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O N AN EXISTENCE AND 
UNIQUENESS THEORY FOR 
NONLINEAR DIFFERENTIAL-
ALGEBRAIC EQUATIONS* 

Sebastian Reich1 

Abstract. An existence and uniqueness theory is developed for general nonlinear and 
nonautonomous differential-algebraic equations (DAEs) by exploiting their underly­
ing differential-geometric structure. A DAE is called regular if there is a uniqu; 
nonautonomous vector field such that the solutions of the DAE and the solutions of 
the vector field are in one-to-one correspondence. Sufficient conditions for regularity 
of a DAE are derived in terms of constrained manifolds. Based on this differentia -
geometric characterization, existence and uniqueness results are stated for regular 
DAEs. Furthermore, our not ons are compared with techniques frequently used in the 
literature such as index and solvability. The results are illustrated in detail by means of 
a simple circuit example. 

1. Introduction 

Differential-algebraic equations (DAEs) are frequently identified as implicit 
equations 

F(t,x,x')=0 (1) 

for which x' cannot be expressed explicitly as a function of t and x. Such 
DAEs arise in many areas of science and engineering. T n particular, con­
strained mechanical systems and electronic circuits may be modeled us i ig 
equations of type (1). In recent years the literature on the numerical solution 
of (1) has been growing rapidly [4] , [10], [12], [14]. However, up to now, 
existence theories are available only for a few selected classes of DAEs which 
are characterized by restrictive conditions on the form of the mapping F in (1) 
(see, e.g., [16], [18], and [19] for autonomous DAEs and [4] for nonautono­
mous linear DAEs). 

In [19] Rheinboldt introduced a differential-geometric approach for 

* Received May 10, 1990; revised August 10, 1990. 
1 Karl-Weierstrasse-Institut für Mathematik, Molirenstrasse 39, D/O-1086 Berlin, German). 
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analysis of the solution properties of a class of autonomous DAEs. This 
differential-geometric approach is based on the observation that, as long as 
we expect the solutions of a DAE to be some smooth path in the space of 
variables, the solutions define a flow [1] on a suitable submanifold of that 
space. Conversely, it is well known that flows are strongly related to vector 
fields on manifolds [1] . Thus we regard a DAE as an implicit description of a 
vector field, and have introduced in [17] and [18] the notion of a regular 
DAE as a DAE to which a vector field uniquely corresponds. The basic idea 
of this approach is the following one: Once the regularity of a DAE has been 
established, existence and uniqueness results can be obtained by employing 
the well-known existence theory of vector fields. » 

In this paper we wish to elaborate on the concept of regularity for general 
nonautonomous DAEs of type (1). After surveying the necessary background 
material, we derive in Section 3 sufficient conditions for the regularity of a . 
DAE in terms of constrained manifolds. From this and the standard theory of 
vector fields, we formulate existence and uniqueness results for regular DAEs 
as a main result of this paper. Because, in the literature, DAEs are categorized 
by many other concepts such as index [4] , [9] , [14], [16] and solvability [4] , 
[5] , we provide a comparison between these various techniques in Section 5. 
Additionally we give a detailed discussion of a simple circuit which appears to 
illustrate our concepts. 

For that reason let us consider throughout this paper the RC circuit of 
Figure 1. We assume that the voltage-current relation R of the nonlinear 
resistor is given by 

R = {(t, » R , i R ) £ f i x R 2 : 0 = g(t, uR, iR)} 

with g: U x R 2 -> U of class C 1 and rank[D 2gr D 3 #]( t , UR, *R) = 1 for all 
(t, uR, iR) eU x U2 where D2g and D3g denote the partial derivatives of g 
with respect to the second and third argument respectively. This implies that 
the set R is a differentiable manifold and that the time behavior of the RC 

1 I 

c = i 

Figure 1. A simple RC circuit. 
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circuit can be modeled by the DAE 

q' = U (2a] 

0 = g(t,q,-i). (2b) 

2. Differential-geometric background 

In this section we collect some basic material needed throughout the 
remainder of this presentation. Especially, we generalize the notions of vector 
fields and flows, as used in the standard literature, to the nonautonomous 
case and incorporate the fact that we consider in this paper only manifold 5 
which are embedded in IR", For further details we refer the reader to standard 
texts on differential geometry such as [1] and [13], 

We begin with some standard terminology. If M is a differentiable 
manifold, then TM denotes the tangent bundle of M and TXM denotes the 
tangent space of M at x e M. Throughout this paper we consider only 
manifolds which are err bedded in R"; that is, submanifolds of R". In 
accordance with this, we can always assume that the tangent space TXM can 
be identified with a rf-dimensional linear subspace of R" where d = dim(M). 

