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Abstract
Weprovide a detailed stochastic description of the swimmingmotion of anE.coli bacterium in two
dimension, where we resolve tumble events in time. For this purpose, we set up two Langevin
equations for the orientation angle and speed dynamics. Calculatingmoments, distribution and
autocorrelation functions fromboth Langevin equations andmatching them to the same quantities
determined fromdata recorded in experiments, we infer the swimming parameters ofE.coli. They are
the tumble rateλ, the tumble time r−1, the swimming speed v0, the strength of speed fluctuationsσ,
the relative height of speed jumps η, the thermal value for the rotational diffusion coefficientD0, and
the enhanced rotational diffusivity during tumblingDT. Conditioning the observables on the
swimming direction relative to the gradient of a chemoattractant, we infer the chemotaxis strategies of
E.coli.We confirm the classical strategy of a lower tumble rate for swimming up the gradient but also a
smallermean tumble angle (angle bias). The latter is realized by shorter tumbles as well as a slower
diffusive reorientation.We alsofind that speed fluctuations are increased by about 30%when
swimming up the gradient compared to the reversed direction.

1. Introduction

One of themost prominentmodel swimmers in the field of biologicalmicroswimmers is the gut bacterium E.coli
equippedwith peritrichous flagella [1]. Its well known run-and-tumble swimmingmotion and chemotaxis
strategy has been thoroughly studied [2–7]. Nowadays,modern imaging techniques allow for high-throughput
recording of bacterial trajectories [8–15]. Themethod of labeling flagella by fluorescentmarkers allows to
unravel the diverse swimmingmechanisms ofmicroorganisms [16, 17]. These refined techniques require an
appropriate theoreticalmodeling of the bacterium’s stochastic swimming path, including the dynamics of
tumbling. They also require a rational and efficientmethod how to analyze the recorded data in experiments. In
this article we provide such a theoretical framework and illustrate it for themodel bacterium E.coli. Thereby, we
also reveal some new and detailed insights into its chemotaxis strategy.

TheE.coli bacterium resides in the run phase, when all of itsflagella form a bundle and rotate
counterclockwise. The bacterium swims along a straight line, only thermal rotational diffusion affects its
persistence.When at least one of the flagella reverses its sense of rotation, it leaves the bundle and the bacterium
is in the tumble phase, where it strongly reorients [18, 19]. Typically, the tumble phase ismuch shorter than the
run phase [1]. Therefore, in theoreticalmodels tumbling is considered as instantaneous and a single event is
described by a tumble angle drawn from a distribution [8, 20–22]. However, a recent and instructive work by
Saragosti et al showed that reorientation during tumbling can bemodeled by enhanced rotational diffusion [23].

In order to analyze large amounts of data from recorded trajectories, specialized computer algorithms, called
tumble recognizers, havewidely been used to identify tumble events [3, 8, 9]. In order to distinguish runs from
tumbles, these automated tumble recognizers compare turning rate and speed to threshold parameters. They are
necessary to distinguish variations of speed and turning rate due to the ubiquitous noise from a real tumble
event. The threshold parameters have to be chosen a priori and adjusted until results from the automatized
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tumble recognition agree with a visual inspection of the trajectories. There is no general rule how to set these
parameters and indeed they vary quite substantially [3, 8].

In an earlier work [22], we presented a parameter inference technique that allows to quantify the swimming
behavior of bacteria without the need of setting parameters a priori. Kramers–Moyal coefficients were calculated
froma suitable stochasticmodel for the dynamics of the orientation angle andmatched to the coefficients
determined from experimental data. In particular, the stochasticmodel treated tumble events as instantaneous.
This procedure provided themain characteristics ofE.coli and the bacterium Pseudomonas putida: tumble rate,
distribution of tumble angles, and the thermal rotational diffusivity. For E.coli it also confirmed an angle bias
during chemotaxis reported earlier [8]: themean tumble angle is larger when swimming against a chemical
gradient compared tomoving along it. Other parameter inference techniques use the framework of Bayesian
inference [9, 24]. However, they pose a complex numerical challenge as one has tomaximize a likelihood
function that contains the data of all the recorded trajectories.

In this article we considerably extend our earlier work by resolving tumble events in time and by
incorporating a stochastic process for the speed dynamics (seefigure 1(a)). The dynamics of the orientation
angle in ourmodel is diffusive, where the rotational diffusivity switches via a telegraph process [25] between its
thermal (run phase) and enhanced value (tumble phase). The dynamics of the speed contains a shot-noise
process [26, 27]. It initiates a tumble event by decreasing the speed value, which then relaxes back to the
swimming speed according to anOrnstein–Uhlenbeck process [28].We use a chemotactic assay that allows us to
record large numbers of swimming trajectories. In this assay, wemonitor E.coli in a uniformbuffer solution as
well as in a chemoattractant with constant density gradient (see figure 1(b)), and record bacterial trajectories
with a gray-scale imaging technique. From the large amount of recorded datawe determinemoments,
distribution and autocorrelation functions for the orientation angle as well as speed.Matching them to the same
quantities calculated fromourmodel, we are able to infer the swimming parameters of E.coli. Their values are in
good agreement with the parameters determined using a tumble recognizer. Compared to the Bayesian
framework, we have to calculate the stochastic quantities from the experimental data only once. This
considerably lowers the efforts of the numerical optimization.

To explore the chemotaxis strategy ofE.coli, we condition [29, 30]moments, distribution and
autocorrelation functions on the swimming direction relative to the chemical gradient and infer the swimming
parameters as a function of the orientation angle. Besides thewell-known chemotaxis strategy (modulation of
the tumble rate), we confirm the recently discovered angle bias [8].We show that the increased angular
persistencewhen swimming up the gradient is caused by both shorter tumbles aswell as smaller rotational
diffusivity.Moreover, for the same swimming directionwe identify largerfluctuations in the speed value.

Figure 1. (a)E.coliwith swimming velocity = = Q Q( ) ( ) ( ) ( )[ ( ) ( )]t v t t v t t tv e cos , sin . A tumble event with tumble angleβ occurs
between the times t+Δt and t+3Δt. A possible chemical gradient is indicated. (b)Layout of the experimental set-up. Thousands of
trajectories of E.coli are recorded in a uniformbuffer solution as well as in a chemoattractant with constant density gradient. See
appendix A for a detailed description.
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The article is organized as follows. In section 2we introduce the two Langevin equations of our stochastic
model and calculatemoments, distribution functions, and autocorrelation functions for speed and orientation
angle. Section 3 reviews details of the experiments. Section 4first explains the inferencemethod and then
presents our results in a uniformbuffer solution (control experiment) and in the gradient of a chemoattractant.
We closewith a summary and an outlook in section 5.

