., 2008), hybrids of Arabidopsis (Vuylsteke et al., 2005) and of wheat (Wu et al., 2003). Interestingly, most comparisons of gene expression in parents versus
hybrids were centred on stages after the manifestation of heterosis (Hoecker et al., 2008), whereas this work is based on a stage (4 DAS) before any of the outward signs of heterosis are manifested.

Our focus on regulatory genes and a time point prior to the manifestation of growth heterosis reflected an expectation that such genes probably play key roles in genetic regulatory networks underpinning heterosis. It is generally agreed that heterosis effect on quantitative traits is determined by multiple genes or loci (Lippmann and Zamir, 2006; Pea et al., 2008; Frascaroli et al., 2007; Kusterer et al., 2007; Melchinger et al., 2007). Therefore, it was checked whether any of the differentially expressed regulatory genes were located in the QTL regions of biomass heterosis, heterosis of growth and of biomass per se, determined by the group of Thomas Altmann (personal communication). It was found that 40% of these regulatory genes (23) co-localised with QTLs: nine with the heterotic QTL for biomass, ten with the heterotic QTL for growth, and nine with the QTL for biomass per se. Of these 23, five genes were linked in the same time to heterotic QTL of biomass and QTL for biomass per se (Table 3.7). It was surprising that none of candidate genes fell in the overlapping region between the heterotic QTLs for biomass and growth. Among all the QTL co-localising candidate regulatory genes (the 'QTL group'), only TF or putative TF genes were found. The prediction of Salvi and Tuberosa (2005) that QTLs of quantitative traits will be found at microRNA loci seemed promising to investigate the role of microRNAs in biomass over performance of hybrids. However, among the whole set of microRNAs taken to expression analysis just one was found to be differentially expressed in hybrids and at the same time it does not co-localise with any of the three QTLs. Therefore, it is likely that heterosis of biomass does not operate on regulatory mechanisms driven by microRNAs.

In the absence of direct functional data, it was considered useful to determine whether information in the literature might shed light on the roles of some of identified candidate genes. Collected data revealed that the specific function of as many as half of TF or putative TF genes that co-localise with the three QTLs of interest is still unknown (Table 3.4). Among the remaining characterised genes, the following three that co-localise with biomass heterosis or biomass per se (Table 3.7) were proven to directly influence growth: AT5G63160 [60] (BTI of TAZ family) which belongs to calmodulin (CaM)-binding proteins known to be critical for brassinosteroid biosynthesis and plant growth (Du and Poovaiah, 2004 and 2005); AT1G73830 [14] (BEE3 of bHLH family) involved in brassinosteroid signalling, required for normal growth (Friedrichsen et al., 2002); and AT5G57390 [56] (AIL5 of AP2-EREBP family) involved in specification of meristematic or division-competent states especially in young
tissues, and expressed primarily in young actively dividing tissues (Nole-Wilson et al., 2005). It would be interesting to further investigate whether advantageous changes occur in the control of the brassinosteroid pathway leading to growth vigour and increased biomass in the hybrids.

All the candidate genes were also characterised based on the expression patterns they exhibited. Two main expression patterns non-additive and additive were recognised depending on whether hybrid gene expression level deviated from, or was the same as, the average of the two parents (mid-parent expression level), as described by Springer and Stupar (2007), and Hoecker et al., (2008). All regulatory candidate genes displayed hybrid expression levels that did not exceed the range of parents (consistent with data from maize hybrids; Guo et al., 2006), thus the two main effects could be simply evaluated further by defining more specific expression patterns. Among the genes with a non-additive pattern of expression, hybrid transcript levels were compared to those of the parents and classified as dominant (specified as dominant_C24xC24_high, dominant_Col-0xCol-0_low, dominant_C24xC24_low, domi-nant_Col-0xCol-0_high), over- and underdominant as well as maternal (specified as maternal_C 24 xC 24 _high, maternal_Col-0xCol-0_high) and paternal (specified as paternal_C24xC24_high, paternal_Col-0xCol-0_high) (Figure 3.10). Candidate genes with an additive gene expression pattern included two types of expression level relationships between hybrids and parents: intermediate_C24xC24_high and intermediate_Col-0xCol-0_high (Figure 3.10). Among all 23 TF candidates that co-localised with the QTLs of interest, nonadditive effects were the most representative (6 genes of dominant expression phenotype and 5 of maternal), followed by additive (9 genes of intermediate expression phenotype). Expression phenotypes of the three remaining genes did not match any of defined patterns. The previously mentioned genes proven to directly influence growth varied in expression phenotypes: AT1G73830 [14] displayed maternal_Col-0xCol-0_high pattern, AT5G57390 [56] intermediate_C24xC24_high, whereas AT5G63160 [60] did not match any of defined patterns. When talking about expression patterns, it is important to remember that although these terms describe the relationship between parental and hybrid gene expression levels (expression phenotype of a gene), they do not imply quantitative genetics models like dominance or overdominance. In other words, they cannot be interpreted as an indication of correlation between genetic hypotheses and molecular events leading to heterosis (Hochholdinger and Hoecker 2007). Differential gene expression in hybrids could result from downstream regulation by other genes responding to heterotic growth effects. Therefore, investigations to relate the observed expression phenotypes to gene actions require subsequent analyses including expres-
sion QTL mapping (Lippmann and Zamir 2006; Hochholdinger and Hoecker 2007; Holland, 2007), which is focused on later in Discussion (chapter 4.7). For these reasons, improper usage of these terms can lead to confusion as noted by Lippman and Zachary (2006), and Springer and Stupar (2007).

The approach for selecting the most relevant candidate genes based on they are differentially expressed in contrasting QTL genotypes, are functionally related to and at the same time co-localise with QTL is not yet validated due to low number of QTLs cloned to date in plants (Salvi and Tuberosa, 2005). This means, alternative approaches to select candidate genes at the first screening stage may appear equally useful. As a result, all candidate genes identified in this work were ranked according to their statistical significance (Table 3.3; refer to chapter 3.3.2 of Results section). Significance ranking of candidate genes was as follows: category I included genes for which the expression phenotype matched one of the defined patterns (e.g. dominance, intermediate, maternal, paternal etc.) and the differential expression in hybrid(s) when compared to parent(s) could be proven in all performed statistical tests (i.e. results of tests passed a set significance threshold). This group contained 18 genes (including one microRNA), or constituted 32% of regulatory candidate genes. Category II included genes for which the expression phenotype matched one of defined patterns (24 genes or 42\%) but the set significance threshold was not reached in all comparisons performed within post$h o c$ tests (i.e. expression levels differed in hybrid(s) when compared to parent(s), but not statistically). The lack of statistical significance could simply reflect insufficient biological replication (three replicates were performed). Therefore, genes of category II were considered further in this work. Category III group consisted of the remaining 15 genes (or 26%) for which the significance threshold was not reached in all comparisons performed within post-hoc tests but their expression phenotype did not match any of expression patterns defined in this work (Table 3.3). Nonetheless, genes from all the three categories of statistical significance (or 'statistical categories') were found among the group that co-localised with QTL for growth and/ or biomass heterosis (seven of category I, twelve of category II, and four of category III). For this reason, genes from all the three categories were considered in subsequent analyses.

The genes of the most relevant (promising) 'statistical category' (i.e. category I) included three regulators whose function might be related to growth. Among them, the previously described AT5G57390 [56] as well as AT5G67480 [61], a $\mathrm{Ca}^{2+} /$ calmodulin-binding protein and the only candidate microRNA AT5G08712 [36] (MIR166C of miR165/166 family) were found. The last candidate regulatory gene is known to target class III Homeodomain leucine-zipper genes whose regulation is essential for normal meristem development (Zhou
et al., 2007). Additionally, it was demonstrated that overexpression of miR166 causes an enlargement of shoot apical meristems and enhancement in vascular development (Kim et al., 2005; Williams et al., 2005; Zhou et al., 2007). The mir165/166 family may regulate its target genes in a time- and tissue-specific manner and recently it was reported that it may also regulate floral development (Jung and Park, 2007). The first of the above mentioned genes (AT5G57390 [56]) exhibited the intermediate_C24xC24_high expression pattern, whereas the last two (AT5G67480 [61] and AT5G08712 [36]) the dominant_C24xC24_low. The category I gene group also includes a small subset of genes involved in flowering control: AT2G45660 [20] or AGL20/SOC1 (MADS-box family; additionally it affects the determinacy of all meristems and is involved in the prevention of secondary growth and longevity in annual life forms; Melzer et al., 2008), AT1G77080 [16] or AGL27/FLM/MAF1 (MADS-box family; inhibitor of flowering, Scortecci et al., 2003) and AT2G39250 [19] or SNZ (AP2EREBP family; repressor of flowering, Schmid et al., 2003). The three genes varied in expression phenotypes and exhibited the following patterns: dominant_C24xC24_low, interme-diate_Col-0xCol-0_high, and intermediate_C24xC24_high (respectively). When considering all of the genes of 'statistical category' I (18 genes), the most represented effects were additive (11 genes of intermediate pattern, five of dominant and two of maternal), which was in contrast to the 'QTL group', where the predominant effects were non-additive.

There is an overlap of seven genes that co-localised with QTLs and belonged to the most relevant 'statistical category' I: AT5G25810 [43] (TNY/TINY of AP2-EREBP family), AT5G57390 [56] (AIL5 of AP2-EREBP family), AT5G63080 [59] (JUMONJI family), AT1G58220 [11] (MYB-related family), AT1G12800 [1] (S1 RNA-binding domaincontaining protein), AT5G32460 [46] (pseudogene, possible B3 family), and AT4G12020 [28] (WRKY19 of WRKY family). From these, as many as five remain uncharacterised (Tables 3.4-6). The most representative expression phenotype, as seen independently in both candidate gene groups was the intermediate (5 genes), followed by dominant (2 genes). Apart from the role of AT5G57390 [56], which was previously described, the role of the Jumonji family to which AT5G63080 [59] belongs (intermediate_Col-0xCol-0_high expression pattern) seems worth mentioning. This TF family is involved in epigenetic regulation (Shirato et al., 2009; Lu et al., 2008) by antagonising the activity of the large number of putative SET domain-containing histone methyltransferases. Jumonji genes were shown to control flowering and flower development regulatory genes (Noh et al., 2004; Sun et al., 2008) as well as cell cycle genes (Shirato et al., 2009). The lack of Jumonji N/C domain-containing proteins
results in impaired cell elongation and reduced expression of brassinosteroid target genes which are very important for plant growth and development (Yu et al., 2008).

It was also considered useful to determine whether any TF family was overrepresented amongst the genes when taking into account all the 56 candidate regulatory genes. Among as many as 24 distinct families, the candidate regulatory genes which were the most representative ones were at the same time the most representative among all known TF families. This indicated that it was not possible to find any prevalent family controlling specific process(es) or pathway(s), which could potentially contribute to biomass and/or growth heterosis. In parallel, review of the literature for all of the identified candidate regulatory genes revealed that they were involved in a wide range of processes. Apart from specific functions for some candidate genes that were already described above, the candidate regulatory genes influenced hormonal regulation, signalling and stress responses together with development of different organs or tissues. Additional information for candidate genes that have not been previously characterised (approximately half of candidate genes from at least 18 distinct TF families) was supplied by publicly available microarray expression data (https://www.genevestigator.ethz.ch/gv/index.jsp) and was summarised in Table 3.6. The majority of these genes were expressed in most tissues ($\sim 81 \%$), throughout most developmental stages ($\sim 74 \%$), and almost half ($\sim 44 \%$) responded to a variety of treatments (hormone, chemical), stress, or affected nutrient conditions (Table 3.6 and Figures 3.12-14). Although it is sometimes possible to infer possible roles of genes based on when and where they are expressed and how they respond to stimuli, the expression information collected here provided little insight into the role, if any, of these candidate genes with respect to heterosis of biomass and growth. This result could favour previous conclusions from studies on heterosis in different species, namely that there may not be a predominant functional category to which differentially expressed genes belong and that no specific function is required during heterosis manifestation but rather an interplay of genes related to diverse functions (review of Hochholdinger and Hoecker (2007), Hoecker et al., 2008).

Another interesting question was to determine expression phenotypes that are the most represented among regulatory candidate genes identified at 4 DAS (irrespective of the 'statistical category' or QTL co-localisation). Analysis revealed that among 74\% of genes that matched expression patterns defined in this thesis, non-additive effects were prevalent (60%) with dominant pattern being overrepresentative (40% of all non-additive effects). This result is similar to the one for only QTL co-localising genes and it could be explained by the fact that the 'QTL group' consists of genes of all statistical categories. Still, the fact that the pre-
dominant expression phenotype of the regulatory candidate genes differs depending on which group of candidate genes is considered ('QTL' or 'statistical') should be kept in mind. On the other hand, among the seven candidate genes that are common for genes that co-localise with QTLs of interest and at the same time belong to the most relevant 'significance category' I, the additive effects prevail. Thus, the additive expression pattern appears more likely when discussing expression phenotypes of regulatory genes that associate heterosis for biomass and growth.

The expression phenotypes exhibited by candidate regulatory genes identified in this work fit to commonly observed trends in global gene expression studies of heterosis (Hochholdinger and Hoecker 2007), where more significant expression differences were found between parental inbred lines than between reciprocal hybrids. However, the maternal (12 genes) and paternal effects (2 genes) displayed by candidate regulatory genes both constituted as many as 25% of all the candidates (11% of all effects were found among the 18 genes of category I and an even higher percentage of 22% was observed within the 'QTL group'). Taking into account that reciprocal hybrids are genetically identical, differences in gene expression between reciprocal hybrids are mainly due to epigenetic effects (Hochholdinger and Hoecker, 2007). Hence, it would be worthwhile to check whether epigenetic control of regulatory genes is involved in heterotic performance.

The expression of candidate regulatory genes was analysed further at different developmental stages ($3,6,8$, and 10 DAS). Irrespective of gene group they represented (category of statistical significance or co-localising with QTLs), on average 30% of the regulatory candidate genes were significantly differentially expressed in hybrids compared to parents at all developmental stages (e.g. previously mentioned AT5G63080 [59]), 10\% were significantly different only at 4 DAS (e.g. previously mentioned AT5G57390 [56]), and the remaining $\sim 60 \%$ of genes were significantly different at 2-4 different time points (e.g. previously mentioned AT2G45660 [20]); (Table 3.8). These comparisons were limited to differentially expressed genes at individual time points because transcript level differences were generally not maintained over multiple stages. The expression patterns determined for all candidate regulatory genes at different developmental stages varied from this at 4 DAS and in many cases they were different when compared between different time points. Moreover, whereas at 4 DAS any over- or underdominant patterns were present, they were found at other developmental stages (Table 3.8). This hold true irrespective of group candidate genes represented (category of statistical significance or co-localising with QTLs). However, among the candidate genes that were differentially expressed at a certain time point, the ratio additive/non-additive was
similar for genes that co-localised with QTLs of interest. Genes of category I displayed different behaviour: additive patterns prevailed at 3-6 DAS and non-additive at 8-10 DAS. Taken together, these results seem to be enigmatic and require further studies. While it is certainly feasible that heterosis for superior growth could result from a transient boost resulting from changes in gene expression at a single growth stage, it is not possible to conclude weather one or more of the TF genes differentially expressed at 4 DAS conferred any growth advantage on the hybrids. Likewise, in earlier studies, it was not possible to identify any key genes or set of genes involved in heterosis (Hochholdinger and Hoecker, 2007). On the other hand, the growth heterosis could require sustained changes in gene expression involving enhanced expression of regulatory genes over many growth stages. Again, it remains to be seen whether any of the TF genes with this pattern of change in hybrids is involved in superior growth.

The candidate genes that displayed dominant expression pattern at 4 DAS were further validated in 4 DAS seedlings of two distinct sets of crosses: Ler/C24 and Cl-0/Nd. The reciprocal hybrids of the first crosses showed positive biomass heterosis (Meyer et al., 2004), and the second exhibited negative biomass heterosis (the hybrid biomass was significantly decreased in comparison to parents), Figure 3.17. One might assume that if a gene with a dominant expression pattern contributes to biomass heterosis then the pattern should be observed in the heterotic positive cross, and at the same time the opposite effect should be observed in the heterosis negative cross (Figure 3.19). Unfortunately, it was not possible to demonstrate this relationship for any of 14 candidate genes that exhibited a dominant expression pattern in Col-0/C24 crosses (Table 3.8). Although four genes displayed a dominant expression pattern in Ler/C24 crosses, the opposite effect was not found in the Cl-0/Nd crosses (AT3G50890 [24] or ATHB28; AT2G45660 [20] or SOC1, AT5G10140 [37] or FLC, and AT5G17300 [40]; Table 3.8). Furthermore, the first two candidates did not match any of expression patterns defined in this work and for the last two candidates the intermediate patterns were detected in the $\mathrm{Cl}-0 / \mathrm{Nd}$ crosses. Such a result could be due to insufficient statistical power or it may be caused by the fact that various ecotypes possess different alleles of the same gene that may be regulated differently in different tissues and under different environmental stresses as shown by Guo et al., (2004). Thus, even the smallest differences in the development of various ecotypes or the specific response to environmental conditions may affect the expression in hybrids. As a result, it is difficult or maybe even impossible to validate the pattern in the way presented in this project. Keeping this in mind, it became interesting to see what fraction of all the candidate regulatory genes would be differentially expressed in heterotic hybrids of

Ler/C24 and what expression patterns they would exhibit. Expression profiling of all candidate genes on 4 DAS seedlings of Ler/C24 crosses revealed that 38 genes (72\%) were significantly differentially expressed in Ler/C24 hybrids but only nine genes displayed patterns that were consistent with those found in crosses of Col-0/C24 (5 intermediate patterns together with 4 dominant effects that were already described above, Table 3.8). Although among these nine only three co-localised with QTL of growth or biomass, all belonged to the most relevant first or second category (I, II) of statistical significance. In addition, all candidate regulatory genes were expression profiled in $\mathrm{Cl}-0 / \mathrm{Nd}$ crosses (negative biomass heterosis) at the same time to exclude those which may be potentially involved in processes not leading to or associating specifically with biomass vigour in hybrids. In this way, as many as 25 (47%) genes were found to be differentially expressed in $\mathrm{Cl}-0 / \mathrm{Nd}$ hybrids. Comparison of data from candidate gene expression profiling in both sets of crosses resulted in 17 genes that were exclusively differentially expressed in Ler/C24. Among them, only three genes exhibited the same patterns in Ler/C24 and Col-0/C24 (additive expression levels), seven co-localised with QTLs of interest and six belonged to the most relevant 'statistical category' I. The last group included AT5G13790 [39], a TF involved in recruitment of histone deacetylase complex components (Hill et al., 2008; Harding et al., 2003; maternal_Col-0xCol-0_high expression pattern) as well as the only previously described candidate microRNA (mir165/166 family), and AT2G39250 [19] or SNZ (AP2-EREBP family; repressor of flowering). Surprisingly, the candidate genes involved in growth, which were described above (AT1G73830 [14] or BEE3, AT5G57390 [56] or AIL5, and AT5G67480 [61]) were differentially expressed in hybrids of in both $\mathrm{Ler} / \mathrm{C} 24$ and $\mathrm{Cl}-0 / \mathrm{Nd}$ crosses (Table 3.8). Once again, the results obtained appeared to be puzzling and require further studies. Therefore, the identification of regulatory genes that may contribute to heterosis under defined conditions in a limited number of Arabidopsis genotypes as presented here represents only the first step towards understanding the molecular basis of heterosis.

No simple model based on the classical genetic hypotheses to explain heterosis can account for the complex set of data generated here or elsewhere (Hochholdinger and Hoecker, 2007). This may be due, in part, to the difficulty of separating genes that cause heterosis, (which may conform to one predominant genetic model), from those affected by heterosis, (which confound data interpretation). Another impediment to understanding the molecular basis of heterosis, at least for a trait as complex as superior growth, is the complexity of gene interactions that lead to the trait, which is probably grossly underestimated by the number of QTLs that contribute significantly to the trait. It is certainly conceivable that heterotic traits
result from interactions of genes that are either up- or down-regulated in hybrids compared to parents. Lippman and Zamir (2006) suggested that there is no obvious link between expression changes caused by heterozygosity and hybrid vigour, which is an idea that will retain currency at least as long as we are unable to identify the genes responsible for heterosis. Another important issue that arises is whether heterosis, at the molecular level, is a general phenomenon or there exist different heteroses. Indeed, one of the latest studies on heterosis reported that heterosis is not an organism-wide phenomenon but rather a trait-specific, and probably is not a consequence of higher levels of additive or non-additive expression but likely is controlled by partially non-redundant sets of genes for different traits (Stupar et al., 2008). Furthermore, Guo et al., (2004 and 2006) suggested that changes in transcript abundance may not correlate with the biological process in question but may be achieved by the differential expression of genes involved in tissue- or cell-specific expression patterns or may be due to the fact that phenotypic value could result from additional regulation than only transcriptional controls. Such dynamic changes of gene expression in hybrids occurring in a response to genotype and environment may result from differential regulation of the two parental alleles. Moreover, allelic differences in expression were shown to be important genetic factors contributing to quantitative trait variation in various organisms. Thus, as they suggested, differential allele regulation may play a role in heterosis providing a new insight into understanding of molecular basis of heterosis. Additionally, Guo et al., (2008) showed that cis-regulatory polymorphisms play a more predominant role in hybrid gene regulation than trans-acting regulation. However, as they claimed, since gene regulation is the result of cisand trans-interaction, the roles of trans-acting effects may be through co-selection with cisregulatory changes for optimised gene regulation, contributing to expression of heterosis. This simply indicates the need for the use of novel approaches that may shed additional light on rules driving heterosis. Further directions in the heterosis study will be discussed later in chapter 4.7.

4.4. Investigation of a role of 'chromatin-related' genes in growth heterosis

In an attempt to assess the possible role of epigenetic control mechanisms in growth and biomass heterosis, expression levels of 58 genes involved in the epigenetic control of gene expression and/or chromatin modification processes (Table 3.1, Results section) were compared in parents and hybrids at 4 DAS. The analysis resulted in one differentially expressed gene of the SET-domain group (AT5G43990 [52]). However, this result should be
extended by adding two additional genes which were re-annotated from putative TF candidate genes into SET-domain gene group (AT1G26760 [4] and AT4G13460 [29]).

The Su(var)3-9 group, to which AT4G13460 [29] and AT5G43990 [52] belong, was shown to be involved in the epigenetic control of gene expression (Thorstensen et al., 2006; Baumbusch et al., 2001; Ng et al., 2007). AT4G13460 [29] or SUVH9, encodes one of the SUVH2/SUVH9 proteins known to control heterochromatic silencing, exhibiting histone methyltransferase activity and directing DNA methylation. In contrast, AT5G43990 [52] or SUVR2 encodes a protein from the SUVR4 group which function as repressors of rDNA gene clusters in a decondensed part of the nucleolus (Thorstensen et al., 2006). The function and group affiliation of the protein encoded by AT1G26760 [4] or ATXR1/SDG35 is currently unknown.

Among the three identified candidate genes, only AT4G13460 [29] co-localised with a QTL for growth heterosis (Table 3.7). This gene, together with AT1G26760 [4], exhibited a dominant expression pattern (dominant_Col-0xCol-0_high) in contrast to AT5G43990 [52], which exhibited an intermediate pattern (intermediate_Col-0xCol-0_high), (Table 3.2). Only two genes, AT5G43990 [52] and AT4G13460 [29] were differentially expressed in hybrids at developmental stages other than 4 DAS. The expression level of AT5G43990 [52] was different in hybrids at 3 DAS (no match with any of defined patterns) and 10 DAS (dominant_Col-0xCol-0_high), whereas AT4G13460 [29] at 3 (no match with any of defined patterns) and 6 DAS (dominant_Col-0xCol-0_low), (Table 3.8). AT4G13460 [29] was differentially expressed also in the 4 DAS hybrids of Ler/C24 (intermediate_Col-0xCol-0_high) but not of $\mathrm{Cl}-0 / \mathrm{Nd}$; interestingly AT1G26760 [4] was expressed in $\mathrm{Cl}-0 / \mathrm{Nd}$ hybrids (pater-nal_Col-0xCol-0_high) but not in Ler/C24 (Table 3.8). Taken together, similar conclusions as those previously discussed for other regulatory genes could be made: at this stage, these data alone are difficult to interpret and require additional studies. Taking into consideration that Salvi and Tuberosa (2005) predicted that the regions controlling chromatin methylation and/or organisation (e.g. folding) supposedly co-localise with QTLs of complex quantitative traits, the small number of identified candidate genes seems to be a little surprising. In addition, the recent study of Zhao et al., (2008) revealed that there are differences in methylation status between parental and hybrid chromosomal regions, suggesting that epigenetic mechanisms might play a role in the performance of heterosis. Also Ni et al., (2009) proposed a general mechanism for growth and biomass heterosis demonstrating that epigenetic modifications mediate expression changes in downstream genes of circadian clock genes and in the physiological pathway which has an impact on growth and development. Two genes involved
in epigenetic regulation were also found among candidate regulatory genes identified in this work. These included AT5G13790 [39] or AGL15, and previously mentioned AT5G63080 [59], a TF gene of the JUMONJI family (chapter 4.3). The first one was shown to be involved in recruitment of histone deacetylase complex components (Hill et al., 2008), whereas the second antagonises the activity of the large number of putative SET domain-containing histone methyltransferases (Shirato et al., 2009; Lu et al., 2008) and it was found among genes co-localising with QTL of biomass per se. These data altogether could support the idea to further validate candidate genes identified in this project to determine whether epigenetic control of regulatory genes is involved in heterotic performance. Given that epigenetic silencing mechanisms are widely used by plants to control development and parent-of-origin imprinted gene expression (Henderson and Jacobsen, 2007), special consideration could be given to candidate genes that exhibited paternal or maternal expression phenotypes (refer to chapter 4.3, Discussion section). One approach to study this would be the creation of RNAi lines (Ni et al., 2009) or overexpressing lines. Here, the possible effects of this genetic manipulation on the expression of downstream genes (e.g. ribosomal genes for the AT5G43990 [52]) regulated by candidate genes in relation to growth vigour should also be studied in detail. At the same time, comparative analyses of methylation status of the candidate genes in parents and hybrids would also be appropriate.

4.5. Investigation of a role of ribosomal genes in growth heterosis

In parallel with the investigation of the role of regulatory genes in biomass and growth heterosis, a study on the possible role of ribosomal genes in heterosis was initiated. Elser et al., (2000) reported that the growth rate of organisms is correlated with increased levels of cellular ribosomal RNA (rRNA) content, which may result from an increase in the transcription rate per gene of rDNA or from changes in rDNA structure/organisation (e.g. expansion of the rDNA amount, which can result from endoreduplication; Rogers and Bendich, 1987) and/or epigenetic regulation of transcription (Habu et al., 2001; Meyer et al., 2001). Transcript analysis of ribosomal genes at 4 DAS in F1 reciprocal hybrids of Col-0 and C24 inbred parents showed similar levels of rRNA in all four genotypes (Figure 3.20). Measurement of nucleolar size (Figure 3.21), an indicator of rRNA gene activity (Delany et al., 1994), yielded data with very high variation (Figure 3.22) which made it impossible to find significant differences between genotypes. Also, measurements of the ploidy level, which could reveal endoreduplication and, therefore, gene copy number differences between genotypes, were made
across developmental time (Figure 3.23). However, these measurements did not reveal any differences between parents and hybrids.

Recent studies on nucleolar organising regions (NORs), where several copies of rDNA/rRNA are located, revealed that NOR2 and NOR4 are the main determinants for differential NOR DNA methylation (Riddle and Richards, 2002; Lewis et al., 2004). It was also shown that the NOR DNA methylation pattern can be inherited by inter-ecotype hybrids and that epigenetic regulation, reconfiguration of parental NOR DNA methylation or trans-acting modifiers can be involved in this process (Woo and Richards, 2008). Taken into account the biomass QTL was found at NOR4 (Thomas Altmann, personal communication), this information may be a hint that further investigating the role of ribosomal genes in growth and biomass heterosis could involve epigenetic regulation. One approach to study this would be to compare the methylation status of rDNA in hybrids and parents and to correlate it with differences in cellular rRNA/rDNA transcript levels (differential transcript levels of cellular rRNA/rDNA are likely to reflect changes in transcription rate per gene when considering no differences in ploidy level between hybrids and parents). Since the result of qRT-PCR expression analysis was negative and there was a concern that it might be affected by its normalisation procedure (a reference gene is not a high copy gene as rRNA), it would be worthwhile to use another method such as S1 nuclease protection assay (Gaudino and Pikaard, 1999) which allows for the determination of steady-state levels of nascent rRNA transcripts. If there were differences in parental and hybrid expression levels, it would make sense to determine the methylation status of chromosomal regions in hybrids and parents. The differential methylation status of rRNA/rDNA genes would suggest that epigenetic mechanisms may play a role in heterosis. Such results obtained for rRNA/rDNA genes would allow further investigation for their role in heterosis in the context of epigenetic regulation in parallel to candidate genes identified in this work (refer to chapter 4.4).

4.6. Investigation of a possible role of FRIGIDA and FRI-FLC interaction in heterosis

Further investigation of the possible role of regulatory genes in heterosis included the study of the FRI-FLC interaction in relation to biomass vigour. The main objectives of this study were already presented in the Introduction. Generally, the most promising points included the co-localisation of FRI with the 'hot-spot' for the biomass QTL (Lisec et al., 2008), expression activity of $F R I$ and $F L C$ in meristematic regions (Caroline Dean's lab website in 2007: http://www.jic.ac.uk/staff/caroline-dean/FRIGIDA.htm), and a FRI-FLC genotype association with rosette growth (Korves et al., 2007). Interestingly, FLC was identified here
among the candidate TF genes that may contribute to biomass/growth heterosis (AT5G10140 [37]).

In the first set of experiments the introgression lines (ILs) N88/2/1/10 BC5F3 that contained a C24 introgression in the region of FRIGIDA (with a functional FRI allele, FRI ${ }_{C 24}$) in a Col-0xCol-0 background (with a strong $F L C$ allele, $F L C_{\text {Col-0 }}$) were used. Comparison of biomass (DW) between introgression line N88/2/1/10 BC5F3 (N), IL test crosses (C24xN and Col-0xN), and both parents (C 24 xC 24 , Col-0xCol-0, Figures 3.24 and 3.25) suggested that the increased biomass observed in hybrids and the homozygous IL line may have been related to the interaction of the dominant $F R I_{C 24}$ allele with the dominant $F L C_{C o l-0.0}$. Unfortunately, the second part of this study, which involved another IL line, M63/9/3 that had the Col-0 introgression in the region of FRIGIDA (non-functional $F R I$ allele, $F R I_{\text {Col-0 }}$), in a C 24 xC 24 background (with the weak $F L C$ allele, $F L C_{C 24}$), was not completed due to unexpected problems with Col-0xCol-0 growth, and lack of sufficient seed for proper replication of experiments. Although introgression of the region containing FRI $_{\text {C24 }}$ into the Col-0xCol-0 background yielded increased biomass, it is not possible to conclude that $F R I_{C 24}$, rather than another introgressed gene from C24 near $F R I_{C 24}$, was responsible for the growth phenotype. One way to confirm this result for $F R I_{C 24}$ would be to overexpress the $F R I_{C 24}$ gene in Col-0xCol-0.

In parallel to the introgression study, RNAi lines suppressing FRIGIDA (FRI RNAi) in Col-0xCol-0 and C24xC24 backgrounds ($F R I_{C o l-0}$ RNAi and $F R I_{C 24}$ RNAi, respectively) were created to investigate the role of $F R I$ with respect to growth and biomass heterosis. The effect of suppressed $F R I$ was also to be studied in complex crosses of RNAi lines (validated for $F R I$ suppression effect) with the opposite genotype ($\mathrm{Col}-0 \mathrm{x} F R I_{C 24} \mathrm{RNAi}$ and $\mathrm{C} 24 \mathrm{x} F R I_{C_{C o l-0}} \mathrm{RNAi}$). Unfortunately, this work met two problems that blocked progress. The first was that none of the RNAi lines appeared to have reduced transcript levels, as determined by qRT-PCR (Figure 3.27), semi-qRT-PCR, non-radioactive and radioactive Northern blot (data not shown). Typically, the tissue or developmental stage of highest expression of the gene of interest is selected to test for silencing in RNAi lines. Publicly available microarray data did not point out any suitable time point or tissue for $F R I$ transcript detection. However, the FRI transcript signal was detected in 4-week-old young rosette leaves by radioactive Northern blot by Shindo et al., (2005); therefore, similar material was used to measure FRI levels in WT and RNAi lines in this study. Unfortunately, $F R I$ transcript levels were too low to measure differences between WT and RNAi lines. Thus, the solution to this problem requires finding a time point and tissue or cell type of strong $F R I$ expression and using qRT-PCR to measure transcript levels. It is possible that the shoot meristems would be a proper choice. Unfortunately,
this work could not be performed within the remaining time of this PhD . The second problem that was encountered was an inability to recover transformants containing the FRI RNAi construct in C 24 xC 24 , a possible reflection of a poor seed lot use during transformation. Transformation using the same construct and methods worked well in the Col-0xCol-0 background indicating that the methods were effective and also that presumed loss of $F R I$ activity in Col-0 was not lethal. However, bearing in mind the difficulties faced in measuring FRI transcript levels in WT plants mentioned above, it is possible that FRIGIDA expression was unaltered in FRI RNAi lines of Col-0xCol-0 and that loss of FRI expression in FRI RNAi lines of C 24 xC 24 was lethal. Perhaps, overexpression of the $F R I_{C 24}$ allele in Col-0xCol-0 would help to resolve the role of this gene in heterosis.

4.7. Further directions in heterosis study

Studying heterosis at the level of gene expression is an important approach to unravel the genetic nature and links between genotype and phenotype; however, to assign the role of identified candidate genes in this process, further validation steps are required. Some of previously discussed approaches involved functional testing of the selected candidate gene by applying reverse genetics. These tools are based on the analysis of transgenic plants in which the activity of specific genes of interest (e.g. TFs or TF target genes) was altered by genetic engineering. Apart from genetic complementation of a known mutant (Doebley et al., 1997) or RNAi lines (Helliwell and Waterhouse 2003), further studies may also include either the analysis of knock-out lines e.g. from publicly available T-DNA and transposon-insertion mutant collections (e.g. http://signal.salk.edu/cgi-bin/tdnaexpress) or overexpressors (OEs). Possible limitations, such as difficulties in interpretation of phenotype obtained from constitutive expression of cDNA or RNAi constructs, can be omitted by making use of alternative (i.e. nonconstitutive) promoter systems. They include tissue-specific, developmental or inducible promoters which allow the introduced gene to be expressed in a specific tissue or can be turned on/off at any time of development. Such flexibility may be helpful in discriminating primary from secondary, pleiotropic effects of ectopic gene expression. Reverse genetic tools are important constituents of TF-based technologies that are currently undergoing substantive development despite potential problems related to the complexity of transcriptional networks and TF engineering (Century et al., 2008). The rationale behind is that TFs are considered excellent candidates for modifying complex traits in crop plants of third generation biotechnology. This would certainly accelerate attempts taken to discover the roles of TF and other regulatory genes as well as pathways they regulate in heterosis. A most recent and excellent
example of applying this approach to study heterosis is the (previously cited) work of Ni and his colleagues (2009). They used OE and RNAi lines to manipulate an expression of CCA1, a circadian clock gene, demonstrating its effects on circadian-mediated physiological and metabolic pathways that contribute to growth vigour and increased biomass.

Ongoing improvements of genomic tools, together with development of novel approaches (including different experimental designs with parallel analysis of more genotypes, developmental stages, organs etc.) as well as more advanced methods for data analysis and validation may bring more insight into the potential contribution of differentially expressed genes to heterosis. These new experiments may be helpful for heterosis predictions based on expression profiles as reviewed by Hochholdinger and Hoecker, (2007). At the same time, making use of novel expression profiling platforms of increased detection sensitivity may be helpful to reconfirm differential expression of selected candidate genes and/or allow identification of a higher number of candidate genes. For this purpose, apart from commonly used microarray analysis, serial analysis of gene expression (SAGE) and its improvements such as Robust Long SAGE (Gowda and Wang, 2008) or SuperSAGE (Matsumura et al., 2008) could be used. SAGE was shown to be extremely powerful and efficient global approach that provides digital analysis of overall gene expression patterns, which allows for direct comparison with data generated by other laboratories. In this method, transcription profiles are created by isolation of specific SAGE tags representing individual transcripts, their further sequencing and quantitative analysis. Whereas SAGE has been primarily used to collect data for various cancerous cell lines (Zhang et al., 2007; Aldaz, 2003), recently it was successfully applied in plants to study the molecular mechanisms involved in transcriptional regulation in response to abiotic stress (Byun et al., 2009; Robinson and Parkin, 2008). The resolution of transcript profiling can be increased even more to reach a specific cell type level when combined with laser-capture microscopy (LCM; Kerk et al., 2003, and Schnable et al., 2004). This approach allows for rapid and precise isolation of variety individual plant cell types from heterogeneous tissues using laser beam and microscope. The LCM-harvested cell samples are next subjected to expression analysis. LCM combined with cDNA microarrays was successively used for the identification of phloem-specific genes in rice (Asano et al., 2002) as well as genes preferentially expressed genes in the epidermis or vascular tissues of maize coleoptiles (Nakazono et al., 2003). This method could be used to compare the expression activity of candidate genes (including previously mentioned $F R I$ and $F L C$) in meristematic regions of parental and hybrid plantlets. Another approach that may shed more light into understanding the molecular basis of heterosis is allele-specific expression analysis (Knight 2004, Guo et al., 2004 and 2006;

Hochholdinger and Hoecker, 2007) especially when combined with MPSS technology (Guo et al., 2008). It outranks all gene expression studies that have been focused on total level of gene expression by taking into account the allelic contribution to gene expression in the hybrid. This enables discrimination of cis- and trans- regulation of gene expression. This novel technology was used to study heterosis in maize giving an indication that cis-regulatory polymorphisms may play a more predominant role in hybrid gene regulation than in transacting regulation.

In parallel with approaches presented above, trends in the study of heterosis focus on making use of novel derivatives of classical QTL mapping called an expression QTL (eQTL) mapping, the previously mentioned method which nowadays is considered to accelerate analysis of the molecular basis of quantitative traits. Here, since the expression level of a gene is considered as a quantitative trait (expression trait) it is used to identify loci controlling the expression variation of genes/gene networks associated with diverse biological functions. Mapping results may also suggest cis- or trans-acting mechanisms for eQTLs. This means, in the first case, that sequence variations around the gene region of the expression trait may directly influence the transcript abundance of the gene; in the second example, the variation in the expression level of one gene may be affected by sequence polymorphisms in other genes (Kliebenstein et al., 2006; Zou et al., 2007; Kliebenstein 2009). eQTL analysis has been applied to identify cis- and trans-acting regulatory regions in various organisms, also revealing the presence of eQTL 'hot spots' or chromosomal regions that possibly control the simultaneous expression of many genes (Brem et al., 2002 and Schadt et al., 2003). eQTL studies in plants focused to unravel the genetic control of gene expression during shoot development (de Cook et al., 2006) and of complex traits like cell wall degradability (Shi et al., 2007). The usefulness of eQTL was also demonstrated for the prediction of transcription factor binding sites (von Rohr et al., 2007). Once the QTLs that associate specific traits are identified, they are further subjected in diverse cloning methods. These mapping and cloning strategies together allow for the simultaneous handling of multiple, key, genetically-unrelated genes and may lead to discovering their relevance in heterosis (Hohcholdinger and Hoecker, 2007).

Achievements in extensively developing bioinformatics may also bring new insights to the functional characterisation of identified candidate regulatory genes. Bioinformatic tools are used to find connections between candidate TFs and their target genes by reconstructing transcriptional regulatory networks which control a pathway (Qu and Zhu, 2006; RiañoPachón et al., 2007) that may contribute to heterosis. Once again, the work of Ni et al., (2009) may serve as good example of how regulation of expression of a few circadian clock pathway
genes (proven by Michael et al., 2003, and Dodd et al., 2005 to control metabolic pathways and increase plant fitness) mediate expression changes in downstream genes that control the chlorophyll and starch metabolic pathways, which ultimately induces increase of hybrid growth and development. Bioinformatic analyses and tools may also become helpful to determine whether the evolutionary divergence of genes contributed to heterosis. The combined evolution of transcription factors and their targets (including changes that occurred within a regulatory regions close to e.g. promoters or far e.g. enhancers or silencers) in different parental species may influence the regulation of certain pathways in hybrids causing phenotypic difference variation in quantitative phenotypes. The completion of genome sequencing projects in various ecotypes will allow data collection from various sources. This information when reprocessed by bioinformatic systems may clarify the relevance of genome organisation in heterosis in determining whether the heterosis is a general phenomenon or a very specific one.

Taken together, the integration of data obtained from studies performed at many levels and with different sources seems to be promising in explaining the phenomenon after hundred years of heterosis studies. This 'systems biology' approach, in which genetic, expression and interaction data are combined to assemble all genes into transcription or protein interaction networks underpinning major biological processes, is a current trend in biological sciences (Century et al., 2008). Because of the specific roles that TFs and other regulatory genes play, data obtained in this work in combination with future discoveries on heterosis could be directly applied to increase significantly the effectiveness of crop improvement.

5. SUMMARY

Heterosis or hybrid vigour has been utilised in plant and animal breeding programs for at least 90 years. An understanding of the molecular basis of heterosis will allow the creation of new superior genotypes to be used directly as F1 hybrids or form the basis for the future breeding programmes.

This PhD project investigated the role of transcription factors, microRNAs, selected genes encoding proteins involved in the epigenetic control of gene expression and/or chromatin modification processes (called here 'chromatin-related') and a group of genes with potential roles in growth (FRIGIDA, ribosomal genes) because of our expectation that they might play key roles in heterosis.

The heterotic F1 hybrids of two divergent Arabidopsis inbred lines (Col-0xCol-0 and $\mathrm{C} 24 \mathrm{xC} 24)$ were used. Significant differences in seedling biomass were detected as early as 8 days after sowing (DAS), whereas differences in relative growth rate were only observed in the early phases of growth at lower light intensities. The self-created reciprocal hybrids (Col-0xC24 and C24xCol-0) used for all experiments exhibited a mid-parent heterosis of $40-60 \%$ at 15 DAS when seedlings were grown at a light intensity of $120 \mu \mathrm{E}$.

Because the earliest differences between hybrids and parents could potentially be driven by differential expression of regulatory genes such as TFs, in the first part of the PhD project it was essential to identify an appropriate time point for gene expression profiling to later identify regulatory genes potentially involved in heterosis. Based on microscopic and biochemical studies of early development the 4 DAS stage was selected.

High-throughput qRT-PCR developed by Czechowski et al., (2004) was used to study the expression of transcription factors and other genes selected for this work. The technical resources developed for the ecotype Columbia were tested (and modified when needed) in other ecotypes used in this study to obtain a reliable data. Additionally, careful experimental set-up and selection of the most suitable statistical methods for high throughput experiments increased the reliability of the expression data generated in this work.

The transcript abundances between parental inbred lines and their reciprocal hybrids were compared at 4 DAS. The subsequent several-step data processing and analyses allowed for the identification of 57 candidate regulatory genes ($56 \mathrm{TF} /$ putative TF genes and one microRNA), and three candidate 'chromatin-related' genes.

The most relevant regulatory candidate genes in this work included those which colocalised with QTLs for biomass/growth heterosis and QTL for biomass per se, or those
which belonged to the highest statistical significance and matching with predefined expression patterns. In the first group 23 candidate regulatory genes were found, whereas the group of the most significant 'statistical category' I included 18 genes (seven genes overlapped in these two groups). The most represented expression phenotypes found among these candidates were non-additive or additive, respectively. The literature and publicly available microarray expression data searches indicated there was no prevalent family controlling specific process(es) or pathway(s), which could potentially contribute to biomass and/or growth heterosis because of the wide range of processes the candidate genes are involved in. However, some specific functions related to growth or development were found among candidate genes, suggesting the potential contribution of brassinosteroid signalling and meristem development to heterosis, for example. Moreover, the identification of candidate genes exhibiting paternal and maternal effects suggested the epigenetic control of regulatory genes could be involved in heterotic performance.

The expression of candidate regulatory genes was analysed further at different developmental stages ($3,6,8$, and 10 DAS). The analysis revealed that on average 30% of the regulatory gene candidates were significantly differentially expressed in hybrids compared to parents at all developmental stages; the gene expression patterns varied at 4 DAS and also when compared between different time points. These results did not clearly determine whether one (or more) of the TF genes differentially expressed at 4 DAS conferred any growth advantage on the hybrids.

The candidate genes that displayed dominant expression pattern at 4 DAS were further validated in 4 DAS seedlings of two distinct sets of crosses: Ler/C24 (positive heterosis biomass) and $\mathrm{Cl}-0 / \mathrm{Nd}$ (negative heterosis biomass). Unfortunately, it was not possible to demonstrate any relationship between the dominance effect of candidate gene and the hybrid biomass differences observed in the crosses of Ler/C24 and $\mathrm{Cl}-0 / \mathrm{Nd}$. This might be caused by the fact that various ecotypes possess different alleles of the same gene that may be regulated differently in different tissues and under different environmental stresses. All the identified candidate regulatory genes were further expression profiled in both sets of crosses resulting in a fraction of 17 genes that were exclusively differentially expressed in Ler/C24 but not in $\mathrm{Cl}-0 / \mathrm{Nd}$, potentially revealing another relevant group of candidate genes for heterosis whose involvement requires further validation.

To assess a possible role of epigenetic control mechanisms in growth and biomass heterosis, the 'chromatin related' genes were expression profiled and resulted in surprisingly small number of candidate genes (three). However, this number reflected findings in the re-
cent literature highlighting that a fraction of the candidate regulatory genes is generally involved in epigenetic regulation. Therefore, these genes still should be considered as targets for future studies on heterosis.

In parallel, a study on the possible role of ribosomal genes in heterosis was initiated based on reports that the growth rate of organisms is correlated to increased levels of cellular ribosomal RNA (rRNA) content. Transcript analysis of ribosomal genes at 4 DAS in F1 reciprocal hybrids of Col-0 and C24 inbred parents showed similar levels of rRNA in all four genotypes. Measurement of nucleolar size, an indicator of rRNA gene activity (Delany et al., 1994), yielded data with very high variation, which made it impossible to find significant differences between genotypes. Also, measurements of the ploidy level across developmental time, which could reveal gene copy number differences between genotypes, resulted in negative results. Still, because of the potential role of ribosomal genes for growth they should be a subject of further studies on heterosis.

Further investigation of this work included the study of the FRI-FLC interaction in relation to biomass vigour due to co-localisation of $F R I$ with the biomass QTL 'hot-spot' for the biomass QTL, expression activity of $F R I$ and $F L C$ in meristematic regions, a $F R I-F L C$ genotype association with rosette growth, and identification of $F L C$ (AT5G10140) among the candidate genes. The study using introgression lines indicated that introgression of the region containing FRI from C24xC24 (FRI C24) into the Col-0xCol-0 background was correlated with increased biomass, however, it could not be concluded that $F R I$ from C24 is responsible for this growth phenotype without further analyses. At the same time, the RNAi lines created to suppress FRIGIDA (FRI RNAi) in Col-0xCol-0 and C24xC24 backgrounds were problematic hindering further progress.

Taken together, this PhD study provided an input into studies on molecular mechanisms underlying heterosis allowing these findings to be further exploited when investigating the phenomenon. Alone, the overall analyses performed in this work to discover a role the selected regulatory genes play in heterosis do not provide the final answer. However, when integrated with some future results of other research groups, they together will allow to discover the phenomenon after hundred years of studies. This could be directly applied to increase significantly the effectiveness of crop improvement.

REFERENCES

AGI (Arabidopsis Genome Initiative) (2000), Analysis of the genome sequence of the flowering plant Arabidopsis thaliana; Nature 408: 796-815.
Aldaz C.M. (2003), Serial analysis of gene expression (SAGE) in cancer research; In Ladanyi M., Gerald W.L., (eds.), Expression profiling of human tumors: diagnostic and research applications; Humana Press, Totowa N.J., pp 47-60.
Alonso-Blanco C., Blankestijn-de Vries H., Hanhart C. J., Koornneef M. (1999), Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana; Proceedings of the National Academy of Sciences of the USA 96, 8: 47104717.

Andersen J. S., Lam Y. W., Leung A. K., Ong S. E., Lyon C. E., Lamond A. I., Mann M. (2005), Nucleolar proteome dynamics; Nature Vol. 433, Issue: 7021: 77-83.

Asano T., Masumura T., Kusano H., Kikuchi S., Kurita A., Shimada H., Kadowaki K. (2002), Construction of a specialised cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem; Plant Journal 32: 401-408.
Ashby E. (1937), Studies in the inherritance of physiological characters. III. Hybrid vigour in tomato. I. Manifestation of hybrid vigour from germination to the onset of flowering; Annals of Botany London, New Serious 1: 11-41.
Barbosa A.M.M., Geraldi I.O., Benchimol L.L., Garcia A.A.F., Souza C.L., Souza A.P. (2003), Relationship of intra- and interpopulation tropical maize single cross hybrid performance and genetic distances computed from AFLP and SSR markers; Euphytica 130: 87-99.
Bari R., Datt Pant B., Stitt M., Scheible W.R. (2006), PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants; Plant Physiology 141 (3): 988-999.
Barth S., Busimi A.K., Utz H.F., Melchinger A. E. (2003), Heterosis for biomass yield and related traits in five hybrids of Arabidopsis thaliana (L.) Heynh; Heredity 91, 36-42.
Baumbusch L.O., Thorstensen T., Krauss V., Fischer A., Naumann K., Assalkhou R., Schulz I., Reuter G., Aalen R.B. (2001), The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes; Nucleic Acids Research 29 (21): 4319-33.
Becker A. and Theissen G. (2003), The major clades of MADS-box genes and their role in the development and evolution of flowering plants; Molecular Phylogenetics and Evolution 29 (3): 464-89.
Becker H.C. (1993), Pflanzenzüchtung; Eugen Ulmer Verlag: Stuttgart.
Beemster G.T., De Veylder L., Vercruysse S., West G., Rombaut D., Van Hummelen P., Galichet A., Gruissem W., Inzé D., Vuylsteke M. (2005), Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis; Plant Physiology 138 (2): 734-43.
Benjamini Y. and Hochberg Y. (1995), Controlling the false discovery rate: a practical and powerful approach to multiple testing; Journal of the Royal Statistical Society, Series B (Methodological) 57: 125-133.
Bentsink L. and Koornneef M. (2002), Seed dormancy and germination; The Arabidopsis Book (TAB) Rockville, MD: American Society of Plant Biologists, http://www.aspb.org/publications/arabidopsis.
Bewley J.D. and Black M. (1994), Seeds: physiology of development and germination; (eds.) Plenum Press, $2^{\text {nd }}$ edition, New York.
Birchler J.A., Auger D.L., Riddle, N.C. (2003), In search of the molecular basis of heterosis; Plant Cell 15 (10): 2236-9.

Birchler J.A., Yao H., Chudalayandi S. (2006), Unraveling the genetic basis of hybrid vigor; Proceedings of the National Academy of Sciences of the USA 103 (35): 1295712958.