Now let M be a differentiable submaniiold of IR x IR", let p r ^ IR x W-* R 
be the projection onto the first component in IR x W, let J be an open set of R 
with pr j (M) = J, and let p be the restriction of p r : to M. Then the triple 
(Af, p, J) is a subbundle of R x R" if p r ^ r ^ M ) = R for all (t, x) e M. For 
any subbundle (M, p, J) the manifolds M, c IR", defined by 

{t} x Mt = (M n {t} x R") (t e J), 

are called the fibers of M at t. 
Let / : J x U -» R m be a given mapping of class C, r > 0, on the open set 

J x t / c R x R " . Then we denote by D^fit, x) (resp. D2f(t, x)) the partial 
derivatives of / with respect to the first, (resp. second) argument. Now most 
classical examples of differentiable subb undies of R x R" can be identified 
with the zeros of differentiable mappings f:Jx U -* R m . Specifically: 

Let / : J x U -» R m , d = n + 1 — m > 0, be a given mapping of class C, 
r > 0, on the open set J x U c R x R" such that 0 e f(J x U) and, for all 
(f, x) 6 J x U, i m [ D 2 / ( t , x)] = R m . Then the triple (M, p, J) with 

M={(t,x)eJ x V:f(t,x) = 0} 

is a C-subbundle of R x R". The fibers of the bundle are given by 

M, == {x e U: f(t, x) = 0} ( t e J ) , 

and the tangent space of M at (t, x) is given by 

T(u X)M = {(f, x') € R x R": D, f(t, x)f + D2f(t, x)x' = 0}. 
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The following definition is motivated by the fact that, for nonautonomous 
vector fields, every element (t\ x') of the tangent space T(Ux)M has to satisfy 
f = 1. Thus, for any subbundle (M, p, J) of IR x IR", we define the sets S(tx)M 
and SM by 

S(t,x)M = {x'eU»:(l,x')eT(ux)M} 

and 

S M = (J { ( ( , x ) } x S M | M 
( l .x)eAf 

which we call the restricted tangent space of M at (C, x) and the restricted . 
tangent bundle of A/, respectively. 

Example 1. For the circuit example of Figure 1 the voltage-current relation R 
of the nonlinear resistor is a subbundle of IR x IR2. For a fixed t e U the fiber 
R, is given by the solutions (uR, iR) of 

g(t, uR, iR) = 0. 

Furthermore, the restricted tangent space S{t UR iR)R is characterized by the 
solutions {u'R, i'R) e IR2 of 

D^it, uR, iR) + D2g(t, uR, iR)i'R + D3g(t, uR, iR)i'R = 0 

for all (t, u, i) e R. 

Let (M, p, J) be a C-subbundle, r > 0, of IR x R". Then a mapping 
i>: M -»IR" of class Ck, k > 0, is called a (nonautonomous) vector field of class 
C k on M if f(t, x) e S(UX)M for all (t, x) e M. By a solution of a vector field 
v: M -* IR" we mean a differentiable mapping c: I -*W on the open interval 
/ c j such that c(t) e M, and 

Dc(t) = !<t, c ( 0 ) 

for all t e /. 

Remark 1. In several papers (see, e.g., [1]) the subbundle (M, p, J) is assumed . 
to be trivial; that is, M = J x Q where Q is a submanifold of IR". However, 
subsequent discussion will reveal that we indeed need the more general 
definition of a nonautonomous vector field on a nontrivial subbundle 
(M, p, J). Furthermore, the manifold M cannot be viewed, in general, as a 
linear space by globally coordinatizing it; that is, the manifold M cannot be 
described in general by just one chart. 

Remark 2. With a given vector field v. M -> IR" we can associate the 
nonautonomous O D E 

x' = v(t, x) ((£, x) e M) 
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on the manifold M. Thus the notions of a vector field and an O D E on i 
manifold are synonymous in case the manifold M has been embedded in R". 

Let (M, p, J) be a C-subbundle, r > 0, of R x R" and let D be an open set 
in J x M. Then a mapping H: D ->M" of class C*, /c > 0, is called a _/fow [1] of 
class C* on D if 

(i) {0} x M e D; 
(ii) for all (t0, x 0 ) e M, H(0; t0, x0) = x 0 ; 

(iii) for all (t; t 0 , x0) e D, (s; t, H[t;t0, x0) e D if and only if 
(s + t; t0, x0) e D; in this case 

His + t; t0, x0) = H(s; t, H(t; t0, x 0 ) ) . 

' Theorem 1 [1] . Let (M, p. J) be a subbundle ofU x IR" and let v: M -> R" be a 
vector field of class C \ k > 0. Then there is. a unique open set DinJxM ana a 
unique flow H.D -* R" of class Ck on D such that a differentiable mapping 
c: I -> R" with c( t 0 ) = x 0 is a solution of the vector field v if and only if 

c(t) = H(t;'.0,x0) 

for all tel. 