2. A stochasticmodel for the randomwalk of E.coli

2.1. Langevin equations for speed and angle
A typical trajectory of bacteria such as E.coli is described by a run-and-tumble randomwalk. During the run
phase the bacteriummoves forward along a nearly straight line, only rotational thermal noise affects its
persistence. During the tumble phase the bacterium’s speed is reduced and it reorients strongly into a new
direction. The angle between the orientations before and after the tumble event is the tumble angleβ.We express
the velocity of the bacterium in two dimensions as the product of speed v(t) and unit vector

= Q Q( ) ( )te cos , sin ,

=˙( ) ( ) ( ) ( )t v t tr e , 1

where the orientation angleΘ ismeasuredwith respect to the xaxis. Figure 1(a) illustrates the different
quantities.

We set up two overdamped Langevin equations for speed and orientation angle, which fully describe the
bacterialmotion,

x= - + +˙ ( ) [ ( )] ( ) ( ) ( )v t r v v t t q t , 20 sp

xQ =˙ ( ) ( ) ( ) ( )t D t t2 . 3rot an

We introduce both Langevin equations inmore detail.
(1)The equation for speed v(t) contains three terms, which are associatedwith drift, diffusion, and jumps.

We start with the last term

å h d= - -
=

l

( ) ( ) ( ) ( )q t v t t t . 4
i

N

i
1

It initiates each tumble event at time ti by a shot-noise process, while the occurrence of times ti follows a Poisson
process with tumble rateλ. At the beginning of each tumble, the bacterial speed is reduced by the relative jump
height η to h-( )v1 t andN

λ is the actual number of tumble events. Thefirst and second term represent a
conventional Ornstein–Uhlenbeck process. After a tumble event the speed relaxes with relaxation rate r towards
the swimming speed v0 of the run phase. Thus r

−1 is themean duration of a tumble event, whichwe call tumble
time in the following. TheGaussianwhite noise term is fully determined by xá ñ = 0sp and

x x s dá ñ = -( ) ( ) ( )s t t ssp sp
2 , wherewe introduce thewhite noise strengthσ. It describes the ubiquitous noise

due to internal noise of the swimmingmechanism and variations between individual bacteria.
Note that the actual tumble time of a bacterium is exponentially distributed. In ourmodel thewhite noise

term also induces stochastic fluctuations in the duration of the tumble events as visible infigure 2(b). Altogether,
the stochastic speed process is determined by five parameters: l s h{ }r v, , , ,0 .

(2)The stochastic equation for the orientation angleΘ is fully described by rotational diffusion, where the
white noise process is defined by xá ñ = 0an and x x dá ñ = -( ) ( ) ( )s t t san an . Following [31], wemodel tumbles as
a randomwalk on a unit sphere with enhanced rotational diffusion. Thus, the rotational diffusion coefficient

( )D trot is no longer a constant but alternates between two values: the thermal rotational diffusion coefficientD0

during run phases and an enhanced valueDT during tumble phases.We describe each transition between the
two states by a Poisson process and thus obtain a telegraph process. The transition rate from the run to the
tumble phase is the tumble rateλ, whereas the transition rate in the opposite direction is the speed relaxation
rate r or the inverse tumble time. A full definition and basic properties of the telegraph process are given in the
appendix B.2 or can be found in [25].

To link the telegraph process to the shot-noise process for the speed value in equation (4), the diffusion
coefficient switches at the same times ti from the thermal (D0) to the enhanced (DT) value. Note, while the speed
process allows a second tumble although the first one is notfinished yet, this is not possible in the
telegraph process for rotational diffusion.However, for bacteria likeE.coli the time between tumble events is
typically one order ofmagnitude larger than the tumble time r−1. Thismakes these double events very rare and
tumble events in both speed and angular processes coincide. All in all, we have four parameters governing the
stochastic process for the orientation angle: l{ }r D D, , , T0 .
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Figure 2 shows a typical simulated trajectory (a) and the corresponding time series for speed and angular
displacementΔΘ during time stepΔt=0.1 s (b). It has to be compared to the experimental time series of both

quantities in (c). Note that DQ
Dt

represents the turning rate of the bacterium. In the followingwewill alwayswork

with the angular displacementΔΘ.

2.2.Moments, autocorrelation and distribution functions
In this sectionwe statemoments, stationary distributions, and time autocorrelation functions for the stochastic
processes of speed and orientation angle in equations (2) and (3). They depend on the swimming parameters
introduced above.Matching the theoretical expressions of these quantities to the values determined by averaging
over all individual tracks of the experiments, we are able to infer themean swimming parameters of an E.coli
population.We refer to appendix B for details of the derivations and only state the final expressions in the
following. Finally we note, while the calculatedmoments and distribution functions are valid for any point
process with arbitrary run-time distribution, the formulas for the autocorrelation functions are only valid for a
Poisson process, which gives an exponential distribution for the run times. In appendix Gwe demonstrate this
for aΓ distribution.

2.2.1. Speed
Themoments = á ñ( )m v tn

V n of equation (2), where the average is taken over all times t and all tracks in the long-
time limit, can be calculated as a function of the reduced parameter set l h s( )r v r, , ,0

2 . For thefirstmoment,
themean speed, we obtain

l
h

s
hl

=
+

⎛
⎝⎜

⎞
⎠⎟ ( )m

r
v

r

v

r
, , ,

1
. 5V

1 0

2
0

Themean speed is smaller than the swimming speed v0 since during the tumble phase speed is reduced by a
factor η.More generally, a recursive formula for the nthmoment is given by

l
h

s

h
=

+ -

+ - -

s

l l

- -⎛
⎝⎜

⎞
⎠⎟

( )

( )
( )m

r
v

r

v m n m
, , ,

1

1 1
, 6n

V n
V

r n
V

nr nr
n

0

2 0 1
1

2 2

2

where the zerothmoment ism0=1 due to normalization.Wenowhave access to all the speedmoments. As an
example, figure 3(a) shows a histogram for the distribution of speed values recorded in an experiment, from
which the speedmoments can be calculated. The orange line represents the distribution obtained from
numerically solving the speed equation (2) using the actual parameters inferred from this experiment. The two
distributions nicely agree, which is an a posteriori verification of our Langevin equation.

From themoments we can only infer the ratiosλ / r andσ2/r. In order to determine the full set of parameters
of equation (2), we also use the speed autocorrelation function for ourmodel. It has an exponential formwith
relaxation rate r+ηλ,

t t= á + - - ñ = D hl t- +( ) [ ( ) ][ ( ) ] ( )( )g v t m v t m ve , 7V
V V r
1 1

2

wherewe have introduced the varianceD = á - ñ( )v v mV2
1

2 . Figure 3(b) shows the autocorrelation function for
the experimental data ofE.coli. Indeed, the curve is well-fitted by an exponential over two decades up to t  s1 ,

Figure 2. (a) Simulated run-and-tumble trajectory of a bacteriumusing the stochastic equations(2) and (3). It starts at the green and
ends at the red triangle. (b) Initial part (from green triangle to the black diamond) of the corresponding time series for speed v(t) and
angular displacementΔΘ(t) during time stepΔt=0.1 s. Tumble initiations aremarked in orange. (c)Experimental time series for
v(t) andΔΘ(t).
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which is around half themean track length. This agreement supports the validity of our stochastic description of
the speed process in equation (2).

