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The development of ‘omics’ technologies has progressed to

address complex biological questions that underlie various

plant functions thereby producing copious amounts of data.

The need to assimilate large amounts of data into biologically

meaningful interpretations has necessitated the development

of statistical methods to integrate multidimensional

information. Throughout this review, we provide examples of

recent outcomes of ‘omics’ data integration together with an

overview of available statistical methods and tools.
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Omics integration going forward
Plants as living organisms hold an exceptional place as

dynamic components of our world that shape and are, in

turn shaped by the environment. Complex functions of

plant systems such as growth, cell-division, systemic re-

sponse to perturbations, and emerging phenotypes arise

from the intrinsic properties, hierarchical organization, and

interaction of thousands of system components. With

recent advances in high-throughput ‘omics’ techniques,

it is now possible to generate system-level measurements

for virtually all types of cellular components to query

unchartered frontiers in the knowledge of plant growth,

metabolism and response to environmental cues. As a

result, the growing repertoire of ‘omics’ experiments is

providing researchers with a wide spectrum of data. How-

ever, the increasing amount of data renders any successive

data analysis a difficult task. In addition, understanding the

interplay between the components of a biological system

posits the demand for integration of data arising from
www.sciencedirect.com 
different system-levels. Despite the challenges associated,

‘omics’ integration studies designed to characterize Sac-
charomyces cerevisiae, Caenorhabditis elegans, and human sys-

tems have pervaded literature in recent years. The

integrative systems approach has been gaining large atten-

tion of plant biologists in the last few years, concomitant

with the increase in large amounts of molecular data. Here,

we review some of the emerging aspects in integrative

plant systems research together with their technological

advances. We will also highlight a number of recent studies

that successfully integrate ‘omics’ data and finally, the

article will conclude with a discussion of the challenges

that face the field as well as future directions.

Overview of different approaches
Clearly, the multi-dimensional data generated from high-

throughput techniques need systematic approaches that

inherently require integration of heterogeneous informa-

tion (Figure 1). With the availability of data from several

‘omics’ experiments, often integrative analysis is exercised

for two purposes: first, a descriptive analysis to find under-

lying relationship between the data sets and second, to

predict a certain response using one or more explanatory

data sets. Indeed, the past few years have seen a multitude

of methods for integrative analysis of two data sets and

some of the excellent reviews cover topics such as inte-

grated network analysis in plants [1,2], co-expression tools

for plant biology [3], biochemical pathway or ontology

based integration [4], and machine learning for big data

analytics in plants [5]. In addition, there are numerous

methods that have been developed to integrate more than

two data sets at a time and implemented in R for ecological

data analysis, food quality, assessment and behavioral

research.

Of late, some of these methods are used to corroborate

and harness the complexity of ‘omics’ data sets. Table 1

represents the most commonly used statistical methods

with available R packages.

Specific examples of integrated analysis
categories
In this section, we provide details and specific examples

for the different categories of integrative analysis of

‘omics’ data sets.

Integrative inference of ‘omics’ data
generated from different cellular levels
Availability of ‘omics’ experiments studying different

cellular levels yield messenger ribonucleic acid (mRNA),
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Glossary

Canonical correlation analysis: CCA is a multivariate statistical

method that seeks to quantify the strength of the relationship by

maximizing the correlation between the two sets of variables.

Expression Conservation score (EC): EC score is derived by

calculating the PCC between the adjacent edge weights, i.e., the co-

expression relationship of two networks thus capturing the similarity of

gene neighborhoods.

Gene set enrichment analysis: A computational method that

determines whether an a priori defined set of genes shows statistically

significant concordant difference between two biological states.

MapMan: A user-driven tool that displays a large data set onto

diagrams of metabolic pathways or other processes.

Multiple co-inertia analysis: MCIA is used to describe several data

sets observed on the same set of observations by recovering the

maximum total variance from each data set.

Multiblock continuum redundancy: An extension of multiple

redundancy analysis and used in the prediction of several explanatory

data sets and a response data set. It is mostly used when the level of

multi-collinearity is high within the explanatory data sets.