Remark 3. Obviously the existence and uniqueness of the flow H implies all 
the well-known results on the existence, uniqueness, unique extension, and 
dependence on initial values of solutions. 

3. Regular DAEs 

From now on we study DAEs of type 

F(t, x, x') = 0, (3) 

where F : J x U x R" -> R" is a mapping of class C , r > 0, on the open set 
J x U x R" c R x R" x R". By a solution of a DAE (3) we mean a mapping 
c: I -»• R" of class C 1 on the open interval I a J such that, for all te I, 

F(t, c(t), Dc(t)) = 0. 

As suggested in the Introduction, we consider DAEs as an implicit 
description of vector fields on manifolds. In line with this we have proposed 
in [18] and [19] the notion of regularity for a special class of autonomous 
DAEs. Here we want to apply this concept to the more general case (3). 

Definition 1. Let a DAE; of type (3) be given. Then we call this DAE a regular 
DAE if there is a unique subbundle (M, p, J) of R x R" and a unique vector 
field i>:M->R" on M such that a differentiable mapping c:I-*Un is a 
solution of the vector held v if and only if c is a solution of the given DAE. 
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The manifold M is then called the configuration space and the vector field v 
the corresponding vector field of the DAE. 

Example 2. Let us consider the DAE (2) where we assume that 
D3g(t, q, — i) # 0 for all (t, q, i) e R 3 . It is well known from state-space theory 
[6] that under this condition the DAE (2) has well defined solutions. We now 
show that the DAE is then regular too. For that reason we differentiate (2b) 
once and solve for i'. Thus we obtain 

i' = D3g(t, q, -iy^D^it, q, - i ) + D2g(t, q, 

Now this equation and (2a) define a vector field on the manifold M given by 

M = {(t, q,i)eU":g(t, q, - 0 = 0}. 

Obviously, in this case, the above-defined vector field is the corresponding 
vector field and the manifold M is the configuration space of the DAE (2). 
However, in the following, we are interested in the case when D3g(t, q, —i) = 
0 for some or all (t, q, i) e R 3 . Indeed, it is this case for which our theory seems 
to be important. 

Example 3. Let us now consider the DAE 

xl + x 2 = 1, 
X1X2 = 0. 

This DAE is not regular because the two solutions cx and c 2 defined by 
c i(0 = (t, 0) and c 2 (r) = (0, t) have the same initial value at t = 0 but satisfy 
Dcj(0) / Dc 2(0). This is due to the fact that the set defined by x x x 2 = 0 is not 
a manifold. 

We now derive sufficient conditions for the regularity of a DAE. Further­
more, we state a technique by means of which we can obtain, for a given 
regular DAE, the configuration space M and the corresponding vector field v. 
To start we associate with any DAE the corresponding set as defined below. 

Definition 2. Let a DAE of type (3) be given. Then we call the set 

N = {(t, x,p)eJ x U x IR": F(t, x, p) = 0} 

the corresponding set of the DAE. 

Note, in Definition 2, the DAE (3) is considered as a nonlinear system of 
equations in the variables t, x, and p. For that reason the corresponding set 
N of a DAE is a subset of J x U x IR". Clearly, a differentiable map­
ping c: I -> R" is a solution of the DAE if and only if (t, c(t), Dc(t)) e N for 
all t e I. Therefore, with respect to the solutions of a DAE, we can con-
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sider the corresponding sat instead. This fact is explored further in the next 
observation. 

Observation 1. Let N be the corresponding set of a given DAE (3). We 
consider the set M x defined by 

Mi = p r 1 , , ( i V ) , 

where p r 1 > 2 : R x R " x R * - > R x R " is the projection onto the first two 
components in IR x IR" x IR". 

The set M i is a subset of IR x IR" and reflects the algebraic constraints on 
the solutions of the DAE. Let us assume that the triple ( M ^ p , J) is a 
differentiable subbundle of IR x IR". Clearly, under this assumption, a differ­
entiable mapping c: I -* R" is a solution of the given DAE if and only if 

(t, c{t), Dc(t)) elNnSMJ 

for all tel. (JV n S M J will be, in general, a subset of JV. Therefore, we 
considered the set 

M 2 = p r 1 2 ( JV n SM J . 

If the triple ( M 2 , p, J) is now a differentiable subbundle of IR x IR" as well, we 
conclude again that a differentiable mapping c: / -> IR" is a solution of the 
DAE if and only if 

(t, c(t), Dc(t)) e (JV n S M 2 ) 

for all t e I. This process can be continued as long as the triples ( M ( , p, J) with 

M ^ p r ^ J V n S M ^ J 

are differentiable subbundles of R x IR" and may be stopped whenever 
M; = M , _ x . 