2.2.2. Angle
Here, wework directly with the steady-state probability distribution DQ(∣ ∣)p for the absolute angular
displacement DQ∣ ∣during afinite time stepΔt.We determine DQ(∣ ∣)p from equation (3) for the orientation
angle as a function of the reduced parameter set l( )r D D, , T0 . In the long-time limit the probability
distribution DQ(∣ ∣)p becomes stationary and is given by

 
l

l
l

DQ =
+

D +
+

D(∣ ∣) ( ) ( ) ( )p
r

r
D t

r
D t0, 2 0, 2 , 8T0

where  s( )0, denotes the normal distributionwith zeromean and standard deviationσ. For our parameter
inferencewe use the same time stepD = -t 0.1s 1 as in [31].

Figure 4(a) presents a histogram for all angular displacements in time stepΔt recorded in the experiment. It
shows a deviation from the theoretical distribution of equation (8) in the tail at angles larger thanπ/2, which is
visible only in the semi-logarithmic plot. Note that the region b p>∣ ∣ 2 only represents roughly 3%of all
angular displacements. There are two possible reasons for this deviation: First, we record angular displacements
Θ=π+ò as a displacement−(π−ò) sincewe cannot distinguish between tumbles to the right and left during
one time step. Second, it is also possible that the diffusionmodel for tumbling does not apply for such large
angles.

For completeness we also give the nthmoment of the absolute angular displacement, = á DQ ñDQ ∣ ∣mn
n . It

follows directly from the probability distribution of equation (8):

Figure 3. (a)Histogram showing the distribution of speed values for a dataset recorded for E.coli in a control experimentmoving in a
buffermediumwithout any chemical gradient. The orange line shows the distribution from the simulated process using the inferred
parameters. (b)Corresponding speed autocorrelation function gV(τ) of the same dataset. The orange line shows an exponential fit
with relaxation rate a =  -5.1 0.2 sV

1. Inset: semi-logarithmic plot of gV(τ).

Figure 4. (a)Histogram showing the distribution of angular displacementsΔΘ in time stepΔt for the same data set as in figure 3. The
orange line shows the distribution DQ(∣ ∣)p from equation (8) using the inferred parameters. Inset: semi-logarithmic plot of the
distribution. (b) Semi-logarithmic plot of the corresponding directional autocorrelation function gΘ(τ). Green line: linearfit with
negative slope a =Q

-0.33 s ;1 orange line: exponential fit with relaxation rateαΘ=0.32 s−1.
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l
l l

p

=
D

+
+

D
+

-DQ
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨⎪
⎩⎪

( ) ( ) ( ) ( )!!

· ( )

m r D D
D t

r

D t

r
n, , ,

2

1

2

1
1

2
if n is odd

1 if n is even

, 9

n T
T

0
0

n n
2 2

where !!n denotes the double factorial.
Similar to the speed process, we can only infer the ratioλ / r from fits to the probability distribution DQ(∣ ∣)p

of equation (8). In order to determine the full set of parameters of equation (3), we use again the autocorrelation
function of ourmodel, now for the swimming direction e(t). Numerical investigations of ourmodel (see
appendix B.3) suggest that it has a simple exponential formwith relaxation rateαΘ for parameters relevant to the
experiments:

t t= á + ñ µ a t
Q

- Q( ) ( ) · ( ) ( )g t te e e . 10

Analytically, we are not able to calculate this exponential form.However, in the time interval
l t+ < < á ñ- -( )r D1

rot
1 relevant to the experiments, we can derive the linear approximation

t a t
l

t» - » - á ñ -
D

+Q Q
⎛
⎝⎜

⎞
⎠⎟( ) ( )g D

D

r
1 1 11rot

2
rot

and thereby obtain an expression for the relaxation rateαΘ. Here we have introduced the respectivemean á ñDrot

and varianceD D2
rot of the telegraph process ( )D trot ,

l l
l

l

á ñ =
+

+
+

D = á - á ñ ñ =
-
+

( ) ( )
( )

( )

D
D

r

D

r

D D D
D D r

r

1 1

1
. 12

T

T

rot
0

2
rot rot rot

2 0
2

2

Figure 4(b) shows the directional autocorrelation function for the experimental data ofE.colimoving in a
uniformbuffermedium. Indeed, the curve is well-fitted by an exponential up to τ;5 s excluding the first
point. This agreement supports the validity of our stochastic description of the angle process in equation (3). The
deviation in the experimental data for the first point is caused by the offset for angular displacements larger than
π/2, where the experimental distribution function infigure 4(a) deviates from theory. For two andmore time
steps the influence of this offset becomes smaller and smaller.

3. Experimentalmaterials andmethods

3.1. Cell culture
E.coliAW405 strainwas cultured overnight in liquid Tryptone Broth (TB) (10 g l−1Difco BactoTM-Tryptone
and 5 g l−1NaCl) at 37 °Con a rotary shaker at 300 rpm. The cell suspensionwas diluted 1:100 into fresh TB, and
grown tomid-exponential phase (OD600=0.5). Then the bacterial suspensionwaswashed two times in order
to remove any remainingmedium from the growthmedium following [3, 32] and resuspended inmotility buffer
(11.2 g l−1 K2HPO4, 4.8 g l

−1 KH2PO4, 3.93 g l
−1NaCl, 0.029 g l−1 EDTA and 0.5 g l−1 glucose; pH7.0).

Afterward, the cell suspensionwas divided into two fractions. Onewas centrifuged and resuspended in the same
motility buffer, and the other was centrifuged and resuspended inmotility buffer supplementedwith the
chemoattractantα-methyl-aspartate (Sigma-Aldrich, USA) in afinal concentration of 0.5 mM. In both cases,
thefinalOD600 of the cell suspensions was 0.07 before filling them into chemotaxis chambers.

3.2. Chemotaxis assay
In this study, am-Slide Chemotaxis 3D (ibidi,Martinsried, Germany)was used in order tomaintain a stable
linear gradient of the chemoattractantα-methyl-aspartate. This chemotaxis chamber consists of two large
reservoirs connected to a central observation area (seefigure 1(b)). For the chemotaxis assay, the cell suspension
with chemoattractant was filled into the reservoir on the right-hand side and the chemoattractant-free cell
suspension into the reservoir on the left-hand side. The central observation areawasfilledwithmotility buffer
(see appendix A). A stable linear chemoattractant gradient is generated by diffusion in the observation area and
maintained for several hours [33]. For the control assay, both reservoirs were filledwith chemoattractant-free
cell suspension. In this case, a homogeneous environment without any gradient was established in the
observation area.

