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Abstract

This work presents a new design for programming environments that promote the
exploration of domain-specific software artifacts and the construction of graphical
tools for such program comprehension tasks. In complex software projects, tool
building is essential because domain- or task-specific tools can support decision
making by representing concerns concisely with low cognitive effort. In contrast,
generic tools can only support anticipated scenarios, which usually align with
programming language concepts or well-known project domains.

However, the creation and modification of interactive tools is expensive because
the glue that connects data to graphics is hard to find, change, and test. Even if
valuable data is available in a common format and even if promising visualizations
could be populated, programmers have to invest many resources to make changes in
the programming environment. Consequently, only ideas of predictably high value
will be implemented. In the non-graphical, command-line world, the situation looks
different and inspiring: programmers can easily build their own tools as shell scripts
by configuring and combining filter programs to process data.

We propose a new perspective on graphical tools and provide a concept to build
and modify such tools with a focus on high quality, low effort, and continuous
adaptability. That is, (1) we propose an object-oriented, data-driven, declarative
scripting language that reduces the amount of and governs the effects of glue code
for view-model specifications, and (2) we propose a scalable UI-design language
that promotes short feedback loops in an interactive, graphical environment such as
Morphic known from Self or Squeak/Smalltalk systems.

We implemented our concept as a tool-building environment, which we call
Vivide, on top of Squeak/Smalltalk and Morphic. We replaced existing code brows-
ing and debugging tools to iterate within our solution more quickly. In several case
studies with undergraduate and graduate students, we observed that Vivide can be
applied to many domains such as live language development, source-code version-
ing, modular code browsing, and multi-language debugging. Then, we designed a
controlled experiment to measure the effect on the time to build tools. Several pilot
runs showed that training is crucial and, presumably, takes days or weeks, which
implies a need for further research.

As a result, programmers as users can directly work with tangible representations
of their software artifacts in the Vivide environment. Tool builders can write
domain-specific scripts to populate views to approach comprehension tasks from
different angles. Our novel perspective on graphical tools can inspire the creation of
new trade-offs in modularity for both data providers and view designers.
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Part I

Domain-specific Tools for Program

Comprehension

1





1 Introduction

Programmers have to understand the mechanics of complex software systems, so
they can add new features, refine existing ones, or repair broken ones. The typical
environment in which any software is created and maintained hosts many interactive

tools that support producing and consuming all kinds of related information. There
are generic tools, which support generic programming-language concepts, and spe-

cific tools, which support the vocabulary and information representation of certain
domains. Now, the use of domain-specific tools can have a positive effect on program

comprehension: programmers can make fewer mistakes and produce higher-quality
software. Thus, it is beneficial to provide tools that accommodate the domain of the
particular software project. Ultimately, there is perpetual interest in both academia
and industry to research effective and efficient means to create, integrate, and adapt

such tools in the development process.
The major goal of this work is to establish a novel perspective on the construction

of graphical, interactive tools for (and in) object-oriented environments. In figure 1.1,
we exemplify and idealize such an environment, comparing with Eclipse,1 Visual
Studio,2 or IntelliJ IDEA.3 The glue between data and graphics poses a costly barrier
for tool builders to overcome—given that all structured information is represented as
connected objects and appropriate designs for graphical representation are available.
We propose to shrink this barrier with the use of declarative, data-driven, and
functional languages that entail interactive, modular means of expression. As a
result, more suitable graphical tools might be created for a particular project—
maybe also some that would have never been discovered in the traditional way. Note
that we observe, reason, and act in the course of directness [172] and liveness [197].
Thus, we encourage the way of exploratory programming [167], in which any tool
user can become a tool builder. Yet, such a mindset shift could only happen if tool
building becomes reasonable under all circumstances.

We begin with a description of this work’s context and motivation, which peaks
in our research question to answer. Then, we examine the state of the art in tool
building, which includes object-oriented design, declarative languages, interaction
paradigms, and existing systems that support related activities. After setting the
ground, we summarize our approach and present the thesis statement that guides this
work. Finally, we outline our contributions, which support both research question
and thesis statement, and finish with this work’s organization chapter by chapter.

1Eclipse, https://www.eclipse.org/, accessed 2018-11-24
2Microsoft Visual Studio, https://visualstudio.microsoft.com/, accessed 2018-11-24
3JetBrains IntelliJ IDEA, https://www.jetbrains.com/idea/, accessed 2018-11-24
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1 Introduction

Figure 1.1: Traditional programming environments impede tool building. Any concrete
idea (here: orange) poses challenges regarding process, control, data, and presentation
integration. Only high-value changes are likely to be implemented. Uncertain ideas remain
tacit knowledge, hardly to be evaluated.

1.1 Context and Motivation

Programming tools support programmers in basic programming tasks such as explor-
ing, writing, running, and debugging source code [187, 55]. Besides such code-centric
tasks, there are tools for bug tracking, team communication, architectural modeling,
or version control—each producing or consuming different kinds of software artifacts

such as tickets, e-mails, diagrams, and versions. In general, programmers benefit
from tools that integrate and visualize all relevant information to better understand
and maintain the complex software system at hand. By employing computational
power as well as interactive, high-resolution input and output devices, complex or
repetitive tasks can be accomplished faster and are less prone to human error [134,
pp. 105–140]. Programmers can free up cognitive resources [120] and leverage their
intellect for novel challenges. Consequently, they acquire skill by mastering program-
ming languages and programming tools. That is, they learn how to choose, configure,

and apply their tools in an effective and efficient manner.

Toward Domain-specific Programming Environments

Programmers work in programming environments, which provide (1) a selection of
tools for recurrent tasks, (2) integration of tools to expedite context switches, and
(3) support for externalizing thoughts about the task at hand. Considering program

comprehension in general, programmers can fetch, examine, and retain information
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(or software artifacts) in an organized, integrated fashion [95]. The selection of tools
aligns typically with the concepts of programming languages such as class browsers
and object inspectors for class-based, object-oriented languages. The integration of
tools covers usually a coherent structural and graphical representation of information
such as everything-is-a-file [153] and everything-is-an-object [65] as well as list-
based views with pop-up menus and clickable buttons [58]. The transcription of
programmers’ thoughts to the screen addresses graphical aspects such as window
management [127] and the choice of visualization [10].

Programmers can benefit from tools that accommodate specifics of the project
domain, current task, or own preferences. However, the possibilities of merely
choosing and configuring a tool’s interface are limited. For example, a supportive,
external tool might lack a proper integration into the environment and personal
working habits. Also, any tool’s configuration space has to be anticipated in its
design phase, which is likely to omit the yet unknown domains of future software
projects. Consequently, dedicated tool building is an integral part in the development
process. During program comprehension, programmers need specific tools to fetch,
examine, and retain relevant information [95]. At best, user interactions make software

artifacts feel almost tangible like real-world objects. Fetching addresses the integration
of new artifacts, a shared awareness across tool boundaries, or the derivation of
new information. Examining addresses the exposition (or filtering) of structural
aspects that make artifacts become tangible, relatable, and hence understandable.
Retaining addresses a larger time span where programmers want to persist and recall
insights and keep a sense of familiarity of information. — The diverse nature of
comprehension questions has already been investigated [177] and partially addressed
with configuration during tool use [29, 30].

The Challenge of Tool Building

For tool builders, unfortunately, the glue involved to structurally query, visually
map, and coherently present software artifacts can be hard to find, change, and verify.
The timeliness and quality of feedback is unsatisfactory for the tool builder. On the
one hand, scattered code (and other resources) with many levels of indirection
makes it difficult to navigate from a tool’s graphics to its mechanics. On the other
hand, the effects of changes are not easy to verify (or test) because tools have to be
restarted to achieve a consistent state. While there is often support for interactively
designing a tool’s presentation language, tool builders have to manually dive into the
tool’s mechanics to express query and mapping languages. They face rather generic
framework glue, which they have to continuously separate from domain-specific,
effective expressions. — Note that we focus on glue rather than making relevant
information technically accessible in the given programming environment. Note that
we also assume that there are already existing visual designs (or visualizations) to
be populated with the right amount of information.

5



1 Introduction

Thus, we address a common issue in program comprehension that occurs during
the construction of graphical tools for program comprehension (and modification).
The research question we approach reads as follows:

Research Question How can we support tool building in object-oriented, graphical
environments where programmers mainly fetch, examine, and retain information in
the form of tangible software artifacts through interactive views?

We are encouraged by the existence of live programming systems [197], which
blend languages and tools into single environments to promote short feedback
loops for general application development. For example, the Squeak/Smalltalk
system [77] propagates code changes throughout the running environment so that
all objects can exhibit the changed behavior directly afterwards. That system also
features the Morphic framework [108], which provides inherent tangibility and
direct manipulation [172] for all graphical elements. More recent approaches focus
on Web development such as the LivelyKernel using JavaScript [105]. Overall in
such systems, programmers can employ programming languages that feel like
lightweight scripting languages [140] to create and maintain complex tools in short
feedback cycles. The involving relief of cognitive capacities can lead to a more
curious, exploratory programming style [167]. There, programmers can flexibly
explore problem and solution space along the way. — But how to handle the glue

between data and graphics in tool building accordingly?

1.2 State of the Art

It is common practice to build new technologies with the existing ones and eventually
replace them. In the field of programming, such bootstrapping is important for im-
plementing new languages, tools, and environments. For example, textual languages
yield visual languages, keyboard input yields support for mouse or touch input, or
text interfaces yield graphical interfaces. Consequently, new tools for programming
should be built with existing tools for programming. — Unfortunately, we observed
that users have to fall back to traditional tools frequently because new ones cannot
match all requirements for the task at hand.

Programmers as Under-appreciated Users

By learning from past experiences and efforts, nowadays, we understand more
about the cognitive capacities of programmers and humans in general [120, 122,
142]. Especially the recurrent, entangled challenge of program comprehension has
been thoroughly documented regarding its navigation strategies [113], verbal expli-
cation [177], analysis techniques [35], and tool interaction [95, 55]. All these insights
drive experimentation and innovation. There are, for example, guidelines to design
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domain-specific, multi-view interfaces [10], and software visualization tools [88].
There are also more general heuristics for designing non-frustrating user interfaces
considering memory load, consistency, or feedback [131, pp. 115–163]. We think that
the concept of flow [38] is driving factor in programming tool evaluation [125] and
evolution. — Yet, given a historical perspective of programming tools [187], it is
paradoxical that only well-understood problems have been solved with rather high
efforts [156]. This is unfortunate for programmers, being tool users or builders, that
face novel challenges in novel domains.

Tools that support well-known, specific aspects of program comprehension fo-
cus on programmers as users not builders. There are many interactive visualizations,
which typically entail static or dynamic code analysis, embedded in the programming
environment to support exploration. Even though there are often means of configura-

tion to express domain- or task-specific intents, those are too limited for an elaborate
integration of different artifacts or novel exploration paths. For static analysis, there
are SourceMiner [27, 53], Software Terrain Maps [40], Voronoi Treemaps [70], or
AspectMaps [51]. For dynamic analysis, there are also pre-defined views [157] such as
Circular Bundle Views [34] to explore dynamic relationships between code artifacts.
These existing approaches offer only a fixed set of views with limited means of config-
uration. — We observed that views with limited data-to-graphics mappings cannot
sustain tool (or application) building in the long term. When facing unforeseen
challenges, such views force programmers to constantly backtrack to lower-level
representations such as text.

Borders to Overcome, Approaches to Unify

There are many ideas on how to improve the situation for programmers that are
able to become tool builders. In the following, we take a look at the state-of-the-art
in window management, scripting languages, data-driven (or dataflow) approaches,
and the concept of “directness” in graphical interfaces. These explanations clarify
the need for a programming environment that unifies many existing ideas in a
tool-building context.

In terms of window management, there are several approaches that try to overcome
the traditional, confined, “boxed” design known from Eclipse and Visual Studio,
where a central code view dictates perspective. The Moldable Inspector [30] and
the Patchworks Code Editor [73] propose the use of horizontally unlimited tapes

to juxtapose software artifacts. Code Bubbles [21] and Code Canvas [42] call those
containers canvases, which are both more flexible on the vertical screen axis. The
Gaucho environment [139] uses artifact-specific shapes organized in rectangular
containers called pampas to represent information, which compares to traditional
overlapping windows. — Unfortunately, all these designs exist in isolation as an
environment’s baseline without proper means of combination or abstraction to
construct more elaborate interfaces.
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In terms of scripting languages, a common approach to blur the line between
tool configuration and building is the integration of declarativity. We found that
Prolog-based, logical languages are well-suited to query the complex structure of
software artifacts such as in Jquery/TyRuBa [39] and CodeQuest/Datalog [71]. Also,
imperative, high-level languages such as JavaScript and Smalltalk promote concise,
declarative expressions for tool building. Examples include LivelyKernel [105],
Glamour [24], and IntensiVE [116]. The latter combines both object-oriented Smalltalk
and the logical SOUL language [117] in a flexible way. — We see such scripting
languages as driver for low-effort, high-quality tool-building environments.

In terms of data-driven approaches, we found several projects that focus on data
access and transformation. The Lucid language [209] is an early example of dataflow
programming, which differs from procedural programming because programmers
model data streams not data fields. The more recent KScript [136] brings the idea
to graphical interfaces for event streams. Many such data-driven concepts resemble
the functional programming paradigm. As a compromise between object-oriented
and functional systems, Transmorphic [168] maps object structure on source code
(functions) for graphical, direct manipulation environments. Since we target such
environments for program comprehension, these projects offer interesting perspec-
tives on tool design. Fabrik [79, 106] connects interactive views with transformation
scripts written in Smalltalk (or JavaScript). Those scripts are directly accessible and
hence foster a tool building experience with short feedback loops. We think that
such an experience can be promoted by the separation of tools from the materials

they work on under a given aspect [159]. — Yet, we could not find a comprehensive
design that applies those ideas in a tool-building environment.

Finally, existing models for immediacy [206], directness [75], and tangibility [110]
are somewhat descriptive for efficiency and effectiveness in user interaction. Users
want to understand what they see on screen so that they can express their goals
directly and evaluate the results immediately and repeat the process for complex
tasks. In programming environments, this concept is based on a common data
representation [63] to foster integrated, interactive tools. In Smalltalk systems [65],
for example, everything is an object, and object graphs can represent any kind of
structured information. Thus, tools can build on that object graph. From a tool
design perspective, object-oriented user interfaces [31] apply this idea throughout
the technology stack, which has been elaborated in Naked Objects [144] for business
applications. — Yet, traditional, object-oriented, direct-manipulation systems cannot
handle multiple software artifacts at once, which impedes complex programming
tasks. Repetitive interactions can be prone to errors if done manually.

1.3 Thesis Statement

Programmers use graphical tools to explore and understand a complex information
space, which consists of interconnected software artifacts such as source code
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and documentation. There are environments with well-integrated tools to support
multiple, concurrent tasks. Still, the art and craft of tool building remains important
because only adapted tools can access and present complex domain structures
efficiently. Unfortunately, the feedback loop for creating and modifying tools is
rather long and costly, which yields only tools with a high long-term value. Yet, we
are interested in finding more efficient ways to build tools so that maybe even unique
tasks might be supported, which would adopt the idea of exploratory programming
in live programming systems.

In traditional environments, interactive visualizations are typically no “through
streets” but backtracking is a necessary evil. Programmers, which includes tool
builders, have to retreat to more primitive views to combine information and insights
such as via the clipboard into text editors. Many promising interaction paradigms
such as unlimited canvases are not combinable into complex tools, but they only
form a single baseline for the user. Yet, there are high-level scripting languages
that are fast, expressive, and promising in terms of generic software development,
which includes tool building. There are many data-driven concepts, languages, and
frameworks that favor data structure over application behavior, but they have not
been explored in a tool building context. Considering program comprehension, we
are looking for an environment that leverages interactivity and direct manipulation
for numerous artifacts at once.

Data First, Tools Follow

We build on the idea of separating model and view like in Smalltalk’s model-view-
controller framework [98, pp. 7–12] or the more general model-view-presenter
pattern [149]. The effect of such a separation on the actual program design can vary,
which one can observe in the document-oriented Hopscotch [26] or the integration-
focused StarBrowser [213]. In a comparable way, we, too, base our approach on a
Squeak/Smalltalk environment [77] using the Morphic framework [108]. Thus, we
assume a common data representation in a pure object-oriented system and inherent
tangibility of graphical items, which renders our approach twofold:

1. Simplicity through live, data-driven scripting
2. Simplicity through live, interactive view composition

This work’s main line of thought reads as follows:

Thesis Statement In a tool building framework that describes graphical tools
as compositions of data-driven, script-based, interactive views, many common
programming tools can be expressed in that design, and the results will be easy to
modify directly during use to accommodate specific domains and tasks.
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Note that we assume a dedicated tool building activity. Programmers are tool
builders with a specification and time. We share a vision that goes beyond this
work yet influences our design decisions: if we can reduce tool-building effort,
programmers are more likely to improve their own tools. Such ad-hoc switching
between user and builder would support exploratory programming [171, 60].

1.4 The Vivide Programming Environment

We designed and implemented a new framework and environment, which we call
Vivide [194, 193], that builds on the Squeak/Smalltalk programming system. The
source code and Smalltalk images are available via GitHub:

The Vivide Programming Environment
https://github.com/hpi-swa/vivide/

In this work, we explain the concepts and mechanics that represent that environment
to answer our research question and to materialize our thesis statement.

Contributions

1. Block-based Scripting Language (section 4.1, section 5.1)
We apply Squeak’s anonymous functions (i.e. block closures) and collection proto-
col to define a subset of Smalltalk that transforms one set of objects into another set
of objects with the goal to generate list (or tree) models with labeled properties at
each node. Such models can populate interactive views or support data-processing
pipelines. The following example squares number objects:
script := [:in :out | in do: [:num | out add: num * num]].
objects := #(1 2 3 4). "or data or (software) artifacts"
model := script interpretWith: objects. "or view model"

2. Data-driven Strategy for Tool Design (section 4.2, section 5.2)
We propose a strategy to design tools that aim for modular presentation and perpetual

tangibility of software artifacts (or objects). Our strategy distinguishes three rules:
Rule of Distinctiveness for single artifacts, Rule of Similarity for sets of artifacts,
and Rule of Context for artifact integration between views. Single-object tools
form the basis for our strategy, exemplified for a class object in three characteristic
views (i.e., generic tree, text definition, specific tree) as follows:
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3. Morph-based UI-design Language (section 4.3, section 5.3)
We apply Squeak’s Morphic and its halo concept to provide an interactive design
experience for the tool builder. There are panes as basic tool elements, each holding
objects, a script, a generated model, and the populated view (morph). Multiple
panes can be combined via connections to exchange objects. Multiple sets of panes
can be abstracted into pane views to be used in other scripts. This trichotomy of
primitives, means of combination, and means of abstraction looks like this (from
left to right):

4. Data-driven Working Practice (section 4.4, section 5.4)
We enable a new working practice because programmers have to choose a set of
artifacts first before examining structure in interactive views. This includes the
use of text-based searching (or querying) facilities to get started. This is different
from users having to “open a browser/explorer/perspective” to get started in
traditional environments: artifacts first, tools follow. In our environment, users
repeatedly choose objects, scripts, and views during program comprehension
tasks:

The bottom line is that programmers being tool users can directly work with
tangible representations of their software artifacts in the Vivide environment.
Tool builders can easily write scripts that populate new views to approach program
comprehension tasks from different angles. Multiple views can be combined into user
interfaces that support more complex exploration tasks. Note that effective use of our
new scripting language and interaction concepts requires training because the user’s
perspective on tools has to change. Yet, the main benefit of being able to shape any
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graphical representation of any kind of information is that the entire programming
environment can be under the programmer’s control. So, programmers can be both

tool users and tool builders.

Goals

“[...] This is the difference between ‘education’ and ‘training.’ Medical
school is education, first aid is training. Education requires fundamental
understanding, which can be used to grasp and respond to a nearly
infinite variety of threats; training involves singular actions, which are
useful only against anticipated challenges. Education is resilient, training
is robust.” — Team of Teams [115, p. 153]

Similarly, we are looking for a way to improve resilience in the tool building process,
which complements the traditional robustness of generic but polished off-the-shelf
tools. A tool building environment is likely to support a variety of unanticipated,
domain-specific challenges if it implements a fundamental understanding of what
programmers are doing in program comprehension tasks. This is were education

plays an important role when designing such environments. In the past decades, the
field of software engineering acquired much knowledge about how programmers
think and work. Programming environments should leverage these insights to be
flexible at short notice in the face of unforeseeable programming tasks of emerging
complexity. Consequently, we have been pursuing the following goals:

Applicability There are many data sources and visual designs available in
academia and industry, which we want to re-use and integrate. We are looking
for an environment that joins these existing efforts. Given the profound structure
of software artifacts, we want to provide tangibility even for information that has
no inherent graphical representation.

Conciseness The expressions of query, mapping, and presentation languages
should be concise and close to the domain or task so that tool builders can save
time in code reading and writing. Thus, any programming or scripting language
involved should be declarative as much as possible. As a baseline, we want to apply
the dynamic aspects of the Smalltalk language.

Agility & Feedback We want tool builders to work with concrete artifacts through-
out the tool design and construction process. We aim for short feedback loops
so that they can iterate and learn quickly; and they might even solve an actual
challenge with the given set of artifacts. Thus, we embrace an emergent and adap-
tive tool design by promoting ad-hoc customization and hence even throw-away
prototypes.

Scalability When designing a tool building environment, we want to begin with
a few simple concepts to connect data to graphics. Building on that, we want to
add means of combination for more complex information exchange between tools.
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Eventually, there should be means of abstraction to promote re-use and design
elaborate tool interfaces.

Mindset & Perspective We are likely to re-design the perspective users have
on graphical tools in programming environments. We want to shift the focus
from tools that support tasks toward tools that provide tangible access to artifacts.
When artifacts (or objects) come first, tools and task support will follow. The
task of program comprehension is of primary interest in our research question.
For example, application debugging and information exploration should become
the same thing. We want to support programmers in self-organizing their work
environment, which includes externalizing mental models and low-effort tool
switching.

Methods

In order to achieve these goals, we require a working environment that supports
exploration of ideas, experimentation with concrete tasks and artifacts, and the
possibility of achieving production state to approach real-world challenges. Thus,
we did apply the following methods:

• Identify and form pragmatic definitions for information, programmers’ tasks,
tangibility in graphical tools (or environments), and tool building. See chapter 2.

• Transfer these definitions to a technical level using the Squeak/Smalltalk system,
which we consider purely object-oriented, and the Morphic graphics framework,
which we consider inherently tangible. See section 2.5 and chapter 3.

• Design and implement a new framework in this environment so that standard
programming tasks can be carried out. See section 3.3, section 3.4, chapter 4, and
chapter 5.

• Explore tool modifications for daily programming tasks in that new framework
without having to use the traditional tools, that is “eat your own dog food.” See
chapter 6.

• Evaluate applicability (and usability) in the form of student projects. Document
misconceptions, bugs, and new ideas in an iterative fashion. See chapter 7.

• Design and implement a controlled, self-running experiment to evaluate effec-
tiveness of the new framework and tool-building method. Regard proper training
and pursue a within-subject design with two similar tasks to mitigate carry-over
effects [82, 92]. See chapter 8.

• Explore that experimental setup in several pilot runs with undergraduate and
graduate students. Document issues in training, application, and quality of the
resulting tool modifications. See section 8.3.
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1.5 Organization

We outline our work in three dimensions: parts, chapters, and field of research.
Parts separate problem, solution, evaluation, and outlook. Chapters divide this work’s
content into self-contained chunks. The field of research splits our contribution into
programming philosophy and software engineering, which we alternate in chapters as
depicted in figure 1.2. We finish with notes on presentation to further guide the
reader through this document.

Parts and Chapters

Part I — Domain-specific Tools for Program Comprehension

• Chapter 1, which is this one, gives an overview of this work’s background, moti-
vation, contributions, and related work. It also elaborates on our goals and methods,
which influenced our perception of the problem domain and the design of our
solution.

• Chapter 2 provides background information about software artifacts, program
comprehension, exploratory programming, and tools. It elaborates on the pro-
grammer’s responsibility to choose, configure, and build programming tools to
efficiently approach the tasks of feature addition or bug fixing. We end the chapter
by describing tools and tool building in the Squeak/Smalltalk environment where
everything is an object and graphics are inherently tangible.

• Chapter 3 motivates our research question with an exemplary program compre-
hension task. A programmer has to explore a larger code base to understand
a certain framework mechanism. She has an idea on how to improve debugger
and code browser to better understand the artifacts at hand. We then present our
working hypothesis with our solution concept on an abstract level. We end the
chapter with a concrete tutorial on how to resolve the motivational challenge in
Vivide.

Part II — The Vivide Programming and Tool-building Environment

• Chapter 4 describes our four main contributions. It begins with our new scripting
language, followed by a new strategy to design tools. Then we propose our new
UI-design language, which leads to a new data-driven working practice.

• Chapter 5 adds more details to our contributions and implementation guidelines.
It begins with advanced usage of our scripting language. Then, it applies our
tool-design strategy to construct script editors. After that, it expands on the
interplay of scripting language and UI design, followed by further thoughts in
our new working practice. We end the chapter by elaborating on some important
implementation details of the Vivide environment.
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Figure 1.2: Our main line of thought and work organization. We separate two fields: (1) the
upper half is more theoretical or philosophical and (2) the lower half is more practical or
related to engineering. The color coding denotes background, motivation, and solution
chapters. The numbers represent the respective sections in this work.

Part III — Evaluation and Discussion

• Chapter 6 contains the experiences we gathered so far by using Vivide in our
daily programming work. This includes new programming tools, thoughts on code
refactoring, and applicability of non-list views such as tree maps and polymetric
views.

• Chapter 7 presents case studies, which were carried out by students in the course
of project seminars or their master’s thesis. This includes tool building for version
control [195], language design [154], a new module system [184], and multi-level
debugging [96].

• Chapter 8 illustrates a first attempt on evaluating the effect that Vivide has on tool
building. We present a possible design for a controlled experiment and discuss
insights from first pilot runs. We end the chapter with thoughts on a possible
workshop to improve the experiments training phase.
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Part IV — Future Directions for Programming Environments

• Chapter 9 shows related work in the fields of exploratory programming practices.
This includes dynamic languages, means of visualization construction, and forms
of tinker-able presentation.

• Chapter 10 concludes our thoughts by summarizing our main argument and its
proposed impact. We end the chapter with a discussion about future directions
for our contributions.

Philosophy and Engineering

We illustrate our main line of thought and organization in figure 1.2. There, we
summarize all relevant argumentation models and simplifications of the problem
domain, which we explain in the background (chapter 2) and apply in the motiva-
tion (chapter 3) as well as the solution (chapter 4, chapter 5). This includes details
about programmers that fetch, examine, and retain information as tangible software
artifacts in the context of program comprehension tasks. This also includes the
exploratory characteristics of programmers that choose, configure, or even build
graphical tools for programming in an agile setting.

Overall, we distinguish between philosophical and engineering content. First, we
treat our perspective on software artifacts and programmers’ habits as a possible,
theoretical approach to manifest facts from the problem domain of our research
question. We support our thoughts with existing research that often uses different
terms for similar concepts. Second, we solve an issue on a technical level by han-
dling the glue between data and graphics in interactive programming tools. Those
contributions are tangible in the form of code artifacts and the Vivide environment
itself.

In the end, we realized that the topic of program comprehension and tool building
covers a vast area of concerns, which are typically discussed in isolation. In this work,
we put effort in combining those concerns into a single comprehensive picture.

Notes on Presentation

Throughout this work, we complement the use of chapters, sections, paragraphs,
and figures with the following “tools”:

• Gray boxes hold additional thoughts that would interfere with the main argumen-
tation. They are typically labeled as “Remark”.

• Source code is presented inline between paragraphs but set in a mono-spaced font.
Explanations will be directly before or after the respective code listing.

• Captions of figures try to be self-contained and hence are long enough to reveal all
important aspects so that readers can browse figures and still learn about their
contexts such as in figure 1.1 and figure 1.2.
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Figure 1.3: We combine sketches (left) with screenshots (right). While sketches show typically
no meaningful data, screenshots represent existing systems.

• Footnotes are used to briefly explain additional thoughts, which do not require the
attention of a gray box. This includes references to the appendix.

Throughout this work, we show and convey ideas and arguments in a graphical way.
This includes sketchy models of user interfaces or user interactions but also actual

screenshots from real tools and environments as shown in figure 1.3. That is, any
labels or data shown in sketches do not have to be meaningful. For example, abstract
charts or lists should rather illustrate themselves in the context of a possible interface.
Readers can recognize sketches by the use of squiggly lines or plain gray/blue
window decorations such as in figure 1.1.

Finally, there are summaries at the end of each (main) chapter and smaller synopses

in gray boxes at the end of each section in that chapter.

[|]

In the next chapter, we begin with background information. We explain our
notion of information as software artifacts, programming tasks, graphical tools for
tangibility, tool configuration, and eventually tool building.

17





2 Background

The craft of programming entails challenges that go beyond reading and writing
source code. In larger software projects, the mere communication with fellow pro-
grammers can yield hundreds of informational pieces to manage. For example, there
are e-mails, mind maps, sketches, or chat logs. Programmers have to work with
many kinds of such software artifacts because code is rarely (self-)documenting its
current bugs, underlying theory, or prospective features.

When programmers write software, they make use of programming tools. First
and foremost, there are tools for reading, writing, or debugging source code. Then,
there are tools for other kinds of artifacts. If programmers want to remember bugs,
they can use tools for creating bug tickets. If programmers want to schedule a meeting
for discussing a refactoring, they can use tools for writing e-mails. Consequently,
programming tools should be accessible, supportive, and integrated.

In this chapter, we describe our notion of software artifacts being “informational
things” to be consumed and managed by programmers with tools throughout
program comprehension tasks. We outline the virtues of graphical user interfaces
having interactive means to exhibit underlying concepts in a tangible way while
keeping cognitive effort low. We explain, why many programming tools and environ-
ments are generically aligned with programming languages but can be configured
to accommodate specific domains, tasks, and personal preferences. Finally, we de-
scribe reasons for building new domain-specific tools and means to do so in the
self-supporting, object-oriented environment Squeak/Smalltalk.

Remark This chapter explains relevant vocabulary, which we will use in the subse-
quent chapters. We form a conceptual model about the data-intensive programming
profession as well as the idea of domain-specific, graphical tools in self-supporting
environments. We will use this model to motivate this work’s main challenge in the
next chapter.

2.1 Software Artifacts

Programmers read, write, and run source code. In object-oriented programming
languages, the impalpable term “source code” actually denotes tangible artifacts
such as classes and methods. In fact, programmers create, modify, and observe
many kinds of software artifacts, not just code-related ones [59, 177, 91]. For example,
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the software development process yields artifacts in the course of modeling and
documentation. Architecture diagrams can be useful for program comprehension.
E-mail conversations can be useful to document design decisions. When creating
and maintaining complex systems, programmers handle a variety of these software
artifacts. Consequently, there are many situations when writing code is not the primary
activity.

Artifacts Under Observation: Concepts, Structure, and Transport

“Something created by humans usually for a practical purpose.”

Definition of “artifact” from Merriam-Webster dictionary, March 2017.

Throughout this work, we talk about programming tools that support working
with software artifacts. Any assessment of appropriate tool support requires a clear
definition of the term “artifact”. In the common meaning, artifacts are “things”
created by humans with the intention of practical use. For software engineering, we
also include things created by tools as tangible by-products. Since programming tools
are operated by human programmers, it is programmers who create all software
artifacts directly or indirectly.

Programmers consume artifacts through computers by means of structure revealed
visually on screen. That is, programmers read labels and interpret graphics to
recognize concepts and understand relationships. In general, programming tools
provide many different interactive, graphical user interfaces to present artifacts
visually. Meanwhile on a technical layer, tools manage files, objects, or tables to
transport artifacts with the intent of persistence or integration.

So, we distinguish three levels when talking about software artifacts and tool
support: (1) concept, (2) structure, and (3) transport. This resembles a definition for
design artifacts known from activity theory [17]. There, artifacts capture knowledge
from design activities, which results in the separation of conception, cooperation,
and construction. We think that design artifacts and software artifacts share many
properties because software design is a part of software engineering.

Conceptual level The artifact’s underlying concept or representative of a con-
cept matters. There is typically context information necessary to determine con-
cepts. For example, the text “john.doe@ymail.org” can refer to a concrete person
or the abstract concept of an e-mail account. Driven by the programmer’s current
goals, there is room for interpretation. Especially if information is ambiguous,
programmers can adjust interpretations to fit the context. Tasks related to program
comprehension often exhibit such properties of inconclusiveness. Tools do not
form concepts themselves, but the programmers do with the help of a tool’s visual
output. That is, programmers have to understand many abstract rules, constraints,
and assumptions that make up the software system.

Structural level The artifact’s structure or “building blocks” matter. In pro-
gramming, human-readable text is favorable due to its simple means to type-in
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Figure 2.1: Synergy of artifact concept (here: an order), structure (here: order is price plus
goods), and transport (here: objects, files, streams). The concept (here: in the bubble) is
shared across all boundaries.

and print-out. More complex structures include sounds or pictures, which involve
more sophisticated means to create and process. Artifacts can refer to other ar-
tifacts by name; namespaces can help resolve ambiguity. It is possible that two
artifacts complement their structures by sharing a concept. For example, a bug
(being the concept) can be documented in an e-mail (e-mail account) or in a ticket
(bug tracker), each one revealing different details. Also, the structure of a single
artifact does not necessarily identify a single concept. Especially in debugging,
programmers encounter many complementary artifacts to understand a single
bug.

Transport level The transport medium, which holds the artifact’s structure,
matters. In an object-oriented application, artifacts are represented as objects. In
a relational database, artifacts are represented as tables. In a text editor, artifacts
are represented as files. When treating an object, table, or file as an artifact of its
own, transport media are used in combination. For example, the file can be an
object, which is eventually stored in a table. A table can also be an object, which
is eventually stored in a file. And so on. Consequently, tools can only exchange
information via artifacts if they are able to process a common transport medium.

In figure 2.1, there is an example of a digital shop that processes orders on two
computer systems, each having an object-oriented application environment. All
domain-specific concepts are shared across all systems and environments: orders,
prices, goods. When transporting artifacts between such environments (or systems),
it can be necessary to serialize objects from the source environment into files, write
bytes on a network stream, de-serialize contents again, and finally import the data as
objects in the target environment. Such sharing across boundaries supports division
of labor and modularization of large software systems.
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Artifacts as Objects

We focus on object-oriented programming languages, tools, and environments. This
implies that all software artifacts are represented as objects. An object encapsulates
state and responds to messages. Creating artifacts means creating objects by defining
structure and name to represent the underlying concept. Adding structure means
referring to other, previously created, objects, which can represent other artifacts
themselves.

We regard artifacts as largely state-defined, but behavioral descriptions can be
used to derive new, maybe dynamically changing information. For example, a
person’s age is the span between today and the person’s birthday. Objects can also
generate more complex objects such as compilers that generate byte codes from
source code. In this perspective, everything is an object and every object can be treated
as a valuable software artifact. The compiler itself may be the artifact and not just a
tool or application to use.

In addition to creation and generation, artifacts can be imported. The underlying
operating system provides means for object-oriented programs to communicate with
other programs. For example, this allows for accessing tickets in bug trackers that run
on some servers in distant networks implemented in any programming languages
running in any environments. At best, programmers can get the impression of not
having boundaries at all.

Eventually, programmers have to understand, create, and modify code artifacts.
For class-based languages [211], this means to describe classes and methods that
correspond to the program’s domain. Note that there is no inherent limitation
in focusing on object-oriented languages only. We argue that the object-oriented
programming paradigm is a good start to think about software artifacts and tools
that handle those artifacts.

From Theory to Practice: Relevance and Availability

The variety of software artifacts can be overwhelming to programmers. Yet, there is
no need to always consider all artifacts in well-modularized, large systems. Cohesive
modules with low coupling to other parts can be treated in isolation, following the
idea of abstraction [5, pp. 4–31] and information hiding [119, p. 25]. In addition to
such objective measures, programmers differ in their needs for information, largely
based on individual knowledge and experience. That is, they do assess artifact
relevance in a subjective manner, too. This is especially important since multiple
artifacts can share a concept while complementing structural information, which
might be already familiar to the programmer. Programming tools can make both
object and subject measures accessible.

The theory on information foraging has been applied to programming tasks [55]. In
that case, constructs such as links, cues, attention, cost, and value evaluate the level
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of tool support. We simplify that theory and focus on a few data-oriented questions
programmers typically have about software artifacts:

• Is the artifact required to run the program?
Is it source code?

• Is the artifact expected to be maintained in the software development process?
Is it documentation?

• Is it feasible to access the artifact in time?
What are the estimated costs?

• Is it worth processing the artifact given the current knowledge?
What is the estimated value?

• Is the artifact representing information about the system in its current form?
Is it up to date?

We do not consider this list to be complete. Yet, we do emphasize the first question,
namely the relevance of code artifacts. In a space of countless optional artifacts, source
code is crucial and affects programming tasks directly. This includes the awareness of
duplicate code artifacts and other code smells [57, pp. 75–88] worth investigating and
refactoring. Overall, programmers use tools to assess artifact relevance by exploring
artifact structure. We will put focus on the individual programmer that works on
a concrete problem, is allowed to follow hunches, and makes informed decisions
about what software artifacts to consider and which tools to use.

Remark We use the term “programming environment”. The conventional abbre-
viation “IDE” means “integrated development environment”. Since we refer to
programmers and programming while not using developers and development, we
will also refrain from talking about IDEs. Instead, we focus on “programming
environments”, which are always integrated to some degree.

Since resources are limited, it is likely that relevant software artifacts spread
across several environments. For object-oriented environments, this means that
programmers and tools have to integrate more transport media than just objects. While
objects are primary, there are often files, streams, or tables, too, which depends on the
artifact’s location. For example, there can be source code in a file attached to an e-mail,
which happens usually outside one programming environment. The programmer
then has to load that code file to make its contents accessible in the preferred tools.

Integrated programming environments such as Eclipse provide a shared data

representation to support the exchange of artifacts among tools inside the environment.
Still, there are many tools involved outside the environment such as on-line bug
trackers. Transferring artifacts from one environment into another involves switching
the transport medium as illustrated in figure 2.1. Note that some object-oriented
tools give programmers more control over files than others. In Eclipse, programmers
have to actively manage files and file contents to store source code into. In Squeak,
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Figure 2.2: The interface of a programming tool supports programmers to recognize the
concept and structure of software artifacts. There is usually more structural information
of artifacts available than currently visible on the screen. In this example, the transport
medium (object/file) remains hidden from the user’s perception.

programmers just describe classes as objects and there is only a single file to store
information into. So, when we talk about object-oriented programming environments
and tools, it is obvious that there are boundaries to other environments. In daily
work, the use of multiple transport media is inevitable.

Virtually Uniform Transport

Programming tools try to hide an artifact’s transport medium. Primarily, tools show
the structure of software artifacts on the screen as depicted in figure 2.2. In the
context of program comprehension, programmers use visual cues such as the name of
a class or the description of a bug to (1) to identify an artifact and (2) to gather more
information about an artifact to accomplish the task at hand. Whenever a new class
is created, the underlying object, file, or stream will usually be created automatically.

When fetching artifacts from outside the environment, tool interfaces request
merely abstract location and identification information. For example, programmers
have to provide only the address of the bug tracker whose tickets should be made
available. The actual fetching with the help of transient files or data streams remains
hidden. Having to deal with the transport medium in addition to structural informa-
tion and underlying concepts requires additional effort. In case of an error, however,
programmers may still have to deal with that. A tool’s abstraction can break, for
example, if the network connection is lost or if the hard disk is full. Then, a rather
distant artifact that felt quite local will suddenly be exposed.

There are many programming environments that, intentionally, expose files to
programmers. For historical reasons, these environments provide graphical interfaces
to file-based tools and hence introduce a mixture of objects and files. As an advantage,
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programmers used to working with files can benefit from a shallow learning curve
since there are only few additional concepts. Examples include Unix-like operating
systems based on files, which started with text-based, command-line interfaces (such
as the Unix shell) and got graphical interfaces only later in the form of DEC Fuse,
HP SoftBench, or SUN SparcWorks.

Cross-platform compatibility can make it still necessary for programmers to
actively manage files in addition to objects. In Microsoft’s Windows operating system,
there are objects in the first place and files seem to be a mere addition [165, pp. 21–22].
Unfortunately, such a dualism exposed to the programmer increases management
efforts. Files have to be named and organized in folders, for example. Restrictions can
help such as a one-to-one mapping from an artifact’s object to its file. Java’s official
code conventions dictate a single public class per source file.1 So that programmers
can, to some extent, treat files and code artifacts interchangeably. Private classes, as
one limitation, are not covered by such conventions. Hence, flexibility and ambiguity
remain, which can be misused and impede program comprehension tasks when
inconsistently supported in tools.

Synopsis We think that good programming tools support programmers in focusing
on the structure and concepts of the software artifacts at hand. Goals and working
strategies can be expressed in terms of acquiring more information and understand-
ing about artifacts. Since the number of available artifacts can be overwhelming,
programmers have to assess relevance according to several dimensions such as
actuality and added value. Besides consumption, programmers also create, modify,
or remove artifacts. When talking about tool architecture and implementation, the
transport medium is very important. When talking about a tool’s user interface, the
(graphical) representation of artifact structure on screen matters because it reveals
artifact concepts to the tool’s user.

1A Java code convention reads: “Each Java source file contains a single public class or interface. When
private classes and interfaces are associated with a public class, you can put them in the same
source file as the public class. The public class should be the first class or interface in the file.” (See
http://www.oracle.com/technetwork/java/codeconventions-141855.html, accessed 2018-11-24)
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Figure 2.3: Program comprehension is an iterative, data-driven process. Programmers strive
to understand a system’s design and intents (left) before making changes. Analysis of
the results (right) might reveal false assumptions about the actual role of some system
module. Then, programmers go back, reflect, and revise their mental model. There are
many different strategies to process software artifacts in this process.

2.2 Programmers’ Tasks

Many programming tasks have the intent to fix known bugs or add new features [101,
100]. To fulfill this intent, programmers invest much time to navigate, explore, and
eventually locate all relevant places in the code [178]. Then, they have to figure out
which code to add, change, or delete. In this course of localizing and modifying,
programmers build a mental model of the system’s current design [133]. After some
time, they will form a whole theory that supports making the right decisions in
future tasks [130]. In a larger system, there is usually a task context and hence many
parts to recall or learn about. Programming tools can facilitate stepwise learning and
recalling in the whole software maintenance process.

Strategies for Program Comprehension

We know about many different program comprehension strategies [113, 95, 161],
which suggest different kinds of tool support in combination. For example, program-
mers can start with the topmost modules to understand the overall architecture.
Then, they dive down into the details of modules that might be relevant for the
current task. Sometimes, it will be the other way around, especially if programmers
can immediately recall a specific place to start with. Such ideas can be specific names
to search for to directly navigate to code artifacts. Overall, program comprehension
is an iterative process with backtracking involved. It includes learning new facts
about the system and also recalling facts that were known from previous tasks as
depicted in figure 2.3. Software systems are usually too big to memorize every single
detail and bring back to mind all relevant facts when needed.
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During program comprehension, there will be a gradual transition from code
reading to code writing, sometimes even unnoticed. Once the problem is understood
to some degree, programmers might have an idea on how to solve it. They write
some code and begin to analyze the effects their changes have on the system. They
might have to revise some assumptions and correct their mental model. If they are
new to a system, they need to invest time and energy to build up an appropriate
theory [130]. They might have to go back to figure out2 the intent behind the design
of relevant system modules. As an effect, programmers write code not only to fix the
bug but also to better understand the system.

There are other artifacts that support program comprehension. It is not just about
source code but also about comprehending associated artifacts such as libraries, doc-
umentation, and e-mails. Programmers use various programming tools to support
this process of data-driven program comprehension.

Fetch, Examine, and Retain Information

It is not just computers but also programmers who constantly have to process
information. As described above, information is manifested in numerous, partially
wide-spread, software artifacts. There are many tools that support programmers
to work with artifacts to build up a mental model and theory. Tools help foster
informed decisions. Tool-agnostic program comprehension models [113], however,
are not suited to describe and assess any tool’s value in the process. For this, it is
beneficial to pinpoint specific but recurrent steps such as “query a database” and
“ask a question”. Hence, such models cannot conclude the need for tools that help
“browse source code”. What does it even mean to “browse”? Programmers seem to
browse information all the time in various ways.

Tilley et al. [202] distinguish tools for data gathering, knowledge organization, and
information exploration. Ko et al. [95] apply an information foraging theory3 and
distinguish programmers that seek, relate, and collect information. Sillito et al. [177]
categorize typical program comprehension questions into finding and expanding
focus points or groups of focus points, which simplifies tool requirements into
a different triad: asking questions, maintaining context, and piecing information
together. We take these three perspectives into account and clarify our problem
domain.

What do programmers do to understand systems, issues, or theories in the scope of
certain domains or tasks? As illustrated in figure 2.4, we assume that programmers
use tools to (1) fetch artifacts, (2) examine artifacts, and (3) retain artifacts. In each
activity, programmers may focus on an artifact’s concepts, structure, or transport

2If fellow programmers are available and able to explain important aspects of the theory, there might
be no need for tools. However, we assume that it is possible for a programmer to build up some
coherent model by herself using tools.

3Fleming et al. [55] elaborate on the relevance of information foraging theory for programming tools
including explanatory background information on the theory itself.
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Figure 2.4: During program comprehension, programmers use tools to continuously fetch
and examine software artifacts to learn and recall facts about the system. If considered
relevant, artifacts are retained on screen or in mind. The whole process is iterative, flexible,
and sometimes unanticipated when suddenly having an idea.

properties. Tools may have one major use case, but they typically support multiple
activities. Especially the distinction between fetching and examining artifacts can be
blurry. Nevertheless, such ambiguity is of minor concern because the concreteness of
these steps in the program comprehension process will help us to describe and assess
existing tools. We can pinpoint problems and show how to design new, versatile
programming systems.

Fetch

“To go or come after and bring or take back.”

Definition from Merriam-Webster dictionary, March 2017.

If programmers do not have enough information at hand, they can get more by
fetching more artifacts. Tools use different vocabulary depending on the context. For
example, programmers can access an external database, jump to the list of all symbol
references, seek advice in a bug tracker, search a term across all project files, navigate to

all code changes from a coworker, query a complex aggregation, look up the result of
an expression evaluated in the command line, or simply ask a question. Embedded
in the iterative, ongoing program comprehension process, programmers use tools
to add more artifacts to the current working set. While this process may look like
mere consumption via a tool’s user interface, there can be new artifacts produced
as a side effect of interactivity. For example, fetching the call tree of a code snippet
or test case may actually run the code and produce loads of artifacts, that is, call
nodes [146] If caching is used, a re-fetching might not have such a side effect over
time but programmers may neither know nor notice.

Examine

“To inspect closely.”

Definition from Merriam-Webster dictionary, March 2017.

There is usually more information available than what fits on screen. For example, the
result list of a search operation can be very extensive. To find out about the relevant
pieces in such data sets, programmers use interactive widgets and visualizations.
The visual information seeking mantra [174] outlines this activity as overview-first,
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zoom-and-filter, and details-on-demand. In general, tools use also different vocabulary
depending on the context. Programmers can read the log output, follow references
in code back-and-forth, zoom into a graph, filter a list by a keyword, browse files’
contents one-by-one, or jump to the next match on a Website. To separate “fetch”
from “examine”, we think that programmers examining some artifacts do usually
not intend to add more artifacts to the current working set. With “more artifacts”,
we mean artifacts on the same abstraction level. For example in Squeak, there
will be objects created and removed all the time, even if you move the mouse
cursor. While you can treat every object as a software artifact with important
structural and conceptual properties, the distinction becomes obvious considering
the programmer’s current task and problem domain.

Retain

“To keep in possession or use; to keep in mind or memory.”

Definition from Merriam-Webster dictionary, March 2017.

Programmers can always memorize information or take notes with a physical pen
and a real sheet of paper. Considering programming tools, we focus on the means of
a user interface to collect and retain a valuable representation of software artifacts
that reduces the cognitive load. There are many tools for organizing textual notes
with screenshots and other multimedia content. Examples include OneNote and
Evernote.4 As usual, tools use different vocabulary for retaining insights depending
on the context. Programmers can arrange windows to compare things side-by-side,
check off an item on a todo-list, bookmark a Website, or collect code snippets to document
a cross-cutting concern [198]. All software artifacts collected to retain insights can be
used as input to fetch new artifacts or re-examine the existing ones. Programmers
may remember additional information while examining artifacts. Tools can support
this process by actual side-by-side comparison, for example. In fact, programmers do
usually have multiple tasks in the works [66]. One task can block another, for example,
if more information is required before the programmer knows how to proceed [142,
91]. When switching between these tasks, programming tools should help recall the
current progress in the form of open questions or confirmed assumptions.

4Both Microsoft OneNote (https://onenote.com/, accessed 2018-11-24) and Evernote (https://
evernote.com/, accessed 2018-11-24) support versioning and sharing using proprietary server
infrastructure. Programmers can hence access their notes from everywhere, which improves basic
integration of these artifacts in the software engineering process.
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Figure 2.5: Even code writing activities are supported with tools that help comprehend

the programming context. For example, syntax highlighting can give feedback about
spelling mistakes. Auto-completion helps recall and learn about library functionality.
(This screenshot was taken from Eclipse 4.5 “Mars”.)

How Programmers Create Information

In the course of program comprehension, software artifacts are not only consumed
but can also be created, modified, or removed. That is, comprehension and change
go hand in hand. Note that we do not mean to investigate elaborate ways to modify
or transform program source code such as refactoring tools do when renaming a
method, for example, in the entire code base. Instead, we want to address the means
of user interfaces to support program comprehension:

• How do tools support the procedure of fetching, examining, and retaining infor-
mation through artifacts throughout a task?

• How can programmers understand whether they found an answer to a question
or some evidence for an assumption?

That is, the mere act of a user typing a thought into a text field is not the primary concern
in this work. In many—if not most—programming tasks, programmers have to enter
search terms, express new code in text, or save modified files. Even a simple search
request results in new, maybe transient, artifacts. Thus, we acknowledge the fact that
tools for program comprehension can involve aspects of artifact change intrinsically.
In the field of software engineering, elaborate information creation or extraction
techniques yield their own challenges. For example, the construction of efficient
search algorithms [71] or run-time tracers [35] are out of scope for this work. We
treat those as given, convenient means to fetch more and examine useful information
through programming tools.

Since many programmers modify code to better understand it, we see a seamless
combination of code reading and writing in the entire programming task. For
example, programmers set breakpoints to test reachability or modify properties of
a class, which aims at observing change effects at run-time. Eventually, some code
artifacts have to be modified to fix the bug or add the feature. In object-oriented
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systems, programmers will create new classes, change methods, or add tests to
achieve this. Tools support this text-driven code writing activity in various ways.
For example in text editors, programmers can rely on highlighting for language
syntax, auto-completion for identifiers, and code templates for common patterns. As
illustrated in figure 2.5, such tools will integrate much information to help recall or
learn facts about the used system parts. Albeit these tools are triggered during code
writing, they support program comprehension activities as well. Thus, up to the last
moment in a particular task, programmers use tools that support comprehension of
the program and the process. Even when committing all changes to a shared code
repository, tools can remind programmers about the artifacts changed, whether all
tests pass, or to enter a descriptive message.

In addition to code-related artifacts, programmers leave more informational traces.
Programmers might stumble upon new bugs or have new ideas on how to improve
code readability or system usability. All these thoughts and insights usually get
captured in additional notes or tickets in the project’s bug tracker. In larger software
projects, team communication yields many artifacts. Any such artifact can become
relevant in future programming tasks: every question formed as an e-mail or instant
message, every wiki page that persists meeting minutes can document a relevant
insight. At some point, some of these artifacts might be fetched and examined to retain

or recall some aspect that might turn out to be causal for making the final code
change.

Information Overload, Tool Overload

Programmers use tools that support program comprehension because there is
typically too much information to memorize and recall in time. There is often also
new information to process and learn about because multiple programmers can work
on the same project but independently. This includes all kinds of software artifacts
such as code, e-mails, and project documentation. Not all information is important
for every programming task, but some are. For example, coding guidelines have to
be remembered and applied all the time. Any particular pattern in a specific system
module may only be relevant if the programmer is working on that module.

Remark Our thoughts focus on a single programmer that is confronted with an
overwhelming amount of information and using tools. In larger systems where
multiple programmers are involved, changes can happen without being notified.
For tool support, we see basically no difference in whether an artifact is unknown
because of its novelty or former irrelevance.

We are aware of several models to better understand cognitive processes in the
programmer’s mind—and humans in general [122, 142]. Basically, these models try
to clarify when there is a need for re-fetching or re-examining software artifacts to

31



2 Background

recall relevant information. On the one hand, an externalized note visible on screen
that retains an information can remain there—unless being covered by another tool
window. A memorized note, on the other hand, can be forgotten until recalled by chance

or with the help of visual cues in the tool. This basic understanding is sufficient to
distinguish programmers that can memorize much information from the ones that
have to rely on tool support more intensively. Still, some cognitive limitations for
processing information are shared among all human beings [120]. That is why tools
do not only have to support specific domains or tasks, but they can also be tailored
to individual programmers.

Tools are plentiful and programmers have to choose. Personal habits and the
software development process can influence such choice. For example like all humans,
programmers are also prone to the active user paradox [28]. It is basically the irrational
behavior of users to not research a tool’s best practices but instead just get started
somehow and knowingly reject probable efficiency. Additionally, process limitations
might restrict the free use of tools and forbid to integrate a new one into the controlled
environment. In this work, we assume that programmers are free to embrace any
chance to accomplish tasks more efficiently and more effectively.

Cognition and Concurrent Tasks

Whatever programmers can memorize and recall in sum, the human brain is capable
of storing different kinds of memory with respect to access time. Miyata et al. [122]
distinguish long term, short term, and working memory. Long term memory is able
to store much information for a long time such as a software project’s theory and
domain concepts. Short term and working memory are quite limited and rather
useful when thinking about the current programming task and its relevant software
artifacts. Parnin et al. [142] talk about a more elaborate model and distinguish five
different types. The attentive memory is used for focusing and filtering the information
required for the current task. The prospective memory broadens the scope to what
might be missing and worth fetching as next step. The associative memory keeps
track of all the current steps in the task and might hence be useful for backtracking
and sequential processing of assumptions or hypotheses. It is closely related to the
episodic memory, which is used to recall past events. Finally, there is conceptual memory

to grasp the whole picture, concepts, and theory of the system or system part.
Miyata et al. [122] also distinguish two kinds of control systems: conscious and

subconscious. They explain why humans can only perform one conscious activity at
a time. Other activities have to be learned, trained, and automated to be executed
at the same time in the subconscious system. Examples include breathing or blind
typing. Consequently, a writer that cannot type blindly on a keyboard will rather
sketch her thoughts via pen-and-paper first, given that writing by hand does not
pose a challenge itself. If so, recording a dictation could be an option while relying
on speech and hearing. There are similar models such as Kahneman’s “System 1”
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and “System 2” [83], which state the same limitation. Transferring this insight,
programmers can only attend to one program comprehension task at a time. There
are several reasons for not completing but suspending one task for another [66, 91].
Incoming notifications might draw the programmer’s attention such as new e-mails
and chat messages. An upcoming question or hypothesis might also require more
information to be fetched. For example, a question like “Which type represents this
domain concept or this UI element or action?” [177] can trigger a new debugging
session that demands for the programmer’s full attention. Such task switches involve
suspension and resumption lags and thus yield several cognitive challenges [101,
8, 143]. If tools lack support for such interruptions, programmers will have to
take additional notes to not forget about that suspended task and to speed up the
resumption phase.

Exploratory Programming

Given that task concurrency is inevitable, we do encourage exploratory program-

ming [171, 167, 204], where programmers are allowed to make unrelated changes
along the way as they see fit. This can include refactorings and bug fixes that do not
take much time. Especially when the project’s domain and requirements are unclear,
officially allowed flexibility can be valuable for programming efficiency. Such “side
quests”, however, also draw the programmer’s attention and hence force the sus-
pension of the current (main) task. There are tools that support logging [186] and
untangling [195] of additional tasks to improve version control for such exploratory
habits.

Programming tools support concurrent work on multiple tasks to some degree by
offering flexible means to fetch, examine, and retain artifacts. Programmers can open
the same tool, such as the code browser, multiple times and use it for different tasks.
By keeping the tool windows open, tool switching can simply mean task switching.
Typically, tool containers offer flexible layout strategies to group related information
coherently on screen. As described above, there are many tools for taking notes
to improve suspension and resumption lags. Such integrated tools can often be
combined with any external tool through manual (or “off-line”) integration. In the
next sections, we describe ways to control the level of such support via tool choosing

and tool configuration.

Synopsis Program comprehension is an integral part of a programmer’s daily
work. Especially in larger software systems, programmers use programming tools
to comprehend the details relevant for task and domain. Such tools help cope with
the fact that a programmer’s mental capacity has limitations such as being restricted
to perform only one conscious activity at a time. Tools have user interfaces that
reduce cognitive effort. For program comprehension this means to conveniently fetch
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software artifacts, help examine the artifacts’ details, and to retain insights somehow.
We simplify program comprehension to these three steps to help explain challenges
in existing tools and hence the need for tool configuration and tool building.

Tools have a main purpose but are not exclusive in many features. Some of them
are good at fetching information, others focus on examining details of information
that are already at hand. From user perspective, the distinction between fetching and
examining can be difficult because revealing some details might “feel” like fetching
more artifacts, even though it may technically not be.

The interplay between large amounts of software artifacts and existing cognitive
limitations reinforces the necessity of having programming tools that accommodate
specific domains, tasks, and individual traits. We acknowledge the fact that program-
mers might recall any relevant detail at some point in time without tool support. In
the end, programmers do have to come up with a solution for that particular bug or
the best way to add that particular feature to the system.

2.3 Choose Tools: Graphics for Tangibility

Modern computers support high-resolution input and output devices. Many research
efforts from the past 40 years have been added into mainstream programming
environments. Once limited to characters and text, modern programming tools can
employ colorful shapes and elaborate widgets, placed on a screen having millions
of pixels. Once started with mouse [50] and keyboard, programmers can employ
gestures and shortcuts also via touch [203] or gaze [201]. While the field of software

visualization [44, 99] explores different ways to present thousands of artifacts concisely
on screen with colors, patterns, and shapes, plain text still plays a vital part in graphical
user interfaces such as for button labels and menu entries—and for displaying the
source code itself. While touch control and gaze input have their scenarios, mouse
and keyboard are still quite reliable and precise input methods [166].

Programming tools combine all these means to help programmers (1) view struc-
tural properties of software artifacts on screen and (2) interact with software artifacts
by modifying these properties. Figure 2.6 shows a simplified version of a source
code editor. Figure 2.7 shows a simplified version of a programming tool that has
non-text views. In combination, tools can support the many challenges posed by
complex programming tasks. Yet, graphical tools for programming are plentiful and
programmers have to choose. While there might be one favorite code editor, the right
choice of tools for fetching, examining, and retaining software artifacts may change
from task to task.
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Figure 2.6: Sketch of a programming tool with graphical interface. Its single window has
three buttons, a list of files, a text editor, and an interactive command line. The user just
invoked a context menu on a text selection in the editor. Buttons and menus can open
other tools.

Tangibility of Digital Information

“Capable of being precisely identified or realized by the mind.”

Definition of “tangible” from Merriam-Webster dictionary, March 2017.

Programmers have to relate on-screen information with the structural properties of
artifacts they know. Is it a class? A method? An e-mail? Or part of the latest meeting
minutes? Then, programmers look at several artifacts in combination to examine
their relationships. They assess the relevance for the current task. For this, they
access the conceptual level of the respective artifacts. Does it belong to the cause of
the bug X? Does it affect the implementation of the new feature Y? If such questions
can be answered, software artifacts become tangible.