This observation leads us in a natural way to the following: 

Definition 3. Let JV be the corresponding set of a given DAE (3). We define a 
family (M ( ) I = 0 s of submanifolds Mi of R x R" by the recursion: 

(i) M 0 = J x U, 
(ii) M j + , = pr 1 > 2 (JV n SM,) (i = 0 , . . . , 5 - 1), 

where s is the largest nonnegative integer such that the triples ( M ; , p, J) are 
differentiable subbundles and M s _ ! # M s . In case Mx = J x [/, we define 
s = 0. 

We call the family (M f ) the family of constrained manifolds and the integer 
s the degree of the given DAE. 



350  

Remark 4. In [18] we have proved that s<n for autonomous DAEs. 
Consequently, the degree s of any nonautonomous DAE satisfies s < n as 
well. 

By means of the family of constrained manifolds we can state sufficient 
conditions for the regularity of a DAE. 

Theorem 2. Let N be the corresponding set, let (M,) be the family of constrained 
manifolds, and let s be the degree of a given DAE (3). Then this DAE is regular if 
the condition 

CI: for all (t, x) e Ms, there is a unique peW such that 

(t, x, p)e(Nn SMS) 
* 

is satisfied. 
Under this condition, the configuration space M of the DAE is given by 

M = Ms, and the corresponding vector field v. M -> IR" is, for all (t, x) e M, 
defined by 

(t, x, v(t, x)) £ (N n SMS). 

Furthermore, if additionally the condition 

C2: (N n SM) is a Ck-submanifold of U x R" x IR" and, for all 
(t, x, p)e(Nn SM), dim(M) = d i n ^ p r ^ C T , , , , , ^ n SM))] 

holds, then the corresponding vector field is of class Ck. 

Proof. According to Observation 1, Condition CI yields that a differentiable 
mapping c: / -» W is a solution of (3) if and only if, for all t e I, 

(t, c(t), Dc(t)) = (t, c(t), v(t, c(t)), 

where v: M -» R" is the vector field as defined in Theorem 2. Thus Condition 
CI implies regularity of the DAE. Furthermore, Condition C2 and the 
implicit function theorem yield that the mapping v is differentiable and of 
class Ck. • ' 

Once we have formulated sufficient conditions for the regularity of a DAE, 
it seems reasonable to state an existence and uniqueness theorem for regular • 
DAEs. For example, such a theorem can be obtained just by "translat ing" 
Theorem 1 to regular DAEs. 

Theorem 3. Let (3) be a regular DAE, let M be the configuration space, and let v 
be the corresponding vector field of this DAE. We assume the vector field v to be 
of class Ck, k>0. Then there is a unique open set Din J x M and a unique flow 
H:D->W of class Ck on D such that a differentiable mapping c: I -»• IR" with 
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c(t 0 ) = x0 is a solution of the DAE (3) if and only if 

c(t) = H(r;t0,x0) 

for all tel. 

Naturally, the existence and uniqueness of solutions has been addressed in 
several other papers as well [4] , [5] , [16], [19]. For example, the following 
definition is due to Campbell [4] , [ 5 ] : 

Definition 4. A DAE (31 is called solvable on a subset r x O of U x W if there 
is a mapping p.: V x C:° -> Q on an open set F x Q° of U x IR*, 0 < k < n, 
such that 

(i) if c: I -> IR" is a solution of the DAE whose graph lies in T x Q, then 
c(t) = u(t; y0) for all t e 1 and some y0 e Q°, 

(ii) the graph of u is an (k + l)-dimensional submanifold of IR x W. 

In case the corresponding vector field is differentiable, Theorem 3 y elds 
that regularity implies solvability of a DAE and that the integer k is equal to 
the dimension of the configuration space M. In fact, the notion of solvability 
is equivalent in essence: to the notion of a flow on a manifold. 

4. A simple RC circuit 

In this section we investigate the DAE (2) which describes the time behavior 
of the simple RC circuit of Figure 1. Obviously, (2b) cannot be solved 
globally for the variable i in general. Consequently, the state equations [6] do 
not exist in the general case. Therefore, we now apply the theory of regular 
DAEs to the DAE (2). 

By definition, the constrained manifold M x is given by 

Mx --= {(t, q, i) e R x R 2 : 0 = g(t, q, -i)}. 

