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Abstract

Earthquake swarms are characterized by large numbers of events occurring in a
short period of time within a confined source volume and without significant main
shock aftershock pattern as opposed to tectonic sequences. Intraplate swarms in
the absence of active volcanism usually occur in continental rifts as for example
in the Eger Rift zone in North West Bohemia, Czech Republic. A common hy-
pothesis links event triggering to pressurized fluids. However, the exact causal
chain is often poorly understood since the underlying geotectonic processes are
slow compared to tectonic sequences. The high event rate during active periods
challenges standard seismological routines as these are often designed for single
events and therefore costly in terms of human resources when working with phase
picks or computationally costly when exploiting full waveforms.
This methodological thesis develops new approaches to analyze earthquake swarm
seismicity as well as the underlying seismogenic volume. It focuses on the region
of North West (NW) Bohemia, a well studied, well monitored earthquake swarm
region.
In this work I develop and test an innovative approach to detect and locate
earthquakes using deep convolutional neural networks. This technology offers
great potential as it allows to efficiently process large amounts of data which
becomes increasingly important given that seismological data storage grows at
increasing pace. The proposed deep neural network trained on NW Bohemian
earthquake swarm records is able to locate 1000 events in less than 1 second
using full waveforms while approaching precision of double difference relocated
catalogs. A further technological novelty is that the trained filters of the deep
neural network’s first layer can be repurposed to function as a pattern matching
event detector without additional training on noise datasets.
For further methodological development and benchmarking, I present a new tool-
box to generate realistic earthquake cluster catalogs as well as synthetic full wave-
forms of those clusters in an automated fashion. The input is parameterized using
constraints on source volume geometry, nucleation and frequency-magnitude re-
lations. It harnesses recorded noise to produce highly realistic synthetic data for
benchmarking and development. This tool is used to study and assess detection
performance in terms of magnitude of completeness Mc of a full waveform detec-
tor applied to synthetic data of a hydrofracturing experiment at the Wysin site,
Poland.
Finally, I present and demonstrate a novel approach to overcome the mask-
ing effects of wave propagation between earthquake and stations and to deter-
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mine source volume attenuation directly in the source volume where clustered
earthquakes occur. The new event couple spectral ratio approach exploits high
frequency spectral slopes of two events sharing the greater part of their rays.
Synthetic tests based on the toolbox mentioned before show that this method is
able to infer seismic wave attenuation within the source volume at high spatial
resolution. Furthermore, it is independent from the distance towards a station
as well as the complexity of the attenuation and velocity structure outside of the
source volume of swarms. The application to recordings of the NW Bohemian
earthquake swarm shows increased P phase attenuation within the source volume
(QP < 100) based on results at a station located close to the village Luby (LBC ).
The recordings of a station located in epicentral proximity, close to Nový Kostel
(NKC ), show a relatively high complexity indicating that waves arriving at that
station experience more scattering than signals recorded at other stations. The
high level of complexity destabilizes the inversion. Therefore, the Q estimate at
NKC is not reliable and an independent proof of the high attenuation finding
given the geometrical and frequency constraints is still to be done. However, a
high attenuation in the source volume of NW Bohemian swarms has been pos-
tulated before in relation to an expected, highly damaged zone bearing CO2 at
high pressure.
The methods developed in the course of this thesis yield the potential to im-
prove our understanding regarding the role of fluids and gases in intraplate event
clustering.
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Zusammenfassung

Erdbebenschwärme zeichnen sich durch eine große Anzahl an Ereignissen in
einem relativ kleinen Zeitraum und Volumen aus. Im Gegensatz zu tektonis-
chen Sequenzen ist in der Regel keine signifikantes Muster von Vor- und Nach-
beben erkennbar. In Abwesenheit aktiven Vulkanismusses, kommen Erdbeben-
schwärme innerhalb kontinentaler Platten häufig an kontinentalen Verwerfun-
gen vor, wie Beispielsweise im Bereich des Egergrabens im nordböhmischen
Becken (Tschechien). Eine übliche Hypothese verbindet den Erdbebenentste-
hungsprozess mit Hochdruckfluiden. Der exakte kausale Zusammenhang ist je-
doch häufig enigmatisch, da die zugrundeliegenden geotektonischen Prozesse im
Vergleich zu tektonischen Sequenzen relativ langsam sind. Die hohe Erdbeben-
rate während aktiver Phasen stellt hohe Anforderungen an etablierte seismolo-
gische Routinen da diese häufig für Einzelereignisse konzipiert sind. So können
sie einen hohen Aufwand bei manueller Selektion seismischer Phasen (picking)
bedeuten oder rechenerisch aufwändig sein wenn volle Wellenformen verarbeitet
werden sollen.
Im Rahmen dieser methodologischen Thesis werden neue Ansätze zur Analyse
seismischer Schwärme, sowie des zugrundeliegenden seismogenen Volumens en-
twickelt. Der Fokus liegt hierbei auf der gut untersuchten und überwachten
nordböhmischen Schwarmregion.
Ich entwickle und teste in dieser Arbeit einen innovativen Ansatz zur Detektion
und Lokalisation von Erdbeben basierend auf einem tiefen konvolvierenden neu-
ronalen Netzwerk. Diese Technologie bietet großes Potential da sie es erlaubt
große Datenmengen effizient zu verarbeiten was durch die zunehmenden Daten-
mengen seismologischer Datenzentren immer weiter an Bedeutung gewinnt. Das
entwickelte tiefe neuronale Netzwerk, trainiert auf Aufnahmen nordböhmischer
Erdbebenschwärme, ist in der Lage 1000 Eregnisse in weniger als 1 Sekunde bei
Verwendung voller Wellenformen zu lokalisieren und erreicht eine Präzision die
vergleichbar ist mit der Genauigkeit eines Katalogs, der mittels Doppelte Dif-
ferenzen Methode relokalisiert wurde. Eine weitere technologische Neuheit ist,
dass die trainierten Filter der ersten Schicht des tiefen neuronalen Netzwerkes
als Mustererkennungsfilter umfunktioniert werden und damit als Ereignisdetek-
tor dienen können, ohne, dass zuvor explizit auf Rauschdaten trainiert werden
muss.
Für die weitere technologische Entwicklung stelle ich ein neues, automatisiertes
Werkzeug für die synthetisierung realistischer Erdbebenschwarmkataloge, sowie
hierauf basierender synthetischer voller Wollenform vor. Die Eingabeparameter
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werden durch die Geometrie des Quellvolumens, der Nukleationscharakteristik
und Magnitude-Häufigkeitsverteilung definiert. Weiter können Rauschsignale
realer Daten verwendet werden um äußerst realistische synthetische Daten zu
generieren. Dieses Werkzeug wird verwendet um die Vollständigkeitmagnitude
eines Detektors für volle Wellenformen anhand synthetischer Daten zu evaluieren.
Die synthetisierten Daten sind Motiviert durch ein Hydrofrackingexperiment in
Wysin (Polen).
Des Weiteren stelle ich einen neuen Ansatz vor, der die Effekte der Wellenaus-
breitung zwischen Erdbeben und Stationen ausblendet und die Bestimmung
der Dämpfung unmittelbar im Quellvolumen von Schwarmerdbeben erlaubt.
Diese neue Methode benutzt das hochfrequente spektrale Verhältnis von Ereignis-
paaren mit gemeinsamen Strahlenwegen. Synthetische Tests zeigen, dass die
Methode in der Lage ist die Dämpfung innerhalb des Quellvolumens mit hoher
räumlicher Genauigkeit zu bestimmen. Weiter ist sie im Einzelnen unabhängig
von der Entfernung zwischen Ereignis und Station als auch von der Komplexität
der Dämpfungs- und Geschwindigkeitsstruktur außerhalb des Quellvolumens.
Die Anwendung auf Daten des nordböhmischen Erdbebenschwarms zeigt eine
erhöhte P Phasen Dämpfung im Quellvolumen (Qp < 100) basierend auf Daten
einer Station in der Nähe des Dorfes Luby (LBC). Die Wellenformen einer Sta-
tion in unmittelbarer epizentraler Nähe, bei Nový Kostel (NKC), weisen eine
relativ hohe Komplexität auf, was darauf hindeutet, dass seismische Wellen, die
diese Station erreichen relativ stark gestreut werden im Vergleich zu anderen
Stationen. Das hohe Maß an Komplexität destabilisiert die Methode und führt
zu ungenauen Schätzungen an der Station NKC. Daher bedarf es einer weiteren
unabhängigen Validierung der hohen Dämpfung bei gegebenen geometrischen
und spektralen Voraussetzungen. Nichtsdestoweniger wurde bereits eine hohe
Dämpfung im Quellvolumen der nordböhmischen Schwärme postuliert und er-
wartet, insbesondere im Zusammenhang mit einer Zone hoher Brüchigkeit die
CO2 bei hohen Drücken beinhaltet.
Die Methoden die im Rahmen dieser Thesis entwickelt werden haben das Poten-
tial unser Verständnis bezüglich der Rolle von Fluiden und Gasen bei Erdbeben-
schärmen innerhalb kontinentaler Platten zu verbessern.
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Chapter 1

Introduction

The term earthquake swarm describes a phenomenon of large numbers of earth-
quakes occurring in confined source regions usually within a finite period of time
which may last from days to several months often without a distinct signifi-
cant main shock (Jakoubková et al., 2018). For example, approximately 25000
events with magnitudes between -0.5 and 3.5 were registered within four weeks
during the earthquake swarm which occurred in October 2008 in North West
(NW) Bohemia (Vavryčuk et al., 2013). The high event density allows to de-
velop and apply dedicated techniques to improve results in several disciplines
from earthquake detection, localization to attenuation analysis. These three as-
pects constitute the focus of the following sections. On the downside increasing
amounts of data and high event density challenge established processing rou-
tines and/or operators that work in a manual fashion and underline a demand
for higher levels of automation and more efficient routines.
Regions, where swarms occur repeatedly over decades are often well monitored
as is the case in NW Bohemia (Hiemer et al., 2012) which will therefore serve as
a case study data set. Also, the study area in NW Bohemia is of high scientific
interest, as the origin of the regular, midcrustal earthquake swarms is still enig-
matic.

1.1 Earthquake swarm analysis

Earthquake detection and localization is a common first step of earthquake swarm
analysis and seismology in general. In the early days earthquake detection was
manually carried out by observatories’ operators. Localizations of detected earth-
quakes were calculated based on manually picked arrival times of compressional
(P), shear (S) and other phases. The most widely used method dates back to a
work by Geiger (1910) who developed an iterative least squares minimization of
the residuals between observed and calculated theoretical travel times of seismic
phases. However, the quality of picks of body wave first arrivals (phases) and
consequently the quality of location is dependent on the level of experience of the
operator (Velasco and Zeiler, 2009) and the approach can be considered highly
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time consuming and labor intensive. The latter renders this technique impracti-
cal for earthquake swarms. A simple yet powerful alternative to measure phase
arrivals and to detect earthquakes on full waveforms is to calculate the short term
average (STA) and normalize it by the long term average (LTA) of the energy
of a seismic trace. This provides a robust method to detect relative changes in
energy as caused by seismic waves passing the receiver but is prone to produce
false detections, especially in noisy conditions (Sharma et al., 2010).
There are dedicated techniques for event detection and location that are specifi-
cally designed for event clusters and can harness the high event density to achieve
significantly higher accuracies than e.g. standard STA/LTA detectors or absolute
location methods (Slunga et al., 1995). Some of these methods exploit the fact
that event clusters are often characterized by high waveform similarity. A more
sophisticated alternative to STA/LTA ratios for the detection of clustered events
is to use pattern matching. Waveforms of characteristic events serve as stencils
and are compared against full waveforms by cross correlation. This technique
allows to efficiently detect smallest events that are mostly hidden in noise (Gib-
bons and Ringdal, 2006). However, this method requires templates as reference
events which may not be known a priori. In this case auto-correlation consti-
tutes an alternative but is computationally demanding. More recent approaches
overcome this weakness by compressing or encoding signals as ”fingerprints”.
Similar signals producing similar fingerprints can than be analyzed using stan-
dard clustering algorithms (Yoon et al., 2015). The high waveform similarity
found in event clusters also allows to precisely calculate relative travel times of
seismic phases by waveform cross-correlation or cross-spectral analysis of event
pairs (Ito, 1985). Precise phase onset differences can then be used to locate clus-
tered earthquakes relative to a master event (Ito, 1985) or by solving a system
of linear equations that relate all event pairs’ differential travel times (Got et al.,
1994). The double difference relocation algorithm implemented by Waldhauser
and Ellsworth (2000), HypoDD, iteratively minimizes residuals of theoretical and
observed travel times of event pairs. This approach, as well as master-event re-
location methods are routinely applied to relocate earthquake clusters in NW
Bohemia (e.g. Vavryčuk et al., 2013; Fischer et al., 2010).
With increasing computational capacities full waveform migration methods for
localization gained popularity, such as wavefield backpropagation using time-
reversed seismograms - a computationally demanding technique(McMechan, 1982;
Gajewski and Tessmer, 2005). A different approach is based on delay and sum of
characteristic functions deduced from full waveforms. These techniques allow to
detect and locate events even if their signals interfere. Furthermore, they do not
require picking phases and these methods can be applied fully automated (Grigoli
et al., 2018; Cesca and Grigoli, 2015). Therefore, the cost in terms of human
resources is usually lower compared to pick based methods. The downside is
the significant computational cost (Grigoli et al., 2016) which render these tech-
niques almost prohibitive for large event catalogs such as in NW Bohemia even
when using vast parallelization across multiple central processing units (CPU ).
The recent surge of deep learning has outperformed established methods in many
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scientific fields (Minar and Naher, 2018). These methods are still in its’ infancy
in the field of seismology but first feasibility studies show promising results. A
general advantage is the high efficiency owed to the efficient implementation
and computation on graphical processing units (GPU ). Convolutional neural
networks (CNN) are well suited for waveform analysis and phase picking imple-
mentations have produced results of very high precision (Zhu and Beroza, 2018).
In Chapter 2 I present and evaluate a deep CNN trained on earthquake swarm
data. The approach is partly comparable to the work of Zhang et al. (2018) but
predicts locations using deep regression (Lathuilière et al., 2018) in the top layer
instead of sampling the source volume in discrete voxels and assigning each voxel
a hypocenter probability.

The development and benchmarking of such new methodologies dedicated
to earthquake cluster analysis requires realistic synthetic catalogs as well as full
waveform datasets that resemble characteristics of the true earthquake swarm
data under investigation. Different tools have been designed to generate event
cluster catalogs (e.g Console et al., 2015; Davis and Frohlich, 2007; Daub et al.,
2015) as well as realistic full waveforms which can be modelled for 1D models with
good accuracy and performance (Wang, 1999; Nissen-Meyer et al., 2014) based
on these catalogs in a second step. To facilitate the procedure and to generate
bulk swarm data I designed a new toolbox that combines both processing steps.
It allows to generate realistic earthquake cluster catalogs and synthetic realistic
full waveforms affected by real noise. This tool is presented in Chapter 3 where
it provides the basis for synthetic tests and detection performance analysis.