Boss P.K., Bastow R.M., Mylne J.S., Dean C. (2004), Multiple pathways in the decision to flower: enabling, promoting, and resetting; Plant Cell 16 Suppl: S18-31.
Boyes D.C., Zayed A.M., Ascenzi R., McCaskill A.J., Hoffman N.E., Davis K.R., Görlach J. (2001), Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants; Plant Cell 13 (7): 1499-510.
Brem R.B., Yvert G., Clinton R., Kruglyak L. (2002), Genetic dissection of transcriptional regulation in budding yeast; Science 296 (5568): 752-5.
Brivanlou A.H. and Darnell J.R. (2002), Signal transduction and the control of gene expression; Science 295 (5556): 813-8.
Brodersen P. and Voinnet O. (2006), The diversity of RNA silencing pathways in plants; Trends in Genetics Vol. 22, No. 5: 268-80.
Browse J., McCourt P.J., Somerville C.R. (1986), Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue; Analitycal Biochemistry 152: 141-145.
Bruce A.B. (1910), The Mendelian Theory of Heridty and the augmentation of vigour; Science 32 (827): 627-628.
Burr B., Burr F.A., Thompson K.H., Albertson M.C., Stuber C.W. (1988), Gene mapping with recombinant inbreds in maize; Genetics 18 (3): 519-26.
Bülow L., Steffens N.O., Galuschka C., Schindler M., Hehl R. (2006), AthaMap: from in silico data to real transcription factor binding sites; In Silico Biology 6 (3): 243-52.
Byun Y.J., Kim H.J., Lee D.H. (2009), LongSAGE analysis of the early response to cold stress in Arabidopsis leaf; Planta 229 (6): 1181-200.
Century K., Reuber T.L., Ratcliffe O.J. (2008), Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products; Plant Physiology 147 (1): 20-9.
Chrispeels H.E., Oettinger H., Janvier N., Tague B.W. (2000), AtZFP1, encoding Arabidopsis thaliana C 2 H 2 zinc-finger protein 1, is expressed downstream of photomorphogenic activation; Plant Molecular Biology 42 (2): 279-90.
Ciftci-Yilmaz S., Morsy M.R., Song L., Coutu A., Krizek B.A., Lewis M.W., Warren D., Cushman J., Connolly E.L., Mittler R. (2007), The EAR-motif of the Cys2/His2type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress; Journal of Biological Chemistry 282 (12): 9260-8.
Clough S.J. and Bent A.F. (1998), Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana; Plant Journal 16, 735-743.
Coego A., Ramirez V., Gil M.J., Flors V., Mauch-Mani B., Vera P. (2005), An Arabidopsis homeodomain transcription factor, Overexpressior of Cationic Peroxidase 3, mediates resistance to infection by necrotrophic pathogens; Plant Cell 17 (7): 2123-2137.
Colangelo E.P. and Guerinot M.L. (2004), The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response; Plant Cell 16 (12): 3400-12.
Copenhaver G.P. and Pikaard C.S. (1996b), Two-dimensional RFLP analyses reveal megabase-sized clusters of rRNA gene variants in Arabidopsis thaliana, suggesting local spreading of variants as the mode for gene homogenization during concerted evolution; Plant Journal 9 (2): 273-82.
Corey L.A. and Matzinger D.F. (1973), Diallel crosses among races of Arabidopsis thaliana; Developmental Biology 4, 65-72.
Corey L.A., Matzinger D.F., Cockerham C.C. (1976), Maternal and reciprocal effects on seedling characters in Arabidopsis thaliana (L.) Heynh.; Genetics 82: 677-683.

Czechowski T., Bari R.P., Stitt M., Scheible W.R., Udvardi M.K. (2004), Real-time RTPCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes; Plant Journal 38: 366-379.
Czechowski T., Stitt M., Altmann T., Udvardi M.K., Scheible W.R. (2005), Genome-wide identification and testing of superior reference genes for transcript normalisation in Arabidopsis; Plant Physiology 139: 5-17.
Darwin C.R. (1876), The effects of cross- and self-fertilization in the vegetable, ($1^{\text {st }}$ edn) Murray, London.
Datt Pant B. and Musialak-Lange M., Nuc P., May P., Buhtz A., Kehr J., Walther D., Scheible W.R. (2009), Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing; Plant Physiology 150, 1541-1555.
Davletova S., Schlauch K., Coutu J., Mittler R. (2005), The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis; Plant Physiology 139 (2): 847-56.
Davuluri R.V., Sun H., Palaniswamy S.K., Matthews N., Molina C., Kurtz M., Grotewold E. (2003), AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors; BMC Bioinformatics 4: 25.
De Cook R., Lall S., Nettleton D., Howell S.H. (2006), Genetic regulation of gene expression during shoot development in Arabidopsis; Genetics Vol. 172, 1155-1164.
Delany M.E., Muscarella D.E., Bloom S.E. (1994), Effects of rRNA gene copy number and nucleolar variation on early development: inhibition of gastrulation in rDNA-deficient chick embryos; Journal of Heredity 85 (3): 211-7.
Dobzhansky T. (1950), Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura; Genetics 35 (3): 288302.

Dodd A.N., Love J., Webb A.A.R. (2005), The plant clock shows it's metal: the circadian regulation of cytosolic free Ca^{2+}; Trends in Plant Sciences 10, 15-21.
Doebley J.F., Gaut B.S., Smith B.D. (2006), The molecular genetics of crop domestication; Cell 127 (7): 1309-21.
Doebley J., Stec A., Hubbard L. (1997), The evolution of apical dominance in maize; Nature 386 (6624): 485-8.
Doerge R.W. (2002), Mapping and analysis of quantitative trait loci in experimental populations; Nature Reviews Genetics 3: 43-52.
Draghici S. (2002), Statistical intelligence: effective analysis of high-density microarray data; Drug Discovery Today 7: S55-S63.
Du L. and Poovaiah B.W. (2004), A novel family of $\mathrm{Ca}^{2+} /$ calmodulin-binding proteins involved in transcriptional regulation: interaction with fsh/Ring3 class transcription activators; Plant Molecular Biology 54, 549-569.
Du L. and Poovaiah B.W. (2005), Calcium/calmodulin is critical for brassinosteroid biosynthesis and plant growth; Nature 437, 741-745.
Dugas D.V. and Bartel B. (2004), MicroRNA regulation of gene expression in plants; Current Opinion in Plant Biology, Vol. 7, Issue 5, Pages 512-520.
Duval M., Hsieh T.F., Kim S.Y., Thomas T.L. (2002), Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily; Plant Molecular Biology 50 (2): 237-48.
Duvick D.N. (1999), Heterosis: feeding people and protecting natural resources; In: The genetics and exploitation of heterosis in crops, Coors J.G. and Pandey S. (eds.), p. 19-29. ASA-CSSA-SSSA, Madison,Wis.

East E.M. (1908), Inbreeding in corn; Reports of the Connecticut agricultural experiment station for years 1907-1908, pp 419-428.
Estmond P.J. and Graham I.A. (2001), Re-examining the role of the glyoxylate cycle in oilseeds; Trends in Plant Science 6 (2), p.72-77.
El Asmi H. (1974), Quantitative studies on heterosis in Arabidopsis thaliana (L.) Heynh; Arabidopsis Information Service 11, 15-16.
El Asmi H. (1975), Further analysis of heterosis and its expression for the rosette diameter length in Arabidopsis thaliana (L.) Heynh; Arabidopsis Information Service 12, p. 24.
El-Lithy M.E., Clerkx E.J., Ruys G.J., Koornneef M., Vreugdenhil D. (2004), Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population; Plant Physiology 135, 444-458.
Elser J.J., Sterner R.W., Gorokhova E., Fagan W.F., Markow T.A. (2000), Biological stoichiometry from genes to ecosystems; Ecology Letters 3, 540-550.
Eshed Y. and Zamir D. (1995), An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL; Genetics 141,1147-1162.
Esposito D., Gillette W.K., Hartley J.L. (2003), Blocking oligonucleotides improve sequencing through inverted repeats; Biotechniques 35 (5): 914-6, 918, 920.
Eulgem T., Rushton P.J., Robatzek S., Somssich I.E. (2000), The WRKY superfamily of plant transcription factors; Trends in Plant Science 5 (5): 199-206.
Falconer D.S. and Mackay T.F.C. (1996), Introduction to quantitative genetics; $4^{\text {th }}$ edn. Longman: Harlow.
Fiehn O. (2000), METAB LIBRARY for a metabolite profiling; Max Planck Institute of Molecular Plant Physiology, Golm, http://www.mpimp-golm.mpg.de/fiehn/index-e.html.
Fiehn O., Kopka J., Dörmann P., Altmann T., Trethewey R.N., Willmitzer L. (2000), Metabolite profiling for plant functional genomics; Nature Biotechnology 18, 11571161.

Franco-Zorrilla J.M., Cubas P., Jarillo J.A., Fernández-Calvín B., Salinas J., MartínezZapater J.M. (2002), AtREM1, a member of a new family of B3 domain-containing genes, is preferentially expressed in reproductive meristems; Plant Physiology 128 (2): 418-27.
Frascaroli E., Canè M.A., Landi P., Pea G., Gianfranceschi L., Villa M., Morgante M., Pè M.E. (2007), Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines; Genetics 176: 625.
Friedrichsen D.M., Nemhauser J., Muramitsu T., Maloof J.N., Alonso J., Ecker J.R., Furuya M. and Chory J. (2002), Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth; Genetics 162 (3): 1445-56.
Galuschka C., Schindler M., Bulow L., Hehl R. (2007), AthaMap web tools for the analysis and identification of co-regulated genes; Nucleic Acids Research 35: D857-D862.
Gaudino R.J. and Pikaard C.S. (1999), Cytokinin induction of RNA polymerase I transcription in Arabidopsis thaliana; Journal of Biological Chemistry 272, 6799-6804.
Gazzani S., Gendall A.R., Lister C., Dean C. (2003), Analysis of the molecular basis of flowering time variation in Arabidopsis accessions; Plant Physiology 132: 1107-1114.
Gendler K., Paulsen T., Napoli C. (2008), ChromDB: The Chromatin Database; Nucleic Acids Research 36: 298-302.
Gigolashvili T., Engqvist M., Yatusevich R., Müller C., Flügge U.I. (2007), HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana; New Phytologist 177 (3): 627-42.

Gigolashvili T., Yatusevich R., Berger B., Müller C., Flügge U.I. (2007b), The R2R3MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana; Plant Journal 51: 247-261.
Gowda M. and Wang G.L. (2008), Robust-LongSAGE (RL-SAGE): an improved LongSAGE method for high-throughput transcriptome analysis; Methods in Molecular Biology 387: 25-38.
Griffin J.B. (1953), An analysis of tomato yield components in terms of genotypic and environmental effects; Iowa Agricultural Experiment Station Research Bulletin p. 397.
Griffing B. (1990), Use of a controlled-nutrient experiment to test heterosis hypotheses; Genetics 126: 753-767.
Griffing B. and Langridge J. (1963), Phenotypic stability of growth in the self-fertilized species. Arabidopsis thaliana; In: Hanson W.D. and Robinson H.F. (eds.), Statistical Genetics and Plant Breeding, National Research Council: Washington, DC. pp 368394.

Griffing B. and Zsiros E. (1971), Heterosis associated with genotype-environment interactions; Genetics 68: 443.
Guo A., Kun H., Di L., Shunong B., Xiaocheng G., Liping W., Jingchu L. (2005) DATF: a database of Arabidopsis transcription factors; Bioinformatics 21: 2568-256.
Guo A.Y., Chen X., Gao G., Zhang H., Zhu Q.H., Liu X.Ch., Zhong Y.F., Gu X., He K., Luo J. (2008), PlantTFDB: a comprehensive plant transcription factor database; Nucleic Acids Research 36: 966-969.
Guo M., Rupe M.A., Yang X., Crasta O., Zinselmeier C. (2006), Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis; Theoretical and Applied Genetics 113: 831-845.
Guo M., Rupe M.A., Zinselmeier C., Habben J., Bowen B.A. (2004), Allelic variation of gene expression in maize hybrids; Plant Cell 16: 1707-1716.
Guo M., Yang S., Rupe M., Hu B., Bickel D.R., Arthur L., Smith O. (2008), Genome-wide allele-specific expression analysis using Massively Parallel Signature Sequencing (MPSS ${ }^{\mathrm{TM}}$) reveals cis- and trans-effects on gene expression in maize hybrid meristem tissue; Plant Molecular Biology 66: 551-563.
Guo Y. and Gan S. (2006), $\operatorname{AtNAP\text {,aNACfamilytranscriptionfactor,hasanimportantrole}}$ in leaf senescence; Plant Journal 46: 601-612.
Gupta R., Webster C.I., Walker A.R., Gray J.C. (1997), Chromosomal location and expression of the single-copy gene encoding high-mobility-group protein HMG-I/Y in Arabidopsis thaliana; Plant Molecular Biology 34 (3): 529-36.
Habu Y., Kakutani T., Paszkowski J. (2001), Epigenetic developmental mechanisms in plants: molecules and targets of plant epigenetic regulation; Current Opinion in Genetics and Development 11: 215-220.
Haecker A., Gross-Hardt R., Geiges B., Sarkar A., Breuninger H., Herrmann M., Laux T. (2004), Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana; Development 1p 31 (3): 657-68.
Hake S. and Rocheford T. (2004), Exploiting quantitative trait loci in gene discovery; Genes and Development 18: 597-601.
Hanahan D. (1983), Studies on transformation of E. coli with plasmids; Journal of Molecular Biology 166: 547-580.
Hanley D., Kiphart D., Zhuang J., Huang W., Mueller L., Bhattacharyya D., Bhaya D., Sobral B., Beavis B., Somerville C., Rhee S.Y. (2001), The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant; Nucleic Acids Research 29 (1): 102-5.

Harding E.W., Tang W., Nichols K.W., Fernandez D.E., Perry S.E. (2003), Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15; Plant Physiology 133, 653-663.
He X.J., Mu R.L., Cao W.H., Zhang Z.G., Zhang J.S., Chen S.Y. (2005), $A t N A C 2$, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development; Plant Journal 44 (6): 903-16.
Helliwell C. and Waterhouse P. (2003), Constructs and methods for high-throughput gene silencing in plants; Methods 30 (4): 289-95.
Henderson I.R. and Jacobsen S.E. (2007), Epigenetic inheritance in plants; Nature 447: 418-24.
Hermoso A., Aguilar D., Aviles F.X., Querol E. (2004), TrSDB: a proteome database of transcription factors; Nucleic Acids Research 32: D171-D173.
Hill K., Wang H., Perry S.E. (2008), A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components; Plant Journal 53 (1): 172-85.
Hilson P., Allemeersch J., Altmann T., Aubourg S., Avon A., Beynon J., Bhalerao R.P., Bitton F., Caboche M., Cannoot B., Chardakov V., Cognet-Holliger C., Colot V., Crowe M., Darimont C., Durinck S., Eickhoff H., de Longevialle A.F., Farmer E.E., Grant M., Kuiper M.T., Lehrach H., Léon C., Leyva A., Lundeberg J., Lurin C., Moreau Y., Nietfeld W., Paz-Ares J., Reymond P., Rouzé P., Sandberg G., Segura M.D., Serizet C., Tabrett A., Taconnat L., Thareau V., Van Hummelen P., Vercruysse S., Vuylsteke M., Weingartner M., Weisbeek P.J., Wirta V., Wittink F.R., Zabeau M., Small I. (2004), Versatile genespecific sequence tags for Arabidopsis functional genomics; transcript profiling and reverse genetics applications; Genome Research 14 (10B): 2176-89.
Hochholdinger F. and Hoecker N. (2007), Towards the molecular basis of heterosis; Trends in Plant Science 12 (9): 427-432.
Hoecker N., Keller B., Muthreich N., Chollet D., Descombes P., Piepho H.P., Hochholdinger F. (2008), Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends between different hybrids in a subset of genes; Genetics 179 (3): 1275-83.
Holland J.B. (2007), Genetic architecture of complex traits in plants; Current Opinion in Plant Biology 10 (2): 156-61.
Horak C.E. and Snyder M. (2002), Global analysis of gene expression in yeast; Functional and Integrative Genomics 2: 171-80.
Hua J., Xing Y., Wu W., Xu C., Sun X., Yu S., Zhang Q. (2003), Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid; Proceedings of the National Academy of Sciences of the USA 100, 2574-2579.
Huala E., Dickerman A., Garcia-Hernandez M., Weems D., Reiser L., LaFond F., Hanley D., Kiphart D., Zhuang M., Huang W., Mueller L.A., Bhattacharyya D., Bhaya D., Sobral B.W., Beavis W., Meinke D.W., Town C.D., Somerville C., Rhee S.Y. (2001), The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant; Nucleic Acids Research 29 (1): 102-5.
Hunter Ch. and Poethig R.S. (2003), Missing links: miRNAs and plant development; Current Opinion in Genetics and Development, Vol. 13, Issue 4, Pages 372-378.

Iida K., Seki M., Sakurai T., Satou M., Akiyama K., Toyoda T., Konagaya A., Shinozaki K. (2005), RARTF: database and tools for complete sets of Arabidopsis transcription factors; DNA Research 12: 247-256.
Iwata Y. and Koizumi N. (2005), An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants; Proceedings of the National Academy of Sciences of the USA 102 (14): 5280-5.
Jakoby M., Weisshaar B., Dröge-Laser W., Vicente-Carbajosa J., Tiedemann J., Kroj T., Parcy F. (2002), bZIP transcription factors in Arabidopsis; Trends in Plant Science 7 (3): 106-11.
Jiang C.Z. (2004) - inventor; Method for modifying plant biomass; USA Patent No. 6, 717, 034.

Jin H. and Martin C. (1999), Multifunctionality and diversity within the plant MYB-gene family; Plant Molecular Biology, 41 (5): 577-85.
Jinks J.L. and Perkins J.M. (1968), Environmental and genotype-environmental components of variability. 3. Multiple lines and crosses; Heredity 23 (3): 339-56.
Johanson U., West J., Lister C., Michaels S., Amasino R., Dean C. (2000), Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time; Science 290: 344-34.
Jones D.F. (1917), Dominance of linked factors as a means of accounting for heterosis; Genetics 2 (5): 466.
Jung J.H. and Park C.M. (2007), MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis; Planta 225 (6): 1327-38.

Kearsey M.J. (2002), QTL analysis: problems and (possible) solutions; In: Kang M.S., editor. Symposium on quantitative genetics and plant breeding in the $21^{\text {st }}$ century, 2001 March 26-28, Baton Rouge, LA, USA; New York, USA: CABI Publishing, p. 45-58.
Kerk N.M., Ceserani T., Tausta S.I., Sussex I.M., Nelson T.M. (2003), Laser capture microdissection of cells from plant tissues; Plant Physiology 132: 27-35.
Kidner C.A. and Martienssen R.A. (2005), Growth and development; Current Opinion in Plant Biology, Volume 8, Issue 1, Pages 38-44.
Kim J., Jung J.H., Reyes J.L., Kim Y.S., Kim S.Y., Chung K.S., Kim J.A., Lee M., Lee Y., Kim V.N., Chua N.H., Park C.M. (2005), MicroRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems; Plant Journal 42 (1): 84-94.
Kim Y.K., Son O., Kim M.R., Nam K.H., Kim G.T., Lee M.S., Choi S.Y., Cheon C.I. (2007), ATHB23, an Arabidopsis class I homeodomain-leucine zipper gene, is expressed in the adaxial region of young leaves; Plant Cell Reports 26 (8): 1179-85.
Kim Y.S., Kim S.G., Lee M., Lee I., Park H.Y., Seo P.J., Jung J.H., Kwon E.J., Suh S.W., Paek K.H., Park C.M. (2008), HD-ZIP III activity is modulated by competitive inhibitors via a feedback loop in Arabidopsis shoot apical meristem development; Plant Cell 20 (4): 920-33.
Kliebenstein D. (2009), Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs; Annual Review of Plant Biology Vol. 60, p. 93-114.

Kliebenstein D.J., West M.A., van Leeuwen H., Loudet O., Doerge R.W., St. Clair D.A. (2006), Identification of QTLs controlling gene expression networks defined a priori; BMC Bioinformatics 7: 308.
Knight J.C. (2004), Allele-specific gene expression uncovered; Trends in Genetics 20 (3): 113-6.

Kojima H., Suzuki T., Kato T., Enomoto K., Sato S., Kato T., Tabata S., Sáez-Vasquez J., Echeverría M., Nakagawa T., Ishiguro S., Nakamura K. (2007), Sugar-inducible expression of the nucleolin-1 gene of Arabidopsis thaliana and its role in ribosome synthesis, growth and development; Plant Journal 49 (6): 1053-63.
Kondorosi E., Roudier F., Gendreau E. (2000), Plant cell-size control: growing by ploidy?; Current Opinion in Plant Biology 3: 488-492.
Konishi S., Izawa T., Lin S.Y., Ebana K., Fukuta Y., Sasaki T., Yano M. (2006), A SNP caused loss of seed shattering during rice domestication; Science 312: 1392-1396.
Koornneef M., Alonso-Blanco C., Peeters A.J.M., Farrar J. (1997), Genetic approaches in plant physiology; New Phytologist 137:1-8.
Korves T.M., Schmid K.J., Caicedo A.L., Mays C., Stinchcombe J.R., Purugganan M.D., Schmitt J. (2007), Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field; The American Naturalist 169: E141-157.
Kovach M.J., Sweeney M.T., McCouch S.R. (2007), New insights into the history of rice domestication; Trends in Genetics 23 (11): 578-587.
Kusterer B., Piepho H.P., Utz H.F., Schön C.C., Muminovic J., Meyer R.C., Altmann T., Melchinger A.E. (2007), Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines; Genetics 177 (3): 1839-50.
Lee H., Suh S.S., Park E., Cho E., Ahn J.H., Kim S.G., Lee J.S., Kwon Y.M., Lee I. (2000), The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis; Genes and Development 14 (18): 2366-76.
Lee M.L.T., Kuo F.C., Whitmore G.A., Sklar J. (2000), Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations; Proceedings of the National Academy of Sciences of the USA 97: 9834-9839.
Lehrach H., Diamond D., Wozney J.M., Boedtker H. (1977), RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination; Biochemistry 16 (21): 4743-51.
Lemieux B., Miquel M. Somerville C., Browse J. (1990), Mutants of Arabidopsis with alteration in seed lipid fatty acid composition; Journal of Theoretical and Applied Science 80, 234-40.
Leonardi A., Damerval C., Hebert Y., Gallais A., de Vienne D. (1991), Association of protein amount polymorphism (PAP) among maize lines with performances of their hybrids; Theoretical and Applied Genetics 82, 552-560.
Leonardi A., Damerval C., de Vienne D. (1987), Inheritance of protein amounts: comparison of two-dimensional electrophoresis patterns of leaf sheath of two maize lines (Zea mays L.) and their hybrids; Genetical Research 50: 1-5.
Leonardi A., Damerval C., de Vienne D. (1988), Organ-specific variability and inheritance of maize proteins revealed by two-dimensional electrophoresis; Genetical Research 52: 97-103.
Lewis M.S., Cheverud J.M., Pikaard C.S. (2004), Evidence for nucleolus organizer regions as the units of regulation in nucleolar dominance in Arabidopsis thaliana interecotype hybrids; Genetics 167 (2): 931-9.
Li L., Lu K., Chen Z., Mu T., Hu Z., Li X. (2008), Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids; Genetics 180 (3): 1725-1742.
Li S.L. and Redei G.P. (1969), Direct evidence for models of heterosis provided by mutants of Arabidopsis blocked in the thiamine pathway; Theoretical and Applied Genetics 39: 68-72.

Li Z.K., Luo L.J., Mei H.W., Wang D.L., Shu Q.Y., Tabien R., Zhong D.B., Ying C.S., Stansel J.W., Khush G.S., Paterson A.H. (2001), Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield; Genetics 158 (4): 1737-53.
Lippman Z.B. and Zamir D. (2007), Heterosis: revisiting the magic; Trends in Genetics 23: 60-66.
Lisec J., Meyer R., Steinfath M., Redestig H., Becher M., Witucka-Wall H., Fiehn O., Torjek O., Selbig J., Altmann T., Willmitze L. (2008), Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations; Plant Journal 53: 960-972.
Liu R., Qian W., Meng J. (2002), Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus x B. campestris); Theoretical and Applied Genetics 105 (6-7): 1050-1057.
Lu F., Li G., Cui X., Liu C., Wang X.J., Cao X. (2008), Comparative analysis of JmjC do-main-containing proteins reveals the potential histone demethylases in Arabidopsis and rice; Journal of Integrative Plant Biology 50 (7): 886-96.
De Luna L., Len P., Guevara-Garcia A. (2007), Roles of RAV2 and ERF11 Arabidopsis transcriptions factors in response to ABA and glucose; $18^{\text {th }}$ International Conference on Arabidopsis Research, TAIR accession publication: 501721869.
Luo L.J., Li Z.K., Mei H.W., Shu Q.Y., Tabien R., Zhong D.B., Ying C.S., Stansel J.W., Khush G.S., Paterson A.H. (2001), Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components; Genetics 158 (4): 1755-1771.
Luscombe N.M., Austin S.E., Berman H.M., Thornton J.M. (2000), An overview of the structures of protein-DNA complexes; Genome Biology 1 (1): REVIEWS001.
Maloof J.N. (2003), Genomic approaches to analyzing natural variation in Arabidopsis thaliana; Current Opinion in Genetics and Development 13 (6): 576-82.
Mansfield S.G. and Briarty L.G. (1992), Cotyledon cell development in Arabidopsis thaliana during reserve deposition; Canadian Journal of Botany 70: 151-164.
Mansfield S.G. and Briarty L.G. (1996), The dynamics of seedling and cotyledon cell development in Arabidopsis thaliana during reserve mobilization; International Journal of Plant Sciences Vol. 157, No. 3, pp. 280-295.
Martin C. and Paz-Ares J. (1997), MYB transcription factors in plants; Trends in Genetics 13 (2): 67-73.
Matsumura H., Reuter M., Krüger D.H., Winter P., Kahl G., Terauchi R. (2008), SuperSAGE; Methods in Molecular Biology 387: 55-70.
Matys V., Kel-Margoulis O.V., Fricke E., Liebich I., Land S., Barre-Dirrie A., Reuter I., Chekmenev D., Krull M., Hornischer K., Voss N., Stegmaier P., Lewicki-Potapov B., Saxel H., Kel A.E., Wingender E. (2006), TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes; Nucleic Acids Research 34 (database issue): D108-10.
Meinke D.W., Cherry J.M., Dean C., Rounsley S.D., Koornneef M. (1998), Arabidopsis thaliana: a model plant for genome analysis; Science 282 (5389): 662, 679-82.
Melchinger A.E. (1999), Genetic diversity and heterosis; In: Coors J.G. and Pandey S. (eds.) The genetics and exploitation of heterosis in crops, CCSA, ASA, and SSA: Madison, WI, USA. pp 99-118.
Melchinger A.E., Piepho H.P., Utz H.F., Muminovic J., Wegenast T., Törjék O., Altmann T., Kusterer B. (2007), Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis; Genetics 177 (3): 1827-37.

Melzer S., Lens F., Gennen J., Vanneste S., Rohde A., Beeckman T. (2008), Floweringtime genes modulate meristem determinacy and growth form in Arabidopsis thaliana; Nature Genetics 40 (12): 1489-92.
Messenguy F. and Dubois E. (2003), Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development; Gene 316:1-21.
Meyer P. (2001), Chromatin remodeling; Current Opinion in Plant Biology 4, 457-62.
Meyer R.C., Törjék O., Becher M., Altmann T. (2004), Heterosis of biomass production in Arabidopsis. Establishment during early development; Plant Physiology 134, 18131823.

Meyer S., Pospisil H., Scholten S. (2007), Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern; Plant Molecular Biology 63: 381-391.
Michael T.P., Salomé P.A., Yu H.J., Spencer T.R., Sharp E.L., McPeek M.A., Alonso J.M., Ecker J.R., Mc Clung C.R. (2003), Enhanced fitness conferred by naturally occurring variation in the circadian clock; Science 302 (5647): 1049-53.
Michaels S.D. and Amasino R.M. (1999), FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering; Plant Cell 11 (5): 949-56.
Mitchell-Olds T. (1995), Interval mapping of viability loci causing heterosis in Arabidopsis, Genetics 140, 1105-1109.
Moon J., Suh S., Lee H., Choi K.R., Hong C.B., Paek N.C., Kim S.G., Lee I. (2003), The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis; Plant Journal 35 (5): 613-23, Erratum in: Plant Journal 37 (3): 459.
Mouradov A., Cremer F., Coupland G. (2002), Control of flowering time: interacting pathways as a basis for diversity; Plant Cell 14 Suppl: S111-30.
The Multinational Arabidopsis Steering Committee (MASC) (2002), The multinational coordinated Arabidopsis thaliana functional genomics project - beyond the whole genome sequence; URL: http://www.nsf.gov/pubsys/ods/getpub.cfm?bio0202.
Müntz K. (2007), Protein dynamics and proteolysis in plant vacuoles; Journal of Experimental Botany 58 (10): 2391-407.
Naito T., Yamashino T., Kiba T., Koizumi N., Kojima M., Sakakibara H., Mizuno T. (2007), A link between cytokinin and ASL9 (Asymmetric Leaves 2 Like 9) that belongs to the $A S 2 / L O B$ (Lateral Organ Boundaries) family genes in Arabidopsis thaliana; Bioscience Biotechnology and Biochemistry 71 (5): 1269-78.
Nakazono M., Qiu F., Borsuk L.A., Schnable P.S. (2003), Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize; Plant Cell 15 (3): 583-96, Erratum in: Plant Cell 15 (4): 1049.
Narang R.A. and Altmann T. (2001), Phosphate acquisition heterosis in Arabidopsis thaliana: a morphological and physiological analysis; Plant and Soil 234: 91-97.
Ng D., Wanga T., Chandrasekharan M.B., Aramayoa R., Kertbundit S., Hall T.C. (2007), Plant SET domain-containing proteins: structure, function and regulation; Biochimica et Biophysica Acta (BBA) - Gene structure and expression, Vol. 1769, No. 56, pp. 316-329.
NIST/SEMATECH e-Handbook of Statistical Methods, 2003-2006; http://www.itl.nist.gov/div898/handbook.
Ni Z., Kim E.D., Ha M., Lackey E., Liu J., Zhang Y., Sun Q., Chen Z.J. (2009), Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids; Nature 457 (7227): 327-31.

Noh B., Lee S.H., Kim H.J., Yi G., Shin E.A., Lee M., Jung K.J., Doyle M.R., Amasino R.M., Noh Y.S. (2004), Divergent roles of a pair of homologous jumonji/zinc-finger-
class transcription factor proteins in the regulation of Arabidopsis flowering time; Plant Cell 16 (10): 2601-13.
Nole-Wilson S., Tranby T.L., Krizek B.A. (2005), AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states; Plant Molecular Biology 57 (5): 613-28.
O'Connor T. R., Dyreson C., Wyrick J.J. (2005), Athena: a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences; Bioinformatics 21 (24): 4411-4413.
Oh S.J., Song S.I., Kim Y.S., Jang H.J., Kim S.Y., Kim M., Kim Y.K., Nahm B.H., Kim J.K. (2005), Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth; Plant Physiology 138 (1): 341-51.
Palaniswamy S.K., James S., Sun H., Lamb R.S., Davuluri R.V., Grotewold E. (2006), AGRIS and AtRegNet, a platform to link cis-regulatory elements and transcription factors into regulatory networks; Plant Physiology 140 (3): 818-29.
Pant D.B., Buhtz A., Kehr J., Scheible W.R. (2008), MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis; Plant Journal 53 (5): 731-8.
Parenicova L., de Folter S., Kieffer M., Horner D.S., Favalli C., Busscher J., Cook H.E., Ingram R.M., Kater M.M., Davies B., Angenent G.C., Colombo L. (2003), Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world; Plant Cell 15 (7): 1538-51.
Parsons P.A. (1971), Extreme-environment heterosis and genetic loads; Heredity 26 (3): 479482.

Passardi F., Dobias J., Valério L., Guimil S., Penel C., Dunand C. (2007), Morphological and physiological traits of three major Arabidopsis thaliana accessions; Journal of Plant Physiology 164 (8): 980-92.
Pavlidis P. and Noble W.S. (2001), Analysis of strain and regional variation in gene expression in mouse brain; Genome Biology 2: research0042.1-0042.15.
Pea G., Ferron S., Gianfranceschi L., Krajewski P., Pè M.E. (2008), Gene expression nonadditivity in immature ears of a heterotic F1 maize hybrid; Plant Science 174, 17-24.
Penfield S., Graham S., Graham I.A. (2005), Storage reserve mobilization in germinating oilseeds: Arabidopsis as a model system; Biochemical Society Transactions 33: 380383.

Poduska B., Humphrey T., Redweik A., Grbić V. (2003), The synergistic activation of FLOWERING LOCUS C by FRIGIDA and a new flowering gene AERIAL ROSETTE 1 underlies a novel morphology in Arabidopsis; Genetics 163 (4): 1457-65.
Pourkheirandish M. and Komatsuda T. (2007), The importance of barley genetics and domestication in a global perspective; Annals of Botany (London) 100 (5): 999-1008.
Powers L. (1944), An expansion of Jones's theory for explanation of heterosis; American Naturalist 78: 275-280.
Pysh L.D., Wysocka-Diller J.W., Camilleri C., Bouchez D., Benfey P.N. (1999), The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the Scarecrow-like genes; Plant Journal 18 (1): 111-9.
Qu L.J. and Zhu Y.X. (2006), Transcription factor families in Arabidopsis: major progress and outstanding issues for future research; Current Opinion in Plant Biology 9 (5): 544-9.
Ramakers C., Ruijter J.M., Deprez R.H., Moorman A.F. (2003), Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data; Neuroscience Letters 339: 62-66.
Rao N.K.S., Bhatt R.M., Anand N. (1992), Leaf area, growth and photosynthesis in relation to heterosis in tomato; Photosynthetica 26: 449-454.

Ratcliffe O.J. and Riechmann J.L. (2000), A genomic perspective on plant transcription factors; Current Opinion in Plant Biology 3, 423-434.
Rédei G.P. (1962), Single locus heterosis; Zeitschrift für Vererbungslehre 93, 164-170.
Riaño-Pachón D.M., Ruzicic S., Dreyer I., Mueller-Roeber B. (2007), PlnTFDB: an integrative plant transcription factor database; BMC Bioinformatics 8: 42.
Riddle N.C. and Richards E.J. (2002), The control of natural variation in cytosine methylation in Arabidopsis; Genetics 162, 355-363.
Riechmann J.L. (2002), Transcriptional regulation: a genomic overview; The Arabidopsis Book (TAB) Rockville, MD: American Society of Plant Biologists, http://www.aspb.org/publications/arabidopsis.
Riechmann J.L., Heard J., Martin G., Reuber L., Jiang C., Keddie J., Adam L., Pineda O., Ratcliffe O.J., Samaha R.R., Creelman R., Pilgrim M., Broun P., Zhang J.Z., Ghandehari D., Sherman B.K., Yu G. (2000), Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes; Science 290 (5499): 2105-10.
Ririe K.M., Rasmussen R.P., Wittwer C.T. (1997), Product differentiation by analysis of DNA melting curves during the polymerase chain reaction; Analytical Biochemistry 245 (2): 154-60.
Rizhsky L., Davletova S., Liang H., Mittler R. (2004), The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis; Journal of Biological Chemistry 279 (12): 11736-43.
Robinson S.J. and Parkin I.A. (2008), Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature; BMC Genomics 9: 434.
Rogers S.O. and Bendich A.J. (1987), Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer; Plant Molecular Biology 9: 509-520.
Romagnoli S., Maddaloni M., Livini C. (1990), Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets; Theoretical and Applied Genetics 80, 769-775.
Saeed A.I., Sharov V., White J., Li J., Liang W., Bhagabati N., Braisted J., Klapa M., Currier T., Thiagarajan M. (2003), TM4: a free, open-source system for microarray data management and analysis; Biotechniques 34: 374-378.
Safrany J., Haasz V., Mate Z., Ciolfi A., Feher B., Oravecz A., Stec A., Dallmann G., Morelli G., Ulm R., Nagy F. (2008), Identification of a novel cis-regulatory element for UV-B-induced transcription in Arabidopsis; Plant Journal 54 (3): 402-14.
Saini A., Gopala Krishna T., Sreenivasulu K.R., Jawali N. (2000), The BamHI site in the internal transcribed spacer region of mungbean ribosomal RNA gene is partially methylated; Euphytica, Vol. 114, No. 1, pp. 55-59(5).
Salvi S. and Tuberosa R. (2005), To clone or not to clone plant QTLs: present and future challenges; Trends in Plant Sciences 10, 297-304.
Sambrook J., Fritsch E.F., Maniatis T. (2000), Molecular cloning: a laboratory manual, cold spring harbor (eds.), N.Y., XX Edition, Cold Spring Harbor Laboratory Press.
Sawa S., Ohgishi M., Goda H., Higuchi K., Shimada Y., Yoshida S., Koshiba T. (2002), The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis; Plant Journal 32 (6): 1011-22.
Schadt E.E., Monks S.A., Drake T.A., Lusis A.J., Che N., Colinayo V., Ruff T.G., Milligan S.B., Lamb J.R., Cavet G., Linsley P.S., Mao M., Stoughton R.B., Friend S.H. (2003), Genetics of gene expression surveyed in maize, mouse and man; Nature 422 (6929): 297-302.

Schmid M., Uhlenhaut N.H., Godard F., Demar M., Bressan R., Weigel D., Lohmann J.U. (2003), Dissection of floral induction pathways using global expression analysis; Development 130, 6001-6012.
Schnable P.S., Hochholdinger F., Nakazono M. (2004), Global expression profiling applied to plant development; Current Opinion in Plant Biology 7 (1): 50-56.
Schnell F.W. and Cockerham C.C. (1992), Multiplicative vs. arbitrary gene action in heterosis; Genetics 131: 461-469.
Scortecci K., Michaels S.D., Amasino R.M. (2003), Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana; Plant Molecular Biology 52 (5): 915-22.
Semel Y., Nissenbaum J., Menda N., Zinder M., Krieger U., Issman N., Pleban T., Lippman Z., Gur A., Zamir D. (2006), Overdominant quantitative trait loci for yield and fitness in tomato; Proceedings of the National Academy of Sciences of the USA 103 (35): 12981-6.
Sessa G., Morelli G., Ruberti I. (1997), DNA-binding specificity of the homeodomainleucine zipper domain; Journal of Molecular Biology 274 (3): 303-9.
Shi C., Użarowska A., Ouzunova M., Landbeck M., Wenzel G., Lübberstedt T. (2007), Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint x Flint maize recombinant inbred line population; BMC Genomics 18, 8: 22.
Shindo C., Aranzana M.J., Lister C., Baxter C., Nicholls C., Nordborg M., Dean C. (2005), Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis; Plant Physiology 138 (2): 1163-73.
Shirato H., Ogawa S., Nakajima K., Inagawa M., Kojima M., Tachibana M. Shinkai Y. Takeuchi T. (2008), A jumonji (Jarid2) protein complex represses cyclin D1 expression by methylation of histone H3-K9; The Journal of Biological Chemisty 284 (2): 733-9.
Shull G.H. (1908), The composition of a field of maize; American Breed Association 4: 296301.

Shull G.H. (1952), Beginnings of the heterosis concept; In: Gowen J.W. (eds.) Heterosis, pp. 14-48, Iowa State College Press, New York.
Simpson G.G. and Dean C. (2002), Arabidopsis, the Rosetta stone of flowering time?; Science 296 (5566): 285-9.
Smalle J., Kurepa J., Haegman M., Gielen J., Van Montagu M., Straeten D.V. (1998), The trihelix DNA-binding motif in higher plants is not restricted to the transcription factors GT-1 and GT-2; Proceedings of the National Academy of Sciences of the USA 95 (6): 3318-22.
Somerville C. and Somerville S. (1999), Plant functional genomics; Science Vol. 285, No. 5426, pp. 380-383.
Springer N.M. and Stupar R.M. (2007), Allelic variation and heterosis in maize: how do two halves make more than a whole?; Genome Research 17: 264-275.
Srivastava H.K. (1983), Heterosis. Reappraisal of theory and practice; (eds.) Monographs on Teoretical and Applied Genetics 6: 260-277.
Steffens N.O., Galuschka C., Schindler M., Bülow L., Hehl R. (2004), AthaMap: an online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome; Nucleic Acids Research 32: D368-372.
Steffens N.O., Galuschka C., Schindler M., Bülow L., Hehl R. (2005), AthaMap web tools for database-assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana; Nucleic Acids Research 33: W397-402.

Steimer A., Schöb H., Grossniklaus U. (2004), Epigenetic control of plant development: new layers of complexity; Current Opinion in Plant Biology 7 (1): 11-9.
Stracke R., Werber M., Weisshaar B. (2001), The R2R3-MYB gene family in Arabidopsis thaliana; Current Opinion in Plant Biology 4 (5): 447-56.
Stupar R.M., Gardiner J.M., Oldre A.G., Haun W.J., Chandler V.L., Springer N.M. (2008), Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis; BMC Plant Biology 10, 8: 33 .
Sun S., Yu J.P., Chen F., Zhao T.J., Fang X.H., Li Y.Q., Sui S.F. (2008), TINY, a Dehy-dration-Responsive Element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis; Journal of Biological Chemistry 283 (10): 6261-71.
Swanson-Wagner R.A., Jia Y., DeCook R., Borsuk L.A., Nettleton D., Schnable P.S. (2006), All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents; Proceedings of the National Academy of Sciences of the USA 103 (18): 6805-10.
Teakle G.R., Manfield I.W., Graham J.F., Gilmartin P.M. (2002), Arabidopsis thaliana GATA factors: organisation, expression and DNA-binding characteristics; Plant Molecular Biology 50 (1): 43-57.
Thorstensen T., Fischer A., Sandvik S.V., Johnsen S.S., Grini P.E., Reuter G., Aalen R.B. (2006), The Arabidopsis SUVR4 protein is a nucleolar histone methyltransferase with preference for monomethylated H3K9; Nucleic Acid Research 34 (19): 5461-70.

Tijsterman M., Ketting R.F., Plasterk R.H. (2002), The genetics of RNA silencing; Annual Review of Genetics 36: 489-519.
Titok V.V., Lemesh V.A., Rusinova O.V., Podlisskikh V.L. (1994), Leaf area, chlorophyll content and biomass of tomato plants and their heterotic hybrids under in vitro culture; Photosynthetica 30: 255-260.
Toledo-Ortiz G., Huq E., Quail P.H. (2003), The Arabidopsis basic/helix-loop-helix transcription factor family; Plant Cell 15 (8): 1749-70.
Törjék O. and Meyer R.C., Zehnsdorf M., Teltow M., Strompen G., Witucka-Wall H., Blacha A., Altmann T. (2008), Construction and analysis of two reciprocal Arabidopsis introgression line populations; Journal of Heredity 99 (4): 396-406.
Törjék O., Witucka-Wall H., Meyer R.C., von Korff M., Kusterer B., Rautengarten C., Altmann T. (2006), Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci; Theoretical and Applied Genetics 113 (8): 1551-61.
Tsaftaris S.A. (1995), Molecular aspects of heterosis in plants; Physiologia Plantarum 94, 362-370.
Tsaftaris A.S. and Polidoros A.N. (1993), Studying the expression of genes in maize parental inbreds and their heterotic and non-heterotic hybrids; In: Bianchi A., Lupotto E., Motto M. (eds.) Proceedings XVI Eucarpia Maize and Sorghum Conference, Bergamo, Italy, pp 283-292.
Użarowska A., Keller B., Piepho H.P., Schwarz G., Ingvardsen C., Wenzel G., Lübberstedt T. (2007), Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height; Plant Molecular Biology 63 (1): 21-34.
Van Camp W. (2005), Yield enhancement genes: seeds for growth; Current Opinion in Biotechnology 16 (2): 147-53.
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. (2002), Accurate normalization of real-time quantitative RT-PCR data
by geometric averaging of multiple internal control genes; Genome Biology 3 (7): RESEARCH0034.
Veley K.M. and Michaels S.D. (2008), Functional redundancy and new roles for genes of the autonomous floral-promotion pathway; Plant Physiology 147 (2): 682-95.
Vogel J.T., Zarka D.G., Van Buskirk H.A., Fowler S.G., Thomashow M.F. (2005), Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis; Plant Journal 41 (2): 195-211.
Von Rohr P., Friberg M.T., Kadarmideen H.N. (2007), Prediction of transcription factor binding sites using genetical genomics methods; The Journal of Bioinformatics and Computational Biology 5 (3): 773-93.
Vuylsteke M., van Eeuwijk F., Van Hummelen P., Kuiper M., Zabeau M. (2005), Genetic analysis of variation in gene expression in Arabidopsis thaliana; Genetics 171 (3): 1267-75.
Wang D., Guo Y., Wu C., Yang G., Li Y., Zheng C. (2008), Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice; BMC Genomics 9: 44.
Waterhouse P.M. and Helliwell C.A. (2003), Exploring plant genomes by RNA-induced gene silencing; Nature Reviews Genetics 4, 29-38.
Wilhelm J.M., Johnson G., Haselkorn R., Geiduschek E.P. (1972), Specific inhibition of bacteriophage SPO1 DNA-directed protein synthesis by the SPO1 transcription factor TF1; Biochemical and Biophysical Research Communications 46: 1970-1977.
Williams W. (1959), Heterosis and the genetics of complex characters; Nature 184, 527-530.
Williams L., Grigg S.P., Xie M., Christensen S., Fletcher J.C. (2005), Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes; Development 132 (16): 3657-68.
Windhovel A., Hein I., Dabrowa R., Stockhaus J. (2001), Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia; Plant Molecular Biology 45 (2): 201-14.
Weiss J., Delgado-Bennaroch L., Egea-Cortines M. (2005), Genetic control of floral size and proportions; International Journal of Developmental Biology 49: 513-525.
Woo H.R. and Richards E.J. (2008), Natural variation in DNA methylation in ribosomal RNA genes of Arabidopsis thaliana; BMC Plant Biology 8: 92.
Wu L.M., Ni Z.F., Wang Z.K., Lin Z., Sun Q.X. (2001), Relationship between differential expression patterns of multigene families and heterosis in a wheat diallel crosses; Yi Chuan Xue Bao 28 (3): 256-66.
Wu L.M., Ni Z.F., Wang Z.K., Lin Z., Sun Q.X. (2003), Cloning and characterization of leaf cDNAs that are differentially expressed between wheat hybrids and their parents; Molecular Genetics and Genomics 270, 281-286.
Xiao J., Li J., Yuan L., Tanksley S.D. (1995), Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers; Genetics 140, 745-754.
Xie Z., Allen E., Fahlgren N., Calamar A., Givan S.A., Carrington J.C. (2005), Expression of Arabidopsis MIRNA genes; Plant Physiology 138 (4): 2145-54.
Xiong L.Z., Yang G.P., Xu C.G. (1998); Relationship of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross; Molecular Breeding 4, 129-136.
Yamaguchi-Shinozaki K. and Shinozaki K. (1992), A novel Arabidopsis DNA binding protein contains the conserved motif of HMG-box proteins; Nucleic Acids Research 20 (24): 6737.

Yamasaki K., Kigawa T., Inoue M., Tateno M., Yamasaki T., Yabuki T., Aoki M., Seki E., Matsuda T., Nunokawa E., Ishizuka Y., Terada T., Shirouzu M.,

Osanai T., Tanaka A., Seki M., Shinozaki K., Yokoyama S. (2004), A novel zincbinding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors; Journal of Molecular Biology 337 (1): 49-63.
Yang X., Lee S., So J.H., Dharmasiri S., Dharmasiri N., Ge L,. Jensen C., Hangarter R., Hobbie L., Estelle M. (2004), The IAA1 protein is encoded by $A X R 5$ and is a substrate of SCF (TIR1); Plant Journal 40 (5): 772-82.
Yu X., Li L., Li L., Guo M., Chory J., Yin Y. (2008), Modulation of brassinosteroidregulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis; Proceedings of the National Academy of Sciences of the USA 105 (21): 7618-23.
Zar J.H. (1999), Biostatistical Analysis; $4^{\text {th }}$ ed. Prentice Hall, N.J.
Zhang X.Y., Zhang K.T., Tian F., Xia Y., Wu Y.Q., Liu X.J. (2007), Integrative analysis and validation of robust gene signature in lung cancer; Biochemical and Biophysical Research Communications 358 (3): 710-5.
Zhao Y., Yu S., Xing C., Fan S., Song M. (2008), DNA methylation in cotton hybrids and their parents; Molecular Biology (Mosk); 42 (2): 195-205.
Zhou D.X., Bisanz-Seyer C., Mache R. (1995), Molecular cloning of a small DNA binding protein with specificity for a tissue-specific negative element within the rpsl promoter; Nucleic Acids Research 23 (7): 1165-9.
Zhou G.K., Kubo M., Zhong R., Demura T., Ye Z.H. (2007), Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis; Plant Cell Physiology 48 (3): 391-404.
Zimmermann P., Hirsch-Hoffmann M., Hennig L., Gruissem W. (2004), Genevestigator: Arabidopsis microarray database and analysis toolbox; Plant Physiology 136 (1): 2621-2632.
Zimmermann P., Laule O., Schmitz J., Hruz T., Bleuler S., Gruissem W. (2008), Genevestigator transcriptome meta-analysis and biomarker search using rice and barley gene expression databases; Molecular Plant 1 (5): 851-857.
Zou W., Aylor D. L., Zeng Z.B. (2007), eQTL Viewer: visualizing how sequence variation affects genome-wide transcription, BMC Bioinformatics, doi:10.1186/1471-2105-8-7.

