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ON AN EXISTENCE AND
UNIQUENESS THEORY FOR
NONLINEAR DIFFERENTIAL-
ALGEBRAIC EQUATIONS*

Sebastian Reich!

Abstract. An existence and uriiqueness theory is developed for general nonlinear and
nonautonomous differential-zlgebraic equations (DAEs) by exploiting their underly-
ing differential-geometric structure. A DAE is called regular if there is a uniqus
nonautonomous vector field such that the solutions of the DAE and the solutions of
the vector field are in one-to-one correspondence. Sufficient conditions for regularity
of a DAE are derived in terms of constrained manifolds. Based on this differentia -
geometric characterization, existence and unijueness results are stated for regular
DAEs. Furthermore, our not ons are compared with techniques frequently used in the
literature such as index and solvability. The results are illustrated in detail by means of
a simple circuit example.

1. Introduction

Differential-algebraic equations (DAEs) ere frequently identified as implicit
equations

F(t,x,x) =0 (D

for which x’ cannot be expressed explicitly as a function of ¢ and x. Such
DAEs arise in many areas of science and engineering. 'n particular, con-
strained mechanical systzms and electronic circuits may be modeled using
equations of type (1). In recent years the literature on the numerical solution
of (1) has been growing rapidly [4], [10], [12], [14]. However, up to now,
existence theories are available only for a few selected classes of DAEs which
are characterized by restrictive conditions on the form of the mapping F in (1)
(see, e.g., [16], [18], and [19] for autonomous DAEs and [4] for nonautomno-
mous linear DAEs).

In [19] Rheinboldt introduced a differential-geometric approach for

* Received May 10, 1990; revised August 10, 1991).
1 K arl-Weierstrasse-Institut fiir Mathematik, Mohrenstrasse 39, D/O-1086 Berlin, Germany.
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analysis of the solution properties of a class of autonomous DAEs. This
differential-geometric approach is based on the observation that, as long as
we expect the solutions of a DAE to be some smooth path in the space of
variables, the solutions define a flow [1] on a suitable submanifold of that
space. Conversely, it is well known that flows are strongly related to vector
fields on manifolds [1]. Thus we regard a DAE as an implicit description of a
vector field, and have introduced in [17] and [18] the notion of a regular
DAE as a DAE to which a vector field uniquely corresponds. The basic idea
of this approach is the following one: Once the regularity of a DAE has been
established, existence and uniqueness results can be obtained by employing
the well-known existence theory of vector fields.

In this paper we wish to elaborate on the concept of regularity for general
nonautonomous DAEs of type (1). After surveying the necessary background
material, we derive in Section 3 sufficient conditions for the regularity of a
DAE in terms of constrained manifolds. From this and the standard theory of
vector fields, we formulate existence and uniqueness results for regular DAEs
as a main result of this paper. Because, in the literature, DAEs are categorized
by many other concepts such as index [4], [9], [14], [16] and solvability [4],
[5], we provide a comparison between these various techniques in Section 5.
Additionally we give a detailed discussion of a simple circuit which appears to
illustrate our concepts.

For that reason let us consider throughout this paper the RC circuit of
Figure 1. We assume that the voltage-current relation R of the nonlinear
resistor is given by

R = {(ta Ug, lR) € R X RZ: 0 = g(ta uRs lR)}

with g: R x R*> > R of class C' and rank[D,g D;g](t, ug, ig) = 1 for all
(t, ug, ig) € R x R? where D,g and D,g denote the partial derivatives of g
with respect to the second and third argument respectively. This implies that
the set R is a differentiable manifold and that the time behavior of the RC

Figure 1. A simple RC circuit.
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circuit can be modeled by the DAE
q =i (2a)
0=g(t,q, —0). (2b)

2. Differential-geometric background

In this section we collect some basic material needed throughout the
remainder of this presentation. Especially, we generalize the notions of vector

, fields and flows, as used in the standard literature, to the nonautonomous

case and incorporate the fact that we consider in this paper only manifolds
which are embedded in R". For further details we refer the reader to standard
texts on differential geometry such as [1] and [13].