6
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3.3. Cell imaging and tracking
An IX71 invertedmicroscopewith a 20xUPLFN-PHobjective (bothOlympus, Germany) in phase contrast
modewas used for imaging cell trajectories. Five image sequences were takenwith 10 min intervals between
themusing aOrca Flash 4.0 CMOS camera (Hamamatsu Photonics, Japan). For each sequence, the images were
acquired at 20 frames per second for 30 s. Thefield of the viewwas placed in the center of the gradient region at
30 μmabove the bottomof the chamber (total height in the observation areawas 70 μm).

A customMatlab programbased on the Image Processing Toolbox (version R2015a, TheMathWorks, USA)
was used to process the image sequences automatically. For each image sequence, a background imagewas
calculated by pixel-wise time average projection. It was subtracted from each frame to eliminate non-motile
objects and shading effects. The built-inMatlab function imerodewas then applied formorphological erosion
(with a disk of radius 0.6 μm) to reduce the background noise. The putative bacterial cells are distinguished from
background using themaximumentropy thresholding algorithmbyKapur et al [34]. The thresholdwas
calculated for each image in the sequence separately. Themedian of all threshold valueswas used to segment the
whole sequence. The binary images were further processedwith themorphological operations, imopen and
imclose (with a disk of radius 0.3 μm) to eliminate any noise caused by segmentation. The builtin function
bwconncompwas used tofind all connected objects in the binary images. Size and centroid of the objects were
determined using the regionprops function. Afterwards, particles with an area between 1 and 15.6 μm2were
considered as single bacterial cell. Finally, trajectories were obtained employing the tracking algorithms by
Crocker andGrier [35].

To avoid tracking artifacts caused by tumble events when cells enter and leave the focal plane, the first and
last 0.5 s of each trackwere removed.We use the curvatures of the trajectories tofilter out bacteria that circle
close to the cover slip. The curvature at each data point is calculated and after that themedian curvatures for each
single trajectory. Finally, the trajectories with the highest 5%ofmedian values are removed.We checked that our
results do not change if we go up to 20%.Also, tracks with a total displacement<10 μmwere eliminated, as they
most likely result fromdamaged flagella. Theminimal track length is 0.5 s and themaximal length is 19.35 s. The
control data set consists of 769 tracks with a total length of 1629 s. The gradient data set consists of 3498 tracks
with a total length of 7206 s.

3.4.Heuristic run-tumble analysis
The trajectories were smoothed using a second-order Savitztky–Golayfilter with awindow size of 5 data points

corresponding to 250ms [36]. Instantaneous speed = D
D

v s

t
, direction of propagation θ, and turning rate

w = qD
Dt

were evaluated on the smoothed tracks. The tumble events were detected as described previously

[9, 22, 37]. Briefly, in the time series of speed and turning rate, localminima and localmaximawere detected,
respectively, to identify tumble events. Four parameters, two for the speed and two for the turning rate, were
adjusted such that the recognition of tumble events was correct as checked by visual examination (threshold
parametersα=3 andβ=6.5 and tumble duration parameters 0.55×Δv and 0.65×Δω, see the supporting
information S5 in [22]).

4. Results: inference of swimming parameters

Weare now equipped to infer the swimming parameters from experimental data for different experimental
settings.We first illustrate the inferencemethod by applying it to a control experiment, where E.coli swims in a
homogeneous buffer solution.We validate the inferencemethod by comparing the inferred parameters to their
values determined by a heuristic tumble recognizer. Thenwe demonstrate that ourmethod also reveals the
chemotaxis strategy ofE.coliwhenmoving in a chemical gradient. In particular, we apply it to data, whichwas
recorded in a linear gradient ofα-methyl-aspartate.

4.1.E.coli in a uniform environment
Figures(3) and (4) showdistributions and autocorrelation functions for speed and angular displacements
recorded for E.coliwhen swimming in a homogeneous buffer without any chemical gradient. Note that speed
and angle inference are performed separately from each other but they are linked by the tumble rateλ and the
inverse tumble time r.

4.1.1. Speed inference
From the histogramof the recorded speed values infigure 3(a)wedetermine themoments of the experimental

speed data: å å-
=

-
=≔ [ ( )]m N T v tn

v
i

N
i t

T
i

n,exp 1
0

1
0

i . The sums are taken over all tracks i=0,K,N and all times t,
whereTi is the length of track i. Figure 3(b) shows the exponential fit to the speed auto-correlation function,
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which yields the experimental relaxation rate a = -  -5.1 0.2 sV
1. Note that the error estimate and all the

following ones are obtained by themethod of bootstrapping (see appendix C formore details).Wematch the
first eight speedmoments and the relaxation rate to the their theoretical expressions of equations (5)–(7) and
obtain 9 nonlinear equations for the speed swimming parameters.We solve these equations numerically using a
simplex-downhill optimization algorithm from the python package scipy.

4.1.2. Angle inference
Independently, wematch the theoretical distribution function for the angular displacement (given in
equation (8)) to the experimentally recorded histogram infigure 4(a) and thereby extract the parametersD0,DT,
andλ/r.We perform the fit up toΔΘ=π /2 to avoid the offset for angular displacements larger thanπ/2. Last,
bymatching the experimental relaxation rateαΘ of the directional autocorrelation function to the theoretical
expression of equation (11), we obtain the full set of parameters (see also equations (B33) and (B34) in
appendix B.2). Figure 4(b) shows the linear fit with relaxation rate a = Q

-0.33 s 0.021 (green line) and the
exponential fit with rate a = Q

-0.32 s 0.011 (orange line) in a semi-logarithmic plot.

4.1.3. Inferred parameters
Table 1 gives an overview of the inferred swimming parameters for the two stochastic processes for speed and
angle. The two inferred tumble ratesλ are very close together and the inverse tumble times r agreewithin the
error bars. Our results are in good agreement with tumble rateλ=0.84 s−1 and swimming velocity

m= -v 20.7 ms0
1determinedwith a heuristic tumble recognizer (see section 3.4 and [22]). This validates our

inferencemethod.Moreover, our findings are in good agreementwith previouslymeasured tumble rates
[3, 9, 22] and swimming speeds [38]. The inferred value for the thermal rotational diffusivityD0 agrees with
previously reported values in the literature, which range from0.06 s−1 [20, 22] to 0.18 s−1 [39].