A point (t, q, i) e M x is now an elemer.t of the set M 2 if and only if 

(Nit,q,i)r^Sit,hi)Ml)*0, (4) 

where 

Af(,,,.o= {(<?', O e R 2 :q' = i} 

and 

S«,,,,-)^! = {(<?',«"): C = Dxg(t, q, -i] + D2g(t, q, -i)q' - D3g(t, q, -i)i'}. 

It is readily shown that we have 

(N(uqJ)nS(UqJ)Mi)=0 (5) 
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i ' i ' i ' 

(a) (b) (c) 

Figure 2 

if a n d o n l y if D3g(t, q, — i) = 0 a n d D2g(t, q, —i)~1D1g(t, q, — i) ^ — i. T h i s 
is i l l u s t r a t ed in F i g u r e 2(a) . I n t h e fo l lowing we call a p o i n t (t, q, i)e M x t h a t 
satisfies (5) a s i n g u l a r p o i n t . 

O b v i o u s l y , if (4) ho ld s , t h e n we h a v e e i the r 

(i) D3g(t, q, -i) = 0 a n d D2g(t, q, -iy^D^it, q, - i ) = - i ( F i g u r e 
2(b)) o r 

(ii) D3g(t, q, - 0 ^ 0 ( F i g u r e 2(c)). 

F o r (ii) we o b t a i n t h a t t he set 

N ( r , , , ; ) N S « , « , 0 M l 

c o n t a i n s exac t ly o n e e l emen t , whi le for (i) th i s set is d i f f eomorph ic t o t he real 
l ine U. There fo re , we call a p o i n t (t, q, i)e M x r e g u l a r if (ii) h o l d s a n d 
d e g e n e r a t e if (i) h o l d s . 

A c c o r d i n g t o R e m a r k 4 in Sec t ion 3, we c o n c l u d e t h a t d e g r e e s of t he D A E 
(2) c a n n o t exceed s = 2. 

W e n o w discuss t he resu l t s o b t a i n e d so far by m e a n s of t h e specific 
v o l t a g e - c u r r e n t r e l a t i ons given in F i g u r e 3 (a ) - ( e ) . T o simplify t h e d i scuss ion , 
we c o n s i d e r o n l y t i m e - i n v a r i a n t v o l t a g e - c u r r e n t r e l a t ions . As a c o n s e q u e n c e , 
the c o n s t r a i n e d m a n i f o l d s M , a r e t r iv ia l s u b b u n d l e s w h i c h we d e n o t e by 

Mt=Ux Qt. 

Clear ly , by c o n s i d e r i n g the m a n i f o l d s Q{ i n s t e a d of t he man i fo lds M„ we 
c a n r e d u c e t he d i m e n s i o n of t h e p r o b l e m by o n e . The re fo re , t o o b t a i n g o o d 
d r a w i n g s , th i s fact is e x p l o r e d in t h e s u b s e q u e n t e x a m p l e s . 

Example 4 . F i r s t we c o n s i d e r t he R C circui t of F i g u r e 1 w i t h t h e v o l t a g e -
c u r r e n t r e l a t i on of t h e n o n l i n e a r res i s to r a s d e p i c t e d in F i g u r e 3(a) . C lea r ly , 
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(a) (b) (c) 

4 

K R 
R 

F R 

U U R 
R 

U R 

(d) (e) 

Figure 3 

we h a v e 

Q2 = Qi; 

t h a t is, every p o i n t (q, i) Qt is a r e g u l a r po in t . C o n s e q u e n t l y , t he D A E (2) is 

r egu la r a n d of d e g r e e 1. 

Example 5 . W e n o w c o n s i d e r t h e v o l t a g e - c u r r e n t r e l a t i on R of F i g u r e 3(b) . 
W e o b t a i n 

'22 = Q i \ { ( - i , - i ) , ( U ) } ; 

. t h a t is, ( — 1 , —1) a n d ( 1 , 1 ) a r e s ingu la r p o i n t s a n d all t h e o t h e r p o n t s 
b e l o n g i n g t o Ql a r e r egu la r . T h u s t he D A E (2) is in th is case r e g u l a r a n d of 
deg ree 2. T h e vec to r fb ld o n Q2 is d e p i c t e d s chema t i ca l l y in F i g u r e 4(a) . 
O b v i o u s l y , n o s o l u t i o n c a n be e x t e n d e d b e y o n d t h e t w o p o i n t s (— 1, — 1) a n d 
( 1 , 1). The re fo re , such p o i n t s a r e cal led i m p a s s e p o i n t s [ 6 ] - [ 8 ] . I m p a s s e 
p o i n t s a r e a n i m p o r t a n t p h e n o m e n o n f o u n d in m a n y c i rcu i t s (see, for 
e x a m p l e , [ 7 ] ) in c o n n e c t i o n w i t h t he so-ca l led j u m p behav io r . 

