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Abstract: Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that
foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely
prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants
develop necrotic lesions, plants pre-treated with SF (i.e., primed plants) were unaffected by PQ.
Transcriptome analysis revealed induction of reactive oxygen species (ROS) marker genes, genes
involved in ROS-induced programmed cell death, and autophagy-related genes after PQ treatment.
These changes did not occur in PQ-stressed plants primed with SF. In contrast, upregulation of
several carbohydrate metabolism genes, growth, and hormone signaling as well as antioxidant-related
genes were specific to SF-primed plants. Metabolomic analyses revealed accumulation of the
stress-protective metabolite maltose and the tricarboxylic acid cycle intermediates fumarate and
malate in SF-primed plants. Lipidome analysis indicated that those lipids associated with oxidative
stress-induced cell death and chloroplast degradation, such as triacylglycerols (TAGs), declined upon
SF priming. Our study demonstrated that SF confers tolerance to PQ-induced oxidative stress in
A. thaliana, an effect achieved by modulating a range of processes at the transcriptomic, metabolic,
and lipid levels.

Keywords: Ascophyllum nodosum; Arabidopsis thaliana; biostimulant; paraquat; priming; oxidative
stress tolerance; reactive oxygen species

1. Introduction

Oxidative stress in plants occurs as a consequence of many abiotic stresses including extreme
temperatures, drought, salinity, osmotic stress, and pollutants (e.g., heavy metals or herbicides) [1–5].
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Abiotic stress-induced oxidative stress, manifested as an increased production of reactive oxygen
species (ROS), has detrimental effects on plant growth, inhibits photosynthesis, leads to cell damage,
and, in the most severe cases, results in the activation of programmed cell death [6]. The herbicide
paraquat (PQ) causes oxidative stress by accepting electrons from the reduced end of photosystem I
and transferring them to molecular oxygen, thereby generating superoxide radicals, which in turn
are converted to hydrogen peroxide by superoxide dismutases (SODs) [7,8]. Paraquat is widely
used to study the effects of oxidative stress to isolate mutants and investigate the functions of
genes involved in ROS detoxification pathways [7,9–13]. In addition to SODs and other antioxidant
enzymes that are part of the elaborate antioxidant defense network, plants employ various molecular
strategies to counteract oxidative stress and minimize its detrimental effect, including the accumulation
of osmoprotectants and compatible solutes, stress protective proteins such as late embryogenesis
abundant (LEA) proteins/dehydrins, heat shock proteins (HSPs), and an activation of cellular repair
mechanisms [8,14,15].

Molecular priming is a phenomenon by which biologically active molecules activate plant
defense mechanisms and secure tolerance against a subsequent stress. For example, application of
hydrogen peroxide (H2O2) at low doses can lead to tolerance against oxidative stress induced during
chilling, high light, and toxicity due to the presence of heavy metals and pathogens in many plant
species [5,16–20]. Molecular priming is similar to the process of acclimation, where application of a
mild stress, for example, at a low temperature can protect plants against subsequent, more severe stress
events (e.g., chilling/freezing) [3,4]. Both molecular priming and acclimation alter transcriptomes and
metabolomes, resulting in molecular re-adjustments that are necessary and sufficient to provide stress
protection [21]. Although not deeply studied yet, a re-adjustment of the lipidome is an important part
of the metabolome that captures the entirety of lipids in a biological system [22,23].

“Biostimulants” or “plant strengtheners” are considered metabolic enhancers other than fertilizers
and are being used worldwide to enhance crop resistance to various stresses while also enhancing plant
growth and performance [24–27]. A wide range of biostimulants are commercially produced using
brown seaweed species such as Ascophyllum nodosum as a raw material [28]. However, based on the
extraction methodology used and the quantity and availability of bioactives present in the extracts, they
can exert different effects with respect to plant growth and stress mitigation [28,29]. SuperFifty® (SF) is
a commercially available biostimulant which contains highly concentrated A. nodosum extract (500 g/L)
produced in an extraction process at high temperature and pressure [29]. Experiments using SF have shown
its effectiveness in reducing abiotic stress and increasing plant growth [29]. However, the molecular mode
of action that leads to improved stress tolerance is currently unknown. One possibility is that different
bioactive compounds present in A. nodosum extracts work synergistically to modulate innate pathways for
biosynthesis of endogenous phytohormones. This may influence developmental processes, resulting in
increased photosynthetic efficiency and delayed senescence in treated crops [30–32]. Ascophyllum extracts
contain a range of organic compounds such as laminarin, fucoidan, polyphenols, mannitol, and alginates [33].
These diverse molecules including uncommon or unique polysaccharides could potentially prime and
elevate stress tolerance in plants and improve plant growth. Ascophyllum extracts can reduce drought stress
in tomato [34] and alleviate drought and salinity stress in Arabidopsis [31,35]. An in-depth understanding
of the molecular mechanisms through which these extracts induce stress tolerance is required for accurate
applications in agriculture.

We hypothesized that SF increases abiotic stress tolerance in plants by inducing pathways
associated with the reduction of oxidative stress. To test this hypothesis, the efficacy of SF was
examined in a PQ-induced oxidative stress model in Arabidopsis thaliana, involving an in-depth
“OMICs” characterization of the responses of treated plants at transcriptome, metabolome, and lipidome
levels. We showed that SF markedly increased tolerance to oxidative stress in Arabidopsis. This was
accompanied by transcriptome reprogramming and metabolome (including lipidome) readjustments,
resulting in the upregulation of defense genes, repression of cell death-associated genes, and increased
levels of stress-protective metabolites.
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2. Results and Discussion

2.1. SF Protects Arabidopsis from Oxidative Stress

Oxidative stress was induced by spraying twenty-three-day-old A. thaliana Col-0 plants with 15
µM PQ (Figure 1). Only PQ-treated plants developed large visible necrotic lesions within one day
after treatment (Figure 1A). The presence of cell death was demonstrated by trypan blue staining
(Figure 1B). To investigate the protective role of SF, Arabidopsis plants were pre-treated or primed with
0.1% SF six times on two consecutive days prior to the day of the PQ treatment. The SF-primed plants
subjected to the subsequent PQ treatment did not develop any necrotic lesion on the leaves (Figure 1A),
and trypan blue staining did not detect dead cells (Figure 1B), demonstrating that SF fully protects the
plants from PQ-induced oxidative cell death. Cell death was further quantified by monitoring the
electric conductivity of solutions in which rosette leaves from treatment groups and untreated controls
were immersed (Figure 1C; Supplementary Materials Data S1). Severe ion leakage was observed in
PQ-treated plants, likely due to the ROS-induced oxidative damage [36]. However, when SF-primed
plants were challenged with PQ, no increase in ion leakage was observed. Our results demonstrate
that SF priming improved cell membrane integrity, reducing cell death induced by PQ.
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Figure 1. Arabidopsis tolerates oxidative stress upon SuperFifty (SF) priming. (A) Rosette phenotype
of four-week-old plants pretreated and treated, respectively, with H2O and H2O (unprimed and
unstressed), H2O and PQ (paraquat; oxidatively stressed), SF and H2O (SF-primed, but unstressed),
and SF and PQ (SF-primed and oxidatively stressed); for details, see Materials and Methods. (B) Trypan
blue stained leaves of the plants from panel (A). Blue-stained regions (arrows) of leaves in the top-right
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panel show dead cells after PQ (15 µM) treatment; such cell death areas are not visible in leaves
primed with SF and then treated with PQ (bottom right panel). Leaves are representative examples
from 30 plants in each condition. Scale bar is 10 mm and 5 mm in panels (A) and (B), respectively.
(C) Cell death quantified by measuring electrolyte leakage from leaves. Conductivity was determined
48 h after incubation of two leaves from individual rosettes in 25 mL deionized water for 12 h.
Mean values are averages of three independent experiments with each point on the graph representing
individual experimental replicates. In each experiment, ten rosettes were analyzed per treatment.
Mean values were compared between groups by applying one-way ANOVA followed by Tukey’s
multiple comparisons test. An absence of letter sharing among the treatment groups denotes a
statistically significant difference among those groups (p < 0.0001). Error bars denote standard deviation
(SD). Full data are given in Supplementary Materials Data S1.