In programming, the notion of tangibility does not address primarily a physical

representation but an aspect of cognition. Programming tools can make software
artifacts be “capable of being precisely identified or realized by the mind” of the
user. The idea of tangibility is influenced by the project domain, the current task,
and personal preferences, experiences, or knowledge. Any tool’s views can try to
accommodate such requirements in different ways as depicted in figure 2.8. There
is an extensive range of views including plain text boxes on the one end and
elaborate tree maps [175] on the other end. While programmers might handle all
details of selected artifacts, there are views that can concisely highlight task relevance
even among thousands of them. Such views should help answer programmers’
questions such as “How is domain knowledge represented in source code?” and
“How are the rather abstract descriptions from the source code put into action during
program execution?” Sillito et al. extracted a catalog of 44 questions from program
comprehension activities [177], which can be used to create valuable graphical tools.
The notion of tangibility can be used to separate good tools from bad ones (or
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Figure 2.7: A programming tool that visualizes some modules of the software system. It
provides some familiar controls compared to the code writing tool in figure 2.6. It also has
a bar chart to provide a different perspective on the selected artifacts (here: “Graphics”).

appropriate from inappropriate). That is, programmers can use these characteristics
to pick the best tool, or view of a tool, for the job.

Graphical Tools can raise the chance of tangibility if they employ consistent,
clear representations of the artifacts’ characteristic properties. For example, a distinct
pictogram for classes or methods can help reveal inheritance relationships at a glance.
The artifact’s unique name can also support programmers to locate its position on the
screen. Besides such structural cues, user interaction can show operations in menus,
which do typically pop up on a mouse click as depicted in figure 2.9. Seeing familiar
operations can also help programmers recognize context and thus identify artifacts.

In fact, letting users point to objects first and only then perform an action feels more

direct than vice versa. Jef Raskin, a usability expert and former member of Apple’s
Macintosh team, explains this distinction [152, pp. 59–62] using the example of a
font change for a paragraph in a word processor as follows:

“[...] The interface can allow you to sequence the operations in two ways.
You choose either (1) the verb (change font) first and then select the noun
(the paragraph) to which the verb should apply or (2) the noun first and
then apply the verb. [...]”

Of course, this works especially well for a small set of artifacts. In contrast, pixel-based
drawing applications require users to first select a brush and only then paint on pixels.
It would be cumbersome for users to select the pixels first. Vector-based drawing
applications, on the other hand, do employ both interactions styles: noun-verb and
verb-noun. In Microsoft’s PowerPoint, which is a slide-show design tool, there is a
brush to copy the last formatting change over to other shapes. This interaction is
verb-noun and complements the primary noun-verb style. Such batch operations can
save interactions and thus time.
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Figure 2.8: There is a range of ways to show source code artifacts. Simple views (left) may
just position text fragments in a meaningful way on the screen. The use of colors and
pictographs (middle) can add semantics and provide various cues. Elaborate views (right)
such as Voronoi Treemaps [70] and Bundle Views [34] can efficiently combine many
properties for larger amounts of artifacts.

Direct Manipulation

Programming tools with interfaces that emphasize noun-verb interaction entail
a feeling of directness. Software artifacts can become discoverable in any kind of
elaborate view. Discoverability and also learnability can then positively affect pro-
gram comprehension. Larry Tesler [199] coined the term “direct-drive user interface”
in 1983, which later became “direct manipulation”, when describing the poten-
tial impact of interactivity seen in contemporary Smalltalk systems. According to
Hutchins et al. [75] and Shneiderman et al. [176, p. 214], the basic principles of
direct-manipulation interfaces are:

“1. Continuous representation of the objects and actions of interest with
meaningful visual metaphors. 2. Physical actions or presses of labeled
buttons, instead of complex syntax. 3. Rapid, incremental, reversible
actions whose effects on the objects of interest are visible immediately.”

Even though many programming tools are centered around text, they often
expose the source code as structured artifacts. Such artifacts emerge from programming
language syntax and semantics. There are, for example, lists of files, classes, or
methods that belong to a software project written in a class-based, object-oriented
language such as Java or Smalltalk. In combination with pop-up context menus, we
clearly see characteristics of direct manipulation in graphical tools for programming.
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Figure 2.9: Programming tools employ concise means, such as distinctive pictograms and
text, to expose software artifacts on screen. Context menus offer possible actions, which
further supports discoverability and learnability. Such means of direct manipulation help
programmers efficiently work with artifacts. (The screenshot shows Eclipse 4.5 “Mars”.)

In this work, we also draw lessons from object-oriented user interfaces. In his book
“Designing Object-oriented User Interfaces” [31, pp. 89–91], Dave Collins describes a
set of characteristics for such interfaces:

“1. Users perceive and act on objects. [...] 2. Users can classify objects
based on how they behave. [...] 3. In the context of what users are trying
to accomplish, all the interface objects fit together into a coherent overall
representation. [...]”

Many long-living principles stem from the urge to create user-friendly software
for everybody such as word processors and e-mail clients. Domain artifacts in such
applications do typically have real-world counterparts such as physical paper and a
real postal service respectively. In contrast, software artifacts are often purely virtual.
Still, programmers benefit from being able to recognize software artifacts and their
relationships on screen. “Things” get manifested in mind as part of a mental model.
These “things” bring new concepts to life and programmers have to work with them
through programming tools. The absence of physical companions does not matter.
For a further reading in this regard, we refer to the book “Software Development and
Reality Construction” and especially the chapter “Software Tools in a Programming
Workshop” [23], which adds more philosophical background information.

Tools and Tool Environments

There are numerous tools for writing code, managing bugs, communicating with
fellow programmers, or finding a clue among thousands of software artifacts. Many
tools are tailored to standard processes and artifact structures. For example, editors
for object-oriented code are likely to provide lists for browsing classes and methods.
Yet, there are more sophisticated tools that show strength when analyzing artifacts
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in-depth. For example, programmers might want to examine source code considering
authorship, performance, contracts, and other properties. There comprehensive tools
such as PathTools [145] that integrate many artifacts to create a guided debugging
experience. There might be not only generic but also domain-specific tools available
in a project to be used in domain-specific tasks. For example, the personal history of
past tool activities can be available such as in command-line interfaces [69, pp. 65–83].
Also, fellow programmers might have created tools to solve recurrent problems in
that domain [180].

Programmers choose among such tools to fetch, examine, and retain software
artifacts. They do not have to use the same tool for all purposes but can switch,
for example, during artifact examination to get different impressions of the same
information. Depending on the current task or domain, some tools might render
artifacts in a more tangible way than others. Such a multi-tool approach works if
tools use a shared transport medium such as files and objects with a common format.
Considering file formats, there is the JavaScript Object Notation, JSON for short, and
the Extended Markup Language, XML for short, to share structured information among
tools [135]. Tools can derive a simple object representation from these file-based
structures if needed.

When it comes to retaining and recalling information, programmers are likely to
keep using tools with familiar views. They might end up using always the same set of
tools and totally refrain from choosing more appropriate ones [28]. Having to learn
new user interfaces takes time, even though shared concepts can ease this challenge.
Such concepts include keyboard shortcuts for cut-copy-paste and further means of
interaction such as pop-up menus when clicking the right mouse button. We see a
strong relationship between interface familiarity and tangibility of the artifacts shown.

Not every programmer has to assemble a whole set of tools. Like for craftsmen
or mechanics, there are existing tool boxes tailored to standard scenarios. Such boxes
contain screwdrivers, wrenches, or hammers in many different sizes. The tools
remain close at your working site, ready to be used if needed. Their mere presence
suggests that there is a pretty good chance that you will need them some day. That is,
other people—probably experts—have thoughtfully assembled that collection and
novices can discover and apply it conveniently.

Considering the craft of programming, there is usually a basic set of tools for brows-
ing, editing, and debugging source code. Novice programmers, or programmers
new to a certain language, might not know which tools to use as best practice. We
call such tool boxes programming environments. They are also referred to as integrated
development environments, “IDEs” in short. As depicted in figure 2.10, examples
include Eclipse, NetBeans, Visual Studio, and IntelliJ IDEA. Such environments
contain not only graphical tools but also compilers, parsers, and other means to
create and run programs written in one or multiple languages.

The integration of programming tools has a long history [210, 200]. Even today,
we assess environments according to their presentation, data, control, and process

39



2 Background

(a) IntelliJ IDEA 2017.1

(b) NetBeans IDE 8.2
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(c) Eclipse Mars.1

(d) Microsoft Visual Studio 2013

Figure 2.10: Traditional programming environments are tailored to the structure of the
programming language constructs and the underlying transport medium such as files.
There are means to configure layout, colors, keyboard shortcuts, or other properties to
accommodate specific domains, tasks, and personal preferences.
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integration. As explained above, a uniform look-and-feel in graphical tools supports
usability and hence artifacts can become tangible. In addition to presentation inte-
gration, a whole environment can naturally control (and dictate) a single data format,
that is, the transport medium for artifacts. If that format is open and documented like
XML, external tools can easily be integrated as needed. Control integration addresses
provision and use between tools or toward users. Process integration deals with
details of the software development process such as bug tracking, deployment, and
version control.

When discovering deficiencies in such convenient tool boxes, programmers can
choose to add more tools to the environment. There are typically plugins and other
means of extension that allow for trying out domain-specific visualizations and other,
maybe unconventional, tools to accomplish tasks. For example, Code Bubbles [21]
provides a different experience for organizing code or Software Terrain Maps [40]
can reveal modularity issues in the system design. The creators of these plugins take
care of plugging-in the required artifacts provided by other tools in the environment.
Note that the term “programming environment” refers to any set of tools with some
sort of integration. This includes Unix-based environments, whose text-based tools
communicate via files and byte streams [85, pp. 163–217]. In this work, however, we
focus on challenges that arise when building tools for graphical environments.

Synopsis Programmers can benefit from interactive, graphical tools for programming.
While plain text does play a vital role in graphical interfaces, elaborate visualization
can make software artifacts become more tangible. If programmers can quickly
recognize artifacts and their relationships on screen, they are more likely to reason
at the conceptual level of artifacts. Such reasoning is important to find the cause of
bugs or the best way to implement new features.

In general, tangibility is important for programmers to find answers to program
comprehension questions. When fetching, examining, and retaining artifacts, pro-
grammers can use many tools in combination to accommodate domain, task, or
personal preferences.

Integrated programming environments can further improve the programming
experience. Such environments provide a basic set of coherent tools by integrating
presentation, data, process, and control. There are typically extension points to plug
in additional tools that benefit from reusing the data format, presentation language,
or other integrated means to accommodate specific programming challenges.
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2.4 Configure Tools: Accommodate Domain, Task, Gusto

Many programming tools, especially whole programming environments, are tailored
to generic scenarios to provide a high level of tool re-use and hence make the
implementation worth the efforts. As depicted in figure 2.10, there is usually a larger
area reserved for code editing and several lists for class browsing or file management.
In general, it means that the graphical interface is aligned with the primary artifact
structure. For code editors, this includes programming language constructs of the
supported languages such as classes, methods, and instance variables. For e-mail
clients, as non-programming example, this includes accounts, inboxes, and mails.

In this section, we explore means of configuration, which can make generic-looking
tools exhibit domain-specific characteristics. We begin with describing the virtues

of a common (or generic) look-and-feel for standard applications. We then explain
existing ways to customize tool interfaces to accommodate project domain, current
task, or personal gusto.

From Generic to Specific

Generic scenarios and best practices can help both tool users and builders. On the
one side, users can learn new tools quickly drawing from shared (or common)
experiences. On the other side, builders can clarify requirements early in the process
and reduce the need for user testing. A common practice is unification [152, pp. 99–
148]. For example, all list widgets should have scrollbars, copy operations should
always be triggered via [CTRL]+[C], and all windows should be resizable. This
can be transferred easily to the programming domain. Symbols in a programming
language, for example, need a browser tool to explore symbol references in the code.

However, any dominant representation of generic structure impedes working with
domain-specific artifacts. Programmers might begin with generic terms in new
software projects. Gradually, they introduce and use domain-specific terms and
form custom programming interfaces. Such interfaces can evolve into a new domain-
specific language [56]. As explained above, programmers have to understand a
system’s theory and concepts, which are encoded in terms of programming language
constructs. That is, the conceptual level of a software artifact is important and
should be exposed in the user interface to improve tangibility. Take an address book
application, for example. If programmers would always be confronted with generic
classes, instead of specific persons or addresses, their cognitive load would increase
because of the continuous mapping activity. That mapping from the programmer’s
intents to tool actions and from the tools responses to programmer’s expectations
is called “gulf of execution” and “gulf of evaluation” [75]. Tools can improve the
tangibility of information, and thus narrow down the gulfs.

There are many different means of configuration to accommodate domains, tasks,
and personal preferences. Adapting tools can help raise the programmer’s motivation
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and improve the programmer’s efficiency. Consequently, not only choosing graphical
tools (section 2.3) is important for efficient program comprehension but also the
configuration of tool interfaces is.

Effective Scripting for Skillful Users

The act of configuration in a tool is usually simple and takes not much time. We hence
assume that users should be able to reconfigure tools during regular work with-
out noticeable interruption. There are typically graphical dialogs with checkboxes
and buttons to change interface characteristics such as colors, fonts, and keyboard
shortcuts.

Remark We consider programmers as being especially skilled users, which are
capable of algorithmic thinking and advanced reasoning. They can employ, for
example, mathematical skills and solve many “riddles” in their day job already. That
is, the line between simple tool configuration and advanced tool building depends
on experience and skills.

There are mechanisms in some tools’ interfaces that more difficult but allow for
expressing more elaborate modifications. We call these means scripting languages,
which programmers can employ to customize tools for fetching and examining
artifacts. Again, the vocabulary can vary: query languages, search expressions, or
filter patterns. Such languages are usually declarative, high-level, and tailored to spe-
cific domains. For example, regular expressions [189] support finer grained search
requests compared to wildcard or whole-word matches. While the mastering of
regular expressions is actually quite challenging, many programmers do appreciate
its ease-of-use for many common lookup tasks. Scripting languages provide many
possibilities for tool builders that aim for adaptable interface designs. Experienced
programmers might write smaller configuration scripts without even noticing an in-
terruption from the current task. We do not primarily address tool adaptation toward
personal preferences, which any regular user should be able to do. Programmers,
which have programming skills, might also have ideas on how to accommodate the
project’s domain or work around some hitch in the current task.

In this work, we will separate configuration activities from building activities by the
respective level of difficulty. Some means of configuration have become an integral
part of programming tool usage and are not being noticed as something extra.
For example, programmers are constantly moving, resizing, or closing windows to
organize, examine, and retain information. This is configuration of information layout on

screen. That is, to some extent, configuration can become a subconscious activity [122]
embedded in any task. As mentioned above, there is typically a set of default choices

such as for the default window layout. In figure 2.10, we can see a clear overlapping
of defaults across several programming environments. Such defaults usually align
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with the primary programming language and best practices known from software
engineering. Considering the vast landscape of available tools, again, meaningful
defaults are vital to help programmers get started quickly.

There are different approaches to scripting languages, which can all be embedded
in graphical interfaces:

• Simple keyword search, sometimes with wildcards
• Regular expressions often based on Perl [189]
• Logical queries based on the Prolog programming language [2]

So, we address any elaborate search request, which programmers can use to find artifacts

that match textual properties in a certain search space. A typical space can be “all files
that belong to the current project”. For example, when looking for painter classes
in a Java program, the regular expression “class\s+Painter” can describe some.
Now, software artifacts can provide rich structure, which can be hard to describe this
way. The search space of all accessible artifacts forms a graph with many nodes and
edges, which represent the relationships in between. Conceptually, it can be easier to
think of, for example, classes having methods instead of focusing of keywords and
other constructs from the language or underlying transport medium. For exposing
such structure, there are approaches that employ the logical paradigm, which refers
to programming languages such as Prolog and Datalog. A prominent example for
with paradigm with an implementation in Smalltalk is called SOUL [118]. The SOUL
language can be used to describe intentional views [116] on code artifacts. These views
support programmers to reveal broken invariants or other inconsistencies. Tools that
use SOUL provide logical facts and rules to describe the corpus of all code-related
artifacts. As a scripting language, programmers express logical queries like this one
taken from [118]:

constructorMethod(?class, ?method) if
metaClass(?metaClass,?class),
methodInProtocol(?metaClass, [#’instance creation’], ?method),
returnType(?method, ?class).

This query matches all methods that construct instances of classes, which are by
convention in the protocol “instance creation”. Considering invariants, the amount
of matching tuples can encode validity. In general, any kind of query-result view can
support code navigation. Double-click on a result with the mouse and the tool jumps
to the right place in the source code. Further approaches that employ logic code
queries are Jquery [39] or Codequest [71].

How Artifacts Present Themselves

Software artifacts specialize the appearance of graphical tools inherently by exposing
structural information. Text plays an important role in graphical interfaces and hence
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an artifact’s distinct name can support programmers to see a list of classes as a list

of domain concepts. Well-chosen class names can help reduce the awareness of the
underlying, generic language concepts. While iconic representation can, theoretically,
also be used for this purpose, we think that many programmers would rather not
create a pictogram for a concept since finding good names is hard enough. For
complex structures, there are strategies to summarize artifacts automatically in text
form [170].

Many tools provide programmatic hooks for domain models to improve exami-
nation of domain-specific artifacts. In many object-oriented systems, tools can ask
all objects for a textual representation: the print string. At least the class name can
be revealed and maybe an identity hash, too, like “aPerson(1234)”. Programmers
can customize such strings for any domain object with a custom implementation of
the toString() method. This hook can take many forms of standardized, structural
representation such as toHtmlString() or toJsonString(). However, programmers
have to extract all the relevant information upfront.

In addition to such explicit serialization, tools are usually able to navigate and
present an artifact’s inherent structure. That is, programmers can navigate the
instance of a class along with all referenced instances of other classes. Some envi-
ronments even support the modification this visible structure. In Squeak/Smalltalk,
there is a tool called “Inspector”, which displays an object’s low-level state in a
generic fashion. To change this artifact (or object) presentation, programmers add
certain methods to domain model classes, which compares to a custom print string.
At this level, programmers can access any available means of aggregation or filtering.
They can hide one aspect; they can emphasize on another one.

However, this approach is not very declarative and can thus be demanding on
maintenance. We consider the explicit modification of the software’s domain model
toward tools the most challenging and invasive way of configuration. While print
strings are well-known, structure modification on the code level might be feasible
only in Smalltalk-like environments. In such environments, applications and tools
reside in the very same information space. Additionally, the Smalltalk programming
language supports concise yet readable expressions; it can be directly used as a
scripting language for tools.

Window Management and View Layout

The richness of views in tools and tools in environments leads to the challenge
of layout configuration. Programmers invest much time in moving, resizing, and
closing windows or other content containers [163, 121]. Screen space is limited and
hence programmers should efficiently layout tool views to support examining and
recalling information [112, pp. 443–447]. The effective placement of views on artifacts
can improve tool integration through the programmer’s eyes and mind. At best,
all artifacts relevant for a task can be placed side-by-side. There have been various
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Figure 2.11: Tool views can be organized differently on screen. Sometimes the programmer
has a choice. Sometimes it is dictated by the environment. Here, the left side shows a tiled
window management and the right side shows an overlapping approach.

window management systems [127, 74] that form trade-offs between flexibility and
convenience as depicted in figure 2.11. Nowadays, the two major approaches are
overlapping and tiled windows, which go back to the Xerox Star user interface [179,
80] in 1981.5 Overlapping windows provide a large degree of freedom and a fair
layout stability while occasionally sacrificing visibility when new windows pop
up. Tiled windows provide relative spacing and ensure all-or-nothing visibility for
views, often implemented as stacked or tabbed containers. As programmers can notice
in the Eclipse debugger perspective, tiled windows have a poor layout stability when
switching tasks.

In programming environments, there is a primary layout strategy while integrated
tools are free to employ their own. In Eclipse, we can see tiled windows. In Squeak,
we can see overlapping windows but tiled views in each window. There have been
many attempts to make these two strategies scalable, considering large amounts of
information versus limited screen space. Code Bubbles, for example, expands the
tiled strategy to an unlimited, two-dimensional canvas [21]. The Patchworks code
editor [73] and the Moldable Inspector [30] employ and unlimited, one-dimensional
tape, which is also tiled. The Gaucho environment [139] focuses on content composi-
tion via nested windows, which can be collapsed to save space.

We think that it is highly task-dependent whether one layout strategy is better
than another. For new windows, a clever start position and size can save much
efforts. The window manager in Smalltalk-80 systems gives the user control over
the initial dimensions [64, p. 16], but this means always more interaction effort for
the user. In the Moldable Inspector [30], in-depth examination of artifacts produces
new views side-by-side on and endless tape. In the Debugger Canvas [41], which is
the Code Bubbles concept implemented in Visual Studio, in-depth examination of

5Actually, Smalltalk-76 did introduce an overlapping window manager [43]. Yet, there were many
trade-offs made such as inactive windows being lifeless hulls without updating contents.
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method calls in a debugging session produces new bubbles without overlapping on
the two-dimensional canvas. In addition to position and size, there have also been
strategies developed to automatically “age” windows based on use [163].

Configuration Scope

Programming tools provide means to scope configurations. We distinguish global,
project, and task scopes to encompass configurations that accommodate personal
(global) preferences, project domains, and current tasks respectively. Programmers’
favorite colors or fonts, for example, are usually set for the whole integrated envi-
ronment including all tools and all tools’ views. Many environments such as Visual
Studio and Eclipse have also project management support. There, custom settings
for compilers, runtimes, bug tracking, or version control are stored, which includes
file paths, optimization switches, and login information.

Task-level scope, however, is rarely supported. Especially the explicit switching
between several concurrent tasks is often left to programmers’ creativity. For generic
work modes such as debugging, there might be specialized configurations. Eclipse,
for example, has the concept of perspectives to manage sets of views to emphasize on
code writing, debugging, or versioning. Squeak uses a different meaning of projects

to keep track of open windows, which can be used to organize tasks and switch
in between [192]. Fortunately, many environments support at least one set of open

tools/views to be restored on the next workday. Explicit task management can be
beneficial as demonstrated via Mylyn [126]. There, a degree-of-interest model is used
to trace artifacts that belong to the same task based on the user’s exploration activities.
Such traces can also be used to improve code navigation later when programmers
have to work on similar features or bugs.

There is not only external configuration but also invasive modification of artifacts to
accommodate tool characteristics. As mentioned above, this includes explicit inter-
face modification of domain classes for textual representations such as toString()
in Java and #printOn: in Squeak. In general, programmers have to put more effort
into configuration if they miss or cannot even target the appropriate scope in tool
environments.

Synopsis Programming tools are usually tailored to the underlying code artifacts to
support best practices and standard workflows. There are means of configuration to
accommodate domains, tasks, and personal preferences with low effort. While the
plenitude of options can be overwhelming, there is typically a good set of defaults
to help programmers get started quickly. Since programmers are rather skilled com-
puter users, configuration does not only mean pushing buttons or dragging sliders.
It does also employ elaborate scripting languages including regular expressions
and logic queries. Additionally, efficient window management is paramount but
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also dependent on the particular program comprehension task. If programmers
can manage to scope tool adaptation as intended—meaning global, project, or task
level—they are more likely to do so and improve program comprehension activities,
that is, fetching, examining, and retaining artifacts.

If programmers have ideas on how to improve a tool’s view, they have to map their
intent to a kind of configuration, come up with a value for it, and then observe the
effects for assessment. They can iterate and try several values. If, however, a tool’s
implementation has to be changed to get the desired effect, tool configuration becomes

tool building. The process of building a tool represents a task on its own, which often
needs dedicated resources in the project schedule.

2.5 Build Tools: Beyond Configuration

When facing unforeseen programming challenges, tool configuration can work only
so well. Any tool’s high-level, user-friendly configuration interface does arguably
broaden its field of applicability. Still, all dimensions of configuration have to be
anticipated by the tool’s designer, who makes them explicit. While this is, nowadays,
straightforward when accommodating for individual gusto such as fonts and colors,
customizing for domain-specific means of fetching or examining artifacts can be
challenging this way, if even possible. That is, buttons, sliders, or scripting languages
can hit a boundary that forces programmers look into the tool’s source code. And
programmers will find this more challenging even if the tool’s internals employ a
well-documented architecture, known idioms or patterns, and flexible extension
points.

We emphasize the separation between tool building and tool configuration because
there are environments such as Squeak where tools are written in a high-level lan-
guage, which might resemble the simplicity of another environment’s configuration
language. Tool configuration becomes tool building whenever programmers have to leave
the tool’s user interface and are confronted with the tool’s internals. The perceived
difference in effort when switching perspectives is relative. For example, one can
state that Eclipse plug-in development [61, pp. 33–90] is very difficult compared to
writing new tools for Smalltalk environments,6 so that any Smalltalker should favor
writing domain-specific tools all the time. Even in Smalltalk environments, however,
programmers can perceive a large difference in effort between tool configuration
and tool building. That is, on the one side, tool configuration is safe and simple. You
cannot break the tools in use, which you might do instead as an incautious, rush-
ing tool builder—even if programmers can scope changes in such self-supporting

6 Programming tools in Smalltalk-80 were written for the Model-View-Controller (MVC) frame-
work [98, pp. 7–12]. Later for the Squeak/Smalltalk system, there was Morphic [108] introduced,
which made debugging more interactive. Recent versions of Squeak also employ the Tool Builder
framework [192] as a declarative abstraction for tool code.
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Figure 2.12: Programming tools are basically adapters between software artifacts and
interactive views. Tools query artifacts, map artifact structure to visual properties, and
present many views in composition. Tools mediate read and write operations initiated by
user interactions.

environments [104]. If, instead, tool building is a dedicated activity, programmers
can carefully assess the trade-offs and create safe configuration interfaces for tool
users to tweak. Dedication means that tool building usually takes time and cannot
be embedded in another programming task. For larger software projects, there are
resources to invest in such tools [180].

So, we highlight certain aspects that become relevant when building and adapting
graphical tools for programming to accommodate specific domains and recurrent
tasks. Considering our focus on fetching, examining, and retaining software artifacts,
this addresses new tools that integrate more information, provide better graphical
views, or manage content more appropriately on screen.

Query, Map, and Present: Tools as Adapters

Graphical tools are basically adapters that let programmers work with software
artifacts through interactive widgets as depicted in figure 2.12. The adapter pattern
is a well-known, object-oriented design pattern that “lets classes work together that
couldn’t otherwise because of incompatible interfaces” [62, pp. 139–150]. Here, the
problem of “incompatible interfaces” addresses the rich structure of artifacts, the
physical limitations of digital input and output devices, as well as mainly visual

human perception to improve learning and recalling, that is, program comprehension.
For programmers, an appropriate connection between artifacts and widgets can yield
a tangible and vivid representation of relevant concepts. In this work, we focus on
this middle part and we take the set of valuable artifacts and elaborate widgets for
granted. For example, if a tool should integrate traces of test runs [146] with code,
we assume that call trees and code artifacts are basically accessible. That is, the tool
builder does not have to design an efficient mechanism for tracing code execution.
Like in figure 2.7, if a tool would benefit from a combination of buttons, lists, and bar
charts, we assume that these widgets are on hand, too. Still, tool builders are able to
express code that aggregates and filters artifacts and their structure to reveal new
insights. Such new insights can be manifested as new kinds of derived artifacts. With
reasonable effort, it is also possible to create and embed new graphical structures

50



2.5 Build Tools: Beyond Configuration

in existing ones. The result may just look like a new widget even if composed from
primitive commons.

We follow common reference models for visualization construction [68] and apply
them to tool building. In object-oriented environments, building tools means writing
code that employs (1) query languages, (2) mapping languages, and (3) presentation
languages as outlined in figure 2.12. Both software artifacts and interactive views
are accessible and combinable.

Query language Tools fetch artifacts, apply filters, and aggregate missing informa-
tion. Tools can integrate many information sources. Tool builders have to consider
the tool’s purpose to query and combine the relevant sources. As explained before,
graphical interfaces can expose such languages as means of configuration. For ex-
ample, relational databases can be queried via SQL, whose query expressions can
be requested from the user. Think of a text widget where the user types expressions
such as:

SELECT name FROM customers

This also applies to high-level programming languages such as Smalltalk, Python,
and Visual Basic. The scripting language can be the same language the tool is written
in. For example in Squeak, programmers can directly write Smalltalk to fetch code
artifacts:

Smalltalk allClasses select: [:each | each name beginsWith: 'Abstract']

Here, the global variable Smalltalk is the source to fetch abstract classes that are
denoted with the prefix “Abstract”.

Mapping language While many software artifacts have a distinct textual property,
only some do also provide an inherent graphical representation. If the artifact is a
photograph, for example, tools can directly display that image on screen. If the
artifact is an abstract syntax tree, tool views are likely to be text heavy. Even if artifact
structure is primarily visual, the richness of structure may still require modification
of the representation to get something the user can understand in the context of the
current domain and task. So, tool builders have to express rules for mapping artifact
structure to visual widget properties. This includes text, color, font, line thickness,
and so on. Such a rule, for example, could be:

Map the employee’s salary to a color value that ranges from red to green.

Assuming that employee and colors are accessible through object-oriented code, the
mapping can be written in Smalltalk like this:

employees collect: [:each |
Color h: (each salary / 1000 min: 90) s: 1.0 v: 1.0]

This rule creates a list of colors where each color corresponds to each employee’s
salary where green stands for high values and red for low ones. Like query languages,
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mapping languages can be embedded in a tool’s configuration interface if users are
capable of “speaking” that language. For example, tools useful for statistical analysis
provide many different means for mapping data to visual properties such as IBM
SPSS and Microsoft Excel do. At the code level, tool builders can accommodate
domain or task with appropriate mappings.

Presentation language For tool users, the presentation of artifacts in the graphical
interface is paramount. They have to recognize concepts from visuals such as labels
and pictures. They have to invoke operations on artifacts in an interactive fashion.
A good presentation language emphasizes places of possible input while managing
smooth updates of explorable output. As we focus on program comprehension tasks,
the interactive fetching, examining, and retaining of relevant artifacts is of importance.
Tools usually employ a combination of common widgets such as text fields, structured
views, and buttons. The means of composition include windows and dialogs filled with
rows and columns. A widget composition does not have to be recognized as such
but maybe as a coherent whole. For example, there might be widgets representing
whole music sheets [162] in music composition tools.

Remark So far, we have introduced many different kinds of languages: scripting,
query, mapping, presentation, and programming languages.

We call elaborate means of configuration scripting languages. For the design and
construction of graphical interfaces, we call the graphical, interactive means of tools
presentation language. It is the language a tool “speaks” with its user. There is always
a query language involved to fetch artifacts. When examining artifacts, tool users or
tool builders can employ the same (or similar) query languages to filter artifacts
or derive new artifacts. Since many artifacts do not have an inherent graphical
representation, there is a mapping language for connecting artifact structure to widget
visuals. Scripting languages can be employed to lift mapping and querying from the
build level to the configuration level.

Finally, there is another kind of language involved to actually create tools: the
programming language. In the remainder of this work, we employ Smalltalk as the
object-oriented programming language. Except for the presentation language, Small-
talk can be used to represent the syntax and semantics for all of the languages
above. Note that there are many other higher-level languages, such as Visual Basic
and Python, that are referred to as scripting languages to distinguish from system
programming languages [140], such as C and Java.
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Figure 2.13: Graphical tools (here: middle) have to set up artifact access (here: left) and
visual mapping (here: right. Tool objects mediate between artifact and view interfaces.
Tool-building frameworks provide efficient means to design set-up and run-time objects.

Everything is an Object

In pure object-oriented applications, programmers design objects for all concerns in
the system: artifacts, widgets, mapping rules, and so on.7 We explained this issue
before in section 2.1 with the three levels of software artifacts: (1) the conceptual
level, (2) the structural level, and (3) the transport level. We are now approaching
tool implementation details, namely the transport level, where “every thing” can be
an object as depicted in figure 2.13.

Any object-oriented environment can be “situated” between other paradigms.
While the object-oriented paradigm is rather imperative, other programming models
can be created with the help of objects and, for example, provide declarative means
to fetch artifacts or assemble widgets. The execution environment drives the object-
orientation in programs. It can employ different programming paradigms like Squeak,
for which there are virtual machines written in C or JavaScript.

Regarding the availability of artifacts, there are means that support converting
from foreign transport media to objects such as object-relational mappers [12], which
keep track of object representation in database tables. Regarding the availability of
widgets, there are many libraries that provide the ones typical for graphical user
interfaces: windows, buttons, text fields, or item views.

A tool’s architecture makes trade-offs between programming effort and anticipated
added value for future programming tasks. There are many frameworks and libraries
that guide programmers in the tool design process. Still, programmers do not
necessarily have to comply with all patterns or idioms that are provided. Like
generic programming tools, the underlying tool frameworks do also support a wide
range of applications. Depending on the particular cost-value ratio, a “quick-and-

7Even though widgets or rules could be treated as artifacts on their own, we distinguish them in the
context of tool building. In object-oriented systems such as Squeak/Smalltalk, a similar distinction
is necessary because everything can be treated as an object.
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dirty” implementation can be good enough, which can intentionally ignore several
conveniences of the framework. If, on the other hand, forthcoming tool maintenance
is important, programmers are more likely to employ all hooks in the framework
as intended to maximize the time saving. Sometimes, however, the framework’s
anticipated scenarios fall short and programmers have to bypass abstractions to design
the desired tool behavior.

Glue for Set-up and Run-time Objects

As depicted in figure 2.13, we assess tool building frameworks by two kinds of
objects that have to be designed for the tool (adapter) code: (1) set-up objects and (2)
run-time objects. These objects mean packages, classes, methods, and other concepts
provided by the used programming language. The source code that has to be written
is often referred to as “glue code”. Set-up objects govern widget composition, visual
mapping, and usually also simple fetching rules. Programmers recognize such
objects as initialization code or static user interface descriptions. Run-time objects

govern all dynamic aspects of a tool that cannot be statically defined at set-up time.
Programmers recognize such objects as callback methods to be implemented to adapt
between widget interfaces and artifact interfaces. The general mismatch between
domain-specific artifacts and general-purpose widgets renders it often mandatory
for tools to mediate in between at run-time.

Tool frameworks can optimize the creation and maintenance of these two kinds of
objects in different dimensions such as:

• Granularity of run-time objects, that is, artifact wrappers and tool-internal mod-
ularization

• Declarative or imperative means to construct set-up objects and run-time objects;
support for breaking through framework abstractions robustly

• Tool support for defining set-up objects or run-time objects such as for widget
composition and visual mapping, often with code generation

• Integration with and re-use of existing tools and other frameworks

In general, a tool framework benefits from employing many concepts that are
provided by the underlying programming language and environment. For many
class-based, object-oriented languages, this typically includes polymorphism and
late binding. Consequently, there would be different abstract interfaces to implement
in tool code so that the basic control flow works as intended by the framework
design.

There are many different tool building frameworks and tool builders have to
choose. Programming environments can support more than one framework while
there is typically a primary one. We found the following examples supportive to
give an overview of the aforementioned dimensions:
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Granularity in Eclipse For programmers in Eclipse, tools should be implemented
as plugins [61] to get access to other tools’ artifacts and hence the internal transport
medium, which is not files but objects. Besides data integration, plugins benefit from
control and presentation integration [210, 200].

Granularity in Squeak Tools and any other application written in the Squeak
environment do already benefit from the shared object space. Programmers only have
to decide for the graphics framework, which dictates the control flow with respect to
user interactions. Squeak’s standard tools employ the Tool Builder framework [192],
which entails compact and declarative set-up code. For historical reasons, code
browser, object inspector, debugger, and other tools exhibit characteristics of a “fat
model” design considering the run-time objects (i.e. the model classes) to manage
widget state and callbacks. The main reason for the Squeak Tool Builder’s design was
the support of existing tools in two different frameworks: Model-View-Controller [98,
pp. 7–12] and Morphic [108].

Declarative in Glamour Since the addition of new kinds of widgets and overall
maintenance has been difficult in Squeak’s Tool Builder, the Glamour framework [24]
was created. It has also a compact and declarative way to set up tools. Originally, it
did support two front-ends, namely the Seaside Web framework [147] and Morphic,
but only Morphic remained. Glamour, as well, was meant to replace the standard
programming tools first and foremost. This meant a rather static user experience with
definitive places for lists and buttons and also a static description of expected artifacts.
Nowadays, however, the “Glamorous Toolkit” supports dynamic and “moldable”
tool behavior, especially when debugging [29] and examining [30] domain-specific
software artifacts.

Integration in OmniBrowser Eclipse plugins, Tool Builder applications, and also
the Glamour framework do not enforce or suggest a particular design for run-
time objects. One approach to do so is called OmniBrowser [16] where each artifact
is wrapped into its own run-time object to be shared between similar browsing
or exploration tools. Task-specific tools can employ different kinds of wrappers.
However, the maintenance of numerous wrappers for the same artifact can get
challenging. We could only observe standard programming tools that wrapped
artifacts from the Smalltalk language such as classes and methods. We are not aware
of other tools written for the OmniBrowser framework.

Tool support in Qt Widget composition and visual mapping can benefit from tools
that have direct manipulation interfaces. For example, the Qt framework for writing
graphical, cross-platform applications [18] has an interactive tool, namely the Qt
Designer, to compose the tool’s interface and first interaction hooks. The produced
artifact has a declarative format. For a long time, that artifact has been in XML, which
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has to be compiled to C++ code by another tool. With the rise of mobile applications,
a more human-readable and human-writable format was created: QML, the “Qt
Markup Language”. QML is comparable with CSS, the “Cascading Style Sheets”, or
the Smalltalk code that programmers write when using Squeak’s Tool Builder.

[|]

The integration of new tools with existing tools entails additional glue. Using
Wasserman’s model of tool integration [210], we simplify platform integration, data
integration, and presentation integration. The platform will be specified by the
programming environment you write the tools for. This is okay because many envi-
ronments that augment operating systems do work in many operating systems. For
example, Squeak and Eclipse run under Microsoft Windows, Apple macOS, and sev-
eral Linux distributions. When working in an environment such as Squeak/Smalltalk,
the data is already integrated when having an object representation for the artifacts
of interest. Third, the interactive presentation of artifacts and operations is clear by
employing common widgets such as lists and buttons.

What remains, is the challenge of control integration. For the scope of this work,
we assume that tool provision and tool use [200] is triggered by user interactions.
Since we focus on program comprehension tasks, programmers use tools to fetch,
examine, and retain artifacts in an integrated fashion.

As explained before, supportive tools help programmers recognize relevant soft-
ware artifacts on screen. That is, the tangibility of artifacts is paramount. When using
one tool to examine some artifacts, there should be an appropriate connection to
other tools that support continuing the task. Common interaction patterns include
the use of pop-up context menus, the concept of selections, and also drag-and-drop
operations. A tool can place a trigger into another tool’s context menu. A tool can
also react to drop operations. That is, in comparison, we do not primarily investigate
the challenge of integrating auto-completion tools into a code editing tool. We focus
on tools that are more high-level and that support fetching, examining, and retaining
software artifacts by exhibiting structure and relationships in between.

Find, Change, and Verify: Iterative Building and Emergent Design

A programming tool is just another piece of software. So, the process of tool building
is also iterative because programmers are constantly exploring problem and solution
space. That is, creating a new tool quickly becomes modifying an existing tool, which
is the same. We thus assume that programmers employ agile practices known
from Scrum [169] or Extreme Programming [14] to be able to quickly respond to
changed (or clarified) requirements. Especially if a certain tool is already in use,
new requirements or deficiencies can arise quickly. So, there should be means to
provide short feedback loops between changing the tool’s source code and observing,
if not understanding, the outcome. While agile processes do have a notion of well-
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defined tasks, we also encourage exploratory programming where programmers are
free to follow hunches [171] to explore any upcoming idea. They may not even write
tests in such a process [60] to not break the flow [125, 38]. Our focus on Smalltalk
promotes such working habits because Smalltalk environments themselves support
requirements exploration in many ways [167].

To better understand tool support for tool building, we model a typical cycle in the
iterative building process as: (1) find observed behavior in the source code, (2) change
that code as desired, and (3) verify changes via re-observation. Compared to the
tasks we described in section 2.2, this process model for tool building looks similar.
Yet, it is more detailed than just understanding the theory behind and the effects of
the current changes. We will use this model to assess challenges in the contemporary
tool building process that are not yet addressed in current tool building frameworks.

Find Triggered by a concrete visual impression in the tool’s graphical interface,
the tool builder has to find all places in the source code that are responsible for such
observable behavior. This requires an understanding of the underlying architecture
and theory as explained in section 2.2. Well-chosen identifiers for classes and
methods can support this by revealing patterns behind it. For example in Smalltalk-
80, which employs the model-view-controller pattern, programmers have to look
for the right model and controller classes to spot relevant source code. It can take
several find-change-verify cycles to actually find all relevant places in the code.

Change After finding relevant places in the code, the tool builder now has to make
changes. For simple modifications, this may just mean a different use of the involved
query, mapping, and presentation languages. For example, a set of artifacts can be
filtered differently, the visual mapping be refined, or the widgets be recomposed.
Larger modifications can require more time and thought such as integrating more
data sources or refactoring glue code in the range of framework possibilities. It is
in the interest of the programmer to express all intentions in a concise but readable
fashion. We choose Smalltalk for this very reason because we think it has a lower
baseline of verbosity compared with many other object-oriented programming
languages. It can take several find-change-verify cycles to actually form such an
agreeable kind of code quality.

Verify After making some changes to the tool’s source code, a typical way to test
for the intended effect is to restart the tool. If the changes affect set-up objects as
described above, programmers have to ensure the re-execution of that changed
initialization code. Especially if the role of some code remains unclear, consistency of
tool state can only be assured if the programmers interacts with it after a fresh start.
Smaller changes with a rather clear scope, however, might be verified while the tool
is still running. For example, this applies to all resources that are dynamically loaded
and refreshed such as configuration scripts that have a clear point of (re-)execution.
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In Squeak, programmers can easily evaluate any piece of Smalltalk code and hence
update the tools state—if they know what they are doing. An unsatisfying result
after verifying the changes is typically the trigger to begin another cycle in this
process.

Squeak’s Shared Object Space

In Smalltalk environments, software artifacts being accessible means that there are ob-

jects representing them so that programming tools can use them. While our thoughts
and explanations can easily be transferred to any object-oriented environment (or
application), we choose Squeak/Smalltalk for its image concept. A Squeak image
file captures a long-living, manageable object graph, which provides programmers
with a clear and consistent realization of the idea that everything can be an object.
Recapping our trichotomy from section 2.1, both artifact structure and concepts can
be revealed using objects as the transport medium.

In the object-oriented programming paradigm, each object has identity, state, and

behavior [119, pp. 218–228]. Since we distinguish between artifact structure and artifact
concepts, we see value in separating objects that emphasize managing state from objects
that emphasize managing behavior. Observable behavior can reveal concepts; state
is typically of private matter and only supportive for expressing that behavior. Of
course, when using programming tools that show artifact structure, object state
becomes public and ready to be modified by tool users. There is a similar distinction
in traditional catalogs for design patterns, which separate structural patterns from
behavioral ones [62, pp. 9–11].

In figure 2.14, we show a simple model that connects our notion of software
artifacts with concrete objects in Squeak’s shared object space. Note that the figure is
a more elaborate version of figure 2.13. If artifacts are managed externally, there have
to be some objects that map from external transport media to objects. For example,
e-mails or tickets can be created by tools that operate in other environments and
hence use transport media different to objects—or at least different object spaces.
Then, if objects should not be treated as mere data holders, there can be other objects
(or messages) attached that enrich an object’s interface to make it more tangible.

In Squeak, messages that directly read from or write to an object’s state are called
accessors. Methods that implement other messages known to that object typically
re-use these accessors to define behavior and thus concepts. Such interfaces can
be attached from the outside through tool code, too. However, if several tools share
conceptual views on artifacts, it makes sense to move the respective code into
the object representation of the artifact. For example, if several tools require the
concatenation of a person’s first name and last name, it makes sense to add #fullName
to the object’s interface that represents that person in the Squeak environment.
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Figure 2.14: The concept of Smalltalk’s shared object space requires external artifacts to be
mapped onto objects as transport medium. In addition to object identity and state, object
behavior becomes relevant if tools should reveal artifact concepts. Behavioral interfaces can
be attached to objects directly or hidden in tool code.

Remark Squeak is a programming system that offers a class-based [211], object-
oriented programming language: Smalltalk [65]. In Squeak, every object is the
instance of a class. Classes are blueprints that describe instance variables and methods.
Methods are organized in protocols, which capture different interfaces or perspectives.
Typically, programmers model concepts by writing code for classes. Representatives
of such concepts are then instances of these classes. Classes can extend a super class,
which is called inheritance. Since Squeak/Smalltalk offers only single inheritance,
there can be concerns/concepts that crosscut a given inheritance tree [198]. In that
case, protocols can be used to attach additional concerns to objects. For example,
the concept Person can be modeled as a class while the concept Friendship is just a
protocol in the same class with messages such as #befriendWith: or #unfriendFrom:.

For the basic understanding of how to get an object representation of software arti-
facts into an object-oriented environment, it is not necessary to have a programming
language that has a notion of classes. It is not even necessary to use a dynamically
typed language such as Smalltalk. Our thoughts can easily be applied to environ-
ments such as the Eclipse [61], which is written in Java. Still, we see great value in
the conciseness of programs written in the Smalltalk language.

Tool Building in Squeak

In Squeak, all graphical elements provide a feeling of directness and tangibility on
their own. These elements are called morphs and the underlying framework is called
Morphic. Tangibility becomes noticeable if programmers invoke a meta pop-up menu
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Figure 2.15: The parts of Squeak’s graphical tools are called morphs and can be selected
or examined via each morph’s halo. While tool users focus on representation of artifact
structure and operations, tool builders can take a look behind that “facade” to find the
objects responsible—even in for the debugger tool.

on a morph: the halo. A morph’s halo looks like a collection of buttons ordered in
a circle around the morph as depicted in figure 2.15. These buttons offer generic
interaction such as selection, movement, and resizing. Programmers can access the
entire graphical hierarchy this way.

The idea of having such a meta menu for graphical elements originates from
Self [110] in 1995. Back then, this meta menu looked like a regular, “grayish” pop-
up menu. In comparison, Squeak’s Morphic [108] looks more colorful and playful
because it was created in the context of a programming system suitable for children,
namely Etoys [7]. Nowadays, it is easily possible to load other graphics frameworks
into Squeak, but Morphic is still the most popular one [192].

Tool builders can easily examine the state of a running tool to find out about
bugs and navigate to the underlying source code. See figure 2.15 for an example of
examining a text widget in a debugger window. Consequently, if a programming
tool is entirely composed of widgets and those widgets are composed of morphs,
interactive examination becomes convenient. There is no need to mentally recall the
class name of some visual object. Just click and explore. Still, programmers are not
bound to employ morphs in graphical applications all the way down. In fact, the
single letter in a text on screen is typically not a morph but just the result of some
source code that frequently repaints an area on the screen. There is always some
overhead involved when creating and managing morphs.

Smalltalk programmers apply tactics common to other communities for finding
and changing code as well as verifying the changes. Yet, they do also benefit from
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specifics found only in such self-supporting, object-oriented programming systems. As
described before, when programmers act as tool builders, they employ the Morphic

framework for the graphics and usually the Tool Builder framework for the glue. There
is also a standard library, which is an object-oriented implementation for elementary
concepts such as numbers, strings, and collections. In the process, programmers
constantly switch roles between tool user and tool builder.

Find in Squeak There are code browsers and object inspectors with symbolic
search support for fetching and examining code artifacts. In Squeak’s Morphic,
programmers can click on each graphical element on screen to examine its state
and navigate to its source code. Additionally, programmers can always use a special
keyboard shortcut to pause the execution of an apparently unresponsive UI process,
which then starts a symbolic debugger to investigate suspicious code.

Change in Squeak Programmers use code editors to modify classes or methods.
The Smalltalk language supports very concise and readable expressions. Complexity
is usually introduced through frameworks that add many concepts and glue. Besides
code changes, programmers can evaluate code on resource objects to modify state,
which can influence tool behavior. Such objects are in-image databases for pictures,
sounds, or key bindings.

Verify in Squeak Programmers can restart tools, which means that certain refer-
ences to tool objects have to be removed so that Squeak’s garbage collector can clean
up. Then, the tool’s model class can be fed into the Tool Builder framework again
to re-open the tool. In Squeak and other Smalltalk systems, the scope of a single
change is very small. Typically, programmers change single methods, which are then
re-compiled and integrated into Squeak’s runtime in a matter of milliseconds [155].
As soon as tool objects send messages that trigger the changed methods, the tool can
exhibit the changed behavior. Programmers either have to restore tool state manually
after restart or they patch the tool’s run-time objects directly. The latter requires
proficient knowledge of tool internals.

Synopsis A tool’s means of configuration are often limited and cannot accommo-
date every domain, task, or personal preference—which affects tangibility of visible
information. When programmers create new tools or modify existing ones, they are
free to integrate any kind of software artifact and choose any kind of interactive
widget. From the perspective of tool users, integration means appropriate use of
presentation, query, and mapping languages. Such a degree of freedom is typi-
cally non-existent in configuration interfaces because of the trade-offs made when
designing such interfaces.

Programmers build tools in an iterative fashion. They undergo many cycles of (1)
finding relevant code, (2) making changes, and (3) verifying the changes. Especially
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during verification, tool builders become tool users to some extent. They will interact
with the tool and experience the new feature through the tool’s graphical interface.

In Squeak/Smalltalk, programmers have objects for all kinds of information at
hand. There are objects for software artifacts. There are objects for interactive views.
There are objects that make up the tool code in between. The Morphic framework
supports direct manipulation of all graphical elements via a morph’s halo, which
is an additional context menu to “look behind“ the object’s graphics. So, Squeak
exhibits two important uniform principles:

1. Every “thing” is an object in a persistent, shared object space.
2. Every graphical object is tangible via a shared interaction paradigm.

In Squeak, programmers might not see a difference in effort between configuration
and implementation because changing an object’s state can simply happen by
evaluating a piece of Smalltalk code in a tool’s graphical interface.

Summary

Programmers have to work with all kinds of software artifacts. Source code is only
one kind of artifact. To better understand the vices and virtues of tool support, we
distinguish artifacts on a conceptual, structural, and transport level. Since we focus on
object-oriented programming environments, artifacts are usually objects that expose
structure through visual tool interfaces so that programmers can recognize concepts.
There can be many different systems that hold the artifacts relevant for a given
programming task. Programmers have to assess relevance, which can be driven not
only by objective measures but also by individual knowledge and experience. Tools
and environments typically hide an artifact’s transport medium, yet they depend
on it when sharing information among each other. Hence, programmers working in
object-oriented environments may have to deal with other transport media such as
tables, files, and streams from time to time.

Program comprehension takes up the majority of time in programming activities.
Programmers have to learn and recall facts about the underlying theory and impli-
cations when making changes to the code as well as other artifacts. The process is
iterative and consists of fetching and examining relevant software artifacts as well as
retaining important insights. Since programming is also a creative and explorative
activity, programmers have to perform many tasks concurrently. This is also due to
elaborate and effortful sub-tasks for gathering more supportive artifacts. The act of
switching between tasks takes time due to interruption and resumption lags.

In this work, we focus on graphical tools for programming. Such graphical interfaces
do acknowledge the importance of text, but high-resolution input and output devices
positively affect information tangibility. That is, programmers can get the impression
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of directly working with software artifacts as being tangible things on screen, which
can be fetched or examined and also created or modified. Programmers usually work
with a whole set of pre-selected tools: the integrated programming environment. In
such environments, tools are integrated at the levels of presentation, data, process,
and control.

Tools are usually generic to provide a high degree of re-use for any domain,
task, or user. However, such generality impedes efficient application for specialized
domains, tasks, or users. This affects, for example, efficient integration of custom
artifact sources or interactive views. Means of configuration try to alleviate this
problem. Tool users can easily modify aspects of the graphical interface such as
colors, fonts, or keyboard shortcuts. Programmers, being more skilled users, can also
employ scripting languages such as regular expressions to configure tool views. We
also consider manual layouting of windows and other containers as configuration.

Finally, tool configuration can reach a limit where specific domains, tasks, or
personal preferences cannot be accommodated sufficiently. Programmers can always
act as tool builders and reshape programming tools to fulfill any requirement.
Technically, tools are adapters to make software artifacts work with interactive,
graphical widgets (or views) as desired. Therefore, tool builders employ presentation,
query, and mapping languages. We focus in the object-oriented programming system
Squeak/Smalltalk with Morphic as its graphical framework. There, everything
is an object and every graphical object “feels” tangible through a special kind
of user interaction. Building tools means describing run-time objects and set-up
objects to connect artifacts to widgets. Considering source code, this means writing
initialization code, which is executed once at set-up time, and callback code, which
is executed frequently at run-time. Tool building is an iterative process with many
cycles of finding code, changing code, and verifying the effects.

[|]

In the next chapter, we motivate the challenges of tool building with a story about
program comprehension and inadequate tool support. We also show our solution,
the Vivide environment, in a tutorial that tackles the story’s challenge.

63





3 Motivation

The challenges of tool building are very clear in systems such as Squeak/Smalltalk,
where relevant data and interactive graphics are within reach. Programmers have
direct access to many software artifacts that help answer many program compre-
hension questions. Smalltalk images persist long-living object graphs with objects for
all kinds of artifacts, not just code. Many programming tools that help manage this
informational space are aligned to generic programming language concepts. Thus,
programmers working on specific problems are likely to discover tool deficiencies
during use. However, tool building in Squeak is still challenging because existing
tools support traditional code-writing activities, not artifact exploration in general.

We think that tool-building frameworks in Squeak should embrace the characteris-
tics of the interactive, self-supporting programming system it is embedded in. This
includes the ability to find, change, and verify the rules for working with software
artifacts including their tangible, graphical representations on screen. Consequently,
tools for tool building should not only support traditional code-writing tasks. They
should help manage all kinds of objects that make up the tools under construction.

In this chapter, we motivate our problem domain with an exemplary story in which
a programmer wants to better understand a certain framework feature. The story
illustrates several triggers that make the programmer want to modify the existing
tools and eventually create a new one. We summarize the barriers according to our
tool-building model, which consists of repeated cycles of find/change/verify. Finally,
we explain our idea of a novel interactive, data-driven, script-based tool building
environment, Vivide, which we use to solve the story’s challenge to illustrate its
main practices.

3.1 A Story of Code Exploration

In this section, we first clarify our notion of the programmer’s mindset and the
general approach to access artifacts relevant for a running application. Then, we
present a scenario that highlights existing tool building challenges worth addressing.
Note that we focus on task-specific tool adaptation because (1) tool building and tool
using go hand in hand and (2) it may not be obvious whether future tasks can benefit
from adapted (or new) tools. Also, any programmer is different, and we do not
want to jump to conclusions about personal preferences. We argue that any issue
with task-specific tool adaptation can also be mapped to domain-specific or global
adaptations, were the expected benefits are high.
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The Efficient Smalltalker

The mindset of efficient Smalltalk programmers is special in the sense that they
try to live in their environment full of objects as long as possible. In Smalltalk
images, all source code is accessible, even for dependent libraries and frameworks,
which supports program comprehension tasks by making underlying patterns
explorable. In Squeak 5.1, there are 95 packages with 2’260 classes having 52’338
methods, which approximates to 389’978 lines of code.1 This covers everything from
primitive types over networking to interactive graphics. A glance behind an object’s
interface into the method implementation might help discovering side effects or
usage patterns without the need for browsing external documentation or on-line
support forums. While there are some methods that are large and incomprehensible,
many methods embrace Smalltalk’s conciseness and are hence readable. While
external documentation can be outdated, the actual source code is not. Consequently,
one of the two most important tools is the code browser. The other one is called object

inspector, which supports examining all kinds of artifacts—including code artifacts
in a generic way that is inappropriate for changing code. Even though run-time is
omnipresent in Smalltalk environments, there is a third tool, which is a combination
of browser and inspector: the debugger. Debuggers show up whenever there is an
unhandled exception to be examined by programmers. These three2 tools form the
basis for Smalltalk programming.

There is also “breakpoint debugging” in Squeak to explore the call stack of a
suspended process. Programmers can inspect any object they find a reference to,
which includes domain objects of the application and objects of the base system.
While there are classes for MessageSend and MethodContext, the virtual machine (VM)
will only reify respective instances on request because of performance reasons.
Having this, a breakpoint is just a specific exception to be raised via self halt in
application code. Since Morphic does only have a single UI process, a new UI
process will be spawned if the breakpoint would render the system unresponsive.
The debugger itself simulates the execution of Smalltalk code so that programmers
can examine the control flow without knowing VM internals. Note that Smalltalk
programmers have to manage system state in addition to code because side effects
can be triggered over and over again when stepping through code in the debugger.
Besides breakpoints, programmers can examine the state of any graphical application
with the help of Morphic’s halo concept as described before. If an object’s state,
meaning its instance variables, is readable, programmers can discover relevant
code artifacts to modify or set breakpoints into. If, however, that state does not

1See the appendix A.2 for the code that was used to compute these numbers.
2Readers familiar with Smalltalk will miss the workspace as a place to try out smaller pieces of code.

We omit this tool here because programmers can basically evaluate Smalltalk code in any other
tool’s text field with similar effects. We also ignore the transcript (or command-line output) because
we focus on tools for interactive debugging and exploration sessions.

66



3.1 A Story of Code Exploration

reveal the underlying classes that produced it, program comprehension can become
challenging.

Remark For this motivational story, we simplify the availability of helpful informa-
tion in the Squeak/Smalltalk environment. However, even the sense that the answer
to a question lies “under one’s very nose” can reveal many issues with generic,
inconvenient programming tools.

The Task: Handling a Mouse Click

Imagine a programmer who works on a game. The game’s graphical interface should
have many different button-like elements where the player can click on to invoke
in-game actions. The game is implemented in Squeak using Morphic as the graphics
framework. Unfortunately, the programmer is unfamiliar with the framework, and
so it happens that the first button-like element needs to be implemented. Since
all graphical elements in Morphic are morphs, the button would be a morph, too.
A colleague told the programmer that morphs that want to react to mouse input
should implement the message #mouseDown:, which gets an event object as argument
to distinguish mouse buttons and keyboard modifiers. After doing as told, the button
seems to react to a click but not as intended: it is grabbed by the mouse cursor just
like in a drag-and-drop operation. The custom callback is not even reached, but there
seems to be a hidden default implementation the programmer was not aware of.

Since the Squeak system offers various ways of examining code artifacts, she tries
to look for anything that provides clues about “event”, “mouse”, or even “mouse
event” in combination. These terms form three different search queries, which all
return confusing results with no clarification:

Search term “event” “mouse” “mouse event”
Message name count 635 338 13
Code fragment count 2’220 1’454 26

The search for message names includes class names, and the search for code fragments
includes class comments. Yet, even the most concise result sets for “mouse event” did
not reveal artifacts that the programmer can relate to the initial hint about #mouseDown:
in her code. Frustration arises because there seems to be no documentation about
Morphic event handling accessible in the Squeak image, which is supposed to contain
thousands of code artifacts and hence some readable clues about this event handling
problem.

The programmer recalls that there are already buttons in the graphical interfaces of
several tools. Those buttons (or button morphs) are expected to implement callbacks
for mouse events somehow. After invoking a halo for the “versions” button in the
code browser, the class PluggableButtonMorphPlus reveals itself in a text label (see
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figure 2.15). Unfortunately, the code hierarchy browser, which is a special code
browser, also reveals that that class inherits from another button-related class called
PluggableButtonMorph, which appears to document a rather complex implementation
for a simple concept such as a button. In sum, both classes offer 90 methods. The
programmer is still frustrated because the amount of code artifacts is overwhelming
and was not anticipated.