Example 6. Le t t he v o l t a g e - c u r r e n t r e l a t i on R b e given by F i g u r e 3(c) w i th 
d(UR, 'R) = ' I + UR- S imi la r t o E x a m p l e 4 we o b t a i n 

02 = 01-
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H o w e v e r , t he p o i n t ( 0 , 0 ) is a d e g e n e r a t e p o i n t . H e n c e C o n d i t i o n C I of 
T h e o r e m 2 d o e s n o t h o l d b e c a u s e 

N(o,o) n Ti00)Q2 

is d i f f eomorph ic t o t h e real l ine U. T h e t w o m a p p i n g s ct: I -» U2 (i = 1, 2) 
def ined by 

C j ( t ) = (0, 0) a n d c 2 ( t ) = ( - 1 2 / 4 , - 1 / 2 ) ( t e I) 

a re s o l u t i o n s of t he D A E (2) t h r o u g h t h e p o i n t (0, 0) . N o w b e c a u s e 

D c , ( 0 ) ± Dc2(0), 

we c o n c l u d e t h a t t he D A E (2) w i t h t h e c h a r a c t e r i s t i c of F i g u r e 3(c) c a n n o t be 
r egu la r . 

E x a m p l e 7. W e n o w c o n s i d e r t h e v o l t a g e - c u r r e n t r e l a t i on R of F i g u r e 3(d). 
T h e r e su l t i ng c i rcu i t is e q u i v a l e n t t o t h e c i rcui t w h i c h we o b t a i n by r ep l ac ing 
the n o n l i n e a r res i s to r by a d c vo l t age s o u r c e u(t) = U. W i t h t h e e x c e p t i o n of 
t he p o i n t (U, 0) all t he o t h e r p o i n t s b e l o n g i n g t o Q1 a r e s i n g u l a r a n d we 
therefore get 

Q2 = {(U,0)}. 

T h e p o i n t (U, 0) is d e g e n e r a t e . B u t b e c a u s e d i m ( g 2 ) = 0, we h a v e 

(N(V,0)nT(V,0)Q2) = {(0, 0 )} . 

Acco rd ing ly , C o n d i t i o n C I of T h e o r e m 2 is satisfied a n d the D A E (2) is 
r e g u l a r a n d of deg ree 2 ( F i g u r e 4(b)) . 

Example 8. F ina l ly , c o n s i d e r t he v o l t a g e - c u r r e n t r e l a t i on R g iven in F i g u r e 
3(e). T h e c i rcui t specified b y th is c h a r a c t e r i s t i c is c losely re la ted t o sys t ems 
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wi th va r i ab l e s t r u c t u r e a n c s l id ing m o d e [ 3 ] . S o far such sys t ems h a v e b e e n 
m o d e l e d by differential i nc lus ions [ 3 ] . By m e a n s of th is e x a m p l e we a r g u e 
t h a t t h o s e sys tems c a n be c o n s i d e r e d as h i g h e r - i n d e x D A E s as well. I t s h o u l d 
be n o t e d t h a t , in c o n t r a s t t o [ 3 ] , we h a v e t o a s s u m e differentiabi l i ty of t h e 
cha rac t e r i s t i c R. H o w e v e r , th i s is n o t a sevs re r e s t r i c t ion a n d c a n b e a v o i d e d 
if, i n s t ead of t a n g e n t spaces , t h e m o r e gene ra l n o t i o n of one - s ided t a n g e n t 
spaces [ 2 ] is used . 

T h e c o n s t r a i n e d man i fo ld Q2 is dep i c t ed in F i g u r e 4(c) . Aga in , t he p o i n t 
(U, 0) is a d e g e n e r a t e po in t . H o w e v e r , t he s a m e r e a s o n i n g as in E x a m p l e 7 
yields t h a t the D A E (2) is regular a n d of d e g r e e 2. W e l ike t o r e m a r k t h a t t h e 

- s l id ing m o d e is in th i s case t h e s o l u t i o n <:: / -* U2 w i t h c(f) = (U, 0) for all 
tel. 