2.2. RNA-Seq Identifies Genes and Pathways Associated with SF-Induced Oxidative Stress Protection

By comparing gene expression in the different samples, we identified a total of 2192 significantly
differentially expressed genes (DEGs) (Supplementary Materials Data S2; see Materials and Methods
for details). To identify changes at the gene expression level, differential expression analysis was
performed for a number of pairwise combinations (Table S1). In general, when PQ was applied
alone, significant changes were observed in the expression of genes compared to the untreated control
(H2O + H2O); the vast majority of the genes affected by PQ treatment (>1400) were upregulated
(>1200). Pre-treatment with SF (“priming”) prior to the PQ application resulted in a substantially lower
number of DEGs (317) compared to untreated controls. Importantly, SF-primed PQ-stressed plants
exhibited only a very small number of significant changes compared to plants treated with SF alone
(six genes). Application of SF alone led to significant changes of only 163 genes compared to untreated
controls. Our results suggest that SF primes plants in a manner which prevents PQ from inducing
large-scale molecular or phenotypic changes (see Figure 1 for comparison). While SF induces only
limited molecular or phenotypic changes when applied to unstressed plants, the biological effects of SF
are striking when examined in the context of applying an oxidative stress-inducing agent such as PQ.

2.2.1. Cluster Analysis of DEGs

The DEGs from all pairwise comparisons were combined and clustered into 20 clusters using
k-means clustering (Figure S1). These 20 coordinated expression patterns revealed gene modulation and
key transition states due to the treatments. Clusters 4, 7, 19, and 20 consisted of genes downregulated
due to the SF priming in PQ-stress and non-stress conditions. Cluster 6 consisted of genes upregulated
upon SF priming in PQ-stress and non-stress conditions. The remaining clusters exhibited upregulated
genes (clusters 2, 3, 5, 8, 9, 10, 13, 16, 17, and 18) or downregulated genes (clusters 1, 11, and 15)
due to the PQ induced oxidative stress. Interestingly, genes belonging to clusters that were up- or
downregulated by PQ were not affected when plants were primed with SF prior to PQ application.
Thus, treatment with SF prevented alteration of these genes that would otherwise occur due to the PQ
application (Figure S1). Expression levels and log2 fold changes among treatments for the DEGs in
each cluster are given in Supplementary Materials Data S2.

2.2.2. Gene Set Enrichment Analysis of DEGs

To gain insights into the molecular mechanisms involved in SF-mediated stress tolerance,
we performed a Gene Ontology (GO) enrichment analysis of the DEGs (Supplementary Materials Data
S3). In non-stress conditions, 128 genes were significantly downregulated upon SF priming versus the
untreated control with the following GO terms being enriched: “trehalose metabolism in response to
stress” (GO:0070413), “regulation of proteolysis” (GO:0030162), “response to chitin” (GO:0010200),
“response to oxidative stress” (GO:0006979). Thirty-five DEGs were significantly upregulated in
SF-primed versus unprimed control plants (Table S2), including several ERF/AP2 transcription factors
such as ERF15, a positive regulator of ABA responses [37], ERF34, a transcriptional regulator of
primary cell wall biosynthesis [38], BBX30, a B-box-type zinc finger protein involved in developmental
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regulation in long day-grown plants [39], and TINY2, a potential regulator of genes in the response
to environmental stresses [40]. Also, CIPK20, which encodes a CBL-interacting protein kinase,
was specifically upregulated in SF-primed plants. CIPK20, also known as PKS18, is involved in
abscisic acid (ABA) signaling; its inhibition by RNA interference leads to ABA insensitivity [41].
Other genes specifically upregulated upon SF priming are: WAG1 encoding a serine/threonine-protein
kinase involved in auxin signaling and the regulation of differential growth, tissue patterning,
and organogenesis [42], and SPX1, a gene encoding a protein involved in responses to environmental
cues and internal regulation of nutrition homeostasis [43]. A gene with unknown function (AT2G19650)
coding for a putative cysteine/histidine-rich C1 domain family protein and several other unknown
proteins encoded by genes AT3G44450, AT5G66740, AT2G15020, AT2G44940, AT5G11590, AT3G45210,
AT1G04570, AT5G61570, and AT3G04140 were also specifically upregulated upon SF priming compared
to PQ-treated plants and untreated controls (Supplementary Materials Data S2).

The top five enriched GO terms from each pairwise comparison, based on FDR (false discovery
rate) values, were then selected and compared between the pairwise combinations. This analysis
demonstrates that enrichment and transition of key biological processes and functions occurred
during stress and upon SF priming (Figure 2). The abiotic stress-related GO terms “response to
oxidative stress”, “response to wounding”, and “response to toxic substance” were upregulated after
PQ stress. In stark contrast, SF priming resulted in the downregulation of these stress-associated
GO terms when subsequently exposed to PQ. Priming with SF specifically upregulated GO terms
related to photosynthesis, hormones, and plant growth such as “response to red light” (GO:0010114),
“protein–chromophore linkage” (GO:0018298), “photosynthesis” (GO:0015979), “light harvesting in
photosystem I” (GO:0009768), “light harvesting in photosystem II” (GO:0009769), “response to auxin”
(GO:0009733), and “regulation of growth” (GO:0040008) when exposed to PQ stress. It is also interesting
that biotic stress and defense-related responses such as “response to chitin” (GO:0010200), “response
to bacterium” (GO:0009617), “defense response to fungus” (GO:0050832), and “ethylene-activated
signaling pathway’” (GO:0009873) terms were downregulated after SF priming followed by subsequent
exposure to PQ. This supports our previous findings that a significant degree of specificity exists for
extracts of A. nodosum in terms of stress reduction with efficacy clearly related to temperatures involved
in the extraction process, i.e., high-temperature derived extract (SF) is effective in enhancing growth in
abiotic stress condition compared to other lower-temperature derived extracts [29].

