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Abstract

Subject of this work is the study of applications of the Galactic Microlensing effect, where
the light of a distant star (source) is bend according to Einstein’s theory of gravity by the
gravitational field of intervening compact mass objects (lenses), creating multiple (however
not resolvable) images of the source. Relative motion of source, observer and lens leads to
a variation of deflection/magnification and thus to a time dependant observable brightness
change (lightcurve), a so-called microlensing event, lasting weeks to months.

The focus lies on the modeling of binary-lens events, which provide a unique tool to
fully characterize the lens-source system and to detect extra-solar planets around the lens
star. Making use of the ability of genetic algorithms to efficiently explore large and intricate
parameter spaces in the quest for the global best solution, a modeling software (Tango) for
binary lenses is developed, presented and applied to data sets from the PLANET microlens-
ing campaign. For the event OGLE-2002-BLG-069 the 2nd ever lens mass measurement has
been achieved, leading to a scenario, where a G5III Bulge giant at (9.4 +1.4) kpc is lensed
by an M-dwarf binary with total mass of My, = (0.51 £0.15) M, at distance (2.9 £0.4) kpc
Furthermore a method is presented to use the absence of planetary lightcurve signatures
to constrain the abundance of extra-solar planets.

Abstract

Thema der Arbeit ist das Studium von Anwendungen des Galaktischen Mikrolinseneffektes
bei dem das Licht eines entfernten Sternes (Quelle) nach Einstein’s Theorie der Gravitation
im Schwerefeld eines sich hinreichend nahe der Sichlinie zur Quelle befindlichen massere-
ichen kompakten Objektes (Linse) abgelenkt wird und Mehrfachbilder der Quelle erzeugt
werden (welche jedoch nicht aufgelost werden kénnen). Die Relativbewegung von Quelle,
Beobachter und Linse fithrt zur einer Anderung der Ablenk-und Verstarkungswirkung und
somit zu einer beobachtbaren Helligkeitsdnderung der Quelle (Lichtkurve), einem sogenan-
nten Mikrolinsenereignis, welches Wochen bis Monate andauert.

Der Schwerpunkt liegt in der Modelierung von Doppellinsen-Ereignissen, welche die
einzigartige Moglichkeit bieten das Linsen-Quelle System vollstandig zu charakterisieren
und extra-solare Planeten um den Linsenstern zu detektieren. Unter Verwendung der
Eigenschaft genetischer Algorithmen hoch-dimensionale und komplizierte Parameterraume
effizient nach dem besten globalen Model zu durchsuchen, wird eine Modelier-Software
(Tango) entwickelt, présentiert und auf Daten der PLANET Mikrolinsen Beobach-
tungskampagne angewandt. Dabei konnte fiir das Ereignis OGLE-2002-BLG-069 zum
zweitenmal tiberhaupt die Linsenmasse bestimmt werden, in einem Szenario bei dem ein
G5HIIT Bulge Riese, (9.4 & 1.4) kpc entfernt, von einem M-Zwerg Bindrsystem mit einer
Gesamtmasse von My, = (0.51 £ 0.15) My, in einer Entfernung von (2.9 + 0.4) kpc gelinst
wird. Dartiberhinaus wird ein Verfahren vorgestellt mit dem man die Abwesenheit plan-
etarer Lichtkurvensignaturen nutzen kann, um Aussagen iiber die Haufigkeit extrasolarer
Planeten zu treffen.
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Introduction

There are infinite many worlds, alike and unalike ours.
Epikur, 341-270 B.C.

Subject of this work is the study of applications of the Galactic Microlensing effect,
where the light of a distant star (source) is bend according to Einstein’s theory of gravity
by the gravitational field of intervening compact mass objects (lenses), creating multiple
(however not resolvable) images of the source. Relative motion of source, observer and lens
leads to a variation of deflection/magnification and thus to a time dependant observable
brightness change (lightcurve), a so-called microlensing event, lasting weeks to months.

The analysis of these lightcurves allows us to study interesting physical aspects of the
source and the lens. For example the possibility to observe distant sources with angular
resolutions far beyond the reach of even our best telescopes, enabling detailed comparisons
of stellar atmosphere models with observations. Microlensing also offers a new way of
detecting extrasolar planets, which in principle is even sensitive to Earth-like planets.
Although microlensing is still a rather young field, with the first microlensing events
being reported in 1993 (Alcock et al. 1993; Aubourg et al. 1993; Udalski et al. 1993), it
already has proven to be a fascinating and valuable tool for Galactic Astrophysics, with
breakthrough discoveries such as the latest one for example, the detection of the most
distant extrasolar planet known to this day, a Jovian planet of mass ~ 1.57%3 My with a
3701 AU orbit around the lens of OGLE-03-235/MOA-03-53 about 17 000 lightyears away
from us (Bond et al. 2004).

This thesis is structured in two parts. Part I introduces the essentials of gravitational
lens theory needed for this work and also the analysis tools developed in the course of the
Phd-time. Part II then is about applying these tools to selected events from the PLANET!
microlensing campaign.

Chapters 5 to 8 are preluded by an abstract. If you do not have too much time, you should
at least read the summary given in Chapter 9.

Iplanet.iap.fr



Part 1

Theory and Simulations



In theory there is no difference between theory and practice. In practice there is.

unknown



Chapter 1

A brief review of Gravitational
Lensing theory

This and the following chapter introduce briefly the essential theory and terms needed in
gravitational microlensing as applied in this work. While some technical details have been
put into the appendiz in order not to break the reading flow, the interested reader can find
exhaustive information in the literature recommended on page 142.

In our current understanding the propagation of light obeys Einstein’s General Rela-
tivity theory. However, if one considers only weak gravitational fields (i.e. |¢|/c* < 1),
which is more than a fair approximation for most of the objects acting as lenses, one can
simplify the problem and linearize Einstein’s field equations to derive the following line
element (Misner et al. 1973)

2 2
ds? = — <1 + —f) Adt® + <1 — —f) (de* + dy* + d2*) . (1.1)
C C

It describes a space-time in which the speed of light is reduced in the vicinity of massive
objects and the Newtonian gravitational potential ¢ formally acts on the light as medium
with diffraction index n =1 — i—f The most simple lens, a point with mass M at distance
r has the following potential

oM GM o)

N O B

For small deflection angles 5, integration along the unperturbed light ray z (passing the
lens at the same minimum distance u as the perturbed light ray, see Fig. 1.1) yields

AGM _ 2R, @

— U= )
c2u? U U

(1.3)

& =
Since the part of the light path in which most of the deflection takes place is very small
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Figure 1.1: To first order the deflection of light in the vicinity of the mass M is calculated along the
unperturbed ray z (dashed), passing the lens at the same distance u as the perturbed ray 1 (solid). Since
most of the deflection takes place very close to the lens, the perturbed light path can be approximated by
two unperturbed ones (dotted), which directions differ by a.

compared to the full path of the light ray one can define a lens plane, containing the
projected lens mass and characterized by the surface mass density >

Y(u) = /,0(1_[, z)dz . (1.4)

The deflection at @ is then the superposition of the deflections from all mass elements in
the lens plane.

1.1 The lens equation
Fig.1.2 illustrates the geometry of the standard gravitational lens system, comprising a
light source, a lens and an observer. One can directly read off the relation!
0Ds = 3Ds + 4Dy , (1.5)
which using @ = %5 translates into
S
3=6-a(). (1.6)

This equation (1.6) is known as lens equation and defines a two-dimensional mapping from
the lens plane onto the source plane. So trivial its derivation and so harmless in its form
it gives birth to a rich diversity of phenomena. In general it is nonlinear in 6 and not only
changes the apparent position of the source on the sky but can also create multiple images
of it.

1.2 The Einstein ring

For spherically symmetric lenses the lens equation with (1.3) can be rewritten as

B Drs 4GM(0)
plo) =6- D.Ds 20

(1.7)

1Using the Euclidian relation: angular distance = angle x distance, which holds to sufficient precision
on the scales of our Galaxy.
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LS

Figure 1.2: Basic geometry of a lens system. Light from the source S, located at distance Ds, passing
the lens with impact parameter @ is bent by the angle & and reaches the observer at O. The true source
position S with respect to the optical axis is marked by ﬁ and the position of image S is g. The lens is
located at distance Dp, and the distance between source and lens is Dpg. The light path for image S5 is
analog to S; but not shown for reasons of clarity.

If source, lens and observer are exactly aligned on the optical axis (i.e. § = 0) the source
would be imaged as ring with the angular radius (in the lens plane)

4GM((9E) DLS

. 1.8
2 DLDS ( )

Op =

This so called Finstein ring (Chwolson 1924; Einstein 1936) is the central characteristic
quantity in lensing, all length and time scales are normalized to it.
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1.3 The point mass lens (or Schwarzschild lens)

Using the Einstein radius (1.8), the lens equation for a point mass M = M () has the form
of a quadratic equation

_ o U
B=0-—=, (1.9)

with the two solutions, i.e. image positions

0, = % (g + /82 +4e‘g) . (1.10)

The images have different parity, one residing within and the other outside the Einstein
ring. Their separation is of order 2 0.

1.4 Amplification

Gravitational lensing preserves the number of photons, it only redistributes them. The
observers either receives more photons (amplification) or less photons (de-amplification)
compared to the case when the lens would be absent. Since also the surface brightness
of the source is not changed under lensing the only remaining possibility to achieve an
amplification (respectively de-amplification) is to change the solid angle under which the
source is observed, so we define

i ) image solid angle  image area
magnification = - =
source solid angle  source area

The terms magnification and amplification therefore are equivalent. Since in this study we
put an emphasis on the photometric signature of lensing we will use the term amplification
in the following.

The amplification factor A is given by

1

A= — 1.11
det J’ ( )

where J is the Jacobian of the lens mapping (1.6). It follows that the amplification of the
two images, created by a point mass lens is then

-1
0\ 242 1

- <—E) L (1.12)
0+ 2uvui+4 2

where the impact parameter u = 30, measures the projected separation of lens and source

as fraction of the Einstein radius. Since in galactic lensing the images in general cannot

AL =

13



lens mapping
lens plane — source plane

" caustics
" critical curves

Figure 1.3: For a spherical nonsingular lens the critical curves are two circles. The inner one is mapped
via the lens equation also onto a circle in the source plane. The outer one however degenerates into a point
caustic. The filled small circles mark the source position (right), respectively the image positions (left).
The position of the lens is marked with an x. Is the source outside the circular caustic there is only one
image. Traversing the caustic to the inside creates two additional images.

be resolved (the image separations are on the order of milliarcsec), the total amplification
is a more practicable quantity and reads

u? 4 2

A=A, |+ A | = ———.

(1.13)

We note that for u — 0, A — %, i.e. point sources would be infinitely amplified.

1.5 Caustics and critical curves

In reality sources are of course extended and the amplification remains finite, but apart
from demonstrating the limits of our simplifying asumptions of geometric optics and point
sources the points for which equation (1.11) diverges (i.e. where the Jacobian vanishes)
mark regions of high amplification. In the lens plane the set of points which fulfill this
criteria is called critical curves. The corresponding set of points (mapped via the lens
equation 1.6) in the source plane are the caustics. Besides representing regions of high
amplification caustics also separate places of different image number. The number of
images is always odd and changes by 2 if a caustic is traversed. An exception from this
rule is the Schwarzschild lens, where the third image is infinitely de-amplified because of
the singularity of the lens. Figure 1.3 illustrates qualitatively caustics and critical curves
for a circular non singular lens. In Chapter 2 we will have a closer look onto the caustics
of binary lenses.

14



1.6 The microlensing effect

The mass scale of potential lenses serves as a natural hierarchy for lensing phenomena.
Here we are interested in stars and planets acting as lenses in our Milky Way. A typical
galactic lensing scenario comprises a source at about Dg = 8 kpc and a lens at Dy, = 6 kpc
resulting in an Einstein radius of

M 1 1
Mg Dy, /6 kpe  Ds/8 kpce

0 = 0.6 milliarcsec \/ (1.14)

Since we cannot resolve the multiple images in this case, the term microlensing was intro-
duced in contrast to extragalactic macrolensing where image splittings of quasars lensed
by galaxies (or galaxy clusters) are of the order of arcsecs, i.e. individual images can be
observed. For a significant amplification to occur, the source and lens have to be aligned on
the scale of the Einstein ring. The chances for this to happen are enhanced for sources that
are distant and numerous, but even in the prime observing window for microlensing, the
dense fields of the Galactic Bulge, the event rate is only about one in a million stars (see
Appendix B.1 for details). Nevertheless, advances in detector and computer technology
providing large field of views and fast data reduction have enabled survey teams such as
OGLE (Udalski 2003) and MOA (Bond et al. 2004) to alert about ~ 500—700 microlensing
events each year.

1.7 Lightcurves

The relative transversal motion v, of observer, lens and source leads to a change in the
impact parameter u and thus via equation (1.13) to a change in the observed flux F'| i.e. a
microlensing event lightcurve of the form

F(t) = FsA(t) + Fy (1.15)

where Fy is the un-lensed source flux and Fg any other unresolved un-lensed flux, including
the lens flux and background/crowding flux unavoidable in a typically very crowded field
(see finder chart example on page 82). While ideally Fp is constant, in reality seeing and
other noise can also lead to a time dependant variation. Assuming the relative motion to
be a straight line in first approximation u can be parameterized as

u(t) = \/ug + <t ;Et")Q : (1.16)

, (1.17)




This lightcurve model, also called Paczynski curve, is described by ¢, (the time when
U = U,), tg (the time in which the source has traversed one Einstein radius), u, (the
minimum impact parameter) as well as Fs and Fp. Figure 1.4 shows lightcurves for 4
different u, and Fig. 1.5 illustrates the influence of blending on an observed lightcurve.

S

source track /
Uo

log (amplification)

Figure 1.4: Lightcurves for a point source lensed by a point lens for different minimal impact parameter
uo, = 0.1,0.3,0.5,0.7 assuming rectilinear relative motion. On the Einstein ring O the total amplification
is 1.34 (dotted line).

Out of these parameters only tg = f—f = M contains physical information
about the lens, albeit in a degenerate combination of v 1, M, Dy, and Ds. While the distance
to the source can be estimated from multiband/spectroscopic measurements?, the lens
usually is too faint to be detected directly. Interpretation of a microlens event in general
therefore requires assumptions on the lens distance and motion. For a typical scenario with

Ds = 8 kpe, Dy, = 6 kpc and v, = 200km/s the time scale of an event is on the order of

M

2Knowing the spectral type from stellar models (van Belle 1999) one can derive the linear radius of the
source and its absolute luminosity to infer its distance.
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Figure 1.5: The effect of (constant) blending onto the observed lightcurve. The solid line curve shows the
flux (in magnitudes) for a source with intrinsic brightness of Fg = 18.30 mag undergoing a single lens event
with u, = 0.1 but with an additional blend fraction of h = Fp/(Fs + Fp) = 0.61. The dotted line marks
the lighcurve with the same u, and Fgs as it would be observed in the absence of blending. When the data
covers only a small fraction of the amplification gradient, for instance only the peak region, the blending
will be only poorly constrained, which can lead to severe misestimates of the true lens event parameters. A
high amplification event could then be easily masked as a low amplification event in crowded fields typical

for galactic microlensing (see Fig. 6.1 for instance).
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Chapter 2

The binary lens

A double lens is vastly more complicated than a single one.
Paczynski, 1996

The most simple planetary system consists of two bodies, a planet and a star. Since also
stars very often come in pairs, it seems more than worthwhile to study the effects of binary
lenses. Following equation (1.4) the deflection angle of a distribution of point masses in
the lens plane is equal to the sum of the deflection angles of each point lens of mass m; at

—

Z;. With normalized coordinates ¥ = %, y= % this can be written as

Lo AG T — T

r — T;

so the lens equation for n point masses takes on the form

Zmz ki 22)

7 — ;|

with the convention > m; = 1. In the case of a binary lens (n = 2) it is useful to introduce
the mass ratio ¢ = E—f and the separation of the lens components d (measured in fractions
of the Einstein radius). For unequal masses m; is defined to be the primary mass, i.e.
0 < g <1 For g <1let m = M, be the star mass and my = my the planet mass.
Putting m; into the origin (0,0) and ms to (0,d) the binary lens equation reads

z —d

U 2.3
EE |x—d\2 (2:3)

y=o—m

It is an algebraic equation of 5th order in |Z|, and which in dependence of ¢ and d either
has 3 or 5 solutions. Contrary to the single point lens it has a rich caustic structure giving
rise to an enormous lightcurve diversity. Although there is no closed analytic form for

18



its solution one can at least explicitely calculate the caustics and get a first feeling for
the expected lens properties. Schneider & Weiss (1986) could show that there are exactly
3 different topologies for arbitrary mass ratios ¢q. Figures 2.1 and 2.2 show caustics and
critical curves for ¢ = 1 (i.e., m; = mo) and ¢ = 0.1 for different separations d. The caustics
are no longer degenerated into a point as in the single lens case but show the following
geometries. For small separations 3 caustics are formed, 2 three-cusped! secondary caustics
as well as a central four-cusped caustic. The transition to wide separations is marked by
a single six-cusped caustic, which for sufficient large d breaks up into two four-cusped
caustics. Details on how to derive these binary lens caustics/critical lines are given in
Appendix B.2.

The amplification of the binary lens (assuming a point source) can then be computed by
solving the binary lens equation (2.3) at each source position and calculated according to
Eq. (1.11) via A = 1/det J, with J = g—g being the Jacobian of the lens mapping?.

2.1 Planets as lenses

While as seen in Fig. 2.2 for mass ratios ¢ < 1 the caustics shrink, change their relative
positions, get compressed or stretched and only the xo = 0 axis remains as symmetry
axis, their topology is still equivalent to the case ¢ = 1. When the mass ratio is in
the planetary regime (¢ < 1072) the triangular-shaped secondary caustics are also called
planetary caustics and the caustic close to the main lens is referred to as central caustic.
The idea how to use microlensing to detect planets around the lens star is then rather
simple. If the source hits the influence region of the planetary (or central) caustic this
should lead to deviations from the normal Paczynski-form of a single lens, which can be
revealed by photometric observations (Mao & Paczyriski 1991). An example of a planetary
lightcurve perturbation is shown in Fig. 2.3. The following sections serve to quantify this
planetary signal and discuss its observability.

'The ends of closed caustic curves are not named corners but cusps. This stems from catastrophe
theory, a mathematical discipline dealing with singularities of differentiable mappings, to which also the
lens mapping belongs (Arnold 1984).

2Tt turns out that this calculus best is done using the complex notation of Witt (1990) in which the

binary lens equation (2.3) reads: ¢ =z + 75 — s, with e =y1 +iys, 2 = 21 +izs

19



image/lens plane source plane

d/R.=0.600 d/R.=0.600
T 15F T T T

1.5E T Y

o
close OSV &J

-10F

X,/Re

0.0F <<> E

05F E

YoIRe

-1.0F E
15 . . . . . 15 . A E
3 2 B 0 1 2 2 1 0 1 2
X,/Re y./Re

d/R.=0.707 d/R.=0.707
15 r T T T

[} SRR FEREE FNRTE FRRTE FETEE R

15F "

0.0F 0.0F E

-05F 0.5F E

10F 10F E

-15E . . . 3
-2 -1 0 1 2
X,/Re Y1/Re

d/R.=1.200 d/R.=1.200
T T 15F T T T

0.0} E E
-05F ]

10F E

X,/Re

o

n

T T

(R TEETE FREWE FREE FRETE FRET N

YoIRe

o

n

T

I

-1.5E . . . . .

15F "

osf
middle 0of
»0.5;

10F

X,/Re
YoIRe

-15E . . . 3
-2 -1 0 1 2
X,/Re V./Re

d/R.=2.000 d/R.=2.000
" - " " 15F T T

(R TEETE FETEE FNEEE FEUE FRET FR |

-1.5E . . . . .

15F

o.oé R A

-0.5F B

oo o

-0.5F

X,/Re
YVoIRe

-1.0F

-1.5E . . . . . -1.5E . . . 3

-3 -2 -1 0 1 2 2 -1 0 1 2
X,/Reg Yi/Re

d/Rg=3.200 d/R.=3.200
T T T T 15F T T

-LOF E

[R) TR PR FETEE FREEE FRWE FRET |

15F

0.0F R < e

X,/Re
YVoIRe

-0.5F 0.5F E

-1.0F -1.0F B
-1.5E . . . 3
2 -1 0 1 2
Xy/Re Y1/Re

05F
wide ook .\ m
| \_/
1 2

[} SERTE FEETE FNETE FETEE PR R

-1.5E

Figure 2.1: Critical curves (left column, lens/image plane) and caustics (right column, source plane) of
a binary lens with mass ratio ¢ = 1 for different separations d (increasing from top to bottom). The black
filled circles mark the lens positions with the center of mass serving as origin.
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Figure 2.2: Critical curves (left column) and caustics (right column) of a binary lens with q=0.1. The
primary mass (big filled circle) lies in the origin.
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Figure 2.3: A: Amplification map (generated with the ray-shooting technique introduced in Sec. 2.2.1)
of a star+planet configuration with mass ratio ¢ = 1073 and separation d = 1.41. The circle marks the
Einstein ring and the line the source motion. B: Here the amplification effect of the lens star has been
subtracted for better contrast of the planetary lens effect. C: Resulting lightcurve of the track marked
in map A. The dotted line marks the single lens lightcurve as it would be observed in the absence of the
planet. D: Lightcurve of the difference map B showing only the photometric signal of the planet.
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Figure 2.4: A planet with ¢ = 0.001 and 3.5 Einstein radii away from its parent star could leave a single
lens like signature (first peak) which is too short (ranging from days down to hours for Jupiters, repectively
Earths) to be picked up by current survey teams in contrast to the main lens event due to the lens star,
lasting weeks to months.