Finally, the programmer undertakes an attempt to find exemplary implementations
of #mouseDown:, hoping that some classes might offer context much simpler than the
PluggableButtonMorphPlus code does. The implementors browser, which is another
special code browser, reveals 88 different implementations in the image across many
different packages. So, mouse-click handling seems to be very important and cannot
be that difficult to implement correctly. Yet, exploring all 88 methods would be time-
consuming. The list in the tool is alphabetically ordered, and the first implementation
is in the class AbstractResizerMorph. The programmer is not expecting to find a simple
answer to the problem and just browses this first result. This turns out to be a lucky

shot because that class offers only 13 methods. There is a second callback, which is
called #handlesMouseDown:, that needs to be implemented to return true and not (the
default) false. This solves the problem and the programmer’s implementation of
#mouseDown: gets called on a mouse click. This solution suffices to accomplish the
current task.

The programmer notices the message #handlesMouseOver: and wonders what other
features the event handling in Morphic has to offer. A basic understanding might
become beneficial in future tasks and help estimate the effort of upcoming feature
requests for the game. As an unexpected side effect, the aforementioned grabbing

of the morph disappeared, too. This is good because the programmer did already
worry about how to get rid of this unintended behavior. Still, the basic mechanics of
event handling seem rather obscure at this point. Since there is still some time left
before closing the current task, the programmer begins to explore the internals of
Morphic event handling.

The Task’s Epilogue: Morphic Event Handling

The programmer now has a method at hand that executes event handling code,
which makes breakpoint debugging feasible. The recent code search efforts did not
yield satisfying results for understanding mouse click handlers anyway. After adding
self halt to #mouseDown:, a debugger window appears, which shows a stack filled
with 46 method activations. Each stack frame is basically a message send or a code

block activation used for the body of conditionals and loops. At a first glance, the
programmer notices several different classes such as HandMorph and MouseButtonEvent.
In conclusion, the code artifacts for event handling seem to be spread across many

different classes of the Morphic framework. Even though the stack seems rather long,
the programmer gets the feeling of having access to many relevant code artifacts
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worth examining. The programming tools of choice are the code browser, the object
inspector, and the symbolic debugger. Tool configuration is possible by means of list
filters and window management.

At first, the programmer tries to use the debugger’s graphical interface to fetch
and examine all relevant artifacts for the event handling concern. When browsing
stack frames, reading code, or exploring other object state, she follows certain rules,
which reflect her current understanding of the framework:

• I am looking for something about “morph” and “event”.
• Such frameworks also know “keyboard” events besides “mouse” events.
• There might be events with information about “modifiers” or “time stamp”.
• I do not want to see the block activations with “[]” but only methods.

These rules drive all browsing and filtering activities, which means clicking on
buttons and bringing keywords into focus. Since the debugger shows only one
method at a time, there is tedious back-and-forth navigation involved. The stack
list can only be filtered for a single term such as “event” excluding wild cards
or regular expressions. After a while, the programmer opens new code browsers
to retain relevant code artifacts. Unfortunately, each browser window uses about
50% of its space for showing navigation context besides code. A certain level of
frustration persists because back-and-forth navigation poses a high cognitive load,
while additional tool windows contain much redundant information. These windows
do also clutter the screen. In general, the programmer does not feel that the tool
interaction leads toward the actual goal. Instead, the many mouse clicks seem to
struggle over human forgetfulness. Side-by-side comparison of relevant information
seems impossible because four code browsers can fill the entire screen.

The programmer recalls that, internally, the debugger has to have access to objects

that represent the relevant code artifacts. In Squeak, everything is an object, which
includes process context and stack frames. So, the programmer invokes the halo
for the debugger tool window, and she directly finds the underlying model object.
The model has an instance variable named contextStack, which reveals the desired
artifact representation. From there, it is just a quick call to access source code for method
activations. Since all object inspectors provide a text field for code evaluation, the
programmer attempts to configure her programming experience with some Smalltalk
scripts. A first expression should externalize her thoughts about relevancy and filter
the stack list accordingly:
contextStack select: [:methodActivation |

((methodActivation printString includesSubstring: 'morph'
caseSensitive: false)

or: [methodActivation printString includesSubstring: 'event'
caseSensitive: false]

and: [(methodActivation printString beginsWith: '[]') not])].

69



3 Motivation

Figure 3.1: After fetching and examining code artifacts through the debugger’s run-time
state, the programmer invokes code browsers for all several methods. The result is rather
messy, yet it retains the relevant artifacts on screen. In the front, there is a debugger
window (left) and an inspector window (right).

The use of the objects’ textual representation via #printString avoids the need to
learn the programming interface of MethodContext instances. After constructing and
printing a simple string, the list of relevant methods goes down to 17, which are
spread across only 5 classes: HandMorph, MorphicEvent, MouseButtonEvent, Morph, and
MorphicEventDispatcher. Unfortunately, the use of strings results in the loss of tangible

representations for the relevant software artifacts.
The first workaround that comes to mind is the programmatic invocation of code

browsers. The programmer knows that the message #browse:selector: sent to the
class ToolSet would do so. The effect, however, is rather unsatisfying as depicted in
figure 3.1. The screen is cluttered again, and programmatic window management
seems not straightforward. Frustration remains because the programmer has diffi-
culties to separate tool-support objects from task-relevant objects. This is because the
generic object inspector does only reveal how underlying frameworks make use of
objects to construct interactive, graphical tools.

In retrospect, manual scripting against tool state seems to be inefficient to better
understand Morphic event handling. Maybe a new tool can help by showing all or
many relevant methods side-by-side. The programmer has still a little bit time left
before having to attend to the project’s next task.
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Figure 3.2: The programmer’s idea for a better code reading experience is twofold: (1, left)
stack filtering with elaborate expressions in the existing debugger and (2, right) a new
tool that can retain and present relevant code artifacts more concisely.

Toward a New Debugging Tool

The programmer imagines a new debugging tool, which might also be useful for up-
coming program comprehension issues. Using our understanding of programming
tasks from section 2.2, the main issues with the current experience are as follows:

1. Fetching code artifacts for method activations or event artifacts for method argu-
ments is tedious because you cannot easily open browsers or inspectors for many
artifacts at once.

2. Examining the stack list is challenging because filter expressions are limited.
Examining the source code works only one method at a time inside the debugger
window. The same applies to event objects in the embedded inspectors.

3. Retaining relevant code artifacts or event artifacts in terms of tool windows is
difficult because code browsers exhibit much redundancy and occlusion due to
poorly designed layout. The same applies to object inspectors.

So, the programmer wants to be able to enter advanced filter expressions in the
debugger as depicted in figure 3.2. She also wants to be able to spawn a new kind
of code editor, which takes the currently visible stack frames as input, and which
supports showing multiple code artifacts and other supportive information side-by-
side without cluttering. There is no need to invent a domain-specific filter language,
but plain Smalltalk should be used to access and select instances of MethodContext as
shown in the inspector in figure 3.1. The new tool window should be labeled “Live
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Code Browser” because the additional information in the left-hand stack table will
be derived from actual code execution such as the print-string of method arguments.

As hinted before, the programmer has basic knowledge about the tool building
framework that serves Squeak’s programming tools. Looking at these tools, there
is typically a single class that represents a “fat” model and hence contains the
initialization code (or set-up objects) and all callback methods (or run-time objects) for
connecting artifacts with graphics. The entry point for the graphical setup is the
method #buildWith:, in which the programmer declaratively describes the widget
layout and model callbacks. The model’s state holds direct references to software
artifacts, while it is decoupled from the actual widget morphs and only broadcasts
signals for model changes. In the debugger code, the programmer sees a mixture of
context stack management and widget state management. This might be challenging
when inspecting the model state via the halo of the debugger window. From the
recent code browsing experience, the programmer recalls that contextStack holds
the relevant software artifacts for this tool building task.

Unfortunately, several challenges arise when the programmer tries to change the
debugger. The model class itself has a rather long inheritance chain with numerous
methods in each class: Debugger (128), CodeHolder (164), StringHolder (88), Model (33).
Considering viable entry points, there are even 12 methods whose selectors match the
pattern “build*with*”. The programmer concludes that the debugger is a complex
application of the tool building framework. Even her plan to add a new button to the
button row turns out to be not straightforward because there are two build methods
for button rows: #buildControlButtonsWith: and #buildOptionalButtonsWith:. When
moving on from code to state, the programmer discovers a total of 17 instance
variables. Three of these variables seem to manage the context stack in unison:
contextStack, contextStackList, contextStackIndex.

After these rather confusing observations, the programmer is not so sure that she
can extend the debugger without breaking it. Since a working debugger is paramount
for future programming tasks, the programmer’s plan includes only the new “Live
Code Browser” for now. Such an extra tool can easily be opened by inspecting the
debugger state again and extracting artifacts from contextStack as needed without
interfering with debugger internals.

The programmer looks into the implementation of Squeak’s Object Inspector,
which has a smaller code base than the debugger. It turns out that the debugger
actually re-uses the inspector model to reduce implementation effort for inspecting
receiver and context objects as explained in figure 2.15. After some inspiration, the
programmer manages to create an empty list in a window. The following code-
writing activities reveal a major drawback in this framework: there is too much
initialization code. Thus, changes in #buildWith: require tool restarts to make the
changes effective. However, this feedback loop is essential since the code for widget
layout is abstract, and mistakes are likely. It surprises the programmer that the
Morphic halo cannot be used to describe the geometry of graphical applications
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in an interactive fashion. Having to use abstract code in the first place feels like a
throwback to not self-supporting environments. After some practice, the new tool
shows a table with information about method activations that are more explanatory
than in the debugger. Then, a second issue arises for the planned list of source code
for multiple methods. The attempt to re-use the CodeHolder model disappoints the
programmer because it entails not only a code editor but also an unintended button
bar. Another attempt to use regular text widgets reveals additional efforts to add
syntax highlighting and the possibility to save source code changes. As the final
challenge, the programmer cannot figure out how to put a set of code editors into a
scrollable container to support browsing more than three or four methods at a time.
Eventually, this tool-building attempt comes to an unfinished end.

Retrospective

In retrospect, the programmer did manage to complete the actual programming task
about handling a mouse click in a button-like element for the game’s graphical user
interface. With mixed feelings, she returns to the debugger and reads more code
from HandMorph and MorphicEventDispatcher. There are some methods with longer
comments inside that document intentions behind event dispatching in its current
form. Yet, the programmer does not understand why, in the beginning, the button
morph was grabbed by the cursor automatically. Anyway, the time scheduled for this
programming task is up. She decides to ask a colleague in the next sprint meeting.
Though, the programmer learned more aspects of tool building in Squeak. Those
insights can help estimate dedicated tool building tasks if the team agrees that such
a new tool could be worthwhile.

Synopsis For program comprehension, efficient Smalltalk programmers embrace
the means of self-supporting environments. External documentation is among the
last resorts because the systematic, interactive exploration of run-time artifacts and
thousands of code artifacts is likely to reveal insights.

Starting with vague hints, an imaginary programmer has to implement a mouse
handler for a button-like element in a game. It takes several attempts of text-based
code search and browsing exemplary implementations until the programmer dis-
covers that #handlesMouseDown: is required in addition to the #mouseDown: handler.
Eventually, the programmer wants to learn more about Morphic event handling.

The traditional means of breakpoint debugging and interactive exploration lead to
the desire of (1) extending the debugger with better stack filtering and (2) creating a
new tool that can show valuable information side-by-side. Unfortunately, the efforts
to improve fetching, examining, and retaining of relevant code and event artifacts
do not come to a satisfying end.
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3.2 Triggers and Barriers for Tool Building

The story from the previous section illustrates a common problem that generic pro-
gramming tools exhibit. When working with domain-specific artifacts, programmers
might notice deficiencies and come up with ideas on how to better understand the
information at hand. This is also true for the Squeak/Morphic environment where
the tools can directly augment abstract code with concrete run-time information.

In this section, we provide more details about the triggers and barriers for tool
building. We end with our research question, which is worth answering because it
would open perspective on how to improve programming tools to fetch, examine,
and retain task-relevant software artifacts to work more efficiently.

Remark We draw conclusions from a study about tool customization in 1991 [107],
where many programmers in a Unix-based environment were involved. In that study,
prominent triggers include spontaneity or curiosity to learn or fix something for
managing the current task. A high level of difficulty and lack of time were among the
usual barriers. A more recent study from 2012 [11] tries to empirically validate those
findings, but it employs only simple graphical user interfaces and hence excludes a
use of programming skills.

One Programmer, One Task, One Source of Inspiration

The design and implementation of valuable programming tools can be a challenging
endeavor. Looking at existing tools, there were many decisions made to clarify
the requirements and many hours invested to fix bugs and increase robustness.
Consequently, there are many programmers and scenarios involved to achieve high-
quality tools. Yet, we argue that such a long process is driven by many individual
programmers that work on certain programming tasks and that discover deficiencies
in tools on their own. Hence, we focus on a single programmer that realizes a poor
selection of tools or a deficiency in a tool’s configuration interface. This is where
plans emerge to build new tools or modify existing ones.

When fetching artifacts that can help understand the task, we see the following
triggers for tool building:

• Given a single tool, integrate more (or less) artifacts into the tool’s views.
In our story, the programmer wants to fetch multiple method objects at once while hiding

irrelevant stack frames.

• Given two or more tools, create a shared awareness of relevant artifacts across all
tools.
In our story, the programmer wants to share the concept of method activations between

debugger and new tool.
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• Given a set of artifacts, derive new structure or new concepts from the existing
information.
In our story, the programmer wants to show additional information in a stack table.

When examining artifacts to assess relevance of information, we see the following
triggers for tool building:

• Poor tangibility in views and hence issues to identify artifacts.
In our story, the programmer wants direct access to methods looking at the stack list.

• Poor means of configuration considering the mapping language and rich artifact
structure.
In our story, the programmer wants to modify the labels in the stack list.

• Poor choice of views considering the presentation language.
In our story, the programmer wants to change the stack list to a stack table.

• Poor selection of containers and interaction patterns and hence issues to examine
multiple artifacts with little user interaction.
In our story, the programmer wants to construct a list of method views.

When retaining artifacts that help recall relevant insights, we see the following
triggers for tool building:

• Inadvertent redundancy when holding on to tool windows that show the relevant
information.
In our story, the programmer wants to omit the upper part (or 50%) in each code browser.

• High manual effort required for moving and resizing tool windows to find trade-
offs in the limited screen real estate.
In our story, the programmer wants to layout dozens of code-browser windows.

• Views that do not show artifact structure needed to recall insights later on.
In our story, the programmer wants to show additional information in the stack table.

These are all task-specific triggers, which are also driven by the current program-
mer’s knowledge and preferences. Still, it is likely to find domain-specific opportuni-
ties if tool building efforts turn out to be beneficial repeatedly in other tasks. In that
case, there might be more resources available to make tools useful for many tasks
and the whole team that is working on the project. Consequently, if tool building
would be too expensive to be carried out as an additional activity in any task, we
see two risk factors. First, single programmers can miss smaller productivity boosts.
Second, some domain-specific tools might never be discovered at all. That is why we
focus on tool building in the scope of the task at hand. Nevertheless, tool building
is an iterative process where programmers keep on switching between building and
using the tools under construction anyway.
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The Barriers to Overcome

The circumstances for building new programming tools look promising. We have
a programmer that has an idea on how to improve a certain tool that is currently
used to accomplish a program comprehension task. The programming environment,
in which the tool is running, is self-supporting and reflective, which means that the
objects that produce the tool behavior are accessible and changeable while the tool
is running. The programming language of choice is Smalltalk, which is capable of
expressing thoughts and ideas quite concisely in a readable fashion. The Morphic
graphics framework entails the halo mechanism, which is a meta menu to explore
code and state of any graphical element on screen. Still, why is tool building so

challenging in Squeak/Smalltalk? It turns out that the find-change-verify cycle for tool
building is costly for various reasons.

Find Barrier First, it is difficult to find the artifacts to change because a halo exposes
plain object state that is often derived from generic resources. If the inspected object
does not inherently point to domain-specific code artifacts, programmers will have to
fall back on text-based code search again. For example, any morph can be configured
without custom classes to behave like a button via aMorph on: #click send: #open
to: anotherMorph. A halo for such a graphical object might just point to the Morph class
and not to the tool’s set-up code. We do not argue that the flexibility of Smalltalk
poses an inherent challenge. Instead, we think that the halo for any graphical tool
object should be more specific to be useful for tool building tasks. In Squeak’s
standard tools, the model is rather discoverable for any graphical window. Actually, all
programming tools subclass from the class Model. In any specialized model subclass,
however, the #buildWith: message(s) can be overlooked if there is much other code. In
the Moldable Inspector [30] framework, the graphical interface for inspector tools has
an extra meta button for finding the tool’s means to query, map, and present artifacts.
Yet, for many other tool elements, including the meta button, there is no meta button.
The generic halo does still exist but becomes practically useless because set-up code
disappears behind numerous dynamically configured framework objects.

Change Barrier Second, it is difficult to change artifacts to express different tool
behavior because domain-specific code is scattered and mixed with framework glue.
Many object-oriented tool frameworks employ means of modularization and re-use
such as inheritance and polymorphism to simplify tool building. Unfortunately,
many framework designers anticipate programming environments that are centered
around plain code editing. For expressing a presentation language in the graphical
interface, interactive editors with code generators are state of the art as explained
via “Interactive Graphical Tools” by Myers et al. [129] For querying artifacts and
mapping visual properties, however, frameworks usually fall short of interactive
tooling. On the one hand, we see great value in descriptive programming interfaces

76



3.2 Triggers and Barriers for Tool Building

that are easy to change. On the other hand, even a simple description of a dominant
tree structure in an object graph can involve many different classes and methods
when following best practice patterns. Consequently, this entails effortful changing
of glue code, too, even in Smalltalk frameworks. We argue that there is tool support
missing that exposes not only a framework’s presentation language but also its
query and mapping languages. Considering task-specific tool adaptation, we want
to avoid means that require changes in the actual domain code such as methods for
#printString or #printHtmlString.

Verify Barrier Third, it is difficult to verify correctness of changed artifacts because
tool frameworks do not support selected, coherent updates of running tools. A usual
reaction to changed source code is a complete tool restart, which is rather coarse-
grained and makes verification hard. The programmer might have to repeat much
tool interaction to reconstruct tool state if even possible. A more guided, or restricted,
code modification can be used to define selected tool updates as demonstrated in
the Moldable Inspector [30]. However, we see issues with such tool frameworks
not considering the Smalltalk environment as a self-supporting system, which has
not only code objects. As illustrated in the story above, programmers can inspect
and change any tool object to better understand the concepts and theory behind.
Consequently, tool frameworks that want to support the creation of long-running
tools should recognize object modification beyond code. We think that programmers
can benefit from additional assistance that tool building frameworks should provide
to scope tool object modification.

[|]

To our knowledge, existing tool frameworks exhibit at least one of the aforemen-
tioned barriers: (1) the halo not providing access to tool set-up objects, (2) no tooling
for separating query/mapping/presentation languages from glue code, and (3) not
considering object change besides code change in self-supporting environments.
This leads to the research question of this work:

Research Question How can we support tool building in object-oriented, graphical
environments where programmers mainly fetch, examine, and retain information in
the form of tangible software artifacts through interactive views?

We think that there is consent among programmers that domain-specific tools
are beneficial. However, we are not so sure whether each individual programmer
in a team feels encouraged to try out ideas that only might become valuable tools for
the whole project—or that might just waste time. We apprehend the occurrence of
a psychological phenomenon called “learned helplessness” [134, p. 42], which we
think is true for tool building. If tool building is too expensive, there has to be a
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dedicated tool building task scheduled. Since that dedicated task is out of context,
any tacit knowledge from the “inspirational” task will not be available to the tool
builder and hence only documented, recurrent scenarios will be addressed. If there
are only domain-specific tools for recurrent scenarios, rare or unique scenarios will
never get appropriate tool support. We see the risk of programmers being shaped by
their tools and not thinking about alternatives. Consequently, our research question
does not only address the need to save time in tool building tasks. We also want
to increase the likelihood of discovering and specifying any supportive tools in the
process.

Synopsis We think that programmers are able to detect deficiencies in the pro-
gramming tools they use for fetching, examining, and retaining software artifacts
in program comprehension tasks. A failure in understanding is often triggered by
tools not being able to integrate and present all relevant artifacts in a tangible way.

Even in the Squeak/Smalltalk environment, tool building is difficult because the
Morphic halo does not provide direct access to tool set-up objects, query/map-
ping/presentation languages mix up with glue code, and any means for dynamic
tool updates do not align with typical Smalltalk object-inspection and debugging
practices. By making the tool building process cheaper, the time savings might also
be used to discover new tools for rare or unique challenges in a project.

3.3 Proposal: An Interactive, Data-driven Tool Building

Environment

We see tool building activities as attempts to improve the perceived tangibility
of accessible software artifacts. Programmers use graphical interfaces that show
selected artifact structure in a way that helps understand (or recall) domain-specific
(or task-specific) concepts. Consequently, the notion of tangibility addresses (1)
the tool’s means to handle data and (2) the tool’s means to handle graphics. Both
aspects should be under the programmer’s control and hence ready to be modified
if necessary. Note that, for program comprehension, “data” relates more to fetching
and examining artifacts, and “graphics” relates more to examining and retaining
artifacts.

In this section, we explain our idea for a new tool building environment. We end
with this work’s thesis statement that answers the aforementioned research question.
In the next section, we then explore this hypothesis with a demonstration of the
idea’s working implementation in Squeak.
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Figure 3.3: Our idea for an interactive, data-driven tool building environment encompasses
tool support for (1) composing the graphical interface and (2) authoring scripts that
query artifacts and map visual properties for selected views. The Squeak/Morphic halo
mechanism contributes to the overall usability.

Simplicity Through Data-driven Scripting

Since tool users benefit from tools for fetching and examining software artifacts, we
want to help tool builders focus on the processing of these artifacts in tool code. For
this, we want to encapsulate the rules for querying and mapping artifacts in scripts as
depicted in figure 3.3. Also, programmers should benefit from a script-edit tool that
embeds concrete software artifacts into abstract script code. Having this, tool builders
could not only access artifact structure but also derive new information. Note that
artifact processing entails many operations such as sorting, filtering, and merging
multiple sources. In general, scripts should help hide much tool glue code in the
underlying tool building framework.

By exposing only such scripts to tool builders, we reduce programming to the
functional portion that is included in traditional object-oriented tool code. We see value
in structuring a tool’s set-up objects and run-time objects with the help of object-
oriented idioms and patterns. However, the functional, artifact-centered perspective
is usually not easily accessible because these idioms and patterns dominate the
code at the expense of readability. We draw inspiration from the pipes-and-filters
pattern [25, pp. 53–70], of which Unix shell scripting is a common application. In
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Unix, filter programs [153, pp. 266–267] perform small processing steps with a high
level of re-use by following the principle: “Be generous in what you accept, rigorous
in what you emit.” Filters can be combined via pipes to process a stream of bytes
or characters. The Unix shell represents the run-time environment for redirecting
the output of one filter as input to another one. A combination of filters can be
encapsulated into a shell script, which becomes an executable file, and then serve as
a filter on its own. The following example illustrates the simplicity of configuring
and combining filters to fulfill many different data processing tasks:
curl http://en.wikipedia.org/wiki/Unix \
| grep -o -P 'href="/wiki/.*?"' | sort | uniq \
| sed -r 's/href="(.+)"/http:\/\/en.wikipedia.org\1/g' \

> urls.txt

These lines will execute in many shells on Unix-like systems such as in bash on Linux.
As a script, it retrieves the HTML content of the Wikipedia article about Unix (curl),
extracts relative URLs that point to other articles (grep), sorts them (sort), removes
duplicates (uniq), transforms relative URLs into absolute ones (sed), and writes the
output into a file (urls.txt).

By emphasizing the functional programming paradigm for data processing, we
do not address “dataflow” but a “data-driven” perspective. We see the latter as the
more general version of the former. From a technical perspective, the tool execution
environment can dictate flow (or streaming) semantics like Unix filters do. From an
application perspective, data may actually flow in terms of sensor data appearing at a
certain frequency waiting to be processed or discarded. With our focus on graphical
tools for program comprehension tasks, we see value in distinguishing automated
processing from interactive, stepwise exploration. Yet, we build on research insights
from pure dataflow languages such as Lucid [209] and LUSTRE [72]. Since there is
an omnipresent notion of run-time information in Squeak, we also consider the
domain of scriptable debugging [102, 111, 87]. There, domain-specific scripts are used
to efficiently trace and fetch valuable portions of program run-time information. As
explained in section 2.5, we assume that for the tool builder all relevant artifacts are
accessible through an object representation. Revisit figure 2.12 and figure 2.14 for
reference.

Simplicity Through Ad-hoc View Composition

Since tool users benefit from tools for examining and retaining software artifacts, we
want to help tool builders focus on the graphical presentation of artifact structure.
It is common to use interactive tools for designing graphical interfaces. Such tools
usually generate code stubs for the underlying graphics framework, which have to
be implemented after the design phase. In Squeak, there is much potential to modify
running tools without having to close and restart them. The Morphic halo directly
supports changing some layout properties such as position and size. We think that it
should be possible to design the tool’s graphical interface in its running and usable
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state showing actual artifacts. Such a short feedback cycle should include adding,
removing, and composing views in any layout style such as overlapping or tiled. The
Fabrik project [79, 106] did already demonstrate the feasibility of such an approach
for the domain of simulation applications, which are also data-driven and naturally
included some programming tools.

Since views (or widgets) should support a wide range of artifact structure, we
prefer separating model code from view code. Such an architecture for graphical appli-
cations has a long history [36]. For example, the Model-View-Controller pattern [25,
pp. 125–143] was created for Smalltalk-80. The more generic Model-View-Presenter
pattern [149] was derived for later systems. Unfortunately, not even in Smalltalk
systems it was possible to directly connect the data (model), which would be software
artifacts, to views. Instead, a “view model” (or “virtual model” [98, pp. 7–12]) was
required to adapt between the different programming interfaces. In our idea, we
want to generate such supportive tool objects using our scripts mentioned above. Tool
builders should focus on the selection and configuration of tool views, which could
also be embedded in the aforementioned scripts. Most “glue” should be hidden in
the tool’s runtime. As depicted in figure 3.3, the direct relationship between views
and scripts should simplify the tool building process. As explained in section 2.5,
we assume that for the tool builder all kinds of elementary views are available such
as text fields, lists, tables, buttons, and charts.

Even though our idea relates to several concepts from Unix shell scripting, we
do not strive for adding a modular, graphical interface for existing filter programs
in a file/stream-based environment like former graphical toolboxes did. Examples
include DEC Fuse, HP SoftBench, and Sun SparcWorks. There is also a more recent
project that tries to wrap Unix filters into ActiveX components to use the Java platform
for interactive view composition [183]. Instead, we want to embrace many features
of the object-oriented, self-supporting, interactive Squeak/Morphic system first and
foremost. For example, the Morphic implementation illustrates that there is largely
no need to further separate controller (or presenter) code but encapsulate it within
the view code. In general, it should be possible to use any view (or widget) that has
any object-oriented architecture implemented in Smalltalk for Squeak.

Opportunities for Find, Change, and Verify

Given some software artifacts, the programmer can add new views in a default
configuration with the help of pop-up context menus. As shown in figure 3.3,
views can be connected to each other to use and provide artifacts for automatic script
processing or manual user interaction. Having this, further tool building activities
should work as follows.

Find Opportunity Programmers can find the scripts, which store the rules to query
and map artifacts, via each view’s halo. Several mouse clicks can be necessary
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to access the halo of a nested view composition. Any halo should also support
inspection of the view’s input artifacts and output artifacts. It can be useful to provide
a list of scripts to quickly exchange some part of the tool. For the current script,
programmers can open a script-edit tool.

Change Opportunity Programmers can change scripts in a code editor that only
shows code that represent the rules for querying and mapping artifacts. We think
that the Smalltalk language, or a subset of it, would be well-suited to express these
rules concisely. For querying, this means evaluating any Smalltalk code on the input
set and produce any output set with the intent of filtering, sorting, or navigating the
object graph. For visual mapping, this means extracting selected artifact structure
as objects having specific roles such as “text”, “icon”, or “tool tip”. Consequently,
views should document their mandatory or optional display roles. The absence of
a mandatory role, such as “text”, should not render a view unusable but fall back
on conventional means to display artifacts. Note that programmers can also select
different views and make general view configurations, such as fonts and colors, by
annotating scripts accordingly.

Verify Opportunity Programmers can verify immediately because the framework
will be able to update the affected views if scripts change. The explicit connection
between scripts and views is used to avoid a complete restart for tools that consist of
multiple views, which is common for programming tools. Such controlled, consistent
tool updates support short feedback loops and hence encourage explorative tool
building. Multiple views have to be updated only if they depend on each other by
sharing artifacts like browsing tools do. If the script input changes, the script output
may change, too. These automatic tool updates suggest that scripts should not have
side effects and hence follow the functional paradigm. The programmer cannot be
aware of all script evaluations like she cannot anticipate all message sends in an
object-oriented environment.

[|]

Given such a short, albeit idealized, feedback cycle for tool building, we form the
following working hypothesis in this work:

Thesis Statement In a tool building framework that describes graphical tools
as compositions of data-driven, script-based, interactive views, many common
programming tools can be expressed in that design, and the results will be easy to
modify directly during use to accommodate specific domains and tasks.

The feasibility and approval of our idea depends on efficient integration with
existing artifacts, widgets, and tools in the environment. For Squeak, such integration
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addresses existing object-oriented libraries and existing tools that already handle
relevant software artifacts. For example, whenever a script should sort a list of
artifacts, sorting algorithms written in Smalltalk should be used. When an existing
widget is yet incompatible with our framework, it should be a one-time effort to write
an adapter to ensure compatibility. When there is no script-based tool to examine
some artifacts, the programmer should be able to fall back to the conventional tools
of the environment. While we think that a whole environment only filled with
script-based tools would be most beneficial, we do not investigate the process that
would produce such an outcome. While it should be simple to create and change
simple program comprehension tools, more complex tools should still be possible to
construct.

Synopsis Our idea for an interactive, data-driven tool building environment builds
on the observation that programmers benefit from tangible representations of rele-
vant software artifacts in tools. Having this, the tool architecture and the tools for
tool building should support (1) expressing the rules to query and map artifacts and
(2) composing views interactively to form the visual representation. Such a modular
design can hide much glue (code) in the framework and hence positively affect the
find-change-verify cycles in tool building. For feasibility and approval, our idea
integrates with existing artifacts, widgets, and tools in the environment.

3.4 Vivide by Example

Our imaginary programmer from section 3.1 receives a tip from her colleague to
install the Vivide framework into Squeak and try again. The installation process
replaces the traditional code browser, object inspector, and debugger with script-
based versions of these programming tools. As described above, the programmer
still wants to learn more about Morphic event handling in context of her game
project. Given the custom mouse-down handler in the domain-specific button class,
she still has an accessible point in Morphic’s control flow to set a breakpoint. Again,
a debugger window shows up and reveals many relevant parts of Morphic’s event
dispatching and handling in the form of method activations (or stack frames).

As depicted in figure 3.2, our programmer has ideas about how to improve
the means of fetching, examining, and retaining relevant code artifacts and event
artifacts. In detail, it should be easier to work with multiple artifacts at once, filter
the stack using elaborate patterns, reduce back-and-forth navigation in tools, control
visual representation to avoid redundancy, and embrace side-by-side comparison of
relevant artifact structure. Remember that it is not crucial whether her tool changes
turn out to be beneficial for this comprehension task or not. Yet, she might even
discover valuable tools for prospective tasks in her game project. That is the mindset
for exploratory tool building.
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Remark This tutorial illustrates simple yet frequent interactions in Vivide. It’s
goal is to exemplify the programming experience from the perspectives of both tool
user and tool builder. Since the actions taken in Vivide presume a new, or at least
different, kind of problem-solving strategy, they are likely to require training, even
if appearing straightforward to accomplish.

The following illustrations represent actual screenshots from a working Squeak 5.1
environment with Vivide installed. However, we idealize the visual impressions for
reader focus with the help of resized windows, cropped images, added callouts, and
reduced background noise. There are always real software artifacts involved, and
hence the programmer shapes programming tools directly in use. See appendix B.1
for code listings.

Finally, the script-based debugger in this tutorial omits the two object inspectors in
the bottom third compared with Squeak’s standard debugger. This slightly cleaner
appearance indicates a general observation we made in Vivide. Such script-based
tools are less monolithic and hence embrace flexible integration among other tools in
the environment. When debugging, it is therefore still possible for the programmer
to examine the respective artifacts such as method arguments.

Tool Copy for Safe Trial-and-Error

The programmer makes the deliberate decision to modify an existing tool that is
used in many programming tasks: the debugger. Therefore, she makes a copy of the
debugger by clicking on a small button in the upper right window corner, which
any script-based tool in Vivide exhibits. The tool copy opens directly besides the
original but with a different window color and title prefix “copy of” for easier
distinction. Otherwise, the tool views look identical because the underlying software
artifacts remain shared. Since each script-based tool is typically represented as a
single window, the programmer can directly estimate copy actions based on her
particular intentions for tool building.

We assume existing domain knowledge in this debugging scenario, although
Vivide provides tools for examining the software artifacts involved in a tool’s
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views. That is, there is a process object (Process) with a suspended context object
(MethodContext) and access to the entire stack with method activations. Further, source
code is accessible via method objects (CompiledMethod) and method arguments reveal
other domain concepts such as event artifacts (MorphicEvent, MorphicEventDispatcher).
The programmer keeps the original tool colors to better relate to her initial problem
as depicted in figure 3.1.

Morphic Halo for Tool Building

Each view in the script-based debugger has a custom halo associated, which provides
access to the underlying script and artifacts. While nested views require multiple
mouse clicks to expand compositions, the programmer manages to quickly open the
halo for the debugger’s stack list view. In particular, any view halo provides buttons
to change view geometry, choose another script, edit the current script, examine the
incoming artifacts on the left, or examine the outgoing artifacts on the right.

One could see this open-halo action as a role transition from tool user to tool
builder. By accessing such a meta interface, the programmer takes a first step to fulfill
her tool building intentions. In this regard, the reason for copying a tool could also
have been to retain useful artifact representations on screen. Note that the debugger
keeps “running” all the time, even though its UI appears rather static by design and
waits for user interaction. The programmer clicks on the “edit script” button, located
on the view halo’s bottom edge.

Smalltalk as Query Language

A script editor appears, and it reveals the current script as a series of data transfor-
mation steps. That is, a tool’s query language in Vivide consists of regular Smalltalk
blocks, which transform artifacts for task-specific fetching or examining. When the
programmer interacts with the script editor, there are blue frames around all views
in the environment that use the same script. Having this, the programmer can better
anticipate the effects of a change. Now, she adds two filter rules to trim the stack
list view. First, method activations that represent block executions, such as “[] in
Morph ...”, should be rejected. Second, only relevant domain code, as indicated by
certain classes, should be selected.
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After finding the script via the view halo, the programmer can now change the
data-driven script code directly and verify the effect immediately. Each script change
triggers an update in all associated views such as the debugger’s stack list. Given
the clear side-by-side presentation of tool and editor, the programmer can try out
ideas, fix mistakes, and hence immerse in the tool building activity. Note that since
these transformation steps consist of regular Smalltalk code, the programmer could
also have employed the objects’ printString-representation as depicted in figure 3.1.
In general, the artifact’s object representation inherently offers messaging as known
from the underlying Squeak/Smalltalk environment. That is, scripts can navigate
the entire object graph based on what the respective objects respond to the messages
sent.

Tangible Artifacts Drive Tool Creation and Invocation

The programmer wants to create a new tool called Live Code Browser. For the nec-
essary run-time information in such a browser, she plans to use artifacts from the
debugger’s stack list: the method activations. These artifacts exhibit a textual, yet
tangible, representation that fosters conceptual distinction in the UI and hence direct
manipulation. So, she points to a single item in that list view, drags it out of the
debugger window, and drops it onto a free spot in the environment.

Usually, this action would open a script-based tool that supports this kind of
artifact, which would be an object inspector in the most general case. In this situation,
however, the programmer hits the modifier key [S] before dropping the artifact
to indicate scripting and hence express her intention of creating a new tool. As
expected, a new tool window and a script editor appear. She knows that, in addition
to graphics, many views in Vivide employ selection and drag-and-drop interactions
as generic means to support tangibility. While the visual representation of artifact
structure remains configurable in scripts, she can usually rely on these recurrent,
simple interactions.
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Visual Mapping Within and Data Connection Between Views

The programmer wants to see a table view that should show selected artifact structure
in its columns. For this, the script editor reveals script properties and object properties to
specify for or extract from artifacts. In terms of script properties, the programmer can
select and configure views. She uses these properties to select the table view (#view)
and change the window color to green (#color). In the debugger’s stack list, she
enables multi selection so that she can examine multiple artifacts (#selectionMode).
In terms of object properties, the programmer can complement the visual mapping

language, which the view exhibits per artifact. She uses these properties to extract
class name and message name from the method activations. This table view puts
multiple text properties into separate columns. Like the query language, regular
Smalltalk code and hence object messaging is supported in the mapping language.

As sketched in figure 3.3, views are associated with scripts, and data connection
between views is explicit. The programmer establishes such a connection between
the debugger’s stack list and the browser’s stack table by dragging the list halo’s
button on the right edge onto the table—that is, from output to input. Each time the
selection in the debugger changes, the browser will now get the new set of artifacts
to work with. In particular, there are two views that show structure differently
based on the same object representation of the respective artifacts in the environment
(compare with section 2.1). Luckily, the programmer sees no need for adding an extra
“examine” button to the debugger (compare with figure 3.2) because of the direct
manipulation facilities for tool invocation as described above. Now, she extracts
information from relevant event artifacts to enable concise side-by-side examination
in the table. She knows of object properties such as #color, #icon, and #tooltip. A
textual representation of the first three method arguments would be sufficient for
now.
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Views on Artifacts Shape Presentation Language

Seeing the new tool displaying concrete information, the programmer realizes that
her initial idea for the presentation language (or view layout) seems not appropriate
anymore (see figure 3.2). A stack table on the left side and a code list on the right
side would use up too much horizontal space in the environment. Thus, she drags a
row from the table, which represents the code artifact, and drops it below the table in
the same window. Again, she indicates a scripting activity by pressing the modifier
key before dropping as described above. The tool window grows downwards, and a
data connection is automatically established between the two views. The impression
of working with actual software artifacts persists as another script editor appears,
kind of “asking” for the transformations and extractions to perform. For inspiration,
the programmer takes a look at script of the debugger’s code view to learn about
source code access and syntax highlighting.

She could always re-arrange views using the halo and its move or resize buttons. It
is also possible to cut and move views between tools (or windows). They would keep
their current artifacts and scripts. The programmer knows that actual re-use of the
debugger’s scripts in the new browser does not work because each tool has a custom
script organization, which represents separate namespace to look up scripts. Even
though both scripts look similar, the programmer cannot confuse their application
because of the blue frame around the affected views as explained before.

Advanced View Composition and Script Re-use

The programmer can now browse a single method at a time. Still, she wants to
replace the single-method view with a multi-method view to better understand
the control flow in Morphic’s event dispatching and handling. Luckily unlike the
debugger’s stack list, the table view does already support the selection of multiple
artifacts (or rows). Vivide provides a composite view that produces as much views
as artifacts are present. The programmer defines a plausible identifier (#id) for the
method script. She then creates a new script for the same area with the help of the
view halo. The ViPaneListView serves as a composite view (#view), which provides
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a scrollable container and expects a script identifier to look for in the tool’s script
organization. The result looks promising.

This list of methods is the second example for composite views in the Live
Code Browser. The first one was created implicitly, when the programmer dropped
the code artifact to create the code view. It is called tiled composite view, and it
has two degrees of freedom instead of one, compared with the list composite view.
Vivide provides other compositions such as stacked view and overlapping view, which
the programmer does not need at the moment. She recalls that both script label

(#label) and script identifier (#id) foster script re-use and thus tool re-use. The human-
readable label supports interactive tool invocation by manual script selection. The
organization-specific identifier helps with view composition within tools.

Synopsis With Vivide, the programmer, who has an idea for improving a particular
program comprehension task (i.e. fetch, examine, retain artifacts), is able to modify
the debugger and build a new Live Code Browser in a few steps. These steps are
likely to take minutes not hours. Given that she knows certain graphics concepts (i.e.
list views, table views, text views) and domain (data) concepts (i.e. code artifacts,
event artifacts), she can focus on expressing the task-specific rules for querying,
mapping, and presenting those artifacts in interactive script editors. Verification is
easy because all tools exhibit changes directly without restart.

For the programmer being a tool builder, Vivide scripts hide much glue code, and
their automatic evaluation shortens the feedback loop compared to traditional tool
building frameworks. For the programmer being a tool user, views in Vivide foster
the tangibility and integration of software artifacts through selection, drag-and-drop,
and connections.
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Summary

Efficient Smalltalk programmers try to understand the concepts and theory of
programs by examining code artifacts, which are present in the programming
environment. For them, external documentation or on-line support forums are of
lower priority. Additionally, Smalltalk programmers are used to evaluate code on
objects in any tool’s text view to reason about the current system state. Considering
program comprehension, they can use such code evaluation to express rules to better
fetch, examine, and also retain relevant artifacts.

However, the self-supporting, interactive characteristics of Squeak/Morphic do
not contribute to tool building because its traditional tool architectures favor modular
code structure over modular run-time structure. First, the primary means to explore
state, namely the Morphic halo and the Object Inspector, do only expose generic
object structure, which has rarely a direct connection to the underlying source code.
Second, there is no support for expressing a tool’s query, mapping, and presentation
language concisely and interactively. Third, code (and other tool-object) changes
typically entail full tool restarts, which impedes verification of the intended effects.

Our idea for a better tool building framework aims at improved modularization
and object-modification support for running tools. On the one hand, we want to
encapsulate the rules to query and map artifacts into scripts, which would directly
correspond to the interactive views they define. A script edit tool should help focus
on these rules while embedding run-time information into abstract code snippets.
On the other hand, we want to apply traditional support of graphical design tools
to live, ad-hoc view composition for running tools. With the integration of existing
artifacts and widgets, we think that such a tool framework (and run-time) can hide

much object-oriented glue from the tool builder. We think that such an approach can
save time and even encourage tool users to become tool builders outside a dedicated tool
building task.

By example, we illustrated how a programmer builds a new code browser using
the artifacts a debugger window provides. She invoked the Morphic halo to find

scripts and data connections that form the tool’s interactive presentation language.
Then, she wrote concise Smalltalk code to define queries and visual mappings, which
change the tool’s interface. The whole time, she experiences immediate updates after
each modification and directly verifies her efforts. Such an iterative, exploratory
working practice is likely to take minutes, not hours.

[|]

In the next chapter, we explain our Vivide programming environment in detail.
This includes a block-based scripting language based on Squeak/Smalltalk, a data-
driven strategy for tool design, a new UI-design language based on Morphic, and a
new data-driven working practice that puts it all together.
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4 Vivide: A Data-driven Tool-building

Environment

We complement two engineering proposals with two rather philosophical ones. On the
one hand, we present new languages to build tools, which contributes to engineering.
On the other hand, we present new strategies to perceive and use tools, which
contributes to philosophy. Overall, our solution considers the characteristics of live

environments, the values of the programmers working in there, and the goals domain-

specific tasks entail. While we remain compatible with traditions, we open a new
data-driven perspective on programming tools, which embodies direct manipulation,
tangible graphics, and noun-verb interaction. At the end of the day, Vivide can
be an environment that encourages a mindset shift toward ad-hoc tool building in
exploratory programming tasks.

In this chapter, we unpack the four contributions of this work. First, we present a
new scripting language to describe view models only little glue. Then, we propose a
new strategy for tool design, which follows our Rules of Distinctiveness, Similarity, and
Context. Knowing what tools to build, we then describe a new UI-design language

that uses our scripting language to express informational queries, visual mappings,
and whole graphical presentation of software artifacts. Eventually, this entails a new
working practice so that programmers can relate to the Vivide means of choosing,
configuring, and building tools.

4.1 The Block-based Scripting Language

We designed a new scripting language to improve accessibility and maintainability
of the object graph in object-oriented systems. Note that we build on the assumption
that, for this work, objects transport structure of domain-specific software artifacts
as explained in section 2.1. Guided by the concise appearance of Smalltalk code,
our main goal is to support the description of task-related hierarchical trees, which
are usually concealed in that object graph. That is, we employ Smalltalk syntax and
retain its semantics, but we add new meaning for interpreting specific code artifacts

in the context of domain artifacts. The resulting model tree, which consists also of
objects, can then be used as a view model for graphical widgets or as an intermediate
structure for non-graphical data-processing pipelines.

In the following, we will explain our scripting language using a trichotomy
commonly applied when describing the elements of programming languages [5,
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Figure 4.1: Morphs represent the graphical hierarchy in Squeak through submorphs. Each
morph has a name, bounds, and a color for basic visual appearance. Note that we adapted
this class diagram from UML [208, pp. 99–103] to fit the Smalltalk language.

pp. 4–31]: primitive expressions, means of combination, and means of abstraction.
After that, we will elaborate on the specifics of script interpretation and the ad-hoc
introduction of anonymous data structures. All script examples are valid Smalltalk
code and use Morphic object relationships as shown in figure 4.1.

Primitives: Transform Objects and Extract Properties

All scripts represent the rules for (structurally) querying and (visually) mapping
software artifacts. In object-oriented environments, we distinguish two kinds of steps

in scripts: (1) transform objects and (2) extract properties from objects. That is, we
postpone the graphical aspect for now, and we focus on selected artifact structure
that is accessible via navigation in the environment’s object graph. The first kind
of step, called transform step, is semantically represented as a Squeak block closure,
which is an objectified anonymous method (or function):
step := [:in :out | in do: [:morph | out addAll: morph submorphs ]].

In the programmer’s mind, this example might manifest a rule like: “Transform all
morphs into their submorphs.” Such transform steps have an input buffer to read
from and an output buffer to write into. Given some context, the programmer has to
send appropriate messages to the incoming objects to query other objects and put
them into the output. Since the original objects remain, we agree that the vocabulary
is debatable: transform, access, explore, expand, navigate, query—to name a few.
Consequently, script steps address the structural level of software artifacts and capture
the query language in tools.

We make extensive use of Smalltalk’s Collection interfaces [32], and the code
complexity in a transform step is only limited by the Smalltalk environment. For
example, the children in the Morphic hierarchy can be filtered by their color and
extent as follows:
step := [:in :out | in do: [:morph | out addAll: (

(morph submorphs
reject: [:each | each color = Color blue ])

select: [:each | each bounds extent > (50@50) ]) ]].
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This example reads like: “Expand all morphs into their submorphs, but drop the
ones that are blue or not larger than 50-times-50 pixels.” In each step, input and
output buffers are collection objects. Typically, the resulting source code transforms
objects without side effects, which resembles the functional programming paradigm.

The second kind of step in scripts is the extract step, whose intent is to emphasize
relevant properties of objects (or artifact structure). In object-oriented environments,
such properties are usually objects, too, but often more primitive such as numbers
and strings. An object property extraction is actually a specialization of object
transformation because output objects remain under the programmer’s control:
step := [:in :out | in do: [:morph | out add:

{ #object -> morph .
"Extracted object (or artifact) properties."
#name -> morph name .

#color -> morph color }]].

This example retains the incoming morphs as-is in #object and extracts two addi-
tional properties in #name and #color. Again, the code complexity is only limited
by the Smalltalk language and environment. Compared with the transform step,
the extract step’s output buffer holds not just a list of objects but a list of model

nodes, which provide object-oriented access to both software artifacts and extracted
properties. At his point, the extract step seems adequate to contain both the tool’s
query language and mapping language. We think, however, that two kinds better reflect
these two conceptual challenges programmers face when building tools as explained
in section 2.5. We clarify the benefits from such a distinction in the language’s means

of combination and script-edit tool.

Means of Combination: Define Tree Structures

Programmers can alternate transform steps and extract steps to specify an hierarchical
tree with multiple levels as depicted in figure 4.2. During script interpretation with
actual objects, a combination of n transform-extract pairs can produce model trees
with n levels or less. That is, only if a transform step yields one or more objects, there
will be another level in the tree. For each inner level, a step is interpreted as often as
there are nodes (or objects) in the previous level. The following example shows how
to describe a model tree that captures one or two levels of the graphical hierarchy
using incoming morphs:
script := {

"Level 1 − Transform and extract."
[:in :out | out addAll: in]. "No change."
[:in :out | in do: [:morph |
out add: { #object -> morph. #name -> morph name }]].

"Level 2 − Transform and extract."
[:in :out | in do: [:morph | out addAll: morph submorphs ]].
[:in :out | in do: [:morph |
out add: { #object -> morph. #name -> morph name }]] } asScript .
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Figure 4.2: Scripts specify hierarchical tree structures level by level. Each extract step enriches
model nodes with properties for a certain level. Nodes will only have child nodes if the
particular transform step yields objects.

Basically, we wrap Smalltalk blocks in support objects so that we can store additional

information for script interpretation. Here, a sequence of in-out blocks is put into
an object array (i.e. {...}) and then converted into a script object via #asScript. All
incoming morphs (or objects) will be represented as children of the root node on
the first level. The nodes of morphs that have submorphs will have child nodes and
thus a second level.

For the sake of code structuring and code readability, programmers can combine
multiple transform steps or extract steps back-to-back. On the one hand, object
transformation might benefit from clear separation of sorting, filtering, or graph
navigation. On the other hand, property extraction might benefit from avoiding
fill-in names for similar properties to be shown, for example, as #text in several
table-view columns.

In general, the top-down sequence of steps in scripts dictates a primary reading
direction and style. Such code-formatting style is not always straightforward1 to
achieve in plain Smalltalk and its collection interface:
((WebClient httpGet:
'http://en.wikipedia.org/wiki/Unix') content lines
gather: [:line | 'href="/wiki/[^"]*"' asRegex matchesIn: line])
asSet asOrderedCollection "Remove duplicates."
sorted "Sort strings lexically."
collect: [:url |
(url copyReplaceTokens: 'href="' with: 'http://en.wikipedia.org')

allButLast "Remove trailing quote."].

1We formatted this code snippet to underline our argument of having a primary reading direction.
This might not comply with best practices.

96



4.1 The Block-based Scripting Language

This example is a Smalltalk version of the one for Unix pipes-and-filters as shown in
section 3.3. While it is possible to emphasize object transformations, such as #sorted
and #collect:, it requires much discipline and care to add helpful line breaks or other
whitespace. In our scripting language, in-out blocks propose a certain data-driven
programming style, which inherently affects code readability.

The vertical reading direction becomes more clear if we hide the repetitive syntax

for reading from the input buffer and writing into the output buffer. These are
repeated message sends to the collection interface. An interactive script-edit tool
could do such optional masking. Expressed in our scripting language with masking,
the motivational example now looks like this:
script := {

[:token | 'http://en.wikipedia.org/wiki/', token].
[:url | WebClient httpGet: url].
[:response | response content lines].
[:line | 'href="/wiki/[^"]*"' asRegex matchesIn: line].
[:tokens | tokens asSet asOrderedCollection]. "Remove duplicates."
[:tokens | tokens sorted]. "Sort strings lexically."
[:url | url copyReplaceTokens: 'href="' with: 'http://en.wikipedia.org'].
[:url | url allButLast]. "Remove trailing quote."

} asScript openScriptWith: #('Unix').

The script semantics do not change considerably when concatenating steps of the
same kind. For consecutive transform steps, there are just more input buffers and
output buffers involved. For consecutive extract steps, there has to be a prefix or
suffix to distinguish named properties in the model nodes like name_1 and name_2 for
subsequent #name properties. To understand the amount of recurrent code that was
omitted, the complete first step with :token looks like this:
[:in :out | out addAll: (in collect:

[:token | ’http://en.wikipedia.org/wiki/’, token] )].

While our scripting language can concisely capture a tool’s query language and
mapping language, there is some glue remaining. That glue connects domain rules to
framework mechanics: the collections representing input and output buffers.

Remark Naming is difficult. Especially for such alternating combinations, the terms
we use for the two kinds of steps seem debatable. Having trees and levels in mind,
the “extract” step could have been called “next-level” step. As we describe later
in the script interpretation details, that step could have been also called “suspend”
step because interpretation (and thus model generation) happen on demand when
child nodes get accessed. From the programmer’s perspective, however, we value
the concept of data-driven transformation and extraction more than the concept of
trees because of the focus on fetching, examining, and retaining software artifacts
in a multi-view and multi-tool environment. Therefore, we favor the term “extract”
over “level”. Also, we think that list models, which are basically one-level trees, can
be appropriate for many programming tasks.
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Means of Abstraction: Identifiers, Organizations, and References

Named abstractions [5, pp. 7–9] enable programmers to manage their plentiful rules
for querying and mapping artifacts on a conceptual level. For example, the script that
“somehow exposes the graphical hierarchy for this morph” can become memorizable
through the brief term “submorph tree”. Such omission of details helps focus in
complex tasks where programmers process many artifacts in various ways. To have
such naming for scripts, we introduce script identifiers as distinguished state in script
objects to look for in script organizations. Like message lookup in classes or class-name
lookup in the environment, scripts become addressable by name in object-oriented
code. Consequently besides the human aspect, we use this indirection to promote
dynamically scoped re-use of scripts during interpretation.

Besides identifiers, programmers can store additional information into script
objects through script properties. These properties have a Smalltalk representation
similar to object properties in extract steps. Programmers can add more script
properties as needed such as a human-readable description (#label), which we
found beneficial for script browsing. We also denote extract steps via the #isProperty
property to support the script interpreter. As an example, the following script extracts
object properties from a list of morphs (without an extra transform step):
script := {

[:in :out | in do: [:morph | out add:
{ #object -> morph.

"Object properties."
#name -> morph name.
#color -> morph color }]]

"Script (step) properties."
-> { #id -> #morphNameColor . "Unique identifier."

#label -> ’Morphs with Name and Color’ . "Human−readable."
#isProperty -> true "Indicate property extraction."}.

} asScript.

The format for script properties is the same one as for object properties. We see simi-
larities to Squeak’s method objects. In Squeak, methods are instances of the class
CompiledMethod, which also support additional method state. Normally, programmers
do not take advantage of that when writing object-oriented code. Still, there are
method pragmas, which add such state to be accessed via Squeak’s meta-object protocol
in regular code.

Now we have the entire new building block our scripting language is made of: steps
with properties. When constructing script objects from code, script properties are
associated with the in-out block ([...] -> {...}). It becomes clear that each step in
a script can represent a script on its own. We borrow the concept of singly-linked lists,
which is an abstract data type [33, pp. 236–241]. Each step refers to either another
step or nothing, which would be the last step then.

Script organizations separate scripts to embrace mistakes for the programmer’s
explorative attitude. There is a global organization, which keeps track of scripts that
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have value in recurrent tasks. Then, there are many local (or temporary) organizations,
which capture scripting attempts that may not be worthwhile to keep around for
longer. At any time, programmers can migrate scripts between organizations, for
example, to preserve freshly constructed tools. Local organizations are created
along with new scripts, and script identifiers are generated automatically by default.
We want to free programmers from having to manage organizations or conceive
abstractions at the beginning. Instead, given the particular program comprehension
task, they should focus on explicating the rules for querying and mapping artifacts
first and foremost. When creating scripts as mentioned above, the script’s steps share
an organization:
script := {

[:in :out | in do: [:morph | out addAll: morph submorphs]]
-> { #id -> #’61e787c9-fc8d-0241-bee4-463ec9915b5f’ .

#label -> 'Submorphs' }.
[:in :out | in do: [:morph |

out add: { #object -> morph. #name -> morph name }]]
-> { #id -> #’01f88aa9-d4e8-004e-a001-1148a2c36e5f’ .

#isProperty -> true }.
} asScript.

Both #’61e...’ and #’01f...’ are in the same local organization. We think that
programmers should not be bothered with such generated identifiers. Only manually
chosen, memorizable identifiers should be displayed in tools that support script
editing.

Script identifiers foster fine-grained re-use of specific script steps (and their following
steps). Such script references are expressed as the script property #next. That property
stores one or more script identifiers to be looked up in organizations. First, the local
organization will be checked and, if not found, the global one. Recalling the previous
examples, a script that transforms morphs into submorphs can then re-use the script
#morphNameColor as follows:
script := {

[:in :out | in do: [:morph | out addAll: morph submorphs]]
-> { #label -> 'Submorphs'.

#next -> #morphNameColor }.
} asScript.

Semantically, all referenced scripts (or script steps) are treated as inlined after the
referencing step. Thus, programmers can add more steps after any step that has a
#next property. Yet, referring to a step before the first one requires an extra step to be
inserted, which may not do any transformation. The effects of such re-use include
additional levels in the tree model or errors due to incompatible transformation
rules. Consequently, tool support is required to manage complex scripts.
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Figure 4.3: Only the first transform step is interpreted once with all incoming objects.
Transform steps that describe inner levels are interpreted as often as there are objects
produced by the previous level, each time with a single object. Extract steps receive any
objects their preceding transform steps reveal. See figure 4.2 for comparison.

Script Interpretation for Model Construction

Script interpretation begins with the script’s first step and a list of objects. Transform
steps convert that list into another list of objects. Extract steps can convert again,
but they primarily extract object properties and create nodes, which form the tree
model. As depicted in figure 4.3, a model’s root node holds many objects, and all
other nodes hold a single object. When constructing the inner branches of a tree,
script steps are interpreted several times, once for each object in the previous level.
If steps refer to other script identifiers via the #next property, cycles can be defined,
which then describe tree levels recursively. Depending on the object graph, such trees
might have an infinite depth. Usually, script interpretation suspends after extract
steps, that is, after a particular level in the tree was constructed. Views will trigger
this node construction lazily by sending the message #nodes to the model (node).
Interpretation will finish if transform steps yield no more objects.

Programmers can choose the kind of collections that will be used as input buffer or
output buffer. By default, index-based access should be supported. As indicated in the
script examples before, we think that programmers will usually address many objects
at once. Given a concrete task with concrete artifacts, however, it can be possible that
programmers just want to continue exploring the n-th object of some indexed input.
In Squeak, such a collection would be an instance of OrderedCollection. Yet, there
are others with different characteristics, such as sorting and duplicate removal, that
can render script code more concise. Take the following script, which will calculate
the square of each incoming number if that number is unique:
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script := {
[:in :out | in do: [:num | (out includes: num) ifFalse: [out add: num] ]].
[:in :out | in do: [:num | out add: num * num ]].

} asScript.

Here, there are two transform steps. The first step discards duplicate numbers. The
second step computes the square for each remaining number. For example, the list
#(1 2 2 3 3 3) will be transformed to #(1 4 9). With a different kind of collection,
the first filter step can be made obsolete. There are two script properties to define
the kind of input buffer (#in) and output buffer (#out):
script := {

[:in :out | in do: [:num | out add: num * num ]]
-> { #in -> Set "Choose input buffer with set semantics." }.

} asScript.

When using a set to arrange objects in the input buffer, the programmer can be sure
that there are no duplicate numbers provided. Compromisingly, it is not possible
to access objects by index without converting2 it into a fitting collection first. Note
that for views (or other clients) model nodes are always collections that support
index-based access.

Tuples as Ad-hoc Data Structures

We assume that the object-oriented environment already provides objects that trans-
port relevant structure to understand concepts of software artifacts. So, programmers
can directly express the rules to query and map task-related information in scripts. It
will just be object transformation and property extraction, which is backed by (Squeak’s)
object-oriented concepts messaging and classification. Since class objects are accessible
in any piece of code, programmers can create, configure, and use new instances in a
script’s transform steps:
script := {

[:in :out | in do: [:name | out add: ( Color fromString: name )]].
} asScript openScriptWith: #('banana' 'orange' '#FF0033').

However, there can be situations where existing classifications cannot reflect
the programmer’s mental model. In such case, it would be necessary to create
new classes to bundle objects in a way that cannot be expressed with plain object-
graph navigation. For example, a morph has a color, but colors are associated with
many morphs and other objects. Even with Squeak’s meta-programming facilities, it
would not be possible to navigate from the color back to the original morph. That is
when transforming objects in scripts, programmers might discard relationships that
actually retain in mind. We think that programmers should refrain from defining

2In Smalltalk, collections can be converted between kinds by following a simple naming conven-
tion [13, pp. 28–30]: #asClass. For example, a set becomes ordered again via the message
#asOrderedCollection.