We use the enhanced rotational diffusion coefficient = -D 2.31 sT
1 and the inverse tumble time

r=3.81 s−1 of the angle stochastic process to determine the distribution function of absolute tumble angles,
b(∣ ∣)P , by recording the angular displacement for exponentially distributed tumble timeswithmean r−1. The

corresponding three-dimensional distribution function is obtained bymultiplying the two-dimensional
quantity with bsin from the solid angle element. The resulting distribution is shown in orange infigure 5 for
b p<∣ ∣ . It has amaximumatβmax=0. 78=45° and themean tumble angle is bá ñ = = ∣ ∣ 1.06 61 , which are
remarkably close to the valuesβmax=45° and bá ñ = ∣ ∣ 62 from [3]. The shape of the distribution function is
similar to the one obtainedwith the heuristic tumble recognizer (blue bars). Also, themaximumvalues are very
close.While themain characteristics of the two curves agree well, the heuristic tumble recognizer determines
more tumbles for angles close toπ. As a result, itfinds a largermean tumble angle bá ñ = = ∣ ∣ 1.43 82 . This
might be explained as follows. Some tumbles occur only in one time interval, where one cannot distinguish
between a leftward tumble angle b̃ and a rightward tumble b p-∣ ˜ ∣2 . Thus, the heuristic tumble recognizer
chooses always the smaller angle and, therefore, the distribution of tumble angles close toπ is enhanced. In
contrast, our inference for the angle process only uses angular displacements up toπ/2 and thereby avoids
differences ofP(ΔΘ) between theory and experiment for values larger thanπ/2 , as discussed in connectionwith
figure 4(a). Therefore, we think that our inferred tumble angle distribution gives a better account of b(∣ ∣)P .

Compared to literature we define the tumble time differently by setting t = -rt
1. Usually, one employs a

tumble recognizer and identifies the tumble state when the angular displacement (per time step) exceeds a
threshold value [3, 7, 8, 16]. The duration of this period is then the tumble time (see alsofigure 6(a)), for which
values of τt=0.12 s and 0.14 sweremeasured using different thresholds [3, 8]. However, this procedure
underestimates the duration of a tumble event, which starts when aflagellum leaves the bundle and endswhen it
returns to the bundle. At the beginning and end of this period the angular displacement (per time step) can of
course be below the given threshold value. Indeed, [16] showed that the duration of a tumble event obtained

Table 1. Inferred parameters for the stochastic processes of speed and angle
forE.colimoving in a buffermediumwithout a chemical gradient (control
experiment).

Speed Angle

λ 0.83±0.04 s−1 λ 0.84±0.02 s−1

r 4.41±0.3 s−1 r 3.81±0.3 s−1

v0 20.8±0.2 μm s−1 D0 0.09±0.002 s−1

s
r

2
5.11±0.07 μm s−1 DT 2.31±0.12 s−1

η 0.85±0.01
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fromvisualizing the flagellar dynamics during tumbling is significantly larger than the time determined by
tumble recognizers.

In contrast to tumble recognizers, ourmethod defines the tumble time as the inverse relaxation rate
t = -rt

1. This is amore rational quantification of the tumble timewithout the need of an a priori threshold
value. Tumbles are initiatedwhen the speed jumps below the swimming speed and they endwhen the speed has
relaxed back to the swimming speed.We argue that the higher value τt=0.23 s obtained by ourmethod
describes the tumble processmore precisely.

4.2. Chemotaxis
Next, we apply ourmethod to experimental data ofE.coli recorded in a constant gradient of a chemoattractant
concentration. Conditioning the analysis on the swimming direction, we are able to determine how the
swimming parameters depend on the orientation or swimming angle θ. Thus, we divide the experimental data
into eight subsets or sectors each spanning a range of orientation angles centered at q p= n2 8n for n={0, 1,
K, 7 }. Here, θ=0, 2πmeans swimming up the gradient and θ=π against the gradient. In practice, instead of
dividing the data for the orientation angle into 8 disjunct sectors, we use smoothweighting based onGaussian
kernels as in [22] (for further details see appendixD).

Figure 7 shows the results from applying our inferencemethod to themoments of speed and to the
distribution of angular displacements. Graph (a) plots the tumble biasλ/r, the ratio of tumble time to run time,
versus orientation angle. It is loweredwhen swimming up the gradient (θ=0, 2π) and increasedwhen
swimming down the gradient (θ=π). This confirms the classical chemotaxis strategy. The curves from angle
inference (orange) and speed inference (blue) show good agreement. Again, we recognize that both inference
strategies give coherent results, even though they are performed independently from each other. Infigure 7(b)
the rotational diffusion coefficientDT during tumbling also depends on the swimming direction. It is lowered
when swimming up the gradient and increasedwhen swimming down the gradient. This suggests angular

Figure 5.Comparison of the two tumble angle distributions b(∣ ∣)P measured by the heuristic tumble recognizer (blue bars) and
determined from the stochastic process for the orientation angle using the inferred parametersDT and r from table 1 (orange line). The
distribution determined from theory has amaximumatβmax=0. 78=45° and themean tumble angle is bá ñ = = ∣ ∣ 1.06 61 .

Figure 6. (a)Usually, the tumble time τt is defined as the periodwhere the angular displacement per time step exceeds an a priori
threshold value. (b) In ourmethod the tumble time is the inverse speed relaxation rate r−1.
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persistence or a reducedmean tumble angle, when swimming in a favorable direction, as a chemotaxis strategy.
It was already reported in [8, 22].Wewill commentmore on this strategy in the following.

Adding the speed autocorrelation function to the parameter inference, we investigate whether tumble rateλ
and tumble time r−1 are separatelymodulated during chemotaxis. Figure 8 shows the results for the speed
parametersλ, r, v0,σ. Indeed, we recover the classical chemotaxis strategy in plot (a)with a strong reduction of
the tumble ratewhen swimming up the chemical gradient. The tumble rate for θ=0 is less than half of the
tumble rate for θ=π. The same trend occurs for the tumble time r−1, which increases when swimming down
the gradient. This bias in tumble time togetherwith the same trend for the diffusion coefficientDT found above
confirms a bias in themean tumble angle bá ñ. It is enhancedwhen swimming in an unfavorable direction, which
confirms the alternative chemotaxis strategy identified in [8, 22]. No significantmodulations are visible for the
swimming speed v0 plotted in (c). So there is no chemokinesis. The same applies to the jumpheight η, which is
shown infigure E1 of appendix E. In the last plot (d)we report a bias in speed fluctuations. The swimming speed

Figure 7. (a)Tumble biasλ / r conditioned on the swimming angle θ and determined either by angle inference (orange) or speed
inference (blue) forE.coli in a linear gradient of chemoattractant (α-methyl-aspartate). (b)Rotational diffusion coefficientDT during
tumbling conditioned on the orientation angle θ. The bacterium swims up the gradient for θ=0, 2π and down the gradient for
θ=π.