To obtain a complete view of significantly altered pathways at the transcriptional level during PQ
treatment and upon SF priming, we performed a KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway analysis [44] for DEGs from different pairwise comparisons (Figure 3). The following
pathways were significantly upregulated in PQ-induced stress conditions: “protein processing
in endoplasmic reticulum” (ko04141), “plant-pathogen interaction” (ko04626), “phenylpropanoid
biosynthesis” (ko00940), “phenylalanine, tyrosine, and tryptophan biosynthesis” (ko00400), “MAPK
signaling pathway–plant” (ko04016), and “glutathione metabolism” (ko00480). Notably, these pathways
were significantly downregulated in SF-primed PQ-stress condition. On the other hand, SF priming
followed by PQ treatment specifically upregulated pathways for “plant hormone signal transduction”
(ko04075) and “photosynthesis” (ko00195).
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Figure 3. Comparison of the top five enriched KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways. The top five (i.e., most significant, enriched) KEGG pathways from all pairwise combinations
are illustrated as a bubble plot. The size and color of the circle denotes the number of differentially
expressed genes and FDR adjusted p-value, respectively. Unprimed and unstressed (H2O + H2O),
PQ-stressed (H2O + PQ), SF-primed but unstressed (SF + H2O), and SF-primed and stressed (SF + PQ).

Overall, the transcriptome analysis in this study demonstrated that PQ-induced oxidative stress
causes extensive transcriptional reprogramming as evidenced by the upregulation of many stress marker
genes, downregulation of many photosynthesis- and growth-related genes, and induction of genes
involved in cell death. Upregulation of stress genes and downregulation of photosynthesis and growth
genes are hallmarks of severe stress and cell death [45,46]. Such an extensive level of transcriptional
reprogramming was absent in the SF-primed plants exposed to PQ, with no induction of stress genes
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and no downregulation of photosynthesis and growth genes. The overall pattern of differential gene
expression between untreated, PQ stressed, SF priming, and SF priming PQ-stress treatments are
represented by a heatmap (Figure 4). The heatmap demonstrates that at the transcriptome level, plants
subjected to PQ stress after pre-treatment with SF resemble SF-primed and unstressed plants.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 26 
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Figure 4. Transcriptional regulation upon PQ stress in SF-primed and unprimed Arabidopsis plants.
Heatmap of all differentially expressed genes. Color scale represents the mean centered log2 normalized
TMM values (Trimmed Mean of M values) averaged across three biological replicates. Full data are
given in Supplementary Materials Data S1 and S2.

2.2.3. Annotation of Genes Induced by SF for Oxidative Stress Protection

Based on the enrichment analysis, DEGs were selected from the various treatments (Table 1) for
an in-depth literature review of the known functions of these genes. This investigation revealed genes
that could be directly or indirectly involved in SF priming-induced oxidative stress tolerance. It also
identified potential adaptions possibly underlying the stress tolerance phenotype.
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Table 1. SuperFifty and paraquat alter the expression of genes representing fundamental biochemical
pathways and physiological processes. Values are TMM (trimmed mean of M-values) values averaged
across three biological replicates.

Average TMM Values Annotation

Gene ID H2O + H2O H2O + PQ SF + H2O SF + PQ Gene Name Description/Function

ROS Inducible/Marker genes
AT2G21640 19.63 97.21 16.99 20.09 Marker for oxidative stress response protein
AT2G43510 64.24 214.79 40.04 47.11 TI1 Trypsin inhibitor, ROS marker
AT1G57630 4.07 76.13 4.36 4.51 Toll-Interleukin-Resistance (TIR) domain family protein

AT1G19020 36.57 247.44 26.24 33.40 CDP-diacylglycerol-glycerol-3-phosphate
3-phosphatidyltransferase, ROS marker

AT1G05340 8.55 83.32 6.72 5.41 Cysteine-rich stress protein, ROS marker

ROS-Dependent PCD and Senescence
AT4G25110 1.75 6.47 2.07 2.99 MC2 Metacaspase 2
AT1G16420 0.15 5.83 0.37 0.47 MC8 Metacaspase 8
AT5G02190 2.78 2.35 7.33 8.40 PSC1 Promotion of cell survival 1
AT5G02760 11.95 3.34 24.69 16.34 SSPP Senescence-suppressed protein phosphatase

AT4G27410 73.77 100.20 27.15 22.12 RD26 NAC (No Apical Meristem) domain transcriptional
regulator superfamily protein

AT2G29350 31.09 395.89 19.27 16.05 SAG13 Senescence-associated gene 13

ROS Detoxification
AT4G25100 459.32 277.99 664.81 715.19 FSD1 Fe superoxide dismutase 1
AT4G09010 378.15 197.56 405.53 403.35 APX4 Ascorbate peroxidase 4
AT5G57345 207.99 168.40 323.34 337.82 OXR Transmembrane OXR protein
AT4G39800 90.77 59.99 143.09 125.49 MIPS1 Myo-inositol-1-phosphate synthase 1
AT5G21100 23.74 13.69 30.65 24.71 AO Plant L-ascorbate oxidase
AT5G51720 90.38 74.87 122.85 149.99 NEET 2 iron, 2 sulfur cluster binding protein
AT2G45560 43.67 26.91 67.23 67.88 CYP76C1 Cytochrome P450 family 76C, polypeptide 1
AT2G46660 1.07 1.12 2.12 2.39 CYP78A6 Cytochrome P450, family 78A, polypeptide 6
AT3G26310 7.03 4.62 11.01 9.27 CYP71B35 Cytochrome P450, family 71B, polypeptide35
AT4G12320 32.62 28.68 66.06 74.88 CYP706A6 Cytochrome P450, family 706A, polypeptide6

Photosynthesis
AT5G38420 1223.01 567.26 1376.75 1518.00 RBCS2B RuBisCO small chain
AT3G27690 799.90 303.31 1142.16 1032.88 LHCB2.3 Photosystem II LHC protein 2.3
AT1G51400 1851.61 886.74 2086.64 2069.37 Photosystem II 5 kD protein
AT3G08940 3027.19 1449.15 3533.29 3026.97 LHCB4.2 Light harvesting complex photosystem II
AT3G63160 2922.20 1632.49 3304.18 3817.24 OEP6 Outer envelope membrane protein
AT3G27690 799.9 303.31 1142.16 1032.88 LHCB2.4 Chlorophyll a-b binding protein 2.4

AT2G34430 3293.32 1182.9 3677.36 2958.81 LHB1B1 Light harvesting chlorophyll protein complex II subunit
B1

AT3G08940 3027.19 1449.15 3533.29 3026.97 LHCB4.2 Chlorophyll a-b binding protein CP29.2
AT1G51400 1851.61 886.74 2086.64 2069.37 Photosystem II 5kD protein
AT2G34430 187.98 155.10 290.55 340.92 LHB1B1 LHC II subunit B1
AT2G23670 187.98 155.10 290.55 340.92 YCF37
AT1G03630 183.08 99.92 212.62 230.60 PORC Protochlorophyllide oxidoreductase C