Besides event detection and localization, dedicated cluster techniques can be
beneficial also to estimate physical properties, such as attenuation. Shear and
compressional wave attenuation, often parameterized as the dimensionless qual-
ity factor Q, constitute a crucial parameters that allow to assess rock properties
such as porosity, gas or fluid content of the source volume. These properties
map into the velocity of shear and compressional waves (vp, vs) but also into the
attenuation of both wave types (Qp, Qs).
The source array technique (Spudich and Bostwick, 1987) exploits highly corre-
lated waveforms. It allows to apply receiver array methods to groups of corre-
lated events (source arrays) based on the Green’s function reciprocity (Aki and
Richards, 2002). This approach can then be used to locate earthquakes and also
to study e.g. the coda attenuation Qc (Scherbaum et al., 1997). Regional attenu-
ation tomography is often carried out using the amplitude spectral ratio method
applied to station couples (Aki, 1980). Gaebler et al. (2015) applied this method
to NW Bohemia. Regional attenuation tomography can benefit from event clus-
ters when inverting the ray path attenuation for sub-cluster as this reduces the
number of degrees of freedom in the inversion (Ko et al., 2012). Wcis lo et al.
(2018) applied the peak frequency method (Eisner et al., 2013) to NW Bohemia
and exploited the high event density using a relative attenuation inversion ap-
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proach. Another method that exploits event clusters is proposed in the work of
Matsumoto et al. (2009) and uses spectral ratios of direct phases normalized by
their coda.
In Chapter 4 I develop and demonstrate a modified amplitude spectral ratio
method for event clusters that uses the high frequency slope of event pairs. I
further test its applicability to event couples of the NW Bohemian dataset. The
developed method is motivated by double difference relocation approaches which
benefit from high event densities. The selection of data windows is based on hand
picked phase catalogs. Therefore, it can be considered semi-automated as it does
not require manual measurement e.g. of onset pulse widths to deduce the at-
tenuation. However, the high efficiency of deep learning based algorithms for
detection and location of clustered earthquakes, presented in Chapter 2, consti-
tutes a potential replacement for the highly labor intensive hand picking and
locating procedure. This can also be a way to exploit data for attenuation in a
more exhaustive fashion.
The tool to generate realistic synthetic catalogs and waveforms (Chapter 3) con-
stitutes a feasible way to benchmark and assess the source volume attenuation
method. It provides controllable data sets that enable development under real-
istic conditions.

1.2 Event clusters in NW Bohemia

NW Bohemia located in the Cheb Basin (Czech Republic) is a region of re-
peated intra-continental mid-crustal earthquake swarm activity. Significant sci-
entific effort focused on NW Bohemia lead to the general understanding that
the geodynamic activity of the entire region forms the origin of the intraplate
seismicity. During active periods up to several hundreds of events are registered
each day located in confined source regions as the double difference (Waldhauser
and Ellsworth, 2000) relocated event catalog shows (Fischer et al., 2010). The
events cluster in depths between 6 and 12 km depth on a North-South striking,
sub-vertically dipping fault plane (Fischer et al., 2014). The origin of seismic-
ity in this region remains under debate. It is accompanied by CO2 degassing
in different locations in this area (Bräuer et al., 2004, 2009, 2011). Studies on
3He/4He ratios in free gases indicate magmatic activity pointing towards upris-
ing magmatic fluid injections from the lithospheric mantle (Bräuer et al., 2009).
Three-dimensional velocity tomography results show an increased Vp / Vs ratio
in the source region beneath a region of low values which can be explained by
changes in fluid concentrations (Alexandrakis et al., 2014). Dahm and Fischer
(2013) explained temporal changes in Vp / Vs ratios during seismically active
phases by overpressurized gas which enriches the source volume during seismi-
cally active periods.
Besides the already mentioned ones, the entire region has been the focus of fur-
ther numerous scientific studies from different disciplines (Fischer et al., 2014)
such as hypocenter and focal mechanisms analysis (Vavryčuk et al., 2013) and
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Figure 1.1: Number of channels publicly available from the GEOFON database
between 1990 and 2019.

attenuation tomography (e.g. Wcis lo et al., 2018). Therefore, many aspects of
this region have already been illuminated which makes this a favorable natural
laboratory for methodological development (Fischer et al., 2014).
I was provided with full waveform records of the West Bohemian seismologi-
cal network WEBNET operated by the Institute of Geophysics of the Czech
Academy of Sciences IG CAS. This dataset constitutes the basis for Chapters 2
and 4. The WEBNET consists of 23 stations most of which are streaming data
in real time today. However, during the recording period of the provided data
in 2008 most of the stations opperated in triggering mode. The data is therefore
incomplete. In addition to waveforms I received catalogs of hand picked onsets
and double difference relocated event hypocenters which I used to develop the
methodologies outlined in this thesis.
The large number of events requires sophisticated methodologies to analyze large
amounts of data: Hand picked phase catalogs of the 2008 NW Bohemia earth-
quake swarm are comprised of 14500 onsets registered between October 6 and
October 13, only. Full waveform records of the local network for the same period
reach a total volume of approximately 400 MB per day. New installations are
planned by the international continental scientific drilling project ICDP with
increased sampling rates. The current large and projected increasing full wave-
form database are exemplary for challenges that modern digital seismology faces.
Figure 1.1 shows the publicly available number of channels in the GEOFON
database between 1990 and 2019. A constant increase becomes evident lasting
throughout the entire displayed period. It can be speculated that this trend will
persist in the future. This is a great tendency for the seismological community
as it will foster increasingly holistic seismological research. The downside of this
trend is increasing demands regarding data warehousing and data processing.
These aspects demand semi- or fully automated technologies that allow efficient
analysis and processing to enable a full exploitation of seismological data avail-
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able today and in the future.

This thesis describes new methodologies to efficiently process seismological
records of earthquake clusters. The presented techniques are designed, developed
and tested with full waveform records of seismic clusters.

The key questions of this thesis are: How can the task of event detection
and localization be automated and improved so that performance scales with
growing databases of full waveforms, not only found in earthquake swarms but
in a global perspective? Is it possible to increase the spatio-temporal resolution
of seismic attenuation imaging of the earthquake cluster source region using a
semi-automated attenuation inversion approach based on event couple spectral
ratios? What can we infer from the results regarding triggering mechanisms such
as gases and/or fluids of the swarm events?

1.3 Publications Relevant to this Thesis

Publication 1 (Chapter 2): Kriegerowski, M., Petersen, G. M., Vasyura-
Bathke, H., and Ohrnberger, M. (2018). A Deep Convolutional Neural Network
for Localization of Clustered Earthquakes Based on Multistation Full Waveforms.
Seismological Research Letters, 90(2A):510–516.

The first publication of this thesis presents a novel approach for deep learning
based event detection and location on full waveforms. The major strength of this
technique is its efficiency and high precision. It approaches the accuracy of the
reference double difference relocated event catalog. It can be considered a future
drop-in replacement for event relocalizations that require labor intensive hand
picking of arrivals. Hence, it constitutes a key aspect and the basis for scalable
efficient mapping of rock properties described in Chapter 4.

Publication 2 (Chapter 3): López-Comino J. A., Cesca S., Kriegerowski,
M., Heimann, S., Dahm, T., Mirek, J. and Lasocki, S. (2017). Monitoring per-
formance using synthetic data for induced microseismicity by hydrofracking at
the Wysin site (Poland). Geophysical Journal International, 2017, 210: 42-55.

I developed a toolbox named swarming that allows easy and fast genera-
tion of large earthquake cluster catalogs and waveforms (codes are available
at https://github.com/HerrMuellerluedenscheid/swarming). swarming is
used in the work presented in the second publication of this thesis. It is designed
to generate realistic earthquake swarm catalogs and waveforms for a defined re-
gion and given station setup. The parameterized source volume or plane is filled
with random hypocenter locations. A systematic rupture onset distribution can
be applied to all sources to mimic migration of sources. Focal mechanisms can be
derived from a reference mechanism with varying levels of randomization. Fig-
ure 1.2, top panel, shows a simulated rectangular fault filled with 1000 uniformly
distributed events. Relative nucleation time is indicated by color, starting in the
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Figure 1.2: Top: Synthetic sources generated using the tool swarming. Sources
are aligned along a sub-vertical slab as seen from South-West in a depth between
8.5 and 11.5 km. Colors and sizes represent nucleation time and magnitude,
respectively. Bottom: Magnitudes follow a Gutenberg-Richter distribution. The
geometry and magnitude distribution resemble those of the 2008 earthquake
swarm in NW Bohemia as used in Chapters 2 and 4.
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deeper northern corner (blue) and migrating to the shallower southern corner
(yellow) of the fault. Moment magnitudes are drawn from a Gutenberg-Richter
distribution defined by a b-value and minimum magnitude (Figure 1.2, bottom
panel). Magnitudes are converted to realistic source durations during the wave-
form generation process.
After generating a realistic event catalog, synthetic waveforms are automatically
synthesized using pyrocko.gf (see Section 1.4) (Heimann et al., 2019). The
resulting traces are first convolved with half-sine shaped source time functions
with the deduced rupture duration and thereafter with the transfer function of
the actual recording stations to simulate the spectral characteristics of the un-
derlying recording device. In a post processing step, traces are merged with
randomly extracted records of real noise which are drawn from a noise database.
The toolbox developed in the scope of this work provides the basis for realistic
synthetic tests presented in the third publication (Chapter 4).

Publication 3 (Chapter 4): Kriegerowski, M., Cesca, S., Ohrnberger, M.,
Dahm, T., and Krüger, F. (2019). Event couple spectral ratio Q method for
earthquake clusters: application to northwest Bohemia. Solid Earth, 10(1):317–328.

In the third publication, a new technique to deduce source volume attenuation
is presented. For synthetic testing it employs the tools presented in Publication
2 (Chapter 3). While the used event locations were the provided pick based dou-
ble difference relocated events, the technique described in the first publication
(Chapter 2) will allow a significantly faster assessment in the future as it will
replace labor intensive hand picking and manual localization.

1.4 Further relevant contributions

Sebastian Heimann, Marius Kriegerowski, Marius Isken, Simone Cesca, Si-
mon Daout, Francesco Grigoli, Carina Juretzek, Tobias Megies, Nima Nooshiri,
Andreas Steinberg, Henriette Sudhaus, Hannes Vasyura-Bathke, Timothy Wil-
ley, and Torsten Dahm. (2017) Pyrocko - An open-source seismology toolbox
and library. GFZ Data Services. http://doi.org/10.5880/GFZ.2.1.2017.001

Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul
Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm. A Python
framework for efficient use of pre-computed Green’s functions in seismological
and other physical forward and inverse source problems. Solid Earth Discus-
sions, pages 1–22, may 2019

A significant share of my work that is directly related to this thesis was
dedicated to the co-development of the seismological toolbox pyrocko (Heimann
et al., 2017). In this context I also contributed to the development of the
pyrocko.gf module (gf stands for Green’s function) as well as parts of the
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forward modelling and storage tool fomosto (Heimann et al., 2019). The lat-
ter wraps numerical forward modelling codes and stores raw Green’s functions
in databases. Precalculated Green’s functions then allow rapid generation of
synthetic full waveform records (For the core concept the interested reader may
consult the work of Heimann (2011)). Both, pyrocko.gf as well as fomosto have
been used in the presented work. My exact contributions can be reviewed on
the pyrocko project page on github: https://github.com/pyrocko/pyrocko/

graphs/contributors (pseudonym: HerrMuellerluedenscheid).

9

https://github.com/pyrocko/pyrocko/graphs/contributors
https://github.com/pyrocko/pyrocko/graphs/contributors


Chapter 2

A deep convolutional neural network for localization of
clustered earthquakes based on multi-station full
waveforms

Authors:
Marius Kriegerowski (1) (kriegero@uni-potsdam.de), Gesa M. Petersen (1,2),

Hannes Vasyura-Bathke (1), Matthias Ohrnberger (1)

Journal:
Seismological Research Letters; 90 (2A): 510–516.

doi: https://doi.org/10.1785/0220180320

Status: Published

Affiliations:
(1) University of Potsdam, Germany

(2) Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences,
Germany

10



2.1 Abstract

Earthquake localization is both a necessity within the field of seismology,
and a prerequisite for further analysis like source studies and hazard as-
sessment. Traditional localization methods often rely on manually picked
phases. We present an alternative approach using deep learning, that,
once trained can predict hypocenter locations efficiently. In seismology,
neural networks have typically been trained with either single station
records or based on features, that have been extracted previously from
the waveforms. We use three-component full waveform records of mul-
tiple stations directly, this means no information is lost during prepro-
cessing and preparation of the data does not require expert knowledge.
The first convolutional layer of our deep convolutional neural network
(CNN) becomes sensitive to features that characterize the waveforms it
is trained on. We show that this layer can therefore additionally be used
as an event detector.

As a test case, we trained our CNN using more than 2000 earth-
quake swarm events from West Bohemia, recorded by nine local three-
component stations. The CNN successfully located 908 validation events
with standard deviations of 56.4 m in East-West-, 123.8 m in North-
South- and 136.3 m in vertical direction compared to a double difference
relocated reference catalog. The detector is sensitive to events with mag-
nitudes down to Ml = −0.8 with 3.5% false positive detections.

2.2 Introduction

Earthquake localization routines typically use onset times of seismic phases
recorded at different stations and minimize a loss function with respect to syn-
thetic arrivals (Havskov et al. (2012)). This method is computationally efficient
but requires phase onsets picked or manually revised by (preferably) experi-
enced seismological analysts. In contrast, attempts to exploit full waveforms
for localization achieve good accuracy and require little manual preprocessing,
but are computationally expensive (e.g. Grigoli et al. (2013)) and, therefore,
intractable when working with large amounts of data. Nevertheless, robust au-
tomated processing techniques become increasingly important for analysis of the
rapidly growing global seismological datasets.
Neural networks can help to handle largest amounts of data and provide ways
to rapidly detect, localize and interpret seismic events with little human interac-
tion. In this study we present a convolutional neural network (CNN) as a flexible
tool for earthquake localization and demonstrate its application to full-waveform
data of clustered events of an earthquake swarm occurring in 2008 in Western
Bohemia, Czech Republic. Through this approach we avoid phase picking and
teach a CNN to obtain localizations based on gathers of seismic traces.

Deep convolutional neural networks are artificial neural networks, which com-
prise one or several convolutional layer(s). Each convolutional layer is comprised
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of a number of filter kernels that are generally much smaller than the input
layer. Such kernels are moved across the layer’s input, at each stride the cross-
correlation value is computed representing the activation of the neurons of the
convolutional layer. The different filter kernels of each layer are initialized ran-
domly. During the training loop these filters are updated repeatedly through
backpropagation to minimize a loss function for the given task (e.g. LeCun et al.
(2015), Goodfellow et al. (2016)).

Compared to other scientific fields like image-, video-, text- and speech-
processing, the application of deep neural networks to seismological questions
is still in its infancy. In most case studies published to date, moderately complex
yet powerful network architectures have been used.

First attempts to use multilayer perceptrons (MLP) with one hidden layer
for event detections and phase picking date back to the 1990’s (Wang and Teng
(1995), Wang and Teng (1997), Tiira (1999), Zhao and Takano (1999)).

A study of Musil and Plešinger (1996) exploited MLP to discriminate micro-
earthquakes and quarry or mining blasts in the Western Bohemia earthquake
region based on 7 amplitude and 7 spectral features, which have been previously
extracted from broadband waveform records.

In 2003, Del Pezzo et al. published a study on discrimination of earthquakes
and underwater explosions, again using a 3-layer MLP based on 7 parameters
that were extracted from waveforms in a preprocessing step. Böse et al. (2008)
extracted differential P-phase arrival times and cumulative absolute velocities of
simulated data for a number of sensors in an array. From these they estimated
hypocentral location, magnitude and rupture direction of finite fault earthquakes
for early warning by using three fully-connected feed-forward neural networks
with one hidden layer.