Multiblock partial least squares regression: This method is an

extension of standard PLS and used in cases where there are several

explanatory data sets and one response data set.

Multiblock redundancy analysis: mbRA is useful in the prediction of

‘k’ exploratory data sets and a response data set. Within the ‘k’ data

sets, important variables which have an impact on the response

dataset is also provided.

Multiple factor analysis: MFA is an extension of principal

component analysis tailored to handle multiple data sets that measure

sets of variables collected on the same observations.

O2PLS: This method enables integrative analysis of data sets by

separating joint information across multiple analytical platforms from

systemic variation that is unique to each platform.

Paintomics: Serves as a web tool for the integration and visualization

of transcriptomics and metabolomics data.

Partial least squares: PLS is used in cases of ill conditioned linear

regression models. The method aims to find a linear relationship

between two sets of variables and the prediction factor is achieved by

extracting a set of orthogonal factors called latent variables.

Partial triadic analysis: PTA is seen as the simplest of the STATIS

family and is the PCA of a series of PCA’s. The aim is to analyze a

series of ‘k’ tables having the same observations and same variables.

Regularized generalized canonical correlation analysis: RGCCA

is used for the analysis of relationships between ‘k’ data sets and is an

extension of CCA. RGCCA also identifies subsets of variables of each

data set which are active in their relationships with the other data sets.

Sparse partial least squares: sPLS method imposes sparsity within

the context of PLS and thereby carry out dimension reduction and

variable selection simultaneously. Sparsity is imposed within the

context of PLS and thereby carries out dimension reduction using PLS

and variable selection using LASSO penalization.

Sparse generalized canonical correlation analysis: SGCCA is an

extension of RGCCA with L1 penalty to account for variable selection.

STATIS: STATIS is an extension of PCA tailored to handle multiple

data sets that measure sets of variables collected on the same

observations. dual-STATIS is a variant of STATIS where the same

variables are measured on different sets of observations. DISTATIS

handles multiple data sets collected on the same observations and

generalizes metric multidimensional scaling to three-way distance

matrices. ANISOSTATIS extends STATIS to give specific weights to

each variable rather than to the whole data set. K + 1 STATIS predicts

the relationship between ‘k’ data sets and one external data set. As an

extension of STATIS, this method highlights the relationship between the

‘k’ data sets as well as determine the data set which is best related to the

external dataset. Details of other variants of STATIS with their suitable

applications is provided in an excellent review by Abdi et al. [24��].

Tukey Honest Significance Difference: A post hoc test performed

after the analysis of variance (ANOVA). Tukey HSD can clarify to the

researcher which groups among the sample have significant differences.

Current Opinion in Plant Biology 2016, 30:57–61 
micro RNA (miRNA), proteins, and metabolite profiles

that result in multiple levels of quantitative information.

A typical integrative analysis scenario includes data from

two system-levels, say transcriptome and proteome, or

transcriptome and metabolome. There is a growing body

of literature describing simple correlation methods such

as Pearson or Spearman correlation coefficient for inte-

grating and comparing data from two different system-

levels [15]. However, a recent study by Rajasundaram

et al. [16�] employed cell-type-specific data sets of the

Arabidopsis root transcriptome and translatome for a

systematic assessment of the degree of co-ordination

and divergence between the two levels of cellular orga-

nization. The computational analysis considered correla-

tion and variation of expression at the global and single

cell level. Moreover, the authors provide insight into the

degree of co-regulatory relationships that are preserved

across the different system-levels using expression con-

servation scores. Through a series of Tukey Honest

Significant Difference tests (Tukey HSD), the cell-type

centric analysis elucidates whether transcriptional and

translational patterns are conserved across multiple

cell-types and are then displayed as network motifs. In

addition, characterization of the biological processes of

the genes identified in each step of the analysis was done

by gene set enrichment analysis (GSEA). This example of

integrative ‘omics’ analysis exemplifies a novel descrip-

tive analysis pipeline implementing several statistical

approaches.

In yet another study by Rajasundaram and colleagues

[17], relationships between the polysaccharide (glycan)

rich cell walls of cotton fibers and their phenotypic

characteristics were established using data from the gly-

come and phenome level, respectively. Here, the authors

employed canonical correlation analysis (CCA) to obtain a

global view of association between the system-levels.