2.1.1 The lensing zone

If the secondary caustics are outside the Einstein ring of the primary lens the chances
of detecting planets with current observational campaigns (see Sec. 4) are significantly
reduced. Firstly the amplification of the primary is A < 1.34, i.e. the signal-to-noise gets
poorer. Secondly for increasing lens separation the event behaves essentially as being two
independent lenses (see Fig. 2.4) and so the 'single’ lens event of the planet can get too short
(days to hours for Jupiters, respectively Earths) to achieve a convincing data coverage. If
lens separations are too small the lens acts more and more as a single one. For planet-star
separations where the planetary caustics are inside the Einstein ring of the main lens, the
planet can affect the microlens event therefore most effectively. This condition is fulfilled
for planet-star distances d in the so called lensing zone (see also Fig. 2.5)

0.6R; < d < 1.6Ry . (2.4)

A derivation of this relation is given in Appendix B.3. By scaling the (linear) Einstein
radius properly

M  Dg
Rp =8.0AU | —
" Mg 8 kpc

x(l—xz) ,z=—. (2.5)

using a typical lens scenario (with Dy, = 4 kpc, respectively 6 kpc and Dg = 8 kpc) this
translates to roughly to 1 AU - 4 AU, which by chance happens to overlap with the habitable
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Figure 2.5: Amplification map A shows the spherically symmetric pattern of a single point mass lens.
Maps B-D display a lens with a planetary companion of mass ratio ¢ = 1072 at three different positions
in the lensing zone, namely at d/Rg = 1.5,1.0,0.7. In all cases the secondary/planetary caustics are within
the Einstein ring (dotted circle) of the lens star. Again dark regions mark high amplification areas and
bright regions low amplifications.

zones of sun-like stars 3. There exists however a way to probe planet-star distances beyond
this zone. The central caustic, keeping its position close to the lens star, is sensitive to
companions outside the lensing zone. The caveat herein however is the fact that any
companion affects the central caustic and even for rather dense data coverage ambiguous
solutions between planetary and a star companion can occur. Such a case is presented in
Sec. 6. However, the absence of lightcurve anomalies in those high amplification events
probing the central caustic, can be more safely used to exclude/constrain the presence of
planetary companions as demonstrated in Chapter 8.

3The habitable zone is defined as orbital region, in which liquid water can exist on a planet’s surface
(Hart 1979).
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2.1.2 Planetary detection probabilities

While as seen above, planets can in principle be detected via microlensing, the more
practical question is how likely this planetary signature is to occur in order to moti-
vate/justify observing campaigns. Intense numerical simulations performed by Kubas &
Wambsganfl (2001) assuming that each lens has a planet in the lensing zone and that the
lightcurve is completely sampled yielded the following upper limits. Defining a detection
criteria by demanding that the deviation from the single-lens behavior §(t) = %ﬁ;m
exceeds a given threshold for at least 3 consecutive measurements, a Jupiter in the lénsing
zone would for example in ~ 12 % of the cases leave a signature of amplitude = 0.05 mag
and lasting 2 5 % of the Einstein time scale tg of the event (translating to 2 3 days for
a typical tg of ~ 20 days). Microlensing teams such as PLANET (see Sec. 4) achieving
1 — 2 % photometry and hourly sampling should therefore be easily capable to pick up
these signals.

Table 2.1: For source sizes Rs/R»=0.8, 7.5, 23.3 and mass ratios ¢ = 1073,107%,107° the (over the
lensing zone) integrated detection probability P for the planetary signature is given for each combination
of the criteria |8] > 5%, 3%, 1% and t,/ts > 5%,3%,1%. For instance the probability P32, i.c. || > 5%
and t,/tg > 3% is 0.18 for Rs = 0.8Rg and ¢ = 1073.

PP 18] > 5% PP 6] > 3% PP 6] > 1%

q  t/te> 5% 3% 1% |5% 3% 1% |5% 3% 1%
1073 0.13 0.18 0.23|0.22 0.27 032046 0.50 0.53
Rs=08R, 107* 0.01 0.02 0.06]0.02 0.03 0.08|0.06 0.11 0.16
107 0.00 0.00 0.01]0.00 0.00 0.010.00 0.01 0.03
1073 0.12 0.18 0.23]0.21 0.28 0.32|0.46 0.50 0.52
Ry =75R, 1074 0.01 0.02 0.05]0.02 0.03 0.08]0.06 0.11 0.15
107 0.00 0.00 0.00]0.00 0.00 0.010.00 0.01 0.03
1073 0.12 0.15 0.16 | 0.20 0.24 0.27|0.46 048 0.50
Rs =233R, 107* 0.00 0.00 0.01]0.01 0.02 0.02|0.06 0.08 0.10
107 0.00 0.00 0.00]0.00 0.00 0.00/|0.00 0.00 0.00

In Table 2.1 detection probabilities for a variety of different thresholds in |§| and anomaly
durations ¢, for three different mass ratios (log ¢) = —3, —4, —5 (corresponding roughly to
Jupiter, Neptune and Earth masses) and three different source sizes Rs/R, = 0.8, 7.5, 23.3
are given. Using a grid of amplification maps spanning the separations d= 0.10, 0.18, 0.32,
0.56, 0.71, 0.89, 1.00, 1.12, 1.41, 1.78, 3.16, 5.62, 10.00 for each mass ratio and source size
these probabilities were then derived by scanning each map uniformly in impact angle and
impact parameter and counting succesfull detections for a given criterion.
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2.2 Extended Sources

In the majority of cases, lenses and sources in Galactic microlensing are treated as point
like, based on the fact that the physical sizes of lenses Ry, and sources Rs are negligible
compared to the characteristic Einstein radius. While for compact lenses such as stars
and planets one finds that Ry, /Rg < 1 holds in virtually all cases (with Ds = 8 kpc,
Dy, = 6 kpc a Sun-like lens would imply Ry,/Rg = 0.001 and a Jovian lens Ry,/Rg = 0.005),
things can be very different for the source size. Table 2.2 lists angular radii for different
star types serving as a reference length scale and also the Einstein radii for various masses
(assuming again Dg = 8 kpe, Dy, = 6 kpc).

Source sizes Einstein radii of Lenses
Rs/Rg Rs/pas  spectral type Lens mass/ Mg Rg/pas
0.8 0.6 G2V (ZAMS) || 1 583.1
2.3 1.8 ALV () 1073 18.4
7.5 5.8 B1V (7) 10~ 5.8
23.3 18.1 K2 II (Giant) || 100 1.8

Table 2.2: Left: Radii of different source stars in solar radii and angular units. Right:
Einstein radii for different lens masses. (All values for Dg = 8 kpc, Dy, = 6 kpc.)

One clearly sees that mostly giants with radii of ~ 10 R, and larger have dimensions
that correspond to the sizes of planetary caustics and Einstein radii. Therefore in the
planetary microlensing regime, especially in the case of a star with a Sub-Jovian companion,
finite source effects cannot be neglected (see Figure 2.6) and the source actually can get
resolved by the caustic.

Considering binary lenses with mass ratios of ¢ ~ 1 the caustic structures can get so
large with respect to the source size that one can use caustic passages to study in detail
the stellar atmosphere of the source (Cassan et al. 2004; Kubas et al. 2005b). Even in
single lens events finite source can occur when the impact parameter is of the order of the
source size and the point caustic transits the source, i.e. in high amplification events such
as OGLE-2003-BLG-262 (Yoo et al. 2004a) or OGLE-2004-BLG-254 (Chapter 7).

The increase in power of observing campaigns such as OGLE (Udalski 2003), MOA
(Bond et al. 2004) and PLANET (Albrow et al. 1998) has lead to an increase in detection
and sampling rates of microlensing events and thus to more and more measurements of
extended source effects. While finite sources pose a major challenge in the analysis of the
data, they open the possibility to break some degeneracies of the lens-source system and
so their study is more than worthwhile.

Although a variety of techniques for calculating the amplification of extended sources
exist, there is, apart from the point lens case (Witt & Mao 1994a), no all-in-one solution
neither analytically nor numerically. To avoid the numerical instabilities in integration
schemes arising from the singularities of the caustics in the source plane one has tackled
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the problem in the lens plane, where no singularities occur. By contour integration the
area of the images is determined to compute the amplification (Kayser & Schramm 1988;
Dominik 1995), but even its most efficient implementations (Gould & Gaucherel 1997;
Dominik 1998a) using the Stokes theorem (i.e. only integrating along image boundaries)
are too slow for modeling tasks, which require to compute at least = 10° different models
(Mao & Di Stefano 1995)*. The only robust method that works in the source plane is the
ray-shooting (Kayser et al. 1986; Wambsganss 1997) technique, explained in the following
Section 2.2.1. While this method only allows to compute discrete parameter sets for mass
ratio ¢, lens separation d and source profiles, its strengths are that it can deal with arbitrary
source profiles and once an amplification map (see below) is computed different source
trajectories, i.e. lightcurves, can be generated very fast (< 1 s).

In special cases another speed up of calculation time can be achieved, namely when
during a fold-caustic passage the caustic can be approximated as a straight line and its
strength does not vary significantly over the scale of the source size. This straight-fold-
caustic passage case (see Sec. 2.2.2) is most common to occur for ¢ ~ 1 binary lenses, which
possess sufficiently large caustic structures and which provide the unique opportunity to
study the normally un-resolvable source profiles®.

2.2.1 Ray shooting

In ray-shooting the light-path depicted in Fig. 1.2 is reversed. Starting from the observer
rays are 'shoot’ under different angles onto the lens plane, where they are deflected accord-
ing to Eq. (1.4) and then collected in the source plane. The density of light rays in the
source plane is then directly proportional to the amplification of the source at that position.
This way a map of the source plane is created, which contains the value of amplification
for each point in the map. Lens and source plane are both modeled as a uniform pixel
grid. The pixel size sets the lower limit for the source size for a particular map. Arbitrary
source profiles can be easily modeled by convolving the profile with the map, which is best
done via an FFT (Fast Fourier Transformation).

When shooting maps one has to take care not to loose too many rays. For instance if the
lens plane grid is too small, rays outside this grid which would hit the source plane are lost.
To obtain a good signal-to-noise ratio it is necessary to shoot a sufficient number of rays, to
be more exact the relative error is ~ Ng~ /4 (Kayser et al. 1986), where Ng is the number
of rays per source area. In the maps used here, we achieve ray densities > 10* per pixel so
that the numerical noise is acceptable low. The for our purposes essential lightcurves are
then just one-dimensional cuts thru these maps. Fig. 2.6 shows two gray-scale-coded ray
shooting maps for a star+planet lens scenario, one unsmoothed map, where the pixel size

4Computing one model on a XP9000 workstation with an image integration routine using Stoke’s
theorem takes about ~ 1 min. An optimization process could therefore take several months, unless one
has access to more powerful computational resources.

SWhile it was shown that semi-analytical approximations, albeit much more cumbersome in their form,
exist for cusp-caustic passages (Gaudi & Petters 2002) up to now no working modeling algorithm imple-
mentation is known.
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Figure 2.6: Top: (Un-smoothed) magnification map for separation d = 0.89 and mass ratio ¢ = 10~3.The
lens star is located at the origin, while the lens planet sits on the positive x-axis at (0.89,0.), i.e. outside
the displayed map part. The filled white circles mark to scale 4 different sized (uniform bright) sources
with Rg/R»=0.8, 2.3, 7.5, 23.3. Middle: Magnification map convolved with the Rs = 23.3R source.
The originally sharp caustic structures are strongly blurred. Bottom: The resulting lightcurve for the
drawn source trajectory in the map(s). The amplitude of the caustic passage signal for the large source
(dashed line) is significantly damped compared to the unresolved pixel sized source (solid line). Note that
in this planetary lens scenario we subtracted the single-lens lightcurve signal of the lens star to show the

extended source effects on planetary lightcurve anomalies more clearly.

corresponds to a source Rs ~ 0.5 Ry and the same map convolved with a giant source of
radius Rg = 23.3 R. The large source blurs the sharp caustic structure and clearly damps
the lightcurve signal of the shown source trajectory. This effect poses a serious problem
especially for the detection and characterization of Sub-Jovian planets in current ground
based microlensing campaigns, since in general only large sources (mainly Bulge Giants)
are bright enough for the ~ 1m class telescopes used®.

6Besides the lack of light gathering power another limiting factor is the needed spatial resolution to
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Finally we note that a modified version of the Fortran coded Microlens ray shooting
program developed by Wambsganss (1999) is used in this work.

2.2.2 The Straight Fold Caustic approximation

According to Eq. 2.3 a point source inside a binary lens caustic has five images. As the
source exits the caustic, the amplifications of two of these images diverge towards a square-
root singularity until the images suddenly disappear. Neglecting any changes of the lens
properties in the neighborhood of the caustic crossing, the amplification A.;; of these two
critical images can be written (Schneider & Weiss 1986) as function of the vectorial impact
position u ,

A'U/J_

Uy

Agis(u) = ( )I/QG(AUL), (2.6)

where
Au; = Au - ne, Au =u — ug, (2.7)

U is the position of the caustic crossing, n.. is the unit vector at u.. pointing inward
normal to the caustic, © is a step function, and w, is the characteristic rise length of the
caustic. The amplification of the three other images varies only little during the caustic
crossing, so their total amplification Ayier can be Taylor expanded,

Aother<u> = Qother + Z - Au? (28)

where aoper 1S the amplification of the three images at the caustic crossing, and Z is
the gradient of the amplification with respect to u. Hence the total amplification in the
neighborhood of the caustic crossing can be approximated as,

AUL

Uy

~1/2
Au) = ( ) O(Au, ) + aopher + Z - Au. (2.9)
For an extended source of radius p. = 0, /0g, the amplification is given by the convolution
of A with the source surface brightness profile, which yields (e.g. Schneider et al. 1992, p.
215f),

< u\ Au gy
Ad(u) = p_ G| — p + Qother + Z - Au. (2.10)

where GG is a characteristic profile function depending only on the shape of the stellar
profile. For uniform surface brightness, the profile function G in dependence from the
distance source center to caustic n reads (Schneider & Weiss 1987),

Goln) = 2 /1 - (1 - 5”2)1/2 dzO(1 — 1), (2.11)

max r—n

resolve smaller source stars, a capability which is seriously affected by seeing conditions. Next genera-
tion microlensing campaigns therefore aim to use space-bases telescopes or sites at Antarctica’s Dome C
(Beaulieu et al. 2004), where almost space like seeing conditions prevail.
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which can be expressed in terms of elliptical integrals and where © is a step function.
Considering the extended source to move over the caustic with proper motion p =
Or/tg, at an angle ¢ relative to the caustic, the time required for the radius to cross the
caustic 1s
0. pudg
~ psing  sing’
Note that while the width of the caustic crossing At can be measured from the caustic-
crossing data alone, the three quantities whose product forms At (p., tg, and csc ¢) can
only be determined from an analysis of the complete light curve. With the (angular)
separation of the source from the caustic as a function of time being Au = p(t — t..)/0g,
where t. is the time of the caustic crossing’, the total amplification parameterized with
time is given by

At (2.12)

t— tee
A(t) = CLcritGO( AL ) + Aother + w(t — tee) (2.13)
with
aeris = ((u,tg csc qu)/At)l/Q, w=p-2Z/0g . (2.14)

Thus, a caustic crossing can be fit to a five-parameter function of the form of Equa-
tion (2.13), the parameters being derit, tec, Gothers At, and w (plus the two parameters Fg and
Fg, derived/constrained from a global lens model involving the regions of the lightcurve
not affected by finite source effects.).

2.2.3 Limb darkening

Observed stellar disks are not uniformly bright but appear to be darker towards the limb.
This from our Sun well known phenomena is a geometrical effect. While approaching the
edge of the disc the emergent angle of the observed radiation gets smaller with respect
to the stellar surface and the optical depth of 1 (where the star gets opaque) is reached
already in higher and cooler, i.e. darker layers of the stellar atmosphere. On the other
hand, in the disc center one can see into deeper layers which are hotter and brighter.
Empirical limb darkening models for the surface brightness profile ¢ are usually expressed
in the form (Claret 2000)

£(w) i
. 1= ai(1— ), (2.15)
where p = cos 9 is the cosine of the emergent angle of the light ray from the star, &
the brightness at the center and a; (i = 1/2,1,3/2,2...) are the so-called limb darkening
coefficients (LDC).

The most common realizations are: the linear (a; # 0) and square root limb darkening
(e # 0 and a; /2 F 0). These limb darkened source profiles can then be modeled by

i

"For practical reasons this time is defined as the time when the limb of the star is tangent to the caustic,
not when the center of the source is on the caustic. This way the beginning/end of the caustic passages
can be easier predicted from the modeling for special photometric and spectroscopic monitoring.
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integration over different sized uniform sources, with different brightness according to the
used law, i.e. by dividing the source in rings. For a linear limb-darkened law however a
closed semi-analytic form similar to Eq. (2.13) can be given (Schneider & Wagoner 1987),
namely

t—tec t— tee
A(t) = Qcrit |:G0 ( AL ) —+ FHl/Q ( At ):| + Qother + w(t - ZfCC) ) (216>
with : ) X ( -
G, E7T_1/27n+ / de ———06(1—1n7), 2.17
=T 0D Sy ™ @ O @D
and
Hypa(n) = Gja(n) = Go(n) - (2.18)

The limb darkening coefficient a; hereby has been replaced by I' to avoid introducing an
additional net flux term to the un-lensed source flux Fg. The transformation between the
two coeflicients is given by

_3r
S r+2
Figure 2.7 shows an example lightcurve for a star crossing a straight fold caustic as well

as the effect of different source surface brightness profiles: a uniform bright disc and two
linear limb darkened profiles with I' = 0.5 and " = 1.0.

a (2.19)

31



leading limb hits caustic trailing limb leaves caustic

15.0
[
©
2
c
g
g 155
<
[0
>
[0
(2]
o)
L 16.0
16.5
| Ll |
-2 —1 0 1 2
(t—te )/At
127 ‘ ]
W2
~
v
x
3
[

ooLv v o

s}

0.0 0.2 0.4 0.6 0.8
Stellar radius r/r,

(200

Figure 2.7: Top: A lightcurve showing the passage of a star over a straight-fold-caustic for different
surface brightness profiles. A uniform bright disc (I' = 0, black dotted line) and two linear limb-darkened
profiles I = 0.5 (blue solid line) and I' = 1.0 (red dashed line). The time axis is normalized to the caustic
crossing time At, i.e. the leading source limb exits the caustic at ¢ = —1 and the trailing limb at ¢t = 1.
Middle: The shape of the used brightness profiles as 1-dimensional cuts along the normalized stellar disc
radius, with the same color scheme as above. Bottom: A two dimensional representation of the three

surface brightness profiles. From left to right corresponding to I' = 0.0, 0.5, 1.0.
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Figure 2.8: Standard coordinate system for binary lens parameterization. The binary axis lies on the
x-axis and the more massive primary lens m, is located left from the origin (0,0), the center of mass. The

impact angle ¢ is measured from the positive x-axis towards the source track.

2.3 Lightcurve parameterization

In addition to the 3 parameters, the minimum impact parameter u,, the time ¢, at which
u(t) = u(t,) and the Einstein time tg describing the amplification of single lens (see Sec. 1.7,
Eq. 1.17) one needs at least 3 more for the description of the amplification of a binary lens,
namely the mass ratio ¢, the lens separation d (measured in fractions of Og) and the impact
angle ¢ spanning between the source track and the binary axis. Including the un-lensed
source flux F5 and blend contribution Fy for each observing site n the measured flux can
then be modelled with 6 4+ 2n parameters in the simplest case.

The complexity of nature however often demands a significantly larger parameter set.
For example if finite source effects are present then the source size p,. (in fractions of O)
and 1 or more surface brightness profile parameters have also to be taken into account.
Further observable effects include the motion of the Earth (see also Chapter 5), accelerated
motion of the source or binary motion of the lens to name just the main higher order effects.
Without doubt with the advent of 2nd generation microlensing campaigns this list will have
to be extended, due to the improvement in photometric precision revealing more and more
subtle lensing effects.

The lightcurves in the following gallery shall give only a short insight into the rich
diversity of possible lightcurve shapes. For simplification they are unblended (Fg = 0.), Fs
has been set to 1 and rectilinear relative motion is assumed. Fig. 2.8 illustrates the here
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adopted convention for the coordinate system in which the binary lens is described. Unless
explicitly stated otherwise, the origin is the center of mass, the primary lens is located left
of it and ¢ is measured from the positive x-axis towards the source trajectory.

2.3.1 Lightcurve gallery

The three different caustic topologies (Chapter 2) give rise to an enormous variety of
possible lightcurve shapes. Single- or multi peaks (respectively dips, since the amplification
can also become < 1) with sharp or smooth rises/falls can occur. The following figures
shall serve to give a more illustrative idea of possible lightcurves without raising the claim
of being complete.

Representing the star+planet lens scenario with a mass ratio ¢ = 1073, three difference
amplification maps (i.e. ([star+planet] — star) maps) for the three different topologies were
selected, namely with separation d = 0.71 (Fig. 2.9), d = 1.00, (Fig. 2.10) and d = 1.41
(Fig. 2.11). They therefore have 3, 1, respectively 2 closed caustic curves. The reason why
in the star+planet lightcurves the reference signal of a single star lightcurve was subtracted
is to be able to display the planetary signature more clearly. Note that the dynamic in the
amplification relative to the Paczynski curve § can go up to ~ 1 mag.

Figure 2.12 then gives an example for a star+star lens with mass ratio ¢ ~ 0.3 and
separation d ~ 0.3. Here no reference signal was subtracted.

As source size we used p, = 0.001 (~ 1 R, assuming a source distance Dg = 8 kpc, lens
distance Dy, = 4 kpc and lens mass M = 0.3 M) for all cases, allowing for high amplitudes
of the amplification signal.
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Figure 2.9: The planetary lightcurve signatures (difference lightcurves, where the star-only lightcurve
has been subtracted) of the source tracks marked in the amplification map (Top) for the 3-caustic topology

with planet-star separation d/Rg = 0.71 and mass ratio ¢ = 1073,
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Figure 2.10: As previous Fig., but for a 1-caustic topology with planet-star separation d/Rg = 1.00 and

mass ratio ¢ = 1073,
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Figure 2.11: As previous Fig., but for a 1-caustic topology with planet-star separation d/Rg = 1.41 and

mass ratio ¢ = 1073,
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Figure 2.12: Top: Caustic structure of a star-star lens with ¢ ~ 0.3, d ~ 0.3, with the right magnification
map showing the full topology, including the secondary caustics. The numbered tracks mark the lightcurve
displayed in the lower panels. Bottom: The lightcurves (blend-free and no reference curve subtracted)
of the tracks marked in the magnification maps above. Note that the scale on plot 6 is different from the
others in order to display more clearly the effect of the secondary caustic approach causing a small bump
far from the central caustic peak.
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Chapter 3

Global Optimization

Test everything. Hold on to the good. Avoid every kind of evil.

1 Thess. 5:21-22

3.1 Introduction

Posing the question asked in global optimization is simple: given a model, find the set of
parameters which best describe the data. In principle there is also an easy answer, namely:
try every possible combination of parameters (with a sufficient resolution, if the parameters
are continuous) and keep the best. If your model is in a closed analytic form simply follow
the curve discussion exercise you learned in school. Unfortunately in real life things are
in general much more difficult. The number of parameters can be too large and/or their
allowed ranges too wide for applying brute-force grid searches in a justifiable amount of
computing time and/or the model is non analytic.

In the following it is assumed that the parameter space is not well suited for grid searches
and that the model cannot be expressed in an analytic expression, which is the case in the
problem of binary-lens-light-curve fitting. Before explaining the approach investigated
in this work I want to present a short overview of some of the current and commonly
optimization techniques around to put the strategy chosen by us into a context.