Köhler et al. (2010) used unsupervised pattern recognition for the discovery,
imaging and interpretation of temporal patterns in seismic array recordings. Be-
fore training, the raw data was parameterized in feature vectors. Self-organizing
maps were used for feature selection, visualization and clustering. Recently, Zhu
and Beroza (2018) introduced the PhaseNet, a U-shaped deep convolutional neu-
ral network for arrival time picking of P- and S- phases. PhaseNet uses three
component data and yields probability distributions of P- and S-phase onsets
over time. The network was trained on over 7 million manually labeled seismic
records.

Ross et al. (2018a) used a CNN with three convolutional layers for P-wave
arrival picking and first-motion polarity discrimination and Ross et al. (2018b)
showed that a convolutional neural network trained on a large dataset is very
sensitive in detecting seismic phases, even under high-noise conditions.

Likewise in 2018, Perol et al. introduced the ConvQuakeNet, a CNN for
earthquake detection and localization based on single waveforms, performing
comparatively well and very efficient compared to established methods on event
detection. Rough localizations were achieved by classifying events as belonging
to one of 6 regions.
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Figure 2.1: Location of the seismic stations and West Bohemia earthquake swarm
region. Left inset: Europe, the black rectangle marks the extent of the main map;
Right inset: Location of the used seismic stations (triangles) and the relocated
events (dots) of the 2008 earthquake swarm.

In our study, we use multiple three component seismic traces simultaneously,
to obtain hypocenter locations of earthquake clusters occurring in a confined
source region. We employ a deep convolutional neural network for regression
analysis based on full waveform multichannel seismic recordings targeting precise
event localizations.

The West Bohemia Earthquake Swarm Region

Western Bohemia, located at the border region between the Czech Republic and
Germany (Fig. 2.1), is tectonically active with Holocene volcanism, present day
gas and fluid emissions as well as reoccurring earthquake swarms (Fischer et al.
(2014)). Large earthquake swarms, each with several hundreds to thousands of
events were recorded close to the city of Nový Kostel for example in 1985/1986,
1997, 2000, 2008/2009 and 2011 (Fischer et al. (2014)). Magnitudes of the events
usually do not exceed ML 4 and focal depths reach from about 6 to 14 km. For
this study, we use waveforms of more than 3000 events of the 2008 earthquake
swarm recorded by nine WEBNET stations (Institute of Geophysics, Academy
of Sciences of the Czech Republic (1991)) (Fig. 2.1). Locations and origin times
were taken from a double difference relocated event catalog (Fischer et al. (2010)).
The sources align along a north-south striking fault plane with a horizontal and
vertical extent of approximately 3000 and 2000 meters.
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Figure 2.2: Example waveforms of a Ml 1.1 event on October 12, 2008, recorded
on 8 stations (bandpass filter 0.8 - 50 Hz).

2.3 Methodology: A deep CNN for earthquake

localization

We employ a convolutional neural network trained on event locations (labels) and
full waveform records (features) of the WEBNET stations. The input is provided
as 2 dimensional arrays with size defined by the number of traces and number
of samples within the chosen time window. The order of traces is maintained
across examples.

Data preparation and preprocessing

We use a total of 2118 events for training and 908 events for validation (70 %
split rate). The training and the validation datasets are prepared in the same
way.

Event information (origin time and hypocentral location) are taken from a
double-difference relocated event catalog (Fischer et al. (2010)) of the earth-
quake swarm in Nový Kostel in 2008. An event example is shown in Figure 2.2.
The catalog locations are first transformed to Cartesian coordinates (east, north,
depth) relative to station NKC. Afterwards, we normalize labels by subtracting
the median from each domain and divide through the mean of standard devia-
tions of all three domains. While label normalization is not strictly required in
each situation, in our case it has proven to reduce the number of exploding losses
throughout training. We assume that this is related to exploding gradients when
working within the original domain (meters) (e.g. Bengio et al. (1994), Pascanu
et al. (2012)).
Time windows of 6.2 seconds lengths are cut starting 0.2 seconds before the
P-phase onset at station NKC.

14



.KAC.

.KRC.
.LBC.
.NKC.
.POC.
.SKC.
.STC.
.VAC.
.ZHC.

0 250 500 750 1000 1250 1500
Sample

.KAC.

.KRC.
.LBC.
.NKC.
.POC.
.SKC.
.STC.
.VAC.
.ZHC.

0 250 500 750 1000 1250 1500
Sample

(a) (b)

Figure 2.3: Preprocessing: (a) Two stacked, normalized and highpass filtered
feature examples. (b) Greyscale image of normalized amplitudes as shown in
(a).

We highpass filter all data at 0.8 Hz, which removes the static DC offset.
We stack absolute amplitudes of the three components of each station and nor-
malize each waveform stack by division through the maximum (Fig. 2.3, (a)).
This actually increases relative noise levels for lower magnitude events. However,
we expect the network’s filters to be insensitive to uncorrelated noise. We also
experimented with normalization using the maximum amplitude of each exam-
ple, division through each example’s standard deviation, as well as logarithmic
normalization of absolute amplitudes. The latter has the advantage, that some
degree of relative amplitudes, and therefore information on relative magnitudes,
is preserved. However, normalization by channel maximum amplitude turned
out to outperform the other attempts. Gaps in the data were filled with zeros.
Examples were shuffled in each iteration during training.

Each data patch consists of the stacked channels of each station. The stations
can be in any order as long as the order is maintained at all times. We used an
alphabetic order (Fig. 2.3, (a)). The data of each event spans a 2D regular
raster, in which the rows correspond to the stacked traces of each station and
the columns to the time samples. The amplitude value of each sample is the
pixel’s greyscale value (Fig. 2.3, (b)).

Network architecture

The implemented convolutional neural network used in this study employs the
tensorflow machine learning framework (see Sec. Data and Resources). The en-
tire code for this project is available on github (https://github.com/HerrMuellerluedenscheid/
pinky.git). It is a command line tool that can easily be adapted to other train-
ing data.
The network architecture used here is comprised of three convolutional layers
with varying kernel sizes, followed by a fully-connected dense layer with 512 neu-
rons and an output layer providing the 3 outputs, depth, East- and North-shift
(Fig. 2.4). The three convolutional layers have 32, 64 and 128 filters with ker-
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Figure 2.4: Schematic architecture of the convolutional neural network used for
earthquake localization. h and w are the height and width of the filter kernels
and the number at the top right of each layer indicates the number of kernels in
that layer.

nel dimensions of width=125/height=1, 250/1 and 5/5. The motivation behind
the first two convolutional layers comprised of one dimensional filters is the as-
sumption that these learn temporal patterns. The third convolutional layer is
comprised of two dimensional filters. These filters are designed such that they
gather cross-station information.

We used a batch size of 32 as this turned out to be a compromise between
efficiency and generalization. Larger batch sizes showed poorer generalization
performance (cf. Keskar et al. (2016)). We apply batch normalization to each
CNN layer output. We did not find a significant improvement when using max
pooling over convolution with strides, and therefore, decided for the final archi-
tecture to use the latter (cf. also Springenberg et al. (2014)).

Dropout is applied in all layers, which reduces the risk of overfitting and
ensures a better generalization (e.g. Srivastava et al. (2014)). For the presented
dataset we found that a dropout rate of 37 % produced lowest errors (Figure
2.5 (b)). We use the ADAM optimizer with a learning rate of 0.0003 (Kingma
and Ba (2014)). Training takes approximately 1 hour on a Nvidia GeForce GTX
1080Ti for 600 epochs with batch sizes of 32 examples. We randomly removed
stations with a rate of 5% in each example as this improves generalization. We
refer to this approach as station dropout.
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Figure 2.5: Evolution of loss function: (a) Mean Cartesian misfit between the
reference catalog and the prediction by the CNN for the training dataset (dashed
line) and the evaluation dataset (solid line). (b) Mean Cartesian misfit between
the reference catalog and the prediction by the CNN for the evaluation dataset
after training with different dropout rates.

2.4 Application of the CNN to the West Bo-

hemia 2008 earthquake swarm

The distributions of location differences between double-difference relocated events
and predicted locations of the evaluation dataset in direction of the three Carte-
sian coordinate system axes are centered close to zero (Figure 2.6). Hence, there
is no systematic trend in predicted localizations. The lowest standard deviation
error is found in East-West direction (56.4 m) as a result of the source volume
shape and the North-South striking orientation. In North-South and vertical
direction, the standard deviations are 123.8 m and 136.3 m, respectively.

Figure 2.7 shows the event locations of a randomly chosen subset of evaluation
events obtained with our CNN and the reference locations of the double difference
relocated reference catalog as crosses and points, respectively. The lines connect
solutions for each event and hence indicate location differences. While in most
cases the difference is small, some outliers become evident. These can mostly be
explained by data quality such as interfering events.

Evaluating the mean Cartesian misfit between the reference catalog and the
predictions by the CNN versus running time indicates that after approximately
500 epochs, the evaluation dataset accuracy does not improve further (Figure
2.5 (a)).

Once the network is trained, predictions are obtained rapidly: 908 events
were located within 1.1 seconds.
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Figure 2.6: Location differences between double difference relocated events and
the predicted locations (a) in North-South, (b) East-West and (c) vertical di-
rection. Mean values (µ) are stated with standard deviations of the underlying
distributions. d) Normalized, cumulative distance deviations.

18



0 1

E-W [km]

−4

−3

−2

−1

N
-S

[k
m

]

(a)

−4 −3 −2 −1

N-S (rot.) [km]

8.0

8.5

9.0

9.5

10.0

10.5

D
ep

th
[k

m
]

(b)

−0.5 0.0 0.5

E-W (rot.) [km]

8.0

8.5

9.0

9.5

10.0

D
ep

th
[k

m
]

(c)

−4 −3 −2 −1

N-S (rot.) [km]

8.0

8.5

9.0

9.5

10.0

10.5

D
ep

th
[k

m
]

(d)

ref.

pred.

0.00

0.08

0.16

0.24

0.32

4
D

D
[k

m
]

Figure 2.7: Top-view (a) and cross-sections (c) and (d) showing a subset of 200
locations as obtained by the CNN (pred., crosses) and reference locations from
the double-difference reference catalog (ref., dots). Lines connect both locations
of the same event. (b): Same cross-section as (d) but showing all 908 CNN
predicted locations with color coded differences to catalog location in km. (b) to
(d) are rotated by 10 degrees clockwise around the z-axis for perpendicular and
parallel projections with respect to the fault.
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Figure 2.8: The first layer of the CNN learns characteristic features of the event
waveforms and can therefore be exploited as an event detector (uppermost trace).
Numbers above the uppermost trace indicate the detection level as defined in
Equation (1).

2.5 Detections based on first layer activations

During the learning process filters of the first layer become sensitive to waveform
characteristics of the training data. Therefore, when applied to an unseen data
segment, the activation maps yield an indirect measure of the correlation with
respect to the training data. This information can be harnessed as an event de-
tector (Fig. 2.8). We define a detection level l as the activation energy contained
in the first layer normalized by the energy of the input data:

l =

√∑
A2√∑
I2

(2.1)

where A is the activation matrix and I is the input feature matrix. We process
the entire dataset in intervals of 0.2 seconds using a detection level of 1.8. We
find a total of approximately 6000 detections. We manually revised a subset of
400 detections. 14 events (3.5 %) turned out to be false detections (or events
too small to be visually perceptible). Another four detections were triggered by
local maxima of the detection level due to S phase coda. During some swarm
phases, earthquakes can occur at high rates. Our detection approach cannot
safely distinguish multiple events separated by less than 3 seconds.
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2.6 Discussion

In the current implementation our approach relies on manually picked P- phase
onsets at a reference station for predicting locations and precisely located events
for training. Hence, a significant amount of preparatory work is required.
When we apply the presented method to the North Bohemian swarm data, the
average deviation between the CNN predictions and double difference located
catalog is higher than the uncertainties estimated for the reference catalog itself
of less than 100 meters (T. Fischer, 08/2017, personal communication). However,
88% of locations deviate by less than 200 meters from the reference catalog
and 69% by less than 100 meters, which approaches double difference precision
(Figure 2.6). There is no obvious trend in either Cartesian direction. However,
there may be a trend to form artificial clusters. Figures 2.7(a) and (c) indicate few
events present in the reference catalog, which have been located offset by about
100 meters from the well confined cluster of events which we assume is the main
rupturing fault. Our predictions move those events closer to that fault. Another
clustering effect is visible on the northern rim of the seismic zone where 6 events
move closer together and form a smaller subcluster (laterally). However, results
are biased by the error inherent to the reference catalog. To which extent those
errors promote the observed trend for events to cluster is difficult to estimate
and would have to be investigated with synthetic tests.
The developed method takes relatively long to train (1 hour for 600 epochs) but
rapidly predicts locations (1.1 s for 908 events). In the current implementation
any preprocessing is done on the CPU before examples are fed to GPU memory.
Implementing the preprocessing to be performed on the GPU would certainly
reduce the required training time significantly.

We limited our analysis to stacked absolute waveforms at each station. This
approach was chosen, because it saves two thirds of memory as compared to
treating channels separately and performed similarly good on the localization
task. Nevertheless, the relative energy levels of each station contain information
on source origins. Currently no expert knowledge is used because full waveforms
records contain all the useful information themselves and we do not want to loose
any of that information. However, including more automatic preprocessing like
downsampling, filtering in different frequency bands or switching from time to
spectral domain could be tested in combination with the full waveform approach.

Pretraining of the network with synthetic data could be used in order to
overcome data shortages whenever not enough training examples are available
and possibly remove the dependence on hand labeled training data.

Finally, we demonstrated that the activations of the first convolutional layer
of our CNN can be used as an event detector. This detector is obtained as a
byproduct of the localization CNN and can be used without training on noise ex-
amples which reduces training effort compared to approaches that require labeled
noise. In future work, we plan to combine the two approaches to perform both
event detection and localization with one single network on continuous data.
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2.7 Conclusions

Deep learning techniques such as the deep CNN developed here are key tech-
nologies that allow handling of rapidly growing seismological datasets. Applying
a deep CNN to full waveform data for swarm event localization shows promising
results towards the step of automatic localization as it balances precision and
efficiency. The presented use case demonstrates that locating densely clustered
earthquakes can be done using CNNs trained on a smaller subset of localized
earthquakes from the same region. Furthermore, repurposing first layer activa-
tions provides robust detection performance. Both methods can be adopted e.g.
for induced seismicity or hydrofracturing applications, where working with full
waveforms can be too computationally expensive and picking waveforms is not
feasible due to the large number of expected events.

2.8 Data and Resources

The double difference relocated catalog and waveforms were provided by T. Fis-
cher, Institute of Geophysics, Czech Academy of Sciences (Fischer et al., 2010) .
Data was preprocessed and some plots were generated using the python based
seismology environment pyrocko (Heimann et al. (2017)). The software package
is available at https://pyrocko.org.
The neural network was set-up using the machine learning environment Tensorflow
(Abadi et al. (2016), https://www.tensorflow.org/). Some plots were made
using the Generic Mapping Tools (version 5.2.1) (http://www.soest.hawaii.
edu/gmt/, Wessel et al. (2013)).
The topography shown in Fig. 2.1 is SRTM-3 data (Farr et al. (2007)).
The entire code for the CNN that is presented in this study is open to pub-
lic and can be accessed at https://github.com/HerrMuellerluedenscheid/

pinky.git .
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3.0 Abstract

Ideally, the performance of a dedicated seismic monitoring installation
should be assessed prior to the observation of target seismicity. This
work is focused on a hydrofracking experiment monitored at Wysin, NE
Poland. A microseismic synthetic catalogue is generated to assess the
monitoring performance during the pre-operational phase, where seismic
information only concerns the noise conditions and the potential back-
ground seismicity. Full waveform, accounting for the expected spatial,
magnitude and focal mechanism distributions and a realistic local crustal
model, are combined with real noise recording to produce either event
based or continuous synthetic waveforms. The network detection per-
formance is assessed in terms of the Magnitude of Completeness (Mc)
through two different techniques. First, we use an amplitude threshold,
taking into the ratio among the maximal amplitude of synthetic wave-
forms and station dependent noise levels, for different values of signal-to-
noise ratio (SNR). The detection probability at each station is estimated
for the whole dataset and extrapolated to a broader range of magnitude
and distances. We estimate a Mc of about 0.55, when considering the
distributed network, and can further decrease Mc to 0.45 using arrays
techniques. The second approach, taking advantage on an automatic,
coherence-based detection algorithm, can lower Mc to ∼ 0.1, at the cost
of an increase of false detections. Mc experiences significant changes
during day hours, in consequence of strongly varying noise conditions.
Moreover, due to the radiation patterns and network geometry, double-
couple like sources are better detected than tensile cracks, which may be
induced during fracking.