LIST OF FIGURES

Figure 1.1. Phenotypic manifestation of heterosis in maize (Hochholdinger and Hoecker, 2007) 7
Figure 1.2. Scheme of main genetic models for heterosis (Lippman and Zamir, 2006)

Figure 1.3. Differences in size between F1 hybrid and parental seedlings at 8 DAS (days after sowing) when
grown in soil (Altmann T., Meyer R. - personal communication)
Fig

Figure 1.4. The Arabidopsis complement of transcription factors (Riechmann, 2002)
Figure 1.5. Chromatin-targeted RNA silencing schemes (Brodersen and Voinnet, 2006) 19
Figure 1.6. Organisation of the NORs at the top of A. thaliana chromosomes II and IV (Copenhaver and
Pikaard, 1996b)
Figure 1.7. Scheme of FRI-FLC interactions (modified from Poduska et al., 2003) 22
Figure 3.1. Photographs of a typical germination course and post-germinative growth in parents and their F1
hybrids
Figure 3.2. Photograph of parental and hybrid seedlings at 8 DAS. F1 hybrids outperformed parents in growth (heterosis)

41
Figure 3.3. Schematic representation of differences observed in germination and post-germinative growth
between F1 hybrids and their parents under typical experimental conditions
Figure 3.4. A fragment of microscopic cross-section from Col-0xCol-0 hypocotyl at 24 HAS 42
Figure 3.5. Differences between hybrids and parents in the level of three metabolites 43
Figure 3.6. The content of fatty acids (FAs) in parents and F1 hybrids shown as $\%$ of the sum of total FAs
measured by GC in the time course of 0 (mature seeds), $0.5,1,1.5,2,3,4,5,6$, and 8 DAS 44
Figure 3.7. Comparison of transcript levels of reference genes in parents and hybrids 47
Figure 3.8. Comparison of PCR efficiencies of reference genes in parents and hybrids 47
Figure 3.9. The outcome of gNORM calculation 48
Figure 3.10. Templates scheme for expression patterns assigned to candidate genes 55
Figure 3.11. TF families represented by the identified candidate genes 62
Figure 3.12. Candidate gene expression in different organs or anatomical parts 69
Figure 3.13. Candidate gene expression at different stages of development 69
Figure 3.14. Candidate gene expression in response to different stimuli 73
Figure 3.15. PCA analysis of gene expression differences in parental and hybrid genotypes from
developmental time series 3-10 DAS
Figure 3.16. Gene expression levels of selected candidates at different developmental stages 77
Figure 3.17. Biomass heterosis in Ler/C24 and Nd/Cl-0 crosses determined at 21 DAS 81
Figure 3.18. PCA separation of different genotypes resulting from crosses of other Arabidopsis accessions 81
Figure 3.19. The analysis scheme for a validation of candidate genes with dominant expression patterns 82
Figure 3.20. Comparison of transcript levels of ribosomal genes in parents and hybrids at 4 DAS 83
Figure 3.21. Col-0xC24 at 4C ploidy level 84
Figure 3.22. Comparison of nucleolus area at 2C and 4C ploidy level 84
Figure 3.23. Ploidy level in the cells of parents and hybrids determined by flow cytometry 85
Figure 3.24. Schematic representation of chromosome IV in the IL line N88/2/1/10 and test crosses 86
Figure 3.25. Comparison of biomasses in N88/2/1/10 IL, Col-0xCol-0 and C24xC24 homozygous lines and
their test crosses
Figure 3.26. PCR verification of A. tumefaciens transformants (www.agrikola.org; Hilson et al., 2004) 88
Figure 3.27. Levels of FRIGIDA suppression in RNAi lines 89

LIST OF TABLES

Table 2.1. PTM function inputs to TIGR_Mev v. 3.0 software
Table 3.1. Set of 'chromatin-related' genes selected for expression profiling to identify heterosis candidate genes
Table 3.2. Representation of expression patterns among candidate genes at 4 DAS 56
Table 3.3. 'Statistical categories' (ranking group of significance) represented among heterosis candidate genes 58
Table 3.4. Annotations and published information about heterosis candidate genes 63
Table 3.5. Candidate genes for which the annotations varied depending on database source 68
Table 3.6. The summary of an array expression data for the previously uncharacterised candidate genes 70
Table 3.7. List of candidate genes that co-localised with QTLs for biomass and leaf area/RGR heterosis, and biomass QTL per se
Table 3.8. Summary of data obtained from candidate gene expression analysis across the developmental time serious (columns 5-9) and in crosses of different Arabidopsis accessions at 4 DAS (in columns 10 and 11)
Annex A. List of primer sequences
Table 1. Primer sequences and references

AGI codes of genes	Remarks	Sequence of forward primer 5' - 3'	Sequence of reverse ${ }^{\text {p }}$ primer 5' - ${ }^{\prime}$
AT5G65080		TTTTTTGCCCCCTTCGAATC	ATCTTCCGCCACCACATTGTAC
AT4G05320	for intron sequence	TTTTTTGCCCCCTTCGAATC	ATCTTCCGCCACCACATTGTAC
AT4G05320	for 5 polyubiquitin genes	GGCCTTGTATAATCCCTGATGAATAAG	AAAGAGATAACAGGAACGGAAACATAGT
AT4G05320	for 3 polyubiquitin genes	CACACTCCACTTGGTCTTGCGT	TGGTCTTTCCGGTGAGAGTCTTCA
AT1G13440		AGGTGGAAGAGCTGCTTCCTTC	GCAACACTTTCCCAACAGCCT
AT1G13440	for 5 ' cDNA end	TCTCGATCTCAATTTCGCAAAA	CGAAACCGTTGATTCCGATTC
AT1G13440	for 3' cDNA end	TTGGTGACAACAGGTCAAGCA	AAACTTGT CGCTCAATGCAATC
another reference gene primers		Czechowski et al., 2005	
5.8 S rRNA		GAAGAACGTAGCGAAATGCGA	GACTCGATGGTTCACGGGA
25S rRNA		CGGGCTTTTGATACGCTTGT	TTAGGCGCGTGCTGCAG
18S rRNA		ATTGTGTTGGCTTCGGGATC	AAATACGAATGCCCCCGACT
AT4G00650 for semi-quantitative PCR		CAATTATCCACCGACGGTGG	TCCATTTTCTCAGCCGCAG
AT4G00650 for DIG-system		CAAGTATGGACATTACGATCGGTC	TTCGACGTCTCCGGTACAATC
AT4G00650 for qPCR		GTCATTTATTTAACTCCCAACAGTCTCA	GCATTCTTAAGCCCCAAACATTA
pAGRIKOLA validation primers Agri 51/56/64/69		http://www.agrikola.org/seeds_validation.html	
Set of 'chromatin-related' genes			
AT1G01920		GCATGCCCTTCACTTAGCTCTCT	AATAAAACACCGATGAGATATCAGTCA
AT1G04050		CACGTTCTTTTTTGTAGTAAACCATAAATT	TCAGGGATCCGTTGGCC
AT1G14030		GAAAATCTTTACTGGTTTGGTCTCAGA	TCTGATGTCTTGAGGTTGATTCAAGT
AT1G17770		AGAGCCACGACATTTGACTGAACC	TGTGTGGAGAGGAGCGAAGAAGAT
AT1G24610		CCAAGGTTAGTATGAGAAAGTGGACA	CAACCTAACTTCCCTTCTACTTCATCA
AT1G48410		CCTGGAGAGGATTCAAGCCC	TTTCAGGCCAATCCTGAGATG
AT1G63020		CAGTTGCACCCCAACAGTGT	TAGCGACCCGGATTCCTTT
AT1G69770		TCTGCCTGAAGGTTTTGCATT	CAGTGTTCATGCAAGCTCGG
AT1G73100		ATTCGTGAAGGAAACGGTGAA	GGATATGACGCATGGCAAAGA
AT1G76710		CCGGCCTTATCTCGTCGTACAATG	ACGAGGAGGTGAAGAAGGAAGCA
AT1G77300		GTCCCATCTGCTTTTGCGCTTG	GGCTGCAACTCCTGAAACAGCATC
AT1G80740		CGAGTCAAGGACTGACGGATG	CATTCGGGATACTTGAATGGC
AT2G05900		TCTTCCGAAAAGCGGCTTCTAGTG	CGGGTTTGGTGGTACGGACATGTA

| AGI codes of genes | Remarks | Sequence of forward primer 5' - 3' | Sequence of reverse` primer 5' - 3' \\ \hline AT2G16390 & & CGCTTGTTGGAGCATCTCG & CGGGTCACAGAAGGGTTTAGG \\ \hline AT2G17900 & & CATGGCTGATCCGCAGAATGTCAA & ACTCGAATGGTTGCTGGGGGAA \\ \hline AT2G18850 & & CTCTGCCGCTCTTTGAACTCCAT & TCGACAGAGAAAACGCGGATTGG \\ \hline AT2G19640 & & CCATTGCTGCTGCCACTACCTT & TCCAAGCTCGTTTCCTCCTCTCTG \\ \hline AT2G22740 & & CACCTCACCATTGCTCTGAGAC & CACCGATTGTGAATGGAAATGGGA \\ \hline AT2G23380 & & AACCATTCTCCTGAACCTAACTGTTAC & CACCCTGTGATCTCCAGCAA \\ \hline AT2G24740 & & CGATGAAGCACATTCCTCCA & TCCACACAAGAAATTCCATAGTCATAT \\ \hline AT2G27040 & & ATTTCTGTTGTTGCGCCGAT & TGAACGTCCCAAGCTGAGC \\ \hline AT2G33290 & & GTGTGATGCTTTTTGCGCTG & CCGTAATCCAGGCTTAGCTCG \\ \hline AT2G35160 & & ATAAACGCAGCACAGAAAGGG & AGATTCGGCGAGCAGCTATG \\ \hline AT2G36490 & & GATTGCACTTCCCGGCG & CCAACGGATTAGGCGAGGT \\ \hline AT2G40030 & & GAAGAAATACCCTGACCGTGCT & AGGCCGAGGTTTCGTAAAGTACT \\ \hline AT2G44150 & & ACCATCCTCGAACATCACCGAGTG & GCCCCACGAGTGATAGGTGTTTTG \\ \hline AT3G03750 & & GTGGCCGGAGAGAACAGAGAC & CCCAAACAGCAGGAACTACCA \\ \hline AT3G04380 & & TCATGTTTGCATCCTCGCATCTGT & AGATGAAGAAGCTCTCTGCCTGGA \\ \hline AT3G07670 & & AACTGCAATGCGTCTTCCTCGAT & TTGAAGAGATGGCGAAAGCTGCT \\ \hline AT3G21820 & & TGCTTGTCCGTCTCTGTCCTCTTC & AAGGAACGGCCTTCTTCCCTCT \\ \hline AT3G23780 & & GTAAGGGTTATCCGAACCGAAGA & CAGTCATCAGTGGCTCGGTTT \\ \hline AT3G43920 & & GGGCCTCGTGGAACTCTACA & CGAAAGTAGGCATTGGCCA \\ \hline AT3G44530 & & AAAACGGGTTCTGAGGACCG & TTCAAGAGCCCGAGTCTCTTG \\ \hline AT3G55080 & & TTATTGCACAACCTTGCTTTCAGA & TTGCTATCGTAGAGACTGTAAAATCGAT \\ \hline AT3G56570 & & TGGAAGATGACATTGTTAGGGTGA & TGATATAGTCTCCTGTCTCTCGGAAGA \\ \hline AT3G59960 & & GCTTGTCCTGACGCATCCAAATTG & ACCTGGAAAACGCCCAAGCTTC \\ \hline AT4G08990 & & ATAATTTGGGCAGCTTCACCA & AGACATGCATCGGCTCAGG \\ \hline AT4G11130 & & TACAATCCAAACCATCGCGA & TCACCTACGATCCATGGGAAA \\ \hline AT4G13610 & & GGCAATTTACCCACTTGCATC & ATGGAAGCACATTCCCACCA \\ \hline AT4G13940 & & CTCTTCAAACAAATGAGAAACCAAAA & AACACTGGGATGCCGAAAAC \\ \hline AT4G15180 & & GCATCGAACATCGGGCTTCCAAA & TGTCTAAGCAACCTCAAAGACCGT \\ \hline AT4G19020 & & CAGTCTCGGTTTCTCGTGCTT & GCGGGCTAGACCACGAAAA \\ \hline AT4G20910 & & CAACACAATTCTCCAGCGGTC & CTGTGGCTCCGAGTTGTTTTC \\ \hline AT5G04560 & & ATCCTCCTGTAGCCATCCCG & CTTGCTAGGGATTTCTCCAACG \\ \hline AT5G04940 & & GATCAGCGTATTGCCGTGG & TGTTCACCAGAGATCGCCTTT \\ \hline AT5G06620 & & TGTTTCGACATCCAAAAACCCCTT & GCCCTTCTCTTTTAAAGCTCGACT \\ \hline AT5G09230 & & TTGTTCCATTGAAAATCAATGCTAG & CCCACGTCAAGAACTCTGTGC \\ \hline AT5G13960 & & TTTCCCCAATGCAGGAGCT & GGTCCATGAACGCTATCAAGC \\ \hline \end{tabular} \begin{tabular}{\|c|c|c|c|} \hline AGI codes of genes & Remarks & Sequence of forward primer 5' - 3' & Sequence of reverse` primer 5'-3' |
| :---: | :---: | :---: | :---: |
| AT5G14260 | | AGATCCAGCCATGAACCAGACAGT | GGTAGTCCTACCAAGGCCGAAGTT |
| AT5G14620 | | TTCCCACATGGAATCAATGTTC | GTGCCACTTCCCCACCAC |
| AT5G15380 | | CCGTGTAACAATCTTGCCGG | AGTGCTCTCCTCCAAGACCG |
| AT5G17240 | | TCAGGGAAGTCGGAGACGGAAAGA | GATGGGCAGCAGAGATTGGCATT |
| AT5G42400 | | TCCGACGTGAAGGTACATTGGAGA | TCACAGAAGGGCCGTAAGTCGT |
| AT5G43990 | | TCTCTCCAGCAAGCTCACAGACAA | TGCAGGTGTTTTTCACGCCCAAT |
| AT5G49160 | | GAGTACTCTGCCACTGCCTGG | AAATCCCTGACATGGAGGTCC |
| AT5G55760 | | CCCGTAAACGCTCTAGAACCG | GCCTTGGTTTCTTCTGCCAG |
| AT5G63110 | | GGACAGGGACTCTACCGGTG | ATTCACGTCTGGCTCTGGGT |
| AT5G66750 | | TTCCAGTGAAGGGTCCAGGT | GAAGACAGCATTCCTCCCGA |
| The old TF platform (experiment 1) | | MPI-MP Golm / Arabidopsis TF platform | |
| The new TF platform (experiment 2) | | Table 2 of Annex A (Czechowski et al., unpublished results) | |
| The microRNA platform | | Datt Pant and Musialak-Lange et al., 2009 | |

Table 2. Primer sequences of 'The new TF platform (experiment 2)'

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
1.	TF	AT1G01030	TCTTTCCAACGAGGCATCGGAGAT	AACGAGGCTCATGTCGGGTCTATG
2.	TF	AT3G16280	GTCATCATCGCCGCATGATATCCA	CCGGAGCCTCATCCTTCTCTAACA
3.	TF	AT1G28300	ACGAGGACGAAAGCAAGAATCTCT	GTGGTTCCTTTCCCTCGACTCATT
4.	TF	AT3G16770	CAAACTCCATCCCACCAACCAAGT	TCTGTTGCCTGCTCCTTCTTCACT
5.	TF	AT2G30470	ATGCTGGAGACATGCAGGGTTGTG	ACACCAGACGATGATGTGTCCTCA
6.	TF	AT3G20310	TCTCCAACCTCTCACCTACCTCCA	CCGCCGTATAACCGATGGTCCATA
7.	TF	AT2G36080	TTATCCTCATGCAGGGGCTCAAGC	TGGCACTCCATGTTCACTCCGAA
8.	TF	AT3G20840	AGCACTGAGGAAGAAGCAGCAGA	CCGGTTGATCTCGAAGTTGGTCAC
9.	TF	AT2G46870	TGCACGGGAGAGCTAATCAGGAAC	TCTCGCCGCATTCCATATCAACTC
10.	TF	AT3G23220	GGGACGTTTAACACAGCGGAAGAC	CTCATGCCGAAAGCTGCTCTATCA
11.	TF	AT3G11580	AGTATTCACACTATGGCGCCG	CCTGCGACCACCGGTG
12.	TF	AT3G23230	GGAGCAGCAACAACCAATCACAAG	TTCTTCGAACTCCCCGGAAACGA
13.	TF	AT3G24650	GGCAGGGATGGAAACCAGAAAAGA	GGCAAAACGATCCTTCCGAGGTTA
14.	TF	AT3G23240	TTGATCACCGCTCCGTGAAGTTAG	TCAGAAGACCCCAAAAGCTCCTCA
15.	TF	AT3G26790	ATGATACTCCCGAAGAAAGCCGC	TCCCTTCCTTGCATTCAAGTGCC
16.	TF	AT3G25730	TGCCATGAGTAGCGTAGACGAGAG	AGTAAACTCGCCGGAGACGATGAC
17.	TF	AT3G61970	TGGTGCTGGTTCTCTCCTCCAGTT	TCAAGACTTGCAGCTTCCATTGCT
18.	TF	AT3G25890	CCACTTCTGCTGCTTCCTCTGTTT	TCAATGCTTGACCCTGAGGCTGAG
19.	TF	AT4G01500	ACGTGGCGAAATGGGAGTAGCA	ACGTGGCGACCTCCAAAATGATT
20.	TF	AT3G50260	TACCTCAGAGGACCAACTGCTACG	CCTGATCGTTGCCGCTGACATATC
21.	TF	AT4G21550	GGGAAGCCTACTGATGTTGCAGGA	TGTCGTGGGTGCTTTGTGGTTG
22.	TF	AT3G54320	TTCCGGCAGAGACGTACACAAAGG	GCGGCGGAGAGAAGCCAAATATTC
23.	TF	AT5G60450	TTGTTGGTGCGATGGGATGAGTC	TGTGGGAGAGAAACCGAGGGATCA
24.	TF	AT3G18990	CAAGAAAAACGTCTGAGGGTCCCA	TCAGGTACTGTGAGTGCAACAGC
25.	TF	AT5G62000	TTGGACCCTGAGGCTGCTCTTTAC	TCGTCTTGTCTAGGAACCGTCACA
26.	TF	AT3G46770	CAAAATAGAACGCGCATACCGTCT	TGTCACGCATGATAACCATGTTGG
27.	TF	AT1G04880	TCTAACCTTTACCCCACAGCCCAA	TCCAGCAAGTGATCCTCCGAGGAA
28.	TF	AT3G53310	TTGAAGGGAACTTGGACGTGGAAG	CACCACATTGGCTGGGATCAACA
29.	TF	AT1G20910	TGGGCTGCAAAAACACAAACAACA	CGGGTCCAACATCAACAACCTCAG
30.	TF	AT4G00260	ACTCTGCGGTTCGAGGACG	AATCCTTGCCATCCTCCTACC
31.	TF	AT1G55650	TCTGCAAACCGTGACAAAGACTCT	GCTTTTCTGAGCCTACCTTTGTGC
32.	TF	AT4G01580	TGATGAGGATTCCGCCAAGATTCG	ACGCTTATATCCCGCAGGAGTCAC
33.	TF	AT1G76110	ATCTCTTCACTGCTCGTGGTCC	GAGGGATTTGCATGAAATGTAGC
34.	TF	AT4G31610	CGTGAGACTACCGGGCAACTATCA	TGGTTCAGCAGAATTACCTCCCCA
35.	TF	AT1G76510	AAGGTTGTGAACTTTCCCGCAAGA	GCTCAAATGGGACTCGCACAAACA
36.	TF	AT4G31620	TCCGAGGCCAAGATAGAGCAAGA	TGCGACGAGAGTGTCCTACTTCT
37.	TF	AT2G46040	CTTGGCAGAAAGTCCAGAAGATGC	GCCTATATCCGAGCCATTCCCAGT
38.	TF	AT4G31630	TGTTCCAAGGTGAAACAAGCAGCA	TTGATCCGTCATTCGGGGTTTCC
39.	TF	AT3G13350	GGGTGGTGAAGGATCGGAAATGGA	CGATGCACTTGTTATCGTTGTCGG
40.	TF	AT4G31640	CCCGGTTTCAAGAGCCACATCAAA	CTTCAGTGAGTTTATGGCCCTCCA
41.	TF	AT3G43240	TTCTAGTGCTCCAGCACCTCCTCT	CGAGACATCACAACGCATGGTCAC
42.	TF	AT4G31650	CCCGGTTTCAAGAGCCACATCAAC	GGTCTTTCCTTCGTGTTTCCCCTT
43.	TF	AT1G06280	TGGTGTTGGTGTGAATCGGGAGAT	CCCAACCACCTTGCACATTCCTTG
44.	TF	AT4G31660	TTCCCGGCTTCGACTCTTACCTTA	GTCGGTTCTTAGCTCCACTGTCCT
45.	TF	AT4G32010	GCGACACAGATGTTCAAGGGAAGC	TGTCACCACATCCCGGATTCAAGC
46.	TF	AT3G54990	TGGGCGGGTTTGATACTGCTTACG	TGTCTGCATCGAGACCACGGAATT
47.	TF	AT5G06250	CACTAACTCCGCCGTGAATACGA	GCGGCTCCATAGTGGGAATACTCT
48.	TF	AT3G57600	TCAGTACCGTGGAGTCAGGCAAAG	TGTAGCGAAAGAGCCAAGCCAAAG
49.	TF	AT1G14510	TGGCAAGCCTCGTCATTCTGAATC	TCTTGGTGGAGGGGACATCTTTGA
50.	TF	AT3G60490	TGTCTACCGCTCAGTCTTCGACTT	CACCGTCTCTTCGTTGCTTTCCTT
51.	TF	AT2G02470	TGGCAAGAATGAGAGGAAGAGGCT	TTGCCGCTCACAACTTCGAAAATG
52.	TF	AT3G61630	CGTCAACGAGGAAACAGAGCATGA	CAAACCCGCCGACGATTCTTCT
53.	TF	AT3G11200	CCCGTCTTAATCGCAATGAGAGGA	AGTGCCATTTCTGGATTTGCTTCC
54.	TF	AT4G06746	GGCCTACGATACCGCTGTGTTTTA	TCCTAAGCCTTCACCGCCGTTT
55.	TF	AT3G42790	CGCTTGGTTACTGTCTGTCTCGTT	ACGCTTCCTCTCTTCCTTGTGGA
56.	TF	AT4G11140	TTAACTTCCCTCCTCCTCCGGTGA	GAAGACATTCTCCACCGCCAATGA
57.	TF	AT5G05610	TCCAGAAACGGCGTAAAGAGATCA	TCCTCCACAACTTCCACAGAGTG
58.	TF	AT4G13040	AGCCGAAGAACTCGGTCAAAACAT	GCGGCTGGTATTTTGGTGAGATGG
59.	TF	AT5G20510	GGCTTTCTCTCGTTGCTGTCCA	GCGCTTCCTGTCAGCTCTATCGAA
60.	TF	AT4G13620	TCGCAGAGATTAGGCTTCCAAGGA	GCTTGCTCAGCGGTTTCAAAAGTG
61.	TF	AT5G26210	TCCGACTTTGTGATCCCGAAAAGG	GGCAAATTCACTTCCCAGTGCTCA
62.	TF	AT4G16750	GGTGGCTCTGCCCACCTTAATTTC	GCGGCGGCTTCTTGAATGTCTTT

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
63.	TF	AT1G01250	TTGCGGCGGAGGAGGTAAAGAA	CCCATTTTCCCCATCGGCGTTT
64.	TF	AT4G17490	GAGTTTCTGAGCATGCCGCT	GTGGATAACCAAACGGTGGG
65.	TF	AT1G03800	TGGAAATGCCAACCTCCCTCTCGT	TTCACCGGAGAAGCCAAAGCATTC
66.	TF	AT4G17500	GGTGTACGGACGAAACCCTAGCTT	AAATCTCCCCAGCTCTCGGTGAAG
67.	TF	AT1G04370	TGACCGAGCCGCCTATTCAATGAG	AGAATTAGCCGCAGTGGATGAGGA
68.	TF	AT4G18450	TGGGCGAATTACATCGGAACACCA	AAGGGTAGGCAACGCTTCCCAAGT
69.	TF	AT1G07900	GCAGGAACTTCCAGAATCACAAAG	AATGGTATATGGCACCTGCACAT
70.	TF	AT4G31690	TTAGCCAATCCGTGACGCA	AAATCTCTCGGCACACTCACTG
71.	TF	AT1G16530	AGATGTTGCAGGAGCTGTCGGAGA	TTGTATCCTCGCGTTGGCCTCGTA
72.	TF	AT4G33280	AGCTGCTGGAAGCAATAAGAAAGC	GCATGTTCTTCACGCACCATTTGT
73.	TF	AT1G31320	TCAGGAATTACCAATCCACCAGCG	TGGAGGGACGAAATTGCCCCAA
74.	TF	AT4G34400	ACGAGCTGTTGGTTCATGCACAA	GCACTTAGTTTCCCGAACCTGTCG
75.	TF	AT1G36000	CAAAAGCTCATGTGGAAGATTATGTT	TCTTCTCCTGGAGTTCACGGA
76.	TF	AT5G09780	CCTGGCGATCCCGAAACCTTTT	ACAACCTTCCATGTCTTCTCCCCA
77.	TF	AT1G65620	TACTCGCAGGGAGAGGGAAAAGAG	AAGCGGCGCATGGTGAGTTT
78.	TF	AT5G18000	CGGTCGGAACAAGAGAGAAGAGAG	AGTTAAGCTCCTGTTTCTGCGTCA
79.	TF	AT1G72980	TGCAGCAGCAGCAACAGAATCC	GCTGGTTTGTTCAGGCATCTCCAA
80.	TF	AT5G18090	CGGTCGGAACAAGAGAGAACAAAG	TGTGACCAGGATAGCTCGATTCAG
81.	TF	AT2G19510	GGTGGATTTGGTATGGTGCAA	GAAGGTAGGCTTTGTGTAACATAATCTTC
82.	TF	AT5G32460	TTTAGAATCACACGCGGCTG	TACATCCAGGTTTTTGACCGTTC
83.	TF	AT2G19820	GCACCATATTTTCCTGCCGAAAGA	TGGACGATGCCAACATGTCTCT
84.	TF	AT5G57720	AAGTGGAACGAAATGTTTACGAGG	TCTCACATATGATTACGTCTCCTTGC
85.	TF	AT2G23660	CGGTTACAGCCACGGGTTT	AACGAACCACCAGCACCTTG
86.	TF	AT5G58280	ACATAGCTCTACATGGGCGACCT	TGCAGCCTTGAATGCTCCAACC
87.	TF	AT2G28500	TGCAGGAACTTCCAGAATCGCAAA	CGCACATCCGTAAACCGGATCTCT
88.	TF	AT5G60130	TCCGAAGAAGAAAAGCCAACTGCT	GATCTGCTTCTCCAATGTCCCGAA
89.	TF	AT2G30130	AGCAAAATGTTGCAGGAGCTACCA	AGCCGTAGACCGGATCTCTTACTC
90.	TF	AT5G60140	GCCAATTGCACATACCGGCTCAT	CTCCAATGCTCCCATTTCGTCCA
91.	TF	AT2G30340	CGTGAATGTCCCGAGAAAGGGAAG	ACGGCATGATCCGTCGTTGTCT
92.	TF	AT5G66980	CGGGCTGGAGATACTTGTGACATA	TCCTAACAAAATGCGGATGCTTGG
93.	TF	AT1G06160	GGGATAAGAGTGTGGCTTGGGACA	TGAGTACTGCGAGGCTGCCTTT
94.	TF	AT4G23750	TTGTCTCTGCTCTCCGGTGTCTGT	GCCGCGACTGGTGATGAAGAAATG
95.	TF	AT1G12610	TAAGAAGCGTGCGGGAAGGAGAGT	TTGTCACCGTTCCTCCGCCTTATG
96.	TF	AT4G25470	CGGAATCAACCTGTGCCAAGGAAA	AGACCATGAGCATCCGTCGTCATA
97.	TF	AT1G12630	TAGTTCGAAGTCGAGAGCGCGTGA	TCTGTCCCACACCACGACGAAGAT
98.	TF	AT4G25480	GGATCATGGCTTCGACATGG	GCTCTGTTCCGCCGTGTAAA
99.	TF	AT1G12890	CAGCCGAAGAAGCTGCTTTTGC	TGTTGTAGCTAGAGAGCCGCTGAT
100.	TF	AT4G25490	CCGCCGTCTGTTCAATGGAATCAT	TCCAAAGCGACACGTCACCATCTC
101.	TF	AT1G12980	CAGACGGTGGTTTATCGTTGGGAT	TCGGCAAGTACAGCCTAACTGAGT
102.	TF	AT4G27950	TGTTTCCGGCCAAAACCAGAAGAA	GCGTTGCTCAGGATCACGAATCTC
103.	TF	AT1G13260	TCTACGTGCTGGTGACGTGGTTAG	CGGATCTCGACTTCCACCCAATGT
104.	TF	AT4G28140	TGCAAGGCCAGAAGCAAATGATCT	GGCCATATACTGCTGCTGCTGTTG
105.	TF	AT1G15360	AGAGGTGTCAGGCAACGCCATT	TCCCTAGCCAAATCCTCCGTTTCA
106.	TF	AT4G31060	AGGCAGCTAGAGCCTATGATGC	TTGTAAACTCCCTTCTCACCCC
107.	TF	AT1G16060	CCTTGGAACTTACGCGACGCAA	CCACGGTACTCGATAGCTGCGATA
108.	TF	AT4G32800	TCTCATCGTCGTCTTGGTCCTCTG	GGCTCGTTCCTAGACTCGGTAACT
109.	TF	AT1G19210	TTTCGACGCGGCTCTTTATTGTCT	CCGGAGATCACCGGAGGATTATCA
110.	TF	AT4G34410	GTCAGGGTTTTTCCAGTGACAGCA	GTGTCTGAATCCAACCGAGGCATT
111.	TF	AT1G21910	GCTGCTCAAGCTGCCAACTCATTT	TGACGAGACGGCTGATGAAGTAGG
112.	TF	AT4G36900	GAGGAGTGAACGGTGGTGGAGATA	GCTTCTAACGCATCCACTTGTGCT
113.	TF	AT1G22190	CCTTCCAACGATTCATCCGCGTTT	AATGAGTGGAGATCCGACCCGTAT
114.	TF	AT4G36920	TGCCGAGTCATCAGGGAATCCTAC	TCCCAAGCTCAAATCGAGGTTGTG
115.	TF	AT1G22810	GCGTGAACTCTGGATGCGGAGATA	TGGCCGCCCAGATAATCATACACT
116.	TF	AT4G37750	GAGGAGTCACAAGACATCACCAGC	GTTTCCAGCGACTCTACCAATCCG
117.	TF	AT2G31310	TCCCTGATCATGACCGATGTGAC	AACAACCTGTTGTTGGAGGGAGAA
118.	TF	AT1G01260	TGAAGGAAGTTCCAAGCACGGATG	TCTGCGATGATTGCTGCAAAGGTA
119.	TF	AT2G40470	TGGAAGTACCTGAGAGCCAGAGAG	AGCTCGGCTTGTAAAGCTTGGA
120.	TF	AT1G02340	GATGCGTAAGCTACAGCAACTCGT	AGAACCGAAACCTTGTCCGTCTTG
121.	TF	AT2G42430	TCACCATCGCCTACGAAGCTCA	TTGCAAGAAAGCCACCTGTTGTTG
122.	TF	AT1G03040	TAAGGTCCTGAGCATGAGCCGTCT	TTCAGTGACTAGTGGTGCGACAGC
123.	TF	AT2G42440	TTCCCTCCAACAACAAGTTGTGAA	AATAGCCATCATGCTTTGTGTTGC
124.	TF	AT1G05805	GGTTTACCGTGACTAGGCCCAGTA	ACTGCGAAAAGAGACCAGAGTCCA
125.	TF	AT2G45410	TCTTCTCTCTTCAACACCAGGTGA	TGTTGTGGCGACTGTAGAGGAAA
126.	TF	AT1G06150	AACAGTCCATCGGATCGGCCAAAA	ATCAGGGGATGCCTCATGTAAGCA
127.	TF	AT2G45420	GCAACAGGTGGTGAATCTACAGGC	TGCGGTTGAGGTAGCTCTAGTGAT

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
128.	TF	AT1G06170	TCAACGCCAAGATTAGTGAAGGA	GCCGAAAGAGCTTCCATGTATTGT
129.	TF	AT3G03760	TCCTGTCTATGGCTGCGTCTC	CTGTAGCGAGGCCACCTGTT
130.	TF	AT1G09250	TGTTCCCGAGCATCGAAAACACAG	TCGTTGACACGTCGTGCCTCTATC
131.	TF	AT3G11090	TCGCACTCGACTACTTGCCCAT	TCAAGAAAAGCAGCAAGCTCAGGA
132.	TF	AT1G09530	GCTCAAGACAGGAACCCTTCTCCA	ATTTTCCCACACCAGCTCCACAAC
133.	TF	AT3G13850	GGTTTCTAGCGAACGACACGAGTT	TGATGTATTGTGCGGAAGGCAAGT
134.	TF	AT1G10120	TCTTGCAGAGCGGGTTAGAAGAGA	TCTTGTTGCATCCGGGAACAAGTT
135.	TF	AT3G26620	TAGCCAAAACTCAAGCTGAG	GAAATATGGGTTTGGCTAAG
136.	TF	AT1G10610	TGGAAATGTTCAGCACTCGTGTTC	CACCATGCTTTCATCAAACGGTCT
137.	TF	AT3G26660	TCAAGCTGAGATTGCTGTT	CATAAAATCAGAATTTTGGG
138.	TF	AT1G12540	GCTTCTGAGGTCGAGGAGGG	TGATTATCTTTTCTTGAAGCTCTGAGA
139.	TF	AT3G27650	TTGTTGCGATCCATTTAAAGGGGA	GGCGGAAAATAGGGTGCGAATAC
140.	TF	AT1G12860	AAGTTTGACATGAACAGCGACGGT	TTCTGACCCAAGACGCAGCTTCAC
141.	TF	AT1G22985	ATTGGACCTGATGCGCCGACTA	TCTTCAGAAGCACCACCACTAGCA
142.	TF	AT4G39780	ACCCGACTCTGGCTTGGAACTTT	CGCGAACTCGCCTCTTAGCTTGTA
143.	TF	AT1G24590	TGCCAGAGAGCGGTTTTCAGACAG	TGACCGAATCCGTTTCCTTCGACA
144.	TF	AT5G05410	TGTCTGGAGAATGGTGCGGAAGAG	TCAAACTCGCTCAGCCAATGCTTA
145.	TF	AT1G25470	TTCTGGTGTTGAAGTATTTGGGGA	AGGTTTAGGTAACCATTCATCGCT
146.	TF	AT5G07310	AACAAGATCCTAACCCACCGGCTC	AGTGCCTCTTCCTCAATAGCCCTT
147.	TF	AT1G25560	TCGGCTTTTCTTGACGCTCATTCT	CTCTGCTCAAACTCATCGGCGTAA
148.	TF	AT5G07580	TGCTGCAAGAGCCTATGACTGTG	GCTTCATATTTCCCGGCGTCAAGA
149.	TF	AT1G28160	TGCAAGCATAGACACGTTTGCCTT	ACCCTTCTGTTCCACTCTGACCAA
150.	TF	AT5G10510	ATTGCCTCCCTCAGGAGGAAGAGT	CCTTGCTTGCCAACGTCCTTGTT
151.	TF	AT1G28360	TCTTCTACAGAAGCGCCGCTTTAC	CCAACCACTTGATAACCAGGCGAT
152.	TF	AT5G11190	TGAAGAGAAGAGTGTGGCTTGGAA	GCGTTTTGGCCGTTCATTAGAAGA
153.	TF	AT1G28370	TGAAGGACGACGTGTGGTTTTGGA	CAGTTCTCAGGTGGAGGAGGGAAA
154.	TF	AT5G11590	TGACTCATTCCCTCGACCCGTTTC	TGAGCTGCTTTAAGAGCTGCTGTC
155.	TF	AT1G33760	GGCCAACGAGATTACCGCTTCAAC	TACCGGGTTCTCGGATCTCCGATA
156.	TF	AT5G13330	ACATCAACCAGACCAAGATCAACC	GCTTTCTTTGGATCGCGGATTTCT
157.	TF	AT1G36060	TTCCCAGCTCTCCGATACCAAACC	TTTAGCGTCTACGGCAGCTTGAAT
158.	TF	AT5G13910	AGCTGCCTTGGCCTACGATAGA	TGACGGATGAGGAAGGAGGCAT
159.	TF	AT1G43160	GCTGTGACTAAAGAATGTGAAAGC	CCTTGTGTGGGTCTCGAATCTC
160.	TF	AT5G17430	ACTCGCAAAGGAAGACAAGGAGGT	GTGCGGCTAAATCGTAAGCCCTA
161.	TF	AT1G44830	TGGCTTGGTTCTTACTCAACTGCT	AGACATAGGAGTGCTGCGTCGT
162.	TF	AT5G18450	TGGGGCAAGAAAAGAAGACGGAAC	TCCTTGTTGTCCGACGATCCACAC
163.	TF	AT1G46768	TAAGGGAAAAAGCGGCGGAGGT	TCGGGTTTTATTACCGGCGGAGTG
164.	TF	AT5G18560	TGTCCCAAACCACTGCCTTAAACC	TTGCTTGCTACCGGAGTTGTGAAA
165.	TF	AT3G27940	CAACAACTGCATGTTTGCTCTGCT	CGAGTCCAAAGATGCGATTGACGA
166.	TF	AT1G18400	GGGTTCGGCGAGGGAAAATAAACG	AGCCTTATAACATCCGGGCACCAT
167.	TF	AT3G47870	GCCTTACTTCCCAGCCGAACAA	ACTTCTTACGCCGAATAGCCTGTG
168.	TF	AT1G22490	TGTCACCACTCTCCACAACTCCAT	GCTTCCTTCTTCAACCCTGACGCT
169.	TF	AT3G50510	CAACGTTTTGCATCCACACAA	TCCTCATCGTGCTGCATCTG
170.	TF	AT1G25310	CATTACAAGGGTTCGCAGGG	CGGCACCAGCTTCAGTAAACA
171.	TF	AT3G58190	TTTGCTCTCCAACAACAGGTTGTG	GCAAAAATCATGCTTTGTGCTGCT
172.	TF	AT1G25330	TGGCTGAAAGGGTACGAAGAGAGA	CCATTGCCTTGTAGCATCCTGGAA
173.	TF	AT4G00210	GCCCTTCAACATCAGGCGGAGTTA	TTGTTTTGAGAATTCGGCGGAGGA
174.	TF	AT1G26260	TTGCGACAAGGTGACTGGTAAGG	GCACAGGATTCACAGCCGAAAGTT
175.	TF	AT4G00220	CGTCTCCAAACTCCTCCACCAT	TGCAAACTTACCACCTGTTGCTGA
176.	TF	AT1G27660	TTCCTACAGAGCCAGATCGAGACT	ACTAGACATAGCCCACGGCTTCT
177.	TF	AT4G22700	ATGCAACTCCCAACTGCTGCT	TGCACCATCAGCTCTATGCCCATC
178.	TF	AT1G27740	GCCTTTATGCTCGGAAACGAAGAG	TGTCCCGTTTGGCACAAGGTT
179.	TF	AT5G06080	GCTATCACCATCTCCTACGAGGCT	GTCACAACCTGTTGATGAAGAGCG
180.	TF	AT1G29950	TGGCGTTGGACATTTCTCAAACCA	GCGCTAGACCGATGATTTACCTCC
181.	TF	AT5G35900	ATGCCAGCTGATTTTTTGACTAATAA	CCTCCATCTTTTCAATATAAGGATGTAA
182.	TF	AT1G30670	AGCAGACCAAAATGCAGACTCTGG	CCCTTGGAACCACACACACTTCTT
183.	TF	AT5G63090	GGTTTTTCAGCCTCAGCCGCTT	TGGCATCTGATTCATCACCGGACT
184.	TF	AT1G31050	TCACAACAAAAGGGGACCGAAGC	TCGCGGTATGCGATTGGGGTAT
185.	TF	AT5G66870	ATTGAGGCTCTCAAGTCTGAAAAG	TGGTGGGAAATATGGAGCGAATA
186.	TF	AT1G32640	GATGAGGAGGTGACGGATACGGAA	CGCTTTACCAGCTAATCCCGCA
187.	TF	AT1G67100	ACCACCTCCGTCCTGCGATATTTA	CGGATTCACAATCCTCCCGCAT
188.	TF	AT1G35460	CGTAGCATTGCTGAACGGGTGA	AGGAACAAGCTCTTGCAGCCTC
189.	TF	AT1G49120	ACAGGGAATAAAGCAGCCGGAAAC	CGGATTTCTTATCTCCGCCGCAAA
190.	TF	AT5G19790	TTCCTTATTCGTGGCCCCTTGTCT	CTGCCTGAGCCAATGGAATCTGAT
191.	TF	AT1G50640	TCTGTAATCGACGACGACGACGA	GATCGAATTGAAACGGCGGATTCC
192.	TF	AT5G21960	TGGCGACCATAATACCGAGGAAGA	CTTCCCCAACTTGCCCTAACGTAG

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
193.	TF	AT1G50680	TTGTGGCTTCTGGCAATGTC	CCCCAATGACCGTTCTGTTG
194.	TF	AT5G25190	ATGGCACGACCACAACAACG	TCAAGAGAGGGTGACGAATTTCGG
195.	TF	AT1G51120	TGCCTTGTCCAACACGACGAAATT	CGATGGTCTGCGTAAATCTGAGCA
196.	TF	AT5G25390	TCTCTTGAAGAGAAGAGTGTGGCT	TCCAAGGAATTTGAACCGTTCGAT
197.	TF	AT1G51190	GGCCGAGTTGCTGGAAACAAAGAT	TGCTTCTTCCTCCGTGCTGAATG
198.	TF	AT5G25810	TCGCTAGAGTCTCTCGTGTCTTCC	TACAATCTCCCCTAGCTCCTCGGA
199.	TF	AT1G53170	TGTGGTGTCCAGAGCGAGTCTGAA	TCCCAGCTCCACCTTCGAAATCAA
200.	TF	AT5G43410	TGGCTGGATCTTCCTCCG	CAAATTCAAAAACTTGCCTAGAAGAA
201.	TF	AT1G53910	GCTGCGGAAGGTTCAGTTTTTGGT	TGCAGATTTCTCAGCGTCCCCATC
202.	TF	AT5G44210	TCGATCCGTCAAGAGCTGCTTCGT	ACCGAACCGGACAAACCCGAGAAA
203.	TF	AT1G63030	AGGAGACACGTCACCCAATCTACA	AGCCAGACTCGACGCTGATGAATC
204.	TF	AT5G47220	TGTTTCACAGAGAGTTGGGGAGGT	GAGGAGTCCGTACACCAACATGTC
205.	TF	AT1G63040	TTTAATGGCCACTGACACCG	AATTCCCCGATAAACCGGAT
206.	TF	AT5G47230	CGCTTCTGTCGCCGTTATCT	CAAACAACGGTCAACTGGGAA
207.	TF	AT1G64380	TGGGAGTGGACACTGATGGGTTTT	CCCAAATCAGCTCTGGATCGAACG
208.	TF	AT5G50080	GATCGAGGAAGCAAGGGAGAAAAA	CCAAACCCTAGCGGCTCTATGT
209.	TF	AT1G68550	CTGCATCAGCTCTCACTTGTGTCA	CCTTGTTTCCACCAGCAGGAACAT
210.	TF	AT5G51190	AAGCTCAGGTTCAGGCTGATG	TCCCAAAACCCCTTCCAACT
211.	TF	AT1G68840	TCCTACGACATCGCAGCTTGTAGA	GCTAAATCGCCGTCTTCCAGAACG
212.	TF	AT5G51990	TGGTCGCTCTGCTTGTCTCAATTT	GTCTCAGGAATACGAAGCCGCCAA
213.	TF	AT1G68510	CCTGATCACCTTCGTCCCGCAATA	TGACCACATCAAACCAACCGAACC
214.	TF	AT1G43770	CCGATATGGAGGGGATTGATGTCT	GTATTTCAGCAGAGAGCCGACC
215.	TF	AT3G02550	CGTGCTGGACTCATGAACCTCATC	GATCGGAAAATCCCAGGACGAAGG
216.	TF	AT1G49770	CGTGATCCAAGCACAGGTAAATCC	ACTCAAACCGAAGCAGCCAGTTAT
217.	TF	AT3G49940	GCCCTGCTTTGTTTCAGTCTTTGC	ACATTCCAATTCCCCGTCCACAAC
218.	TF	AT1G51070	AGCAAGAGATGAAGCGCAGAAACT	CGCAGCTCGTTCTTCTCATCCTT
219.	TF	AT4G37540	ACGTCCTGCTTTGTTTCAGTCGTT	TGCCAGTTCCTGGTCCACAACATA
220.	TF	AT1G51140	GCATAGCCGAGAGGGTGAGAAGAA	GCGTGTCCATGTTTGGAACAAGG
221.	TF	AT5G67420	GCCACCGTCTTCGTCGCTAAATT	ACAAAGCAGGACGTTGAGAATCCG
222.	TF	AT1G59640	AAAGAGTTTGGTCAGCAAGCG	TCGTAGACTGCGACCCGAAC
223.	TF	AT1G04100	CGCAACCAGACAAGTTGCTGTAGG	AGCCGCCTTCCGTAGCTAAAGACT
224.	TF	AT1G61660	CTGACAGTGGAGGAAGTACCGTGA	GTCCTAGACCCATCATCTGCAACG
225.	TF	AT1G04240	AACATCCCCTCCTCGAAAGGCT	TCCTTGACCCTCATGCTCAGATTC
226.	TF	AT1G62975	TTGCCTCTCAGCTAGACGGCAACA	TTTGCCATCCTCCACCTGCGAAAC
227.	TF	AT1G04250	GCCAAGGCACAAGTTGTGGGAT	TTTGGCAGGAAACCATCACGTTCT
228.	TF	AT1G63650	AAGGAATCCCCGGAGGAGCGTTAT	GCGGTTTCAGCGTTACAAAGCCAT
229.	TF	AT1G04550	TGGGTCTAAACGCTCTGCTGAATC	ACCACTTGACTTGAACGAGGAGGA
230.	TF	AT1G66470	TTCTCACACGGGAGAGAGCACTCA	TTTCCGGTCACACCGCTACTCA
231.	TF	AT1G15050	TGGTAGGTCGCAAGGTCTGTGTTC	ATCCCGACACACTCTGCATCCCAA
232.	TF	AT1G68240	TGATGCCTCAGCAAAACATGACCT	TGGCGGCACTGTTCCATATACTCT
233.	TF	AT1G15580	TTCCGCTCTGCAAATTCTGTTCG	CGATCCAAGGAACATTTCCCAAGG
234.	TF	AT1G68810	ACCCAACACCACCAAAACGGATAA	CTCCTCCGTGAAAGCTACCGTTAA
235.	TF	AT1G51950	CAGAACCAAAGAGACAAGGAGGCA	TTTGAGCTGCAAGAAGACCTCTGA
236.	TF	AT1G68920	GCAGAAGAACTCTGAAGCAGCTCA	TGGACTTTGCTCATCATTGCGCT
237.	TF	AT1G71130	TGGCGGAGATCAGATGTGGAAGAG	GAGCAGCTTCCTCAGCAGTGTTAA
238.	TF	AT5G52020	TCAGGGGGATTCGACTACGTAACG	ACCGGATAAGTCCCGAGCCAAATT
239.	TF	AT1G71450	ACCGAAGGAACAGAGTCAGCCAT	GCTTGAATTTCCCTGGGCGAGAGT
240.	TF	AT5G53290	TGAGCCTAGCTGTAACAACGTCGT	CGACGCCGGAGATTGAGTTTCATC
241.	TF	AT1G71520	TTACAACCTCCCTCGCCTCCAATA	GCGTCGGAAGCAGCTTTTTGGAT
242.	TF	AT5G57390	TTCTCCAGTCGAACGGCAAGATGG	AAGTTTAGGACCGCCGGGGTATA
243.	TF	AT1G72360	ATGGGCGGCTGAGATACGT	GTTGAAAGTCCCGAGCCAAA
244.	TF	AT5G60120	GGCAGCTAATGTTAAGCTCGACCT	TGCTTCGGACCATCTCCTAGTGAA
245.	TF	AT1G72570	TGAGGAGGAATAGCAGCGGGTTTT	CAATTCTGGCTTGCCACCTTCCAT
246.	TF	AT5G61590	CGGAAAGTATGATGCTCCGGTCAA	TGTGGTACATCGGTTCTCCTCCTT
247.	TF	AT1G74930	AATCCACCGTCGATCTCCGTAGAA	AGCGAATCTAGCAGCAGCTTCC
248.	TF	AT5G61600	TAACCAGCGTAAACCGCCCTTACC	TCCCCTGTAGTGCCTCTCTTCTTC
249.	TF	AT1G75490	TGAGGCTCATCTCAACCTCCCTGA	GGTGTTGCTGCTTGGTGTAGTCTG
250.	TF	AT5G61890	AAGACCAAGGGGACTTGAGGAGGA	CCGCAGATTCAGCGGTTTCAAAT
251.	TF	AT1G77200	TGACTCGGCGTATCCACCTAGTTC	TGCCATTTTCGTCGCTGTGGTAAT
252.	TF	AT5G64750	AAAGGAGGAGAGAGGTGGAGGA	ACTTTAGAAGTAGAGCTACCACCG
253.	TF	AT1G77640	GTTCTTACTCCACCGCAGAAGCA	TAAGACACAAGAGAGCAGCGTCGT
254.	TF	AT5G65130	TGGGCTAAACCAGCTCACTCCAAC	TGCCGGAGATGTAACTCTGTCTGA
255.	TF	AT1G78080	TTCGCCCGGCTTAACTTCCCTAAC	TTCACCGAAATCGCCTCCGATGTG
256.	TF	AT5G65510	TCGTGGAGTCACCCGACATAGATG	TTTCTGGCTTGACCTTCCCTCCT
257.	TF	AT1G79700	TCAAGGGGCTTACGACGAAGAAGA	GTGTGTCTCGTCCCCAGTACTTCA

No.	$\begin{aligned} & \text { Gene } \\ & \text { group } \end{aligned}$	AGI	Sequence of forward primer	Sequence of reverse primer
258.	TF	AT5G67000	TTGTTGCACCACACCCTTCTTCTT	TCGCAGAGCAGAGACCATGATCT
259.	TF	AT1G80580	GCGAGGAGGCTTAGAGGGAC	TGGGAAAAAGCGGAGGAATC
260.	TF	AT5G67010	CATCAGGAAAATGGTCGGCGGAA	CCAAGCCACCTCCTTGTTCTTGT
261.	TF	AT1G52830	CATAGGAGTGGCGAAGGAGGGTAA	TGCCAAGGTACATCTCCGACGA
262.	TF	AT1G69010	CTCTAGTGCCTACTCGCATGAGTT	TGCTTGCGACAGATCAATGCCT
263.	TF	AT1G80390	GGAGAGGAAGGGAGAGTTTGTTGC	CCACAAACATCATCCACGGCACAT
264.	TF	AT1G71200	ACGCTAAGGAGCGTTTAAGGAGGA	TGGTCAGGAAGAAGAGTGCCAAGA
265.	TF	AT2G01200	TGTTTGACCGTGTCGGGATTGAG	CCCCAACATTCCTCCAAATGCCTT
266.	TF	AT1G72210	GCGAAAAAGAGACCGAGACAGCTT	TTGGCTCCCTTCTTCAACCTTGAC
267.	TF	AT2G22670	GCCAAGGCACAGGTTGTTGGTT	TCCATGCTCACCTTCACAAACAGA
268.	TF	AT1G73830	TGTGGAATCCATGCAGAAGGCAAA	ACAGAACTCCCATCCCTCCCTTGA
269.	TF	AT2G33310	GCTAATGGACTCGCTGCACGAAAT	TAAACCGGCTGCTTTCGCTGTCTC
270.	TF	AT1G74500	GTCGTTCCGACAAGGTTTCAGCA	GCAGCTTGTGCAGTGTCTGAGTTT
271.	TF	AT2G46990	CGCATCCATTCTCTGGGCTGAAGA	TCTCCAACCATCATCCAGTCACCT
272.	TF	AT2G14760	GCGTGCCACAACAACTGATAA	GCATTTCTGGCTCCTTCGTG
273.	TF	AT3G04730	AAACCACCAGCCAAGGCACAA	CGGACATGACGTTCTTGCGGAAAG
274.	TF	AT2G16910	GGACAAGAAATGGAGCCACAGGTG	TGAAGCCTCCTGGTTTGTATTCGC
275.	TF	AT3G15540	TCGGTGTGGCCTTGAAAGATGG	TGCATGACTCTAGAAACATCCCCC
276.	TF	AT2G18300	GGGCGAGAAGAGAAAAGATCAGCA	GCATACCAGCTTTTCCTGTGACCT
277.	TF	AT3G16500	CAGAAAAGAACTGCTCCTGGTCCA	TTGAAGAGCTTGTGCTCGCTAGA
278.	TF	AT2G20100	TACAAGTTGGCAGCGACAATG	TGGAGAGTGGTTCCGAACG
279.	TF	AT3G17600	TGCGGTAATCGAGATCGAAAACAT	TCCGACCATCATCCAATCTCCATC
280.	TF	AT2G20180	TCACCCTGCTCGAACTTGGATACG	GGATCACGGAAACCACACAACAGA
281.	TF	AT3G23030	ACCTCCTACCAAAACTCAAATCGT	GCTCGGGGTAGTTTTTGTATGTCT
282.	TF	AT2G22750	GCTCAATCCTTGACTCGAAGCCAA	GCCTTGTCCATCTTCTTTAGGCCA
283.	TF	AT3G23050	TCTGCTGTTCCCAAGGAGAAGACT	GCCATCCCACCACTTGTGCTTTAG
284.	TF	AT2G22760	TGTTTTAGCCGAGAGAAAGCGCC	TACCTTGTCCGCCTTCTTAAGCCC
285.	TF	AT2G20350	CCCACGACACGAGGCGATAATTAA	GCCGCCCATTTACCTGATGGTTTT
286.	TF	AT5G67180	TGGGACTGTGGGAAGCAAGTGTA	TAATCGCCGCTCGATCATAGGCTC
287.	TF	AT2G20880	TTATGCTACTCCTCAGCCGCCAAC	TCGCTGGAGGGAGGTAAAAGGGAA
288.	TF	AT5G67190	TTAGAGGACCTACGGCGAGGCTTA	TTCCTGATGGTCGCAGCCGACATA
289.	TF	AT2G22200	GGGACATTCGAAACCGCCGAAAAA	GCGATATCTCCACGGAGCTGAAAA
290.	TF	AT1G19220	TCCAACGAAGGAGAGAAGAAGCCA	TGAAACTAAAGGCCCTGCACAAGC
291.	TF	AT2G23340	TTGTGAATACCGGCGGCGAGAATC	TCGACCCGTTCCAATGACCCGTTA
292.	TF	AT1G19850	CGGGAAACGAAGGTACATGGGAAC	TACGCCACTTAGAACCAGGCCATC
293.	TF	AT2G25820	AGTGGTCATCCTCATCGTCCTCAG	TCTCCTAGCTCCCCCGAAAGCATA
294.	TF	AT1G30330	TTCTATAACCCGAGGGCGAGTCCA	CCAACAGAGACGCGAGTGTGATAA
295.	TF	AT2G28550	GCCGAGGGAAGAGCAACAGAAAAG	TCTGCCATCCCCAGTTACTCATCA
296.	TF	AT1G34170	GGCGAAGCCTAAAAGTGCAATGG	AGATGCTCGATGTCCCAAGGTGA
297.	TF	AT2G31230	TTTCCCGGTGGAAGTGGTTAGAGA	TCAAGGCCATAACCGGAGATCCT
298.	TF	AT1G34310	TGGCGCAGCTTAGAAGTGCAGT	ATGTTCGATGTCCCAGGGTGACAC
299.	TF	AT2G33710	TCTTCGTCGCTTACTCTTCAAGAA	TCACGCCTCTGTAGTTTCGTTG
300.	TF	AT1G34390	TGGCGCAACTTAGAAGTGCAGTG	TGTTCGATCTCCCAGGGTGACA
301.	TF	AT2G35700	TCGCCATCTCCCACAGTTACGGAA	GCGTCGTCGGAGAGTGCTATCATA
302.	TF	AT1G34410	GCAGCTTAGAAGTGCAGTGGGATG	ACGCAGGCACTAAATGTTCGATCT
303.	TF	AT2G36450	TTTCCTCTTTGCCTGCCCCAACCT	TCCCTAGCAGCACCAAAAGCAGCA
304.	TF	AT1G35240	TGGCGCAGCTTAGAAGTTCAGTG	TGTTCGATCTCCCAGGGTGACA
305.	TF	AT2G38340	TTTGGGTGGGGGAAGGAAGAAGGA	TCCAACCAATAGCCTCCCGAACTT
306.	TF	AT1G35520	TTTCACAGGTAGTGACGAGGATGA	GCAGAATTCAGGCCATGGAT
307.	TF	AT2G39250	TGGGTGGTTTCGACACAGCCTACA	GGAATCTGATAGCAGCTCGGTCGT
308.	TF	AT1G35540	TGGCGCAGCTTAGAAGTGCAGT	TGGTGAAACTTGGTTTGGTCTCGG
309.	TF	AT3G62100	TGCTTCAATCCTTTGGGCTGAAGA	TCTCCAACCATCATCCAGTCACCT
310.	TF	AT2G22770	TGGCCTCAAAAAGACGGACAAGG	TCCTCCAGCTTCTTTACCCGCTCT
311.	TF	AT4G14550	ACGAGGACAAAGATGGTGACTGGA	ATGACTCGACAAACATCGGCCAGG
312.	TF	AT2G24260	TCGCCGAAAGGTTACGAAGAGAGA	TGCCTTGTCTGTCTTATTGCCGTT
313.	TF	AT4G14560	ATCTGCTCCTCCTCCTGCAAAAAC	CGGTTAGATCTCACTGGAGGCCAT
314.	TF	AT2G27230	GAAGCAAACCGGGGAATCCAAGAT	TGACCCTACTTCGAAAGCCCATGT
315.	TF	AT4G28640	CAACTAGTGGGCAAGTTGTGGGAT	TCAGTGGCTGAAGCCTTAGCTTGG
316.	TF	AT2G28160	CGGTATCAATCCTCCTGCTTCCAA	TGGAGCAACACCTTCTCCTTTGT
317.	TF	AT4G29080	TGGTCGGAGATGTCCCTTGGGAAA	TCACCCTTGGAGCTAAGCCGATAG
318.	TF	AT2G31210	CAGAACGTGAGCGAAGATGTCACT	TCTCCCTTACTCGGGCTAGGAATG
319.	TF	AT4G32280	GAGGGTGACTGGCTACTTCGA	GATGAACAGATTCCGCAAAGATCT
320.	TF	AT2G31215	GCACAACAACATTGAAGTAGACAATAAAA	ATGCTCTATCTTGCTAGTCCCATAAAT
321.	TF	AT5G25890	GCTCCTCCTTGTCACCAATTCACT	ACTGGAGCTACCTCAACCCTGTTA
322.	TF	AT2G31220	ACCTCATTCCAAATCCCACAAAGA	TGCTCCTGAATCTCCCACATCT