3.1.1 Downhill and direction set algorithms

One of the most often used optimizing methods is based on the downhill! simplex method
by Nelder & Mead (1965) and its most popular incarnation Amoeba (Press et al. 1992).
Part of the reason for its popularity is without doubt that it is easy to implement, quick
and in general quite robust. Its working scheme is also quite depictive. Starting from a seed
point p, in n-dimensional model parameter space you define n more points by following a

!'Depending on how you define optimization task, i.e. minimization or maximization, you might as well
use the term uphill or hill climbing. Here we will stick to the terms minimization and downhill.
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recipe like p; = p, + \;e;, where e; are unit vectors and A; constants which define a first
characteristic length scale of the corresponding parameter space. These n+1 points form
the vertices and their interconnecting lines the sides of a so called simplex. For example
if your parameter space is 2 dimensional the simplex would be a triangle. By comparing
the goodness-of-fit measure at each vertex/solution a gradient can be defined, without the
need for calculating derivatives. Using the three geometrical transformations reflection,
expansion and contraction the simplex moves along the path of steepest descent until the
difference between all vertices has fallen below a given tolerance. Obviously this strategy
runs into problems when your starting simplex is located in a large flat region of the chosen
goodness-of-fit space and when the desired global minimum is hidden by local minima of
either numerical nature or truly ambiguous solutions. The simplex method is therefore a
good local optimizer but poorly suited for locating a global extremum. For example the
tests done by (Vermaak 2003) show that Amoeba fails to locate the true solution if the seed
parameters deviate roughly by more than 5% in the case of binary-lens-lightcurve fitting.
Since in practice one almost never can come up with such a good first guess, this approach
is not recommended as first weapon of choice to explore the solution space.

While the simplex lives in an n-dimensional space, direction set algorithms as the Powell
method work along in one-dimensional directions of the parameter space. Since it is much
easier to minimize a one-dimensional function (using bracketing for example), the idea is
to start from an initial point and initial (vector) direction and successively minimize along
lines in the parameter space. The Powell algorithm (Press et al. 1992) ensures that the
search directions stay mutually independent in order not to spoil previous minimization
progress. Again, this strategy yields fast and good results only if you are already rather
close to an acceptable solution, and gets lost in large and highly nonlinear parameter
spaces. Finally it is worth mentioning that a-priori both methods do not constrain the al-
lowed parameter values. This is a potential pitfall for problems, where parameters have to
obey mathematical or physical restrictions. For example in our case the mass ratio is non
negative. To avoid parameter violations a possible strategy is to 'punish’ forbidden param-
eter ranges by setting the goodness-of-fit measure to a bad value there or re-parameterize
the model, but such interventions have to be made with care to achieve stable algorithm
implementations.

3.1.2 Annealing algorithms

A crystal is the state of minimum energy for a slowly cooling down (=annealing) liquid
metal. The emphasis here lies on slowly, to give the atoms or molecules time for their
redistribution during the cooling process. Fast cooling will lead to polycrystalline or amor-
phous states of higher energy. The trick of nature to find this minimal energy state is that
according to the laws of thermodynamic the energy states F of system in thermal equilib-
rium at temperature T follow the Boltzmann probability distribution P(E) oc e #/*T. This
ensures that even at low temperature there is a small chance to be in a higher energy state
and so the system can occasional go uphill to escape from a local minimum. This behavior
of sometimes disregarding a possible better candidate state to explore other states of the
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configuration /model space was first put into an algorithm by Metropolis et al. (1953) which
was the seed for a large variety of annealing algorithms. One current realization of this
idea, the Metropolis-Hastings Markov Chain Monte Carlo (Geyer 1992) algorithm, defines
the minimization process as a Markov chain {Z;}*L, of length k, where each element Zj, of
the chain is a set of model parameters. The characteristic of a Markov chain is that it is a
correlated sequence of random variables, where the probability of moving to state Z;.1 =7
given the current state Z;, = ¢ is independent of the k£ — 1 states prior to state k. Naturally
the more iterations, i.e. the longer the chain, the better the parameter space is explored in
a stochastic way and the likelier the global minimum can be found. This strategy has been
successfully applied on the problem of binary lens modelling by Rattenbury (2003). Un-
fortunately a direct performance comparison between his code and the one developed here
cannot be made, since they operate on complete different computational resources. On
the one hand a cluster of 400 CPUs (called Kaldka) at the University of Auckland for the
Rattenbury’s Markov-Chain code and on the other hand a single workstation, respectively
PC for the TANGO code, which will be introduced below.

3.1.3 Neuronal networks

Being inspired by the fact that a sum of rather simple interconnected processing units
(neurons) as the human brain is capable of performing quite some complex tasks, the
design and use of artificial neural networks has attracted a lot of interest since the late
1950s. Capturing the essence of its biological counterpart an artificial neuron receives a
number of weighted input signals (either from original external data/input or from other
neurons in the network) and if the sum of these inputs exceeds a certain threshold the
neuron fires a signal (passed thru an activation/transfer function) to its connected neighbor
neurons or the output of the network. In a typical feed-forward network the signal flows
from the (external) inputs via layers of neurons (where each layer is fully connected with
the adjacent layers) to the output neurons. Using a training library of models and test
data to teach the network which input (data) corresponds to which output (model), the
network can then be used to find a model (within the parameter ranges of the training set)
for real data, thanks to its ability of interpolating complex and nonlinear mappings from
data to model. Vermaak (2003) first applied a neural network to the problem of binary-
lens-lightcurve fitting. While his network was quite successful on ideal simulated data
sets (i.e. regular sampling and no scatter) it could not handle gaps in the data. Although
interesting, a lot of further studies are needed to decide if neural networks are suited for
this particular problem.

3.1.4 Genetic algorithms

At least since Darwin (1859) we know that the driving mechanism of evolution is natural
selection, which ensures that on average ’fitter’, i.e. better adapted, individuals reproduce
more often. In order to make the selection work, two main principles are needed. First,
offsprings must inherit the characteristics that make its parents fit (i.e. heredity). Second,
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there has to be at any time a spectrum of fitness among the population (i.e. diversity),
otherwise natural selection cannot operate. Before having a closer look inside the working
scheme of a genetic algorithm (GA) we need to define some more biological terms.

There are two different realizations of individuals (respectively models) in a GA. The
genotype, which is the genetic construction plan for the individual stored in the DNA-
sequence, and the phenotype, the actual living and breathing individuum. While nature
uses 4 as base of the DNA, experience has shown that switching to the more familiar base 10
(or a binary base) has little effect on the performance of genetic algorithms (Charbonneau
1995). We further note that in the following the term fitness S is synonym for goodness-
of-fit, which in our case is the commonly used least-square test defined by

n 2
2 yi_y('ri;alu"wam)
= 3.1
=) ( - ) : (3.1)

i

where y; is the data point, y(x;;aq,...,a,) the corresponding prediction of the m-
dimensional model at z; depending on the parameters (ay, ..., a,,) and o; the error of the
measurement. For clarity we note that since in our problem we deal with time series the
x;’s turn to t;’s. Although the use of the y?-statistic only applies in a strict sense to models
that depend linearly on the a;’s and for Gaussian distributed errors, it remains a useful
measure if handled with care (regarding outliers for example) even if both assumptions
are violated as it is the case in microlens-lightcurve modeling. Defining the number of
degrees of freedom (d.o.f.) = n — m, where n is the number of measurements and m the
number of parameters, a 'good’ fit will have a x? ~ d.o.f. on the background that the y?
distribution has the mean d.o.f and for large d.o.f approaches the normal distribution.

With this in mind a top-level view of a GA would look like:
1. Construct a random initial population and evaluate the fitness of its members.

2. Construct a next generation population by breeding selected individuals of the old
population and evaluate the fitness of these new members.

3. Replace old population by the new one.

4. Go to step 2 until a prescribed number of generations is reached or the fittest indi-
viduals match the desired goodness of fit.

All the 'magic’ of a GA lies in step 2, the breeding of selected individuals. Before
we reveal the trick of the selection process let us have a look at the breeding process
shown in detail in Fig. 3.1 for a two dimensional model with parameters ¢ and d. To
build the gene sequence (respectively the genotype) the significant digits from the model
parameters are cut out and stitched together?. The two selected parent genotypes reproduce

2Note that in the GA investigated here, Pikaia (Charbonneau 1995), the model parameters are remapped
to the interval [0,1] prior to their encoding. Besides enabling bounds on the parameters useful for con-
strained optimization, this allows the easy cut-and-stitch-encoding recipe presented here.
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themselves by exchanging (i.e. crossover) their genes at a prescribed gene position thereby
creating two offsprings. Additionally a gene of the offspring can be subject to mutation to
enhance diversity in the population. They are decoded again into model parameter space
to compute their x* and infer their fitness. To find out which individuals/models become
a couple and are allowed to reproduce, Pikaia spins the so-called Roulette-wheel algorithm
(Appendix A.1). The probability for an individual 7 of being selected for breeding is therein
defined as the probability of hitting a wheel sector of angular size S /(2 F"), where F'
is a normalization constant and S; the relative fitness of the individual. The reason for
introducing this relative fitness and not taking the y? directly as selection criteria is to
avoid premature convergence by privileging good models too much and in this way sustain
besides mutation the diversity within the population. Using a ranking strategy, where based
on its (absolute) fitness a rank 7; to each individual is given, so that » = 1 marks the best
adapted individuum and r = n,, the least adapted in a population of size n,, the relative
fitness is defined as

S, = mp =it 1 _ (3.2)

Np

This way a fitness differential for each generation is ensured that is independent of the
actual distribution of fitness values. Natural selection then always has a choice and the
possible parameter space can be globally explored. In practice this exploration process
is illustrated in the flip-book movie shown in Fig. 3.2 for the example of optimizing the
2-dimensional function f defined as

f(z,y) = [162(1 — 2)y(1 — y) sin(nmz) sin(nmy))?, z,y€[0,1], n=1,2,...  (3.3)

with n = 9 in this case. This function is a nightmare for classical optimization codes, since
it is virtually plastered with local minima (to be exact there are 81 minima for n = 9).
In the random initial population, only a few individuals lie anywhere near the tallest peak
and none close enough for local hill-climbing algorithms. After only ten generations the
population in the outer low-level regions has been decimated and groups of the population
have converged on some peaks close to the highest central peak. As generations go by,
a few individuals have been catapulted by crossover and mutation to the wings of the
central peak, where rapidly a base camp is established. Favored by natural selection this
subgroup now gradually conquers the central peak at expense of its neighbors. By the 40th
generation basically the whole population now resides on the highest mountain, with only
a few mutants occasionally appearing in some other locations. In the 90th generation the
sporadic explorations still have led to no new discoveries and the central peak appears to
remain the best environment for the inhabitants of this landscape. For some applications
the best individual of the last generation may not be good, respectively accurate enough,
but this can easily be improved by handing this individual over to local gradient optimizers
such as Amoeba or Powell as introduced above.

Fig. 3.3 explains why there is no straight forward termination criteria based on x? gradient
information in GAs. The convergence behavior as function of number of generations reveals
a stair like structure with stairs of different width, which make criteria that compare the
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differences between generations in terms of their adaption success not reliable. While an
absolute y2-threshold in principle could do the job, fixing its value can be tricky in cases
where the gaussianity of measurement errors is questionable as in the real life microlensing
data. Therefore it is more practical to let the GA run for a prescribed number of generations
and then switch to a gradient optimizing routine such as Amoeba or Powell for final
refinement and final stop. This then however brings up the question of defining a prescribed
number of generations.

It is no secret to any modeler that the performance of an optimizing routine depends
on the posed problem. There is no cure-all recipe that works equally well in every model
and parameter space. Often the only way is trial and error and/or a systematic empirical
study of the behavior of the algorithm on a test case like the one described in the next
section 3.2 which is as close to the real thing as possible. Among the control parameters of
a GA, the population size and the number of generations are the most influential controls
for the effectivity and directly determine the estimated CPU-time. In the (at least in
GA literature) absence of a mathematical strict prescription, a series of test runs on an
artificial data set was performed to find a reliable setup for our algorithm, as explained
below (Sec. 3.2.3).
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Encoding:

/ Y

625672 329894

Gn(P1) 625672329894

Y Y

002561 126793

%—/

Gn(P2) 002561126793

Decoding: Gn(01) 625561126793

625561 126793

Gn(02) 002672829894

00%672 823894

Figure 3.1: Encoding, breeding and decoding in genetic algorithms. The models (phenotypes) in this
example are 2 dimensional and chosen to be the mass ratio ¢ and the lens separation d. The parameters
are encoded into a real decimal 12-digit string (6 for each parameter), the genotype. 'Ph(P1)’ translates to
"phenotype of parent 1’ and ’Gn(02)’ means ’genotype of offspring 2’. Note that one breeding event creates
two offsprings and that both crossover and mutation operations occur only if a given probability threshold
is passed, i.e. offsprings can also be true clones of their parents.
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Figure 3.2: Example of Genetic Algorithm optimization exploration of the intricate 2-dimensional pa-
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represent individual members of the population of size 100. The bold blue circle marks the fittest/best
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of the population is shown for generations, 10, 20, 40 and 90. (Adopted and modified from Charbonneau
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Figure 3.3: A typical example of how the goodnes-of-fit converges in a genetic algorithm over the course
of 600 generations. Any termination criteria based on a gradient of x2 can be fooled easily by short and

long periods of stagnation, manifested in the numerous stairs of different width.
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3.2 TANGO: a binary lens fitting code

A main part of the thesis work was devoted to develop a new and user friendly binary-
lens-fitting routine, which was named TANGO (Tool for ANalyzing Gravitational lens
Objects), to analyze the microlensing data of the PLANET collaboration (see Sec. 4).
TANGO makes use of the genetic algorithm Pikaia (Charbonneau 1995) and the simplex
optimizer Amoeba (Press et al. 1992). It calculates the amplification of point sources
by solving the 5th order polynomial of the binary lens equation (2.3), uses ray-shooting
(Wambsganss 1999, see also Sec. 2.2.1) for extended source as well as the straight-fold-
caustic approximation (Schneider & Wagoner 1987, see Sec. 2.2.2). While a short guide
to the code is given in Appendix A, the following Section focusses on its application and
performance on simulated data and later, in Part II of this thesis, on its successes on real
events.

3.2.1 Simulated events

To test how TANGO performs in the often quoted highly intricate and complicate param-
eter space of binary lenses we simulate a typical caustic crossing binary lens event. In this
context typical stands for choosing a sampling rate and photometric accuracy based on
current available data sets from PLANET (Albrow et al. 1998), OGLE (Udalski 2003) and
MOA (Bond et al. 2004). This means that in general, since the first caustic passage of such
an event is practically not predictable?, the caustic entry is less well sampled than the exit.

We choose a data set where both caustic crossings are visible in the data and also ensure
a rather complete coverage of the lightcurve. The reason for being that picky is that even
well sampled lightcurves are plagued by ambiguities (Dominik 1999a; Gaudi & Han 2004)
and studying the well known fact that one basically can fit anything’ to a poorly sampled
light curve seems not very valuable.

The artificial data are drawn from an amplification map convolved with an extended
limb-darkened source. To mimic the effect of irregular but strategic® sampling, several
time windows can be defined (for example covering the caustic plateau or the caustic exit)
with different ideal sampling rates, from which the data points are randomly picked (to
simulate gaps due to technical failure and /or bad weather). We then convolve the data with
Gaussian noise on both measurements and errors, whereby we use a magnitude dependant
relation for the photometric errors o; of the form

Oo

=_—° 4

g;

where o, is the photometric precision at baseline and Am; the de-blended magnitude of
measurement 7, to reflect the fact that the photometric precision improves as the brightness

3During the rise towards the caustic entry, the ambiguities in the model space are enormous and in
general the data of the rising can be easily fitted by single lens models, hiding hints for a caustic entry.

4Depending on the assumed nature and status of the event, the observing strategy in campaigns like
PLANET is permanently adapted and changed in real time in order to try to cover critical regions, as the
caustic exit, with sufficient quality.
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Figure 3.4: Simulated data set of a typical binary-lens event with a fold caustic passage.
While the practically unpredictable caustic entry is poorly sampled, the caustic exit and
the following cusp approach is well covered. At baseline the photometric precision is ~ 5 %.
For the caustic passage and the cusp approach an accuracy of about ~ 1 % is reached.

of the target rises. To avoid however unrealistic small error bars we limit the maximal
achievable photometric precision to ~ 0.5%. Figure 3.4 shows the lightcurve of the artificial
event (AE-1) and Fig. 3.5 the corresponding lens geometry.

For simplicity we assume a homogenous data set, i.e. the 'measurements’ are taken
from a single 'observing site’, and a linear relative motion between observer, lens and
source. Noting that the surface brightness profile of the source is modelled with a linear
limb darkening law (see 2.15), we are left with 10 parameters underlying our simulated
binary lens event. These are the mass ratio ¢ = 821, separation d = 0.372 Rg, impact
angle ¢ = 193.1°, impact parameter u, = 0.027 Ry, impact time ¢, = 2550.000 HJD',
Einstein time tg = 164.00 days, un-lensed source light Fs = 19.256 mag, blended light
Fg = 21.083 mag, limb darkening parameter I' = 0.51 and source size p, = 0.0059 Rg.
Since the calculation of extended source effects with respect to the complete lens model is
computational expensive (Sec. 2.2) the fit strategy is to separate data which are affected by
finite source effects from data where the point source approximation is valid. In cases when
no clear distinction can be made the only remaining options for modeling are CPU-intensive
grid searches on ray-shooting maps or image plane integration schemes.

A first look on the AE-1 lightcurve reveals 2 caustic passages, a caustic entry at ~
2545 HJD' and an exit at ~ 2555 HJD’, where HJD’ = HJD — 2,450, 000. While the entry
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Figure 3.5: The input model: A binary lens with mass ratio ¢ = 0.821, and separation d = 0.372. The
solid line marks the trajectory and direction of motion of source. The upper amplification map displays
the complete topology with the central caustic and the two triangular secondary caustics. The filled black
circles indicate the position of the lens components. The lower map shows a zoom onto the central caustic.

The white filled circle here represents the source scale.

50



1-Band [mag]

L | L L L |
2550 2552 2554 2556

17.0 1 1 L

HJD-2,450,000

Nalem MJ
Rl !

Residuals [mag]

| |
o ) o
o o o
X N ]
I I
—
—

L L
2550 2552 2554 2556
HJD-2,450,000

Figure 3.6: The best fit model for the caustic exit and its residuals, derived from the straight-fold-caustic

approximation (For parameters see Table. 3.1).

is only sparsely sampled, the exit has a fairly complete coverage and can provide useful
constraints on the source and the complete photometric model. Performing an optimization
of a straight-fold-caustic model with linear limb darkening (Sec. 2.2.2) on the caustic exit,
picking ’by eye’ the time range from 2550.0 HJD’ to 2558.0 results in the model shown in
Fig. 3.6 with the parameters given in Table 3.1

To exclude the data points which are affected by finite source effects we apply the
argument given in Albrow et al. (1999a) . There it was shown, that for times 2 3At away
from the fold caustic, where At is the time in which the source radius crosses the caustic,
the point source approximation is accurate enough for photometric errors of 2 1%. Based
on the measured caustic crossing time(s) above we cut out data between 2544.5 < HJD'

< 2547.1 and 2551.2 < HJD' < 2557.0.
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Table 3.1: Derived linear limb-darkening coefficient and fold-caustic model parameters of
the caustic exit of artificial event AE-1. (See Fig. 3.6 for the corresponding lightcurve)

Linear
#; (days) | 2554.986
At (days) 1.76

w (days™1) 0.21

- 11.90
Qother 5.54
r 0.64
x?/dof 1.10

To explore the binary-lens-point-source space, several options are viable. For example
one can let Pikaia do the job on its own leaving all parameters free and ’blindly’ believe
that the outcome is close to the global best solution. However this strategy would leave
too many doubts about the crediblity of such a model, if it is the only base of analysis.
Since the computation of the point-source models is reasonably fast (~0.03 sec for a data
set with 500 measurements) it is worthwhile to sacrifice some computational efficiency for
being more convincing and to get an overview over possible lens models by scanning the
parameter space on a grid in mass ratio ¢ and separation d, the two parameters which
characterize the lens.

We choose the grid to cover the range ¢ = 0.01,0.05,0.10,0.15,...,1.00 and d/Rg =
0.01,0.05,0.10,0.15, ..., 5.00. The space spanned by d hereby is choosen in such a way that
it corresponds to physical binary separations of ~ 0.04 — 40 AU for typical lens scenarios,
i.e. ensures coverage of the most frequently observed separations (with a distribution peak
around ~ 30 AU as found by Zinnecker et al. (2004)). While larger and smaller separation
binaries outside these bounds do exist, the caustics shrink rapidly to sizes of the order of
the source and below in these cases leading to complete different lightcurve structures (see
Sec. 7) which are ruled out a priori by the extended-source and caustic-passage effects seen
in the lightcurve of our artificial event.

For the minimization on each grid point we apply a hybrid strategy, i.e. using Pikaia
first and then Amoeba for refinement. The result of this grid search is displayed in Fig. 3.7,
with dark greyscales corresponding to low 2 regions and brighter greyscales to high, i.e
unfavourable y2s. Two regions of interest can be easily identified. In the lower part a dark
strip stretching almost over the complete mass ratio range and a width in separation d
ranging from ~ 0.7-0.2. In the upper part another pattern is visible, however not as dark
(respectively deep) and with a more fuzzy cloudy appearance.

To locate the best model for each of the features, we conduct now parameter
searches with all 642 binary-lens-point-source parameters being free, however bounded
(in Pikaia) to the promising regions. For the close binary we choose as conservative
bounds ¢ = [0.01,1.0}, d = [0.1,1.0]Rg, ¢ = [0,360]°, u, = [0.0,1.0]Rg, t, =
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Figure 3.7: The scan of the mass-ratio-separation-(q, d) grid (see text) reveals two interesting regions in
the y2-scape shown here. A dark (low x?) strip stretching almost over the entire mass range and bounded
in separation by 0.2 < d < 0.7 and a fuzzy cloudy region in the upper part (1.0 < d < 4.0), which however
nowhere is as dark (respectively deep). The white diamonds mark the best solutions found after bracketing

the suggested minima and allowing ¢ and d to vary freely during the optimization process.