We begin with some standard terminology. If M is a differentiable
manifold, then TM denotes the tangent tundle of M and T.M denotes the
tangent space of M at x e M. Throughout this paper we consider only
manifolds which are embedded in R"; that is, submanifolds of R". In
accordance with this, we can always assurae that the tangent space T, M can
be identified with a d-dimensional linear subspace of R" where d = dim(M).

Now let M be a differentiable submanifold of R x R” let pr;: R x R" —» R
be the projection onto the first component in R x R” let J be an open set of R
with pr;(M) = J, and let p be the restriction of pr; to M. Then the triple
(M, p,J) is a subbundle of R x R" if pr (T, ,M) = R for all (z, x) e M. For
any subbundle (M, p, J) the manifolds M, = R", defined by

{t} x M, =M n{t} x R") (tel),

are called the fibers of M at t.

Let f:J x U — R™ be a given mapping of class C”, r > 0, on the open set
J x U c R x R". Then we denote by D, f(t, x) (resp. D, f(t, x)) the partial
derivatives of f with respect to the first, (resp. second) argument. Now most
classical examples of differentiable subbundles of R x R” can be identifizd
with the zeros of differentiable mappings f:J x U — R™. Specifically:

Let f:J xU—-R", d=n+1—m>0, be a given mapping of class (",
r > 0, on the open set J x U = R x R" such that 0 e f(J x U) and, for all
(t,x)eJ x U, im[D, f(t. x)] = R™ Then the triple (M, p, J) with

M= {(t,x)eJ x U: f(t,x) = 0}
is a C’-subbundle of R > R". The fibers of the bundle are given by
M, = {xeU: f(t,x) = 0} (teJ),
and the tangent space of M at (t, x) is given by
T, oM = {(t, %) e R x R D, f(t, x)t' + D, f(t, X)x" = 0}.
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The following definition is motivated by the fact that, for nonautonomous
vector fields, every element (¢, x") of the tangent space T, ,,M has to satisfy
t" = 1. Thus, for any subbundle (M, p, J) of R x R", we define the sets S, M
and SM by

Se.oM = {x'eR" (1,x) e T, z,M}
and
SM= ) {(tx)} xS yM

(t,x)eM
which we call the restricted tangent space of M at (t, x) and the restricted .
tangent bundle of M, respectively.

Example 1. For the circuit example of Figure 1 the voltage-current relation R
of the nonlinear resistor is a subbundle of R x R2. For a fixed t € R the fiber
R, is given by the solutions (ug, ig) of

g(t, uR, lR) = O.

Furthermore, the restricted tangent space S, . ;)R is characterized by the
solutions (uy, ix) € R? of

Dy g(t, ug, i) + D g(t, ug, ig)ig + D3g(t, ug, ig)ixg =0
for all (¢, u, i) € R.

Let (M,p,J) be a C'-subbundle, » > 0, of R x R". Then a mapping
v: M — R" of class C¥, k > 0, is called a (nonautonomous) vector field of class
C* on M if o(t, x) € S, M for all (¢, x) e M. By a solution of a vector field
v: M - R" we mean a differentiable mapping c: I — R" on the open interval
I < J such that ¢(t) e M, and

Dc(t) = v(t, c(t))
foralltel.

Remark 1. In several papers (see, €.g., [ 1]) the subbundle (M, p, J) is assumed .
to be trivial; that is, M = J x Q where Q is a submanifold of R”. However,
subsequent discussion will reveal that we indeed need the more general
definition of a nonautonomous vector field on a nontrivial subbundle
(M, p, J). Furthermore, the manifold M cannot be viewed, in general, as a '
linear space by globally coordinatizing it; that is, the manifold M cannot be
described in general by just one chart.

Remark 2. With a given vector field v: M - R" we can associate the
nonautonomous ODE

x" = v(t, x) ((t, x) e M)
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on the manifold M. Thus the notions of a vector field and an ODE on a
manifold are synonymous in case the manifold M has been embedded in R".