Figure 8. Inferred parameters of the speed process conditioned on the swimming angle θ and inferred from the same experiment as in
figure 7.We recover the bias of tumble rate in (a),find a bias in tumble time r−1 in (b), no chemokinesis in (c), and a novelfluctuation
bias in (d). The bacterium swims up the gradient for θ=0, 2π and down the gradient for θ=π.
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is significantlymore volatile when swimming up a chemical gradient compared to swimming against it.We are
not aware that this has been reported so far and it is also not clear to uswhat purpose it serves.

5. Conclusions and outlook

In this article, we provide a detailed stochastic description of the swimmingmotion of anE.coli bacterium in two
dimensions, wherewe also resolve tumble events in time.We set up an overdamped Langevin equation for the
speed dynamics, which contains three terms associatedwith drift, diffusion, and jumps that initiate a tumble
event. A second Langevin equation for the angular dynamics describes rotational diffusion of the orientation
angle, where the diffusion coefficient alternates between its thermal value during run phases and an enhanced
value during tumbling. The transition between both phases is described by a telegraph process. An analysis of
experimental data verifies our description a posteriori: distribution and autocorrelation functions for both speed
and orientation angle agreewith theoretical predictions fromourmodel andwith numerically determined
functions using the inferred swimming parameters.

We considerably extent earlier work [22] by resolving tumble events in time and by incorporating a
stochastic process for the speed dynamics. Based onmoments aswell as distribution and autocorrelation
functions, we provide a robustmethodology for inferring the full set of swimming parameters that characterize
the run-and-tumblemotion. The inferred swimming parameters are the tumble rateλ, the tumble time r−1, the
swimming speed v0, the strength of speed fluctuationsσ, the jumpheight η, the thermal value for the rotational
diffusion coefficientD0, and the enhanced coefficient during tumblingDT. Although the inference of angle and
speed parameters are carried out completely independent from each other, they show good and very good
agreement for the two common swimming parameters, r andλ, respectively.

We validated our results by comparing the swimming parameters to the results of a heuristic tumble
recognizer and obtained good agreement. However, our approach of inferring parameters has three advantages.
First, it does not need to set a priori threshold parameters for speed and angular displacement. Second, it is able
to infer the strengthσ of speed fluctuations and the thermal rotational diffusion coefficientD0. Third, it provides
amore rational and precise choice for the tumble time that encompasses thewhole tumble event instead of just
the part which is determined by threshold parameters.

The inferencemethod allows to condition the swimming parameters on a specific situation andmonitor
how they changewith the situation by dividing the full data set into subsets. In particular, while conditioning on
the swimming direction, we are able to confirm the classical chemotaxis strategy, whichmodulates the tumble
rateλwhen changing the swimming direction relative to the chemical gradient.We also confirm the recently
discoveredmodulation of themean tumble angle (angle bias) [8]. Resolving the tumble event in time, we realize
that this angle bias is due tomodulations of both the tumble time and the enhanced rotational diffusivity during
tumbling. This has not been reported so far. As the tumble rate we expect the tumble time to be determined by
the internal chemotaxismachinery ofE.coli, whichmonitors the changing chemoattractant concentration
during swimming. The higher rotational diffusivity during a tumble phase, which follows swimming against the
gradient,may be caused bymoreflagella leaving theflagellar bundle, as argued in [23]. Finally and also not
reported so far, we show that speed fluctuations are larger by 30%whenE.coli swims up the chemical gradient.

Ourmethod of conditioning can be applied to other quantities, for example, the concentration c of the
chemoattractant. In particular, the tumble rate of a bacterium,which is adapted to a chemoattractant, should
not depend on the concentration c [40]. In an earlier analysis of experiments we already verified this forE.coli
andPseudomonas putida [41]. Other possible conditions explore the biological variability in properties such as
the swimming speed v0 of a bacteriumor its size.

In the followingwemention some further directions, where ourmethod of inference can be applied or needs
to be extented. Recent experimental techniques allow to record tracks of length of the order of 100 s [12, 15].
Such long tracks are in the range of theminimal amount of data needed so that our inference technique is
applicable (see appendix F). Therefore it should be possible to apply our inferencemethod to individual
trajectories in the future. This can then reveal and quantify heterogeneities in a bacterial population.

To apply themethod of inference to other bacterial swimmingmechanism, the Langevin equations (2) and
(3)need to bemodified. For example, run-reverse bacteria such as the soil bacterium Pseudomonas putida,
possess a tumble angle distributionwith a sharp peak centered aroundπ [37]. Themarine bacteria Vibrio
alginolyticus has a bimodal distribution of tumble angles with twomaxima asmeasured in [42]. In both cases,
rotational diffusionwith an enhanced diffusivity cannot reproduce such distributions. A possibility to address
these cases is to extend the approach of [22]. There, instantaneous tumblingwasmodeled by a shot noise process
with a delta-peaked angular turning rate and tumble angles drawn froman appropriate distribution. Broadening
the delta function to aGaussian functionwith the tumble time τt as standard deviation, one can again resolve the
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tumble event in time. Furthermore, an elaboratemodel of the speed dynamics forPseudomonas putida should
include the alternating swimming speeds reported in [37], which belong to different swimmingmodes [17].

Once suchmodels are established, the inferencemethod provides a rational way of analyzing experimental
data in order to determine the relevant swimming parameters and to understand important processes such as
chemotaxis by conditioning the available data on subsets. Thus, in this article we have introduce a powerful
methodology for analyzing properties of bacterial populations, which can handle large amounts of
experimental data.
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AppendixA. Chemotaxis chamber

Figure A1 presents a layout of the chemotaxis device used to quantify the chemotactic response ofE.coli.

Appendix B.Derivation ofmoments, autocorrelation anddistribution functions

Wepresent detailed derivations of stochastic properties of the two Langevin equations (2) and (3), whichwe
mention in themain text. First, we derive expressions for themoments and the autocorrelation function of the
speed process. Second, we present the probability distribution function (pdf), themoments, and the
approximation for the directional autocorrelation function of the angle process.