2540.0,2560.0] HID', tg = [50,300] days. To explore the wide binary solution space
we restrict the parameters to ¢ = [0.01,1.0], d = [1.0,5.0]Rg, ¢ = [0,360]°, u, =
0.0,5.0] R, t, = [2300.0,2700.0] HID', tg = [50,300] days. Note that since there is no
central caustic in the wide separation binary lens scenario, t, is not well constrained a priori
from the data and one has to allow for much larger bounds than in the close binary case.
As during the grid search the parameters derived from Pikaia serve as seed for Amoeba
for refining the models. This way we find as best close binary solution ¢ = 0.828,d = 3.82
as lens parameters (see Table 3.2 for full parameter set) and for the best wide model
q = 0.35, d = 2.59 (both marked in the x? map with white diamond symbols). While the
close model gives a very good fit (see Fig. 3.8) with no systematic residuals and a reduced
x? of 1.1, the best wide model clearly fails to explain the data and is formally ruled out
at the > 10 o-level. The reason for the failure of the wide model lies in the fact, that the
source trajectory of AE-1 also approaches a cusp and thus constrains the overall geometry
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of the crossed caustic to be rather symmetric along the x- and y-axis and that this point
symmetry behavior is in general more strict for central caustics of close (¢ ~ 1) binaries
than for wide binary caustics, which are more elongated along the x-axis (see also Figures
2.1 and 2.2).

We note that if no acceptable global point-source-binary-lens (PSBL) fit would have
been found this could have been an indication that the cusp approach may violate the point
source treatment, but luckily this is not the case’. Being conservative, the causting crossing
time gives us an upper limit via Eq. (2.12) for the source size p, = tA—Et sing < % = 0.011.
Using the also from the straight-fold-caustic model inferred source profile a best-lens-
configuration map is convolved with source sizes from p, = 0.0001,0.0002,...,0.0110 to
optimize the source size parameter, resulting in p, = 0.0062. The Fig. 3.9 shows the
caustic structure and lightcurve of the best found complete model.

parameter fit result input

q 0.8281007 0.821
d 0.38270:010 0.372
i 0.028610 0000 0.027
o [deg] 193.33670% 193.1
tg [days] 155.447104 164.000
to 2549.9637002 | 2550.000
T, 0.006270:02 0.0059
r 0.64701% 0.50

h 0.116%9% 0.157
x2/d.of. | 492,51/ 472 | 641.92 / 472

Table 3.2: Best Fit parameters with 20 uncertainties in comparison to the ’true’ input
parameters.

5In real life of course there are many more possible causes for non acceptable fits indicating the presence
of up to then unaccounted effects such as nonlinear relative motion, due to the Earth orbiting the sun
(annual parallax) for instance, significant orbital motion of the binary lens or a more than two-body lens
system to name just a few. In the ’controlled’ environment of our simulations however we know here that
at least these possibilities are ruled out as cause for potential trouble in fitting AE-1.
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Figure 3.8: After bracketing in the promising regions in the (g, d) — x?-map (Fig. 3.7), the best binary-
lens-point-source model shown in the top panel is a close binary lens with ¢ = 0.828,d = 0.382,u, =
0.0286,a = 193.336,t, = 2549.963,tg = 155.447 and a x?/d.o.f. = 1.08. Its residuals are displayed in
the middle panel. The lower panel shows the residuals of the best wide binary lens model found at
q = 0.35,d = 2.59, which is clearly inconsistent with the data. Note that at least the non-caustic region of
the wide binary lens could in principle be reconciled with the data with a significant amount of negative
blending, but since in the creation of data positive blending was added it was also restricted to be non-
negative. However it is important to keep in mind that in real data, at least the ones reduced via Difference

Imaging (Alard & Lupton 1998) negative blending can occur.
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Figure 3.9: Top: Amplification maps of the best fit model, a ¢ = 0.828,d = 0.382 close
binary lens with one central caustic and two secondary (visible only in the large field map
on the right). The white filled circle in central caustic map (left) marks the source size
and the arrows indicate the direction of source motion (solid line). the positions of the
lenses are marked as filled black circles in the big scale map on the right. Bottom: The
corresponding lightcurves and residuals of the complete model. The inset is a zoom on the
caustic passage and the subsequent cusp approach.
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3.2.2 FError estimation

To assess the uncertainties of our parameter estimates we apply the marginalization tech-
nique, i.e. stated confidence intervals correspond to projections of the Ay? = x* — 2., =
const. hyper-surfaces onto the parameters axis. Assuming 1 degree of freedom, the inter-
vals Ax? = 1,4,9 are then the 10,20,30 errors. In practice we vary the parameter we
are interested in, on a one-dimensional grid around its found minimum, while optimizing
the remaining parameters to generate plots as shown in Fig. 3.10 where one can read off
the specific confidence intervals. The scatter of the points in these plots partly reflects the
failures of Amoeba ('fed” with a seed point from Pikaia) and partly the roughness of the
different y2-hypersurfaces. For completeness we note that since the fit of source and blend
flux is a linear problem, the uncertainty of the blend fraction can be mor% easily computed
directly assuming the standard error propagation law 0% = > o7 (g—i) . Comparing the
best-fit parameters to the known true model parameters shows that the majority is within
20 of the truth, the mass ratio and separation even within 1o. The only ’outlier’ tg has a
relative error of ~ 6 %, which is acceptable having in mind that a large fraction of data
(close to baseline) has an accuracy of ~ 5 %. All in all this result is more than encouraging

and raises some trust in TANGO for its application on real data in Part II.
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3.2.3 GA setup

As mentioned in Sec. 3.1.4 genetic algorithms do not necessarily require a termination
criterion. As seen from Fig. 3.3 the stochastic nature of their convergence behavior makes
it difficult to even define one based on y?-gradients®. The standard and robust way usually
taken therefore is to prescribe a fixed number of generations, respectively iterations. For
that purpose we perform a series of test runs of TANGO on our simulated event AE-1
to display the dependence of convergence from the two critical parameter population size
Npop and number of generations nge,. As quality criteria for convergence (as understood in
this context here) we demand that the interesting parameters mass ratio ¢ and separation
d of the best individual/model lie within ~ 15% of ’true’ parameters, which turns out to
roughly correspond to demand that the reduced x?/d.o.f < 2. This choice is inspired by
the result of Vermaak (2003), where it was shown that for errors < 15% in the starting
seed of local gradient optimizers their success rate of finding the ’true’ minima starts to
get significantly (~ 20% for starting error ~ 15%). Fig. 3.11 indicates that for the case
where a priori very little is known on the lens parameters (apart for example that it is a
non-planetary lens”) reasonable models are found for n,., = 250 and nge, = 500.

If one tightens the allowed range of parameters around a suggested good model space,
effectively increasing the population density, the convergence success is significantly im-
proved and setups with npe, 2 50 and nge, 2 500 can be recommended.

However it is important to keep in mind that the process of genetic optimization is
highly nonlinear and there can of course be no guarantee for a specific setup to be the best
for every lensing event. We therefore decided to pursue a strategy as given above, i.e to
additionally conduct grid searches in the mass-ratio-separation plane to get an overview
over possible solutions that can be explored in detail. This way the outcome of runs where
all (point-source-binary-lens) parameters are allowed to vary can be put into a consistent
context.

To give an impression on the speed of TANGO we state that a npep X ngen = 200 x 500
run takes about one hour for a point-source-binary-lens model. Compared to gradient
methods (with convergence times < 1 min for Amoeba) this is rather slow, but after
all genetic algorithms are not built for accuracy and speed, but for the exploration of
intricate parameter spaces. Details on how to use TANGO are given in Appendix A.

Figure 3.12 summarizes the modeling approach described in this Chapter in an
illustrative way.

6Tn fact the absence of a termination criteria is one of the essential pillars of evolutions, which always
has to proceed to search for the perfect individuum, especially when the environment is not absolute but
subject to changes. There is always the chance that the discontinuous changes from one individuum to his
offsprings miss a possibility to create a better adapted offspring.

"This can be concluded from comparisons between ’anomaly’ duration with respect to total time scale
of the event and the anomaly strength. (See also Sec. 2.1.2.)
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RUN q d U ¢ [deg] tg [days] | t, [HID']
large | [0.01,1.0] | [0.1,2.0] | [0.0,1.0] | [0.0,360] | [40,400] | [2540, 2560]
tight | [0.6,1.0] | [0.3,0.6] | [0.0,0.1] | [180,200] deg | [140,200] | [2548, 2552]

Table 3.3: The parameter bounds for two different scenarios. The top row reflects the situation when

very little is known a priori on the lens event, apart from assuming that it is a non planetary binary lens.

The bottom row reflects the case when an interesting region of parameter space has been identified and

one tries to bracket it in. These bounds have been used in the genetic setup tests displayed in Fig. 3.11.
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Figure 3.11: The convergence behavior of the genetic algorithm in the 6 + 2 dimensional binary-lens-

point-source model space on our test event as function of population size and number of generations (see

described color code above). While on the left little knowledge on the lens model was assumed (apart from

ruling out planetary models), i.e. rather large parameter bounds were allowed, the bounds on the right

were tightened around a suggested minima (see Table 3.3 above for exact values of parameter bounds)
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Analysis of PLANET campaign
Microlensing Events

62



Chapter 4

The PLANET project

The P robing L ensing A nomalies NET work PLANET (Albrow et al. 1998), founded in
1995, is an international collaboration devoted to continuous and high precision follow-up
observations of microlensing events alerted by survey teams such as OGLE (Udalski 2003)
or MOA (Bond et al. 2004). Its telescopes are placed along different longitudes (see Fig.4
and corresponding Table) such that PLANET can observe its targets 24h a day during its
operation in the prime galactic microlensing season from April to September, when the
Bulge is best observable from the Southern Hemisphere.

Telescope Location CCD size
Fadh 0.6m — _ & (longitude/ (Plxel)
" latitude)
% SWN 1.0m Canopus 147° 32’ 512 x 512
. SO (Hobart, Australia) —43° 0.47” /Pixel
i E.ulh'-.a\rlarld 1. ; _*_ : 0.6m Bickley 116° & 576 x 384
8| (Perth, Australia) —32° 0.58” /Pixel
1.0m Elizabeth SAAO 20° 49’ 512 x 512
(Sutherland, Southafrica) —32° 0.35” /Pixel
1.54m Danish 289° 16’ 8192 x 8192
(La Silla, Chile) —29° 0.238” /Pixel

¥~ Danish 1.54
" LaSilla

Figure 4.1: The telescopes of the PLANET group building its main backbone are located on the three
continents Africa, Australia and South America to allow a round-the-clock monitoring of microlensing
events in the Galactic Center during the observing seasons from April to September. Occasionally additional
telescopes like the ESO 2p2 join the network, depending on the granted observing times of the particular
season.
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4.1 Data flow

The collected data is reduced online at each telescope using the PLANET pipeline
QUYLLURWASI developed by Jean-Philippe Beaulieu, where the photometry is derived
from point-spread-function (PSF) fitting with a modified version of Dophot (Schechter
et al. 1993). At a later stage and depending on the data quality an additional rereducing
with the ISIS package (Alard & Lupton 1998) is performed. Each site sents their data to a
central server (currently located in Paris) which is managed by the scheduled Homebase,
who coordinates the incoming data, visualizes the different data sets in a complete and
consistent way using interactive web pages, decides the observing strategy and is respon-
sible for issuing public anomaly alerts. Note that due to the different telescope/detector
characteristics and observing conditions the data sets from each site have to be treated as
independant from one another during the analysis'.

Since 2001 the author is a member of PLANET and has besides his work on data
analysis and modeling also conducted several observation runs? and homebase shifts?.

0B02069

0B04254 1 [deg] o0Bo03208

Figure 4.2: The positions on the sky in galactic and equatorial coordinates of the in this work studied
microlensing events OGLE-2002-BLG-069, OGLE-2003-BLG-208 & OGLE-2004-BLG-254 . The filled black
circle marks the Galactic center and the filled squares the fields observed by OGLE, where blue marks
the fields of OGLE I and red marks the fields added up to the current OGLE III phase (adapted from
OGLE webpage and modified)

For example different pixel resolution and/or seeing conditions will lead to different blend fractions.
2At Canopus 19.5-9.6. 2001, ESO 2p2 21.7-6.8. 2002 and Danish 1.7-18.7 2004
31.7.-21.7 2002, 1.6-17.6 & 12.7-20.7 2003 and 9.8.-25.8 2004.
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Chapter 5

OGLE-2002-BLG-069

Never ask a woman what age she is.

Murilo’s father, Lesson 3

Abstract

We analyze the photometric data obtained by PLANET and OGLE on the caustic-crossing
binary-lens microlensing event OGLE-2002-BLG-069. Thanks to the excellent photometric
and spectroscopic coverage of the event, we are able to constrain the lens model up to the
known ambiguity between close and wide binary lenses. The detection of annual parallax in
combination with measurements of extended-source effects allows us to determine the mass,
distance and velocity of the lens components for the competing models. While the model
involving a close binary lens leads to a Bulge-Disc lens scenario with a lens mass of M =
(0.51£0.15) M, and distance of Dy, = (2.9£0.4) kpc, the wide binary lens solution requires
a rather implausible binary black-hole lens (M 2 126 Mg). Furthermore we compare
current state-of-the-art numerical and empirical models for the surface brightness profile
of the source, a G5HIII Bulge giant. We find that a linear limb-darkening model for the
atmosphere of the source star is consistent with the data whereas a PHOENIX atmosphere
model assuming LTE and with no free parameter does not match our observations.
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Figure 5.1: Finding chart of OGLE-2002-BLG-069 event. North is right and East is up on
this 2’ x 2 sized frame. The position of the lensed source is at the center of the cross. It
is a clear and bright (IogLe ~ 16.1 mag) target leading to a rather smooth data reduction
process. (credit: OGLE’s page www.astrouw.edu.pl/~ogle/ogle3/ews/ews.html)
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5.1 Introduction

In recent years there has been a remarkable increase in the power of microlensing survey
alert systems like OGLE-III (Udalski 2003)! and MOA (Bond et al. 2001)2. As a conse-
quence, binary-lens microlensing events have become a unique and valuable tool to study,
in unprecedented detail, members of the source and lens population within our Galaxy and
in the Magellanic Clouds (Abe et al. 2003; Fields et al. 2003; An et al. 2002; Albrow et al.
2001b, 2000a,b, 1999b,a). The OGLE-2002-BLG-069 event is an ideal example for showing
the current capabilities of microlensing follow-up observations.

The passage of a source star over a line-shaped (fold) caustic as created by a binary lens
produces a characteristic peak in the light curve which depends on the stellar brightness
profile. The data obtained for OGLE-2002-BLG-069 clearly reveal a pair of such passages
consisting of an entry and subsequent caustic exit, where the number of images increases
by two while the source is inside the caustic.

This binary-lens event is the first where both photometric and high-resolution spectro-
scopic data were taken over the whole course of the caustic exit. The previous attempts
on EROS-2000-BLG-5 (Afonso et al. 2001) had good coverage but low spectral resolution
(Albrow et al. 2001a), or a pair of spectra taken with high resolution but low signal-to-
noise (Castro et al. 2001). Prior to this study, we presented a fold-caustic model of the
OGLE-2002-BLG-069 photometric data comparing a linear law and a model derived from
PHOENIX v2.6 synthetic spectra for the limb-darkening and analyzed variations in the
Ha line as observed in high-resolution UVES spectra taken over the course of the caustic
passage (Cassan et al. 2004). A full account of the spectral observations in Ha, Hf, Call,
Mg and other lines will be given in Beaulieu et al. (2005). Here, we concentrate on the
photometric data alone in order to present the full binary-lens model.

For the majority of observed microlens events all information about lens mass, relative lens-
source distance and proper motion is convolved into one single characteristic time scale.
Binary-lens events however are especially sensitive to effects caused by finite source size
and parallax, so that in combination with the determination of the angular source radius,
these three lens quantities can be measured individually (Refsdal 1966; Gould 1992). This
is only the second binary microlensing event, after EROS-BLG-2000-5 (An et al. 2002), for
which this has been achieved. Despite our high sampling rate and the small uncertainty of
our photometric measurements, we still encounter the well known close/wide-binary ambi-
guity originating in the lens equation itself (Dominik 1999b) and which may only be broken
with additional astrometric measurements as proposed in Dominik (2001) and Gould &
Han (2000).

1
2

www.astrouw.edu.pl/~ogle/
www.physics.auckland.ac.nz/moa/

67



5.2 OGLE-2002-BLG-069 photometry data

Alerted by the OGLE collaboration (Udalski 2003) on June 1 2002 about the ongoing
Bulge microlensing OGLE 2002-BLG-069 event (R.A.=17"48m15.0 , decl.= —21°16'9".3),
the PLANET collaboration network began photometric observations on June 18, using
6 different telescopes, namely SAAO 1m (South Africa), Danish 1.54m (La Silla), ESO
2.2m (La Silla), Canopus 1m (Tasmania), Stromlo 50” (Australia) and Perth 0.6m (Aus-
tralia). Data were taking in I- (UTas, Danish, SAAO, Perth), R- (La Silla) and V-bands
(Stromlo). Since the V-band data set of Stromlo contains only 8 points, which is less than
the number of parameters we fit, we do not use it in the modeling process.

The photometry reductions were done by point-spread-function (PSF) fitting using our
own modified version of DoPHOT (Schechter et al. 1993), implemented as part of the
PLANET reduction pipeline. The full raw data set including the public OGLE data (avail-
able from www.astrouw.edu.pl/~ogle/ogle3/ews/ews.html) consists of 675 points. Data
that were obviously wrong according to the observational log books or for which the reduc-
tion software did not succeed in producing a proper photometric measurement have been
eliminated. Moreover, PLANET data taken under reported seeing that was significantly
above the typical value for the given site were removed according to the cut-offs listed in
Table 5.1. Altogether about 2% of the data were rejected, leaving us with a total of 651
points (Fig.5.2).

telescope | median seeing | seeing cut | number of
(arcsec) (arcsec) points

ESO 2.2m | 1.13 <25 150

Danish 1.62 <25 108

UTas 3.13 < 3.6 58

SAAO 1.93 <26 153

Perth 2.43 <28 86

Table 5.1: Selection criteria for PLANET photometric dataset.

Thanks to the favourable brightness at baseline (Ipgrr = 16.15 £ 0.01 mag) and low
crowding of this event, the correlation between seeing and observed flux is negligible and

does not yield a significant signature in the data, contrary to some previously analyzed
events (e.g. Albrow et al. 2000b).

5.3 Binary-lens model

5.3.1 Parametrization and general approach

We recall that for a caustic crossing binary-lens event a minimum of 7 + 2n parameters
are required, namely ¢y, uo, tg, q,d, a, and p,, plus Fs and Fp for each of the n different
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Figure 5.2: Complete photometric I- and R-band datasets of PLANET and OGLE, with PLANET
calibrated to the OGLE filter. The upper inner panel shows a zoom of the caustic passages, while the
lower panel displays the baseline measurements of OGLE made in the 2003 season, i.e. one year after
the lensing event occurred.

observing sites (here n = 6). Here ¢y denotes the time of closest approach to the center of
mass of the binary, ug > 0 the impact parameter at time ty, tg is the time needed to cross
the angular Einstein radius, which is defined as

AGM Dig
O = 1/ 1
" 2 DiDs’ (5.1)

where Dy, Dg and Dy g are the observer-lens, observer-source, lens-source distances and M
the total mass of the binary lens. The lens is characterized by the mass ratio ¢ = mq/my
between the secondary and the primary and their angular separation d 6. The impact angle
« is measured between the line from the secondary to the primary and the positive direction
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of source motion relative to the lens. The angular source size is given by p, k. The flux of
the unlensed source star is Fs and Fp is the flux contribution of any other unlensed sources
(including the lens) within the aperture. For every observing site, Fg and Fg are determined
independently to account for different background and flux characteristics of the individual
telescopes/detectors. Modeling the parallax effect due to the orbital motion of the Earth
requires 2 more parameters, the length g of the semi-major axis projected onto the sky
plane and a rotation angle v, describing the relative orientation of the transverse motion
of the source track to the ecliptic plane. The source surface brightness profile in this study
is described by either a 1- or 2-parameter law so that the complete photometric model
consists of up to 23 parameters.

Our initial search for the lens model involves only data outside the caustic-crossing region,
where extended-source effects are negligible. Moreover, we also neglect parallax effects. We
then scan the parameter space on a grid of fixed values of mass ratio ¢ and lens separation
d, optimizing the remaining parameters ¢y, ug, tg and « with the genetic algorithm Pikaia
(Charbonneau 1995; Kubas et al. 2005a) and subsequently with a gradient routine to obtain
x2-maps such as shown in Fig. 5.3, which give an overview of possible model solutions. The
values of F5 and Fy are simultaneously computed by inexpensive linear fitting. To explore
in more detail the minima that are found we conduct a search with Pikaia over a restricted
range of ¢ and d but this time allowing these parameters to be optimized as well and again
use gradient based techniques for final refinement. The results from the fold-caustic-crossing
modeling in combination with the point source fits are then used to generate magnification
maps with the ray-shooting technique (Wambsganss 1997). These maps contain the full
information on the lens-source system.

We note that in crowded fields the raw photometry errors given by the reduction process
clearly underestimate the true errors (Wozniak 2000a). To achieve a reduced x? of unity in
our best fit model the photometric error bars would have to be rescaled by factors of 1.51
(SAAO), 1.92 (UTas), 1.34 (Danish), 1.16 (ESO 2.2m), 1.59 (Perth) and 2.3 (OGLE).

5.3.2 Preferred lens parameters

To exclude the data points which are affected by finite source effects we apply the argument
given in Albrow et al. (1999a). There it was shown, that for times 2 3At away from the
fold caustic, where At is the time in which the source radius crosses the caustic, the point
source approximation is accurate enough for photometric errors of < 1%. Based on the
measured caustic crossing times (see section 5.4) we cut out data between 2450.0 < HJD’
< 2452.8 and 2463.0 < HJD’ < 2466.0, where HJD’ = HJD — 2450000. We then search
for promising regions in parameter space on a grid of mass ratio ¢ and lens separation d,
the two parameters that characterize the binary lens, with ¢ = 0.01,0.05,0.10,0.15, ..., 1.00
and d = 0.01,0.05,0.10,0.15, ...,4.70. The result is shown in Fig. 5.3. While the apparent
close binary solution around ¢ ~ 0.6 and d ~ 0.5 seems to be well defined, the numerical
routines converge poorly in the vicinity of the wide-binary solution, reflecting the intricacy
of binary-lens parameter space. By bracketing apparently interesting subsets of the (g, d)
plane, our algorithm identifies the best wide solution at ¢ ~ 0.16 and d ~ 3.7.
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Figure 5.3: Gray-scale x* map of full grid in mass ratio q and lens separation d, with darker regions
representing lower values of 2. The irregularity of parameter space is reflected by the patchy appearance
of the map, especially around the wide binary model in the upper left part of the plot. The best models
are marked by the white diamonds at ¢ ~ 0.6, d ~ 0.5 (close binary) and at ¢ ~ 0.16, d ~ 3.7 (wide
binary).