Let (M, p, J) be a C"-subbundle, r > 0, of R x R" and let D be an open set
inJ x M. Then a mapping H: D — R" of cass C¥, k > 0, is called a flow [1] of
class C* on D if

(i) {0} x M < D;
(i) for all (ty, xo) € M, H(O; ty, Xo) = Xo;
(iii) for all (t;tq,xo)€D, (s;t, H{t;ty,xo)eD if and only if
(s + t; tg, Xo) € D; in this case

His + t;ty, xo) = H(s; t, H(¢; tg, Xg))-

Theorem 1 [1]. Let (M, p. J) be a subbundle of R x R" and let v: M — R" be a
vector field of class C*, k >- 0. Then there is a unique open set D inJ x M and a
unique flow H:D — R" oj class C* on D such that a differentiable mapping
c: I - R" with c(ty) = x, is a solution of the vector field v if and only if

c(t) = H(t; Lo, Xo)
foralltel.

Remark 3. Obviously the existence and nniqueness of the flow H implies all
the well-known results on the existence, uniqueness, unique extension, and
dependence on initial values of solutions.

3. Regular DAEs

From now on we study DAEs of type
F(t, x, x" = 0, 3)

where F:J x U x R" - R" is a mapping of class C", r > 0, on the open set
JxUxR' =R x R"x R". By a solution of a DAE (3) we mean a mapping
c: 1 - R" of class C! on the open interval I = J such that, for all r € I,

F(t, c(t), Dc(t)) = 0.

As suggested in the Introduction, we consider DAEs as an implicit
description of vector fields on manifolds. In line with this we have proposed
in [18] and [19] the notion of regularity for a special class of autonomous
DAEs. Here we want to apply this concept to the more general case (3).

Definition 1. Let a DAE. of type (3) be given. Then we call this DAE a regular
DAE if there is a unique subbundle (M, p, J) of R x R" and a unique vector
field v: M —» R" on M such that a differentiable mapping c: I -» R" is a
solution of the vector field v if and only if ¢ is a solution of the given DAE.
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The manifold M is then called the configuration space and the vector field v
the corresponding vector field of the DAE.

Example 2. Let us consider the DAE (2) where we assume that
D,g(t, q, —i) # Ofor all (t, g, i) € R3. It is well known from state-space theory
[6] that under this condition the DAE (2) has well defined solutions. We now
show that the DAE is then regular too. For that reason we differentiate (2b)
once and solve for i". Thus we obtain

i = D3g(t’ q, —i)_l[Dlg(ta q, —l) + ng(t, q, _l)l]

Now this equation and (2a) define a vector field on the manifold M given by
M = {(t,q,i) e R": g(t, g, —i) = 0}.

Obviously, in this case, the above-defined vector field is the corresponding
vector field and the manifold M is the configuration space of the DAE (2).
However, in the following, we are interested in the case when D5 g(t, g, —i) =
0 for some or all (¢, g, i) € R3. Indeed, it is this case for which our theory seems
to be important.

Example 3. Let us now consider the DAE
x4+ x5 =1,
X1%5=0.
This DAE is not regular because the two solutions ¢; and ¢, defined by
¢,(t) = (t,0) and c,(t) = (0, t) have the same initial value at t = 0 but satisfy

Dc(0) # Dc,(0). This is due to the fact that the set defined by x, x, = 0 is not
a manifold.

We now derive sufficient conditions for the regularity of a DAE. Further-
more, we state a technique by means of which we can obtain, for a given
regular DAE, the configuration space M and the corresponding vector field v.
To start we associate with any DAE the corresponding set as defined below.

Definition 2. Let a DAE of type (3) be given. Then we call the set
N={(tx,p e x U x R F(t, x, p) = 0}
the corresponding set of the DAE.

Note, in Definition 2, the DAE (3) is considered as a nonlinear system of
equations in the variables ¢, x, and p. For that reason the corresponding set
N of a DAE is a subset of J x U x R". Clearly, a differentiable map-
ping ¢: I > R" is a solution of the DAE if and only if (z, c(t), De(t)) € N for
all t e I. Therefore, with respect to the solutions of a DAE, we can con-
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sider the corresponding s:t instead. This fact is explored further in the next
observation.

