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Plant roots control uptake of water and nutrients and cope with

environmental challenges. The root epidermis provides the first

selective interface for nutrient absorption, while the

endodermis produces the main apoplastic diffusion barrier in

the form of a structure called the Casparian strip. The

positioning of root hairs on epidermal cells, and of the

Casparian strip around endodermal cells, requires

asymmetries along cellular axes (cell polarity). Cell polarity is

termed planar polarity, when coordinated within the plane of a

given tissue layer. Here, we review recent molecular advances

towards understanding both the polar positioning of the

proteo-lipid membrane domain instructing root hair initiation,

and the cytoskeletal, trafficking and polar tethering

requirements of proteins at outer or inner plasma membrane

domains. Finally, we highlight progress towards understanding

mechanisms of Casparian strip formation and underlying

endodermal cell polarity.
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Introduction
Cells of diverse organisms display asymmetric distribu-

tions of molecular components along one or more axes [1].

This essential feature, termed cell polarity, contributes to

the acquisition and segregation of cell fates as well as to

the functional specialization of cells during cell differen-

tiation [1–3]. When the polarity of multiple cells is

coordinated within the plane of a single tissue layer this

simple tissue polarity is referred to as planar polarity [4].

In Arabidopsis thaliana (Arabidopsis), the terms inner

polarity and outer polarity describe the polar localization

of molecules along plasma membranes aligned parallel to

the surface of the organism. Outer membranes are
Current Opinion in Plant Biology 2018, 41:46–53 
oriented towards the surface of the organ and inner

membranes towards the innermost tissues [5]. Cells of

the outermost cell layer of the root, the root epidermis,

form long protuberances named root hairs [6]. These

provide surface extensions facilitating, for example, the

uptake of water and nutrients [7]. A number of recent

advances have been made towards the identification of

components contributing to the polar placement of root

hairs along root epidermal cells of Arabidopsis, which

provides an example for planar polarity. In addition,

understanding of the cytoskeletal, the trafficking and

the polar tethering requirements of proteins at outer

and inner root plasma membrane domains has signifi-

cantly advanced. Finally, outstanding progress has been

made towards the elucidation of molecules and mecha-

nisms underlying the formation of the major endodermal

root diffusion barrier, the Casparian strip, including

insight into the underlying outer endodermal cell polar-

ity. We have focused our review on these recent advances

in understanding the establishment of cell polarity in the

Arabidopsis root and refer readers interested in related

topics highly relevant to the expanding field of plant cell

polarity to several recently published relevant review

articles [2,3,8–10].

Planar polarity — cytoskeletal and lipid
domain contributions
The hair forming cells (trichoblasts) of the Arabidopsis

root epidermis display a coordinated polarization of

emerging root hairs within the plane of the tissue layer

(planar polarity). Root hairs emerge from the outer plasma

membrane close to the root tip-oriented (basal) ends of

cells [11] (Figure 1a). Site-specific accumulation of Rho-

of-plant (ROP) proteins marks the hair initiation site prior

to the emergence of a hair bulge [12,13] (Figure 1b). The

polar placement of this ROP mark is determined by a

concentration gradient of the plant hormone auxin in the

root tip [4,14,15]. Although short-term pharmacological

disruption of the cytoskeleton did not reveal an effect on

ROP placement [12], recent genetic studies demonstrate

that the function and organization of both actin filaments

and microtubules are required for ROP placement during

planar polarity establishment [16,17��,18,19��]. In partic-

ular, the ACTIN7 (ACT7) and ACT2 isoforms contribute

to polar ROP and root hair positioning [17��,19��,20]. The

negative actin modulator ACTIN-INERACTING PRO-

TEIN1-2 (AIP1-2), which interacts both physically (in
vitro) and genetically with actins including ACT7 and

ACT2, modulates polar positioning of ROP proteins

during planar polarity establishment [17��] (Figure 1b).