Carbohydrate Metabolism and Cellulose Synthesis
AT1G64390 59.50 35.02 96.35 99.01 Glycosyl hydrolase 9C2
AT2G01290 13.39 18.80 28.15 33.23 Ribose-5-phosphate isomerase 2
AT1G70230 8.11 9.73 16.53 15.36 Trichome Birefringence-Like 27
AT1G09350 24.01 8.36 45.35 36.17 Galactinol synthase 3

Growth and Hormone Signaling
AT1G21310 32.88 197.79 33.87 31.90 EXT3 Extensin 3
AT1G76930 73.22 149.21 53.68 60.34 EXT4 Extensin 4
AT1G20190 59.51 26.15 93.85 83.53 EXPA11 Expansin 11
AT2G20750 7.22 3.03 14.97 15.91 EXPB1 Expansin B1
AT2G40610 50.54 18.78 99.07 79.61 EXPA8 Expansin A8
AT5G57560 77.60 111.40 28.68 21.14 TCH4 Xyloglucan endotransglucosylase/hydrolase
AT2G14620 1.10 9.39 0.72 0.99 XTH10 Xyloglucan endotransglucosylase/hydrolase 10
AT3G44990 29.15 26.58 73.92 99.89 XTH31 Xyloglucan endo-transglycosylase-related 8
AT2G21210 25.55 15.99 53.74 65.71 SAUR6 SAUR-like auxin-responsive protein family
AT4G38860 27.84 11.74 56.72 52.80 SAUR16 SAUR-like auxin-responsive protein family
AT1G75580 4.29 4.93 8.13 10.95 SAUR51 SAUR-like auxin-responsive protein family
AT4G38840 97.43 43.53 134.62 150.76 SAUR14 SAUR-like auxin-responsive protein family
AT4G38850 9.36 3.92 15.98 15.53 SAUR15 SAUR-like auxin-responsive protein family
AT3G53250 1.95 0.68 4.90 3.47 SAUR57 SAUR-like auxin-responsive protein family
AT1G23080 65.86 32.20 94.83 82.05 PIN7 Auxin efflux carrier family protein
AT2G46870 4.70 3.63 9.38 8.47 AP2/B3-like TF, auxin response.
AT5G13320 3.71 16.08 2.97 3.60 PBS3 Auxin-responsive GH3 family protein
AT4G12550 4.01 1.69 5.66 6.45 AIR1 Auxin-Induced in Root cultures 1
AT1G52830 4.59 1.53 6.79 4.16 IAA6 Indole-3-acetic acid 6
AT1G74670 150.45 33.60 188.25 141.53 GASA6 Gibberellin-regulated family protein
AT1G02400 7.18 18.48 5.67 5.18 GA2OX6 Gibberellin 2-oxidase 6 (inactivates gibberellin)
AT1G15550 8.09 2.49 5.96 6.32 GA3OX1 Gibberellin 3-oxidase 1
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Table 1. Cont.

Average TMM Values Annotation

Gene ID H2O + H2O H2O + PQ SF + H2O SF + PQ Gene Name Description/Function

Autophagy
AT2G38470 48.75 142.40 26.84 36.51 WRKY33 WRKY DNA-binding protein 33
AT2G45170 82.62 98.94 38.58 32.66 ATG8E AUTOPHAGY 8E
AT3G06420 18.68 35.54 14.28 14.12 ATG8H AUTOPHAGY 8H

Lipid Metabolism

AT1G19020 36.57 247.44 26.24 33.40 CDP-diacylglycerol-glycerol-3-phosphate
3-phosphatidyltransferase

AT4G34200 75.62 216.87 76.14 74.59 EDA9 D-3-phosphoglycerate dehydrogenase
AT4G39670 3.43 50.87 2.08 2.82 Glycolipid transfer protein (GLTP) family protein

AT1G67800 10.05 23.91 10.77 12.32 Copine (Calcium-dependent phospholipid-binding
protein) family

AT3G55470 18.33 57.91 20.04 21.00 Ca-dependent lipid-binding (CaLB domain)
AT5G14180 1.77 5.23 0.84 0.62 MPL1 Myzus persicae-induced lipase 1
AT2G26560 45.59 364.62 38.48 42.54 PLA2A Phospholipase A 2A
AT1G13930 2740.50 1898.62 4318.3 3952.83 Oleosin-B3 like protein
AT1G51080 18.67 11.26 25.10 27.68 Golgin family A proteins

AT1G25054 0.61 0.57 6.08 3.07 LPXC3,
LPXC4 UDP-3-O-acyl N-acetylglycosamine deacetylase

Transcription Factors and Stress-Related Genes
AT1G59930 4.7 2.6 8.94 10.58 MADS-box transcription factor
AT1G70890 136.76 85.38 171.01 170.27 MLP43 MLP-like protein 43
AT1G75690 184.17 98.65 215.40 223.10 DnaJ/Hsp40
AT1G78070 43.04 33.13 77.16 73.50 Transducin/WD40
AT2G28720 95.98 74.93 131.89 151.73 HTB3 Histone super family protein
AT2G41090 300.65 461.43 464.31 652.82 CML10 Calcium-binding EF-hand family protein
AT2G44940 7.88 6.32 20.17 28.83 Integrase-type DNA-binding

ROS-Responsive Genes, Programmed Cell Death, and Senescence

In a previous study, we identified five genes that are hallmarks for oxidative stress [47]; each of
them was highly induced by PQ treatment (Table 1). Besides the ROS inducible/marker genes [47],
Table 1 contains the genes most regulated by PQ or/and SF that represent pathways and processes such
as ROS dependent PCD and senescence, ROS detoxification, photosynthesis, carbohydrate metabolism
and cellulose synthesis, growth and hormone signaling, autophagy, lipid metabolism, transcription
factors, and stress-related genes. In addition, 140 out of 177 genes, known to be ROS responsive [48],
were induced by PQ treatment (Supplementary Materials Data S4). Our results therefore indicate that
PQ treatment caused prominent oxidative stress similar to previous reports [47,49,50]. In contrast, none
of these genes were upregulated in SF-primed PQ-treated plants (Supplementary Materials Data S4).