101



4 Vivide: A Data-driven Tool-building Environment

new classes that might not be useful for other programming tasks. Instead, we
conceptualize Smalltalk’s object arrays to serve as anonymous classifications, which can
be used ad-hoc in scripts: tuples.

As a compromise for missing named classifications, tuples combine objects to
pass across steps in scripts and hence levels in the tree model. Note that we do
not change the semantics of script interpretation, but we exploit the fact that any
object can be stored in input buffers and output buffers—even collections. So, we
introduce the use of object arrays as anonymous classifications (or data structures).
In object-oriented code, tuples and arrays are indistinguishable:
tuple := { morph. morph color }.

Here, a morph and the morph’s color are put into an array, which represents a
tuple (or pair). Nevertheless, we require a convenient way to create tuples from
lists of lists of objects because transform steps are especially useful for navigating
one-to-many relationships in the object graph. So, we defined the “Cartesian product”
on collections, which combines all elements of all collections in a collection:
tuples := #( (1 2) (a b c) ) asTuples. "Cartesian product"
tuples = #( (1 a) (1 b) (1 c) (2 a) (2 b) (2 c) ). "true"

While passing tuples between consecutive transform steps is straightforward,
extract steps require additional semantics. Usually, one object in the tuple is of
primary importance to the programmer. For example, if a step navigates to a morph’s
submorphs, the original morph (also known as owner) might be useful but secondary.
Consequently, programmers can still denote such priority through the object property
#object, while keeping the whole tuple in #objects. When constructing the next level,
the responsible script step will get the tuple and not the priority object. The following
script puts our tuple concept into an exemplary context:
script := {

"Level 1"
[:in :out | in do: [:morph |

out addAll: {morph submorphs. morph} asTuples ]].

[:in :out | in do: [:tuple | [ :morph :owner |
out add: { #object -> morph. "Priority object."

#objects -> tuple . "Next−level input."
#color -> morph color }

] valueWithArguments: tuple ]] -> { #isProperty -> true }.
"Level 2"
[:in :out | in do: [ :tuple | "..." ]].

} asScript.

Here, we use part of Squeak’s block-closure protocol to improve code readability:
#valueWithArguments:. Programmers can use tuple first or tuple second if the tuple’s
collection supports index-based access, which arrays do. Such descriptive block
arguments, additionally, avoid the need to add temporary variables for readability.
Note that the use of tuples in combination with the #objects property does still
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conform with figure 4.3. Except for the model’s root node, each inner node holds
a single (priority) object reference. Inner transform steps are provided with tuples,
but each of those tuples represents a single object to be unpacked to multiple objects
only if needed.

Synopsis We designed a scripting language to improve accessibility and main-
tainability of the object graph in object-oriented environments. Our language uses
Smalltalk semantics, which includes messaging in particular. Programmers compose
block closures, each having an input buffer and an output buffer, to explicate the rules
to query and map software artifacts represented as objects. They rely of Smalltalk’s
collection protocol to iterate over objects to sort them, filter them, or transform them
into a set of relevant objects. We distinguish a script’s transform steps and extract

steps, which are managed in script organizations. When interpreting such scripts with
concrete objects, tree models are generated, where each node in each level holds a
single object reference and a list of extracted object properties. If the environment’s
existing classifications are insufficient, programmers can employ tuples as ad-hoc
data structures, which form an extension to Smalltalk’s object arrays and thus the
collection protocol.

All software artifacts that this scripting language entails become part of the object-
oriented environment. We think that additional tool support is required to hide
recurrent syntax (or remaining glue) and foster readability of scripts in some cases.
That is, interactive views on script artifacts have to complement this programming
experience to support script-based tool building.

4.2 A Data-driven Strategy for Tool Design

We propose a different take on how to design interactive, graphical tools. Our goal
is to support programmers to better distinguish the tool’s “building blocks” during
use. Then, tool-building programmers can be supported to find, change, and verify
tools more easily. This idea aligns with general thoughts about a modular tool design

to remain flexible as tool user and tool builder. Our strategy is twofold: (1) begin
with tools for single objects and (2) use and combine such tools in (task) contexts. We
formulate three rules, three guidelines, and three practices to support programmers
in the tool-design phase.

First, we motivate and explain the three rules for our strategy. Then, we explain how
to reduce redundancy and improve coherence of information in a tool’s interface
to represent single, domain-specific objects. We then describe the emergence and use
of composition context, which can be anticipated as a by-product of tool (window)
configuration.
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Three Rules

Every object (or artifact) in the environment should be represented by an interactive
morph (or tool) that supports highly recurrent tasks in a domain-specific way for a
wide user group. When programmers approach unfamiliar source code, they begin
with selected focus points [177]. Such “points” are single objects that form groups
(and groups of groups) only later in the process. Consequently, there have to be
compact tools that form tangible representations on screen so that programmers can
focus in the overwhelming informational space. Recalling the tasks from section 2.2,
programmers value tools that support to examine principal structure, retain relevant
objects, and fetch more related objects. We formulate three rules to support this
workflow based on an existing rule set for multi-view systems [10], which we
optimize for object-oriented environments. By following these rules, tools are likely
to favor artifact structure over tool behavior, which underlines our notion of “data-
driven”:

Rule of Distinctiveness There have to be tools that focus on single objects by
showing domain-specific characteristics to support highly recurrent tasks for a
wide user group. We call such tools single-object tools. For tool builders, such
tools are the unit of composition. Highly recurrent tasks include exploration and
modification of structure.

Rule of Similarity For each single-object tool, tool builders should explore the
possibility of re-using the tool’s interface for (1) multiple objects and (2) similar
objects. For example, if a tool works for a single e-mail, it should work for multiple e-
mails and other artifacts that exhibit properties like e-mails. Tools should embrace
resemblance where its users do, too.

Rule of Context Programming tools should make use of the context they operate
in. In graphical environments, this addresses a visual context such as windows
of single-object tools arranged on screen. Tool builders should embrace and use
these context objects to provide additional features.

Comparing with the existing rule set for multi-view systems [10], our rules share
goals with the Rule of Diversity, Rule of Complementary, Rule of Decomposition,
Rule of Self-Evidence, and Rule of Consistency. However, we do not distinguish
“when” and “how” but focus on the construction of complexity from simplicity. In the
following, we present guidelines and practices, which build upon the Rule of Parsimony,
Rule of Space/Time Resource Optimization, and Rule of Attention Management
from the same catalog [10].

Toward a Modular, Data-driven Presentation Language

There have been many systems that provide distinctive graphical representations
of software artifacts in a tooling context. First of all, there are the tangible, iconic
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Figure 4.4: Four interactive views on single objects (from left to right): show the class
category Morphic-Kernel, edit the method handleEvent: of Morph, browse an instance of
Morph, interact with an instance of Morph in a workspace (or command line).

representations of artifacts embedded in list-based views, which were coined in the
Xerox Star interface [80]. Even though not considered as separate tools, they do offer
interaction in terms of double-click actions or pop-up menus. Then, there are other
research projects that introduced rather tool-like views as supplements to achieve
different goals in program creation and comprehension: the components in Fabrik [79]
for data-driven application design, the tiles in Etoys [7] for child-friendly simulation
design, the bubbles in Code Bubbles [21] for economic information layout, and the
shapes in Gaucho [139] for direct object manipulation. We combine and generalize
these examples and suggest the following guidelines for designing tool interfaces
for domain-specific artifacts:

• Focus on relevant artifact structure and minimize information that would entail
redundancy for similar artifacts — less redundancy

For example, elaborate details about a method’s class are not relevant if a tool focuses on

the method’s source code.

• Clearly distinguish (interactive) interface elements that represent artifact structure
from elements that trigger side-effects — more coherence

For example, a menu or tool bar should not mix actions that trigger side-effects on artifacts

with invocations of tools for continued exploration.

• Provide hooks for tool integration primarily based on software artifacts and their
relationships to other artifacts — data-driven integration

For example, a tool should not offer to “browse versions” of a method but instead directly

list all versions to choose from.

There are many ways to follow the Rule of Distinctiveness so that the environment
provides one or more single-object tools that are tailored to one kind of software
artifact. There can be a single view that provides a trade-off between interaction
and display as depicted in figure 4.4. List views can afford selection and sometimes
drag-and-drop. Text views typically also afford modification. We think that the
level of accepted redundancy is debatable and hard to predict for arbitrary domain
artifacts. One could measure such noise by opening many tools of the same kind
but for different artifacts side by side and count the pixels that present the same
information. For any kind of tool decoration, repeated patterns on screen can become
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Figure 4.5: Single-object tools can provide any number of views to show distinct object
structure. View-agnostic menus should separate related objects (left) and side-effect actions
(right). If views expose objects, too, they should support selection. For selected objects,
there should be a menu that offers available single-object tools to continue exploration.
Drag-and-drop interaction can foster tangibility.

either annoying or easy to ignore. Tool builders have to experiment and test different
designs.

Instead, we propose three practices for building a single-object tool to improve
coherence and provide data-driven tool integration as depicted in figure 4.5:

• Any view’s menus to continue fetching and examining relevant artifacts should
directly show tangible, iconic representations of these artifacts, instead of explicit
tool invocation. — view-agnostic menus

• Since artifact structure is usually transported as relationships to other objects in
the object-oriented environment, any distinct object in the tool’s views has to be
selectable. — object selection

• Any selection of objects in the tool’s views has to provide a menu to invoke suitable
single-object tools to continue exploration. Drag-and-drop interactions into the
environment can be convenient, too. — selection menus

Tool builders can design many single-object tools for the same object as depicted
in figure 4.6 to highlight different aspects of complex objects. Such complementary

tools can support a wide range of tasks. Yet, tool builders should follow the Rule

of Similarity to improve usability. A common challenge in direct manipulation
interfaces is the interaction with multiple objects at once [176, pp. 212–214]. If tools
represent single objects only, programmers always have to interact with n tools
to handle n objects. We propose to design interfaces around views that scale up:
lists, tables, trees, text fields. The field of information visualization proposes similar
ways [174] to display large amounts of data in a compact, interactive fashion on screen.
Note that we insist on having single-object tools in object-oriented environments,
and we acknowledge the need for tools that scale up only in the course of complex

program comprehension tasks.
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Figure 4.6: Three different views on the class MouseButtonEvent (from left to right): a generic
object inspector, a text-based class definition editor, and a custom inspector that shows
class-specific structure such as superclasses and messages.

Staying with the Rule of Similarity, there is another aspect that fosters tool re-
use: shared concepts. Many tools may look domain-specific in use, even though
they process common structural information shared by many objects. For example,
Squeak’s object inspector shows an object’s instance variables in a common textual
format, which works for all kinds of objects in the environment. To raise the chance
of re-using a tool for similar objects, tool builders should employ shared concepts. In
traditional systems, there is a mere textual format expected from any kind of object
such as #printString in Smalltalk and toString() in Java. We propose to broaden the
list of such shared representations:

Label Comparable with #printString, provide a very short but distinct text repre-
sentation of the object.

Icon Provide an iconic representation of the object. If the object has inherent
graphics, such as for pictures and Squeak’s morphs, a downscaled version can be
sufficient.

Summary Provide a more elaborate summary of the object properties. For example,
views can provide tooltips to show that information.

Color Provide a color as part of the environment’s visual language for the object.
Smalltalk systems have been using colors to distinguish kinds of tools. Code
browsers are green, debuggers are red. However, colors for objects rather than
tools are more likely to foster a data-driven perspective.

Origin Provide an object that serves as origin, or primary relationship, for that
object. Tools can employ this to improve orientation in a crowded environment.
For methods, the origin can be the respective class.

We suppose that this list is not complete. Tool builders should think about the
overall presentation language of objects in the environment. While we focus on
visuals in this work, other human senses could be addressed, too. For example,
single-object tools could play a distinct sound if programmers hover the mouse cursor
over. If an e-mail tool makes a chirping noise on the arrival of new mails, users can
learn to automatically think of those specific artifacts after a while. Tool builders can
exploit such effects when designing new tools.
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Figure 4.7: Tool windows form a composition context, and each window represents one
or more domain objects. If tool builders want to exploit that context, the user’s current
tool should either use all objects implicitly (left) or a subset that is explicitly configurable
(middle). The visual layout can support such configuration (right).

Emergence and Use of Composition Context

We propose the use of tool-composition context as additional dimension for a mod-
ular, data-driven design of tool features. That is, tool builders should anticipate a
level of user-controlled information integration. There have been many research projects
exploring different strategies for layouting tool windows with visual adornments
to support the user’s orientation. One popular strategy seems to be the arbitrary
expansion of space along the horizontal axis with varying degrees of guided window
positioning [21, 196, 73, 30]. Alternatives to overcome physical limitations include
virtual [139][192] and zoomable [42][137, p. 46] screens. We agree that visual clus-
tering of selected artifacts can help distinguish and document bugs, features, or any
concern3 in the system. Yet, if one tool can show more meaningful information with
the help of another tool’s object nearby, it should do so.

We think that tool builders can follow the Rule of Context by anticipating the pro-
grammers’ habit of configuring the layout of graphical tool containers as explained
in section 2.4. Usually, programmers move or resize windows to examine artifacts
side by side and maybe retain them for later. (The possibility to fetch more artifacts
is typically unrelated to this habit.) Consequently, tool builders should make use
of the view compositions that emerge through such user interaction as depicted in
figure 4.7. We distinguish implicit and explicit composition context:

Implicit context Since all tools in the environment represent one or more domain
objects as described above, the composition context is defined as a set of all
these objects to be processed by any tool in that composition. While the whole
environment can serve as context, nested containers can further support domain-
specific or task-specific grouping.

3In fact, flexible tool containers could be used to capture domain-specific concerns represented by
usually widespread artifacts [198, 160]. In a self-supporting environment such as Squeak/Smalltalk,
configurations of tools that directly represent artifacts can form new kinds of artifact themselves.
The StarBrowser [213] provides such explicit classifications.
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Figure 4.8: Explicit composition context can be defined in terms of the explicit object selection

if tool views support it. Implicit context can still be defined in terms of single-object tools
themselves as depicted in figure 4.7.

Explicit context If users can recognize connections between views visually,
tools can specialize or clarify their informational needs. Tool builders can use such
explicit data connections between views to design more complex tools that are
data-driven and extensible.

That is, we propose to treat any partial use of context explicitly in the form of
discoverable connectors between views, which is like Fabrik’s connectors [79, 106].
Any particular window layout can imply provision or use of information. For
example, Squeak’s system browser has four views at the top, and navigation goes
from left to right: class category, class, message category, message. Considering the
data-driven perspective on tools in this work, one could see the browser’s four views
as consecutive data providers. So, a view’s object selection (figure 4.5) can improve
tangibility of its object representations, which complements the use of single-object

tools as tangible entities. In figure 4.8, we illustrate a simple navigation task by
invoking tools in terms of several consecutive selections. Consequently, tool builders
have three options to define composition context:

• The object(s) a tool stands for as a single-object tool
• The object(s) a tool’s view(s) show (in selectable form)
• The selected objects in a tool’s view(s)

Tool builders should also support tool-controlled modification of that context, which
can be compared to (semi-)automatic window management.

The distinction of focus objects and context objects helps design flexible, dynamic
tools. Traditional programming tools are usually designed for a primary purpose
with a fixed composition context. For example, Squeak’s method objects occur as focus
objects in code browsers and debuggers. In browsers, the context can be identified
as a class category, a class, and a method category. In debuggers, the context can
be identified as a receiver object, argument objects, and temporary objects. Tool
builders have integrated those context objects so that tool users can examine them
to better understand the focus object, which would be the method. However, the
tool’s nature would change if tool builders would re-design context, that is, change
the kind of objects that provide additional information. We argue that code browser
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and debugger are quite different tools primarily because of their context objects.
If programmers want to fetch the class of a method, they would have to leave the
debugger and open a code browser. It is considered a different tool. In our tool-design
strategy, tool boundaries become blurred because tool users are in control of the
(single-object) tool’s composition context, which now influences tool features. As an
effect, the term “debugger” might become a role that users can attach to any set of
tools.

Each composition context is a new, ad-hoc, custom relationship between the re-
spective objects, which are represented by their views. Tools can use this relationship
to bypass limitations in the underlying structure manifested as hardly accessible (or
virtually non-existent) paths in the object graph. We think of concerns that crosscut
the dominant decomposition of code artifacts and other artifacts that happen to be
provided by some tool for actually different purposes. The graphical user interface
can bring it all together, even if only for a single programming task. Tool users play
an active part in establishing such relationships. Tool builders should make use of it.

Tool compositions can be treated as tools of their own accord, which can be com-
posed with other tools and so on. To some extent, our suggested strategy compares
with (i) primitives, (ii) means of combination, and (iii) means of abstraction—which
is the trichotomy we used for explaining our scripting language in section 4.1. While
a single view can be sufficient to represent one artifact, a combination of views might
be necessary for another one. Tools that support complex tasks are usually filled with
views of several kinds. The abstract name of one tool can be a viable handle to re-use
and embed its functionality in another tool’s interface. In any case, tool builders
should provide a way to access the underlying artifacts as simple single-object tools so
that tool users can retain information in a compact fashion on screen. For example,
Squeak’s object inspector can serve as a reliable way to retreat from inappropri-
ate, maybe domain-specific, tools that fail to adequately support the programmer’s
current program comprehension task.

Synopsis We think that tools in interactive, self-supporting environments should
be designed to directly represent the artifacts whose structure they show and offer
to change. Thus, we formulate the Rule of Distinctiveness, the Rule of Similarity,
and the Rule of Context to exploit and leverage the fact that everything is made of
objects and that graphics are tangible in a shared interaction paradigm. That is, every
object (or artifact) should have at least its own morph (or tool) that shows the main
structure to foster tangibility and direct manipulation. Then, multiple such tools (or
tool views) should form a composition that offers visual cues to its users. Plus, any
composition should reveal new functionality based on each tool’s context objects. Tool
users manage such compositions like they manage application windows.
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Figure 4.9: Vivide wraps each view in a pane (left), which governs objects and scripts for
generating models. Panes can be combined via object connections (middle) to use a view’s
selected objects as input for other panes. For abstracting pane compositions into new
views, there are pane views (right), which reify layout configuration.

4.3 The Morph-based UI-design Language

We designed a new kind of “brick” for constructing graphical tools in an interactive,
data-driven way. We call that kind panes, in which we bundle the object-oriented
paradigm, Smalltalk’s direct code updates, and Morphic’s tangibility. Like tools in
general, panes exhibit views, artifacts, levels of composition, and visual decoration.
We employ our scripts from section 4.1 to generate view models. Note that panes
and views are morphs, which occupy screen space, offer visual composition, and
react to user input. In sum, our morph-based UI-design language has one primitive
concept, means of combination, and a strategy for abstracting nested compositions
as illustrated in figure 4.9.

A tool can be seen as any pane in action, that is, all views have models to work with.
To recap our scripting language, tool builders describe tool characteristics in terms
of each script’s transform steps and extract steps, which include object properties and
script properties. We ensure the tangibility proposed in section 4.2 by distinguishing
between input artifacts and (selected) output artifacts in each pane. For example, a code
browser can be constructed with some panes showing list views, exchanging code
artifacts, decorated by a window frame with the label “System Browser”. In that
browser, programmers can invoke the halo of any pane to access the (input) objects
behind the respective view.

Remark We focus on tool building rather than tool using. Nevertheless, we think that
some interactions are simple enough to be performed by any programmer, who may
not notice the role swap between user and builder. Especially in Squeak/Smalltalk
environments, there are all kinds of objects accessible, and “building” separates
from “using” sometimes only through the perceived relevance of some object for
the current task.
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In this section, we first explain how a single pane uses a single script and some input
objects to initialize a single view. Then, we elaborate on the use of composition context

via object connections and the creation of nested contexts via pane views to construct
complex tools. Finally, we employ Morphic halos as pane decoration to interactively
change panes and their related objects. Overall, our UI-design language provides
consistent updates for running tools after any change.

Configure: One Script, Some Objects, and One View

I have a collection of domain objects. How can I build a tool with a single view

that shows some properties of these objects?

Basically, each pane needs a place on screen, some objects, and a script. A pane
initiates script interpretation with the input objects to generate the view model. Then,
it will create a default morph as view and provide the generated model so that the
morph can show something. If the first script step has a #view property, the pane will
consider that as the preferred kind of view (morph). In Morphic terms, each pane
has a view as its primary submorph, and the view will have the same dimensions as
the pane. This relationship allows panes to act as surrogates when replacing views
so that a tool’s layout remains stable. In the object-oriented environment, panes
communicate with or otherwise manage the following objects:

P1 A rectangle holds spatial information for directing screen output and user input.
P2 A script holds the rules for generating the view model.
P3 A collection of domain objects represent the input for generating the view model,

also called input buffer.
P4 The current view model can be re-used when switching views.
P5 The current view morph is the primary and often only submorph of a pane.
P6 A collection of selected objects is formed through user interaction with the view,

also called output buffer.

Views have to provide a certain interface. In the tool building context, scripts
represent a convenient way to express the query language and the mapping language.
We argue that modifications and tweaks in these two languages are the essence of
tool building. On the other hand, many views (or widgets or visualizations) represent
re-usable entities that solve general challenges about (mostly) visual perception and
aspects of cognition. It is usually a one-time effort to achieve compatibility with our
notion of scripts and view models as explained in section 4.1. In Squeak, for example,
a pane’s view is just like any other morph with a specific interface to accept and
provide support objects. That is, the view can be implemented in any framework as
long as it meets the following requirements:
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V1 Accept a view model, which contains relevant domain information in various roles
to show such as text role or icon role.

V2 Accept a script, which contains meta information about the model structure such
as the number of script steps.

V3 Provide an object selection so that panes can keep track of the objects the user is
interested in.

V4 Be easily disposable, and accept close requests.
V5 Accept an object selection after view disposal/swap to help users regain focus.
V6 Provide a rectangle that represents the preferred dimensions on screen.

In general, there is data-driven communication between panes and views. Scripts
help abstract this communication to be independent from domain-specific details
in the transform/extract code. Recall that Squeak provides access to all objects
in the environment, which is especially convenient for graphical items because of
Morphic’s halos. Consequently, programmers with access to a pane object can not
only examine input and output objects but also control the current selection in the
view. This control fosters direct manipulation of software artifacts, while remaining
compatible with the programmer’s explorative live programming style. We can use
the pane’s separation of responsibilities from views and scripts to consistently update

tools after changes in view code or pane state, so that tool builders can verify the
effects quickly:

E1 Generate a new view model, discard the old one, re-use the current view, and try
to restore the object selection if script code changed, a script notifier triggered, or the

set of objects in the input buffer changed.

E2 Create a new view instance, discard the old one, re-use the current model, and
try to restore the object selection if view code changed, script properties changed, or a

script step was added/removed/reordered.

E3 Store object selection in output buffer if the view provides a new object selection.

What is a programming tool? After this first part of our UI-design language, a tool
is merely a script, some objects, and a morph that can serve as view. Tool builders
use a pane to put it all together. We assume that they do not have to worry about
how to bring objects into the environment and how to implement missing views.
Script authoring is the major tool building activity.
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Combine: Views in Context Exchange Artifacts

I have two tools side by side. How can I use the selection (of objects) from one

tool for the other one as input?

Multiple panes form a context, where each pane represents a tool for one or more
domain objects. We apply our Rule of Context from section 4.2 so that each pane can
use context objects in an explicit or implicit way like shown in figure 4.7. In Morphic,
a common owner morph could manifest such shared context, and the mediator
pattern [62, pp. 273–282] would be applicable. However, programmers can treat
any set of panes (or views) as a collective in the current task. We do not want to
pose such restriction on the mental model. Even if two views appear side by side,
transparent layout containers might obfuscate ownership easily. Thus, we propose
the explication of context use (and provision) in terms of directed object connections

as depicted in figure 4.9. In addition to a pane’s basic relationships, especially the
input buffer and output buffer, each pane does also know:

P7 An ordered collection of incoming connections represents the definition of context
use. (cf. P3)

P8 A collection of outgoing connections represents the definition of context provision.
(cf. P6)

We apply tuples as described in section 4.1 to combine multiple sources to fill
the input buffer with a single collection of objects. For example, if one source pane
provides the numbers #(1 2) and another source pane the symbols #(a b), the target
pane’s script will work on the pairs #((1 a)(1 b)(2 a)(2 b)). That is, the script has
to filter meaningful combinations first. The order of connections determines the
structure of tuples to be filtered.

Object connections are an instance of the observer pattern [62, pp. 293–303], but
each connection forms a one-to-one dependency. A one-to-many dependency can
be represented as many object connections from one pane to many others. We see
similarities to Cocoa Bindings,4 where “a binding is an attribute of one object that
may be bound to a property in another such that a change in either one is reflected in
the other.” Yet, we distinguish a pane’s input and output, which makes our “bindings”
uni-directional. Connections can pass any object that is part of a pane’s configuration:
domain (input) objects, selected (output) objects, script objects, model objects, view
objects, and even the rectangle object. Anyway, we think that the objects for script
input and the objects selected through view interaction are pivotal in our design
language. To encode this purpose, each connection as a provision mode and a use

mode, which are independent. For example, a connection can pass an object selection

4Cocoa Objective-C Bindings, https://developer.apple.com/library/content/documentation/
Cocoa/Conceptual/CocoaBindings/Concepts/WhatAreBindings.html, accessed 2017-10-28
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but also use it as input for the next pane. Note that, unlike Fabrik’s connectors [79],
object connections do not transform objects but just transport them.

We see the semantics of stepwise object exchange via object connections as an im-
plication of object-oriented environments whose interactive tools primarily support
managing object state. In the course of exploratory programming, programmers
continuously examine system state to understand application behavior. They want
to retain selected artifacts, which can also represent control flow reified as state
such as nodes in a call graph. Consequently, we think that tool builders benefit
from a tool building framework that treats information not in “continuous flow” but
rather as objects resting in several buffers. Objects “move” only for synchronization,
which is triggered by user interaction, timers, or other well-defined events. This is
conceptually different from Unix byte streams [153, pp. 266–267] or event streams in
functional-reactive programming [136], where information remains in pipes unless
being redirected into a persistent medium or the screen.

Having object connections, we extend our design language to ensure consistent
tool updates with the following events:

E4 Remove a pane’s incoming and outgoing connections if that pane is removed from

the context.

E5 Remove a pane’s incoming connections of a certain use mode if that pane overrides

that use mode.

E6 Retain a pane’s objects wrt. a certain use mode if all incoming connections of that use

mode get jointly removed.

E7 Update a pane’s objects wrt. a certain use mode if the source panes’ objects change,

connections are added/removed, connection modes change—considering each connection’s

current use mode and provision mode.

What is a programming tool? After this second part of our UI-design language,
the term “tool” expands to multiple scripts, sets of objects, and views. Programmers
can now fetch, examine, and retain software artifacts in an explorative, concurrent
way. That is, they can follow multiple hunches at the same time. Tool builders
establish connections between panes to integrate tools. We argue that a view’s
spatial dimension encodes its task affinity in a scenario with multiple tools.

Abstract: Pane Views Encapsulate Context

I have two sets of tools/views to examine two different concerns. How can I

separate them and then use the results for a third tool as input?

We use layout reification for panes to capture tool context, which we materialize as
special views: pane views. The idea of having objects dedicated to layout in support of
direct manipulation has been successfully demonstrated through alignment morphs
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Figure 4.10: Abstractions in the UI-design language foster task context organization. They
can vary through layout strategies, browsing patterns, decorative overlays, or discoverable
highlights. In addition to the tiled views in traditional browsers, we think of research
projects such as Gaucho’s shapes [139], Code Bubble’s bubbles [21], Moldable Inspector’s
exploration path [30], and Squeak’s project worlds [192]. They can all be embedded in
each other or arranged side by side ad-hoc via panes, scripts, and pane views.

in Self’s Morphic [110] and pampas’ in Gaucho [139]. In our UI-design language, we
follow the Rule of Context not only through object connections as described above.
If pane context aligns with Morphic’s graphical hierarchy, we can use our pane-view
dualism as means of encapsulation and abstraction as shown in figure 4.9. That is,
pane views can configure their contents the same way all views do: via scripts and
models provided by a surrounding pane. Their contents, however, consist entirely
of (decorated) panes. With such kind of abstraction, we support the construction of
complex tools without having to leave our UI-design language.

With pane views, we broaden our tool building perspective from integrating
existing widgets (or visualizations) to integrating existing interaction patterns. Panes
are still our unit of tangibility for software artifacts. In combination, panes do not
just pose the question of layout but also of interaction as depicted in figure 4.10. In
the traditional desktop pattern, for example, users can arrange elements freely. Code
Bubbles [21] makes the desktop virtually boundless, and it manages constraints
that avoid occlusion and allow for ad-hoc grouping of adjacent elements. There are
other patterns that vary through prescribed exploration paths, treatment of new
elements, or decorative overlays in a way that is independent from artifacts and
artifact-specific visuals. In our UI-design language, tool builders can embed many
different layout/interaction styles in each other. We do not further discuss the utility
of having, for example, a desktop in a column of an endless tape [30] in a bubble [21]
on another desktop. Yet, tool builders can compensate for missing (compound)
widgets by employing pane views to shape the intended user experience.
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We propose a fairly generic and flexible pane view that applies scripts, script
organizations, panes, and object connections to fulfill the requirements of regular
views. Our goal is to stay within our UI-design language so that tool builders can
further apply its elements recursively to construct more complex tools. There can
be many kinds of pane views like there are many kinds of layout strategies and
interaction patterns. Individual features aside, all custom pane views have to handle
view models, scripts, and object selections as described before. Consequently, all
pane views maintain the following invariants:

I1 In the graphical hierarchy, the owner of a pane view is a pane. (cf. P5)
I2 In the graphical hierarchy, all children of a pane view are panes. (cf. P5)
I3 All objects that a pane view distributes to its child-panes originate from the view

model. (cf. P2)
I4 A pane view employs object connections to provide objects for selected panes in

terms of input and selection. (cf. P3, P7)
I5 A pane view employs object connections to use objects from selected child-panes to

form an object selection for its owner-pane. (cf. P6, P8)
I6 A pane view’s configuration state, which includes child geometry, is always

represented as script properties. (cf. P1)

Like all views in Vivide, pane views get populated through generated models.
That is, scripts encode the configuration of child panes, including the distribution
of (incoming) objects. The designer of such views can use object properties or script
properties to store such configuration rules. Note that we assume that tool builders
can choose from existing pane views like other visualizations. We consider the design
and implementation of new pane views a different challenge.

Pane views define object selection in terms of object connections they set up between
selected panes and themselves. Albeit pane views are not a special kind of panes,
they support object connections and mimic the respective protocol. As illustrated
in figure 4.11, tool builders can create complex tools with a clear semantics for
object exchange between abstraction layers. We distinguish horizontal object paths

and vertical object paths. The horizontal paths represent the means of combination
of panes as described before. The vertical paths represent the means of abstraction.
Such paths consist of transitions between panes and pane views, beginning from the
root down to a leaf widget in the graphical hierarchy. Since panes are morphs, such
structure can be embedded anywhere in the environment—maybe even replacing
all tools in there. In sum, object connections simplify the object exchange for the
one-to-many relationship between pane view and panes. In contrast, we think that
the one-to-one relationship between a pane and its view cannot benefit from object
connections because (vertical) object provision is already communicated through
the view model.
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Figure 4.11: Pane views encapsulate sets of panes, configured via scripts, object connections,
and a layout strategy. Other tools can access selected objects from any tool’s pane using
an extra connection (here: orange call-out), without impairing tool integrity.

The addition of pane views makes script organization more flexible. We can
specialize global/local organizations from section 4.1 with the following invariants:

I7 A pane view has its own script organization.
I8 All scripts that a pane view’s panes use are registered only once in some pane view’s

organization along the chain of graphical ownership or in the global organization.

Pane views look up script identifiers, which they find in object properties and script
properties, to set up panes. Each pane view has its own organization so that tool
builders can work with multiple sets of organized (script) context. That is, local script

organizations align with the graphical hierarchy. The look-up starts in the innermost
pane view and travels along the owner chain. Besides pane views configuring their
panes, every script interpretation has to consider the graphical context. If a script
step refers to another step via #next, the script interpreter has the following look-up
priority: (1) organization of the current step, (2) all local organizations along the
pane views,5 and (3) the global organization. Note that the global one might not
be necessary in environments that use pane views all the way up in the graphical
hierarchy.

We extend the protocol between a view and its owner pane. Without the abstraction
of pane views, we described regular views rather “passively” as object displays with
interactive means of object selection. With pane views as context managers, we now
have to account for user interaction that changes the amount of objects to work with.
On the one hand, there are practices such as drag-and-drop, which empower users
to compose context themselves. On the other hand, there are composition strategies
such as multi-view windows, which can encapsulate common exploration paths.
This extension yields two more requirements for views:

5Such look-up along the graphical hierarchy resembles the Boxer system [45].
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V7 Provide any set of objects as object selection so that panes can keep track of the
objects the user is interested in. (cf. V3)

V8 Provide a collection of domain objects to be used as input for the script to update
the view model. (cf. P3, P7, I4)

That is, the pane’s output buffer can contain objects that are not in the current view
model, and the pane’s input buffer can be updated from within the current view.

What is a programming tool? After this third part of our UI-design language, the
term “tool” refers to a single pane with some objects and a script for a pane view.
The script describes all configuration hints for the pane view as object properties and
script properties. Tool builders should always consider the outermost context of a tool
set to design that set as a tool of its own. Then, the terms “tool” and “environment”
can become interchangeable.

Pane Decoration for Interactive Tool Building

There is a tool with many views. How can I see and change the artifacts that are

exchanged in those views as well as the scripts that process those artifacts?

Tool building is an iterative activity that consists of many feedback loops to explore,
understand, and assess the available means. So far, we have explained a tool’s building
blocks and how changes entail live updates so that programmers can directly verify

the effects against their assumptions and expectations. Still, tool builders have to find

and discover those building blocks in the first place—especially of complex tools
or in unfamiliar situations. Since we have an object-oriented representation and
inherently tangible graphics, it is only a question of how to make the tool’s set-up
and run-time objects (cf. section 2.5) accessible in situ.

We propose the use of pane decoration to let panes provide access to their configura-
tion objects. In Morphic terms, panes can have two submorphs: view and decoration.
The traditional decorator pattern [62, pp. 175–184] can be found in graphics design
in the form of scrollable containers or application windows. Typically, decorations
offer buttons and other visual adornments to both indicate and manipulate the
component’s current state. As depicted in figure 4.12, we follow this definition and
further distinguish the pluggability of decorations. Morphic halos [108] demonstrate
the feasibility of reserving an input gesture for entering a meta mode to look behind

graphics into objects. Comparable with pop-up menus or keyboard modifiers, such
quasimodes [152, pp. 55–59] make for discoverable and learnable means to consciously
switch between tool using and tool building.

We designed a custom halo for panes as illustrated in figure 4.13. The halo
buttons provide access to the pane geometry, the script (editor) and the object
connections. Tool builders can click, drag, and drop buttons as handles to re-compose
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Figure 4.12: Panes are the building blocks of all tools in the environment. From left to right:
panes can be empty, offer a view, offer a view and transient decoration, and offer a view
and permanent decoration. The programmer stays in control of all options while the tools
keep running.

panes, browse/debug scripts, or specify object exchange. In Morphic, programmers
traverse nested compositions of morphs with repeated halo gestures. Hence, the
current pane’s view is accessible with its own halo. In contrast, we think that pane

views, which manage a set of panes in context, do not need an own halo because
their particular owner pane should offer interactive means of configuration. In
result, such interaction through pane halos offers a tool building experience that is
comparable with dedicated GUI-design tools. Yet, there is an important difference:
our tools-under-design keep running. Consequently, new usage patterns can emerge
such as ad-hoc integration of two tools as illustrated in figure 4.11. In that example,
programmers can fork object connections to tap a tool’s inner objects without impairing
that tool’s integrity.

Pane decorations can also guide the creation of panes besides their configuration.
In direct-manipulation interfaces, users click, drag, and drop graphical items that
represent their domain artifacts to accomplish tasks. Such items originate from
various views and widgets that complement each other; a global search field can be
the beginning of exploration. The dragged representations can range from plain text
to graphical artworks, sometimes even animated. Given the program comprehension
theme in this work, we explain drop actions with the user’s desire to continue in-depth
exploration of particular artifact structure. Then, pane views will typically accept
those drop actions, and they can set up pane decorations to let the user choose from
available scripts to spawn new tools. In our UI-design language, tool users drag
only domain objects and windows, while tool builders drag also panes, scripts, and
connections. If a tool builder drops one pane on another pane, for example, the pane
view should employ a decoration to guide the creation of a composition and initial
layout configuration for those two.
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Figure 4.13: A pane’s halo (left side) offers buttons and arrows. The buttons control geom-
etry (gray), scripts (orange), input (blue), and output (green). The arrows indicate the
pane’s input/source pane(s) (blue), its output/target pane(s) (green), and the inner data
connections (black) for pane views. The halo of an inner pane (right side) indicates input
from or output to its owner pane (view) differently.

Synopsis We propose a UI-design language that is based on objects, messaging,
and tangible graphics to form an interactive tool building environment. We employ
our block-based scripting language to enable morphs to serve as flexible “building
blocks” so that tool builders can follow our Rule of Distinctiveness, Rule of Similarity,
and Rule of Context to support programming tasks.

In our design language, tools consist of one or more panes, which are configured
with scripts to generate view models and govern interactive views respectively. Multiple
panes can exchange objects via object connections, which allows for one pane’s object
selection to be used as another pane’s script input. The context in which tool
builders and tool users employ domain objects, scripts, panes, and connections can
be encapsulated as pane view to serve as unit of re-use to compose complex tool
interfaces.

We further support a direct, data-driven, interactive tool-building process with
pane decorations such as common window adornments and Morphic’s halos. Tool
builders can directly access a pane’s configuration state, modify it, and verify the
effects because of inherently consistent tool updates. In our UI-design language, the
terms “view”, “tool”, and “environment” can become interchangeable.
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4.4 A Data-driven Working Practice

Vivide can encourage programmers to approach program comprehension tasks
from different angles if they treat on-screen information differently. At a first glance,
there are still tools to open and windows to move. Yet, programmers will omit expe-
dient combinations of information if they miss the possibility of ad-hoc connections

between arbitrary views.
We envision a working practice that is artifacts-first rather than tools-first. In the

field of user interaction [152, pp. 59–62], this corresponds to noun-verb interaction
rather than verb-noun interaction. In the field of direct manipulation [75], this
entails shortening the semantic and articulatory distances to match the user’s goals
with the interface’s actions and effects. It begins with a programmer being a mere
beneficiary of the environment’s amenities. It continues with that programmer
actively defining the presentation and integration of all software artifacts on screen.
When expressing appropriate intents, “open tool for” becomes “artifacts shown
as”. In Squeak/Smalltalk, for example, “open class browser” becomes “class shown
as methods”. Tools and tool boundaries can fade into the background. Software
artifacts as tangible, visual representations remain.

In this section, we propose how programmers should approach program com-
prehension tasks in the Vivide environment. We assume a transition of working
practice from traditionally tool-driven to now data-driven. First, we relate aspects of
our scripting language and UI-design language to the way programmers choose,
configure, and build tools. Then, we describe possible mistakes programmers can
make and how Vivide provides a “safety net” for continued exploration. Finally,
we explain how programmers should fetch, examine, and retain artifacts for a single
task. Vivide changes the entire conversation between programmers and tools.

Objects First, Tools Follow: Choose, Configure, Build

Scripts and panes can only be effective if domain objects are involved, which are
usually provided from the environment. Any script code can refer to globals such as
Morph allInstances and WebClient httpGet: 'http://squeak.org'. However, onward
program exploration will trigger questions about objects at hand to be answered with
different scripts evaluated with those objects. Consequently, the proposed working
practice in Vivide begins with objects and treats scripts (or tools) secondarily.

Choose The act of choosing from existing means to approach a programming task
is considered very easy, which hence concerns both tool users and tool builders. In
traditional environments, programmers choose from existing graphical tools that
offer different ways to fetch, examine, and retain software artifacts. There are (tool)
button bars or pop-up menus that offer such choices. Noun-verb interaction will
sometimes be available if such menus are attached to tangible artifact representations.
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In Vivide, programmers choose artifacts from visible views to express interest in
those artifacts’ deeper relationships. Then, they choose from fitting scripts and views
to make those relationships accessible. They can always choose to create a new task
context for the prospective artifacts to explore. An exploration path emerges as the
programmer continues choosing objects, scripts, and views in an iterative fashion.
Thus, choosing in Vivide is an entirely visual cycle and does not require source
code reading:

Configure The act of configuring a thing to accommodate a domain, task, or per-
sonal preference is considered easy, which hence also concerns both tool users and
tool builders. In traditional environments, programmers face many defaults that are
accepted in the particular programming (language) community such as file-based
views for Eclipse/Java projects. The difficulty of changing such defaults depends
on the anticipated configuration space. In Vivide, the situation is similar consid-
ering default scripts, views, and view compositions. Script authors can anticipate
configuration by prominently placing hard-coded values to be found and changed
by users. If well-documented, programmers can also add/change object properties
such as #icon or #color with ease. This includes property renaming such as from
#value to #weight. It also includes copy-and-paste from scripts with similar transfor-
m/extract steps. In pane (view) compositions, programmers can also influence pane
geometry and choose different scripts or views. Finally, we consider the addition of
object connections between panes a powerful way of tool integration that resides in
the configuration space of any tool user. Hence, we argue that the novel means of
configuration in Vivide are threefold:

Build The act of building a thing to accommodate a domain or task is always
considered possible, but concerns programmers being tool builders only because
it takes usually more time than configuration. In object-oriented environments,
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programmers create adapter objects to combine software artifacts with interactive
widgets. Such adapters capture customizable query, mapping, and presentation
languages and hence define a tool’s utility and usability. In Vivide, programmers
do not have to write generic, repetitive “glue” code but can focus on domain-specific
transformation and extraction in an object-centered fashion. The composition of
view context is mainly interactive and backed by automatically generated script
properties. Since we see artifact provision and widget provision as extra activities,
Vivide supports the following aspects of tool building: (1) authoring of scripts
in general, (2) addition of object-oriented domain code to simplify script code, (3)
definition of pane compositions and new kinds of pane views, (4) extension of views
to support new kinds of script and object properties.

Mistakes and Error Handling

In the course of exploratory action, programmers can make mistakes that might lead
to inadvertent results, waiting to be corrected. Encouragingly, Vivide provides an
inherent “safety net” that keeps tools running. Even if a wrong script was chosen,
a configuration turned out buggy, or building efforts reveal a conceptual fallacy:
the worst implications will usually be (1) empty views or (2) otherwise lost artifact
tangibility. While deceptive on-screen information can be challenging, too, we stress
the need for a robust, forgiving environment that fosters exploratory working habits.
Consequently, Vivide has a fit understanding of possible errors to complement our
data-driven perspective:

• Scripts cannot be interpreted to generate the view model because objects fail to
understand certain messages and raise (unhandled) exceptions.

• Script identifiers cannot be resolved because the current scope does not include
script organizations that know about those.

• Views cannot accept a script or model because expected script/object properties
are missing, yet no defaults are provided.

• Inadvertent user interaction, such as through changed views or changed object
connections, discards or otherwise changes an object selection.

In most cases, panes can detect such errors and hence avert a disruptive user
experience by providing empty/default models or selections. Programmers can
then begin recovering from their mistakes either manually or tool-supported. We
think that our UI-design language entails obvious hooks for tracing and undoing
user actions. For example, script editors should provide traditional undo at the
text-change level. Since pane views should always represent their configuration state
as script properties and such properties should have a textual representation in
script editors, accidental context changes, such as closing a window, would also be
reversible.
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On the Structure of Questions and Answers

The elements of our scripting language and our UI-design language can positively
affect the conversation between programmer and environment. During program
comprehension tasks, programmers pose questions and seek answers about the
concepts behind and structure of software artifacts. Inadvertently and inevitably, the
languages and tools in use carry a certain vocabulary that shape cognitive processes
and hence this conversation. For example, experienced Smalltalk programmers
would look for implementors or senders of a symbol rather than definitions or references

of a function; they would search through string properties in the object graph and not
text snippets in the file system; it would be about messages for instance creation and
not class constructors. Yet, tool interfaces and applied languages can differ in their
(domain-specific) vocabulary, which forces programmers to rephrase their intents
and interpret observed effects. We argue that our Vivide environment can “bridge”
many such articulatory and semantic distances so that users get the impression of
a direct manipulation interface [75]. Such an impression fosters immersion and task
focus through short, direct feedback loops to explore complex problems.

We refer to a specific catalog of 44 questions [177], which influenced our works
due to its coherent overview of tool-supported program comprehension. There are
four categories of questions, which reflect the common divide-and-conquer strategy
for problem solving: (1) finding focus points, (2) expanding focus points, (3) under-
standing a subgraph, (4) questions over groups of subgraphs. The structure of each
question in those categories maps directly to mechanisms and actions available in a
self-supporting, object-oriented environment that provides our notion of a shared
object graph, scripts, and panes. Consequently, missing tool support can be detected
and specified in Vivide terms. Programmers can then either address the deficiency
directly or schedule a dedicated tool building activity. In particular, the structure of
questions maps as follows:

Finding focus points Programmers are looking for tangible, named things to
get started. The question structure includes “UI element”, “error message”, “be-
havior”, “exemplar”, “entity named”, or “unit”. Thus, a list of objects can directly
represent or scope/filter such focus points. In Squeak, the respective objects
could be morphs, strings, or classes. The meta-object protocol can provide examples
via #someInstance and harvest the object graph’s text-based representations via
#printString. That is, Squeak and Morphic provide the basic amenities themselves,
while Vivide can help with scripts that exploit the environment’s global state to
make it more accessible to the programmer. We also think of scripts that require
objects as “search terms”—presumably in the widest sense of the word.

Expanding focus points Programmers are looking for relationships between
things to continue exploration. The question structure includes “parts”, “part
of”, “siblings”, “when [...] method called”, or “arguments to this function”. We
argue that our scripting language has the primary purpose of traversing object
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relationships and hence expanding the programmer’s focus points. Given a list
of objects, the programmer can navigate through and choose from named scripts
as explained above. At this point, the programmer can also write new scripts
to accommodate the situation or follow a hunch. Note that we assume that the
environment already provides the requested “expansions” like means to trace
code execution or fetch external resources.

Understanding a subgraph Programmers are looking into cross-cutting con-
cerns, which involve multiple, mutually distant objects and hence entail navi-
gational overhead. The question structure includes “how [...] concern [...] imple-
mented”, “execution path”, or “data [...] look at runtime”. In Vivide, programmers
are in control of which artifacts are represented in which ways on screen. There
can be multiple views for the same artifact structure. Ad-hoc object connections
between panes can establish ad-hoc integration of otherwise self-contained tools.
Considering the trade-off between screen size and information depth, we think
that even bigger concerns can often be adequately represented side-by-side to
reduce cognitive load.

Questions over groups of subgraphs Programmers are looking beyond indi-
vidual concerns but address implementation strategies, development history, or
impact analysis. Question structure includes “behavior vary over [...] cases”, “UI
types [versus] model types”, or “direct impact of this change”. Since Squeak’s object
graph represents the environment’s state as-is, additional (reflective) information
has to be expressed as specific kinds of objects. Vivide can provide self-updating
scripts to inform programmers about change impact and task progress if any
appropriate, computationally accessible metrics exist.

In Vivide, programmers will continuously answer the following questions to
gather information:

1. What output (objects) transport supportive structure and concepts?
2. What scripts offer such objects accessible by exposing relevant relationships?
3. What input (objects) do these scripts need to populate views?

Programmers can answer these questions by getting familiar with tangible object
representations, comprehending script labels/code, and configuring pane/script
input buffers. Thus, Vivide terms can entail an increased awareness about artifacts,
which makes up the majority of information needs [91] in programming.

Programming is still a text-heavy activity as programmers have to, eventually, read
and write source code to fix bugs or add features. Thus, taking an object-oriented
perspective on a programming task can be challenging if many lines of source code
overshadow the environment’s primary transport medium. In Squeak/Smalltalk,
larger chunks of code are likely to spread across several methods, which frame
noticeable boundaries and thus artifacts. Within each method, however, there is
only text, which naturally makes programmers interpret and imagine. Consequently,
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(mental) references to actual objects fade, and programmers might start looking for
tools that answer arbitrary high-level questions. Such a turning point impairs our
data-driven perspective and thus Vivide mechanics. In Squeak, there is the notion
of bindings, which are objects associated with symbols in code. If code editing tools
can manage to always provide such bindings, then programmers can learn to treat
text as a merely flexible UI and each word/symbol as a handle for an actual object.
Then, text and text-heavy views can retain tangibility and object focus.

Synopsis In the Vivide environment, we have the tool-building mantra: objects first,
tools follow. The combination of Squeak’s objects and Vivide scripts/panes suggests
a data-driven working practice. On screen, programmers look at comprehensive
artifact structure, not decorated tool windows. Mistakes in use or configuration can
be narrowed down to selected panes whose views might become empty, but the
overall “tool” keeps running.

Vivide can positively affect the conversation between programmer and envi-
ronment because the typical structure of questions and answers corresponds to its
building blocks. Program comprehension puts a strong focus on artifacts and their
relationships, which supports programmers to directly derive actions from their
intents. (1) Which objects do I have? (2) Which objects do I want? (3) Which scripts
make that happen?

Summary

We proposed a block-based scripting language, which uses regular Smalltalk code
(i.e., block closures) to concisely express the semantics of object transformation and
property extraction. In each script, multiple such transform steps and extract steps
define multiple levels of a tree structure to frame significance in the environment’s
object graph. Scripts (and steps) have identifiers to express re-use. During lazy script
interpretation, the amount of objects exchanged between steps determine completion.
Finally, we proposed the use of tuples as anonymous data structures to reduce the
need for writing new classifications as regular object-oriented code but focus on
script authoring.

We proposed a new data-driven tool design strategy to form a more modular
presentation language for all tools in the environment. Putting an emphasis on single-

object tools, we declared the Rule of Distinctiveness, the Rule of Similarity, and the Rule
of Context to enable the construction of complex tools whose building blocks are
accessible and comprehensive during use. Any combination of tools that exchange
information form a composition context, which can represent new relationships and
tools of their own accord.

We proposed a new morph-based UI-design language to configure, combine, and
abstract all elements of a tool’s presentation language. We employed our scripting
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language to generate view models, and a generic morph called pane to support inter-
active re-design during use. A special view called pane view enables the arbitrary
composition of different layout strategies (or window managers) to further accom-
modate tasks or personal preferences. We added pane decorations (e.g. pane halo)
to provide access to all “meta” actions such as view resizing, tool integration, and
script access.

We proposed a new data-driven working practice so that programmers can directly
benefit from Vivide in program comprehension tasks. Choosing tools becomes
choosing objects, scripts, and views in a continuous feedback loop. Configuring tools
becomes changing simple expressions in scripts, modifying pane geometry, and
re-wiring panes via object connections. Building tools encompasses all of the above
and the design of object representations for new kinds of software artifacts or new
kinds of views. We think that program comprehension questions can be simplified
to (1) which objects provide relevant information, (2) which scripts provide such
objects, and (3) which objects are needed by such scripts to populate views.

[|]

In the next chapter, we elaborate on more details of our solution. The strategies
and languages we proposed in this chapter offer a range of possibilities and depth.
We will explain our current thoughts on that topic.
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Implementation Guidelines

The Vivide environment offers ideas that affect tool construction and program-
mer behavior in the scope of exploratory program comprehension. Yet, concrete
applications can go beyond “mere” graphical tools for programming. We think that
the languages (section 4.1, section 4.3) and strategies (section 4.2, section 4.4) we
proposed can serve as a baseline for many related ideas to improve the programming
experience.

In this chapter, we take the next step and elaborate on advanced concepts and
details we approached so far with Vivide. First, we expand our scripting language to
cover recursion, concurrency, model updates, and object grouping. Then, we apply
our data-driven strategy for tool building to design interactive script editors, which
includes convenient code folding and templates. After such tools for script authoring,
we expand our UI-design language to cover aspects of view documentation, complex
object connections, and advanced script design. Finally, we broaden our working

practice by explaining the support for interleaving tasks and (semi-)automated user
interaction.

5.1 Advanced Concepts in the Scripting Language

Like other programming languages, our scripting language leaves room for improve-
ment to accommodate best practices or patterns that are revealed during actual
use. Our goal is to keep the language simple but expressive enough to support
customizable exploration of, maybe changing and complex, artifact structure.

The Collection Protocol

A script step has code that captures the conversation of two buffer objects: input
and output. Both buffers are collections [32], which understand at least the following
messages to realize many semantics known from the functional programming
paradigm. We explain the intent of these messages in the context of software artifacts
and the task of program comprehension to better relate to our assumptions about
the programmer’s mindset:

#select: Pick all software artifacts that fulfill custom Boolean criteria, usually
shaped by task relevance.
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#reject: Discard all software artifacts that fulfill custom bBolean criteria, usually
shaped by task relevance.

#collect: Construct a list of software artifacts by associating to each old artifact a
new one, usually for navigating the information space.

#detect:ifNone: Find a single artifact that fulfills custom Boolean criteria in a list of
artifacts, and provide a default artifact for unmatched criteria.

#inject:into: Aggregate all software artifacts into a single new artifact, usually
constructed using math or text operations.

There are other messages in the collection protocol that support the programmer’s
explorative trial-and-error mode:

#sorted:Construct a list of software artifacts with a different order following custom
sorting criteria.

#reversed Construct a list of software artifacts that will have all elements in reverse
order.

#first: Construct a list of software artifacts with the first n elements of the old list.
#last: Construct a list of software artifacts with the last n elements of the old list.
#gather: Construct a list of software artifacts by associating to each old artifact a
a list of new ones, usually for navigating the information space. Not part of the
Smalltalk-80 implementation.

#flattened Construct a (flat) list of software artifacts from a (deeply) nested list.
Only present in Squeak 5.0 or above.

In general, transform steps require means to iterate over lists of artifacts and to add
artifacts into the output buffer:

#do: For each artifact in a list, evaluate some Smalltalk code.
#add: Put an artifact into the output buffer.
#addAll: Put a list of artifacts into the output buffer.

The bottom line is that there is some glue code that remains exposed to program-
mers. All messages that read from the input buffer and write to the output buffer
are considered glue. In complex or poorly formatted scripts, programmers may still
have difficulties to discover the domain rules. However, if script steps are small, we
think that tools can help expose such domain rules through visual cues.

Script Cycles and Recursive Models

Programmers can use script identifiers to describe recursive tree (or model) structures.
As described in section 4.1, model nodes will only have children if the transform
step(s) write objects into the output buffer. Thus, we can safely re-apply object
transformations to generate all levels of the model tree—until the step’s outputs dry
up. Programmers can represent such recursion as cycles, which are expressed as
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references to some preceding step via the script property #next. An example script
that describes the Morphic hierarchy can look like this:
script := {

[:in :out | in do: [:morph | out addAll: morph submorphs]]
-> { #id -> #submorphs .

#label -> 'Morph Hierarchy' }.
[:in :out | in do: [:morph |

out add: { #object -> morph. #name -> morph name }]]
-> { #isProperty -> true.

#next -> #submorphs }.
} asScript.

However, programmers cannot always know in advance whether transform steps
will dry up at all. It can be surprising that a certain path in the environment’s object
graph is cyclic and hence the resulting tree will have an infinite depth. We propose two

strategies to handle this situation: (1) lazy evaluation and (2) interactive suspension.
First if model nodes are generated on demand through user-view interaction, users will
have a chance to recognize endless repetition on their own via the tool’s presentation
language: they can see it. Second if programmers work in an interactive environment
such as Squeak, they will be able to interrupt code execution with a keyboard
shortcut, even when the user interface becomes unresponsive [192]. We think that
there are other strategies, such as external monitors [182] that become proactive. We
focus on an interactive setting where programmers can intervene if necessary.

Note that if a script reference is used to describe a recursive tree, it will be pointless

to add more steps after that reference. Such a cycle will only end if transform steps
dry out, and any step after that will have no input. If, however, references just aim
for reusing existing transformations or extractions to avoid code duplication, script
interpretation will continue as usual after the identifier was resolved and the script
interpreted. For example, scripts in the global organization can be good candidates
for such re-use.

Concurrent Script Interpretation

As the choice of buffer format influences the script code, our scripting language
can be applied in a way that supports background1 interpretation to some extent.
That is, our scripting language can remain flexible in terms of its interpretation
semantics. Buffers with thread-safe stream (or shared queue) semantics can improve
the programming experience without sacrificing much readability when querying
and mapping artifacts. For example, fetching artifacts from a distant database over a
network can take time and hence disturb the responsiveness of programming tools.
Script properties can configure script interpretation as a background activity:

1In Squeak, there is a single (foreground) process that handles user-interaction and drawing requests.
Most Smalltalk code runs in that process. There is often no need for process synchronization.
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script := {
[:in :out | [in atEnd] whileFalse: [in next in [:url |

out nextPut: ( WebClient httpGet: url "Takes time.") ]]

-> { #in -> ReadStream . "Preferably thread−safe."
#out -> WriteStream . "Preferably thread−safe."
#async -> true }.

} asScript.

With such streams, programmers must not apply the collection protocol [32] to read
and write input and output buffers. Instead, they have to use while-loops to fetch
one object after another off the stream. One might think of even endless loops for
potentially endless streams of objects. Having such concurrency involved, script
interpretation becomes more difficult to understand because there can be many
script interpreters (or script steps) in execution. Note that we will not further explore
background script interpretation in this work.

Object Change and Model Update

Objects can change, and models have to be updated. Any transform step might
produce different results when interpreted at different times on the same list of
objects. Also, extracted object properties that represent (virtually) immutable objects
such as strings and numbers can become obsolete soon after node creation. For
example, a morph’s position can change and so will its bounds, but any node based
on that morph will not be updated by default. Such node will still refer to a rectangle
object that represents the former bounds.

Scripts provide two means to manage changing objects: (1) block-based proper-
ties for node resilience and (2) object notifiers for node replacement. Block-based
properties allow for selected re-extraction of object properties with the help of block
closures. Object notifiers represent adapters [62, pp. 139–150] that integrate with
existing observer patterns [62, pp. 293–303] or similar event sources for selected

re-construction of model nodes, that is, levels in the tree. While block properties will
only be effective if the client continuously asks for node properties, object notifiers
provide more convenience through automation yet entail script re-interpretation.

The following example uses a block-based property for extracting a morph’s color:
script := {

[:in :out | in do: [:morph |
out add: { #object -> morph. #color -> [morph color] }]]

-> { #isProperty -> true }.
} asScript.

Note that morph will be retained in the object property #color. If clients ask for
that property, the node will transparently evaluate the block closure and reveal the
current color object. If the property is a block itself, there must be a second block
wrapped around.
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For the script that describes the graphical hierarchy, we can use an object notifier,
which is defined as a script property, that triggers every second to re-construct the
tree:
script := {

[:in :out | in do: [:morph | out addAll: morph submorphs]]
-> { #notifier -> [ViTimedNotifier every: 1000] "milliseconds" }.

} asScript.

Note that script properties do also support block closures. Programmers can config-
ure notifier objects with regular object-oriented code and retain global objects such as
classes. Conceptually, object notifiers should have access to the objects they observe.
During script interpretation, notifiers can be created and configured accordingly.
For example, Squeak provides a global “system-change notifier”, which triggers,
among others, on classes changes, but observers have to filter because subscription
is generic. Since notifiers are associated with steps, each level in the model tree can
have a different kind of notification.

[|]

Besides reading, extract steps can hold the rules to modify objects (or artifacts).
We designed the scripting language primarily for program comprehension tasks.
Artifact modification can be seen as a part of comprehension; bug fixing or feature
adding are typically mixed with ongoing exploration. Programmers can express
such rules for tools directly in the extract step:
script := {

[:in :out | in do: [:morph | out add:
{ #object -> morph.