3.1 Introduction

Induced seismicity related to industrial processes including shale gas and oil
exploitation, mining and other energy technologies are current issues that imply
enough reasons to be concerned (Nicholson & Wesson 1990, 1992; McGarr et al.
2002; Davies et al. 2013; Ellsworth 2013). The assessment of the potential hazard
for these triggered or induced earthquakes has become a relevant and pressing
problem, especially because seismicity rates have increased in some locations. In
the Western Canada Sedimentary Basin, seismic activity has been conjectured
as being induced by hydraulic fracturing (Farahbod et al. 2015; Schultz et al.
2015a), gas extraction (Baranova et al. 1999) or waste water disposal (Horner et
al. 1994; Schultz et al. 2014). Fracking operations in the United Kingdom were
stopped for several years after the detection of two earthquakes with magnitudes
of ML 2.3 and 1.5 in the Blackpool area (Clarke et al. 2014). An interesting
case correlated to gas injection operations occurred offshore Spain, in the Gulf
of Valencia, recording a maximum moment magnitude Mw 4.3 on 2013 October
1 (Cesca et al. 2014; Gaite et al. 2016). The major cause of injection-induced
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earthquakes is associated with the disposal of wastewater into deep strata (Healy
et al. 1968) and the largest events in that respect were registered in Oklahoma
in 2011 November, reaching a peak magnitude of Mw 5.7 (Keranen et al. 2013).
Other instances of induced seismicity, sometimes including events of M > 4, have
been observed in recent years (Ellsworth 2013; Holland 2013). This work focuses
on recent hydraulic fracturing operations associated to shale gas exploration and
exploitation in Poland, due to the increased interest in these techniques in some
European countries (SHEER project, www.sheerproject.eu).

Hydraulic fracturing usually induces weak events since the volumes of injected
fluids are small (Davies et al. 2013). However, scenarios with larger earthquakes
are possible, for example, if the injected fluids alter friction conditions and trigger
the failure of neighbouring faults under pre-existing, tectonic stress. For example,
at the Horn River Basin, British Columbia, a sequence of earthquakes reaching
Mw 3 was caused by fluid injection in proximity of pre-existing faults (British
Columbia Oil and Gas Commission 2012). Hydrofracking occurs when the pore
pressure exceeds the minimal principal stress and the local strength is overcome.
As a result of fracking, microearthquakes and aseismic slip creates the pathways
for the gas/oil, enhancing the rock permeability. In general, the crack growth
stops when the rupture runs out of energy. However, the progressing crack could
find new energy sources, for example, in presence of tectonically loaded faults.
Seismic monitoring of fracking operations is essential, so that branching out of
seismicity is early detected and correlated with geomechanical operations. The
ability of a local network to detect weak microearthquakes as well as larger
triggered events depends on the seismic instrumentation, station number, net-
work geometry, seismic noise and installation conditions. Consequently, assessing
the performance of the monitoring setup, for example, estimating the expected
magnitude of completeness (Mc) or the smallest detectable magnitude, is a fun-
damental step for a later reliable analysis of the forthcoming seismicity. In this
work, we discuss how to address the problem of detection performance before
the target hydraulic fracturing operation takes place. With this goal, we make
use of the concept of Mc, defined as the lowest magnitude at which 100 per cent
of the earthquakes in a space–time volume are reliably detected (e.g. Rydelek &
Sacks 1989; Wiemer & Wyss 2000; Woessner & Wiemer 2005).

Multiple techniques have been proposed for the estimation of Mc. Mignan &
Woessner (2012) classify them as catalogue-based and network-based methods.
The first group of methodologies is mostly based on the assumption of self-
similarity of the earthquake process, implying thatMc is the minimum magnitude
at which the observed cumulative frequency magnitude distribution departs from
the Gutenberg–Richter law (Wiemer & Wyss 2000; Cao & Gao 2002; Marsan
2003; Woessner & Wiemer 2005; Amorese 2007; Mignan et al. 2011). The
second category uses the network distribution to estimate Mc: this is either
done through the analysis of diurnal variations (Rydelek & Sacks 1989), the
comparison of amplitude–distance curves and the signal-to-noise ratio (SNR,
Sereno & Bratt 1989), seismic threshold monitoring (Gomberg 1991; Kværna
& Ringdahl 1999; Kværna et al. 2002), numerical simulation (D’Alessandro et
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al. 2011a,b; D’Alessandro & Stickney 2012), Bayesian statistics (Mignan et al.
2011; Kraft et al. 2013; Mignan & Chouliaras 2014) and detection probability
estimates for each seismic station (Schorlemmer & Woessner 2008; Nanjo et
al. 2010; Plenkers et al. 2011; Maghsoudi et al.2013, 2015). Furthermore,
understanding the microseismic source mechanisms and stress state has gained
more interest recently and should be considered in an appropriate estimation
of the detection performance (Nolen-Hoeksema & Ruff 2001; Baig & Urbancic
2010).

All the catalogue-based methods described above can only be used in a
retroprospective manner, typically after several years of monitoring under the
assumption of a steady earthquake generation process. This is not useful for
planning the monitoring of fracking operations, which last only few months and
are highly transient processes. Therefore, we propose a prospective evaluation
method where we apply a combination of the aforementioned methods and syn-
thetic data in order to assess the monitoring performance before the fracking
operations start. To achieve this goal, we discuss how to generate a realistic syn-
thetic microseismic catalogue and synthetic waveform data sets, accounting for
the main characteristics of the expected source mechanisms for hydraulic frac-
turing as well as realistic noise conditions. The detection performance is assessed
for the synthetic data using two different techniques. In the first case, we use
an amplitude threshold, taking into account a station-dependent noise level and
different values of SNR. In this case, the detection probability of each station is
estimated for each synthetic event, and extrapolated to a broader range of mag-
nitudes and distances from Bayesian statistics. The final map of the Mc is then
estimated by combining the detection performance of different stations, consid-
ering the network geometry. The second approach follows the application of an
automatic detection algorithm to the continuous synthetic data set, comprised
of synthetic event waveforms and continuous real noise data. In this study, we
apply a recently developed automated full waveform detection algorithm based
on the stacking of smooth characteristic function and the identification of high
coherence in the signals recorded at different stations (Lassie, https://gitext.gfz-
potsdam.de/heimann/lassie, Matos et al. 2016; Heimann et al., in preparation).

3.2 Monitoring Network at the Wysin Site (Poland)

In order to assess the sensitivity of microseismicity to hydraulic fracturing oper-
ations, we perform a seismic monitoring at a shale gas exploration/exploitation
site in Pomerania (Poland). In this area, close to the village of Wysin, Polish
Oil and Gas Company (PGNiG) drilled two horizontal boreholes, named Wysin
2H and Wysin 3H, designed for fracturing under Stara Kiszewa Concession No.
1/2011//p for prospecting and exploration of oil and natural gas. The horizontal
boreholes are located at 3955 and 3865 m below the surface and they are oriented
WNW-ESE with an approximate horizontal length of 1.7 km each.

The seismic monitoring installation is part of a broader survey concept,
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also monitoring groundwater conditions and air pollution, planned and deployed
thanks to the EU project SHEER (www.sheerproject.eu). The network is com-
posed of a surface installation and a shallow borehole installation, covering a
region of 60 km2 (Fig. 1). The surface network includes six broad-band stations
surrounding the drilling site at distances of 2.1–4.3 km, with a good azimuthal
coverage (maximal gap 90◦). In addition, short-period stations are arranged in
three small-scale arrays, with apertures between 450 and 950 m. Broad-band sta-
tions are equipped with GÜRALP CMG-3ESP sensors, and record continuously
with a sampling rate of 200 Hz. Short-period stations are either equipped with
a combination of MARK L-4C-3D sensors or GeoSIG VE-53-BB sensors. The
sampling rate of all short-period stations is 500 Hz. The shallow underground
installation is composed of three seismometers (Geotech Instruments KS-2000)
installed at 50 m depth. The installation was started on summer 2015 and the
network is fully operational since 2015 November. However, two borehole sta-
tions (GW3S and GW4S) had suffered from technical problems and were replaced
by two other stations with sensors Nanometrics Trillium Compact Posthole 120
s at the end of 2016 April. For this reason, we exclusively use seismic data of
2016 May to characterize the noise level at each station. This period precedes
the beginning of the hydrofracking operations, which started in 2016 June at a
depth of about 4000 m.

3.3 Synthetic Microseismic Catalogue

We adopt a recently developed tool to generate a synthetic catalogue and wave-
form data sets, which realistically accounts for the expected microseismicity pat-
terns (Kriegerowski et al. 2015). The procedure consists of two steps: (1) the
generation of a synthetic seismic catalogue which reflects the characteristics of
the expected seismic activity and, (2) based on that the generation of realistic
synthetic full waveforms combined with real noise. We consider two types of
seismicity in the study region: (i) a background seismicity, taking place inde-
pendent from the fracking operations, with focal mechanisms controlled by the
known orientation of tectonic stress and the unknown orientation of local faults,
and (ii) induced seismicity, which is controlled in its growth and moment tensors
by the superposition of tectonic and induced stresses. For this second group of
potential microseismic events, the regional tectonic in situ stress state controls
the direction of hydraulic fracture growth in the unperturbed rock formation
(e.g. Nolen-Hoeksema & Ruff 2001; Zang & Stephansson 2010). The knowledge
about the orientation of the maximum horizontal compressive stress (SHmax)
is thus vital to establish possible candidate geometries for the expected focal
mechanisms. The horizontal fracking drillings are expected to be perpendicular
to SHmax, as such stress conditions favour the propagation of fractures opening
in the direction of the least compressive stress (Sh). It has been shown that
the processes involving rapid fluid injection can produce tensile failures with
significant non-double-couple (DC) components, opening in the direction of the
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Figure 3.1: Map of seismic monitoring composed of six broad-band stations
(green triangles), three small-scale arrays (inset boxes), each one composed of
8–9 short-period stations (black triangles) and three shallow borehole stations
(red circles). Blue squares in inset boxes correspond to central locations of each
array. Fracking area (red star, vertical borehole) and horizontal boreholes (blue
lines) are shown. The inset map shows the fracking area (red square) in Poland.
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minimal compressive stress and closing after the injection (e.g. Economides &
Nolte 2003 and others). The orientation of microfractures produced by the hy-
drofracking depends on the superposition of the stress perturbation induced by
the hydraulic fracturing process and the background regional stress field.

Our synthetic catalogue should be consistent with the aforementioned con-
ditions. For this purpose, we consider four families of microseismicity, assigning
1000 events to each one (Fig. 2); the subjective choice of the number of events
has no major implications, since they are only used to assess the detection perfor-
mance for different magnitudes and rupture types. We use a Hudson source-type
plot (Hudson et al. 1989) to discuss the non-DC components and a graphical
representation of tension (T), pressure (P) and null (B) axis to discuss the focal
mechanism orientations. The first group of seismic sources (family 1) resembles
the background seismicity: these sources are modeled by DC focal mechanisms
(this group of synthetic events is hereafter referred as ‘DC’ family). Since the
orientation of small local faults is unknown, we adopt a random distribution of
orientations (i.e. random strikes and dips). The rake value, instead, is controlled
by the strike and dip of the rupture plane and SHmax of the background stress.
In our study area, located within the East European Craton geodynamic do-
mains, the maximum horizontal stress is oriented SHmax ∼ 15◦ (World Stress
Map database release 2008; Heidbach et al. 2008), almost perpendicular to the
horizontal fracking drillings. The compressive regime implies the occurrence of
thrust or strike-slip events, with no normal faulting (see triangular diagram in
Fig. 2). To simulate possible minor deviations from a pure DC source due to the
fluid injection, we include a random 10 per cent perturbation in the moment ten-
sor entries. According to Baig & Urbancic (2010), induced fractures tend to open
in the direction of the minimal compressive stress, closing in the same direction
after the injection. We thus model two families of moment tensors, dominated
by positive (family 2) and negative (family 3) tensile cracks with dipoles oriented
parallel to Sh with a randomized deviations of ±25◦ (according the quality data
for this orientation from the World Stress Map); also in this case, moment ten-
sor configurations are finally perturbed, as for the DC family. The last family
(family 4), defined as ‘random full moment tensor’, represents random moment
tensor sources and thus account unexpected processes. This family shows a clear
dispersion both in the Hudson and focal mechanism orientation plots.

A proper representation of microseismicity should further consider a suitable
distribution of magnitudes and hypocentres (Fig. 3). The instrumental sampling
of our fracking experiment (500 Hz) and the distance to the horizontal fracking
drillings (∼4 km depth) do not favour detections with moment magnitude below -
1; on the other hand, the few previous hydraulic fracturing experiments in Europe
never reported seismicity of magnitude greater than 3 (Clarke et al. 2014).
We then adopt a Gutenberg–Richter distribution with b = 1 and a = 1.84, to
distribute magnitudes in between these limits. Moreover, we assume a circular
fault model of Madariaga (1976) and an average stress drop of 2.7 MPa for
earthquakes within the chosen magnitude range (Kwiatek et al. 2011). Based
on this, we can estimate a maximum rupture length of ∼350 m for the largest
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Figure 3.2: (a) Examples of focal mechanisms for different families of expected
microseismicity in hydraulic fracturing. (b) Hudson source-type plot showing the
Gaussian Kernel density for the complete synthetic microseismic catalogue, where
red denotes higher and blue regions of lower event densities, respectively. The
boxes with dashed grey frames identify the concentrations of seismic sources and
the T, P and B axes plots belonging to the double-couple, positive and negative
tensile crack families. The triangle diagram indicates the distributions of double-
couple focal mechanism. The blue points dispersion corresponds to the random
full moment tensor family. Acronyms in Hudson plot mean isotropic (ISO) and
compensated linear vector dipole (CLVD)
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Figure 3.3: Distribution of hypocentres and magnitudes for the synthetic micro-
seismic catalogue in the Wysin fracturing area. (a) Distribution for the random
full moment tensor and double-couple families. (b) Distribution for the positive
and negative tensile crack families. The size and colour of each point is scaled
to the moment magnitude. Grey star indicates the vertical drilling. Black lines
show the fracking boreholes and the thicker line identifies the zone allocated for
fluid injection. Panels (a) and (b) show the map views, and (c) and (d) the side
views.

events. This value can be used to define the spatial distribution of induced
seismicity, in coherence with previous results in the United States, where most
of the maximum fracture lengths have been less than 100 m, reaching peak values
of 600 m (e.g. Davies et al. 2012; Fisher & Warpinski 2012). We consider that
the hypocentres of small fractures are constrained within a volume defined by
the maximal possible rupture, which extends 350 m around the segments of the
horizontal wells where the fracking takes place. This corresponds to a worst case
scenario, where the largest fracture nucleates close to the well and propagates
unilaterally for the length of 350 m. While the induced seismicity events (families
2 and 3) are constrained within this volume (Fig. 3a), background DC sources
(family 1) and random sources (family 4) are randomly distributed in a slightly
broader region (Fig. 3b). Origin times are distributed randomly within a time
period of one month (which is in the order of the duration of the whole fracking
process). As a result of this procedure we obtain a catalogue of 4000 synthetic
events, divided in four families. The catalogue includes the following information:
origin time, location, moment magnitude, moment tensor and its decomposition
into isotropic, DC and compensated linear vector dipole, radius, duration, stress
drop and event family.