Reactive oxygen species can induce programmed cell death (PCD) and metacaspases play a
key role in several types of ROS-induced PCD [51]. Two metacaspase-encoding genes, AtMC2
and AtMC8, were highly induced by PQ in the unprimed plants but not in the SF-primed plants.
Moreover, PROMOTION OF CELL SURVIVAL 1 (PCS1), encoding an aspartic protease that regulates
cell death and promotes cell survival, was induced in both SF-primed and primed/stressed plants
(Table 1). PCS1 plays an important role in reproductive gametogenesis and its loss-of-function
mutation causes excessive cell death of embryonic tissues [52]. The above results demonstrate that SF
prevents the activation of the ROS-triggered PCD pathway. In addition, we observed an upregulation
of SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE (SSPP) and a downregulation of the
transcription factor RD26 as well as of SENESCENCE-ASSOCIATED GENE 13 (SAG13) in SF-primed
and primed/stressed plants (Table 1). SSPP functions in sustaining leaf longevity and its overexpression
significantly delays leaf senescence in Arabidopsis [53]. The transcription factor RD26 (ANAC072) is a
positive regulator of stress- and darkness-induced senescence [54,55]. As we recently demonstrated,
an enhanced expression of RD26 triggers the accumulation of free amino acids (in particular Gln and
Asn), enhances the accumulation of tricarboxylic acid (TCA) cycle intermediates and represses the
accumulation of γ-aminobutyric acid (GABA; [54]). SAG13 is induced by stresses such as darkness,
drought, wounding, and pathogen challenge in leaves [56] and is involved in the breakdown of cellular
components during stress-induced senescence. Expression of SAG13 is directly controlled by RD26 [54].
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The induced expression of both, RD26 and SAG13 by PQ and repression of these genes by SF priming,
therefore, is likely to contribute to the absence of cell death in SF-treated plants (Table 1).

Detoxification of PQ-induced ROS

PQ produces superoxide radicals, followed by a cascade of reactions producing hydrogen peroxide
and hydroxyl radicals [57,58]. Accumulation of these toxic free radicals will result in a decline of
photosynthesis, an increase of lipid peroxidation and the destruction of cell membranes, leading to
chlorosis and necrosis of plant tissues [58,59]. With respect to enzymatic antioxidants, SF-primed
plants had higher levels of Fe SUPEROXIDE DISMUTASE 1 (FSD1) and ASCORBATE PEROXIDASE 1
and 4 (APX1 and APX4) compared to plants stressed with only PQ (Table 1). Increased expression
of these genes can assist the detoxification of superoxides and peroxides [60–62]. In addition, higher
levels of AtOXR, which encodes transmembrane OXR protein, was observed in SF-primed plants
(Table 1). Overexpression of AtOXR in Arabidopsis results in ascorbate accumulation, concomitant
with an increased tolerance to oxidative stress [63]. Notably, expression of 1-myo-inositol-1-phosphate
synthase encoding MIPS1 was elevated in SF-primed plants. MIPS catalyzes the rate-limiting step
in the synthesis of myo-inositol which is critical for maintaining cellular levels of ascorbic acid [64].
In addition to transcriptome profiling, we also analyzed the primary metabolic profiles using GC-MS
(see below). We found an increased level of threonate in PQ-stressed plants, an effect that was entirely
mitigated when plants were primed with SF prior to the PQ treatment (Figure 5). Threonate typically
accumulates due to the degradation of ascorbate during stress, which appears to be suppressed
by SF. In accordance with the strong priming effect of SF, the gene coding for L-ascorbate oxidase
(AO) that converts ascorbate to dehydroascorbate (DHA) had higher expression in SF-primed plants
(Table 1). DHA is transported from the apoplast to the cytosol in exchange with ascorbate (reduced
form), to ensure a constant apoplast redox flux [65–68]. The antioxidant ascorbate is one of the
key components for reducing ROS. It also acts as a redox buffer and regulates the response to the
extracellular environment in the apoplast [64]. The above observations suggest that priming by SF
treatment induces a ROS detoxification pathway that involves the antioxidant ascorbic acid.

A gene coding for an iron–sulfur domain containing protein, NEET, was also upregulated in
SF-primed plants (Table 1). This gene has a role in regulating redox reactions and the control of
apoptosis. In Arabidopsis, T-DNA knockdown and RNA interference NEET lines accumulated higher
levels of ROS than wild-type control plants [69]. NEET is involved in iron (Fe) homeostasis, supporting
a proper ROS balance and photosynthesis in cells [70,71]. Notably, several cytochrome P450 encoding
genes (CYP76C1, CYP71B35, and CYP706A) were also more strongly expressed in SF-primed plants
(Table 1). Cytochrome P450 enzymes have previously been shown to be involved in herbicide
metabolism and detoxification [72,73].
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Figure 5. Primary metabolite changes induced by oxidative stress. Changes in primary metabolite
abundances of Arabidopsis leaves upon foliar spray with PQ and/or SF measured by GC-MS. Blue and
red depict a decrease and increase, respectively (log2 fold change), compared to the control (unprimed
and unstressed, i.e., H2O + H2O). The data are averages of seven biological replicates. Samples:
PQ-stressed (H2O+PQ), SF-primed, but unstressed (SF + H2O), and SF-primed and stressed (SF
+ PQ). Statistically significant differences to control are highlighted by asterisks (Student’s t-test,
* p-value < 0.05). Full data are given in Supplementary Materials Data S5.

Photosynthetic Genes

Most of the photosynthesis-related genes were significantly downregulated by PQ in unprimed
plants. In fact, this is the largest functional group of genes that was repressed by PQ. The group
included genes encoding subunits of photosystem II, genes involved in chlorophyll biosynthesis,
such as protochlorophyllide oxidoreductase, genes from the Calvin–Benson cycle such as RuBisCO,
and several others (Table 1). SF mitigates against the detrimental effect of PQ and enables plants
to photosynthesize even when threated with PQ. None of these genes were repressed in SF-primed
plants subsequently treated with PQ. On the contrary, a number of these genes had even higher levels
of expression in the SF-primed plants, suggesting that SF actually induces their expression in both
unstressed and PQ-stressed plants (Table 1). Upregulation in this manner may enhance photosynthetic
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efficiency in the SF-primed plants and also protect against stress, consistent with the healthy phenotype
observed for all SF-treated groups.

Gene AT2G23670, which encodes thylakoid protein YCF37, was upregulated in SF-primed plants
compared to both PQ-stressed and untreated control plants. YCF37 is likely involved in photosystem
1 (PSI) assembly and oligomerization; its gene is induced by high-light stress and the protein has
a likely role in repairing PSI during light stress [74]. A disrupted photosynthetic machinery and
impaired photosynthesis result in the generation of various ROS, including superoxide radicals
(O2

•–) and singlet oxygen (1O2). Studies have also shown that to prevent high light-induced 1O2

accumulation and oxidative damage, it is essential to minimize the steady state concentration of
chlorophyll biosynthetic intermediates in day light plants [75]. Here, we observed an increased level
of PROTOCHLOROPHYLLIDE OXIDOREDUCTASE C (PORC) gene expression in SF-primed plants.
The protein PORC is involved in chlorophyll biosynthesis. Under high-light conditions, transgenic
Arabidopsis plants overexpressing PORC showed reduced accumulation of the chlorophyll biosynthesis
intermediate protochlorophyllide (Pchlide), resulting in minimal 1O2 generation and protection from
oxidative damage [75]. Increased expression of PORC in SF-primed plants may lead to a decrease in
Pchlide, potentially protecting the plants from oxidative damage. Overall, transcriptomic analysis
indicated that SF-treated plants likely maintain their photosynthetic machinery after PQ treatment and
minimize ROS generation.