4 
5. D A E s of index m 

I n several p a p e r s [ 4 ] , [ 5 ] , [ 9 ] , [ 1 4 ] , [ 1 6 ] t h e p r o p e r t i e s of D A E s a r e 
c h a r a c t e r i z e d by a n in tege r cal led t he index . I n th is s ec t ion we c o m p a r e t h e 
n o t i o n of index wi th o u r c o n c e p t s of r egu la r i ty a n d degree . T h e f u n d a m e n t a l 
idea , b e h i n d the index def in i t ion in [ 4 ] , [ 5 ] , [ 9 ] , [ 1 4 ] , a n d [ 1 7 ] , is 1:0 
differentiate t he m a p p i n g F of (3) severa l t imes a n d t o inves t iga te t h e 
resu l t ing o v e r d e t e r m i n e d sys tem of e q u a l ions . Specifically: 

Le t a D A E of t y p e (3) b e given. T h e n , for a n y n o n n e g a t i v e in t ege r m, w e 
cons ide r , as l o n g as t h e m a p p i n g s invo lved a r e def ined a n d different iable , trie 
n o n l i n e a r sy s t em of e q u a t i o n s 

F0(t, x, p) = 0, 

F1(t,x,p) = 0, 
. ' 6 ) 

Fm(t, X, p ) = 0 

wi th 

F0(t, x, p) ••=-- F(t, x, p), 

Fl+ , ( t , x, p) ••=- Qlt, x, p ) [ D , Fit, x, p) + D2Fi(t, x, p ) p ] , 

w h e r e Qi(t, x, p) is a p r o j e c t i o n a l o n g i m [ D 3 F , ( f , x , p ) ] . L e t u s wr i t e t he 
sys tem of e q u a t i o n s (6) in t he fo rm 

Gm{t, x, p) = 0 

w i th t e J, x e U, p e U", Gm: J x U x W - » ( R " ) m + K W e call t he m a p p i n g Gm 

t h e derivative array of o r d e r m. 
As l o n g as t he de r iva t ive a r r a y G k of o r d e r k is defined, we a s soc i a t e wi :h it 

t he t w o sets 

Lk = {(t, x,p)eJ x U x W: Gk(t, x, p ) = 0} 
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a n d 

Pk = p r i , aCW-
U s i n g a t e r m i n o l o g y w h i c h is a p p r o p r i a t e d for o u r p u r p o s e s , we s t a t e t h e 

index def ini t ion, as g iven in [ 4 ] , [ 5 ] , [ 9 ] , [ 1 4 ] , a n d [ 1 6 ] , in t he fo l lowing w a y : 

Definition 5 . Le t a D A E of t ype (3) b e g iven. T h e index of t h e D A E , in t h e 
sense of [ 4 ] , [ 5 ] , [ 9 ] , [ 1 4 ] , a n d [ 1 6 ] , is t h e smal les t n o n n e g a t i v e in tege r m 
such t h a t 

(i) t h e t r ip le (Pm, p, J) is a C ^ s u b b u n d l e of J x U, 
(ii) for a n y (t, x) e Pm t h e r e exists a u n i q u e peU" w i t h (t, x, p)e Lm. 

O f c o u r s e , such a n in tege r d o e s n o t exist in a n y case . B u t if t he i ndex c a n be 
defined for a g iven D A E (3), t h e n (ii) defines a u n i q u e m a p p i n g g: Pm -* W. «. 
F u r t h e r m o r e , by def in i t ion of t h e m a p p i n g g, a di f ferent iable m a p p i n g 
c: I -*• W is a s o l u t i o n of (3) if a n on ly if c is a s o l u t i o n of t h e O D E 

x ' = g(t, x) (ft, x) e PJ 

defined o n the m a n i f o l d Pm. T h u s we o b t a i n t h e fo l lowing: 

Proposit ion 1. Let (3) be a DAE of index m. Then this DAE is regular. 
Furthermore, the configuration space M is given by M = Pm and the corre­
sponding vector field v: M -» W is given by 

(t, x, v(t, x)) e Lm 

for all (t, x) e M . 

I n t he r e m a i n d e r of th i s s ec t ion we c o m p a r e t h e n o t i o n s of index a n d 
d e g r e e a n d s h o w t h a t t h e c o n s t r a i n e d m a n i f o l d s M , a r e iden t i ca l w i t h t h e sets 
P ; . T h u s t he de r iva t ive a r r a y s a l l ow for a c o m p u t a t i o n of t he c o n s t r a i n e d 
man i fo lds . 

Observation 2 . Le t (3) be a D A E of d e g r e e s, le t N b e t he c o r r e s p o n d i n g set, , 
a n d let ( M f ) be t he family of c o n s t r a i n e d man i fo ld s . F u r t h e r m o r e , we a s s u m e 
t h a t t h e de r iva t ive a r r a y s exist u p t o a n d i n c l u d i n g o r d e r s. O b v i o u s l y , by 
def in i t ion of t h e de r iva t ive a r r a y G 0 , we h a v e 

L0 = N 

a n d t h u s 

i , o = M 1 . 