5.3.3 Annual parallax

Close-binary-lens models that neglect the motion of the Earth around the Sun show a
significant asymmetry in the residuals which disappears if parallax is taken into account.
Adapting the convention in Dominik (1998b) and illustrated in Fig. 5.4 we introduce as a
parameter the projected length 7y of the Earth’s semi-major axis in the sky plane, which

is defined as
1 AU 1 1
g = 7TLS/9E = <— - —) ) (5-2)

Or Dy, Dg

where g is the relative lens-source parallax. The second additional parameter is the angle
1) describing the relative orientation of the source motion to the ecliptic. The heliocentric
ecliptic coordinates (¢, x) used for the parallax modeling are derived from the standard
geocentric ecliptic coordinates (A, 5) by applying x = § and ¢ = A+ 7 + ¢, where ¢, is
the angle of the vernal equinox measured from the perihelion.

In 2002 Earth reached the perihelion at ~ 2277.1 HJD’ and the time of the vernal equinox
was ~ 2354.3 HJD’. This yields ¢ = 163.3° and x = 2.1° for OGLE-BLG-2002-069.
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Figure 5.4: The coordinates (&, 7) are chosen so that the right hand system (Z,¢,2) fulfils & = 2, § =
Yy, 2= —x for ¢ = x = 1 = 0. The longitude ¢ is measured from the perihelion ¢, towards the Earth’s
motion and the latitude x from the ecliptic plane towards Ecliptic North.

5.4 Source model

The data taken when the source transits the caustic show the corresponding characteristic
shape. The caustic entry is not well sampled, because in the early stage of the event it was
difficult to distinguish between a binary and a single lens, and the practically unpredictable
rise of the light curve was rather short. On the other hand, the caustic exit has very good
coverage thanks to our predictive online modeling. Hence, we focus our study on the caustic
exit. We estimate that the exit occurred for (2463.45 < HJD’ < 2467) approximately. The
corresponding subset of data comprises 95 points from ESO 2.2m, 21 points from SAAO
and 17 points from UTas, giving a total of 133 points. We assume the source to move
uniformly and neglect the curvature of the caustic as well as the variation of its strength
on the scale of the source size. This approximation (which is justified in Sec. 5.5) allows
us to increase computational efficiency significantly by using a fold-caustic-crossing model
(e.g. Cassan et al. 2004). We recall (Sec. 2.2.2) that during a caustic crossing, the total
magnification A® of the source is the sum of the magnifications of the two critical images
and the three other images :

ty — 1
A(S) = Qcrit Gf < ! ; 5(8)) + Aother + w(t - tf) (53)
Here At is the time needed for the radius of the source to cross the caustic, t; is the

date at which the limb exits the caustic and Gy is a characteristic function (Schneider &
Wagoner 1987) depending on the surface brightness profile £&. The blending parameters
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and the baseline magnitudes for each site are derived from the point-source model on the
non-caustic-crossing part of the light curve ; they are held fixed in the following.
Limb-darkening is frequently characterized by a sum of power-laws:

% =1-) a(l—p), (5.4)

where 1 = cos ¥ is the cosine of the emergent angle of the light ray from the star, and
a; (1 =1/2,1,3/2,2...) are the so-called limb darkening coefficients (LDC). We investigate
the two most popular realizations : the linear (a; # 0) and square root limb darkenings
(a1 # 0 and ay/2 # 0). Performing a x* minimization on our fold-caustic data provides
us with the parameters listed in Table 5.2 that best describe our photometric data. The
value of x?/d.o.f. tells us about the relative goodness of the fits among the studied models.
Claret (2000) also introduced a 4-parameter law which fits the limb-darkening curves de-
rived from spherical atmosphere models. However, as pointed out by Dominik (2004a), for
coefficients beyond the linear law, the differences in the light curve are much smaller than
the differences in the profiles, and it is not possible to find a unique set of coefficients given
our data set. Finally, we also consider a PHOENIX atmosphere model that resulted from
a spectroscopic analysis of the source star by Cassan et al. (2004), where corresponding
broad-band brightness profiles for R- and I-band were computed.

In the upper panel of Fig. 5.5, the best model (with square-root limb darkening) is plotted
with the data. The fit residuals obtained with the linear, square-root and PHOENIX limb
darkening are displayed in the lower panels. With free limb-darkening coefficients, even
the linear law describes the data reasonably well, while the square-root law allows a better
match. In contrast the parameter-free PHOENIX model computed assuming LTE fails.
The residuals for the caustic-crossing region show systematic trends that are typical for
an inappropriate limb-darkening profile, as discussed by Dominik (2004b). A new analysis
taking into account NLTE effects will be done in a forthcoming paper.

In the following sections, we will use the square-root limb darkening to describe the source
star.

5.5 A complete model

With the point-source model and the brightness profile of the source determined from the
data in the caustic-crossing region, we can now derive a complete and consistent model of
the lens, yielding its mass M, distance Dy, and relative transverse velocity v. This is done
by generating magnification maps with the ray-shooting method (Wambsganss 1997) for
the best-fit values found for mass ratio ¢ and lens separation d and then convolving these
maps with the source profile modeled in section 5.4. The maps and the corresponding light
curves derived from them, are shown in figures 5.6, 5.7, and 5.8.

These maps also serve as a check on the validity of the straight-fold-caustic approximation
(see Sec. 5.4). We find that the effect of curvature of the caustic is negligible and does not
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Figure 5.5: Data points and light curve obtained with square-root limb darkening (upper panel), and
residuals coming from the linear, square-root and PHOENIX laws.

Table 5.2: Limb-darkening coefficients (LDC) derived from the fit of OGLE-2002-BLG-069 during the
caustic exit. Each set of LDC corresponds to the best fit obtained (no error rescaling here) by using the
LDC as well as the fold-caustic model parameters as free parameters.

Linear | Square root | PHOENIX
tr (days) | 2465.624 | 2465.626 2465.636

At (days) 0.71 0.72 0.72

w (days™) | —0.10 —0.10 —0.11

Qerit 19.98 20.03 19.85

Qother 7.33 7.35 7.33
ay 0.62 0.10 -
(1,1/2 - 0.80 -

x%/d.o.f. 2.230 1.937 3.528

influence the results of the stellar surface brightness modeling. Table 5.3 lists all fit param-
eters for the best close- and wide-binary solution. The quoted 1-¢ error bars correspond to
projections of the hypersurfaces defined by Ax? = x? — x2;, = 1 onto the parameter axes.
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Figure 5.6: Lightcurves of close and wide binary-lens models and their residuals. Insets show a zoom of

the caustic passages in the two different bands taken.
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Figure 5.7: Magnification map and source trajectory for the close-binary model. The solid curve is the
track of the source including annual parallactic motion and the dashed line represents the source motion
(with direction indicated by the arrows) as seen from the Sun. The origin marked with the cross is the
center of mass and the filled white circle indicates the source size. The grey-scale marks the magnification
scale in the source plane, with dark regions corresponding to high magnification and bright regions referring
to low magnification. The inset shows the full caustic topology, with the two filled black circles marking
the positions of the binary lens components.

5.5.1 Physical lens properties

The measured finite source size and the parallax effect yield two independent constraints
for determining the lens mass M, its distance D, and transverse velocity v. Assuming a
luminous lens we can put upper limits on its mass using our knowledge of the absolute
luminosity and distance of the source star. These were determined in Cassan et al. (2004)
from spectroscopic measurements combined with the measured amount of blended light
(which includes any light from the lens) inferred from the light curve modeling.

Fig. 5.9 plots the implied blend fraction h = Fg/(Fs + Fg) if both components of the lens
are main-sequence stars (from A0 to M9, Allen 1972) put at distances of 2,4,6, and 9
kpc along the line of sight to the lens in comparison with the blend fractions derived from
OGLE data. If we assume the lens is the only source of the blended light, the inferred blend
fraction from our best fit models gives an upper limit for the total lens mass of ~ 2.5 My
for the close-binary and ~ 0.8 M, for the wide-binary-lens model.

We use the source radius caustic crossing time At from the straight-fold-caustic model,
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Figure 5.8: Magnification map and source trajectory for the wide-binary. The effect of parallax is negli-
gible. The top panel shows the full caustic topology, where the lens positions are marked with the black
filled circles and the center of mass by the cross. In the zoom around the secondary lens, lower panel, the
filled white circle marks the source size, the arrows indicate the direction of source motion. As in Fig. 5.7
dark regions mark high magnification and bright regions represent low magnification areas.

together with the lens geometry given by (q,d) and time-scale tg from the point source
model, to derive the relative angular source size p,, which expressed as a fraction of the
angular Einstein radius reads

At
pPx = — sing | (5.5)
lg

with ¢ being the angle between source track and caustic tangent. The source size parameter
ps 1s refined by fitting on a grid of magnification maps convolved with different source
sizes. So with the inferred physical source size of R, ~ 10 R and source distance Dg =

(9.4 £ 1.4) kpc from the spectral measurements (Cassan et al. 2004) the constraint on the
lens mass from extended-source effects can be inferred from

Mz & R? =
My — 4GMyDs p,21—x'

(5.6)
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Figure 5.9: Assuming the lens to be composed of two main-sequence stars according to each of our models,
the blend fraction h = Fg/(Fs + Fg) for OGLE data (horizontal solid lines) yields upper limits (vertical
dashed lines) on the total lens mass for the known brightness and distance of the source (My = +0.9,
(V. —1I) =0.95) and Ds = (9.4 £ 1.4) kpc from Cassan et al. (2004). While the close-binary model is
compatible with lens masses up to ~ 1.1 — 2.5 My, the wide-binary model only allows lens masses up to
~ 0.3 —0.8 M, for lens distances between 2-9 kpc (where the thin lines represent the wide binary lens and
the thick lines the close binary lens).

with = Dy,/Ds. The dependence of the lens mass upon annual parallax effects reads

M(z) ? (1 AU)2 11—z 5:7)

M,  4GM.Ds \ x

The curves arising from these two relations are plotted in Fig. 5.9 for our best fit parameters
TE, P« (see Table 5.3) of the wide and close binary-lens model. From this we obtain the
following physical lens parameters,

Mgose = (0.51 4 0.15) My, , at Dy, = (2.9 +0.4) kpc (5.8)

and
Myiaqe 2 (126 £ 22) Mg, , at Dy, 2 (9.0 £+ 2.3) kpc . (5.9)

The close-binary solution yields a Bulge-Disc lens scenario similar to that for EROS-BLG-
2000-5 (An et al. 2002), namely an M-dwarf binary system with a projected separation
of (4.5 + 1.1) AU located most likely just beyond the Orion arm of the Milky Way. The
marginal detection of parallax effects in the wide-binary model however allows us to put
lower limits on the mass and velocity of the lens, suggesting a rather implausible binary
system consisting of two super-stellar massive black holes in the Galactic bulge with vyiqe 2

~
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Figure 5.10: The independent constraints on the lens mass from the source size (dashed line) according
to Eq. (5.6) and from parallax effects according to Eq. (5.7) (solid line) for the close and wide separation
binary models as function of & = Dy,/Dg. The dotted lines mark the uncertainty due to the error in the
source distance measurement. While the close-binary constraints intersect at the plausible lens mass of
(0.51£0.15) Mg, implying a disc lens at Dy, = (2.9+0.4) kpc, the wide binary favours a rather implausible
scenario of a binary black hole of M 2 (126 + 22) Mg in the Bulge at Dy, 2 (9.0 £ 2.3) kpe, with the
hatched region marking the allowed parameter space for the wide-binary solution.

129 km s~1. We therefore reject the wide binary model and derive for the transverse velocity
of the close binary model

R,

Uclose = T
tE<1 :U R* + P*)

= (49.8+£2.7) kms'. (5.10)

5.6 Summary and Conclusions

While the number of observed galactic microlensing events has now reached an impressive
count of over 2000 (with about 5 % of them being identified as binary-lens events), still very
little is known about the physical properties of the lens population, since in general the
information on mass, distance and velocity of the lens needs to be inferred from one single
parameter, the event time scale tg. The present work is the second successful attempt
(after An et al. 2002) at putting strong constraints on lens and source properties in a
microlensing event. This event involves a GSIII cool giant in the Bulge at a distance of
Ds = (9.4 + 1.4) kpc lensed by an M-dwarf binary system of total mass M = (0.51 &+
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Table 5.3: Fit parameters of best close and wide-binary models with 1o uncertainties. The x? values are

based on the raw photometric errors. i.e. without rescaling factors.

0.15) Mg, located at Dy, = (2.9£0.4) kpc. These conclusions could only be achieved by the
use of a network of telescopes to ensure a continuous, dense and precise coverage of the
event, whereas data obtained from a survey with mainly daily sampling are insufficient for
achieving this goal (Jaroszynski et al. 2004). The parameter space exploration, for both
lens and source properties, described here provides a template for our future analysis of

binary-lens events with fold-caustic crossings.
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Chapter 6
OGLE-2003-BLG-208

The way I used to love you Baby, that’s the way I hate you now.

B.B. King

Abstract

Photometric observations performed by PLANET, OGLE and MicroFUN on the high
amplification event (Ap.x ~ 30) OGLE-2003-BLG-208 reveal a deviation from the single-
lens behavior at the peak region lasting about 3.5 days. Although a rather dense sampling of
the anomaly was achieved the modeling analysis led to a highly ambiguous lens parameter
space. While the data set is consistent with a Jovian companion to the lens, a non-planetary
binary lens model with mass ratio ¢ ~ 0.2 is slightly preferred (by Ax? = 187.4). We note
however that in principle the competing models could have been disentangled, if one of our
network sites would not have been clouded out during a critical phase of the anomaly.
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Figure 6.1: Finding chart of OGLE-2003-BLG-208 event. As before North is right and East
is up on this 2’ x 2’ sized frame and the position of the lensed source is at the center of the
cross. This at baseline very faint event (IogLe ~ 19.4 mag) has a brighter companion to
the North-East causing additional trouble in the reduction process. (credit: OGLE’s page
www.astrouw.edu.pl/~ogle/ogle3/ews/ews.html)
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6.1 Introduction

The work of Griest & Safizadeh (1998), claiming that planets present in the lensing zone
around the lens can be detected with a probability of almost 100% in High Amplifica-
tion Events (HAE’s with Ay 2 20) had a huge impact on the observing strategy of
microlensing campaigns such as PLANET. Their claim was based on the fact, that for suf-
ficient small impact parameters (resulting in high maximal amplification, roughly speaking
Amax ~ 1/u,) one can probe the central caustic of a binary lens system and any possible
planetary companion would leave a detectable mark in the peak region of the lightcurve.
HAE’s then (although more rare!) became the prime hunting objects of microlensers. The
extra bonus that possible deviations from the single-lens behavior would then occur at a
predictable time, namely at the peak, and observational resources could be optimized in
their efficiency, caused a kind of planetary gold rush atmosphere around the turn of the
millennium.

In a long and painful process however, one had to realize that one had been vastly too
optimistic. One simply had ignored or underestimated the fact that the central caustic
is affected by any object not only planets and that star companions outside the lensing
zone could mimic planetary signatures, leading to severe ambiguities in the models. For a
phenomena which is not reproducible this was a strong set back and together with a series
of false planetary alerts, scepticism inside and outside the lens community grew. The first
and to this day the only un-disputable planet found with microlensing (OGLE 2003-BLG-
235/MOA 2003-BLG-53 Bond et al. (2004)) was a big relief and brought back new life to
the community.

Nevertheless one implication of Griest & Safizadeh (1998) remains fruitful, namely that
the absence of lightcurve anomalies in HAE’s puts strong constraints on the presence of
possible planetary companions. So while a characterization of possible planets in HAE’s is
difficult they can be at least excluded with reasonable confidence. Of course it is more spec-
tacular to find planets but putting constraints on their abundance is also a very worthwhile
scientific undertaking (see Chap. 8). The event presented in this Section is an example for
the situation where one already was close to open the champaign and celebrate the first
lensing planet but then had to put it back into the fridge and drown the frustration in an-
other toxic liquid. OGLE-2003-BLG-208 reached a maximum amplification? of Apax ~ 30
and shows a clear deviation from a single-lens lightcurve at the peak. This anomaly, lasting
about 3.5 days, looks as if the single lens peak has been cut off asymmetrically. Although
planetary models are consistent with the data the binary lens models are slightly preferred
with a Ax? = 187.4. However even if a re-reduced data set would favor statistically slightly
the planet solution, claiming a planet detection here would leave too many doubts given
the many ambiguities in the model space of this event.

IThe distribution of impact parameters is uniform and therefore the fraction of high amplification
events is only a few percent.

2Note that we state here the un-blended amplification, not the amplification above baseline. We further
note that the given A,y is also model dependant and that the stated value corresponds to the best single
lens model.
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6.2 Photometry data

PLANET follow-up observations of the OGLE-2003-BLG-208 (R.A.=17"58720%.0 , decl.=
—33°31’50".0) event began on June 11, 2003. The data set in the /-Band consists of 120
points from SAAO (1m Elizabeth, Sutherland, South Africa), 27 points from UTas (1m
Canopus, Hobart, Australia), 93 points from Perth (0.6m Bickley, Australia). and 170
points in R-Band from the Danish (1.54, LaSilla, Chile). Furthermore 48 points from
OGLE and 29 points of MicroFUN (CTIO, Chile) both in I-Band were taken into account
in the analysis. The high crowdiness (a brighter and very close companion to the North-
East is visible in the finding chart Fig. 6.1) and faintness at baseline (Iocrg ~ 19.4 mag)
of the target limits severely the photometric precision and causes a lot of scatter. Even an
ISIS re-reduction does not solve all the problems, for example the Perth data unfortunately
remain useless (and are omitted from the plots).
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Figure 6.2: The y2-landscape of OGLE-2003-BLG-208’s mass-ratio-g-separation-d parameter space is
highly ambiguous. Parameter optimizations leaving all point-source-binary-lens parameters free, converge

at ¢ = 0.009 and d = 0.54 in the planetary regime and at ¢ = 0.19 and d = 0.31 in the non planetary case
(marked as white diamonds).
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6.3 Preferred lens parameters

Using a point-source-binary-lens model the performed grid scan of the plane spanned
by mass ratio ¢ and separation d displayed in Fig.6.2 with ¢ € [0.0001,1.0], Aq =
0.0005, d/Rg € [0.05, 2.6], Ad = 0.1 reveals a highly ambiguous lens parameter space.
At first glance the safest conservative conclusion to be drawn is that lens configurations
with separations d ~ 1 for ¢ 2 0.3, i.e. one-caustic topologies (see Chapter 2), are excluded
and that especially the region d < 0.6 looks interesting. After verifying that no competing
models outside the grid up to d ~ 10 (corresponding to 30 — 70 AU over the range of
standard lens scenarios) exist, we restrict the mass ratio to ¢ < 0.01 in order to look for
the best planetary solution. Our optimizing routine TANGO (Sec. 3.2) converges at the
model shown in Fig. 6.3 with ¢ = 0.009 and d = 0.54 (see Table 6.1 for complete parameter
set). While the model looks reasonable the fact that the found value for ¢ is close to the
allowed boundary of 0.01 calls for attention. Freeing the mass ratio from this upper bound
we arrive at the model displayed in Fig. 6.4 with ¢ = 0.19 and d = 0.31 improving the
fit by Ax? ~ 187.4. This model has a more pronounced curvature at peak and seems to
reproduce the anomaly a bit better. The little bump at around HJD" ~ 2905 results from a
secondary caustic approach. The significance of this feature given the current data quality
in the wings is however questionable.

The corresponding caustic structures of both models are shown in the amplification
maps of Fig. 6.5 and Fig. 6.6. An impression of the similarity and differences of the central
caustics of the two competing models is given Fig. 6.7, where both caustics have been
plotted together in the same scale.

The absence of sharp slope discontinuities in the residuals of both models, that extended
source effects could have induced, seems to justify our point source approximation. This
means that the inferred minimum impact parameter u, gives an upper limit on the source
size p, measured in fractions of O, namely p, < 0.034 from the planet model, respectively
P+ < 0.066 from the non planetary model. This is consistent with already measured source
sizes, which are in the range of ~ 0.001 to ~ 0.04 (An et al. 2002; Kubas et al. 2005b).

The effect of annual parallax is marginally detected in both models with Ay? ~ 30.
Unlike the case of OGLE-BLG-02-069 (Kubas et al. 2005b) however, both models are
consistent with rather typical lens scenarios as displayed in Fig. 6.8, with the non-planetary
model favoring the lens to be closer to us than the planetary model. Unfortunately the
lack of appropriate multi-band/spectroscopic measurements needed to unravel the nature
and location of the source star, prevents us to put more tight physical constraints on this
event.
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Figure 6.3: The best planetary model found for OB-2003-BLG-208 has the mass ratio ¢ = 0.009 and the
separation d = 0.54. The dotted line in the Zoom panel shows the best single lens model for comparison.
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Figure 6.4: The best non-planetary, i.e. ordinary binary model found for OB-2003-BLG-208 has a mass
ratio of ¢ = 0.19 and a separation of d = 0.31.
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Figure 6.5: The caustic topology of the best planetary model. Top: Complete caustic topology with one
central and two small triangular-shaped secondary caustics on the left side at ~ (—1.4,+0.3). Bottom:
Zoom on the central caustic. Solid lines mark the source trajectory including annual parallax, and the
dashed line the trajectory as seen from the Sun.
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non-planetary model favors a closer and less massive lens than the planetary model.
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parameter no planet planet
q 0.187 0.009
d [/ Rg| 0.312 0.537
uo [/ REg] 0.0663 0.0337
¢ [deg] 228.64 263.292
tg [days] 32.216 63.877
to[HID'] 2814.282 2814.130
TE 0.46 0.23
Y [deg] 216.115 351.853
hocLe 0.61 0.78
x*/d.of. | 2141.35 / 376 | 2328.72 / 376

Table 6.1: Fit parameters of best planetary and non planetary models. The x? values are
based on the raw photometric errors. i.e. without rescaling factors.

6.4 Conclusion

We note that the re-reduction of the data still is in progress (in particular the Danish data
set) and could not be completed before submission of this thesis, so the exact values of the
model parameters have to be taken with care, but that it is unlikely that the ambiguities in
the models will disappear, cause the critical data gaps at the peak and the wings will persist.
Despite the rather sobering result that the detection of planets in high amplification event
peak anomalies is much more challenging than previously promoted (Rattenbury 2003;
Griest & Safizadeh 1998) the encouraging lesson learned from OGLE-2003-BLG-208 is
that it nevertheless is possible to detect planets in peak anomalies if a continuous/complete
coverage of the peak is achieved. The caustics of the planetary and non planetary solutions
are not identical and different enough for 1 —2% precision photometry. This is best done by
either a network based campaign like PLANET, a space based telescope, or from Antarctica
(Beaulieu et al. (2004) and Sec. 9.1.1). Single-site-only campaigns are most likely not able
to break the ambiguities in the models (Gaudi & Han 2004) apart from the case where
the caustic topology is very unique as in the only undisputed microlensing planet known
to this date, the planet around lens in OGLE-2003-BLG-235/MOA-2003-BLG-053 (Bond
et al. 2004).
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Chapter 7
OGLE-2004-BLG-254

So with the Baxters on this side and the Rocco brothers on the other, I will
be in the middle .