B.1. Speed
In order to perform the derivations, we rewrite Langevin equation (2) as a stochastic differential equation (SDE)
usingmathematical notation:

s h= - + - l( ) ( )v r v v t W v Nd d d d . B1t t t t t0

Here, we define the Poisson process where =lNd 1t occurs with probabilityλ dt for each time step indicating
the start of a tumble and =lNd 0t otherwise.Moreover, we introduce theWiener process dWt. Integrating
equation (B1) and splitting the Poisson process into a deterministic part and afluctuating part

Figure A1. Layout of the chemotaxis device. The chemotaxis chamber consists of two large reservoirs connected to a central
observation area. In this study, both right and left reservoirs werefilledwith bacterial cell suspension. The chemoattractantα-methyl-
aspartate was added to the right-hand side reservoir. A linear, stable chemoattractant concentration profile was established across the
central gradient regionmarked in blue. The bacteria were observed by videomicroscopy in thefield of viewmarked in red. Figurewas
adapted from [22].
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l= +l l˜N t Nd d dt t [43] yields

ò ò ò òs h l h= - + - - l( ) ˜ ( )v r v v s W v s v Nd d d d . B2t

t

s

t

s

t

s

t

s t
0

0
0 0 0

Note that the second and fourth termon the rhs aremartingales [43]. Thus, their expectation values vanish.We
will use this property when calculating themoments and autocorrelation function of the speed variable. Taking
the expectation value á¼ñon both sides, we obtain the firstmoment:

ò hl= á ñ = - + á ñ( ) ( )m v rv t r v sd . B3t

t

s1 0
0

To ease the notation, we dropped the superscriptV from themain text. Taking the time derivative on both sides,
we obtain a non-homogeneous ordinary differential equation (ODE):

hl= - +( ) ( )m

t
rv r m

d

d
. B41
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Its full solutionwith initial valueC at time t0 reads
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Taking the long-time limit  ¥t , we recover the equation (5) from themain text.
Next, we calculate the nthmoment = á ñm vn

n . Using Ito’s lemma [44], wefirst formulate a SDE for an
arbitrary function f (vt) of the speed variable:

s
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Here, -vt denotes the value right before a jump. Setting =( )f v vt t
n, integrating equation (B6), and taking the

expectation value on both sides yields:
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wherewe again extracted the deterministic part of the Poisson process and allmartingales dropped out. Taking
the time derivative on both sides, we obtain anODE,which also contains the lower-ordermoments -mn 1 and

-mn 2:

l h

s

= + - - -

+
-

-

-

( [( ) ] )

( ) ( )

m

t
nrv m nr m

n n
m

d

d
1 1

1

2
. B8

n
n

n
n

n

0 1

2
2

The solution of thisODE in the long-time limit  ¥t , where =m td d 0n , yields equation (6) in themain text
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Finally, we calculate the speed autocorrelation function = á - - ñ( ) ( )( )g s t v m v m, s t1 1 of equation (B1).
We define the probability distributions for the speed process ¢( )P v and the conditional probability ¢( ∣ )P v t v s, ,
of having v at time t given that we have ¢v at time s and obtain

ò
ò
ò
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wherewe have have used equation (B5)with = ¢C v in the second last step.We recover equation (7) after setting
s=t+τ. Identifying the relaxation rateαV, we canwrite the following formulas forλ and r:
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B.2. Angle
We rewrite the Langevin equation (3) from themain text as a SDEusingmathematical notation:

Q = ( )D Wd 2 d . B13t t t

The SDE contains two stochastic processes: the telegraph processDt, wherewe drop here the subscript rot used
in themain text, and thewhite noise process dWt. These two processes are stochastically independent of each
other. Thus, themoments for the angular displacement during time stepΔt factorize into contributions from
each process

á DQ ñ = á ñá D ñ∣ ∣ [ ] ∣ ∣ ( )D W2 . B14n
t t

nn
2

The pdf D( )p Wt and the absolutemoments of thewhite noise incrementsΔWt during time stepΔt are given by

D = D( ) ( ) ( )p W t0, , B15t
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where  s( )0, denotes the normal distributionwith zeromean and standard deviationσ and !!n denotes the
double factorial.

For the telegraph processDtwith statesD0 andDT, the two probabilities for being in one of the states at time t
obey the followingmaster equations:

l
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Here,λ is the transition rate fromD0 toDT and r the transition rate for the reverse process. The variableC
indicates the initial condition at time t0.Wefirst state the pdf p(D) in the long-time limit  ¥t aswell as the
auto-correlation function á ñD Dt s from literature [25]:
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In the last equationwe have introduced themean á ñD and the varianceΔ2D in the long time limit. They are
given by
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Themean value ofDt for any time twith initial conditionC at time t0 is given by
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Wecan use the pdf p(D) to calculate thefirst factor on the RHS of equation (B14) in the long time limit
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Inserting this expression and equations (B16) in (B14) leads to equation (9) stated in themain text.
The pdf of the absolute angular displacement DQ(∣ ∣)p can be calculated straightforwardly. Using the

independence of the two stochastic processes and combining equations (B15), (B17), and (B18), we obtain

 
l

l
l

DQ =
+

D +
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r
D t0, 2 0, 2 . B24T0

This agrees with equation (8) from themain text.
Finally,we calculate the directional autocorrelation function t t t= á ñ = á Q - Q ñ( ) ( ) · ( ) ( ( ) ( ))g e e 0 cos 0 .

Integrating equation (3) andusing the real partR of theEuler identity = +( ) ( )x xe cos i sinxi yields:
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The term in the real part operator can be interpreted as the characteristic function of the random variable
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for wavenumber k=1. Using themoment representation of the characteristic function,

we obtain
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wherewe have defined themoments = á ñm Xn
n . For symmetry reasons, the oddmoments vanish

=+ ( )m 0, B27n2 1

and the real part operator can be skipped. First, we calculatem2, wherewe use again the independence of the two
stochastic processes dWt andDt in the second line
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Next, we calculate the fourthmomentm4, wherewe use the correlation function of equation (B19) in the fourth
line:
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Truncating the sumof equation (B26) for n>4 , wefinally obtain:
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This form suggests a slope-á ñD of the correlation function for times t l< + -( )r 1, which in our casemeans
τ<0.2 s and is just valid for the very initial time range of the correlation function. From equation (B31)we can
extract another linear approximation by concentrating on the time range l t+ < < á ñ- -( )r D1 1. It gives
equation (11) from themain text

t
l

t= - á ñ -
D
+Q

⎛
⎝⎜

⎞
⎠⎟( ) ( )g D

D

r
1 , B32

2

fromwhichwe obtain an expression for the relaxation rateαΘmeasured in experiments. It is determined by á ñD
and the second term in the brackets is a correction. But it is sufficient to determine separate values for r andλ,
when r /λ is known from the analysis of the pdf DQ(∣ ∣)p . Solving the equation forαΘ for eitherλ or r, we obtain
the formulas
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2

B.3.Numerical investigations of the directional autocorrelation function
The directional autocorrelation function t t= á ñQ( ) ( ) · ( )g e e 0 has an exponential form in experiments up to
ca. 2s (seefigure 4). Here, we validate this dependence by numerically solving equation (3)with the inferred
parameters of table 1. The semi-logarithmic plot infigure B1(a) shows the resulting autocorrelation function
(blue data points). It is in good agreementwith the exponential decay of equation (10) using the relacation rate
αΘ from equation (11), whichwe derived in the previous section in equation (B32). This validates our
proposition for the relaxation rate.