After generating the synthetic seismic catalogue, we compute the respective
seismograms at all the stations of the monitoring network, both at the surface and
at the shallow borehole installations. A realistic local crustal model is necessary
to properly compute the synthetic waveforms. A 1-D velocity profile could be

31



Figure 3.4: Local crustal model for the Wysin site. The P-wave velocity profile
is obtained for the coordinates 54.09◦ N and 18.30◦ E from Grad et al. (2015).
Each layer is identified with the name and the density value in g/cm−3. The
thick black dashed lines indicate the depth of the west and east horizontal wells.

modeled from ground samples of the vertical fracking drilling. Since we do not
dispose of such information, we relied on previous studies on the broader region
of interest. We use a P-wave velocity profile extracted from a high-resolution
3-D seismic model for Poland, at the location of the fracking site (Grad et al.
2015), which is shown in Fig. 4. The S-wave velocity profile was built assuming
a typical scaling to the P-wave velocity (vp = 1.73 vs), while densities of each
layer were obtained from Grabowska et al. (1998). A constant attenuation
factor is used for all layers (Qp = 120 and Qs = 60, Król et al. 2013). The
low Q value for S and P waves is representative for the sedimentary basin in
Poland and leads to a high attenuation in the frequency range of study. The
reflectivity method (Wang 1999) was used to precalculate Green functions up to
500 Hz for the chosen velocity model and a proper range of source depths and
epicentral distances. Finally, three-component synthetic full waveforms (Fig. 5a)
were generated using the Pyrocko package (http://emolch.github.io/pyrocko/,
Heimann et al. 2014), combining the Green’s functions and moment tensors of
the synthetic catalogue. We convolve synthetic seismograms with the transfer
functions of each receiver. Finally, to reproduce true monitoring conditions at
the different station locations, we add real noise to synthetic traces (Fig. 5b),
using recordings at those stations from 2016 May. Thereby, we can use different
synthetic data sets: noise-free synthetic seismograms and noise contaminated
continuous seismograms.
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Figure 3.5: (a) Raw synthetic waveforms (displacement) and (b) real noise con-
taminated continuous seismograms (velocity) for one positive tensile crack event
with Mw = 0.97. (a) and (b) show the same event for the vertical component in
each seismic station. The signal in (b) is bandpass filtered between 2 and 80 Hz
and notch filtered at 50 Hz. Zero time corresponds with the origin time.
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3.4 Detection Performance using Amplitude Thresh-

old

Any detection algorithm needs to define a threshold or trigger level according
to boundary conditions. Records of ambient noise during a time period prior
to a seismic experiment are always useful in order to estimate suitable values
for such detection level. As a prior approximation to assess the monitoring
detection performance, we propose to compare the maximum amplitudes of our
synthetic waveforms with an amplitude threshold previously defined according
to the real noise records at each station. First, the maximum amplitudes of noise
free synthetic full waveforms are analyzed in function of the hypocentral distance
(r) and the moment magnitude (Fig. 6). The amplitude increases exponentially
with the magnitude, while due to the geometrical spreading amplitudes decay
with inverse dependence to the hypocentral distance (1/r). The variability of
focal mechanisms and moment tensors in our catalogue is responsible for the
amplitude variations with respect to this general patterns (see amplitude profiles
in Fig. 6). In fact, we observe in general larger amplitudes associated with DC
sources than tensile cracks. Second, a seismic noise analysis is carried out using
one-month data (2016 May) before fracking operations to define the amplitude
threshold.

The detection performance of each station will additionally depend on the
specific noise conditions. Therefore, we consider random noise samplings at each
station and used them to estimate an average noise conditions in terms of ground
displacement (Fig. 7). Although the detection procedure would be actually
performed on raw traces, our approach was chosen to quantify the detection
amplitude in terms of maximal displacements. Choosing a physical magnitude
such as displacement for the detection threshold is convenient for comparison
with future studies, in order to be independent on the sensor instrumentation.
Mean and standard deviation values are obtained from the noise sampling at
different hours in order to observe daily variations. Larger noise levels during
day hours (6:00 - 18:00 h) are found as a general pattern. However, different
patterns of smoother variations are also found for some stations (e.g. a noise
level increase between 15:00 and 24:00 h at CHR3 and GW4S, see Fig. 7a). We
choose the amplitude threshold for each station according to the averaged values
during the day and night hours (Fig. 7). In this way, we can clearly identify
the most noisy stations between 2 and 80 Hz (e.g. PLA4, PLA7 and PLA8)
and most quiet ones (e.g. GLO5 and GLO7). The borehole stations, which are
located at shallow depth (around 50 m below surface) show similar noise levels
between 2 and 80 Hz as some surface stations. The detector level is then defined
according these amplitude thresholds and a fixed SNR.

We can now compare the maximal amplitude of noise-free synthetic wave-
forms at each station and the corresponding station noise level (either for day
or night hour, depending on the event origin time). Imposing different SNR
requirements, we can estimate detected and undetected events at each station.
Thereby, the Mc can be calculated straight by the lowest magnitude above which
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Figure 3.6: Maximum amplitudes according to the hypocentral distance for each
station and the moment magnitude for each source are plotted for the com-
plete synthetic microseismic catalogue. Amplitude profiles are plotted for a fixed
hypocentral distance (4.5 km) and a fixed moment magnitude (Mw = -0.75) using
grey dots. Additionally, we also show these same amplitude profiles considering
those events belonging to the double-couple (black dots) and tensile crack (grey
dots) families.
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Figure 3.7: Noise analysis in each seismic station using one-month data between
2 and 80 Hz (vertical component) before fracking operations. (a) Mean (grey
line) and standard deviation (yellow area) values in displacement are obtained
from the random noise sampling taking into account the different hours of the
day. Average amplitude threshold for day and night (blue line) and the stan-
dard deviation (light blue area) are estimated according the diurnal variation
between 6:00 and 18:00 h. (b) Bars diagram with the amplitude thresholds and
its uncertainties during day (red bar) and night (yellow bar) for each station.
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all synthetic events are robustly detected (i.e. detected by at least four stations),
taking into account both day and night amplitude thresholds (Fig. 8). The in-
crease of Mc with required SNR reflects the fact that imposing a larger SNR for
detection will decrease the number of detected events and increase the Mc. A
potential empirical law can adjust this relation with fit parameters d1 and d2:

Mc = d1SNR
d1 + d0 (3.1)

In this equation, since the noise level is fixed, a low SNR means that events
which have low amplitude waveforms (i.e. small magnitude) can be detected; in
the extreme case of SNR equal to 0, we should detect all synthetic events, so
that d0 can be defined by the minimum magnitude of our synthetic catalogue,
in our case, d0 = -1. The variation of Mc quantifies the monitoring performance
of our network for different values of the SNR detection threshold. We estimate
Mc ∼ 0.60 during day hours and Mc ∼ 0.55 during night hours, when consid-
ering a realistic SNR = 2. Another interesting issue concerns the evaluation of
the contribution to Mc for each family of source mechanisms. The tensile crack
families constrain the Mc for the complete synthetic catalogue, as these events
are more difficult to be detected. Conversely, for the DC family alone, the Mc

is reduced to ∼0.1, for example, considering SNR larger than 1 (Fig. 8). The
different detection performance arises from the fact that DC sources produce
larger amplitudes than tensile cracks with the same magnitude, as previously
discussed in Fig. 6. It should be noted, however, that this also implies some
challenges in the correct estimation of the magnitude for both DC and tensile
sources. An amplitude-based magnitude definition, ignoring the radiation pat-
tern of different type of sources, may lead to underestimate the magnitude of
tensile sources (or overestimate the magnitude of DC sources). Fit parameters
in eq. (1) vary slightly for day, night and the selected family: d1 [1.35-1.22]; d2
[0.23-0.21]. Another important aim concerns the application of array techniques
to improve the detection performance of our network. In general, the SNR im-
proves with the square root of the number of stations belonging to an array (e.g.
Rost & Thomas 2002, 2009). Applying such approximation to the three arrays,
we can add fictitious stations located in the centre of each array (Fig. 1), with
smaller amplitude thresholds. In this case, the fit parameter d1 takes values
between 1.29 and 1.17, and Mc is slightly decreased by about 0.05, with respect
to the distributed network setup (Fig. 8). Our next purpose aims to extend
spatially the previous values of Mc around the fracking area for a realistic case of
SNR = 2. We can obtain a map to assess our spatial performance combining the
probability of detection (Pd) and empirical relations from Bayesian statistics.
Taking into account each station and its corresponding amplitude threshold, we
can divide the catalogue into detected (N+) or not detected (N-) events (Fig.
9a). The Pd at a single station for different magnitudes (M) and source–receiver
distances (r) from the complete synthetic catalogue is estimated according to
(Schorlemmer & Woessner 2008):

Pd(M, r) =
N+

N+ +N−
(3.2)
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Figure 3.8: Mc versus SNR relation according to the noise levels during day
(first column) and night hours (second column). Potential empirical laws can
adjust the stepwise increase observed for our synthetic catalogue (first row). The
monitoring performance is assessed for the Wysin network in terms of Mc for the
SNR values of 1, 2 and 3 (second row). Note that we show the same empirical
laws in first and second rows. The monitoring performance is improved using
array techniques (third row). Cyan lines identify the curve using the complete
synthetic catalogue, red lines those for the events included in the double-couple
family and black lines those for the tensile crack family only.
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As a result, we obtain estimates of each single-station detection probability
as a function of magnitude and hypocentral distance (Fig. 9a). However, this
information is not complete for a broader domain of magnitudes and hypocen-
tres, because of the limited spatial and magnitude distribution of the synthetic
catalogue. In general, detection probabilities should not decrease with increas-
ing magnitude or with decreasing source–receiver distance. The single-station
detection performance can be extrapolate through empirical relationship such as
in Mignan et al. (2011):

Mc(r, k) = C1r
C2 + C3 (3.3)

where Mc is dependent on the distance r to the kth nearest station with fit
parameters C1, C2 and C3. We scan the configurations of these coefficients,
which are allowed to span within reasonable intervals (C1 in [4, 12], C2 in [0.04,
0.10] and C3 in [-3, -10], Mignan et al. 2011; Mignan & Chouliaras 2014; Schultz
et al. 2015b). These curves divide the magnitude–distance space in a region of
large magnitude and small distances, where the detection is more likely, and a
region of small magnitude and large distances, where the event detection is more
difficult. The best configuration of C1, C2 and C3 to define the completeness
magnitude is here chosen only looking at the first region (below the curve) by
(1) imposing that the number of detected events in this region by at least 95 per
cent and (2) by maximizing the number of events in this region (Fig. 9). A shift
is observed in this empirical relation towards larger magnitudes for the noisiest
stations and, conversely, for quiet stations. The same analysis is performed for
each array, which has the best detection performance (Fig. 9). A regular grid
at an averaged depth for the horizontal fracking drillings of 3.91 km is fixed to
map spatially the Mc, based on the previous empirical relations and imposing
again the simultaneous detection by at least four stations (Fig. 10). Ignoring the
noise heterogeneity on the surface, then the minimum values of the Mc would be
found at the array locations, because of the larger station density. Considering
real station-dependent noise conditions alter significant the spatial distribution
of the detection performance, with a decrease in the Mc around the fracking area
to match similar values such as those in Fig. 8.

3.5 Detection Performance using Coherence

Automatic event detection and location procedures for monitoring local and re-
gional seismicity are widely used by the seismological community. Coherence
techniques have improved the traditional automatic detectors [e.g. short-term
average (STA)/long-term average (LTA) techniques] and have been employed in
microseismicity case for hydrofracking (López-Comino et al. 2017). Our next ap-
proach proposes to apply a recently developed automated full waveform detection
and location algorithms (Lassie, https://gitext.gfz-potsdam.de/heimann/lassie,
Matos et al. 2016; Heimann et al., in preparation), using real noise contami-
nated continuous seismograms. We simulate a continuous synthetic data set by
convolving synthetic seismograms from the complete catalogue with the instru-
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Figure 3.9: (a) Plot of all detected (brown crosses) and not detected events
(blue circles) for the synthetic catalogue using an amplitude threshold previously
calculated with real noise and SNR = 2 in the seismic station GLOD and the
fictional stations for the array GLOX (first row). Probability of detections in
the previous two stations (second row). Black dashed lines show the empirical
relationship obtained by eq. (3). (b) Empirical relationship for all stations (solid
lines) and fictional stations for the array (dashed lines). Stations in array GLOD
are shown in green, array PLAC in red, array CHRW in blue and borehole
stations in yellow. The inbox for the broad-band stations show in black colour
the stations SZCZ, STEF and SKRZ; GLOD in green; PLAC in red and CHRW
in blue.
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Figure 3.10: Spatial monitoring performance at Wysin site in terms of magnitude
of completeness using an amplitude threshold estimated from real noise during
day hours (first column) and during night hours (second columns) with SNR =
2 (first row). Improved spatial monitoring performance using array techniques
(second row). Grey colour scale identifies the number of synthetic events detected
for each station.

41



mental response and adding real noise, which is chosen randomly from the 2016
May data set but constrained around the average timing of the signal, so to pre-
serve the daily variation of seismic noise. This python-tool earthquake detector
is based on the stacking of characteristic functions of P and S waves according
to the energy variations calculated from the square amplitudes of each trace.
It follows a delay-and-stack approach, where the likelihood of the hypocentral
location in a chosen seismogenic volume is mapped by assessing the coherence
of arrival times at different stations (see Cesca & Grigoli 2015 for an overview).
However, in the Lassie implementation, the adoption of smooth characteristic
function calculated from normalized amplitude envelopes allows to reduce the
spatial and temporal sampling (Heimann et al., in preparation). Data are first
bandpass filtered between 2 and 80, Hz including an additional notch filter at
50 Hz (see Fig. 5b). The characteristic P- and S-wave functions for each station
are then calculated, shifted and stacked according to P and S average veloci-
ties in our study region. These operations results in a spatiotemporal matrix
of coherences values. The detection is performed searching the maximal spatial
coherence at each time step, defining a detection every time this value trespasses
a chosen threshold (Fig. 11).

The performance of this tool strongly depends on the selection of the co-
herence threshold. Consequently, we need to define an optimal detector level,
able to detect weak events while not increasing excessively the number of false
detections (Fig. 12). First tests indicate that events with Mw lower than -
0.6 are entirely hidden in the real noise requiring too low detector levels, which
would produce a great number of false detections. We show here the results using
thresholds larger than 700 to remove these inconsistencies. A conservative choice
would correspond to values able to minimize the number of false detections gen-
erated for random coherences in our data set. A better alternative is to require
a threshold, for which the number of real detections is larger than the number of
false detections. Our synthetic catalogue suggests appropriate thresholds could
be chosen between 800 and 1000, with better performance during night hours,
where the false detections disappear at threshold of ∼950. The detection per-
formance depends on the chosen detector threshold in a similar way as in the
previous case, using amplitude threshold with different SNR values (Figs 8 and
12). Mc shows again a stepwise increase with the detection threshold, but the
monitoring performance is significantly improved thanks to the application of
this waveform-based technique. If we consider a reasonable threshold (e.g. 950),
where only 1 per cent of false detections are accepted, the Mc reaches values
around 0.4 and 0.1 during day and night hours, respectively.