No.	$\begin{aligned} & \text { Gene } \\ & \text { group } \end{aligned}$	AGI	Sequence of forward primer	Sequence of reverse primer
323.	TF	AT5G43700	GCTGAGATTGGGATTACCAGGGAC	GGCCATCCAACAATCTGAGCCTTT
324.	TF	AT2G31280	GCAGGGGATGGTGCTTATCGAGAT	TCCATGTTTTCTCGCCCTGAGTC
325.	TF	AT5G57420	TGGAAGGACTTTGTTCGTGTAGCG	TGTGTTTCCCTTGACCGGCAAGAT
326.	TF	AT2G34820	ACTTAACACCGCCGAGATGTTCC	ACCCTTCTTTGTGGTCTGCATCAG
327.	TF	AT5G65670	CAGCCAAGGCACAAATTGTCGG	GCCTCCCATCAACTTCGTCACTGT
328.	TF	AT2G40200	GCTGATGATTGTGTCGGTGGGAT	AGCTGCTTTGTCTAACTTGTCGGA
329.	TF	AT1G16640	CTTCCCTCAAGTCGCAGTAGAGGT	GTTTGTCTTGATCGTCGCCGTCT
330.	TF	AT2G41130	GGAGAAACGATGGCTCAAGACAGA	AGCAGTGTGGCTTTATCGGTCTTA
331.	TF	AT1G26680	ATCTCGCACTCACCTCAACATTCC	CGCGTCTGATCTTAGCGTCACA
332.	TF	AT2G41240	GTCTTCCTCCCACCAATCAAACGA	AACTTGCTCTTGCAGCTCTGGTA
333.	TF	AT2G40220	TCAATAACTCATCCACCGCCGTTG	AGGCCAAATGGTCGAAGATCCATC
334.	TF	AT1G43950	TGAATGTCTCCCTCCGCTGGAT	TGCATTCCAACCAGTTGTGTCTCT
335.	TF	AT2G40340	TGTGGCTCGGTACTTTCTCCAGTT	CATATATAGCTTTGGCCGCCTCGT
336.	TF	AT1G59750	GGTCCATCTGGTCCTGTTACTCCA	ATGGCACTGAGGAAGGAGTGTCTG
337.	TF	AT2G40350	TGGTCAGATCTCTAACTTCTCGCA	AGTAACGCCCCAACTTAACCAATG
338.	TF	AT1G77850	TGGAAGCAGCTTCAGATCACATGG	TGTGCAGCAATTTCCACTTGCCA
339.	TF	AT2G41710	TTCAAAGCCGATGGGACGCATCAG	ACGATCATCACCTGCCCCGTAATG
340.	TF	AT2G28350	TCTCCTTCAGGTAGCTTGGGACGA	ACTAACCACGGACTAACCCGCTTA
341.	TF	AT2G44840	TTCCGTAACCCGAGTTTCAGCAAC	TAACGGCAAGTCGCTCCAGTTATC
342.	TF	AT2G33860	TTGGTAAGGTGGGACGACATTGTG	GCTGCCTGAATTGGAGATGGAACC
343.	TF	AT2G44940	TGGCAAGATTCGGTCAACGATGTG	TCGGCTCGGCTTCAACTATTTCAG
344.	TF	AT2G46530	TTGAGGGGTGAAACCGGGGATTT	TCGAAATAACGGATGCGGGCATCG
345.	TF	AT2G46310	TGCGCTACTGATTCTTCCAGCGAT	ACGTTTCACCCTCGGAGCAACAGA
346.	TF	AT3G61830	GCAGGTACAATGGGATGAGCCAA	GGGAAGTTGCCAAGAAAGGCTCT
347.	TF	AT2G47520	GCGTAAACCCGTCTCAGTGAGTGA	TGGCCTCTGCCTTATCCCTCTGTA
348.	TF	AT4G23980	AAGAAGCCGTACCAAGGTGCAGA	TTTAAATCCACAGCCCTGCCCACA
349.	TF	AT3G11020	TGAATGAACCTGGTCCCCATCAGA	TCGAGATGAAGCGGATGCAAATCA
350.	TF	AT4G30080	GTCTCTGATCCTATCCGTTGGCCT	TCATCCCACGCCACCTGTAGAA
351.	TF	AT3G14230	TCGTCTCCACTGTAGGTTCAGCAT	TTTCTCAGCTTGCTCAGCGGACTC
352.	TF	AT5G20730	TTTCTACAACCCGAGGGCTGCT	ACCGCATACCGAGGGAAACTTGA
353.	TF	AT3G15210	TTTTGGACCTGATGGGGATCGGTA	GCGATCTAAACGCCGATGTCACAG
354.	TF	AT5G37020	TATCTTTCGGGGACAGCCCAAACG	TGGCACTGACAAAGACACTCCATC
355.	TF	AT1G49480	TGTACTTGCCATCTGGGTTTGCTG	CCATTGTTTCTCACCGAGCTGGAG
356.	TF	AT2G42280	GTGGTTGCGCTACACATCCTCGAA	CGCTTATCCGCGTTCTTCTTACCC
357.	TF	AT2G16210	ACAAGAGAGCACTTCCACATGACT	CCCAGCCAGACTTCTCCATGAA
358.	TF	AT2G42300	GAACGCGAGAAGAAGGTCAAAAGC	TGGCAACTTGTCTGACTCCACG
359.	TF	AT2G24650	TGCGTCTCCCAAAGGTATTCACGA	AACAGAGTAATCCTCCCCGGCTTG
360.	TF	AT2G43010	CGACTCAGCCGATGGAGATGTT	GTTGTTGACTTTGCTGTCCCGC
361.	TF	AT2G24680	AGCTCATAAGACCTCCCAGTGTGT	ACAGCGGCTAGGTCCTAAATCTGA
362.	TF	AT2G43140	ACGCAGCATTGCTGAAAGGGAGAG	GCGTAGCTCGTTTGCTTGTCCATA
363.	TF	AT2G24690	AGACTGCGTCTTCCACTGCAATTC	ACTTACCAGCCACTTCGCACCA
364.	TF	AT2G46510	AGCAGCGTTTTACCCCGAG	CTGTGAACTAGAAGAAGGCAATGG
365.	TF	AT2G24700	GGTTTCACCAACCACCTGGACATT	AGCTCAGCCGTTTTTCCTACGTT
366.	TF	AT2G46810	CAGAGGGGAGACCAAGCGTCAATA	TGTGCTTCAAGGGATTGCAACTGT
367.	TF	AT2G35310	TCATGCAAGATGGCAAGGAGATGC	AGGTGGCCTAGAAGAAGCCATGAA
368.	TF	AT2G46970	AATGCGTGCTTTGCAGGAC	CAACAATGAAGCCTTATCATCCTTG
369.	TF	AT3G06160	CAGATCAACGGGTTTGCATAAA	TCTGTGAACTGGTTTCTCTCGC
370.	TF	AT2G47270	TCATGATCCGACCAAGGAAGAGTG	TCTGCCGTTTGTCTAAAGAGTCCA
371.	TF	AT3G06220	CGAGCAGTCGTTCATGTTGAA	CAAGAGAATCGTTGTCACTTTCTGAC
372.	TF	AT3G05800	TTGGAAATGCAAGTCCGAGCCAT	CGGCTATAAAGCCGAGCCGAGATT
373.	TF	AT3G17010	ACGAGCAGAATGGCTTAGAGATGC	TGATCCCACTAGAAGGACCCATCG
374.	TF	AT3G06120	TCGAAGAAGGCAAATGAACGAGCA	CGATGATCGAAGCTTGATCTCCCC
375.	TF	AT3G18960	CCCAAAACACGAAGGCCAGAGT	TCACGAATCTTGGCGGAATCTTCA
376.	TF	AT3G06590	TGACTACGGTGGTTAGTAGCAGCA	CTCAACACCGACACTCTCCGTTT
377.	TF	AT3G07340	ATCATTGCAACGACAAGTTGAGTT	CAGCCTGGTGTTCACTGACG
378.	TF	AT1G03970	ACTCCTCCACCCATTGATCCTTCA	TTTTCCGATGCAGCGACACAGTTC
379.	TF	AT3G17100	TCTCCGCCGTTAGTTCTTCTCCT	CATGTGTGTTTGTCCCCCTTCGT
380.	TF	AT1G06070	ACAGGTCCACCTACAGGATGCTTT	TGCCCCGTCAATACCTTAAGATGC
381.	TF	AT3G19500	GATTGCAGGAACTCAAACGACGC	TACCCGTTCCGGTTCTCTTCTTGG
382.	TF	AT1G06850	CCCAAACGCGCCAAAAGGATT	TGAGCAGAGAGAGTGGTAGCTTCG
383.	TF	AT3G19860	GACCCAAGAATGACAAAGCCACGA	CGTTTTTCTCCTGTGTCAACTCGC
384.	TF	AT1G08320	CCCACGAGAGACACTGATGAGTGA	TGGAGAAGTGGTTCCGAGATGACT
385.	TF	AT3G20640	CGTCTCCGTCACCAGCTTTCAAGA	TTGTTGGAGCGCAGCGATTCTGTC
386.	TF	AT1G13600	TCACACAACGAAGACGACAACAGT	ACTCAAAATCTCTGCCGCTTTGGT
387.	TF	AT3G21330	TTGCAGCGAGACAGAGAAGGGAGA	TCGTCCCACCTGGAACCAATGT

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
388.	TF	AT1G19490	CAATTCGGCGAAGACAGGCAATG	GCCCAATCCTTTTCCCTCCTCAAA
389.	TF	AT3G22100	TGCCGTGGGAGAGAAAGATGAACT	GGCATCCAACGGAGTGAAGCAATC
390.	TF	AT1G22070	GAGAGTTTTGTGAACCAGGCGGAT	GAGCAGCCTGTCTTGTCGTCAATA
391.	TF	AT3G23210	GGGAAGAGGAGACGAACTGGATCA	GGAGTCCTGCCAGGCTCTAAAACA
392.	TF	AT1G32150	GACACAACGGGAAGGATGGTGAAA	TTCCATTACGGGGTGGTCCATGAG
393.	TF	AT3G23690	CACAGAGATGATTCAACCGGGGGA	TGCTCTGAGCAAGCCATTGCGT
394.	TF	AT1G35490	GACCATCCAAGTGCTACAAGTTGA	GCATGAGTAACTGCTGATCCAAGT
395.	TF	AT3G24140	GGTCGAAAGAAACCGTAGGAAGCA	TCCCCTTTGAACGTAGGAGCCA
396.	TF	AT1G42990	TGGCTAAAAAACGAAGAAGGAGAG	TCAAGCATACGTCCTAGTCTCAAG
397.	TF	AT3G25710	CCAAAACGGACAAAGCTTCTTTGC	TCTACGGTCAGATCATCGCACTC
398.	TF	AT1G43700	GCAACAAGCTGAACTTAGGGATGC	TCATTGCCGATTGCTGAGATGAGA
399.	TF	AT2G24790	CCAAACTGTTTCGACGAGAACGAT	CСTCAAAACCCTTGCTTCCCTCT
400.	TF	AT1G65110	AATGGGTGAAGAATGAAACTGAAAA	TCCCAGTCCAATGCCTTTGT
401.	TF	AT2G31380	TCCCTGCGACATCTGCCTTGAGAA	ATGGGTCGCCTCATCGCAATCTCT
402.	TF	AT3G62850	CATGTTGTGTCTTTGTGATTGCA	CTTCACTTGAGAGATGCGTCCTC
403.	TF	AT2G33500	AACGATACCCGAACCACCAA	CGGAATCCTCCTGCTGGTAAC
404.	TF	AT1G01930	TCCACAGAGCCAAGGCTGGTAAAA	AAGTGAGGCTCCGGCAGAGTGTAT
405.	TF	AT2G47890	TGCCTAAGAATCGTCACGCCACCT	TAGTCCACGGAGCTGTCGGATCAT
406.	TF	AT1G02030	TGTCGAGAGACAAGTGGGAGAAGG	TTCTCGCAAGTCTCGCACTCGAAC
407.	TF	AT3G02380	GCGCATCCGTTTCATCAATGGACA	AGCTGTTGCACCACCTGAGTAGGA
408.	TF	AT1G02040	TTCAGTCGTGGACAACACGATGAG	TGGACATCGATCTCTCCCTCTTCC
409.	TF	AT3G07650	TAAGCACCAAACAGCTCCAGAGGG	GAATCATTACTGCCTGCTGGCTGC
410.	TF	AT1G03840	CCCTGGAAATCCTGATCCAGAAGC	CGCAGAGGAAACGATTTGTGGC
411.	TF	AT3G21150	TGTGTCTCAAGCTCCGAGCTATCG	TTTCCCTCCCTCGCGCTCTGTTTA
412.	TF	AT1G04445	GAACCCCAAGAATGTGCGGTTTG	AGGTGGAATACTGGCGATTGGAGT
413.	TF	AT3G21880	GCGCTCTTTTGGGAAACAGATTCG	TCTTTTCCTCGTGTCAGCTCTTGC
414.	TF	AT1G04990	ACCTGGACAACCAGCTTGTGGTAA	ATGGCAGCATAGGGTGGTCGAA
415.	TF	AT3G21890	GCGTGCTATGCACTTCTTGTCAGA	CGTCGTCACCGACGGTAAAACAAC
416.	TF	AT1G08290	TGTCGGTCCAATGCAATTTGCTTG	CCATGTCCCCACATATGCATCTGC
417.	TF	AT4G10240	TCACCGAGTCGCCTTACAAAAAGA	AGTACCCTTTTCTCTCCTGGCAGA
418.	TF	AT1G10480	TCGTCGAGGTCGTCGCAGATTAAC	TCGAACACCGTACAGCTTACCCAT
419.	TF	AT4G15250	GGGAACGTTGTACCGAACATGTCA	AGAAACCCTGGTGAAATTCCGCAA
420.	TF	AT1G11490	TTCCCGGTCGTTGTTCAGAG	ACTCCGAAACCGCAGATGTC
421.	TF	AT3G26744	CGCTGAGCAATGCCAAGAAGGA	ACCAGCATACCCTGCTGTATCGAA
422.	TF	AT1G45249	GCAGGCAAGGATCATGGAAATGC	CCGACTCTGTCCTCCTCAGCTTTT
423.	TF	AT3G47640	AGCCGATACTCTTGAACTGAATCA	CTCAATTTGACCAAACACGTCCT
424.	TF	AT1G49720	GGCCTGGAGAAGGTTGTTGAGAGA	GCCTGTTTTCGAGCCCTTGATCTA
425.	TF	AT3G47710	TTGTCCTCCAGCTTCATCGGCTTC	GCTGAAACCTTTCCAGAGCGTCT
426.	TF	AT1G58110	CGAGCCAAACAGCAATTTGCACAA	GCCTTCTGCCTGCAATGTCTGTA
427.	TF	AT3G50330	TGCGGGTACTGTTGGTGGAGGATA	TGATCAGACCGCATAATGCCACAC
428.	TF	AT1G59530	CGGACAATCCAAGCGGTATAAACG	TGGCCGATTCCCGGTTTGATAT
429.	TF	AT3G56220	ACTGATTCTCATGCTGAGAGCGAA	CGGAAAGATTGCTCAGACGTGGT
430.	TF	AT1G68640	ACGGTTATGGATTGTGGTGGTGGT	TGCCCTGTGTCCAAACACTCCTCT
431.	TF	AT3G56770	ACTCCAAGACAGACAAATCCACAC	TTTCGTCAGTCTCCGACGGTAT
432.	TF	AT1G68880	TGGAAGAACTGTGGTCCATGCTTG	TTCCCTGGCTTGGCTTAGCTCATC
433.	TF	AT3G56970	TTCCAGCTTCTGATCAATCGAAGA	TTGACCCGATACTCGTACCAAAAT
434.	TF	AT1G75390	TTCGACGGCGTGATGAATCCTATG	CAGCAGTAGAAGCAGAAGCCATGA
435.	TF	AT3G56980	CGTGACCGTCGCAGGAAAATTAAC	TCGCAGGAATGCTTAGCTTCTTCG
436.	TF	AT1G77920	AAGCAGCAGGGCCATTTAGGACCA	GCGCTGTTCGTAGTTCGCTAACTC
437.	TF	AT3G57800	GCCATAGCTTAGCAGAACGAGCA	GGGACCAGTTCCTGTAACAGCTTC
438.	TF	AT2G04038	TAAGCTGAACCGCGTATCGGAGAC	AACAAGCTGTCGGAGATCAGAAGC
439.	TF	AT3G59060	GCGGGAAATCAGACCGTGCAACAA	CGCCGGAGATCCAAATCCCAACAT
440.	TF	AT2G12900	AGCTTTTCTCCGTCAGCTCCTGTG	CCATCAACCAAAGGGGGCAATGAA
441.	TF	AT3G61950	CAAGCAGATGGAAGATGAGTGCGA	AAAATCCGATGAACAGCCGCCG
442.	TF	AT2G12940	GATACAGGCACAACTTCGGGATGT	AGCCTTTCACTTTCTCCGTGCAAA
443.	TF	AT3G62090	GAAGGATCGATGTATCTAAGCAGTAGTC	CTTGTGGCCTCGCATCATCT
444.	TF	AT2G13150	TTGAATCATTGGAGCAACACGCC	CTACGTGCAAATGTTCGGTCAAGG
445.	TF	AT4G27310	AGCGGAGGTTCAGTGACGAAGA	CGATCTCATCATCGGAGCAGAGAA
446.	TF	AT1G13290	CCGCTTCAACAACATGCAGATGC	CGAAGATGACGACTTCGTCCCTCT
447.	TF	AT4G38960	TCGCCCCTGCGATGAAAAAGTTC	ACCAACACGTACATGCCGACTAGC
448.	TF	AT1G14580	GGAACCAACCCGGAAACCCAAATC	GGAACCTGTTCGTCGCCATTATCG
449.	TF	AT4G39070	TCGCCAATAAACTAGCCGGGAAAC	ACGCCTCTCCCCGCAAATATCA
450.	TF	AT1G24625	TCACCAGAACGCACACAAGC	TCTTCCCATGTGCATTGCTC
451.	TF	AT5G15840	TGGCTCCTCAGGGACTCACTACAA	TTGACTCCGGCACAACACCAGT
452.	TF	AT1G24625	TTTGGTAACACCGTGCCGTTGTTC	CCAGAAGAAGTCGCTACCACCATC

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
453.	TF	AT5G15850	GGCATGTACCAAGAGCAACAGAAC	TTCACCATATGACTGAGGGAACCA
454.	TF	AT1G25250	GGGACACCAGCTAACAGATCCAGA	TGCAGATCTCACACACGTACCGAT
455.	TF	AT5G24930	CAGTCACAGCGTGTCATCATCGT	ACTGGTTGCAGGACCACCGTAA
456.	TF	AT1G26590	TGAGTGCCCAATTTGCTTCAGGAT	GCGTGGTTTGCAATGGAATGTGAT
457.	TF	AT5G48250	TCATGAGGGCTCAATGCAGCA	TGGCTCGGTTCTACAAGTCATGAA
458.	TF	AT1G26610	GCAGCAGCAGCAACAACTTCAAG	GAGTGACAAGCCATGTGACCACAA
459.	TF	AT5G54470	AAAGGACGAGACTTGATTTGGATC	AATGGTCTAGATTGGTTCTCCTCATC
460.	TF	AT1G27730	TCGAGCACTGGACAAAGGGTAAGC	CCTCAGTGAGGTTTTGGTGGTGGA
461.	TF	AT5G57660	AAAACAACGCCGGAGGAGAT	AACGGGAGAGGCTCTGTTTTC
462.	TF	AT1G29570	CAGATCCGACCCACTGTTTCA	TCAGCAACACTACGGCTCGA
463.	TF	AT1G07640	TTTGAGCCCCTTTGCTCTCTTCG	CGTTGTTCCCGATATTACCGTCGT
464.	TF	AT1G29600	AAAGAAGTGGGCCAGTTTCGTGAT	GCCTCTTCCGCATCTCAACATCTC
465.	TF	AT1G21340	ACGAGAATCGGCCAGATGGTCTTA	TGTGCGAAAACCGCAGCCAA
466.	TF	AT1G30970	GCACGATGAAACCAGCCAGATGAA	CCCAGCAAGCCTACTCTCTGAGAT
467.	TF	AT1G26790	TGGCTTGTGGCTCTATTGGTATGT	CCGGTGTAATTGTCCAGCCAAACA
468.	TF	AT1G34370	TTCTCGCACCGCATACTCACTTCT	TCGCGTCTCTCTTGAAACCCTTGC
469.	TF	AT4G00050	CATACTACGAGGTAGCCGAGCTGA	ACCTAAGCCGTGCAAGCCTAGTTG
470.	TF	AT2G16770	AGCAAGGGCTAAATGGTTGTG	TCGAGGCTCACCTTTTCTCTTATT
471.	TF	AT4G00120	TCCACCTCCCGAAACCCTAATTCA	CTGCATCTCCTTCATCGCATCCAT
472.	TF	AT2G17770	TCCTGCCACTGTCCTCAGCTTAAA	AGATTCCTCAAAGGAGCGAGGGTT
473.	TF	AT4G00480	GAGCTGGGCGTCACTGAATTGA	GTCATCGTTGTCTTGGTGTGCAGA
474.	TF	AT2G18160	TCACCGCTCAGATGGAGGAGCTTA	TCCTGCACCGTTGGATTGAACAAG
475.	TF	AT4G00870	GTGGAAACAAGAACAACAATTCCC	GCTCACACTCGATGCTGTTTG
476.	TF	AT2G21230	AACTCCGCGATGCTCTGTCAGAGA	GTTCGGCTCCCCTATCACCAGTTT
477.	TF	AT4G01460	TCTCTCCGATCTCTCATGCCTCCT	TACAATCGAAGCTTGGTCACCCCG
478.	TF	AT2G21235	ACAGGCCCCTCTTCTTACTGCTTT	TCGACACTCCCTCGTTCATTTGC
479.	TF	AT4G02590	TGTTTTCCACGGGCAGCCTATG	TCGAACCCTGGGACGGATTGAA
480.	TF	AT2G22850	CGGTTTTGCAGGTGACTGACGA	TTTACGCATCCTCGACCGCTTC
481.	TF	AT4G05170	TAGAATCACTGCGCTTCAGCAACT	ACAGAAGCTGTATCTGTCTTGCCA
482.	TF	AT2G31370	GCCCAGTTGACCCTCTTACAGAGA	TGTAACCGCAGCTTCAGCTCATTG
483.	TF	AT4G09180	ATTGCCGAGAGGGTACGAAGGA	TGCAGTGTTGGTTTGCTTGTCCAT
484.	TF	AT2G34600	TCAAAAACTGCGACAAGCCTT	TCGCATTTTGTTTGCATCTCC
485.	TF	AT4G09820	TCCTCCATCTGGGATGCCAGGAAA	CCACTTAGCCATACGTGCTTCCTC
486.	TF	AT2G35530	AATGCCTCCGGGTTCTTATCCCT	ACCATCAGTGCCGCCTGTAGTAT
487.	TF	AT4G14410	ATTGCTCCAGAAAGCGGGCAAG	AGCTTCTCCCTCCTCAACCTTTCA
488.	TF	AT2G36270	TGGAGAGGAAGAGGAAGCAACAGT	CATCAATGTCCGCAATCTCCCGTT
489.	TF	AT4G16430	TTGTAAGGCTAAGCTGTCCGTTGG	GCCACGTTGGAATCATGAGGCATA
490.	TF	AT2G40620	TGCGAGATGCACTGAACGAGCAAC	GTGAGACTTCTCCCGTGGCGAATT
491.	TF	AT4G17880	CTCCAGCAACGTCTCCAAGCTTTA	TGTTGTCTTCTCCGGCGAAACC
492.	TF	AT2G40950	TGAAGGTGTTGCAGGTCCCATGTT	TGCAGGAATGATGGCTCCAGAGGT
493.	TF	AT1G28310	TGGCTTCATCTCATCAGCAGCAAC	GGAAGAATCGCAACGAGGGCATTT
494.	TF	AT1G34790	CGCTACAACAATCTTCAGATGCAC	CACCCTTCAACGCAGCAGTA
495.	TF	AT1G29160	TCAGGTCGAGCTAGATGCTTTGCT	ACGGAGCCTCTTCACCGGAAAATC
496.	TF	AT1G43850	ACACGAACAGGACCAATCGAGAGT	AGAAGGACCAGGCAGTGCAGAT
497.	TF	AT1G47650	GATTGTCACACGGTTAGGGAGAA	TTCGCACATGAAGCAACTTCA
498.	TF	AT1G43860	TTCCAAGAAGCAGGCACTTGATGT	AAGACGCAGTCTCATTGGAGAACG
499.	TF	AT1G47655	GGATTACGGGTTTGGGTACGGGTA	CCACAACCATCAACCACCGGAAT
500.	TF	AT1G47860	TGCTTGTTTGCCGTGTGATC	TCTTCCGGCACATCACTCTG
501.	TF	AT1G51700	TCTCAAGAACCAAACCGTCGCTGA	TTTTCTTCTGACCCGGACCCATGA
502.	TF	AT1G51220	GATACAACAACATGCAGATGCACA	GCACAGCAGAAACATGGTAGTCTT
503.	TF	AT1G64620	AACAACTACAGCCTGACGCAGC	ATCTCTTGTTCTTGCGGACGCC
504.	TF	AT1G55110	GGAAATCCAGACCCAGAAGCAGAA	GTCCTCTCTTGTGAAGTTGCAAGT
505.	TF	AT1G69570	TGTCCCCTGTTCACGATGTTTCTT	CGGAACCCTGATTGGTCCAATAGT
506.	TF	AT1G65120	CCTGCTGAAACGATATCAACGGGA	TCGGATAAATGTTCGGCTTGTGCT
507.	TF	AT2G28510	AAGGCGGTACTCTTCGTAACGTTC	AGGATCGTTTGTTTCGACGGCAAC
508.	TF	AT1G65130	CACGAAGAGAACTTCAGCGAGCAT	CTTTTGCCTGTTCGACATCCTGGT
509.	TF	AT2G28810	GGCCACAGTCTGCGAATCCAAATA	TTAGGGTTTTGTGGGAAGTGGTGA
510.	TF	AT1G66140	TTCACGGAAGCGGAAACGGGAACA	GGAATGTGCCCGGATTCCCAAAGT
511.	TF	AT2G34140	TGTCGTGGTTGGTATGCTTGGAGA	CACTCCTCAACGAGCAAGCCATTT
512.	TF	AT1G67030	TTCGCCGGAGATAGTGATCGGAGT	TGGAGGTCCAGCCCAATACCATTC
513.	TF	AT2G37590	GCAACAGGCTCCTCCGAGCAATTA	TGAGGACGAAGAACATGACCTCCA
514.	TF	AT1G68130	GGCCGAGTTTTTTCCAGAGTGG	CGGTTTGTGTAGCGTTTGTGGTAT
515.	TF	AT2G46590	TCATCAGCAGCAGCCTTCATCATC	TGAAACAGGAGACGACGAGGAACC
516.	TF	AT1G68360	TGTCTCATGGCTGCGTCATCCAAG	ACCCTGAATCACGAGCCCCATACT
517.	TF	AT4G20970	AGGAGCTGAGATCACTCATGCTGG	CGTGTTCTTCCACCTTGCAGTGAA

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
518.	TF	AT2G41070	GGAGGCTAAAGGAGGTGGAGAAGA	AGAGAAGCAGAGTTTGTTCGCCG
519.	TF	AT4G21330	TGAGGATGAGCCGTAGGAAACAAG	TGTTGGTGACAATGGGGACATGAG
520.	TF	AT2G42380	AGCTCGAACTGTTATCGCCAAGAG	GCGCTGTTGTCAACGTTAAGAAGC
521.	TF	AT4G21340	GGAGATCGAATTACCGCGCTTCAA	CAGAAGCAGTGTCTGTCTTGCCAA
522.	TF	AT2G46270	TGGGATCACTGCCTCAAGGTCAAA	TCAAAAGCGTCCCCGGAGTTGTTA
523.	TF	AT4G25400	TCCAGGGAAAACGTTCAACGTCA	TTCGTCCAGACAATAACACGAGGT
524.	TF	AT3G10800	GGCTCAGGGCCACTAATGGATTAC	TGCTGGAGACTGATGACGGGACTA
525.	TF	AT4G25410	AAGCTTCTCCACCGCGACAT	TCCGACACAGCTCTTTTTCCCTT
526.	TF	AT3G12250	TGGCAATGGGGCTTTGGCATTT	TTCAGGGCAGATCTCAGCTCGTTC
527.	TF	AT4G28790	GGCCTCCTGCATTCATACCTT	AACAGGACCTACACCTTCCGC
528.	TF	AT3G17609	TAAACGCCGCCGTGGAAGAAAC	CTCTCTCTTGCTTGTTGCGCTGA
529.	TF	AT4G28800	TCGCCGAAAGGAGAAGGAGAGAA	GCGAGGAATGAGTTGTTGCAGAGT
530.	TF	AT3G19290	TGAGCTGAAAGAAACGTCGAAGC	TCCGGTTAATGTCCTTCTCAAGCA
531.	TF	AT4G28810	GGTAATTCTTTCTCAGTATCTATTGCCG	CGTGGCTGAAACTAGGCTGTG
532.	TF	AT3G30530	CTCCTCTACGGATTCCAAAGCCCT	GTCTGCTGCTCTTCTGCTTCATCT
533.	TF	AT4G29100	TGGTCAGCTCGTGAACGATCAGTG	ATTGTCCGTAGATGACGACGAAGC
534.	TF	AT3G44460	GCCCGGAGACAAGCTTATACTGTG	TTCGTGTTTTCTTCCGTGAGGTTG
535.	TF	AT4G29930	TCCGAGAGAAACAGACGGCAAAAG	ACAGATGCCTTGTCCAACTTGCTT
536.	TF	AT3G49760	CGAAGCTCATCAAACTGTGCCACT	ACATGATCGACGGATCTTGCTGGA
537.	TF	AT4G30180	GCCACTTGGTTCCTGCACTCAAGA	TGAGCAGACAAAGCCAAAGCCAT
538.	TF	AT3G51960	TCTCATCATCTCTCAGGATCAGCA	TTCCTCACTGCCTCTCTATTACCA
539.	TF	AT4G30980	TCCCTCAAGGATCGGGAGGTCAAA	TTGTCTGAGGTTGCGCCGTT
540.	TF	AT3G54620	AGGAGGATGCTCTCAAACCGAGAA	CGGCTCTTAATTGGCCTACCTGTG
541.	TF	AT3G21270	TTGGAGGAGGAGGGATCATGCTTG	TCAAACCCAAACCCATACCCGGAT
542.	TF	AT1G68480	GACAAGAGAGGGAGACCGAGACAT	AGCCGAAAGGAGAAATTCCAGGTG
543.	TF	AT3G45610	ATGCATCAGAATGTGATGGGAGT	ACAGCGAGGGCATCTTAATGATT
544.	TF	AT1G72050	GAAACAAGCACGAGAATTCCGGGT	CAGTTTCGACAAAATCACCGCAGG
545.	TF	AT3G47500	AAATCACCAGAGAAGGTAACTCCA	AAGGTTTCGGGTTTCGAATTGT
546.	TF	AT1G75710	TGATCGTTGACCCGAGCAGGTAT	CCACATTGGGAACAAGCACAAACC
547.	TF	AT3G50410	GTTCCGTTACAAACGACGCCTGTT	AGCACTTCCCTTTCCGTCGCTTTC
548.	TF	AT1G80730	GCTCATAAACGTGAGCGCACCTTA	GCTGAAGAAGGCAAGGAGGAGAGA
549.	TF	AT3G52440	TTTATATGGCGGCCAAACGCAAAC	ACATCTTGGACAACTCGGCGTGAT
550.	TF	AT2G01940	CCAGATCCAGATGCAGAAGTTGTG	TCTGGTCTCTTTGAAACCCTTGGT
551.	TF	AT3G55370	CATTACTAGAAGGCGGGGTTAGCG	ATTCACTCCATCCCCATCCCTACC
552.	TF	AT2G02070	ACTGTGGTACACTCTTCTCTCGGC	TGGGTGTCTCGCACTCTCTTGA
553.	TF	AT3G61850	ACGAAGTGGACTCAGGGTTTTCAA	GTTGGTGGCGATGAATGTTGGTT
554.	TF	AT2G02080	TGTTCTAAGCGTTACGCTGTTCAA	CAATGCATCGCAGAAAGCCCTAT
555.	TF	AT4G00940	TCTCCTCCCCTATGCAAGACAAGC	TGGAAAAGACAGTTCTGCCCTCCT
556.	TF	AT2G15740	AATGGTGAGCCTCAAAAGACCAAA	ACGACCACAAGATGTTGGAAAGTT
557.	TF	AT4G21030	CGCGAGTGTGTCCAAGGTGTTATT	GCATTTGTAGCGCGGTTGAGACTT
558.	TF	AT2G17180	TGAGGAACGGTTTGAGTGTGATGG	TGTGTTGCTCTATGTCCGCCTAAC
559.	TF	AT4G21040	TTCAACCGCGCTACTTCTGCAAG	TTAAAGCCCCACCATGAGTCCAGT
560.	TF	AT2G18490	AATGTTTTCCATGAAGGCCGATCT	CGACCATCATATTGAGCATCGTCA
561.	TF	AT4G21050	CACGAGTGTGTCCAAGGTGTGATT	TGCAAAAGTAGCGCGGTTGAGAT
562.	TF	AT2G23740	GCTTCACCAGAGGCTGATAGTGTC	GCAATGTCATGCTTCCACGTTTTC
563.	TF	AT4G21080	TGCCAAACGGGCAAGGGTAAATC	CCTCGTTGGGTCTCAACAGAAACC
564.	TF	AT2G24500	CAGCAGCAGCTATGTCAATGGAGA	TTCACTGACTCACCGGACACAACC
565.	TF	AT4G33880	CTCGTCCCCAATGGAACAAAGGTC	GCAATCGGCGCATACATCCATAGA
566.	TF	AT3G56660	TGATGCTTCGAACGACCAACTCAA	GAACTGAACATTGGCCCTGCAAC
567.	TF	AT4G34530	TGTGAATCCAAGGCCGGATTTTGA	GAGTTGAGGCAACCTCTTTGGCA
568.	TF	AT3G56850	TCCCGAGCTAGGAAACAGGCTTAC	TTTCCACCTCCTTTTGCTTCCTGA
569.	TF	AT4G36060	GGGACAAAATCTCAGAGGAGCTG	GGGAACAAACTGCTTCCTTCTTCA
570.	TF	AT3G58120	GGAGCGTTACTTCATTGCAGACTG	CGCTGATGATCCAAAAACGCAAC
571.	TF	AT4G36540	ACACCACATCTCTCGGCGCTAAAG	GACACTGTGAGTGAGTTTCCCAGC
572.	TF	AT3G62420	TGGGGTCGTTGCAAATGCAAACAA	CCGTGGCGTACCTCGGATCATTAT
573.	TF	AT4G36930	TGTGAAAGCGAGGAAGGAGGAGAA	GAAGGACCTGACTTGGAAGAGGGA
574.	TF	AT4G01120	TCGCCAATGATGGCTCCTTATGGA	GTGGTTGTGAGCCCATTTGAACAC
575.	TF	AT4G37850	GGCTCAACCGTTTTCAAGAAACCA	GCCTTGTCCATCTTTTTAAGGCCA
576.	TF	AT4G02640	TTACTCCAAGCGCCAACCCGTA	TTTTTCGGCCATGCTGAATCGTTC
577.	TF	AT4G38070	ACAGAGAAGGTGCTTCGCAGAACC	GAGGAGTTTACGGCACGTTTCGAT
578.	TF	AT4G34000	AAATCAGCTTCTGGAGCCTCTGC	CAAGCATTGCCTTTTGCATCCCAT
579.	TF	AT5G01310	TGGTCTCGTATCTGCCAGGACATT	ACACTGAGCCTTTGTTCCAGCTTT
580.	TF	AT4G34590	GGAGCAGAGGAAACGTAAACGGAT	CCTGAGCCGTTAGATCGTCTAGGA
581.	TF	AT5G04150	TGCCTCTTTCTGATCAAAAGAGG	TTTCACTACTCTCGCTACCGTCAT
582.	TF	AT4G35040	GAAACGGATCATTCAGCAACGTCA	GCACGATGCCCACCTTTTCTCTTA

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
583.	TF	AT5G08130	TGGGAAGAAGGGACAGACAAGGAA	AGTTGCTGCAACATCAGCTCTCAT
584.	TF	AT4G35900	CGCGCTAGGAAACAGGAATGCT	GCATTTTCTGCCTGCAAGTGAGC
585.	TF	AT5G09460	TCTGGTTTGAGCGACGAGCAGT	TCTTTTCCCTTTGCCCCTGGAAC
586.	TF	AT4G36730	GCCAATCAACAGGAACAGGGTTCA	GCGTCAGCAAGCATCTGTCCAAAG
587.	TF	AT5G09750	GGCTAGACATCGCCGTGAGAGAAT	ACCTGGCACGAGTCTCTGAAGAA
588.	TF	AT4G37730	TTGTGACGACGCCGACATATCAAA	GAGTCCGGTTCATCTGCTTGAGAG
589.	TF	AT4G24060	TCAGAAGCGAGGAAGCGGTAGTGA	CATCCCAGTCCAATACCCACCAGA
590.	TF	AT2G26940	TGAGTCTCCTCAGCCTCAGAGGAA	ACGTGACCACCATAAGCCTTACCA
591.	TF	AT4G38000	ACGGTGACGACGGATTGGGTTTTC	GATTGCCACTTGTTGCACCTCCT
592.	TF	AT2G27100	TGGGCCACTGGGACCATTTGTA	CCGCTACCTTCAAAAGGAGGGTTG
593.	TF	AT5G02460	ACATCAACCAATCACAACCACCGT	AGGCGTTTGTTGCTGTTGCG
594.	TF	AT2G27630	TCTGACAGATGCGAAGAGGGAGTC	TCCGATGCGCCTTCGAGAACAT
595.	TF	AT5G39660	TTCCTGTTCGGTTATCAGATTCGT	CCCTTTTTATCAGTCTCGCTCTCT
596.	TF	AT2G28200	TGGAAGTGGAGGAGAAAGAGCTGT	TCAGTAGTCACCGGAGACGAAACC
597.	TF	AT5G60200	TGCCGGAAAAACAAACGATCCACA	AACCTGCCGCCGAGAAGACTTT
598.	TF	AT2G28710	CGATGAAGAAATCAGGCGGTGGTA	AGGCGTCAAGTTCAAGTCCAAACA
599.	TF	AT5G60850	TGGAGATCGAACGGCTCAGGTTGA	CCACTTCCCCAATCCAACGGTTCA
600.	TF	AT2G29660	TTGGGCAGAGTGGGAACAAGAGTG	CAAGGAAGCACAGCCCTTGGATTA
601.	TF	AT5G62430	GCCGTACACGTGGAATCCTG	CAACACTGGCATGCTCCAAT
602.	TF	AT2G32930	TCAAGGCTGGGCCACTTACATGAC	ACCGATGCGCTAGAACTGGAGT
603.	TF	AT5G62940	TTGGCTCCAGGAATCCGAGTCATC	GCTGCTGACGGAGAATTCGTTGAA
604.	TF	AT2G36480	TTCAGCAGTCGGGACGGACAAAAG	AATTGGGTGCGGTCTCTGGGACAT
605.	TF	AT5G65590	TTCAGCAACAGAGGATGGCGATGC	TTGTGGCCTCTCGACGACAACAGT
606.	TF	AT2G36930	ACTCTGCCATCGGAACTTCTCCAA	GCGCTGGTCGCTCTATCTTCTTCA
607.	TF	AT5G66940	TTTTCCCTCAGTCGTCTTCCAACG	TGATCAAAGAGCTGAAACCGCCAT
608.	TF	AT2G37430	TTTTGGGACCGGACAGGCTTTAGG	GGCATGGATGGAATCATCGGAGAG
609.	TF	AT1G08000	GAACGAACCTGCAATCCCTAAAC	ACAGAGAAAAGGACGACGAATTTG
610.	TF	AT2G37740	TGTGCCAAAAATCGGGCATAAAGC	CACCGAGAGATCAGTGGTGTTTCC
611.	TF	AT1G08010	CATTCCTGCTTTGAAACAGTCC	AAGATTGGTGGAGAGTGCTGG
612.	TF	AT2G41940	TGGACGAAACCAACGGACGAAGAG	TTTGGGAGGAGTACGGCGGATGAA
613.	TF	AT5G10570	GCAGGCTTCTTGTTTTGAGGTTGG	GACATCTTCCTCCATAACCTGCGT
614.	TF	AT4G38900	TGCTCTGAACGAAGCACTGAATGG	TTCTGACTGCTCTCACCGATTGC
615.	TF	AT5G15160	GAACCGTCGTTCCAACACGGTAT	TCACTGAGGTCATCGGCTTCCT
616.	TF	AT5G04840	TAGGCATGTTGCAGACGGTGGAAG	TGGCTATTCTCCAGGGACAGTGTT
617.	TF	AT5G37800	AAACGGCCTTTCACGGGAGAGAAC	TCCATTCGTACCGCTACTCGGCTT
618.	TF	AT5G06839	GCTTCGTTCTCCAGGCGGATAATT	AACGGCTAGAAGACACCGTGCT
619.	TF	AT5G38860	CCACTGTCTGCTCACAAAGGGT	CCTCAGAAGCAAACGCAGCAAC
620.	TF	AT5G06950	ATCATCCTGATCTTGGGTCGGAGG	GTCACTCGAATCAGAAGCAGCAGT
621.	TF	AT5G39860	CGTTCTGATAAGGCATCAGCCTCG	ACAAACGCTCGCTCAGATTGTCAA
622.	TF	AT5G06960	TACAAAGAGCACGGCAACAGGG	ATCTCCAGCGGTAGAATGGGCT
623.	TF	AT5G41315	ACATTGGTGAAGGAATGCCTGGAC	TTACTATCCGCCGTATGAGCGTTG
624.	TF	AT5G07160	TGCGTCAGAATATTGATCCCAC	CGGTTCGAAATTATCCGTTTGA
625.	TF	AT5G43175	TCAGAGCCTATACGCTAGGAAACG	GCAGGAACTTCACGTAATGGACAG
626.	TF	AT5G08141	TGGCGTCTAATCGAGAATCAGCA	ACTTGCATTTGCAACCCCTCTTTC
627.	TF	AT5G43650	TGCCAATTTCTCTCCTCAAGAGTT	AССТССТСТССТСТАATCTGAGTC
628.	TF	AT5G10030	TGTGGAAAACTTCAGCAGAGCGG	TGCGGTAACAGAACCTTGAGAAGC
629.	TF	AT5G46690	TGCCGTCGAAAGAAATCGAAGAAG	TGATCACCCTTGTGAGCAAAAGGT
630.	TF	AT5G11260	GGCGACTGTCGGAGAAAGTCAAAG	TCAACAACCTCTTCAGCCGCTTG
631.	TF	AT5G46760	TGGCAGATCTCACACGACTTCGAT	CCCAGCCGAGGATCACTGTGTTAT
632.	TF	AT5G15830	TCTTCGTCATCAACGAGAGGAAGC	GCAACCTGTGAGAGAAGCTCATCT
633.	TF	AT5G46830	TGACGTGGAAGTGACGGATATGGA	AGCAAACGCCTTACCCGCTAAC
634.	TF	AT5G24800	TCGACCTCATGAACCGGGATTACA	CGAAAAGGTCCAGCCGGAAACAAT
635.	TF	AT5G48560	TCCCGGAAGAGAAAATCTGTGCCT	CCGCCGTCTTTGAGAAACTAGGAG
636.	TF	AT5G28770	CGAGCAAAGGTGAAAATGGCTGAA	GGCTGCTTGTAGTGTCTGGAGAAT
637.	TF	AT1G51600	TCCGCAAGGAGGTAGCTTTGAGGA	AGCTAGATCCAGCAGATGCAGCTT
638.	TF	AT2G42410	TGTGAGATAAGCCGTGGGGATCTG	TCAAACTCATCCCAAGCTCCAACC
639.	TF	AT2G18380	CGGACCAAAAGGACCTAAGTCG	CACGCCTCTCCTCTTTCTTGAA
640.	TF	AT2G45120	ACGTTGAAAGTGAAACCGAGTCGT	TTCGTTTAGATCGTCGCCGAGTTG
641.	TF	AT2G28340	GCATGTGCCAATTTTGCTTG	TACCACATCCCAGTTGCCAA
642.	TF	AT3G01030	TCCAGAGAAGAAACTTGTGGGGAT	TTCTTGTTTGCCAAGTAACCCGAA
643.	TF	AT2G45050	TCCACGACATTTGCGTTCCCAGTG	CGTCCACGAATTGCGAAAGCCATT
644.	TF	AT3G01460	TGCTGAGGAGAGAATCTTGCTGCT	GCACACTGCTCAAGGTGTTGATGG
645.	TF	AT3G06740	TGGTACCAGCAAAACCCCTCT	GCATGCGTTACAAAGCGACTT
646.	TF	AT3G02790	GACTAATCGAGGCGGAGGAAAAGC	ACTTAGCGTGGCCTCCTTTCTCTT
647.	TF	AT3G16870	GACTTGCGTTGATTGCGGAA	ACAATGACTTTGGTCCGGCAG