Moreover, ACT7 has recently been identified as an

indirect interactor of the ABCB chaperone TWISTED
www.sciencedirect.com
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A proteo-lipid microdomain and D6PK signalling in planar polarity. (a) Schematic structure of the Arabidopsis root tip. (b) Site-specific

accumulation of ROP proteins and PIP5K3 marks the hair initiation site prior to emergence of a root hair bulge, and D6PK switches its localization

from the basal plasma membrane domain to the hair initiation site just prior to hair bulge formation (left). AIP1-2-dependent and TWD1-dependent

actin organization contributes to planar polarity of root hair positioning (right, top). DRP1A, DRP1B, ROP2, ROP4, ROP6, PIP5K3 and D6PK are

enriched at the hair initiation site and the root hair bulge. Sterol enrichment at the hair initiation site contributes to polar positioning of ROPs and

D6PK (right, bottom) that also rely on PIP5K3 function, with D6PK directly binding to phospholipids including PtdIns(4,5)P2 in vitro [24��,25��].
DWARF1 (TWD1), which impacts actin organization

[19��]. Strikingly, the twd1-1 mutant revealed an alter-

ation in root hair positioning, suggesting TWD1-depen-

dent actin organization contributes to planar polarity

[19��] (Figure 1b). At the hair initiation site, cortical

microtubules form a distinctive radial star-like pattern

[16], which correlates with radial stress patterns sug-

gested by mathematical modelling [21]. Intriguingly,

MICROTUBULE-ASSOCIATED PROTEIN18
www.sciencedirect.com 
(MAP18), which controls root hair tip growth, has

recently been shown to physically interact with ROP2

in vitro and in vivo [22�], raising the question as to

whether MAP18 may accumulate at the hair initiation

site and contribute to planar polarity. A dependence of

polar ROP positioning on the CLASP microtubule regu-

latory protein and its genetic interactor SABRE has

previously been shown, but this interaction appears to

occur indirectly [16].
Current Opinion in Plant Biology 2018, 41:46–53
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The hair initiation site displays enrichment in sterols

[23,24��] and in phosphatidylinositol-4-phosphate5-

kinase 3 (PIP5K3), the enzyme that catalyzes production

of the signalling phospholipid PtdIns(4,5)P2 [16,24��]
(Figure 1b). Analyses of the cyclopropylsterol isomerase1
sterol biosynthesis mutant as well as pharmacological

interference with sterol biosynthesis revealed that polar

ROP placement at the hair initiation site relies on correct

sterol composition [24��] (Figure 1b). Furthermore,

PIP5K3, DYNAMIN-RELATED PROTEIN (DRP)

1A, DRP2B and the AGCVIII kinase D6 PROTEIN

KINASE (D6PK) all accumulate at the sterol-enriched

domain and contribute to the regulation of polar ROP

placement [24��] (Figure 1b). Strikingly, D6PK directly

binds to phospholipids including PtdIns(4,5)P2

[24��,25��], suggesting a lipid-dependent recruitment of

molecular players to the hair initiation site, which subse-

quently signal to mediate polar ROP placement during

planar polarity establishment.

Outer and inner root epidermal cell polarity
In addition to the root hair initiation site, the root epider-

mal cell membrane displays inner or outer polar localiza-

tion of several proteins. These include the ABCG ATP-

binding cassette (ABC) transporter PENETRATION3

(PEN3)/ABCG36/PDR8 [26,27], originally identified as a

pre-invasive defense component against fungal non-host

pathogens [28], its homologue ABCG37/PDR9/PIS1 [27]

and the distantly related ABCG34/PDR6 protein recently

found to contribute to defense against necrotrophic

pathogens [29�] (Figure 2b). While these examples

may highlight the importance of polar outer domain

proteins in defense against biotic challenges, their func-

tion in this context remains to be investigated in roots.

Polarly localized proteins exemplifying outer domain

functions in uptake of inorganic compounds or in

response to abiotic stresses include the BOR4 boron

exporter [30], the NIP5;1 boric acid uptake channel

[31,32] and the IRON-REGULATED TRANS-

PORTER1 [33,34] (Figure 2b). The trans-Golgi network

(TGN) trafficking of PEN3 and NIP5;1 requires ACT7

function [35��] (Figure 2c,d), a generic TGN trafficking

requirement shared by apically, basally and non-polarly

localized cargos [19��,35��]. The importance of TGN

trafficking of NIP5;1 and other membrane proteins is

further highlighted by the NIP5;1 misplacement to

TGN-derived vesicle aggregates observed in mutants

defective in the gene encoding UDP-D-glucose-4-epim-

erase 4 (UGE4) [36,37�] (Figure 2d). However, polar

outer domain tethering of PEN3 and NIP5;1 is mediated

by the EXO84b exocyst complex subunit [35��], which

like other exocyst subunits is polarly localized at the outer

domain [38] (Figure 2c,d). Interestingly, precise EXO84b

localization itself relies on actin [38], and specifically

ACT7, function in dividing and elongating root epidermal

cells [35��] (Figure 2c,d). This suggests a second distinct
Current Opinion in Plant Biology 2018, 41:46–53 
role for actin in the correct placement of EXO84b at the