Observation 1. Let N be the corresponding set of a given DAE (3). We
consider the set M, defined by

M, = pr, .(N),

where pr; ,: R x R" x " - R x R" is the projection onto the first two
components in R x R" x R

The set M, is a subset of R x R" and reflects the algebraic constraints on
the solutions of the DAE. Let us assume that the triple (M,,p,J) is a
differentiable subbundle of R x R". Clearly, under this assumption, a differ-
entiable mapping ¢: I — R" is a solution of the given DAE if and only if

(t, c(t), De(t)) € (N A SM,)

for all tel. (N nSM,) will be, in general, a subset of N. Therefore, we
considered the set

M, = pry (N N SM,).
If the triple (M ,, p, J) is now a differentiable subbundle of R x R" as well, we

conclude again that a differentiable mapping c: I — R" is a solution of the
DAE if and only if

(t, c(t), De(t)) € (N 0 SM )
for all t € 1. This process can be continued as long as the triples (M;, p, J) with
M; = pr; »(N 0 SM;_,)

are differentiable subbundles of R x R” and may be stopped whenever
M, =M,_,.

This observation leads us in a natural way to the following:

Definition 3. Let N be the corresponding set of a given DAE (3). We define a
family (M;);—,, ..., s of submanifolds M, of R x R" by the recursion:

() My=J x U,
(i) Myy, =prio(NASM) (i=0,...,s—1),

where s is the largest nonnegative integer such that the triples (M;, p, J) are
differentiable subbundles and M,_, # M,. In case M; = J x U, we dzfine
s=0.

We call the family (M) the family of constrained manifolds and the inzeger
s the degree of the given DAE.
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Remark 4. In [18] we have proved that s <n for autonomous DAEs.
Consequently, the degree s of any nonautonomous DAE satisfies s < n as
well.

By means of the family of constrained manifolds we can state sufficient
conditions for the regularity of a DAE.

Theorem 2. Let N be the corresponding set, let (M) be the family of constrained
manifolds, and let s be the degree of a given DAE (3). Then this DAE is regular if
the condition

C1: for dll (t, x) € M,, there is a unique p € R" such that
(t, x,p) e (N N SM)

is satisfied.

Under this condition, the configuration space M of the DAE is given by
M = M, and the corresponding vector field v: M — R" is, for all (t,x) e M,
defined by

(t, x, v(t, x)) € (N N SM,).
Furthermore, if additionally the condition

C2: (NnSM) is a Ck-submanifold of R x R" x R" and, for all
(t, x, p) € (N n SM), dim(M) = dim[pr, (T, «, (N N SM))]

holds, then the corresponding vector field is of class C*.

Proof. According to Observation 1, Condition C1 yields that a differentiable
mapping c¢: I — R" is a solution of (3) if and only if, for all ¢t € I,

(¢, c(1), De(t)) = (2, (1), v(t, c(1)),

where v: M — R" is the vector field as defined in Theorem 2. Thus Condition
Cl1 implies regularity of the DAE. Furthermore, Condition C2 and the
implicit function theorem yield that the mapping v is differentiable and of
class C*. O

Once we have formulated sufficient conditions for the regularity of a DAE,
it seems reasonable to state an existence and uniqueness theorem for regular *
DAEs. For example, such a theorem can be obtained just by “translating”
Theorem 1 to regular DAEs.

Theorem 3. Let (3) be a regular DAE, let M be the configuration space, and let v
be the corresponding vector field of this DAE. We assume the vector field v to be
of class C*, k > 0. Then there is a unique openset DinJ x M and a unique flow
H:D — R" of class C* on D such that a differentiable mapping c: I — R" with
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c(ty) = xq is a solution of the DAE (3) if and only if
o(t) = H(1; o, Xo)
foralltel.

Naturally, the existence and uniqueress of solutions has been addressed in
several other papers as well [4], [5], [16], [19]. For example, the following
definition is due to Campbell [4], [5]:

Definition 4. A DAE (3 is called solvabie on a subset I' x Q of R x R"if there
is a mapping u: T x Q° > Q on an open set I' x Q° of R x R¥, 0 < k < n,
such that

(1) if ¢: 1 — R" is a solution of the DAE whose graph lies in I' x Q, then
c(t) = u(t; yo) for all ¢t € I and some y, € Q°,
(ii) the graph of u is an (k + 1)-dimensional submanifold of R x R”".