#color -> morph color
<- [:newColor | morph color: newColor] }]]

-> { #isProperty -> true }.
} asScript.

In this example, the programmer anticipates the possibility of modifying a morph’s
color via clients. Views that try to write into the particular model node will execute

this rule, which is stored as another block closure:
"Script code (written by tool builder)"
[:newColor | morph color: newColor].
"View code (written or derived by view designer)"
node at: #color put: Color yellow.
"Effective code (derived by VIVIDE)"
morph color: Color yellow.

When objects are changed this way, the extracted property in the node will update,
too. Again, programmers can focus on their domain-specific artifacts and express
reasonable rules to look at or modify artifact structure concisely at the same place.
In this work, we will only briefly discuss artifact modification.
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Tuples for Object Groups

Tuples can be used to form groups, which combine objects in terms of key objects as a
group’s representative:
group := #(1 ((1 a) (1 b) (1 c))).
group first = 1. "head or key object"
group second = #((1 a) (1 b) (1 c)). "tail"

Due to the broad definition of tuples being object arrays, groups are tuples in the form
of pairs of key object (or head) and grouped tuples (or tail). Note that key objects
are usually handled by value (or state) and not object identity because programmers
work with artifact structure. So in scripts, such keys are compared via #= not #==.

The following example illustrates the tuple format that is required for grouping:
groups := #( (1 a) (1 b) (1 c) (2 a) (2 b) (2 c) ) groupByFirst.
groups = #( (1 ((1 a) (1 b) (1 c))) (2 ((2 a) (2 b) (2 c))) ). "true"

Here, a collection of pairs forms two groups because the first object in each pair
takes only two different values: 1 or 2. If all source tuples have the same size, any
index in the tuple could be used to pick the key objects: #groupBy: n.

In the following, we show how groups can help extract object properties that
define levels in the tree model. For example, morphs could be grouped by color like
this:
script := {

"Level 1 − Group morphs by color."
[:in :out | in do: [:morph | out add: { morph color . morph} ].

[:in :out | out addAll: in groupByFirst ].
[:in :out | in do: [:group | [:color :tuples | out add: {

#object -> color . #name -> color name. #objects -> group }
] valueWithArguments: group ]] -> { #isProperty -> true }.

"Level 2 − Discard group/color object, extract morph name."
[:in :out | in do: [:group |

[:color :tps | out addAll: tps] valueWithArguments: group ]].
[:in :out | in do: [:tuple |

[:color :morph | out add: morph] valueWithArguments: tuple ]].
[:in :out | in do: [:morph |

out add: { #object -> morph. #name -> morph name }]]
-> { #isProperty -> true }.

} asScript.

In Level 2, the programmer has access to the group’s key object color. We think that
it helps simplify the semantics of script interpretation to not discard the key object
automatically. However, the overhead for such simple grouping indicates, again,
potential tool support such as by hiding repetitive syntax. We suppose that many
scripts will not require programmers to be in full control of the input and output
buffers all the time. Recalling our motivational example with Unix’ pipes-and-filters
from section 3.3, the same script can, if supported by tools, look like this:
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script := {
"Level 1"
[:morph | { morph color. morph } asTuples ].
[:tuples | tuples groupByFirst ].
[:color :tuples | { #name -> color name }].
"Level 2"
[:color :tuples | tuples].
[:color :morph | morph].
[:morph | { #name -> morph name } ].

} asScript.

In this simplified script format, programmers can still read domain-specific vocab-
ulary to understand object transformation and property extraction. Of course, this
cannot be plain text but an interactive view on objects that transport structure of the
script artifacts. While we designed a scripting language to improve accessibility and
maintainability of the object graph in object-oriented systems, the artifacts of that
language are integrated in the same environment. Depending on the tool building
intentions, our scripting language remains flexible and can take many forms if
supported through script-edit tools.

Synopsis Our use of Squeak’s collection protocol for scripts reduces glue code while
exposing domain-specific transformation rules in a functional-programming style.
That is, there is still generic glue left to read and write. — Model trees can be recursive

and of infinitive depth if script references form cycles. Therefore, model nodes are
constructed lazily level by level. Either programmers or view designers have to be
careful to detect such infinity to avoid an unresponsive environment. — We think that
the same scripting language could be extended to support background interpretation

of scripts. Script properties are sufficient to configure synchronized buffers and
additional hints for the script interpreter. — Model nodes can be invalidated with
the help of object notifiers, which are stored as script properties. Using blocks, object
properties can also hold the rules to read and write artifact structure. These rules are
triggered through views after the (lazy) node construction. — Finally, programmers
can extend tuples to form groups, which are also tuples, to align sets of objects (or
object properties) with levels in the model tree. This would otherwise require the
addition of custom classifications.

5.2 The Strategy for Tool Design by Example

In this section, we will employ our new strategy to design script editors, which can
hide repetitive code sections, offer template-based code generation, and manage
script properties. We then apply those single-object tools for scripts in a composition

context to form a configurable script-editing experience that integrates run-time
information for debugging with short feedback loops.
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Figure 5.1: Our implementation of a single-object tool that represents a single script step.
Related objects (left) include subsequent steps, versions, and script properties. Object
selection within the view is text-based if the code editor has bindings for its symbols
(middle: “morph”). The available actions with side-effects (right) resemble the ones
expected from any text-based code editor.

The Script Editor

We decided to represent each step in a script as a separate object. That is, there is no
extra object that encompasses all steps, which might wrongly be inferred from our
use of object arrays for convenient script creation in section 4.1. To recap, each step
knows its next step if any, the first step in each script is the script object, and hence
each step can form a script (object) on its own. We propose a design for a single-object
tool in figure 5.1, which applies our practices from figure 4.5. In that script editor,
programmers can read and change script code as they would in a normal code editor.
The code even looks like regular Smalltalk: an association between an in-out block
and a list filled with script properties.

We follow the Rule of Distinctiveness, but we mostly ignore the Rule of Similarity by
anticipating tool composition. First, script code looks different than class definitions
or method sources because of the beginning “[:” and the overall shape “[] -> {}”.
Second, we applied our practices for coherence and integration by (1) separating
related objects in a menu and (2) providing object selection for bound symbols in
the code. We think that valuable relationships include subsequent script steps, code
versions, and examples for script properties. We think that symbol bindings have to
be established from a tool composition context, which we explain in the next section.
Regarding the Rule of Similarity, we think that such text-based editors should not
handle more than one object. The presentation of multiple steps in a single editor
would be possible via code concatenation but inappropriate because it would impair
each step’s tangibility. Considering the idea of shared concepts, script properties
should be used to show and modify a custom label, icon, summary, color, or origin.
We think that the text form is sufficient for all kinds of properties in this view. Note
that there can be other tools in the environment that show script steps, including
their properties, differently.

The script editor offers two additional features to support code reading and code
writing: (1) block-based code folding and (2) template-based code generation. These
features exemplify the flexibility that single-object tools can provide while remaining
data-driven and tangible.
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Figure 5.2: Our script editor resembles a source code editor with support for single script
steps. Programmers can fold code at block boundaries to stay focused. The top shows a
folded example with a compact overview of hidden information. The bottom shows all
details as regular Smalltalk code.

Block-based Code Folding

Script editors improve code readability via block-based code folding. Due to the generic
structure of in-out blocks, there are some (repetitive) elements that are likely to
obfuscate the actual rule about object transformation or property extraction. For
example, programmers do always have to #add: objects into the output buffer, and
they do usually #collect: objects from the input buffer. Thus, we allow programmers
to hide (or fold) sections before and after blocks to focus on what is inside the
respective block.

Compared to code folding in sophisticated text editors, we do not sum up nest-
ed/inner elements but outer ones. As depicted in figure 5.2, programmers can “dive
into” the block where the text cursor is currently located. When folded, there are
adornments at the top border of the editor to show script properties, variable bind-
ings, and messages. Without having to unfold, such adornments help programmers
separate blocks for sorting from filtering, for example.

Additionally, we combine interactive, typically keyboard-driven, folding with a
useful default folding state. For arbitrary Smalltalk code, it is difficult to automatically
detect the best starting point. However, we explored a convenient heuristic to always
fold to the left-most, inner-most block in the syntax tree. Since Smalltalk also employs
blocks for conditions and loops, the editor should unfold automatically in those
cases. Note that we anticipated such tool support for the design of our scripting
language.
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Script Wizard: Creation Templates

We add a template mechanism, which we call script wizard, to reduce the overhead
for writing new scripts. That is, the wizard complements block-based code folding,
which is used after creation and during onward modification. Script templates append
and prepend generic boilerplate code (or glue) like this:
"Code to prepend automatically:"
[:in :out | ( [:all | all collect:

"Code to write manually:"
[:morph | morph submorphs]

"Code to append automatically:"
] value: in) do: [:result | out addAll: result asList]].

Again, we rely on simple heuristics. It is sufficient to look for short patterns in the
syntax tree. Regarding our tool building context, to edit scripts means to change
some tool’s view in the environment. Hence, programmers can quickly detect false-
positives and then debug. We use the following information from nodes in the syntax
tree to form patterns:

• Names of message sends
• Number of arguments in blocks
• Names of arguments in blocks
• Statements that form associations

For associations, we are only interested in literal receivers such as “#label ->
'Morphic Hierarchy'” because those match the syntax of object/script properties.

We introduce a new message to Object to conveniently wrap single objects into
arrays and leave collections as-is: #asList. Having this, we can reduce the number of
different templates. Programmers should be supported to manually migrate from
one template to another without too much effort. Hence, templates should look
similar if possible.

[|]

In the following, we will describe the patterns in natural language and show
the corresponding template as Smalltalk code. In each template, the gray box
exemplifies the pattern as code, too. That box will be replaced with the programmer’s
code snippet if the respective pattern matches. We begin with the general patterns:

• If programmers describe a statement that forms a block associated with a literal
array, integrate that array as script properties with any existing properties:
[:in :out | ... ] -> { ... #label -> ’Foo’ ... }
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• If nothing else matches, assume that programmers want to perform a one-to-one
or one-to-many mapping. The basic idea for tool-supported script authoring is
that programmers should never have to write the #collect: call to the input buffer.
Programmers can discard objects by mapping to nil because #asList will produce
an empty array:
[:in :out | (

[:all | all collect: [:each | ... ] ]
value: in) do: [:result | out addAll: result asList]]

Programmers can choose to ignore the input, or they can choose to ignore the
wizard. Hence, there are extra patterns:

• If programmers write a block with two arguments named :in and :out, assume
that this code represents the entire script specification:
[:in :out | ... ]

• If programmers write a block with no arguments, which implies the use of literals
or globals, ignore the input buffer and assume that either a single object or a list
of objects is returned by that block:
[:in :out | out addAll: [ ... ] value asList]

In our scripting language, we employ the Smalltalk’s collection protocol to a great
extent. Consequently, there are collection patterns that consider the work with
collections and thus accessing the entire input buffer:

• If programmers use the messages #select:, #reject:, or #inject:into: in their code,
assume access to the entire input buffer, not single objects. Note that #inject:into:
does not have to construct a collection due to #asList:
[:in :out | out addAll: ( [:all | ... ] value: in) asList]

• If programmers use other parts of the collection protocol for a many-to-many
mappings, the same template will apply. We think of the messages #sorted:,
#reversed, #first:, #last:, #gather:, and #flattened. This list should be extensible.

• If programmers look for a single object in the input buffer via #detect:ifNone:, the
same template will apply due to #asList.

• While tuple construction via #asTuples does not need attention, the concept of
grouping requires access to the entire input buffer, too. Hence, if programmers
use the message #groupByFirst, the same template will apply.
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Besides transform steps, programmers will describe extraction steps to enrich
model nodes with supportive information and to express different levels in the tree.
There are extraction patterns to cover that:

• If programmers describe one or more associations with literal receivers in a block,
assume that an extract step with the required script property #isProperty should
be constructed:
[:in :out | out addAll: ([:all | all collect: [:each | (

[:object | { #text -> object asString } ]
value: each), { #object -> each }]] value: in)]

-> { #isProperty -> true }

• If programmers do also control the object transformation here, avoid the duplica-
tion of #object:
[:in :out | out addAll: ([:all | all collect: [:each | (

[:object | { #object -> object } ]
value: each)]] value: in)]

-> { #isProperty -> true }

While one-argument blocks indicate regular object transformation or property
extraction, blocks with more than one argument imply tuple usage. Except for fully
qualified in-out blocks, there are tuple patterns to match:

• If programmers write a block with more than one argument, assume tuples to be
unpacked and then mapped one-to-one or one-to-many. If programmers want to
access the entire input buffer, such as for sorting, they have to handle their tuple
format manually. Tuple unpacking also applies to tuples that form groups:
[:in :out | (

[:all | all collect: [:tuple |
[:a :b :c | ... ] valueWithArguments: tuple]]
value: in) do: [:result | out addAll: result asList]]

• If programmers describe associations with literal receivers and use more than
one block argument, assume tuples to be unpacked and object properties to be
extracted. Use the first object in each tuple as priority object to support grouping:
[:in :out | out addAll: ([:all | all collect: [:tuple | (

[:a :b :c | { #text -> b. #color -> c } ]
valueWithArguments: tuple),

{ #object -> tuple first. #objects -> tuple }]] value: in)]
-> { #isProperty -> true }

• If programmers do also control the (priority) object transformation here, avoid
the duplication of #object:
[:in :out | out addAll: ([:all | all collect: [:tuple | (

[:a :b :c | { #object -> a. #text -> b. #color -> c } ]
valueWithArguments: tuple),

{ #objects -> tuple }]] value: in)]
-> { #isProperty -> true }
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Exploratory programming is an important theme in this work, which includes
exploratory tool building. Especially for collection patterns, the re-use of templates
indicates a trade-off between exploration and planning. The use of #asList is not
inevitable, yet it helps. We think that programmers can easily migrate manually
between the templates for general patterns, extra patterns, and collection patterns
if their requirements change. However, we expect additional effort when migrating
from templates for extraction patterns and tuple patterns because these patterns
involve more code re-writing. If possible, programmers should then consider a full
re-write from scratch using the script wizard again.

Script Editor(s) in Composition

The environment should provide composition tools that focus on context management
largely independent from particular domains or tasks—like a modular and re-
usable variant of (global) window managers [127, 74]. We designed such a generic
composition tool for script editing as depicted in figure 5.3. While users control the
objects in the composition, the container (tool) is a generic mediator [62, pp. 273–282]
that provides access to all context objects for all tools in the context without exposing
the tools’ interfaces. Again, the tool builders are encouraged to think in terms of
objects not tools. Since script editors are basically code editors, we are in favor of a
vertically tiled layout strategy with support for scrolling to overcome limited screen
space. We argue that such a layout is beneficial for list or text widgets which often
become space-efficient at a wide ratio. For example, typical Smalltalk methods show
more characters per line than lines.2 Composed vertically, programmers can see more
code at a glance than they would with a horizontal strategy. For the same reason,
programmers can read the source code of scripts with many steps efficiently.

The actual “script editor” is a composition tool that is filled with single-object
tools for the script steps and exemplary input objects. As described above, tool
builders should design compositions of tools that support programmers, too, not
just single-object tools. Instead of our script editor being able to handle multiple
steps by itself, we designed such a composition to modify scripts.

Each script editor in the composition makes use of context objects to (1) bypass
the fact that steps only know their next step and (2) to provide a short feedback loop
with run-time information when editing code.

First, the editor’s complete access to the entire script structure is used to add,
remove, and re-order steps. If a tool in the composition asks for the addition of an
object, the composition tool will open a new tool. If a tool in the composition asks for
the removal of an object, the composition tool will close the respective tool. Note that
this affects only the tool level and not the artifacts (or objects) that are represented.
Programmers can drag-and-drop tools in the composition to change the order of

2In Squeak 5.1, methods with 10 lines or less have 23 characters per line on average. These are 79.6
percent of all methods. See appendix A.3 for details.
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Figure 5.3: Our script editors make use of composition context implicitly. Such context
usually consists of the script’s steps and other objects that serve as input for (partial) script
evaluation and debugging. A vertical, scrollable layout reduces interaction overhead and
reveals the step order. Users can change the context by adding input objects or re-ordering
steps.

steps. For example, they can swap sorting and filtering to improve performance. As
shown in figure 5.3, the vertical alignment suggests an order that is not only visible
to the tool user but also to the tool builder and hence the tool itself.

Second, the composition context can include non-script objects, which are used
to evaluate scripts to provide run-time information that should help programmers
write or understand script code. To recap, scripts support the description of tree
models to be used as view models or for non-visual, data-processing tasks. Hence,
the model nodes are the unit of debugging in a setting where graphical views do
not help. Partial script evaluation becomes directly accessible because the user can
choose a certain editor and ask for the results of the respective step. This is a typical
code comprehension task, where programmers fetch and examine artifacts and
maybe retain them to understand effects.

In addition to any explicit evaluation, script editors use context to evaluate implic-
itly to (1) suggest names for the script wizard expecting a general pattern, (2) bind
symbols in script code for object selections as depicted in figure 5.1, and (3) analyze
code dynamically to warn about long-running scripts or infinite cycles. Recall that
if programmers omit to alternate transform steps and extract steps in cycles but
transform only, interpretation will not stop. Frequent use of script references may
produce such infinite cycles by accident. Additional tool support can help recover
from such accidents.
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Synopsis We apply our tool design strategy through a script editor that looks like a
regular code editor but supports reading and writing via block-based code folding
and template-based code generation. Multiple such editors in composition represent
the tool support for tool builders. Each editor makes use of its composition context
to (1) bypass its own structural limitations and (2) integrate user-collected artifacts
for debugging purposes.

5.3 Advanced Concepts in the UI-design Language

The interplay of scripting language and UI-design language leaves room for experi-
mentation. In this section, we provide more details on how to use object properties
and script properties to configure views in general and pane views in particular. We
then explain advanced techniques for object connections and pane decorations.

Scripts Applied: Document and Store Properties

Compatible views should agree on common properties so that tool builders can try
out different views while writing scripts. On the one hand, our scripting language
helps evolve model structure from list-shaped over table-shaped up to tree-shaped.
In figure 5.4, there is an example of how three different views can treat the same3

view model:

• The text view ignores all but the first #text property in a node.
• The table view ignores all but the first level in the tree model.
• The tree view can also display tooltips.

On the other hand, there is our Rule of Similarity from section 4.2, which proposes the
use of shared concepts to simplify tool building. We argue that object properties and
script properties can reflect those concepts. Many views exhibit obvious similarities
such as text labels and picture labels, which should be integrated by using common
keys such as #text and #icon. This re-use supports script and view evolution. If tool
builders figure out a way to represent an object as a #color but the current view does
not (yet) support it, there is no need to discard the idea, but it should be preserved
in script code. For example, current tree maps might need a #weight to calculate the
filling area, but future tool building efforts could agree on a general #number property
to represent domain artifacts. Then, other views could show useful information with
the same script (or view model).

Besides the vocabulary of domain artifacts, tool builders have to learn about the
concepts view providers expect. Object properties and script properties play an
important role for configuring the mapping language and also forming the overall

3See appendix B.2 for script details.
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Figure 5.4: The same script can show different effects when applied to different kinds of
views. Tool builders can use simpler views in the beginning and more complex ones as
the script evolves or the task demands. From left to right: text view, table view, tree-map
view.

presentation language of the tool. We think that this can entail an additional kind
of documentation, which the designers of views should prepare. For example, the
model-view framework in Qt formulates an extensive list of display roles its own views
support.4 Due to the dynamic nature of Squeak and Smalltalk, such an awareness is
more important because the use of reserved keys can trigger debuggers deep in the
Vivide framework’s control flow:

• At the time of writing, reserved script properties are #view, #id, #next, #notifier,
#in, #out, and #async.

• At the time of writing, reserved object properties are #object and #objects.

While tools such as the aforementioned script editor can help prevent such mistakes,
the Squeak environment provides many different, flexible, often unprotected ways
to change script objects. Nevertheless, the application of our block-based scripting
language and our morph-based design language reflects a fair trade-off between
flexibility and attentiveness. It complies with the programming habits practiced in
interactive, self-supporting environments such as Self [207], Squeak/Smalltalk [192],
and Lively Kernel [78].

Views should store configuration state in script properties. Since panes give views
access to script objects, views can configure themselves independent from the view
model (or the domain objects). We think of color schemes, table headings, or layout
properties. In this regard, it makes sense to distinguish two sub-roles in the tool
building context:

• View creators, which declare supported (or required) object and script properties.
• Script authors, which define (and use) object and script properties.

A modular tool design should consider interactive views that manage custom state
in addition to the model’s objects and extracted object properties. In Squeak, in-
teractivity origins from morphs that react to user input. Consequently, each view
morph provides custom controls and event handlers. While the view model should

4Qt cross-platform software development kit, Model/View programming: http://doc.qt.io/qt-5/
model-view-programming.html, accessed 2018-09-19

144

http://doc.qt.io/qt-5/model-view-programming.html
http://doc.qt.io/qt-5/model-view-programming.html


5.3 Advanced Concepts in the UI-design Language

always be the main source of information, additional configuration state is likely to
be persisted across view instantiations. We see several options for view creators:

1. Read from and write into a dedicated database such as Squeak’s Preferences and
custom class variables.

2. Only write into such dedicated database but let script authors handle the read via
script properties.

3. Use script properties to manage configuration state that is independent from
domain objects.

We encourage programmers, especially view creators, to refrain from using global
state, that is, dedicated databases that do not consider (local) tool context. Following
the third option, view creators should make use of script properties because scripts
represent such context without further ado. We suppose that conflicting views—
the ones that interfere with each other’s configuration keys—could be isolated
with an additional configuration namespace. The database that would manage such
namespaces, however, should consider tool context, too, to not become another
global data structure.

Scripts Applied: Properties for Pane Views

A pane view’s model should be a list that reflects the script input. The underlying
scripts should not filter or otherwise transform the available objects:
[:in :out | out addAll: in] -> { #view -> PaneView }.

The reason is simple: side effects through user interaction. Interactive views typically
support the addition of elements via drag-and-drop gestures. Those views have to
communicate such change to their owner-panes so that the next model and view
update will not discard information. Note that a pane can discard its view at any
time as the tool builder tries out different scripts and views. It would be surprising
if an accidental view swap would change the set of software artifacts. Consequently,
only scripts/models that allow views to infer the set of input objects can enable such
kind of updates. While filters are okay because they would just get “materialized”
after an update, elaborate object transformations can impede “input inference” and
thus discard information.

The following script produces such a list model for some morphs by discriminating
their visibility so that different scripts can be applied through the pane view’s panes:
[:in :out | in do: [:morph | out add: {

#object -> morph.
#text -> morph name.
#script -> (morph visible

ifTrue: [#'dfca5b31']
ifFalse: [#'4a66468d']) }]].

-> { "... script properties ..." }.
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Here, the property #script discriminates the particular script (or tool or view) to
show for an #object depending on its visibility.

Actually, pane views work with lists of lists of objects, and appropriate scripts have
to account for that circumstance. Every pane accepts a list of objects as input, and
pane views manage multiple such panes. Thus, a list of panes requires lists of lists of
objects to be configured. First, scripts should expect each object in the input buffer
to be a list of objects—like lists of tuples. Second, each model node should store a
list of objects, not single ones, in #object. We can apply our #asList conversion from
before to create robust scripts for pane views like this:
[:in :out | in do: [:oneOrManyMorphs | out add: {

#object -> oneOrManyMorphs asList . "Special for pane views."
#text -> oneOrManyMorphs printString. "Short compromise."
#script -> (( oneOrManyMorphs asList allSatisfy: [:m | m visible] )

ifTrue: [#'dfca5b31']
ifFalse: [#'4a66468d']) }]].

-> { "... script properties ..." }.

Such scripts produce view models that might look confusing when applied to
regular views. As explained before, the script editor’s wizard will employ templates
that flatten lists of lists of objects when performing one-to-many transformations
such as “morph submorphs”. Regular views are likely to not unpack such lists and
treat those as objects of their own, which is valid in the object-oriented environment
but not necessarily useful. A list of lists might also be falsely recognized as tuples
if the inner lists do all have the same size. Consequently, the tool builder has to
deliberately decide for pane views over regular views during script authoring.

Pane views manage configuration hints via script properties. Tool builders can add
object-specific hints manually via object properties. If, however, a pane view finds
a configuration hint twice, then it will use the one from the script properties. Note
that views have to store modifications that were triggered through user interaction
such as a new background color. We think that it is not feasible for views to re-
write a script’s transformation (or extraction) code so that it keeps its semantics. As
suggested before, all views should employ a script’s inherent task context via script
properties. Both tool builders and widget/view providers should avoid using global

configuration state. We propose the following format:
[:in :out | "... object properties ..." ] -> {

#isProperty -> true.
"Define or override each pane's rectangle/geometry."
#bounds -> #( (1 0 0 50 100) (2 50 0 50 100) ).
"Distribute (ordered) model objects among panes with a 'use mode'."
#input -> #( (1 input) (1 selection) (2 input) (3 input) ).
"Define object selection as tuples by order and 'provision mode'."
#output -> #( (2 selection) (3 selection) ).
"Define or override each pane's script."
#scripts -> #( (2 #'9ecff5f0') (3 #'e7e3b840') ).
"Define connections among panes with 'provision mode' and 'use mode'."
#connections -> #( (1 selection 2 input)(2 selection 3 input) )}.
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Given such an example of configuration hints, we propose the following implemen-

tation semantics for pane views:

1. Respect the order of the input objects.— We specify object connections via #input
to distribute incoming objects to panes. We also enumerate panes (1,2,3,...) as
temporary identifiers to associate connections, scripts, and bounds.

2. Avoid hints that are complex Smalltalk objects.— We use only literals for numbers,
symbols, strings, and arrays to encode state such as for geometry and object
connections. We want to support text-based script authoring as explained in
section 4.2. Complex objects would have hardly legible text representations.

3. Remain flexible in terms of object count and object kind.— We think that missing
input objects should result in ignoring the remaining specs. If there are too much
input objects, the pane view should use default values to create and fill panes.
We assume robustness during script evaluation and object selection propagation.
That is, if views cannot find the objects they should select according to their pane,
then they should just ignore the request.

More on Object Connections

Recall that every object connection as two modes that specify the kind of objects to
exchange: provision mode (for output) and use mode (for input).

A pane will override a connection’s use mode if a pane’s objects are changed for
other reasons. Most notably, regular user interaction through views can change the
object selection, which would discard all incoming connections that try to set the
current object selection. In general, any object can send a message to a pane (object)
to update its configuration. Programmers can use Squeak’s Object Inspector to try
different domain objects or scripts. In Squeak/Smalltalk, such direct inspection and
manipulation of objects via custom code snippets is considered common practice.
As an effect, the pane’s respective incoming connections will be discarded. Note that
any re-established connection will, again, override the override.

Object connections can create circular dependencies among panes. Given our pre-
vious thoughts on consistent tool updates, such cycles will render user interfaces
unresponsive if not detected. For example, a Fahrenheit-Celsius converter would
indefinitely exchange numbers, maybe fluctuating because of rounding issues. For
another example, a list-based browser for a hierarchical structure would directly “go
down” to the leaf if the first item would be on auto-select and the object selection
used as input for itself. In general, scripts can hide elaborate transformations. Thus,
a comparison via object identity is not sufficient, although same objects implicate
similar view models for the same script in our program comprehension setting. (We
ignore side effects here.) Instead, we detect update cycles by identifying a start pane

to create an update identifier, which we pass between updating panes. Then, panes
can refuse to update twice based on that identifier. Starting panes are either the ones
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whose current views just handled user interaction or the ones whose current script
just triggered a model update via interactive script authoring or script notifiers.

Object connections are ordered. Thus, following our Rule of Distinctiveness, pro-
grammers can distinguish focus objects and context objects by order. In a common
setting, the object selection of one pane serves as input for another pane like in
figure 4.8. When using multiple panes in combination, the use of context implies
the use of multiple incoming connections to fill the input buffer. Since there will be
tuples created from multiple sources, we suggest treating the first object in a tuple as
focus object and the rest as context:
connectionOne objects = #(1 2). "true"
connectionTwo objects = #(a b c). "true"
input := ( connectionOne objects, connectionTwo objects ) asTuples.
input = #( (1 a) (1 b) (1 c) (2 a) (2 b) (2 c) ). "true"

Here, numbers represent focus objects, and letters represent context objects. In
practice, method objects can be enriched with run-time objects to describe elaborate
transformations or extractions in a script to enrich views on source code.

Object connections can be the means to integrate Vivide to other GUI frameworks.
That is, objects other than panes could make use of it. Systems such as Squeak/Small-
talk are dynamically typed, which means that any object can chose to respond in a
meaningful way when spoken to in a certain protocol. In a way, we objectify certain
Smalltalk accessors, which are called “getters” and “setters” in other environments,
for the purpose of tool building. If tool builders want to inject objects from outside
into an “ecosystem of panes”, they could employ object connections. If they want
to extract objects to put to a different use in the surrounding environment, they
could employ object connections, too. We think that our UI-design language can be
integrated in other design languages. In terms of Morphic, any morph can host a set
of panes to interact with each other.

Pane Decoration: Menus for Relations and Actions

We apply pane decorations to further modularize the tool’s presentation language
as proposed in figure 4.5. That is, the presentation should make a clear distinction
between focus object(s), related objects, and the available actions so that users can reliably
separate exploration from manipulation. Recall that we already handle focus objects
in terms of pane input and view model. To realize a UI for related objects and actions,
we propose to

1. support an arbitrary amount of pane decorations and
2. use panes and scripts to configure pane decorations.

Actually, we only need two more decorations to describe the left menu for objects (or
relations) and the right menu for actions. Yet, the tool builder might want to model
more interactions at this data-driven level. Pane-decoration panes should receive
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both the input and view of the to-be-decorated pane to extract appropriate labels
and callbacks, which is expected from pop-up menus. A script for action menus as
in figure 5.1 can look like this:
[:in :out | in do: [:tuple | [:view :objects | out add: {

#object -> objects. "Merge multiple focus objects."
#text -> ('Save changes for ', objects printString).
#selected -> [[ view save ]]. "Trigger side effect." }

] value: tuple first value: tuple second ]
] -> {

#isProperty -> true.
#view -> ListView. "Menus are like lists."
#color -> Color gray. "Common menu color." }.

Like for pane views, such an approach works best if the input objects basically
represent the focus objects. If, for example, focus objects would be wrapped in other
(input) objects, the code for unwrapping these would have to be duplicated in pane
script and pane-decoration pane script. We think that the choice of pane decoration
should be manifested in the script properties of the to-be-decorated pane’s script:
[:in :out | "... transform and extract ..."]

-> { #view -> TextView.
#decoration -> #('2b2ca6c7' 'dabed281') "Script identifiers."}

The script identifier look-up is the same as for all referenced scripts in pane views
or via #next, which we described before. Hints about pane geometry should be stored
in the pane-decoration pane script such as whether the menu is on the left or on
the right. Consequently, panes do not only have to invoke script interpretation to
generate view models. They also have to scan script properties for decoration hints
to further configure themselves by adding other panes besides the central view.

Given all these use cases, we propose to treat pane decorations as the extension

point in our (Morph-based) UI-design language:

ui � panes + views + connections + decorations

If tool builders want to modify script management or object exchange, decorations
can represent those variations in both state and behavior. With state variation, we
mean the addition of visual adornments as decoration to change pane state. With
behavioral variation, we mean that decorations can also intercept the events that
trigger consistent tool update and hence influence the pane’s behavior. We already
experimented with the following additions:

• Animate data flow to support debugging of object connections.
• Switch scripts dynamically based on the kind of input objects.
• Log recently used scripts to manifest local variations in presentation.
• Refine object exchange to ignore empty sources during tuple creation.
• Create a default script automatically for empty organizations.

We argue that such combination of interactive graphics and behavioral variations
shortens the feedback loop for tool building. One alternative would be to think in
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terms of different kinds of panes instead of added decorations. Yet, we will not elaborate
any further in this regard. We focus on tool builders that use a pane’s halo to access
and modify pane compositions, scripts, and object connections.

Synopsis Our UI-design language describes tools as compositions of communicating
panes. Primarily, tool builders use scripts to configure such panes (and their views)
through object properties and script properties. Complementarily, tool builders use
object connections and pane decorations to control panes interactively.

A view’s supported object and script properties should be documented so that
script authors can learn what view designers anticipated. We think that views should
agree on common properties such as #text or #icon to support view switching. Overall,
views should treat scripts (and script properties) as task context to persist generic
configuration state.

Object connections define object exchange across panes and thus scripts. They
are ordered and can thus be used to distinguish focus objects from context objects,
which benefits tangibility of information. The framework will handle cycles to keep
the system responsive.

Pane decorations add more configuration layers to single panes. So, decorations
can change a pane’s state such as the current script and additional menus. They can
also influence a pane’s behavior such as its reaction on object arrival.

5.4 Advanced Thoughts on the Working Practice

This section expands our data-driven working practice, which Vivide introduces
with its new mechanics. First, we explain the possible dimensions of re-using scripts

as a tool user or tool builder. Then, we describe ways to handle interleaving tasks and
task switching, which includes focus recovery and the explication of thoughts on
screen. Finally, we address a common deficiency that arises with repetitive activities

in direct manipulation interfaces by applying existing user-monitoring strategies in
a data-driven perspective.

Re-use: From Ad-hoc Prototypes to Accustomed Assistance

A script’s transform and extract steps support fine-granular decomposition, which
promotes re-use. However, script properties will compromise such re-use if program-
mers trigger task-specific modifications unintentionally during regular work. For
example, pane views that offer a flexible desktop layout have to persist the position of
all windows at any time to support re-evaluation of the outer script. We assume that
programmers can easily copy scripts in exploratory tool-using or tool-building tasks.
Yet, we also embrace re-use so that ideas that arise in allegedly unique scenarios
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have a chance to evolve into common tools that serve the entire project domain or
even generic programming practice.

First, we will elaborate on script re-use for tools with prescribed presentation
languages such as Squeak’s browser, inspector, and debugger—which focuses on the
source code for transformation and extraction. Then, we will elaborate on script re-
use for tools with flexible presentation languages such as messy desktops and growing
tapes—which focuses on script properties managed by (pane) views. Overall, the
question of “Copy or re-use?” can be answered as follows:

Transform & Extract Script Properties

One Script Copy if sent messages Copy if view changes
(for a view) are incompatible script for task scope

Many Scripts Copy all scripts if one Copy if user starts
(in a pane view) script is incompatible new task (and scope)

For a single script, applicability depends on whether the domain objects can
understand the messages sent during transformation and extraction. Smalltalk
messaging positively affects re-use in this regard because actual “types” are dynamic
and late-bound. Following our Rule of Similarity, tool builders and artifact providers
should establish common representations such as text, icon, color, and sound. For
example, if all objects could respond to #asColor, scripts that would employ such a
message would inherently increase their re-usability. Both one-to-one and one-to-
many transformations can benefit from this rule. Scripts that describe tree models
can be used with several kinds of objects if they share navigation paths like #entries
might do for file systems and #elements might do for graphics scenes. At this basic
level in our UI-design language, tool builders would copy a script and make it fit,
and tool users would have to look for another script/tool that fits.

For a set of scripts, applicability depends on message comprehension, too, but
becomes more challenging for selective adaptation. Multiple panes in a (pane-view)
context employ multiple scripts and multiple object connections to form the tool’s
exploration path. If a domain object fails to understand a single step in this path,
the entire tool will not be applicable to that kind of domain object. For example, a
suspended process cannot be fed into Squeak’s code browser but into the debugger—
even though both support methods and source code at some point. Tool builders
will have to copy the set of scripts to make the adaptations and hence build an
extra tool. However, Squeak’s meta-object protocol can help write re-usable scripts
if tool builders can anticipate variations upfront. For example, an object can be
asked whether it understands #submorphs, #nodes, or #items to express a one-to-many
transformation. Then, a textual representation can be derived via #details, #name,
#contents, or #printString. Such accommodation for heterogeneous sets of objects,
yet, will become challenging if their protocols overlap considerably.
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For a single script, re-use of script properties depends on the user’s influence when
using the scripted views. As proposed before, views should store model-independent
configuration state as script properties because scripts inherently provide task/do-
main scope and avoid further global state. For a single non-composite view, we think
that such configuration is comparable with user preferences for a tool. For example,
Squeak’s browser is green if windows should be colorful, which is independent from
the actual source code being browsed. Consequently, there is no need to copy a script
before applying it to some objects. We think that ad-hoc re-configuration of some
script properties can be reasonable for both tool user and tool builder. Examples
include #view for the kind of view and #color for the window color.

For a set of scripts in pane views, re-use of script properties depends on whether
the user wants to continue a task or start a new one. Recall that the script of a pane
view holds the configuration of all panes in the context. If the user can freely modify
panes in that context, script properties will be modified as a side effect. Unlike
workspaces in Eclipse or projects in Visual Studio, the user does not have to save the
current state of the environment’s presentation explicitly. Consequently, we think
that there should be a notion of prototypical scripts for (composite) pane views that,
for example, represent “desktops” or “endless tapes”. Using a desktop then implies
copying the respective script(s) and start re-configuration by adding panes. If users
forget to copy, they will have to clean-up manually later. Squeak’s projects [192] are
similar in the sense that programmers who forget to open a new project (if they work
on a new task) have to close tools and remove morphs manually when they finished;
they cannot just delete the project.

How to Cope with Multiple Programming Tasks

Programmers, like all humans, can only perform one conscious activity at a time [122],
and daily life usually involves multiple activities that are not back-to-back but
interleaving. Still, they can take measures to reduce the overhead of switching,
which consists of the two phases suspension and resumption [8, 143]. During program
comprehension, tasks are often blocked and suspended due to information needs [91],
which spawn sub-tasks to be completed first, which can again spawn sub-tasks and
so on. Now, programmers can mitigate interruption lags by externalizing task context

as informational cues [101, 8], preferably on screen. However, there is a trade-off
between the costly serialization of thoughts and the limited cue priming via tools in
the programming environment [143]. We argue that a programming environment
can promote task switching if it gives programmers control over all information on
screen. Eventually, serialization can be a by-product of cue priming, which we refer
to as on-the-fly tool building in Vivide.

In our Vivide environment, programmers have precise control over the visual
representations of software artifacts, which supports task management as depicted
in figure 5.5. We distinguish explicit and implicit definition of task boundaries to

152



5.4 Advanced Thoughts on the Working Practice

Figure 5.5: Programmers can control the visual representation of artifact structure to orches-
trate multiple programming tasks. They can use distinctive views or colorful windows
can help recognize concerns.

separate deliberate configuration/building efforts from (presumably) unanticipated
side effects. First, programmers can make explicit use of geometry and layout to
cluster artifacts. This largely means pane distribution across pane views, which are
augmented with dependencies through object connections. Second, programmers
can benefit from implicit effects in panes and pane views based on the artifacts they
carry. For example, a pane-view’s layout strategy might open new panes beside
the requestor to document origin. For another example, pane decorations might
automatically reveal object properties such as #color if the environment knows
about it—which we proposed as the Rule of Similarity in section 4.2. Nevertheless,
programmers can always serialize additional thoughts by creating helper objects such
as photographs, texts, or voice memos in the environment.

Low-effort tool building that happens ad-hoc can positively affect task interrup-
tion. We argue that if programmers can find fitting, tangible representations for
task-related artifacts, then task suspension can be basically “for free” without in-
creasing the resumption lag. Any additional effort to reduce cognitive load and
explicate the mental model should have been done in the course of regular program
comprehension. If programmers favor distinctiveness and prominence over general-
ity and richness, they implicitly spread discoverable cues that help remember task
context and progress after the interruption.

In Vivide, task resumption is the phase where programmers figure out what

artifacts are where and why on screen. That is for each view, they have to recall the
focus object to then associate the task behind it. When interpreting screen contents,
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programmers do not just passively look at labels, colors, or shapes. They actively
invoke pane halos to inspect input buffers and object selections. They also trace
object connections to recover task context. Hence, the same mechanics can be used
for tool building and task resumption without further ado. We think that this also
affects task reminding [122], where noticeable signals and proper descriptions have
to be designed.

Remark Any impulsive assessment aside, we consider the interplay of overlapping,
graphical artifact views on screen as intentional clutter. Due to our inability to capture
momentum in a picture such as figure 5.5, we cannot, in retrospect, fathom why any
programmer chose to densely pack information side by side. There can be system and
order in such a “creative mess”. We think that this is each programmer’s personal
attitude to express. We want to underline the flexibility our environment provides.
On closer inspection, there so no observable redundancy in figure 5.5, which means
no duplicate class lists or other views. We argue that such a result is better than the
average scenario that emerges in traditional windowing systems such as illustrated
in our debugging scenario in section 3.1 (figure 3.1).

User Monitoring for Automated User Guidance

Vivide provides means to integrate existing data with existing views to form tangible
representations that fit particular domains, tasks, and user preferences. In such an
environment, there are likely to be many existing scripts, too, which were prepared for
generic tasks or left over from previous projects. Now, a major challenge programmers
will continually face is the one of choosing. Even though our scripting language and
UI-design language consist of few concepts only, they can span a large decision tree
when applied to artifacts from an actual problem domain:

• Which object(s) to choose to start or continue exploration?
• Which script(s) to choose to start or continue exploration?
• Which view to choose to best understand the available artifact structure?

Mistakes force the user to backtrack and retry, which takes time. There are also more
advanced choices of whether to configure the environment or start building a new
tool:

• When to consolidate or discard open panes (or windows) to handle limited screen
space?

• When to author scripts to improve repetitive or complex activities, which is a
common problem in such direct manipulation interfaces [75]?
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We argue that a data-driven working practice should be complemented by an
environment that constantly monitors its users to make suggestions in a data-
driven way. That is, the environment can observe and record the programmer’s past
decisions to present them in situ through visual cues. For traditional programming
environments, there have been efforts to study the effect of user monitoring to log
(code) navigation histories that capture task-specific concerns [86, 141, 164, 121]. They
share a focus on software artifacts and the goal to simplify access to wide-spread
information for future tasks that affect similar parts in the system.

User monitoring in Vivide means tracing the essential steps from the program-
mer’s exploration path. Since we see program comprehension as repeated fetching,
examining, and retaining of software artifacts, such traces should contain respective
information. Given some artifacts’ structure A, how does the user access artifacts’ structure

B? We see a trade-off between level of detail, prospective utility, and resource limita-
tions. There will be a compromise to store only “meta” information of the involved
artifacts that is easily accessible and likely to support the user’s cognition. In Squeak,
for example, the object’s class or package might indicate the applicability of a code
snippet (or script) for future tasks. In Vivide, for example, there is also context
in terms of pane views, which provide access to neighboring objects and spatial
information. Thus, we argue that effective tracing of the programmer’s exploration
path is feasible because of our data-driven perspective.

Recorded exploration paths can help programmers choose from lists of objects,
scripts, and views. In particular, they can drive and automate many of the afore-
mentioned activities: selection, sorting, evaluation, composition, and removal/filter.
For example, a programmer who is repeatedly interested in a morph’s color can
be automatically pointed to an existing script that extracts such a color object. If
a programmer repeatedly navigates internal morph structure (such as Morph →
MorphExtension→ LayoutPolicy), a script can be derived that combines these repet-
itive steps. Also, any short-living view could be detected and closed, or put into
background, automatically to tidy up screen space. In general, programmers (or tool
builders) should have access to their monitoring data in the form of new artifacts to
be used in scripts and hence fully integrated into the Vivide workflow.

Any two compatible scripts can be merged by concatenating their transform steps
and extract steps. The resulting model tree will have more levels, which can be
folded by re-writing the extract steps. Recall that extract steps are basically transform
steps but describe additional properties for the tree node to be accessed by views.
The same approach can be used to split any larger script so that the programmer
can assign different views to each level in the tree. Object connections can then
re-establish the tree structure across multiple panes.
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If the monitoring includes Smalltalk’s typical do-it expressions, new scripts can be
derived directly. That is, messages that do not have side effects are safe to put into
transform steps. For example, the following code snippet from a Smalltalk workspace
fits our scripting language:
morph := Morph new. "Do it."
extension := morph extension. "Do it."
policy := extension layoutPolicy. "Do it."
policy hResizing. "Print it: #spaceFill"

We assume that the programmer evaluated those four expressions in order. Then,
we can construct transform and extract steps from all traced do-its and print-its:
script := {

"First, transform morphs into their layout policies."
[:in :out | in do: [:morph |

out addAll: morph extension ]].
[:in :out | in do: [:extension |

out addAll: extension layoutPolicy ]].
"Second, extract the horizontal resizing behavior."
[:in :out | in do: [:policy |

out add: { #object -> policy.
#text -> policy hResizing }]]

-> { #isProperty -> true}.
} asScript.

The idea is that expressions on single objects can be applied to multiple objects so that
programmers can better understand larger information spaces. Note that this very
code snippet can be embedded into a script that creates scripts on-the-fly, which
might be derived from user monitoring data. In Squeak/Smalltalk, everything is an
object. If the list of available scripts is created with a script itself, then programmers
can integrate such additional information easily.

Synopsis Given such short feedback loops in Vivide, we encounter inadvertent

modifications with advice on when to copy scripts and when to just apply scripts with
objects to open tools.

Complicated information needs in program comprehension tasks are likely to
spawn interleaving (sub-) tasks. If programmers can manage to put tangible repre-
sentations of relevant artifact structure on screen, task switching will be supported
because existing visual cues make task suspension cheap.

Finally, all Vivide interactions could be monitored and the traces again be
provided in the course of tool configuration and tool building. Then, programmers
could learn to optimize their interactions by actively reflecting on their data-driven
working practice.
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5.5 Implementation Guidelines

We only sketch the details of our Vivide implementation in Squeak 5.1 that could
serve as guidelines when transferring our solution to other environments. Since we
build on the concepts of existing interactive, self-supporting systems, there is more
literature on this topic. To some extent, the foundation of Squeak is reasonably-well
documented [77, 76], which includes the Morphic graphics framework [110, 108].
There are some script-based applications that relate to our implementation strategy
such as Etoys [7] and Scratch [109]. We did also document the structure of Squeak’s

code artifacts in the scope of user-interface frameworks [192] to highlight possibilities
in such an environment. Overall, keep in mind that everything is an object and every
graphical element (or morph) is inherently tangible through its halo (meta) menu.

In such purely object-oriented system, we have to design (1) structure borne by
objects and (2) behavior borne by messaging. In Squeak, we also use classes and
inheritance to facilitate code re-use. Our goal is to design a tool framework whose
applications, the tools, are changeable at run-time as proposed in the previous
sections. That is in a tool-building scenario, tools should remain consistent and
operational without a need to restart. Thus, framework behavior is defined by the
rules that return all (tool) objects into a consistent, stable state after any user or builder5

action. To achieve this goal, we refer to a common catalog of design patterns [62]
and apply creational, structural, and behavioral patterns:

Composite [62, pp. 163–173] to define hierarchies for data (i.e. model nodes) and
graphics (i.e. panes, views, and object connections)

Interpreter [62, pp. 243–255] and Builder [62, pp. 97–106] to construct the tree
model from a script and some input artifacts

Observer [62, pp. 293–303] to watch for modifications in scripts, artifacts, model
nodes, pane compositions, and view descriptions

Adapter [62, pp. 139–150] to make existing views (or visualizations) compatible
with our framework

Adapter [62, pp. 139–150] and Bridge [62, pp. 151–161] and Facade [62, pp. 185–
193] and Strategy [62, pp. 315–323] and Composite [62, pp. 163–173] to narrow
down the flexible applications of scripts in the environment

We think that scripts in a dynamic system such as Squeak capture structural
and behavioral patterns in a rather indistinguishable way. Their dynamic properties
blend interface adaptation and algorithm encapsulation. Especially the automatically
generated model, which we regard as a script’s manifestation, shows characteristics
of the bridge pattern from the view’s perspective. We will not explore these subtleties
any further.

5Note that we use the term “builder” (short for “tool builder”) to address the programmer’s role and
“builder pattern” to refer to the design pattern [62] unless denoted else.
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Figure 5.6: The major parts in our framework are implemented as dictionaries, morphs,
or plain objects. The data side is represented as scripts and nodes. The graphics side is
represented as panes, views, and connections. Note that model nodes are dictionaries and
script steps use dictionaries.

We selected the aspects we think are most relevant for our framework. That is, we
explain the class structure, object lifetime, script interpretation, and object exchange
between panes. Then, we move from tool using to tool building, which covers
(source) modifications of scripts, data, and views. Finally, we explain the integration
of Vivide tools into the Squeak environment.

Class Structure and Object Lifetime

In figure 5.6, we show how Vivide uses composition and generalization to represent
our scripting language (section 4.1) and our UI-design language (section 4.3). This
Class Diagram [208, pp. 99–103] focus on Squeak-versus-Vivide on the vertical axis
and Data-versus-Graphics on the horizontal axis, omitting many details from the
actual implementation. There are many design decisions that we just present as-is,
knowing that they might not be the best possible trade-offs.

Scripts are instances of the class ScriptStep. The text representation of in-out blocks
([:in :out | ...]) is stored in sourceCode. A compiled version is cached, but the text
has more information such as indentation and comments. Scripts hold an isProperty
flag to distinguish transform steps from extract steps during interpretation. Other
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properties are stored in properties, which is an instance of the class Dictionary. Steps
are concatenated via next to describe model trees through a series of transformations
and extractions. Note that script properties can also hold a next key to refer to another
script (identifier) to facilitate script re-use and abstraction. Also note that in this
linked list, every step can be a script on its own. There is no encompassing container
for script steps.

Models are instances of the class Node. Each node is a Dictionary to store the
extracted object properties directly. Yet, there are several reserved keys: object,
children, objects, next (script), and pane. Except for the model’s root node, each node
is thus a wrapper for a single object. Each node is prepared to trigger the (lazy)
computation of its child nodes if requested. The optional reference to objects can
be used to carry over objects between tree levels such as when using tuples to form
groups. For script interpretation with (next) references, nodes hold also the current
script stack to keep track of data flow between tree levels.

The tool’s graphical interface is composed of instances of the classes Pane, View,
and Connection. Panes and views are morphs, which form the graphical hierarchy in
Squeak via submorphs and owner. Specialized views such as TreeViewuse our generated
model to create other morphs such as StringMorph and ImageMorph to form their visual
appearance. Connections represent indirect, objectified references between panes to
attach use mode and provision mode for configurable object exchange.

Layout reification happens through instances of the specialized class PaneView
supported by Pane and Connection. Typically, we use a Desktop with overlapping
windows at the topmost level. Inner containers such as Tape can provide different
exploration strategies per window. Connections between a pane view and its (child)
panes are necessary because panes should not treat object exchange to or from their
outer container differently. Thus, pane views have to mimic the portion of the pane
interface that handles connections.

[|]

The lifetime of Vivide objects, especially ScriptStep, depends on (1) organizations
and (2) their visibility via pane views. Recall that organizations form namespaces
for scripts to be looked up during script interpretation. Each pane view has its own
organization, which implies a hierarchy of organizations parallel to the graphical one.
(There is also one global organization.) Given that panes are decorated as windows,
closing a window will discard (inner) scripts if that window held a pane view. Yet,
the script representing the (closed) window (or pane) itself does still exist in the
organization of the outer (pane-view or global) organization.

We did try to attach a new (temporary) organization to each window to foster
experimentation. Successful experiments could then be registered in the global
organization. Unfortunately, this made it impossible to share scripts between tool
windows without installing them globally. Thus, we opted for pane views as visual
representations of task context. We think that the graphical hierarchy is a reliable
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indicator for users to manage scripts. If they look for scripts, they can access the
outer pane-view’s organization or the global one. We log recently used script objects
in a history to recover from accidental window closing.

Instances of Node and View have a shorter lifetime compared to scripts and (domain)
artifacts. During exploration and modification, tool builders (and users) choose from
existing artifacts, scripts, and view classes as explained in section 4.4. Automatically,
the Vivide framework will create and dismiss nodes and views to yield a tangible
representation of the respective artifacts on screen. The domain artifacts that serve as
script input have been there before and will be there after script interpretation. Only
the ones created afresh in scripts are coupled to the node’s lifetime if not persisted
elsewhere.

Script Interpretation for Model Construction

→ This explanation complements the passage in section 4.1 with the same title.

Our block-based scripting language is separate from but closely related to Smalltalk
and objects. We use Squeak’s parser and compiler to create helper objects, which we
then use to build instances of ScriptStep. So, the compact notation we designed for
script objects can be integrated in interactive tools such as our script editor. Recall
the following example from before, where we described a hierarchy of morphs:
script := {

[:in :out | in do: [:morph | out addAll: morph submorphs]]
-> { #id -> #submorphs.

#label -> 'Morph Hierarchy' }.
[:in :out | in do: [:morph |

out add: { #object -> morph. #name -> morph name }]]
-> { #id -> #'01f88aa9-d4e8-004e-a001-1148a2c36e5f'.

#isProperty -> true.
#next -> #submorphs }.

} asScript.

Here, Squeak provides object arrays ({}), block closures ([]), and associations
(->) as vehicle for scripts. Now, scripts become effective when they are used with
objects to create model nodes. One could call this phase “interpretation” from a
text-oriented perspective or “building” from a object-oriented one. Consequently,
both interpreter [62, pp. 243–255] and builder [62, pp. 97–106] patterns can guide the
implementation. The structure of Vivide scripts is generic, which makes it possible
to use languages other than Smalltalk to process objects. The following listing in
EBNF [3] highlights the Smalltalk-specific portion in our current implementation:
script = script step , { script step } ;
script step = ( transform step | extract step ) , script properties ;

transform step = smalltalk two argument block ;
extract step = smalltalk two argument block ;

script properties = [ script reference ] , script identifier ,
smalltalk dictionary ;

script reference = script identifier ;
script identifier = smalltalk symbol ;
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Each script consists of one or more steps, each step is either a transformation block
or an extraction block followed by script properties, interpretation suspends after
extraction, script properties can include a reference, references are script identifiers,
identifiers are Smalltalk symbols, properties are, basically, dictionaries.

Model nodes are self-sufficient to compute their children if requested from views.
The (invisible) root node, called model in figure 5.6, has a list of objects, the first script
step, and an empty script stack. Each inner node in the model has an object, a next
script step, and a script stack of any size. If views request a node’s children, that node
instantiates a ScriptInterpreter, sets itself as context, and invokes interpretation,
which happens as follows:
| stack step input output suspend |
stack := node stack copy. "... to support node reset"
step := node next.
suspend := false. "... after extraction"

input := node objects ifEmpty: [{node object}].
output := OrderedCollection new.

step ifNil: [^ #()]. "No next step, no child nodes."
input ifEmpty: [^ #()]. "No input objects, no child nodes."

[

"Actual interpretation of the scripting language."
step sourceCode compile value: input value: output.
suspend := step isProperty.

"Check and follow referenced script step."
(step properties includesKey: #next)

ifTrue: [
stack push: step.
step := (step properties at: #next) asScript. "Lookup" ]

ifFalse: [
step := step next].

"Unwind stack if at script end."
[step isNil and: [stack isEmpty not]]

whileTrue: [step := stack pop next].

"Suspend if at end or ∗after∗ property extraction."
] doWhileTrue: [step notNil and: [suspend not]].

"Build and return child nodes."
^ output collect: [:extractedProperties |

(Node newFrom: extractedProperties) "cf. dictionary creation"
stack: stack; "... to be self−sufficient"
next: step; "... to be self−sufficient"
yourself]

Given the Smalltalk language semantics and the Squeak system, this implementa-
tion is straightforward: evaluate blocks with input objects, follow script references,
suspend after extractions, create model nodes. Note that this is a shorter version
of our actual script interpreter because there is no support for a default extract step
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or merging of consecutive extract steps. Also, the script lookup is hidden behind
#asScript sent to a symbol, which omits details about script-organization access. For
such lookup, model nodes have access to their pane and thus also to organizations
in (outer) pane views as depicted in figure 5.6.

Model nodes can store rules to access object properties instead of the extracted
values. These rules are regular Smalltalk blocks. Recall that, in scripts, writable
properties are defined with two arrows like in the following example:
#color -> [morph color]

<- [:newColor | morph color: newColor]

Due to Smalltalk’s precedence rules, this expression is, technically, an association
from a block to an association from a symbol to a block: [] -> (#c -> []). The
different arrow notation (<-), the line break, and the indentation is just syntactic
sugar. During script interpretation, this construct will be replaced with a single-block
version to be stored in the node, which would be at the #color key in this example:
[:object :set | set

ifFalse: [ [morph color] value]]

ifTrue: [ [:newColor | morph color: newColor] value: object]

Whenever views read or write properties in such a node, the node will trans-
parently derive the arguments object and set from the call #at:ifAbsent: (read) or
#at:put: (write) to evaluate the block to fulfill the request.

In our implementation, programmers can configure the kind of Collection to be
used as :in and :out in the transform block. The script properties #in and #out will
be considered by the interpreter. Squeak earmarks object creation using another
object via #newFrom:, which is implemented for all specializations of Collection such
as Set and SortedCollection. So, we can directly use messaging and the class objects
stored in those script properties to convert the results between steps. We send an
extra #value to support user-defined configuration via blocks. The initialization of
input and output from above now looks as follows:
input := (step properties at: #in ifAbsent: [OrderedCollection])

value "for blocks" in: [:classOrObject |
classOrObject isBehavior

ifTrue: [classOrObject newFrom: input]
ifFalse: [classOrObject addAll: input].

output := (step properties at: #out ifAbsent: [OrderedCollection])
value "for blocks" in: [:classOrObject |
classOrObject isBehavior

ifTrue: [classOrObject new ]
ifFalse: [classOrObject].

Note that we did not implement support for streams, yet. They typically entail a
sense of concurrent script interpretation and piecewise computation of node children.
A minor adaptation to the interpreter and nodes should be sufficient to hide such
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concurrency from view code. Panes could indicate progress automatically in the UI,
overlaying views.

Views in Context Exchange Artifacts

→ This explanation complements the passage in section 4.3 with the same title.

Considering the interactive, visual portion of our framework, we have to design for
spontaneous, decoupled updates, which can be triggered through user interaction
or other events. This raises the question of concurrency and synchronization.

Our Morph-based UI-design language builds on Morphic’s inherent tangibility
and extends it with explicit object (or artifact) exchange between views. Usually,
Squeak runs the major portion of code in a single UI process [192], which avoids
process synchronization. This includes do-its and other user interactions in the
Smalltalk system. Whenever applications trigger sophisticated updates, such as
paint requests, there are mechanisms to avoid redundant work. For example, the
DamageRecorder logs and merges “dirty” rectangles, which are then used to schedule
morphs to paint on screen in the next UI cycle. In a similar way, we use Morphic’s
deferred UI messages to handle redundancy. Such deferred “messages” are block closures

to synchronize updates into the UI process. We apply the following pattern to trigger,
try, and do updates:
triggerUpdate

flag := true.
Project current addDeferredUIMessage: [self tryUpdate].

tryUpdate
flag ifFalse: [^ self].
flag := false.
self doUpdate.

doUpdate
"Do the actual update."

This pattern provides flexibility for updating several nodes, panes, and views
synchronously in the same UI process. Note that deferred UI messages are evaluated
in order, which makes the flag effective for a particular sender. We can perform
immediate updates with do* and everything else with trigger* messages. For longer
chain reactions, it can take several UI cycles until the tools are in a stable state again.
In the following, we explain how artifacts are exchanged between views when a user
clicks on an item in a list view. (The same events happen when a programmer adds
or removes object connections between panes during tool building.)
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Remark on Communication Diagrams We show interaction between objects using
an adapted version of UML Communication Diagrams [208, pp. 599–601] to accom-
modate the Smalltalk language and Squeak system. On a meta level, our diagrams
look like this:

Boxes represent instances of classes, and arrows represent message sends. Class names
are usually omitted because the instance name is descriptive. We use annotations

to clarify further details. In addition to these common elements, we extend our
Communication Diagrams as follows:

• The object represented as a gray box starts the communication flow, which is
usually in the upper left corner.