outer domain [35��], because the TGN misplacement

observerd for PEN3 and NIP5;1 in act7 mutants, is not

displayed by EXO84b [35��]. Instead, the so-called

“superpolar” EXO84b localization to the centre of the

outer domain is perturbed in act7 mutants [35��].
“Superpolar” cargo delivery, as reflected by enrichment

in the centre of a polar membrane domain, has recently

been observed for various polarly localized proteins [39��].

Recently, PEN3 trafficking has been found to involve

endocytic recycling [35��,40�] partly based on the applica-

tion of photoswitchable protein technology [35��]. This

highlights the potential utility of photoswitchable proteins

for obtaining a more accurate vision of secretory and endo-

cytic trafficking contributions to polar targeting [35��,41�].

Decisive progress has been made towards identification of

specific threonine phosphorylation sites essential for polar

NIP5;1 localization and endocytosis [42��]. The N-termi-

nus of NIP5;1 contains three distinctive Thr-Pro-Gly

repeats and substitution of the conserved Thr residues

inhibits NIP5;1 endocytosis. Moreover, loss of AP2 cla-

thrin adapter function compromises NIP5;1 polar locali-

zation, revealing that polar outer localization of NIP5;1 is

maintained by threonine phosphorylation-dependent cla-

thrin-mediated endocytosis [42��] (Figure 2d).

Contrary to BOR4, which is enriched at the outer domain

[30], the borate exporter BOR1 localizes to the inner

membrane domain of root epidermal cells [32]

(Figure 2b). BOR1 is required for borate transport into

inner root tissues under low-borate conditions, while

BOR4 mediates borate export under toxic high-borate

conditions [30,32]. An evolutionary conserved di-leucine

motif in BOR1-type clade transporters has recently been

shown to mediate BOR1 polar localization and vacuolar

sorting for degradation under high-boron conditions

[43��]. Evolutionary divergence between the two differ-

ently polarly localized boron transporter clades occurred

in the common ancestor of land plants as revealed by

studies including the BOR homologues of the lycophyte

Selaginella moellendorffii [43��]. Interestingly, BOR1 polar-

ity is established after cytokinesis and relies on DRP1A-

dependent, clathrin-mediated endocytosis. Similarly,

boron-induced degradation of BOR1 requires DRP1A-

dependent endocytosis [44��] (Figure 2e). Together with

previous reports on post-cytokinetic functions of endocy-

tosis in PIN2 and PIN1 positioning [45,46], these findings

suggest that post-cytokinetic, DRP1A-dependent endo-

cytosis represents a major mechanism contributing to

polarity establishment of apical, basal and lateral cargos.

Cell polarity underlying Casparian strip
formation in the root endodermis
Outstanding progress has recently been made towards

understanding Casparian strip formation. The
www.sciencedirect.com
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Figure 2
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Outer and inner polar domain localization of proteins in root epidermal cells. (a) Schematic structure of the Arabidopsis root tip. (b) The outer

lateral plasma membrane domain displays polar localization of PEN3/ABCG36/PDR8, ABCG37/PDR9/PIS1, ABCG34/PDR6, NIP5;1, BOR4, IRT1

and EXO84b (as well as other exocyst components), while the inner lateral plasma membrane domain displays polar BOR1 localization in root

epidermal cells. (c) ACT7 function is required for TGN trafficking of PEN3 and correct positioning of EXO84b at the plasma membrane. EXO84b

mediates outer polar localization of PEN3. (d) ACT7 function and TGN integrity provided by UGE4 are required for TGN trafficking of NIP5;1 and