Additionally, sparse partial least squares regression

(sPLS) was used to be able to predict cell wall polysac-

charides linked with fiber characteristics. With the use of

predictive statistical approaches to integrate different

‘omics’ data sets, this analysis thus discovered correlations

that are in line with already known biological functions

and others for which the biological relevance is still to be

tested. Such kinds of analysis in commercially important

cotton lines help to provide insights into the develop-

mental polysaccharides that are essential to obtain high

quality fibers.

Integrative analysis of multiple ‘omics’ data
sets
Majority of recent plant science studies investigate mul-

tiple ‘omics’ level in parallel and hence require methods

to facilitate integration of multi-omics data sets. One of

the applications of integrative ‘omics’ analysis using

orthogonal partial least squares (O2PLS) multivariate

regression method investigated different light condition
www.sciencedirect.com
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Figure 1

Hierarchical organization of biological complexity

Phenome
Metabolome
Proteome
Translatome
Transcriptome
Epigenome
Genome

RNASeq

RT-P
CR

Mas
s s

pec

Im
ag

in
g

Spec
ies

Technologies

(a) (b)

p

n n n n

q k k

p p

k

q(c)

C
el

lu
la

r 
le

ve
ls

A
ra

b
id

o
p

si
s

P
o

ta
to

T
o

m
at

o
R

ic
e

Current Opinion in Plant Biology

The complexity of biological data is multi-dimensional owing to advances in high-throughput technologies. Heterogeneity of the generated data is

attributed to the measurement of different cellular levels using a wide range of techniques across various plant species. A schematic

representation of possible types of data analysis problems is depicted. (a) Depicts the most common form of integrative analysis problems

wherein two data sets with ‘n’ observations and variables ‘p’ and ‘q’ are analyzed. (b) Represents the case where there are ‘k’ data sets with the

same ‘n’ observations and the same number of variables ‘p’. This is an example of a typical descriptive type of integrative analysis. (c) Illustrates

the situation where there are two sets of ‘k’ data sets where ‘k’ can pertain to time points or experimental conditions on ‘n’ observations with

variables ‘p’ or ‘q’.
induced effects on wildtype hybrid aspen measured in

parallel for metabolite and transcript abundances [18�].
The authors identified transcripts and metabolites that

exhibit strong multivariate correlation patterns, and the
Table 1

Some of the most commonly used descriptive and predictive integrativ

here

Methods 

Multiple canonical correspondence analysis 

Canonical correlation analysis (CCA), regularized generalized canonical co

Multiple co-inertia analysis (MCIA) 

Multiple factor analysis (MFA) 

Principle component analysis extensions (STATIS, dual-STATIS, DISTATIS

Partial triadic analysis (PTA) 

Partial least squares regression (PLSR), sparse partial least squares regre

partial least squares regression (MBPLSR)

Sparse regularized generalized canonical correlation analysis (SGCCA) 

K + 1 STATIS 

Multiblock redundancy analysis (mbRA), multiblock continuum redundanc

www.sciencedirect.com 
O2PLS method has the distinctive capability to identify

unique and common variations in and between data sets.

This was then further extended to handle multiple data

sets and a study by Srivastava et al. [19��] proposed to use
e analysis methods with their corresponding R packages are listed

R packages

Vegan [6]

rrelation analysis (RGCCA) mixOmics [7], RGCCA [8]

ADE4 [9], omicade4 [10]

FactoMineR [11]

, ANISOSTATIS etc.) ADE4 [9], MExPosition [12]

ADE4 [9]

ssion (sPLS), multiblock mixOmics [7], pls [13], ADE4 [9],

PLS-2.1.0 [13]

SGCCA [14], mixOmics [7]

ADE4 [9], MExPosition [12]

y (MCR) ADE4 [9]

Current Opinion in Plant Biology 2016, 30:57–61
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O2PLS for integration of transcriptomic, proteomic, and

metabolomic data. Here, an understanding of system-

level responses to oxidative stress response in plants

was investigated. Furthermore, the identified genes, pro-

teins, and metabolites and their associated pathways were

visualized using Paintomics and MapMan [20,21]. These

free softwares serve to map and visualize the genes,

proteins, and metabolite measurements in Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathways

(using Paintomics) and key affected processes not de-

scribed by KEGG was illustrated using MapMan.