3.6 Discussion and Conclusions

The monitoring performance of a microseismic monitoring network is addressed
through a robust parameter, such as Mc. However, this measure is usually esti-
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Figure 3.11: Example of synthetic event with Mw = 0.8. (a) Waveforms sorted
by hypocentral distance for some example stations. (b) Characteristic function
(normalized amplitude envelopes) for each trace. These are used for traveltime
stacking corrected with P-wave speed (red lines) and S-wave speed (green lines).
The markers indicate the (best-fit) synthetic arrival time of the respective phases
at each sensor. (c) Coherence (stack) map for the search region. Dark colours
denote high coherence values. A white star marks the location of the detected
event. Sensor locations are shown with black triangles. (d) Global detector level
function in a processing time window from -8 to +4 s around the origin time
of the detected event. The cut-out time window used for the coherence map
is shown in grey colour. White stars indicate this detection within the same
processing time window, exceeding a detector level threshold of 1000.
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Figure 3.12: Detection performance using coherence techniques (Heimann et
al., in preparation) for the synthetic catalogue with different detector thresh-
olds. Continuous synthetic data set is generated adding real noise randomly
distributed during day (left) and night (right) hours. The number of real detec-
tions corresponding with the synthetic catalogue (black line) and the number of
false detections (grey dashed line) are shown. Black dots represent the values of
magnitude of completeness for different detector threshold.

mated retroprospective, once we know the detected and located seismicity from
a defined catalogue in a given region. In addition, the effects of changes in the
number and type of instruments, as well as the available locations for installation,
cannot be tested retroprospectively. Our approach aims to evaluate a prospec-
tive testing process that could generate induced seismicity taking as a starting
point a seismic network previously designed and installed. The particular case of
hydrofracking at the Wysin site is a good real example involving a combination
of shallow and shallow depth monitoring. A realistic microseismic synthetic cat-
alogue allows quantifying in terms of Mc our particular monitoring performance
using noise recording before the fracking operations. Synthetic waveforms anal-
ysis could reveal important aspects about the seismicity we may record during
and after fracking. Moreover, an adequate noise analysis is essential to know the
current situation of our monitoring before the fracking operations starts.

An average amplitude threshold is estimated for each station from real noise
recording reflecting diurnal variations that affects the detection performance.
Although the lowest noise level are expected a priori in the shallow borehole
stations, some surface stations are able to reach between 2 and 80 Hz similar or
event better noise conditions. We used the raw synthetic seismogram to compare
the maximum amplitudes of synthetic waveforms and average noise levels. The
resolved detection performance can be adjusted by empirical relationships for
different SNR values. This helps to extrapolate our estimations of completeness
magnitude to a broader study region. We found that the detection performance is
strongly varying for different day hours, with a better performance during quiet
night hours. At the same time, Mc also differs for different source processes,
so that tensile cracks are more difficult to detect than DC sources with the
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same magnitude. This may have important consequences when coming to the
interpretation of detected seismicity, since the DC background seismicity may
be better detected than induced seismicity. Assuming an SNR = 2, we estimate
an Mc ∼ 0.55 around the fracking area, with an increase of 0.05 during day
hours. Combining the distributed network with the application of three small-
scale arrays in about 3 km distance to the boreholes, Mc can be lowered to ∼0.45
at the fracking region.

The application of a novel automated detection algorithm, based on the de-
tection of coherence signals at multiple stations, even in presence of noisy records,
is able to improve substantially the detection performance. An essential require-
ment is to choose a reasonable detector level to avoid greater number of false
detections and maximize the real detections at the same time. Again, these pro-
cedures are usually applied during and after the fracking operations. However,
combining synthetic events and real noise, we have been able to create realis-
tic noise contaminated continuous seismograms, which allow to define a suitable
threshold for the detector and to quantify the expected Mc. We estimate for the
Lassie detector (Heimann et al., in preparation) an efficient threshold around 950
for which 1 per cent of false detections are accepted. The Mc is improved using
this methodology, so that we could detect all synthetic events with Mw larger
than 0.1 during night hours.

This study proposes a valuable approach to combine synthetic catalogue, syn-
thetic waveform generation and noise recordings during a pre-operational phase,
to properly prepare detection tools and to estimate their performance, prior to
the beginning of geomechanical operations which may trigger or induced seismic-
ity. The generation of realisitc synthetic data requires an accurate investigation
of source parameters and local structural models. If these conditions are met,
the synthetic data can be a useful tool to assess the detection performance, but
can also be used to assess the performance of further seismological analysis, for
example, to judge the uncertainty on location procedures, or the evaluate the
potential of modeling/inversion techniques for source parameter determination.
The approach can be easily adapted to other environments implying the detection
and characterization of induced microseismicity.
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4.1 Abstract

We develop an amplitude spectral ratio method for event couples from
clustered earthquakes to estimate seismic wave attenuation (Q−1) in the
source volume. The method allows to study attenuation within the source
region of earthquake swarms or aftershocks at depth, independent of wave
path and attenuation between source region and surface station. We ex-
ploit the high frequency slope of phase spectra using multitaper spectral
estimates. The method is tested using simulated full wavefield seismo-
grams affected by recorded noise and finite source rupture. The synthetic
tests verify the approach and show that solutions are independent of focal
mechanisms, but also show that seismic noise may broaden the scatter of
results. We apply the event couple spectral ratio method to North-West
Bohemia, Czech Republic, a region characterized by the persistent oc-
currence of earthquake swarms in a confined source region at mid-crustal
depth. Our method indicates a strong anomaly of high attenuation in
the source region of the swarm with an averaged attenuation factor of
Qp < 100. The application to S phases fails due to scattered P phase
energy interfering with S phases. The Qp anomaly supports the common
hypothesis of highly fractured and fluid saturated rocks in the source re-
gion of the swarms in North-West Bohemia. However, high temperatures
in a small volume around the swarms cannot be excluded to explain our
observations.

4.2 Introduction

The intrinsic and scattering attenuation of the amplitudes of seismic waves is de-
scribed by the dimensionless factor Q. The mapping of spatio-temporal changes
of Q is an important step in seismology, since Q is controlled by temperature,
rock porosity, fluid saturation and rock composition (Toksöz et al., 1981). Hence,
this factor may help to unravel the possible causes of fluid-induced earthquakes,
or thermal anomalies in crustal regions affected by magmatic intrusions. For in-
stance, North-West Bohemia is regularly affected by earthquake swarms lasting
several days or weeks with thousands of recorded events with largest magnitudes
up to Ml 4.4 (Fischer et al., 2014). The causes of the repeated earthquake swarms
which occur in narrow focal zones remain under debate. Relative earthquake lo-
calizations are very precise because of the high waveform quality recorded with
a dense local permanent network (Bouchaala et al., 2013). Different tomography
studies revealed consistent figures of the 3D velocity structures (Alexandrakis
et al., 2014). The attenuation structure in the source region of the earthquake
swarms is scarcely discussed. Some previous studies on whole raypath Q exist
and can be used for verification and benchmarking. However, the main aim of
this study is to test whether the here developed method can enhance the reso-
lution of near source Q and therefore enable more robust conclusions on source
dynamics and the role of fluids in the swarm cycle.
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Several studies investigated the regional attenuation of North-West Bohemia by
integrating along the full path from sources to receivers. Gaebler et al. (2015)
estimated intrinsic and scattering attenuation of S waves (Qs) by means of 14
selected events. Their frequency dependent results indicate mean Q̄s of ap-
proximately 1000. A study by Michálek and Fischer (2013) investigated source
parameters and inferred a station dependent, regional Qp from P phase spectra.
They estimated mean Qp ranging between 100 and 450. They also discuss effects
of directivity on Q concluding that the directivity has little influence due to the
position of stations with respect to radiation patterns.
A tomographic study of North-West Bohemia done by Mousavi et al. (2017) in-
dicated a regional average attenuation of approximately Qp ≈ 100 to Qp ≈ 300
and a pronounced highly attenuative source region where Qp < 100.
Bachura and Fischer (2016) employed two different methods to resolve the re-
gional coda Qc from the source volume to receivers. They used 13 selected events
of the 2011 swarm and found a variation of Qc between 100 and 2500 within the
exploited frequency range of 1-18 Hz.
A recent work by Wcis lo et al. (2018) used a newly developed differential attenu-
ation estimation technique focused on the source region. The authors employed
the peak frequency method which relates the half-period of P pulses to attenua-
tion. They also used a differential approach to map the inter-event attenuation
using a single station (NKC ) and found Qp ≈ 120 and Qs ≈ 80 in the source
region.
Most previous Q studies focusing on NW Bohemia were inherently of low spa-
tial resolution. Firstly, either because Q was estimated for the integral ray path
between sources and stations (except for the work by Wcis lo et al. (2018)) or
secondly, because they focused on low frequencies, or both. E.g. Mousavi et al.
(2017) used frequencies between 1 to 30 Hz and Gaebler et al. (2015) up to 32
Hz.
In this study, we aim to increase the spatial resolution and to resolve Q for waves
traveling only within the small source region of the earthquake swarms. The de-
veloped event couple spectral ratio method is based on the assumption of an
exponentially decreasing spectral slope at high frequencies ω above the corner
frequency of the earthquake, often referred to as the ω2 model (Aki, 1980). From
the ratio of the spectral slopes of two events one can estimate the attenuation of
P and S phases for the ray path between the two events, given the differential
travel time of both events. Matsumoto et al. (2009) exploit amplitude spectral
ratios of direct P phases and normalize the spectra with the coda energy to
compensate for source effects. Opposed to their approach we focus on the higher
frequency content to achieve a higher resolution needed to map the compact
source volume.
The spatially compact seismic clusters in NW Bohemia provide us with a fa-
vorable case study scenario due to the high similarity of source characteristics
(Michálek and Fischer, 2013). We test our method on data recorded from Octo-
ber 6 until October 13, 2008 and a double-difference relocated event catalog of
3841 events with local magnitudes between -0.9 and 3.5 (Fischer and Michálek,
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2008). The high density of events during earthquake swarms clustering within a
small and confined region allows to infer the local attenuation from event cou-
ples, by applying the spectral ratio method (Aki, 1980) to their high frequency
amplitude spectra as we will explain in the following section. One major issue
when calculating spectral content of very few data samples is spectral leakage,
as a result of the finiteness of the time window under study. In order overcome
this problem Thomson (1982) proposed the multitaper method, which we employ
using mtspec (Prieto et al., 2009; Krischer, 2016).

4.3 Method

A velocity spectrum A(ω) of a direct body wave phase originating from a source
j recorded at a station i can be described as (Sanders, 1993):

Ai,j(ω) = Sj(ω)Ii(ω)Ri(ω)Gi,j · e
−ωt∗i,j

2 (4.1)

where ω is the angular frequency. Sj(ω) describes the source spectrum and Ii(ω)
the instrument response. Ri(ω) is the receiver site effect. Gi,j is the frequency
independent geometric loss. The exponential term depends on the angular fre-
quency ω and t∗, the path integrated attenuation from the source to the receiver:

t∗ =

∫
Q−1/vds (4.2)

with Q as the dimensionless quality factor, velocity v of the medium and ds
a segment along the ray path from the source to the receiver. Attenuation is
considered here as a combination of intrinsic and scattering losses. Instead of
estimating a total t∗ describing the full ray path’s attenuation we estimate a
local t∗ from velocity spectra of two earthquakes sharing the greater part of their
ray paths from the seismogenic zone to a receiver. Site effects as well as the
receivers response functions cancel out when two spectra recorded at the same
site are analyzed by means of amplitude ratios. Let Aj,0 and Aj,1 be two velocity
amplitude spectra of events E0 and E1 (in the following referred to as first and
second event of a couple) recorded at a station j (Figure 4.1). We assume that
their source spectra S0(ω) and S1(ω) resemble each other to a degree where the
effect of random perturbations at high frequencies average out when the proposed
method is applied to many couples. Taking the natural logarithm of the spectral
ratio of Ai,0 and Ai,1 yields:

ln(Ai,0(ω)/Ai,1(ω)) = ln(
Gi,0

Gi,1

)− ωδt∗/2 (4.3)

with

δt∗ = t∗i,0 − t∗i,1 (4.4)

This equation describes a linear relation with frequency independent geometri-
cal losses to the left of the negative sign in equation 4.3. The slope k of a line
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Figure 4.1: Schematic illustration of the geometrical constraints and the em-
ployed parameters. The triangle represents a recording station at the surface.
Attenuation is estimated for the traversing distance ray path segment (Dt, green
dashed line). Geometrical constraints respect the passing distance (Dp). Grey
shaded area illustrates the Fresnel volume of the first event.

fitted to equation 4.3 can be used to derive the attenuation time t∗ in between
the two sources from which Q−1 can easily be inferred using equation 4.2.
The far field amplitude spectrum A(ω) of P and S phases can be parameterized
as follows: a seismic moment dependent low frequency plateau, the corner fre-
quency fc and the high-frequency spectral decay approximately proportional to
ω2 resulting from finiteness of particle rise time and the rupture duration (Aki
and Richards, 2002). To remove the dependence on seismic moment we inves-
tigate the high-frequency spectral decay, only. Furthermore, exploiting spectral
content above the corner frequency also reduces source directivity effects on at-
tenuation estimates (Cormier, 1982).
We infer the corner frequency based on previous studies on NW Bohemia seismic
swarms. We use a relation proposed by Michálek and Fischer (2013) to calculate
source radii r based on the moment M0 of an event:

r = 0.155 ·M0.206
0 (4.5)

where M0 = 1.38ML + 10.3. The resulting source radii r are then converted to
fc using

fc = kβ/r (4.6)

with k = 0.32 (Madariaga, 1976), and β = 3.5 km/s, which is a reasonable
assumption for the source region (Michálek and Fischer, 2013). We increase the
lower frequency limit (fmin) used for our spectral analysis by additional 5 Hz with
respect to fc to account for uncertainties in M0 and to ensure linearity of the high
frequency decay. This approach allows frequency bands being wide enough for
employing a stable linear regression. The upper frequency limit fmax was chosen
dependent on the Fresnel volume (see below) of a couple’s first event (Figure 4.1)
and the upper corner frequency of the anti-alias filter of the recording equipment
which is approximately 85 Hz. We calculate the power spectral density using
the multitaper spectral analysis method (MTM ) (Thomson, 1982; Park et al.,
1987). With this method the time series is multiplied with several orthogonal
slepian tapers which are resistant to spectral leakage. The power spectral density
is then reconstructed after Fourier transformation of the tapered samples and a
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Figure 4.2: Ray segments with respect to stations LBC and NKC. Source region
seen from West (left) and from South (right). The colors indicate the station at
which the displayed ray segment arrived as well as the underlying source of the
segments. Grey points show hypocenters which occurred during the investigated
time interval but were not attributed to an event couple.

weighted summation of the resulting spectra. A more exhaustive explanation
can be found in Park et al. (1987). The applied code is a Python wrapper to the
Fortran routine MTSpec (Prieto et al., 2009; Krischer, 2016). MTM achieves
stable spectral estimates also for very short time windows. A critical parameter
of the MTM is the number of slepian tapers as it balances the smoothness and
precision of spectral estimates. We use the implemented default, which is

Ntapers = int(bw · 2)− 1 (4.7)

where bw is the bandwidth factor which we set to bw = 4. Lower values prove to
increase the number of outliers due to increased spectral leakage. Higher values
did not change the results significantly but are more expensive to compute.
We impose strong geometrical constraints to select event couples with respect
to a station as sketched in Figure 4.1. Ray tracing is done based on a 1D
velocity model suggested by Alexandrakis et al. (2014) for the seismogenic region
combined with a regional crustal model proposed by Málek et al. (2000) (Fig.
4.4, left panel). The first geometrical constraint is the traversing distance (Dt,
green dashed line, Fig 4.1) between an event E0 with respect to perpendicular
projections of other hypocenters onto that path. The second constraint is the
passing distance (Dp, red dashed line in Fig 4.1) of that projection of E1 onto
the ray between E0 and the station. We defined a minimum traversing distance
of Dt ≥ 1500 m to ensure that the signal of the second event is attenuated
sufficiently to be detectable in the couple’s spectral ratio.
Subsequent to geometrical preselection upper frequency limits of the analyzed
bandwidth are potentially corrected to lower values dependent on the 2nd Fresnel
volume in between event E0 and a station. The wavelength from which this
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frequency limit can be deduced is given as (Matsumoto et al., 2009):

λ = D2
p

Dt + x

Dpxn
(4.8)

Dp and Dt are passing distance and the traversing distance as defined above. x
is the distance from the passing point with respect to the second event E1 to
the receiver (Figure 4.1). n is the number of the Fresnel volume. The frequency
limit can then be deduced from the wavelength and the wave velocity of the
underlying medium. This approach provides a physically meaningful limitation
to impose on the frequency bandwidth. It ensures that E1 is located within the
Fresnel volume (grey shaded area in Figure 4.1) for the entire analyzed frequency
band.
With this approach we get an estimate for the attenuation along the traversing
distance (green dashed line in Figure 4.1) and when repeated for a large number of
event couples can retrieve a median attenuation for the entire source region. The
described method is advantageous over other methods which require handcrafted
features like onset duration picking as it can be automatized given that an onset
catalog is at hand.

