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Abstract

Medical imaging plays an important role in disease diagnosis, treatment planning,

and clinical monitoring. One of the major challenges in medical image analysis

is imbalanced training data, in which the class of interest is much rarer than the

other classes. Canonical machine learning algorithms suppose that the number of

samples from different classes in the training dataset is roughly similar or balance.

Training a machine learning model on an imbalanced dataset can introduce unique

challenges to the learning problem.

A model learned from imbalanced training data is biased towards the high-

frequency samples. The predicted results of such networks have low sensitivity

and high precision. In medical applications, the cost of misclassification of the

minority class could be more than the cost of misclassification of the majority

class. For example, the risk of not detecting a tumor could be much higher than

referring to a healthy subject to a doctor. The current Ph.D. thesis introduces

several deep learning-based approaches for handling class imbalanced problems

for learning multi-task such as disease classification and semantic segmentation.

At the data-level, the objective is to balance the data distribution through

re-sampling the data space: we propose novel approaches to correct internal bias

towards fewer frequency samples. These approaches include patient-wise batch

sampling, complimentary labels, supervised and unsupervised minority oversam-

pling using generative adversarial networks for all.

On the other hand, at algorithm-level, we modify the learning algorithm to

alleviate the bias towards majority classes. In this regard, we propose different

generative adversarial networks for cost-sensitive learning, ensemble learning, and

mutual learning to deal with highly imbalanced imaging data.

We show evidence that the proposed approaches are applicable to different

types of medical images of varied sizes on different applications of routine clin-

ical tasks, such as disease classification and semantic segmentation. Our vari-

ous implemented algorithms have shown outstanding results on different medical

imaging challenges.
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Zusammenfassung

Medizinische Bildanalyse spielt eine wichtige Rolle bei der Diagnose von Krankheiten,

der Behandlungsplanung, und der klinischen Überwachung. Eines der großen

Probleme in der medizinischen Bildanalyse ist das Vorhandensein von nicht aus-

balancierten Trainingsdaten, bei denen die Anzahl der Datenpunkte der Zielk-

lasse in der Unterzahl ist. Die Aussagen eines Modells, welches auf einem unbal-

ancierten Datensatz trainiert wurde, tendieren dazu Datenpunkte in die Klasse

mit der Mehrzahl an Trainingsdaten einzuordnen. Die Aussagen eines solchen

Modells haben eine geringe Sensitivität aber hohe Genauigkeit. Im medizinis-

chen Anwendungsbereich kann die Einordnung eines Datenpunktes in eine falsche

Klasse Schwerwiegende Ergebnisse mit sich bringen. In die Nichterkennung eines

Tumors Beispielsweise brigt ein viel höheres Risiko für einen Patienten, als wenn

ein gesunder Patient zum Artz geschickt wird.

Das Problem des Lernens unter Nutzung von nicht ausbalancierten Train-

ingsdaten wird erst seit Kurzem bei der Klassifizierung von Krankheiten, der

Entdeckung von Tumoren und beider Segmentierung von Tumoren untersucht.

In der Literatur wird hier zwischen zwei verschiedenen Ansätzen unterschieden:

datenbasierte und algorithmische Ansätze. Die vorliegende Arbeit behandelt das

Lernen unter Nutzung von unbalancierten medizinischen Bilddatensätzen mittels

datenbasierter und algorithmischer Ansätze.

Bei den datenbasierten Ansützen ist es unser Ziel, die Datenverteilung durch

gezieltes Nutzen der vorliegenden Datenbasis auszubalancieren. Dazu schlagen

wir neuartige Ansätze vor, um eine ausgeglichene Einordnung der Daten aus selte-

nen Klassen vornehmen zu können. Diese Ansätze sind unter anderem synthesize

minority class sampling, patient-wise batch normalization, und die Erstellung von

komplementären Labels unter Nutzung von generative adversarial networks. Auf

der Seite der algorithmischen Ansätze verändern wir den Trainingsalgorithmus,

um die Tendenz in Richtung der Klasse mit der Mehrzahl an Trainingsdaten zu

verringern. Dafür schlagen wir verschiedene Algorithmen im Bereich des kosten-

intensive Lernens, Ensemble-Lernens und des gemeinsamen Lernens vor, um mit

stark unbalancierten Trainingsdaten umgehen zu können.
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Wir zeigen, dass unsere vorgeschlagenen Ansätze für verschiedenste Typen von

medizinischen Bildern, mit variierender Größe, auf verschiedene Anwendungen

im klinischen Alltag, z. B. Krankheitsklassifizierung, oder semantische Segmen-

tierung, anwendbar sind. Weiterhin haben unsere Algorithmen hervorragende

Ergebnisse bei unterschiedlichen Wettbewerben zur medizinischen Bildanalyse

gezeigt.
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Chapter 1

Learning Representation from

Imbalanced Medical Imaging

1.1 Introduction

Medical imaging such as Magnetic Resonance Imaging (MRI), Computed

Tomography (CT), Ultrasound, and microscopic light imaging creates a visual

representation of human body which provides essential information for disease

diagnosis, treatment planning, and clinical monitoring. The main goal of research

on medical image analysis is to extract clinic relevant information or knowledge

from medical images. Automated image segmentation is an important and chal-

lenging clinical routine task which identifies the boundaries of the region of inter-

est (ROI) such as body organ or abnormal tissues in images. The segmentation

result provides critical knowledge for shape analysis, detecting changes in the

volume, planning for radiation therapy, etc. Hence, manual annotation is very

time consuming and subjective, an accurate and reliable automated segmentation

method is valuable for both clinical and research purposes.

Machine learning methods for automated medical image segmentation can be

divided into two main categories [2]. The first category is generative models

that learn the joint distribution between features and corresponding labels. The

other group is a discriminative model that learn conditional probability between

features and targets.
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Generative probabilistic approaches build the model based on prior domain

knowledge about the appearance and spatial distribution of the different tissue

types. Traditionally, generative probabilistic models have been popular where

simple conditionally independent Gaussian models [6] or Bayesian learning [7]

are used for tissue appearance.

On the contrary, discriminative probabilistic models, also called conditional

models, directly learn the relationship between the local features of images and

segmentation labels without any domain knowledge. Traditional discriminative

approaches such as SVMs [8], random forests [9] have been used in medical image

segmentation.

Recently, generative adversarial networks (GAN) [10] have been successfully

used for high-fidelity natural image synthesis, improving learned image compres-

sion, data augmentation, and more. Figure 1.1 shows the number of papers

published based on GAN since 2014. The main idea behind conventional GANs

is to train two neural networks: the generator, which learns how to synthesize

data (such as an image), and the discriminator, which learns how to distinguish

real data from the ones synthesized by the generator. For natural image synthe-

sis, state-of-the-art results are achieved by conditional GANs [11] that has the

advantage of being able to provide better representations for multi-modal data

generation by control on the modes of the data being generated. This makes

cGANs suitable for image semantic segmentation tasks, where we condition an

input image and generate a corresponding output image. The conditional GAN

can provide promising results for medical image segmentation since it doesn’t

need large training samples.

A common problem in clinical application of machine learning or deep learn-

ing based classifier is that some classes have a significantly higher number of

examples in the training set than other classes. This difference is referred to as

class imbalance. Even in the task of medical image semantic segmentation, the

number of pixels or voxels belong to healthy class majority, and the lesion or non-

healthy pixels or voxels are minor. A deep learning model trained on imbalanced

data biased towards a majority class, which is healthy. The predicted results of

such networks have low sensitivity where sensitivity shows the ability of a test to
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1.1 Introduction

Figure 1.1: Number of published papers in generative adversarial net since 2014.

predict non-healthy classes correctly. In medical applications, the cost of misclas-

sification of the minority class could be more than the cost of misclassification of

the majority class.

Methods for mitigating class imbalance can be divided into two main cate-

gories:

• Data-level approaches that modify the class distribution through re-sampling

the data space, by including SMOTE (Synthetic Minority Over-sampling

Technique) of the positive class or by under-sampling of the negative class.

• Algorithm-level methods modify the learning algorithm to alleviate the bias

towards the majority class. Examples are ensemble learning, cost-sensitive

approaches, and one class learning.

Preview of Contributions

In this thesis, we present novel approaches to mitigate the class imbalance issue

in both data-level and algorithm-level. We approach patient-wise batch normal-

ization, and synthetic minority oversampling to skew internal bias from majority

class using generative adversarial networks for both. We introduce different novel

generative adversarial frameworks for cost-sensitive learning, ensemble learning,

and mutual learning to deal with highly imbalanced imaging data. We show

evidence that the proposed approaches are applicable to different types of medi-

cal images of varied sizes on different applications of routine clinical tasks, such

3
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as diseases classification and semantic segmentation. Our various implemented

algorithms have shown outstanding results on some recent medical imaging chal-

lenges.

1.2 Medical Image Analysis

Medical Imaging is the technique and process of creating a visual represen-

tation of the function of the interior bodies such as organs or tissues for clinical

analysis and medical interventions. Medical imaging is a crucial step to reveal the

internal structure of tissues and bones for diagnosing diseases and treatment plan-

ning. In clinical discipline, the medical practitioner responsible for interpreting

and acquiring the image is radiologist, dermatologist, or medical expert.

Recently, Litjens et al. [12] review and summarize 300 papers with the major

of deep learning and medical image analysis until June 2017. We added 300

high cited papers considering the same major of machine learning application

on medical imaging published from 2017 till June 2019 in MICCAI, ISBI, SPIE,

IPMI, MIDL conferences and workshops as well as IEEE Transaction Medical

Imaging and Medical Imaging journals to survey list.

Figures 1.2,1.3, and 1.4 represent the statics in details of publication year,

image modality, and application area. Medical image segmentation using ma-

chine learning and deep learning is the most popular research topic as shown in

Figure 1.4, which classification and detection are second and third, respectively.

Image segmentation is a fundamental problem in medical image computing,

which attempts to identify the exact boundaries of regions such as anatomical or-

gans or abnormal tissues (e.g., lesion). Manual segmentation is time-consuming

and tedious. Moreover, manual segmentation is subject to variation, between

both observers and the same observer. An accurate automatic medical image

segmentation is valuable in the clinical facility. Segmentation is the most com-

mon subject of papers applying deep learning to medical imaging, as shown in

Figure 1.4.

Image segmentation is often a crucial first step in computer-aided detection

pipelines. The segmentation of organs and other substructures in medical images
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Figure 1.2: Number of medical image analysis papers using deep learning approaches

published till June 2019.

Figure 1.3: Categorization of deep learning research papers according to medical image

modality

allows quantitative analysis of clinical parameters related to volume and shape,

as, for example, in cardiac or brain study which as shown by Figure 1.5.

1.2.1 Image Acquisition

Depending on the patient and emergency the medical expert decides for one or

more different type of medical imaging modalities such as ultrasound, Magnetic

Resonance (MR), and Computed Tomography (CT) facilitate visualization of the

human body, a central component of clinical practice. For example, MRI and CT

scans are part of the standard care in diagnosing and evaluating most soft tissues.

We provide more detail about the modalities that we’ve used in this thesis.

Computed Tomography (CT)
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Figure 1.4: The distribution of research papers in the different body structure depicted

in left side and the percentage of research among various tasks shown in the right side

Figure 1.5: The distribution of research studies in the different body organ.

Computed Tomography (CT) or Computerized Axial Tomography (CAT) scan

is a medical imaging method that combines multiple X-ray projections taken

from different angles to produce detailed cross-sectional images of areas inside

the body. CT scans provide 3-D views of certain parts of the body, such as soft

tissues and bones.

CT is an accurate technique for the diagnosis of many abdominal diseases

such as liver, lung, and pancreatic cancers. CT images allow doctors to measure

and evaluate organs in the pelvis, chest, abdomen, cardiac tissue, cardiovascular
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diseases, liver size and location of lesions, bone injuries, colon health, blood flow,

brain infarction, and tumors, etc.

In this thesis, we applied brain CT scans for ischemic stroke lesion segmenta-

tion and abdominal CT images for liver lesion segmentation.

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging is a medical imaging technique that uses the strong

magnetic field, magnetic field gradient, and radio waves to generate images of

body organ and tissues. MRI has a wide range of applications in medical diag-

noses, such as preoperative staging of rectal and prostate cancer.

MRI is an accurate technique for neurological cancers, as it has better resolu-

tion than CT and offers better visualization. The contrast provided between gray

and white matter makes MRI the best choice for many conditions of the central

nervous system, including dementia, cerebrovascular disease, Alzheimer’s, and

glioma disease.

MRI works by measuring the radio waves emitting by atoms subjected to

a magnetic field. The appearance of tissue in an MRI depends on the tissues

chemical composition and which particular MR sequence is employed. The most

common of the sequence is T2-weighted MRI, in which tissues with more water

or fat appear brighter due to their relatively high number of hydrogen atoms. In

contrast, bone (as well as air) has low signal and appears dark on T2-weighted

images. For brain MRIs, T1-weighted with gadolinium contrast enhancement

(T1-Gd) and Fluid Attenuated Inversion Recovery (FLAIR) are commonly used

sequences along with T2-weighted images. Determining which sequences to use

for a given disorder or body part requires careful research or radiology expertise.

In the current thesis, we evaluated the proposed approaches using recent pub-

lic MRI challenges such as BraTS 2013-2018, ACDC 2017, and HVSMR 2016.

Microscopic Light Imaging

Microscopy imaging or live cell imaging obtains a better understanding of biolog-

ical function through the study of cellular dynamics. Generally, live cell micro-

scopes keep cells alive during observation, and the lenses are commonly enclosed

in a micro-cell incubator. Microscopic images that we study in this thesis consist
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of 2D and 3D time-lapse video sequences of fluorescent counterstained nuclei or

cells moving on top or immersed in a substrate, along with 2D Phase Contrast

and Differential Interference Contrast (DIC) microscopy videos of cells moving on

a flat substrate. The videos cover a wide range of cell types and quality (spatial

and temporal resolution, noise levels, etc.).

1.2.2 Medical Image Visualization

Many applications for medical image analysis require visualization and analysis

of two-dimensional (2D) or three-dimensional (3D) objects. Visualization is the

process of exploring, transforming, and view data as images to gain understanding

and insight into the data. Visualization techniques provide tools for medical

reconstruction, diagnosis, and analysis of anatomic structure and function of the

human body.

In this thesis, we developed tools for reading, writing, and transforming 3D

medical images (i.e. .nhdr, .mha, .mhd, .nii, .nii.gz) into 2D images based on

itk [13] libraries. Additionally, we release several useful large-scale C++ libraries,

with a particular focus for working with image patches, image augmentation, and

enhancement. Our code is publicly available 1.

1.2.3 Medical Image Preprocessing

Pre-processing is an important step to bring all subjects in similar distributions,

to do this end we have different prepossessing policies depending image modality

and dataset size. In MRI preprocessing step, we apply different normalization

techniques, bias field correction, and image augmentation.

Normalization

Due to the nature of MRI, even images of the same patient on the same scanner

at different can have different intensities. Normalization aims to remove some

variation in the data (e.g., different subject pose or differences in image contrast,

etc.) that is known and so simplify the detection of subtle differences we are

1https://github.com/HPI-DeepLearning/MedicalImagePreprocessing

8



1.2 Medical Image Analysis

interested in instead (e.g., the presence of a pathology). Here, we will go over the

most common forms of normalization:

Normalization of voxel intensities This form of normalization is highly depen-

dent on the imaging modality. Typical zero-mean, unit variance normalization

is standard for qualitative images (e.g., weighted brain MR images, where the

contrast is highly dependent on acquisition parameters, typically set by an ex-

pert). If we employ such statistical approaches, we use statistics from a single

full volume, rather than an entire database.

Spatial normalization Normalizing for image orientation avoids that the model

will have to learn all possible orientations, which largely reduces the amount of

training images required (see the importance of header attributes to know what

orientation an image is in). We additionally account for voxel spacing, which

may vary between images, even when acquired from the same scanner. This can

be done by resampling to an isotropic resolution: Further normalization includes

medical image registration packages (e.g., MIRTK, etc.) and registers the images

into the same space so that voxel locations between images correspond to each

other. A typical step in analyzing structural brain MR images (e.g., T1-weighted

MR images) is to register all images in the training database to a reference stan-

dard, such as a mean atlas (e.g., the MNI 305 atlas). Depending on the degrees

of freedom of the registration method, this can also normalize for size (Affine

registration) or shape (deformable registration). These techniques remove some

information in the image such as shape and size that might be important for

analysis (e.g., a large heart might be predictive of heart disease).

Data Augmentation

To accurately generalize deep learning model to unseen test cases, we augment

training images by simulating a variation in the data aims to be robust and pre-

vents over-fitting. Similarly to normalization methods, we distinguish between

intensity and spatial augmentations.

Adding uniform/non-uniform noise to training images and random offset con-

trast to handle differences between images are examples of intensity augmenta-

tions which we applied in some experiments.
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Figure 1.6: Number of open and active medical imaging challenges according to region

of interest (application subjects) and imaging modality since 2007

Flipping the image tensor in directions on where to expect symmetry (e.g., a

left/right flip on brain scans), random rotation along axes and random cropping

scaling are examples of spatial augmentation.

Additionally, we generate diverse images based on training samples distribu-

tion using a generative adversarial network to oversample class minorities. We

study the effect of oversampling minority classes by generating different image

modalities using conditional GAN framework, implemented differently for 2D, 2D

sequence, and 3D image generation.

1.2.4 Open Challenges

Applying deep learning algorithms for medical image analysis presents promis-

ing results in different application and open several unique challenges such as

lack of large training data sets, having the acquisition of relevant these images,

difficulties for annotating and labeling large dataset. Even when large datasets

consist of different modalities and annotated by domain experts, label noise can

be an important limiting factor in developing deep learning models. Commonly

in computer vision, the noise in the labeling of images is typically relatively low.

In medical image analysis, useful information does not depend on the images

themselves. Physicians often leverage a wealth of data on patient history, age,

demographics, and others to take a better decisions.

Figures 1.6 and 1.7 overview the most popular challenges which have been

organized within the area of medical image analysis since 2007.
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Figure 1.7: The distribution of open medical imaging challenges according to tasks

1.3 Nature of the Problem by Imbalanced Data

Traditional machine learning or deep learning models assume the number of sam-

ples in different classes are similar. However, in real life dataset, the class dis-

tribution is imbalanced, where some classes have a significantly higher number

of examples in the training set than other classes. There are plenty of exam-

ples in domains such as medical diagnosis [14, 15], fraud detection [16], few-shot

learning [17], autonomous driving [18], and others [19] where this issue is highly

significant and the frequency of one class (e.g., cancer) can be 10000 times less

than another class (e.g., healthy). It has been established that class imbalance

can have a significant detrimental effect on training traditional classifiers [20]

including multi-layer perceptrons [15] and convolutional neural networks [21].

The class imbalance problem affects convergence during the training phase and

generalization of a model on the test set. The predicted results by these models

have misclassification in minority classes where usually the minority classes are

more important from the data mining perspective and they may carry important

and useful knowledge.

The imbalanced class problem has been discussed in data mining [22] as well as

machine learning literature [23]. Anand et al [24] analyses of learning from skewed

data is related to convergence rates of back propagation-trained neural networks.

Several surveys and papers captured recent advances in handling imbalanced class

problem [25]. He and Ma [26] study important issues class imbalanced in sam-

pling strategies, active learning, and streaming data. A book by Garca et al. [27]
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discusses the effect of data preprocessing, among which a reasonable amount of

space is dedicated to preparing, sampling, and cleaning imbalanced datasets. A

more global review on learning from skewed data is proposed by Branco [28] and

study on a more general issue of imbalanced predictive modeling. We summarize

briefly some important parameters of class imbalanced dataset that influences

machine learning algorithms such as data distribution, sample size, separability.

We conclude this section with a brief overview of existing methods and evaluation

measurement.

Imbalanced class distribution

The degree of imbalanced class distribution denotes by the ratio of the sample

size of the small class to that of the majority class. In practical applications, the

rate can be as drastic as 1:100, 1:1000, or even more significant. In this thesis, we

study the effects of imbalanced class rate on segmentation and classification per-

formances. Our finding indicates that a relatively balanced distribution usually

attains a better result. However, at what imbalance degree the class distribution

deteriorates the segmentation performance cannot be stated explicitly since other

factors such as sample size and separability also affect performance.

Small sample size

Given a fixed imbalance rate, the sample size plays a crucial role in determin-

ing the goodness of a classification or segmentation model. In the case that the

sample size is limited, uncovering regularities inherent in a small class is unreli-

able. In this thesis, we explore when the size of the training set increases, the

large error rate caused by the imbalanced class distribution decreases in semantic

segmentation. It expected when more data is used, relatively more information

about the small class benefits the segmentation modeling, which becomes able to

distinguish rare samples from the majority.

Seprateability

The difficulty in separating the small classes from the majority class is the critical

issue of the small class problem. Assuming that there exist highly discriminative
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patterns among each category, then not very sophisticated models are required to

distinguish class objects. However, if patterns among each class are overlapping

at different levels in some feature space, the discriminative model is hard to use.

1.3.1 Approaches for Handling Class Imbalanced

The significant difficulty of the class imbalance problem and its frequent occur-

rence in practical applications of machine learning have attracted research inter-

ests. Several research papers and holding workshops in ICML, AAAI conferences

dedicated the importance of this problem. Research efforts study on two aspects

of the class imbalance problem: (1) the nature of the class imbalance problem

(e.g., in what domains do class imbalances most hinder the performance of a

standard classifier? [29]); (2) the possible solutions in handling the class imbal-

ance problem. Published solutions to the class imbalance problem divide into two

groups as data-level and algorithm-level approaches.

Specifically, at the data-level objective is to re-balance the class distribution

through resampling the data space. At the algorithm level, approaches try to

adapt existing learning algorithms to strengthen learning with regards to the

small class. In this thesis, we address the imbalanced class problem, both data-

level and algorithm-level. Our approaches to skew data distribution and internal

bias correction elaborate in Chapter 2. While, Chapters 3, 4, and 5 describe the

solution in algorithm-level.

1.3.1.1 Methods on Data Level

Solutions at the data-level include many different forms of resampling techniques,

such as randomly oversampling the small class, randomly undersampling the ma-

jority class, informatively oversampling the small class or undersampling of the

majority class (e.g., using generative model), and combinations of the above tech-

niques [30]. However, this oversampling and undersampling techniques often lead

to remove some important samples or add redundant samples to the training set.

Therefore, more advanced methods have proposed that try to maintain structures

of groups and/or generate new data according to underlying distributions [31].

This family of algorithms also consists of solutions for cleaning overlapping ob-

jects and removing noisy examples that may negatively affect learners [32].
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In this thesis, we synthesize minority class samples as well as missing image

modalities according to underlying data distribution by adopting GAN based

framework in two unsupervised and conditional supervised way. Moreover, at

data-level, we introduce new patient-wise batch normalization motivated by the

success of stratified sampling in precision medicine. We study the advantage

of biased with true labels and complementary labels based on the transition

probabilities for minority class in the application of classification and semantic

segmentation. In the future, we plan to investigate the theoretical guarantee

that the classifier learned with complementary labels converges to the optimal

solution.

1.3.1.2 Methods on Algorithmic Level

Algorithm-level approaches focused on modifying existing learners to alleviate

the bias towards majority class. These require good insight into the modified

learning algorithm and precise identification of reasons for its failure in skewed

mining distributions.

One-class learning is a straightforward solution which eliminates bias towards

any group and concentrates on a single set of subjects. However, this technique

needs some specific methods to use one-class learners for more complex problems.

Another popular approach is cost-sensitive approaches which classifier is modified

to incorporate varying penalty for each of the considered groups of examples.

Here, the classifier assigns a higher cost to the less represented set of objects.

The current thesis introduces two new costs, for instance, minority weighting.

Other methods include ensemble approaches combine same or different clas-

sifiers with improving generalization ability. The current thesis introduces three

new ensemble architectures differs in type of ensemble, varied losses, and different

image representation (2D, 2D sequential, and 3D).