Carbohydrate Metabolism

Several genes related to carbohydrate metabolism were upregulated in the SF-primed plants
(Table 1). GALACTINOL SYNTHASE (GOLS) encodes a key enzyme in the synthesis of raffinose
family oligosaccharides (RFOs). Raffinose protect plants against PQ-induced oxidative stress [76].
Hence, upregulation of this pathway in SF-primed plants likely contributes to the enhanced tolerance
to PQ observed in this study.

Two other genes, GLYCOSYL HYDROLASE 9C2, also known as ENDO-1,4-BETA-GLUCANASE 6,
and TRICHOME BIREFRINGENCE-LIKE 27 (TBL27), were upregulated in SF-primed plants and
may have functions in cellulose synthesis, cell wall deposition and O-acetylation of cell wall
polysaccharides [77,78]. Glycosyl hydrolases are involved in cellulose biosynthesis, cell wall deposition
and integration of polysaccharides [77]. O-acetylation of xyloglucans is possibly accomplished by the
enzyme encoded by TBL27 (also known as ALTERED XYLOGLUCAN 4, AXY4) [79]. Acetylation of cell
wall polysaccharides is essential for maintaining the structural integrity of the leaf; it is also important
for exerting a global impact on plant stress responses [80].

Growth and Hormone Signaling

Several growth-related genes are repressed by PQ, including genes encoding expansins (EXPA8,
EXPA11, and EXPB1), auxin-responsive genes such as IAA6, PIN7, and SAUR-like genes. In contrast,
these genes are not repressed in SF-PQ treated plants. On the contrary, many growth- and
auxin-related genes are induced by SF in both PQ-stressed and unstressed SF-primed plants (Table 1).
Gibberellin-regulated GASA6 is also repressed by PQ but induced in SF-primed plants (stressed or
unstressed), while GIBBERELLIN 2-OXIDASE 6 (that inactivates GA) is induced only in PQ-treated
unprimed plants. Taken together, these data show that while PQ represses growth, this effect of PQ is
completely eliminated by SF. Furthermore, there is evidence that SF promotes growth (induction of
growth-related genes as well as auxin and GA pathways), providing a molecular explanation of its
action as a biostimulant/plant strengthener.
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Autophagy

Oxidative stress can activate autophagy, an energy-dependent cellular process of recycling cellular
components [81]. The WRKY33 transcription factor plays a role in regulating autophagy by interacting
with autophagy-related (ATG) proteins [82,83]. Expression of WRKY33 is highly induced by PQ while
its transcript levels are even lower in SF-treated plants than controls (Table 1). Overexpression of ATG8
(different genes including ATG8E) in Arabidopsis leads to an increase in the number of autophagosomes
concomitant with an activated autophagy [84]. Similarly, experimental evidence was obtained to
indicate that elevated expression of ATG8H increases autophagy during abiotic stress conditions [85].
Expression of both, ATG8E and ATG8H is repressed by SF (Table 1). Collectively, our observations
suggest activation of autophagy by PQ and repression of autophagy by SF.

Lipid Metabolism

Genes related to lipid degradation including PHOSPHOLIPASE A 2A (PLA2A) and MYZUS
PERSICAE-INDUCED LIPASE1 (MPL1) [86] are strongly upregulated by PQ treatment, but not in
PQ-treated plants previously primed with SF (Table 1). On the other hand, one gene encoding
an oleosin-B3 like protein is downregulated by PQ treatment but upregulated in SF-primed plants.
Oleosins are relatively small hydrophobic proteins (with a molecular weight of 15–26 kDa) associated
with oil bodies, i.e., cellular organelles for the storage of triacylglycerols in plants. A knockout mutant
of a gene coding oleosin-B3-like protein is hypersensitive to salt stress [87]. Lipid reconfigurations occur
during oxidative stress balancing energy metabolism and mitigating the oxidative damage [23,88].

2.3. Metabolome Reconfiguration Induced by SF for Oxidative Stress Protection

To gain further insights into the effect of SF on plants, we determined the metabolic profiles
under various conditions using GC-MS. We observed substantial differences in primary metabolites of
oxidatively stressed plants when compared with untreated plants (Figure 5). Interestingly, application
of SF prior to the PQ treatment almost completely abolished the metabolite changes observed in plants
treated with only PQ (Figure 5). A detailed analysis of the metabolic profiles revealed an increase
of threonate levels in PQ-treated plants compared to the untreated controls (H2O + PQ versus H2O
+ H2O), while threonate decreased in the other conditions (SF + PQ versus SF + H2O; Figures 5
and 6). Threonate results from the degradation of ascorbate, with the ascorbate–glutathione cycle
(Foyer–Halliwell–Asada pathway) representing an important system for ROS scavenging (Foyer and
Noctor, 2011 [89]). The increase of threonate may suggest an impairment of the ascorbate–glutathione
cycle for ascorbate regeneration in PQ-treated plants (Figure 5).

Interestingly, we observed an accumulation of various free amino acids in PQ-stressed plants,
including branched chain amino acids (BCAAs), such as valine and isoleucine, as well as other amino
acids such as alanine, glycine, cysteine, lysine, and asparagine. The amino acids most likely accumulate
in the stressed plants as a result of protein degradation caused by PQ-induced disruption of regular
metabolism rather than de novo amino acid biosynthesis, a conclusion supported by the fact that PQ
causes cell death (Figure 1). Of note, an accumulation of amino acids during abiotic stresses has been
observed in many different studies [21,90–92], and it has been suggested that metabolites accumulating
under stresses might be used as building blocks for new cellular components to support recovery of
growth after stress adaptation [21]. Moreover, one of the glutamate-derived compounds linked to
oxidative stress responses is γ-aminobutyric acid (GABA) which is involved in pH regulation, stress
responses, signaling, and other processes in plants [21,91,93]. Here, we observed that GABA over
accumulates in PQ-stressed plants (Figures 5 and 6).
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Figure 6. Primary metabolism pathways affected by oxidative stress in SF-primed and -unprimed
plants. Changes in primary metabolite abundances in Arabidopsis leaves upon foliar spray with PQ
and/or SF measured by GC-MS. Blue and red depict decreases and increases, respectively (log2 fold
change), compared to the control (unprimed and unstressed, i.e., H2O + H2O). The data are averages of
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are highlighted by asterisks (at the significance level of 0.05, FDR corrected). Full data are given in
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Metabolic and mechanical disruptions during stress cause cytosolic acidification and induce an
acidic pH-dependent activation of GABA synthesis [93]. A stress-specific pattern of accumulation is
consistent with a physiological role of GABA in stress mitigation [21,91,93–95]. Interestingly, some
of the metabolic effects observed in PQ-stressed plants are not only characteristic of oxidative stress,
but also occur in senescing plant tissues [96]. An important result obtained here is that the metabolic
changes induced by PQ are almost completely abolished when plants are pre-treated with SF and then
subjected to PQ treatment. Several TCA cycle intermediates, in particular, fumarate and, to some extent,
citrate and malate, increased in SF-primed plants, effects which might support cellular respiration
and photosynthesis [97,98]. It has previously been suggested that an accumulation of citrate under
oxidative stress conditions may control the production of ROS and, therefore, increase the plant’s
tolerance to stress [99,100]. Moreover, the levels of free amino acids were reduced following SF
application which may indicate their utilization during the process of inducing stress tolerance and
potentially growth (Figure 6). In contrast, raffinose accumulated after SF treatment (Figures 5 and 6)
which might increase oxidative stress tolerance as suggested previously [76]. The soluble sugar maltose
accumulated in SF-primed and primed/stressed plants (Figures 5 and 6). Maltose at physiologically
relevant concentrations may protect proteins, membranes, and the photosynthetic electron transport
chain from stress-induced damage [101].
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2.4. Lipidome Level Changes Induced by SF for Oxidative Stress Protection