4.4 Synthetic Study

In order to evaluate the expected number of exploitable couples given the geo-
metrical constraints we calculate the relative number of pairs at discrete surface
points covering the region of North-West Bohemia. The size of the blue points in
Figure 4.3 represents the relative number of arriving shared ray paths from event
pairs at possible station sites based on ray tracing through a 1D layered model
(Fig. 4.4). Largest numbers of pairs are expected along a North-South striking
patch which follows the striking direction of the main fault plane. However, in
this case study we use only those stations which provide continuous recordings
for the investigated time span. These are stations KRC, LBC, NKC, SKC and
VAC. After geometrical filtering we expect stations NKC and LBC to produce
the highest number of couples since they provide continuous recordings for the
entire time period and are in a favorable lateral location. Most other stations
are located where no or a negligible number of event pairs are expected. Figure
4.2 shows the rays which penetrate the source volume and fulfill the geometrical
requirements described above. It shows that for events recorded at the most sig-
nificant stations NKC and LBC the highest ray density and therefore sensitivity
is in the lower half of the seismogenic zone. This bias is more pronounced for
recordings at station LBC. Also, these ray segments sample the volume up to
approximately 500 m to the West of the seismic swarm.
We use synthetic waveforms calculated using reflectivity method (Wang, 1999)

employing the same 1D velocity model as for ray tracing (Figure 4.4). The
model simplifies the true conditions and therefore produces comparably clear
phase onsets. However, the recorded data are also dominated by relatively little
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Figure 4.3: Mapping potential locations of future seismic stations favorable to
resolve Q using the described method. The size of the blue points for each tested
location represents the relative number of arriving shared ray paths from event
couples. Red dots show the seismicity of the investigated swarm. Green triangles
indicate locations of the WEBNET stations.
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Figure 4.4: Synthetic velocity and attenuation model used for validation of the
method. The seismogenic zone is marked by light blue. The attenuation in that
zone is expected to be decreased with respect to the regional attenuation model.

scattering and sharp onsets (Fischer et al., 2010). The effects of scattering on
the final results will be discussed in greater detail in sections 5.
Hypocentral locations and origin times are taken from the double difference re-
located catalog of Fischer and Michálek (2008). All synthetic sources are double
couple sources with mean strike, dip and rake set to 170 ± 10, 80 ± 10 and
−30 ± 10 degrees, respectively, uniformly distributed in all three domains. The
mean strike, dip and rake values are the predominant source types stated by
Fischer et al. (2014) which were retrieved based on polarity analysis of P phases.
The seismogenic zone (depth 8500 m - 10500 m in Figure 4.4) has a Qp of 100 and
Qs of 50. It is overlain by a more complex attenuation structure, characterized
by higher Q values.
In order to mimic uncertainties in origin times, locations and velocity model
travel times are perturbed by 10 ms, uniformly distributed. The uncertainties of
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Figure 4.5: Synthetic tests targeting Qp = 100 (a) and Qs = 50 (b) with noise
free data. No source time functions have been convolved. The correct values for
Qp and Qs are indicated by the vertical dashed lines. The station color coding
as given in the legend is used consistently throughout all following images.

the velocity model have an effect only in the source region since both rays of a
couple traverse through the same overlaying velocity model.
The window length was 0.15 s for P and 0.3 s for S phases. The minimum al-
lowed cross correlation of event couples in synthetic tests and later application
to real data was set to 0.75. Signal-to-noise ratio (SNR) of a phase under consid-
eration compared against a noise sample preceding the P phase has to be larger
than 5 across the entire selected frequency band (after slight spectral smooth-
ing to reduce effects of spectral notches). These two requirements efficiently
reject outliers. The minimum allowed bandwidth is 10 Hz, which excludes all
events with magnitudes of less than 0.5, given the magnitude dependent lower
frequency limit (fmin = fc + 5.0Hz, where fc is calculated using equation 4.6).
The bandwidth threshold stabilizes the linear fit to the spectral ratio as it limits
the minimum number of data points. We evaluate Qp from vertical channels
and Qs on North-South and East-West components and average results for each
couple.
Data availability of the recorded dataset has been accounted for. Synthetic traces
were only produced for an event if the recorded dataset contains data as well. All
synthetic traces where convolved with the transfer functions of the WEBNET
stations to generate realistic velocity traces.

Figure 4.5 shows distributions of retrieved Q−1 estimates from all event couples
of the synthetic test using noise-free traces. In this as well as in the following
test depicted in Figure 4.6 traces have not been convolved with a source time
function (i.e. they have impulsive source durations). The resulting distributions
show some scattering solutions. Peaks in both cases (Qp and Qs) resemble the
targeted attenuation model (dashed, vertical line).
The next test depicted in Fig. 4.6 includes additive recorded noise. Data windows
without seismic events in the field recorded data have been manually extracted
and randomly added to synthetic traces to mimic realistic noise conditions. P
phase results show a broadening of the distributions at all stations. While the
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Figure 4.6: Synthetic tests with the same setup as in Figure 4.5 but with additive
real recorded noise from analyzed stations. Again, traces have not been convolved
with a source time function.
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Figure 4.7: Synthetic tests with the same setup as in Figure 4.6. Synthetic traces
were convolved with magnitude-dependent synthetic source time functions.

distribution of station LBC still centers around the model value, the results of
station NKC show only weak correlation with the correct model. This is a re-
sult of the location of station NKC close to the nodal plane of the dominant
rupturing plane where smallest signal amplitudes are expected. S phase results
match the model at NKC but show strong scattering at LBC as a result of the
interference with the added noise as well as the P phase coda.
In a next step (Fig. 4.7) we convolve synthetic Greens functions with realistic
magnitude dependent source time functions. The applied source time function is
half sine shaped where the slope of the high frequency spectral roll off is not de-
pendent on the width of the applied pulse as can be seen in Figure 4.8 where nor-
malized synthetic source spectra are depicted for different relative pulse widths.
The vertical position of the spectral envelope changes with changing duration
but the slope remains the same for all depicted factorized pulse widths. Other
than expected, this stabilizes results. This is a result of the pulse broadening
which leads to a stabilization of MTM estimates as onsets become less transient.
The performed synthetic tests cannot reproduce waveforms in its full natural
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Figure 4.8: Normalized synthetic amplitude spectra of applied source time func-
tions with different durations as a factor relative to the blue one (factor=1). The
slope of the high frequency spectral roll-off is identical.

complexity. Nevertheless, they prove that the concept is capable to estimate
attenuation of the anticipated region.

4.5 Application to North West Bohemia

North-West Bohemia is a favorable case for testing our approach. Several focal
mechanism studies on earthquake swarms in this region indicate dominant prin-
ciple faults striking at 169◦ and 304◦ (Vavryčuk, 2011), which have been active
in different seismic sequences. Events occurring during a swarm tend to rupture
on the same fault. This observation in combination with compactness of seismic
clusters (Figure 4.10) explains the high similarity of waveforms observed for each
swarm. We therefore also assume that source characteristics including rupture
directivity effects are similar throughout each swarm cycle.
By the time of the 2008 swarm the WEBNET stations were equipped with three
component short period seismometers, except for station NKC located in the
epicentral area which is a broad band station. All waveforms are sampled at
250 Hz. An example of a P phase onset recorded at station LBC is shown in
Figure 4.9 together with the estimated amplitude spectra. A manual revision
of all event waveforms has been done to remove those which show indications
of event doublets happening shortly after each other but not being indicated as
such in the catalog. Spurious signal leftovers of a preceding event not necessarily
cause high distortion of the fundamental P phase waveform and may thus not
be removed by setting a cross correlation threshold. However, their effect lead
to distortion at high frequencies of phase spectra and significantly increase the
number of outliers during the analysis. The catalog of HypoDD (Waldhauser and
Ellsworth, 2000) relocated events is comprised of 3841 events and their associ-
ated P and S phase picks. When applied to station LBC, a total of 641 couples
were used which fulfill the requirements in terms of SNR, cross-correlation and
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Figure 4.9: Two P phase wavelets recorded at station LBC and their spectra
from events with local magnitudes Ml=1.2 and Ml=1.4. First two panels show
a) first and b) second event of the analyzed event couple. The grey shaded area
in c) indicates the used frequency band. The cross-correlation coefficient is 0.91
and the attenuation was in this case estimated as Q−1 ≈ 0.006
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geometrical constraints. Results of P phases evaluated at station LBC (Fig.
4.11, left) have a median Q̄−1

p = 0.019, equivalent to Q̄p = 53. The distribu-
tion shows some negative results which do not have a physical meaning and are
related to noise in spectral estimates. Results retrieved based on data from sta-
tion NKC are significantly more unstable, as Figure 4.11 (left) indicates. The
distribution shows a large number of negative results. The median attenuation
is Q̄−1

p = 0.001, equivalent to Q̄p = 1000. 1404 couples where used in this case.
Attenuation evaluated for S phases show almost zero centered distributions at
both stations NKC and LBC which in turn means significant number of negative
and therefore unphysical measures. Median attenuation values are Q̄s
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Figure 4.11: Attenuation results at stations LBC and NKC for Qp (a) and Qs

(b). Median values are indicated by the overlined Q.
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Figure 4.12: Incidence angles plotted against Q−1
p of rays originating from event

couples recorded at station LBC (left) and NKC (right). Q−1
p = 0 is highlighted

with a dashed line.

(Q̄s = 435) at station NKC and Q−1
s = 0.0037 (Q̄s = 270) at stations LBC, re-

spectively. Both values are comparably large compared to Qp estimates from
station LBC. A bias of these S phase attenuation measures is introduced by the
P phase coda energy interfering with S phases and therefore distorting the an-
ticipated high frequency content.

In order to achieve a better understanding of the method’s breakdown for P
phase recordings of station NKC we disable the cross correlation threshold and
scrutinize Q−1 against a multitude of parameters for station NKC and LBC.
Figure 4.12 shows incidence angles of rays of event couples on the y- and Q−1

on the x-axis. Incidence angles are estimated using a 1D raytracing algorithm
(Heimann et al., 2017). By definition the incidence angle is almost identical for
both events of a couple. It becomes evident from figure 4.12, b) that larger inci-
dence angles (> 8 degrees) show a tendency at station NKC to produce negative
Q−1 while results from events with steep incidence angles produce positive Q−1

values. When compared to the same kind of plots for station LBC no such trend
is evident.
Station NKC is located at the northern edge of the swarm’s epicentral region.

Hence, incidence angle approximately correlates with latitude, indicating a loca-
tion dependent problem. The depth sections of results from stations LBC and
NKC (Figure 4.13) show again that the attenuation is mostly positive (red) at
station LBC (Fig. 4.13, a) and c)) in accordance with Figure 4.11. The distri-
bution of attenuation at station NKC (Fig. 4.13, b) and d)) indicates a trend
of decreasing Q−1 values from North to South. This supports the hypothesis of
a location dependent issue. Figure 4.13 d) shows accumulated positive results
related to first events at 1.4 to 2.0 km North (x-axis) which coincides with the
position of a small sub-cluster seen in Figure 4.13 b) below a depth of 9.8 km.
From 1.2 to 1.4 km North the event couple distribution becomes more sparse.
The separation of positive attenuation in the North and mostly negative attenu-
ation in the South of that gap implies a systematic change in frequency content
from two separated segments of the swarm occurring along raypaths from the
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Figure 4.13: Spatial distributions of attenuation at station LBC (left) and NKC
(right). The source region is depicted as seen from the West. The origin of
the coordinate system corresponds to the southernmost event. Panels a) and b)
show average color coded attenuation results of each used event. Panels c) and
d) show the attenuation for each single event pair. First (deeper) events of each
couple are represented by the x-axes whereas second events of each couple are
represented by the y-axis. Attenuation at station LBC is mostly positive. Sub-
horizontal seismicity gaps in panels a) and b) are caused by the set minimum
distance (Dt) between two events.

source region to station NKC.
Figure 4.14 shows P phase waveforms of first events of couples recorded at sta-

tion NKC and LBC, filtered between 1 and 30 Hz for events northern (Fig. 4.14,
left panels) and southern (Fig. 4.14, right panels) of the aforementioned gap.
While the used filter frequencies are actually below the exploited frequency band
used in the analysis these waveforms demonstrate that the waveform complexity
is significantly higher for events recorded at station NKC than for those recorded
at station LBC indicating that scattering plays a major role along the ray paths
to station NKC. The average shape of the waveforms following the first onset
pulse differ in the northern and the southern sections. Furthermore, there are
P phases with flipped polarities which indicates that station NKC was situated
closer to the nodal plane than station LBC. This aspect is in accordance with
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Figure 4.14: P phase onsets of couples’ first events in the northern and the
southern part of the swarm area. Panel a) shows recordings at station LBC, b)
recordings at station NKC.

synthetic tests in chapter III which show worse performance of station NKC then
station LBC for P phase measures.