In case the correspconding vector field is differentiable, Theorem 3 yelds
that regularity implies solvability of a IDAE and that the integer k is equal to
the dimension of the configuration space M. In fact, the notion of solvability
is equivalent in essence to the notion of a flow on a manifold.

4. A simple RC circuit

In this section we investigate the DAE (2) which describes the time behavior
of the simple RC circuit of Figure . Obviously, (2b) cannot be solved
globally for the variable i in general. Consequently, the state equations [6] do
not exist in the general case. Therefore, we now apply the theory of regular
DAEs to the DAE (2).

By definition, the constrained manifold M, is given by

M, ={(t q,i)e R x R*:0 = g(t, q, —i)}.
A point (t, g, i) € M, is now an elemer:t of the set M, if and only if
(Ni.ay N Se..sM1) # D, “4)
where
Ng.o=1{d,ieR* q =i}
and
Swa.M1 =1{(q,1):C = Dyg(t, q, —i) + D1g(t, 9, —i)q — D3g(t, q, —i)i'}.
It is readily shown that we have

(N, a,p N Sq.M1) = & 5)
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i i i
q’ ; q’ q’
1 E
S M, = N S ..M N .
S(t.q,i)Ml N(t,q,i) (t,gq,i) 1 (t,a,i) (taas i) 1 (t,q,1)
(a) (b) (©)

Figure 2

if and only if D5g(t, g, —i) = 0 and D,g(t, q, —i) " 'D,g(t, q, —i) # —i. This
is illustrated in Figure 2(a). In the following we call a point (¢, g, i) € M, that
satisfies (5) a singular point.

Obviously, if (4) holds, then we have either

(1) D3g(ta q, _l) =0 and ng(t, q, —l)— 1D1 g(t’ q, — l) = —i (Figure
2(b)) or
(i) D3g(t, g, —i) # 0 (Figure 2(c)).

For (ii) we obtain that the set
Ni.q. 0 Se.q.sMy

contains exactly one element, while for (i) this set is diffeomorphic to the real
line R. Therefore, we call a point (t,gq,i)e M, regular if (ii) holds and
degenerate if (i) holds.

According to Remark 4 in Section 3, we conclude that degree s of the DAE
(2) cannot exceed s = 2.

We now discuss the results obtained so far by means of the specific
voltage-current relations given in Figure 3(a)-(e). To simplify the discussion,
we consider only time-invariant voltage-current relations. As a consequence,
the constrained manifolds M; are trivial subbundles which we denote by

M; =R x Q,.

Clearly, by considering the manifolds Q; instead of the manifolds M,, we
can reduce the dimension of the problem by one. Therefore, to obtain good
drawings, this fact is explored in the subsequent examples.

Example 4. First we consider the RC circuit of Figure 1 with the voltage-
current relation of the nonlinear resistor as depicted in Figure 3(a). Clearly,
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1 R
U uR U un
R
(@ (©
Figure 3
we have
0,=04;

that is, every point (g, i) € Q, is a regular point. Consequently, the DAE (2) is
regular and of degree 1.

Example 5. We now consider the voltage-current relation R of Figure 3(b).
We obtain
l22 = Ql\{(_ 19 - 1)3 (1, 1)};

that is, (—1, —1) and (1, 1) are singular points and all the other pounts
belonging to Q, are regular. Thus the DAE (2) is in this case regular and of
degree 2. The vector fizld on Q, is depicted schematically in Figure 4(a).
Obviously, no solution can be extended beyond the two points (—1, —1) and
(1, 1). Therefore, such points are called impasse points [6]-[8]. Impasse
points are an important phenomenon found in many circuits (see, for
example, [7]) in connection with the so-called jump behavior.