Moreover, we can further validate the exponential fit to the experimental directional autocorrelation
function using the theoretical value for the relaxation rate. After having inferred the reduced parameter set
l( )r D D, , T0 as described in themain text using the pdf Q(∣ ∣)p , we determine the directional autocorrelation
function by simulating the angle process with the reduced parameter set for different values of the parameterλ.
Figure B1(b) shows themean squared errorΣ of the simulated autocorrelation function compared to the
experimental function plotted versus the tumble rateλ. The bestmatch is for aλ very close to the value shown in
table 1, whichwas determined using the theoretical prediction of equation (11) for the relaxation rateαΘ.

AppendixC. Themethod of bootstrapping

Bootstrapping allows to derive an estimate of the standard deviation of the inferred parameters without the need
of repeated experiments [45]. Similar to [22], we create synthetic ensembles by randomlymixing subsets of the
original data set. Let = ¼{ }T t t, ., N0 1 be the set of original trajectories. PullingN random trajectories of this set
and laying themback after each pull, one obtains a bootstrap sample = {˜ ˜ }T t t,..., N1 1 , where single trajectories
can appear several times.We createK=100 of these bootstrap samples, apply our inference technique to each
sample, and obtain a distribution of values for each swimming parameter. The error bars in themain text are the
standard deviation from themean of each swimming parameter.

Figure B1. (a) Semi-logarithmic plot of the directional autocorrelation function from a numerical solution of equation (3) using the
inferred parameters from table 1 (blue data points). The orange line shows an exponential decaywith the relaxation rate from
equation (11). (b)Mean squared deviation between the simulated directional autocorrelation function t t= á + ñQ( ) ( ) · ( )g t te e
and the experimental curve for different tumble ratesλ. The globalminimumatλ=0.81 s−1 verifies the use of the theoretical
expression (11) for the relaxation rate.
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AppendixD. Smoothweighting of data

The conditioning of section 4.2 needs the division of the data in different sectors. Instead of a discrete division,
we use thewhole data set for each sector but weight the data by aGaussian kernel similar to [22]. The speed
moments forN experimental trajectories when conditioning on a specific swimming angle θ are then calculated
according to

å å

å å
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wherewe have introduced thewidth of a section,Δθ=0.125π, and their centers θ. Note that we use the actual
orientation angleQ - D( )t t2i of the second previous time step to calculate themoments. Tumble events have a
finite duration of around 2Δt and this ensures that thewhole tumble is connected to the condition of the
previous run. The sameGaussian kernels are appliedwhenwe calculate the histogramof angular displacements
and the autocorrelation functions for speed and direction.

Appendix E. Jumpheight conditioned on swimming angleθ.

Figure E1 shows the relevant plot. There is no systematic dependence of η on the swimming angle.

Appendix F.Minimal amount of required data

Figure F1 shows the results of our inferencemethod for the thermal rotational diffusion constantD0, whenwe
vary the total lengthT of the data set, whichwe use for the inference.We reduced the total length of dataT by
randomly eliminating trajectories. Theminimal amount of data required for our inferencemethod towork is
found to be * =T 145 s. For shorter lengths the inference technique no longer generates an estimate.Wemake
our point usingD0. However, we also checked that the other parameters stay in the ranges reported in table 1.

AppendixG.Moments and autocorrelation function for gamma-distributed run times

FigureG1(a) shows the theoreticalmoments of equations (5) and (6) (blue stars) and numerical values from
simulations, where the speed process uses gamma-distributed run times (orange stars) in equation (4) instead of
a Poisson process. AΓ process has been found for the run times of themarine bacterium Pseudomonas putida
[37] or the switchingmechanismof theflaggelar rotarymotor ofE.coli [46]. Indeed, we can derive equations (5)
and (6) also for aΓ process. This follows fromWald’s equation and the Blackwell’s theorem [47] (see also S6 in
supplementalmaterial of [22]). In contrast, the formula of equation (7) for the speed autocorrelation function is
not valid for gamma-distributed run times, as the simulated function (orange line) infigureG1(b) shows.

Figure E1. Jumpheight η conditioned on swimming angle θ.
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AppendixH. Additional validation: applying the inferencemethod to other experimental
configurations

In this section, we apply ourmethod to different experimental situations and thereby demonstrate its validity.

H.1. Serine as chemoattractant
Weapply ourmethod to experimental data where E.coli swims in a uniform concentration c0 of the
chemoattractant L-serine. Cells were harvested andwashed two times in themotility buffer enrichedwith the
chemoattractant L-serine (Sigma-Aldrich, USA) atfinal concentrations c0=1, 10, 100, and 1000 μM.
FigureH1(a) shows the normalized tumble rateλ /λ* andfigureH1(b) shows the normalized swimming speed
*v v0 0 both as a function of the serine concentration.Here,λ* and *v0 denote the reference values from the

control experiment without any chemoattractant. First of all, the parameters determinedwith the help of the
tumble recognizer and our inferencemethod agreewell within the error bars. Our results for the tumble rate are
in qualitative agreementwith previousmeasurements, see figureH1(a). Except for the data point at
c0=100 μMour data shows a decreasing tumble rate in higher concentrations of serine as in [3, 48]. Currently,
we have no explanation for the outlier at c0=100 μM,which needs further investigation.Within error bars, our
results for the swimming speed shown infigureH1(b) are similar to those obtained for the E.coliRP437 strain
[48, 49], in particular we do not see the 40% increase in swimming speed ofE.coliAW405 in serine reported by
[3], neither.We emphasize that both analysismethods, heuristic tumble recognizer and our inferencemethod,

FigureG1.Moments of the speed process (a) and the speed autocorrelation function (b) calculated from equations (5)–(7) (blue) and
simulatedwith gamma-distributed run times (orange).

Figure F1.Thermal value of rotational diffusion constantD0 plotted versus the total lengthT of the data set used in the inference.
BelowT*=145 s the fitting procedure does no longer terminate.
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do not show this increase. Thus, we conclude that ourmethod is also applicable for experiments in serine. The
lack of the increase in swimming speed is an experimental issue and goes beyond the scope of this paper. A
potential reason could be the differentmotility buffer used in our experiments compared to the one in [3].

H.2.Different growthmedium
Weapplyourmethod to experimental data fromourpreviouswork [22]. A similar experimental set-up to the gradient
experiment from themain textwasused except for the growthmedium,whichwasLysogenybroth (LB) insteadof TB.
Ourmethod infers a tumble rate ofλ=0.37±0.02 s−1 anda swimming speedof m=  -v 18.1 0.2 m s0

1. This is
in agreementwith the tumble rate determined in [22] (λ=0.39±0.03 s−1) and the swimming speed,whichwe
obtainedusing theheuristic tumble recognizer ( m=  -v 18.0 0.1 m s0

1). Thus, ourmethodalso reproduces
essential parameters in adifferent growthmedium,wherebacteria tumble less often.
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