1.3.2 Evaluation Measures

Evaluation metrics play a significant role in assessing the classification perfor-

mance and guiding classifier modeling. Accuracy is a common evaluation metric

which is not the best metric to use when evaluating imbalanced datasets as it can

be very misleading. Metrics that can provide better insight include:
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• Confusion Matrix shows correct predictions and types of incorrect predic-

tions. Several measures can be derived using the confusion matrix:

True Positive Rate: TPrate = TP/(TP + FN)

True Negative Rate: TNrate = TN/(TN + FP )

False Positive Rate: FPrate = FP/(TN + FP )

False Negative Rate: FNrate = FN/(TP + FN)

Positive Predictive Value: PPvalue = TP/(TP + FP )

Negative Predictive Value: NPvalue = TN/(TN + FN)

• Precision presents the number of true positive divided by all positive pre-

dictions.Precision is also called Positive Predictive Value. It is a measure

of a classifiers exactness. Low precision indicates a high number of false

positives. Precision = TP/(TP + FP )

• Recall describes the number of true positives divided by the number of pos-

itive values in the test data. Recall is also called Sensitivity or the True

Positive Rate. It is a measure of a classifiers completeness. Low recall indi-

cates a high number of false negatives. Recall = TP/(TP + FN)

• F-Score represents a harmonic mean between recall and precision. The

harmonic mean of two numbers tends to be closer to the smaller of the two.

Hence, a high F-measure value ensures that both recall and precision are

reasonably high. F1 = 2(precision× recall)/(precision+ recall)

1.4 Contributions and Publications

This thesis introduces different novel generative adversarial frameworks that

mitigate the imbalanced class problem for medical image segmentation and dis-

eases classification. We evaluated our solution based on public benchmark an

open challenge medical imaging in recent years. The results reported in this

thesis mostly evaluated by challenge organizer using an online platform.
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This thesis builds on several publications that earlier published in a peer-

reviewed journal and presented international and scientific conferences. Besides,

for the methods discussed in this thesis, we include open-sourced, accessible code

on HPI-Deep Learning Github 1. We release several useful C++ libraries, with

particular focus to pre-process image patches.

The contributions of this thesis are as follows:

Internal Bias Correction by Synthesis Minority Sampling

We demonstrate that synthesize certain types of medical images either from noise

alone as well as from prior knowledge by setting condition image data are able

to mitigate imbalanced class problem and missing medical modalities. We adopt

GAN framework as unsupervised setting for 2D, or 3D synthetic diverse image

generation on minority classes. Then, we study the advantage of generated sam-

ples together with training data in balanced dataset to deep learning model. In

Chapter 2, we study the effects of synthesized data rather than classical data

augmentation for handling imbalanced data using the same deep learning frame-

work. Hence, the diversity gained from synthesized images can introduce more

variability into the training set and considerably improve classification results.

The results are discussed according to quantitative, qualitative evaluation, and

also, we compute the gradient of output category regarding input images to in-

terpret the decision.

Bias Correction by Stratified Batch-Normalization

We introduce patient-wise batch normalization motivated by the succeed of strat-

ified sampling in personalized medicine. The patient-wise batch normalization is

able to skew data distribution by normalizing batches within homogeneous and

among heterogeneous of samples. The proposed method enforces a deep network

to maintain on a similar distribution where the patient-wise batch normalization

is able to scale the whole underlying probability density function described in

Chapter 2.

Handling Imbalanced by Cost Weighted Instance Learning

1https://github.com/HPI-DeepLearning/MedicalImagePreprocessing
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In Chapter 3, we present two new cost-sensitive learning losses that modifying

existing learners to alleviate their bias towards majority groups. As a first ap-

proach, we assign a higher cost to the less represented set of objects and boost

its importance during the learning process. In the second approach, we weighted

loss function to attenuate the effect of majority class frequency. Then, we show

the application of weighting losses on handling the imbalanced class problem for

semantic segmentation and diseases classification.

Learning Imbalanced with Class Expert Ensemble

In Chapter 4, we demonstrate that an ensemble of multiple models as a single con-

sensus model can efficiently handle the imbalanced class problem. We introduce

three different ensemble models differs from architecture, loss, and type of en-

semble based on the generative adversarial network. We explain multi-objective

optimization guarantee converges to the optimal solution. Then, we show the

application for highly imbalanced semantic segmentation task.

Learning Imbalanced with Mutual Information

We explore the mutual information shared between independent generators help-

ful to mitigate the imbalanced class problem. We implemented different GAN

based architecture and examined the impact of mutual learning for semantic seg-

mentation of imbalanced data. The details of architecture, training procedure,

and experiments are demonstrated in Chapter 5.

The list of selected publications to this thesis includes the following:

� Mina Rezaei, Haojin Yang, Christoph Meinel: Recurrent Generative Adver-

sarial Network for Learning Imbalanced Medical Image Semantic Segmen-

tation. Proceeding by Journal of Multimedia Tools and Application, special

issues on Computer-Aided Radiology and Diagnosis.

� Mina Rezaei, Haojin Yang, Konstantine Harmuth, Christoph Meinel: Con-

ditional Generative Refinement Adversarial Networks for Unbalanced Med-

ical Image Semantic Segmentation. Proceeding by IEEE Winter Conference

on Application Computer Vision WACV 2019.
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� Mina Rezaei, Haojin Yang, Christoph Meinel: Learning Imbalanced Seman-

tic Segmentation through Cross-Domain Relations of Multi-Agent Gener-

ative Adversarial Networks. Proceeding of SPIE Medical Imaging - Com-

puter Aided Diagnosis (SPIE Medical Imaging 2019 - Best Student Paper

Award)

� Mina Rezaei, Haojin Yang, Christoph Meinel: Multi-Task Generative Ad-

versarial Network for Handling Imbalanced Clinical Data. Accepted and

presented in Machine Learning for Health Workshop at Advances in Neural

Information Processing Systems 2018 (ML4H)

� Mina Rezaei, Haojin Yang, Christoph Meinel: Generative Adversarial Frame-

work for Learning Multiple Clinical Tasks. Proceeding by Digital Image

Computing: Techniques and Applications (DICTA 2018)

� Mina Rezaei, Haojin Yang, Christoph Meinel: voxel-GAN: Adversarial Frame-

work for Learning Imbalanced Brain Tumor Segmentation. Proceeding by

BrainLes@MICCAI 2018.

� Mina Rezaei, Haojin Yang, Christoph Meinel: Instance Tumor Segmenta-

tion using Multitask Convolution Neural Network. Proceeding by IEEE

Joint Conference on Neural Networks (IJCNN 2018)

� Mina Rezaei, Haojin Yang, Christoph Meinel: Automatic Cardiac MRI Seg-

mentation via Context-aware Recurrent Generative Adversarial Neural Net-

work. Accepted and presented in Computer Assisted Radiology and Surgery

(CARS 2018)

� Mina Rezaei, Haojin Yang, Christoph Meinel: Whole Heart and Great

Vessel Segmentation with Context-aware of Generative Adversarial Net-

works.Proceeding by Bildverarbeitung fr die Medizin 2018.

� Mina Rezaei, Haojin Yang, Christoph Meinel: Deep Neural Network with

l2-norm Unit for Brain Lesions Detection. Proceeding by 24th International

Conference Of Neural information Processing (ICONIP 2017)
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� Mina Rezaei, Konstantin Harmuth, Willi Gierke, Thomas Kellermeier, Mar-

tin Fischer, Haojin Yang, Christoph Meinel: A Conditional Adversarial

Network for Semantic Segmentation of Brain Tumor. Proceeding by Brain-

Les@MICCAI 2017.

� Mina Rezaei, Hiroyuki Yoshida, Haojin Yang, Christoph Meinel: Gener-

ative Adversarial Ensemble Discriminators for Handling Class Imbalanced

Problem in Medical Image Segmentation, Under Review 2019.

� Mina Rezaei, Hiroyuki Yoshida, Haojin Yang, Christoph Lippert, Christoph

Meinel: Deep Mutual GAN: An Adversarial Frameworks for Handling Class

Imbalanced Problem in Medical Image Segmentation, ready to submit.

1.5 Thesis Structure

The outline of the thesis is as follows.

After the introduction presented in this chapter, Chapter 2 presents the data-

level contributions (Section 2.1) to mitigate class imbalanced problem in task of

medical image classification and semantic segmentation. The detail architecture

of GAN-based framework, the dataset, evaluation, and comparison are described

in Section 2.2. Similar GAN-based architecture and recent data-level approaches

for internal bias correction are described in Section 2.3. In Section 2.4, summary

and future direction for data-level approaches are discussed.

Chapter 3, introduces two novel cost proportional weighting to mitigate class

imbalanced problem for semantic segmentation as well as multi-task GAN archi-

tecture. Section 3.1 reviews of the related GAN-based architecture for medical

image segmentation and multi-task learning as well as cost sensitive losses for

mitigating imbalanced data. The detail of network architecture, implementation,

evaluation, and comparison with other participant in the challenges are described

in Section 3.3.

Chapter 4 presents the three different proposed ensemble generative adversar-

ial networks for handling class imbalanced problem (Section 4.2). The detail of

experimental setting, implementation, evaluation, and comparison based on open

benchmark dataset are discussed in Section 4.3 and Section 4.3.4.

19



1. LEARNING REPRESENTATION FROM IMBALANCED MEDICAL
IMAGING

Last chapter, address learning representation of imbalanced data using mu-

tual information shared between independent models. Section 5.2 introduces the

technical background, Section 5.2 formulates the proposed deep mutual GANs

including couple of generators and couple of discriminators, and Section 5.2.2

explains two network architectures. The extension of deep mutual GAN for more

than four agents are discussed in Section 5.2.3. The detail of application on se-

mantic segmentation, implementation of end-to-end deep learning architectures,

evaluation, and comparison are described in Section 5.3. In Section 5.2.3, we

make overall conclusions, discuss the application of the algorithm-level solution

and suggest directions for future research.
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Chapter 2

Novel Approaches for Internal

Bias Correction on Imbalanced

Data

Many researchers address learning from the imbalanced sample on the data-

level that concentrate on modifying the training set to make it suitable for stan-

dard learning algorithms. In order to balance data distribution, we may notice

approaches that generate new objects for minority class (oversampling) [33, 34]

and that remove examples from the majority class (undersampling) [35]. How-

ever, these approaches often lead to remove some important samples or add re-

dundant samples to the training set. Therefore, more advanced methods are

proposed, including variational autoencoder (VAE) and generative adversarial

networks (GANs) that try to maintain structures of groups and generate new

data according to underlying distributions. This family of algorithms also con-

sists of solutions for cleaning overlapping objects and removing noisy examples

that may negatively affect learners [36]. In this regard, we synthesize minority

class samples using deep convolutional GAN and generate new samples 2D or

3D and make training sample balance and suitable for a standard deep learning

model.

Other techniques include incremental rectification of mini-batches for train-

ing deep neural network [37, 38]. Recently Dong et al. [37] introduce batch-wise
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mining to tackle with imbalanced of minority class incremental rectification us-

ing a deep convolutional neural network. Plotz et al. [38] approach new batch

sampling based on K nearest neighbors. Here, we study internal bias correction

on the batch level motivated by the success of stratified sampling in personalized

medicine. Therefore, we propose a patient-wise batch normalization technique

which enforces a deep network to maintain on a similar distribution. As shown

by Ioffe et al. [39], batch normalization is proposed to alleviate the internal covari-

ate shift by normalizing layer outputs for each training mini-batch with respect

to its very own statistics, specifically mean and variance. We observed better

trade-off between precision and recall compared to when conventional batch sam-

pling. This is due to the fact that the variability within the subgroups is lower

compared to the variations when dealing with the entire population at large.

The rest of the chapter is organized as follows: the next Section 2.1 explains

the proposed synthesis minority class using unsupervised and conditional GAN

(see Section 2.1.1) and the patient-wise mini-batch sampling (see Section 2.1.2)

for balancing data distribution. The detailed experimental results are presented

in Section 2.2. The overview of recent relevant methods for handling imbalanced

training data related to our contributions is described in Section 2.3. We make

an overall conclusion on data-level approaches and explain the complementary

label for future research in Section 2.4.

2.1 Internal Bias Correction

Here, we explain our contributions on internal bias correction and balancing

data distribution by approaching synthesis class minority samples and patient-

wise batch normalization techniques. Then, we applied our data-level approaches

for medical image classification to diagnosis diseases, or semantic segmentation

using recent state-of-the-art deep learning model and generative adversarial net-

works.

2.1.1 Biased with Synthesis Minority Oversampling
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Figure 2.1: Comparison of unsupervised GAN and conditional used for synthetic minority

oversampling.

Generative adversarial networks (GANs) have been proposed widely for image

generation. We can group the GAN-based approaches into two categories: unsu-

pervised generative framework and conditional GANs. Unsupervised GAN maps

random noise to synthetic, realistically looking images following the training data

distribution while the conditional GAN framework has a condition on prior knowl-

edge both the generator and the discriminator rather than noise alone. Figure 2.1

shows differ between unsupervised GAN and conditional GAN framework.

In this thesis, we adopt GAN framework to synthesize certain types of medical

images either from the noise alone as well as from prior knowledge by setting

condition image data for handling the imbalanced class problem and missing

medical image modalities.

As an unsupervised setting, we implemented different GAN framework for 2D

or 3D synthetic diverse image generation on minority class examples. Then, the

generated images, together with training samples as a balanced dataset, are fed

to deep learning models. We study the effects of balancing dataset by synthesized

data rather than classical data augmentation using the same deep learning frame-

work. Hence, the diversity gained from synthesized images can introduce more

variability into the training set and considerably improve classification results. In

continue, we describe our GAN framework for generating minority class example.

Generating Synthetic Brain Images using Unsupervised GAN

Generative adversarial network categories as a class of a generative model which

aims to implicitly learn the data distribution pdata from a set of samples (e.g.,

images) to further generate new examples from random noise pz drawn from the

learned distribution. Deep convolutional GAN (DCGAN) consists of two deep

CNNs models that are trained separately and simultaneously, as depicted in the

left side of Figure 2.1.
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Figure 2.2: Unsupervised deep convolutional GAN architecture for synthetic minority

oversampling

The generator takes random input vector z from a known simple distribution

pz and maps G(z) to the image space of distribution pg. A sample x is input

to the discriminator which outputs D(x), its probability of being a real sample.

During training, the generator improves in its ability to synthesize more realistic

images while the discriminator improves in its ability to distinguish the real from

the synthesized images. The GAN objective function is a two-player mini-max

game like Eq.(2.1).

m
G
inm

D
ax V (D,G) = Ey[logD(y)] + Ez[log(1−D(G(z)))] (2.1)

Figure 2.2 shows the DCGAN architecture which we used for minority class

image generation.

Balancing Data Distribution with conditional GAN for Synthesis Miss-

ing MRI Modalities

In different architecture, we develop a condition GAN framework to synthesize

2D sequence medical images and balance the data distribution regarding missing

image modalities. The generator and the discriminator condition by prior knowl-

edge to generate more realistic and high-resolution images from missing image

modalities from imbalanced class categories. Here, we use least absolute devia-

tions (see Eq.2.3) as reconstruction loss in additionally with an adversarial loss

to improve the realism of the synthetic images.
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Figure 2.3: Deep conditional GAN architecture for synthetic minority oversampling re-

garding missing modality

Unlike previous conditional GANs [11, 40, 41, 42, 43]; in our proposed method,

a generative model learns mapping from a given sequence of 2D multimodal MR

images xi to a sequence missing modalities oi; G : {xi, z} → {oi} (where i refers

to 2D slice index between 1 and 155 from a total 155 slices acquired from each

patient). We utilize bidirectional LSTM to pass the temporal consistency between

2D slices. Our network can learn representations from previous and future slices,

which results in context-aware and eliminate ambiguity. The training procedure

for generating missing image modalities is similar to two-player mini-max game, as

shown in Eq.(2.2). Similar to the image-to-image translation [40], we translate or

synthesize multi-modal images (e.g., MRI T1, T2, T1c) to one missing-modality

(e.g., MRI Flair) or map one image (e.g., MRI T1) to different image-modalities

(e.g., MRI Flair, T2, T1c).

Ladv ← m
G
inm

D
ax V (D,G) = Ex,omodality

[logD(x, omodality)]+

Ex,z[log(1−D(x,G(x, z)))]
(2.2)

Llad =
n∑
i=1

|D(xi, omodality)−G(xi, z)| (2.3)

where G(xi, z) is synthesized images by generator while D(xi, omodality) is ac-

tual missing image modality. The final objective function then calculated by

adding `lad to `adv.

As shown by Figure 2.3, the generator is autoencoder that takes one or three

available MRI modalities and able to generate three or one missing modalities by

getting feedback from the fully convolutional discriminator networks.
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In following, we describe the deep convolutional network that we used for clas-

sification on an unbalanced dataset and balanced dataset by unsupervised GAN,

conditional-GAN, and classical data augmentation.

Deep Convolutions Network for Brain Abnormality Classification

We apply recent successful deep residual network, winner of the classification

task of ILSVRC-2016, for brain abnormality classification. The ResNet [44] is

well-known due to its depth (152 layers) and the introduction of residual blocks.

The residual blocks address the problem of training a really deep architecture by

introducing identity skip connections so that layers can copy their inputs to the

next layer. The main idea is to ensure the next layer learns something new and

different from what the input has already encoded (since it is provided with both

the output of the previous layer and its unchanged input). Moreover, this type

of connections helps to overcome the vanishing gradients problem.

We train small ResNet with 18 layers, comprises by five convolutional layers,

max pooling, fully connected, and softmax as the loss function. Our classification

network takes 2D images with three channels, while each channel contains a

grayscale copy with the same size and same plane from various MRI modalities

with respective class label l=0,1,..,4. Each grayscale copy extracted from T1,

T1c, and FLAIR of the same MRI categories has been mapped to the Red,

Green and Blue channels of a standard image container, respectively. In the

experiments, we observed the effect of oversampling minority class generated by

different GAN architecture compared to classical data augmentation as well as

imbalanced training data.

2.1.2 Biased with Patient-wise mini-batch Sampling

Several popular techniques are developed for normalization, such as batch

normalization [45], and max norm constraints [46], with the core idea of shift-

ing the inputs to a zero mean and unit variance. The input data is normalized

before applying non-linearity to prevent the input from saturating extreme non-

linearity. As described by Ioff et al. [45], batch normalization improve the overall
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optimization and gradient issues. In many cases, initial weights have large de-

viance from true weights, delaying the convergence during training. Batch norm

reduces the influence of weight deviance by normalizing the gradients this speed

up the training.

Later, Ioffe [47] proposed a new Batch Renormalization since the conventional

batch normalization is not well suited to small training set consists of different

samples. Batch Renormalization [47] replaces batchnorm to ensure that the out-

puts computed by the model are dependent only on the individual examples and

not the entire dataset, during both training and testing. In medical imaging often

we have small dataset includes different samples, motivated by this we reformu-

lated batch normalization by stratified sampling.

Stratified batch sampling shows successful results in personalized medicine [48]

and statistic [49] when sub-populations within an overall population vary. Strat-

ified sampling can reduce variance [50] through sampling each sub-population

(stratum) independently where the strata are constructed within homogeneous

among heterogeneous. Nguyan et al. [51] provide theoretical proof of stratified

sampling on different deep models to reach the variance-optimal.

Similar to the concept of stratified sampling, we initially normalized the inputs

where the mean and variance are computed on a specific patient from the same

acquisition plane (Sagittal, Coronal, and Axial) and from all available image

modalities (e.g., T1, T1-contrast, T2, Flair in the BraTS benchmark). In this

regard, the deviance get increasingly large, and the back-propagation step needs

to account for these large deviance which this restrict us from using a small

learning rate to prevent gradient explosion. Each stratum enforces to mini-batch

consists of different patches among similar samples (patients). For example, the

mini-batch with 128 images includes the same patient images and four available

modalities from the same acquisition plane. Algorithm 1 shows how to compute

normalization at each mini-batch by proposed patient-wise batch-norm technique.

2.2 Experiments
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Algorithm 1: Patient-wise mini-batch normalization. (Here we use three site

MR images S,C,A Sagittal, Coronal, and Axial respectively. i and n respectively

refer to a number of 2D slices and number of patient e.g. 0 < i ≤ 155, n=230

in BraTS). L, Nh, and nh refer to the number of strata, number of units in each

stratum h, and the number of samples taken from stratum h respectively.

Input : Values of x over a mini-batch: β = x1, x2, ..., x155

Parameters to be learned:γ, β

Output: yi = BNγ,β(xi)

1 for Patient : P1, P2, ..., Pn do

2 for AcquisitionP lane : Si, Ci, Ai do

3 for Image Modalities : T1, T2, T1c, F lair do

4 τh ← Nhxi

5 τst ←
L∑
h=1

τh

6 µst ← 1
mτst

7 σ2st ← 1
m

n∑
i=1

(xi − µst)2

8 x̂i ← xi−µx
2
√
σ2
x+ε

9 yi ← γx̂i + β = BNγ,st(xi)

10 end

11 end

12 end
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To evaluate the performance of our approaches on imbalanced data and com-

pared them with state-of-the-art methods, we trained recent popular annotated

medical imaging benchmarks on the task of semantic segmentation and classifi-

cation.

2.2.1 Experiments on Balanced with Synthesized GAN Samples

We tested generated minority samples using unsupervised and conditional

GANs for brain disease diagnosis with different imbalanced ratio. In this exper-

iment, we applied real patient data from five popular benchmarks to evaluate

the effect of synthetic images as balancing solution on the training set. For the

classification task, we compiled 1500 MRI images with the label of healthy, tumor-

HGG, tumor-LGG, Alzheimer, and multiple sclerosis. We consider 20% of the

data for testing and 80% for training

IXI dataset1 contains 600 MRI images from normal, healthy subjects. The

MRI image acquisition protocol for each subject includes six modalities, from

which we have used T1, T2, PD, MRA images. The first column of Figure 2.4

shows the healthy brain images from IXI dataset in the sagittal, coronal, and axial

sections. The BraTS2016 benchmark [2] prepared the data in two part of high

and low grade glioma (HGG/LGG). All images have been aligned to the same

anatomical template and interpolated to 1 mm voxel resolution. The training

dataset consists of 220 HGG and 108 LGG MRI images, which for each patient

T1, T1contrast, T2, FLAIR, and ground truth labeled by medical experts have

been provided. Alzheimer disease dataset2 comes from the Open Access Series of

Imaging Studies (OASIS). The dataset consists of a cross-sectional collection of

416 subjects aged from 18 to 96. For each subject, 3 or 4 individual T1-weighted

MRI scans were obtained in single scan sessions. 18 MRI images with multiple

sclerosis from ISBI challenges 2008 [52] have also been applied in the classification

task. ISLES benchmark 2016 [53] (Ischemic Stroke Lesion Segmentation) comes

from MICCAI challenge in two-part, by which we used only SPES dataset with

30 brain images provided in seven modalities in our task.

1http://brain-development.org/ixi-dataset/
2http://www.oasis-brains.org/
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Figure 2.4: The five different categories of brain MR images. The first column shows

healthy brain in sagittal, coronal, and axial plane. The 2nd and 3rd columns show high

and low grad glioma, while 4th and 5th columns present some brain images on Alzheimer

and multiple sclerosis.

Because the MRI volumes in the BraTS 2016 and ISLES 2015 datasets do

not possess an isotropic resolution, we prepared 2D slices in sagittal, axial, and

coronal view. As mentioned by Havaei et al. [54], brain imaging data are rarely

balanced even in one category due to the different size of the lesion in the brain.

For example, the volume of a stroke is rarely more than 1% of the entire brain,

and a tumor (even large glioblastomas) never occupies more than 4% of the

brain. Training a deep network with imbalanced data often leads to very low

true positive rate since the system gets to be biased towards the one class that

is over-represented. To overcome this problem, we have chosen 2D slice of MRI

with lesions. In our unsupervised GAN setting, the deep generative model takes

only random noise and tries to capture the distribution of 2D slices with lesion

while discriminative network classifies whether generated images look realistic or

fake. To evaluate the synthesized images, we prepared the evaluation based on

FID, a distance metric for GANs framework.

Fréchet Inception Distance

We used the FID [55] to calculate the distance between generated sample distri-

bution pg and true sample distribution pd based on trained generative model G.