Integrative analysis of time resolved
experiments to identify tightly regulated
functions
In time-series analysis, estimation of the transition point

in several stages is established to detect time lagged

relationships in biological systems. Several methods such

as correlation networks, clustering, and classification tech-

niques have been proposed and most widely used to study

time lagged profiles. However, there is an increasing need

for application of methods which specify the extent to

which each dimension of the data set reflects the pertur-

bation. To this end, descriptive methods such as STATIS

and variants of STATIS could serve as powerful tools

depending on the number of data sets under study and

the sampled time points (Figure 1). Recently, one such

application of STATIS was demonstrated by Klie et al.
[22] wherein they analyzed several transcriptome profiles

from Arabidopsis over the same set of genes under varying

experimental conditions sampled at several time points.

The authors illustrated the time-resolved response of

Arabidopsis to changing temperature conditions and

identified components and pathways which could be

under tight control in plant systems. Furthermore, meth-

ods such as multiblock partial least squares (mbPLS), and

multiblock continuum redundancy (mbCR) has the po-

tential to deal with regression problems involving data

sets profiled across different time points, and assess the

key drivers at the variable level.

Multi-faceted approach to understand
functional variability in natural populations
One of the ambitious objectives of natural variation

studies is to understand the genetic bases of complex

traits with adaptive implications and how plants sustain

the formation of ecotypes through ecological evolution.

Dell’Acqua et al. [23] used a multi-faceted approach to

exploit population genetics, landscape genomics, and

genome wide association studies in Brachypodium distach-
yon. The benefits of this study are 3-fold: Firstly, 82 Bra-

chypodium individuals sampled from nine different

ecological locations have high intra-population homozy-

gosity and a high-level of inter population genetic diver-

sity; secondly, sampling locations were monitored using

geographical information systems to obtain climatic data

for each individual together with spatial distribution of
Current Opinion in Plant Biology 2016, 30:57–61 
genetic diversity; and finally, genotyping by sequencing

approach provided a genome wide representation of

molecular diversity in the collected individuals. The

multi-faceted approach to investigate the structuration

and diversity of the Brachypodium collection includes:

Firstly, spatial pattern of genetic diversity was assessed

using spatial principal component analysis (PCA) which

enables the differentiation of global and local spatial

structures; secondly, outlier detection was used to identi-

fy the loci with clear adaptive significance to climate; and

finally, CCA was used to evaluate the relationship be-

tween climate gradients and molecular data. The joint

analysis led to the discovery of 15 genes involved in B.
distachyon adaptation. In addition, the authors also con-

cluded that transposable elements were differentially

distributed across the genomes of local groups and some

with a pattern matching the climatic diversity of the

sampling.

Conclusion and future directions
The systematic integrative analysis of heterogeneous data

envisages the relationship between and within different

biological layers for extensive knowledge discovery. Most

of the plant related mechanisms and functions are very

complex and vary among the same plant species, different

tissues or even the same tissue at different developmental

stages. Regardless of the biological question under anal-

ysis, some of the most commonly used data integration

methods in plant biology are mainly designed to analyze

two data sets at a time. However, the data explosion from

large biological systems requires us to adopt effective

integrative statistical approaches that can be extended to

integrate and visualize several data sets at a time. Hence,

it is essential to adopt a multi-disciplinary approach to

yield unprecedented views on different aspect of plant

systems.

Acknowledgements
The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7 2007-2013) under
Grant Agreement number 263916. This paper reflects the author’s views
only. The European Community is not liable for any use that may be made
of the information contained herein.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Fukushima A, Kanaya S, Nishida K: Integrated network analysis
and effective tools in plant systems biology. Plant Syst Synth
Biol 2014, 5:598.