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
648.	TF	AT3G02830	CGCTCGAATGAGGTTGATTGTGCT	TTGGTTGAGGCTGAGGGTGGTT
649.	TF	AT3G20750	GGTTTGCCAAATTCGACTGTTG	ACGACGTTGGTTCCCTGATCA
650.	TF	AT3G05760	TGGGCAAGACACAGGTCGTTACAC	CGACAGAAATAACCAGCCTGCTGA
651.	TF	AT3G21175	GTGTCTCGCCTGAGAAGGTTCAAG	AGGGTTGTTGGGAGTGTATGTGGT
652.	TF	AT3G09290	GCGTTGATGATTCCCTGAACCAGT	TCGAGAAGCCCCTTATGCAGAAAC
653.	TF	AT3G24050	CTGGATTACGGCCAACAGACT	CTTCAACCACTCCAAGGTCGT
654.	TF	AT3G10470	TTCCGGCTACTGCAAACACGGCTT	AGCCTGAATTGGACCCTCCGACAT
655.	TF	AT3G45170	CTACTTGAGGAATCTCGAGAGTTTGATAC	CGGTTGGCAGATTTGAGAAGTT
656.	TF	AT3G13810	CCAGGGAATCCAGACCCAGAATCA	ACACACGAATCTGTTTGTTGCCAT
657.	TF	AT3G50870	AGAGGCCCTAAGTCCCTATGCA	GGTGTTTCCTGTAGCCGCAGTA
658.	TF	AT3G14740	GGCGATGAAACCTACGAATGA	CGGAACAAACAACGCACAAG
659.	TF	AT3G51080	CCGATGGATGATATAGCGGAAC	CGGCGTGAAAGAAGAATCATCT
660.	TF	AT3G19580	TCTCAACAACCGCCGATGATTCAA	GGAGGCAGCAATCGGATGTTTTTC
661.	TF	AT5G50010	CAGGCCGTGAGGACCAAAAAACA	TCCCGCATACTCTCATTCGAGGT
662.	TF	AT5G38800	GGTTGTCCACCTTCGTACCTTTCC	AGGGTTTTGTCCGCAAAATGGTGA
663.	TF	AT5G50915	TTGCTGAGAGGGTGAGAAGGGAA	CCTTATCACAGCCCGGAACAAGGT
664.	TF	AT5G42910	GGCTCGAAAGCAAGCTCAAACTAT	CTGGTTCCATTTGTCTTTTCCGCA
665.	TF	AT5G51780	CGCGGTTTTCGAGTGTTCTTCAAG	TGACCTCGGCCTGTATGGTGTAAA
666.	TF	AT5G44080	TCTCGTCGCATCTCTTCTGCTTCT	TTCTTCCGCCGTAACCGACACTTG
667.	TF	AT5G51790	CATCAAGGCTCTTTCTTCGCAGG	CTAGTAGGGTCACCAATCTCTCGC
668.	TF	AT5G49450	AACGCGGGTCTTAGATCGGAGAAG	TCAGCGTTAAACTCGTCGTAGCAA
669.	TF	AT5G53210	CGCCTCTTAGCCCGCTTAGTAGTA	TCCACATCAGCCAAAGCCGATTTT
670.	TF	AT5G60830	TGGAGTCCCACTACACGACGATCA	TGCGGGTCGATACGTTTGACTG
671.	TF	AT5G54680	AAGACTGAGAAAAACGAGCTGCGA	AGCTGCTGCTCCAGCTTTTCTTT
672.	TF	AT5G65210	TCTTCGTCATGTCAGGGATGTGGA	AACCTTGAGAAGATCGGAGGGTCG
673.	TF	AT5G56960	TGAGGGTGAATGGGACGAATCAGC	TCAGTGAGCCAAGTCAGCAACAAC
674.	TF	AT1G19350	TTGTTCTGAAGCTGGTTGGGTTGT	AGAGGCTTGTGTCCCTTGCGAT
675.	TF	AT5G57150	GACAGAAGCTGGCCTTTGGAAGAA	ATCCGGCGAACTCGAATCATACGA
676.	TF	AT1G75080	TGTGTTGAAGCTGGTTGGGTTGTT	AAGGCTTGCATCCCTTGCGAT
677.	TF	AT5G58010	TGAGAGGCTTAGAAGGGAACGCAT	TGGTGTTGGGAACCAGTTCTTGGA
678.	TF	AT1G78700	CCGCAAGGGATGTAGTAGACCTGT	AGGAAGAGCAAGGACTAGCGGT
679.	TF	AT5G61270	CAGCAACAGTTTCAGATGTCGTT	CACCACCTCCCATTCCCAT
680.	TF	AT3G50750	TCGAAAGGGTTCTCGACCAACAGA	GAATTGGGCTTTGAAAGGCCGATG
681.	TF	AT5G62610	GGGTGCAAGTACTGGTCCGACAAT	GGTAAAGTCCCGAGATCACCGGAA
682.	TF	AT4G18890	CGCAAGGGATGCAAACCAATGGAT	TGTAGGAAGCACGAGGGCTATGTT
683.	TF	AT5G64340	ACCGATGGATAATTGCCAGGCTGA	AAATGCAGCGAAATGTCACCAACC
684.	TF	AT4G36780	TCGAAGCTGGTTGGATCGTC	TGGTGGCTAAACCCCTTGC
685.	TF	AT3G54810	TGTCGGTTTCGGCATAGGTGA	ATGTCCTCAAACGGAACATAGAGC
686.	TF	AT3G20880	GGTCCAACACAGTTCTCTTGTCCT	TCTCAGCGACTCCGGTCCTTTT
687.	TF	AT3G60530	TCCTACTCTCCTCACCGACTTCACT	ATGAGCTGCGTCGTCACTGG
688.	TF	AT3G23130	TGGCAAACTCTCCTCCTCCTCATC	AGGAACGGATCAAACCTGCCCTAT
689.	TF	AT4G17570	TTGTAACCATTAAGAGGCGCTATG	AGCCCCCTTGACTCTGACTTTA
690.	TF	AT3G23140	TСССТССТССТССАСАААСТTСАС	TGGCTGAGACCCTTGGTGTAGGTA
691.	TF	AT4G24470	CACAGATCAAGATTCTGCCCAA	TGCCGCAATGAGTACACGAT
692.	TF	AT3G29340	CAAGACTTCGGTGAACTGCTTGC	CCGACAAAAACGCCAAACAGTGAA
693.	TF	AT4G26150	GCTCCGATTGTAACACAACCAA	CCACAAGCGTTACAAAGAGACTTG
694.	TF	AT3G44750	TGAGCCACAAGGCTATTCTGAGGA	CAGCATTCCCAGCAGGAACTTCT
695.	TF	AT4G32890	GTTCCAACTCCTCCTCGCTTTT	CGTCATTCGGAATATATAGGTCGG
696.	TF	AT3G45260	ACCGTTCTTGGCCGTTATTG	GAGGCCGGAGGAGACGAG
697.	TF	AT4G34680	CTTCCTTCTTTGCCGGATGAA	CATCCACAACACGAGATACCCA
698.	TF	AT3G46070	AGTGGGAAGAGAGTGGCGTGTTT	GTTGACAAAGCTCTCCACCGAAGT
699.	TF	AT4G36240	TTCACCGCCAGAGGATCTCTT	AGTCCTCCAAATCACCAACCG
700.	TF	AT3G46080	TGAGAAAGCCTCACCAGGCACGTT	CACCGTCGTCGTCTCCGGTAAAAA
701.	TF	AT4G36620	CCCAAGTCGTTGTGTAATGCG	GGTCGATGCACGTCTCTCTTCT
702.	TF	AT3G46090	CTCAGGCTCGTTGGTTACACGTT	CAAACAAGCCACTCTCTTCCCACT
703.	TF	AT5G25830	TCTCCGGTGACCTTTGTATACCTTC	CCACAATGTTCGAAAGCCACTC
704.	TF	AT3G47890	CACAGCCTCCTTTCGGTTGCAT	GCTTCAGAAACAACGTCAGCCTCT
705.	TF	AT5G26930	AGTCACTTTGCAATGCATGTGG	AGGCTAAGCTTTTGTGGCTGC
706.	TF	AT3G49930	CCACCGTCGGATCATCACTCTCTT	GATTTGCCACAGACGGAACACTTG
707.	TF	AT5G47140	TCGTCCTGATAGCCTCAGAAGC	CTGCCACAAGTTGCTGAAACAA
708.	TF	AT3G50700	CATGCCTGATCCAGAGTCAGAAGT	TGTGTCCACGACGATGAAGTTGAA
709.	TF	AT5G65320	AGCGTCAAGGTAGAGGCAGATTGT	TGCACCGTATTTGCGACCTCATTA
710.	TF	AT1G06040	TGCCAAGAGAAGGCAGCTTTCATT	GGATTCATCGCAGTCCCTGCAAA
711.	TF	AT5G65640	CGCCAAAACCGGGATTGCTACTAT	TGCTCAGCTCCCTCAGAACAAGAA
712.	TF	AT1G25440	TGGTGGAGAATGGAGGAGAAAGTA	TCCAAACCCACTTGATGGTAAACA

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
713.	TF	AT5G67060	GGGGGAGTGGTTATGAAAGGGTGT	TGCATTGCCCACCATCTGATGAGT
714.	TF	AT1G28050	AAGGAAAAGAGGAAGACACGGAGA	GCTTTCACAAATCTGCCTCTGACA
715.	TF	AT5G67110	GCAGCTTCAACTTCAAGTCCAGAC	GGTGGAACCTGTGGTAATCGCAT
716.	TF	AT1G49130	TTCCTCCAGGGATAGAGGAGAAGA	GTCGGCGTTAACCTTTCTAACCT
717.	TF	AT1G14685	GTACTAAACGCCGTGGAGCG	TTCTTAAACGCGCCTTGACTC
718.	TF	AT1G60250	TGCGACCGGATGATTCACAGTCAC	TGAGAAAACGGCGAGAAGGTCTCT
719.	TF	AT1G68120	TGTACCGGAATGCCTCAACA	AACAAGCAGACTGCCATCCC
720.	TF	AT1G68190	CCTAAGGTGCAAAGAGAAGGTGGT	GGAAGCTCCAATGGAGATGGATCA
721.	TF	AT2G21240	ACCGTCGAGTTCCTGCTCCT	CCGACATCTTGACTGTCCCA
722.	TF	AT1G68520	GGGTGCCATCTGAAATAGACCTCG	CCTCTGCTCCACTTTCACCCAT
723.	TF	AT2G35550	AAAAATCCCAACAGTCGTGGA	TGCATGACCGAAGTTACCCAA
724.	TF	AT1G73870	AGTGCTTGGGATAATCACGGTTCG	CCAACATGCACTCCGGTTTGATTC
725.	TF	AT4G01930	CCATATGCTTCAAATGCGCA	GGATGGTCGTCAACTCTATGCTT
726.	TF	AT1G75540	CCTCTCTGCGACATCTGTCAGGAT	GCGTGGATCGATGAATCGCAATCT
727.	TF	AT4G38910	TGCCGAGAAGAGTGGGAATAA	CACAATCGCCAAACTCTCACA
728.	TF	AT1G78600	AGACATCATGGGCGGTTCC	GGCCAGTTTAGACCAGACGCT
729.	TF	AT5G42520	CAACAAAAGGCATGCTCGAG	AAGCTTGTTGAACGCGCTTC
730.	TF	AT2G21320	TGCTCCTGCGACGAAAAAGTTCA	TCGGATCAGCTAAGCCTACACGAA
731.	TF	AT5G49300	TTGTGCTGATTGTGGAACCAGT	CAACGACTTTGGACCAACAGG
732.	TF	AT3G53600	TCGTTGACCAAGAACAGGTGAAGC	CCGGTCCCAAACATTTGATCGCAA
733.	TF	AT5G56860	GGCCAAGATGTTTGTGGCTAAC	GTCTCCTTCTTTGGCACCATGT
734.	TF	AT3G53820	GGGCAAAACTTCGACAAGCGAACC	TGGTGCAAATGGCATCTTCACTGT
735.	TF	AT5G66320	CTACAAGCGAACTCTCTCTTCCG	CCACGAAATGAGAGAGCCACT
736.	TF	AT3G57480	GATCTGGGTAAACACTGCTCCGTC	GACAATACACCTGAAGGCAGCGAT
737.	TF	AT1G08465	TTGGATTAAAGCTGGATGGCA	TGGCCTGCAACTGACTGGT
738.	TF	AT3G57670	TGGCCCTACTCAGTTCTCATGTCC	CCATGTCCCCACATATGCATCTGC
739.	TF	AT1G23420	GCTCAGAATCCAAGCATGGCTCAC	GGCCCAATTTTTGGCAGCTAAGC
740.	TF	AT3G58070	TGGTCCTAAGCCGTCGGGGTATTA	GCGGTAGACGCCATAGTCCTAACT
741.	TF	AT1G69180	GCTGCTGCCAAAAATTGGGCTAAG	TCTTCTCACCGAATCCCAAGCCAT
742.	TF	AT3G60580	GCGAACTCGGAAACTCGATTCGTT	GCTGAGCTATGAGGAGGCTCTTGA
743.	TF	AT2G26580	TCTTGCGGTGAATGTCCCATGC	AGCTGCCATGTTTACAGACCACAG
744.	TF	AT3G62240	TCAGCGAAGTGCTGCATTACAGAT	GGGGTCTTCCTCGACGATTCTCTT
745.	TF	AT2G45190	GCCAAACCATCCTTGCGGTTAATG	TGGTACAGCAACCACATCGGACAG
746.	TF	AT4G02670	TCCTGGAAATCCTGATCCAGATGC	CATGGAAGATTGTGGCCTCTCCT
747.	TF	AT4G00180	TGACCCCAGAGAAGCGACAAAGA	GGTTGCCTGCCTTTATACGTTGGA
748.	TF	AT4G12240	TTGCGGTGTTTGGGATTACGAGTT	TCTCCACAGGTTCCACCTCTGTTC
749.	TF	AT1G13400	CACCAACATAGGCAACAACGG	ACCACCGCAAACGCTATTG
750.	TF	AT4G15420	TGTCCTCTTCGCCTAATCGC	CAGAGTTACCCGCTTCCACC
751.	TF	AT1G49900	AAAGCAGAGCCGAAAGGGA	GATCATTAAACTCCGGCGATG
752.	TF	AT4G16610	GGTTACGAGAGAACCCGAGGAAGA	TTCAGGTTCGGTCTCTGTCTCACT
753.	TF	AT4G17810	CCGTTGCCTACAACGACACTTATA	AAGCCGAGGAGGAACTTCTACAT
754.	TF	AT3G14020	CAAGCTCATCAAAGTCCGCAAACC	TTTGTGTTGAGGAAACGTCCACCA
755.	TF	AT4G25610	GCCGTCAAAGAAAGCCGGAAAAGT	GCGCATCCCTCTCTTTGCCAAAAT
756.	TF	AT3G20910	CAGTTGGATGGGCATCCTCAAATC	TTCTTGAATGAGGCATCCCACCA
757.	TF	AT4G26030	TCGTGTCAACCGTTTCATGACTTC	TGACGACATGCATAGTCTTGTTGC
758.	TF	AT5G06510	TCCAAACTCGAAGCAAGCTGATTG	CTCTTCACTTTCTCACCTGGTGGT
759.	TF	AT4G27240	TCTAACCAAACACGCCGTGACTG	TCCACTATTCTCCTCGACGAGTCT
760.	TF	AT5G12840	GGAAAGTCATCCGGGACAGAAAGC	TTTCTTCGCAAACCGGCCTCCA
761.	TF	AT4G31420	TCTCAAGACAGCAACCAGATAATTG	TCAGACCCAGGCTCTTGTACCT
762.	TF	AT1G09030	CCACAGGGAGAATCGGAAGA	GAGAGTGCTGAGAGCCCACC
763.	TF	AT4G35280	TTGGGAAAAGGAGGAGGAGCCGAT	ACAACACCCTGATGTGTCCGAAGT
764.	TF	AT1G21970	TTTCACGGCCCATCTCATGGCCTA	AGTACCGACCACCTCCCATAACCA
765.	TF	AT4G35610	TGGTGATGCGCCAGGATCTGAA	AGTCGCTTCCTCTACTTGCTCCA
766.	TF	AT2G13570	GCTGAAACAAATCCAGGAAGCCCT	TTCCGACATTCGCAATGGGAAGAA
767.	TF	AT4G35700	GGCTTGTTTCAAGTATCGGAAGG	TCCTCCTCGACTGGATCGG
768.	TF	AT2G27470	CGCCACGGCAAATGATTTTTGTA	TGCCTTAAACACATCATCAGCCTT
769.	TF	AT5G01160	TTTTGCCTTGAATGTGCTCG	TCTGAATCCGCTCATCACATAGA
770.	TF	AT2G37060	AGAGGGTGACACAAAGGGATCAGC	GGCCATTTTGGCTTGATTGCCCA
771.	TF	AT5G01860	TTTCCCTCCCATGTCTCACCTCTC	GGTCGTGAATGCTGCCCTCTAGAT
772.	TF	AT2G38880	TAGCGAGGTACAGGGAGGGTGATA	CCGCCACCAGCATCTCTATTTGAT
773.	TF	AT5G03150	GGCACGTTGTTCTCCAGGAAAGAT	GAACTCATCCTCGCTCCTTCCTCA
774.	TF	AT2G47810	TTACAACTTCGGGAGCAGCTCATC	ACCACCACCACTAACCCATCATGT
775.	TF	AT3G25790	GTGACTCAAGCGATTGAGGCGTAT	TGAGCACTCCGACTGTCCGTATAA
776.	TF	AT1G52150	TTTGGAGGCTTGTAGCGTGCCTGA	GTGCCGCCATTGTTGTCTTCTGTG
777.	TF	AT3G46640	TGGCGTTTAGTATCACACCGGAGA	AAGATCCACCACGTAGCGACGAGA

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
778.	TF	AT1G62360	TCTCCGGTTATGGAGAGACAGCAA	TCGACTTCTTCCTCGGATGACCCA
779.	TF	AT4G04580	TGCACTGGACCGACGATCTTGATA	CACTCTCTTCGCCACCGAGTTTTT
780.	TF	AT1G62990	GCAAATGGCCTTACCCTACGGAA	TGCAATCCTGTCTCCTCCACCAAT
781.	TF	AT4G13640	ACACGAGCAACTAGAGGTGCAA	GTACTTCCCTTGTGCCTCGATC
782.	TF	AT1G69780	CATGGATTTGCTTCGTTTCTAGGT	CTCTTCTTCTCTCCCATTTGTGAC
783.	TF	AT4G17695	ACCCTCCACGCCCATTTTGTACAC	GGTTGCTCTTTCATGACCACCCAA
784.	TF	AT1G70510	GCTCTTTCAGATGATGGTGCGGTT	CGCGGTCATTGCTTCTTTGTTGG
785.	TF	AT4G18020	CGAAAGAAGGTGGATTGGACACCA	TGATCAACGCCGAGTTGCTCAA
786.	TF	AT1G70920	AACCATACCTTAACCCCTAAGCA	TCAACTTGCCTTTGACTAAGCTTC
787.	TF	AT4G28610	ACAGCAATAACGGAACGGGCAAG	GCTCTTTCACTACCGCCAAGACTG
788.	TF	AT1G73360	AGAACCCGTCCTCAGTGGGATGTT	GTGAGCAACTTCTTGCACTGCGTT
789.	TF	AT4G37180	TTGGAGGGCCACAAGTTGCTACAC	TTGTCGGATGCAGCGGATGCTTAC
790.	TF	AT1G75410	AGGACTATCGAAAAACCAGGTTGC	TTCCATAGTCGAACTCTCGCGTTA
791.	TF	AT5G05090	TACCTCAAACCACACCGCCACAAC	TTGCTGGTTCGTCTCCGGTAGAGT
792.	TF	AT1G75430	CCGTCAGTTTTCTTGTTGCTCAAT	TTGGTTCTTCGAAAGTCCTGTTTG
793.	TF	AT5G06800	ATTTCACGTTAAAAGCCACTTACAGA	TTGAGACTCAGGCATGTATTTCG
794.	TF	AT1G79840	GGCATGAGTGGGATGCTTTGTCAA	TGGATTGCCACTGAGTTGCCTCTG
795.	TF	AT5G16560	CCAAGGATGCGTTGGACTAGTAGC	TGCTCTTTCATGGCCGCCTAGAAG
796.	TF	AT2G01430	GCAAGGAGCAAATTGAAGCAAACC	GAGGCAGAGTTCACCGTTGTTG
797.	TF	AT5G03510	AGCAAAGAGCAGCGACGATCATTT	ACCGTCTAGCCCTAACCCTAGAGA
798.	TF	AT3G53340	CTCAGTTCTCGCAGGTTCCTCAAC	AAGATGCTCGATGCTATTGCCGAA
799.	TF	AT5G03740	GAGGAAACCCCAAAGAAGCCTGAA	GGTTCTTGGAGGAGTTGGGTTCTG
800.	TF	AT4G14540	GGGAGACAAGGCGATAAGGAAGGT	TAGTCACCATGCCACCACCGTACA
801.	TF	AT5G04340	TGTGAAGTCGCACGTTTGCTCTAT	GCCTCCGTTCTTTCCTTCGTAGTG
802.	TF	AT5G47640	CGCCACCTGTGGCTCCATACATAT	TGGTGGGATGCAGTATCACCAACA
803.	TF	AT5G04390	TGCCAGCGAAAAAGAAAGCTAGGA	CAAAGCTGAATCCGTTGACCCGAT
804.	TF	AT5G47670	GTCATACTAACGGACCCAGCACTG	TTGTACCTCCACCGCTACAGAGAG
805.	TF	AT5G05120	TGCACACAGAAAGGAGAGAGAGGT	GGTCGGTTCAAATGCGCCAAAAAT
806.	TF	AT1G07980	TCCTTGCAGATAGTGTTCCCGAGA	TGCCTCTTTCCCATTCCTCCAACG
807.	TF	AT5G06070	TTCGTCATGGAAGAGGGCAAAGAC	GGCCGTTGATCTCGGAAATTCCAA
808.	TF	AT1G08970	TGTTCATCCTGGAGCTGACACTCA	AGTCACAGCAGCAGCAATATCGTT
809.	TF	AT5G06650	GCTTTCTTCCACCGCCAACAAAAC	CGCGTCGTTGATTTGAACAGCTTC
810.	TF	AT1G54830	CAACGCCATGACCACTACACCAAC	TGGTGGATCTGATGGTAAGCTGGA
811.	TF	AT5G09740	GCTTGAAGATGACACGTCACCAGA	GCATCCAGCTCTTCATGACCCTCT
812.	TF	AT1G56170	TTTCCAGGACCGACGTGTTTGATT	CTTTCAGCTCGTCCCTCGGGATTA
813.	TF	AT5G10970	CGGGTCAACTTCCACTGAACAGAA	CAAGCGCCTGTGAGCTGTAGAAT
814.	TF	AT3G12480	AGAGAAGGAAGCCCATCAGCGAT	TGCCACTGGTCTTAGCACTCCCTA
815.	TF	AT5G14010	CTGGAAACGAACCGCTTCAGGAA	CGGATGAAACGGATCGTAGCCAT
816.	TF	AT3G48590	TTATCCGCCGATGGGACAACCA	ACGGAGGCTGGACATAAACACCA
817.	TF	AT5G14140	TTGTGAGACCGATGGCTACGGGTA	TGGGTTCCAGTACGGAAAGCCTAA
818.	TF	AT5G27910	TGGAATCCACCAACCACAACCACA	TTTTCCCACGCGCTTCTTCCTCCT
819.	TF	AT5G15480	TGCATTTATCGCCGAACGAGAAGG	TTCACAAACCCAAGGCTACGAGAC
820.	TF	AT5G38140	GTCTCTTCGTTGGACACAGCTCTG	TGAGTTTGGCCTGCAAAGTTTCCT
821.	TF	AT5G18240	GACCACAGCCGAGCATGAACTTA	GTGTAGCCGTCTCTGGACCTCTAT
822.	TF	AT2G01500	CGACCACAGCCACAGCATGAATTA	TTTACCAACCTCTGATGCCCTCTG
823.	TF	AT5G29000	ACTTCACGAGGCATTCGTTGAAGC	TTAGGGGTGGCTCGTTCACTACCA
824.	TF	AT2G02540	TGGTAATAGTGGAGGTGGGCA	TGGTGCAGAATTGGCATGAT
825.	TF	AT5G42630	ACGAAGCATTCGTGCTCCAAGAA	TCTTTCATGGCCGCCAAGAAGTT
826.	TF	AT2G16400	TGAGCATTTCCTCCACCCTTATCC	TCGGCTCAACCCCGTTTGTCTA
827.	TF	AT5G44190	TCCCATCGACATTCATCCCTCGAA	GGCGGTTTCAGTCCCAAAGGAA
828.	TF	AT2G17950	TCCCAGCTTCAATAACGGGAAT	GCCATTAGAAGCATTAACAACACC
829.	TF	AT5G45580	GCTCAGATGGACAGCCGATCTTCA	TTTGTCAGCGCCACCGAGCTTA
830.	TF	AT2G18550	GTACCACAACAAGGAGGAGAAGCA	TCTAAACCACCCATTGCCTTCGTT
831.	TF	AT5G59570	TTTCAAGACGGCGGAGGAAGTAAC	TGGAATAGGCACCATCGACGGAAC
832.	TF	AT2G22430	ACAACTTCCACAGATGAGCAGAGT	CCTCGTATCCTTCAAGCATCGACT
833.	TF	AT1G11510	AGTGGGTCTTGGCATGGATGAAC	GCATCGCTTTCCACTGCTCGTAAA
834.	TF	AT2G22800	TCCCAAACAAAAGCAAGTTCTGGC	TTCAGCTTTGTCCTGGCTCTTCT
835.	TF	AT1G44810	GGAAGTGGTGGTTCTTGGAGGAGA	TCATCCACACCAAGCCTCGCAA
836.	TF	AT2G23760	TTGAAGAGGTGGACCGACGGTA	GCCGTAACCCATTACTTGGTCGAA
837.	TF	AT1G61730	TCCAACGTCGTCGTCAGCTACT	CGTTTCGTTGAAGTCGTAGCAGCA
838.	TF	AT2G27220	CTGGCCTTACTAAGAGTCAGGTGT	CCGGTCACTTCCTTTTCTGCTTTC
839.	TF	AT1G66420	TGAGAGTCTTGGTGTGGATTCGGT	TCAGCCTCCAACAACTCCAACCTC
840.	TF	AT2G27990	TTCATCCGTACCCCACTGATTCTG	ACCTGGTTACGAGAGAGACCAGTT
841.	TF	AT2G01370	AATTGCGAGGTTAGGGGTGAGTGA	ATCGGAACCATGCTCCAACTCTGT
842.	TF	AT2G28610	TCAGGGAACTGGAGTAGGAGAAGC	TCTTCAGCTCCACTTTTGGTGCAG

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
843.	TF	AT2G25650	CTCAAATAGCACAGCAGAGCGAGA	AGCCACTTCCTCATGCTCCTTCA
844.	TF	AT2G32370	TTTCAATCTGTCGATTCCGCGCTA	TTCCAGCAAAGAAGGTTCTCGCAA
845.	TF	AT5G16470	AGCTCCAAGCTAAAGCCGATGCAG	TGCGTGACCACCTTTCTCCTTACC
846.	TF	AT5G43250	GAATCGCCGTGAAAAGACACCAAC	GCAACGGAAGCGAGTCTAAGAGGA
847.	TF	AT5G16540	TGTGTCTTAAGCTCGGGAGAACCA	AGCTTGGACCAAACTTGCAGATCC
848.	TF	AT5G50470	TCGTTACCGATGATCCCGTGCTAC	CTATCACCGTTCCCGGAGGAAGTA
849.	TF	AT5G18550	ACCAGGCTTCTGTAAGTGCGATGC	AGCTGGTTCCCATTGACGGTTGAG
850.	TF	AT5G50480	CAACAACAACAACGGCGACAACAT	ACGTAACTGAGGGTTGGATGATGC
851.	TF	AT5G22890	TGTCCTCAACACGGGTGTAGATGG	TGGCGCAAATCACAGATTTCAACG
852.	TF	AT5G50490	TCGCTGCTGAGGCTCCAAATCTCT	AGTCGGTTGCTCTCTTGAGCATGG
853.	TF	AT5G22990	TCCCATCGAAATGAGTTCCAACCT	ACCATGATGATTCGTGTGGTCAGA
854.	TF	AT5G63470	AACCACCACCAACCTCCGTCTATC	TCCTCCGGTGACTATTGATGCAGA
855.	TF	AT5G25160	TCTCCACTTCCTTTCCACGGACAG	GCTTGTGGCTTATCGAATGCGCTT
856.	TF	AT2G21810	GGAAATGTGAGACCTGCCGCTT	ATGTCTTGATGGTCGCCCCAACTC
857.	TF	AT5G26610	AAGAGCCAACCCACAAGCAGCATC	TCTTCGTCGCTATCGTTCCCGAAA
858.	TF	AT3G27500	TTGTAACGATTGCGGGGGAGAAAA	TCCTCGGCTCCATTAGTACTCAGC
859.	TF	AT5G27880	TCAACCTCTCAAGCCTTAGGTGGT	CAGCTTCCATCTCCTTCCGCTTTT
860.	TF	AT4G01350	AGCACAAACGATGTGCAGCATGTA	TGAATGGACACGTTTCACAGCAGT
861.	TF	AT5G37890	ACCCCGCAAGAGAATTTCATG	TTTCCAACACATCACCACGC
862.	TF	AT5G02350	TGCGGTGCATGTCAACTATCGAAA	ACTCCACGCATTCTTTGTGGAACA
863.	TF	AT5G39550	GACCAGTGATGAGCATGGCGAT	TTTCTCACAAACAGGTCAGCAGCA
864.	TF	AT2G20110	CCAATTAGACATCCGAGGCCCGAA	TCCATCTCTAGTTTCCCCAGCAGG
865.	TF	AT5G40310	TGGGCCATTGCCGAAACAAGA	TGGGGCTTTCGAGGATCGTAAGAC
866.	TF	AT3G04850	TGAGCAATGTGCGGGAGATTCTGA	TTGAAGCATCGCCATGATCACCAT
867.	TF	AT5G40710	GCGAGTCATGGTAAATGTCTGTCG	GGACTTAAGCCGAGCTGTGTCTAC
868.	TF	AT3G16160	TCGCAGAGAGCATTCAGAAGCAAA	GGACTGCTTGCATCGACATCCTTT
869.	TF	AT2G36340	TTGGACCAAGCCAAGGATGTTCC	CTCTTGCTCCACACAAGGCACA
870.	TF	AT2G33880	TCAGGATGTGAAGTGGAGAGGAGT	GGAGGATTCACCATCCCGGAGTTA
871.	TF	AT3G04930	GCCGTTCAATTTCGGTTTTGGTGT	CTGTTGTTTCCTCCACCGCTCAT
872.	TF	AT2G34710	TGGATCTCCCGGAGTTACAGCCTT	GCAACGTGTCACCACTGGTTTGAG
873.	TF	AT4G00250	ATGTGAGTTGTTGTTGGCGG	TTGAGCAAGCACCGAAGTCA
874.	TF	AT2G35940	ACTCGTAGCCAGGTGTCGAACT	TGCCTGCTCCTTCATTTCCTCCA
875.	TF	AT4G00270	CCGTCGCAGAAGAAGAGACTAT	AGCTCTGTAATCAACTAACCCCTT
876.	TF	AT2G36610	TCAGGAAACCAAGACAACAGATGT	TTCTCCATAGCCACTCTCTACCAT
877.	TF	AT4G00270	CTCCAACGGTACCCTCTCCC	AGCACGCTTTGAGGAAGGAAT
878.	TF	AT2G44910	GTAGGGCAAGGACGAAGCTGAAA	CCGTCGATTCTCCTCGGTCAGATT
879.	TF	AT4G00390	GGTGTGTCGAAAAAGAGTGCGAGT	ACCAACAAACGCCAAGTCTTGCTT
880.	TF	AT2G46680	ACTTGGCTTCTCAGTTCGAGTCCT	GCCTCTTTTAGCCTCTGCAACTCA
881.	TF	AT4G00610	TGCTACTGCTCTTGTGAAGCCAAA	ACGCACCATCAACAAACGACCT
882.	TF	AT3G01220	GAGCTAGGTGGAAGACTAGACAGC	AAGCCATTACCTCAGCAAGGAGTT
883.	TF	AT4G01260	CTGCTGCCAAGAGATCGTTTGAGA	TCACATCCTCCTCACCCATTGAGT
884.	TF	AT3G01470	TCCGAGGTTACTTCCCTGACCGAA	GGCACTTGACCAGGTGGTTCATTA
885.	TF	AT4G25210	TGCGGATGGAGCTGAGAAGAGAGA	TCACGAGTCCAGACCTCTGCAAAC
886.	TF	AT3G03260	TCGACACTCGTCAACAGTGGGACA	TTTCACTTGACCCGGTGACAATGC
887.	TF	AT5G14280	GGAGAGGAGGTGTTTGAGGAGGAT	CCACTTTTCGCAGCCCCTTTGT
888.	TF	AT3G03660	TTCAAAACCGGCGGTCAAGGT	GCTAGAAGTGTTGGTGGTTGCGT
889.	TF	AT5G28040	GTGGGTTTCCTGGAGGTGGT	GACGGCATTAGCATCGGACT
890.	TF	AT3G11260	GGCAGAAACGTCGTAAAATCTCCA	TCCTCTTGACAATCTTCTTCGCTT
891.	TF	AT5G28040	CGGTGTGTTGAGTCCGATGCTAAT	ATCTGTTGTCTCCTCCACCGTTCG
892.	TF	AT3G18010	GCGACACGCAACCAGAGAAACCTT	AACGAGCATTGTGCTCCACCCGTA
893.	TF	AT5G42640	CAAACCATCGTGAATCGCTTCCC	TGGATCGAACCATTCGAGAGTTGT
894.	TF	AT3G22760	CCATTTAGACAACCACTGGCGCAA	TGGAGGTAGCAGTCTGTTGTTGGA
895.	TF	AT5G43170	TCAGCAGTAGTAGCCACCGTGGAT	TCGCCATCGGACTCATCACTTCGT
896.	TF	AT3G22780	GGCTGTGCTTCCTACAAACGAGT	TCTTCCGTTTCCCTGGCATCTCA
897.	TF	AT5G43540	TTGGAGGCTACGAGCAAGTAGACT	CCATCGAGCCGATTCGTAAGTGTT
898.	TF	AT4G14770	CGACACCAACGCCGATTTACAGAC	TGTGGAGGAGGCATCCTGTTCTTA
899.	TF	AT5G44160	GGCACCATTTTCTCAAGGCGAGAC	TTCCGCTAAGGCATCGCAGAAAGC
900.	TF	AT4G29000	AGGCTTAGCCACTTTCCACAGGTA	GCACGAGAAACAGGTGATGGAGAT
901.	TF	AT5G48890	TTTTCCGACGGTTCATCCCGACCA	AGCCAACACGACATGAGAACCACT
902.	TF	AT5G25790	GGGGATCTTAGAGCGTAACCCTGA	TGCTGCACATTCTCCTGCAAATCT
903.	TF	AT5G52010	TTGGAGTGGTGTTGAGAAGGGAGA	TCCCACCTCATCCTCCTCAAACCT
904.	TF	AT1G47870	GAAGGGTGCTGACAATCTTGGACA	TCCAACCTGCTTTCCTCAGATTGC
905.	TF	AT5G54340	TGGAGAGGCAACAGATCGAGTCAA	TGTGAAGACCCACCAAAGAGCAAG
906.	TF	AT2G36010	ACCAGGTTTCCAGAACCAGACTCT	GCACTTCCAAAGTTGTGCCATGAG
907.	TF	AT5G54360	GTTTTGCCCTAGGCGGTCA	CGCTGCTTCTCCAATTCTCG

No.	$\begin{aligned} & \text { Gene } \\ & \text { group } \end{aligned}$	AGI	Sequence of forward primer	Sequence of reverse primer
908.	TF	AT3G01330	TGGGGTTCTCGTCTCCAATTTCCT	AGCCCAATGAGATCCACATCGTCT
909.	TF	AT5G54630	GCTTGAAGCTGCTGAAGCTCATC	TCTCCTTCTACAAGCTCCGTTACG
910.	TF	AT3G48160	TCTCCCTTGATGACGCTGCAAAAT	GCCGCCTCACTTTAGTTCGCATT
911.	TF	AT5G56200	CAACAGGTCAAGCTCTTGGTGGT	CCACAGTAGAAACTGGTGCAGTCC
912.	TF	AT5G02470	GCGGGAACTCTCACCCAAAAGAAG	TCAACGCTCACTGAAGGATGTTGC
913.	TF	AT5G57520	AGGATTTCTCGAAAGTGGCGGCTC	TGATCAAGACCACTCTCCGGCA
914.	TF	AT5G03415	GCGACACTACTTTTCAACGCCTGA	ACACCAGAAGCTCCTTGAGAACCA
915.	TF	AT5G59820	GTGCGAGTCACAAGAAGCCTAACA	GCGACGACGTTTTCACCTTCTTCA
916.	TF	AT5G14960	GGGCTTGTTGCAAGAAGTGGGAA	AGCACGAGGAACAGCTCCAAAACC
917.	TF	AT1G05055	TCGTCATTGACTTCTCTCGGGCAG	TAGCCATCCGGCTTGGTCTGAAAT
918.	TF	AT3G19510	GGCTGGAAAGGTTCAAGCCTGGAA	TGTGGCTCGTTCAAGCTCTTTCTC
919.	TF	AT2G34210	TATAACCCTGGAGCTGGAGGGAGA	TGAAAGGCCCCAGACGAATTTTGA
920.	TF	AT3G27970	ATGCGCAGAACCGTAGCAAC	GGAGACATCCT CTCGGCCTC
921.	TF	AT4G26170	TGCGAGGATCACAAGGGAATGAGA	CGGCTTTATCACGTTCTGTTGGGT
922.	TF	AT3G49530	TCGATTCTCAAGAGCCCAGACGA	GCGCAATCTGATCTGGTGCTACAA
923.	TF	AT1G01160	TCATGGAAAACCAGAATCTCGG	TGGAGAAGAGCTTGGTACTGGG
924.	TF	AT3G55210	CTCTTCTCACAACAACGACAAGGA	TTCCACAGGTGCAACTGAAACAA
925.	TF	AT4G00850	ATCAAATGCACCACCATGAAAC	CTAGCATCGTTAGGACCCGC
926.	TF	AT3G56520	TCCGCATGATCTGCCTGGTTATC	ACTTGGTTGTCACGTTTTCTGCAA
927.	TF	AT5G28640	CTTAGCGAATGCGCCGAG	TTGCAGCTAGGTACATTAGGTTGC
928.	TF	AT3G56530	CAACAACGAGAAGGTGGATCATGC	TTTGCTGCCGCTGGAGTCAGATA
929.	TF	AT1G07520	TGTGTTCTTGTCTGCGTCTCCGTT	AACCGAAGCATCCTTGGCAGCATC
930.	TF	AT3G56560	TTTCAGGCAGAAACGTGGCGACAC	GCCAACGACACCATCTCCAGCTTT
931.	TF	AT1G07530	TTTCACTGCAAACGCCAACACGAT	TGCTGAGCGAGAGGCGATGAATCA
932.	TF	AT3G60390	TCCAAAACCGAAGGGCAAGGA	TGCAATCTCCGATTCTCATCCGTT
933.	TF	AT1G14920	GCGGTTAACTCTGTTTTCGAGC	ACCTTATCGATCGCACCAGGT
934.	TF	AT3G61150	CAGCGCGATAAATGCGAATCAGAG	TGGGATATCAACAGGCGCGTACAC
935.	TF	AT1G21450	CCCTTTTCCTCTAATCTCTCCTGT	CCATTCTCATTCAACGTGTAAAGC
936.	TF	AT3G61890	AGCAATCTCTGGTCTCTGAGCTGC	GCCAGTCCTTGATCACCACAACAC
937.	TF	AT1G50420	GATGTTGCAGGCTAGGAGATTGCT	GCACCCGCTCTCTTCCTTGATTCT
938.	TF	AT3G61910	GCTCTTGAAGTATTACCTCCGCAA	ATCTCTTGAATATCCCAAGGCTCG
939.	TF	AT1G50600	AGAGAAGAGAGGCACGAGCCACTA	AAATCCCGCCATGTGAAACCGAGA
940.	TF	AT4G00730	GCTCCAATGCAATGAACGCGAATC	TCGACAGGCGCGTATACTACAAGC
941.	TF	AT5G60470	TCCAGGAAGGACAGTTTCATCTCA	TGGTCGAATTGGCGGCTAATG
942.	TF	AT5G22220	GAGGTTCCAGATCCTGATGAGGCT	CACGTCTATTGGTCCCATTGTGCT
943.	TF	AT5G61470	TGGCTCGATCACTCCATCACTACG	GTGGACAAATCTCGCCAGAACTGT
944.	TF	AT1G73730	CGTAGCAGACATCAGGATGGAGAA	GTCTCTCAAGGTCGTCAGCATCAA
945.	TF	AT5G63280	TCTGCGAGAGCGTTGCCAATAG	TGAAGACGACTAGCTGAGGGACCT
946.	TF	AT2G27050	TGTGGAAGAGCGGAAACCAGAGAT	TGGCGACCTCCTCCTTTATGGGAA
947.	TF	AT5G64610	GAGGAAATGCGATTTGAAGCACCC	TGCCATCCACCTCAAACATTGACA
948.	TF	AT3G20770	TTGCAAGAGCTTCAAGACACGACT	ACGTCTCTGAGGAGGATCACAGTG
949.	TF	AT5G66730	CGTCTCATCGACCGGAAACCAAA	TTCAGCGTCTGGATCAGGCATTC
950.	TF	AT5G10120	TCGAAAGCCGCACGATTTGAGAAA	TTTAATCACAGCCGCGAGAACACT
951.	TF	AT5G67450	TCCGCCGTACAATCTCCTCCTCTT	GGACTTCCCACAGACCGTACACTT
952.	TF	AT5G21120	TGTGTTCTGATTCGCATACGGCTT	CGCTGCTTGTCTCTCCAGATCTTC
953.	TF	AT1G03790	CCGGGAGGAGATCTGACTTGAGAA	TTGACCAAACCGTTACGAACCGAT
954.	TF	AT5G65100	TCGCAAACCGCACGATCTAAGAAA	CGAGCCGTCTCACTCTCTCCAAAT
955.	TF	AT1G32360	TGCAACGAGCGTCTAGTGCGGTTA	ATCCGACTGATTTTCGCCGGTCCT
956.	TF	AT1G60700	TGGGAGATCATCTGGTGGCCTGAA	TAACCAATGCCTGACGCCGAGA
957.	TF	AT1G68200	ACCGTCACTAAGCCTGGGACTTGT	TCCTCGCACATACACCTTCTGCGT
958.	TF	AT1G75530	CCAGAGGTGTTACTTGGAAGAGCA	AGAGCCTGTCGTCGAGAGAATCT
959.	TF	AT2G19810	TGCATGGGTCGGATTGAACCGGAT	ACCCACCCGACATCAGGAGTATCA
960.	TF	AT3G07220	CCGGAGAGAAGAAGAGAGAGGGAA	TCCCGGACCACACAAATCGGAA
961.	TF	AT2G25900	TGGGAAAGAGCTGAGAGCGGAGAT	TCGAGTCGCCACGTCATCAAAGAC
962.	TF	AT3G07260	AGGAGGATATCAGAGGCAGTGGAA	TCTCTCTTCTTCTCTCCAGAGGCA
963.	TF	AT2G35430	TCCTTTTGGTTCTCACTGCCAT	TCCGCCAAATGTATGCAACTC
964.	TF	AT3G54350	TCAACAGAAGACCTCGCTGTGGA	CGTATGATCGCCTGTCGTCGAGAT
965.	TF	AT1G55580	TCCAATTCCAGTTTCACACGC	TGTAGCAAAAGTCCGGCGAG
966.	TF	AT4G01520	CGATTCGCATACCGTCATAGCGAT	TGGCTGCTCAACCTGAAGCTCA
967.	TF	AT1G63100	TTGGCAGGTTGTTCGAGTTCATCA	TGCTGCTACTGCTTCACTCCTCAA
968.	TF	AT4G01550	CCTTATCTATGACCGAGAACCGCA	TGTTCCTTGGTAACTCGTTGCAGA
969.	TF	AT1G66350	TCGGAGCAAGAGGACGAGAATTGA	TAGCGCGTGGACTAAACGCACT
970.	TF	AT4G02560	TGGCATGTACCACCAGGAATGGAA	TGCTATTACCACCAGCGGCTACTC
971.	TF	AT2G01570	TCCACTCATTACCACCTCCGCTTG	TTCACTCGACTCGACTCCACCA
972.	TF	AT4G03250	AAATCGGTCTGGTGTGGAACTGCC	AGATTCGTCAGTCTCATCGTCCCC

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
973.	TF	AT2G04890	CGGTTGCTGAGGATGGTGAAGAGT	GAAGGAAAGGGGAAGTGTTCGTGT
974.	TF	AT4G04890	TCGGCTCCGCGAAGAGATTGATAG	GGCTTCCCAACGTATTTCGCAGCA
975.	TF	AT2G29060	AGTCTTCGCCTCTCGGTGAC	TCAAGCGCGTTAGCGAAAC
976.	TF	AT4G08150	TCCTAAAGAAGCACGGCAGAAGC	GCCAACGCTACCTTCTCTGACTCA
977.	TF	AT2G37650	TGCAAGGCTGGAAGGGAAGAACTG	TGGTCTCTCATATGCCAACGAGGA
978.	TF	AT4G10350	GCCAACCCTAGTGAAGATGGATGG	GAGCTTGAAGTGCATGGTTGTTGT
979.	TF	AT2G45160	GGATATTGGCGCGGCTCAATCA	AGTGAGAGGAGAGCTTCAGCGAT
980.	TF	AT4G16780	ACAGACGAGCAAGAACAAAGCTGA	TTTTGTAGCCGACGGTTCTCTTCC
981.	TF	AT3G03450	CAGACGCGACCACTCATCACAA	TTTTCCCGGTTTCAGGCGAGTC
982.	TF	AT4G17460	TCCGCAGTTCTCGAAGACACTTTC	CCAAAGCCAGCTTCTGTTTGGGAT
983.	TF	AT3G13840	TGCAGTTGATGGAGCCAAATC	CATTCTTATTTCCCAATTGTTGTCA
984.	TF	AT4G17710	GCCACAATCTCCGCCTCGAAAA	TGCTGCGTAAACGATCAAGCTCTT
985.	TF	AT3G46600	GAAGCTCTCTTCCATTGCTCGTCA	TAGTTCCCTCTCCACCAGTGTCCT
986.	TF	AT4G21750	CCGGCTTGTGATCTTTCCGTGATA	TCCGGTACAGAAGCTCATCACCAT
987.	TF	AT3G49950	TCGGGTGGGGAATGAAGAAGGAAG	AAATGGGAACCCAAACGGTAGCAA
988.	TF	AT4G25530	ACACAGGCAAATGGGTCAACGTG	AGTGAGCCACTTTTGGTTCCACC
989.	TF	AT2G40140	AGAGGGTTGGGAATACGGTGA	CACGACGGCAGCTTAAACTTG
990.	TF	AT1G49190	GGCAAGTCATCTTCAGAAACACCG	TTGGAGAGAGGGAGCTAGTGTACC
991.	TF	AT2G41900	CCGGTAATGGATCATGCTGGGCTA	TCTCAATTCTGCTGAGCCACAAGC
992.	TF	AT1G67710	TCGGATGCGATCACAAAGC	GAGCCATGGAACATTCATGAGA
993.	TF	AT3G06410	CACGAGATCGTGGAGCGGTTATT	ATGTCCCATCCTCTCCGGTAAAGC
994.	TF	AT2G01760	TCCTGGAAACTCGAAGAAGTCACG	GAATCCGCTTTGGTACAGCTTTGT
995.	TF	AT3G12130	TCAGTACTTCTGGCTGTCCTTTCG	TGGTCCCATATTTGTCATCTGCGA
996.	TF	AT2G25180	GGCCAGTCATCTTCAGAAATTCCG	TGATTAGCCACACCACTGATCCTC
997.	TF	AT3G12680	CAAAACGGGAAGCTGCAAGTATGG	GGGGAATGAATGCAGTCCTCTCAG
998.	TF	AT3G16857	TTGAAGAAACCGCGTGTCGTCT	CCTTCTCAACGCCGAGCTGATTAA
999.	TF	AT3G19360	CGCCGCCATCATTGATCCAGTTAT	GATTGCACGAACATGGGACGAGA
1000.	TF	AT3G62670	GCCAGTCATCTCCAGAAGTACCGT	TCTTCTTGAGGCTCCTGAGGAGTG
1001.	TF	AT3G48440	GACCGGGAGAAGTAGAATGCCCTT	CAGCTCCATATTTGCAGGAGCCAT
1002.	TF	AT4G16110	ACGCAACAGTTGTGGGTGAG	TGATACAGATTCCGGCTCGG
1003.	TF	AT3G51120	TCAATGAGGCTCTGGAAGCTGAGA	TTTTTGCCCGATCACGGAGATGGT
1004.	TF	AT4G31920	TCAGAAATTCCGCGTTGCTC	TAGCCGCCCTGTTAGCTTGTT
1005.	TF	AT3G55980	TCCTCTCCAAGAAACGGCGGATCA	TTGAGCTGCAAAGCCGGTGGAGTA
1006.	TF	AT5G07210	CAAGCATCAACAAGGAGAAGCGGA	AGGTCCAGTCACCATCGTCTTCAT
1007.	TF	AT4G00305	CCGGTGTTTGAGGAATTGCGTACA	GGGTCCTACACAAAGGACACGTCA
1008.	TF	AT5G49240	TCTTGGACTCGAAAGAGCTGTTCC	TGACTGGCTACGTTTTCTCGACTG
1009.	TF	AT4G01020	AAGCTGATCGCCTAAAGGTGCAAT	ATCTCGTGGCAGAGATGCCCATTC
1010.	TF	AT5G58080	CCTCGACAAGGCTGTTCCCAAAAA	GCAAATGACTGGCTACGTTTTCCC
1011.	TF	AT4G29190	TCCTGGGTTTCAGTCTCTGCCTAC	ACACGCTCCATTACGGGTTCTTCC
1012.	TF	AT1G13300	TCAACTCTGGAATCAACCCGACCA	TCTCCTGCTGCAACCTTTCCTCTT
1013.	TF	AT3G50650	TCGGAGCCAGGTTTCATCTCCTT	TCGGACCAAGTAGTCAACGCCAAG
1014.	TF	AT4G29940	TGTGGACAGCAACTGGCAGGATAT	CCGAAGGCCAATCTGCTTCATTGT
1015.	TF	AT3G54220	CACTCTCTGGTTACTCCAAAGATTAGCT	CGTGGCTCAAATCTTGTTCCA
1016.	TF	AT4G32040	TGGAACAGCAACTCTTCCACGTCA	CCCGGTCCGTTTACGTTTGTTCTT
1017.	TF	AT3G60630	GACGAATCGTTACCGTTGGATGGA	GTCTGACTCAGCGTCACAGGAGTA
1018.	TF	AT4G32880	TGGAAGACGGGAGCCTTGTGATAT	CGAAATGAGGAGACGGAGGCATAC
1019.	TF	AT4G00150	ATGTTGGCAAAGGACAGAACTCGT	AACTCCGGTGGAAATCAGGAGGA
1020.	TF	AT4G32980	CTTCCTTCACCCTTACCCGAAAGA	CCATAGCCTAACCCGCGCATTTAT
1021.	TF	AT4G08250	AGCTTTACCAACCGTTGTCAAGCA	AGCCCGTTTTGGCCCAATTCTT
1022.	TF	AT4G34610	TGTTTTGATTCTCCGTGCTTGGC	GAACCAGTTTGAAACCTGACCGC
1023.	TF	AT4G17230	CAGCTTCTCTCCTTCAAAAGGTTT	ACCCCAGCAATACACTACACA
1024.	TF	AT4G35550	ACGGCACCATTTGTGAGCGTCT	CTCCCATTCTCCCTCCTGCAAGAT
1025.	TF	AT4G36710	ACGTGGCGAAACGACAAGGAGAAT	AAACCGCCAAGCTGATGTGGCAAC
1026.	TF	AT4G36740	ACCAGTAGGAGAAGTGAAGCAGCC	AAACAAACCGTTGCCTCCATCTG
1027.	TF	AT4G37650	TTTGCACTCAATGGCCGACT	GTGAGGCGTGTCGTCTGATCTT
1028.	TF	AT4G36870	TTGAAGAGGTGGACCGACGGTACA	ACCGTGGCCCATTACTATGTCGAA
1029.	TF	AT5G17490	CAGTTGGTTCGTTGGTCGTGGA	TGAAAACACTTGCTCGTGCTGTTG
1030.	TF	AT4G37790	TGGTTCCAAAACAGGAGAGCTAGA	TCTCATCCGTTAAAGTCTCGCAAC
1031.	TF	AT5G41920	CGGCGACACAAGCGGGTTTATT	AGCCAAGACGGAGGGTTCCATT
1032.	TF	AT4G40060	TCTCTCCGCCACAATTTCGATTCT	TCCTCTTCCTTAACACCCTCCGTA
1033.	TF	AT5G48150	CTCCGAAAAAGTCAGTTATTGTGC	ACCGTTTACGAGAGTTGTTAACC
1034.	TF	AT5G02030	GCGGCGGAGGAGATAATGGAAAGA	TGTAAACCTCGTCGAGCATGGAGA
1035.	TF	AT5G52510	AGCGGAGTCGATGAAGAGTCGT	CGTCCCATCCAACCAAAGCACA
1036.	TF	AT5G03790	CGATGAGGTGAAGAAGCTGAGAGC	TTGATGGTCCCGGCAGAGATTTG
1037.	TF	AT5G06420	TGATGGTTCTGCGATTAACGCTTC	GTGCAAACTTGTTGAGACTCCTGA