We can sample from pg many times, but directly, we are not able to evaluate pg.
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Table 2.1: The minimum FID obtained across 100 epochs for generating five categories

of brain images by conditional GAN and unsupervised GAN framework.

Methods Healthy Alzheimer HGG LGG MS

Unsupervised-GAN 4.816491 8.657932 3.980030 2.04520463 5.10204146

cGAN 0.888543 2.697015 1.107877 0.96701305 1.12549001

Table 2.2: The achieved average FID by unsupervised and conditional GAN which ob-

tained across 100 epoch.

Methods Healthy Alzheimer HGG LGG MS

Unsupervised-GAN 32.657932 49.9587135 51.0458763 47.5124854 63.7718045

cGAN 26.888543 30.1078707 28.5721066 35.5149001 48.6875241

In this regard, Fréchet Inception Distance [55] is suggested a way for evaluation

of such a model. The distance is calculated as follows Eq. (2.4):

FID(t, p) = ‖ µt − µp ‖2 + Tr(cov(t) + cov(p)− 2(cov(t)cov(p))
1
2 ) (2.4)

Where t and p respectively refer to the ground truth (or real images) and

predicted mask (or generator output), µ and cov indicate mean and covariance of

a multi-variate Gaussian produced from the embedding of the last pooling layer

of the Inception-v3 model [56].

Table 2.1 shows the minimum, FID obtained by G at the end epochs 100

for generated brain four categories of brain images. Lower values indicate more

similarity between the training data and synthesized sample by our unsupervised

GAN. Based on Table 2.2, we observe the average values of FID after each 10

epochs across 100 epochs in total.

A subset of the generated samples produced by the unsupervised-GAN re-

ported in Table 2.2 are shown in Figure 2.5, where we observe high variety and

realism across all generated sets.

Here, we used ResNet-18 consists of five convolutional layers and two resid-

ual blocks in each, two dense layers, and softmax as the loss function. As we
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Figure 2.5: The generated samples from four different categories of brain MRI.

expected the synthetic augmentation compared to the classic augmentation pro-

vides significant improvement. Figures 2.7,2.8, and 2.9 demonstrate and compare

the confusion matrix of the classification result on imbalanced data and balanced

training set with classical data augmentation and the generative unsupervised

synthesized framework respectively.

In different experiments, we developed conditional recurrent-GAN to generate

missing modalities. To this end, we trained the recurrent-GAN separately with

some available MRI or CT modalities from BraTS 2016 and ISLES 2015 dataset

respectively. Here, we aim to observe whether the synthesized samples are able

to improve classification results as a real example. To this end, we trained con-

ditional recurrent GAN to generate T1c image modality where the condition is

on T1c, T2, and Flair image modalities. Figure 2.6, fourth column shows the

generated images by recurrent conditional GAN and Table 2.3 first column pro-

vides a quantitative evaluation based on mean and minimum FID. As second

experiment, the recurrent GAN is trained with T2 and T1c and the generator

learns to synthesize Flair and T2. The results are reported in third and fourth
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Figure 2.6: The synthesized sample by conditional GAN on BraTS dataset regarding

missing modality. Column fifth generated by G in test time with condition input of columns

2-4.

column of Table 2.3. The last column of Table 2.3 shows our results based on

ISLES 2015 dataset for generating DWI modality which T2, T1c, and Flair are

the conditions.

It is expected that more generalized features could be able to learned from

multiple modalities, and the testing accuracy based on more generalized features

should be gained. The classification results from Table 2.4 proved our assumption,

where better detection results were achieved by increasing the data modalities in
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Table 2.3: The first row represents the minimum FID obtained across 100 epochs. The

second row shows the mean calculated on each 10 achieved by recurrent-GAN for generating

2D sequence of missing image modality.

FID T1c Flair T1c DWI

FID BraTS-1 BraTS-2 BraTS-2 ISLES

min FID 0.96491 0.657932 0.980030 1.0458763

mean FID 30.888543 21.697015 19.107877 41.9587135

Table 2.4: Dice Similarity Coefficient (DSC) results (for brain lesions diagnosis) on the

BraTS2016 and ISLES2016 dataset by generated samples from recurrent-GAN. F/D col-

umn means the FLAIR modality in BraTS dataset and DWI modality in ISLES dataset.

T1 T1c T2 F/D Dice-BraTS16 Dice-ISLES

x - - - 61.8 % 42%

- x - - 39.76 % 27%

- - x - 36.7 % 39.98%

- - - x 73.38 % 50.71%

- x x x 81.53 % 54.23%

x x - x 82.6 % 54.67%

x - x x 85.19 % 53.09%

x x x - 84.73 % 54.7%

x x x x 89.53 % 78.17%

the model training.

Table 2.5 and Table 2.6 provide classification comparison based on imbalanced

dataset and balanced with generated samples or classical data augmentation.

Here we applied horizontal and ventricle flipping, multiple scaling, and [-10, +10]

image rotation only in abnormal classes.

Saliency Map Visualization

Visualization of weights can present useful information about what the trained

network is learning. Specially, in medical diagnosis it would be irresponsible to

trust prediction of black-box system. Therefore, we used class saliency [58] to

visualize the trained ResNet18 weights in prediction time. The goal of saliency

is to find the pixels of an image which contribute most towards a particular
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Table 2.5: Evaluation result of the classification of imbalanced and balanced dataset with

generating data augmentation and SMOTE-GAN.

Dice(imbalanced) Dice(with data augmentation) Dice(with SMOTE-GAN)

BraTS16 72% 83.53% 89.53%

ISLES16 59.65% 71.87% 78.17%

Table 2.6: Brain lesions classification performance of the ResNet architecture. The in-

volved classes include healthy, tumor-HGG, tumor-LGG, Alzheimer, and multiple sclerosis.

Total MRI Accuracy Sensitivity Specificity Recall Kappa

Our method 1500 96.308% 0.91 0.87 87.65 0.92

Justin S et al. [57] 191 91.43% - - - -

Figure 2.7: Confusion matrix on classification of five categories brain diseases predicted

by ResNet18 which the network trained on highly imbalanced dataset.

classification. Figures 2.10,2.11 show which pixels in the images that are most

important in the trained ResNet to classify it as an image of high grade glioma

of Tumor (HGG). Here, we take derivative of the class score Sc with respect to

the input image I, and evaluate at test time I0; mathematically: ∂Sc

∂I
|I where
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Figure 2.8: Classification results obtained by ResNet18 trained on imbalanced dataset

by classical data augmentation

this derivative gives us a scalar quantity for each of the pixels in the image. Let

wcij, be the quantity at location (i, j) when weve used the score for classc. We

can take the magnitude of these values and then normalize them to get a class

saliency map Mc over the image.

Mc(i, j) =
wij∑
ij wij

(2.5)

We compute the gradient of output category with respect to input image.

This should tell us how output category value changes with respect to a small

change in input image pixels. All the positive values in the gradients tell us that a

small change to that pixel will increase the output value. Hence, visualizing these

gradients, which are the same shape as the image should provide some intuition

of attention.

The idea behind saliency is pretty simple in hindsight. We compute the gra-

dient of output category with respect to input image. This should tell us how

the output value changes with respect to a small change in inputs. We can use
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Figure 2.9: Brain disease classification results achieved by ResNet18. The network trained

on balanced dataset with synthesized samples generated by unsupervised GAN.

these gradients to highlight input regions that cause the most change in the out-

put. Intuitively this should highlight salient image regions that most contribute

towards the output.

To visualize what contributed to the predicted output, we want to consider

gradients that have very low positive or negative values.

Moreover, the image saliency map (the top, left side image in Figure 2.10)

can be used for localizing an object of interest (in the above example, we can see

where the dog in the image is), and segment it out with the help of a segmentation

algorithm. Note that the classification model is not trained with object locations;

its only given (image, category) pairs, but learns to localize: this is called weakly-

supervised object localization.
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Figure 2.10: Saliency map visualization of ResNet18 which shows pixels that are most

important for the image being classified as a HGG glioma.

Figure 2.11: Image saliency map shows pixels that are most important for the image

being classified as a LGG glioma from ResNet 18 trained with balanced dataset.
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2.2.2 Experiments on Patient-wise Batch Normalization

We validated the performance of proposed patient-wise batch normalization on

two different implemented generative adversarial algorithms: conditional recurrent-

GAN and 3D-GAN. We applied the patient-wise batch normalization in recurrent-

GAN for semantic segmentation of MRI cardiac, CT liver and lesions, and mi-

croscopic cell images. 3D-GAN framework with patient-wise batch normalization

is used for image semantic segmentation of brain tumor. The detail of network

architecture is described in Section 2.2.2.

To compare and analysis with other state-of-the-art approaches, we choose

four recent public medical imaging challenges in segmentation task: real patient

data obtained from the MICCAI 2017, automated Brain MRI segmentation chal-

lenge (BraTS-2017), the 2015 microscopic cell segmentation, the ACDC 2017 for

simultaneous myocardium and dual cavities segmentation, and 2017 LiTS for se-

mantic segmentation of large liver and small lesions.

Dataset and Preprocessing

LiTS. We applied the LiTS-2017 benchmark 1 that comprised of 130 CT train-

ing and 70 test subjects. The examined patients were suffering from different

liver cancers. The challenging part is segmentation of very small lesion target

on a high unbalanced dataset. Here, pre-processing is carried out in a slice-wise

fashion. We applied Hounsfield unit (HU) values, which were windowed in the

range of [100, 400] to exclude irrelevant organs and objects. Furthermore, we

applied histogram equalization to increase the contrast for better differentiation

of abnormal liver tissue.

BraTS. The segmentation of the brain tumour from medical images is highly

interesting in surgical planning and treatment monitoring. The goal of segmenta-

tion as described by organizer [2, 3, 4, 5] is to delineate different tumour structures

such as active tumorous core (TC), enhanced tumorous (ET), and edema or whole

1https://competitions.codalab.org/competitions/17094
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tumorous (WT) region.

Microscopic Cell. We evaluated the performance of the proposed batch nor-

malization technique on small size microscopic light dataset from human breast

carcinoma cells with 1:5 imbalanced class ratio.

ACDC. The ACDC dataset 1 comprised of 150 patients with 3D cine-MR im-

ages acquired in a clinical routine. The training database was composed of 100

patients. For all these data, the corresponding manual references were given by

a clinical expert. The testing database consisted of 50 patients without manual

references.

Network Architecture and Configuration

Conditional recurrent GAN

The RNN-GAN architecture is implemented based on Keras [59] and Tensor-

Flow [60] library. The implemented code is available on my GitHub 2. All train-

ing was conducted on a workstation equipped with double NVIDIA TITAN X

GPUs.

The recurrent GAN [61] consists of a generator and a discriminator. The

generator is encoder-decoder network that bottleneck is substituted with bidirec-

tional LSTM layer in between. The discriminator is fully convolutional network

with bidirectional LSTM layer.

The model is trained for up to 120 epochs with batch size 10, iteration 450 and

initial learning rate 0.001 on ACDC dataset. Similarly, in LiTS, we had initial

learning rate 0.001, batch size 10, iteration 2750, and 100 epochs where we used

all 2D slices from coronal, sagittal, and axial planes with size 256 × 256. The

generator and discriminator for all layers use the tanh activation function except

the output layer which uses softmax. We use categorical cross-entropy as an

adversarial loss mixed with categorical accuracy and `1. The RMSprop optimizer

was used in both the generator and the discriminator. The RMSprop divides the

1https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
2https://github.com/HPI-DeepLearning/Recurrent-GAN
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learning rate by an exponentially decaying average of squared gradients. With

this implementation, we are able to produce a cardiac segmentation mask between

500-700 ms per patient on same cardiac phase from ACDC dataset on an axial

plane.

The training took eight hours on ACDC for a total of 120 epochs on parallel

NVIDIA TITAN X GPUs and with same configuration, it was 12 hours on LiTS

dataset.

The proposed approach is trained on 75% training data released by the mi-

croscopic cell 2015 and LiTS-2017 benchmarks. We used all provided images

from three axes of sagittal, coronal, and axial for training, validation and testing.

We trained our system on 75 exams from axial, coronal, and sagittal plane and

validated it on the remaining 25 exams for the ACDC dataset.

In both the training and testing phase, the mini-batch consists of 2D images

from the same patient, the same acquisition plane and same cardiac phase. We

initially normalize the inputs where the stra number is similar to number of classes

for semantic segmentation. The mean and variance are computed on a specific

patient from the same acquisition plane and from all available images in the same

cardiac phase (ED, ES). This normalization helps to restrict the effect of outliers.

With batch norm, we normalized the inputs (activation coming from the previous

layer) going into each layer using the mean and variance of the activation for the

entire mini-batch.

3D-GAN

Our proposed 3D-GAN is implemented based on a Keras library [59] with back-

end Tensorflow [62] supporting 3D convolutional network and is publicly avail-

able 1. The learning rate was initially set to 0.0001. The Adadelta optimizer is

used in both the generator and the discriminator that continues learning even

when many updates have been done. The model is trained for up to 200 epochs

on BraTS dataset.

Here, the generator network is a modified UNet architecture that we designed

two UNet architecture with sharing circumvent bottlenecks and last fully convo-

lutional layer in decoder part. The UNet architecture allows low-level features

1https://github.com/HPI-DeepLearning/VoxelGAN
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to shortcut across the network. Motivated by previous studies on interpreting

encoder-decoder networks [63], that show the bottleneck features carried local

features and fully convolutional up-sampling encoder represented global features,

we concatenate circumvent bottlenecks and last fully convolutional layer to cap-

ture more important features.

Our discriminator is fully convolutional Markovian PatchGAN classifier [64]

which only penalizes structure at the scale of image patches. Unlike, the Path-

GAN discriminator introduced by Isola et al. [64] which classified each N N patch

for real or fake, we have achieved better results for task of semantic segmentation

in voxel level 1 × 1 × d we consider N=1 and different d = 64, 32, 16, and 8. We

used categorical cross entropy [65] as an adversarial loss with combination of `1

loss in generator network.

Evaluation

Figures 2.12 and 2.14 compare the qualitative results from test set when the net-

work was trained with and without patient-wise mini-batch normalization. The

patient-wise mini-batch normalization provided normalization for any layer of

neural network based on all available 2D images from same patient. Through

patient-wise normalization technique, we normalized the actuation’s of the pre-

vious layer for each patient batch.

Based on qualitative results and Figure 2.12, our network is able to learn from

few samples (MDA231) as well as large sample dataset (BraTS2017). We com-

pared quantitative results with the state-of-the-art segmentation method. The

quantitative results of individual cell segmentation are detailed in Table 2.7. Ob-

viously, we can see that diversity and the number of images did not have a major

effect on the final result.

As shown in Figure 2.13 and Table 2.7 the Gaussian noise negatively influence

the segmentation results especially when the trained dataset has few samples.

We had same policy for data augmentation on all datasets. We explored during

raining the large dataset, when the generator network takes Gaussian noise vector

besides medical images, act mostly same as without noise vector and there is

minimum differences in the output samples. In contrast, trained network with

few samples along with noise vector has negative effect on the final outputs.
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Figure 2.12: Microscopic cell segmentation results obtained by recurrent-GAN network

train in patient-wise mini-batch normalization setting and without Gaussian noise.

The results provided in Table 2.11, and Table 2.7 show the improvement of

results on both 3D-GAN as well as recurrent-GAN network by patient-wise batch

normalization. The qualitative results on Figure 2.15 confirmed the improvement

achieved by patient-wise batch normalization for brain tumor segmentation.

Table 2.7: The achieved accuracy for cell segmentation on the MDA231 data, the RNN-

GAN (1) shows the results based on patient-wise batch normalization.

Approaches Dsc Spec Sen FPR FNR

RNN-GAN (1) 0.93 0.90 0.91 0.10 0.09

RNN-GAN (2) 0.90 0.89 0.91 0.11 0.09

UNet [66] 0.91 - - -

KTH-SE [67] 0.79 - - -

MSER [68] 0.75 - - -

Greedy [69] 0.85 - - -

The qualitative results of liver lesion segmentation are presented in Figure 2.16.

Based on Figure 2.16 and Table 2.8, RNN-GAN trained with patient-wise batch

normalization is able to detect accurately structure of the lesions. The RNN-GAN

architecture trained with patient-wise batch normalization and complementary

masks (the results in third rows of Table 2.8) yields better results and trade off

between Dice and sensitivity. Dice score is a good measure for class imbalance

where indicate the true positive rate by considering false negative and false pos-

itive pixels. The effect of class balancing can be seen with comparison of first
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Figure 2.13: Microscopic cell segmentation results obtained by cGAN when the cGAN

model trained with additional Gaussian noise as input.

Figure 2.14: Microscopic cell segmentation results obtained by cGAN without patient-

wise mini-batch normalization.

and second row of Table 2.8. As we expected the RNN-GAN trained with com-

plementary segmentation labels and binary segmentation masks computed more

accurate result with average 2% and 5% improvement respectively in Dice and

sensitivity.

We compared predicted results by RNN-GAN at test time with other top-

ranked and related approaches on LiTS-2017 in terms of volume overlap er-

ror (VOE), relative volume difference (RVD), average symmetric surface dis-
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Figure 2.15: Brain tumor segmentation using 3D-GAN framework, the left side im-

ages show the segmentation results when the network is trained by conventional batch-

normalization. The right side images computed by 3D-GAN considering same configura-

tion, here the network is trained with patient-wise batch-normalization.

tance (ASD), and maximum surface distance or Hausdorff distance (HD), as intro-

duced by challenge organizer. As depicted results in Table 2.8 cascade UNet [70]

or ensemble network [71, 72] architectures has achieved better performance com-

pared to trained only with fully convolutional neural network (FCN) [73]. In

contrast to prior work such as [70, 71, 72], our proposed method could be gener-

alized to segment the very small lesion and also multiple organs in medical data

in different modalities.

The evaluation and comparison performed using the quality metrics intro-

duced by ACDC challenge organizer. In this experiment, semantic segmentation

masks are evaluated in a five-fold cross-validation. For each patient, a corre-

sponding images for the End Diastolic (ED) instant and for the End Systolic (ES)

instant has provided. As described by ACDC-2017, cardiac regions are defined

as right-ventricle region labeled 1, 2 and 3 representing respectively myocardium

and left ventricles.

As shown in Table 2.9, our method outperforms other top-ranked approaches

from the ACDC benchmark when the RNN-GAN is trained with patient-wise

batches and complementary masks. Based on Table 2.9, in Dice coefficient, our

method achieved slightly better than the Wolterink et al. [74] on ACDC challenge
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Table 2.8: Quantitative segmentation results for liver and lesions segmentation on the

LiTS-2017 dataset. The first and second rows show achieved accuracy for the task of liver

lesions segmentation when our network is trained with patient-wise batch normalization

RNN-GAN (1), with conventional batch normalization RNN-GAN (2). RNN-GAN* shows

results with complementary segmentation masks and patient-wise which we briefly explain

it as future direction. The columns Dice 1 and Dice 2 show the segmentation results for

liver and lesion respectively.

Architecture Dice 1 Dice 2 Sen 1 Sen 2 VOE RVD ASD HD

RNN-GAN (1) 0.93 0.80 0.81 0.73 20 -2 9.7 52.3

RNN-GAN (2) 0.89 0.78 0.69 0.63 22 3 11.4 58.1

RNN-GAN * 0.94 0.83 0.74 0.74 14 -6 6.4 40.1

cGAN 0.88 0.76 0.57 0.55 21 -1 10.8 87.1

UNet [70] 0.82 0.72 - - 22 -3 9.5 165.7

ResNet+Fusion [71] 0.86 - - - 16 -6 5.3 48.3

H-Dense+ UNet [72] 0.89 - - - 39 7.8 1.1 7.0

FCN [73] - - - 35 12 1.0 7.0

in left ventricle and myocardium segmentation. However, Rohe et al. [75] achieved

outstanding performance for right ventricle segmentation since they applied the

multi-atlas registration and segmentation at the same time. Zotti et al. [76]

achieved competitive results based on GridNet for left ventricle segmentation

with overall Dice 0.96 and 0.94 for right ventricle segmentation.

Based on Table 2.9 and Table 2.10, the right ventricle is a difficult organ for all

the participants mainly because of its complicated shape, the partial volume effect

close to the free wall, and intensity of homogeneity. Our achieved accuracy in term

of Hausdorff distance, in average is 1.2 ± 0.2mm lower than other participants.

This is a strong indicator for precision of boundary that RNN-GAN architecture

substituted with bidirectional LSTM units is suitable solution for capturing the

temporal consistency between slices. Compared to cGAN (Table 2.9 and Table

2.10) RNN-GAN (1) provides better results when the network is trained with

patient-wise batch normalization setting and even sensitivity and precision.

Compared to the expert annotated file on the original ED phase instants,

individual Dice scores of 0.968 for the left ventricle (LV), 0.933 for the my-

ocardium (MYO), and 0.940 for the right ventricle (RV) (see Table 2.9) were
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Figure 2.16: LiTS-2017 test results for simultaneous liver and lesion segmentation using

RNN-GAN. The first row shows the results when the RNN-GAN trained with conventional

batch normalization way while second row presents result with proposed patient-wise batch

normalization. The first column is ground truth annotated by medical expert, blue and

purple color in second column code the ground truth and predicted lesion border by RNN-

GAN. Yellow and red color boundaries in third column show the ground truth and predicted

liver region by our proposed method.

achieved in test time on 25 patients. Qualitatively, the RNN-GAN segmenta-

tion results are promising (see Figure 2.17) where we can see robust and smooth

boundaries for all substructures.

As depicted on Figure 2.17 and Table 2.9 right ventricle is complex organ to

segment. The most failure happened in systolic phase. Based on Figure 2.17 the

achieved accuracy in the test time on ACDC benchmark, we observed that the

average results in diastolic phase (first and second row) are better than the average

results on systolic phase (third and fourth row). The evaluated quantitative

results trained by RNN-GAN∗, with patient-wise and complementary labels in

term of Hausdorff distance and Dice are shown in Figure 2.18. As expected, the
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Table 2.9: Comparison of the achieved accuracy in term of Dice metric on ACDC bench-

mark with related approaches and top-ranked methods. RNN-GAN (1), RNN-GAN (2),

RNN-GAN∗ trained with, without patient-wise batch normalization, and with both the

ground truth and complementary masks respectively.

Methods Phases Left Ventricle Right Ventricle Myocardium

RNN-GAN (1) ED 0.961 0.940 0.933

ES 0.944 0.911 0.925

RNN-GAN (2) ED 0.962 0.934 0.926

ES 0.928 0.90 0.917

RNN-GAN∗ ED 0.968 0.940 0.933

ES 0.951 0.919 0.925

cGAN ED 0.934 0.906 0.899

ES 0.918 0.874 0.870

Isensee et al. [77] ED 0.955 0.925 0.865

ES 0.905 0.834 0.882

Wolterink et al. [74] ED 0.96 0.92 0.86

ES 0.91 0.84 0.88

Rohe et al. [75] ED 0.94 0.96 0.90

ES 0.92 0.95 0.90

Zotti et al. [76] ED 0.96 0.94 0.89

ES 0.94 0.87 0.90

U-Net [66] ED 0.96 0.88 0.78

ES 0.92 0.79 0.76

ConvDeconv ED 0.92 0.82 0.76

ES 0.87 0.64 0.81

Poudel et al. [78] 0.90 - -

achieved Dice score on left ventricle (median of 6.82/8.02 for the ED/ES frames)

tend to be lower than for the two other regions of interest with myocardium at

8.08/8.69 and right ventricle at 8.95/12.07 for ED/ES.

We evaluated the performance of proposed patient-wise batch normalization

with 3D-GAN framework. We tested 3D-GAN with and without patient-wise

batch normalization on BraTS2017 dataset for semantic segmentation of brain

tumors.Table 2.11 shows the reported results evaluated by online platform of
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Table 2.10: Comparison of achieved accuracy in term of Hausdorff distance on ACDC

benchmark with top-ranked participant approaches and related work.