• Each message send can be implemented as or followed by or preceded by other

(hidden) message sends. The diagram shows the most relevant communication.
• If the sender broadcasts the message to (unknown) receivers, two black circles split

the arrow visually. An example is the Observer Pattern [62, pp. 293–303].
• Messages can be grouped via hierarchical numbers to improve readability.
• If one communication can happen multiple times involving multiple senders or

receivers, the respective object boxes appear stacked.
• Gray background highlights, accompanied by a gray, bold letter, represent references

to other diagrams with more details.

In Squeak/Morphic, any user interaction begins in theHandMorph, which processes
input events from the operating system delivered through the virtual machine. All
mouse clicks or key strokes are converted into objects and then dispatched to the
front-most morph at the mouse-cursor position. In figure 5.7, we depict an exemplary
communication path for a mouse click in a (Vivide) list view. Our framework expects
views to yield objects after such interaction. Considering the user’s exploration task,
this usually represents a selection of objects to explore further. The view’s pane then
talks to its connections, which apply their use mode and provision mode to deliver
new objects to other panes. The arrival of new objects in a pane is deferred for one
UI cycle because another connection might trigger for the same pane immediately
afterwards. If the length of each incoming connection path varies, the subsequent
UI cycles can still update the same panes repeatedly.
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Figure 5.7: When a user interacts with a view, the view can yield objects, for example, to
signal a selection change. All outgoing pane connections carry that notification to target
panes, which then trigger an update request. The actual update is carried out in the next
UI cycle. (See figure 5.8 for A and figure 5.9 for B.)

Panes reset their current model if new objects arrive as depicted in figure 5.8. The
root node, which is the model for a pane, discards its children and receives a new
list of objects to work with.6 This underlines the self-sufficiency of model nodes,
which are now prepared to compute new children; views do not notice this laziness.
This also shows that Vivide does not re-use models across views at the same time;
scripts are the unit of re-use. Now, views get notified about the new model, and they
can begin accessing children to construct their submorphs. For example, they could
access the #icon property in a node to get a Form instance to create an ImageMorph
instance. Note that our architecture does not improve any #hasChildren request but
performs child-node generation for such information.

There is no governing object that watches over pane/model updates. User-input
events occur, panes react, objects get exchanged, other panes react, and so on. Such
an update cycle might be endless because object connections can combine any two
panes in the environment. In figure 5.9, we illustrate our approach to detect such
cases. The idea is simple: define the begin of an update chain, generate a token, pass
on that token, refuse to update if a certain token has been seen before. In Squeak, we
can access the currently processed user-input event as a dynamically scoped variable
from anywhere. This event is our token.7 We rely on the event’s high-resolution
timestamp.

6Panes can use a different script if the arriving objects are not compatible with the current script.
7Model nodes can begin updates using any generated identifier as token.
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Figure 5.8: New incoming objects for a pane result in a complete reset of the model. Views
will access (at least) top-level children again, which triggers script interpretation. Views
can tell panes about restored selections.

Figure 5.9: Detection and prevention of endless updates: we use the current user-input event
as a token, which we pass on between panes. Panes accept any particular token only once.
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Change and Update: Script Code, Artifact Data, View Code

In our tool-building scenario, programmers modify script code to form tangible
representations of software artifacts. These artifacts can change while being observed.
View code might also be affected in such try outs. In the following, we elaborate on
the communication that such change events entail. Note that any object exchange
between panes happens as described before.

Our interactive script editor (figure 5.1) can change script code and script properties.
As shown in figure 5.10, the script step, which is the modified object, then informs
the singular script-change notifier. That notifier reifies the request as an event object

and then delivers it to all existing nodes8 and panes. Consequently, applications
other than script editors can modify steps, and our framework will coherently update
all affected tools. In nodes and panes, the actual update will be deferred for one
UI cycle to support multiple, synchronous changes to scripts. For example, several
transform steps can map to the same set of child nodes, which requires only a single
re-computation. Besides code editing, the following changes will also reset a node’s
children: (1) change a step’s next9 step, (2) change the #next property, (3) change the
#in or #out properties. Changes in other script properties such as #view do typically
affect views directly, which panes communicate through #setUp:.

If the observed artifacts change, scripts should be re-interpreted and model
nodes be re-computed. For this purpose, our framework provides notifiers, which are
observer-adapters to integrate existing event sources. We assume that artifacts can tell
about their changes in a decoupled manner, which usually entails a publish-subscribe
or observer implementation. For example, Squeak 5.1 has #changed:/#update: (since
MVC), #when:send:to: (called object events), or code-specific #notify:of... in the
SystemChangeNotifier. Our notifiers use the granularity of script steps and input
objects to translate “artifact A changed” via “step B needs re-interpretation” to
“node C might have different children.” Consequently, we anticipate many short steps

that each do one kind of transformation. The specification of a notifier as a script
property looks like this:
#notifier -> [:object | ObjectNotifier for: object ].

Vivide evaluates the block behind #notifier repeatedly for each incoming object.10

So, programmers can use any Smalltalk expression (here: gray box) to create and
configure notifiers. Any object can be a notifier as long as it responds to the messages
#subscribe and #unsubscribe. After the initial computation of a node’s children,
the node will create and subscribe all such notifiers. Further re-computations will
unsubscribe existing notifiers first. Again, the node is self-sufficient. When a notifier

8For performance reasons, we only register the first n levels of the model tree to listen for changes.
9In figure 5.6, we chose to call the link between two script steps “next”. This is different from the

script property #next, which denotes a reference to another script.
10If the incoming object is a tuple, programmers freely choose, which object(s) in the tuple to consider.

Tuples are just instances of Array.
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Figure 5.10: Any change in a script’s code or properties is propagated via the singular
script-change notifier. Both models and panes get notified to re-configure their contents,
which is deferred until the next UI cycle. (See figure 5.8 for A.)

signals #notify, our framework will call #triggerUpdateChildren in the respective
node as illustrated in figure 5.10. We also provide timed notifiers, which signal
repeatedly at a configurable rate without depending on an external event source.
For tool builders, such polling can be the initial way to quickly get up-to-date nodes
and thus tangible representations of artifacts.

Finally, view code can change, too, and all existing views should update by re-
processing the current model and script. Although we assume the availability of
useful view designs and implementations, tool builders can experiment with the
adapter that makes such existing designs fit for our Vivide framework. That is,
the mapping from script or object properties to what the view can do is subject
to try-outs. We indicate in figure 5.8 and figure 5.10 that views (or view adapters)
have to respond to #setUp:, #process:, and #yield:, to read script properties, to read
object properties, and to tell about object selections respectively. We use Squeak’s
SystemChangeNotifier to let panes replace views if any code in that adapter class
changes as illustrated via #triggerUpdateView in figure 5.10.

Integration into Squeak’s Programming Tool Set

Squeak has several means to configure the user interface in a non-invasive way.
There are projects to add new graphics frameworks [192], user-interface themes to
add new color designs, or application registries to add new domain-specific tools.
One such registry is ToolSet, which translates “open a code browser” or “debug
this process” to an actual tool window. We created a new tool set that applies
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certain scripts, whose generated models are then displayed via panes and views.
For example, the request ToolSet inspect: myObject becomes Vivide openScript:
#objectExplorer withObjects: myObject asList. The script identifier #objectExplorer
will be looked up in the global script organization. Note that programmers can still
open Squeak’s traditional tools, for example, through the workspace. Application
registries only dispatch default actions such as for keyboard shortcuts or unhandled
exceptions.

As proposed in section 4.2, we implemented our practice view-agnostic menus

through special scripts that display available scripts for a set of objects. To retrieve
such a list, we applied three new script properties: #inputKind, #outputKind, and
#priority. Thus, for a given set of objects, we can narrow down the list of fitting
scripts and then sort that list priority-wise.11 We use the resulting interface as
a replacement for context-menu invocation: Pane chooseScriptFor: someObjects. A
list will appear, a mouse click will dismiss this list, and a new pane will appear
representing the user’s choice. Consequently, we integrate objects and scripts directly
in the environment as explained in section 4.4. At the time of writing, we maintain
#inputKind and #outputKind manually, but this can be complemented with automatic
type harvesting or similar.

We added a global search field that yields a list of draggable results as a starting
point for the programmer’s tangible exploration path. We also added a custom drop

handler to the world (or desktop) background, which automatically invokes the most
appropriate script for the list of dropped objects. Programmers can also invoke our
custom “context menu” on the search-result list as described above. Note that users
drag custom transfer (helper) objects, which makes them incompatible with existing
drop targets of Squeak’s traditional tools. Yet, we added support for dropping regular
transfer objects into Vivide tools to, for example, integrate Squeak’s (traditional)
code browser, which has already draggable classes and methods.

Synopsis We apply many common design patterns to implement structure and
behavior of scripts, models, panes, and views. The composite pattern guides the rep-
resentation of model nodes and pane-view compositions. Both interpreter and builder

patterns can be found during script interpretation for model construction. Observers

are paramount for modifying running tools through script editors or interactive
pane re-composition. Being an adapter is characteristic for scripts themselves but also
necessary to make existing views compatible with our framework.

The integration of Vivide into the Squeak environment is straightforward because
there are many extension points to plug in new tools and actions. A custom tool set

maps default requests such as “open browser” to script dispatch and interpretation.
An extended drag-drop handling integrates existing means of direct manipulation
with our framework.

11See appendix B.3 for a code listing of the “Scripts” script.
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Summary

Our scripting language relies on Squeak’s collection protocol to minimize, not
prevent, visible glue in scripts. References to script steps (via #next) can express cycles,
which result in recursive, maybe infinitely deep, model trees. Model nodes can be
updated via block properties or script notifiers, which integrate external observers. We
also expand our concept of anonymous classifications, called tuples, to construct
groups to conveniently connect artifact structure to multiple levels in the model tree.

We apply our data-driven strategy for tool design to create interactive script editors.
Such editors follow our Rules of Distinctiveness, Similarity, and Context. To illustrate
flexibility of such single-object tools, we propose block-based code folding and
pattern-based code templates to support script reading and writing. Overall, script
editors in composition show how such tools can easily bypass structural constraints

via graphical composition context.
In our UI-design language, the building blocks, called panes, are configured

through a combination of (1) script code and (2) user interactions. Considering code,
scripts and their object/script properties should be documented and unified by view

creators so that script authors can iterate more efficiently. Considering interactivity, the
use of object connections and pane decorations illustrate means of integration between
Vivide and non-Vivide elements as well as pluggability of menus and other UI
elements.

Vivide entails a data-driven working practice, which changes the notion of “tools”
and “browsing”. As a result, even users might have to copy scripts if they want
to begin new programming tasks to not overwrite configurations stored as script
properties. As an advantage, switching between interleaving programming tasks
becomes easier because programmers control on-screen information, which entails
cue priming. Such inadvertent, yet helpful, cues shorten task suspension without
affecting task resumption. Finally, we think that tracing all these Vivide interactions
can help reflect and create better scripts to improve future tools and support future
tasks.

[|]

In the next chapter, we begin evaluating and discussing our solution. That is, we
share our experiences with Vivide for daily programming tasks.
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Evaluation and Discussion
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6 Vivide In Use: Best Practices So Far

In this chapter, we explore some useful practices we observed so far during the design,
implementation, and use of Vivide. Our tool-building framework provides generic
mechanisms, which benefit from training and experimentation to discover powerful
applications. At the time of writing, we have constructed several replacements for
Squeak’s standard browsing tools. We tried different ways to employ Smalltalk and
Morphic to form an improved programming experience. In particular, we explored
trade-offs between object-oriented Smalltalk code and data-driven Vivide scripts. We
also explored trade-offs between morph composition from Morphic and pane/view

composition from Vivide.
Recall that our notions of information and representation as explained in chapter 2

still guide the definition of “programming tool” and the programmer’s goals in
programming tasks. In a nutshell, the “what”, the “why”, and the “how” of tools
are as follows:

What — Concept/Structure/Transport Our focus on object-oriented en-
vironments simplifies the definition of information as objects connected in a graph
manifesting concepts of a certain domain as described in section 2.1.

Why — Fetch/Examine/Retain We simplified the information-foraging be-
havior of programmers in program comprehension tasks as activities around software
artifacts to highlight issues with generic tools as described in section 2.2.

How — Choose/Configure/Build The programmer’s ability to form artifact

representations yields a range of activities of increasing difficulty. We see tools as

adapters, which clarifies such tool-building activities as described in section 2.5:
(1) tangibility depends on querying, mapping, and presentation languages; (2)
application of such languages undergoes iterations of finding, changing, and
verifying.

We proposed a new data-driven working practice (section 4.4), which alters the
traditional habit from tools-first to artifacts-first. Yet, the level of tangibility we aim for
depends on the particular application of scripts (section 4.1) and panes (section 4.3).
So, we follow our tool-design strategy (section 4.2) to enact Vivide mechanisms in
common scenarios. First, we present scripts (and views) that replace and improve
Squeak’s code browsing tools. Second, we explain when and how to revise script and

pane compositions to improve modularity and readability. Third, we elaborate on the
applicability of scripts for non-list-based views such as buttons and treemaps.
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6.1 Adaptable Programming Tools

We think it is not reasonable to re-implement Squeak’s programming tools as is

because they impair modularity in presentation as proposed in our tool-design strategy
in section 4.2. For example, the four-pane System Browser will force programmers
to carry redundant context around even if they only want to keep a certain method
visible on screen. Although it would be feasible to apply Vivide in that way, we
follow a different path: compact, self-sufficient views as tangible representations
of artifacts, exposing their distinct properties. That is, we separate the parts of the
traditional browsers and make them independent views (or windows). Programmers
can then compose relations via object connections. Note that the underlying layout
strategy is a desktop with overlapping windows.

Remark If a Vivide tool is simple, it consists of a single pane and view surrounded
by window decoration. For example, a tool that populates a tree view with a single
script has no need for complex pane-view compositions. In that case, we can use
the terms “tool”, “window”, “pane”, and “view” interchangeably. Programmers
can fetch, examine, and retain those entities on screen to arrange information
comprehensively.

Class Outline and Method Editor

Two important parts we extracted from the traditional System Browser are (1) the
class outline and (2) the method editor as shown in figure 6.1. We replaced the static
view composition, many buttons, and pop-up menus with Vivide concepts. That is,
we script tangible code artifacts, add selection dragging, and use script choosing to reduce
visual overhead and foster onward exploration as proposed in section 4.4. First,
the class outline shows the inheritance hierarchy, instance variables, and messages
grouped by protocol. Second, the method editor provides syntax highlighting, access
to related objects (e.g. senders or versions), and edit actions (e.g. save or revert). Both
tools follow our Rule of Distinctiveness and Rule of Context comparing with our
script editor in figure 5.1 from section 4.2. We designed all pop-up (or context) menus
using our guidelines: the class outline shows a list of scripts for selected objects, the
method editor offers two view-agnostic menus to reveal relationships and actions.
Overall, we can freely populate the screen with class outlines and method editors to
lay out related artifacts and reveal concepts.

The list of method editors is a practical application of pane views, which is part of
our UI-design Language (section 4.3). We call that list artifact list, and it can hold
other single-object tools such as class-definition editors or object inspectors. Such
artifact lists appear when programmers drag methods from the class outline and
drop them on the desktop. At any time, single-object tools can be dragged around
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Figure 6.1: Two important views: class outline (left) and list of method editors (right).
We opted for not re-creating the traditional four-pane browser from Smalltalk. Instead,
selected structural overviews and side-by-side details can make efficient use of screen real
estate. In the list of editors, each single-object tool has view-agnostic menus as proposed
in section 4.2.

to change artifact (list) compositions. Such compositions can serve as script input.
That is, programmers can open the artifact-list halo, create a new script, and begin
authoring the representation of the composition. For example, a set of methods
can be scripted to reveal their joint usage context in the system. The additional
information can support the program comprehension task.

We use Squeak’s global SystemChangeNotifier to keep the content of class outlines
and method editors updated. That notifier fires events for changes in code artifacts
such as classes and methods. Each event distinguishes adding, removal, modification,
and reorganization. We do not consider these change kinds but only filter according
to the object they affect. That is, we want to discard update requests for classes
or methods we do not browse in a particular pane. By integrating that notifier,
programmers can still use Squeak’s System Browser and Vivide tools will update,
too.
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View-agnostic menus, such as the ones for method editors, can be1 expressed as
scripts. For the left-hand relationships, this is straightforward because the object in
a single-object tool is the input for such scripts. The resulting pane (or view) will
represent the visual content in the menu. Take the method editor in figure 6.1 as
an example. The underlying script has the object property #relations, which holds
script identifiers to be looked up:
script := {

[:in :out | in do: [:method | out add: {
#object -> method.
#relations -> { #superClasses. "car" #protocols. "tag"

#overrides. "page" #versions. "clock"
#bindings "bricks" }.

#text -> [method sourceCode]
<- [:newCode | method actualClass compile: newSource] }]]

-> { #view -> TextView.
#isProperty -> true. }

} asScript.

For the right-hand actions, however, scripts have to modify the processed object,
which they usually do not do. In Vivide, script interpretation happens all the time,
which is hardly controllable by the user. We experimented with the idea of having
such side effects in scripts at the example of script choosing from section 4.4. There,
programmers are presented with a list of scripts as pop-up menu to choose a tool to
open. Just like other menus, when the user makes a choice, that list will disappear,
and a new window will appear. Now, scripts that would just trigger a side effect
without filling the output buffer could be used to construct such a menu (view). All
menu entries would be constructed from the script’s #icon and #label property.
Again, take the method editor in figure 6.1 as an example. The underlying script has
the object property #actions, which holds lists of identifiers:
script := {

[:in :out | in do: [:method | out add: {
#object -> method.
#relations -> "... see above ..."
#actions -> { "Categories of actions."

#create -> { #icon -> MenuIcons plusIcon.
#scripts -> { "..." } }.

#edit -> { #icon -> MenuIcons penIcon.
#scripts -> { #accept . #revert. "..." } }.

#tag -> { "... " } }
#text -> "... see above ..." }]]

-> { #view -> TextView.
#isProperty -> true. }

} asScript.

Note that such menu configurations are object properties instead of script properties
because we use them for single-object tools. That is, the input buffer in the script

1At the time of writing, we implemented artifact lists and editor menus in plain Morphic. The use of
Vivide pane-views and modifier-scripts is considered future work.
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contains a single object only. To go on in this example, the script for the menu entry
“Accept changes” has the identifier #accept and looks like this:
script := {

[:in :out | in do: [:tuple |
[:node :editor | node at: #text put: editor theText]
valueWithArguments: tuple]]

-> { #id -> #accept .
#label -> 'Accept changes'.
#icon -> MenuIcons tickIcon.
#shortcut -> #(cmd s). "Keyboard shortcut."
#isModifier -> true . "Earmark side effects." }

} asScript.

We opted for tuples as input to provide editing view and the object being edited as
model node. In the script above, editor is an instance of TextView and node holds
the #text rule for editing source code. The additional script property #isModifier
helps distinguish such scripts from regular ones for exploration tasks. The addi-
tional script property #shortcut denotes a keyboard shortcut, which is just another
convenience known from pop-up menus. In this example, we underline the power
of Vivide scripts to concisely express domain-specific rules for both exploration
and modification.

Basic Tangibility: Single-object Tools

We created more tools for single objects (figure 6.2) so that programmers can retain
task-related information as compact views on screen. These tools are mainly for code
and documentation artifacts.2 Squeak’s alternative, namely the object inspector, is
too generic for this purpose. For example, programmers cannot comfortably modify
methods in an inspector view on a CompiledMethod instance. Consequently, we are
aiming for middle ground that lies between such simple, generic tools and complex,
specialized ones such as debuggers and code browsers. In the following, we describe
the single-object tools Vivide offers so far.

Class and method editors are the starting point for any code writing activity. We
explained their usage in combination with class outlines before. Since these editors
reside in artifact lists, they can create objects and spawn editors to be placed in their
context. For example, programmers can create a new method from inside an existing
method editor, which then spawns a new editor in the same artifact list.

Workspaces are text editors on objects. That is, the editor binds the pseudo variable
self to that object. Programmers can then evaluate any Smalltalk expression like in
the traditional Squeak workspace. In Vivide terms, this corresponds to the input

read from the model node. Accordingly, workspaces create the output (or object
selection) through the result of code evaluation (or do-it). Programmers can explore

2See appendix B.5 for details.
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Figure 6.2: We created several single-object tools for common Squeak and Vivide objects
(left to right, top to bottom): text editor for Class, text editor for MethodReference, text
editor for Object as workspace, property tree for Object as inspector, property tree for
Process as debugger, editor and drop field for ViProtocol, text editor for Text, text editor
for Class’ comments, script editor for ScriptPart.

all variable bindings in the left-hand menu, which all such single-object tools offer to
show related objects as draggable items.

Property trees form our version of a generic object inspector. They traverse all
instance variables of an object recursively. If used as a view in Vivide, it does not rely
on the (incoming) model nodes to provide these properties. Instead, it implements its
own notion of Smalltalk object structure, which includes labels and icons. (Although,
that notion could be implemented as scripts, too.)

If programmers combine workspaces and property trees via object connections, they
get a flexible, data-driven exploration/scripting interface for free. That is, they
can re-use workspaces that already have viable information in their bindings. We
see this application as a form of ad-hoc information integration. To some extent, the
result compares with Squeak’s object inspector (or explorer), which already has a
code-evaluation text field.

We have a specialized version of property trees for Process instances. In that
version, we provide special actions in the right-hand menu such as “proceed”, “step”,
and “terminate”. If the inspected process is suspended, its stack frames become
accessible. A more sophisticated debugger can then be constructed with Vivide
scripts, panes, and views.

Protocol editors are novel in the sense that Squeak has no dedicated class for
protocols (or message categories). We implemented ViProtocol, which combines the
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protocol name and its class context. The graphical interface consists of a text editor to
rename the protocol and a drop target to add a method object to that protocol. Note
that methods can only be in one protocol at a time. Thus, there is no need to ever
remove methods from protocols explicitly.

Our rich-text editor is visually different from method editors and workspaces,
which are also text-heavy. It supports instances of Text, which combine strings and
formatting attributes. Programmers can take notes on the current progress; they can
explicate thoughts about the artifacts nearby.

We have a specialized version of rich-text editors for ViClassComment instances. Like
protocols, such instances combine textual content and class context. Programmers
can open many class comments at once. For example, the documentation of the
entire super-class hierarchy can be juxtaposed on screen. We display such objectified
class comments in the left-hand menu of class and method editors.

Finally, there is our script editor, which we explained in section 4.2 in figure 5.1.
Typically, we open all script steps as script editors in an artifact list. In contrast to
methods in a list, changes in editor compositions have side effects in scripts. That is,
closing a script editor means deleting a script step. Also, moving an editor means
re-ordering script steps. Nevertheless, programmers can still dismiss the script-editor

tool by closing the entire artifact-list window.

Getting Started: A Minimal Script Set

In Squeak, programming tools are invoked through user actions or system events. Such
actions include keyboard shortcuts on code snippets and mouse clicks on buttons
or menu items. Such events include unhandled exceptions during compilation and
code execution. We selected a set of tools that support single programmers in code
reading and writing in a non-distributed Squeak programming session. So, our
goal is to provide Vivide scripts for tasks that align with programming-language
artifacts. Comparing with the class outline from above, we focus on simple tasks
and omit more complex ones, such as version control and team collaboration, for
now. Based on our personal programming experiences with Squeak/Smalltalk, we
present a minimal script set to bootstrap Vivide tools.

Remark We present those tools not as script code. Instead, we describe (1) the
script’s goal, (2) the kind of input objects, (3) the transformations applied, and (4)
the properties extracted. Any resulting script can then be as simple or as complex
as desired by the tool builder. We think that the kind of view is also a matter of
personal choice. Typical choices include list-, table-, or tree-like views with support
for drag-and-drop.
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Our tool-building environment relies on a set of kernel scripts to support object
collection, script selection, and pane debugging:

Artifacts Programmers should be enabled to collect objects in a container. This
script supports all kinds of objects, does not apply any transformations, and
extracts only generic properties such as #text via #printString and #icon via
Morphic thumbnails. The view should support drag-and-drop to collect objects
from other views. We decided to put single-object tools as representatives in the
view as shown in figure 6.1.

Scripts Programmers should be enabled to select scripts for a set of objects. This
script supports all kinds of objects, transforms them into a list of suitable scripts
ordered by priority, and extracts descriptive properties for each script such as #text,
and #icon. We think that a list of script organizations should be provided in the
form of tuples. We decided to put the transformation from objects/organizations
to scripts in the implementation of Pane; sort and extract is in script code. See
appendix B.3 for example code.

Hierarchy Programmers should be able to explore and debug the graphical
hierarchy made of scripts, panes, views, and pane views as illustrated in figure 4.11
in section 4.3. This script supports panes as input and transforms them into a
recursive tree structure with three different levels: (a) panes, (b) script and view,
(c) panes if view is pane view. Note that (b) produces always two objects while (a)
and (c) can vary. We sort panes according to their position on screen. For scripts,
we extract #text and #icon from their script properties. For panes, we indicate the
use of pane views. For views, we extract a thumbnail, which all morphs provide.
We decided to make this hierarchy script accessible through the pane halo.

There are generic scripts, which can be used as a starting point for a given list of
objects:

Default Programmers should be enabled to examine a simple, tangible repre-
sentation of any object list. Being similar to Artifacts, this script supports all
kinds of objects, does not apply any transformations, and extracts only generic
properties such as #text and #icon. Consequently, this script is the equivalent of
Squeak’s #printString for Vivide.

Groups Programmers should be enabled to browse groups after identifying a
group object. This script supports a list of tuples, transforms them into groups
using the first object in each tuple, and extracts generic properties for group and
content objects. The transformation also includes lexical sorting using generic text
representations for group and content objects. We decided to inline group objects
as non-selectable separators. An alternative would be to form a two-level tree
model with the first level being group objects and the second one being content
objects.
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Explorer Programmers should be enabled to examine the Smalltalk object struc-
ture for any object list. This script supports all kinds of objects as input and
transforms them into a recursive tree structure. Squeak’s meta-object protocol
provides access to any object’s (named and unnamed) instance variables, which
then point to other objects. Comparing with Squeak’s object inspector, this script’s
view can account for an input field to support code evaluation. For each object,
we extract generic properties such as #text and #icon.

For standard programming activities, there are code scripts, which primarily
replace Squeak’s code browsers. These scripts are made for Squeak’s code artifacts:

Classes (or class outline) Programmers should be enabled to browse the contents
of classes. This script supports instances of ClassDescription, which includes Class
and MetaClass. It transforms classes into super-classes, instances-variable objects,
and methods sorted by name and grouped by protocol. It extracts labels and icons
as illustrated in figure 6.1. (We decided to treat a script for class hierarchies or
sub-classes as optional.)

Packages Programmers should be enabled to browse the contents of packages,
which organize classes. This script supports instances of PackageInfo, transforms
those package objects into classes sorted by name and grouped by category, and
extracts #text and #icon. Besides their name, some classes such as Morph, Magnitude,
and Collection have distinct icons to quickly recognize the inheritance relationship
of subclasses.

Senders Programmers should be enabled to explore references to certain sym-
bols in code artifacts such as methods. This script supports instances of Symbol,
MethodReference, and CompiledMethod; it also supports instances of ClassReference
and ClassDescription. First, this script transforms classes, methods, and references
into symbols using their names. Then, it looks up code references through the
global SystemNavigation, which yields method references. We suggest the use of
tuples if no such global service is available.

Implementors Programmers should be enabled to explore the source code behind
certain symbols. This script supports the same instances as Senders, performs
similar transformations, but it can yield references to methods and classes. (Note
that it is considered best practice to only let class names begin with an uppercase
letter.)

Processes Programmers should be enabled to control suspended processes. As
explained in [192], Squeak manages code execution through instances of Process
and MethodContext. Thus, this script supports instances of Process and transforms
them into context objects. It (and its view) should offer actions to perform the usual
debugging activities such as “terminate”, “proceed”, and “step over”. Note that
each context object has references to code artifacts and variable bindings.
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Remark The scripts Senders and Implementors are examples for Vivide
tools that improve Squeak’s standard tools. Scripts can process multiple objects
and thus show, for example, senders of many symbols in combination. In Squeak,
programmers have to open multiple Senders browsers to follow multiple symbols
(or messages). This can be frustrating because Smalltalk maps optional message
arguments to related messages such as #with:, #with:with:, and #with:with:with: in
Squeak. While any traditional tool can be adapted to support such a feature, it is
inherently supported in Vivide because of its underlying concepts.

Finally, there are global scripts, which do not depend on input objects. Instead,
they expose Squeak’s global variables to access objects. Also, text-based views can
often derive (or look up) arbitrary objects from user input:

Search Programmers should be enabled to type any term into a text field. This
script can support input of any kind. It does not transform that input, but it does
extract textual properties to derive search terms. The view should yield all search
results as object selections to the Vivide framework; it may directly display those
results as selectable objects.

Workspace Programmers should be enabled to type any Smalltalk expression
into a text field. This script can support input of any kind. It does not transform
that input, but it derives the #self binding and other bindings for its textual view.
Similar to the single-object tool in figure 6.2, the view yields the result of code
evaluations as object selections to the Vivide framework. (Note that this script
can be a debugging tool.)

Transcript Programmers should be enabled to watch the results of Transcript
show: anObject and similar print-outs used for debugging purposes. This script
can support instances of TranscriptStream. It then either passes on that stream or
accesses the global variable Transcript, which is Squeak’s default instance of this
class. Since our current implementation does not support streams, the view as to
watch for new contents to be displayed and updated frequently. We decided to add
a helper object called transcript history, which logs all messages into a collection to
be accessed in this script.

Environments Programmers should be enabled to browse all available code ar-
tifacts in the system, which is the manual version of the Search script. This
script can support instances of Environment, PackageOrganizer, or SystemOrganizer.
It then either passes on that organization or accesses the default environment.
Then, it transforms environments into organizations into instances of PackageInfo
sorted by name. As properties, it extracts #text from that name and maybe #icon
for consistency. Note that we prefer packages over categories in Squeak because
categories have no own class but are instances of Symbol.

Schedulers Programmers should be enabled to explore all available code paths
in execution (or control flows). In Squeak, this script can support instances of
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ProcessorScheduler. It then either passes on that scheduler or accesses the default
one via Processor. Then, it transforms schedulers into instances of Process sorted
by priority. As properties, it extracts #text from the process’ name and also its
priority. This script complements Processes and Transcript and is thus also
used for debugging.

Singletons Programmers should be enabled to browse all available software ar-
tifacts in the system. We refer to the eponymous design pattern [62, pp. 127–
134], commonly applied in object-oriented systems. This script is more general
than Environments and Schedulers. As input, it can accept patterns to look
for through instances of Symbol or MessageSend. By default, this script looks for
classes, which are globally accessible, that implement certain (class-side) mes-
sages: #uniqueInstance, #instance, #default, #main, #current. Here, transformation
means sending those messages to class objects to retrieve the singleton objects. In
addition, we look up all global bindings such as all class-name symbols, Transcript,
and Morphic’s dynamically scoped ActiveHand. (Note that we actually decided to
omit class objects for the sake of overview and because of the scripts Search and
Environments.)

[|]

Our framework generates identity scripts to support script modification. Recall
that all views (or tools) in Vivide carry (or are) tangible representations of certain
artifacts (or objects). However, some new artifacts are born only after user interaction.
For example, a new method can only be compiled after the programmer has entered
valid syntax including the method’s name. After that, any view can “be” that method.
To bypass this constraint, we automatically create the first version of a new artifact,
which can then be modified or deleted interactively. For script editors, this means
the creation of identity transformations to be inserted into existing scripts or used
in existing panes. All single-object tools have this requirement to represent tangible
objects. Thus, tool builders should design an “empty” version for any kind of object.
From an architectural perspective, this compares to the Null-object pattern [84,
pp. 301–309].

The creation of identity scripts is closely related to our template-based script

wizard presented in section 5.2. We distinguish a normal version and a tuple version,
which are both optimized for one-to-one or one-to-many transformations through
#asList. Given a list of objects, we encode type information as block variables to
help programmers read and modify the created scripts later on. For example, a list
of numbers results in the following script:
[:in :out | (

[:all | all collect: [:number | number] ]
value: in) do: [:result | out addAll: result asList]]

Programmers can then edit the expression in the gray box or activate the script
wizard to apply a different template. For tuples, we nest an additional block to
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expand the tuple to named block variables. For example, a list of tuples that associate
colors and morphs results in the following script:
[:in :out | (

[:all | all collect: [:tuple |
[:color :morph | {color. morph} asTuples]
valueWithArguments: tuple]]

value: in) do: [:result | out addAll: result asList]]

We think that panes should automatically switch to an identity script if the current
one cannot be interpreted. Programmers can then use the pane halo to access the
faulty script. That is, we favor populated views over empty ones.

Scripts as Unit of Re-use

In Vivide, view models are never shared among views because they are generated
from scripts and objects. Thus, scripts are the unit of re-use. As explained before,
every script consists of one or more steps that form a singly-linked list. So, each
step can be a script on its own to be interpreted along all linked steps. Scripts have
identifiers, which can be referred to in the script property #next. The script interpreter
will then follow that #next reference before turning to the next linked step. Now,
programmers can apply both regular links and #next references to design scripts
that re-use common object transformations and property extractions.

First, programmers can add the script property #next to any step. After interpreting
the particular step, the interpreter will look up the identifier(s) in all accessible script
organizations. It will implicitly amend the Default script if there is no property
extraction specified at the end:
script := {

[:in :out | in do: [:number | out add: number * number]]
-> { #next -> #default "Not required here."}

} asScript openScriptWith: #(1 2 3 4 5).

Note that Vivide inserts more standard properties if not specified such as #id
and #view. Another common example for such script re-use is the Groups script.
Programmers can just define a distinct object, construct tuples, and delegate further
property extractions. With the help of our script wizard and templates, script code
can be as short as this:
script := {

[:morph | {morph color. morph} asTuples ]

-> { #next -> #groups }
} asScript openScriptWith: someMorphs.

The Groups script can then decide whether to inline separators in the same level
or allocate an additional one in the model tree. After that, again, there should be a
reference to the Default script to get predictable (and configurable) results.
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Figure 6.3: Script steps are unit of re-use. Every step is a script on its own. In Squeak/Smalltalk,
senders and implementors of symbols can require different transformations for different
kinds of objects. Note that there are no means to re-use such preceding steps across scripts,
but duplication is necessary.

Second, programmers can link object transformations and exploit the fact that
every step is a script on its own. In Squeak, there are many common exploration
paths in the object graph. For example, there is a name for every class or a reference
for every method. Depending on the kind of objects at hand, there are common
transformations to be applied again and again during a programming session. In
figure 6.3, we illustrate the script structure for Senders and Implementors. Given
that programmers have tangible representations of classes or methods, Squeak’s
Senders and Implementors tools require several entry points. Eventually, there is
a ByteSymbol to be looked up in all code artifacts. Yet, that information is stored
somewhere in those given objects. Consequently, references should be transformed
into symbols; classes or methods should be transformed into references. One could
directly extract ByteSymbol from ClassDescription, for example, but that would aggra-
vate modularity and possible re-use. There are more related object kinds, which can
benefit from this practice, such as Morph/Form and String/Text.

We think that step(s) that follow after such preparing transformations should be
referred to via the #next property because our script editor shows scripts as lists. A
script step with more than one incoming link would be hardly discoverable. Thus,
the preparation for Senders, including type information for each step, looks like
this:
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script {
[:method | method methodReference]

-> { #id -> #sendersMethods.
#inputKind -> CompliedMethod }.

[:reference | reference selector]
-> { #id -> #sendersReferences.

#inputKind -> MethodReference.
#next -> #senders }.

} asScript openScriptWith: {
Boolean >> #ifFalse:.
Boolean >> #ifFalse:ifTrue:.
Boolean >> #ifTrue:.
Boolean >> #ifTrue:ifFalse: }.

This script invocation via #openScriptWith: results in a tool window that shows a
list of all methods that use control-flow branching. In Squeak, programmers would
have to open four Senders browsers instead.

Advanced Code Exploration

Vivide scripts can analyze code artifacts to reveal abstract patterns and meaningful
insights for program comprehension. Analytical results can then point to the artifacts
involved to support further reasoning. This practice complements (and integrates)
the scripts from above, which support direct exploration and modification of such
artifact structure. In object-oriented systems, there are common things to look out
for such as Code Smells [57, pp. 75–88] and Disharmonies [99]. That is, the identity
of, collaboration between, or classification of some objects might be questionable
and worth improving. We think there is an own category of tools that analyze code
and visualize the results such as Linting Tools [81] and Intentional Views [116]. Yet,
there can also be positive reasons to extract higher-level concerns from a list of code
artifacts for teaching or learning. In the following, we state our experiences with
Vivide scripts to (1) check software metrics, (2) define extended message protocols,
and (3) reveal navigation paths via code annotations.

Simple software metrics can be derived from Squeak’s code artifacts. If program-
mers add thresholds, scripts can help watch out for metrics-related problems such as
long methods or complex classes. Such thresholds are configurable by any tool user.
We suggest that scripts should not transform artifacts into metrics but use them as
filters or extract them as properties. Views can then display that information without
impairing the artifact’s tangibility such as via tooltips and extra table columns. In
the following, we describe some exemplary metrics and how to implement them as
transform or extract steps:

• If a method has more than 20 lines of code, make it red:
[:method | { #text -> method selector.

#color -> ( method linesOfCode > 20
ifTrue: [Color red]
ifFalse: [Color transparent]) }]

186



6.1 Adaptable Programming Tools

• If a class has more than 10 instance variables in its hierarchy, add a small flame in
front of its name:
[:class | { #text -> class name.

#icon -> ( class allInstVarNames size > 10
ifTrue: [MenuIcons flameIcon]
ifFalse: [MenuIcons blankIcon]) }]

• In this package, show all classes that have no comments in their description:
[:in :out | in do: [:package | out addAll: (

package classes select: [:class |
class organization classComment isEmpty ] )]]

With scripts, extended message protocols can be derived from Squeak’s code
artifacts. Programmers can organize messages in categories, which are also known
as protocols. Yet, higher-level rules such as the absence of certain messages or the
use of Squeak’s meta-object protocol have to be evaluated dynamically as the code
changes. Scripts can capture these rules to filter code artifacts or extract descriptive
properties for views to show. In the following, we describe exemplary rules and how
to implement them as transform steps:

• In a package, show all classes that omit to implement #hash if they override #= and
vice versa:
[:in :out | in do: [:package | out addAll: (

package classes select: [:class |
(class includesSelector: #hash)

xor: [class includesSelector: #=] ] )]]

• If a method uses certain meta programming, make it red:
[:method | { #text -> method selector.

#color -> (
(#(respondsTo: perform: value:)

anySatisfy: [:selector | method hasLiteral: selector])
ifTrue: [Color red]
ifFalse: [Color transparent]) }]

• In a package, show all classes that participate in Squeak’s default observer pattern:
[:in :out | in do: [:package | out addAll: (

package classes select: [:class | (
#(update: update:with:)
anySatisfy: [:symbol |

"Implementors"
class includesSelector: symbol] )

or: [
#(changed: changed:with:)
anySatisfy: [:symbol |

"Senders"
(class whichSelectorsReferTo: symbol) notEmpty] ]] )]]

187



6 Vivide In Use: Best Practices So Far

Scripts can expose comments and other annotations that document decisions
without being relevant for program execution. Such annotations can be useful
for explicating navigation paths [188] or communicating general concerns in the
team [205]. Squeak reserves the non-functional #flag: message, which directly
integrates with the Senders tool because it is just a message. Here is an example:
"..."
self flag: #refactor. "mt: Extract the computation to shorten this method and make the
code reusable elsewhere. See ticket 1234 for more discussions about this issue."
"..."

We analyzed the entire syntax tree to extract the symbolic argument as well as the
comment. We created the class ViFlagComment to pack all information into an object
to write scripts for. Flag comments point to the method objects, which is useful
for integrating scripts to support onward exploration. Another example for such
annotations are method pragmas like this:
ExampleClass >> exampleMethod

<priority: 10>

Such pragmas (<...>) do usually influence an application’s run-time behavior. Yet,
they might as well denote landmarks in the source code, which would be similar to
methods that just contain a large comment to document a part of the class. Scripts
can access pragmas via Squeak’s meta-object protocol to filter methods or extract
properties, which is similar to the examples above.

Synopsis Programmers work with generic programming tools to explore code
artifacts and write source code. We apply Vivide scripts to design traditional views
on such artifacts, which render the resulting tools (or views) adaptable. On the one
hand, there are class outlines and lists of method editors to freely and concisely juxtapose
related code on screen. On the other hand, there are more single-object tools, which
provide basic tangibility for other code artifacts such as comments and protocols.
A minimal set of scripts provides the baseline for domain-specific or task-specific
adaptations.

The generality of scripts offers many possibilities and demands for several choices
to be made during tool building (or script authoring). Considering scripts as unit

of re-use, programmers can package object transformations in scripts, whose steps
either link to another directly or refer to it via the #next property. Considering code

analysis, programmers can apply scripts to expose software metrics that either filter

artifacts or extract additional properties, which views can display, for example, in
tooltips or additional labels.
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6.2 Revising Script Code and Pane Design

Tool building in Vivide remains an iterative process. Programmers revise script code
and pane compositions to form (tool) views that carry tangible representations of
artifacts. Guided by immediate feedback and experimentation, good and bad patterns
can emerge. Thus, programmers should be aware of a technical debt [46], which can
follow their design choices. Similar to programming in general, refactoring [57, 84]
should remain an inherent part of tool building.

It is difficult to objectively assess the impact of design choices. So far, we have not
yet discovered many bad applications of scripts and panes other than long steps or
complex connections. Those are similar to common object-oriented smells such as Long
Method [57, pp. 76–77]. In the following, we describe the new dimensions Vivide
adds to tool building in Squeak. These dimensions imply trade-offs programmers
have to make. For example, data-driven scripts and object-oriented methods can go
hand in hand; script-based panes and plain morphs can both define the graphical
user interface. Note that any resulting technical debt depends on the programmer’s
particular goals.

Fetch & Examine: Between Scripts and Messaging

Can I express the rules to query and map my artifacts entirely as scripts or do I

have to add new classes and methods?

Programmers can apply our scripting language most concisely if artifacts have all

transformations and properties built in as messages. Yet, new ideas are likely to
increase the script size due to extra Smalltalk code. To shrink verbose scripts, such
code can be moved to classes or methods. While such refactorings can be effortful,
they can also improve modularity for the entire object-oriented system. It remains a
trade-off to be constantly evaluated in the process.

Smalltalk is a strongly-, dynamically-typed language. Everything is an object, but
objects can take any form through relationships to other objects. For scripts, Squeak
provides several containers that help programmers organize new object structure:

• Array can be used to carry ordered lists of objects between scripts. Programmers
that use our tuples use instances of this class.

• Association can be used to relate a key object to a value object. For example,
programmers can carry a name or some other context for any object with instances
of this class.

• Dictionary can be used to construct complex object structures via lists of associa-
tions. For example, programmers can model a person with name and age without
having to create a new Person class.

Such containers can be used to avoid the creation of new classes for, maybe unique,
tool-building experiments. When artifacts do not provide the messages required for
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Figure 6.4: Squeak’s generic object structures can store domain-specific contents without
having to create new classes. The task list on the left uses Association, String, Boolean,
and Form. The word counter on the right uses Text, Bag, Association, String, and Number.
(The example analyzes the first paragraph of Herman Melville’s “Moby Dick”.)

transformation or property extraction, programmers can assess the situation using
the following questions:

• Can I perform the transformation or extraction with the objects given in the local
input buffer or global variable bindings?

• Can I capture the results in a container such as tuples to be passed on to the next
script step?

• Do my additions affect the performance of script interpretation in a way that
makes an external cache necessary?

In our experience, scripts will become more complex if they have to compensate for
missing, but relevant, artifact structure. Specific domains and tasks are likely to yield
more questions. For the general case, we found several idioms worth considering to
cope with accidental complexity:

• Favor many, short, consecutive transformations over a few, long ones with many
nested calls to the Collection protocol.

• Favor tuples and other containers over additional, task-specific data classes.
• Yet, favor additional domain classes over valuable transformations that spread

across many scripts.

Eventually, script code should read like domain rules. While Vivide hides much
glue in its framework, tool builders still have to express those rules concisely as
Smalltalk code.

We present two productivity tools in figure 6.4: a task list and a word counter.
Both examples configure Squeak’s generic object structures as explained before to
store domain-specific information. First, tasks are lists of associations between a label
and a boolean or other tasks to support task composition:
tasks := { 'Buy milk' -> false.

'Clean up' -> { 'Wash dishes' -> false.
'Take out trash' -> false }.

'Feed cat' -> false }.

Our scripts can directly express this recursive structure and support interactive
tick-off via mouse clicks. Our item views support the configuration of callbacks
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such as #doubleClicked and #selected, whose call-backs are Smalltalk block closures.
Global script notifiers trigger the view update after ticking off a task:
script := {

"Short version for property extraction. Uses script templates."
[:task | {

#text -> task key.
#icon -> (task value == true ifFalse: ["..."] ifTrue: ["..."]).
#doubleClicked -> [[

task value isList ifFalse: [
task value: task value not. "Tick off task."
ViEventNotifier trigger: #tasksChanged. ] ]] }]

-> { #id -> #taskList.
#isProperty -> true.
#notifier -> [ViEventNotifier named: #tasksChanged] }.

"Recursion for composite tasks. Uses script templates."
[:task | task value isList ifFalse: [#()] ifTrue: [task value]].

-> { #next -> #taskList }

} asScript openScriptWith: tasks. "See above."

In the same spirit, the word counter can rely on Squeak’s generic object structures.
We connected two panes: the left one yields a text object entered by the user and
the right one analyzes that text in a table. The word-count analysis makes use of
Squeak’s string manipulation and bag conversion protocols:
script := {

"1) Transform and count words"
[:text | text asString].
[:string | string findTokens: ’ .-,;’ "Configurable separators"].
[:token | token asLowercase].
[:in :out | out addAll: in sortedCounts "Count words"]

-> { #in -> Bag . "Removes duplicates; maintains quantity"
#out -> OrderedCollection "The default collection"}.

"2) Extract two text properties for two table columns"
[:assoc | { #text -> assoc value } ]. "word"
[:assoc | { #text -> assoc key } ]. "quantity"

} asScript openScriptWith: #('Call me Ishmael. Some years ago...').

In these two examples, the persistence of domain objects is volatile. In both task list
and word counter, users should refrain from dismissing the panes’ (tool) windows.
This is a fairly common scenario in Squeak because users can save-and-close the
entire environment, which compares to hibernation (or suspend-to-disk) in operating
systems. Another example are workspaces that hold valuable code snippets only
in their text buffer. Note that Squeak’s windows can be made “unclosable”, which
removes the close button to avoid accidental dismissal. We argue that the inherent
persistence of Squeak’s object graph is worth exploiting to improve the user’s and
programmer’s experience.

[|]
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So far, we discussed the efficient use of messages in script code. But programmers
can embed scripts in regular Smalltalk code, too. With some objects as input, they can
interpret any script object to retrieve a model (node) object. Recall that everything is
an object, and messaging yields behavior:
| input script node output |
input := #(1 2 3 4).
script := { [:num | num * num] } asScript.
node := script interpretScriptWith: input.
output := node children collect: [:ea | ea at: #object].
output := node objects. "Convenience message."

In such a scenario, scripts serve as unit of extension for any object-oriented module.
Transparently, scripts can attach additional state (and behavior) to classes. This can
be useful if programmers do not want to change the (foreign) module’s sources
directly. If expressed more concisely through script identifiers and compact model
messages, the square of a number could read like this:
squareNumber := #square apply: aNumber.
squareNumbers := #square applyAll: someNumbers.

Here, #square is a script identifier to be looked up in a script organization. The
messages #apply: and #applyAll: combine script interpretation and model unpacking
for single objects or lists of objects respectively.

Examine & Retain: Between Panes and Morphs

Can I express the rules to map and present my artifacts entirely through (scripted)

views or do I have to design new morphs?

Many elaborate presentation languages go beyond text. They combine shapes, colors,
and geometry to visualize information and compare multiple data points side by side.
While text remains important for selected details, other graphical elements are often
more efficient to gain insights. For Vivide tools, this means that the visual mapping
in scripts addresses not only #text but often #color and #icon. Programmers have
to choose from typically generic views and populate them with specific structure.
In Squeak, morphs play an important role for tool design because they define all
interactive graphics in the environment. Every graphical element is a morph and
Vivide panes hook into that hierarchy on screen.

First, every Vivide pane is a morph. This makes panes being a new “bridge”
between information and representation. On the one hand, tool builders can make
existing morphs compatible with panes by implementing the view protocol. On the
other hand, tool builders can employ scripted views in any part of an existing Morphic
application. Since panes provide their own halo, programmers can explore and debug
the application’s mixed graphical hierarchy in a common way. Considering games
and other multimedia applications, programmers should assess the usefulness of
panes beforehand:
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Figure 6.5: Morphs can be created from objects that have no inherent graphical representation
such as numbers. On the left, color objects made of numbers for hue, saturation, and value
can set a morph’s basic color directly. On the right, the count of methods in classes can
set a morph’s geometry such as its width in pixels; the count of instance variables can set
the color.

1. Does the morph show distinct properties of a certain kind of domain artifact?
2. Can the morph show multiple of such domain artifacts in combination?
3. Is the morph part of a larger context with other morphs influencing each other?

If so, Vivide panes can make a valuable addition to the user interface. For example,
the player in a jump-and-run game should be a regular morph while the highscore

table in that game could be a scripted view. We think that the opportunity of using
Vivide views might influence the object-oriented design of the application. Such
highscore objects, for example, might not just be associations of player name and
number, but sophisticated objects that could also store replays of level runs.

Second, every morph is an object. Consequently, scripts can pass morphs as object

properties to views, which can then integrate them directly into the graphical hierarchy.
To an extreme end, views could rely on models to contain morphs that have all visual
properties configured just waiting to be displayed. For example, a view can look
like a scatter plot if its script maps objects to morphs, each having its own horizontal
position, vertical position, color, and size. To a practical end, morphs could be
interactive additions for views that are often just sophisticated layout containers. For
example, a model node can hold a clickable button morph.

We experimented with morphs as vehicle for the #icon property, which our list,
table, and tree views support. In Squeak, icons are instances of Form, which can
be derived by rendering a morph via the message #imageForm. Then, any complex
composition will be flattened into colorful pixels. In figure 6.5, we show two examples
that use this technique: a color picker and a (vertical) bar chart. Color objects can be
created from numbers:
colors := Array streamContents: [:stream |

(0 to: 360 by: 20) do: [:hue |
(0 to: 1.0 by: 0.2) do: [:sat |

(0 to: 1.0 by: 0.2) do: [:val |
stream nextPut: ( Color h: hue s: sat v: val )]]] ].
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In a script’s extract step, morphs can represent those colors directly:
script := {

[:color | { #icon -> (Morph new extent: 32@32;
color: color ; "Direct mapping, color to color."
imageForm) "Convert morph to icon." }].

} asScript openScriptWith: colors. "See above."

In the same spirit, the vertical bar chart creates bars from morphs. Here, we analyze
classes and map the number of methods and instance variables to a bar’s width and
color respectively:
script := {

[:class | { #text -> class name }].
[:class | { #text -> class methodDict size.

#icon -> (Morph new
height: 5;
"Direct mapping, number to number"
width: class methodDict size ;
"Indirect mapping, number to color"
color: ( class instVarNames size > 5

ifTrue: [Color red]
ifFalse: [Color lightGray]);

imageForm) }].
} openScriptWith: (PackageInfo named: #Kernel) classes.

Besides rectangles, Squeak provides morphs for other shapes such as circles and
polygons.

Levels of Interactivity: Between Script Composition and Pane

Composition

What is the difference between one complex tree model in a single pane and a

combination of connected panes each with simple list models?

The dualism of scripts and panes opens up a spectrum of user interfaces with varying
levels of utility and usability. In scripts, tool builders can express the rules to query
artifacts of interest. Recall that transform steps convert one set of objects into another;
Squeak’s object graph can be traversed and extended this way. Now, tool builders
have to decide (1) when to make use of the model’s tree structure and (2) when to
choose connected panes (and views) for interactive exploration. On the one hand, one
complex script in a single view can save screen space, but that view needs to be able
to display the entire model tree. On the other hand, many simple scripts in many
simple (list) views can be faster to create. So, there is a trade-off between scripts and
panes to be made in a tool’s presentation language.

Programmers can convert pane compositions into script compositions because
both alternatives compose through the exchange of objects. For scripts, objects “move”
from one step’s output buffer to the next one’s input buffer. For panes, objects “move”
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Figure 6.6: Script compositions and pane compositions can be converted into each other.
Hierarchical view models require hierarchical views to display all artifacts. This forms a
trade-off between spatial efficiency and overall usability.

from one pane’s view selection to another one’s script input.3 As illustrated in
figure 6.6, we identified four of such composition patterns to resolve conflicts and
guide tool building:

• Straight — Two or more panes form a connected, uni-directional line. To construct
a single script, each pane’s script can be appended one after another. The count of
panes will match the count of levels in the model tree. For example, a browser for
classes and methods with two list views becomes a two-level tree:

3As explained before, object connections are have a direction, a use mode, and a provision mode. By
default, those modes are view selection and script input respectively.
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• Cycle — One or more panes form a connected, uni-directional cycle. To construct
a single script, each pane’s script can be appended one after another. Then, the
last step refers to the first step to define recursion. For example, a file browser
traverses a hierarchy of directories, which can be of arbitrary depth.4 A single tree
can show more context:

• Split — One (source) pane provides input for two or more (target) panes. To
construct a single script, the target scripts have to be merged and the appended
to the source script. Merging two scripts can require meta programming if they
process two different kinds of objects. In the model tree, the object lists can be
concatenated in the same level or separated in two different branches. For example,
a class browser can show instance variables and methods in separate list views.5
A single tree can show such branches more concisely:

• Merge — Two or more ordered (source) panes provide input for a single (target)
pane. To construct a single script, the source scripts can be appended one after
another to form levels in the tree. If they process unrelated objects, they have to be
adapted to use tuples. The target script can be appended as-is because it already
transforms tuples. For example, a class browser can show methods by category,
but categories are symbols and thus unrelated to classes. A single tree can save
screen space:

In complex tools, such patterns can occur in more elaborate ways. They can overlap
and interleave. Thus, tool builders have to isolate them before they can revise them,
which is a common practice for traditional refactorings, too.

4See appendix B.6 for the “File Browser” script code.
5See appendix B.4 for the similar “Class Outline” script code.
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Synopsis Both Vivide and Squeak provide alternatives for certain design choices
to increase flexibility in the tool-building process. We identified three kinds of such
choices: (1) scripts or classes/methods, (2) panes/views or plain morphs, and (3)
script composition or pane composition. Such choices can influence a tool’s querying,
mapping, and presentation languages. The expressiveness of such languages can
then influence the tool’s overall utility and usability.

Drawing from our experiences with Vivide and Squeak so far, we document
three recurrent practices to guide those design choices. First, programmers should
try using Squeak’s generic containers such as arrays, associations, and dictionaries
before adding new domain classes to the system. Second, programmers should try
using morphs to configure generic views, and they should try embedding panes
into Morphic applications. Third, programmers should try mixing simple scripts
and simple views with complex scripts and complex views. At the end of the day,
refactoring should remain an inherent part of (iterative) tool building like it is for
object-oriented programming in general.

6.3 Beyond Lists: Different Views for Scripts

Typically, we use hierarchical or tabular list views because they directly fit the tree
models that Vivide scripts describe. That is, child nodes form the list hierarchy,
and similar node properties form the table columns. However, traditional tools
can offer widgets that are different to lists such as buttons, text fields, and graphs.
Consequently, we experimented with the applicability of scripts to configure such
widgets, too. Tool builders (or view designers) should answer the following questions
when adapting such different views for Vivide:

• How far can the view display the model’s node hierarchy?
• How far can the view be configured through object properties?
• How far can the view be configured through script properties?

Considering our tool-design strategy (section 4.2), views might not have distinct
graphical shapes for objects at all, which affects object selection, context menus, and thus
tangibility.

In the following, we explain our experiences with integrating four different non-
list views: a text field, a button bar, a polymetric tree view, and a treemap. Each
view tackles different challenges: text lacks tangibility, buttons trigger effects on user
input, the graphical hierarchy cannot be infinitely deep, and treemaps aggregate
node properties. These cases illustrate that Vivide supports the integration of more
elaborate visualizations.
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Figure 6.7: Text fields can try to preserve artifact integrity via separators (left: “***”) or other
serialization formats (right: JSON). Yet, it is difficult to select objects with character-based
selection.

Text Fields

Text is a powerful way to consume and modify artifact structure with low effort.
Programmers can directly hit keys on the keyboard to process text at the level of
characters; screens use fonts for display. Now, text fields in the Vivide environment
face challenges similar to structured (or projectional) editors [90]. That is, users prefer
to have a flexible document metaphor and sound text content at any time. Yet, the flat
character layout and the structured model layout are difficult to synchronize without
trade-offs. For example, the text selection can be surprising if it cuts structured
elements.

We decided to make the model structure explicit by serializing nodes and node
properties to get a flat, textual, representation. In particular, there is the object
property #text in each node for details and the script property #mode for the overall
serialization format. In figure 6.7, we illustrate an example with two formats: (1)
dedicated separating characters and (2) JSON. While JSON can escape text by
definition, tool builders have to configure any manual separator so that it does not
overlap with the property. Otherwise, the view cannot compute the corresponding
node after changes to write, for example, back the #text property. Also, lists of objects
work well with separators, and hierarchies of objects benefit from JSON, XML, or
similar representations.

The idea of serialization applies to all kinds of Smalltalk objects that represent
valuable artifact structure. For the example in figure 6.7, we serialize instances of
Color in a morph hierarchy. The script looks as follows:
script := {

[:morph | morph submorphs]
-> { #id -> #'1020f29a'.

#view -> TextField.
#mode -> #concatenate. "Or #json or #xml or ..."
#separator -> '***' "Only for #concatenate."}.

[:morph | {
#text -> morph color storeString

<- [:text | morph color: ( Color readFrom: text )] }]
-> { #next -> #'1020f29a' }

} asScript openScriptWith: someMorphs.
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Here, Squeak converts between objects and texts with #storeString and #readFrom:.
If the view concatenates nodes with a separator, the first level of morph colors will
be displayed. If the view uses JSON, the entire hierarchy of morph colors will be
displayed.

Object selection can be challenging for users because text selection consists of
characters, which may cut into labels by accident. Still, we think that all views should
allow users to select some objects to continue exploration in another view through
context menus or connected panes. Fortunately, Smalltalk programmers can associate
spans of text with objects: the bindings. In Squeak’s code editors, programmers
can evaluate, print, or inspect expressions. Symbols are bound globally or locally
in a debugging context, which makes source code appear concrete and running.
Consequently, our text fields can support object selection in two ways: (1) via a node’s
#text property or (2) via a node’s #bindings like this:
[:morph | {

#text -> 'color'.
#bindings -> { #color -> morph color } }]

Note that if the binding is not included in the text representation, then users first
have to type the binding like they would in a Squeak Workspace. Since duplicate
bindings are not supported, scripts should append a unique suffix such as an object’s
#identityHash. The evaluation of any Smalltalk expression, which uses bindings,
then indicates the selection of objects for Vivide.

[|]

We think that all views should support lists of objects or hierarchies of objects.
Yet, our method editors are text fields that each show only a single method. So, these
editors are single-object tools, which is similar to traditional Smalltalk tools. We make
a list of method editors using additional containers, which are pane views in Vivide
terms. See section 6.1 for more details.

Button Bars

Buttons can trigger actions that are complementary to program comprehension.
They can close windows, save changes, or toggle preferences. In Vivide, buttons
(or button bars) are views, which operate on objects and are configured via scripts.
Given that mouse clicks trigger actions, such a view can represent either objects or

actions as buttons. In figure 6.8, there is a traditional bar with actions and one with
objects. An action button will trigger the action for all objects behind it. An object
button will trigger the action only for that object. Thus, objects-as-buttons can form
radio buttons to provide user choices.