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
1038.	TF	AT1G14600	TGCTCGGCGGTCAATATAAAGCAA	TGGAGATGGCTCTTGACGTGTGA
1039.	TF	AT5G06770	CACAACTCCAATGGCGGATTCAA	CAAATGGACATCCAGAAGTGCTGA
1040.	TF	AT1G25550	CCGGAGTTACACCGCAGATTCTTG	GCGTAGCAACATGTGATCCACCA
1041.	TF	AT5G07060	TACATGCGAATGACCCGAGCGGAT	TGGTCGCCACCTAAAAGCTGTGAA
1042.	TF	AT1G32240	GCAGCAGCTTCGTCAGGACAAT	TCGTCAATTCCTCGCTATCTCTCG
1043.	TF	AT5G07500	TGTAACGCCGGGAACTTGTGTCAG	ATGCGTACCTGCACCTGTGCTTTC
1044.	TF	AT1G49560	TGTTGGAATCCAGAGTTGCATCGC	TTTGTTTAGGAGTTGCCACTCCCG
1045.	TF	AT5G12850	TTGCGTCCCTTGTACCCTTCCACA	AGTAGAGGCGGAAACAGCAGACGA
1046.	TF	AT1G68670	TCGCAGTCGCATACGCATAGAAAA	ACATGAGATCCTCCAAGCTGCTGA
1047.	TF	AT5G44260	CGTCGAGCTTCTTTGGCGATGAAT	TGCAGCCACCGAGAAATCGCTTAG
1048.	TF	AT1G69580	CAACGGATGCTAAGCCAAGGTTGA	GGTGTTGCTTTGTTAGGTCCTCCA
1049.	TF	AT5G58620	TCAGAGTGAAATCAATAGAGCGGG	GCAGGCTGATGATTCTAGCAGAAG
1050.	TF	AT1G79430	CCTAAACCGCGTTTGCGTTGGA	AATCGTCTTTGGGGTCGCTTTGT
1051.	TF	AT4G16150	CGCTGCGTTTAGAGGTTTCCAAGT	TGCCTTCTCAAGAACTCCCACTGA
1052.	TF	AT2G01060	TTCGTTGATGCCGTTGCTCAACTT	AAGAACGCCTTTGGGTGTAGCTCT
1053.	TF	AT1G67310	GGCTGCACAATTTGGAAGTGA	AGCCGATGCCCCTGAAG
1054.	TF	AT2G02060	CCGGATCTTCACCGTTGTTTCGT	ACAAGTTTTGGTGTTGCTCGGTGT
1055.	TF	AT1G67910	TTCCGGTGTAGGATTCACCG	ATGCAGCCTCGATACTCTTGG
1056.	TF	AT2G03500	CCATCTCCAGAAGTATCGGCTTCA	GGTGTACTCCGGTGGAACCCATAT
1057.	TF	AT2G22300	GCGTTGATTTTCGCGATGTA	CTCCCTGCCAAAGAAAGCTG
1058.	TF	AT2G20400	GCTTCAAAGGTCCAGCAACCAAGT	GGGCGCAATTCCACACAAGAAGAA
1059.	TF	AT2G22900	TTCTCATTAGGAATTGTCAGTGGTCT	GGTCCCATACCTGTCCACGT
1060.	TF	AT2G20570	CATCCAATGCATAACGGGACGACT	TGGCGGTGCTCTAAATCTCGTAGC
1061.	TF	AT5G59450	TGATTTCCTGCGAGGGTGCAGA	CTGGCTTAAACCCGGCTCTCAAAA
1062.	TF	AT5G05770	TGCCGGAAAATCTCCACCGTCAAG	TCGGCGAGGCTTAGAAAGATCTGT
1063.	TF	AT5G66770	TGGCTTCATCTCTTTGGCCTGGA	GGTTTGGTTTGGTTATCGCCAGGA
1064.	TF	AT5G06710	AGCAGTTGAATCTTCGTCCTCGTC	GCTTTGTCCTGGCTCGTCTGTTTT
1065.	TF	AT2G06200	GAAGCAGCCGGATCGACAT	TGGCCTCTCACGTGTCCTC
1066.	TF	AT5G11060	AGCTTGACCACTTCATGACGCAT	ACAGCTTCCATTGCATGAACACGA
1067.	TF	AT2G22840	TGGCTAACAGAGTTCAAAATTCTCG	TGTAAGTTCATCGTGGCAGGAA
1068.	TF	AT5G11270	AAGCTGGGCGTCGTAAAACTAGTA	TGGCGGTTTTTCATCTGGTAGTGT
1069.	TF	AT2G36400	TCTTCACCATCCTCTTCAACACC	TGCCCTTCCCAAATACCAAG
1070.	TF	AT5G15150	ACATGCTGAGTTAGTGGCATTGAA	TGCTTCCATTGTTGCTCCATGAA
1071.	TF	AT2G45480	CCAGACACTGTTCTTCAAGAACGT	CATTGTCTGTTTCAACTCCTTGTAAAC
1072.	TF	AT5G17320	CGGAGAAATGGGCGAGGCTTTT	TTTCCTCGATGGTCAACGGAATCC
1073.	TF	AT3G13960	TCAAGACTCGACACTGGTAGCTAATT	TTGGTGCAGATCCATCATTGAT
1074.	TF	AT5G17810	CGAACAAGAAGGGTTTATGACGGT	TCAGTGGGAAGAGGAAGACCAGAG
1075.	TF	AT3G52910	GACGAGCGATTATCATCAAAGACC	CAGGATGCAAATTCAAGGGC
1076.	TF	AT5G19520	TCGGAGAATACTTGGTGGCAAACT	TCACCATCACCTGTGCTTCTGGAT
1077.	TF	AT4G24150	GCTTTCTACTCTTCCGTCTGCC	AAACCACCTCAGTCCTCTGTGG
1078.	TF	AT5G25220	TCTGTTCTCAAAGCTTGGTGGCAA	ACCAACCTCGCCTTATCTTCCTCA
1079.	TF	AT4G37740	CTCCTAGTTCCTTCGGATGGG	GGGTCCATGTTACCGCCTG
1080.	TF	AT5G46010	AGAATGGAAACCAAATCAACATCA	CGTACCGCCGATGAAAAGTT
1081.	TF	AT5G53660	GGAGATTTAGAGCCGGGAAGA	CTTTCGCGCATCTCCATTTC
1082.	TF	AT5G46880	TCCGTGAAGAGCTTGATCGTCTGT	GATCAATGGCTGAGATGGTGGCAT
1083.	TF	AT1G05230	TGGCGTGATAACCAACCAAGAAGG	TTGAAGCACTCACTCCTGCACAAA
1084.	TF	AT5G60690	CGCCAAGCTAATGCAACAGGGATT	TGTCTTCCCATCGTTGACACACAG
1085.	TF	AT3G16940	AGGCAGTTTTGAGGTGGAGACA	TCTGCTGCAACCTGGAGTCC
1086.	TF	AT2G38300	GATCTAAAGTCCCTCGACTCCGGT	TTGCTCTTTCTTGACCTCCAAGCC
1087.	TF	AT5G09410	GCGTTTAGTGGCAGGGAGG	TGCCCCAGCATCAGCAC
1088.	TF	AT2G40260	TTGGGTGGCCCAGATAGAGCAACA	TGGGCAATACTTAGCCCCTTGACG
1089.	TF	AT5G64220	CCGTAGACTATTGACTGTCGTTGAA	TGCCGAGCTAGAAGAAGCCTC
1090.	TF	AT2G40970	TTAGGAGAATGCAAGGCGGGAACG	GCCGATCAGTAGCCGAATCAGAGA
1091.	TF	AT5G08190	GCTTCCGAAAGCTACCATGACGAA	TCTCTAGCAACACGAACATCTGCG
1092.	TF	AT2G42660	CAGACAGAGCGACGCCGAAATT	AAGCTCCAAATCCAGGGCGAGAAG
1093.	TF	AT5G23090	GACGCTTCTCTTCCAAAAGCTACG	TGCAACACGAACATCTGGTGGTA
1094.	TF	AT3G04030	GCATTGGACCACAGCCAAACAAGA	AGCTCAAGTTGCTCATGAAGCCTT
1095.	TF	AT1G17590	AATTATGAGGAGGAGGCAACAGCG	GAAGATACGGCTTACGGGCTTTGA
1096.	TF	AT3G04450	TGGTAGTGAACGAGCCACCCCTAA	CGGTCAACCCAGGGCTATTGATGA
1097.	TF	AT1G30500	GTCACGTAAGCCGTATTTGCATGA	TTTAGAAACCGCCCGCCACATC
1098.	TF	AT3G10760	TCACGGAAACGGAAACTCAAACCA	GGAAGCTGAAGCTGAGACGGTGTA
1099.	TF	AT1G54160	GAATATGCATCAACACCAACGGCG	TGTGATGAGGCAATGGCACTCTTG
1100.	TF	AT3G12730	ACGAGATGCAAATGGAGGTGCAA	GCCGCTATCCTTTGATTCACCTGT
1101.	TF	AT1G72830	TACCTACCACAGGCACCAACATGC	GCTGGTAAAGGAACACGACCAGGA
1102.	TF	AT3G13040	CTGACGAGAAGAAGAAAGGGGCCA	CTTCCATCTGCATACGCAGTGCTT

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
1103.	TF	AT2G34720	GAAGCGTCTTTGCACAGCAAGC	ACTGCAATTGGACCCCAGGATAGG
1104.	TF	AT3G19070	CAGGCCCAAGAACCAACAAT	GGCCTGGAGAGATCTGTGGTATT
1105.	TF	AT3G05690	TGAGTAGTAGATGCCGCAAGCCAT	AGTGTTCAAGAATCTCCCACCGGA
1106.	TF	AT3G24120	AAGATGGGGAGAGTCAGGACACAG	TGACTTGGTAACCCTCGTTCTGCT
1107.	TF	AT1G17920	GGAGGAGTGATTCCATCGCCAGAA	TGTGCCAACACTCAAGCAGAAGTT
1108.	TF	AT1G20693	CAAACCAAAGAGGCCAGCC	GAAAGTCTCACGGAAATCTTCCAT
1109.	TF	AT1G19700	GGATTGTCAAAGAACCAGGTTGCT	TTCGATCATCGGTTTCCACAGAC
1110.	TF	AT1G20696	TCCGTGTGACGTACAAGGAGG	GCTTTGCCAACAGCAGCA
1111.	TF	AT1G20700	TCTCATCAGGAGTGAGGCCAATGG	TCCACCGATGCCTAGTCGATATCC
1112.	TF	AT2G17560	CGCTACTGTTGGTAAGGCTGCT	TGGTTCCACTAGCCAGTTTCAAGT
1113.	TF	AT1G20710	GCAACCTCCGACAACGACAATTAC	TCCCTAAATCAGGACTCGGGAACA
1114.	TF	AT2G34450	GCGGAGGCTCTAGTCGGAAC	GACCTCCTTGCACCTTCACTTG
1115.	TF	AT1G23380	GTGGCCTTACCCTACTGAAGGAGA	TTTTGGTCTAACCCCGTTGCATCA
1116.	TF	AT3G28730	CCAAAGTCAAACCAACCACACACG	GGGGTACATTGTCTGACCTTTCCG
1117.	TF	AT1G26960	AGCTTCAAGCTCAGGTAATGGCAT	TATCGATCTCCGGTGGCCTGAT
1118.	TF	AT3G51880	AGCCAGTTGATGACAGAAAGGTGG	GTTTAGTAGGCTTCTCAGCCGGTG
1119.	TF	AT1G27050	AAGTTGGAGGTGGTTTGGGCGA	TCGACGAAAACGACGACGTTCT
1120.	TF	AT4G11080	GCAAACGAGAGGAGAGCTGCTTTA	TCCAGCCATCTTAGCGACCTCAAT
1121.	TF	AT1G28420	TGGTGCGTTTGGAACACCTATAGC	TGTCGCTCATACAGATCGCTCTCA
1122.	TF	AT4G23800	AGGAGAGCTGCTTTACGCGA	CTCCAGTGATCTTTGCGACCT
1123.	TF	AT1G30490	TGCAGCAGGGATATGCGAATCTTC	ACCGTCGCTTGCTCATACGAAAC
1124.	TF	AT4G35570	TCTTCGTCTTCCTGGACGATTTCC	GCTCTACCAACATTACCGACGGAT
1125.	TF	AT1G34650	TGACTTTTCTCCAGCCGTCAAGTG	GGAGCGTATACCACCATACCTCCT
1126.	TF	AT5G23420	AACAAGCCCAAGCGACCTCT	ACGTTTTACGGAAGTCACTCATGA
1127.	TF	AT1G46480	TGAGAGAACCAATGGTGGAGAAGG	TCAAATCCCCAGCTCCTACATGTC
1128.	TF	AT5G56770	GGACATATTCTCGGAAGGATACTCA	TGTTGCAGCAGCTTCTGGTG
1129.	TF	AT5G56780	ATACAGATGGGCTCCGATGG	CAAGAGCATCCCTTCTGTTGC
1130.	TF	AT3G04100	GCGACAATATGGCTCACTTACG	CGTCCCACACGAACAGAAGAT
1131.	TF	AT1G32330	TCGTTTGGAAACCACCGGAGT	CTGGGTCAACCTTCCTGAAACCAT
1132.	TF	AT3G18650	AATTCGGATGCGGGAAATTA	GCCCATTGATCCCAGTTCCT
1133.	TF	AT1G46264	GCAAAACGAGACTTGTGTTGGA	GTAGAAGCAGTCATGAGATTCAAAGC
1134.	TF	AT3G30260	GCTTCGCCGGACAATATCTC	CCTTTGTGATGTATCCCCCG
1135.	TF	AT1G67970	TCGTCAGCTCAATATCTACGGTT	TCCTCCTGATAACATTCTTCAGCA
1136.	TF	AT3G54340	TGGGCCACTCAATATGAGCGAATG	ACACTCACCTAGCCTCTGCTTGAT
1137.	TF	AT1G74250	TCCCAGGATTACAAGAAGGCTCCC	GCCCTTGGTTTTCATTCCTCTGGT
1138.	TF	AT3G57230	TGGCGTTCGAATGAAAAAGG	TGGTGAACGAGATTCCCCTCT
1139.	TF	AT1G77570	GCAATCATATCGTGGAGCGAAAGC	TGAACCCATGAGAACGAAGGTTGG
1140.	TF	AT3G57390	ACTTCCTTGCAGTTGGGGTTGTC	GCCACTTGACTCCCAGAGTTATCG
1141.	TF	AT2G26150	CTTGCCAAGGCGTTGAACAATCC	TCCGTTTCCTCCCCACATCCAAA
1142.	TF	AT3G58780	TGTACCTGCGAGCAAAGATAGCCG	ATCACACTCGATTCCTGCTGGTCC
1143.	TF	AT2G41690	GTTCGCCAGCTCAATACTTACGGT	TGCTCATAAGCTCTCTTTGCCCCT
1144.	TF	AT3G61120	TTCCGCAACCCGAAAACAAAAGAC	TCCCTCTCCTTTCTCCGAAGCTCT
1145.	TF	AT3G02990	TCCAGCTTCGTCAGACAGCTCAA	TTTGGCCTCTTAAAAAGCCCTCGT
1146.	TF	AT3G66656	GTGCAAGACACAAACACGAAGCAA	GCAAGCTCGCTCGCTTTCTTGAA
1147.	TF	AT3G22830	TCCGCCAGCTCAACACATATGG	TTTGCCCTCTAAGAAACCCTTCGT
1148.	TF	AT4G09960	TCAGGTCCAAGAAGCATGAGTTGC	TCAATCTCCCTTTTCTGCGCGTTT
1149.	TF	AT3G24520	TCTCGCAACGAATCTTACCTGCTT	ACCCATAGGTGTTGAGTTGACGAA
1150.	TF	AT4G11250	TTGGATCCTAGCAAGTTCTCGC	TGGATTGTGAAGCAGACAGTGG
1151.	TF	AT1G68320	GCCAAATGTGCTGGGCTAAAGAGA	TCCCTCGTCTTATGTCGGGTTTCA
1152.	TF	AT5G02320	GGACCTTGGACTCAAGAGGAGGAT	TGGTAAGGACTTGGCGATGACAGA
1153.	TF	AT1G69560	TCGCCGTCTACGGTCCACAAAACT	TCGAAGCCTACAGCTTTTCCCGGA
1154.	TF	AT5G03780	TCCCTCGATTCGCTTCTGGATGAT	CGCTTCTTGTGTGGCACATCTCTT
1155.	TF	AT1G73410	TCCTGGTCGCTCTGGTAAGA	TCCGATGAGCCGCTAAAAGTC
1156.	TF	AT5G04110	AGAAGTCGAAGCTTGTTGAGGACA	AGACAATGCAAGTCAGTCCTTCCA
1157.	TF	AT1G74080	TGGAGAGTTTAGCCAAGACGAGGA	TGGCCGACCATTTGTTGCCAT
1158.	TF	AT5G06100	TGGGCACGTATGGCTGCACATT	AACCAGCTCGTTGTCGCCTCTT
1159.	TF	AT1G74430	CCGGAAGCTCGTGGTTTACATCAA	TAGACCGGCTCTCTTAGGCAGTGA
1160.	TF	AT5G06110	AACCAAGAAACCCACAGCCTAACC	TGAGTCCACGCTCATCTCTGTCAA
1161.	TF	AT1G74650	ACCACCTTGTTGCGAGAAGATTGA	CTCTTGCTACACCTTAGCAAACCG
1162.	TF	AT5G07690	GCATGGACTGCCGAAGAAGACAAG	TCCAGCTTTTTGGGGAATGTCACG
1163.	TF	AT1G79180	TGGGCTATTGAGGTGTGGGAAGA	TCCTCCTCTGAAGTGAAGTTGCCA
1164.	TF	AT5G07700	CCAGAAAAAGCTGGGCTGAAACG	GCCACGAGATGCATGAAGCATGAT
1165.	TF	AT2G02820	TGGCCCAGAAAGTTAATGCAG	AGAACCTTCCAGGCATTCTCC
1166.	TF	AT5G10280	CAAGTGGTCAACGATTGCGAAT	GGTGAGTCATTGGATCAAAACCCA
1167.	TF	AT2G03470	GATGCAAAAGTGCAATGCTAAGC	TCTCACAGAGACCAATCAGATCCT

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
1168.	TF	AT5G11050	TGGACAGCCGATGAAGACAGGAA	AGCTTCTCCGAGATTACTGCCCAT
1169.	TF	AT2G06020	TCTCGTGAAACCAACTTATCGTCT	ACTTATCCACTGGATCTGCTTCATC
1170.	TF	AT5G11510	TGCCTGGAAGGTCGGATAATGGAA	CTGATCCAAAAGGCCAGACGACAT
1171.	TF	AT2G13960	TTGGACTCCAGAGGAGGATGAGAC	TTCTGCCACCTGTGCAAGCA
1172.	TF	AT5G12870	AAGCGTGGCGCTTTCTCTCCTCAA	CAATCTGAGACCACCTGTTGCCGA
1173.	TF	AT3G51910	TCTTTCTCCACGATTCTCCTTCCT	GCAAATTCCCATCTCTCTGCTTCT
1174.	TF	AT4G11880	TGCTGATGGAGAAGTGTGAGATGC	TGTCGAGTCTCAGGAGGTCCAATG
1175.	TF	AT3G63350	TCCACATTCCTTCTCGGCCACT	TCTGCCTCGATCTTTCTGAATCCA
1176.	TF	AT4G18960	GCCAAATTGCGTCAACAAATAA	TCTCACCCATCAATTGCCTGT
1177.	TF	AT4G11660	TGATCTCGTGGAACGAAGATGGAA	CCGTAAGTATTGAGCTGACGAACA
1178.	TF	AT4G22950	TCAGCAAGCGAGAGACGAAACATC	TGCATCAATGCCTTCTCCAAGCAA
1179.	TF	AT4G13980	GAATTCAACAATGAACGGCGCAT	CGATACGATCTGGTCCGTTGATGA
1180.	TF	AT4G24540	CAGTGGAACTCCCCTTGAGGAT	TCCCAAGATGGAAGCCCAA
1181.	TF	AT4G17600	ACGACGAACCAGTGCTTTTCGAT	GCCGCACGACCATTTAAGAGTTCA
1182.	TF	AT4G36590	TCTCCAACTTGTTGAAACCCGTCC	TTTCCTGGTTTGCCAGCACCTC
1183.	TF	AT4G17750	TCTCATGGAGTCCGACGAACAATA	ACCATAGGTGTTTAACTGGCGAAC
1184.	TF	AT4G37940	CGAGGTCGGTCTCATCATCTTC	AACCGACTTCATGCTGGAGCT
1185.	TF	AT4G18870	CAGAGCGGCAAGAGTTTCATCATT	CGCGAATTCCCATTTTCCAGAGTC
1186.	TF	AT5G04640	TCATAGCCACTCCGGTCTCTTCCA	TTCGTGAGGAAAGCGGCTACAACG
1187.	TF	AT4G18880	TCCGCCAGCTTAACACATATGGTT	TCGCAAATTCCCATTGCTCAGGA
1188.	TF	AT5G06500	TGACGATAGGATGAGGAGGGCAAG	GCGCATATCGCACAGAATGGACAG
1189.	TF	AT4G19630	CGTGGAGCAAAAGCAACAATGGTT	ACTCTGAGAGTTTGCCGCAATTGA
1190.	TF	AT5G10140	TTCAACTGGAGGAACACCTTGA	CATGAGTTCGGTCTTCTTGGC
1191.	TF	AT4G36990	TCGTCAGCTCAACACTTACGGATT	CCGTCGTATGTCCGTCAACAGAT
1192.	TF	AT5G13790	GCAAAGCCTTGAGCAGCAA	CAGCAATCGTTCCTTTCGCT
1193.	TF	AT5G03720	GACAGCTTAACACTTATGGATTTCGA	TCGTTAGCGAATTCCCACTTGT
1194.	TF	AT5G15800	TGACCAGCTCTCGGATCTTCA	CATCCAGCTTCATTGCCAAAG
1195.	TF	AT5G16820	GCACAACAACTTCTCCAGCTTCGT	GCAAATTCCCATCGGTCAGGATCA
1196.	TF	AT5G20240	AAATCTGATGGCTGTCGAGCAC	TCTGGTGGTCTCGGACTTTGTC
1197.	TF	AT2G16720	GGCAACAAGTGGTCTTTGATTGCG	TGGCTGGATCAATCCCTTTGCTC
1198.	TF	AT5G14340	CAATGGCATCCACTGCTGGAGAAT	TTCCCGCATCTCAACAAACCTGC
1199.	TF	AT2G22710	CTCCAAACAATCATTATCTTCCCG	TGGCTTTCTTGTTGACTGTTGC
1200.	TF	AT5G14750	ATTTCACCGAGCAAGAAGAGGAT	CCACCTATTACCAAGCAACTTGTG
1201.	TF	AT2G23290	AAACCGTTAAAACGGAGGGCGAGT	ACTTAACGCCGTCACCACAACAAC
1202.	TF	AT5G15310	ACAAAACCACACGAAGATCAACA	CAGAGAATGACACTGTAGATGTCGG
1203.	TF	AT2G25230	ACCATGCTCGTCCTAACATTAAGA	GCGATCTCGACCCATTTGGTA
1204.	TF	AT5G16600	TGGGGAGGCAACCATGTTGTGA	CGCAATAGTCCAGAAAGCTTGGGA
1205.	TF	AT2G26950	TGTTCAGCCTAGCCGCAATC	TCCACCCGTGAAAGGAAATG
1206.	TF	AT5G16770	AGTGGTCGTCGATAGCCGGTAAT	ACCGGATCAATCCCCATTTGGAGA
1207.	TF	AT2G26960	ATCATGAAGAGCCTGGCGG	GACTCATGTTCCGGCATTGG
1208.	TF	AT5G17800	ACCACCTTCTTGGTAGATCAGGCA	TCCTCCGTGAAGGCTCTCTTGTTA
1209.	TF	AT2G31180	CGCAGGTTTACTTAGATGTGGGAA	TTGCCTAAGCTTTCATGCAGATTG
1210.	TF	AT5G18620	GAAGGGGTCGCCATTCTTCCAAAC	AACCGTGTGCCTCCAGATCCAACT
1211.	TF	AT2G32460	TCATCATCGACCTTCACGCTAAGC	GTAACTGAGAAGCCATACGAGCCC
1212.	TF	AT5G23000	CCTTGGTCGCCTGAAGAAGACTCT	TCCCACATCTCCTCAAACCGGCTT
1213.	TF	AT2G33610	TGGCTCAGGCTGCTTTTCTTTCAG	CGAGCTGCTGCTTCTGCAACATTT
1214.	TF	AT5G23650	CAATGGTTGGACCAATGCTCT	TGAGATGGAGCCAAGTGGTTC
1215.	TF	AT2G36890	TCCATTGGAAGCAGGTGGTCAGTA	TAAGTGGTGATGTGGAGGAGGAGC
1216.	TF	AT5G26660	CTCCATGCTGCATTAGGCAACAGA	TGTTCTTCCCGGTAACCGCGTT
1217.	TF	AT2G36960	GGATGTATACTGGCCCGACTCGTT	CCCGAGGCTCTCACTAAGGATCAA
1218.	TF	AT5G35550	ACTCTCCCTAACCAAGCTGGTCTC	CCCCGGTCTTAGGTAGTTCTTCCA
1219.	TF	AT2G37630	TGACAGAGGAAGAGCAGAGGCTTG	TCCACTTGTTGCCGTGTTTCTCC
1220.	TF	AT5G39700	TCAATCGAAGAACAGACCATGCTG	ACTACCAGGAAGAAAGTTGGAGGT
1221.	TF	AT5G43840	TGCCCTAATTTGCCTCCCTAGATG	TGCCTCTCTCCCTTCAGAAAATGC
1222.	TF	AT5G23260	CGAACAGAACAGGATGCCTCA	AAGTCGCAATCCGTTGGTATG
1223.	TF	AT5G45710	GCCTGCTCCAAAAACAGGCGTTAA	TCGGTTGATCCAGGGTTCTCTGTC
1224.	TF	AT5G26580	TGAATCCGATGGTGGAACAA	ATGAAAGGAATGCTCTCACGC
1225.	TF	AT5G54070	TTCGTCAGCTTAACTCTTACGGTT	GCAAATGTTTCTTCCCTCCTTGAA
1226.	TF	AT5G26630	CTTTGTGGCGTCCCGATCT	ACACCTCCGGGTTCAGCTC
1227.	TF	AT5G62020	TCGTCAGCTCAACACTTACGGAT	GACGTTGGATCTCACGGAGAAGA
1228.	TF	AT5G26650	TGAATCATGTTGGAGGGCGTGAAA	AACGGCTGGTAGTTGATTGGATGG
1229.	TF	AT1G08620	TCACCCGCAATCGTACAGGCTATC	GAACTGAACTTGTGGCCGGGAATA
1230.	TF	AT5G26870	CGAGTTAGGTCAGATCCCCG	ACACACCGATATTCACCAATGG
1231.	TF	AT1G30810	TCCACGTCATCGGAAGGTTGTTGC	GATGGAGTGAATACGGGAGCGTCA
1232.	TF	AT5G26950	CСTCCTCAGATGCAGACACAAACC	GCAAACGACGGTGCTTGATTCCAT

No.	$\begin{aligned} & \text { Gene } \\ & \text { group } \end{aligned}$	AGI	Sequence of forward primer	Sequence of reverse primer
1233.	TF	AT1G63490	GCCTGAATGCGCTGATTCTGATCC	CATGCAAAAACAGATGGCCTGCAA
1234.	TF	AT5G27050	CATGGCCGGAGGATGAATC	CCGTCGCTCTCTCTCGTTTAGTT
1235.	TF	AT2G34880	GTGCTGCTCAGAACAAAGAGGACA	GACAACGCCTACGAGGAGGTTCTA
1236.	TF	AT5G27070	TGGTTTTTCCTCCTCAGATGCA	CCATGCCGCAAACTGATCA
1237.	TF	AT2G38950	AGGTTGGAATCTGAACAGTACGGC	TCCAGAACTGGGAAGACAAGCAC
1238.	TF	AT5G27090	AGCTTCTGTTACTCCAACCCGAGA	GAATAAACCGCACAGCTCTGACCT
1239.	TF	AT3G20810	TTCCCGTGGAGGTGGGGAAAAA	ATTGGTCCGCATCCGTTCAAGG
1240.	TF	AT5G27130	TGTCAACGAGTATTGCAGCGATCA	GACGGAGACGAGAGGTTAGGGTTT
1241.	TF	AT3G48430	GCCGGAATACCGTGTTGCAGGTTA	AGCTCCCGGAAAGGTGACGACAAA
1242.	TF	AT5G27580	TTACTCCAACCCGAGAACCAGACC	GATTCGTTGTGGAAGAAACCGCAC
1243.	TF	AT4G20400	TTCTCTCCCCGCACGTAATTAAGC	GGATCAAGAGCCTCAACCACCTGT
1244.	TF	AT5G27810	GAAGTGTGGCCATCAAATTCTG	CCGGGAGTGTCCTAAATTCG
1245.	TF	AT2G39880	GGGCCGAGGAACTGGAATCTAATC	TGCTCCTCCTCATCAGAGAAAGGT
1246.	TF	AT5G40330	CACAAGCTCCTCGGCAACAGAT	CGGCTTTGACGGCAGTTGAATGAT
1247.	TF	AT2G42150	CCGACTCGAACGTCAGGAAACAAT	TACAAGCCTCCTTCGACTCGCTTC
1248.	TF	AT5G40350	TGCAAAATGGGGAAATAGGTGGT	GGAGCTTTGTGATCCAACGGT
1249.	TF	AT2G44430	TTGATCTGATTCGGTCCCATCCGC	TGTAATCCTTAGCCTCCTGGCTCC
1250.	TF	AT5G40360	ACGAGTTGTTGGTGAGAATGGTGA	GGTTATGCCACCTCTCTCGACAT
1251.	TF	AT2G47190	GGCAATAGGTGGTCGAAGATTGCG	GTGTTTGGCTTGCTTTTGGACTCG
1252.	TF	AT5G40430	AGGAGGCGAGCACAAGCAAAT	GGGTTCAAGTGCCACCATCTCTTT
1253.	TF	AT2G47210	AATGCCAGACACTCCAAAGGATCG	GGACCCTTGCGTTTTTGTTCCTTC
1254.	TF	AT5G41020	TTGCAGATGCAATGGGTAAGCACA	ATCTTCCTCTCCTCCAAGCGTCTT
1255.	TF	AT2G47460	TCTCTCCCCAAAAATGCCGGATTA	TGTTTCCACGCTTGAGGTCTGAT
1256.	TF	AT5G45420	AGGCAGCTATGAGATGGGAGAA	AATCCCGTACAGATGTCCTCTAGT
1257.	TF	AT2G47620	CACTTATGAAACAGGTCGCTGCCA	GGCTTCATCACAAAGAGCTGCAAG
1258.	TF	AT5G47290	GCAGAGATGTTGTGCCCGA	TCCCTTCTTCGCCACTATCG
1259.	TF	AT3G01140	GCAGCTCCTCAACAACATTGCTTC	GGTCTCCGTTTCCTTGGTTTGGTT
1260.	TF	AT5G49330	GCATTCCCTTCTCGGCAACAGAT	GGAAACGGCAGTGAAGGCATAGAT
1261.	TF	AT3G01530	TCGCCAAAGCCTCTGGTCTAAAAC	TATGTTCCCTCGCCGCACATCT
1262.	TF	AT5G49620	GCCGAACTCAAAAGGACCGGAAAA	TGTTTCCACGGCGCACATCT
1263.	TF	AT3G02940	CTTGGGAACAAGTGGTCGTCT	ATGGTCGGTTCTTGGCCTATG
1264.	TF	AT5G52260	AGCTGGATTGCAAAGGAATGGGAA	GACCCCCTCTTTAGTCCTGGTCTT
1265.	TF	AT3G05380	CTTGGGCGTTGAGTTGGTTATGGA	TTGCCTCCTTAGACCCTCTGGCAT
1266.	TF	AT5G52600	TCATGGTGAAGGAAACTGGGCAGA	TTTCCTCCTCTCTTCAACCCGGAT
1267.	TF	AT3G06490	TCATTCCCGTTGGGGAAATAGATG	TTCTTGATCTCGTTGTCCGTTCT
1268.	TF	AT5G54230	GGAAGACGAGAAGCTCGTAGGCTA	CGCATCTTTTTAACCCGGCGTTC
1269.	TF	AT5G04240	TTTCAAGGCAGTGCCACGATCATT	CGATCTCTTAGTCGGGAGCTACGA
1270.	TF	AT5G27960	ATGATGGATCAAGAAACCCA	AGCCAAATTCTTTAGTTGCTCTTT
1271.	TF	AT5G46910	TGCTGGTTTCAGCCACGGTTTTAA	CCAATCACCCATCGCAAAGTTCAC
1272.	TF	AT5G37415	TGGACCATCTTCAAGAAAGCTTCA	TTCTCTCGCTCCTTAGGCCA
1273.	TF	AT5G63080	TCTTGCTGCCAACACAGGAA	AGAGAACCGTGACATGAAGAGGA
1274.	TF	AT5G38620	AGAAGAGCGATGTTCACGGAA	ACTGCAGAAGCGGACTGAAAA
1275.	TF	AT1G01780	TCAGCAAAAACTTTCAACCAGG	TTGCTGGGAGTCCTAGTCAGCT
1276.	TF	AT5G38740	TGGTTGTCATCAAAACATGTCTA	CCAAGGATGTTGAAAGCTG
1277.	TF	AT1G10200	GAGAGACCTGCTGGAACCAAAGTT	ACTTGAAGCAGCTCTTGTGGTACA
1278.	TF	AT5G39750	CAAGATCACTCTGCTCCTGTGG	GCGGCATCAACCCATAGTTG
1279.	TF	AT2G39900	AGTCACCTGCAAAGCCATTGA	CGACTAGGTGTCCTATTCAGCTCC
1280.	TF	AT5G40120	TAAGAAGAACGTGAATGTTTTAAAGTA	AACTTGGTCGGGAGGGTAA
1281.	TF	AT2G45800	TCAGGCAGGAAAGACCGAGA	TGATAACTTGCTTGGAGTTCGAGTC
1282.	TF	AT5G40220	GCTTGAATTTCTTGAGTCGCG	TGCTAAACTGTGGTGATCCGG
1283.	TF	AT3G55770	AAGGTAACAGTCGAGAGCCAGACA	GTTGGAAGGTGAAATTGGGCAACC
1284.	TF	AT5G41200	TTCTCCACTGATTCAGTCCTTGG	AAATCGAAGCCTTTCTTGGAATT
1285.	TF	AT3G61230	GAGAAATCGAATGATGCGACG	GTGTGCCGCTAAAGAAGGATG
1286.	TF	AT5G48670	TCACCAGCCACAGGAGCAC	GGCATCAAGAGCGTTGGAAG
1287.	TF	AT4G32551	CTTACCCCTCGCTGCTCGTA	TCTGACATGTTCCATAGTTCTAAAGACTG
1288.	TF	AT5G49420	CGATCAAGACATTGGCTTCGACAC	TGGTCATGTTCTCATCGCATGAGT
1289.	TF	AT5G65070	CCGGAAAGTAGCTCTGACAACA	TGATGGTGGTTACTTGAGAAGCA
1290.	TF	AT5G49490	ATTTGTTGCGTCCCTGATGAA	TTGGTGAGATTCCAACAATCTCG
1291.	TF	AT1G01530	CTGAAAGCCGCACAAAGCTC	CAGCCATCACCTCAGTTAAAGACTC
1292.	TF	AT5G51860	TGCTCAAGTGGCAGCTATGATC	TCCTGATATCGGAGCTAGCGA
1293.	TF	AT3G08500	TCCATTCTTGGTAACAGGTGGTCT	TGTTGTTCTTAAGCCGCTTCTTCA
1294.	TF	AT5G55020	ACCTTAACAGTTCCGGTGCTCA	AAGACATCCTCTAAGAGGCTGCAG
1295.	TF	AT3G09230	TCTTCGTTGGTGTAATCAGCTCAA	AGCCTGATCCTCTACCTCAGTAAA
1296.	TF	AT5G56110	GCTGGGTTGCAAAGATGTGGGAAG	CGGACGCAGATAGTTTGTCCATCG
1297.	TF	AT3G09370	AAGGGACCTTGGACACATGAGGA	GACCATTTCGCAGGCCCGTATT

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
1298.	TF	AT5G57620	GGTCACCGGAAGAAGATGTGAAGC	CCCAATTTTCTGAGGCAGTGCGAT
1299.	TF	AT3G10113	TCCAAGATGGCTCAGGAAGCTGAC	GAGGCGGGATCACAATCGCTTTAA
1300.	TF	AT5G58850	TCGCTAGAAGTGCAGCCAGAGATT	ACTTCCTGTCTTCTTCCGCCGT
1301.	TF	AT3G10595	TGGACCAAAGAAACACATGAATGG	GCCACTGGTAAAAGTTTTCTGCAT
1302.	TF	AT5G59780	GCATCCTGGTCTCAAACGTGGTAA	CCGGGCAATTTTTGACCACCTGT
1303.	TF	AT3G11440	TTGGGTCGCTCCGAGATTACAAGT	AGCTGATGAAAAACCACCTGCACT
1304.	TF	AT5G60890	CTTAAGGGTAACAAGTGGGCCGCA	TTTCGTTGTCAGTTCGTCCCGCCA
1305.	TF	AT3G11450	ACTCGCTAAAGCCAAGGAGGCAAA	AAGCAATCCGATGGGACCTCGTCA
1306.	TF	AT5G61420	TCCCCAAAAAGCTGGGTTGAAA	TTTAAGGTAGTTGGTCCATCGCA
1307.	TF	AT3G12560	TGAAGATCCTGCTGTGCCAAC	AGGAGACGCCGCAGACC
1308.	TF	AT5G62320	ATCTCCGGCCAGATCTCAAGAGAG	CCATCTATTGCCAAGGCGAGCAT
1309.	TF	AT3G12720	TGGTCTCCAGAGGAAGACGAGAAG	TCTGCAACCCGGCAAGCTTT
1310.	TF	AT5G62470	TCGACCCGGTATTAAGCGTGGAA	GCTGCCCATCTGTTGCCTAAAAGG
1311.	TF	AT3G12820	CGCTGGATTGATGAGATGCGGAA	TGAAGTTGCCTCGTTTGAGACCTG
1312.	TF	AT5G65230	TCATGCGGTTCTAGGCAACAAGTG	TCAGTTCGTCCAGGTAAGTGGCT
1313.	TF	AT3G13540	GACGAGGAAGATCTCATCCTCCGT	GATCAATGACCACCTGTTGCCGA
1314.	TF	AT5G65790	GCAGGTGGTCTATAATTGCTGCAC	TCTCTTGCTTCATTCGCGCTTC
1315.	TF	AT3G13890	CACAGCATTCTTGGTAACAGATGG	TGATGGTGAGACATGAGCTTCTTT
1316.	TF	AT5G67300	AGACGACGTTTCGATAGGAAGCGG	TTCAAGCCTGTGCCTAGACCTGGT
1317.	TF	AT1G17310	TTTGGCCATGTAGACGCATTG	CCTCCAACTTCACCGGA
1318.	TF	AT5G51870	TGCAGGAGCTGAAGATGGAAA	CCCAACAGCTTACGGTGATGA
1319.	TF	AT1G18750	CAACAACACAGTTTCACAGCGG	GCCAAGACATGGAGTGAGCTTC
1320.	TF	AT5G55690	TTCTCGAATGTGACAGAGCCGATG	CCGAACAACTCCCGTAAAACAAGC
1321.	TF	AT1G22130	GACATCGCTCTTCAAGTCACGA	CATGCTCAAGTTCCTCGACGT
1322.	TF	AT5G58890	GATGTGGTGATTTCCGAGCC	TGATGGCCCTGACTTTGGTC
1323.	TF	AT1G22590	CTTGTGCCATCATCTACAGCGA	CCTCGTTAAGGTTTGGCCAGA
1324.	TF	AT5G60440	TCATCTTACTCAGGTGTTGAGTCA	CGAGTTGAGATAACGCAAGTTCC
1325.	TF	AT1G24260	AGAGCTCTCAGGACACAGTTTATGCT	GCATGCGTTCCTTACTCTGAAGAT
1326.	TF	AT5G60910	TCTTCTTCAGTTCTTCTGCCTCAA	TCTCCACAAAGCCATCTCTGG
1327.	TF	AT1G26310	TCTCACGTTAATGCACAGACGA	TCAATCTTGGCCTTAAGCCTG
1328.	TF	AT5G62165	ACTCCTTGAGTTTCACAAGCGGAA	ATTGAGCCTTTCTTTCTCGGACCT
1329.	TF	AT1G28450	AGGCGAAGAAGATGATGGAGAA	AAGCAACTTCCTCACGCAGTTT
1330.	TF	AT5G65050	TGCTGATGAACTTGAAGCCTTAGA	TTTGAGTGGCAGATAATTCCGAG
1331.	TF	AT1G28460	ATGTGTGGTGGAAAGTGGATCC	CATCATCTTCTTCGCCTTTTCG
1332.	TF	AT5G65060	AGTTGCTGATAGAAGAGAACCAGA	GCGAAAGAGTCTCCGGTACTT
1333.	TF	AT1G29960	TGGCTTATGCTTATGGTCCGAG	CCGCTAATAACACATTTCCCGA
1334.	TF	AT5G65080	CGTCTCTTCCACCGGCAA	GATGATCTTGGCCATGCTGTC
1335.	TF	AT1G31140	TCTTTTGAGCTCCATCTCGAATCT	TGCATGAACTCAGACTTGCGA
1336.	TF	AT5G65330	ACGCAAGAAGAGCCGCAATCT	TCGTCTTCCCCTTGTCCTTGTCCT
1337.	TF	AT1G31630	CGTCAACCGAAGGTGTTCAAG	TTGGATTGTTCTGTCGCCG
1338.	TF	AT2G42680	CGAGACCGTCAGAAAATTCAATG	CAGAGATGTGCCGCTTGATG
1339.	TF	AT1G31640	TGAAGCATGCACACATCCCTT	TAAGACCAACGGTTGGTGGCT
1340.	TF	AT3G24500	AAAGAGCCAAGACCTACGCG	CGCGACACCGTTTCTCAGA
1341.	TF	AT3G15320	TGCAAGTTCCCAACCAATCCATGT	TTTGGCTGCCTTCACACCAGGA
1342.	TF	AT1G01060	ACGAAACAGGTAAGTGGCGACATT	TGGGAACATCTTGAACCGCGTT
1343.	TF	AT3G18100	TGAAGAAGAAACGCAAAGCCAAGC	CCGTCTCTTTGGTTGTCTCTCTGC
1344.	TF	AT1G01380	AGCAATGGCTCAGGAAGAAGAGGA	TCCCACCTTTCACCGACAAGCTTA
1345.	TF	AT3G23250	TCCATGCTGTGAGAAGATGGGGT	AAAGACCAGCTTGCTTAGGGAGGG
1346.	TF	AT1G01520	AGCCCTTCATCTATTTGACCGGGA	TGTGCGTGGCTTCGTATCTGTATC
1347.	TF	AT3G24310	TGCTAAGTGGGGCAATAGGTGGT	GGTTCTTTGTCTTCTCCGCACTGT
1348.	TF	AT1G09770	AAAGGGTCATGAGAGGAGGGCAGA	GCCTGCTTCAATGTCGCCTCTATT
1349.	TF	AT3G27220	AAGTGCTCACGTAGACGCGAGA	TTGGCATTGGTGGCAACATTTTCC
1350.	TF	AT1G15720	TTCGGATGGCTTCTTCGGTGATGC	TCACGAGTCACCAAGTCGCTCTCT
1351.	TF	AT3G27785	AGTTATTGGTGCAGCTAGTGGACC	TCCAACTCGTCCTTGAAGCATCTT
1352.	TF	AT1G17460	TGTGGATCTCAAGGACAAATGGCG	TCGACCCGTGTTTCTTCAGACCT
1353.	TF	AT3G27810	CAGGTGGTCGAAAATCGCCAA	TGATGAGATCCAACGGACGATG
1354.	TF	AT1G17520	GAGCAGCAACGACAAGAAGTGC	TTCAAGCTTTCCCTGAGCTGCAA
1355.	TF	AT3G27920	CGCATCGTCAGAAAAACTGGGCTA	CCGAGGAGCTTGTGGAGACGAATA
1356.	TF	AT1G18330	TCCAAGATGGCTCAGGAAGCTGAC	GGCGGGATCACAATCGCTTTAACC
1357.	TF	AT3G28470	ATTGGCAGCAGGTGGTCTTCCA	AGTCACCGGGTCTATCCCCATTTT
1358.	TF	AT1G19000	CAACCGTCGCCGAAGAAGATCTA	GGCCATTTCTGTAACCGTCTCAGT
1359.	TF	AT3G28910	GTTCCTACCAATACTGGGCTGCTT	TGCCTCTTTTGATTCCTGGCCTTA
1360.	TF	AT1G49950	TCCACCAGACTTCAAACGCTTGTT	AACCTTCACAAGTTTCCCGCAAGA
1361.	TF	AT3G29020	AGCTTGTTTCGGTTTACGGTCCT	TGCAGCTCTTTCCTGTTCTTCCTT
1362.	TF	AT1G70000	TCCTGATCCCAACCCAACCGAT	TCCTCGTTTGCGTTCACGGTTTC

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
1363.	TF	AT3G30210	TTGAGGCCAGGGCTTAAGAGAGGA	AGACCACTTGTTACCCCAAAGGGA
1364.	TF	AT1G71030	CCTTCCGGTATGCAACACCGTAAG	AGTGCATGAAGCTTGAGGATGAGA
1365.	TF	AT1G33070	ATTTCAAGCATGCGCACATC	ACGGTTGGTGTTTGGTGGTAG
1366.	TF	AT3G58680	GACCGTTCGAAAATTCAATGC	GTTCAAGGAGGTGCCGCTT
1367.	TF	AT1G46408	TCATCAGCCGTGTTCTGCAAGG	TGCTCTTCCGTGTTAAACCCATCG
1368.	TF	AT1G01150	TGCGGAGAAGCTTATGCTGTTGT	TCTCCACTCCCTCCCTCAACATCT
1369.	TF	AT1G47760	GGAGGATTTGAGGAAGAAACAGC	CGCCTTGAAAGCAACTAAGTCC
1370.	TF	AT1G06180	CCTAAACTAGCCGGGCTACTTC	GACCATCTGTTGCCTAAGAGTTGA
1371.	TF	AT1G48150	CCGATGTTCACAGAGGAGGATC	CCAAACACGTCGTCGACATCTA
1372.	TF	AT1G06910	AGGGCGTGGGTAATCAGAACAGT	AGAGGCTCTCTTGGTCGTCTTCTT
1373.	TF	AT1G54760	GTAGATGAGGATGCGTGGTGG	TCGCCTCTTCGTGATCTTCC
1374.	TF	AT1G07540	CGAGCTGCCAGATCACCAAGAAAG	TGCAGCCAACAAATCGAAAGACGA
1375.	TF	AT1G59810	ATCTGTTACGGTCCCGACAGCGAT	TCAAGGCATTGAACTTGGCAACGA
1376.	TF	AT1G08810	ACACTGGGTTATTGAGATGCAGCA	TGGACGCCCATTTGTTACCCAA
1377.	TF	AT1G60040	TCAAAAGATGCAGCTTACACGG	CCTGAAGATAATTACCGCCGAA
1378.	TF	AT1G09540	TCCTTGGAAACAGATGGTCACAG	TGTGTTTGGGTCAATGCCTCTTT
1379.	TF	AT1G60880	GCGGCTCCTATGACTTCCAAA	CGACAGAGGAATGACCGAAAGA
1380.	TF	AT1G09710	TGGACGACGATAGTGACATGGAGT	TGTGCAATAGCCTCCACTGATGC
1381.	TF	AT1G60920	GCGGACTCTTCCACAAAGCTT	ATTGCGATTTGAGTCCCCG
1382.	TF	AT1G13880	GGAGAAGCCAGGTGTCGTAGGATA	AGAGAAAGGCGCATTGGTCTCAAA
1383.	TF	AT1G65300	TGCAGAAGCTACGTGATGAGAACC	TCGTCTCCCCTTTGAGACAACCAA
1384.	TF	AT1G14350	GGAGGTTGGTCCCCTGAAGAAGAT	TTCTGCCTGAAACCACCTTTGCT
1385.	TF	AT1G65330	CTGTCCCAATCGGTTTTGATG	CGGCTCTTGCTGATTTTGGT
1386.	TF	AT1G16490	TCCCAAAGCAAGCTGGATTGTTGA	TGCACTGAAATTGCCACGTTTCAC
1387.	TF	AT1G65360	TGAGGTGAAGGCGGAAGTAGAA	ACCACTCCTCAGCGTTTTCGT
1388.	TF	AT1G17950	GATGTGTAGTCGAGGCCATTGGA	CTCTTACCAGATCGACCAGAGAGC
1389.	TF	AT3G46130	TCACGCTAAGTGGGGAAACAGGTG	ATCCGTTCGTCCCGGCAATTT
1390.	TF	AT1G72650	TCCCTCAAACAGCGTGGGAAGTCT	GCAAGCTCCCTTACCCGTAACAGA
1391.	TF	AT3G47600	TGCCTACTCACACAGGTTTGAGGA	ACGCTTGATCCCAGGTCGAAGAT
1392.	TF	AT1G72740	TTTCATTGAGCCCAGGCATGAAGT	TGCAAGCCTCCTCAGTCTTGTACT
1393.	TF	AT3G47680	GCCACAAACCCATGAAGCAGAAGA	TGCTTTCGCCTTTGCAGCTTTAAC
1394.	TF	AT1G74840	GGCAAAATCGAGAGGAAACGAGGA	GCCCAAGCAAGAACAGCTTGTGT
1395.	TF	AT3G48920	ATTCATTGGACCATGTGGCC	TGGCACGAAATCAGGCAAA
1396.	TF	AT1G75250	TGGCAGTTTACGACAAGGACACAC	GTGGCGCTTCACTTCTTCTACAGT
1397.	TF	AT3G49690	GCAGGTGGTCTATAATCGCTGCTC	GCTTCTTGAAGCTCCTTGCGTTGT
1398.	TF	AT2G21650	ACGTGCCATTCCCTGACTACAAGA	GCAGCTTCATGCTTCTCATCCTCT
1399.	TF	AT3G50060	ATTCCGTCACCGTCGTCTCCTGTT	GTAAAACCGCCGGAAATCGGCA
1400.	TF	AT2G27070	ACCGATTGGTCGTTTTTGGA	CCGAAATACCCGATCCGAA
1401.	TF	AT3G52250	TCCCCAGAGATCAGTCACCCAAGA	GGTGAGTGAGAAGCCTTCACCTGT
1402.	TF	AT2G30420	CGATCCCGATATGACTCTGAAGA	CGGTCATACTGATAAACTCCCATTC
1403.	TF	AT3G53200	GTTTCCGGTTTGAAGAGGAGTGGT	TTCTTGACTCATCGGTCCACGC
1404.	TF	AT2G38090	TGGACAGAAGAAGAACACAGACAA	TGGTCACAAAGTTACGAGCTATGT
1405.	TF	AT3G55730	TCTCAAGCGTAAACCTTTCTCTGA	TGAACCGCGTGAGCAGAAAT
1406.	TF	AT2G46410	TTGGCGACAGGTGGGAGTTGAT	GCAAAAACGACGCCGTGTTTCATA
1407.	TF	AT3G57980	CGGCTCGAAACCCAGGAAACAT	ACCCTCTTCCACACGACTTCGAAT
1408.	TF	AT2G46830	TCTGTGTCTGACGAGGGTCGAATT	ACTTTGCGGCAATACCTCTCTGG
1409.	TF	AT3G60460	TCTTCTTCAACGCACCGGCAAAT	TCAGCCGAGAACTTGCATCCATTT
1410.	TF	AT3G09600	GCACTTCAACTGTTTGATCGTGAC	GCACATGAGCTAATGTCCCGTTTT
1411.	TF	AT3G61250	CTTGCTGGTTTACTTCGCTGTG	TGGCATGAAGCTGGATAACAAGTT
1412.	TF	AT3G10580	GGGAAAAAGAAGGGAATACCTTG	TTAGTCCATCCAAAAACAATCTGTGT
1413.	TF	AT1G69120	GCACCAAATCCAGCATCCTT	CAGACCACCCATGTTGAGAAAA
1414.	TF	AT1G18570	TCACGCCCTTCACGGCAACAAAT	TCGGTTCTTCCTGGTAGTCCACGA
1415.	TF	AT1G69540	ACCTTATGTTGCGGTCTTCGA	CGGAGCTACTTGTCAGTTTGGC
1416.	TF	AT1G18710	ATCAACGAGCATGGCGTTTGTGA	TCTCTGCAAACCAGCTCTTTTGGG
1417.	TF	AT1G71692	GAGGAACAAGGAAGGAGTCCTCAA	AGTTTGTCTCCATGACTGCGAAG
1418.	TF	AT1G18960	GCAATGGGAAGCAGATGGCAACTT	TGAGAAAAGGGACGGTGAGTGACA
1419.	TF	AT1G72350	ACGTTTTCCAAACGACGATCC	GCCGCAGAGAACGCTTAATTC
1420.	TF	AT1G19510	GTTCGAGAGGGCTTTAGCCGTTTA	ACTTCCAACTGCTTTAGCCACGTT
1421.	TF	AT1G77080	AACAACTTGAGACTGCTCTGTCCG	ACTCCATCATCAGTTCTGCCTTCC
1422.	TF	AT1G21700	TCAACAGCAAGATGGAGCACACAA	CGGCTCTAAATGCTGCCATAACCT
1423.	TF	AT1G77950	TGTGACATCGATCTTGCCCTC	CGATCCTTGTTTGACCGGAA
1424.	TF	AT1G22640	GCGCCGCTGGATTACAAAGATGTG	TTGTTACCGAGCAAGCTATGGAGC
1425.	TF	AT1G77980	GATCAAAGTCGACGCCCAGA	GTTGCTGCAAAGTCCGGAGT
1426.	TF	AT1G25340	ATGAAGAGGGTGCAGAGCAGAG	TCCAGAAGATTTAGCGAGCAGATT
1427.	TF	AT2G03060	CGCGAATTTATAGCCTCAAGGA	TCAGAAATCCGAGCCTGCA