Lipids are the main components of biological membranes and they represent important carbon
and energy storage compounds in plants [102,103]. Lipids may sense extracellular signals and trigger
lipid-mediated signaling and have also been shown to accumulate during several stresses, e.g., when
photosynthesis is inhibited [102,103]. Here, we observed major changes in lipid profiles of plants
exposed to oxidative stress (Figure 7). In total, 155 annotated lipids from ten neutral and polar
lipid classes were identified. Of those, 108 lipids were significantly changed in at least one of the
tested conditions in comparison with the untreated control condition (Figure 7). In our analysis,
we detected different classes of lipids including neutral lipids of the diacylglyceride (DAG) and
triacylglyceride (TAG) classes, as well as polar lipids including digalactosyldiacylglycerol (DGDG),
monogalactosyldiacylglycerol (MGDG), phosphatidylcholine (PC), phosphatidylethanolamine (PE),
phosphatidylglycerol (PG), and sulfoquinovosyldiacylglycerol (SQDG). It has been shown that under
adverse conditions, neutral lipids play an important role in intracellular homeostasis and energy
balance [104].

A more detailed analysis of the 108 significantly changed lipids revealed that most of the neutral
TAG lipids and polar chloroplast lipids, such as, for example, galactolipids (i.e., MGDG and DGDG)
which constitute the bulk of the chloroplast membrane, increased in stressed plants, likely resulting
from cell death and chloroplast degradation, while they were primarily decreased in SF-treated plants
(Figure 7).

Notably, the TAG class of neutral lipids (representing the main source of energy) showed divergent
patterns in different conditions: the levels of some lipids (e.g., TAG 60:5 and TAG 60:6), increased while
levels of others (e.g., TAG 54:0 and TAG 54:2) decreased in PQ-stressed plants. A contrasting pattern
was observed in SF-primed plants. A large proportion of the observed alterations in lipid levels in
stressed plants was reversed in stressed plants pre-treated with SF, which demonstrates the protective
role of SF against oxidative stress. Most of the neutral lipids, namely, TAGs and DAGs, decreased when
stressed plants were compared with stressed plants pre-treated with SF (Figure 7). This observation
is in line with previous reports which showed that plants under adverse stress condition, such as,
for example, extended darkness, usually accumulate those lipid classes [88], an effect mitigated by
application of SF, as shown here.
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Figure 7. Lipid changes induced by oxidative stress. Changes in the abundances of lipids in
Arabidopsis leaves after foliar spray with PQ and/or SF. Blue and red depict decreases and increases,
respectively, compared to the control (unprimed and unstressed, i.e., H2O + H2O). Data are given in
log2 fold change; only lipids significantly different from control samples are shown (highlighted by
an asterisk). The data are averages of seven biological replicates. Samples: PQ-stressed (H2O + PQ),
SF-primed but unstressed (SF + H2O), and SF-primed and stressed (SF + PQ). Statistically significant
differences to control are highlighted by asterisks (at the significance level of 0.05, FDR corrected).
Full data are given in Supplementary Materials Data S6. DAG: diacylglycerol; TAG: triacylglycerol;
MGDG: monogalactosyldiacylglycerol; DGDG: digalactosyldiacylglycerol; PC: phosphatidylcholine;
PE: phosphatidylethanolamine; PG: phosphatidylglycerol; PI: phosphoinositol; PS: phosphoserine; and
SQDG: sulfoquinovosyldiacylglycerol.

2.5. Assessment of the Relationship between Molecular and Phenotypic Changes Induced by SF

Principal component (PC) analysis (Figure 8A) demonstrates that a high level of variation in the
transcriptome (42.03%), metabolome (64.14%), and lipidome (48.32%) among treatment conditions can
be explained by the first component (PC1). In all cases, three of the treatment conditions (i.e., unprimed
and unstressed (H2O + H2O), SF-primed and unstressed (SF + H2O), SF-primed and stressed (SF + PQ))
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cluster closely together along the first component (PC1). In contrast, the unprimed but PQ-stressed
group (H2O + PQ) was found to deviate significantly from the other treatment groups in all the omics
approaches used (Figure 8A). This result indicates a higher similarity of H2O- and SF-treated plants at
the molecular level and suggests that SF treatment induces stress adaptations by inhibiting damaging
stress responses such as those induced by PQ. Furthermore, the electrolyte leakage data show a similar
trend to the mean PC1 values, supporting the earlier observation (Figure 8B). This was not observed
for PC2 (Figure S2 and Figure S3). Finally, the results of the PCA were strongly correlated to the visible
plant phenotypes obtained (Figure 1): the two SF-treated groups are phenotypically similar to the
negative control with which it clusters along PC1, whilst the oxidatively damaged plants are distant
from that cluster. Thus, many of the molecular changes induced by SF and PQ manifest phenotypically.
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Figure 8. Principle component analysis (PCA) of omics data. (A) PCA of RNA-seq, metabolome,
and lipidome data. Plotted are three biological replicates per condition for RNA-seq, five to six biological
replicates per condition for metabolome, and seven biological replicates per condition for lipidome. Samples:
unprimed and unstressed (H2O + H2O), PQ-stressed (H2O + PQ), SF-primed but unstressed (SF + H2O),
and SF-primed and stressed (SF + PQ). (B) Scatter plot of PC1 values versus mean electrolyte leakage (%).
Mean PC1 values were compared among groups using one-way ANOVA followed by Tukey’s multiple
comparisons test to correct for multiple testing. For both, PC1 and electrolyte leakage, a significant difference
was observed between the H2O + PQ group (oxidatively stressed) and each of the three remaining groups.
For PC1, the adjusted p-values for all three pairwise comparisons were p ≤0.0004 (***), <0.0001 (****),
and <0.0001 (****) for transcriptome, metabolome, and lipidome, respectively (underlined in the graph; see
Figure S2 for comparison of PC1 values by one-way ANOVA).). Horizontal error bars denote the standard
deviation (SD) of PC1 values. Vertical error bars indicate the SD of electrolyte leakage. Full data are given
in Supplementary Materials Data S1 and S7.
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3. Materials and Methods

3.1. Plant Material, Stress Treatments, and RNA Extraction

Arabidopsis thaliana (Columbia-0) seeds were sown in soil and the pots were kept for four days
for vernalization (4 ◦C in darkness) for uniform seed germination. Thereafter, the pots were kept in
a growth chamber in a 12 h light (150 µE m−2 s−1, 20 ◦C, 60% relative humidity)/12 h dark (16 ◦C,
70% relative humidity) cycle. At least 30 uniformly developed 23 day-old plants were used for the
experiments. The Ascophyllum nodosum seaweed extract, SuperFifty (SF), was produced by and obtained
from BioAtlantis Ltd. (Tralee, County Kerry, Ireland). For physiological and molecular analyses,
multiple applications of 0.1% SF were performed, three times a day, starting three hours after day light
by two-hour intervals, on two consecutive days. This was followed by 15 µM PQ foliar treatment,
24 h after the last SF application. Uniform spraying was achieved by spraying from a 10 cm distance
and one spray/plant—the approximate volume of each spray was around 750 µL. Rosette leaves were
harvested 24 h after the PQ treatment from three biological replicates for phenotypic and transcriptome
analyses and from seven biological replicates for primary metabolite and lipidome analyses. Total RNA
was extracted from rosette leaves of the treated plants and controls by RNeasy Plant Mini Kit (Qiagen,
Hilden, Germany). Each biological replicate was a pool of at least two rosette leaves.