Methods Phases Left Ventricle Right Ventricle Myocardium

RNN-GAN (1) ED 7.12 9.21 8.72

ES 8.11 12.72 8.639

RNN-GAN (2) ED 8.62 12.16 9.04

ES 9.44 13.2 9.50

RNN-GAN∗ ED 6.82 8.95 8.08

ES 8.02 12.17 8.69

cGAN ED 8.62 12.16 9.04

ES 9.44 13.2 9.50

Isensee et al. [77] ED 7.38 10.12 8.72

ES 6.90 12.14 8.67

Wolterink et al. [74] ED 7.47 11.87 11.12

ES 9.6 13.39 10.06

Rohe et al. [75] ED 7.04 14.04 11.50

ES 10.92 15.92 13.03

Zotti et al. [76] ED 5.96 13.48 8.68

ES 6.57 16.66 8.99

U-Net [66] ED 6.17 20.51 15.25

ES 8.29 21.20 17.92

ConvDeconv ED 8.77 22.59 13.92

ES 10.34 28.45 11.64

BraTS challenges. Figure 2.19 shows qualitative results trained by patient-wise

batch normalization 3D-GAN.

49



2. NOVEL APPROACHES FOR INTERNAL BIAS CORRECTION ON
IMBALANCED DATA

Figure 2.17: The cardiac segmentation results at test time by RNN-GAN from ACDC

2017 benchmark on Patient084. The red, green, and blue contour present respectively

right ventricle, myocardium, and left ventricle region. The top two rows show the diastolic

phase from different slices from t=0 till t=9 circle. Respectively the third and fourth rows

present systolic cardiac phase from t=0 till t=9 circle.

2.3 Related Works

This section briefs the previous studies carried out on synthetic sampling

technique using generative adversarial network, batch normalization method and

biased with complementary labels mostly in recent years.

Synthesis Minority Over Sampling using Generative Adversarial Net-
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(a)

(b)

Figure 2.18: The ACDC 2017 challenge results using RNN-GAN∗ and cGAN architec-

ture. The left figure shows Dice coefficient in two cardiac phase as follows the right sub

figure presents Hausdorff distance. The y-axis shows the Dice metrics and x-axis shows

segmentation performance based on cGAN and RNN-GAN∗ in ED and ES cardiac phase.

In each sub figure, the mean is presented in red. The ACDC 2017 challenge results using

RNN-GAN∗ and cGAN architecture. The sub figure (b) y-axis codes the Hausdorff distance

in mm and x-axis presents segmentation performance based on cGAN and RNN-GAN∗ in

ED and ES cardiac phase.
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Table 2.11: Comparison results of the achieved accuracy for semantic segmentation by 3D-

GAN when the trained model with patient-wise batch normalization 3D-GAN (1), and with

conventional batch normalization 3D-GAN (2). The reported results evaluated by online

platform of BraTS challenge in terms of Dice, sensitivity (Sen), specificity (Spec), and

Hausdorff distance (Hdff). WT, ET, and CT are abbreviation of whole tumor, enhanced

tumor, and core of tumor regions respectively.

Dice Hdff Sen Spec

Methods WT ET CT WT ET CT WT ET CT WT ET CT

3D-GAN(1) 0.83 0.61 0.68 6.81 8.3 10.72 0.80 0.73 0.63 0.99 0.99 0.99

3D-GAN(2) 0.81 0.61 0.64 7.30 9.2 12.04 0.75 0.61 0.55 0.99 0.99 0.99

Figure 2.19: BraTS-2017 test results for semantic segmentation trained by 3D-GAN

with patient-wise batch normalization. Red, blue, and green colors represent segmentation

borders for whole tumor, enhanced tumor, and tumor core respectively.

works

The synthesize of realistically looking medical images opens up many new op-

portunities to tackle well-known deep learning problems such as class imbalance,

data augmentation, or the lack of labeled data. Kazeminia et al [79] reviews

recent GAN networks that have been used in the literature of medical imaging.

The recent GAN architectures applied for medical image analysis have been used
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in two settings: unsupervised which synthesize certain types of medical images

from the noise alone, or in a conditional way, the prior knowledge such as meta-

data or even image data used as an additional noise to generative network. Initial

results have shown the success of DCGAN architecture can be used to synthesize

realistically looking patches of retinal images [80], CT liver lesion [81], abdomen

lung [82]. However, these approaches applied the DCGAN architecture to synthe-

size patches mostly at a resolution of 1616 pixels and 64 64 pixels, respectively,

while we trained DCGAN to mimic the MRI distribution in an unsupervised

manner.

Conditional GAN widely used on medical images recently for synthesis [31,

80], segmentation [83], reconstruction [32], detection [84], registration [85], and

classification [86]. The radiation exposure by CT images put the patient at risk

of cell damage and cancer which motivated to synthesize CT images from MRI.

Nie et al. [31] synthesize CT images from corresponding MR images with the

help of a cascade of fully convolutional networks which they train with a normal

reconstruction loss, an image gradient loss and additionally with an adversarial

network in order to improve realism of the synthetic CT images.

In this chapter, we synthesize different MRI modalities to generate minor-

ity class samples and improve classification and detection results using deep

multi-modal network [87]. We applied deep generative adversarial network in

unsupervised setting and generated samples for minority classes. In a different

experiment, we implemented conditional recurrent fully convolutional networks

which substituted by bidirectional LSTM in bottleneck to generate one or two

missing MRI modalities. The discriminator is recurrent fully convolutional clas-

sifier [61]. Then, the generated samples are used to balance data distribution in

multi-modality setting and show better performance for brain diseases diagnosis.

Batch Normalization Techniques

Batch normalization is a method that normalizes the inputs of each layer in order

to fight the internal covariate shift problem. Dong et al. [37] introduced batch-

wise mining to tackle with imbalanced of minority class incremental rectification

using a deep convolutional neural network. Recently, Ioffe [47] introduced a new

Batch Renormalization since the conventional batch normalization is not well
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suited to small training set consists of different samples, which is one nature

problem by imbalanced samples. Batch Renormalization [47] replaces batchnorm

to ensure that the outputs computed by the model are dependent only on the

individual examples and not the entire dataset, during both training and testing.

In this chapter, we reformulated batch normalization by stratified sampling since

most of clinical dataset and medical imaging dataset are small and more homo-

geneous. Our learning algorithm produces inductive bias (learning bias) towards

the frequent (majority) and a minority of training data.

Learning with complementary labels

We presented some preliminary results based on the complementary labels that we

plan to extend this chapter in this direction. The complementary labels in context

of machine learning [88] has been used by assuming the transition probabilities

are identical with modifying traditional one-versus-all and pairwise-comparison

losses for multi-class classification. Ishida et. al. [88] theoretically prove that

unbiased estimator to the classification risk can be obtained by complementary

labels. Yu et al. [89] study learning from both complementary labels and or-

dinary labels can provide a useful application for multi-class classification task.

Inspired by recent success [88, 89], we train the proposed RNN-GAN with both

complementary labels and ordinary labels for the task of semantic segmentation

to skew the bias from majority pixels (see Section 2.2).

2.4 Extensions and Summary

Future Direction: Biased with Complementary Labels

As future research in data-level, we study internal bias correction by inverse class

frequency labels. The complementary labels developed motivated by surrogates

of training data with true label. The complementary labels specify a class that

feature does not belong to. Given the complementary labels to the less repre-

sented samples shown better performance by assuming the transition probabilities

are identical with modifying traditional one-versus-all and pairwise-comparison
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losses for multi-class classification [88]. We plan to explore the advantage of train-

ing network simultaneously with true labels and the inverse of class frequency,

named complementary label. For example in task of semantic segmentation in

addition to ground truth segmentation masks (ordinary masks), complementary

masks for majority class is provided. Here, the majority and minority pixels value

are changed to skew bias from majority pixels where the negative label for the

major class and a positive label for the c− 1 class. We presented our preliminary

results in Table 2.9 and Table 2.8 that represent better performance for multi

label (semantic) segmentation. Therefore, we see potential of research in this

direction and plan to apply these approach on more dataset for different tasks

and provide theoretical guarantee for these approach.

Summary

In this chapter, we proposed two new approaches to correct internal bias and

mitigate imbalanced class problem for brain disease diagnosis and semantic seg-

mentation. We demonstrated minority class oversampling using deep generative

adversarial network in unsupervised and supervised manner can alleviate bias

from majority class. We balance training set distribution by selecting synthe-

sized samples with minimum FID, and tested for brain disease diagnosis. In dif-

ferent experiment, we synthesized missing image modalities and observed better

performance for classification using trained model with multi-modalities image.

In this chapter, we demonstrated a patient-wise batch normalization to mod-

ified internal bias. Each mini-batch sample are constructed within homogeneous

among heterogeneous. We validate our technique on two different generative

models; recurrent conditional GAN and 3D-GAN for semantic segmentation. The

experiments on different medical imaging benchmarks demonstrated the general-

ization ability of our approach for segmentation of body organ and tumor regions.
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Chapter 3

Instance Weighting for

Mitigating Imbalanced Data

In this chapter, we address the problem of imbalanced data by modifying ex-

isting learners to alleviate their bias towards majority groups. We adjust the

learning algorithm to incorporate varying penalty for each considered group of

examples. In this chapter, we introduce two different policies for weighing loss

function. As a first approach, we assign a higher cost to the less represented

set of objects and boost its importance during the learning process. In the sec-

ond approach, a loss function is weighted to reduce the effect of majority class

frequency.

The proposed cost sensitive weighting losses are tested with two different

generative adversarial frameworks on different tasks; semantic segmentation and

diseases classification. Throughout this work, we have shown that the weighted

loss function can mitigate imbalanced training data and improve segmentation

results for highly imbalanced brain tumor segmentation, cardiac MRI segmen-

tation, and less imbalanced microscopic cell segmentation. At the end of the

chapter, we discuss insights gained from segmentation and diseases prediction,

explain variety of applications and extensions, and suggest research direction.
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3.1 Background

Cost-sensitive learning approaches assume the different cost based on misclas-

sification. A cost matrix determines by the penalty of classifying samples from

one class as another. Assume C(i, j) denote the cost of predicting an instance

from class i as class j. Let C(+,−) denote the cost of predicting a positive in-

stance as a negative instance, and C(−,+) is the cost of the contrary case. In the

imbalanced dataset, the importance of positive instances is higher than the neg-

ative instances. The cost of misclassified a positive instance outweighs the cost

of misclassified a negative one (i.e. C(+,−) � C(−,+)); predicting a correct

classification present zero penalty (i.e. C(−,−) = C(+,+) = 0).

The cost-sensitive approaches try to minimize the misclassification cost and

the number of high-cost errors while training a model. The cost-sensitive methods

can be categorized into two categories: (1) learning a specific classifier and (2)

instance weighting.

The learning specific classifier tries to modify the training data distribution to

minimize error regarding misclassification costs such as Dice coefficient loss [87,

90, 91], and asymmetric similarity loss [92]. However, their costs are chosen in

multiple runs of the network and remain fixed during the learning process at each

time step. In contrast, we modify the cost function by weighting instance from

minority class [93] and weighting all instances to balance data distribution [94].

Zadrozny et al. [95] present empirical results and explain the decision theorem

and translation theorem guarantees the performance of weighting classification

regarding minority class instances.

3.2 Cost Instance Weighting

We mitigate the imbalanced class problem by introducing two new instance

weighting losses. The proposed losses are tested based on: (1) a deep voxel-GAN

framework [93] for semantic segmentation which the cost function is weighted

to reduce the effect of majority class by an average of minority classes, (2) a
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recurrent-GAN [61] for learning semantic segmentation and disease classification

that balance feature space on by weighing both minority and majority classes.

In the following, we describe the detail of each loss on two different network

architecture.

3.2.1 voxel-GAN

We proposed voxel-GAN consists of a segmentor network that takes 3D mul-

timodal MR or CT images x and Gaussian vector z. It outputs a 3D semantic

segmentation; S : {x, z} → {yseg}. The discriminator takes the segmentor output

S(x, z) and the ground truth annotated by an expert yseg and classifies a confi-

dence value D(x) of whether a 3D object input x is synthetic or real. The training

procedure is similar to a two-player mini-max game, as shown in Eq.(3.1).

Ladv ← m
S
inm

D
ax V (D,S) = Ex,yseg [logD(x, yseg)]+

Ex,z[log(1−D(x, S(x, z)))]
(3.1)

Here, the segmentor loss is weighted the same as Eq.(3.2) to reduce the effect

of majority class voxel frequencies for the dataset.

wi =

{
avg{fi}{0 < i < c}/fmax, if i is max frequency

1, otherwise
(3.2)

The segmentor loss Eq.(3.3) is mixed with `1 term to minimize the absolute

difference between the predicted value and the existing largest value. Hence,

the `1 objective function takes into account CNNs feature differences between

the predicted segmentation and the ground truth segmentation and resulting in

fewer noises and smoother boundaries.

LL1(S) = Ex,z ‖ yseg − S((x ∗ wi), z) ‖ (3.3)

Lseg(D,S) = Ladv(D,S) + LL1(S) (3.4)

The final objective function for semantic segmentation of brain tumors Lseg

calculated by adversarial loss and additional weighted `1 loss (see Eq.3.4).
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Segmentor Architecture

As shown in Fig. 3.1, the segmentor architecture is two, 3D fully convolutional

encoder-decoder network that predicts a label for each voxel. The first encoder

takes 128 × 128 × 128 of multi-modal MRI or CT images at the same time as

different channel input. Last decoder outputs 3D images with size 128 × 128 ×
128. Similar to UNet [66], we added the skip connections between each layer i

and layer n− i, where n is the total number of layers in each encoder and decoder

part. Each skip connection concatenates all channels at layer i with those at layer

n− i. The bottleneck features are concatenated with last convolutional decoder

to capture better feature representation.

Discriminator Architecture

As depicted in Fig. 3.1, the discriminator is 3D fully convolutional encoder net-

work which classifies whether a predicted voxel label belongs to the right class.

More specifically, the discriminator is trained to minimize the average negative

cross-entropy between predicted and the correct labels.

Then, the segmentor and the discriminator networks are trained through back

propagation corresponding to a two-player mini-max game. We use categorical

cross entropy [65] as an adversarial loss. As mentioned before, we weighted loss

to only attenuate healthy voxel impact in training and testing time.

3.2.2 recurrent-GAN

Similar conditional GAN [11]; the proposed recurrent-GAN, a generative model

learns mapping from a given sequence of 2D multimodal MR images xi to a se-

quence semantic segmentation yiseg and classification ycls; G : {xi, z} → {yiseg, ycls}
(e.g. i refers to 2D slice index between 1 and 155 from a total 155 slices acquired

from each patient). The training procedure for the segmentation task is similar

to two-player mini-max game, as shown in Eq.(3.5). While the generative model

generated segmentation pixels label, the discriminator classifies whether the pre-

dicted pixel output by the generator is similar to the ground truth annotated by
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Figure 3.1: The proposed voxel-GAN consists of a segmentor network S and a discrim-

inative network D. S takes 3D multi modal images as a condition and generates the

3D semantic segmentation as outputs, D determines whether those outputs are real or

fake. We use modified 3D hourglass as a segmentor network in order to capture local and

global features extracted in bottleneck and last convolutional decoder. Here, D is 3D fully

convolutional encoder.

a medical expert or synthetic. The adversarial loss is mixed with two additional

loss to attenuate the imbalanced data impact.

Ladv ← m
G
inm

D
ax V (G,D) = Ex,yseg [logD(x, yseg)]+

Ex,z[log(1−D(x,G(x, z)))]
(3.5)

An imbalanced class in a medical dataset where the non-healthy class cannot

train as well as a healthy class might dominate the gradient direction. Regard-

ing to mitigate class-imbalanced impact, we mixed adversarial loss (Eq. 3.5) with

selective weighted (Eq.3.6) categorical cross-entropy loss LH(G) for semantic seg-

mentation, and with selective weighted (Eq.3.6) `1 loss (Eq.3.8) for classification

of diseases.

wc =

√
| Cc |
fc +N

(3.6)

Where the weight for each class c is calculated on the ratio of the cordial-

ity among N classes on entire training dataset (e.g., mostly healthy classes) by

the frequency of samples with class, c appears in the dataset. Since we intense

frequency differences, the square root is applied to prevent huge weights. This

61



3. INSTANCE WEIGHTING FOR MITIGATING IMBALANCED
DATA

Figure 3.2: Our proposed architecture for learning semantic segmentation and diseases

prediction. We design a set of auto-encoders combined with a LSTM unit in a circum-

vent bottleneck as the generator network with skip connections between each layer i and

the corresponding layer n-1-i (mostly like UNet architecture). The discriminator is fully

convolutional network substituted with LSTM unit. Both networks are trained together

in an adversarial way with selective weighted categorical cross entropy loss for semantic

segmentation and selective weighted L1 for diseases prediction.

implies that larger classes in the training set have a weight smaller than 1, and

the weights of the smallest classes are the highest defined by Eq.(3.6).

The final loss for semantic segmentation task is calculated through:

Lseg(D,G) = Ladv(D,G) + LH(G ∗ wc) (3.7)

As shown in Fig.3.2, the concatenated depth features from last decoder layer

with skip connection of encoder part passed into a couple of dense layers and map

to the disease class. The objective function for class prediction is `1 to minimize

the absolute difference between the predicted value and the existing largest value

Eq.(3.8)

Lcls(G) = Ex ‖ ycls −
∑
i=1

G(xi ∗ wc) ‖ (3.8)

Where i indicates to 2D slice index from the same patient (e.g., in Brain

dataset i is between 1 and 155 from a total of 155 slices acquired from each

patient).
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Figure 3.3: learning multi-task using recurrent GAN.

In this work, similar to the work of Isola et al. [64], we used Gaussian noise z

in the generator alongside the input data x. As discussed by Isola et al. [64], in

training procedure of conditional generative model from conditional distribution

P (y|x), that would be better to model produces more than one sample y, from

each input x. When the generator G, takes plus input image x, random vector z,

then G(x, z) can generate as many different values for each x as there are values

of z. Specially for medical image segmentation, the diversity of image acquisition

methods (e.g., MRI, fMRI, CT, ultrasound), regarding their settings (e.g., echo

time, repetition time), geometry (2D vs. 3D), and differences in hardware (e.g.,

field strength, gradient performance) can result in variations in the appearance

of body organs and tumour shapes [96], thus learning random vector z with

input image x makes network robust against noise and act better in the output

samples. This has been confirmed by our experimental results using datasets

having an extensive range of variation.

As depicted in Figure 3.3, we address learning multi-task by assigning differ-

ent losses for each task. The final objective function for simultaneous semantic

segmentation and classification is similar:

L = Lseg(D,G) + Lcls(G) (3.9)
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Our proposed architecture consists of a generator network, G, in the left side

followed by a discriminator network, D, in the right side of the figure.

Generator Network

The recurrent generator takes a random vector z together with the sequence of

MR images. We design a set of auto-encoders combined with an LSTM n × n
unit in a circumvent bottleneck as the generator network.

Similar UNet [66], we keep skipping connections between each layer i and the

corresponding layer n−1− i, where n represents the total number of layers. Each

skip connection concatenates all channels at layer i with those at layer n− 1− i.
Feature maps from the convolution part in the down-sampling step are fed to the

up-convolution part in the up-sampling level.

The generator is trained on a sequence of 2D images from the same patient

on different multi sites multi-modalities. At the end of each sequence, the output

features from decoder, fed to the fully connected layer and map to one of the

patient diseases.

Discriminator Network

The discriminator network is a classifier and has a similar structure as an encoder

and bidirectional LSTM. Hierarchical features are extracted from the fully convo-

lutional encoder of the discriminator and used to classify between the generator

segmentation output and ground truth. Especially, the discriminator is trained

to minimize the average negative cross-entropy between predicted and the actual

label of an image in pixel level at each time step.

Then, two models are trained through back propagation corresponding to a

two-player mini-max game. We use binary cross-entropy [65] as an adversar-

ial loss, a categorical cross-entropy as additional loss for segmentation, and `1

loss for classification. In this work, the recurrent architecture selected for both

discriminator and generator is a bidirectional LSTM [97].

3.3 Experiments
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We validated the performance of proposed weighting losses on three recent

medical imaging challenges: real patient data obtained from the MICCAI 2018,

brain diseases diagnosis and tumor segmentation (BraTS) [2, 3, 4, 5], cardiac

diseases classification and dual cavities and myocardium segmentation (ACDC-

2017) [1] dataset, and CT brain lesion segmentation challenge (ISLES-2018) [98,

99].

3.3.1 Datasets and pre-processing

The BraTS 2018 benchmark [2, 3, 4, 5] prepared the data in two different brain

diseases; high and low-grade glioma (HGG/LGG) brain tumor (s). The BraTS

2018 released 1156 magnetic resonance images in four modalities T2, Flair, T1,

and T1c from 289 patients. All training data annotated and semantically seg-

mented by the medical expert(s) with four segmentation labels, namely non-

tumor, necrosis or tumorous core, edema or whole tumor, and enhanced tumor

as shown in Figure (3.5). The purpose of this challenge is to segment the com-

plex and heterogeneously located brain tumors automatically and classify brain

disease.

The ACDC [1] comprised by 150 patients with 3D cine-MR images from five

subgroups of healthy subjects, patients with abnormal right ventricle (RV), hyper-

trophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and myocardial

infarction (MINF). The training dataset released with ground truth file manually

segmented by the medical expert(s) for 100 samples (equally for each class 20,

3D cine-MR images) with four segmentation labels of background, right ventricle,

myocardium, and left ventricle. The goal of the challenge is to segment the three

adjoint regions with a considerable inter-subject variation.

We applied ISLES2018 contains 94 computed tomography (CT) and MRI

training data in six modalities of CT, 4DPWI, CBF, CBV, MTT, Tmax, and

the annotated ground truth file. The examined patients were suffering from

different brain cancers. The challenging part is binary segmentation of unbalance

labels. Here, pre-processing is carried out in a slice-wise fashion. We applied the

Hounsfield unit (HU) values, which were windowed in the range of [30, 100] to
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Figure 3.4: The axial view of low grade glioma brain image from BraTS 2017. The fifth,

sixth, and seventh column show the whole tumor, core of tumor and enhanced tumorous

region.

get soft tissues and contrast. Furthermore, we applied histogram equalization to

increase the contrast for better differentiation of abnormal lesion tissue.

We added data augmentation to each dataset such as randomly cropped, re-

sizing, scaling, rotation between -10 and 10 degrees, and Gaussian noise applied

on training and testing time for both datasets.

3.3.2 Implementation

This section provides more details in configuration and network architecture by

voxel-GAN and recurrent-GAN.

Configuration of voxel-GAN

Our proposed voxel-GAN is implemented based on a Keras library [59] with back-

end Tensorflow [62] supporting 3D convolutional network and is publicly avail-

able 1. All training and experiments were conducted on a workstation equipped

with a multiple GPUs. The learning rate was initially set to 0.0002. The Adadelta

optimizer was used in both the segmentor and the discriminator that continues

learning even when many updates have been done. The model is trained for up

to 200 epochs on each dataset separately.

Network Architecture of voxel-GAN

In the voxel-GAN, a segmentor network is a modified UNet architecture that

we designed two UNet architecture with sharing circumvent bottlenecks and last

fully convolutional layer in decoder part. The UNet architecture allows low-level

features to shortcut across the network. Motivated by previous studies on inter-

preting encoder-decoder networks [63], that show the bottleneck features carried

1https://github.com/HPI-DeepLearning/VoxelGAN
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Table 3.1: Comparison of achieved average Dice coefficient per class (per voxel) by dif-

ferent depth and fixed receptive field in discriminator, evaluated on BraTS 2017 (on local

validation set).

Methods WT ET CT

1 × 1 × 1 0.84 0.64 0.79

1 × 1 × 8 0.75 0.58 0.59

1 × 1 × 16 0.78 0.68 0.68

1 × 1 × 32 0.81 0.70 0.86

1 × 1 × 64 0.69 0.58 0.58

1 × 1 × 96 0.67 0.57 0.52

local features and fully convolutional up-sampling encoder represented global fea-

tures, we concatenate circumvent bottlenecks and last fully convolutional layer

to capture more important features.