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
1428.	TF	AT1G26580	GCCACGGTGAATGAGGGAAATCTT	ATCTCTTCCACCACAACCTTGTGT
1429.	TF	AT2G03710	CTTGAGCATCTCGAACGCCAAGTA	TCAAGCATAGACCGAGCCTTGGTA
1430.	TF	AT1G26780	TCTGGGAAGAGCTGTAGACTACGA	TCTTCGGTTTATCCTCGGGTCCAA
1431.	TF	AT2G14210	TTGGCAAAGAGAGGTTGCAAG	TCTCCCACTAGTTTCCTGTGGC
1432.	TF	AT1G34670	CAGCCGAAGAAGAGCAAACAATCC	GCGTCGCAATAGCTGACCATTTA
1433.	TF	AT2G15660	AAGCAGTAGCAACGGATGCC	AGTCATCGCTGGGACCCTAA
1434.	TF	AT1G35515	AGAGCAAATCATTGTCAAACTTCATAG	TCCCAGCAATCAAAGACCATT
1435.	TF	AT2G22540	TGGTTTGACGCGTGTGATTG	CCCTTTTTCTGAAGTTCGCTGA
1436.	TF	AT1G42670	ACTCTGAACCTGTTGGCGTTG	TTTGCCGCCTTAACACCAAT
1437.	TF	AT3G62610	ACCAGGTGGTCAACAATTGCGAG	CGTGGAGTTTACGGCTGAGATGAG
1438.	TF	AT3G10590	CCTTGGACAGAAGAGGAACACAGA	GACACTTGCCGTGGAGTCTTTG
1439.	TF	AT4G00540	AGGATTGCTGAATGCCTTCCTGG	TCAAGAACCTTAAGCCAACGGTGC
1440.	TF	AT3G11280	CTTGGACAGAGGAAGAACACAGGA	TGGCGTCTTTGACACCACGAA
1441.	TF	AT4G01680	TGCCGTTCTTGGCAATAGATGGTC	AAGAGCTTGTGTGTAACCGGGTC
1442.	TF	AT3G16350	TGGTAACCGATTCATCGCCAACAC	TCCTTGCTTGGAGAGGAACCGTT
1443.	TF	AT4G01980	TCAAGCTTCCGGTTTTATGGA	GGTCTCATTGTTGTGGCTTTCTT
1444.	TF	AT3G24870	GCTTACAGAAGCAAGCCTCTTTTA	TGCTACTTCCAGACTTCTCACAA
1445.	TF	AT4G05100	TGGTAAGAGTTGTCGTCTCCGGT	ACCACTTGTTTCCCATGATGCTGT
1446.	TF	AT3G49850	ACCTCCAAGACCTTCTACAAGTGT	TCTTCAAGCTGGTAATAGCCTCCA
1447.	TF	AT4G09460	GGATTGTTGCGTTGTGGTAAAAG	TGACCATTTGTTACCGAGTAAGC
1448.	TF	AT4G01060	CCCAAGACCAACTCCATCGTTACT	CCAGCTATCAGTTCCCACCTGTCA
1449.	TF	AT4G12350	ACGCCGAGGAACAGCTTGTCAT	TCTTGGACCATCTGTTGCCGAGAA
1450.	TF	AT4G01280	TCAGATACGAAGCCACGCTCAGAA	GGTGGAAGATGTTCGTTAGCACCA
1451.	TF	AT4G13480	CGCAGGATTGAAAAGGAATGGCAA	TGACCACCTATTTCCCCACTTAGC
1452.	TF	AT4G09450	TGACGGAAGCAGGTGAGTCTAAGG	CAACCTCTGTTCCTCTTCTGACCA
1453.	TF	AT4G16420	TGTTGTAAGCGAGTACCGCATGG	CCTGCCACTTGAGCTTCCTTGAGA
1454.	TF	AT4G11400	GGTAACAAGTGTTGGCTCCAAGTG	TTTGGTGACCCCGAAATGGATGA
1455.	TF	AT4G17780	GGGCTTGGACAATACTAGCCTTGG	TTGGAAGGTTTCTTGCGTGACACT
1456.	TF	AT4G36570	GCGCTTCTTGGACACGTAAGGAGA	GGCTCTTGCAACGTTATGCCAAC
1457.	TF	AT4G17785	GGTGGATGAATTATCTCCGGCCTG	TTTGTTGCCAAGGAGGGCATGG
1458.	TF	AT4G39250	AACAAAGCCTTTGAGCAGGCTCT	CCTCTGTTGTTTTTCCACCCACGA
1459.	TF	AT4G18770	TGGACTGCTGAAGAAGACAGGGT	AGCGATATGCGACCATTTACGCAA
1460.	TF	AT5G01200	CCGAGGACGAACACCTACGATTTC	TCGGCGTTCGAGTCGTCACAAA
1461.	TF	AT2G22630	TGCCAGCTCCAGTGTGAAATC	TTGCTCCTCCATCTTAGCCGT
1462.	TF	AT1G48000	AACTCCCTCTCTCGTTCTGCTGGA	GCCACCGCAATCTGCAACTTTTC
1463.	TF	AT2G24840	TGCATTGGAGGAGTTGAGGAAG	CGTCTTTGGCCTCATTAAACGA
1464.	TF	AT1G49010	GCTCCTTATGCTGTACCGGC	ACGGAGCTGGATGTTGCTG
1465.	TF	AT2G26320	CTCGTTCTAGATCATTCCATACAATCC	CCCGTTCTTGTAATGAAAGCATG
1466.	TF	AT1G56160	GGACGTGAAGCGAGGCAACTTTAG	GAAGGACGCGATCTTTGACCACTT
1467.	TF	AT2G26880	CCATTCGAGGTGCAAGTCG	CACCCCCTAAAAAAGCGTCC
1468.	TF	AT1G56650	GCTGCGAAAAGGTGCTTGGACTAC	CCCAGCTCTTACAGGAACTTGGTG
1469.	TF	AT2G28700	GCGATGTTAATGCATGTGCG	GGCCACACATCTGGATTTGAGT
1470.	TF	AT1G57560	AACAGATGGTCGCAAATTGCTGC	CCAACCTCGGAGAGGGGTTTATGT
1471.	TF	AT2G34440	TGAGACGCTTACCCTCGATGAACT	GCCTGCAAGTGATTGACTTGACCT
1472.	TF	AT1G58220	TTGGAAGCATCCCCTGGAGTTAGT	GCACATAGGAAGCAGCCATCACTT
1473.	TF	AT2G40210	TGGTGTTCGCCAAGAACCAT	CGTCGCATCACCATTGTTTTC
1474.	TF	AT1G63910	TGCAACCAGCAAAAGGTGAAGAGA	TGAAGCCCTGCTTTTTCAGGGAC
1475.	TF	AT2G42830	TCCGATCCAAGAAGCACGA	TGCAGCTCGATTTCCCTTTT
1476.	TF	AT1G66230	TGGCAAGAGTTGCAGACTTCGTTG	TGACCACCTGTTTCCAAGCTGG
1477.	TF	AT2G45650	AAGTTTGAAACGGAAGGCCATGCT	ATGCCGCCGAGTTTGCCCATAA
1478.	TF	AT1G66370	AGAACTGGTCTCAATCGGTGC	TCGGAGCAGAGTTTTCCTCTCTTA
1479.	TF	AT2G45660	ACGAGAAGCTCTCTGAAAAGTGGG	TGGGCTACTCTCTTCATCACCTCT
1480.	TF	AT1G66380	TGGGCTAAATCGGTGCAGGA	CCAGCAATCAAGGACCACCT
1481.	TF	AT3G02310	GCTGGAAGATATGATCGGCGT	TGATCACCACCTTCCCATCCT
1482.	TF	AT1G66390	TGGGCTAAATCGATGCAGAAAGA	CCAGCAATCAAGGACCACCTAT
1483.	TF	AT4G21440	GGGCCTTGGACATCTGAAGAAGAC	GCAAACCGGCATTTTTGGGGAG
1484.	TF	AT5G02840	TCAGATCAGGAGCCATGCCCAAA	GGGGGTGGAACATGTGCTAAAGTC
1485.	TF	AT4G22680	ATGATTTTGGGTTTTGACTGTTCA	TGTGTTCATCTCCATAGAGTTGCC
1486.	TF	AT5G04760	CCTTGGACAGAGAACGAACACAAA	TCCTCGTCACCACAACGTTTC
1487.	TF	AT4G25560	CCCATCAAAGCTGGGTTACAAAGG	CGACCACTTGTTACCCAAGGAAGA
1488.	TF	AT5G05790	TGGACGGAGGAAGAACACAGGAGA	TGGGCATGACTTGCAACCTGAG
1489.	TF	AT4G26930	TGCTCAGTTACCAGGCAGAACAGA	GCGTTTCAACCTCGTGTTCCAGT
1490.	TF	AT5G08520	GTGGACAGAAGATGAGCACAGGTT	ACTTTTGAGCATGGCTCGCAAC
1491.	TF	AT4G28110	TACGCTCCCCAAAAATGCTGGACT	GTCCATCGAAGACGGCAGCTTTT
1492.	TF	AT5G17300	GAGCTTGAGACTCTGAAGCTGGA	AGACTTTGCTTCGTTGGTTCCTTG

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
1493.	TF	AT4G32730	TGGACACCTGAAGAGGACGAAGTC	CTCTGGGTTCAAGACCTTTTGCCA
1494.	TF	AT5G37260	TGGCTATGCAGGAACGTTGTGA	TGCTCTGCTTCTGTCCATTTCTCT
1495.	TF	AT4G33450	GGAAGATCAGGGAAAAGCTGTAGA	TTGGTGATGTTTGGATCAAGTTGG
1496.	TF	AT5G47390	GCTGGTGATGGTTACGCTTCTGA	TCCTTTCTTTCTCTCGCGGCTAGA
1497.	TF	AT4G34990	ATCTCCGACCTGATCTCAAGAGGG	GAGACCACTTGTTACCGAGAAGGC
1498.	TF	AT5G52660	CCTCCCAAAAGGAGCAGGAGCTAA	TCTTGCGTCCCTGTTGGATCGT
1499.	TF	AT4G37260	ACCGTCTCGTCAGTCCAAGGAA	TCTGAGGTTACAGCGTCATCGTCT
1500.	TF	AT5G53200	TCGCCCTCCATGACTCTGAAGAAG	TCCCACCTATCACCGACAAGTCTG
1501.	TF	AT4G37780	TGGGATAAAGAGGTGCGGGAAGAG	CGGTGAAGCCTCCATGCTTTAAGT
1502.	TF	AT5G56840	AAAACACCTGACCGCAAAAAAGGG	TCCAATTAGAAACGTCCGGTGCTC
1503.	TF	AT4G38620	TCACCGAGGAAGAAGACGAACTCA	TCCCGGCAATAAGCGACCATTTG
1504.	TF	AT5G58900	GGACGGAGGAAGAACACAAGCTA	TCGCGTTATCACAAAGTTCCGAGA
1505.	TF	AT5G61620	TCATGAGAAGAAAAAGGGGAAGCC	ATGACTTGCGACTTGTGTTGGT
1506.	TF	AT5G47370	TCGATCCTACATCAGATCTTCGCA	TCTCACTTCTCTTCCCGCTAATGG
1507.	TF	AT5G67580	GTGGATCACCACGCACTTGT	CGGTGGAGTCTTGAAATTCTCCTC
1508.	TF	AT5G52170	ATGGACACGAACAAATGGGCAGAA	AAGGGTTGATGCAACCGCGACTAT
1509.	TF	AT1G01010	AGCAGCAGAGCAAAGAAAAGGTGA	ACCGTGTTGGTGGATGGAGGTAT
1510.	TF	AT5G53950	GTGCCATCGCAGAAGTTGATCTCA	TTCTCTCCCATCTTAGCTCTCCCG
1511.	TF	AT1G01720	TCAGGCTGGATGATTGGGTTCTCT	GCCTCTCGGTAGCTCCTTTTTTGT
1512.	TF	AT5G53980	TCGAACCAGCTTGGTCTACCTCAA	GAGTGCAGTGTTGGACCTCAAGAG
1513.	TF	AT1G02210	TCCAACACACCAATCATTGGCAAG	GGCAAAAACGTTGGTTGATACACG
1514.	TF	AT5G56620	AGATCCTTTGATGAGGGGACAGCC	TCCCATCATGTACTTCCTCGCACG
1515.	TF	AT1G02220	GGGAGTTACCTTGCCAGTCAAGGA	TCATCTGCTGATCACCTCTGCCA
1516.	TF	AT5G59340	GCTAGGCAACGCCAAAAGC	TGTGGAGGAGGCGATTGAAG
1517.	TF	AT1G02230	TCTCTTGGAGAGTCGCCAACCAT	TCGCCCAAAGAAGAGCTTCCATTT
1518.	TF	AT5G61430	CTTGCCGAAAACCGCAAAGAATGA	TTCCCTCCAGCACTCTTTTGGAAC
1519.	TF	AT1G02250	GAGGGATCGTTGTTTCACAGCCAA	AGTGCATCCACATCAAGAAAGCCA
1520.	TF	AT5G62380	GGGACATCCAAGAGTTATGTGGAA	CCCGTTGCTCTATTGGTTCGT
1521.	TF	AT1G03490	ACCATCAGGCTCATCAGACTCAGC	ATCAGCCTCTTCTTTCTGCTCACG
1522.	TF	AT5G63790	ACTTGATGATTGGGTTTTGTGTCG	GTACTCATCTTTTCCGTCGGTTTC
1523.	TF	AT1G12260	TCCTCAGGAAGAAGGATGGGTTGT	CGTACCAATGTGAAGGGGATGAGT
1524.	TF	AT5G64060	CGAACCTCCTGATTTACCCGACAA	GTCTCTCCCTGTGGTCTTCCAGTA
1525.	TF	AT1G19040	TCAGAACGTCCCACCAAGTGTCTT	TGGTGAATGGGCCTTTGGAGTGAG
1526.	TF	AT5G64530	TATTCCCTCCCGGATTCCTC	AAGCACGGCTTGATCTCTTAGAA
1527.	TF	AT1G19790	GTGGTGGGGATGACGATGAT	AGTCTCTAACCCTGAAGAACTAGC
1528.	TF	AT1G66550	CGACCAAGTTGTTCCTGAACCGAT	TGCGGAGTTTTCCTCCACGGTAA
1529.	TF	AT1G75520	AAGACCATAGTGGTGGTGGTGGAT	TGTTGACTCACCTCCAACCCTGAA
1530.	TF	AT1G66560	AACCTCACCGTACCAAAGGTGTT	GGATCATCTGCACCCGCTTTCTA
1531.	TF	AT2G18120	CACTTTTCCGATGCGTCAGA	TGGTATGCGTATTGGCCCTC
1532.	TF	AT1G66600	CCAAAGGTGTTACTATCGTTGTGC	TCTGTAAACTGGAGGACTGTCTTG
1533.	TF	AT2G21400	ACCACGGTGAACATTGGAGG	TGTGGAGTCCTTGATCGTGAAG
1534.	TF	AT1G68150	CCGCAACAATGAATGATGGATGCC	TGGATTCCCTTTCGCGGTTTTCTG
1535.	TF	AT3G51060	TCGCATACCTTCTCATTCAGGGCT	CACCTAACACCGCCGATGAACT
1536.	TF	AT1G69310	ACCGGAGACACCAGTGAAGGAGAA	TGAATGCGAATCTTGGTTGCCGAA
1537.	TF	AT3G54430	CGACAACCACTTCTCGTCAAGA	GCTTCAATTTTCCCCGGTAAC
1538.	TF	AT1G69810	TCAATAAACGACGGTTGCCAGTGG	TGGAGCAACGGTAATAGGCTCGTG
1539.	TF	AT4G36260	TCAGCAGGGTTAGAAATGGGGGAG	CACACCGAAAAAGCGCATCTGAG
1540.	TF	AT1G80590	AACCTCTCCGCACCAAAGGTGGTA	CGCTTGGTAGCGTCGCAGTTTT
1541.	TF	AT5G12330	ACAAGACGGAGGAGGGTCAA	TTAAAGACATGGCCGCCGAT
1542.	TF	AT1G80840	TGCGAGTTGAAGAAGATCCACCGA	TCCGAGAGCTTCTTGTTCTCAGCA
1543.	TF	AT5G33210	GCCTCAAACTCAGCTGCCTC	CGGTAAATTCTCACGGTGGC
1544.	TF	AT2G03340	AGGAGGTTGGGAATGCAGAGACT	TCTTCGCTTGGGATCAGGCTCATC
1545.	TF	AT5G66350	CACTTCAGGGTTGGAGGTTGGGAA	AACTCACACGCACGCACCGAAA
1546.	TF	AT2G04880	GTCCTACCGCAAAGCGAAGGAAGA	ACCTCTCCACTGGACTCAGCTCAA
1547.	TF	AT1G05690	ACCTTCGAGCTTAATGCGCCTT	TGCAGCCAGGACACTTGAATGG
1548.	TF	AT2G21900	ACGGGTAGTCCATTTCCAAGG	TCTTCACGTTGCAATCTGGG
1549.	TF	AT1G25580	GAGGTTTCTCTTGCCGAGACATCC	GCTCAGGCCCAGAACTTGGTCTTT
1550.	TF	AT5G65310	TCGCCATTCTACAACAGACAAACA	CGTCGTCTTCTAATGCGTCAAACA
1551.	TF	AT1G26870	ATGGCGGCTGATCCTTCGGAAATG	TCCGGGCAACAATACATCCTCCA
1552.	TF	AT5G66300	TCTCCTCCACAGGAAGAAGGATGG	TTGTCGAGAGGTTCCAAGAGAGTG
1553.	TF	AT1G28470	TGGAGTAAGCAAGGACGGGCAA	TTCGTTTTCGTGTTCCGGTCGTAT
1554.	TF	AT5G66700	GTACGCCAAACTCAAAAACCACCA	TTCAAGTCGTTCCGACAGTTTTCG
1555.	TF	AT1G32510	TTTGGTGGTAGAACCGAGTGGGTA	ACAGCGCGAAGTCTCCCTTGAA
1556.	TF	AT5G39690	GAGGATATTGGCACGCAACA	GCCAACGACACCATCTCCA
1557.	TF	AT1G32770	GTGCCTCCAGGTTTCAGATTCC	TCCTCTTGAATATCCCAAGGCTCA

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
1558.	TF	AT5G50820	GGTGGAGGATGAGCACGAGT	GTCGTCACCGGCTTTGAATAA
1559.	TF	AT1G32870	TGCAGGAGCTAAACAATGACGGAC	CAGATGAATCACCTGTACCAGGCG
1560.	TF	AT1G18790	TTTGAAGAAGAGATGCCGCGAAT	CCCTTCCATCTTCTCTAGCTCCTT
1561.	TF	AT1G33060	TGCCATGTCCAAGGTCGTAGAGGA	TGAGCAGTCCCCTGAGCACTTAAA
1562.	TF	AT1G18790	TTCAAGGCTAACCATAAGAGGAAGAG	ATGATGATGTGATGGGCGTG
1563.	TF	AT1G33280	GGATCATGCACGAGTACCGTATCG	ACCCATCCATCTTCACAAGGGTCA
1564.	TF	AT1G20640	TTGCAGAGCACTTCAGGCAGTTGA	AGAGAAGGTGGAATCGGAAGCTCG
1565.	TF	AT1G34180	TCAATGAAATCCCAGATGCACCCG	CCCTGTGGAACACCAACAAACTCA
1566.	TF	AT1G64530	GCGTGCTTCTTGCAAAGTGAATCC	AATCGTCCAAGGCCACTTGTCTG
1567.	TF	AT1G34190	TTTGCTTCACCCTCATCAGGTGTG	TGGATTTCATGGCCTTGGGCATTC
1568.	TF	AT1G74480	TGATCAGTAACGTCAAGGAGCTGC	TCCTTCTCAAGCATCTCCAACGC
1569.	TF	AT1G52880	CTTCCCGCGAAAGCTTCGTTT	AATAACCGGAAGTCGCAGCTCG
1570.	TF	AT1G76350	ACCGCCTTCTCTAAAGGGACCAGA	TGCGTCTCGCAAGCACATCT
1571.	TF	AT1G52890	TCGTAGAAACGGAAGCACTAAGTT	CGTTGTTGCTGAATTCTCTAGCAT
1572.	TF	AT2G17150	GCTTCGACTGGTGGGGGAAATATG	AACACCAATGCTCTTGGCTGC
1573.	TF	AT4G37610	TGTCATCGGAATGGCTTCAGATGT	GAATGAAAACTCGAAGAGCGTGGT
1574.	TF	AT2G23320	AAGGATCTCCACATCCAAGAGGA	ATCAGCGGCGGAGAGAGAAT
1575.	TF	AT5G63160	CGTGTCCCTCTTTGCAGGCAATAT	ACGCTACTCTTCTCACCAGAACCT
1576.	TF	AT2G24570	TGCCATTGCAAGAAAAGCCGAAAA	TTTGCACTTACCGCCGGTACTCTC
1577.	TF	AT5G67480	ATCCTTGGAACTGCTTCCACTGTG	CATCATGAGGGACACCTCGGATTG
1578.	TF	AT2G25000	TTGGTGCAACAAATGGCTTC	TCGCAAGAGCTGCAGTGAAC
1579.	TF	AT1G30210	TCTCTCGCCAATCTTGGAGTGGAA	CATATACATGCTCAGGGCTGCACA
1580.	TF	AT2G30250	TGCTTCTCAGCTCCTCACACAGTT	AGCCTTGCAATGGAAACGTTCCT
1581.	TF	AT1G35560	GGTCGGTTCAGCTAGGGTCTATGT	CGCCGGAAAATAGCCCCAAATTGT
1582.	TF	AT2G30590	GCCACTGCGCTAAGAAGAGGAAAC	GCCCTTGATGGGCTTCTGACCATA
1583.	TF	AT1G53230	CTGCTTCATCCGATTCTCGCCATT	GCATTCGAAGCGCCCTGGAATATG
1584.	TF	AT2G34830	AGAGAAGGAAGAGCCAGGCAAAGA	TCCACTGGACCGGCTGTTCATA
1585.	TF	AT1G58100	TTCCCAGATCTACACCTCCCGAAG	CCGTTGCCGTAGATGAGGTTGTTG
1586.	TF	AT2G37260	TGCTTCAGGGGAATCGTCAACAAA	TTGGCTCACACTCTTCCCATAGGA
1587.	TF	AT1G67260	TTCAAACGGCACAAGGGATTA	TGGCGAGCAATCCCAATAG
1588.	TF	AT2G38470	AGCAAAGAGATGGAAAGGGGACAA	GCACTACGATTCTCGGCTCTCTCA
1589.	TF	AT1G68800	CAAGGCGAGCAAGACGATTGAATG	ATCCTTTCCTCCTCCTTCCGATGC
1590.	TF	AT2G40740	CGGAGAAGGAAGGACGAAGGAGAA	TGGTTATCGTCGGGTGGCAGAT
1591.	TF	AT1G69690	TTTCTGGACAGCCTTTGGCTTCTG	GCAGCATTCAACGCCGCTAAAACT
1592.	TF	AT2G40750	TGCTACACTAGAAAGACGAGATCA	TTCCTCCAAGCATATCTGTCTTCA
1593.	TF	AT1G72010	TGCACCAATGGGGTCAATGATGTT	TGTTGCCCTCTGCCACTCCTAATC
1594.	TF	AT2G44745	AAGAACAGCCTTCACCCCAGGA	TCTTCCGATAGTCGCTCCACTCTC
1595.	TF	AT2G31070	CAACACAGTCGTAGTTCCCGAGAC	TCCATCCAGAGATTCTCCCGAACG
1596.	TF	AT2G46130	TCAAGAACAGCTTGTATCCCAGGA	GTTGTCTCCACAATGCTCGTCTC
1597.	TF	AT1G54330	GGCTCCTCATGGCCTTCGTACTAA	GGCACAATGCATACGACTCCTTCA
1598.	TF	AT2G43500	CAACGCTGATCGTAAAGGCC	TGATGGCTCGAACTTGAAACG
1599.	TF	AT1G56010	AGCTCTCCAAAGGAAGACTGGGT	TGCAGAGGCTGTCTCATCAAAACA
1600.	TF	AT2G43500	GGAGCAGGATGTGAGCAAAGCAAG	CCCAGAGAAGTGTTGTTGGAGAGC
1601.	TF	AT1G60240	GGCCCAGCACATTCGAGGTTACTA	ACGGGTTCAATAACGTGACACCAA
1602.	TF	AT3G59580	GCAGGCCGTGAACTTACAAACATC	TGCATAGCACACTGCTCTGAGAAC
1603.	TF	AT1G60280	TCTCTCCACTAGATCACCGCTTCC	CCCTCCGCTTCTGAATCGAAGAAA
1604.	TF	AT4G24020	GAGTTTGCCCGACGACAATGAAG	GGCCTCCATCAGTACCTTGAACAG
1605.	TF	AT1G60300	CTGGACGCGATAATGACTTCGGAA	AGATCCACAAGCTCCAATGGATGC
1606.	TF	AT4G35270	TCCACCTCGGTTACCGGAGAATAG	GTTTGGCTTCACCAAATGTGGCTT
1607.	TF	AT1G60340	AAGGAAGAAACAGAGAGGTTAGGT	GACAATCTCCTCCGGTTGCT
1608.	TF	AT4G35590	CATCCACGATCTTCAGAGGGAAGC	CTTAGCTACCGCCATTGCTGCT
1609.	TF	AT1G60350	CGTATGGTCGTCAACGGAGACTCA	GCTCTCAGCATCGAACTCCACATT
1610.	TF	AT4G38340	ACCTCATCCCTACCCCCACT	TCATCCCGTCCTTTGCTTTC
1611.	TF	AT1G60380	CTTCGCTAACAGGACTTGTGGTGT	CATGATCAGCTTCTCACGGTGCTT
1612.	TF	AT5G53040	AAGTTGCCTCCGCTTGATTCTCTC	AGTGCAACCCTGCATTTGGTTTCA
1613.	TF	AT1G61110	CCAAGCAAGGCGAGTTTTGGAGAG	GGTTTGGCCTAACCCCATTTGGA
1614.	TF	AT5G53040	ACTCAGTGATGGAACCAAGAAGCTA	TCTTCTCTTATAATTGGCTTTGAAACAA
1615.	TF	AT1G62700	TGGAACCCCTCAGGAAGAAGGATG	TTTCCTCACTGTCGCTGCCAATT
1616.	TF	AT5G66990	TCCCGATTTGGAATTTGGG	TTTAGCCTTGAAGCAAGCCTGT
1617.	TF	AT1G64105	TGTTGTGGAATTGGCAGAGG	TGTTTGTCGAGGAAGCAGCC
1618.	TF	AT5G66990	TGACCTGGTTAGAGGCCAACAACT	TGAAAGAGCTGTGAGGATCGACGA
1619.	TF	AT1G65910	TGGGAAGTCCTTGCTGCCAAGTA	TGGTCGCCCGGTTTGTTCTTGA
1620.	TF	AT4G27330	CAAATCATACGGGACCAATGG	CCATTTCTAGGGTTTCCTTCCA
1621.	TF	AT2G37000	ACGGCGGAATCTGAGGTTGAGA	CTAATGGTGACGGCGTCTACGTTC
1622.	TF	AT2G46400	TAGAGCATATTACAGATGCACGCA	TGATTTCTGAACTTGCTTCACTGC

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
1623.	TF	AT2G45680	GGTCCCCAAATGGTTAGAGCTACG	GTGGTGAGCCCCCACCAAAAAA
1624.	TF	AT2G47260	TTCCCAGGAGTTACTACCGTTGC	CAGTGGAAATAGGACGAGACGTGA
1625.	TF	AT3G02150	CCGAGGCAAATGTAGCAACAATGG	CGGTTGAATTGGACCGACGACATC
1626.	TF	AT3G01080	ACTCATCTTCTCACCTCGCCCAT	AAAGCCGGTATGAGCTGACGACT
1627.	TF	AT3G15030	TCAGGGCTTGTCTAGCTTCCATGC	GGCCATTGACTACACAAACCGAGA
1628.	TF	AT3G01970	GAACAATCCATTCCCCAGGAGCTA	GTATGTCGTCACCACCACTCCTT
1629.	TF	AT3G18550	GGCAGCAATACTAACACGACCGAA	TCTGGCCTCTTTCTCTTCCCTCTC
1630.	TF	AT3G04670	TTCACCGCATCCACGGGGATACTA	TTCCTTGCTGGACAACCTCTCACA
1631.	TF	AT3G27010	ACCTCTGCAAAAACACAAGGTGG	GCCTCTCTGCAACTTAAAGACTCC
1632.	TF	AT3G56400	GTTTGAAGATTCCGGCGATAGTC	ACACGTCTCCGATCTCTTTTTTCT
1633.	TF	AT3G45150	GCCGAGTGTTGCTCCCCAACTATT	CATTCTGGAGGAGCCAACTGACAG
1634.	TF	AT3G58710	CCAACTCCAAAGAAAAGTAGGAGG	CCATGAATCGGACGGTGGATATA
1635.	TF	AT3G47620	TTTCCGGCGACTCTCAAGCTAGTG	TCTTGCTGATCCTCCTCATCACCA
1636.	TF	AT3G62340	GCAGCATAAGACAAAGAAGCGGTT	CCTCACTCCTCGTGATGAATGACA
1637.	TF	AT4G18390	GGGGACCCTTCAGTCCAATTCAAC	AAGAACTGTGGACCTCCTCCACTT
1638.	TF	AT4G01250	AAAGGTTCACCATATCCAAGAGGA	TCTATTTCGCTCCACTTGTTTACG
1639.	TF	AT5G08070	GGCGGCGGAAACTATGAGTTCT	AGTTGAAGTTGACCACCACCGAGA
1640.	TF	AT4G01720	TGCCACTACGGTAAATGACGGATG	TGGTGCAACGATAATAAGCGCGA
1641.	TF	AT5G08330	GGCTTCAGCAGCTAGAGTTGGGAA	ACCCGTTAGCTCCACCAGACAAAG
1642.	TF	AT4G04450	TCACCTAGCTACGACCGAGAACAA	TCAGAATGCGGTCCCAAATCGATG
1643.	TF	AT5G23280	CAACAAGCTGCAATGGGTGAAGC	CCGGGAGATCCACCGGATAAAGAA
1644.	TF	AT4G11070	AGAGGAAGATGTTGCCAAAGTGGA	CCTTCTAAGCCTCTCTCTGGGCTA
1645.	TF	AT1G69490	CGAAACGTAACGGTTCCATGAGGT	TTCGTCCATGAAACCCTCTTGCT
1646.	TF	AT5G61850	AAATGCCCCACCAAGGTGACGAAC	ACTCGCTCCTGATTTCTTCGCGTA
1647.	TF	AT1G71930	TCCGACAGAGGAAGAGCTTGTG	ACCCTAGTTTACACCTCGCTTGT
1648.	TF	AT5G35770	GGAGAAGTTGACGCCATTGTTGC	ACTCTGAGCCGTTGATGAAGCTGA
1649.	TF	AT1G76420	TGGTCTCTCCGGCATTCACATTTC	TCTGGTAGCTCCCAAGGTTCACAG
1650.	TF	AT1G14410	CGAGAAGCAGAGGTTCGGTG	AGCAGGCAATCCTTCAGCAG
1651.	TF	AT1G77450	CCGACATGGCTTTGTACGGTGAAA	AGCTGCACGGTTGGGTCTTGAA
1652.	TF	AT1G71260	AGCCCCACGCAGATGGTAG	TTGAGGATGCTATTGTTAACGCTC
1653.	TF	AT1G79580	AAGAGAAATGCAGAATCGGGTCGG	TTCGTTCGGGTCCCAGTCGGATAT
1654.	TF	AT2G02740	TGCAGCTGGTGTTCGTCAAT	TGTAACCGACAACGAGAAGACCT
1655.	TF	AT2G02450	TCGCCGAAAAGTTGAAGGCAAAC	TATCGCCGCCATAGCAGGAAGTTC
1656.	TF	AT1G05380	TGCGATTGAATCGGCTATGCGTT	AGTCTGGAATGGCAGGGATAACCA
1657.	TF	AT2G17040	GCTCCTTACCAAAGGATGTTGTGC	TCATCTTAGCTTCCATCTCTGCCC
1658.	TF	AT2G36720	AAACTTGCACCTGAACAGCTCAGT	TGCAGCATGGATGCTCCTTTGAAC
1659.	TF	AT2G18060	CCCAGGAAGAAGGATGGGTGGTTT	TCTTGGCTTGCCCTGTAGCTCT
1660.	TF	AT3G14980	CGTGCAGCAAATATCGCCGACA	CATCTCTTCAATGGCAGCCACGA
1661.	TF	AT2G24430	ACCTCCAAGCAAGACGAGTGGGTA	TGATGACTTGTGCTGCTGCTACTG
1662.	TF	AT3G53680	TCAGGGAAGGGGCTACTTTCAAGG	CTGCTGGGAGAAGCAAGTTCTCAA
1663.	TF	AT2G27300	TGGGACTTGCCAGAGGAATCGAAA	CGCGCAGAAGTAAAACCACTCGTT
1664.	TF	AT4G14920	TGCCTAGACATACGGGGTCATCTG	TTGGGGCAATGCCAATCACCA
1665.	TF	AT2G33480	TTCTGTAATACCGGAAACCGATGT	TTCACAATCACCTGGTAAATCCCA
1666.	TF	AT5G12400	GTTGTGCCTTTGAGTGAAGCTGC	TGTACATGCCTTCCTTCTCTCCCC
1667.	TF	AT2G43000	TCTCCAGCTCAACAAGCAGAGGTA	CCGGTTTTCGGTTTGGTGGTAAGA
1668.	TF	AT5G22260	TCGTGGTGGAGTCAGTGGTG	AAGGCCATTTCATCGACCCT
1669.	TF	AT5G41030	TTCTCAACCTCCTCTCACGGCTGA	TCTCCACAACCCATTTGCCTCCA
1670.	TF	AT4G12020	GCAGACGGGGACTTCTTTGCTTT	CCCCCCTCGACTTGTTGTATCCAT
1671.	TF	AT5G51910	AATACACAGGGGTTTGTGCCGTT	GGAATAGCCCACATTTGGCCCATT
1672.	TF	AT4G18170	TCGTTCCAAGATCCAACGGT	GAATCGGGTGGTTGTGTTGAC
1673.	TF	AT5G60970	TTTTCGGTCCTACTCCTCCGGCAA	CGGCTCCATCGACGACATGATGAT
1674.	TF	AT4G22070	TTATTATCGTTGCACAATGGCC	TGCGCAACGCTGCACTT
1675.	TF	AT1G13450	GAGAGAGACTCCTGGAAACGGTGA	ATGACCCTACCACCAAAAGGCTGA
1676.	TF	AT4G23550	AAGGATCTCCATACCCAAGGAGT	TCGACTTGTTTTCTTGCCAAACAC
1677.	TF	AT1G21200	GTTGCATTTGCCTCATGACCTTGC	CATCTCTGCTTCTAAGCGCCAACT
1678.	TF	AT4G23810	TTTGCCGATGGAGGAGGTTCTAGC	GCCTCTCTCTGGGCTTATTCTCAC
1679.	TF	AT1G23540	AGTTTGGTTGAATGGGCGC	TCGCTTAAATCTCCGGTCTCA
1680.	TF	AT4G24240	CGGGGATATTACAAGTGCAGCAGT	ACGTCACGATTAGCATCATCGCA
1681.	TF	AT1G31310	TGCTCAGCCAATACTGCCCACAGA	TCTCCTTCTCTTCGCCGGAGATGT
1682.	TF	AT4G26440	CCTTTGCTATCTCCAACAACCGGG	GCGATGTTAGTAGGATCAAGGCCA
1683.	TF	AT1G33240	CCACAAGGAACAGAAAAGCCAGAA	TGCTGTTGTTGTTGAATCAGCTCT
1684.	TF	AT4G26640	GATCAGCCAGAACCTTCCCCTACT	TGGAACCCCCTGCCTGTATAAGAA
1685.	TF	AT1G54060	GGCGAGGGCGATACTTGGATTTAC	CCTCTCCTTTTCCAGTTCCGCCAT
1686.	TF	AT4G30935	GGGCAGAAAATGGTGAAAGG	CCGCTGAAGTGCATCGGTA
1687.	TF	AT1G76880	TCTAGGAAAATGGCGGAGCATGG	GACCTTCTTTGGTTCGTTTGTGGT

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
1688.	TF	AT4G31550	AGTGCCATTGCAAGAAAAGCAGGA	TCCGGTGGAATATCGGCGATCT
1689.	TF	AT1G76890	TCCAGGAAAATGATGGAGCTTGGT	CACGTTCTCGAACTTCTCCTTGC
1690.	TF	AT4G31800	AGAAGGTACAACGCAGCGCAGA	TGCGTCCCTTCGTATGTCGCTACA
1691.	TF	AT2G33550	GCTTGTGTAGCAGATCAAGGTAGA	TTGTGATGTCGATCCACCTTCC
1692.	TF	AT4G39410	CATGGGCATGGAGTTGTCAAGC	ACCACCATCGCCAACCTCATCA
1693.	TF	AT2G46770	TCGAGCCTTGGGACATTCAAGAGA	ACCAGTCGTTTTGTGGCGTTGTT
1694.	TF	AT5G35210	ACGTACTAATCTGCCGGAACACCT	TCCTCCAAGTTCCAACCTCGGTCA
1695.	TF	AT3G01600	CCCTCAAAACCTTCCTGGTGCAAA	TTCTGCGTTTCCTCTGTCCTGTTC
1696.	TF	AT5G36670	TGTCTGGCAATTCTGCTGCTATCC	TGCGAAGCCAAAGCCTGAGAAAAA
1697.	TF	AT3G03200	TGGGACTTACCAGACCAAGAATGG	TCCAACTAACTCGGCGGTCTTTAC
1698.	TF	AT5G58610	GCAAATTGTCTTGGGCTGGAGGA	TGTCCACATGCACCACAACAACAT
1699.	TF	AT3G04060	ACCAAAGATTGCAAAGATGGGGGA	TCCAATAACCAGACACGGTCGC
1700.	TF	AT5G63900	ACTGGTCTTACCGGCTGCAAAAG	AGCCGCTCCGAACTGTTCATTAC
1701.	TF	AT3G04070	ACCAGCTAAGGCTCCATTTGGGGA	GCTCTGTTTGGTCTTGCTCCGTTT
1702.	TF	AT1G21000	GAAATGCCTTTTGCTCTTACTGTTT	CGTATCTGAACAACACGATGGTCT
1703.	TF	AT3G04410	GTTTCAGATTCCGTCCGACCAA	GATATTCCTATCGACATGGCTCGT
1704.	TF	AT1G31040	TGGACGGACATGATCAGCTC	ACCAGTATATCCTCCCCATCCTC
1705.	TF	AT3G04420	GAGGTGAGCCAAGCTCTGATAACC	ATTTTTGCCCTCCAGCCCCAGT
1706.	TF	AT1G32700	TCGAAGCCTCGTTGATTCCT	CGATATTCCAGAGATCTTGCAACC
1707.	TF	AT3G04430	TTTACCTGGGCTGGCGAAGATAGA	TCCACCGGCGATATGAAGTACCAA
1708.	TF	AT1G43000	TTTGTTTGGATTGTTCAGGCAA	TGGGTTCTGTGATGAGCGAG
1709.	TF	AT3G10480	TGGAAACAACCAGATGGACCAGGA	GAGTAGCATCTCTCGGTAGCTCGT
1710.	TF	AT1G76590	ATCGTGTCCTCCAGATACGGA	TGAATCTCGTTTACTCTCACAACGTT
1711.	TF	AT3G10490	ACGGAAACCTGGTGCAAGATGC	TTCCCACTTGGTGGCCCAATGT
1712.	TF	AT2G27930	CCTCCCATGAACCCTTCTTG	AAAACGAACCTTGCAACCCA
1713.	TF	AT3G10500	CCAGACAAGTCGAGGCTGAAAAGT	AGTCGCACGATTCGTCTTTGATCC
1714.	TF	AT3G60670	GTCTCTCCTGCAAGATTAGTGACG	CGGAGAAACCCTGAGAGTCCT
1715.	TF	AT3G15170	TCCTCCTCCGCTAAGGATGAATGG	TCGTCTCTCTACTAACTACGCCGC
1716.	TF	AT4G17900	GAGTTTCAGCCCATCAACACC	TCGCTTGACGATTCTGCAGT
1717.	TF	AT2G35640	ACCGCCCACAGTAGGTACATCATC	TCACAGACGTGCATCTAGACAACG
1718.	TF	AT5G01900	CCACTTCACAAGAGGGGAAGAAAG	TGGTAGATCGGGGTTGAAGATTCG
1719.	TF	AT2G38250	TGAACAGTGCAAGTGCAAGTGGAA	TGCCTCCATTGTCTCACATCCCTT
1720.	TF	AT5G07100	TTCACTATGCCTCCTGGCCTTACT	GGAGACGGCAAAATGTTGGAGGAA
1721.	TF	AT2G44730	AGCTAGTGCGATAAAGCTGCTTGG	TCGTCATCTCCATTCTCGTCTGCT
1722.	TF	AT5G13080	CCAAAAGGCCGTCAAGAACAACAA	TGCTTCTTCACATTGCATCCTCCA
1723.	TF	AT3G01560	CAATGTACGATGGAGCGGGT	TCAGACAAGTAGCCGGACGG
1724.	TF	AT5G15130	CAGGTCCAAAGATGTGCAGATGAC	ATGGTGGTGGCTGAGAGTGGAA
1725.	TF	AT3G10000	TCCCAAAATCCCCTTTCCTTGAAC	CGACCGGATTTGCCTTCTTTTGTT
1726.	TF	AT5G22570	GGGGAGCCCCTCCAAGAAAAGAAA	TCCGGTGAATCGTCCCTCCAATT
1727.	TF	AT3G10040	TTCCGATTCCGAGTCAGCAGCAGA	TCTCCGCAATTCTCGCCATTTTCC
1728.	TF	AT5G24110	TCGGAGCCAAATTTCCAAGAGGAT	CCTCGGTAACTGATCTCAAGGAGC
1729.	TF	AT3G11100	AACGAAGAGCTGCTTCAGGTAAGA	TCCAACCATTGCTCCTTGCTTCA
1730.	TF	AT5G26170	GCTTCTGCCGACAACCAAA	TGAACGCAACTCTCCCTTTAATTT
1731.	TF	AT3G14180	ACTGCAACAGGTGGTTGAGATGGA	GCATTCTCTGCAACTCAAGCTCCT
1732.	TF	AT5G28650	GGAGGAAATACGGACAAAAGCCGA	ACCGCGCACACTGCTACATTTAT
1733.	TF	AT3G19020	GACAACGACGACGGCGATA	GCGATGCATATTGGTGTCCA
1734.	TF	AT5G41570	GCACAATGCTCATCCCAGGAGCTA	CGACGACGTTTGGATCTTTTGCCA
1735.	TF	AT3G24490	GGTGACAGCGAAGATGAAACAGGA	CGCGTGACGCTTAGGTATTGGTCT
1736.	TF	AT5G43290	GCCCTAACCCAAGGAGTTATTACA	TGGAAGTGGAAACCTTCGTAGGTA
1737.	TF	AT3G24860	GAAACAACCACCCTCTCCTCCTCA	CGGAGGTTGATGCGGCTAAAGCTA
1738.	TF	AT5G45050	TCGTTCAAAGAGTCGCCGAAAGAA	CGATCCACTACGCAAACCACTCTC
1739.	TF	AT3G25990	TTGAAGCTAATGGCAGGCCAACGC	TGTGATGGGATCAGCAGCAATGGG
1740.	TF	AT5G45270	GGACTTGGCGAAAGTACGGTCAAA	CGCACCTGTAGTAACCCCTTGGAA
1741.	TF	AT3G15500	CGTCGAAATGGAAGCACCAAGC	GCTGTATTCACGACCACTCGTCAT
1742.	TF	AT5G46710	GCCTTGCCGAAAACTGCTT	CCAGATGTTCCTGCAACCTTG
1743.	TF	AT3G15510	TCCCGCTAAAGCATCGTTTGGAGA	AAGTCGCCGCTCTGTTTGGTCTTG
1744.	TF	AT1G02580	AGGCGAGTGGTTAATGGAGAAGGA	TAGTTCGGGTGGCAAACCCTCA
1745.	TF	AT3G17730	TGGGACCTCGCAGAGAAGTCGTTT	AACCCGTTCGGATACTTCCGGTCA
1746.	TF	AT2G35670	CGCCTGAGACTTGAACGTCTTGT	CATCCGCGATCACCCTTTGTTTTC
1747.	TF	AT3G18400	CCCCACGAATAAGGAGGAATGGGT	TTCTTGTGCTTTCTTTGCTGCCG
1748.	TF	AT4G02020	TAAACCCAATTGCTACGCTAAGGT	AAAAATCCCGACCCTGTGATC
1749.	TF	AT3G29035	TGGGACTTGCCTTGGAAGGCTAA	ACCAGTCGGGTATTTTCGGTCTCT
1750.	TF	AT4G16845	TTCGCTCTCTAGGCAACCCATCGT	ACTTTCTTTTGCGCTTTGCCCCAA
1751.	TF	AT3G44290	CGCCAAAAGGAGGAAGAACGGAAT	GTCGGCAAATAACCAGAGCATCCA
1752.	TF	AT5G51230	AGGAACCGAAGCCTCCTTCAGAA	TCTTCACTATCCCGGTCCGAAAGT