Example 6. Let the voltage-current relation R be given by Figure 3(c) with
g(ug, ig) = ix + ug. Similar to Exampl: 4 we obtain

Q2=Q1»
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i i i
\ .
2 Q,
1) LN
Q
= , 2
A : }
1 @ v 1 U d
t-1 A —
=
(a) (b) (©
Figure 4

However, the point (0,0) is a degenerate point. Hence Condition C1 of
Theorem 2 does not hold because

N,0y N Tio,0Q2

is difftfomorphic to the real line R. The two mappings ¢;: [ - R? (i = 1,2)
defined by

c,(1) =(0,0) and c,(t) = (—t%/4, —1t/2) (tel)
are solutions of the DAE (2) through the point (0, 0). Now because
Dc,(0) # Dc,(0),
we conclude that the DAE (2) with the characteristic of Figure 3(c) cannot be

regular.

Example 7. We now consider the voltage-current relation R of Figure 3(d).
The resulting circuit is equivalent to the circuit which we obtain by replacing
the nonlinear resistor by a dc voltage source u(t) = U. With the exception of
the point (U, 0) all the other points belonging to Q, are singular and we
therefore get

The point (U, 0) is degenerate. But because dim(Q,) = 0, we have

(Nw,0 N Tw,0Q22) = {(0, 0)}.
Accordingly, Condition C1 of Theorem 2 is satisfied and the DAE (2) is
regular and of degree 2 (Figure 4(b)).

Example 8. Finally, consider the voltage-current relation R given in Figure
3(e). The circuit specified by this characteristic is closely related to systems
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with variable structure anc. sliding mode [3]. So far such systems have beer:
modeled by differential inclusions [3]. By means of this example we argue
that those systems can be considered as higher-index DAEs as well. It should
be noted that, in contrast to [3], we have to assume differentiability of the
characteristic R. However, this is not a sevzre restriction and can be avoided
if, instead of tangent spaces, the more general notion of one-sided tangent
spaces [2] is used.

The constrained manifold Q, is depicted in Figure 4(c). Again, the point
(U, 0) is a degenerate point. However, the¢ same reasoning as in Example 7
yields that the DAE (2) is regular and of degree 2. We like to remark that the
> sliding mode is in this case the solution ¢: I — R? with ¢(¢) = (U, 0) for all
tel.

5. DAEs of index m

In several papers [4], [5], [9], [14], [16] the properties of DAEs are
characterized by an integer called the index. In this section we compare the
notion of index with our concepts of regularity and degree. The fundamental
idea, behind the index definition in [4], [5], [9], [14], and [17], is to
differentiate the mapping F of (3) several times and to investigate the
resulting overdetermined system of equations. Specifically:

Let a DAE of type (3) be given. Then, for any nonnegative integer m, we
consider, as long as the mappings involved are defined and differentiable, the
nonlinear system of equations

FO(t’ X, p) = 0,
F(t,x,p)=0,

F,(t, x; p=0
with
Fot, x, p)=F(t, X, p),
Fipy(t, x, p) = Q(t, x, p)[D, Fi(t, x, p) + D, Fi(t, x, p)pl,
where Q(t, x, p) is a projection along im[D;F(t, x, p)]. Let us write the
system of equations (6) in the form
G (t,x, 1) =0

withteJ,xe U, peR", G,:J x U x R*— (R"y"*!. We call the mapping G,,
the derivative array of order m.
As long as the derivative array G, of order k is defined, we associate with it

the two sets

L, ={(t,x,p)e J x U x R™ G(t, x, p) = 0}
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and
Py = pry ,(Ly).

Using a terminology which is appropriated for our purposes, we state the
index definition, as given in [4], [5], [9], [14], and [16], in the following way:

Definition 5. Let a DAE of type (3) be given. The index of the DAE, in the
sense of [4], [S], [9], [14], and [16], is the smallest nonnegative integer m
such that

(i) the triple (P,,, p, J) is a C'-subbundle of J x U,
(ii) for any (t, x) € P,, there exists a unique p € R" with (¢, x, p) € L,,.