The segmentor takes four available MR image modalities (T1, T2, T1c, and

Flair) on BraTS 2017 which each MRI volume size 240 × 240 × 155. We center

cropped each subject into a sub volume of 128 × 128 × 128, to remove the border

black regions while still keep the entire brain regions.

Our discriminator is fully convolutional Markovian PatchGAN classifier [64]

which only penalizes structure at the scale of image patches. Unlike, the Patch-

GAN discriminator introduced by Isola et al. [64] which classified each N × N

patch for real or fake, we have achieved better results for task of semantic seg-

mentation in voxel level 1 × 1 × d we consider different d = 96, 64, 32, 16, and

8. We used categorical cross entropy [65] as an adversarial loss with combination

of `1 loss in generator network. Table 3.1 shows the results based on different

depth.

Regarding the highly imbalance datasets as shown in Figure 3.5, minority

voxels with lesion label are not trained as well as majority voxels with non-lesion

label. Therefore, we weighted only non-lesion classes to be in same average of

lesion or tumor(s) classes. Table 3.2 and Table 3.4 describe our achieved results

with and without weighting loss on BraTS 2017.

Configuration of recurrent-GAN
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Figure 3.5: The number of pixels for each tumor classes represents how imbalanced is

training data in detail of two subsets: high and low grade glioma brain tumor on BraTS

2018.

The recurrent-GAN architecture is implemented based on a Keras library [59]

with back-end Tensorflow [62] and is publicly available on HPI-Deep Learning

github 1. training and experiments are conducted on a workstation equipped

with a couple TITAN X GPUs. The learning rate is initially set to 0.0002. The

RMSprop optimizer is used in both the generator and the discriminator, it divid-

ing the learning rate by an exponentially decaying average of squared gradients.

The model is trained for up to 120 epochs.

Network Architecture of recurrent-GAN

In this work, a generative network is a modified UNet architecture consist of ten

fully convolutional layers, four max-pooling layers, dropout layer where a bidirec-

tional LSTM unit is fed in the circumvent bottleneck. The bidirectional LSTM

provides inter as intra-slice feature representation, which is very important in

sequence medical image analysis. The advantage of bidirectional LSTM appears

when we connected features from n−1−i and i (as shown in Figure 3.2) from the

same patient and passed them into the fully connected layer to classify patient

1https://github.com/HPI-DeepLearning/SV-GAN
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diseases.

Our discriminator is 2D fully convolutional Markovian PatchGAN classifier [40]

difference in bidirectional LSTM layers after the last fully convolutional layer. Un-

like, the PathGAN discriminator introduced by Isola et al. [40] which classified

each N × N patch for real or fake, we have achieved better results for the task

of semantic segmentation in pixel level where we consider N=1. Moreover, since

we have a sequential data, the bidirectional LSTM added after the last CNN

layer in discriminator network. Same as encoder part of generator architecture,

the discriminator consists of five fully convolutional layers and four max-pooling

layers.

We used binary cross-entropy as an adversarial loss, categorical cross en-

tropy [65] as an additional loss for the generative model for the task of semantic

segmentation. The `1 loss is for classification. Regarding the heavy class imbal-

ance in both datasets, minority classes might not be trained as well as majority

classes especially in the task of semantic segmentation, which we used selective

weighted categorical cross entropy loss as segmentation loss. From Table 3.2 and

Table 3.8, the second row provide results without weighted loss, while the first

row in both Tables show the obtained results with selective weighted loss. In this

work, the recurrent architecture selected for both discriminator and generator is

a bidirectional LSTM proposed by Graves et al. [97].

3.3.3 Evaluation

We followed the evaluation criteria introduced by the BraTS 2018 1, the ACDC2017

[1], the ISLES 2 challenge organizers. Moreover, we evaluate the proposed cost-

sensitive losses by evaluation criteria regarding handling imbalanced issues.

Evaluation of voxel-GAN Network

The voxel-GAN is trained separately on BraTS 2017 and ISLES 2017 for se-

mantic segmentation of lesion or tumor. The segmentation of the brain tumor

1http://www.med.upenn.edu/sbia/brats2018/evaluation.html
2https://www.smir.ch/ISLES/Start2018
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Table 3.2: Comparison results of our achieved accuracy for semantic segmentation by

voxel-GAN (trained model with weighted loss) with related work and top ranked team, in

terms of Dice and Hausdorff distance on five fold cross validation after 80 epochs while

the reported results in second and third rows are after 200 epochs. WT, ET, and CT are

abbreviation of whole tumor, enhanced tumor, and core of tumor regions respectively.

Dice Hdff

Methods WT ET CT WT ET CT

Voxel-GAN 0.84 0.63 0.79 6.41 7.1 10.38

cGAN [100] 0.81 0.61 0.64 7.30 9.22 12.04

Cycle-GAN [101] 0.90 0.78 0.81 2.50 4.5 5.4

Ensemble of 10 3D-Models [102] 0.91 0.82 0.86 3.9 4.5 6.8

3D UNet + TTA [103] 0.87 0.75 0.78 4.5 5.9 8.0

or lesion from medical images is highly interested in surgical planning and treat-

ment monitoring. As mentioned by Menze et al. [2], the goal of segmentation is to

delineate different tumor structures such as active tumor core, enhanced tumor,

and whole tumor regions.

Figure 3.6 shows good trade-off between Dice and Sensitivities in training and

validation time which it shows success for tackling of unbalancing data.

From obtained results on Table 3.2 and Table 3.3, the proposed voxel-GAN

achieved better results in terms of Dice compared to 2D-cGAN. One likely expla-

nation is that the voxel-GAN architecture is trained on 3D convolutional features,

and the segmentor loss is weighted for imbalanced data.

Unlike previous works [101, 102, 103], we start training from scratch. From

Table 3.2, two top ranked team used ensemble of pre-trained models. Ensemble

networks provides good solution for imbalanced data by modifying the training

data distribution with regards to the different misclassification costs. The quali-

tative results are shown in Figure 3.7.

We evaluated recurrent-GAN substituted by selective weighted loss for learn-

ing multi-task. We trained recurrent-GAN for simultaneous semantic segmenta-

tion and classification. The recurrent GAN is trained separately on ACDC 2017

and BraTS 2017.
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Table 3.3: Comparison results of our achieved accuracy for semantic segmentation by

voxel-GAN (trained model with weighted loss) with related work and top ranked team,

in terms of sensitivity and specificity on five fold cross validation after 80 epochs while

the reported results in second and third rows are after 200 epochs. WT, ET, and CT are

abbreviation of whole tumor, enhanced tumor, and core of tumor regions respectively.

Sen Spec

Methods WT ET CT WT ET CT

Voxel-GAN 0.86 0.74 0.78 0.99 0.99 0.99

cGAN [100] 0.75 0.61 0.55 0.99 0.99 0.99

Cycle-GAN [101] 0.89 0.89 0.81 0.99 0.99 0.99

Table 3.4: The achieved accuracy for semantic segmentation by 3D-GAN in terms of

Dice and Hausdorff distance after 80 epochs. Here, the model trained based on 3D UNet

as segmentor and 3D fully convolution as discriminator without weighting cost. The WT,

ET, and TC are short of whole tumor, enhanced tumor, and tumorous core respectively.

Label Dice-ET Dice-WT Dice-TC Hdff-ET Hdff-WT Hdff-TC

Mean 0.438 0.633 0.481 54.2 12.9 33.70

StdDev 0.27 0.25 0.27 116.71 14.9 78.4

Median 0.48 0.73 0.57 8.76 8.0 11.70

25quantile 0.19 0.49 0.27 4.41 5.56 7.9

75quantile 0.65 0.82 0.70 20.82 14.08 19.1

Table 3.5: The achieved accuracy for semantic segmentation on ISLES dataset by voxel-

GAN and conditional-GAN in terms of Dice, Hausdorff distance, average precision, and

average recall on five fold cross validation after 200 epochs.

Dice Hausdorff Precision Recall

voxel-GAN 0.83 9.3 0.81 0.78

cGAN 0.75 14.6 0.74 0.73
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(a)

(b)

Figure 3.6: The achieved accuracy obtained by voxel-GAN in terms of Dice and sensitivity

at training and validation time on BraTS-2018.

Evaluation of recurrent-GAN network
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Figure 3.7: Predicted results from voxel-GAN model on axial views of Brats17-2013-

37-1, Brats17-CBICA-AAC-1, and Brats17-CBICA-AAK-1 from the test set overlaid T1C

modality. The green color codes the whole tumor (WT) region, while blue and yellow

represent the enhanced tumor (ET) and the tumorous core (TC) respectively.

Heterogeneous Brain Tumor Segmentation and Diseases Classification The goal is

simultaneous semantic segmentation of different tumor structures such as active

tumorous core, enhanced tumorous, and whole tumorous and identifying brain

diseases (see Table 3.6). More than 80 teams attended to the BraTS 2017 chal-

lenge which Table 3.2 shows comparison results between most related approaches

and top three groups obtained by the organizer [104].

From Table 3.2, our the proposed method achieved 8% better results for whole

tumor segmentation in terms of Dice, compared to the conditional GAN [100]

where the UNet is a generator, and fully convolutional network is discriminator.

One likely explanation is that our method trained on the proposed weighted loss

where we attenuate the effect of imbalanced data. Another reason is our architec-

ture where semantic segmentation training is from 2D sequence medical images

into a 2D sequence of semantic segmentation. As mentioned before, both gen-

erator and discriminator models are designed to be aware of contextual features
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Table 3.6: The achieved accuracy for classification of brain diseases by proposed multi

tasks conditional GAN and comparison with related approaches.

Method Dice Precision Recall

Multi tasks RNN-GAN 0.96 ± 0.03 0.9 ± 0.16 0.9 ± 0.21

Random Forest [105] 0.96 0.94 0.94

SVM [106] 0.87 0.94 0.94

from previous slices and able to pass aggregated features to next slices. In other

words, the network learned interslice features as well as intra-slice features, which

is a critical point in medical image analysis. Figure 3.8, shows predicted semantic

segmentation region in three different patients from the local test set.

Based on Table 3.2, we see the comparison and performance of our method in

detail with other related approaches as well as winners in terms of Dice, Hausdorff

distance, and sensitivity. Based on Table 3.2, Deep Medic [107] achieved best

results for whole tumor segmentation with the two cascade architecture of 3D U-

Net and 3D-FCN and applying variation intensity normalization in each network.

The UCL-TIG [108] achieved the second rank of a challenge with a triple cascade

of 2D U-Net architecture where each network is trained on three different regions

of the tumor.

Similar to the winners of BraTS 2017 [107, 108, 110], we do tumorous seg-

mentation by attenuating imbalanced data effect, where they trained models in

cascade architectures but applied weighted loss function. Compared to [107, 108,

110], our proposed network has the advantage of carrying out multiple clinical

tasks in a single architecture where we have achieved 98.61% accuracy for diag-

nosis between high and low-grade glioma tumor, the performance of classification

considering other metrics reported in Table 3.6. It is important to mention that

our method takes only 58 seconds to segment one MR brain image consisting of

155 slices at testing time.

Cardiac Image Semantic Segmentation and Diseases Prediction

Cardiac function is important for the diagnosis and treatment of heart failure

with infarction such as dilated cardiomyopathy, hypertrophic cardiomyopathy,
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Figure 3.8: Segmentation results obtained by our proposed method which in the first row,

the red, pink, and yellow colors respectively show the whole tumorous, enhanced region

and the active core of tumor overlaid on the Flair modality.

and abnormal right ventricle. Cardiac magnetic resonance imaging (CMRI) pro-

vides a non-invasive diagnosis tool to study cardiac anatomy. Automating seg-

mentation of cardiac images plays an important rule and desire application in a

routine clinical task. In this regard, the ACDC [1] organized challenges for fully

or semi-automatic approaches based on deep learning in two sections of cardiac

diseases prediction and cardiac semantic segmentation. Our prediction results

and comparison with recent related approaches are reported in [1] and described

in Table 3.8.

Our predicted results (Figure 3.9 and Table 3.8), from test time show good

relation to the ground truth for the left ventricle at the end of diastolic time. The

good results for left ventricle expected because of the nature of LV shape. The

average value of the Dice index is around 0.93 for myocardium vessel, which is

slightly better than the result of the ACDC-2016 challenge winner [1]. The pri-

mary source of error here is the inability of the method to completely segment the

right ventricle since it has a complex crescent shape across slices and phases (ED,

ES).
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Table 3.7: The achieved accuracy for semantic segmentation by proposed method in terms

of Dice, Hausdorff distance (Hdff), and Sensitivity (Sen) on unseen data and comparison

with related and top rank approaches. The WT, ET, and TC columns respectively are

abbreviation of whole tumorous region, enhanced tumorous, and tumorous active core.

Segmentation Dice Hdff Sen

Architecture WT ET TC WT ET TC WT ET TC

Weighted RNN GAN 0.88 0.76 0.77 6.11 7.17 11.38 0.87 0.88 0.85

cGAN 0.80 0.61 0.61 7.30 9.22 12.04 0.75 0.61 0.55

SegAN [41] 0.85 0.66 0.70 00 00 00 0.80 0.62 0.65

3D UNet [109] 0.88 0.72 0.76 13.6 13.8 22.3 00 00 00

3D UNet [107] 0.90 0.74 0.79 4.23 4.50 6.56 0.89 0.78 0.86

Cascade 2D UNet [108] 0.90 0.78 0.83 3.89 3.28 6.48 0.91 0.77 0.82

2D3D ResUNet [110] 0.89 0.74 0.80 6.97 4.55 9.48 0.89 0.79 0.78

As depicted in Figure 3.9 and Table 3.8, a right ventricle is the most chal-

lenging organ to segment where the most failure happened in the systolic phase.

Based on Figure 3.9, the achieved accuracy in the test time on ACDC benchmark,

we observed the average results in diastolic phase (sixth, seventh, and eighth

columns) are better than the average results on systolic phase (third, fourth, and

fifth columns).

Regarding the results from Table 3.10, our achieved accuracy in test time

for classification of heart disease is 94%, which is promising results; especially

for clinical application. Obtained results in Table 3.8 and Table 3.10 show the

ability of the proposed approach for routine clinical application in two tasks of

cardiac segmentation and heart failure prediction. Moreover, our method takes

only 14 seconds to segment one cardiac image consisting of 20 slices at testing

time, which is a crucial aspect in clinical application.
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Table 3.8: Comparison and achieved accuracy in term of Dice metric and Hausdorff

distance in detail of the end of systolic (ES) and end of diastolic (ED) phase from ACDC

benchmark with related approaches and top-ranked methods reported in [1]. The LV, RV,

and MYO columns respectively are the abbreviation of left ventricle region, right ventricle

region, and myocardium vessel.

Segmentation Dice-ES Dice-ED

Architecture LV RV MYO LV RV MYO

Weighted-RNN-GAN 0.935 0.921 0.926 0.967 0.947 0.930

cGAN by ours 0.918 0.874 0.870 0.930 0.902 0.899

Dilated CNN [74] 0.918 0.872 0.894 0.968 0.928 0.875

UNet [76] 0.905 0.882 0.896 0.957 0.941 0.884

2D M-Net [111] 0.921 0.885 0.895 0.959 0.929 0.884

2D UNEt [112] 0.911 0.883 0.901 0.963 0.932 0.892

2D+ 3D UNet [77] 0.931 0.899 0.919 0.968 0.946 0.902

SVF-Net [75] 0.900 0.845 0.869 0.957 0.916 0.869

3D UNet [113] 0.775 0.770 nr 0.864 0.789 nr

Table 3.9: Comparison and achieved accuracy in term of Dice metric and Hausdorff

distance in detail of the end of systolic (ES) and end of diastolic (ED) phase from ACDC

benchmark with related approaches and top-ranked methods reported in [1]. The LV, RV,

and MYO columns respectively are an abbreviation of left ventricle region, right ventricle

region, and myocardium vessel.

Segmentation Hdff-ES Hdff-ED

Architecture LV RV MYO LV RV MYO

Weighted-RNN-GAN 8.02 12.08 8.65 6.81 8.97 8.04

cGAN by ours 9.44 13.04 9.5 8.60 8.95 8.08

Dilated CNN [74] 9.6 13.4 10.7 7.5 11.9 11.1

UNet [76] 8.7 14.1 9.3 6.6 10.3 8.7

2D M-Net [111] 7.1 11.8 8.9 7.7 12.9 9.9

2D UNEt [112] 9.2 14.5 10.6 6.5 12.7 8.7

2D+ 3D UNet [77] 6.9 12.2 8.7 7.4 10.1 8.7

SVF-Net [75] 10.9 15.9 13.03 7.5 14.1 11.5

3D UNet [113] 53.1 31.1 nr 47.9 30.3 -
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Figure 3.9: The cardiac MR images in systolic phase from t=0 till t=9 in the top row

and second row represent the segmentation results obtained by our proposed method from

ACDC 2017 benchmark on Patient084 where the red, green, and blue contour present

respectively right ventricle, myocardium, and left ventricle region.

Table 3.10: The achieved accuracy for classification of cardiac diseases by proposed multi

tasks conditional GAN and comparison with related approaches and top-ranked obtained

by ACDC reported in [1].

Method Accuracy Dice Precision Recall

Multi tasks RNN-GAN 0.94 ± 0.16 0.94 ± 0.16 0.94 ± 0.16 0.94 ± 0.16

Random Forest [105] 0.96 0.94 0.94 0.94

SVM [106] 0.87 0.94 0.94 0.94

Random Forest [77] 0.92 0.94 0.94 0.94

Random Forest [74] 0.85 - - -
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Chapter 4

Approaches to Handle

Imbalanced Data through Class

Expert Ensembles

Ensemble methods use multiple learning algorithms to obtain better predictive

performance than an individual model. The key idea of this chapter is to pro-

vide better representation on an imbalanced dataset using various deep learning

architectures or different classifiers as an ensemble model.

In this chapter, we introduce three different ensemble architectures aim to mit-

igate the imbalanced problem in the task of semantic segmentation. Conventional

GAN comprises two models: a generative model and a discriminative model. The

generative probabilistic model builds the model based on prior domain knowledge

about the appearance and spatial distribution of the different tissue types while

the discriminative model directly learns the relationship between the local fea-

tures of images and labels. The training procedure for the generative and the

discriminative is similar to a two-player mini-max game, where a generative a

discriminative are trained in an alternating fashion to minimize and maximize

an objective function respectively. Hence, an inevitable discriminative loss can

reduce the error of prediction of the generative model regarding some aspects of

quality. Therefore, we study the impact of generative ensemble discriminative

networks on imbalanced image semantic segmentation, considering various losses

and different architectures.
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In our work, we have investigated three different ensemble models including

conditional generative adversarial networks based on stacking ensemble, bagging

ensemble GANs, and cascade GANs which differs from the type of ensembles,

image representation (2D and 3D), architectural design, and losses.

We demonstrate the resulting segmentation algorithms on popular medical

imaging benchmarks for segmentation of abnormal tissues as well as anatomical

organs. We close the chapter with ongoing directions and insights about imbal-

anced learning by ensemble models.

4.1 Technical Background

Ensemble Learning

Ensemble learning generates multiple classifiers and combines them to a single

consensus model to solve a learning problem. The key idea is that a consensus

model performs better than an individual model, or it can reduce the likelihood

of selecting a model with inferior performance as shown by Polikar [114]. Each

classifier of the ensemble model might be predicting class labels, posterior prob-

abilities, real-valued number, clustering, or any other quantity. Therefore their

decisions can be combined by many methods such as voting, averaging, and prob-

abilistic approach.

The core idea on ensemble learning is collective wisdom (or the wisdom of

crowds) that many heads are smarter than the few or one. As discussed by

James Surwiecki [115], not all crowds are wise, but to become wise, the crowd

should comply with the diversity of opinion and other criteria. We expected each

model in an ensemble framework might have an individual element of diversity

to retaining good performance. We can roughly divide the existing ensemble

methods into two categories by considering the element of diversity [116]: those

that encourage diversity implicitly, and those that encourage explicitly.

Implicit is the most popular ensemble models where different random subsets

of the training data are assigned to each learner. Diversity is encouraged implicitly

by random sampling of the data space: at no point is a measurement taken to

ensure diversity will emerge. The random differences between the datasets might

be in the selection of examples (the Bagging algorithm [117]), the selection of
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features (Random Subspaces [118]), or combinations of the two (the Random

Forests [119] algorithm). The propose cascade-GAN (see Figure 4.1-a) is an

implicit ensemble model which different batches train on each stage of GAN.

Alternatively, explicit model encourage diversity to construct each ensemble

member with some measurement ensuring it is substantially different from the

other members. Boosting algorithms [120] achieve this by modifying the distribu-

tion of training samples for each learner. It is encouraged to make more accurate

predictions where previous predictors have made errors.We consider, ensemble

GAN (see Figure 4.1-c ) including one generator and k multiple discriminators

which we study the effect of various losses and different architectures for handling

imbalanced class problem in semantic segmentation.

Imbalanced Learning using Ensemble Model

In the context of imbalanced data, the main idea of combining multiple classifiers

in redundant ensembles is to improve their generalization ability. Each classifier

can cover only some aspects of the quality of the application. Hence, the patterns

that are misclassified by different classifiers are not the same, then combining

classifiers to a single consensus model performs better than one classifier.

Form statistical perspective, an ensemble model composed by diverse classi-

fiers is studies in terms of bias-variance decomposition [121] and bias-variance-

covariance-variance noise decomposition [122]. The bias is the difference between

the average prediction of the model and the real value, or ability of the model to

generalize correctly on the testing set. The variance is the variability of model

prediction for a given data point or sensitivity of the model to small fluctuations

in the training set.

Hence variance is related to overfitting, the performance improvement in the

ensemble model is due to the reduction in variance because the natural effect

of ensemble averaging is to reduce the variance of a set of classifiers. On the

other side, ambiguity decomposition shows the combination of several classifiers

is better on average of several patterns than a single classifier. Some [123] has been

focused on multiple classifiers as a regression problem where the output is real-

valued, and the mean squared error is used as the loss function. However, in the

context of classification, those terms are still [124], since different authors provide
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(a)

(b) (c)

Figure 4.1: GAN-based ensemble architectures for handling class imbalanced problem.

(a) cascade-GAN, (b) conditional refinement GAN, (c) generative ensemble discriminative.

different assumptions [125] and there is no an agreement on their definition for

generalized loss functions [126].

Ensemble models are popular and most successful model in medical imaging

which recently these methods achieved the best performance number of chal-

lenges; such as 2018 BraTS, Myronenko. [127] proposed a deep ensemble archi-
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tecture consisting ten models, in 2016 Camelyon challenge, Wang et al. [128] ap-

plied ensemble of two GoogLeNet architectures, one trained with and one without

hard-negative mining to tackle the challenge, Schaumberg et al. [129] achieved

the best performance for prostate cancer detection using an ensemble of ResNet

architecture. Gunhan Ertosun and Rubin. [130] applied ensemble of CNNs for

grading glioma, Ciresan et al.[131] applied several different architectures for large

organ segmentation. In this chapter, we introduce three different ensemble mod-

els to deal with the imbalanced class problem in semantic segmentation, as shown

in Figure 4.1.

4.2 Ensemble Model

In this section, we describe our three different ensemble networks to mitigate the

imbalanced problem in the task of medical image semantic segmentation. The

proposed ensemble methods are based on generative adversarial networks differs

on architectural design, losses, image representation, and type of ensembles.

4.2.1 Conditional Generative Refinement Network

We propose a conditional generative refinement network with three components:

a generative, a discriminative, and refinement networks to mitigate imbalanced

data problem through ensemble learning. The generative network learns to the

segment at the pixel level by getting feedback from the discriminative network

according to the true positive and true negative maps. On the other hand, the

refinement network learns to predict the false positive and the false negative

masks produced by the generative network that has significant value, especially

in medical application. The final semantic segmentation masks are then composed

by the output of the three networks. Here we build an ensemble framework by

training each new model instance to learn to address misclassified samples by

previous model same as boosting strategy. Boosting tends to improve upon its

base models.