Clint Fastwood in A few dollars more’

Abstract

When a single lens is transiting a source star during a microlensing event, we get the rare
opportunity to constrain the center to limb variation of the source and the mass of the
lens. As an example, we present the analysis of OGLE 2004-BLG-254, a high magnification
(Amax = 55) and relatively short duration (tg = 13.2 days) microlensing event. A high
signal-to-noise ratio spectrum taken while the source was still amplified by ~ 20 showed
that the source star was a K3II giant from the Sagittarius dwarf galaxy. We modeled
the lightcurve with uniform brightness, linear and then square root limb darkening laws,
including parallax effects. In contrast with some earlier studies, we do not approximate the
magnification of the source, but use a general form. With the constraints from finite-source
and weak parallax effects we constrain the mass of the lens to the range 0.1 < M/M, < 4.
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Figure 7.1: Finding chart of OGLE-2004-BLG-254 event. Again North is right and East
is up on this 2’ x 2’ sized frame and the position of the lensed source is at the center of
the cross. Although part of a close chain of three stars its brightness (IogLe ~ 16.4 mag)
enables quite stable and precise photometry as can be seen in Fig. 7.5. (credit: OGLE’s page
www.astrouw.edu.pl/~ogle/ogle3 /ews/ews.html)
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7.1 Introduction

Although binary lenses due to their extended caustics have a larger cross section for finite-
source effects, also the point-like! caustic from a single lens can be sensitive to extended
sources, namely when the impact parameter is of the order of the source size, i.e. in high
amplification events with u, < 0.02 for typical lens scenarios. The point caustic can then
transit the source and as in binary lens caustic passages probe the source surface with
high resolution. The resulting lightcurve is (neglecting possible asymmetries induced by
nonlinear relative motion and other higher order effects) symmetric as in the single lens
case, however the peak is broadened and flattened. These rare transits also provide the
unique possibility to measure/constrain the mass of a single star (Ghosh et al. 2004; Jiang
et al. 2004), having in mind that the majority of star mass measurements (apart from the
Sun) stem from binary/multiple star systems. The OGLE-2004-BLG-254 event presented
here is the best existing data set up to now of such a phenomena.

7.2 Photometric measurements

The OGLE Early Warning System (EWS) (Udalski 2003) alerted the Bulge giant
OGLE 2004-BLG-254 as being a potential high magnification event on June 3, 2004. OGLE-
IIT observations were carried out with the 1.3 m Warsaw Telescope at the Las Campanas
Observatory, Chile, which is operated by the Carnegie Institution of Washington. Photom-
etry was obtained with the OGLE-III image subtraction technique data pipeline (Udalski
et al. 2002) based in part on the (Wozniak 2000b) image subtraction implementation of
ISIS (Alard & Lupton 1998; Alard 2000).

The PLANET collaboration started its photometric observations on June 8 which form
the basis for our analysis and consist of data from 5 different telescopes being part of the
PLANET network: the Danish 1.54m at ESO La Silla (Chile), the Canopus 1m near Hobart
(Tasmania), the Perth/Lowell 0.6m at Bickley (Western Australia), the Elizabeth 1m at
the South African Astronomical Observatory (SAAO) at Sutherland (South Africa) and
the Rockefeller 1.5m of the Boyden observatory at Bloemfontein (South Africa). The event
was also monitored by MicroFUN from Chile with the 1.3m (ex-2MASS) telescope at the
Cerro Tololo Inter-American Observatory, using ANDICAM, which simultaneously takes
images at optical and infrared wavelengths (DePoy et al. 2003). Data collected by PLANET,
OGLE, and MicroFUN showed a rise in magnification by 2.85 mag above baseline until
9-Jun, 8:10 UT. These data and adequate real-time modeling indicated a peak to occur on
10-Jun, 6:35730™2 UT, at a rather uncertain, but in any case large, magnification of 8011,

Events of this type harbor an exceptional potential for the discovery or exclusion of
extra-solar planets (see Sec. 8) as well as for the study of stellar atmospheres and might
provide an opportunity for measuring the mass of the lens star.

!True lenses are not point-like and so there are no real point caustics, but finite-lens effects in galactic
microlensing events are not observable with current instruments. Their astrometric signatures, in the order
of micro arc-sec, however may be within the reach of future space mission like SIM (Takahashi 2003).
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On 10-Jun at 12:45 UT, a public alert was issued by PLANET, reporting that data
collected on OGLE 2004-BLG-254 at the SAAO 1.0m between Jun-9, 18:50 UT and Jun-10,
4:40 UT, at the Danish 1.54m on Jun-10 between 2:20 UT and 10:05 UT, as well as OGLE
data obtained on Jun-10 between 3:50 UT and 9:55 UT, revealed the extended size of the
source star, and the passage time of its radius was evaluated to about 16 hours. The peak
was passed around 10-Jun, 7:40 UT at 4.35 mag above baseline, i.e. at an amplification of
~ Hd.

7.3 Spectroscopic measurements

We have obtained a high-resolution spectrum of OGLE 2004-254 by use of Target-of-
Opportunity-time at the UVES spectrograph mounted at the Nasmyth focus of Kueyen,
the second VLT unit (UT2) on June 11, 2004, between 00:24 and 00:52 UT, while the
source flux was magnified by the microgravitational lens by a factor 20 (which made the
VLT equivalent to a ~ 37m diameter telescope at this moment). The spectrum was taken in
one of the standard red setting centered at 5800 A . The red arm of the UVES instrument
is equipped with two CCDs, one EEV for the bluer part of the spectra and a MIT for the
red part.With the selected set up (called 580) we are able to cover the spectral domain
4780 — 5758 A on the EEV CCD and 5835 — 6808 A on the MIT one at a resolution of
~ 40 000.

7.4 Nature of source star from UVES spectroscopy

We have analyzed the spectrum by comparison with a small grid of synthetic spectra
that we have computed at the same resolution as the observed spectrum. The spectra are
based on MARCS model atmospheres (Gustafsson et al. 1975), computed with the version
of the code described in Jgrgensen et al. (1992) with later updates. The later update of
highest importance for the present project, is the inclusion of atomic line opacity samplings,
based on the VALD data base (Kupka et al. 1999) of transitions in neutral and one time
ionized atoms. The VALD data base is used for the model atmospheres as well as the
spectrum computations. The spectrum shows approximately 10 000 well defined lines, and
almost all of them are identifiable from comparison with line position and strength of the
transitions listed in the VALD data base. Line profiles are computed as Voigt profiles with
the necessary broadening parameters taken from the data base. Among the many atomic
lines, we have selected three particularly well suited systems of strong Mg, Cr, and Na
lines whose intensity and line shapes are fitted to give a first estimate of the fundamental
parameters: effective temperature (Tos), surface gravity (log ¢g) and metallicity (Z).

Using this set of parameters, a synthetic spectrum of the star is computed and we
controlled the validity of the model by comparing against a large number of medium to
weak lines throughout the observed spectrum. This in addition will allow us to determine
variations of the abundances for other elements.

97



7.4.1 Magnesium lines

The triplet of neutral magnesium lines around 5175 A is well suited to put limits on the
temperature and gravity, while it is relatively insensitive to metalicity (magnesium abun-
dance) within reasonable limits. The line system overlaps with the position of a relatively
strong MgH band, and the ratio between Mg and MgH is sensitive to temperature as well
as gravity. For high values of the gravity, the atomic magnesium triplet lines become very
broad and the ratio between Mg and MgH shifts in favor of MgH. Also for low temperatures
the balance shifts in favor of MgH, so that the shape and the intensity of the atomic lines
can be used together with the ratio (or absence) of the intensity of MgH relative to the
intensity of the atomic Mg lines to give information on temperature and gravity.

The absence of MgH in our observed spectrum allows us to conclude that the star is not
cooler than 4000 K. The broadness of the atomic Mg lines allows us to confine the value of
log g < 2.0. The synthetic spectrum of the triplet Mg lines is not very sensitive to Z, and
any value from slightly above solar to as low as 1/3 Z leads to good fits. The medium
strong neutral atomic Mg line at 5711 A is known to respond opposite to the triplet lines
to changes in gravity, i.e. to become stronger for decreasing gravity. The synthetic line is
obviously too deep for models with log g = 0.0 and solar metallicity, while it becomes too
narrow for values much above 0.

Good fits are obtained to all the Mg lines for Tog = 4100 + 100K, logg = 1.0 £ 0.5
and Z =~ 0.5. Fig. 7.2 shows the observed spectrum around the three strong Mg lines, from
5165 A to 5187 A, superimposed by a synthetic spectrum of a star with Tog = 4100 K,
logg=1.0and Z =0.6 Z.

7.4.2 Chromium lines

As for the Mg triplet region, the MgH molecular system also has a relatively strong band
in the region of a triplet of three strong chromium lines at 5204.51, 5206.04 and 5208.42
A, which limits T,g to be no less than 4000 K. Also models of T.g = 4200 K fit the Cr lines
well, while models of T,z = 4400 K result in too weak Cr lines (even for Z = Z;)) while the
weaker lines in the same region are too strong at this temperature. We therefore conclude
from the region of the chromium lines that T.g is in the range 4000 — 4200 K.

The chromium system is less sensitive to gravity, and even values as low as log g = 0.0
are in good agreement with the observed spectrum of these lines. On the other hand the
lines are sensitive to the value of Z (the Chromium abundance), and Z = 0.3 Z, tends to
be on the lower side of good fits, while Z = Z, is obviously too high.

Fig. 7.3 shows the observed spectrum around the three strong Cr lines, from 5190 A
to 5220 A, superimposed by a synthetic spectrum of a star with Tos = 4100K, log g = 1.0
and Z = 0.6 Zg.
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Figure 7.2: The observed (solid blue line) and computed (dotted red line) spectrum in the
region around the 5167.3, 5172.7, 5183.6 A Mg lines. The computed spectrum is based on
a stellar model of Tog = 4100K, logg = 1.0 and Z = 0.6 Z,. The observed spectrum is
shifted by 139.2 Kms™' to the rest frame.

7.4.3 NaD lines at 5890/5896 A and other neutral sodium lines

The intensity and form of the NaD lines are very sensitive to Tog as well as to gravity and
(sodium) abundance. Often these lines are not useful for determination of the fundamen-
tal parameters and abundances, because interstellar absorption saturates or changes the
intensity of the lines. In this case, however, the main component of the interstellar absorp-
tion is at a redshift of +122 km/s relative to the star, and the intrinsic stellar NaD lines
are very strong and seem to be only moderately affected by interstellar absorption. The
fact that the fundamental parameters derived from the NaD lines are in good agreement
with the parameters derived from the other stellar lines, also indicates that the interstellar
absorption is small, even though it is certainly visible (see Fig. 7.4).

Model spectra from our grid with high metallicity (Z = 3), with high gravity (log g = 3)
or low T,g, all give far too broad NaD lines compared to the observed spectrum, and can
therefore be excluded. Models of low gravity (logg = 0), high Tog (Teg = 4200 K), or low
Z (Z =0.3 Zy), on the other hand give too narrow lines compared to the observed lines.

Fig. 7.4 shows the observed spectrum around the two NaD lines, from 5882 A to 5902
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Figure 7.3: The observed (solid blue line) and computed (dotted red line) spectrum in the
region around the three strong Cr lines, from 5190 A to 5220 A, computed in the same
way as in Fig.7.2.

A, superimposed by a synthetic spectrum of a star with Tog = 4100 K and log g = 1.0, and

We conclude that the Mg, Cr, and Na lines are well fitted by models in the range
Ty = 4100+ 100K, logg = 1.0+ 0.5 and Z = 0.6 £0.2 Z. This corresponds to a slightly
metal deficient bright giant star of spectral class approximately K311, at a distance (and
direction) of the Sagittarius dwarf galaxy and R/R; = (1.31 4+ 0.07) Dgs/kpc. The line
positions fit the lines of the data base with a general offset of +134 km/s, which is also
consistent with the star being a member of the Sagittarius dwarf galaxy. This star, although
cooler, has the same metallicity and similar radial velocity to the two Sagittarius giants
studied by Bonifacio et al. (2000).

Finally we note that since the spectrum is of remarkably high resolution and signal to
noise for a star of the Sagittarius dwarf galaxy, it offers the potential of a detailed, high
quality abundance analysis, which is however beyond the scope of this Chapter and will
be presented elsewhere.
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Figure 7.4: The observed (solid blue line) and computed (dotted red line) spectrum in the
region around the two NaD lines, from 5882 A to 5902 A, computed in the same way as in
Fig.7.2.

7.5 Lightcurve modelling

7.5.1 Extended source formalism

The photometric data collected on OGLE 2004-BLG-254 clearly show that the lightcurve
is affected by extended source effects. While the magnification of a point source at the

projected distance u from the lens (in unit of the Einstein radius O, see Sec. 1.4) is given
by

u? 4 2
Ay = T2
() uvuz+4

the magnification of an extended source with angular radius p,reads

Awle.p) =2 [ [ etrra (o7 2l ren@ F WpF) dpdr (12

Here, £(r) is the brightness profile of the source and r denotes the fractional stellar radius
(0<p<1).

For a uniformly bright source ({(r) = 1), Witt & Mao (1994b) have derived a semi-
analytic expression for A(u|€, p,) involving elliptical integrals, but for other profiles, such as

(7.1)

101



power-law limb-darkening models, no corresponding expressions are known. Based on the
fact that extended source effects are only prominent for small angular separations between
lens and source (u < 1), where A(u) ~ u™', Gould (1994) found that the extended-
source magnification A(ul|&, p,) can be written more simply as product of the point-source
magnification A(u) and a factor B(z), namely

Aulg, p) = A(u) B(u/ps; €) (7.3)

where

1 27 1 >
B(z; :—/ / r rdrde. 7.4
(=:8) T Jo Jo < )\/r2+27“zcosgo+z2 4 (7.4)
The validity of this approximation for typical parameters of finite-source events has
been confirmed by Yoo et al. (2004b), who also found that for a uniformly bright source
By(z) = B(z;€ = 1) reads

4 E(r/2,2) for 2 <1
Bo(z) = . { E(arcsinz™',2) for z2>1 "~ (7.5)
where .
E(p, k) = / 1— k2 sin? ¢ dyp (7.6)
0

is the incomplete elliptical integral of the second kind (e.g. Gradshteyn & Ryzhik 1980;
notice the formula given by Yoo et al. (2004b) is not properly defined by referring to this
notation and is corrected here). Another efficient technique has also been used by Heyrovsky
(2003) to deal with arbitrary limb-darkened source profiles: he calculates analytically the
angular integral in Eq. (7.2) so that only a radial integral containing the limb-darkening
profile remains to be calculated numerically.

7.5.2 Limb-darkened source fit

In the photometric analysis of the event, both PLANET and OGLE data are being used.
For each PLANET observation site, we have applied a cut on seeing which only removes
very unreliable points ; we restricted the complete OGLE data to the ones collected after
HJD’ = 3050.0 (which is large enough to derive the baseline magnitude). OGLE provides
us with 106 data points, SAAO 80 (seeing < 2.0”), UTas 37 (seeing < 3.1”), Boyden 74
(seeing < 4.8”) and Danish 205 (seeing < 2.0”), for an amount of 502 measurements from
5 observing sites. As mentioned earlier, our DoPhot based pipeline does provide under
estimated photometric errors (e.g. for bright magnitude, error estimates can become of the
order of 107 which is unrealistic). Comparison with scatter of the bulk of non variable
stars suggests that an order of magnitude of underestimation of errors is 20 %. Therefore,
as a new standard in forthcoming analysis based on PLANET data, we modify the errors
in the following way: 0% = (1.2 O'Dophot)2 + (0.01)? for every observing site.

The source star being a K3 giant, we first check weather the fluctuation in the OGLE
baseline magnitude is periodic or not. We compute a power spectrum of 115 baseline data
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points coming from OGLE, and find that the spectrum is compatible with observational
noise, and that we do not have a periodic modulation greater than o, in the range 1 —12
days.

A point-lens-uniform-(extended)-source model provides us with a first working set of
parameters for our y? minimization scheme. At this stage, the residuals of the fit show
some symmetric trends around the peak of the light curve, which clearly indicate limb
darkening of the source star has to be taken into account. We therefore add a linear
limb darkening to the source (see also Sec. 2.2.3), so that £(u) = 1 — ay(1 — p), where
= cos(f) is the emergent angle from its surface. This parameterization involves a total
of 17 free parameters: three basic microlensing parameters, to (time of closest approach),
uo (minimum impact parameter), tg (Einstein ring radius crossing time), the source size
p« (in unit of O), two annual parallax parameters 7 (see Sec. 7.6) and 1), one linear limb
darkening coefficient a; and five baseline magnitudes plus five blending parameters.

The best corresponding parameters fitting the data are given in Tab. 7.1. We also tested
a square root limb darkening law, which can be written §(p) = 1 —a1(1— ) —a1/2(1— /1)
and involves one more parameter than the linear limb darkening. We note that the y?
we obtain is very similar to the one with the linear limb darkening law and leads to no
significant improvement.

We further remark that the blending fraction of the different PLANET sites can be very
different. The blend at 1.4” from the target is not disentangled from OGLE 2004-BLG-254
by Boyden and Canopus observations, whereas it is in SAAO and Danish. Moreover, we
obtain a nearly zero blend from OGLE, which is in agreement with data being reduced by
image subtraction.
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Figure 7.5: The upper panel shows the photometry of the microlensing event OGLE 2004-BLG-254
near its peak, on 2004 June 10, observed by four PLANET sites, Danish 1.54m, UTas 1m, Perth 0.6m,
Boyden 1.5m and SAAO 1.0m and OGLE. The solid line is the best point-lens, linear limb darkened
extended source model. On the middle panel are plotted the residuals of the peak region fit, whereas the
lower panel shows the residuals of the complete set of data (the two vertical lines indicate the peak region

displayed above).
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Table 7.1: Parameters for the best point-lens-extended source models for linear and square

root limb darkening law.

Parameters || Linear Square root
to (days) || 3166.822370057 | 3166.8221
up || 0.01755, 1073 | 1.27 .1073
tg (days) || 13.17707 13.09
pe || 4077052 1072 [ 4.11 .1072
a; | 0647573 0.59
ais - | - 0.12
n | 42755 1072 4.2 1072
(Fb/FS)SAAO 0.64 0.67
(Fb/FS)Danish 0.024 1.0 .1072
(F,/Fs)uras || 0.55 0.55
(Fb/FS>Boyden - -
(Fb/FS>OGLE 1.0 .1073 1.0 .1073
x%/dof | 1.03 1.02

A comparison between the exact formula and the approximation of Yoo et al. (2004b)
led to a maximal relative discrepancy of 2.0 x 10~* at the peak and 1.5 x 10~ close to the
limb. This suggests that this approximation can be used safely, however we note it does
not lead to a much shorter computing time.

7.6 Constraints on the lens

As discussed in Sec. 7.4, the source is most likely situated in the Sagittarius dwarf galaxy,
at a distance Dg ~ 24 kpc. We recall that the location of the lens (at distance Dy,) can
be constrained by two equations: one coming from the comparison of the fitted value of
the source (py, in unit of the Einstein radius) and its physical size determined with the
spectroscopic analysis; the other equation involves the parallax parameter n determined
from the fit (e.g. Kubas et al. 2005a, respectively Chap. 5 ). With x being the fractional
distance of the lens, x = Dy,/Ds, the Einstein radius reads

4GM 1 —=x
O = 5 )
c? Dg =z

Let R. and ag be the physical source radius and the semi-major axis of the Earth motion
around the Sun (assumed to be circular), the two equations can then be written:

(7.7)

M(z) & RZ z
My — 4GMyDs p,2 1 —2’

(7.8)
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using the extended source effect, and

Mz — & ayl—u

(7.9)

when taking into account the parallax. The parameter 1 introduced here is related to the
annual parallax mg by
T = |1| O (7.10)

From the parameter error bars given in Tab. 7.1, it appears that the fitted source radius
ps is well constrained, whereas one can just put an upper limit on the value of the parallax
parameter 7. According to Eq. (7.9), this will provide us with a minimum value on the lens
mass; we take this upper limit to be 7,4, ~ 0.12.

In Fig. 7.6, we plot the relations from above between the lens mass M and the frac-
tional distance of the lens z in dependence from finite source size effects (Eq. 7.8) and
parallax effects (Eq. 7.9). From this Figure, the lens must therefore be located at a dis-
tance Dy, > 19 kpc, and its mass must be greater than 0.1 M. If one assumes the thickness
of Sagittarius in this particular line of sight to be around 2 kpc, the minimal mass of a
lens located within Sagittarius is then 0.4 M.

We also note from the fit that the blend fraction found in the Danish telescope pho-
tometry is F,/Fs ~ 0.01, which gives a maximal value of 10 L for the lens, a value in
agreement with a lens mass in the range 0.1 —4 M.

7.7 Discussion

We have performed a dense photometric monitoring of the microlensing event OGLE 2004-
BLG-254, a relatively short duration (tg = 13.2 days), small impact parameter (u = 0.00)
microlensing generated by a point mass lens transiting a giant. It peaked at an amplification
of 55.

The analysis of UVES spectra taken while the source was amplified by a factor ~ 20
just after the end of the transit of the caustic over the source yielded precise measurement
of the characteristics of the star, a K3II with T.g = 4100 4+ 100K, logg = 1.0 & 0.5
and Z = 0.6 & 0.2Z,. The projected radius of the source is 6.1 + 0.3 pas, corresponding
to R/Rs = (1.31 + 0.07) Dg/kpc. Its radial velocity of 139.2 km s™! and luminosity
suggests that it is a Sagittarius dwarf galaxy giant. We note that at its galactic coordinates
(1=358.096, b=-3.87), the microlensing rate due to Sagittarius estimated by Cseresnjes &
Alard (2001) is significant.