Of course, such an integer does not exist in any case. But if the index can be
defined for a given DAE (3), then (ii) defines a unique mapping g: P,, —» R
Furthermore, by definition of the mapping g, a differentiable mapping
c: I - R" is a solution of (3) if an only if ¢ is a solution of the ODE

x" = g(t, x) (t, x)e P,,)
defined on the manifold P,,. Thus we obtain the following:

Proposition 1. Let (3) be a DAE of index m. Then this DAE is regular.
Furthermore, the configuration space M is given by M = P,, and the corre-
sponding vector field v: M — R" is given by

(& x, v(t, x)) € L,
for all (t, x) e M.
In the remainder of this section we compare the notions of index and
degree and show that the constrained manifolds M, are identical with the sets

P;. Thus the derivative arrays allow for a computation of the constrained
manifolds.

Observation 2. Let (3) be a DAE of degree s, let N be the corresponding set,
and let (M) be the family of constrained manifolds. Furthermore, we assume
that the derivative arrays exist up to and including order s. Obviously, by
definition of the derivative array G, we have

Ly=N
and thus
Py=M,.
Now the set N n SM, can be equivalently written as

N nSM; = {(t, x, p): 3g € R" such that (t, x, p, p, 9) € SN}.
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Because the set SN is given by the solutions of the following system of
equations,

0 = F(t, x, p),
0= D,F(t,x,p) + D,F(t, x, p)x' + D5 F(t, x, p)p’,

we obtain that N n SM, is given by the solutions of the following system of
equations:

0 = F(t’ x, p)’
0 = Q(t’ X p)[Dl F(t’ X, I’) < D2F(t9 X, p)p]a

where Q(t, x, p) is a projection along im[D;F(t, x, p)]. However (7) is
equivalent to the derivative array of order 1. Thus we have

L, =N SM,

(7)

and

P,=M,.
This process can be continued and we obtain the following:

Proposition 2. Let (3) be a DAE of degree s. Furthermore, let the derivative
arrays exist up to and including order s. Then we have

L;=NnSM,;
and
Py=M;y,
forallie0,...,s}.

Finally, we state rark-conditions or the derivative arrays that ensure the
regularity of a DAE. (Similar conditions are given in [4] and [5].)

Theorem 4. Let a DAE of type (3) where the mapping F is of class C",r > 0,
be given. Let us assume that there is a nonnegative integer k such that the
derivative arrays G,, of order m, m < k, exist and satisfy the conditions:

(i) Form < k,[D,G,, D3G,](t, x, p) and D3G,(t, x, p) have constant rank
for all (t,x,p)eJ x U x R™.
(ii) The row echelon form of D3 G(t, x, p) is

i

independent of (t, x,p)eJ x U x R".
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Then this DAE is regular and of degree s where s is the smallest nonnegative
integer such that (i) and (ii) hold.

Proof. For m < k, Condition (i) implies that for all (¢, x,, po) € L,, there is a
neighborhood ¥, of (t,, x4, po) in J x U x R such that, with W, = p; ,(¥),

L, ¥ ={x,p)eV:0=h,txp),0=g,t x)}
and
Py v W, = {(t’ x) € W1 0 = g,(t, x)}’

where h,:V —>RP» and g¢,: W >R are C' ™mappings with
rank[D,g,(t, x)] = q,, and rank[ D5 h,(t, x, p)] = p,,forall (¢, x, p) € ¥,. Thus
the sets P,, are differentiable subbundles. Condition (ii) implies that there is a
mapping h: W,_,; — R" of class C"~* such that

Lk N ‘4 = {(ta X, p} € I{: P= hk(ta x)’ O = gk—l(t, x)},
where ¥, = W,_; x R". Thus the DAE (3) is regular and of index s. O

6. Concluding remarks

By means of a simple RC circuit we have shown that the properties of DAEs
can be quite complex. Therefore, in this and other papers [17], [18] we have
stated a method for a characterization of DAEs in differential-geometric
terms. However, many open questions still remain in connection with this
method. For example, further studies about the relation of DAEs to vector
fields on special fields, like bifurcation and stability theory (see, e.g., [8]), are
still needed, and necessary conditions for the differentiability of the con-
strained manifolds should be derived in terms of transversality [11].
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