There are three dynamically bound variables to support meta programming in
scripts: thisScript, thisPane, and thisView. These variables provide access to the
current script, pane, and view objects respectively. Tool builders can use them for
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Figure 6.8: In Vivide, button bars can either concentrate m actions for n objects (here: left
bar) or offer one action triggered on a selected object (here: right bar). Scripts contain the
source code for a button’s callback.

debugging or to trigger side effects that concern the user interface. A button that
closes the window in Squeak can be scripted as follows:
script := {

[:object | | window |
window := thisPane containingWindow.
{ #text -> 'Close'. "Button label"

#clicked -> [[ window close ]] "Button callback"}]
-> { #view -> ButtonBar }

} asScript openScriptWith: #(dummy).

Note that we have to bind the temporary variable window because thisPane will not
be bound at the time when the user clicks the button. Plus, we have to provide a
placeholder object so that the script interpreter generates a model node the for view
to process.

Button-bar views can be used to intercept object exchange between other views. For
example, Squeak’s System Browser has two buttons, namely “instance” and “class”,
to toggle browsing methods for instances of the current class or for the class itself.
From a tool perspective, there are objects for classes and objects for meta-classes,
which can both access methods. Buttons can transform classes into meta-classes and
yield the result via thisView as object selection to the view’s pane:
script := {

[:class | | view |
view := thisView .
{ #text -> 'instance'.

#clicked -> [[ view yield: class theNonMetaClass ]] }]
-> { #view -> ButtonBar }.
[:class | | view |

view := thisView .
{ #text -> 'class'.

#clicked -> [[ view yield: class theMetaClass ]] }]
} asScript openScriptWith: someClasses.

We think that button bars are useful to remain compatible with traditional user
interfaces. Yet, such views are neither necessary nor appropriate to build tools in
Vivide. Scripts transform objects, and users can choose scripts. Buttons as filters feel
redundant at this point. Only in the form of pane decorations such as halo or window,
buttons are convenient to manage the user-interface layout. These thoughts follow
directly from our tool-design strategy as described in section 4.2.
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Figure 6.9: Our polymetric views always show a tree layout because of the node hierarchy
in the model. Here, a system-complexity view [99, p. 35] about classes in the Morphic
framework (left) is the input for table views (right) to show details.

Polymetric Views

Polymetric views [99, pp. 33–40] are a good fit for Vivide and Morphic. Such
views consist of rectangular, connected, colored entities reflecting software metrics.
Our scripts can describe tree models with properties added to each node. Morphic
constructs graphics with composite morphs, which are rectangles by default. Thus,
a morph can be a node and also an object, which is a peak in directness and tangibility
for such views. Morphs can implement event handlers for mouse clicks or keyboard
hits, which fulfills our criteria for object selection in Vivide views.

In figure 6.9, a polymetric view shows metrics for part of the Morphic class
hierarchy; it is connected to table views for details. Each morph represents an entity
in the polymetric view; submorphs are aligned horizontally with a top offset to
leave space for edges. Besides the hierarchy, the script extracts metrics to configure
morphs:
[:class | {

#width -> class instVarNames size.
#height -> class methodDict values size.
#color -> (Color h: 0 "hue" s: 0 "saturation"

"value; darker means more LOC"
v: 1.0 - ((class linesOfCode / 3500) min: 1.0)) }]

Note that the maximum value for lines-of-code (LOC) is hard-coded with 3500 due to
the exploratory setting. Programmers can change that number easily. Still, the actual
maximum for any set of classes can be computed in scripts and passed between
steps using tuples or other data structures. If the underlying domain model would
provide that number directly, the script could be more concise.

Model trees of infinite depth require additional support in views. Our scripts are
interpreted lazily as views navigate nodes in the model. So, polymetric views assume
a finite depth like many visualizations, because they are made for overview. The entire

model has to be visible in some form. This makes polymetric views incompatible for
tools that navigate the object graph in cycles such as Squeak’s Object Explorer. A

201



6 Vivide In Use: Best Practices So Far

Figure 6.10: This (part of a) treemap view shows methods in classes. The area represents
LOC, the color red means access to instance variables, the elevation translates to the
number of arguments. Each shape in this hierarchy is an object that can be selected.

possible trade-off would be to delegate this issue to the user. Our list-based hierarchy
views, for example, have entities that can be expanded and collapsed manually.

Views that expect many properties from models should account for many default

values. For text-based views, this is easy because objects have a textual representation
via #printString, which is at least the class name and an identity hash. This conve-
nience can be found in non-Smalltalk environments, too. As explained in section 4.2,
it is beneficial to have more shared concepts for objects such as an icon, a summary, or
a color. If not, views have to make up their own default values. In polymetric views,
missing #width or #height could be anything > 0. A neutral color could be white. In
Vivide, views should be forgiving because scripts should work with any available
view.

Treemaps

Treemaps [174] are space-filling views for hierarchical data. They nest rectangles or
other polygons [70] with varying layout strategies that improve stability of relative
areas and positions over time. Like polymetric views, they have to access the entire

view model, which makes them incompatible with infinite trees. In figure 6.10, there
is an example for a treemap that shows methods in classes, mapping LOC to the
area.

Views can add new properties to model nodes such as for caching. Those properties
will be discarded automatically when new objects arrive or the script changes because
the entire model will be re-constructed. Our treemaps use this storage during layout
computation. That is, treemaps use a weight for each node to calculate the size of the
corresponding shape. Now, scripts do not have to provide that weight for every level
in the tree but only for leaves. Then, treemaps iterate through the model to aggregate

the #weight property for all inner nodes. This renders scripts for our treemaps more
compact like in this example:
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script := {
"Level 1 − Packages"
[:organzer | organizer packages] -> { #view -> Treemap }.
[:package | { #text -> package name }].
"Level 2 − Classes"
[:package | package classes].
[:class | { #text -> class name }].
"Level 3 − Methods"
[:class | class methodDict values].
[:method | { #text -> method selector.

#weight -> method linesOfCode }]
} asScript openScriptWith: { PackageOrganizer default }.

Only the last extract step has to consider the #weight property for this view, which
methods provide directly via #linesOfCode. The LOC value for each class or package
can be derived. There is no need to change the domain objects (here: packages
or classes) to provide that value. At the script level, such aggregation would be
challenging—if not infeasible—because script steps are only evaluated in one direc-
tion without access to future information.

Synopsis We claim that Vivide scripts can describe tree models for views to
support exploratory program comprehension (and modification). We also claim
that interactive views should be able to let users select objects. Comparing with
traditional tools, such views are often hierarchical or tabular lists. However, there are
many other widgets for visualizations that can help programmers explore complex
problem domains.

To evaluate the applicability of scripts for non-list views, we exemplify the use
of text fields, button bars, polymetric views, and treemaps. On the upside, view
designers can create or adapt views for Vivide scripts and benefit from a flexible
view model. They can anticipate object properties for visual mapping and script

properties for general preferences. On the downside, infinitely deep model trees are
often not supported. Buttons seem inappropriate for data-driven tool building. Text
fields have difficulties in object selection. Treemaps have to aggregate data from leaf
nodes up because scripts can only define models the other way around.

Summary

During the design and implementation of Vivide, we learned many lessons about
tool building in a pure, object-oriented programming system such as Squeak/Small-
talk. At some point, we could “eat our own dog food.” We wrote scripts that process
Squeak’s code artifacts to present them in list views and text fields to read and
write Smalltalk. Step by step, our perspective on tool-supported programming
changed from tools-first to artifacts-first. The script-based, data-driven approach
offered through Vivide turned out to make many of Squeak’s traditional program-
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ming tools obsolete. Yet, there are some tools whose design cannot be mapped
directly to our notion of script and pane composition. On the one hand, such tools
could benefit from re-design toward Vivide concepts. On the other hand, such tools
could guide the refinement of Vivide itself in the future.

The design of adaptable programming tools with scripts and panes offers a more mod-
ular presentation language. The traditional System Browser becomes two kinds of
tools: a class outline and a list of method editors. This way, programmers can collect and
juxtapose related code artifacts on screen without accidental redundancy. A minimal
set of complementary scripts then covers all relevant code-browsing activities such as
senders/implementors of symbols and object exploration. There are also scripts to
begin programming sessions such as via text search and code workspaces. Such a
focus on code artifacts yields first thoughts about script re-use and the embedding of
simple software metrics to support programmers.

There are many design choices to make when applying scripts and panes, which
may need revisions. Comparable to code refactoring, we think that tool builders have
to make trade-offs between Vivide scripts and Smalltalk messaging, Vivide panes
and Morphic morphs, and script/pane compositions. We think that exploratory tool
building should make use of Squeak’s generic containers such as Array, Association,
and Dictionary before starting to implement custom domain classes. Also, morphs
are regular objects that can be stored in model nodes to simplify the implementation
of views. And script steps exchange objects in a similar way panes do, which makes
both concepts interchangeable.

Finally, there are ways other than hierarchical or tabular list views to form a
tool’s presentation language. For example, there are widgets such as button bars or
visualizations such as polymetric views. We think that the view models described
through Vivide scripts can supply information for such non-list views, too. However,
there are limitations such as infinitely deep models, which are often not supported.
Also, any aggregation of properties from leaf nodes up to a model’s root has to be
handled by views. Script interpretation only happens the other way around.

[|]

In the next chapter, we continue evaluating and discussing our solution. That is,
we describe several case studies students carried out using Vivide in the course of
project seminars or their master’s theses.

204



7 Case Studies

We applied Vivide to improve the programming tools we use on a daily basis.
As explained in chapter 6, we changed code browsers, added new visualizations,
and found replacements for all kinds of software artifacts in the Squeak/Small-
talk environment. We also explored language extensions such as context-oriented

programming [191] to evaluate the applicability of our tool-design strategy.
However, we complement our evaluation with projects that we did not carry out

personally. There were several case studies where we observed and guided graduate

students in various project seminars. Our goal was to better understand the thoughts
and strategies of people new to Vivide. Naturally, we controlled their activities to
build tools in that specific way, ignoring alternatives. Note that in all these projects,
tool building was secondary. The challenging problem domains, each having new
kinds of software artifacts, were of primary concern.

In the following, we present four case studies situated in four different program-
ming domains: version control, live language development, module systems, and
multi-language debugging. In each study, we present figures and summaries to explain
project background, results, and efforts. Considering the evaluation of Vivide, we
elaborate on script usage and lessons learned.

Remark For each case study, we present a facts sheet that summarizes topic, scope,
duration, participants, and expected performance (or effort). Additionally, we ap-
proximate the amount of information available by naming the particular Squeak
version and lines-of-code (LOC) involved, which we present with three numbers:
(1) LOC changed by the participants, (2) LOC available for reading to understand
problem/solution space, and (3) LOC of the provided system at that time. Those
numbers should approximate the level of difficulty in each project.
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7.1 Thresher: Grouping Micro Changes

Topic Design and implement tools to help programmers
organize fine-granular code changes.

Scope Software Architecture Group
(Master’s Thesis)

Duration 6 months (prepare) + 6 months (write up)
Participants 1 female graduate student, computer science

Performance 20+ hours per person per week

Squeak 4.4
# LOC 45′354 / 77′063 / 582′735

% LOC 7.8 / 12.2 / 100.0

Remark The master’s thesis of a graduate student is usually related to an existing
research project from our research group. At that point, the student has about 2
years of experience in Squeak/Smalltalk due to lectures and project seminars. In the
thesis’ scope, the student tries to solve a challenge in a way that combines methods
from engineering and science. That is, the student applies programming skills but
also investigates related work to better understand problem domain and solution
space. The measure of success is usually support of a certain scenario, sometimes
supplemented with a user study.

Project Summary

There are situations where programmers leave their current task context to do
related work. Examples include quick bug fixes and code clean-up. Even if such an
exploratory style is anticipated, best practices suggest to group and document such
changes separately. Code repositories cluttered with incoherent version information
impede program comprehension. There are approaches that try to untangle version
histories later. Yet, it makes sense to include the programmer’s tacit knowledge
directly in the code-commit phase.

The results of this project are illustrated in figure 7.1. The student analyzed several
traces of fine-granular source code changes, which were collected during refactoring
sessions from another experiment. In particular, the student grouped changes at the
level of (side) tasks by hand to infer patterns for automated analysis. Those patterns
influenced the design and implementation of a new tool called “Group Browser”,
which should guide programmers during the usual commit phase. We documented
and published the results in a paper [195].
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Figure 7.1: This tool helps programmers select and group fine-granular changes to form
coherent and complete sets for code repositories. Vivide scripts represent different
grouping criteria (here: “by time”). Panes and object connections are hard-coded in a
Morphic application (here: “Group Browser”). The windows in the back show Vivide
scripts used to browse code artifacts and version artifacts.

Script Usage

At the end of the project, there were 18 domain-specific scripts with 140 steps in
total and 8 steps per script on average. All scripts summed up to 900 lines of code,
which averages to 50 lines spread across each script’s steps. At that time, however,
the kind of code re-use among scripts was different. Programmers did not read
#next -> #someScriptId but the entire referenced code inlined in the same script.
Considering this, there were 361 lines of code when counting only unique script steps.
Most re-use happened for steps that sort by domain-specific properties.

The longest script was an extract step that constructed rich text labels and morphs
with icons and buttons for the view. The student did write much code to extract the
required information from the domain artifacts behind group, groupRelation, and
tmp:
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{ #text -> ( group version number asString, ': ',
'<font color="#AAAAAA>',
group version systemEvent cvItemReference asString,
'</font>') asHtmlText.

#frontMorph ->

((( tmp contents at: #subgroups ) includes: group)
ifTrue: [ nil ]
ifFalse: [ CvGroup

actionButtonsForRecommendation: groupRelation

in: ( tmp contents at: #currentGroup ) ]).

#backMorph -> morph }

This excerpt from the actual script illustrates that model nodes can hold any kind of
object to support views. The property #frontMorph holds button morphs, the property
#backMorph holds icon morphs. Both will be embedded in the list view as shown in
figure 7.1.

Many scripts in this project modified the objects they processed. Since users cannot
control script evaluation directly, the student provided copies of objects to scope the
side effects. A custom caching strategy for performance was the main reason for this
design decision.

Lessons Learned

In the course of this project, we learned many things that influenced many design
decisions. Since then, Vivide has changed in many aspects.

First and foremost, scripts needed to be simpler. Back then, there were more
kinds of steps than transform and extract. The idea was to reduce the amount of
glue code to write by having so many kinds. There were steps that transform each,
transform all, sort pairwise, group, group sort pairwise, and extract. Any script could
use an extra context object, which provided access to previous results. Eventually, we
realized that the average Smalltalk programmer would have less issues with uniform
[:in :out | ]-blocks.

Object properties can be specific to a kind of view. The extraction of #frontMorph
and #backMorph targeted a custom version of list view. This is different to #text or
#icon, which attach a re-usable role to the representation of information. We think
that this could be an effect of storing morphs as properties in models. Morphs could
be perceived as an implementation detail rather than a conceptual one.

The scripts we found were rather long and complex. Programmers can write code
that actually belongs to the domain artifacts or the view artifacts. Refactoring of
scripts is necessary, especially if they are used for multiple programming sessions
or in an application.

In this project, panes were hard-wired in a custom application window as regular
object-oriented source code. We learned how make the visual part more flexible in
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terms of combination and abstraction. Eventually, we added pane views and object

connections to the Vivide mechanics.
Finally, we observed that our replacements for Squeak’s code browsers work well.

Method lists can hold related code fragments, which are otherwise spread across
classes. Yet, overlapping, loosely-coupled windows are not always the best choice.
Views similar to Smalltalk’s four-pane browser can help explore many artifacts one
after another.

7.2 Gramada: Live Language Development

Topic Design and implement tools to help programmers
create domain-specific languages.

Scope Software Architecture Group
(Master’s Thesis)

Duration 6 months (prepare) + 6 months (write up)
Participants 1 male graduate student, computer science

Performance 20+ hours per person per week

Squeak 4.6
# LOC 8′376 / 74′106 / 590′522

% LOC 1.4 / 12.5 / 100.0

Remark The master’s thesis of a graduate student is usually related to an existing
research project from our research group. At that point, the student has about 2
years of experience in Squeak/Smalltalk due to lectures and project seminars. In the
thesis’ scope, the student tries to solve a challenge in a way that combines methods
from engineering and science. That is, the student applies programming skills but
also investigates related work to better understand problem domain and solution
space. The measure of success is usually support of a certain scenario, sometimes
supplemented with a user study.

Project Summary

Domain-specific languages (DSLs) help programmers express application logic
in an abstract, declarative way, which produces source code that is more concise
and readable compared to general-purpose languages. However, the creation of
such DSLs takes time because design and implementation of syntax and semantics
often lacks tool support. That is, feedback loops are usually long, and debugging
is difficult. Luckily, there is a (meta) language called Ohm, which simplifies the
creation of parsing expression grammars. In the project, the liveness and directness
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Figure 7.2: Gramada is a tool suite that supports the development of domain-specific
languages. The suite features a live editor, a visualizer for parse trees, a debugger for
parse trees, and custom code editors for grammar rules. All tools are created with Vivide
scripts and pane compositions, integrated via object connections.

of Squeak/Smalltalk should complement this experience with additional tools for
such a language (framework).

The results of this project are illustrated in figure 7.2. First, the student imple-
mented Ohm/S, which is Ohm for Squeak/Smalltalk, extended with strategies to
reduce compilation time. Then, tools for creating, changing, and debugging grammar
rules improved liveness and directness. There is a live editor, a parse-result visualizer,
a custom debugger, and a custom code editor. Many exemplary grammars where
created in the process such as one for Smalltalk and one for Bibtex. We documented
and published the results in a paper [154].

Script Usage

At the end of the project, there were 20 domain-specific scripts with 54 steps in
total and 3 steps per script on average. All scripts summed up to 372 lines of code,
which averages to 18.6 lines spread across each script’s steps. The student did only
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write new scripts for Ohm artifacts and the new tools. Smalltalk (code) artifacts were
treated entirely with Squeak’s traditional tools.

The longest script step is also a very interesting one because it disagrees with our
known script practices so far. The button bar in the Grammar Debugger (figure 7.2)
takes an instance of OhmNode to create an instance of OhmDebugger, which then flows to
the upper views in that tool. Usually, we would implement a debugger (view) on an
object that represents code-in-execution such as Squeak’s MethodContext and Process.
In Gramada, however, debugging means rather trace exploration because grammar
parsing finished (or failed) at that point already. The actions ‘step over’ and ‘step
into’ traverse this trace node by node. We would summarize the script as follows:
script := {

[:ohmNode | OhmDebugger on: ohmNode]
-> { #view -> ButtonBar }.

[:debugger | { #text -> 'over'.
#clicked -> [[ debugger over ]] }].

[:debugger | { #text -> 'into'.
#clicked -> [[ debugger into ]] }].

} asScript openScriptWith: { '(2 * (3 + 4))' parse }.

This means that the Grammar Debugger resets if the user re-interprets the script
behind the button bar. From a tool-building perspective, we cannot assess whether
this is a convenience or rather a nuisance of Vivide. This application shows that
actions (or side effects) in Vivide are challenging. We think that button bars should
be avoided if tools just support the exploration of artifact structure, which is accessible
behind ohmNode in this case.

Lessons Learned

In the course of this project, we learned three things: (1) Squeak’s tools are still
preferred for code writing, (2) ad-hoc integration via object connections works, and
(3) script identifiers and labels reveal the user’s viewpoint.

First, the student kept on using Squeak’s code browsers. Vivide was perceived
as the new approach to build new tools, not to replace existing ones. We think that
the different working practice in Vivide requires much training. Consequently,
well-known activities such as “create a class” and “change a method” demand
for well-known tools. Yet, the student created single-object tools for grammar rules

as depicted in figure 7.2. Such rules are like methods, and Vivide arranges all
single-object tools in artifact lists.

Second, the student integrated grammar tools via object connections in demo
sessions. Starting with the Live Editor to select a certain grammar and rule, examples
either passed (green) or not (red). That tool’s output is the parse tree, which can be
connected to the Parse Result Visualizer or Grammar Debugger as described above.
We observed a strong focus on domain artifacts and not so much on the tools behind
them.
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Finally, we found a prefix in script identifiers: “ohm”. The terms “rule”, “debugger”,
or “match” have a well-understood meaning in this domain. Yet, they overlap,
for example, with concepts that already exist in the Squeak/Smalltalk system.
So, identifiers such as #ohmRuleActionsNormal and ohmDebuggerMultiPane clarify that
meaning. In general, the student’s naming approach is interesting in the sense that
scripts are typically “viewers”, “visualizers”, “browsers”, or “editors”. This indicates
a tool-driven rather than data-driven perspective.

7.3 Matriona: A Module System for Squeak

Topic Design and implement class nesting with
parametrization in Squeak/Smalltalk.

Scope Module Systems
(Project Seminar)

Duration 4 months
Participants 2 male graduate students, computer science

Performance 6+ hours per person per week

Squeak 4.5
# LOC 7′411 / 69′556 / 573′666

% LOC 1.3 / 12.1 / 100.0

Remark In project seminars, graduate students learn about an existing research project

from our research group. At that point, they have about 1-2 years of experience
in Squeak/Smalltalk. They try to solve a challenge in that project’s domain in a
way that combines methods from engineering and science. That is, they apply their
programming skills, but they also investigate related work to better understand
problem and solution space. The measure of success is usually the support of a
specific scenario, sometimes also a small user study.

Project Summary

Squeak has a single namespace for all classes in the system. There are class-name
prefixes to name generic concepts in specific libraries such as FilePackage, MCPackage,
SMPackage, and PackageInfo. However, this approach impairs modularity because
prefixes can still conflict if not organized globally. For Smalltalk-like languages, there
are module systems such as Newspeak’s Nested Classes [20], which add lexical
scope during lookup.

The results of this project are illustrated in figure 7.3. The students implemented
a new module system for Squeak/Smalltalk, called Matriona. They employ classes as

namespaces to foster understanding through hierarchical decomposition, code re-use,
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Figure 7.3: Tool support for the module system Matriona is implemented with Vivide scripts
and panes. This browser resembles Smalltalk’s four-pane browser with navigation panes
in the upper part and a code editor in the lower part. A button bar offers operations on
modules such as “install module” and “export module”.

and class versions. The balance between Squeak’s (code) objects and Smalltalk’s
messaging suggests a compatible and integrated solution for existing projects and
programmers. The students documented and published the results in a paper [184].

Script Usage

At the end of the project seminar, there were 6 domain-specific scripts with 30 steps
in total and 5 steps per script on average. All scripts summed up to 162 lines of code,
which averages to 27 lines spread across each script’s steps. The students did only
write new scripts for the new Module System View. Smalltalk (code) artifacts were
treated either via existing Squeak tools or default Vivide scripts.

The longest script steps define the button bar as depicted in figure 7.3. In addition
to the usual #text and #icon properties, the students implemented an interactive
callback behind #clicked. An excerpt of that extract step looks as follows:
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#clicked -> [[ | newName |
newName := UIManager default request: 'Specify new name'.
newName isEmpty ifFalse: [
memberSpecification fullRename: newName.
ViEventNotifier trigger: #ModuleSystemModuleView ]]

The default UIManager will present a dialog where the user can enter a new name,
which then triggers an effect in the module system. Note that the named event
#ModuleSystemModuleView is used to update the upper-left view in the browser. We
suggested this kind of use for event notifiers because it keeps such side effects close
to the tool implementation and not hidden in domain code. Alternatively, domain
artifacts could provide their own signals to inform other objects about changes in
their structure.

Lessons Learned

In the course of this project, we learned three things: (1) specifications for Vivide
tools are different, (2) a few lines can form Smalltalk browsers, and (3) pane compo-
sition needs improvement.

First, we changed our perspective from “Browsers exchange objects anyway so
make it explicit and adaptable.” to “If we see browsers as [...], then scripts can
help [...].” Our notion of data-driven views seems novel because the students did not
think about programming tools that way. Instead, they always had to learn what
information in the tool interface meant and how that information relates to their
goals. We had to explain and tutor to make them see and think about the artifacts

first when designing new tools.
Second, the students needed less than 100 lines of code to design a new code

browser. Squeak’s browser consists of more than 3000 lines, which renders adaptation
challenging. In this project, script steps were often shorter than 5 lines, which
underlines the modular design of our scripting language.

Finally, we discovered several issues with pane compositions and layouting. The
interactive combination of panes and object connections demands for robustness

known from other UI-design tools.
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7.4 QoppaS: Multi-language Debugging

Topic Design and implement a debugger for interpreter
developers.

Scope Programming Languages: Concepts, Tools,
Environments (Project Seminar)

Duration 5 months
Participants 3 male graduate students, computer science

Performance 6+ hours per person per week

Squeak 5.0
# LOC 3′987 / 55′088 / 570′633

% LOC 0.7 / 9.7 / 100.0

Remark In project seminars, graduate students learn about an existing research project

from our research group. At that point, they have about 1-2 years of experience
in Squeak/Smalltalk. They try to solve a challenge in that project’s domain in a
way that combines methods from engineering and science. That is, they apply their
programming skills, but they also investigate related work to better understand
problem and solution space. The measure of success is usually the support of a
specific scenario, sometimes also a small user study.

Project Summary

The design and implementation of interpreters for higher-level languages can be
challenging because generic programming tools are typically unaware of domain-
specific, high-level concepts. One category of such tools are debuggers, which do
only operate at the level of host languages considering its artifacts and operations for
control flow. Consequently, there is a need for tools that support new guest languages,
being aware the interpreters’ new abstraction levels. In particular, this entails a joint
understanding of stack frames, program counters, and clarification of step-into/over/out

operations.
The results of this project are illustrated in figure 7.4. The students implemented

QoppaS, which is a Scheme/Lisp dialect for Squeak/Smalltalk. Then, they designed
a new multi-level debugger, which separates (lower-level) Smalltalk messages from
(higher-level) Qoppa lists. The main challenge was to find a useful trade-off for
the traditional stack list. Eventually, that list view became a tree view. The overall
problem can be transferred to the development of libraries, frameworks, and language
extensions. The students documented and published the results in a paper [96].
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Script Usage

At the end of the project seminar, there were 38 domain-specific scripts with 106
steps in total and 3 steps per script on average. All scripts summed up to 487 lines of
code, which averages to 12.8 lines spread across each script’s steps. The students did
only write new scripts for QoppaS artifacts and the new debugger. Smalltalk (code)
artifacts were treated either via existing Squeak tools or default Vivide scripts.

The longest script step looks as follows:
[:in :out |
[:objects | | collectedNodes |
collectedNodes := OrderedCollection new.
objects do: [:node |
node contextPart method == (QoppaSexprSemantic >> #eval:in:)
ifTrue: [ | qoppaNode expression |
qoppaNode := VirtualContextNode new.
expression := node contextPart arguments first.
qoppaNode summary:

'Qoppa evaluation of ', expression qoppaPrintString.
qoppaNode definitionContent:

(Text fromString: expression qoppaPrintString).
collectedNodes do: [:each | qoppaNode addChild: each].
collectedNodes removeAll.
qoppaNode addChild: node.
out add: qoppaNode ]

ifFalse: [ collectedNodes add: node ]].
out addAll: collectedNodes ] value: in]

We think that such scripts indicate missing structure in domain artifacts. The re-
lationship between node, qoppaNode, and expression could be encapsulated outside
script code to improve readability and re-use.

Lessons Learned

In the course of this project, we learned three things: (1) script identifiers are actually
used to invoke Vivide tools from object-oriented code, (2) collections should not be
used to represent domain artifacts, and (3) script serialization and sharing should
be improved.

First, we found several script identifiers that either fostered re-use among scripts
or tool invocation in object-oriented code. Those identifiers were #ContextTree,
#QoppaOperativeSource, #multilevelDebugger, and #qoppaReplPane. They all capture
relevant vocabulary from the project domain. They are always similar to the script’s
#label such as “Qoppa REPL Pane” for #qoppaReplPane.

Second, instances of Array seemed a good fit to directly represent Qoppa/Lisp
expressions as Smalltalk objects. Unfortunately, Vivide treats collections as con-
tainers for actual domain artifacts. That is, scripts work on lists of objects, single
objects are automatically wrapped via #asList, and tuples interfere with Lisp lists.
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Figure 7.4: This debugging tool is implemented with Vivide scripts. The user can organize
stack frames to separate abstraction levels. Qoppa is an implementation of Scheme/Lisp
for Smalltalk. The abstractions are reflected through packages such as “QoppaS” and
“Morphic”. A higher-level frame can correspond to multiple lower-level frames.

Consequently, Qoppa had to introduce custom domain classes, not subclassing from
Array or similar.

Finally, version control and code sharing for scripts (or Vivide tools) got relevant,
which revealed some issues. The students did not build programming tools to
support their project. Instead, tool building was their project, which corresponds to
regular application development. So, Vivide scripts were not considering throw-
away prototypes but valuable, lasting project artifacts. At that point, scripts could be
serialized into regular Squeak methods, which already supported version control.
Additionally, we had to improve the script’s serialization format to support proper
comparisons at the text level, which also improved team communication.
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Summary

The most useful insight we got repeatedly from every case study is related to the
understanding and application of Vivide concepts. It took time until students could
write scripts and set up pane compositions as we would do. To some extent, this
is related to the underlying challenge of live programming in pure object-oriented
systems such as Squeak/Smalltalk. Programmers have to learn to let go of the text-
driven, file-centered way of programming, which one follows, for example, with
Java and Eclipse. Such reflection and altering of the own programming knowledge
and experience takes several projects to learn from.

However, we could also identify and correct issues that were inherently present
in some Vivide concepts. At some point, the kinds of script steps were plentiful
because we were looking for good trade-offs between user code and framework
“magic”. The case studies helped find redundant flexibility to clarify the elements of
our scripting language (section 4.1) and UI-design language (section 4.3).

[|]

In the next chapter, we finish evaluating and discussing our solution. That is, we
describe a controlled experiment, explain insights we collected from pilot runs, and
sketch a possible workshop to tackle the challenge of training.
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We claim that Vivide is better than traditional tool-building frameworks because
programmers can iterate faster and save time. In our thesis statement (section 1.3),
we use the wordings “...can be expressed in...” and “...will be easy to modify...” to
frame the impact of our approach. On the one hand, programmers should be able to
build generic tools. On the other hand, programmers should be supported to quickly

adapt those tools to accommodate specific domains and tasks. To evaluate our ideas,
we split up our statement into two parts:

Applicability - Yes or no? Programmers can apply Vivide concept C in soft-
ware project P.

Effectiveness - How much? The time to modify tool T using Vivide is lower
compared to using framework F.

Thus, the notion of being “better” translates to assessing comparability and making
a (qualitative or quantitative) comparison. First, yes, we can apply Vivide, which
we describe via many (internal) practices in chapter 6 and many (external) case
studies in chapter 7. Both scripting language (section 4.1) and UI-design language
(section 4.3) turned out to be useful. In this chapter, we approach the second part of
the thesis statement: how much faster is tool building in Vivide?

At the time of writing, we have no conclusive answer to the question of effectiveness.
Yet, we designed a controlled experiment and conducted first pilot runs to assess
the feasibility of such an endeavor. In our experimental design, we followed best

practices known from experimentation for software engineering in general [82] and
for programming tools in particular [92]. Still, the biggest confounding factor is
the human, which is hardly controllable (or predictable) in cognitively demanding
activities such as programming and tool building.

In the following, we describe our learnings from our experimental design including
the insightful pilot runs. Since we only have an implementation of Vivide for
Squeak, potential participants are (under-)graduate students with 1 − 2 years of
Smalltalk experience from our lectures and seminars. Such a selection can speed
up the training phase and reduce potential friction losses for the technology. That
is, the students already now about Smalltalk’s language concepts and Morphic’s
interaction concepts. So, we focus on the design of representative tasks (for external
validity), intervention-free conduct (for internal validity), and efficient training (for
practicability).
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8.1 External Validity: Representative Tasks

We adhere to our notion of tools as described in section 2.1, section 2.2, and sec-
tion 2.3: applications with interactive graphics to fetch, examine, and retain structural
information of software artifacts. Further, we think that tools for Smalltalk’s code
artifacts represent a viable domain for such an experiment. In Squeak, this familiar-
ity includes the System Browser, Object Inspector, Workspace, and Debugger. All
these tools have simple list, text, or button views, which makes visual mapping
straightforward: labels, pictures, colors.

AB-BA Design

We have a within-subjects approach because willing participants that know Smalltalk
are scarce. So, one participant uses both Vivide, which is the experimental group, and
a traditional framework, which is the control group. We expect to recruit about 10 to 20
students; only (much) higher numbers could justify the alternative between-subjects
design. On the positive side, we can compensate for some variation in programming
skills and other human traits. On the negative side, we have to address carry-over

effects between rounds such as learning and motivation. For example, if a student
begins with Vivide and then switches to a comparable framework, she might already
know how to solve the task. This introduces a bias to the results. Consequently, we
designed two similar tasks to be used in two rounds for each participant, which we
balance in two configurations:

Configuration AB

Round I: Task 1, Vivide
Round II: Task 2, Other framework

Configuration BA

Round I: Task 1, Other framework
Round II: Task 2, Vivide

Balancing is a powerful mechanism to reduce the influence of confounding factors.
Given enough resources, one could balance not only the order of tasks/treatments
but also age, gender, and skill metrics such as years of experience. We make a
trade-off that allows us to continue making measurements as participants arrive.
That is, we can begin (or continue) analyzing the results when both configurations
have the same number of participants.

In the control group, we use Squeak’s Tool Builder [192] framework. It compares
with traditional tool building because of (1) model-view separation [149] and (2) a
declarative way of describing user-interface layouts. The only downside is that there
is no interactive way of expressing such an interface; there is no “GUI builder” [128].
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So, we have to consider that effort and separate it from other glue code. The layout
code for an exemplary tool with a single text field looks like this:
buildWith: builder

| window text |
window := builder pluggableWindowSpec new

model: self; "Target for widget callbacks."
extent: 300@200; title: 'Example Tool'.

text := builder pluggableTextSpec new
model: self; "Target for widget callbacks"
getText: #text; setText: #text:;
frame: (0@0 corner: 1@1). "Fill the entire window."

window children: { text }.
^ builder buildWith: window

From our experience with such tools, we think that the biggest effort lies in the
implementation of the model (callbacks), not the #buildWith:method. Thus, Squeak’s
Tool Builder is comparable with frameworks for non-Smalltalk environments.

Small Effect Size

We expect an effect size of less than 10x, which is considered challenging due to
human variation and the signal-noise relationship in measurements. Yet, this is only
a rule of thumb, and even factor 3 − 4 would be good news for tool building.

We target up to 120 minutes for the control group, which is the median for many
such lab studies [92]. Thus, our task should be doable in about 30 minutes using
Vivide. Note that we use our framework as benchmark because we think that
Squeak’s Tool Builder can cost much more time if programmers get lost in glue.

We cannot exceed two hours per round because fatigue or lack of motivation
would influence the second round. For example, a programmer who would take
much over two hours with the traditional framework could be frustrated and hence
bias the time measurement for Vivide.

Also, we cannot design tasks that are too simple because (1) they would not be
representative and (2) the risk of shortcuts would be higher. This would impair
external and internal validity. For example, if the participant should only add a
button to the interface, any past experiences with Squeak’s Tool Builder could distort
the measurement at the expense of Vivide.

The bottom line is that the expected effect size dictates one of the biggest trade-
offs in our experimental design. Even if the control group takes longer than two
hours, which we can derive from observation, statistical analysis will have to assume
“instant finish” for fairness. We suppose that the possible duration of four hours
(for both rounds) might even exceed the maximal continuous span of attention (or
motivation) programmers have. Any recreational freedom, such as longer breaks,
would introduce more variables we cannot control in such an experiment.
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Two Similar Tasks

As shown in figure 8.1, we designed two tasks to mitigate learning effects for our
within-subjects strategy. Such a design choice, however, can impair comparability
between rounds, which threaten the experiment’s credibility. So, we followed two
sets of guidelines during task design to ensure similarity and novelty. First, we think
that the tools (or tasks) are “similar enough” because we use the same

• kinds of widgets, namely buttons, (hierarchical) lists, and text fields,
• kinds of artifacts, namely code artifacts,
• kinds of sub-tasks, namely add/remove/change widgets with similar difficulties.

Second, we think that the tools (or tasks) are “novel enough”, and thus not predictable,
because we vary

• the layout of widgets, namely “browser style” versus “debugger style”,
• the kind of complementary artifacts, namely graphics (i.e. Morph) or execution (i.e.,

MethodContext),
• the order of sub-tasks, which we show only one after another.

Both tasks focus on exploration, and participants should change the way tools
present artifact structure. We partition each task into 11 sub-tasks to guide par-
ticipants and reduce the risk of strolling. In the task about the object browser, the
sub-tasks are (1) make list to tree, (2) show more objects, (3) add buttons, (4) add
icons to tree, (5) configure text field, (6) sort objects, (7) add list view, (8) sort objects,
(9) configure text field, (10) configure list selection, (11) change list labels. In the task
about the debugger browser, the sub-tasks are (1) make list to tree, (2) add icons to
tree, (3) add buttons, (4) configure text field, (5) sort objects, (6) add list view, (7) sort
objects, (8) configure text field, (9) show more objects, (10) configure list selection, (11)
change list labels. — We can complete each task in less than 20 minutes using Vivide.
This is the benchmark we set for a successful training phase for all participants.

Synopsis We have a within-subjects design with two similar tool-building tasks to
mitigate carry-over effects between rounds. The tasks are similar because of shared
kinds of widgets, artifacts, and sub-tasks. The tasks are novel because of different
sub-task order, graphical layout, and complementary artifacts. The experimental group

uses Vivide, and the control group uses Squeak’s Tool Builder, which is a traditional
model-view framework with declarative GUI definitions. We expect an effect size
of 3x to 4x because of the complexity of representative tool building. The practical
task size for the control group is capped at 120 minutes because of motivation and
fatigue. We can do our tasks with Vivide in under 20 minutes each.
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Figure 8.1: Two comparable tool-building tasks. The upper one is about an object browser

that connects the graphical hierarchy to source code artifacts. The lower one is about a
debugger browser that connects code in execution to source code artifacts. In both tasks,
participants should change views, add views, and add (functional) buttons.

8.2 Internal Validity: Intervention-free Conduct

We modified the Squeak/Smalltalk environment to guide participants and collect
data as illustrated in figure 8.2. At best, they can complete the entire experiment
without intervention, which fosters reproducibility of our results. We were inspired
by the Biscuit system [138], which supports experiments around tools for code
exploration and organization.

We want to streamline two aspects in this experiment to allow for accurate time
measurement and thus effect size. First, we want to split up the task instructions to
hinder participants to plan ahead and take shortcuts. Second, we want to automate

the tests for a sub-task’s goal state to avoid cheating and strolling. Both aspects lead
to thoughts on breaks and idling, which can also influence measurements.

Split Up Instructions

The instructions for each sub-task should be concise and comprehensive. As shown
in figure 8.2, we tried to use simple English phrases and emphasis on selected terms.
Participants can only see the current instructions and not go back or peek forth. We
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Figure 8.2: The environment guides each participant through two rounds. The control panel

at the bottom informs about the current sub-task (here: “Task 1”), domain code to use, and
overall progress. On mouse over, the panel shows a screenshot of the expected visuals.
The “Next” button will be activated when automated tests pass.

consider four aspects to describe sub-tasks: informal description, formal domain
code, illustrative picture, and framework-specific hints.

The task description should meet the participants’ common understanding of the
domain, and selected domain classes (and methods) should connect that understanding
to source code. We do not want to measure the time to find out about the specific
domain code because our framework reduces generic glue. For the task about the object

browser, we use 41 words on average per sub-task description and provide 20 domain
methods in total. For the task about the debugger browser, we use 48 words on average
and provide 29 methods in total. (Note that the latter number includes methods that
re-occur because they can be needed repeatedly.) We think that such instructions are
concise and comprehensive. Per sub-task, participants only learn about one to three

domain methods, which are directly related to the informal description.
The illustrative picture should help participants understand the visual level of the

current tool modification. Since there are sometimes browsing instructions, visual
comparison can further clarify the textual description. For example in figure 8.1, the
left screenshots could be the status quo and the right screenshots could be the goal
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state. In program comprehension, a tangible representation of artifact structure is key.
We dictate this level of tangibility here because we want to control the experiment.

Finally, we provide framework-specific hints, which is basically additional source
code. Given that participants are knowledgeable in the particular framework, occa-
sional lookup in code or documentation is nothing to worry about. Again, we do not
want to measure the time to do this lookup. Instead, we show selected hints directly
in the control panel. For example, the first hints look like this:

“It’s Vivide! There is a ViPluggableTreeMorph, which shows a model’s
tree structure.” — Experimental Group
“It’s Squeak’s Tool Builder! There is a PluggableTreeSpec to specify tree
widgets.” — Control Group

For the task about the object browser, we use 10 and 7 words on average per hint in
experimental group and control group respectively. For the task about the debugger

browser, we use 12 and 7 words on average per hint in experimental group and control
group respectively. We think that these additional hints preserve the conciseness
and complement the comprehensiveness of our instructions.

Automated Tests

We want to automatically find out when each sub-task is done. Manual judgment
takes time and can be inconsistent, which impairs reproducibility. As indicated in
figure 8.2, the button to reveal the next instructions is disabled until the system
“sees” the expected results on the screen. This guard does still not rush participants
through the experiment. They have to click that button because the system should
rather guide than force.

Test code can process Morphic’s graphical hierarchy through the global variable
ActiveWorld. So, we can perform periodic checks on that structure and look for
patterns that satisfy the current sub-task. Both Vivide and Squeak’s Tool Builder
use the same kind of morphs to show information. From a quick look, one cannot
tell which framework is in action. The only difference is the way those morphs are
constructed and configured. That is, the means to find code, change code, and verify

the results differ.
We designed an embedded domain-specific language to simplify the experiment’s

automated tests. We basically created a custom TestCase class that has messages
for analyzing the graphical hierarchy. The correct widgets have to show the correct
information. So, participants have to write code for the tools and use the tool to make
the tests pass. For example, an instruction to browse the method #submorphCount in
the class Morph can be tested like this:
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self thereIsAnother: PluggableListMorph thatSatisfies: [:list |
self is: list

aListThatHasSelection: ’submorphCount’ ].

self thereIsAnother: PluggableTextMorph thatSatisfies: [:field |
self is: field

aTextThatShows: (Morph » #submorphCount) getSource ].

There are messages to query a kind of widget an then run some checks:

• #thereIsA: aMorphClass thatSatisfies: aBlock
Evaluates the block with any instance of aMorphClass that can be found on screen.

• #thereIsAnother: aMorphClass thatSatisfies: aBlock
Evaluates the block with an instance of aMorphClass that has not been queried
before in this test.

• #thereIsNoOther: aMorphClass thatSatisfies: aBlock
Evaluates the block with all instances of aMorphClass that have not been queried
before in this test.

There are messages to test the visual mapping for specific widgets:

• #is: aListMorph aListThatShows: stringOrText
Navigates the internal structure of the given list to look for the given label.

• #is: aTreeMorph aTreeThatShows: stringOrText
Navigates the internal structure of the given tree to look for the given label.

• #is: aTextMorph aTextThatIncludes: stringOrText
Navigates the internal structure of the given text field to look for the given content.

There are also messages to test control flow, which we use for buttons. To be sure
that a certain button works, we log the occurrence of a callback plus the object that
triggered it. Thus, we can use common actions to implement with new buttons such
as “explore” for an arbitrary object to invoke Squeak’s Object Explorer. Recall that
we dictate certain domain messages in instructions as described above. In tests, such
control-flow guards look like this:
| exploreWrapper |
"1) Create or retrieve the wrapper for the callback."
exploreWrapper := self

ensureControlFlowCheck: [:context |
"Here, we are in the middle of a button click."
context receiver isKindOf: PluggableButtonMorph ]

in: StandardToolSet class >> #explore:.
"2) Find a button that matches."
self thereIsAnother: PluggableButtonMorph thatSatisfies: [:button |

(button label asString includesSubstring: ’explore’ )

and: [button == exploreWrapper matchingReceiver ]].
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Participants have to click on that button at least once and then wait for the periodic
check to occur. If satisfied, the next instructions might be revealed. Note that we
implement this mechanism with method wrappers [22]. For every new button,
it takes one test cycle to install the wrapper, which might be noticed during the
experiment. Yet, we test every 2 seconds and assume that participants would double
or triple check the button if in doubt.

There can be false positives and false negatives. We noticed that participants can
be skeptical if a sub-task is marked “done” too quickly. They would rather call
the instructor instead of cheat. Since sub-tasks build on each other, any skipped
modification could turn out to block a later one. If we learn about such mistakes, we
can add additional lines to our tests because bug descriptions can often be articulated
in terms of our test language. If not, the test languages can be extended.

Measuring Time: Idle and Break

We target measurements from 30 minutes up to 120 minutes. Due to our small
effect size, we have to consider events that happen at the granularity of seconds or

minutes. So, we combine periodic checks and event logging to support analysis and
interpretation of the results. Logged timestamps should reveal task completion,
breaks, and time-outs.

First, we distinguish the following events, whose timestamps might reveal outliers
in later analyses:

• (Sub-)task started (or “Next” button clicked)
• (Sub-)task completed (or task test passes)
• Break started
• Break completed
• Auto-break detected
• Time-out detected

Second, we perform the following periodic checks to trigger the events mentioned
above:

• Idle check every 10 milliseconds for auto-break after 60 seconds continuous idling
• Time-out check every 60 seconds for time-out after 120 minutes continuous work

time (i.e. without breaks)
• Task check every 2 seconds for “Next”-button unlock

We chose these sampling rates in all conscience. In common response-time guidelines,
keyboard or mouse input is in the range of milliseconds [176, p. 445]. Breaks are
likely to matter after one minute because we want to count minutes. Task checks
may cause micro-lags, which does not affect the overall quality-of-service too much
every several seconds.
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We care for breaks, primarily, to handle unforeseeable events that do not relate to
the experiment. For example, there are toilet breaks, phone calls, or lunch breaks.
The latter is possible between rounds because we switch treatments (or frameworks).
Participants can enter such a break at any time by clicking the “Pause” button as
shown in figure 8.2. Then, the screen goes black to fully leave the task context.
Nevertheless, we hope that longer breaks do not occur within rounds because think

time is difficult to control then. The addition of idle detection tries to mitigate human
error even further because phone calls, for example, can be urgent. Yet, participants
can take off-line notes or think about the problem for more than 60 seconds. In that
case, we assume that they will quit the break directly after noticing that the screen
turned black.

Synopsis We split up task instructions into 11 sub-tasks. Each of those instructions
consists of a concise, informal description of less than 50 words on average. It
is complemented with domain code, a screenshot, and framework-specific hints.
Participants should focus on user (or tool) interaction and not documentation lookup.

We expressed all task instructions in a custom, domain-specific language to check
for task completion periodically. That language is embedded in Squeak/Smalltalk
and extends its Unit-testing framework to analyze the Morphic graphical hierarchy.

The automatic time measurement considers task completion, breaks, and time-
outs. Periodic checks ensure a granularity of seconds or minutes because we target
30- to 120-minutes sessions due to our small effect size.

8.3 Training is Key

Programmers will most likely benefit from Vivide if they adjust their habits to
its data-driven perspective as described in section 4.4. Thus, participants in this
experiment have to be trained to quickly articulate framework-specific actions based
on abstract task instructions. For example, “add a list” (roughly) translates to “use
PluggableListSpec in #buildWith:” for the control group and to “add pane with
ViListView as #view in script” for the experimental group. The articulation of such
goals takes more time for novices than for experts of the particular framework. Yet,
our hypothesis assumes that programmers are fairly knowledgeable in this regard
to make Vivide effective.

From our experience, we think it is not feasible to teach our scripting language, UI-
design language, and data-driven working practice at the day of the measurement.
Our participants are expected to know Squeak’s Tool Builder already, but that
knowledge should be refreshed, too. So, the training phase represents another trade-
off in addition to participant selection and task design. There is little documentation
on how to proceed in this case. We are aware that this entire challenge “suggests
that there is an inherent bias in controlled experiments toward evaluating tools
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Figure 8.3: Participants will create this File Browser as training for Vivide and Squeak’s
Tool Builder. This tool processes files and directories. It can filter by name, rename files,
and show picture or text files.

that can be quickly learned, and against tools that require significant practice.” [92]
Nevertheless, we are interested in gathering more insights, being careful not to jump
to conclusions without proper data. Pilot runs can provide feedback on how to
proceed.

Homework, Deliverable, Questionnaire

Participants should be able to invest the time they think they need for training.
One week in advance, we provide the instructions for a third task and the Squeak
environment, which includes Vivide, to do the task. As depicted in figure 8.3, that
task is about files, directories, and pictures. During that week of training, we are
available for additional support, personally or via e-mail. Then, at the day of the
measurement, we want to see the tools created in the task to verify completion. A
complementary questionnaire helps guide and track the learning progress for the two
frameworks’ features.

The training task is about creating a browsing tool for files and directories. Com-
pared to our experiment tasks, we choose the same widgets but different domain
artifacts. That is, programmers should know about their languages and tools, which
are the frameworks and widgets, to approach an unknown problem, which are the
artifacts. We prepared a video tutorial that accompanies participants and solves the
task step by step. For Squeak’s Tool Builder, there are 69 minutes of dubbed footage
divided into 10 files for easy reference. For Vivide, there are 82 minutes in 18 files.
Basically, participants watch and listen to the videos and replicate the interactions
they see. Then, they save the Squeak image and bring along the image file for us to
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verify. We think that one week can be enough to process about 2.5 hours of video
and learn from it—assuming that participants are willing and motivated.

Our goal is to teach the respective framework model so that participants can
articulate actions using terms of the framework. Both homework task and video
tutorial may transport this by example, but a generic understanding of terms requires
more training. Instead of providing more tasks, which are difficult to design, we
decided to create a questionnaire as a checklist. Participants should be able to answer
all questions to themselves and to the instructor. Examples include “What is the
relationship between model and view?” and “What are workspaces good for?” There
are many questions to cover the many terms and concepts of Smalltalk, Squeak,
Squeak’s Tool Builder, and Vivide:

1. Framework design and interaction concepts

• Squeak: model, view, builder, observer, specifications
• Vivide: pane, script, view, connections

2. Programming language concepts

• Squeak/Smalltalk: objects, messaging, enumeration, branching
• Vivide: object transformation, property extraction, script references, tuples

3. Interactive tool support

• Squeak: code browser, transcript, workspace, object inspector
• Vivide: script editor, script wizard, code folding, script properties

4. Actual tool construction

• Squeak: base classes, framework messages, layout properties
• Vivide: add/remove panes or connections, typical views, typical script proper-

ties

5. Pitfalls and debugging

• Squeak: breakpoint, process, debugger, manual interrupt
• Vivide: pane halo, script editor

This summary of concepts illustrates the challenge we face: participants have to learn
or refresh much information upfront. Recall that we target people that have 1 − 2
years of Squeak/Smalltalk experience, are knowledgeable in model-view separation,
and have more than 2 years of programming experience. This covers procedural,
object-oriented, and functional paradigms. Consequently, many concepts we need
here can be seen as variations and applications of existing knowledge.
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Lessons Learned from Pilot Runs

We recruited three students to test our experimental setup. For each session, we
recorded the video (without audio) to discuss and debug issues that may occur. We
learned that (1) the task instructions are comprehensive, (2) the experimental group
progressed faster, (3) unsupervised homework fails, and (4) qualitative insights
emerge.

First, yes, the instructions, domain code, picture, and framework hints were
sufficient to guide participants through the experiment. There were no questions
asked to the instructor about what to do to unlock the “Next” button. We conclude
that our choice of artifacts and widgets is representative, which all participants
confirmed to us. It actually feels like a tool-building task.

Second, encouragingly, the experimental group (or round) progressed faster than
the control group (or round), looking at the sub-task completion rate. However,
both groups timed out after two hours. Thus, we cannot and should not analyze the
collected timestamps to draw conclusions because the experiment’s integrity would
be impaired. If we decide to reduce the number of sub-tasks, new pilot runs will be
necessary.

Third, no, the kind of training we offered did not work. The seriousness of required
practice was not clear enough. Participants did their homework very late in the week,
even without completing it. The questionnaire turned out to be difficult to evaluate
live before the measurement. In the recorded video, we noticed a sense of cluelessness
from the way participants operated the user interface. Thus, the articulation of actions
from instructions was flawed: the user’s model differed strongly from the design (or
system) model [134, pp. 12–17]. Consequently, we think about revising the training
phase.

Finally, we think it is more likely to collect results rather qualitatively than quanti-
tatively from this study setup. On the one hand, actual numbers support credibility
when arguing the effect Vivide has in comparison to Squeak’s Tool Builder. On the
other hand, generalization for software tools is difficult because many ideas have
only a few implementations. Different programmers are likely to implement ideas
differently, influenced by their communities and daily challenges. Consequently,
qualitative feedback can yield new perspectives on tools across programming lan-
guages, frameworks, and environments. That is, if Smalltalk-like environments can
benefit from artifacts-first concepts, other data-oriented (e.g., files, tables, objects)
environments might revise their tools-first strategy, too.

Toward a Tool-building Workshop

We want to maintain the participants’ motivation throughout the lengthy training
phase. From our case studies (chapter 7), we learned that tool building might
best be a complementary activity. For example, the Thresher project (section 7.1)
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primarily looked for rules to automatically cluster fine-granular code changes; the
Gramada project (section 7.2) had to implement Ohm for Squeak and several parsing-
expression grammars to better understand the activity of language creation. In both
cases, the setting entailed discussions with other students and advisors to collect
feedback. We might be able to design such a setup for our experiment training, too.
A group of participants could jointly experience and discuss Vivide and Squeaks’
Tool Builder to understand each framework’s terms and mechanics.

Training tasks should include more details about live programming. Typically,
1 − 2 years of occasional Smalltalk during lectures and seminars are not enough to
fully understand and apply the benefits of immersive programming systems such
as Squeak. For example, programmers are free to think only in terms of source
code and how it gets written to the file system or code repository. They can set
breakpoints, print statements to the console, and thus lengthen their feedback loop
like in traditional, file-based environments. Yes, they can still create interesting
applications that way. However, a thorough understanding of liveness may free
many cognitive resources to create more complex solutions with smaller teams. We
think that programmers can get more from Vivide if they are already proficient
with Smalltalk’s object graph and Morphic’s tangibility.

We argue that a multi-day workshop is a viable next step to explore participant
training in a supervised group setting. We would basically transform our homework
task into an interactive, classroom-like version. The first days would be used to
present the concepts of live programming and tool building. Several tasks would
be performed individually and results discussed in groups. This might be a filter for

motivation to let unwilling participants go before the measurement. On the last day,
we would conduct the experiment and measure the time as described above.

[|]

We see systematic, rigorous evaluation of programming tools as an interesting,
open field of research. While quantitative results may be hard to achieve, even
qualitative insights should be collected in structured, reproducible ways.

Synopsis Training is necessary to form a baseline for all participants so that varying

measurements are likely due to the experimental treatment and not “learning by
doing.” We designed an additional task to be done off-site and one week upfront. The
results should be demonstrated to the instructor, and a questionnaire should check
learning progress beyond that training task.

After three pilot runs, we conclude that such homework is likely to be ignored and
that a supervised group workshop is a viable next step. There are inconclusive signs of
Vivide outperforming Squeak’s Tool Builder. However, the current form of training
yields to time-outs (after 120 minutes) for both control groups and experimental
groups.
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Summary

Summary

In addition to our own experiences (chapter 6) and the student projects we advised
(chapter 7), we are interested in measuring the effectiveness of Vivide compared
to other tool-building frameworks. Such quantitative evaluation is usually done via
controlled experiments (or lab studies). However, programming is a cognitively
demanding activity and hard to control in terms of dependent and independent

variables. Thus, only few practices for such rigorous experiments about (complex)
programming tasks have been documented so far.

We designed a within-subject experiment with two similar tasks to mitigate variations
because of the human factor. Participants complete two rounds and apply either
Vivide or Squeak’s Tool Builder to modify browsing tools. They change list labels,
add buttons, or add new views. We cap each round at 120 minutes to balance
motivation, which is a typical limit for such lab studies.

We extended Squeak to guide all participants through the experiment without
manual intervention. Task instructions are split up into 11 sub-tasks each. They include
a natural-language description, the required domain code, framework-specific hints,
and a picture of the resulting tool modification. We also created automated tests that
use a domain-specific language to analyze the graphical hierarchy. So, participants have
to use the tool in the expected way to make progress, not just write code. During
time measurement, the system denotes breaks and idling to support later analysis.

Finally, we noticed that training is a crucial part in our experimental setup. At the
time of writing, we learned from pilot runs that participants are not motivated to
train at home. We think that a supervised group setting represents a viable next step
to maintain motivation and check learning progress. In any case, we can and did
already collect qualitative feedback from our setup; it revealed bugs and suggested
features.

[|]

In the next chapter, we describe more related work, which broadens our perspective
on querying, mapping, and presentation languages for interactive, graphical tools
in exploratory programming environments.
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We designed our Vivide tool-building framework based on issues we observed
in the realm of tools for domain-specific program comprehension. In section 1.2,
we identified the state-of-the-art as many promising, yet isolated, ideas that lack
conceptual integration as a flexible environment. Vivide can be such an environment
because programmers can integrate software artifacts and interactive views to tailor
the graphical representation of any information. They can combine different window

managers to layout views. They can combine different scripting languages to process
artifacts. Consequently, they can easily shape here what is usually not malleable in
environments such as Eclipse and Visual Studio.

In this chapter, we describe more related work. There are many projects, tools,
languages, libraries, frameworks, or environments that try to disenchant the chal-
lenges of programming [89]. A common vision is the creation of an accessible,
powerful computational medium that augments the human intellect1—hopefully
no professional training required. We share that vision. In relation to Vivide, we
found (1) scripting languages for data processing, (2) means to describe graphical
user interfaces, and (3) forms of presentation for different knowledge processing.

9.1 Related Query Languages

There are many scripting languages in which programmers can express rules to query
information spaces with low effort. For our implementation of Vivide, Smalltalk
was the obvious choice because its messages and Squeak’s blocks foster conciseness in
a declarative way. However, our idea of alternating object transformation and property

extraction to describe hierarchical models is independent of Smalltalk.
In the following, we present high-level languages that can provide a concise

and declarative syntax for processing data (or software artifacts). Vivide could
incorporate them to further accommodate different data sources and programming
paradigms.

Lisp-based Languages

Lisp [114] is a general-purpose programming language with a taste for the func-
tional programming paradigm. Lisp applications can represent systems that are
changeable at run-time and thus compare to Smalltalk systems. For example, the

1Douglas C. Engelbart wrote a report about a possible conceptual framework in this regard [49].
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text-manipulation environment EMACS [185] is designed for and implemented in a
dialect called EmacsLisp. Like Squeak/Smalltalk, such dialects accommodate certain
domains with standard libraries. A popular dialect of Lisp is Scheme [1], which
has been used in applications for painting [47] or charting [48] to add powerful
extension points for expert users.

Inkwell [60] is a tool written in Lisp and using Lisp as configuration language
to extensively process data. Scripts describe templates to transform pieces of writing
according to metrics such as agreeableness and extraversion. Such writings can be
poetry, narratives, or non-fictional reports. We think that this application of Lisp
shows that the functional paradigm is suitable to help express domain-specific
intents in data-driven tools.

In Vivide scripts, Lisp-based transform steps could be expressed like Squeak’s
Collection protocol. The Scheme dialect [1] has already functions to map and filter
elements in lists, which is the same as #collect: and #select: in Squeak. Blocks
correspond to lambda functions. For example, a script that computes the squares of
numbers could look like this:
(define script (lambda (in)

(map (lambda (num) (* num num) ) in )))
(script '(1 2 3 4)) ; evaluates to '(1 4 9 16)

Such scripts could still be represented as objects in Squeak’s object graph. There are
implementations of Lisp for Smalltalk such as Qoppa, which we used in a case study
(section 7.4). Since both Smalltalk and Lisp support the functional programming
paradigm, we see Lisp as a good fit for programming-tool construction to reduce
glue to focus on domain-specific transformations.