The short time scale of the event only allows to put an upper limit on parallax effects,
suggesting (assuming the hypothesis of source being in Sagittarius is correct) the lens to be
located at Dy, 2 19 kpc and with a mass in the range 0.1 < My, /My < 4, where the upper
mass bound results from the argument that a more massive and luminous lens would imply
a higher than observed blend fraction. These constraints lead to the possibility that either
the lens belongs to the far disc of our galaxy or also to Sagittarius. The latter scenario,
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Figure 7.6: Constraints on the lens mass and lens distance from parallax and source size
effects, assuming a source at Dg = 24 kpc. Taking the upper limit 17 = 9 = 0.12 gives
a lower limit on the mass of the lens, i.e. the lower shaded region is not allowed.

which would be the first reported case of self-lensing in Sagittarius, could however only
be satisfyingly reconciled with the rather short event time scale, if the lens belongs to the
debris stream, where the velocity dispersion is much larger than the (11.4 4+ 0.7) kms ™" in
the central regions of Sagittarius.
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Chapter 8

Constraining the presence of planets
around the lens

But little they know, that it’s so hard to find. One rich man in ten with a
satisfied mind.

Johnny Cash, °A satisfied mind’

8.1 Abstract

From the absence of planetary anomalies in apparent single-lens lightcurves, one can put
constraints on the allowed parameter space of planets around the lens. We present a method
to quantify planetary detection efficiencies, which extends and refines previous studies
(Gaudi et al. 2002) by taking into account the source size. Although current microlensing
campaigns are only sensitive to Jovian companions, where finite source effects can be
neglected, future microlensing searches will most likely be sensitive to Earth masses and
will require extended source modeling for proper data interpretation.

With the framework outlayed below and given a large sample of microlensing events, one
can derive upper limits on the Galactic abundance of planets. In a forthcoming analysis we
aim to strengthen the constraints on the abundance of Jovian planets in the lensing zone
around M-dwarfs (Gaudi et al. 2002), using the PLANET 1995-2004 microlensing data set.
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8.2 Introduction

While as of spring 2005 about 2000 microlensing events have been observed since the mid
90’s, only one planet has left a convincing signal in the measured lightcurves, namely the
Jovian like planet around the lens of the OGLE 2003-BLG-235/MOA 2003-BLG-53 event
(Bond et al. 2004). Unfortunately it seems that the parameter region where microlensing
is most sensitive to planets, i.e. Jovian planets in the lensing zone (Sec. 2.1.1) is scarcely
populated by nature!. Gaudi et al. (2002) concluded that less than 1/3 of M-dwarfs have
Jovian companions within 1 —4 AU. We have extended and refined their approach, aiming
to strengthen these constraints and to push the mass limits further down, by allowing for
extended source effects and using a larger sample of events.

8.3 Detection/Exclusion efficiency

Although a planetary companion around the lens can significantly distort the single lens
lightcurve (Sec. 2.1) the parameters u,, t,, tg will be very close to the lens model without
a planet. For a fixed configuration of separation d and mass ratio ¢ a decisive parameter,
whether the planetary caustic will be hit by the source track or not, is the impact angle ¢
(as illustrated in Fig. 8.1), apart from tracks with very small impact parameter which reveal
the presence of planetary/binary central caustics with great certainty for almost any impact
angle. Determining the fraction of angles leading to a detection therefore provides a viable
way to measure the efficiency € with which a given (d, ¢)-configuration can be detected.
Expressed in a more abstract form the geometric definition of detection efficiency €(d, q) is
then

1 2
G(d, Q) = %/ d¢ @[C(d7 g, ¢) - Cthresh]a (81)
0
where ©[z] is a step function and the contrast C
2 ) 2
O = Xblnary2 Xsmgle —1_ X;lngle . (82)
Xbinary Xbinary

Note that ¢ is uniformly distributed and that the contrast C is different from the quantity
used in Gaudi et al. (2002), who used AX* = Xfinary — Xiingle:

We decided to use the contrast C, because it overcomes a subtle but important short-
coming of the Gaudi et al. approach. It takes into account the data quality without the
need to do o-clipping (i.e. removing outliers and rescaling error bars until a reduced x? of
unity is reached on the base of a single lens model as done by Gaudi et al.) and without
a priori assuming the absence of a planet. Since the contribution of outliers (due to bad
weather or technical and human malfunctions) to the y? on average will be the same for
the tested single and the tested binary lens model, the minus sign in the numerator will
remove its contribution to the contrast.

!The reason for this however might be naturally explained by current migration theories (Stephane
Udry, private communication).
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Figure 8.1: Left: Caustic geometry of a star+planet lens with mass ratio ¢ = 0.002 and separation
d = 1.2. Dark areas of the magnification map mark regions of high amplification. The blue solid line marks
a source track with u, = 0.34 and ¢ = 271.0° passing a region where the influence of the (planetary)
caustic is negligible. The red line source track has the same impact parameter u, = 0.34 but a different
impact angle ¢ = 50.0° and this time hits the caustic. Arrows mark the direction of source motion. Right:
The corresponding lightcurves of the tracks marked in the left plot. The ¢ = 271.0° track leads to a
lightcurve (blue) practically indistinguishable from a single lens curve, whereas the ¢ = 50.0° track shows

a short-lived but clearly detectable planetary signal.

8.3.1 Choice of detection/rejection threshold

Being aware of the non-gaussian statistics in our measurements, we adopt the conservative
threshold of Gaudi et al. (2002) based on Monte-Carlo simulations on PLANET photometry
of constant stars, where they find that a threshold of Ay? = 60 is high enough to avoid
"detections’ arising from statistical fluctuations and/or unrecognized low-level systematics.

8.4 Ruling out planets (with TANGOBI)

The detection efficiency € defined above is the probability that a companion of mass ratio ¢
and separation d produces a signal inconsistent (i.e. C' > Clpesn) With a single-lens model.
The absence of such signals implies then, that companions with this specific (g, d) are ruled
out with a confidence level of e.

The algorithm TANGOBI? (a code created by merging TANGO (Kubas 2005, Chapter
3, Appendix A) with the lens modeling software Gobi developed by Arnaud Cassan) is

2T ool for AN alyzing G ravitational lensing O f BI naries
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turning the recipe given in Gaudi et al. (2002) into exclusion diagrams, which constrain
the presence of planetary companions in a given microlensing event. Its scheme is as follows:

1. Find best single-lens model for a given event to get Xzingle

2. For fixed (d,q,p.) find for each trajectory ¢ € [0,27] the best binary model by
minimizing over u,, t,, tg, Fg, Fp to get and store best X%inary’

3. Repeat step (2) for each point of the (q,d, p.) - grid.

4. Choose a threshold Cipesn, evaluate C(q, d, ¢, p.) and compute €(q, d, ¢, p,) for the
complete grid.

Note that our detection efficiency is also a function of the source size p,, in contrast
to the point-source-binary-lens models used in Gaudi et al. (2002) and all other previous
studies (Snodgrass et al. 2004). As seen in Sec. 2.1.2 extended-source effects significantly
influence the detectability of lightcurve signatures from Sub-Jovian planets. To be able to
give constraints for this mass regime the source size therefore has to be taken into account.
For that purpose we again make use of the ray-shooting technique to create a grid in the
(d, q, p«) - space (see below).

Another difference to previous studies is that we use a combination of optimizing al-
gorithms (Pikaia, Amoeba and Powell) to reduce the risk of overestimating our detection
efficiency due to failure of a single technique to locate the best model. This effect is demon-
strated in Fig. 8.4. In practice we choose the best (lowest) X7y, from the minimization
over (u,, to, tg, Fs, F) using Amoeba, Powell, Pikaia+Amoeba, or Pikaia+Powell (see also
Chapter 3).

8.4.1 Choice of grid 4+ simulations of amplification maps

The maps used as grid in the (g, d)-parameter space are generated with the ray-shooting
method (Wambsganss 1999). Their size is (2048)? pixel with a resolution of 0.001 Rg and
a ray density per pixel of 2 10 000. We note that for data outside a map where extended
source effects are negligible, we extend the model using a point source approximation.

We scan the mass ratio in the interval —(logq) =2.00, 2.25, 2.5, 2.75, 3.00, 3.25, 3.5,
3.75, 4.00, 5.00 (which covers roughly the mass spectrum from the most massive non
Deuterium fusors down to Earths for the typical lens scenario) and the separation in
d/Rg = 0.1,0.2,...2.5 plus the corresponding 1/d (see Appendix B.3). Intentionally this
choice of the grid limits our exclusion conclusions mainly to the lensing zone, since it is
there where we are most sensitive to planets (Sec. 2.1.1), and of course computational
resources demand a reasonable cut in the d-space.

The map origin at (0,0) is the center of mass of the system, the planet is located on
the positive x-axis and the lens star on the negative x-axis. We then convolve these maps
with 3 different source sizes p, ranging from 0.001, 0.005, to 0.010 Rg, to probe physical
source sizes of ~ 1,~ 6,~ 13 R (assuming M;, = 0.3 M, D, = 4 kpc, Dy, = 8.5 kpc ).
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Figure 8.2: Typical convergence behavior of Amoeba (thin line) and Powell (thick line) in the modeling
process of locating the best set of (u,, to,tr, Fs, F) - parameters of a binary lens for six different given
configurations of mass ratio ¢, separation d as function of the uniformly sampled impact angle ¢. While
often the methods yield comparable results, it can occur that they differ significantly. For example in the
top left plot, an optimization with Amoeba alone could overestimate the detection efficiency if the chosen
threshold is low enough. To minimize such numerical induced noise in the contrast we do not rely on one

technique alone, but pick always the lowest X%)inary resulting from different minimization methods.

We note for completeness that we assume a linear limb darkening model for the source
profile with I" = 0.50 (which is inspired by previous measurements such as in Cassan et al.
(2004) and Kubas et al. (2005b)) but are aware of the fact that due to the limited resolution
of the source in our maps we are barely sensitive to limb darkening parameters. In total
our (d, g, p.)-library then consist of 11 x 22 x 3 = 726 maps.

8.5 Test on artificial data

To test our algorithm we first use simulated events, created similarly to the recipe given
in Sec. 3.2 (page 48). Besides a desirable complete coverage of the event and a secure
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Figure 8.3: Simulated high amplification event (HAE-1) generated with the recipe given in Sec. 3.2.
The solid line marks the input model from which the data are drawn with parameters ¢ = 0.01, d =
0.01 Rg, u, = 0.013 Rg, ¢ = 151.3°, t, = 2550.00 HJID', tg = 17.0 days and p. = 0.0025 Rg. At
baseline the photometric precision is ~ 5% improving to ~ 1% at the peak region, which is covered
almost continuously with a ~ 30 min sampling rate (from 2549.0-2551 HJD'). The data set consists of 345

‘measurements’.

baseline we especially sample the peak region densely, since as we recall from Chapter 6
it is the most sensitive region of the lightcurve in terms of excluding/detecting a planet.
An example of such a test event is displayed in Figure 8.3, with underlying parameters
mass ratio ¢ = 0.01, separation d = 0.10 Rg, impact parameter u, = 0.013 Rg, impact
angle ¢ = 151.3°, impact time t, = 2550.00 HJD’, time scale tg = 17.0 days and source
size p, = 0.0025 Rg. The photometric precision in the baseline region is ~ 5% improving to
~ 1% at the peak region, which is covered almost continuously with a ~ 30 min sampling
rate (from 2549.0 — 2551.0 HJD’). The data set contains 345 points and represents a high
quality template.

Note that this event actually does contain a planet (¢ = 0.01, d = 0.10 Rg), which
however is outside the lensing zone (Sec. 2.1.1) and leaves no significant (i.e. with the
given accuracy not detectable) signature in the 'measured’ lightcurve. This event therefore
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demonstrates the limits of our approach in two ways: What can we exclude with high
confidence and what not, with a nearly optimal data set of an high amplification event
(Amax = 77) following an apparent single lens lightcurve.

Adopting a rejection threshold of Ax? = 60 from Gaudi et al. (2002) the derived
constraints on planets around the lens in this test event are shown in Fig. 8.4 for different
source sizes. First we note that we are, as suspected, not sensitive to the existing planetary
companion. Within the lensing zone however, rather strong constraints on the presence of
Jovian planets can be given. For example a ~ 1 M planet (~ ¢ = 1073) is ruled out with
high confidence (95%) for projected separations of 0.4 < d/Rg < 1.7, which correspond to
about 1.2—5.1 AU (assuming a bulge-bulge lens scenario, with Dg = 8.5 kpc, Dy, = 6.5 kpc)
for all source sizes, spanning from ~ 1—13 R. Also companions of several Neptune masses
are not allowed with (75 — 95) % confidence in orbits with separations 0.7 < d/Rg < 1.3.
Some conclusion on Earth mass (~ ¢ = 107°) planets can only be given in the case when
the source star size is of order ~ 1 R or less, i.e. the source is not a giant. In this case
one could say, that with a certainty of (50 — 75)% there are no planets around HAE-1 with
masses comparable to Earth in the orbital range 0.9 < d/Rg < 1.2

8.6 Test on OGLE-1998-BLG-014

One of the first planet exclusion studies on a microlensing event was done on OGLE-1998-
BLG-014 (Albrow et al. 2000a). In order to check if our method yields results consistent
with theirs and to ensure compatibility with the conclusions drawn by Gaudi et al. (2002)
we also apply Tangobi on this benchmark event. The measured lightcurve shown in Fig. 8.5
reveals a well sampled A, &~ 16 event with apparent deviations from a single lens model.

Although the amplification maps used by us intrinsically always imply extended sources,
our smallest source with p,/Rg = 0.001, corresponding to ~ 1 R, should be an adequate
approximation, since the impact parameter u,/Rg = 0.062 of OGLE-1998-BLG-014 is not
small enough for measurable interactions between central caustic and a source of this size.
The result of our method comparison is shown in Fig. 8.6. Although they are not identical
(which partly might be explained by the fact that we did not have access to exactly the
same data set they used) they are consistent. Both approaches rule out ~ 10/ ; companions
between ~ 1.2 — 7.4 AU around the lens for a bulge-bulge lens scenario (with the source
at Dg = 8.5 kpc and the lens at Dy, = 6.5 kpc) but give little constraints on Sub-Jovian
companions.
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Figure 8.4: Exclusion diagrams for our test event HAE-1 (Fig. 8.3) for the three source sizes in our
grid p./Rg = 0.001,0.005,0.010 (A,B,C), corresponding roughly to physical sizes of 1, 6 and 13 R for
typical lens scenarios. Shown contours correspond to 25%, 50%, 75,95% (outer to inner) confidence levels
of exclusion. The used rejection threshold AC is equivalent to the Ax? = 60 criterion derived in Gaudi
et al. (2002). For all source sizes mass ratios (logq) = —3, i.e. ~ 1 M; companions with separations in
the lensing zone 0.4 < d/Rg < 1.7 can be ruled out at a certainty level of 95%. Significant constraints
(with 75 — 95 % confidence) can also be given on Sub-Jovian down to several Neptune masses, albeit in
a more narrow separation zone between 0.7 < d/Rg < 1.3. In the as ’good-as-it-can-get’ situation of plot
A, when the source is for instance a small turn-off star in the bulge, even constraints on planets (with
50 — 75 % confidence) down to Earth masses for projected orbits of about 0.9 < d/Rg < 1.2 can be made
(corresponding to ~ 2.7 — 3.6 AU for a bulge-bulge lensing event with the source at 8.5 kpc and the lens
at 6.5 kpc).
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Figure 8.5: PLANET network data set and model of the reference event OGLE-1998-BLG-014 of Gaudi
et al. (2002) & Albrow et al. (2000a) for planet exclusion studies, a well sampled apparently single lens

event with maximum magnification Ap.x ~ 16 and time scale tg = 39.6 days.
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Figure 8.6: Top: Planetary companion exclusion diagram of OGLE-1998-BLG-014 from Albrow et al.
(2000a) assuming a point source for (logq) € [—5,—2] and d/Rg € [0,5]. Contours mark exclusion con-
fidence levels of e = 5% (outer contour), 25%, 50%, 75% and 90% (inner contour). Bottom: To mimic
the approach plotted above, we perform the analysis with Tangobi using our smallest source size, which
roughly corresponds to ~ 1 Rg and use an equivalent contrast threshold. Our result is not identical but
consistent with their findings. Assuming a small source, both methods rule out companions to the lens of
this event with mass ratio ¢ = 1072 between 0.3 < d/Rg < 2.4 at 95% confidence. A mass ratio of ¢ = 1072
corresponds to the mass ratio between a 10M ; planet and a G-dwarf and the projected separation to ~
1.2-7.4 AU, for a bulge-bulge lens scenario with the lens at 6.5 kpc and the source at 8.5 kpc.

117



8.7 Discussion

We presented an algorithm (Tangobi) which uses the absence of anomalies in apparent
single lens lightcurves to constrain the possible presence of planetary companions to the
lens star. This method extends and refines the approach of Gaudi et al. (2002) by taking
into account finite source size effects. Comparison tests done on OGLE-1998-BLG-014 yield
constraints consistent with their method, i.e. ruling out ~ 10M; planets in (projected)
orbits of ~ 1.2 — 7.4 AU around the lens. While finite-source effects have a negligible
influence on the results of exclusion studies for Jovian mass planets, they can not be
neglect in the Sub-Neptune mass regimes. By applying Tangobi to a large sample of events
(i.e. the complete PLANET 1995-2004 datasets) we will be able to strengthen the upper
limits on the Galactic abundance of Jovian companions in the lensing zone given by Gaudi
et al. (2002) and might also give the first limits for planets of several Neptune masses.
To infer at least some upper limits on the presence of Earth mass planets the source star
targets should have sizes ~ 1 Ry or less, which are out of reach for the capabilities of
current 1m-telescope class microlensing campaigns. Next generation microlensing searches
conducted from space or Antarctica (see Sec. 9.1.1) however, will most likely be sensitive
to Earth mass planets.

Finally we note in the framework of Tangobi, also events which clearly exhibit extended-
source effects (as OGLE-2004-BLG-254 from Chapter 7), can also be studied to constrain
the presence, respectively absence of planets.
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Chapter 9

Summary and outlook

If you are going through hell, keep going.

Sir Winston Churchill

Base of the work presented in the previous chapters are the software packages Tango &
Tangobi, developed for the analysis of gravitational binary lenses. It could be shown that
genetic algorithms are well suited for exploring the intricate parameter space of binary
lenses. With the help of these tools several data sets from the microlensing campaign
PLANET have been analyzed, leading to the following main results:

e The analysis of event OGLE-2002-BLG-069 (Chapter 5) lead to a second time ever
determination of the mass of a binary lens. This event involves a G5III cool giant in
the Bulge at a distance of Dg = (9.4 £ 1.4) kpc lensed by an M-dwarf binary system
of total mass M = (0.51 4+ 0.15) M, located at Dy, = (2.9 + 0.4) kpc.

Additionally and thanks to the successful first time spectroscopic monitoring of the
caustic exit at high resolution with UVES, we were able to compare stellar atmosphere
models with observations. Our data suggest that a PHOENIX atmosphere model
assuming LTE is not an adequate description of the source star.

e While the dataset on OGLE-2003-BLG-208 (Chapter 6) is consistent with the lens
having a Jovian companion, a star+star lens scenario is statistically preferred in the
highly ambiguous parameter space of this high amplification event (Apa.x ~ 30). A
still to be done re-reduction of the data is unlikely to change this preliminary conclu-
sion, since the essential regions of the lightcurve are not covered well enough by the
observations. Although this event demonstrates that the characterization of possible
planets from central caustic anomalies is more difficult than previously thought, it
also shows that current network microlensing campaigns are in principle able to detect
planets in peak anomalies of high amplification events, if they achieve a continuous
coverage over the whole course of the anomaly, respectively the event.
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e Observations of OGLE-2004-BLG-254 (Chapter 7) represent the best known data
set of a single-lens caustic transiting a source star. Thanks to another successful
spectroscopic monitoring with UVES, the source star could be identified as a K3II
giant in the Sagittarius dwarf galaxy at a distance of about &~ 24 kpc. Upper limits
on annual parallax effects and blend fractions in the lightcurve enable us to constrain
the lens mass to be 0.1 < My, /Mg < 4 at a distance 2 19 kpc, i.e. this event is a
candidate for being the first reported case of self-lensing in the Sagittarius galaxy.

e The absence of planetary signatures in apparent single-lens lightcurves can be used
to constrain the possible presence of planets around the lens star (Chapter 8). A
new algorithm with this task (to constrain the allowed parameter space of planets
around lenses) has been developed and successfully tested on the benchmark event
OGLE-1998-BLG-014, ruling out ~ 10M; companions in projected orbits between
~ 1.2 — 7.4 AU around the lens with 95% confidence.

The possibility of taking into account extended source sizes in this new method pro-
vides a basis to give more realistic constrains on the Galactic abundance of extrasolar
planets from microlensing searches.

9.1 Future work

A priority-ranked list of things to do after submitting and defending this thesis would look
like this:

e The algorithm Tangobi (Chapter 8) for the exclusion of planetary companions around
the lenses has to be applied to all suitable events in the PLANET database to give
statistically upper limits on the galactic abundance of extrasolar planets in the lensing
zone. As of now only ~ 8% of the total sample of apparent single-lens events from
the 1995-2004 PLANET seasons have been computed.

e The data set of OGLE-2003-BLG-208 (Chapter 6) needs careful re-reduction to fi-
nalize the competing planetary and non-planetary models.

e The element abundance analysis of the presumed Sagittarius giant source star in
OGLE-2004-BLG-254 (Chapter 7) has to be completed.

e There are still several well covered binary lens events with straight-fold-caustic pas-
sages in the PLANET data box. Although none of them possesses additional multi-
band /spectroscopic data comparable to OGLE-2002-BLG-69 (Chapter 5), their pho-
tometric data alone may be good enough to put interesting limits on the physical
lens and source properties using the analysis techniques presented here. In fact al-
most any physical constraints that could be derived are of interest, since still very
little is known on the source and lens population.
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The points above sketch a short to mid-term working /submission plan. In the following last
Section however I would like to invite the reader to have a short glimpse onto a more distant
time, the prospects of next-generation microlensing searches to find Earth-like planets.

9.1.1 PLANET III: Hunt for second Earth’s from DOME C

While the microlensing technique in principle is even sensitive to Earth masses, a short
coming of current observing campaigns is their lack of spatial resolution (due to seeing
effects) and light gathering power to be able to follow microlensing events from small and
faint sources, which do not blur and damp lightcurve signatures from Earth-mass planets
below measurability (contrary to the current typical microlensing targets, large Bulge gi-
ants, see also Sec. 2.1.2).
As shown in Chap. 6 a continuous coverage of the whole event is essential to disentangle
ambiguous models. One way to fulfill all these requirements would be to put a telescope
into orbit (such as SIM, or GEST (Bennett et al. 2003)), however there exists another
promising approach. Site testing studies in Antarctica, at places with very special atmo-
spheric conditions such as DOME C, revealed almost space-like observing conditions with
reported median seeing values around ~ 0.27 arc-sec (and even below 0.1 arc-sec for 25%
of the time).