4.6 Interpretation and Discussion

We present a newly developed method to estimate attenuation from spectral ra-
tios of event couples. The short analyzed time windows are prone to spectral
leakage which we mitigate by applying the multitaper approach. However, this
method can only suppress leakage caused by windowing effects. Leakage from
source effects such as finiteness of the slip and the rupture are not smoothed as
they are expected source characteristics and not filter artifacts.
The given geometry and available data limit the perceptive field of the applied
method mostly to the lower half of the seismic swarm (Fig. 4.2). Rays arriving
at station LBC show a worse penetration of the focal zone compared to those
arriving at station NKC (Fig. 4.2) where the takeoff angle is almost perpendicu-
lar to the normal orientation of the main rupturing fault. Therefore, the setting
of sources with respect to station NKC is favorable from a geometrical point of
view as it can be considered to have a higher sensitivity for attenuation in the
source volume.
Synthetic tests show that the method is capable to reproduce average source
volume attenuation of Qp = 100 and Qs = 50 given the 2008 earthquake swarm
hypocentral locations. In noise free condition a precise result can be achieved for
both, P and S phases at both significant stations NKC and LBC. With additive
recorded noise, the distribution of QP results broadens but still resembles the
true attenuation with high precision at station LBC. Synthetic waveforms at sta-
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tion NKC suffer from weaker SNR at high frequencies indicating that the applied
SNR-threshold of 5 is too optimistic. However, reducing this value would also
reduce the number of data points and therefore have a negative impact on the
statistical significance of results. Qs results at station NKC are more robust then
at station LBC. Both measures, Qs and Qp, improve when convolving synthetic
waveforms with synthetic source time functions as this stabilizes the multitaper
spectral estimates.
The application to recorded P phase onsets shows fewer negative Qp results at
station LBC and than at station NKC which results in a distribution with a
clearer offset with respect to Qp = 0. Waveforms recorded at station LBC are
significantly higher correlated than those at station NKC where changing wave-
form polarities and high waveform complexity can be observed. We hypothesize
that rays arriving at NKC experienced relatively stronger scattering or that a
nearby reflector creates multiples which interfere with signals recorded at NKC.
In the latter case, the reflector would have to be situated in a location where in-
teractions with signals arriving at LBC are weaker. Mousavi et al. (2017) assume
a highly fractured medium in combination with accumulated free gas or fluids
which would cause a high attenuation in the source region and could therefore
explain our observations on low Qp. A 3D Vp/Vs tomography by Alexandrakis
et al. (2014) identified a low VP/VS ratio body directly overlaying the focal zone.
The increased waveform complexity seen at station NKC can be a result of wave-
form interaction with that body. The effects do not necessarily have an influence
on results at station LBC where rays have different paths and take off angles.
Another influence may be rooted in the different families of focal mechanisms.
Vavryčuk et al. (2013) reported three different families of focal mechanisms for
the 2008 swarm. While the slope of high frequency spectra should not directly
be affected by the radiation pattern, there can be higher order effects like rup-
ture propagation and rupture complexity. Dependent on the take off angle these
rupture dynamics can affect the high frequency spectral roll off and therefore
map into attenuation estimates (Kaneko and Shearer, 2015). P phase polarity
changes at station NKC indicate that the station is located close to the nodal
plane of the main rupturing fault. This circumstance can increase the effect of
the aforementioned effects seen at station NKC. If they differ systematically in
the lower and upper source region, this can lead to biases in attenuation analysis
due to the heterogeneous sensitivity across the fault plane. Still, we do not see
such effects at station LBC and therefore speculate, that the dominating effect is
the differing raypaths or a combination of both, raypath scattering and rupture
dynamics.
Our findings in terms of P wave attenuation based on data from station LBC
show similarly low values compared to results by Wcis lo et al. (2018) who ob-
tained Qp ≈ 120 for the source regions. Previous studies by Michálek and Fischer
(2013) investigated source characteristics in NW Bohemia and suggested sta-
tion dependent whole path integrated mean QP values ranging between 100 and
450. We find lower values which can be a result of hydration of the seismogenic
zone. Haberland and Rietbrock (2001) also report highly increased attenuation
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(Q < 100) within earthquake cluster regions and postulated that this could be
related to hydration or partial melting. For instance, melt migration has been
postulated from the size and migration pattern of earthquakes of the 2000 earth-
quake swarm (Dahm et al., 2009). On the other hand, Alexandrakis et al. (2014)
interpret their results on velocity variations by dehydration processes. Our re-
sults deduced from station LBC for average attenuation are in line with previous
findings pointing to high attenuation in the source volume.
Frequency bandwidth is a critical parameter which is limited mostly by the cor-
ner frequency of the recording setup and signal to noise ratio at high frequencies.
Future plans of the Intercontinental Drilling Project (ICDP) include the instal-
lation of up to 4 borehole seismometers in NW Bohemia. It can be expected
that our method will benefit from these measurements. Improved signal to noise
ratios allow to sample and exploit information at higher frequencies which will
stabilize the spectral estimate. Furthermore, higher sampling rates allow a bet-
ter temporal (and therefore spectral) resolution of P and S phases. This will,
in turn, also allow to use even shorter time windows. For the method discussed
here, it would be favorable if at least one of these borehole stations will be sit-
uated in a location where a high number of ray path sharing couples can be
found. The most sensitive region follows the NNE - SSW striking of the fault
and concentrates in the North of the earthquake swarm (Fig. 4.3).
In late September 2017 the University of Potsdam installed a short period seis-
mometer close to the Czech-German border in Oberzwota (red triangle, map
4.10) which is a favorable location. The station recorded 1000 samples per sec-
onds for 62 days during a period of relative quiescence. Nevertheless, approxi-
mately 30 events were recorded in the swarm area with local magnitudes down
to Ml=0. Despite the installation directly on top of the weathering layer the
recordings showed signal to noise ratios larger than 5 at 120 Hz and above for
smallest magnitudes. It becomes evident that even a surface mounted station
would allow to harness spectral information above the corner frequency of the
WEBNET stations also for smallest magnitudes and which indicates that this
will improve the resolution and robustness of our method once the ICDP borehole
installations are operating.

4.7 Conclusion

Applying the source couple amplitude spectral ratio method to differential phase
measures is an alternative to methods which commonly exploit the lower fre-
quency ranges. Theoretically, it is therefore able to achieve better resolution.
Our synthetic study validates this. The geometrical constraints of this method
require a high density of events as it is the case for natural earthquake swarms
or seismic nests but also for hydrofracturing experiments.
The application to data from the 2008 North West Bohemia earthquake swarm
indicates source region Qp < 100 based on data recorded at station LBC. The
sensitive region measures only approximately 2000 ∗ 500 ∗ 500 meters in North,
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East and West direction (Fig. 4.2). Results can therefore be considered of high
spatial resolution. Nevertheless, the distribution of solutions significantly scatter
and we see room for improvement e.g. through high frequency borehole record-
ings. We are not able to retrieve stable estimates at station NKC but instead
see negative attenuation in southern and positive attenuation in the northern
section of the swarm. P phase waveforms of the two sections show systematic
differences at both significant stations which indicates a North-South structural
difference. Furthermore, this effect does not inflict on measures at station LBC.
Given the fact that ray segments at NKC and LBC probe two different but di-
rectly neighboring media leads us to the conclusion that the fractured medium
is highly concentrated along the source patch and that the surrounding medium
can be considered much more dense or intact.
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Chapter 5

Conclusions

The intent of this thesis was to develop efficient fully or semi automated full
waveform methods that enhance our understanding of earthquake swarm dy-
namics which are found in a natural form e.g. in NW Bohemia.
Seismicity rates of swarm areas can be very high resulting in large catalogs of
tens of thousands and more events. Since manual phase picking and event-by-
event analysis is not feasible in these situations automated routines are required
to extract the maximum possible amount of information from large data sets in
reasonable time. In Chapter 2 I developed and evaluated a novel deep learning
based approach to detect and locate events. It allows to locate approximately
1000 events in less than 1 second using full waveforms. For comparison let us
assume that picking of S and P phases on 12 stations may take approximately
one minute per event assuming an experienced operator and neglecting the fact
that picking and locating can be an iterative procedure. The total time would
therefore sum up to 1000 minutes to pick 1000 events, corresponding to 60000
seconds or 16.7 hours in addition to setting up the location algorithm. Hence,
it can be concluded that the novel approach is approximately 60000 times faster
than a standard, pick based location approach and offers a high potential for
automation. 88 % and 69 % of predicted locations deviate by less then 200 and
100 meters from the double difference relocated evaluation catalog, respectively.
The high efficiency of this technique when predicting hypocenter locations based
on full waveforms addresses the demand for modern techniques that are capable
of processing current large and future largest seismological datasets. The ap-
plied method is suitable to locate earthquakes not only as a standard analysis
tool on large databases but can also be applied on real time data. Thanks to the
rapid pace of processing the method could be applied (after some modification
as described in the following Chapter) e.g. also in the field of earthquake early
warning where fast real time analysis of large numbers of full waveform data
streams is necessary. Despite the good performance opposed to full waveform
localization methods based on handcrafted features (e.g Grigoli et al., 2016) the
current implementation of deep learning event localization is failing as soon as
two events interfere – a drawback given that swarm activity is defined by a high
occurrence rate of events in a short period of time which implies that events can
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also overlap. Furthermore, a disadvantage of the deep learning based event local-
ization as implemented in Chapter 2 is that the station geometry is not flexible
as the network is trained to data for that specific geometrical setting.
A further novelty presented in Chapter 2 is the ability to detect earthquakes
based on the first layer’s activation functions. Conceptually this feature can
be described as a pattern matching technique as the data is convolved with the
trained filters of the first layer - the patterns. The advantage of the developed ap-
proach over classic pattern matching techniques is that the patterns are learned
from the information inherent to the data. This makes subjective feature hand-
crafting obsolete and enables a better generalization to other datasets.
In Chapter 3 I developed a tool to generate highly realistic synthetic and there-
fore fully controllable earthquake swarm data including full waveforms. This
allows efficient exploration and benchmarking of new methodologies dedicated
to clustered seismicity with comparably little effort. The flexibility of the pro-
posed toolbox makes it applicable to different situations and setups: Earthquakes
nucleating along two dimensional rupture planes and with a specific migration
pattern as in NW Bohemia or in a more volumetric setting such as hydraulic
fracturing experiments where sources are expected to be nucleating in a three-
dimensional volume as in the case of Chapter 3. The derived approach allows
to generate highly realistic synthetic full waveform records affected by recorded
noise. These hybrid traces were used to asses the event detection capabilities in
terms of magnitude of completeness Mc for different simulated station configu-
rations. This approach can be used to plan seismological campaigns targeting
clustered earthquake analysis more efficiently. Also it allows to assess installed
station configurations in the absence of events which can be important infor-
mation when discussing a reconfiguration or extension of the underlying station
setup.
Another key methodological question of this thesis is if it is possible to increase
the spatio-temporal resolution of attenuation within the source region and there-
fore allow a better analysis of the triggering mechanisms of the earthquakes such
as uprising magmatic fluids or gases. Synthetic tests of Chapter 4 demonstrate
that the developed amplitude spectral ratio method is able to infer source vol-
ume attenuation. The method employs high frequencies and therefore allows to
map attenuation of the source volume in a highly focused way given a suitable
station geometry with respect to the cluster. Synthetic tests also demonstrate
that both, compressional (Qp) and shear wave attenuation (Qs) can theoretically
be estimated, separately. The precision of Qs estimates is lower than that of Qp

due to the interference with P phase coda. Applications to real data shows that
signals undergo significant distortion and are therefore prone to yield unrealis-
tic and non-physical results if the rays from a given event couple take off from
the focal sphere close to the nodal plane of the rupturing slab. This effect was
dominant in the case of station NKC. The second station candidate LBC yields
stable results for P phase onsets but fails for S phases due to interference with
the P phase coda. Therefore, an increase in resolution is only partly achieved.
Nevertheless, the results at station LBC indicate an attenuation of Qp < 100 in
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the focal zone which is relatively decreased given the regional background atten-
uation of compressional waves ranging between Qp = 100 and Qp = 400.
Differing levels of waveform complexity at station NKC and station LBC in com-
bination with the geometrical constraints further lead to the conclusion that the
medium is likely more fractured in the closest vicinity of the sub-vertical source
plane than in the surrounding material. Therefore, it can serve as pathways for
magmatic fluids as well or gases which in turn can trigger earthquakes and also
contribute to the relatively high attenuation within the source volume.
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Chapter 6

Future Work

Software and tools presented in this work are under continuous development
and maintenance. The core features of the toolbox described in Chapter 3 are
currently being migrated into the scenario generator Colosseo of the python seis-
mological framework pyrocko. There are some redundant features and migrating
to pyrocko will make these tools available to a greater community and user base.
Colosseo is not designed with a specific focus on earthquake swarms and therefore
will benefit from the software design of the proposed tools such as the geometrical
representations of source volumes and synthetic migration of hypocenters.

Deep learning is a relatively new field in seismology and the full spectrum
of applications is still under investigation. The demonstrated proof of concept
applied to North West Bohemian earthquake swarm localizations shows that the
method is capable to process large amounts of data in unprecedented efficiency.
It can therefore enable a much more complete analysis not only of earthquake
swarm data. This technique will also foster the analysis of the surging amounts
of seismological data being stored in global data centers with higher precision
and in a more holistic fashion. Despite the initial success of our method it will
have to be modified to become more flexible. Currently, the rigid station ordering
prohibits a broad application as the deep neural network has to be retrained for
other scenarios. A next step to overcome this issue is to use relative locations
of stations with respect to an event over global (normalized) Euclidean locations
of earthquakes and receivers. This way of expressing geometrical circumstances
would allow to learn the relative locations from which the true absolute locations
can be inferred using the correct station location. This approach will need further
methodological testing and verification by synthetic and real data. Synthetic
testing data can be quickly be generated using the tools described in Chapter 3.

At the time of writing this thesis the international continental drilling project
(ICDP) drills 4 holes in NW Bohemia and plans to equip these with downhole
seismometers (among other research equipment). The expected significant im-
provement of signal to noise ratio as well as the anticipated higher sampling
rates motivate to revisit the proposed amplitude spectral ratio method of event
couples as soon as data is available. Extending the spectral evaluation at higher
frequencies will allow to fit more data points in the frequency domain which
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will reduce the variance of the fitted lines and therefore stabilize the inversion.
Furthermore, these recordings will allow to exploit higher and broader frequency
ranges than in the presented work of Chapter 4. This is equivalent to decreasing
the Fresnel volume which means an even more focused insight into the properties
of the seismogenic zone and less influence of the surrounding material.

Combining the deep learning event detection / location approach and the
amplitude spectral ratio method applied to event couples will provide a tool
chain that enables a fully automated rapid assessment of rock properties. The
current implementation requires hand picked phase onsets. This task can be
substituded by the deep CNN when training on data segments where the onset
locations vary. This requires an additional feature column comprised of phase
picks to train the network to predict the position of these picks. A conceptually
similar feasibility study was recently presented by Zhu and Beroza (2018). This
combined training will require larger computational power than used for the work
in Chapter 2. However, the gained flexibility and performance at event location
and phase pick prediction will justify mobilizing additional resources.
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Böse, M., Wenzel, F., and Erdik, M. (2008). PreSEIS: A neural network-based
approach to earthquake early warning for finite faults. Bull Seismol Soc Am,
98(1):366–382.

Bouchaala, F., Vavryčuk, V., and Fischer, T. (2013). Accuracy of the master-
event and double-difference locations: Synthetic tests and application to seis-
micity in West Bohemia, Czech Republic. Journal of Seismology, 17(3):841–
859.
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close to the Nový Kostel focal zone in the western Eger Rift¸ Czech Republic.
Chemical Geology, 290(3-4):163–176.
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current Neural Network for detection of swarm-like earthquakes in W-
Bohemia/Vogtland—the method. Computers & Geosciences, 93:138–149.

72



Dowla, F. U., Taylor, S. R., and Anderson, R. W. (1990). Seismic discrimination
with artificial neural networks: preliminary results with regional spectral data.
Bull Seismol Soc Am, 80(5):1346–1373.

Economides, M. J. and Nolte, K. G. (2003). Reservoir Stimulation. John Wiley.
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Růzek, B. and Horálek, J. (2013). Three-dimensional seismic velocity model of
the west Bohemia/Vogtland seismoactive region. Geophysical Journal Inter-
national, 195(2):1251–1266.

Rydelek, P. A. and Sacks, I. S. (1989). Testing the completeness of earthquake
catalogues and the hypothesis of self-similarity. Nature, 337(6204):251–253.

Sanders, C. O. (1993). Local earthquake tomography: attenuation—theory and
results. Seismic Tomography: Theory and Practice, pages 676–694.
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