Prolog-based Languages

Prolog [2] is a general-purpose programming language that follows (or defines) the
logic programming paradigm. Programs are made of rules and facts, which represent
relations; program execution means query evaluation over these relations. This renders
Prolog-based languages suitable as query languages to access as process software
artifacts for programming tools. For example, Jquery/TyRuBa [39] can describe a
three-level model hierarchy for views with a single line of Prolog code:
type(?T),re_name(?T,/Figure$/),method(?T,?M),returns(?M,?R)

For all matching tuples in the (ordered) form of (?T,?M,?R), the first level would
show classes whose names end with “Figure”, the second level would show all
methods in that class, and the third level would show the return type (or class) for
each method. Note that the order is an additional property of such scripts, and the
object properties (i.e. text and icons) cannot be configured in Jquery. In Vivide for
Squeak/Smalltalk, such a script would look like this:
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script := {
[:classes | classes select: [:cls | cls name endsWith: 'Figure']].
[:class | { #text -> class name }].
[:class | class methodDict values].
[:method | { #text -> method selector }].
[:method | method returnType. "Not implemented."].
[:class | { #text -> class name }].

} asScript.
script openScriptWith: SystemNavigation default allClasses.

With such logic rules, programmers can think differently about the structure
of software artifacts. That is, they do not have to describe a hierarchy of artifacts
level-by-level but their overall relationships. The hierarchy can be defined afterwards

on the matching tuples, which can be treated as a different set of artifacts. On the one
hand, Smalltalk messaging is suitable for navigating the object graph in small steps.
On the other hand, Prolog query resolvers can take a broader look on everything

and extract meaningful information. For example, common behavior between two
classes can be described with this SOUL query [118]:
commonBehavior(?C1,?C2,?M1,?M2) if
method(?C1,?M1), method(?C2,?M2),
methodStatements(?M1,?Stats), methodStatements(?M2,?Stats).

In Vivide, such a query would become a larger Smalltalk expression in a single
transform step, which would impair modularity and readability. We think that only
the results of such Prolog queries should be processed in Vivide scripts. By using
tuples, the script from above could change as follows and accept tuples of any size:
script := {

[:tuples | tuples groupByFirst]
-> { #id -> #'e9f654d1' }.

[:object :tuples | { #text -> object printString }]
-> { #isProperty -> true }.

[:object :tuples | tuples collect: [:t | t allButFirst] ].
-> { #next -> #'e9f654d1' }

} asScript.
script openScriptWith: (Prolog evaluate:

'type(?T),re_name(?T,/Figure$/),method(?T,?M),returns(?M,?R)').

Note that this code assumes an implementation of Prolog behind #evaluate:, which
should be integrated with the Squeak/Smalltalk object model. Also, the script’s
steps are so short because we assume that the script wizard will expand steps to the
in-out form ([:in :out | ...]). A more specific property extraction would also bloat
the generic, yet compact, “object printString” expression.

There are many other examples of Prolog-based scripting languages to query
code artifacts for interactive programming tools. ASTLog [37] uses logic queries to
examine abstract syntax trees. There are rules and facts to prepare code artifacts for
the MOOSE visualization toolset [158]. We also think of SQL [4] and SPARQL [150]
because their queries yield tuples (or tables), too. Compared to traditional Prolog,
SQL statements in the form of SELECT/FROM/WHERE provide more control over
the selection of sources to query artifacts from.
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Dataflow-based Languages

There are programming languages (and systems) that focus on streams of data as
opposed to singular data points stored in variables. Programs create, transform,
and combine streams to filter or derive information. Streams can often be sampled
and inspected or fed into other programs. The notion of time becomes tangible, and
sometimes first-class, because programmers can model the history of data in tangible
chunks. With this abstraction of time, interpreters for such languages can optimize
resources via parallelism and laziness. In the object-oriented world, dataflow could
be treated as an elaborate observer pattern [62, pp. 293–303], which could be reified
through objects that follow the stream protocol (instead of the collection/list protocol).
Such design is sometimes referred to as reactive programming.

We were inspired by UNIX filter programs [153, pp. 266–267]. Each filter performs
a small task; many filters can be combined (or chained) to process streams of
characters or bytes. Typical examples include awk [153, pp. 200–202] and grep [153,
p. 266], which both offer textual pattern matching for filtering or other effects. UNIX
shells execute filter programs in parallel because the parts in such data pipelines
are not required to “finish”. In Vivide, script interpretation has no such inherent
parallelism at the time of writing. For tool views, sorting and duplicate removal are
common transformations, which both require knowledge about the whole data set.
In the future, a proper integration of streams as input/output buffer is likely to entail
asynchronous script interpretation as sketched in section 4.1.

Pure dataflow languages such as Lucid [209] add several concepts to manage
time. There is fby (“followed by”), next (“look ahead”), or whenever (“select if”). For
example, a stream of natural numbers can be stored behind the variable n as follows:
n = 1 fby n + 1;

In this inductive definition, the first element is 1, which is then followed by increments
n+1. In Vivide, such a stream (or generator) of natural numbers might be expressed
like this:
script := {

[:in :out | | n |
n := 1. "First value"
[ out nextPut: n.

n := n + 1 "Increment"] repeat ]
-> { #out -> SharedQueue. "Stream semantics. Thread−safe."

#async -> true }
} asScript.

Here, the script step would constantly emit numbers into the output buffer. Another
step can then consume that output. Note that there is future work to explore
consistent tool updates for such concurrent script interpretation. Although, we expect
little challenges because of our modular separation of scripts, panes, and object
connections. There is an implementation of such dataflow for Squeak/Smalltalk
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in KScript [136], which uses controlled ticking to advance time and fill streams. For
example, a stream of points in ticks of 100 milliseconds can be written as follows:
aPoint <- P(0, 0) fby P(timerE(100) / 10, 0)

To get such frequency for our natural-number script above, we could add “(Delay
forMilliseconds: 100)wait” into the repeat loop. The underlying Squeak process
would suspend for 100 milliseconds.

General-purpose programming languages can carry dataflow constructs as em-

bedded languages. For example, Smalltalk’s primary paradigm is object-orientation,
but functional, logical, or dataflow programming can be expressed with objects and
messaging. Squeak’s collection protocol [32] supports a functional style with its mes-
sages #collect: (or “map”), #select: (or “filter”), and #inject:into: (or “reduce”).
In Vivide, we use Smalltalk’s syntax and object model to offer a data-driven way to
describe view models. In the same spirit, there are configurable program tracers that
use a subset of Python [87] or domain-specific Lisp [111] to control debugging tools.
Such scripts usually query certain method activations or program slices of interest.
The tracer can then collect information during program execution more efficiently.
For example, the expression “the_execution.all_calls()” [87] does not trace any
calls until needed in another expression. Vivide realizes such lazy evaluation, too,
at the granularity of levels in the model tree. For this matter, the stream of natural
numbers could be expressed as a degenerated tree:
script := {

[:num | num + 1 ] -> { #id -> #'e0d4f8aa' }.
[:num | { #object -> num } ] -> { #next -> #'e0d4f8aa' }.

} asScript.

tree := script interpretScriptWith: #(0).
tree children first object == 1.
tree children first children first object == 2. "... etc ..."

This tree is of infinite depth. It is degenerated because each level has a single child,
which holds the number in the #object property. Programs can traverse this “tree-
structured list” to consume numbers. If nodes have no parent reference, the system’s
garbage collector can clean up consumed portions of this “stream”.

Synopsis Vivide scripts alternate steps of (a) object transformation and (b) property
extraction to describe hierarchical view models. We use Squeak/Smalltalk because
blocks and messaging can add little overhead to domain-specific rules. Yet, the use
Smalltalk is not mandatory or exclusive in our design.

Learning from Lisp-based languages, we could adopt a similar functional style
with a likewise compact syntax. Learning from Prolog-based languages, we could
integrate a different perspective on artifact structure whose logical queries result in
tables (or tuples) to be processed in Vivide scripts. Learning from dataflow-based
languages, we might extend script interpretation to be parallel or at least concurrent
for a better abstraction of time.
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9.2 Related Means for Data-to-Graphics Mapping

In tool building, much of the effort can be accounted for visual mapping because the
transition from domain code to view code entails most of the glue. Programmers
have to prepare the queried artifact structure for views in the form of labels, colors,
and other visual properties. They iterate and thus have to read and change any glue
over and over again. To one end, low-level event/drawing interfaces provide a maximum
of flexibility but little convenience. To another end, high-level visual languages and
direct-manipulation interfaces [173, 75, 172] offer convenient view construction but
limited means of configuration. Like Vivide, there are many approaches that build
on model-view separation [149]. Typically, there is also some form of programming
(or scripting) to tackle unforeseen challenges.

Generic Visualization Construction

The programming tools we address are interactive, graphical applications. Such tools
make information about software artifacts accessible and comprehensive. So, we
relate to the field of information visualization [174], which addresses data exploration
and presentation. We argue that tool builders can adopt techniques from projects
that improve the construction of interfaces that visualize information [68]. Vivide,
Squeak, and Morphic offer practical means to help programmers apply best practices
from that field:2

Visual Builder Designers have full control over visual elements like in presen-
tation software or graphics editors. — Vivide offers such flexibility through a
combination of scripts, connected panes, views and pane views. However, most
of the flexibility in view design is attributed to Morphic’s interactivity and the
Smalltalk object model.

Shelf Configuration Designers can choose from a set of default charts to
display data. Being less flexible than visual builders, they might still combine
those charts in documents. — We created several views for Vivide that make no

use of pane views but plain Morphic. There are lists, tables, trees, text fields, or
treemaps to be configured through property extraction in scripts.

Template Editor Designers can choose from a set of default charts, and there
is interactive guidance for chart configuration. For example, Microsoft Excel has
interactive dialogs (or wizards) to support visual mapping. — Vivide reflects
script changes directly in corresponding views. Thus, tool builders can quickly
experiment with different configurations. Also, our script editor offers templates to
shorten scripts.

2See [68] for a more elaborate explanation of the choice of categories and concrete example systems.
An alternative catalog can be found in [31, pp. 436–442].
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Visualization Spreadsheet Designers can layout many different chart config-
urations side-by-side to quickly explore different combinations of data sets. —
Due to the self-supporting nature of Squeak/Smalltalk, tool builders can write a
Vivide script that applies multiple scripts on the same data set to show multiple

views populated in different ways. Since all views are morphs, such a side-by-side
comparison is automatically integrated in the interactive environment.

Textual Programming Designers apply traditional programming languages to
describe screen contents and interactivity. — In our current implementation of
Vivide in Squeak/Morphic, programmers can always use Smalltalk code and
Morphic objects in scripts. They can write custom views and pane views to express
new layout containers or entire visualizations. Yet, we think that elaborate view
design excels the duty of a programmer that wants to build programming tools.

Visual Dataflow Programming Designers can employ visual languages to
express data transformations and visual mapping. There are often shapes that
encapsulate operations and connectors between shapes that define dataflow. —
Vivide offers two kinds of dataflow: (1) script interpretation and (2) object ex-
change between panes. When constructing the view model from script steps, data
flows between input and output buffers. When interacting with views embedded
in panes, data flows from one pane into other ones. Such object exchange triggers
script interpretation to populate the next pane’s view.

Vivide itself is a script-based, direct-manipulation tool-building environment
that needs objects, scripts, and views to support programmers and programming
tasks. Without objects, there is no information to show. Without scripts, there are no
rules to populate views. Without views, processed information can only be exported
into other frameworks or environments. Consequently, the amount of available
objects, scripts, and views determines the level of tool-building support Vivide
offers.

Objects-based Approaches

The notion of objects [211] influences the design and implementation of libraries
and frameworks for creating (object-oriented) user interfaces [31]. For visual map-
ping, Vivide scripts wrap domain objects into model objects and enrich them with
(named) property objects. Views can then access those helper objects to form tangible
representations. So, our approach maintains objects throughout all abstraction layers
using Smalltalk. There are many different takes on how to balance readability and
extensibility for such glue code.

The design method called Naked Objects [144] argues to derive (or generate) the
single presentation of an object from its distinguishing structure. There are no means
of configuration for such presentations (or views). Consequently, different views on
the same structure require different domain objects to be created. While we disagree
with this viewpoint, we see value in default presentations. So, we created several scripts
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and views that make Squeak’s object model accessible for common programming
tasks. However, we argue that there is a need for task-specific views on objects because
there is often more information available than space on screen.

The Extended Markup Language, XML for short, is often used as a declarative
middle language to describe object-oriented user interfaces. XML nodes, elements,
and attributes can directly be treated as objects in hierarchies. Examples include
UIML [6] and UsiXML [103], which can describe mapping and presentation in
a declarative way. Entire user-interface patterns can be captured this way [212].
Note that there is often glue code generated to connect to lower level languages. For
example, the Qt framework [18] generates C++ from XML specified through an
interactive GUI-design tool. Such code generation can target different languages
and frameworks. In Vivide, programmers drag and drop panes to compose the
user interfaces. We generate Smalltalk code from pane compositions to serialize and
share tools. The serialization format could serve as intermediate for other graphics
frameworks.

Structured source-code editors relate to our approach because they design visual

metaphors based on implementation structures. For language artifacts, such structures
are abstract syntax trees. For example, Barista [93] uses model-view separation and
the Citrus framework [94] to enrich the visual representation of code. For another
example, Envision [9] focuses on means of configuration for its visual metaphor. To
some extent, many structured editors are like Naked Objects [144] for code artifacts.
In Vivide, we build on the structured nature of Smalltalk tools, which show single
class or method definitions at a time. One can further split up statements and
messages using morphs as interactive vehicles as done in Etoys [7], Scratch [109], or
other tile-based languages.

The Tools-and-Materials metaphor [159] describes software artifacts as materials to
be processed by tools, which are configured under certain aspects. Such aspects define
tasks or interactions such as “list-able”, “browse-able”, and “text-editable”, which
are thus closely related to the visual presentation. Following this metaphor, Vivide
scripts could be treated as aspects because they describe how to populate certain
interactive views. Using Morphic’s halo to switch scripts in pane compositions,
Vivide tools could process multiple aspects of a certain material (or software
artifact).

Smalltalk-based Approaches

We found two projects that use Smalltalk as a scripting language to configure
graphical views (or visualizations): (1) Glamour [24] and (2) Mondrian [15, pp. 214–
260]. In both projects, there are domain-specific objects to store configuration data and
domain-specific messages to change that configuration. Vivide has objects for scripts,
panes, views, and connections. It adds only a few custom messages such as #-> and #<-
for property extraction. Mostly, programmers define the behavior of Vivide tools
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through interactive composition of object structure with the help of script editors,
custom pane halos, and drag-and-drop.

A successful application of Glamour is the Moldable Inspector [30], which supports
domain-specific exploration of objects. This meta tool uses Glamour’s presentations,
transmissions, and ports to integrate tool-building features into the user interface.
Programmers can script the representation of software artifacts. For example, the
graphical hierarchy can be derived from any given (root) morph as follows:
gtInspectorDisplaySubmorphsOn: aCanvas in: aContext

<gtInspectorPresentationOrder: 80>

<gtInspectorTag: #custom>
^ aCanvas tree

title: ’ Submorphs ’ ;
rootsExpanded;
display: [:rootMorph | {rootMorph}];
format: [:morph | morph printString];
children: [:morph | morph submorphs];
when: [:morph | morph submorphs notEmpty]

The messages #format: and #title: do object-specific visual mapping and object-
independent view configuration respectively. Scripts are regular Smalltalk methods;
pragmas (<...>) configure the integration in the tool environment. In Vivide, the
same specification would be expressed as follows:
script := {

[:morph | { #text -> morph printString }]
-> { #id -> #'d6b8be61'.

#view -> TreeView.
#title -> ’ Submorphs ’ .
#rootsExpanded -> true.
#presentationOrder -> 80 .

#tag -> #custom }.
[:morph | morph submorphs]

-> { #next -> #'d6b8be61' }
} asScript openScriptWith: {rootMorph}.

Note that we unify all object-independent properties such as #title and #tag as script

properties, compared to the mix of pragmas and messages. In general, the amount
and complexity of the resulting source code is not that different. Both approaches
do the querying and mapping of software artifacts in a similar fashion. Yet, the
recursive model definition is more concise in Vivide via #id and #next compared to
#display:, #children:, and #when:.

Mondrian scripts describe views in terms of shapes, edges between shapes, and
layout of shapes [15, pp. 214–260]. Programmers work with specific visual elements
compared to Glamour’s predefined specifications. That is, they let shapes look like
a tree instead of configuring a tree’s shapes. Like Vivide, Mondrian puts domain
objects into (model) nodes, which can be enriched for visual mapping. For example,
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a polymetric view (like the one from figure 6.9 in section 6.3) can be created with
the following Mondrian script:
view nodes: Collection withAllSubclasses .
view shape rectangle

width: [:class | class instVarNames size * 3];
height: #numberOfMethods;
fillColor: [:class | class hasAbstractMethods

ifTrue: [Color lightGray]
ifFalse: [Color white]].

view edgesFrom: #superclass .
view treeLayout.

Here, the Collection class and all of its subclasses are shown in a system-complexity
view [99, p. 35]. Edges show the superclass relationship, rectangle extent shows
number of variables and methods, and the color shows the existence of abstract
methods. In Vivide, the same specification would be expressed as follows:
script := {

[:class | { #width -> (class instVarNames size * 3).
#height -> class numberOfMethods.
#fillColor -> (class hasAbstractMethods

ifTrue: [Color lightGray]
ifFalse: [Color white]) }]

-> { #id -> #'341ccb84'.
#view -> PolymetricView.
#shape -> #rectangle. }.

[:class | class subclasses ]
-> { #next -> #'341ccb84' }

} asScript openScriptWith: {Collection} .

Note that we describe inheritance from top to bottom using the one-to-many rela-
tionship #subclasses. Mondrian scripts use the one-to-one relationship #superclass,
which means that the visual layout has to reveal the hierarchy. Conceptually, that
hierarchy is not in the Mondrian model. On the one hand, Vivide tree models
and the PolymetricView cannot show graph structures because of limited means to
define edges between nodes. On the other hand, Vivide list models and a (new)
Mondrian-like graph view could yield a similar view specification, maybe like this:
script := {

[:class | { #width -> (class instVarNames size * 3).
#height -> class numberOfMethods.
#fillColor -> (class hasAbstractMethods

ifTrue: [Color lightGray]
ifFalse: [Color white]).

#hasEdge -> [:other | class superclass == other] }]

-> { #view -> MondrianLikeGraphView .
#shape -> #rectangle.
#layout -> #tree }.

} asScript openScriptWith: Collection withAllSubclasses .
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Overall, the amount and complexity of the resulting code is very similar3 for both
approaches. Yet, we think the separation of query language and (visual) mapping

language is more clear, and maybe more expressive, in Vivide. If Mondrian scripts
use list models, domain hierarchies (or trees) are expressed as view configuration via
#edgesFrom:. If Mondrian scripts use tree models, shapes will be nested and visual
mapping of sub-shapes will further interleave with domain queries at the level of
Smalltalk messages. In contrast, Vivide offers clear separation at the level of script
steps, which alternate between transformation and extraction.

Synopsis After querying relevant software artifacts, there are many ways to bring
artifact structure to screen. Comparing with traditional visualization construction,
Vivide can be applied in many ways ranging from visual builder over template
editor to visual-dataflow editor. Looking into the domain of object-oriented design,
there are many related approaches that describe visual interfaces in a declarative
way, which reduces the amount of glue and fosters readability. Interactive design
and code generation help integrate supportive languages, which Vivide approaches
through interactive pane composition and tool serialization. Finally, there are other
projects that use Smalltalk as configuration language for visualizations. Even though
the specific design of objects and messages is subject to personal taste, the Vivide
scripting language offers reasonable trade-offs for data-to-graphics mapping.

9.3 Related Forms of Tinker-able Presentation

Vivide offers several ways to express presentation languages of tools as described
in section 4.3. Even though its building blocks are rectangular morphs (or panes),
their visual appearance can have any shape. From our experience, it is straightfor-
ward to construct tools that do not follow traditional design choices as described
in section 6.1. That is, our approach to organize source code in vertical containers feels
different to traditional Smalltalk tools. Scripts and methods become more tangible,
the notion of tools fades into the background.

There is more work that shares characteristics of Squeak/Morphic, which relates
directly to our attempt to support tinkering with the environment and improving
the own working habits. An arbitrary, but intentional, combination of data and
graphics can emphasize domain- or task-specific details to foster efficient information
consumption. Consequently, the environment’s presentation language can influence
knowledge access and growth. In the following, we sketch work that influenced

3The definition of edges between shapes is subject to the designer’s taste. We prefer a boolean version
via #hasEdge and a block that closures the source object. As an alternative, object properties could
hold the concrete edge target like “#edge -> class superclass” or “#edge -> #superclass”.
This design choice influences the complexity of the view’s implementation.
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our thoughts in this regard: programmable environments, visual programming, the
notebook metaphor, and Active Essays.

Programmable Design Environments

There is a perspective on software being domain-oriented design environments [54],
which focuses on tool-supported content (or artifact) creation for specific domains.
This perspective is extended through programmable design environments [48], which
add programming (i.e., Scheme/Lisp) as flexible means of configuration and control.
In such environments, for example, users can draw pictures, plan their kitchen, or
populate charts with domain-specific widgets and scripts. The authors target end

users and learning to set apart from professional programming. Yet, they also argue
that programming facilities are necessary to meet unforeseeable challenges and
requirements. We think that Scheme, like Smalltalk, offers little syntactic overhead,
but users have to be trained to make use of scripting languages. It is rarely self-
explanatory. In our experiment (chapter 8), we realized that a user’s experience
can impede the application of new problem-solving strategies. Maybe “unlearning”
becomes necessary.

Programmable design environments combine elements from programming lan-
guages and direct-manipulation interfaces [47]. First, languages offer control struc-
tures, data composition, and abstraction through naming. Both our scripting lan-
guage (section 4.1) and UI-design language (section 4.3) offer similar strategies
to create complex tools. Second, direct manipulation offers domain-specific, visual
metaphors. In Vivide, we use Morphic to offer tangible handles for graphical tool
components and a pathway to the tool’s source code. Tool builders can expose
artifacts from any domain through our framework. We see great value in the inter-
play of high-level languages and interactive graphics in any similar system where
“[language] interpreter meets [graphical] interface” [47].

One strength of Smalltalk systems is the persistent object model to represent
information. In such systems, tools are just programs that make Smalltalk objects
accessible so that programmers can understand and change that information. In the
same spirit, the Rigi project [123, 124] extracts a graph model from source code and
offers tools to (1) manage large system structures, (2) present information about, and
(3) automate constraint checking against those structures. Similar to Vivide scripts,
there are Rigi objects to aggregate and generalize, which can hence form additional
views on the source code. There is an electronic atlas (tool), which uses such views for
code exploration. Shimba [190] complements Rigi’s static methods with dynamic traces

to provide a more coherent reverse-engineering environment for Java programs.
Eclipse or Visual Studio might be considered contemporary, spiritual successors
of Rigi, yet they suffer a rather inflexible, text-centric perspective. Luckily, there
are other recent environments such as Moose [132], which preserve the concept of
objects and configurable views on objects.

248



9.3 Related Forms of Tinker-able Presentation

Direct and Visual, Manipulation and Programming

Interactive, data-driven presentations go hand in hand with direct manipulation. The
user interface of the Xerox Star [179], which was influenced by earlier Smalltalk
systems [80], offers a visual metaphor for real-world objects to support productiv-
ity tasks. On screen, documents can be copied, organized, written on, or sent as
mail. To overcome the limitations of direct manipulation, the Star supports records

processing [151], which automates data transformation and visual mapping for such
productivity tasks. Thus, Star’s focus is different from our goals for Vivide. We
value the consumption of many artifacts more than the creation and manipulation
of selected ones. Yet, both approaches support both strategies.

In the course of programming and direct manipulation, the notion of visual

programming emerges. Fabrik [79] is an environment that combines computational
components with user-interface components to realize bi-directional dataflow. The
idea has a more recent implementation [106] using contemporary technologies. The
scope of Fabrik is broad: program music, animation, or any graphical structure that
depends on domain-specific data. Vivide complies with the author’s definition of a
“visual programming kit” [79]:

1. “Specification of an effective visual and computational interface for each compo-
nent” — Our scripts and scripting language represent the computational, panes

and the UI-design language represent the visual component.
2. “Interactive access to an interesting [...] library of existing components” — Our

script organizations represent libraries of example scripts to be applied and re-used.
Yet, we rely on existing visualizations and widgets to provide interactivity.

3. “The ability to use and combine these components interactively to build new
library components and finished applications” — Programmers can combine
scripts to express complex view models. They can compose panes to express
complex presentation languages. Both can be stored in organizations for scripts
and view configurations.

Overall, Vivide approaches the challenge of visual programming for the domain
of tool building for program comprehension (and modification). There are many
systems that reify transformations as visual building blocks to be connected for
dataflow (or object exchange). In these systems, the intended simplicity typically leads
to end-user programming, which targets non-professional programmers. However, we
think that our approach is far from intuition and thus requires training.

Documents in a Notebook

Paper has been inspiring for many visual metaphors so far. Sheets of paper can have
different shapes and hold information in textual or graphical form. In the physical
world, there are pages, documents, letters, cards, or posters organized in folders,
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scrapbooks, or notebooks. In the digital world, characteristics of such elements can
be discovered quickly, and tasks can be associated intuitively. As mentioned above,
the Star’s user interface [179] is just one example for using documents as tangible
artifacts on screen.

Paper-based metaphors can influence the presentation of information. Hyper-
Card [67] uses cards and links to layout and connect information interactively. Stacks

of cards represent shared properties among artifacts such as a set of contacts and a
set of appointments. In Vivide, we explored a similar approach with single-object

tools (section 4.2), which can be linked through script selection (section 4.4). Yet, our
experiences cover mostly code artifacts, which relates to the Hopscotch [26] editor
(and tool framework) for the Newspeak programming language [20]. Hopscotch
implements a document-driven interface like in Web browsers. In each document,
elements can be combined to reflect Newspeak’s language concepts such as lexical
scoping in the tool’s presentation language.

Paper-based metaphors can guide the creation of information, which is comparable
to note-taking. Mathematica/Wolfram Notebooks4 support iterative, interactive data
analysis. Notes become tangible entities on a persistent, shareable, digital medium.
IPython Notebooks [148] apply the same metaphor for open-source communities.
Basically, the term “notebook” refers to pieces of information that are positioned
vertically as connected, interactive views. Such views are often command-line interfaces

(or code editors) to access and process data sets. In Vivide, we apply such layout
for code editors, object explorers, and other views. In practice, programmers can
mix instances of Text with CompiledMethod to document their thoughts alongside
task-relevant code artifacts.

Active Essays for Dynamic Systems

“An ‘Active Essay’ is a new kind of literacy, combining a written essay, live
simulations, and the programs that make them work in order to provide
a deep explanation of a dynamic system. The reader works directly with
multiple ways of representing the concepts under discussion. By ‘playing
with’ the simulations and code, the reader gets some hands-on experience
with the topic.” — Alan Kay, cf. [214]

We argue that the challenges of program comprehension and tool support relate
directly to the scope of Active Essays. Programmers have to understand the dynamic
behaviors of complex software systems to fix bugs or add features. Active Essays can
be seen as an innovation (or evolution) of (school) books using modern technology.
In a similar way, interactive, integrated documentation of software systems could
innovate—maybe even replace—traditional, external approaches, which quickly
become outdated as systems evolve. Vivide can help explore possible forms of such
documentation.

4Wolfram Mathematica: https://www.wolfram.com/mathematica/, accessed 2018-08-31
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Boxer [45] is a “reconstructible computational medium” that combines a “spatial
metaphor and naive realism.” In this system, users define functionality through Lisp
code that is nested in rectangular containers, called “boxes”. The visual metaphor
resembles Vivide pane compositions and script organizations that are attached to
pane-views as means of abstraction (section 4.3). The designers of Boxer relate to
“Interactive Books”, which seems to be an earlier instance of Active Essays. The overall
emphasis on language and interaction shares several aspects of Smalltalk systems and
the Morphic framework. Still, the accessibility of such media depends on the design

of applications they transport.
ThingLab [19] is a “graphics simulation laboratory” that implements a constraint-

based programming language and a visual interface. For example, users can construct
Physics experiments and interactively modify variables to experience their effects in
the simulation. Constraints are an instance of rules that Vivide scripts can capture to
configure interactive views. For example, scripts could trigger constraint solvers for
debugging purposes. The visual interface of ThingLab tooling exhibits data-driven

characteristics.
The Alternate Reality Kit (ARK) [181] “is a system for creating interactive animated

simulations.” The authors investigated the learnability of visual metaphors on a scale
from “literal” to “magical”. They considered buttons, menus, and other widgets.
We face a similar challenge for Vivide concepts as discovered in our experimental
setup (chapter 8): “magical” to its users even though “literal” to its designers. Note
that ARK was implemented in Smalltalk-80 but precedes the Morphic graphics
framework [110] known from Self and the halo [108] known from Squeak.

Synopsis There are many forms of interactive presentation in software. Means of
programming (or scripting) are typically embedded to enable flexible configuration
and tinkering with provided defaults. A recurrent and thus influential approach is the
combination of (1) direct manipulation and (2) paper-based metaphors. Documents,
cards, and notebooks mimic real-world artifacts to improve discoverability and
acceptance of graphical user interfaces for knowledge processing.
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Summary

The challenge of building tools for program comprehension relates to much existing work
in the field of software engineering. In particular, Vivide addresses the integration
of scripting languages and interactive systems. Thus, we focus on related means for
querying, (visually) mapping, and presenting the structure of software artifacts. Yet,
much related work targets users that are non-professional programmers.

There are many programming languages that can be applied as querying languages
in a tool-building context. Lisp-based languages have a concise syntax and are
suitable for functional programming, Prolog-based languages support declarative

query expressions, and dataflow-based languages abstract time in a tangible way.
There are many related means for data-to-graphics mapping. Typically, interactivity

and programming go hand in hand. Object-orientation fits the designer’s perspective
on artifact structure and visual properties. There are other Smalltalk frameworks for
tool building, which underlines the practicability of our choice.

There are related forms of tinker-able presentation, which often combine paper-
based metaphors and direct manipulation. Sheets of paper represent an accepted
medium to transport knowledge in text or graphics. Programming tools and other
graphical, interactive systems can build on that visual metaphor to improve accessi-
bility.

[|]

In the next and final chapter, we summarize the main argument of this work,
explain possible future work, and conclude our thoughts.
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This chapter concludes our thoughts on the creation, integration, and modification
of interactive, graphical tools for programming. We think that there is an overall
agreement on the data-driven, domain-specific nature of contemporary program-
ming challenges. Yet, the actual means to support program comprehension are often
subject to personal experiences. Thus, environments that support exploration and
experimentation in a generic fashion are likely to benefit all sorts of programmers.
Active tool building during software development can help accommodate specific
domains, tasks, and preferences.

In the final sections, we summarize the argument of this work and sketch a vision

for next-generation programming environments. This includes possible extensions

for Vivide and its mechanics as well as next steps toward thorough tool evaluation.

10.1 Argument of this Dissertation

The main argument of this work builds on our understanding of information as
software artifacts, programming tasks as information foraging, and interactive tools
as tangible medium (chapter 2). We motivate the challenge of tool building using
Squeak/Smalltalk as research platform (section 3.2). On the philosophical side, we
propose a different perspective on graphical tools in integrated environments (sec-
tion 4.2), which implies a different working practice (section 4.4). On the engineering

side, we propose a scripting language (section 4.1) and a UI-design language (sec-
tion 4.3) as practical advice for better tool-building support.

Triggers and Barriers for Tool Building

We simplify the problem for programming environments by using a purely object-

oriented system that has inherently tangible graphics: Squeak/Smalltalk [77] and
Morphic [108]. That is, all relevant information can be accessed or derived through
Squeak’s object graph, and there are morphs that can serve as interactive views
on objects. To get started, the environment already has generic tools that align with
language constructs and support basic program comprehension and modification.

In such environments, the triggers for tool building are related to managing the

object graph. That is, tools should provide higher-level views that crosscut generic
structures to filter or derive new information. We distinguish programmers’ needs to
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fetch, examine, and retain artifact structure because we want to emphasize a data-driven

perspective on tools.
In such environments, the barriers for tool building are related to a lack of “tool”

support for separating domain code from framework glue. That is, programmers want to
populate views with data, which includes code for querying, mapping, and presenting

software artifacts. Yet, that code is difficult to find, change, and verify, even with
traditional Smalltalk and Morphic-halo tools.

A Data-driven Perspective on Tools

Our goal is to make programmers see artifacts as tangible representations on screen
and not see tool windows with visual content to interpret. We formulate a supple-
mentary tool-building mantra: “Artifacts first, tools follow.” We argue that with such
a data-driven perspective, we can improve the means to construct the interactive
representations of software artifacts.

We propose a tool-building strategy where tools (1) focus on distinctive properties
of single artifacts, (2) accept similarities for groups of artifacts, and (3) benefit from
context artifacts in the environment. Even in complex tool interfaces, programmers
should be able to identify the involved artifacts. For example, we follow this strategy
to build tools for code artifacts so that we can read and write Smalltalk code, which
we explained in (section 6.1).

As an implication, we propose a data-driven working practice, where programmers
constantly choose artifacts from on-screen representations to choose further repre-
sentations to eventually explore and understand task-related information. That is,
they open no tools but representations to navigate the information space. By doing
so, they interactively control the level of distinctiveness, similarity, and context to
organize screen contents as desired.

A Combination of Scripting and Interaction

We follow two common practices that support the creation and maintenance of
complex software systems: (1) high-level, declarative programming languages and
(2) interactive, graphical programming tools. Both practices can yield complexity from

simplicity by deriving compile-time and run-time structures, such as code and objects
respectively, from abstract rules and user interactions.

First, we propose a new scripting language to describe hierarchical view models. The
elements of that language alternate object transformation and property extraction to
query and map software artifacts at each level in the model tree. In our implementa-
tion, we use Smalltalk and Squeak’s Collection protocol to keep scripts concise and
domain-specific.

Second, we propose a new UI-design language to interactively compose a tool’s
interactive presentation. The elements of that language are panes, views, connections, and
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pane views. Panes combine objects, scripts, (generated) models, and views; they can
be connected to exchange objects. Pane views can encapsulate layouts and interaction
paradigms to construct complex tools. In our implementation, we use Morphic to
represent panes and views; a pane’s halo provides access to its scripts, objects, and
connections.

10.2 Future Directions for Vivide

Our implementation of Vivide in Squeak/Smalltalk is a fully working environment
that supports common programming tasks. Conveniently, the Squeak system runs
still underneath and represents a safety net for missing features. We picture several
directions to extend Vivide mechanics and evaluate its usefulness.

Mechanics

There is always a need for more software artifacts and more interactive views to
explore the limits of our scripting language and UI-design language. We think that
the following aspects need more attention:

• Applicability of our tree-based models for graph-based views, which entails
trade-offs between script code and view code

• Asynchronous script interpretation and stream/queue semantics in each script’s
input/output buffers

• Coordination of visual properties across views, maybe via special connections
between panes

• Better tool support for script authoring, that is, high-level undo and guided code
refactorings

The composition of multiple views in complex, nested layouts can yield more
challenges. We think that our approach can have an effect on the kinds of tools
programmers want to build and share in the team. Thus, the following aspects need
also more attention:

• Improve interactive tooling to create and manage a multi-layout presentation
language with desktops, tiles, tapes, and other forms embedded in each other.

• Establish domain-specific tools (or tool building) as a form of integrated, up-to-date
documentation, whose artifacts should be shared in the community.

Considering software engineering in general, the creation of data-driven applica-
tions for non-programming domains can reveal more challenges to investigate in the
future.
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10 Conclusion

Figure 10.1: The languages and strategies we introduced with Vivide can be ported to other
environments. There is a working prototype of Vivide for Lively4: VivideJS.

Evaluation

For our current study setup, we are going to reduce the task complexity to ensure
the upper time limit as described in chapter 8. This includes a more effective training
phase so that participants can express their actions in Vivide terms. After such rather
traditional tool-building tasks, we want to investigate the effects of our framework
in more detail. That is, we want to assess the data-driven perspective on tools using
our scripting language and our UI-design language.

First, programmers should be able to express their information needs as scripts.
They can write complex hierarchical models or simple list models. If the alternation
of script steps for tree levels is too difficult, programmers will be likely to prefer lists
or tables over trees. As explained in section 6.3, it is possible to convert multiple list
scripts into single tree scripts. We want to investigate the need for such conversions.

Second, programmers should be able to manage context and view integration via
panes and object connections. They can use a flat desktop style or choose to combine
pane views for a mix of layout styles. If the transition between fundamentally different
layouts is too difficult, programmers will be likely to prefer a single paradigm. That
is, they might prefer the desktop style as in Squeak or the tiled layout as in Eclipse.
We want to investigate the acceptance and benefits of mixed layouts to accommodate
specific tasks and preferences.

Eventually, the languages and strategies we introduced with Vivide can be ported
to other programming environments. Such ports can evaluate applicability for other
programming communities. As illustrated in figure 10.1, there is already a working
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prototype of Vivide for Lively4,1 which makes use of Web technologies such as
HTML5 [52] and JavaScript.

Vivide as Programming Environment

Objects, Smalltalk, Morphic, and the Vivide-way of tool building: programmers
can manage all kinds of software artifacts in such an environment. Then, the actual
programming languages can become pluggable like in Eclipse or Visual Studio. For
example, projects can use C++ or Java while Smalltalk will be the tooling language.
Code artifacts will be represented as objects in the Smalltalk image; the file system
can still hold (synchronized) code files as database for external tools. So, on the one
hand, different implementations of Vivide can help find different tool-building
challenges, which are likely due to different programming communities. On the
other hand, extending the current Smalltalk-implementation of Vivide might lead to
faster insights about future programming environments. Note that there has always
been an influx of new languages and ideas, which have been requiring integration
into existing technologies. Vivide might be that integration platform with its focus
on tangible representations for all kinds of software artifacts.

Finally, we hope that exploratory programming can benefit from our proposed
tool-building support. In our experience, ad-hoc tool building is difficult to trigger,
trace, and evaluate. Yet, whenever a usually complex building activity feels like simple

configuration, the underlying environment provides the right level of support. We
think that future programming environments can benefit from our perspective on
data, graphics, and tools.

1The Lively4 Environment: https://github.com/LivelyKernel/lively4-core, accessed 2018-10-28
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Appendix A

Smalltalk and Squeak

A.1 The Smalltalk Programming Language

In any Smalltalk system, such as Squeak, programmers have to read and write Small-
talk code. Any program consists of objects that exchange messages to collaborate,
hopefully producing the intended behavior. Application domains cover multimedia,
games, simulation, and many more. Here is an example of the Smalltalk syntax,
based on “Smalltalk Syntax on a Postcard”1:
exampleWithNumber: x

"A method that illustrates every part of Smalltalk method syntax
except primitives. It has unary, binary, and keyboard messages,
declares arguments and temporaries, accesses a global variable
(but not an instance variable), uses literals (array, character,
symbol, string, integer, float), uses the pseudo variables
true, false, nil, self, and super, and has sequence, assignment,
return and cascade. It has both zero argument and one argument
blocks."
| y |
true & false not & (nil isNil) ifFalse: [self halt].
y := self size + super size.
#($a #a "a" 1 1.0) do: [:each |
Transcript
show: (each class name);
show: ' '].

^ x < y

At the time of writing, this example still compiles and runs in recent Squeak
releases. Our scripting language employs Smalltalk to form blocks that transform
objects:
| block result |
block := [:in :out | out addAll: (in collect: [:ea | ea + 1])].
result := OrderedCollection new.
block value: #(1 2 3 4) value: result.
result includesAllOf: #(2 3 4 5). "true"

Traditional tools show Smalltalk code in a Workspace or one method at a time.
Our scripting tools adopt such boundaries for one block at a time. Note that multiple
tools can be used and displayed on screen.

1http://c2.com/cgi/wiki?SmalltalkSyntaxInaPostcard, accessed 2018-11-26
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Many of our examples make use of a certain message that concatenates two
collections such as strings:
'Hello World!' = ('Hello', ' ', 'World', '!'). "true."

This message #, is binary, and due to Smalltalk’s precedence rules, we often have to
put parentheses around such concatenations.

There are more details documented about the Smalltalk language and its tools in
the Blue Book [65] and Red Book [64] respectively. There is much further literature on
the tools and practices of Smalltalk-80 systems [97, 98].

Modern Smalltalk implementations, such as Squeak [77, 76], continue blurring
the boundary between language and application even further. It is more like a
continuously running multimedia authoring system than a simple programming
language with a compiler and execution layer.

A.2 Squeak Code Exploration Efforts

In section 3.1, we used the following code snippet to count the packages, classes,
methods, and lines of raw Smalltalk code:
"Number of packages to approximate number of libraries and applications."
numPackages := PackageOrganizer default packages size. "95"

"Number of classes to approximate kinds of run−time objects to explore."
numClasses := SystemNavigation default allClasses size. "2260"

"Number of methods to approximate code reading efforts."
numMethods := 0.
SystemNavigation default allSelectorsAndMethodsDo: [:b :s :m |

numMethods := numMethods + 1]. "52338"

"Number of lines of code to approximate method sizes."
rawLinesOfCode := 0. "With comments but no empty lines."
SystemNavigation default allSelectorsAndMethodsDo: [:b :s :method |
rawLinesOfCode := rawLinesOfCode + method linesOfCode]. "389978"

Note that we did not normalize the code style because the Squeak’s code browser
shows methods as they are stored. Usually, Smalltalk programmers have a personal
taste regarding indentation and line breaks, which affects readability for the whole
community. There is pretty printing to unify the displayed format, but it is not the
default setting in code browsers, yet.

The system we used was Squeak 5.1, Build 16549. Note that programmers can
significantly reduce the number of artifacts to explore if they are able to narrow
down the domain of their tasks. For example, Squeak organizes its main parts in
only a few packages:

Kernel-* Code compilation, class (hierarchy) (re-)definition, basic exception han-
dling, process scheduling and synchronization, user input events, primitive types
such as numbers and Boolean values.
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Chronology-* Everything related to time, time spans, durations, time stamps,
etc.

Collections-* Everything related to working with multiple objects such as arrays,
strings, streams, and dictionaries.

Graphics-* Everything related to graphical output, includes support for font
rendering, drawing rectangles, and processing various image encodings such as
PNG, JPG, and GIF.

Files-* Accessing the local file system using streams. Listing and navigating folders.
Network-* Using sockets to fetch network resources. Includes support for UDP,

TCP, HTTP, and HTTPS.
Sound-* Managing audible output and reading various sound file formats. In-

cludes support for FM, WAVE, and MIDI.
System-* Code change notification, object events, weak arrays and finalization,

object serialization, projects.

We documented more details about Squeak’s base system and its graphics frame-
works in [192].

A.3 Visual Ratio of Smalltalk Methods

In section 4.2, we argue for vertical lists to show multiple Smalltalk methods at once
because method source code is best shown at a wide ratio. We calculated the ratio
by trimming trailing blanks in the method’s source, replacing tabs with four spaces,
and ignoring methods with more than ten lines:
ratio := OrderedCollection new.
lines := OrderedCollection new.

SystemNavigation default allSelectorsAndMethodsDo: [:b :s :method |
| tmp |
tmp := method getSource asString withBlanksTrimmed.
tmp := tmp copyReplaceAll: String tab with: ' '. "four−char tabs"
tmp := tmp lines collect: [:l | l size].
tmp size <= 10 ifTrue: [
lines add: tmp size.
ratio add: tmp max / tmp size ]].

ratio average roundTo: 0.01. "23.01"
lines average roundTo: 0.01. "4.49"
lines median. "4"

"Number of methods w/ 10 lines or less."
lines size "41651 −> 79.6 percent"
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The visual impression of a typical Smalltalk method is wider than tall and looks
like this:
xxxxxx: xxx xxxxxxx: xx

"xxxxxxxxxxxxxxxxxxx"
| xxxx xxxxx xxxxxx |
xxxx := xxx + xx. "x"
^ xxxxxxxxxxxxxxxxxxx

While the choice of font and line spacing influences this ratio, the fonts in recent
Squeak releases do align with this example.
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Listings for Vivide Scripts

B.1 The Live Code Browser

In our Vivide tutorial in section 3.4, we used multiple scripts to prepare the involved
software artifacts. Here, we present only compact scripts, which make use of templates

as described in section 4.2. The script-based debugger features a stack list, which can
be constructed in the following way:
script := {

"Access the method activation objects from the process object."
[:process | process suspendedContext].
[:methodContext | methodContext stack].
[:methodContexts |
methodContexts reject: [:ea | ea isExecutingBlock]].

[:methodContexts |
methodContexts select: [:ea |
(ea receiver isKindOf: Morph)
or: [ea receiver isKindOf: MorphicEvent]
or: [ea receiver isKindOf: MorphicEventDispatcher]]].

"Extract object properties."
[:methodContext | {
#text -> methodContext printString.
#icon -> (ToolIcons iconNamed: (ToolIcons

iconForClass: methodContext method methodClass
selector: methodContext selector)) } ].

} asScript openScriptWith: {aSuspendedProcess}.

In the Live Code Browser, the stack table revealed colorful information about each
context object in the stack. The check for each method’s argument count renders the
script a little bit more complicated. Mostly, each script step’s properties configures
the view with color and resize information:
script := {

"Only extract object properties. No transformation required."
[:methodContext | { #text -> methodContext selector }]
-> { #labelColor -> Color black.

#resizeMode -> #rigid}.
[:methodContext | { #text -> methodContext method methodClass }]
-> { #labelColor -> Color black.

#resizeMode -> #shrinkWrap}.
"For up to 3 arguments, we also show details."
[:methodContext | { #text -> (

methodContext selector numArgs > 0
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ifFalse: ['-'] ifTrue: [(methodContext at: 1) printString])}]
-> { #headerText -> 'arg1'.

#labelColor -> (Color r: 0.0 g: 0.502 b: 1).
#resizeMode -> #rigid}.

[:methodContext | { #text -> (
methodContext selector numArgs > 1
ifFalse: ['-'] ifTrue: [(methodContext at: 2) printString])}]

-> { #headerText -> 'arg2'.
#labelColor -> (Color r: 0.251 g: 0.502 b: 0.0).
#resizeMode -> #rigid}.

[:methodContext | { #text -> (
methodContext selector numArgs > 2
ifFalse: ['-'] ifTrue: [(methodContext at: 3) printString])}]

-> { #headerText -> 'arg3'.
#labelColor -> (Color r: 1 g: 0.4 b: 0.4).
#resizeMode -> #rigid}.

} asScript openScriptWith: someMethodContexts.

The script for the code editor uses a text field and a text styler to show source
code with syntax highlighting. The script property #styler configures the kind of
styler, and the object property #stylerClass configures the styler so that class-specific
information (e.g., instance variables) can be found:
script := {
[:methodContext | {
#text -> methodContext method getSource

<- [:newSource |
methodContext receiver class compile: newSource]

#stylerClass -> methodContext receiver class . }]
-> { #id -> #methodEditor.

#view -> ViPluggableTextMorph.
#styler -> SHTextStylerST80 }.

} asScript.

The browser’s list of multiple code editors is an automatically generated view

composition, which represent Vivide means of context abstraction in the UI-design
language (section 4.3, figure 4.9). Here, the pane view ViPaneListView manages an
individual pane for each incoming method context, and each such pane has the same
script:
script := {
[:methodContext | {

#script -> #methodEditor .
#height -> 70 "pixels" }]

-> { #view -> ViPaneListView "i.e. a pane view" }
} asScript.
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B.2 Single-object Tools’ Scripts

In figure 4.4, there are four panes that show four different objects (from left to right):
ViPane new
borderWidth: 2;
borderColor: (Color gray: 215/255);
objects: { ’Morphic-Kernel’ };
currentScript: {
[:m | SystemOrganization listAtCategoryNamed: m]
-> { #view -> ViPluggableListMorph. #borderWidth -> 0 }.

[:nm | Smalltalk classNamed: nm] } asScript ;
openInHand.

ViPane new
borderWidth: 2;
borderColor: (Color gray: 215/255);
objects: { Morph » #handleEvent: };
currentScript: {
[:m | #text -> m getSource. #stylerClass -> m methodClass]

-> { #view -> ViPluggableTextMorph.
#styler -> SHTextStylerST80.
#borderWidth -> 0 }} asScript ;

openInHand.

ViPane new
borderWidth: 2;
borderColor: (Color gray: 215/255);
objects: { ViToolWindow someInstance };
currentScript: {
[:m | #text -> 'root']
-> { #view -> ViPluggableTreeMorph. #borderWidth -> 0 }.

[:m | #text -> m printString].
[:m | { m class withAllSuperclasses. m} asTuples].
[:c :m | { c instVarNames . m } asTuples].
[:tuples | tuples sorted: [:t1 :t2 | t1 first <= t2 first]].
[:i :m | #text -> (i truncateWithElipsisTo: 9)].
[:i :m | #text -> (m instVarNamed: i) printString] } asScript ;

openInHand.

ViPane new
borderWidth: 2;
borderColor: (Color gray: 215/255);
objects: { Morph someInstance };
currentScript: { [:m | #self -> m]
-> { #view -> ViPluggableTextMorph. #borderWidth -> 0 }} asScript ;

openInHand.

In figure 4.6, there are three panes that show the same mouse-button event class in
three different ways (from left to right):
ViPane new
borderWidth: 2;
borderColor: (Color gray: 215/255);
objects: { MouseButtonEvent };
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currentScript: {
[:m | #text -> 'root']
-> { #view -> ViPluggableTreeMorph. #borderWidth -> 0 }.

[:m | #text -> m printString].
[:m | { m class withAllSuperclasses. m} asTuples].
[:c :m | { c instVarNames . m } asTuples].
[:tuples | tuples sorted: [:t1 :t2 | t1 first <= t2 first]].
[:i :m | #text -> (i truncateWithElipsisTo: 9)].
[:i :m | #text -> (m instVarNamed: i) printString] } asScript ;

openInHand.

ViPane new
borderWidth: 2;
borderColor: (Color gray: 215/255);
objects: { MouseButtonEvent };
currentScript: {
[:m | #text -> (m definition, '.', String cr,

m class definition, '.' )]
-> { #view -> ViPluggableTextMorph.

#styler -> SHTextStylerST80.
#borderWidth -> 0 }} asScript ;

openInHand.

ViPane new
borderWidth: 2;
borderColor: (Color gray: 215/255);
objects: { MouseButtonEvent };
currentScript: {
[:cls | {
#('Class Hierarchy' 'Instance Variables' 'Known Messages').
cls } asTuples]
-> { #view -> ViPluggableTreeMorph. #borderWidth -> 0 }.

[:cat :cls | #text -> cat].
[:cat :cls | (cat beginsWith: 'Ins')
ifTrue: [ cls instVarNames ]
ifFalse: [ (cat beginsWith: 'Cla')
ifTrue: [ cls withAllSuperclasses ]
ifFalse: [cls methodDict values ] ] ].

[:obj |
obj isCompiledMethod
ifTrue: [ #text -> obj selector]
ifFalse: [obj isBehavior
ifTrue: [ #text -> obj name]
ifFalse: [ #text -> obj]]] } asScript ;

openInHand.

Finally, we illustrated different levels of structure that can be revealed by different
kinds of views in figure 5.4. There, we compared a text view with a table view and a
tree-map view. Since the kind of view is stored as a script property, the same script
can be re-used by changing #view:
script := {

"First level."
[:in :out | in do: [:class | out addAll: class subclasses] ]

-> { #view -> ViTextView.
"#view −> ViTableView."
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"#view −> ViTreeMapView." }.
[:in :out | in do: [:class | out add:

{ #object -> class.
#text -> class name }]]

-> { #isProperty -> true.
#headerText -> 'Class' }.

[:in :out | in do: [:class | out add:
{ #object -> class.
#text -> class allCallsOn size asString }]]

-> { #isProperty -> true.
#headerText -> 'Refs'.
#hAlignment -> #right }.

"Second level."
[:in :out | in do: [:class |

out addAll: class methodDict values]].
[:in :out | in do: [:method | out add:

{ #object -> method.
#weight -> method linesOfCode. "tree map only"
#tooltip -> method selector }]]

-> { #isProperty -> true }.

} asScript openScriptWith: {Morph}.

B.3 The “Scripts” Script

In section 5.5, we refer to a script that lists all available scripts for a set of objects.
Given that script steps have type information in #inputKind and #outputKind, we
compute acceptable types as follows:
| mostSpecific |
mostSpecific := Object.

script allStepsDo: [:step |
| in out |
"Use ProtoObject as fall−back to allow for Object type."
in := step properties at: #inputKind ifAbsent: [ProtoObject].
out := step properties at: #outputKind ifAbsent: [ProtoObject].

"Narrow down the options if types are more specific."
(in inheritsFrom: mostSpecific)

ifTrue: [mostSpecific := in].

"If a step transforms the type, stop analysis and return current result."
(step isProperty not and: [in ~~ out])

ifTrue: [^ mostSpecific]].

^ mostSpecific

So, any step in a script can specialize the input kind. The overall type for a set of
objects would be the most generic one in the class hierarchy. The script that lists the
remaining options sorted by #priority looks like this:
script := {

"1) Sort by priority."
[:in :out | out addAll: (in sorted: [:s1 :s2 |

(s1 properties at: #priority ifAbsent: [9999])
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<= (s2 properties at: #priority ifAbsent: [9999]) ])]

-> { #view -> ViTreeView.
#yieldOn -> #activated "... clicked on like menus".
#label -> 'Scripts' }.

"2) Extract icon and label for each script."
[:in :out | ([:all | all collect: [:o | (

[:script | {
#icon -> (script nextIcon ifNil: [ViIcons blankIcon]).
#text -> (script nextLabel ifNil: [script sourceCode]) }]

value: o), { #object -> o }]]
value: in) do: [:result | out add: result]]

-> { #isProperty -> true }
} asScript openScriptWith: someScripts.

The view looks like in figure 5.1.

B.4 The “Class Outline” Script

In section 6.1 in figure 6.1, we presented a tool that shows a structural overview of
classes. The script that extracts super classes, instance variables, and methods by
protocol looks as follows:
script := {

[:in :out | in do: [:cls | out addAll: (
(cls withAllSuperclasses reversed

collectWithIndex: [:c :i | i -> c]),
(cls withAllSuperclasses gather: [:c | c traits]),
(cls instVarNames collect: [:nm | cls -> nm]),
(cls class instVarNames collect: [:nm | cls class -> nm]),
(cls classVarNames collect: [:nm | cls class -> nm]),
cls theNonMetaClass methodDict values,
cls theMetaClass methodDict values)]]

-> { #id -> #outline.
#label -> 'Outline'.
#notifier -> ViSystemChangeNotifier.
#view -> ViTreeView }.

[:in :out | in do: [:object | out addAll: (
{

object isVariableBinding
ifTrue: [object value isBehavior

ifTrue: ['** inheritance **']
ifFalse: ['** variables **']]

ifFalse: [object isBehavior
ifTrue: ['** traits **']
ifFalse: [object methodClass organization

categoryOfElement: object selector]].
object

} asTuples "#(category object)" )]]
-> { #next -> #groups "script reference" }.

} asScript openScriptWith: {ViPane}.
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Our generic #groups script expects tuples in the form #(category object). A cate-
gory can be any object because it will be converted into its text representation via
#asString. The script looks like this:
script := {

"Sort contents in the groups."
[:in :out | out addAll: (in sorted: [:tuple1 :tuple2 |

tuple1 second asString <= tuple2 second asString])]
-> { #id -> #groups.

#view -> ViTreeView }.

"Create group tuples from content tuples."
[:in :out | out addAll: in groupByFirst]
-> { }.

"Sort groups."
[:in :out | out addAll: (in sorted: [:group1 :group2 |

group1 first asString <= group2 first asString])]
-> { }.

"Insert separators."
[:in :out | in do: [:group |

out add:
"Helper tuple for group separation."
{ #dummy. {{ '--', group first asString, '--' }} }.

out add:
"Group contents."
group ]]

-> { }.

"Expand group and discard group element."
[:in :out | in do: [:group | out addAll: group second]]
-> { }.
[:in :out | in do: [:group | out addAll: group allButFirst]]
-> { }.

"Simplified property extraction."
[:in :out | in do: [:object | out add: {

#object -> object.
#text -> (object isString

ifTrue: [object]
ifFalse: [object printString]).

"Separators are not selectable."
#selectable -> (object isString

and: [object beginsWith: '--']) not }]]
-> { #isProperty -> true }

} asScript openScriptWith: # ( (a 1)(a 2)(b 10)(b 20)(c 100) ).

Note that we inserted non-selectable group separators in the same tree level. The
alternative would be to use an entire level in the model tree for group objects. In
both cases, the user would see objects in groups.
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B.5 More Single-object Tools

In section 6.1 in figure 6.2, we showed several single-object tools for common Squeak
and Vivide objects. We created the view with the following code snippet:
| container |
container := Morph new
color: Color white;
layoutPolicy: TableLayout new;
listDirection: #leftToRight;
wrapDirection: #topToBottom;
layoutInset: 25;
cellInset: 10;
yourself.

{
ViClassDefinitionEditorView.
ViMethodEditorView.
ViWorkspaceView.

ViExplorerView.
ViEditorView. "Auto wrapper for ViProcessEditor"
ViProtocolEditorView.

ViEditorView. "Auto wrapper for ViMemoEditor"
ViEditorView. "Auto wrapper for ViClassCommentEditor"
ViScriptEditorView.

} with: {

Morph.
Morph >> #fullDrawOn:.
ActiveHand. "Binds 'self' in workspace."

Morph new.
[ self halt ] newProcess.
ViProtocol named: #accessing inClass: String.

'Vivide is a Squeak/Smalltalk-based programming environment and framework
that supports low-effort construction of graphical tools by employing a
data-driven perspective and a script-based programming model.' asText.
ViClassComment new theClass: Morph.
[:num | num * num] asScript.

} do: [:view :object |
container addMorphBack:

(ViPane new
borderWidth: 2;
borderColor: (Color gray: 215/255);
objects: { object };
currentScript: { [:m | #object -> m]

-> { #view -> view } } asScript ;
extent: 270@150;
yourself)].

container openInWorld.

Note that we created ViProtocol and ViClassComment because Squeak has no dedi-
cated classes for these objects but uses ByteSymbol and Text respectively. Also note
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that ViEditorView is an adapter-wrapper around editors, which are automatically
selected for the particular object. Editors are implemented in regular Morphic; views
are compatible with panes and scripts.

B.6 The “File Browser” Script

In section 6.2, we showed a file browser that has a single list view. The script behind
that view transforms an instance of DirectoryEntryDirectory, which is a proxy for a
directory in the file system, into instances of DirectoryEntry, which are directories
or files. It adds “.” and “..” as handles for the directory itself and its containing
directory. The only pane in this browser has an object connection to itself. The script
looks like this:
script := {

[:entry | entry isDirectory
ifTrue: [entry asFileDirectory] ifFalse: []]

-> { #id -> #'af533889'. "Only for tree view."
#view -> ListView. "Or TreeView."
#yieldOn -> #(doubleClicked returnPressed)}.

[:in :out | in do: [:directory | out addAll: (
{ ’.’ -> directory directoryEntry.

’..’ -> directory containingDirectory directoryEntry },
directory entries )]].

[:entry | {
#object -> entry value. "All objects know this message."
#text -> ( (entry respondsTo: #key) "For '.' and '..'"

ifTrue: [entry key] ifFalse: [entry name]).
#icon -> (entry value isDirectory

ifTrue: [UiFugueIcons folderHorizontalIcon]
ifFalse: [UiFugueIcons documentIcon]) } ]

-> { #next -> #'af533889' "Only for tree view."}

} asScript openScriptWith: {FileDirectory default directoryEntry}.
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