Using the long ~ 6 months nights at the South pole, a 2.5 m robotic telescope with
a wide field imager and sampling rates of ~ 20 min, could conduct a continuous ~ 1%
photometry (on I=20 mag turn-off Bulge stars) microlensing survey sensitive enough to
Earth masses, as simulations such as the one displayed in Fig. 9.1, demonstrate (Beaulieu
et al. 2004).
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Figure 9.1: A simulated detection of an Earth mass planet with 3 AU orbit from a 2.5m
robotic telescope in Antarctica with ~ 20 min sampling rate (as long as the event is within
the Einstein ring, outside the sampling is relaxed to 1 point a day), assuming a source size
of 1 Rs. The anomaly, lasting about 4 hours, would be easily detected and sufficiently well
covered.
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Appendix A

Tango Basics Manual

C: What is a good Tango dancer? T: Someone who walks well. C: And what is
an excellent Tango dancer? T: 7?7 C: Someone who knows how to stop.

Carlos Cavito and Thierry LeCocq

While a complete documentation of the software package would violate the guidelines for
the scope of the thesis and will be given elsewhere, this section wants to give a ’quick and
dirty’ guide to Tango to enable new users to do basic modeling tasks.

License

Tango is not freely distributable. To obtain a copy and register send a request to
kubas@astro.physik.uni-potsdam.de.

Soft-and hardware requirements

TANGO has been tested to run on PCs/Laptops under SUSE and Redhat/Mandrake
Linux distributions with kernels 2.4xxx and higher, as well as on Compaq Alpha work-
stations with Tru Unix 5Va/b. It requires a Fortran90 compiler such as f90/f95 (Unix)
or ifort (Linux, free), a C compiler (cc, gee) and the free available GSL (Gnu Science
Library). For making use of all features the presence of IDL (Version 5 and higher) and a
the cfitsio library are also required.

Before starting to play around with TANGO it is required to have the following
directories in the place where TANGO is executed:./tracks (coordinates of source
trajectories are written here), ./tracks/ga (model/fit results are saved here), ./ana (for
optional analysis of convergence behavior). A text file jobnum needs to be created, con-
taining an integer number (format="i4.4’i.e. 0000,0010...) marking the current modeling
session with a number.

123



Overview of control files

The central control file for TANGO in your executing directory is settings, which looks
like:

# TANGO (Tool for AN alyzing G ravitational lens 0 bjects) RV 1.01
# D.Kubas
#
#
# FITTING OPTIONS
#
# outflag = 1 (PSPL (with AMOEBA/PIKAIA))
# " = 2 (BINARY LENS FIT (BNF) with PIKAIA)
# 0" = 3 (BNF HYBRID approach, first PIKATIA then AMOEBA)
#" = 4 (BNF with AMOEBA only, specify start simplex!)
#" = 5 (binary source (with PIKAIA))
# " =6 (MAP FIT)
# " = 7 (WRITE SPECIFIC MODEL)
# " = 8 (SFC fit with PIKAIA)
# " = 9 (SFC fit with AMOEBA)
# " = 10 (SFC fit with PIKAIA + AMOEBA)
# simflag = 2 (read dataset from file)
#
2 simflag
6 outflag
1 paraflag (0/1 off/on parallax)
#
281.662 ecliptic heliocentric longitude [deg]
10.0934 ecliptic heliocentric lattitude [deg]
2643.08333 time of perihelion [MHJID]
2720.29861 time of vernal equinox [MHJD]
#
#
#
~/ARCHIVES/microlens_event007.dat data filename
#
#
1 verbosity flag (1 = standard,
# 2 = silent, only fit parameters and chi2 written to screen
# for making of contour plots)
1 plot flag (1 = plot model points with resolution of map, or with default
# resolution of 0.001 R_E, 2=plot only model at data points)
2700. , 3000. start, end of plot range [MHJID]
#
# PIKAIA SETUP
#
# pikaia ctrl setup , ctrl is vector of control flags and parameters to control the
# behavior of the genetic algorithm, if value of element is < 0. then
# default settings indicated in bracets are used.
#

1000 ctrl(1l) = populations size (default is 100)
400 ctrl(2) = number of generations (500)
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6 ctrl(3) = number of significant digits in encoding (6)

-1. ctrl(4) = crossover propability (0.85)

-1. ctrl(5) = mutation mode; 1/2/3/4/5 (2) , see documentation
-1. ctrl(6) = initial mutation rate (0.005)

-1. ctrl(7) = minimum mutation rate (0.0005)

-1. ctrl(8) = maximum mutations rate (0.25)

-1. ctrl(9) = relativ fitness differential ([0,1]; 1)

ctrl(10) = reproduction plan; 1/2/3 (3)

1 ctrl(11) = elitism flag 0/1 off/on , only for plan 1 & 2 (0)
-1. ctrl(12) = printed output 0/1/2 none/minial/verbose (0)

#
#
# BINARY LENS - POINT SOURCE MODEL
B e e e e
# PARAMETER SPACE BOUNDARIES (for PIKAIA)
o e e e e

0.184, 0.190 mass ratio q

0.1, 0.5 lens separation d

0.001 , 0.1 minimum impact parameter u

0. , 360. impact angle phi [deg]

10. , 140. Einstein time t_E [days]

2813., 2815. time at origin t_o [in MHJD]

0.0, 0.5 parallax amplitude pi_E [==etal]

0. , 360. parallax angle psi
#
B e e e e
# AMOEBA SETUP
o e e e
#
#

1.e-6 tol = tolerance for termination criteria

# ______________________________________________________________________
# SEED VALUES FOR STARTING SIMPLEX / and

# IF outflag=7 --> seed values are used for plotting WITHOUT fitting

# ______________________________________________________________________
# 1=free,0=fixed parameter

#

#

0.187 q 0 mass ratio

0.312 d 0 lens separation

0.0662 u 1 impact parameter

228.781 alpha 1 impact angle

32.237 t_E 1 Einstein time

2814.288 t_o 1 time origin

0.3 pi_E 1 parallax semimajor axis

214.608 psi 1 parallax orientation

# ______________________________________________________________________
# Initial size of starting simplex

# ______________________________________________________________________

125



0.0005 dq mass ratio

0.0005 dd lens separation

0.005 du impact parameter

0.5 dalpha impact angle

0.5 dt Einstein time

0.1 dpi parallax semimajor axis

10. dpsi parallax orientation

0.05 dto time origin

#

# (ANALYTIC) STRAIGHT FOLD CAUSTIC MODEL

#

# ______________________________________________________________________
# Boundaries PIKAIA

# ______________________________________________________________________
#

-0.507 ,-0.5085 t_cc caustic crossing time

43.68, 43.69 a_crit

0.073180, 0.073185 delta_t

3.321264 ,3.321268 W

0.499, 0.502 gamma limb darkening

16.88, 0.0002 a_other [linear amplifification]

#

# ______________________________________________________________________
# AMOEABA setup

# ______________________________________________________________________
# Characteristic length scales of starting simplex

#

10.0 dcrit [a_crit]

0.0001 dw slope outside caustic
0.01 dao [a_other]

0.1 ddt [delta_t]

0.1 dgamma 1d parameter
0.05 dtc [t_cc]

As one can see it is quite self-explanatory, due to its comments. In the first part
the desired model and optimization approach is chosen by setting the integer flag out-
flag. The celestial coordinates of the event are also set here and are activated when the
parallax flag paraflag is set. The complete path of the file containing the data (here in
~/ARCHIVES /microlens_event007.dat) needs to be given. The desired plot range can be
also specified here. It follows the setup of the implemented genetic algorithm PIKATA, with
the first two lines specifying population size (needs to be even) and number of generations.
For a detailed explanation of the other genetic parameters see (Charbonneau 1995), but
it is recommended to leave them in the default settings (indicated in brackets after the
corresponding comment). After that the description of the to be explored model and pa-
rameter space starts, beginning with the binary lens-point source model. Lower and upper
parameter bounds can be inserted here, which will be used in the genetic optimization
process. The initial seed parameters for the simplex algorithm AMEOBA follow, where
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one can choose which parameters are allowed to vary and which are kept fixed with the
integer free/fir flags. The tolerance criteria serves to terminate the AMOEBA optimiza-
tion when the gradient of the simplex vertices is below that threshold. When a hybrid
approach is chosen, i.e. first a genetic and then a gradient optimization the manually given
seed values are overridden but the free/fix flags stay active. The last part controlling the
straight-fold-caustic modeling obeys the same operation scheme.

Data selection

The selection criteria for the data sets are defined in the file inputdata:

event SX00007
site, band, PJD_start, PJD_end, Type, Type, seeing limit, error[mag]
d, I, 2000, 3000, 11, 11, 2.6, 1.

It is based on the PLANET nomenclature where a data archive has the form
XXX00000X’, with the first character specifying the telescope (Z=Danish, d,A=SAAO,
W=Perth,U=Tasmania,...,see www.planet.iap.fr for a complete list of telescope acronyms),
characters 2 and 3 mark the name of the alert team (i.e OB for OGLE BULGE, KB= "Kiwi
Bulge’ for the MOA team), the first 2 digits the year and the last 3 the number of the
event. The last character stands for the Filter. For example "ZOB03208R’ translates into
Danish R-band data set of OGLE-2003-BLG-208 event. With this in mind, the first col-
umn of 'inputdata’ selects the telescope and the second the band. Then a time interval in
PJD=HJD’=HJD - 2,450,000 can be given and two valid types marking the quality of the
data reduction (Schechter et al. 1993). The last two columns provide the opportunity to
set thresholds on seeing and errors of the data used for modeling.

Data format

0B04273

A0B04273I
SAAO STE4 I
N Mag Err Date Seeing BackG Typ ExpTm FWHM AirMass
1 17.573 0.014 3158.36933 1.469 2417 11 500 4.738 0.000
2 17.544 0.015 3158.41664 1.148 2615 11 500 3.703 0.000
3 17.522 0.014 3158.47080 1.233 2021 11 500 3.976 0.000

#
#
#
#
#
#

#

# Z0BO4273R

# La Silla 1.54m R

# N Mag Err Date Seeing BackG Typ ExpTm FWHM AirMass

2 15.723 0.008 3157.85957 1.215 8536 11 540 3.115 0.000
3 15.725 0.008 3157.88189 1.2561 7380 11 540 3.207 0.000

H# #*

00B042731I
# OGLE I
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# Mag Err Date
19.799 0.174 3126.6042
19.856 0.191 3127.6102

The data is read from ascii files, where the PLANET data are stored in a 10 column
format, the public data from OGLE, respectively MOA are treated in 3 column format.
The data points do not have to be ordered in time, a '#’ can be used to comment lines.
The first non data line has to be the event name in the form OB04273, i.e. without band
or site character. The start of the actual archive is then marked by the full name, i.e. by
AOB04273I for instance.

Binary-lens-point-source modeling HOWTO

Assuming TANGO is installed successfully, the needed directories and the ’jobnum’ file
created and the data are prepared in the format described above, then a standard first
run, using the genetic algorithm + gradient search and neglecting parallax effects, would
look like:

1. Specify the data you want to use for modeling in "inputdata’
# In ’settings’

2. Set '3 outflag ’, switch off parallax with '0 paraflag’

3. Fill in complete path to data set file

4. Set "1 verbosity flag’ and ’1 plot flag’ and give plot range

5. Choose population size and number of generations

6. Choose appropiate parameter bounds

7. Choose which parameters of the genetic model outcome should be refined with the
simplex technique by setting the 0/1 (fix/free) integer flags

8. Choose size of starting simplex and termination/tolerance threshold.
# On shell command line
9. Type 'tango’

After the last command, TANGO will display the chosen settings to the screen and save
them in the file settingsX XXX, where XXXX is the jobnumber from the ’jobnum’ file. This
first screen message will end like
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sokskkkkkkkkkEND OF SETUP*skskokokokokokokokokoksk sk k ks ko ok

Reading data file
~/ARCHIVES/simdata4442.ncc

Number of selected data points= 666

Number of archives= 1 dSX00007I

666 points from archive dSX00007I
data time span [days]=  101.422
all dof =10
dof [no flux]= 8

starting BINARY LENS PIKAIA FITTING...

Depending on your settings of population size and generation number, it will take while
for the next output to appear. After the genetic optimization the parameters are handed
over to the simplex and after some more informative screen messages TANGO will end
with

...fitting terminated!!

fit was written to file: tracks/ga/fit_xb7003

and as the message says will write the model fit xb7003 (with jobnum=7003 in this case)
to the ’tracks/ga’ directory. Additionally the files called ’finaldata7003’ (containing the
from the archive selected data points) and 'contributions7003’ (containing the unreduced
x? contribution term for each data point) are written into ’./tracks/ga’. A typical model
output file looks like:

# q=0.828, b= 0.382, np= 436 , CHI"2/DOF= 462.33/ 428= 1.080

# u=0.0286, phi= 193.336, t_E= 155.447, R_s=0.0000 t_0=2549.963

# basel= 19.185 , blendl= 21.394 blend fraction (at base)= 0.116

# base2= 0.000 , blend2= 0.000 blend fraction (at base)= 0.500

# base3= 0.000 , blend3= 0.000 blend fraction (at base)= 0.500

# base4= 0.000 , blend4= 0.000 blend fraction (at base)= 0.500

# baseb= 0.000 , blend5= 0.000 blend fraction (at base)= 0.500

# base6= 0.000 , blend6= 0.000 blend fraction (at base)= 0.500

# res= 1000.000

# eta = 0.0000 psi= 0.000 , diurnal amplitude= 0.0000

# constant acc: ampl.= 0.0000 angle= 0.000

# Number of archives= 1 dSX00007I

# bounds: gq=[0.6000000 ,1.0000000] , b=[ 0.3000, 0.6000]

# u=[-.1000 ,0.0000], phi=[ 180.0, 200.0] , t_E=[ 140.00, 200.00]

# base6=[ 0.000, 0.000] , blend6=[ 0.000, 0.000]

#FIT amplification | FIT time | DATA (amp[flux])| time| site | Error [mag]| Residuals [mag]
1.07772 2820.491720 1.09881 2820.491720 d 0.04600 0.02104
1.07763 2820.607046 0.00000 2820.607046 ni 0.00000 0.00000

with the header marked with #’ containing the fit parameters and other useful info, as
the chosen parameter bounds for example. The model can then be plotted with a suitable
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plotting program. In case IDL is installed one can use the routine plot_model.pro from the
package of IDL routines written for TANGO. Lines with the site set to 'ni’ are from points
between the data points needed for plotting.

Binary-lens-extended-source modeling HOWTO
Straight-fold-caustic-modeling

Follows the same cooking recipe as above, but using outflags=8,9 and/or 10 and the setup
section for straight-fold-caustic crossings in ’settings.

Using amplification maps

For a complete binary-lens-extended-source model amplification maps created with a mod-
ified version of Joachim Wambsganss 'microlens’ ray shooting code (Wambsganss 1999)!
are used. Once a map is shoot and convolved with the desired source profile (using the
TANGO-IDL routine conv_map.pro for example) one can ’feed’ the map(s) to Tango via
the file 'map_cat’:

# Library of (binary lens) magnification IRISXXXX maps

#

# IRIS nolmass ratiol|separation|resolution|map size|source size|pixminx|pixminy|gamma
2001 0.666 0.312 10240 2048 10 -0.1 -0.1 0.51

where the required characteristics of the amplification map are written down (here
resolution is in pixel per Einstein radius, pizminz/pizminy the lower left coordinates of the
map, gamma the limb darkening and source size and map size given in pixel). The directory
of the map library then has to be written into 'settings’ and then the modeling can proceed
analog to the steps listed above using outflag option 6 and with the caveat, that since a
map represents a specific mass-ratio-g-separation-d configuration these parameters have to
be kept fixed during the optimization process.

Overview of routines

The code consists of about 42 routines, which are listed in groups according to their tasks
and described very briefly below.

amoeba.f, amotry.f, funk.f

Simplex based optimizing routines from the Numerical Recipes (Press et al. 1992), with
funk.f as the supplied model function, which evaluates the y? of a given set of parameters.
idx.f, sargc.f, sargp.f, sargv.f

String manipulation routines needed for input/output control.

1Send requests on license- and obtaining modalities to jkw@ari.uni-heidelberg.de
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coords.f, entre_coords.f

Compute source trajectory at data points, respectively in between for plotting purposes.

read_setup.f, write_setup.f

Reading the TANGO setup file 'settings’ and archiving to ’settingsXXXX’, with XXXX
being a job number such as 0007.

read_data.f.filter_data_num.f, assign_data.f

Reading/selecting /filtering the data sets used for modelling.

pac.f, pac_fit.f, pac2.f, pac2_fit.f

Calculating single-lens-point-source and single-lens-double-point-source amplifications and
evaluating the y2.

pikaia.f

Genetic algorithm package from Charbonneau (1995)

fitness.f, xb2mod.f

Evaluation of the fitness of the model and conversion between genetic model parameters
(phenotypes) and standard lensing parameters.

mag.f, laguer.f, zroots.f, gen_fit.f, simplex_fit.f

Computation of binary-lens-point-source amplification and evaluation of 2.

cc_flux.f, cc_flux_exp.f, cc_gen_fit.f, geta.c, gammgq.f, gammlin.f, gcf.f

Computation of straight-fold-caustic-passage amplification and evaluation of 2.

write_fit.f, write_ray.f, write_schneider.f

Model output routines.

IDL routines: conv_map.pro, plot_light.pro, plot_map.pro

Convolving magnification maps with extended sources, plotting the model+data
lightcurves, the magnification maps with source track and the y? parameter landscapes.
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A.1 The Roulette Wheel algorithm

The way Pikaia (Charbonneau 1995) selects individuals for breeding is based on the fol-
lowing algorithm:

1. Define F = 51", S;,
where n,, is the population size and S; the fitness of individual 7. This quantity is
then a constant for a given generation.

2. Let T; =0, S, with j =1,...,m,
be a running sum. Clearly it holds T, > T} for all j and T}, = F".

3. Generate random number R € [0, F| and locate element T} for which T;_; < R < T}
is true. This 7 is unique and determines the individual to select.

This recipe is analog to spinning a roulette wheel, where each individual is assigned a
sector of angular size 5= x S;/F.
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Appendix B

B.1 Optical depth

To express the probability of a lens being microlensed one introduces the following cross
section
v =105, (B.1)

which defines the area on the sky covered by an Einstein radius sized disc. Integration
along the line of sight over the product of ¥ x number density of lenses ny, then defines the
socalled optical depth 7 (Narayan & Bartelmann 1996)

1 [Ps 4
TLL(DL)I/ dV = S

1
T=— D%/ ny(z) (1 —z) dx | (B.2)
ow Jo 0

with = Dy, /Dg and dV = dwD32dDy, being the volume of the spherical shell with thickness
dDy, and radius Dy, covering the solid angle dw (see Fig. B.1).

This quantity 7 describes the probability, that at any given moment a (source) star is
within the Einstein ring of a lens, i.e. the probability of microlens event to occur in the
observed solid angle dw. Obviously this only yields reasonable results if the cross sections
of the lenses do not significantly overlap, in other words when 7 < 1. A rough estimate of
the to be expected event rates can be derived assuming that all stars in our Galaxy have
equal mass and a constant number density along the line of sight. Setting the mass density
p=mny M =0.12M,/pc® (Lang 1980) we get

c2

2rGp 4 6 D, 2
=——D5=10x10 B.3
Tt e % 8kpc) '’ (B-3)

i.e. , microlensing events are pretty rare. This is why fields with high star densites such as
the Galactic Bulge or the Magellanic Clouds are the prime targets for microlensing surveys.

B.2 Parameterization of binary lens caustics

According to equation (1.11) we have to find the roots of the determinant of the Jacobian
of the lens mapping (2.3). It turns out that this is done best in polar coordinates. With
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Figure B.1: The area covered by the Einstein radii of the lenses along the line of sight with respect to
the solid angle dw defines the measure of optical depth (Eq. B.2).

T = (x1,22) = (rcos ¢, rsin ¢) the condition det J = 0 can be written as
16d*r?(r* — my) cos® ¢ +
+ 8rd[mimar® — (r* 4 4d*) (r* — my?)] cos ¢ + (B.4)

+ (2 +4d*)2(r* — mo?) — my 2t — 2mymar®(r? —4d*) =0 .

This equation is quadratic in cos ¢ and can easily be solved in the standard way.

The bifurcation values for the separation d marking the transition between the
three different topologies (Sec. 2) in dependence from ¢ can be given as (Dominik 1999b)

d, = { [(1+ (;);q_ 41 }1/8 |

dw — (1 + q1/3>3/2 )

(B.5)

Here d. stands for the translation of middle to close and d, for the translation of middle
to wide separations.

B.3 Lensing zone derivation

The (planetary) caustic positions can, as seen above, either be calculated directly by
applying the lens mapping (2.3) to solutions of equation (B.4) or via the following
simple argument (7). The influence of the planet on the light of the source is rather
small when measured in units of the Einstein radius, to be more exact it holds that
R, = Rg(planet) = /gRg(star)'. From a lens plane point of view this means that the
planet only has a significant effect if it is close to one of the images created by the main
lens (see Fig. B.2). This is analog to the fact that in the source plane the source must be
close to a planetary caustic in order to produce a measurable planetary signature in the

!This is a direct consequence from the definition of the Einstein radius in Eq. (1.8).
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Figure B.2: A planet close to one of the images created by the lens star, splits this image into two new
ones and so causes a perturbation in the single lens star lightcurve.

lightcurve. The image positions x; of the main lens as function of the source position y;
are given via Eq. (1.10) and read (normalized with the Einstein radius)

1
T, == <y8 + VY2 + 4) ) (B.6)

2
According to the argument above the relation between planet position x, and caustic
position y. should be the same as between image positions and source position. Setting
T = Tp, Ys = Yo we get with Eq. (B.6)
1
Yo 2 Ty — — (B.7)

Lp

Here it is assumed that (without loss of generality) the planet is located on the x-axis,
i.e. y. measures the position of the caustic with respect to the x-axis. This relation holds
for ¢ < 1 and z, # 1, i.e. not in the direct vicinity of the topology change between middle
to close, respectively middle to wide planet-star separations, since there our perturbative-
picture description breaks down (Dominik 1999b). Excluding this (for small q vanishing)
region and demanding with z. < 1 that the caustics should be within the Einstein radius
of the lens star, this equation yields the following lensing zone interval

0.6Rg <d < 1.6Rg . (B.8)

Note that the relation (B.7) is invariant under the transformation z, — —1/z,, i.e. 2
different planet-star separations can create caustics, which are different in their form but
have the same distance to the origin. This gives rise to the so-called close-wide ambiguity
of binary lenses (Dominik 1999b) and which can fool sometimes the analysis of lightcurves.
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