In conventional generative adversarial networks, generative model G tries to

learn a mapping from random noise vector z to output image y; G : z → y. Mean-

while, a discriminative model D estimates the probability of a sample coming
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from the training data xreal rather than the generator xfake. The GAN objective

function is a two-player mini-max game like Eq.(4.1).

m
G
inm

D
ax V (D,G) = Ey[logD(y)] + Ez[log(1−D(G(z)))] (4.1)

In a conditional GAN, a generative model learns the mapping from the ob-

served image x and a random vector z to the output image y; G : x, z → y.

Discriminative model on the other hand attempts to discriminate between gen-

erator output and ground truth of the training set. Unlike previous conditional

GANs [11, 40, 41, 42, 43]; in our proposed method, a generative model learns

mapping from a given sequence of 2D multimodal MR images xi to a sequence

semantic segmentation yseg; G : {xi, z} → {yseg} (where i refers to 2D slice in-

dex between 1 and 155 from a total 155 slices acquired from each patient). We

utilize bidirectional LSTM to pass the temporal consistency between 2D slices.

Our network can learn representations from previous and future slices, which re-

sults in context-aware and eliminate ambiguity. The training procedure for the

segmentation task is similar to two-player mini-max game, as shown in Eq.(4.2).

While the generator segmented pixels label, the discriminator takes the ground

truth, and the generator’s output to classify whether the output is real or fake.

Ladv ← m
G
inm

D
ax V (D,G) = Ex,yseg [logD(x, yseg)]+

Ex,z[log(1−D(x,G(x, z)))]
(4.2)

Here, the generative loss Eq.(4.3) is mixed with `1 term to minimize the

absolute difference between the predicted value and the existing largest value.

Previous studies [40, 41] on cGANs have shown the success of mixing the cGANs

objective with `1 distance. The `1 objective function takes into account CNNs

feature differences between the predicted segmentation and the ground truth

segmentation and resulting in fewer noises and smoother boundaries.

LL1(G) = Ex,z ‖ yseg −G(x, z) ‖ (4.3)

The adversarial loss for semantic segmentation task calculate by Eq.(4.4)

Lseg(D,G) = Ladv(D,G) + LL1(G) (4.4)
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Figure 4.2: Visual results from our model where the cGAN over segment through learning

true positives and true negatives and the refinement learns false positives and false negatives

mask.

In order to tackle with misclassification cost, the predicted output by the

generator and discriminator are passed to refinement network. The refinement

network is trained to learn the false prediction of cGAN in details of false nega-

tives (same as Eq. 4.5) and false positives (same as Eq. 4.6). The false negative

error represents the number of pixels that were incorrectly labeled as background

or wrong class (Figure 4.2-third column). Similarly, the false positive indicates

the number of pixels that were incorrectly labeled as part of the region of interest

(Figure 4.2-last column).

Lfn = clip((y − Lseg), 0, 1) (4.5)

Lfp = clip((Lseg − y), 0, 1) (4.6)

where in both equations (4.5 and 4.6) y, Lseg respectively refers to the ground

truth labels and predicted labels by adversarial loss.

Our final objective function LCR−GAN for semantic segmentation relies on

adding false negatives and subtracting false positives from the adversarial network

predicted output.

LCR−GAN = Lseg − Lfp + Lfn (4.7)

As shown in Figure (4.3), our proposed method consists of a generator net-

work, and a discriminator network, in the left side, followed by a refinement

network in the right side of the figure. We investigate two different architectures

of conditional GAN and recurrent conditional GAN for adversarial training of G

and D.

Conditional Generative Adversarial Network
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Figure 4.3: The proposed method for medical image semantic segmentation consists of a

generator, a discriminator, and refinement networks. The generator tries to segment image

in pixel level, while discriminator classifies the synthesized output is real or fake. The final

semantic segmentation masks are computed by eliminating the false positive and adding

the false negative predicted masks by the refinement network.

Figure 4.4: Conditional generative adversarial networks, consists of a generative model

and a discriminative model where can be constructed by feeding the data, we wish to

condition on to both the generative and discriminative.

As depicted in Figure 4.4, the conditional GAN composed by a generator and a

discriminator where the generator is a fully convolutional encoder-decoder net-

work that generates a label for each pixel. Similar to UNet [66], we added the

skip connections between each layer i and layer n− i, where n is the total number

of layers. Each skip connection concatenates all channels at layer i with those at
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layer n−i. We use the convolutional layer with kernel size 5 × 5 and stride 2 in en-

coder part for down-sampling, and in the decoder, section performs up-sampling

by image re-size layer with a factor of 2 and convolutional layer with kernel size

3 × 3 stride 1. In our architecture, in the last layer, the high-resolution features

from multi-modal, multi-site images are concatenated with up-sampled versions

of global low-resolution features, which helps the network learn both local and

global representation of features.

The discriminator is a fully convolutional network and has the same archi-

tecture as decoder part of the generator network. The hierarchical features from

convolutional layers passed to softmax loss for classifying whether a segmented

pixel’s label belongs to the right class.

Recurrent Generative Adversarial Networks

The recurrent cGAN framework consists of ten generators and ten discriminators

which the generator are connected through auto-encoder’s bottleneck that sub-

stituted with bidirectional LSTM units [97]. The discriminators are connected by

bidirectional LSTM units [97] in the last layer. Similar to few-shot learning, we

train the network only with few slices. The recurrent conditional GAN has the

advantage of getting the consistency information between previous and next slice.

Using bidirectional LSTM units inside of G and D makes networks context-aware,

which is a crucial point in sequence data analysis.

More important, annotated data obtained by medical expert will not always

be possible and are rare. Therefore training network in this way is more applica-

ble and welcome for routine clinical task.

Refinement Network

In order to address misclassified samples, we design the refinement network on

top of an adversarial network to deal with unbalanced data issues and improve

false positive rate. As shown in Figure 4.5, the refinement network is the fully

convolutional networks, more specifically, similar to UNet style with bidirectional

LSTM in circumventing of a bottleneck. The refinement network takes a 2D se-

quence outputs from cGAN (or recurrent cGAN), with a 2D sequence of medical
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Figure 4.5: the proposed refinement network consist of fully convolutional encode-

decoder.

images, and the outputs are a 2D sequence masks of false positives and false

negatives.

The final semantic segmentation calculated by adding false negatives and sub-

tracting false positives mask to the output of cGAN network. We gather all the

described networks, in a single framework and train a cGAN network with a re-

finement network end-to-end. Similar to recurrent-GAN setting, the refinement

is trained with few-slices.
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Algorithm 2: The conditional Refinement GAN for medical image semantic seg-

mentation
Input : Sequence of 2D medical images from plane x, y, z

Output: Sequence of 2D binary masks from plane x, y, z

1 First stage: Automatic Segmentation by cGAN [11]:

2 for i = 1, Dsteps do

3 Sample patient-wise mini-batch, noise samples z, from noise prior pg(z)

4 Sample patient-wise mini-batch, from data generating distribution pdata(x)

5 Update the discriminator following:

6 Maximizing(Ex ∼ pd[logD(x; θd | c)] + Ez ∼ pz(z)[log(1−D(G(z; θg |
c); θd))])

7 end

8 for i = 1, Gsteps do

9 Sample patient-wise mini-batch, noise samples z, from noise prior pg(z)

10 Update the generator (segmentor)following:

11 Minimizing(Ez ∼ pz(z)[log(1−D(G(z; θg | c); θd))])
12 end

13 Second stage: Automatic Refinement Segmentation:

14 for i = 1, Refinementsteps do

15 Sample patient-wise mini-batch, from first step of conditional generating

distribution pdata(x)

16 Optimize the error of conditional generating distribution and true data

following:

17 Lfn = clip((y − LGAN ), 0, 1)

18 Lfp = clip((LGAN − y), 0, 1)

19 end

20 final objective function calculated as follow:

21 LSeg ← (LcGAN )− Lfp + Lfn

4.2.2 Cascade of Generative Adversarial Networks

We proposed cascade of the conditional generative adversarial network consists of

three individual GAN frameworks. These three frameworks are trained separately

on different stages where each stage designed to share convolutional features

and weights, where the later stages use the shared convolution features from the

previous stage and transfer the learned convolutional features and weights to the
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next stage. Each stage involves a cGAN with an adversarial loss and individual

parameters.

The GAN framework on each step has two networks of a generator and a

discriminator. We train the discriminator model D and the generator model G

simultaneously in an adversarial way. The generator model G maps the pixel’s

label of a specific image and D tries to distinguish the predicted image comes

from the reference distribution or the generative network.

LGAN(G,D) = Ey pdata(y)[logD(y)] + Ex pdata(x), z pz(z)[log1−D(x, z)] (4.8)

Generator Architecture of cascade-GAN

As shown by Figure 4.6, the generator is a fully convolutional encoder-decoder

structure like a UNet with skip connections between corresponding layers in the

encoder and the decoder. We use the convolutional layer with kernel size 4 × 4

and stride 2 for down-sampling, and perform upsampling by image re-size layer

with a factor of 2 and the convolutional layer with kernel size 3 × 3 stride 1.

Figure 4.6: The cascade-GANs with three stages (a). The proposed architecture is

context-aware where the later stages use the shared convolution features plus the proba-

bility map obtained from previous stages and transfer the learned convolutional features

to the next (b).
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Discriminator Architecture of cascade-GAN

The discriminator is a fully convolutional neural network. Hierarchical features

are extracted from multiple layers of convolution and used to compute the L1

loss function. We confirmed the solution suggested by Isola et al. [132] for using

L1 distance rather than L2 as L1 encourages less blurring. L1 loss can capture

long- and short-range spatial relations between pixels by using the hierarchical

features.

Both the generator G and the discriminator D are trained through back prop-

agation from the proposed L1 loss. The training of the generator and the discrim-

inator is like playing a mini-max game Eq.(4.8): While the goal G is to maximize

the discriminator loss, D tries to minimize it. This training process makes both

networks increasingly powerful.

Training Procedure by cascade-GANs

As shown in Figure 4.6-a, in the cascade-GANs, later stages use the shared con-

volution features plus the probability map obtained from previous stages and

transfer the learned convolutional features to the next. We train iteratively sev-

eral GANs that take as input MRI patches and estimate corresponding segmented

binary patches. These patches are concatenated as a second channel in the MRI

patches, and this new data is used as input during the training of the next GAN.

An illustration of this scheme is shown in Figure 4.6-b.
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Algorithm 3: The context-aware conditional generative adversarial networks for

medical image semantic segmentation

Input : minibatch samples b from 2D medical images

Output: 2D segmented masks

1 For each stage: Automatic Segmentation by cGAN [11]:

2 for i = 1, Dsteps do

3 Sample mini-batch b, noise samples z, from noise prior pg(z)

4 Sample from data generating distribution pdata(bx)

5 Update of finetune the discriminator following:

6 Maximizing(Ex ∼ pd[logD(bx; θd | c)] + Ez ∼ pz(z)[log(1−D(G(z; θg |
c); θd))])

7 end

8 for i = 1, G1steps do

9 Sample patient-wise mini-batch, noise samples z, from noise prior pg(z)

10 Update and fine tune the generator following:

11 Minimizing(Ez ∼ pz(z)[log(1−D(G(z; θg | c); θd))])
12 end

4.2.3 Ensemble-GANs

We present a new generative ensemble adversarial discriminative network that

can effectively tackle the imbalanced problem in semantic segmentation. Our

idea is to use a mixture of many discriminator losses rather than a single one in

the conventional GAN, to cover and minimize the prediction error of semantic

segmentation by generator from different aspects of quality.

Figure 4.7 illustrates the architecture of our proposed generative ensemble

network, where all components are parameterized by neural networks. In our

workflow, the generator G is forced and learned to minimize the prediction error

of semantic segmentation through the ensemble of discriminators. This ulti-

mately encourages G to produce conditional samples with minimum error, since

G needs to fool the different possible discriminators. Variations in the ensemble

are achieved by the feedback of each D with a certain probability at the end

of every batch. This means that G will only consider the loss of the remaining

discriminators in the ensemble while updating its parameters at each iteration.
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Algorithm 4: The generative ensemble adversarial discriminative networks for

medical image semantic segmentation

Input : Training samples SN := X1, X2, ..., XN

Output: Generated Samples by generative model

1 for numberofiterations do

2 Sample mini-batch from training sample GN := X1, X2, ..., XN , xi ∼ pgdata(x)

Sample mini-batch from Gaussian noise zi := z1, z2, ..., zN , zi ∼ pg(z)
3 for k = 1, Dksteps do

4 Sample mini-batch b, noise samples z, from noise prior pg(z)

5 Sample from data generating distribution pdata(bx)

6 Update of fine-tune k discriminators following:

7 Maximizing(Ex ∼ pd[logDk(bx; θd | c)] + Ez ∼ pz(z)[log(1−Dk(G(z; θg |
c); θd))])

8 end

9 for i = 1, Gsteps do

10 Sample patient-wise mini-batch, noise samples z, from noise prior pg(z)

11 Update and fine-tune the generator following:

12 Minimizing(Ez ∼ pz(z)[log(1−D(G(z; θg | c); θd))])
13 end

14 end

We explore a single generator with k different discriminators: (1) a more dis-

criminating with different losses are able to cover more aspects of qualify for

generator’s output by approximating maxDV (D,G); (2) a more discriminating

with different representation of data are capable to better catch generator distri-

butions.

m
G
in m

Dk

ax V (Dk, G) = Ex∼p(x)[logDk(x)] + Ez∼p(z)[log(1−Dk(G(z)))] (4.9)

4.2.3.1 Generative ensemble adversarial losses

We propose generative ensemble adversarial losses including a single generator

which tries to minimize segmentation error regarding ensemble of k different
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losses. The generator takes random vector z, and 3D medical images x as condi-

tional input meanwhile discriminators tries to minimize error of predicting seg-

mentation masks by generator through multiple losses. Here, for fixed G, average

function F getting feedback from k different discriminator’s losses to generator

by objective of minGmaxF (V (D1, G), V (D2, G), ..., V (Dk, G))).

m
G
inm

Di

ax V (Dk, G) = Ex∼p(x)[logDk(x, y)] + Ez∼p(x,z)[log(1−Dk(x,G(x, z)))]

(4.10)

where Dk(x) and G(z) are the outputs of the kth discriminator and the gener-

ator, respectively. The idea of using the proposed averaging scheme is to privilege

worse discriminators and thus providing more useful gradients to the generator

during training.

We adopt the generator with 3D modified hour-glass network described in

voxel-GAN [93] consisting of two, 3D fully convolutional encoder-decoder net-

works that predict a label for each voxel. The first encoder takes 128× 128× 32

of multi-modal MRI or CT images at the same time as different channel input.

Last decoder outputs 3D images with same input size, 128× 128× 32. Similar to

UNet [66], we added the skip connections between each layer i and layer n − i,
where n is the total number of layers in each encoder and decoder part. Each

skip connection simply concatenates all channels at layer i with those at layer

n − i. Moreover, we concatenate the bottleneck features and last convolutional

decoder to capture better feature representation.

The discriminators are 3D fully convolutional encoder network which classifies

whether a predicted voxel label belongs to the right class. More specifically, each

discriminator is trained to minimize the error of predicted mask by generator re-

garding different losses. Experiments were performed for generator in conditional

setting and by considering k = 1, 2, 3 as number of discriminators. However, re-

sults showed that the simple average of discriminators losses provided the better

trade-off between precision and recall and improve segmentation results. More

detail about different losses and and evaluation is provided in Section 4.3.
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Figure 4.7: The proposed generative adversarial ensemble discriminators

4.3 Experimental Results

To evaluate the performance of our different implemented ensemble framework

on handling imbalanced image semantic segmentation and compared them with

other related methods, we trained our different proposed ensemble architectures

on recent popular annotated medical imaging benchmarks as described in Section

(4.3.1).

4.3.1 Datasets and Pre-processing

HVSMR-2016 1 on Whole-Heart and Great Vessel Segmentation from cardiovas-

cular magnetic resonance images (CMR) in congenital heart disease. Thirty train-

ing CMR scans from 10 patients are provided by the organizers of the HVSMR-

workshop in MICCAI conference. Three different images have provided for each

patient: a complete axial CMR image, the same image cropped around the heart

and thoracic aorta, and a cropped short axis reconstruction. We evaluated the

proposed cascade-GANs on this dataset where we utilized and trained each stage

on different images from the same patients. We trained the first stage of cascade-

GANs on the full axial volume from all patients. The second stage takes the

cropped images around the heart and thoracic aorta as input, and the same im-

age cropped short axis is served as the input of the third stage. Figure 4.8 shows

three different images from HVSMR dataset.

Additional to HVSMR dataset, we applied the BraTS 2018 (described in Sec-

tion 3.3.1 ), LiTS 2017 (reported in Section 2.2.2), and microscopic cell images

1http://segchd.csail.mit.edu/data.html
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Figure 4.8: The axial, coronal, and sagittal view of images from HVSMR dataset where

the first row shows complete axial CMR images, second and third row show the cropped

around the heart and thoracic aorta and the cropped short axis respectively.
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from ISBI 2015 (described in Section 2.2.2) which all explained in the previous

chapters.

4.3.2 Implementation

Configuration

All the proposed ensemble methods are implemented based on a Keras library [59]

with backend Tensorflow [62]. Our conditional refinement GAN code is publicly

available 1. We did not use any pre-trained model in our experiments and started

training from scratch. All training and experiments are conducted on a work-

station equipped with couple NVIDIA GPUs. in conditional refinement network,

the learning rate is initially set to 0.0001. The RMSprop optimizer is used in the

recurrent generator, discriminator, and refinement, it dividing the learning rate

by an exponentially decaying average of squared gradients. We used Adadelta as

an optimizer for cascade-GAN network that continues learning even when many

updates have been done.

Our implemented cGAN 2, recurrent cGAN 3, and refinement model 4 are

publicly available. At the recurrent architecture selected for both discriminator

and generator is a bidirectional LSTM proposed by Graves et al. [97]. We used

all 2D sequences from axial, coronal, and sagittal planes from both training and

testing phases.

The cascade-GANs code is modified based on implemented conditional pix-

to-pix and it is available on HPI-Deep Learning GitHub 5.

Conditional Refinement Architecture

In the conditional refinement GANs, a generator network is a modified UNet ar-

chitecture with bidirectional LSTMs unit. The UNet architecture allows low-level

features to shortcut across the network. The bidirectional LSTM provides inter

as intra slice feature representation which is very important in sequential medical

1https://github.com/HPI-DeepLearning/MISS-GAN
2https://github.com/HPI-DeepLearning/MISS-GAN/tree/master/FirstStage
3https://github.com/HPI-DeepLearning/MISS-GAN/tree/master/FirstStage/Recurrent-cGAN
4https://github.com/HPI-DeepLearning/MISS-GAN/tree/master/SecondStage/GenerativeRefinement
5https://github.com/HPI-DeepLearning/SegMed
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image analysis. The advantage of bidirectional LSTM appears when we connected

features from down-convolution encoder with corresponding up-convolution de-

coder.

Our discriminator is fully convolutional Markovian PatchGAN classifier [40]

which only penalizes structure at the scale of image patches. Unlike, the Patch-

GAN discriminator introduced by Isola et al. [40] which classified each N N patch

for real or fake, we have achieved better results for a task of semantic segmentation

in pixel level where we consider N=1. Moreover, since we have a sequential data,

the bidirectional LSTM added after the last CNN layer in discriminator network.

We used categorical cross entropy [65] as an adversarial loss with combination

of `1 loss in generator network. More detail about each architecture is described

in Table 4.1 which ”BN”, ”NL” and ”DO” are short for batch normalization,

non-linearity, and dropout layer respectively.

Regarding the high imbalanced datasets, minority pixels with lesion label are

not trained as well as majority pixels with non-lesion label. Therefore, we de-

signed boosting ensemble network named refinement to tackle this issue. The

refinement network has the same architecture as our recurrent generator. The

refinement network takes the predicted output from cGAN and medical images.

The refinement network outputs two binary masks: false positive and false neg-

ative.

Cascade-GANs Architecture

We adjust our generator network architecture is auto-encoder similar to UNet,

and discriminator is fully convolutional network. Let Convk denote a convolution-

BatchNorm-ReLU layer with k filters. ConvDropk and ⊕ denote a Convolution-

BatchNorm-Dropout-ReLU layer with a dropout rate of 50% and concatenation

respectively. All convolutions are 4× 4 spatial filters applied with stride 2.

Convolutions in the encoder, and in the discriminator, downsample by a factor

of 2, whereas in the decoder they upsample by a factor of 2.

All leaky ReLUs adopted with slope 0.2. All other discriminators follow the

same basic architecture, with depth size of 1X1 for receptive field (see Table 4.2).

Ensemble-GANs
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Table 4.1: Network architecture and hyper parameter for conditional refinement frame-

work.

Operation Kernel Strides Feature maps BN DO NL

Generator/Segmentor

Convolution 2 × 2 2 × 2 128 3 3 ReLU

Convolution 4 × 4 4 × 4 256 3 3 ReLU

5 × Convolution 8 × 8 8 × 8 5 × 512 3 7 ReLU

Discriminator

Convolution 2 × 2 2 × 2 128 3 3 ReLU

Convolution 4 × 4 4 × 4 256 3 3 ReLU

Fully connected 4 × 4 × 1024 7 7 Tanh

Refinement

Convolution 2 × 2 2 × 2 128 3 3 Leaky ReLU

Convolution 4 × 4 4 × 4 256 3 3 Leaky ReLU

Fully connected 8 × 8 8 × 8 5 × 512 3 7 Leaky ReLU

Batch size 1 (4 Modalities)

Leaky ReLU slope 0.2

Learning rate 0.0002

Optimizer RMSprop, β = 0.9

BatchNorm ε = 0.00001 , β = 0.98
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We designed generative adversarial ensemble discriminative networks consists sin-

gle 3D generator encoder-encoder with multiple 3D fully convolutional discrimi-

nator networks with different losses.

The 3D boxes in generator as well as in discriminator (in Figure 4.7) shows

CNN layer with its number of features size. Table 4.3 shows the detail of our

architecture.

We update generator G twice and then update discriminator D during the

learning iteration to balance the overall learning process of generator and discrim-

inator. Noise is sampled element-wise from zero mean Gaussian having standard

deviation of 0.001 during training. Standard deviation is changed to 1 and sam-

pling is done in same manner as above, when we evaluate our algorithm. Based

on observation, this change in standard deviation is useful to maintain proper

level of diversity as we have very small-size data. To get better training of gener-

ator and discriminator in our model, batch normalization is used right after every

convolutional layer.

4.3.3 Evaluation and Discussion

We validated and evaluated the performance of different proposed ensemble mod-

els using on quality metrics introduced by the challenges organizers. The BraTS

challenge organizer provided the online judgment system, our reported result is

based on challenge evaluation platform 1.

We also evaluated the performance of our approach on CT images for semantic

segmentation of liver and lesion using the quality metrics introduced in the LiTS

2017 from grand challenges [133]. We follow the quantitative measurement by

HVSMR2016, and microscopic cell segmentation.

4.3.3.1 Evaluation Results by conditional Refinement Network

Heterogeneous Brain Tumor Segmentation:

The segmentation of the brain tumor from medical images is highly interest-

ing in surgical planning and treatment monitoring. The goal of segmentation as

1http://braintumorsegmentation.org/
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Table 4.2: Network architecture and hyper parameter for cascade-GAN framework.

Operation Kernel/Strides Feature maps BN DO NL Shared?

Generator

Convolution 3×3×3 128 3 3 Leaky ReLU 3

Convolution 3×3×3 256 3 3 Leaky ReLU 3

7 × Convolution 8 × 8 7 × 512 3 7 ReLU 3

Discriminator

Convolution 2 × 2 128 3 3 Leaky ReLU 3

Convolution 4 × 4 256 3 3 Leaky ReLU 3

Convolution 8 × 8 512 3 3 ReLU 3

Fully connected 4 ×1024 7 7 Softmax/Sigmoid 3

Number of generators 3

Number of discriminators 3

Batch size 10

Leaky ReLU slope 0.2

Learning rate 0.0002

Optimizer Adam, β1 = 0.5, β2 = 0.99

BatchNorm ε = 0.00001 , β = 0.98

bias initialization 0
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Table 4.3: Network architecture and hyper parameter for ensemble-GAN framework.