EXO84b mediates outer polar localization of NIP5;1. Outer polar localization of NIP5;1 is maintained by AP2-dependent and phosphorylation-

dependent endocytosis. (e) DRP1A dependent-endocytosis is required for vacuolar sorting of BOR1 under high-boron (B) conditions.
GRAS-domain transcription factor SCARECROW

(SCR), which has long been known to specify cortex/

endodermis initials as well as cortical progenitors and is

expressed in endodermal cells, has recently been shown

to regulate (either directly or indirectly) transcription of

the MYB DOMAIN 36 (MYB36) transcription factor

[47�]. MYB36 drives expression of the CASPARIAN
STRIP MEMBRANE DOMAIN PROTEIN1 (CASP1) gene

[47�,48�], encoding a key scaffolding factor contributing
www.sciencedirect.com 
to Casparian strip formation [49]. MYB36 is necessary and

sufficient for Casparian strip formation [48�] and activates

expression of several Casparian strip genes including

CASP1 likely by direct binding to their promoters, as

supported by chromatin immunoprecipitation-qPCR

experiments [48�]. While MYB36 positively regulates

transcription of five CASP genes, CASP1 to CASP5, six

ENHANCED SUBERIN (ESB) genes, ESB1 to ESB6, the
PEROXIDASE64 gene, and the SCHENGEN1 (SGN1)
Current Opinion in Plant Biology 2018, 41:46–53
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Figure 3
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SGN3 signalling and SGN1 polarity in endodermal cells are required for

Casparian strip positioning and sealing. (a) Schematic structure of the

Arabidopsis root tip. (b) After the onset of cell elongation, SGN3 is

expressed just prior to the onset of CASP1 expression [50].

Accumulation of EXO70A1 in the central plasma membrane domain

precedes the onset of CASP1 expression [54��]. SGN3 symmetrically

accumulates in the transversal and anticlinal sides of the plasma

membrane [50]. (c) Prior to Casparian strip sealing, SGN1 and CASP1

expression occurs with similar timing [51��]. SGN3 maintains a

symmetrical localization at the transversal and anticlinal sides of the

plasma membrane and SGN1 locates to the outer plasma membrane

domain [50,51��]. CIF1/2 bind to SGN3, and the CIF1/2-SGN3-SGN1

signalling module generates a signalling cascade supporting Casparian

strip positioning and sealing [52��]. EXO70A1 strictly accumulates at the

future site of the CASP domain [54��], and CASP proteins subsequently

accumulate at this site in an EXO70A1-dependent manner [54��],
facilitating completion of Casparian strip sealing. (d) During and after

Casparian strip sealing, CASP proteins strictly accumulate at the

Casparian strip membrane domain. CIF1/2 movement to the

endodermal/cortical apoplastic space and outer membrane domain of

the endodermis is prevented by Casparian strip sealing [52��].
gene [47�,48�], all of which are necessary for Casparian

strip formation, it causes downregulation of the SGN3
gene [47�]. This currently remains difficult to understand,

because SGN3 (also named GASSHO1, GSO1) encodes a

receptor-like plasma membrane kinase expressed during

early endodermal cell differentiation [50]. The SGN3

protein is symmetrically located in a ring-like plasma

membrane domain surrounding the CASP domain and

mediates fusion as well as integrity of the CASP domain

that is formed in the centre of the SGN3 domain [50]

(Figure 3b–d). More recently, SGN1 has been shown to

encode a cytosolic receptor-like kinase required for Cas-

parian strip integrity and positioning [51��]. Intriguingly,

the SGN1 protein dynamically and polarly localizes to the

plasma membrane via reversible palmityolation. SGN1 is

found at the cortical, outer domain of the endodermal

plasma membrane, where its localization overlaps with

that of SGN3 just at the cortical (outer) side of its domain

[51��] (Figure 3c). Genetic analyses suggest SGN3 and

SGN1 action in one pathway with respect to central CASP

domain positioning. Strikingly, polar SGN1 localization

requires neither SGN3 function nor the activity of other

MYB36-dependent factors, but relies on still unknown

tissue-specific polarity cues. While SGN3 and SGN1

appear to act in the same pathway directing CASP domain

positioning, this may not involve their direct interaction,

for which positive evidence is currently lacking [51��].
The question of which signalling cue might activate