3.2. Electrolyte Leakage Measurements and Trypan Blue Staining

Electrolyte leakage measurements were performed at the rosette stage by checking conductivity
with a HI 8733 conductivity meter (Hanna Instruments, Woonsocket, RI, USA) as described in
Reference [23]. Visualization of dead cells was done using detached rosette leaves employing a slightly
modified version of trypan blue staining protocol explained in Reference [105]. In short, entire detached
leaves were incubated for 30 min in hot trypan blue staining solution (80–90 ◦C). Thereafter, leaves
were de-stained by rinsing them once in water, followed by incubation in 15 M chloral hydrate for two
hours. The de-staining solution was renewed when needed (two–three times) before taking photos.

3.3. Transcriptome Sequencing and Data Analysis

Transcriptome sequencing was performed by LGC Genomics (Berlin, Germany) using the Illumina
HiSeq 4000 platform to obtain 75 bp-long single-end reads. The quality of raw reads was evaluated
with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Sequencing adaptors were
trimmed using Cutadapt [106], and reads below 20 bp length were discarded. Ribosomal RNA
contamination was assessed using SortMeRNA (v2.1) [107], and reads aligning to rRNA were filtered
out. Processed reads were quantified using kallisto (v0.43.0; bootstraps: 100) [108] against Arabidopsis
cDNA sequences (Araport11) [109] to obtain gene expression levels. Differential expression analysis
was carried out using EdgeR package in R/Bioconductor [110]. The FDR cutoff < 0.001 and absolute
log2 fold change ≥ 1 were used to identify significantly differentially expressed genes. Generation of
heatmaps and clustering of genes were performed with the pheatmap R-package [111], using k-means
clustering. GO enrichment of Biological Process terms and KEGG pathway enrichment analyses
were carried out using GOSeq [112] and clusterProfiler [113], respectively, with FDR cutoff < 0.05.
The enriched GO terms and KEGG pathways were plotted using ggplot2 R-package [114].

Sequencing data are available from the NCBI Bioproject database (www.ncbi.nlm.nih.gov/

bioproject) under ID PRJNA526343.

3.4. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Primary Metabolites

GC-MS was employed for the analysis of primary metabolites. Primary metabolites from 50 (±5)
mg ground freeze-dried leaf material were extracted following extraction and derivatization procedure
as described [115]. Peaks were annotated manually, and ion intensity was determined by the aid of
TagFinder software [116], using a reference library from the Golm Metabolome Database [117] and
following the recommended reporting format [118]. The relative abundances were normalized to

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
www.ncbi.nlm.nih.gov/bioproject
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fresh weight of relevant samples and were plotted as heatmap by Multiple Experiment Viewer (MeV;
http://mev.tm4.org).

3.5. Lipid Profiling

Lipids were extracted from 50 (±5) mg ground freeze-dried leaf material using the methyl tert-butyl
ether (MTBE) method [119]; data were analyzed as reported [23]. Raw lipid intensities were log2

transformed to bring them closer to normal distribution and to exclude the dominant effect of extreme
small/large values [120]. The heatmap of fold changes was drawn using MeV.

3.6. Analysis of Differential Behavior of Metabolites and Lipids

Analysis of differential behavior was conducted on the data after the preprocessing, described
above. Differential behavior between pairwise conditions (i.e., SF + PQ versus H2O + H2O, SF + H2O
versus H2O + H2O, and H2O + PQ versus H2O + H2O) was inspected using a linear model. We applied
the R-package limma [121]. Metabolites and lipids were considered as differentially behaving under a
certain condition (SF + PQ, SF + H2O, or H2O + PQ) if their levels were significantly different from the
control condition (H2O + H2O) at the significance level of 0.05 (FDR corrected).

3.7. Principal Component Analysis

Principal component analysis (PCA) from the R package pcaMethods [122] was applied to
the log2 transformed metabolite/lipid data; outlier samples were removed. For transcriptome data,
the log2 transformed expression levels were used for PCA analysis using the prcomp function in the R
package stats.

3.8. Statistical Analysis

Statistical analysis for electrolyte leakage and PCA analysis was performed by GraphPad Prism
6.0 (GraphPad Software, San Diego, CA, USA) using one-way ANOVA followed by Tukey’s multiple
comparisons test to adjust the p-values.

4. Conclusions

Our transcriptome, metabolome, and lipidome analysis provided a system-wide level
understanding of the protective role induced by the Ascophyllum nodosum biostimulant SF against
oxidative stress in Arabidopsis. Comparative transcriptomics identified oxidative stress mechanisms
affected by SF priming. Transcription factors and genes linked to stress adaptation mechanisms,
such as autophagy and reactive oxygen detoxification, were identified. Moreover, upregulation of
photosynthesis, hormone signaling, and growth-related genes provided evidence for stimulation
of growth induced by SF. Increased levels of several primary metabolites in SF-primed plants,
including maltose and raffinose, suggest a contribution to stress protection. Lipid profiling revealed
that alterations in lipids were associated with reduction of cell death and chloroplast degradation
and enhancement of intracellular energy balance in SF-primed plants during oxidative stress.
Collectively, our data reveal that treatment of plants with SF prior to a stress may be employed
as a climate-smart strategy to alleviate oxidative stress-induced damages in crops.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/2/474/s1.
Figure S1: Expression profiles of all 20 clusters obtained from k-means clustering using heatmap, Figure S2:
Comparison of mean PC1 and PC2 values among treatment groups, Figure S3: Scatter plot of PC2 values versus
mean electrolyte leakage (%), Table S1: Number of differentially expressed genes for each pairwise comparison,
Table S2: List of 35 DEGs significantly upregulated upon SF-priming versus untreated control, Data S1: Data of
Figure 1C and Figures S1 and S3, Data S2: Data of Figure 4 and Figure S1, Data S3: Data of Figures 2 and 3, Data
S4: Expression of known ROS marker genes, Data S5: Data of Figures 5 and 6, Data S6: Data of Figure 7, Data S7:
Data of Figure 8, Figures S2 and S3.
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