Operation Kernel/Strides Feature maps BN DO NL Shared?

Generator

4 ×Convolution 2 × 2 128 3 3 ReLU 3

4 ×Convolution 4 × 4 256 3 3 ReLU 3

10 × Convolution 8 × 8 7 × 512 3 7 ReLU 3

Discriminator

Convolution 5×5×5 128 3 3 ReLU 3

Convolution 8×8×8 256 3 3 ReLU 3

Convolution 8×8×8 512 3 3 ReLU 3

Fully connected 4×1024 7 7 Sigmoid 3

Number of generators 1

Number of discriminators 1,2,3

Noise random Uniform (-1,1)

Batch size 1

Leaky ReLU slope 0.2

Learning rate 0.0002

Optimizer Adam, β1 = 0.5, β2 = 0.99

BatchNorm ε = 0.00001 , β = 0.98

bias initialization 0
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described by organizer [2, 3, 4, 5] is to delineate different tumor structures such

as active tumorous core (TC), enhanced tumorous (ET), and edema or whole

tumorous (WT) region.

Figure (4.9) shows qualitative results of the cGAN network and refinement

network in detail. Based on Figure (4.9), the result shows good relation to the

ground truth for the segmentation after refinement network. The final output

is refined through eliminating false negative pixels and adding the false positive

pixels.

Figure 4.9: Visual results from our model on axial views of CBICA-AMF.nz.76-124 from

the validation set. The first row shows Flair modality, while the second and fourth row

shows the output results respectively from cGAN and refinement architecture. Third row

shows the semantic segmentation masks from cGAN overlaid Flair modalities where the

fifth row shows outputs after the refinement network. The red color codes the whole tumor

(WT) region, while pink and yellow represent the enhanced tumor (ET) and the tumorous

core (TC) respectively.

The Dice score, Hausdorff distance, sensitivity, and specificity are introduced

by BraTS2017 as evaluation criteria for segmentation task. Table 4.4 and Table

4.5 present the brain segmentation results from proposed architecture and com-
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pare them with other related methods based on the pre-proceeding report [134].

Table 4.4: Comparison of the achieved accuracy for semantic segmentation of different

classes of tumor in terms of Dice and Hausdorff distance on validation data [2, 3, 4, 5]

reported by the BraTS2017 organizer. The terms WT, ET, and TC are abbreviations of

whole tumor region, enhanced tumor region, and core of tumor respectively.

Model Dice Hausdorff

WT ET TC WT ET TC

RNN-cGAN+Refinement 0.86 0.64 0.73 7.22 8.30 11.04

cGAN 0.74 0.53 0.61 12.6 16.41 31.0

Recurrent-cGAN 0.79 0.60 0.68 11.73 14.54 25.83

3D-Ensemble-GANs 0.79 0.60 0.68 11.73 14.54 25.83

cascade-cGAN 0.79 0.60 0.68 11.73 14.54 25.83

Residual-Encoder [135] 0.82 0.62 0.57 - - -

Dilated-CNN [136] 0.36 0.77 0.34 2.23 3.3 5.4

FCN [137] 0.83 0.69 0.69 11.06 11.49 12.53

3D-Unet [138] 0.81 0.76 0.72 13.65 22.36 13.88

RNN [139] 0.84 0.71 0.73 4.6 4.18 8.18

Seq-3D-Unet [140] 0.76 0.90 0.84 13.33 8.9 14.1

Masked-Vnet [141] 0.86 0.71 0.63 5.43 8.34 11.17

3D-Seg-Net [142] 0.79 0.60 0.64 23.33 21.09 26.01

Nifty-Net [143] 0.83 0.71 0.68 27.49 17.35 31.34

3D-CNN [144] 0.82 0.46 0.56 9.56 13.8 14.7

biomedia [145] 0.90 0.73 0.79 4.2 4.5 6.5

UCL-TIG [108] 0.90 0.78 0.83 3.8 3.2 6.4

MIC-DKFZ [110] 0.89 0.73 0.79 6.9 4.5 9.4

From Table 4.4, the cGAN network (in second line) with one generator and

discriminator achieved 12% less accuracy for whole tumor region segmentation

compared to the segmentation results after the refinement network. In the first

stage, the generator is trained by true positive and true negative masks. Mean-

while, the discriminator network tests how true is the predicted mask created by

the generator. On the top of cGAN, the refinement learns the false negative and

false positive masks. Table 4.5 presents discovery of false negative rate (1-recall)

and false positive rate (1-specificity) in detail of network architecture. The final
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Table 4.5: Comparison and the achieved accuracy for semantic segmentation in terms of

false negative rate, false positive rate on validation set. WT, ET, and TC are abbreviations

of whole tumor region, enhanced tumor region, and core of tumor respectively.

Model False Negative Rate False Positive Rate

WT ET TC WT ET TC

RNN-cGAN+Refinement 0.11 0.16 0.29 0.02 0.02 0.02

cGAN 0.22 0.34 0.32 0.02 0.04 0.03

Recurrent-cGAN 0.19 0.32 0.30 0.02 0.03 0.02

3D-Ensemble-GANs 0.22 0.34 0.32 0.02 0.04 0.03

cascade-cGANs 0.19 0.32 0.30 0.02 0.03 0.02

Residual-Encoder [135] 0.83 0.66 0.59 .0.99 0.99 0.99

Dilated-CNN [136] 0.36 0.77 0.34 2.23 3.3 5.4

FCN [137] - - - - - -

3D-Unet [138] - - - - - -

RNN [139] 0.84 0.74 0.68 0.99 0.99 0.99

Seq-3D-Unet [140] 0.76 0.90 0.84 13.33 8.9 14.1

Masked-Vnet [141] 0.87 0.72 0.61 0.99 0.99 0.99

biomedia [145] 0.11 0.22 0.24 - - -

UCL-TIG [108] 0.09 0.23 0.18 - - -

MIC-DKFZ [110] 0.11 0.21 0.22 - - -
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masks computed from the cGAN (or recurrent-cGAN) network with eliminating

false negative and adding false positive predicted by the refinement network.

Regarding results of false discovery rate presented in Table 4.5, we have

achieved good results as second and third-ranked teams in BraTS2017 compe-

tition when the segmented masks computed by recurrent conditional GAN and

refinement network. Regarding quantitative results by Table 4.4 and Table 4.5,

the networks substituted by LSTM unit predicted more accurate results.

Regarding the pre-proceeding by BraTS2017, most of the participants applied

deep learning techniques, especially discriminative approaches to solve the brain

tumor segmentation. Since most of the participants applied the discriminative

models for segmentation, another key success of is adversarial training with the

unique architecture consist of the couple discriminators and a generator network.

Regarding first three rows obtained on Table 4.4 and Table 4.5, accuracy in

terms of Dice, Hausdorff, and sensitivity is better when the both discriminator

and generator network substituted by LSTM unit. Higher accuracy is expected

due to well suit of our sequential training and testing architecture where the RNN

gets the previous time steps image as context and the current time steps image.

The BraTS 2017 training dataset comprised 230 subjects with high-grade

and 72 subjects with low-grade gliomas. There were 42 and, 114 subjects with

mixed high- and low-grade gliomas respectively for validation and testing. Every

participating group had two weeks to process their methods on the validation

dataset and infinite time for submitting their segmentation results to the online

evaluation system. In test time, every group had 48 hours from receiving the

test subjects to process them and submit their segmentation results to the online

evaluation system. The average value of the Dice coefficient is 0.85 in test time,

which the results from Table 4.6 obtained and evaluated by challenge organizer.

Since the results of the challenge in testing are not publicly available, we are not

able to compare the performance of the different approaches in the test time.

Table 4.6 shows the results from the validation set by the proposed method with

patient-wise batch-norm and without Gaussian noise, evaluated at the BraTS2017

online judge system.

It is important to mention that our method takes only 58 seconds to segment

one MR brain image consisting of 155 slices at a testing time.
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Table 4.6: The achieved accuracy for brain tumor semantic segmentation by proposed

conditional refinement GAN in terms of Dice, sensitivity, specificity, and Hausdorff distance

reported by the BraTS-2017 organizer.

Evaluation Validation Test

WT ET TC WT ET TC

Dice 0.86 0.64 0.73 0.85 0.61 0.72

Sens 0.89 0.84 0.71 - - -

Spec 0.98 0.98 0.97 - - -

Hdfd 7.22 8.30 11.04 8.73 59.2 25.9

Simultaneous Liver and Lesion(s) Segmentation:

Liver cancer is one of the most common types of cancers around the world [96]

and CT images are widely used for diagnosis of hepatic diseases. The proposed

method was trained on the public clinical CT dataset from LiTS2017 competition.

Figure 4.10 shows segmentation output in detail of conditional GAN in the

left followed by refinement output in the right side of the figure.

In this competition, the primary metric is the Dice score. A volume overlap

error (VOE), relative volume difference (RVD), average symmetric surface dis-

tance (ASSD), and maximum symmetric surface distance (MSSD) are considered

for the evaluation of predicted region of liver and lesion(s). Table 4.7 and Table

4.8 describe the quantitative results and comparisons with top-ranked methods

from LiTS leader-board 1.

To have the better understanding of the performance gains, we analyze the

achieved accuracy on imbalanced liver tumor segmentation dataset where we can

see unbalancing labels between large body organ and very small lesions. Based

on the leader-board, most top-ranked models used cascade networks to segment

simultaneously [146] or separately [71, 73] liver as well as lesion. The cascade net-

works provide good solution against imbalanced labeling. Unlike other cascade

models [73, 146], our solution is based on cGAN approach where we segmented

liver and lesions in semi-supervised manner. In second step, the refinement net-

work trained with false positive and false negative masks which is important key

1https://competitions.codalab.org/competitions/
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Table 4.7: The achieved accuracy for simultaneous liver and lesions segmentation in terms

of Dice score and average surface distance on the test data where the 1 is the index of liver

and 2 for lesions.

Approaches Dice1 Dice2 ASD1 ASD2

cGAN+Refinement 0.94 0.83 1.4 1.6

cGAN 0.85 0.81 1.8 2.1

UNet 0.72 0.70 19.04 19.04

Cascaded-UNet [70] 0.93 0.93 2.3 2.3

VGG-FCN [71] 0.36 0.77 0.34 2.23

ResNet [71] 0.36 0.77 0.34 2.23

UNet+3DCRF [70] 0.95 0.50 0.92 1.3

ResNet+3DCRF [71] - - 0.84 13.33

ResNet+Fusion [71] 0.95 0.50 0.84 13.33

SuperAI 0.96 0.81 - 1.1

H-Dense+ UNet [146] 0.96 0.82 1.45 1.1

coupleFCN [73] 0.78 0.77 - -

Table 4.8: The top two rows show achieved accuracy for the simultaneous liver and lesions

segmentation in terms of Dice score and average surface distance on the test data.

Architecture VOE RVD ASD MSD

cGAN+Refinement 14 -6 6.4 40.1

cGAN 21 -1 10.8 87.1

Cascaded-UNet [70] 22 -3 9.5 165.7

ResNet+Fusion [71] 16 -6 5.3 48.3

SuperAI 36 4.27 1.1 6.2

H-Dense+ UNet [146] 39 7.8 1.1 7.0

coupleFCN [73] 35 12 1.0 7.0
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(a) (b)

Figure 4.10: Segmentation results obtained by cGAN (a) compared to the refinement

output (b). In each subfigure, the first two left columns show the ground truth manual

segmentation of the liver and lesion(s). The two last right columns from (a,b) show the

predicted liver and lesion(s) at the first and second stages.

aspect for clinical routine application. The final semantic masks computed by

adding false positive pixels and subtracting false negative pixels.

Table 4.7 describes our obtained result for liver segmentation and lesions in

terms of the Dice score 0.94 and 0.83 respectively. Based on Table 4.7 and with

comparison of the first two rows, we can see the effect of refinement network on

final results which has increased up to 9% for liver segmentation and similarly up

to 2% for the lesions segmentation.

In the LiTS dataset, lesions with an approximate diameter equal to or larger

than 10 mm were defined as a large one, while a small lesion has a diameter of

less than 10 mm. Our method achieved an average Dice of 0.90 and ASD of 1.6

in lesion segmentation which obviously, can distinguish small and large lesions.

We provided more qualitative results when the segmentation target on lesions are

small or large size.

In addition, our algorithms are very fast, and it takes only 100 seconds for the

simultaneous segmentation of liver and lesion from CT images with 280 slices,

109



4. APPROACHES TO HANDLE IMBALANCED DATA THROUGH
CLASS EXPERT ENSEMBLES

each sized 512 x 512. The complex and heterogeneous structures of the predicted

liver and all lesions from local test set are depicted in Figure. 4.10.

3.3.3 Microscopic Cell Segmentation:

Microscopy cell images are key component of the biological research pro-

cess and automatic cell segmentation is helpful application for clinical routine.

We evaluated our method on microscopic cell from human breast carcinoma

(MDA231). MDA231 consists of 96 images with segmented ground truth files

by experts.

Figures 4.11 and 4.13 compare the qualitative results from test set when the

network was trained with and without patient-wise mini-batch normalization.

The patient-wise mini-batch normalization provided normalization for any layer

of neural network based on all available 2D images from same patient. Through

patient-wise normalization technique, we normalized the activation of the previ-

ous layer for each patient batch.

Based on qualitative results and Figure 4.11, our network is able to learn from

few samples (MDA231) as well as large sample dataset (BraTS2017). We com-

pared quantitative results with the state-of-the-art segmentation method. The

quantitative results of individual cell segmentation are detailed in Table (4.9).

Obviously, we can see that diversity and the number of images did not have a

major effect on the final result.

As shown in Figure 4.12 and Table 4.9 the Gaussian noise negatively influence

the segmentation results especially when the trained dataset has few samples.

We had same policy for data augmentation on all datasets. We explored during

raining the large dataset, when the generator network takes Gaussian noise vector

besides medical images, act mostly same as without noise vector and there is

minimum differences in the output samples. In contrast, trained network with

few samples along with noise vector has negative effect on the final outputs.

4.3.3.2 Evaluation Results by cascade-GANs

The proposed cascade-GANs is trained on 80% training data released by the

HVSMR-2016 benchmark, which consists of 24 CMR images. We used all pro-

vided images (full, axial crop, and axial short) from three axes of x, y, and z
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Figure 4.11: Microscopic cell segmentation results obtained by cGAN+Refinement net-

work with patient-wise mini-batch normalization and without Gaussian noise.

Table 4.9: The achieved accuracy for cell segmentation in terms of intersection over union

on the MDA231 data

Approaches Dice Spec Sen FPR FNR

cGAN+Refinement 0.93 0.93 0.92 0.07 0.08

RNN-GAN 0.91 0.90 0.91 0.10 0.09

cGAN 0.90 0.89 0.91 0.11 0.09

UNet [66] 0.92 - - -

KTH-SE [67] 0.79 - - -

MSER [68] 0.75 - - -

Greedy [69] 0.85 - - -
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Figure 4.12: Microscopic cell segmentation results obtained by cGAN when the cGAN

model trained with additional Gaussian noise as input.

Figure 4.13: Microscopic cell segmentation results obtained by cGAN without patient-

wise mini-batch normalization.

for training and testing. From Table 4.10, we can also infer that the cascade of

GANs can improve training accuracy in the term of Dice by up to 8%.

Qualitative results are shown in Figure 4.14. The training takes around three

days for a total of 100 epochs on parallel Pascal Titan X GPUs for semantic

segmentation tasks. We train three GANs iteratively where each GAN is trained

not only with the feature data, but also with the probability map obtained from

the previous GANs, which gives to the GAN additional context information. At
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Table 4.10: The evaluation result of the semantic segmentation network by cGAN com-

pared to cascade-GANs. The first top rows demonstrates the performance gains by using

cascade of cGANs. We compared our results with the best performance team reported by

the HVSMR-2016. Performance of our method cascade-GAN on the testing datasets in

terms of average distance of boundaries (Adb) and Dice. Label 1 indicates the myocardium

tissue while label 2 stands for the blood pool.

Method Adb1 Adb2 Dice1 Dice2 Sen1 Sen2 Spec1 Spec2

cascade-GAN 1.02 0.87 0.80 0.93 0.87 0.90 0.96 0.99

cGAN 1.19 1.07 0.72 0.89 0.82 0.88 0.94 0.99

UNet(2D) 2.04 1.82 0.68 0.81 0.78 0.74 0.91 0.99

Shahzad et al. [147] 1.10 1.55 0.75 0.89 - - - -

Yu et al. [148] 0.99 0.86 0.78 0.93 - - - -

Wolterink et al. [149] 0.89 0.96 0.80 0.93 - - - -

testing time, the features will be processed for each GAN one after the other,

concatenating the probability map to the input features. The proposed network

provides two predicted masks of blood pool and myocardium for each 2D image

in less than 30 ms.

The results show good relation to the ground truth for the blood pool. The

average value of the Dice index is around 0.93, which is the same as the result

of the HVSMR-2016 challenge winner [148]. The main source of error here is

the inability of the method to completely segment all the great vessels where the

average Dice score is 0.80. Higher accuracy is expected while each stage trains

on shared extracted features and weights from the previous stage.

In order to compare the performance of cascade-GANs with other ensemble

approaches, we train the network for 120 epochs that 60, 40, and 20 as first,

second, and third stage. The quantitative results are shown in Figure 4.15.

4.3.3.3 Evaluation Results by Ensemble-GANs

For evaluation of ensemble-GANs, we applied BraTS 2018 benchmark to compare

it with other proposed ensemble framework and related approaches. We compare

different implementations of the proposed ensemble-GANs architecture and also

evaluate the effectiveness of different losses on handling imbalanced data for task
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Figure 4.14: The visualization results from three stages: The first two columns show the

ground truth annotated by medical experts from the HVSMR2016, and the third column

shows the z plan of CMR data, which is the input of context-aware cGAN. The fourth and

fifth column show the predicted results by cascade-cGAN in different stages. The first row

shows the output from the first stage after 50 epochs; the second and third rows are the

output after 75 and 100 epochs from the second and third stages.

Figure 4.15: Brain tumor semantic segmentation by cascade-GAN. The first three

columns show the ground truth mask, columns 4-7 show multi-modal MR images as input

for cascade architecture while columns 8-10 are the predicted results.

of semantic segmentation. Specifically, we compare the following implementa-

tions:

• 3D−G, 3D−D1. The GAN framework consists a 3D hourglass as generative
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model and a 3D FCN as discriminator network where the discriminator has

`1 as loss function and binary cross-entropy is used as an adversarial loss.

• 3D−G, 3D−D2. The GAN framework consists a two 3D UNet as generator

and a 3D FCN as discriminator network where the discriminator has Dice

as loss function and binary cross-entropy is used for adversarial loss.

• 3D −G, 3D −D3. An hourglass network including two 3D UNet is trained

as a generator model and a 3D FCN as discriminator network where the

discriminator has categorical accuracy as loss function and binary cross-

entropy is used as an adversarial loss.

• 3D−G, 3D−D1,2 The generative architecture is similar to previous model

while discriminative is 3D FCN. More specifically, each discriminator is

trained to minimize the average negative cross-entropy between predicted

and the actual labels in different distance. We minimize error regarding

Dice and `1.

• 3D − G, 3D − D1,3. Similar to previous model the GAN network trained

with binary cross-entropy, Dice, and categorical accuracy.

• 3D − G, 3D − D1,2,3. We keep the network architecture similar previous

model and this time the GAN framework is substituted with binary cross-

entropy, Dice, categorical accuracy and `1.

All described above each framework is trained up to 100 epochs, Table 4.3

gives more detail about architecture. The generator takes four different MRI

modalities provided by BraTS 2018, the network has fixed size of 128 × 128 × 32

voxels and a spatial resolution of 1 × 1 × 1.5 millimeters. During every training

iteration, we fed as input to the network randomly cropped, rotation [-10, 10] of

the training images through a 2 × 2 × 2 grid of control-points.

The quantitative results for brain tumor semantic segmentation reported on

Table 4.12 and Table 4.11 by several ensemble GAN architecture. The networks

were trained with different number of discriminator and various losses. The better

performance for handling imbalanced data achieved when the generator minimize

the semantic segmentation error by three different discriminator (see Table 4.12-

fifth row) rather than in cascade architecture (see Table 4.12-seventh row).
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Table 4.11: Comparison of the achieved accuracy for semantic segmentation of different

classes of tumor in terms of Dice and Hausdorff distance on subset of validation data

reported by the BraTS 2018 organizer. WT, ET, and TC are abbreviations of whole

tumor region, enhanced tumor region, and core of tumor respectively.

Model Dice Hausdorff

WT ET TC WT ET TC

3D −G, 3D −D1 0.84 0.64 0.71 7.22 12.30 8.04

3D −G, 3D −D2 0.84 0.67 0.72 7.6 11.41 8.12

3D −G, 3D −D3 0.83 0.63 0.71 7.73 11.65 7.83

3D −G, 3D −D1,2 0.87 0.65 0.79 6.11 10.54 7.91

3D −G, 3D −D1,3 0.89 0.65 0.81 6.23 9.22 6.89

3D −G, 3D −D1,2,3 0.88 0.70 0.81 6.73 9.28 7.11

cascade-cGAN 0.87 0.60 0.68 11.73 8.54 7.43

Refinement 0.88 0.73 0.82 6.67 9.28 6.94

Table 4.12: Comparison of the achieved accuracy for semantic segmentation of different

classes of tumor in terms of precision and sensitivity on subset of validation data reported

by the BraTS 2018 organizer. WT, ET, and TC are abbreviations of whole tumor region,

enhanced tumor region, and core of tumor respectively.

Model Precision Sensitivity

WT ET TC WT ET TC

3D −G, 3D −D1 0.88 0.66 0.79 0.82 0.63 0.74

3D −G, 3D −D2 0.85 0.60 0.81 0.86 0.68 0.72

3D −G, 3D −D3 0.84 0.67 0.80 0.80 0.74 0.61

3D −G, 3D −D1,2 0.89 0.71 0.79 0.84 0.72 0.83

3D −G, 3D −D1,3 0.88 0.69 0.81 0.89 0.78 0.79

3D −G, 3D −D1,2,3 0.89 0.74 0.80 0.88 0.79 0.84

cascade-cGAN 0.88 0.66 0.79 0.82 0.63 0.74

Refinement 0.91 0.74 0.81 0.88 0.87 0.74

116



4.4 Summary and Extension

4.3.4 Discussion

Based on represented results, ensemble model is a proven model for improving

the accuracy and better trade-off between precision and recall which able to miti-

gating imbalanced data. Here, we briefly count some advantage and disadvantage

of each proposed ensemble framework: Ensembling makes the model more robust

and stable thus ensuring decent performance on the test cases in most scenar-

ios. The prediction result from aggregation of multiple classifiers is less noisy

compared to individual. However, ensembling reduces the model interpretability

and makes it very difficult to draw any crucial business insights at the end. It is

time-consuming and thus might not be the best idea for real-time applications.

The selection of models for creating an ensemble is an art which is really hard to

master.

4.4 Summary and Extension

In this chapter, we introduced three different deep ensemble models namely 1)

conditional refinement GAN, 2)cascade-GANs, 3)ensemble-GANs to address the

imbalanced class problem in task of semantic segmentation.

The proposed conditional generative refinement network, consists of three

components: a generative, a discriminative, and refinement networks ensemble

learning. The generative network learns to the segment at the pixel level by get-

ting feedback from the discriminative network according to the true positive and

true negative maps. On the other hand, the refinement network learns to predict

the false positive and the false negative masks produced by the generative model

that has significant value, especially in medical application. The final seman-

tic segmentation masks are then composed by the output of the three networks.

The network is evaluated and tested on three recent medical imaging benchmark

such as BraTS 2017, LiTS 2017, and microscopic cell 2015. The results show

the the benefit of boosting ensemble for handling imbalanced data for semantic

segmentation.

In this chapter, we introduced cascade-GANs made by three individual con-

ditional GAN framework. These three stages are designed to share convolu-

tional features and weights, where the later stages use the shared convolution
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features from the previous stage and transfer the learned convolutional features

and weights to the next stage. Each stage involves a cGAN with an adversarial

loss and individual parameters. The final semantic segmentation computed from

last stage. We tested the proposed approach on BraTS 2017, and HVSMR 2016.