2. Fukushima A, Kusano M, Redestig H, Arita M, Saito K: Integrated
‘omics’ approaches in plant systems biology. Curr Opin Chem
Biol 2009, 13:532-538.

3. Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW,
Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ: Co-
expression tools for plant biology: opportunities for
hypothesis generation and caveats. Plant Cell Environ 2009,
32:1633-1651.
www.sciencedirect.com

http://refhub.elsevier.com/S1369-5266(15)30012-1/sbref0125
http://refhub.elsevier.com/S1369-5266(15)30012-1/sbref0125
http://refhub.elsevier.com/S1369-5266(15)30012-1/sbref0125
http://refhub.elsevier.com/S1369-5266(15)30012-1/sbref0130
http://refhub.elsevier.com/S1369-5266(15)30012-1/sbref0130
http://refhub.elsevier.com/S1369-5266(15)30012-1/sbref0130
http://refhub.elsevier.com/S1369-5266(15)30012-1/sbref0135
http://refhub.elsevier.com/S1369-5266(15)30012-1/sbref0135
http://refhub.elsevier.com/S1369-5266(15)30012-1/sbref0135
http://refhub.elsevier.com/S1369-5266(15)30012-1/sbref0135
http://refhub.elsevier.com/S1369-5266(15)30012-1/sbref0135


Advances in integrative ‘omics’ analysis Rajasundaram and Selbig 61
4. Wanichthanarak K, Fahrmann JF, Grapov D: Genomic,
proteomic, and metabolomic data integration strategies.
Biomark Insights 2015, 10:1-6.

5. Ma C, Zhang HH, Wang X: Machine learning for Big Data
analytics in plants. Trends Plant Sci 2014, 19:798-808.

6. Dixon P: VEGAN, a package of R functions for community
ecology. J Veg Sci 2009, 14:927-930.

7. Gonzalez I, Le Cao KA, Dejean S: mixOmics: ‘omics’ Data
Integration Project. 2011:. http://www.mixomics.org.

8. Tenenhaus A, Tenehaus M: Regularized generalized canonical
correlation analysis. Psychometrika 2011, 2:257-284.

9. Dray S, Dufour AB: The ade4 package: implementing the duality
diagram for ecologists. J Stat Softw 2007, 22:1-20.

10. Meng C, Culhane A, Gholami AM: A multivariate approach to the
integration of multi-omics data sets. BMC Bioinformatics 2013,
15:162.

11. Sebastian L, Josse J, Husson F: FactoMineR: an R package for
multivariate analysis. J Stat Softw 2008, 25:1-18.

12. Beaton D, Fatt CRC, Abdi H: An ExPosition of multivariate
analysis with the singular value decomposition in R. Comput
Stat Data Anal 2014, 72:176-189.

13. Mevik BH, Wehrens R: The PLS package: principal component
and partial least squares regression in R. J Stat Softw 2007,
18:1-24.

14. Tenenhaus A, Philippe C, Guillemot V, Le Cao KA, Grill J, Frouin V:
Variable selection for generalized canonical correlation
analysis. Biostatistics 2014, 15:569-583.

15. Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH,
Goeminne G, Halpin C, Rohde A, Moreel K, Boerjan W: A systems
biology view of responses to lignin biosynthesis perturbations
in Arabidopsis. Plant Cell 2012:24.

16.
�

Rajasundaram D, Selbig J, Persson S, Klie S: Co-ordination and
divergence of cell-specific transcription and translation of
genes in arabidopsis root cells. Ann Bot 2014, 114:1109-1123.

Studying the root cells of Arabidopsis thaliana allowed positing a novel
pipeline to systematically investigate and integrate the different levels of
information available at the global and single-cell level. The conducted
analysis also confirms that previously identified key transcriptional acti-
vators of secondary cell wall development display highly conserved
patterns of transcription and translation across the investigated cell-
types.

17. Rajasundaram D, Runavot J-L, Guo X, Willats WGT,
Meulewaeter F, Selbig J: Understanding the relationship
www.sciencedirect.com 
between cotton fiber properties and non-cellulosic cell wall
polysaccharides. PLOS ONE 2014, 9:e112168.

18.
�
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