No.	$\begin{aligned} & \text { Gene } \\ & \text { group } \end{aligned}$	AGI	Sequence of forward primer	Sequence of reverse primer
1753.	TF	AT3G44350	CGTTGAGCCTACTCAGCTTCCAAA	TTCACGCTCTTGTCTTGGCACA
1754.	TF	AT3G27700	AGGTACTGTTGTCAAGAGGGAGGA	CCGAATCAGAGGCTGTGTCTAGTT
1755.	TF	AT4G01540	CGATTCGCATACCGTCATAGCGAT	TGGCTGCTCAACCTGAAGCTCA
1756.	TF	AT3G47120	GATCTTCTCGCCGTCTTCTCTCAA	TTTACCCGTTCCCTTGTCTCGAAT
1757.	TF	AT4G17980	TCCTTGGGAGTTGCCAGGTAAATC	GCCCTATTGGTTCGAGAACCGTTT
1758.	TF	AT3G51950	TCAAAGAGCTGCTGCTGCTTTGAT	GCTGGACAAGCCATAGCAGAAAGA
1759.	TF	AT4G27410	GCTCCAAGTTGGATGATTGGGTGT	TGACGACCCATTCGTGCTATGC
1760.	TF	AT2G37120	GTTCCGCCGGAAAGGC	AGCAGCACTATCAATCCAGGGTT
1761.	TF	AT4G28500	AATTGCCAGGAGTGAACAAGGACG	CCTTCGACGGTCGGTGGAAGAAAT
1762.	TF	AT3G53370	CTGCTGAAGCCAAGGGATTG	AGCGGACCTCCAACAACAAG
1763.	TF	AT4G28530	CTTGGATCATGCACGAGTTCCGT	TCTGCACAAGACCCAGTCTTCCTT
1764.	TF	AT1G02065	CCAGCAATGCAGCAGGTTCCATTT	ATGGTCAGCAAGTCGCTTACGG
1765.	TF	AT3G54390	GCTCATCCGCCGCAGATTTCTTAC	TCCGGCTTGAATCCGTCTTCCTTA
1766.	TF	AT5G46350	ACAGTCCTTATCCGAGGAGTTACT	TGTGTTGACTCTCGTAGGTTGTG
1767.	TF	AT3G58630	CAACTGTTCACGGAGATGCAGGT	TCCCATAATCAAGAGCGGCGGA
1768.	TF	AT5G49520	CCAGAAGCTATTACCGTTGCACCA	TGGGGAAAGGATGGGTATGCTGAC
1769.	TF	AT4G17050	TGGTATCCAGTTCAGGCTGGTGAT	GTCTTTCCGAGTGCAGCATACCAT
1770.	TF	AT5G52830	CAAAGGCTCTCCTTATCCAAGGAA	TGTTCTCCGGTGTAAGTAACGATG
1771.	TF	AT4G31270	ATCGAGCTTTTTGAAGCCATCA	GCTAATTCAGCAGAGAGATCAACA
1772.	TF	AT5G56270	AGCCCTGCAACACTCTTGGAATC	AGTTGGAGAAGGTTGAGCCAATGG
1773.	TF	AT5G01380	ACCTCGTCACTAGATACAAGGCGT	ACTGCTGCCTAATAGCATCTGGCT
1774.	TF	AT5G64810	CTGTCAAAAACAACATTAACAAGAGGA	ACCGAGCAACCTTCACTTGAG
1775.	TF	AT5G03680	GGCCGAGACAAGAAACCCTAACTC	CCTTTGGTATCCATGTTCCTCGGA
1776.	TF	AT1G14440	ATCGCTACCAAACCTGCCAT	TTCCGGCGTGAACTTTGTC
1777.	TF	AT5G05550	TGAGTTGGAGAAGCAGAGAATGGA	TGCTTACCTGAAGCACTTGCG
1778.	TF	AT1G14687	CGCAGCTACCACCGTCGTAT	GGAAGCGCGTGTGATTGATT
1779.	TF	AT5G14540	ATGATTTCCAACCTATGCGCCCTA	GCCATAACTTCTTGCGGAAGAAGC
1780.	TF	AT1G69600	GTCACCGGAGAAATGGGTGT	CGAGATTAGCCGCGTGGTT
1781.	TF	AT5G28300	TGGGAGCATACTTCAAGAAAGTTG	TGCATTCTTGTGGACTCCTCTTAA
1782.	TF	AT1G74660	GACGGTTGCCGTGAGTTCAT	CGCATCTCAAAGCATCAACG
1783.	TF	AT5G38560	TTGTTGAATGGGCAAGACCC	AGCTCGTCGAATTCTTCGTTCT
1784.	TF	AT1G75240	TCGAAGCTCTCAGATGCGCT	TCCATTTCTTTCCGGTGGAA
1785.	TF	AT5G47660	TGGTCTCTCTCTCAGCTCCTCTGT	TTTCCCGCTTTCTTTTACCCGTGA
1786.	TF	AT2G02540	AGGAAGAAGGCGGAGGAAGCTTGA	CTATACGGTGATGGTGGTGGTGGT
1787.	TF	AT5G63430	GCTGAAGGAATCAATCGAAGCCCG	TCTCTCATCAGCCTTGCTCTCCTC
1788.	TF	AT2G18350	GAAGGCACGGTGGAGTCTCTT	TTCTATGGAAGCTCCGGTGG
1789.	TF	AT4G35580	TGGGAACCTTGGGATCTTCCTGCT	TAGGGTATTTCCGATCACGAGGGC
1790.	TF	AT1G20980	AACTCTGATGCTCAGGACCGCACT	TCCCAGGGAGCTGACTTGGATCTT
1791.	TF	AT4G36160	CAAGAGAGCTGCCGAATCGGATAT	CGCTCTGTTTGTTCTTGTTCCTGT
1792.	TF	AT1G27360	ACTTCATGGCGAAGATGTGGGAGA	CAGAAGAGAGAGAGCACGGTGGAT
1793.	TF	AT5G04400	TTCCGCAAAACAATACAGGGAGCA	CGTCATCTGGAACATGGATCGCAA
1794.	TF	AT1G27370	TTCTGCCAACAGTGTAGCAGGTTC	TGCGGCAGCTTCGTTTCTTTTC
1795.	TF	AT5G04410	TGACCAGAAACCTGCCCCTAAAGA	CGCCACTTTCCTTTTCCTCCACTG
1796.	TF	AT1G53160	TCAGGACTTAACCAACGCTTTTG	CAAACTCTTGGAGGTCATGAAACC
1797.	TF	AT5G07680	ACAACTTGCCTAAAACCGCTAAGA	GGTAAACTAGACCCGGTTCCGTAA
1798.	TF	AT1G69170	ATTTCCTACCGGGTAAGCGC	TTGTTGCCTACTACATCTTGAGAGGT
1799.	TF	AT5G08790	AGCAGATCTCGGCTCCGGTTAT	AGACATCTCTGGAAGCTCCCAAGG
1800.	TF	AT2G33810	ACAATGCAGCAGGTTTCACG	TCTCCTGCAACTCCGCTTG
1801.	TF	AT5G09330	TGTGCAATTCTGAGGTTGTGGGAA	TCCTGAGGAACATTCATCTGCGTC
1802.	TF	AT2G42200	TGCAGCAGGTTTCATCAGCTTCCG	TGTGGCTTCCTTCGTCGCTCATTA
1803.	TF	AT5G13180	CGAGTTCTATGGGTCCCACTCAGA	CGTCGTTCTTGTTACCGGCTCTTT
1804.	TF	AT2G47070	GATCCTGCAATGGTGGGGATTGAA	TGTATGAGAAGTGACCGCGTAAGC
1805.	TF	AT5G14000	CGACCATTTTACGGTTGGGT	GGTAGGAGGAGAAGGCGGTG
1806.	TF	AT3G15270	AAGGCATCTGCTGCGACTGTT	GGTAGCTCATGAAACCTGCTGCAT
1807.	TF	AT5G14490	CACCCTCAAAACCTTCCAGGTGTG	TTCTCCGCTTTCTCTGCCCATTTT
1808.	TF	AT3G57920	TTTACGGAAACCCCAATGCTGCAA	ACCACGCAGTAGGATCTCCCAAAA
1809.	TF	AT5G17260	GAACTTTATGGCGGATCTCGGACC	AGTTGTCGTTGTCTTGTGCTTGGT
1810.	TF	AT3G60030	TGGAGATGCACAGAGCCGTACTGA	TCTGTCCTCGTAAGGCAACTGGAA
1811.	TF	AT5G18270	ATCGTCTTGAAGGCAAATATTCG	ACCCATTCGTCCCTTGCA
1812.	TF	AT5G18830	TCCCACGGAGACTACGTCATCAAA	CGGATATAGCCCTCCAGCTCAACA
1813.	TF	AT1G16070	TACACATGAAGGTCGGGGGCGTAA	ACGTCGGCTATGGTAAGCAACTGC
1814.	TF	AT3G28920	CGGTGGTGGTGGGAGATTT	GTTTACGTTTCCGCCACCAT
1815.	TF	AT1G25280	CTTCGGTTTGTCGGTCTTGGAGAG	GGCTGTTTGAGGGAAACAGGGAAA
1816.	TF	AT3G50890	TCCGGCGTTTTACAGCAGTA	CTCACCCGTTGGATGCATTAC
1817.	TF	AT1G43640	TGGTGTCTGCAAGACATGGAGACT	CCGGGCTGTTTCAACGAAACTG

No.	Gene group	AGI	Sequence of forward primer	Sequence of reverse primer
1818.	TF	AT4G24660	CTTAAGTGTGCAGCTTGCGG	CGATGCTTTCGGTTTCCTTG
1819.	TF	AT1G47270	TAAGCCCTGCTCTTTCCGGTGACA	GATACAACAAACTCCGCACCCGTC
1820.	TF	AT5G15210	GGAGGATGCCGAAAGCTGA	TCAACTCCAATCTCCCGACAA
1821.	TF	AT1G53320	GCCTCAAATTGCCAGGTCCTAGAG	GCCGCCAGAAGAAACTTTCCCTTA
1822.	TF	AT5G39760	GCTGCCACCGTAATTTCCAC	GGGATTTGGGAAGAGTCGTTG
1823.	TF	AT1G61940	TTCCAGTTTGCGAAAGTCGG	TCCATTCAGCCTCATATAAACTGAAG
1824.	TF	AT5G42780	CGGCGTTACTGAGACGGTTC	GATCCGACGAAACTGACACGA
1825.	TF	AT1G76900	TCAGTCCTGCTTTGTTGGTTGAGA	GGCGTGCATAGAGATCACGTACTC
1826.	TF	AT5G60480	GACCCTCCGTCCCTTAGGTG	GACTACGACGGTGGAAGTTGC
1827.	TF	AT2G18280	TTCGGAGACTGAGAACGACAAACT	AACATAAGTACTGCTGCTCCGTGA
1828.	TF	AT5G65410	ACGACGCCGTTTACGACTCT	CTTTCTGTCGAGGCTTTGGG
1829.	TF	AT2G47900	TCGGGTTAAACCAAGCAGCTTCAA	GAAACCTCTTGGCAGCAAGAAGGA
1830.	TF	AT1G17380	TCCACCAGGGAAACAAAATGCGAT	TGCCTCCTGATGAGGTAGAGGGTT
1831.	TF	AT3G06380	CGTTTGCTATCTGCCTGAGCAGTT	ACAGACCACAACAACGAGCACAC
1832.	TF	AT1G19180	GCCTAGCTTCTCACAGACGTGTAG	TGACGTGAGTTGCCTAAAGTTCCA
1833.	TF	AT5G18680	ACGAAACCGTCGTTGTCCCTGAGA	AATCCCTTGGACCAGGCTGCTTGA
1834.	TF	AT1G30135	CGATCGCAAGCAGAGAAATG	ACTTGTTTGGAGGATCCGACC
1835.	TF	AT2G20825	GGAGAACTTCAAATCACCTGCC	CAGGCGTCAACTTGTCTTCG
1836.	TF	AT1G48500	ACATAGCTCCTGAAAAGGCCC	TTAGCATGAGGTCCATTTCCG
1837.	TF	AT5G18300	TTGGCTTCCACCAACCAAACACGA	TGGCGTAGATGTTGTCCCTGTCTT
1838.	TF	AT5G43270	CCTAAAGTCGTTGTGAGTGGCGT	ACTCAGAGAGACAGTGGAACCTGC
1839.	TF	AT5G22290	TCGAGCCTTGGGATTTACCCGATA	TTTCCCACGCGCACAGAAGAAG
1840.	TF	AT5G50570	AATGCAGCAGGTTTCATGCTTTGG	GGCTTCCGTCGTCTTCGATTATGT
1841.	TF	AT5G22380	CTGGAAAAGCACCCACAGGAAGAA	GCTTAGGGATTGTGGAAGCGTTGA
1842.	TF	AT5G50670	TCAACAATGCAGCAGGTTTCA	CCTACAACTTCTCTTCCCTTCATCAA
1843.	TF	AT5G24590	TCCCCAGCGAATGTCGTAGTGGAT	TATCGTCAAGCCCGGTGGTTGT
1844.	TF	AT1G05830	CGGCGTTATTTCATGTCTGCACGA	AGAGGGGAAAGTTAGCCAGAACCA
1845.	TF	AT5G39610	TCTTCCCCAAACAGCTAAGAACGA	GGCTGGTTCCATTCGGTTAATGTG
1846.	TF	AT2G31650	GCTGTGCTCGGACAGAGCCTTATA	AAGAAGCAGCAGCAAGAGCTTCA
1847.	TF	AT5G39820	TCCCAACGATGGGGGAAAAAGAGT	TCGGTTAGGTCTTGTGCTGTTGC
1848.	TF	AT3G61740	CGGGCAGGTTACAACATGGAGGAA	GCCAAATACTCCTGAGGGTGTGTG
1849.	TF	AT5G41090	TGGCTATGGAAGCGAAGAGCATTG	TTCTCCCGTTGGTATCCAGAGGTT
1850.	TF	AT4G27910	GCTCGGCTCATCAATCATTCGTGT	CATTGGCCTTGGCTATCAGGACAA
1851.	TF	AT5G41410	TGCTCTCCATGCTCGAAGAGCTTA	CGCAACTCTCATTTGCTCTCGGTA
1852.	TF	AT4G30860	AGAAGCTGTGTTTGCAGGGTTCAA	TGCGGAATGGTCTGTTTCCACAAC
1853.	TF	AT5G44180	TTCCATGACTATGACCCACGGCTA	AGCGTTCTTACCACACCCTCGATA
1854.	TF	AT5G09790	GGGATGCAGGTGCTATGCAAAGAA	CAAATACCACAACGAGAGGAGGGC
1855.	TF	AT5G45980	TCCTTTTCCTCAGATCGGATACCA	TTTGAATCTCCTCTCTAGGTGGGT
1856.	TF	AT5G24330	AATGCCCGCCACTTATGGTCGTCT	TGTCCGCCTCTACTGTGAACCCTT
1857.	TF	AT5G46590	TCGATCCTTGGGAGTTACCAGACA	GTCCCTTGAGCAGAAGAAGTACCA
1858.	TF	AT5G53430	GAACGGCTTCACCACTTGCAGA	CGCAAAAAGGCCCCATCCATGT
1859.	TF	AT4G28190	TGATCCAAACTGGAAATGCTCA	TTCTTCCTCCTCACATGTTATCTTGT
1860.	TF	AT1G70700	CATGATCGAATCATTCAATGCA	TCCGAGCTTGAGGGATGAAG
1861.	TF	AT1G28520	GAAGGAGCTGCAACTGCTAAATC	AGAACCGTGAGATCAAAGAGCTCT
1862.	TF	AT1G72450	GCTAAACGAAAAGACAGGGCTG	GACTACCGTGTTGGTTCACTTGAT
1863.	TF	AT2G42400	CATGGAACGCAGCAGAGCTA	CACTCTCTAATTGTTTCGCCTTCAA
1864.	TF	AT1G74950	GCAGCACAAGAGCCAATTCA	TTGCAATCGGGAGTTCGC
1865.	TF	AT1G13960	TCAAGCAAAACAGACCAACCGC	GTGACTTGAGCTAGAGCTTGCTGA
1866.	TF	AT2G34600	ATGCGACTTGGAACTTCGCCTT	AGAGCTGCTTGATTCGTCCAACG
1867.	TF	AT1G18860	AGACACCAACGATGAACGACGGAT	AGCTCGGGGACATGGATTGCCTTT
1868.	TF	AT3G17860	TAATGGCTCCAACAGTGGCA	TCTAAAAACCTAGCCAGGGATGC
1869.	TF	AT1G29280	CGCCTAAAAGAAGCAGGAGATCCG	CCTTTGTGCCGAGATCCTTCCATT
1870.	TF	AT3G43440	TTGAGAAAAGACGGCATCGA	TGCTTCCGAAGTCGTAGCAGA
1871.	TF	AT1G29860	AGGCGAGCCTAAAGAGAACACCA	GTCAGTTGCTTGGAGCTTTCACCA
1872.	TF	AT4G14713	GTATCCGAGAAAGATGGCCACA	CACTTGTTTCAGCTGGGCTTC
1873.	TF	AT1G30650	AGGCTCTCCTTTTCCAAGGGGTTA	GATCGGTTCGGCTTCTTTCGACTT
1874.	TF	AT4G14720	GAGCTTCCCCAATATGGACTTG	GACCCTCAACATCAGAATCACG
1875.	TF	AT1G55600	CCTCCACCTCCAAAGAGAAGGAGA	TGCTTGTTCTTGTGGCTCCAATCA
1876.	TF	AT4G32570	TGACGTTCACCCAAACAAGG	TGAGCCTCCGCTTGATCCT
1877.	TF	AT1G62300	GGAAGCTCCGATGATAAGCGATGG	ATCGTGCAGCGGTAATATGCCC
1878.	TF	AT5G13220	AGATCAGCCTCAGATCCCGAT	TTCGGTACTAGACCTGGCGAG
1879.	TF	AT1G64000	GTTCATAATCATCCTTGTGAGAAGCT	GAAGTTGCCTAAGGAGAGGGC
1880.	TF	AT5G20900	GCAGATCCACGGCTGATCTAC	TTCTCGAGGAATCGTTGAAGC

Annex B. Microscopic pictures

Mature seeds

Col-0xCol-0 mature seed
Magnification: 20x

Col-0xC24 mature seed

Mature seeds

24 HAS

Col-0xCol-0 24 HAS
Magnification: 20x

24 HAS

Col-0xCol-0 36 HAS

Col-0xC24 36 HAS

C24xC24 36 HAS

48 HAS

Col-0xCol-0 48 HAS

48 HAS

72 HAS

Col-0xCol-0 72 HAS
Magnification: 20x

72 HAS

96 HAS

96 HAS

C24xC24 96 HAS
Magnification: 20x

C24xCol-0 96 HAS
Magnification: 20x
Annex C. Summarised GC-MS data
Table 1. The list of 75 identified compounds

No.	Identified compounds	MEAN F1s / Ps							SE						
		mature	$\begin{gathered} 12 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 24 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 36 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 48 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 72 \\ \text { HAS } \\ \hline \end{gathered}$	$\begin{gathered} 96 \\ \text { HAS } \end{gathered}$	mature	$\begin{gathered} 12 \\ \text { HAS } \end{gathered}$	$\begin{gathered} \hline 24 \\ \text { HAS } \\ \hline \end{gathered}$	$\begin{gathered} \hline 36 \\ \text { HAS } \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ \text { HAS } \end{gathered}$	$\begin{gathered} \hline 72 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 96 \\ \text { HAS } \\ \hline \end{gathered}$
1.	adipic acid	1,47	2,71	1,34	0,96	1,71	1,01	0,80	0,72	1,23	0,45	0,14	0,61	0,15	0,08
2.	alanine	0,79	0,64	1,53	1,91	0,81	1,56	4,98	0,14	0,03	0,38	0,74	0,16	0,33	4,34
3A.	alpha-tocopherol	1,05	1,06	1,18	1,13	1,05	0,90	0,61	0,14	0,09	0,20	0,15	0,07	0,25	0,12
3B.	alpha-tocopherol minor	1,49	0,51	0,98	1,41	1,48	1,42	1,10	NA	NA	0,11	0,31	0,17	0,47	0,13
4.	aspartic acid	1,01	1,85	1,11	1,66	1,52	1,32	1,32	0,06	0,19	0,14	0,11	0,10	0,12	0,20
5.	behenic acid	0,98	0,93	0,98	0,95	1,12	1,03	1,01	0,03	0,03	0,04	0,06	0,10	0,16	0,14
6.	benzoate	0,98	1,19	1,16	1,44	1,42	0,80	1,98	0,11	0,08	0,04	0,37	0,11	0,09	1,09
7.	beta-glucopyranose 1,6-anhydro	1,03	1,15	1,12	1,08	1,04	0,90	1,01	0,12	0,07	0,18	0,18	0,20	0,12	0,07
8.	c15:0 fatty acid	1,10	0,76	0,87	1,10	1,08	1,03	1,20	0,20	0,08	0,33	0,44	0,10	0,14	0,41
9.	c20:0 fatty acid	1,01	0,84	0,90	0,82	1,05	1,08	1,09	0,09	0,16	0,10	0,13	0,11	0,22	0,54
10.	capric acid	0,93	0,73	0,80	0,88	0,92	0,98	1,05	0,07	0,08	0,06	0,04	0,14	0,24	0,25
11.	citramalic acid	0,88	0,88	0,87	0,89	0,92	0,88	1,00	0,13	0,11	0,14	0,04	0,07	0,13	0,17
12.	citrate	1,23	1,40	1,69	1,50	0,94	1,56	0,96	0,43	0,26	0,23	0,32	0,15	0,30	0,15
13.	citrulline	1,08	1,54	1,46	1,15	0,96	1,08	1,29	0,17	0,31	0,26	0,19	0,08	0,12	0,18
14.	cysteine	0,81	1,03	0,67	1,13	0,90	1,16	0,82	0,05	0,18	0,13	0,18	0,15	0,06	0,09
15.	dodecanoic acid	1,52	0,82	0,76	1,06	1,02	1,76	1,10	0,49	0,12	0,20	0,18	0,12	0,71	0,11
16.	ergosterol	0,99	1,08	0,89	0,97	1,02	1,06	0,98	0,09	0,10	0,08	0,10	0,04	0,14	0,08
17A.	fructose 1	0,86	1,11	1,15	0,95	0,90	0,74	1,34	0,06	0,13	0,22	0,11	0,08	0,14	0,08
17B.	fructose2	0,88	1,11	1,18	0,93	0,91	0,74	1,41	0,06	0,14	0,21	0,11	0,07	0,14	0,13
18.	fumaric acid	0,72	0,81	1,00	1,02	0,87	1,18	2,16	0,04	0,10	0,15	0,14	0,03	0,07	0,50
19.	gluconic acid lactone	0,93	1,05	0,87	1,13	1,00	0,85	0,84	0,07	0,13	0,06	0,07	0,07	0,12	0,16
20A.	glucose1	1,03	1,51	1,41	0,77	1,03	0,99	1,31	0,17	0,38	0,28	0,17	0,22	0,43	0,20
20B.	glucose2	1,01	1,56	1,48	0,83	1,12	0,64	1,54	0,13	0,35	0,30	0,19	0,26	0,22	0,39
21.	glucose-1-phosphate (degradation product)	0,90	1,13	1,01	1,25	1,03	1,33	0,87	0,07	0,07	0,08	0,25	0,09	0,10	0,09
22.	glutamate	0,94	1,14	1,33	1,67	1,29	1,48	1,69	0,04	0,14	0,18	0,05	0,16	0,18	0,31
23.	glutamine	0,74	1,28	1,08	1,36	0,85	1,08	1,04	0,13	0,08	0,17	0,15	0,16	0,11	0,14
24.	glutaric acid	0,80	1,17	1,03	0,89	0,92	0,83	1,05	0,10	0,34	0,10	0,06	0,06	0,05	0,09
25.	glycerate	0,82	0,93	1,13	1,12	1,03	1,30	0,99	0,12	0,11	0,16	0,07	0,05	0,14	0,09
26.	glycerol	0,95	0,83	1,18	0,78	1,44	0,94	1,06	0,01	0,09	0,11	0,21	0,38	0,12	0,17

No.	Identified compounds	MEAN F1s / Ps							SE						
		mature	$\begin{gathered} 12 \\ \text { HAS } \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 36 \\ \text { HAS } \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ \text { HAS } \\ \hline \end{gathered}$	$\begin{array}{r} 72 \\ \text { HAS } \\ \hline \end{array}$	$\begin{gathered} 96 \\ \text { HAS } \\ \hline \end{gathered}$	mature	$\begin{gathered} 12 \\ \text { HAS } \end{gathered}$	$\begin{gathered} \hline 24 \\ \text { HAS } \end{gathered}$	$\begin{gathered} \hline 36 \\ \text { HAS } \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ \text { HAS } \end{gathered}$	$\begin{array}{r} 72 \\ \text { HAS } \\ \hline \end{array}$	$\begin{gathered} 96 \\ \text { HAS } \\ \hline \end{gathered}$
27.	glycerolphosphate alpha	0,85	1,33	1,08	1,71	1,26	1,38	1,09	0,12	0,06	0,15	0,18	0,13	0,07	0,09
28A.	glycine	0,70	1,05	1,23	1,24	0,93	1,38	0,87	0,04	0,16	0,20	0,13	0,08	0,16	0,11
28B.	glycine minor	0,82	0,79	1,56	1,18	0,74	0,93	0,93	0,10	0,06	0,24	0,06	0,10	0,08	0,12
29.	glycolic acid	0,90	0,85	1,13	1,10	0,88	0,94	0,91	0,06	0,12	0,10	0,31	0,04	0,14	0,08
30.	heptadecanoic acid	1,06	0,77	0,82	0,85	1,06	0,85	1,21	0,12	0,05	0,24	0,23	0,08	0,11	0,30
31.	hexanoic acid	1,00	0,74	0,83	0,70	0,97	0,61	0,69	0,31	0,14	0,12	0,06	0,24	0,11	0,13
32.	hydrox ybenzoate	0,79	0,79	0,95	0,70	0,78	0,89	0,92	0,07	0,07	0,13	0,02	0,07	0,08	0,14
33.	indole-3-acetonitrile	1,20	1,03	1,05	0,96	0,72	1,25	0,85	0,23	0,14	0,05	0,10	0,09	0,11	0,11
34.	inositol myo-	0,81	1,28	1,22	1,40	1,11	0,75	1,15	0,07	0,08	0,15	0,08	0,07	0,04	0,02
35.	inositol-2P	1,23	0,90	1,04	1,25	1,40	1,18	0,90	0,38	0,17	0,08	0,02	0,28	0,14	0,10
36.	isogalactinol	1,03	1,01	1,11	1,33	1,19	1,32	0,89	0,11	0,08	0,09	0,12	0,09	0,10	0,09
37.	isoleucine	0,90	0,94	1,16	1,65	0,95	1,36	0,62	0,10	0,02	0,24	0,04	0,14	0,17	0,07
38.	isopropyl beta-D-thiogalactopyranoside	1,01	0,92	1,36	1,19	0,93	1,06	0,78	0,30	0,18	0,25	0,17	0,14	0,22	0,29
39.	isoribonic acid (put.)	0,94	1,09	0,97	0,89	1,06	1,37	1,40	0,07	0,18	0,16	0,08	0,12	0,37	0,10
40.	isosinapinic acid	0,71	1,22	1,16	1,24	1,08	1,04	1,22	0,07	0,15	0,11	0,31	0,03	0,11	0,12
41.	itaconic acid	0,77	0,87	0,99	0,94	0,92	0,95	0,94	0,03	0,13	0,17	0,08	0,07	0,13	0,09
42.	lactic acid RI 192920	0,87	0,74	1,05	0,89	0,84	0,70	0,74	0,04	0,19	0,05	0,12	0,12	0,09	0,31
43.	leucine	0,97	0,90	1,23	1,56	0,92	1,29	0,80	0,11	0,05	0,16	0,08	0,13	0,12	0,08
44.	lignoceric acid	1,10	0,97	0,90	1,03	1,10	1,16	1,12	0,07	0,05	0,12	0,08	0,12	0,19	0,10
45.	lysine	0,76	0,80	0,96	1,50	1,04	1,08	0,76	0,12	0,20	0,31	0,31	0,15	0,17	0,19
46.	malic acid	0,89	0,99	1,61	1,62	1,33	1,66	1,26	0,06	0,12	0,09	0,07	0,14	0,08	0,14
47.	methionine	0,95	1,36	1,34	1,55	0,85	1,19	0,84	0,12	0,10	0,20	0,18	0,11	0,09	0,07
48.	myristic acid	0,94	0,85	0,88	0,87	1,03	0,98	1,08	0,13	0,05	0,13	0,23	0,11	0,07	0,23
49.	nicotinic acid	1,09	1,08	1,13	1,28	1,23	0,93	1,10	0,12	0,06	0,06	0,20	0,07	0,09	0,20
50A.	octadecanol	0,92	1,14	0,79	0,94	0,96	0,78	1,29	0,12	0,16	0,05	0,04	0,21	0,07	0,32
50B.	octadecenoic acid 1	0,85	0,94	0,61	0,85	0,93	0,82	1,59	0,15	0,11	0,12	0,22	0,11	0,12	0,58
51.	octadecenoic acid2	0,91	0,95	0,81	0,76	0,96	0,77	1,14	0,08	0,08	0,05	0,08	0,04	0,23	0,20
52.	octanol	1,01	0,80	0,78	0,97	0,98	0,96	0,74	0,24	0,15	0,08	0,09	0,23	0,49	0,15
53.	oxalic acid	0,54	0,90	1,03	0,96	0,84	0,84	1,06	0,04	0,13	0,29	0,19	0,17	0,20	0,08
54.	oxamic acid	0,57	1,21	1,06	0,78	0,92	0,93	0,62	0,15	0,32	0,21	0,05	0,08	0,06	0,06
55.	oxoproline	0,96	0,91	0,95	0,98	1,04	1,02	1,29	0,05	0,09	0,07	0,22	0,06	0,09	0,26
56.	palmitic acid	1,03	0,86	0,94	0,89	1,00	0,95	1,12	0,08	0,03	0,07	0,15	0,11	0,14	0,16
57.	pelargonic acid	1,29	0,69	0,82	1,08	0,93	1,17	0,91	0,25	0,07	0,07	0,13	0,13	0,39	0,15

No.	Identified compounds	MEAN F1s / Ps							SE						
		mature	$\begin{gathered} 12 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 24 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 36 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 48 \\ \text { HAS } \end{gathered}$	$\begin{gathered} \hline 72 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 96 \\ \text { HAS } \end{gathered}$	mature	$\begin{gathered} 12 \\ \text { HAS } \end{gathered}$	$\begin{gathered} \hline 24 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 36 \\ \text { HAS } \end{gathered}$	$\begin{gathered} \hline 48 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 72 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 96 \\ \text { HAS } \end{gathered}$
58.	phenylalanine	0,76	1,08	1,07	1,36	0,85	0,84	0,90	0,06	0,07	0,10	0,13	0,04	0,05	0,05
59.	phosphate	0,92	1,02	1,13	1,23	0,99	1,26	1,03	0,13	0,13	0,08	0,25	0,07	0,08	0,11
60.	picolinic acid	0,71	1,15	0,68	0,86	0,96	0,86	1,00	0,10	0,19	0,15	0,09	0,10	0,11	0,14
61.	proline	0,85	1,07	1,40	1,57	1,08	1,42	0,55	0,05	0,12	0,24	0,08	0,14	0,19	0,11
62.	propanedioic acid 2-ethyl (put.)	0,73	0,95	1,03	1,13	1,02	0,88	0,86	0,11	0,21	0,18	0,16	0,09	0,16	0,13
63.	rhamnose	1,00	1,03	1,02	1,44	0,77	0,87	0,73	0,14	0,14	0,16	0,23	0,08	0,13	0,08
64.	serine	0,93	1,25	1,19	1,29	0,96	1,02	1,06	0,13	0,05	0,13	0,02	0,08	0,08	0,08
65.	sinapinic acid	1,04	1,20	1,13	1,24	1,14	0,85	0,96	0,11	0,14	0,07	0,16	0,03	0,05	0,07
66.	sitosterol	0,95	1,09	1,06	1,01	1,04	1,08	1,00	0,07	0,08	0,11	0,11	0,02	0,17	0,09
67.	sorbitol	0,88	1,16	0,71	0,95	0,99	1,19	0,99	0,06	0,36	0,15	0,18	0,09	0,23	0,15
68.	staric acid	1,02	0,81	0,87	0,95	0,99	0,79	1,01	0,09	0,06	0,03	0,05	0,20	0,12	0,10
69.	succinic acid	1,36	1,07	1,05	1,07	0,87	1,23	1,31	0,55	0,21	0,12	0,16	0,05	0,19	0,07
70.	sucrose	0,88	1,17	1,06	1,13	1,05	0,69	0,67	0,11	0,13	0,14	0,13	0,09	0,09	0,21
71.	threonine	0,85	1,24	1,20	1,48	1,05	1,14	1,12	0,08	0,09	0,14	0,08	0,08	0,09	0,24
72.	tryptophane	0,84	0,89	0,93	1,09	1,02	0,66	0,41	0,08	0,11	0,05	0,03	0,12	0,03	0,11
73.	tyrosine	0,81	1,19	1,19	1,67	0,93	0,90	0,79	0,05	0,14	0,13	0,07	0,11	0,07	0,06
74.	urea	1,28	0,84	1,10	1,24	1,18	0,83	1,57	0,21	0,10	0,20	0,24	0,11	0,14	0,54
75.	valine	0,85	1,12	1,31	1,50	1,05	1,28	0,94	0,06	0,08	0,26	0,06	0,10	0,15	0,07

[^4]Table 2 . The list of the 103 compounds classified according to their chemical group only

No.	Chemical Class	MEAN F1s / Ps							SE						
		mature	$\begin{gathered} 12 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 24 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 36 \\ \text { HAS } \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 72 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 96 \\ \text { HAS } \end{gathered}$	mature	$\begin{gathered} 12 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 24 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 36 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 48 \\ \text { HAS } \\ \hline \end{gathered}$	$\begin{gathered} 72 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 96 \\ \text { HAS } \\ \hline \end{gathered}$
1.	acid001	0,71	0,87	0,89	1,20	1,49	0,88	0,87	0,09	0,05	0,22	0,26	0,37	0,10	0,08
2.	acid002	0,84	1,08	0,81	1,03	0,98	0,85	1,12	0,11	0,04	0,02	0,05	0,09	0,04	0,12
3.	acid003	1,04	0,92	1,07	1,00	0,95	0,85	1,18	0,18	0,17	0,11	0,02	0,09	0,11	0,14
4.	acid004	0,99	0,77	0,94	0,86	1,04	1,07	0,88	0,06	0,10	0,10	0,05	0,11	0,24	0,11
5.	acid005	0,95	0,88	1,81	1,67	0,70	0,79	0,99	0,06	0,04	0,30	0,20	0,05	0,05	0,04
6.	acid006	0,99	0,84	0,93	1,06	1,01	0,77	1,01	0,08	0,03	0,22	0,31	0,03	0,04	0,08
7.	acid007	0,65	0,81	1,23	0,94	0,81	0,99	1,24	0,06	0,06	0,18	0,05	0,13	0,04	0,32
8.	acid008	1,02	0,80	0,73	0,82	0,89	0,81	0,89	0,07	0,04	0,11	0,15	0,09	0,12	0,14
9.	acid009	0,70	0,99	1,01	0,91	0,79	1,12	1,11	0,11	0,21	0,07	NA	0,06	0,05	0,12
10.	acid010	1,01	0,99	0,87	1,12	1,25	1,02	1,07	0,11	0,05	0,09	0,04	0,16	0,14	0,06
11.	acid014	1,71	1,91	1,06	1,93	0,62	0,85	1,01	0,67	0,69	0,21	0,15	0,23	0,28	0,39
12.	amino acid001	0,86	1,21	0,78	1,17	1,01	0,85	1,03	0,04	0,01	0,02	0,16	0,10	0,12	0,16
13.	amino acid002	0,85	1,17	0,79	1,14	0,99	0,82	1,01	0,01	0,00	0,01	0,14	0,06	0,10	0,16
14.	amine001	0,64	0,80	1,17	1,12	0,85	0,53	0,95	0,13	0,08	0,34	0,26	0,11	0,16	0,19
15.	amine002	1,07	0,80	1,15	1,09	0,89	0,59	1,09	0,03	0,08	0,23	0,24	0,12	0,11	0,20
16.	amine003	0,98	0,90	1,18	1,21	0,92	0,86	0,86	0,08	0,15	0,11	0,13	0,12	0,24	0,19
17.	amine004	1,01	0,90	1,05	0,93	1,11	0,78	0,66	0,18	0,09	0,08	0,09	0,21	0,01	0,16
18.	amine005	1,05	0,82	1,02	0,89	0,88	0,80	0,99	0,26	0,10	0,11	0,03	0,07	0,10	0,09
19.	amine006	0,78	0,81	1,01	0,77	1,02	1,14	0,28	0,19	0,12	0,16	0,07	0,19	0,30	0,08
20.	amine007	0,63	1,05	0,91	1,02	1,16	0,95	1,00	0,06	0,20	0,28	0,42	0,21	0,11	0,26
21.	amine008	1,06	1,00	1,08	1,46	1,24	0,70	0,58	0,36	0,02	0,07	0,42	0,04	0,13	0,20
22.	amine009	0,82	1,77	1,57	1,54	1,54	2,09	0,74	0,20	0,36	0,38	0,73	0,81	0,58	0,17
23.	amine010	4,38	0,80	0,61	0,93	10,17	0,79	0,97	2,90	0,08	0,14	0,03	9,46	0,15	0,15
24.	amine011	0,85	0,77	1,36	0,85	1,29	1,00	0,66	0,09	0,06	0,21	0,07	0,40	0,20	0,13
25.	amine013	0,92	0,62	1,00	0,98	1,02	0,90	0,90	0,15	0,14	0,21	0,20	0,06	0,11	0,19
26.	amine014	0,94	1,02	0,85	0,82	1,01	0,78	0,99	0,12	0,26	0,13	0,10	0,08	0,15	0,15
27.	amine015	0,73	1,03	0,96	1,00	1,16	0,98	0,72	0,10	0,33	0,22	0,12	0,24	0,22	0,11
28.	amine016	0,44	1,32	0,95	0,84	0,91	0,92	0,68	0,10	0,36	0,22	0,15	0,30	0,10	0,18
29.	amine017	0,81	0,82	0,75	0,78	1,09	0,65	1,25	0,08	0,01	NA	NA	0,11	0,06	0,37
30.	amine018	0,94	1,39	1,07	1,21	1,48	1,89	1,30	0,11	0,24	0,16	0,17	0,37	0,23	0,62
31.	amine019	0,93	1,81	1,79	1,69	1,27	1,19	1,10	0,13	0,43	0,20	0,09	0,20	0,18	0,18
32.	amine022	0,85	1,15	0,96	1,06	1,38	1,41	0,95	0,06	0,11	0,11	0,10	0,26	0,09	0,07

			$7{ }^{2}$	O	So	m_{0}	B ${ }^{\circ}$	${ }_{0}$		0_{0}^{0}			0°		－	qin	${ }^{2}$	con	$0^{3} 0^{2}$	${ }^{2} 2$	$\mathrm{c}_{0}{ }^{0}$	N－	O－	No	O	$\mathrm{O}_{0} \mathrm{~J}$				O
	\cdots	\bigcirc	0°		Cl	$\begin{array}{lll} 2 & 2 \\ 0 & 0 \\ 0 \end{array}$	$5_{0} \frac{1}{0}$	0^{2}			0		\sim_{0}		0^{2}	c_{0}^{∞}	$\mathrm{N}_{0} \mathrm{~N}$	\cdots	I.	N	5	0^{-0}	İt	${ }^{\circ}$	స	do	0			${ }^{2}$
	¢		（1）	0		$=$	5	$\overbrace{0}^{0}$			s_{0}^{2}	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	0°	\bigcirc	O	$5 \infty^{\infty}$	0	8	90	$0_{0}^{2} 0$	0	$m \text {; }$		$\underset{0}{4}$	coly	\cdots	$2 \begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			\cdots
，	$\begin{array}{rl} 2 \\ 0 & 0 \\ 0 \end{array}$	\cdots	0_{0}^{8}			0	0.0	${ }^{2}$		b_{0}^{a}	30	0	$\stackrel{B}{0}_{0}^{0}$	O2	8	3	80	$\underset{0}{0}-\infty$	$\infty, z=0$	$=0$	0	0	c_{0}^{2}	5	0		$\stackrel{c}{0}=7$			－
	ন্র		2 ${ }^{2}$			$\begin{array}{ll} 2 \\ 0 & 0 \\ 0 \end{array}$	8	10°		이	50		I	0°	Bos	50	\circ	$0 .$	$\underset{6}{9} \underset{6}{9}$	n	in	$\overbrace{0}^{2}$	0	cos	이	$\frac{2}{2} \frac{9}{0}$	\pm			－
	\approx		50		C_{1}^{0}	0	$\frac{9}{0}, \frac{0}{0}$	0		o.	8		\％	${ }^{2}$	\pm	$\underbrace{5}_{0}$	$\begin{array}{l\|l} \infty & 1 \\ 0 & 0 \\ 0 \end{array}$	0_{0}^{0}	$c_{0}^{\infty}, \underset{0}{\infty}=1$	0	$\overline{0}=0$	의	시:	$\begin{gathered} 1 \\ 0 \\ 0 \end{gathered}$	$\underset{\sim}{2}$	m_{0}^{2}	$\vec{s}_{3} \hat{0}_{0}^{0}$			त－
	$\begin{aligned} & E \\ & \end{aligned}$		F20．			10	$c_{0}^{c}(\underset{y}{c}$	\％	${ }_{0}$	－			cor	任	δ	$\underset{0}{2}$	\Rightarrow	${ }_{2}^{2}$	0_{0}^{2}	8	8	80	$\overrightarrow{0}$	0	Ald	0	$\begin{array}{ll} \infty & 1 \\ 0 & 1 \\ 0 \end{array}$			ch
	or		$\mathrm{O}_{2} \mathrm{~N}$	\bigcirc	－	－	－	O			－	－	0	0	${ }^{\infty}$	${ }^{\infty}+\infty$	8	$\stackrel{y}{c} \underset{0}{0}$	$\stackrel{n}{n} \underset{0}{2}=$	∞_{0}^{∞}	o.	－	${ }^{\text {O}}$	S	$\left[\left.\begin{array}{c} \infty \\ 1 \\ 0 \end{array} \right\rvert\,\right.$		e_{0}^{2}			${ }_{0}^{ \pm}$
	$\therefore \underset{1}{n}$		0°	T	\bigcirc	$8{ }^{8}$	${ }_{0}$	0	O	－	s_{0}^{4}	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	O－	فे	$\underset{0}{n}$	S°	？	\cdots	$\exists \underset{\sim}{7}$	0	n	0_{0}^{8}	6		fof	∞	$\begin{aligned} & \mathbf{x}_{0}^{0} \end{aligned}$			\because
\because	x_{0}^{∞}		8	\bigcirc	\％	0_{0}^{2}		O		\pm	0^{2}	s_{0}^{2}	$0_{0}^{\infty} x_{0}^{\infty}$	b	2	x_{1}^{∞}	∞	${ }_{-}$	$-2 \cdot$	$s i$	$\stackrel{0}{2}$	R_{0}^{∞}	8	5	b_{0}^{6}	－	$8 .$			0.
	$\underset{1}{4}$		N	d．		0	\mathfrak{c}	\pm	$\xrightarrow{2}$	E		\％		\％	$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$	$8 x_{0}^{\infty}$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}\right.$	잉	Σ_{0}^{2}	On	2	s_{2}^{∞}	5	$\bar{\infty} \mid$	0	x_{1}^{∞}	0			${ }_{-}^{\infty}$
	\dot{A}		${ }^{\circ}$		0	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	∞	O	$\xrightarrow{\sim}$	8	${ }^{\infty}$	0	${ }^{\circ} 8$	2	O	－	2.	8	Cid	∞	F	\bigcirc	\％	2	\exists		$\overline{\mathrm{N}}$			O
	$\approx \geq$		\％	8	S_{-}	O，	0^{∞}	S		I	\sim	No	0_{0}^{∞}	S	0	$=1$	n	H	$\underset{\sim}{c}$	n	\cdots	\bigcirc	\bigcirc	\％${ }^{\text {a }}$	\approx	ন্	Non			S
	Exy		\sim_{0}^{∞}			－	${ }_{2}^{2}$	2	ถั	－			I	O	N	${ }^{2}$	－	8	$8 \cdot \infty$	5	\bigcirc	O	N	E	－	m				0^{∞}
												$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$		$\left\{\begin{array}{l} \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$			$\stackrel{7}{0}$		$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 0 \\ \hline 0 \end{gathered}$		0	\hat{c}_{0}^{∞}		$\begin{array}{rl} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$		0				
	¢		，		¢	$\dot{\sim}$	$\stackrel{\circ}{0}$			¢ ${ }_{\text {d }}$			守字		－	¢ $\dot{\substack{\text { a }}}$	q］	in	in	in	示in	in	in	$\dot{\sim}$	嫁	8		\bigcirc		

No.	Chemical Class	MEAN F1s / Ps							SE						
		mature	$\begin{gathered} 12 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 24 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 36 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 48 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 72 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 96 \\ \text { HAS } \end{gathered}$	mature	$\begin{gathered} 12 \\ \text { HAS } \end{gathered}$	$\begin{gathered} \hline 24 \\ \text { HAS } \end{gathered}$	$\begin{gathered} \hline 36 \\ \text { HAS } \end{gathered}$	$\begin{gathered} \hline 48 \\ \text { HAS } \end{gathered}$	$\begin{gathered} \hline 72 \\ \text { HAS } \end{gathered}$	$\begin{gathered} 96 \\ \text { HAS } \end{gathered}$
99.	cho067	0,81	1,01	0,91	1,38	1,31	0,84	0,69	0,04	0,14	0,15	0,34	0,35	0,07	0,11
100.	cho069	2,23	1,95	1,27	1,82	2,80	0,88	0,89	0,77	0,60	0,27	0,26	1,82	0,27	0,37
101.	indol deriv001	0,88	1,16	1,15	1,01	0,86	1,48	0,86	0,20	0,24	0,15	0,08	0,18	0,28	0,06
102.	indol deriv002	0,33	1,62	1,49	0,80	0,96	1,68	0,47	0,10	0,50	0,50	0,16	0,34	0,48	0,06
103.	indol deriv003	1,64	1,23	0,78	1,38	1,68	1,18	1,66	0,64	0,09	NA	0,35	0,08	0,01	NA

[^5]
ACKNOWLEDGEMENTS

First of all, I would like to thank Dr Michael Udvardi and Prof. Thomas Altmann, for giving me the opportunity to work on the PhD project in the groups of Molecular Plant Nutrition and Developmental Physiology and Genomics. I am grateful for their scientific supervision and critical review of my thesis.

Many thanks to Dr Wolf-Ruediger Scheible and my evaluation board: Prof. Thomas Altmann, Prof. Lothar Wilmitzer and Prof. Mark Stitt for supervision and all fruitful scientific discussions.

I would like to acknowledge all the member of Molecular Plant Nutrition group as well as all the international Guests for helpful scientific discussions and the great atmosphere. Here, special thanks to:

- Dr Tomasz Czechowski - especially for the master qRT-PCR supervision,
- Dr Armin Schlereth - for the post-doctoral supervision and co-work on the basics of seed development project,
- Dr Diego Sanchez - for fruitful scientific and philosophical discussions,
- Student helper Vivi Boldt - help by crosses,
- The former PhD students: Dr Ombretta Montanari, Dr Klementina Kakar, and Dr Felix Lippold for everyday PhD experience exchange and help.

In parallel, I would like to acknowledge all the members of Developmental Physiology and Genomics group for the cooperation and/or helpful scientific discussions, especially:

- Hanna Witucka-Wall - especially for co-work/cooperation on metabolite and statistical analyses,
- Rhonda Meyer - for the post-doctoral supervision, help with statistical analysis
- Maria von Korff - for cooperation with statistical analyses,
- Otto Törjék - for cooperation in the study on FRIGIDA,
- Melanie Teltow - especially for supervision and cooperation on making laborious crosses.

The greatest acknowledgments go also to my other collaborators in:

- Bioinformatics: Jan Lisec, for the laborious collaboration on the statistical analysis for my project,
- Metabolomics: Dr Olivier Fiehn, for the collaboration on GC-MS analysis,
- Microscopy: Dr Eugenia Maximova (MPI-MP), for a collaboration on microscopic analysis and Dr Michael Melzer (IPK Gatersleben), for a collaboration on microscopic analysis (data was collected by AG Altmann),
- Group of Molecular Genomics: Dr Bikram Datt Pant,
- Groups of Chromosome Structure and Function (IPK Gatersleben): Ali Banaei (especially for a laborious 'bino by bino’ work), Dr Joerg Fuchs, Dr Andreas Houben and the group of Epigenetics in the IPK Gatersleben: Dr. Michael F. Mette - for a collaboration in the NOR and ploidy analysis.

Many thanks to other MPI-MP scientists for fruitful scientific discussions, especially:

- Group of Metabolomic Analysis: Rajsree Mungur (and for all the labours edits),
- Group of Amino Acids and Sulfur: Dr Monika Bielecka,
- Group of Molecular Genomics: Dr Jens-Holger Dieterich (and for translations), Tomasz Kobytko, Magdalena Broda, Magdalena Musialak-Lange, Dr Przemystaw Nuc,
- Group of Transcript Profiling: Dr Tonia Popova and Dr Justyna Witkowicz,
- Group of Genome Structure and Function: PhD student Sima Karimi-Tabriz,
- Group of Nucleotides and Sugars: Dr Peter Lange,
- Group of Plant Lipids: Dr Peter Doerman and people from AG Doerman,
- Group of System Integration: Dr Vika Nikoforowa and Jędrzej Szymañski.

I could not forget about all the services of the MPI, especially 'Green Team' lead by Dr Karin Koehl for plant service, as well as about non-scientific stuff, especially Administration led by Lothar Grube, followed by Kersin Otto.

Thank you to Deutsche Forschung Gemeinschaft and Max Planck Society for granting the project and/or supplies.

Many thanks to everyone I did not mentioned here for any kind of help.
Finally, my very special acknowledgment is expressed to my other Friends (especially Wojtek Gluch and Michat Wiewiórowski) and my Family (especially my Mum) - for their help and support!

Anna Blacha

CURRICULUM VITAE of Anna Blacha

LinkedIn: http://www.linkedin.com/pub/dir/Anna/Blacha, biotechnology

Education

February 2010, University of Potsdam, Faculty of Natural Sciences, Germany PhD in Molecular Biology and Genetics

- June 2004 - August 2009 (including external status)

PhD Project 2: The role of transcription factors in heterosis for superior growth and biomass production in Arabidopsis thaliana
Supervisor: Dr Michael Udvardi and Prof. Thomas Altmann

- November 2003 - May 2004

PhD Project 1: The role of transcription factors in Arabidopsis seed development Co-work with Dr Armin Schlereth, Supervisor: Dr Michael Udvardi

October 2003, Wroclaw University of Technology, Department of Chemistry, Poland
MSc in Biotechnology - specialisation: Molecular Biotechnology and Biocatalysis

- December 2002 - July 2003: Max Planck Institute of Molecular Plant Physiology, Golm, Germany
Master Diploma Project 2:
Identification of silique- and seed-specific transcription factors in Arabidopsis thaliana
Supervisor: Dr Michael Udvardi
- June 2002 - November 2002: Wroclaw University, Department of Biochemical Genetics, Wroclaw, Poland

Master Diploma Project 1:
Evaluation of kinetic parameters for potato 3-O-glucosyltransferase transformed in E. coli.
Supervisor: Prof. Jan Szopa Skórkowski

- October 2001 - November 2002: Wroclaw University, Department of Biochemical Genetics, Wroclaw, Poland Guest student, courses of molecular genetics and genetical biochemistry
- October 1998 - October 2003: Wroclaw University of Technology, Chemistry Department, Wroclaw, Poland Student of biotechnology

List of publications/Talks/ Posters

Talk:

Symposium 'Heterosis in Plants', 18-20 May 2006, Potsdam/Golm, Germany
The role of transcription factors in heterosis for superior growth and biomass production in Arabidopsis thaliana

Anna Blacha, Michael Udvardi, and Thomas Altmann
Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany

Publication participation:

Journal of Heredity 2008, 99 (4): 396-406
Construction and analysis of $\mathbf{2}$ reciprocal Arabidopsis introgression line populations
Otto Törjek ${ }^{2}$, Rhonda C. Meyer ${ }^{1}$, Maik Zehnsdorf ${ }^{1}$, Melanie Teltow ${ }^{2}$, Georg Strompen ${ }^{2}$, Hanna Witucka-Wall ${ }^{2}$, Anna Blacha ${ }^{1}$, and Thomas Altmann ${ }^{1,2}$

1) Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany
2) University of Potsdam, Institute of Biochemistry and Biology, Department of Genetics, Potsdam, Germany

Poster/Poster participation:

$8^{\text {th }}$ International Congress on Plant Molecular Biology, 20-25 August 2006, Adelaide, Australia
Investigating the role of transcription factors in heterosis of Arabidopsis thaliana
Anna Blacha ${ }^{1}$, Hanna Witucka-Wall ${ }^{2}$, Rhonda C. Meyer ${ }^{2}$, Maria von Korff 2, Tomasz Czechowski ${ }^{1}$, Vivien Bold ${ }^{1}$, Eugenia Maximova ${ }^{1}$, Michael Udvardi ${ }^{1}$, and Thomas Altmann ${ }^{1,2}$

1) Max Planck Institute of Molecular Plant Physiology, Golm, Germany
2) University of Potsdam, Institute of Biochemistry and Biology, Department of Genetics, Potsdam, Germany
$15^{\text {th }}$ International Conference on Arabidopsis Research, 11-14 July 2004, Berlin, Germany Developmental regulation of transcription factor genes in Arabidopsis seeds

Anna Blacha, Armin Schlereth, Tomasz Czechowski, Yves Gibon, Mark Stitt, Wolf R. Scheible, and Michael Udvardi
Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany
$15^{\text {th }}$ International Conference on Arabidopsis Research, 11-14 July 2004, Berlin, Germany Investigation of the molecular basis of heterosis using a combined genomic and metabolomic approach

Hanna Witucka-Wall ${ }^{2}$, Anna Blacha ${ }^{1}$, Eugenia Maximova ${ }^{1}$, Oliver Fiehn ${ }^{1}$, Tobias Kind ${ }^{1}$, Otto Törjek ${ }^{2}$, Rhonda C. Meyer ${ }^{1}$, Martina Becher ${ }^{1}$, Michael Udvardi ${ }^{1}$, Wolf.R.Scheible ${ }^{1}$, and Thomas Altmann ${ }^{1,2}$

1) Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany
2) University of Potsdam, Institute of Biochemistry and Biology, Department of Genetics, Potsdam, Germany

[^0]: ${ }^{1}$ AT1G13440 was annotated as GAPDH by Czechowski et al., (2005), and as GAPC2 by TAIR (February 2009)
 ${ }^{2}$ AT1G13320 was annotated as PDF2 or PP2A by Czechowski et al., (2005), and as PP2AA3 by TAIR (February 2009)

[^1]: Legend:
 Numbers in columns 3-8 are P-values from LSD analysis, whereas in columns 9-10 from ANOVA The grey fields mark P-values <0.05 (threshold of significance)

 Non-add. - Non-additive; Add. - Additive

 * candidate microRNA
 ** candidate SET-domain gene (a member of the 'chromatin-related' group of genes)

[^2]: Legend:
 The genes in bold were selected from the $1^{\text {st }}$ experiment
 N / P - not present in DATF database (refer to Table 3.5)
 N/A - not available
 $\mathrm{x}-$ does not exist

[^3]: Legend:
 N/P - not present in DATF database (refer to Tables 3.4 and 3.5) N/A - not available x - does not exist

[^4]: Legend: HAS -

 N/A - only one or two biological replicates analysed
 Red marks: over 30% increase of the compound level in hybrids
 Blue marks: over 30\% decrease of the compound level in hybrids

[^5]: Legend:
 MEAN F1s/Ps - ratio of mean values of hybrids to mean values of parental lines from the peak area detected in GC-MS
 HAS - hours after sowing
 N/A - only one or two biological replicates analysed
 Red marks: over 30% increase of the compound level in hybrids
 Blue marks: over 30\% decrease of the compound level in hybrids