N o w the set N n SM1 c a n b e equ iva l en t l y w r i t t e n as 

N n SMi = {(t, x, p):3qe W s u c h t h a t (t, x, p, p, q) e SN}. 
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B e c a u s e t he set SN is g iven b y t h e s o l u t i o n s of t h e fo l lowing sys tem of 
e q u a t i o n s , 

0 = F(t, x, p), 

0 = D.F(t, x, p) + D2F(t, x, p)x' + D3F(t, x, p)p', 

we o b t a i n t h a t N n S M j is g iven b y t h e s o l u t i o n s of t h e fo l lowing s y s t e m of 
e q u a t i o n s : 

0 = F(t, x, p), 
(7) 

0 = Q(t, x, p)iD.F(t, x, p) + D2F(t, x, p ) p ] , 

w h e r e Q(t, x, p) is a p r o j e c t i o n a l o n g i m [ D 3 F ( t , x, p ) ] . H o w e v e r (7) is 
e q u i v a l e n t t o t he de r i va t i ve a r r a y of o r d s r 1. T h u s we h a v e 

Lj = N n SM, 

a n d 

i \ = M2. 

T h i s p r o c e s s c a n b e c o n t i n u e d a n d we o b t a i n t h e fo l lowing: 

Proposition 2 . Let (3) be a DAE of degree s. Furthermore, let the derivative 
arrays exist up to and including order s. Then we have 

Lt = N n SMt 

and 

P , = M i + 1 

for all ie { 0 , . . . , s} . 

F ina l ly , we s t a t e r a n k - c o n d i t i o n s o n the de r iva t ive a r r a y s t h a t e n s u r e t h e 
r egu la r i ty of a D A E . (S imi la r c o n d i t i o n s a r e g iven in [ 4 ] a n d [5 ] . ) 

Theorem 4 . Let a DAE of type (3) where the mapping F is of class Cr, r > 0, 
be given. Let us assume that there is a nonnegative integer k such that the 
derivative arrays Gm of order m,m<k, exist and satisfy the conditions: 

(i) For m < k, [D2 Gm D3 G m ] ( t , x, p) and D3 Gm(t, x, p ) have constant rank 
for all (t,x,p)eJ x U x W. 

(ii) The row echelon form of D3Gk(t, x, p) is 

0 

independent of (t, x, p) e J x U x U". 
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Then this DAE is regular and of degree s where s is the smallest nonnegative 
integer such that (i) and (ii) hold. 

Proof. F o r m < k, C o n d i t i o n (i) impl ies t h a t for all ( t 0 , x 0 , p 0 ) e Lm t h e r e is a 
n e i g h b o r h o o d Vm of (t0, x0, p 0 ) in J x U x R" s u c h t h a t , w i th Wm = plt2(K,X 

Lmr^Vm= {(t, x, p) e Vm: 0 = fcm(t, x, p), 0 = 0 m ( f , x)} 

a n d 

P m n ^ = {(t, x ) e H £ : 0 = ö m ( t , x ) } , 

w h e r e hm: V - » R P m a n d g m : H ^ - + [ R « m a r e C " " " - m a p p i n g s wi th < 
r a n k [ £ > 2 0 m ( t , x ) ] = g m a n d r a n k [ D 3 hm(f, x, p ) ] = pm for all (f, x, p) e T h u s 
t he sets P m a r e different iable s u b b u n d l e s . C o n d i t i o n (ii) impl ies t h a t t h e r e is a 
m a p p i n g h: Wk_ t -»• W of c lass C ~ * s u c h t h a t k 

LknVk = {(t, x,p}eVk:p = hk(t, x ) , 0 = g^^t, x ) } , 

w h e r e 1{ = W£_ t x R". T h u s t h e D A E (3) is r e g u l a r a n d of i ndex s. • 

6. Concluding remarks 

By m e a n s of a s imp le R C circui t we h a v e s h o w n t h a t t he p r o p e r t i e s of D A E s 
c a n b e q u i t e c o m p l e x . The re fo re , in t h i s a n d o t h e r p a p e r s [ 1 7 ] , [ 1 8 ] w e h a v e 
s t a t e d a m e t h o d for a c h a r a c t e r i z a t i o n of D A E s in d i f fe ren t ia l -geomet r ic 
t e r m s . H o w e v e r , m a n y o p e n q u e s t i o n s still r e m a i n in c o n n e c t i o n w i t h th is 
m e t h o d . F o r e x a m p l e , fu r the r s t ud i e s a b o u t t h e r e l a t i o n of D A E s to vec to r 
fields o n specia l fields, l ike b i fu rca t ion a n d s tab i l i ty t h e o r y (see, e.g., [ 8 ] ) , a r e 
still n e e d e d , a n d necessa ry c o n d i t i o n s for t h e different iabi l i ty of t h e c o n ­
s t r a i n e d m a n i f o l d s s h o u l d be de r ived in t e r m s of t r ansve r sa l i t y [ 1 1 ] . 
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