The predicted results by last stage shows the advantage of bucket of ensemble

models.

The ensemble GAN consists by single generator and many discriminator pro-

posed to mitigate the imbalanced data problem through simple averaging of en-

semble expert classifiers. Our approach made the single generator not to constrain

the output of a single discriminator, but, instead, to learn a dynamic ensemble

of various discriminators. The model is evaluated by considering different losses

on BraTS 2017 for semantic segmentation.

In future we plan to examine impact of building ensemble Bayesian model

for handling imbalanced class problem. We plan to study effect of ensemble of

discriminator’s decision from different deep neural network architectures and with

similar or different losses on single generator network.

However, the proposed ensemble approaches in this chapter are not limited

for semantic segmentation task; these models have potential to apply for other

imbalanced class distribution domain including fraud detection, few-shot learning,

and autonomous driving.
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Chapter 5

Learning Imbalanced Semantic

Segmentation by Deep Mutual

GANs

Learning representation is one of canonical objective for approaching most of

the deep learning models. We address learning deep representation from imbal-

anced data by Mutual Information (MI) between independent ensemble classifiers.

This chapter investigates learning representation of imbalanced data by max-

imizing the mutual information between the ensemble of networks named Deep

Mutual Generative Adversarial Networks (DM-GAN). The proposed deep mu-

tual GAN framework consists of multiple small generators and multiple large

discriminators. During the training process, each generator gets feedback from

pre-trained discriminator network in adversarial way. Additionally, each genera-

tor learns to collaborate with other generators during the training process. Here,

we explore the mutual information shared between independent generators help-

ful to mitigate the imbalanced class problem which is one of major differences

between this chapter and chapter 4.

Similar to model distillation, we aim to transfer knowledge from a powerful

network (teacher) as discriminator to a small network (student), generator, in

order to meet high performance and mitigate imbalanced class problem. Our

deep mutual GAN differs from the one-way transfer between a static pre-defined

119



5. LEARNING IMBALANCED SEMANTIC SEGMENTATION BY
DEEP MUTUAL GANS

discriminator and a generator in model distillation. Here a generator network

has two losses: (1) adversarial loss to learn from powerful discriminator, (2)

mutual information loss to learn from an ensemble of generators (each generators

class posterior with the class probabilities of other generators). Trained in this

way, it turns out that each generator in such a peer-teaching based scenario learns

significantly better than when learning alone in a conventional supervised learning

scenario.

Experimental results show that a designed GAN based framework benefits

from mutual learning and achieve compelling results on semantic segmentation

tasks. Importantly, it shown that mutual loss of a collection of simple generator

networks handle imbalanced class problem.

5.1 Technical Background

Mutual Information

From probability and information theory, the Mutual Information (MI) is a mea-

sure of the mutual dependence between two variables. Accurately, MI quantifies

the amount of information (in units such as Shannons, commonly called bits)

obtained about one variable by observing the other variable. Mutual information

can be equivalently expressed as:

I(X;Y ) = H(X)−H(X|Y ) (5.1)

To understand Eq.(5.1), we first introduce two other quantities: the condi-

tional entropy H(X|Y ) and the marginal entropy H(X). Conditional entropy is

a measure of the uncertainty in one variable after observing another. The condi-

tional entropy of the random variable Y conditioned on the random variable X

is defined as:

H(Y |X) = −
∑

x∈X,y∈Y

p(x, y)log
p(x, y)

p(x)
(5.2)

Thus, it is the average entropy of a variable after conditioning on knowledge

of another variable.
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Relative entropy, or the KullbackLeibler (KL) divergence, is a measure of how

two probability distributions are different. The KL between two probability mass

functions p(x) and q(x) over the same space X is defined as:

DKL(p‖q) =
∑
x∈X

p(x)log
p(x)

q(x)
(5.3)

In other words, it is the expectation of the logarithmic difference between

the probabilities p and q, where the expectation is taken using the probabilities

p. The KullbackLeibler divergence is defined only if for all x, q(x) = 0 implies

p(x) = 0 (absolute continuity). Whenever p(x) is zero the contribution of the

corresponding term is interpreted as zero because: limx→0 xlog(x) = 0

5.2 Deep Mutual GAN

5.2.1 Formulation

We formulate the proposed Deep Mutual GAN (DM-GAN, see Figure. 5.1) to

study the effect of mutual information between untrained generators on han-

dling the imbalanced class problem. During training, each powerful pre-trained

discriminators send feedback with an individual loss to one generator through

adversarial training. Meanwhile the generator collaborates and shares mutual

information with other generators during training. We explore the mutual infor-

mation loss together with adversarial loss useful for mitigating imbalanced data.

This chapter builds upon Deep Mutual Learning (DML) introduced by Zhang et

al. [150] and our previous 3DJointGAN [151].

However, there are several major differences between our proposed deep mu-

tual GAN and the DML that make DM-GAN framework more suitable and effec-

tive for the task of image segmentation and handling imbalanced class problem.

In contrast to the DML approach, in our framework, each discriminator substi-

tuted by different losses to mitigate the imbalanced class problem and minimize

the generator error on a different aspect of quality.
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Firstly, we describe the DM-GAN architecture consist of two generators G and

two pre-trained powerful discriminators D. Secondly, we explain and examine

our proposed DM-GAN by two different implemented architecture (see Section

Section 5.2.2) and the extension to more networks defined in Section 5.2.3).

Assume the proposed DM-GAN framework contains couple of G and D net-

works. Each G learns mapping from multimodal MRI images X = xi, and Gaus-

sian vector z to desired semantic segmentation mask Y = yi; G : {xi, z} → {yi}
where each pixel belong to 1, 2, ...,M classes. Meanwhile, D classifies whether a

generated segmentation mask by G, in pixel or voxel level belong to right class

correct and during training tries to minimize the G’s error.

The generators have similar architecture but each one gets feedback from

specific discriminator losses. The discriminators have similar architecture and

substituted with different losses and communicate only with one generator. The

objective for one generator (See Eq. 5.4) and one discriminator (See Eq. 5.5) is

similar:

LG = Ex,z[log(1−D(x,G(x, z)))] (5.4)

LD = ExlogD(x)− log(1−D(x,G(x, z))) (5.5)

We aim to mitigate the imbalanced class problem by approaching mutual

information loss between predicted outcome by each generator; we followed the

same mutual loss is defined by Zhang et al. [152]:

DKL(p2||p1) =
N∑
i=1

M∑
m=1

p2(xi)log
pm2 (xi)

pm1 (xi)
(5.6)

where the probability of class m for sample xi given by deep generator neural

network is computed as:

pm1 (xi) =
exp(zm))∑M
m=1 exp(z

m)
(5.7)
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Figure 5.1: Deep Mutual GAN (DM-GAN), where each G network is trained with a

supervised learning loss from individual discriminator, and a Kullback Leibler Divergence

to match the probability estimates of its generators.

where the logit z is the output of the softmax layer in G1. Therefore, the final

loss function is calculated by:

LG1 = LGD1
+ DKL(p2||p1) (5.8)

LG2 = LGD2 + DKL(p1||p2) (5.9)

During training in this way, each generator network learns both to correctly

predict the actual label of training instances by specific discriminator loss as well

as to match the probability estimate of its peer (KL mimicry loss). Our work

differs from Zhang et al. [152] by different architecture and different discriminator

losses. Here, we implemented two different DM-GAN in 3D (Section 5.2.2.1) and

2D (Section 5.2.2.2) medical image semantic segmentation.

5.2.2 Network Architecture

As mentioned before, we consider two different GAN based architecture to see

the impact of mutual learning for mitigating imbalanced data.
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Figure 5.2: 3D Deep Mutual GAN (DM-GAN), conposed by couple GAN framework and

each G net is trained with a supervised learning loss from individual discriminator, and a

Kullback Leibler Divergence.

5.2.2.1 3D Deep Mutual Generative Adversarial Network for Semantic

Segmentation

3D DM-GAN as illustrated in Figure 5.2 is designed for learning a imbalanced

class problem in task of semantic segmentation. Similar to Zhang et al. [152], the

models are learned with the same mini-batches. At each iteration, we compute

the predictions of the two models and update both networks parameters according

to the predictions of the other. Here, the generators start learning from scratch

while the discriminators are pretrained 3D FCN models with different losses
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Figure 5.3: 2D recurrent DM-GAN consists of couple recurrent-GAN frameworks.

5.2.2.2 2D Deep Mutual Generative Adversarial Networks for Semantic

Segmentation

As shown in Figure 5.3, in the recurrent setting, the couple of frameworks take

2D sequence of MRI or CT images and outputs are 2D sequence of semantic

segmentation. Both segmentor and discriminator substitutes with bidirectional

LSTM unit in a bottleneck. Here, the G is a fully convolutional encoder-decoder

network with a bidirectional LSTM unit in bottleneck. The D is a fully convo-

lutional encoder substitutes with bidirectional LSTM and classifier between the

original pixel’s label from ground truth and synthesized pixel value created by

generator. In this way, each generator communicated and shared mutual infor-

mation between themselves.

5.2.3 Extension

The proposed DM-GAN approach naturally extends to more networks. Assume

K networks g1, g2, ..., gk, (K ≥ 2), the objective function for optimising gk, (1 ≤
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k ≤ K) is following:

LGk
= Ladv(Dk, Gk) +

1

k − 1

K∑
k=1

DKL(p1||pk) (5.10)

where the k generators collaborate with K networks. In this way, DM-GAN for

each generator takes the other K1 networks in the cohort as teachers to provide

mimicry targets. Equation 5.8 is now a special case of 5.10 with K = 2.

We trained DM-GAN by considering K = 2 since the optimization of DM-

GAN with more than two networks need distributed learning strategy. The dis-

tributed model, each network learn on one device and passing the small proba-

bility vectors between devices. DML model [152] shown having more than two

student network (generator) leads better performance compared to distillation

approach because the model averaging step to building the teacher (pretrained

discriminator) ensemble makes the teachers posterior probabilities more peaked

at the true class, thus reducing the posterior entropy over all classes. It is, there-

fore, contradictory to one of the objectives of DML, which is to produce robust

solutions with high posterior entropy. The future direction of this chapter is im-

plementing 2D and 3D deep mutual GAN architecture consisting more than two

generators where the generator learns and communicate in a distributed way.

5.3 Experiments

We validated the performance of proposed DM-GAN for semantic segmenta-

tion of imbalanced medical imaging on two implemented architectures. We tested

two architectures on real patient data obtained from the BraTS 2018 [2, 3, 4, 5]

for brain tumor semantic segmentation.

5.3.1 Datasets and pre-processing

The BraTS 2018 benchmark [2, 3, 4, 5] prepared 1,140 MR images in multi

modal scans, NIFTI format on (a) native (T1) and (b) post-contrast T1-weighted

(T1Gd), (c) T2-weighted (T2), and (d) T2 Fluid Attenuated Inversion Recovery
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(FLAIR) volumes, and were acquired with different clinical protocols and various

scanners from multiple (n=19) institutions.

All the imaging datasets have been segmented manually, by one to four raters,

following the same annotation protocol, and their annotations were approved by

experienced neuro-radiologists. Annotations comprise the GD-enhancing tumor

(ET label 4), the peritumoral edema (ED label 2), and the necrotic and non-

enhancing tumor core (NCR-NET label 1), as described in the BraTS reference

paper [2]. The provided data are distributed after their pre-processing, i.e., co-

registered to the same anatomical template, interpolated to the same resolution

and skull-stripped by organizer.

BraTS 2018 provided 420 MR images in four modalities without annotated

file for validation time. Participate in challenge are able to submit many times

the result on online platform. we validated our proposed approach on validation

set using the 2018 online platform of BraTS challenge.

To prevent over-fitting, we added data augmentation to each dataset such as

randomly cropped, re-sizing, scaling, rotation between -10 and 10 degrees, and

Gaussian noise applied on training and testing time for both datasets.

5.3.2 Implementation

This section introduces the detail of configuration and implemented 3D and 2D

DM-GAN architecture.

Configuration of 3D Deep Mutual-GAN

The 3D DM-GAN is implemented based on a Keras library [59] with back-end

Tensorflow [62] supporting 3D convolutional network. All training and experi-

ments were conducted on a workstation equipped with a multiple GPUs. The

detail of architecture is shown in Table 5.1.

The learning rate was initially set to 0.0002. The Adam optimizer was used

in both the generator and the discriminator that continues learning even when

many updates have been done. The model is trained for up to 150 epochs.

Configuration of 2D recurrent Deep Mutual-GAN
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Table 5.1: Network architecture and hyper parameter for 3D Deep Mutual GAN frame-

work.

Operation Kernel/Strides Feature maps BN DO NL

Generator

Convolution 2×2×2 128 3 3 ReLU

Convolution 4×4×4 256 3 3 ReLU

3× Convolution 8×8×8 3×512 3 7 ReLU

Discriminator

Convolution 5×5×5 128 3 3 ReLU

2×Convolution 8×8×8 256 3 3 Leaky ReLU

4×Convolution 8×8×8 512 3 3 Leaky ReLU

Fully connected 4× 1024 7 7 CAcc /Softmax

Number of generators 2

Number of discriminators 2

Noise random Uniform [-1,1]

Batch size 2

Leaky ReLU slope 0.2

Learning rate 0.0002

Optimizer Adam, β1 = 0.5, β2 = 0.99

BatchNorm ε = 0.00001 , β = 0.98

P1 softmax(logits1)

P2 softmax(logits2)

bias initialization 0
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The 2D DM-GAN is the extended version of our recurrent-GAN [61], imple-

mented based on a Keras library [59] with back-end Tensorflow [62]. Similar

to 3D version, all training and experiments were conducted on a workstation

equipped with a multiple GPUs. The detail of architecture is shown in Table 5.2.

The both discriminator networks has same architecture and pretrained, during

training we fine tune weights regarding two new losses: a wasserstein Dice for first

discriminator and weighted cross-entropy for second discriminator. The training

for generator start from scratch. In this work, the recurrent architecture selected

for both discriminator and generator is a bidirectional LSTM [97].

Table 5.2: Network architecture and hyper parameter for 2D recurrent Deep Mutual

GAN framework.

Operation Kernel/Strides Feature maps BN DO NL

Generator

Convolution 3×3 128 3 3 ReLU

Convolution 5×5 256 3 3 ReLU

3× Convolution 8×8 3×512 3 7 ReLU

Discriminator

Convolution 5×5 128 3 3 ReLU

2×Convolution 8×8 256 3 3 Leaky ReLU

4×Convolution 8×8 512 3 3 Leaky ReLU

Fully connected 4× 1024 7 7 WDice /WcrossEn

Number of generators 2

Number of discriminators 2

Noise random Uniform [-1,1]

Batch size 2

Leaky ReLU slope 0.2

Learning rate 0.0002

Optimizer Adam, β1 = 0.5, β2 = 0.99

BatchNorm ε = 0.00001 , β = 0.98

bias initialization 0
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5.3.3 Evaluation

We followed the evaluation criteria introduced by the challenge organizers BraTS2018 1.

Moreover, we evaluate impact of proposed mutual losses regarding handling im-

balanced issues by precision-recall trade off.

The goal of segmentation is to delineate different tumor structures such as

active tumorous core, enhanced tumorous, and whole tumorous. More than 200

teams attended to the BraTS 2018 challenge which Table 5.3 shows comparison

results between top three groups obtained by the organizer.

From Table 5.3, the 3D DM-GAN achieved better results for whole tumor

segmentation in terms of Dice, compared to the 2D DM-GAN. Except different

discriminator loss, the network are different in CNN type. CNNs for segmen-

tation can be categorized based on the dimension of convolutional kernel that

is utilized. 2D CNNs use 2D convolutional kernels to predict the segmentation

map for a single slice. Segmentation maps are predicted for a full volume by

taking predictions one slice at a time. The 2D convolutional kernels are able to

leverage context across the height and width of the slice to make predictions.

However, because 2D CNNs take a single slice as input, they inherently fail to

leverage context from adjacent slices. Voxel information from adjacent slices may

be useful for the prediction of segmentation maps. 3D CNNs address this issue by

using 3D convolutional kernels to make segmentation predictions for a volumetric

patch of a scan. The ability to leverage interslice context can lead to improved

performance but comes (see represented results on Figures 5.6 and 5.7).

Based on Table 5.3, we see the comparison and performance of our method in

detail with other related approaches as well as winners in terms of Dice, Hausdorff

distance, and sensitivity. Based on Table 5.3, Nvidia team [107] achieved best

results for whole tumor segmentation with the ten cascade architecture including

3D U-Net, 3D-FCN, 3D-DenseNet, and applying variation intensity normalization

in each network. Wang et al. [103] achieved the second rank of a challenge with

a triple cascade of 3D U-Net architecture where each network is trained on three

different regions of the tumor.

1http://www.med.upenn.edu/sbia/brats2018/evaluation.html
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Figure 5.4: Comparison of Precision-Recall curves obtained by the cGAN and 2D re-

current deep mutual GAN approaches for semantic segmentation of three different brain

tumor region. The PR curve examined by cGAN shown in the left side followed by PR

curve achieved by 2D recurrent DM-GAN in the right side.

Figure 5.5: Comparison of Precision-Recall curves obtained by the cGAN and 3D deep

mutual GAN approaches for semantic segmentation of three different brain tumor region.

The PR curve examined by cGAN shown in the left side followed by PR curve achieved by

3D DM-GAN in the right side.

In order to evaluate the performance of semantic segmentation on handling

imbalanced class problem, we use the Precision-Recall (PR) curve. Figures 5.4

and 5.5 summarize the trade-off between the true positive rate and the positive

predictive value for a predictive model by cGAN and DM-GAN which the area

under curve represent the success of our approach (see Figures 5.4-(B) and 5.5-

(B)) for handling imbalanced class problem.
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Table 5.3: Comparison results of our achieved accuracy for semantic segmentation by

voxel-GAN (trained model with weighted loss) with related work and top ranked team, in

terms of Dice and Hausdorff distance on five fold cross validation after 80 epochs while

the reported results in second and third rows are after 200 epochs. WT, ET, and CT are

abbreviation of whole tumor, enhanced tumor, and core of tumor regions respectively.

Model Dice Hausdorff

WT ET CT WT ET CT

3D DM-GAN 0.91 0.80 0.85 3.25 4.1 6.24

2D DM-GAN 0.89 0.74 0.79 6.32 4.8 7.81

3D JointGAN [151] 0.87 0.68 0.84 5.62 6.8 9.81

RNN JointGAN [151] 0.86 0.68 0.82 5.87 7.1 10.04

cGAN 0.81 0.61 0.64 7.30 9.22 12.04

Ensemble of 10 3D-Models [102] 0.91 0.84 0.86 3.9 4.5 6.8

3D UNet + TTA [103] 0.88 0.79 0.78 4.5 5.9 8.0

Table 5.4: Comparison results of our achieved accuracy for semantic segmentation by

voxel-GAN (trained model with weighted loss) with related work and top ranked team,

in terms of sensitivity and specificity on five fold cross validation after 80 epochs while

the reported results in second and third rows are after 200 epochs. WT, ET, and CT are

abbreviation of whole tumor, enhanced tumor, and core of tumor regions respectively.

Model Sensitivity Specificity

Methods WT ET CT WT ET CT

3D DM-GAN 0.90 0.89 0.87 0.99 0.99 0.99

2D DM-GAN 0.89 0.82 0.79 0.99 0.99 0.99

3D JointGAN [151] 0.88 0.75 0.78 0.99 0.99 0.99

RNN JointGAN [151] 0.86 0.74 0.77 0.99 0.99 0.99

cGAN 0.75 0.61 0.55 0.99 0.99 0.99
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Figure 5.6: Predicted results from voxel GAN compared to deep mutual GAN model on

axial views of and Brats18-CBICA-ALA.nz.120 from the test set overlaid T1C modality in

second and forth column. First column shows the predicted results by deep mutual GAN

while third show output by voxel-GAN. The red, pink, yellow color code the whole tumor

(WT), the enhanced tumor (ET), and the tumorous core (TC) respectively.

5.4 Related Works

Recent studies shown [150, 153], mutually learned generator network achieve

better results than generator trained by conventional distillation from a larger

pre-trained discriminator. Furthermore, while the conventional understanding of

distillation requires a more powerful discriminator than the intended generator,

it turns out that in many cases, mutual learning of several large networks also

improves performance compared to independent learning. This makes the deep

mutual learning strategy generally applicable, e.g., it can also be used in applica-

tion scenarios where there is no constraint on the model size, and the recognition

accuracy is the only concern such as medical domain.
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Figure 5.7: Predicted results from deep mutual GAN model. The red, pink, yellow

color code the whole tumor (WT), the enhanced tumor (ET), and the tumorous core (TC)

respectively.

As mentioned before, our proposed deep mutual GAN is built on top of DML

method introduced by Zhang et al. [150] and our previous 3DJointGAN [151].

However, beside of different implementation and network architecture, in our

framework, each discriminator substituted by different losses to mitigate the im-

balanced class problem and minimize the generator error on a different aspect of

quality. Unlike our previous 3DJointGAN [151], here the generator communicates

and learns from each other through mimicry loss that aligns each generators class

posterior with the class probabilities of other generator. Unlike 3DJointGAN, we

train deep mutual GAN generator with same domain.

Other related ideas on collaborative learning include dual learning [154] where

two cross lingual translation models teach each other interactively. But this

only applies in this special translation problem where an unconditional within-

language model is available to be used to evaluate the quality of the predictions.

Furthermore, in dual learning different models have different learning tasks whilst
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in mutual learning the tasks are identical.

Another related idea is model compression or distillation-based approach that

has been proposed over a decade ago [155]. Knowledge distillation is a simple

way to improve the performance of deep learning models on mobile devices. In

this process, a large or complex network or ensemble model is trained to ex-

tract important features from the given data and can, therefore, produce better

predictions. Then a small network is train with the help of the cumbersome

model. This small network will be able to produce comparable results, and in

some cases, it can even be made capable of replicating the results of the cum-

bersome network. Recently, Hinton et al. [156] explained the model distillation

works due to the additional supervision and regularisation of the higher entropy

soft-targets. Romero et al. [157] applied to distill powerful and easy-to-train large

networks into small but harder-to-train networks. Likely, we transfer knowledge

from a powerful network as discriminator to a small network, generator, in order

to meet high performance and mitigate imbalanced class problem.

In contrast to the proposed model ensemble presented in the last chapter, we

address dispensing the discriminator with a specific generator and allowing an

ensemble of the generator to teach each other in mutual distillation.

5.5 Summary and Extensions

In this chapter, we addressed the problem of imbalanced data distribution by

approaching impact of mutual information between independent ensemble model.

We introduced deep mutual GAN (DM-GAN) composed by untrained genera-

tors and pre-trained discriminators. During the training process, each generator

minimize predicted error by getting feedback from individual discriminator in

adversarial setting. Additionally, each generator learns to collaborate with other

generators during the training process which results shown the success for han-

dling imbalanced data distribution. We presented the application of our proposed

method on real patient data for semantic segmentation. In future, we plan to im-

plement 2D and 3D deep mutual GAN architecture consisting more than four

models in a distributed way.
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All proposed approaches in this thesis are not limited for application in the

domain of medical diagnosis; they can be applicable where some classes have a

significantly higher number of examples in the training set such as fraud detection,

few-shot learning, and autonomous driving.
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Network
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versarial Network

DL Deep Learning
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GAN Generative Adversarial Network
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ISBI IEEE International Symposium on

Biomedical Imaging
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MICCAI international Conference on Medical

Image Computing and Computer As-

sisted Intervention

MIDL International Conference on Medical

Imaging with Deep Learning

MRI Magnetic Resonance Imaging

MS Multiple Sclerosis
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ReLu Rectified Linear Unit

RNN-GAN Recurrent Generative Adversarial

Network

ROI Region of Interest

RV Right Ventricle

SMOTE Synthetic Minority Over-sampling

Technique

SPIE The International Society for Optics

and Photonics

TC Tumor Core

US Ultra Sound

VAE Variational Auto Encoder

VOE Volume Overlap Error

WT Whole Tumor
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