SGN3 has been answered by the identification of the

SGN2 tyrosylprotein sulfotransferase, which mediates

sulfation of the CASPARIAN STRIP INTEGRITY

FACTORS1 and 2 (CIF1/2) [52��]. These small sulfated

peptide ligands bind to the extracellular leucine-rich

repeat domain of SGN3 [52��,53��] (Figure 3c). Applica-

tion of sulfated CIF1/2 peptides complements the sgn2
Casparian strip phenotypes but does not complement the

sgn3 and sgn1 mutants, suggesting that SGN3 and SGN1

act in CIF1/CIF2 signal perception or downstream sig-

nalling [52��]. The CIF1/2 genes are expressed in the

stele, from where the peptides are thought to move to the

endodermis [52��,53��] (Figure 3c). The establishment of

an intact Casparian strip is proposed to restrict peptide

movement from the outer cortical membrane domain of

the endodermal cells [52��] (Figure 3b). Hence, Caspar-

ian strip integrity may be controlled by a SGN2-depen-

dent CIF1/CIF2 peptide-mediated diffusion barrier sur-

veillance system that signals asymmetrically from the

stele to activate the SGN3-SGN1 pathway [52��]
(Figure 3b,c). In this scenario, the reliance of SGN3

signalling on polar, cortical domain localization of

SGN1 would lead to a signalling shut down, once the

diffusion barrier has been established. How polar SGN1

localization and early SGN3 placement are established

remain intriguing open questions.

Further insight into factors involved in CASP placement

comes from the discovery of the specific localization of
Current Opinion in Plant Biology 2018, 41:46–53 www.sciencedirect.com
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the EXO70A1 exocyst subunit at the incipient CASP

domain and the requirement for EXO70A1 for CASP1

localization [54��] (Figure 3c,d). Strikingly, early

EXO70A1 localization is accompanied by a PtdIns(4,5)

P2 signature preceding CASP1 localization and position-

ing of this signature relies on EXO70A1 activity [54��].
Future studies may clarify the potential requirement of

PtdIns(4,5)P2 for EXO70A1 localization as well as the

relationship between EXO70A1 and SGN3 early during

Casparian strip formation.

Conclusions
During the last two to three years, genetic, cell biological

and biochemical approaches have allowed progress

towards identification of new players contributing to

the execution of planar polarity including a polar pro-

teo-lipid microdomain required for signalling during polar

root hair initiation. A late signalling component regulating

placement of the domain and depending on lipid inter-

action for its own polar localization has been identified, as

well as cytoskeletal requirements for polar domain place-

ment. The interdependence of the polar localization of

multiple players at this site suggests the involvement of

positive feedback, but a full understanding of underlying

mechanisms may require the application of mathematical

modelling approaches. Such approaches have been initi-

ated to explore the relationship between microtubule

localization and stress patterns at the root hair initiation

site [21], but now require extension to give a deeper

understanding of the connection between the molecular

and mechanical properties of the site. Similarly, tools for

exploring cell autonomous and non-autonomous func-

tions as well as the necessity for subcellular restriction

of the identified players will be helpful in future studies.

Generic trafficking requirements of outer and inner polar

cargoes have been elucidated, and specific amino acids

required for polar localization and endocytosis of some

cargos have been mapped. Nonetheless, how specificity

of polarity establishment through endocytosis after cyto-

kinesis is achieved remains to be understood. Consider-

able progress has been made towards our understanding

of mechanisms signalling Casparian strip positioning and

sealing, and insight into the underlying endodermal cell

polarity has been gained. How the combination of sym-

metric SGN3 localization and polar SGN1 outer domain

placement establishes CASP domain positioning and

sealing, as well as how the symmetric and polar localiza-

tions of these early signalling components are established

can be addressed in future studies, as can the potential

interplay between SGN3 signalling and phospholipid-

exocyst interactions during early CASP domain

positioning.
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Discov 2016, 2:16018.
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authors suggest a mechanistic framework underlying the establishment
and maintenance of apical, basal and lateral polar plasma membrane
domains. Extensive microscopic analyses reveal “super-polar” cargo
delivery of ABCG37 and BOR1 to the centre of the inner and the outer
epidermal plasma membrane domain, respectively, underlying the estab-
lishment of lateral plasma membrane polarity.
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