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―Thousands have lived without Love,  

not one without Water. ― 
 

Wystan Hugh Auden   
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DNA deoxyribonucleic acid 
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ABSTRACT 

Water is essential to life and thus, an essential resource. However, freshwater resources 

are limited and their maintenance is crucial. Pollution with chemicals and pathogens through 

urbanization and a growing population impair the quality of freshwater. Furthermore, water 

can serve as vector for the transmission of pathogens resulting in water-borne illness.  

The Interdisciplinary Research Group III – ‗Water‘ of the Leibniz alliance project 

INFECTIONS‘21 investigated water as a hub for pathogens focusing on Clostridioides 

difficile and avian influenza A viruses that may be shed into the water. Another aim of this 

study was to characterize the bacterial communities in a wastewater treatment plant (WWTP) 

of the capital Berlin, Germany to further assess potential health risks associated with 

wastewater management practices.  

Bacterial communities of WWTP inflow and effluent differed significantly. The 

proportion of fecal/enteric bacteria was relatively low and OTUs related to potential enteric 

pathogens were largely removed from inflow to effluent. However, a health risk might exist 

as an increased relative abundance of potential pathogenic Legionella spp. such as L. lytica 

was observed. Three Clostridioides difficile isolates from wastewater inflow and an urban 

bathing lake in Berlin (‗Weisser See‘) were obtained and sequenced. The two isolates from 

the wastewater did not carry toxin genes, whereas the isolate from the lake was positive for 

the toxin genes. All three isolates were closely related to human strains. This indicates a 

potential, but rather sporadic health risk. Avian influenza A viruses were detected in 38.8% of 

sediment samples by PCR, but virus isolation failed. An experiment with inoculated 

freshwater and sediment samples showed that virus isolation from sediment requires relatively 

high virus concentrations and worked much better in Madin-Darby Canine Kidney (MDCK) 

cell cultures than in embryonated chicken eggs, but low titre of influenza contamination in 

freshwater samples was sufficient to recover virus.  

In conclusion, this work revealed potential health risks coming from bacterial groups with 

pathogenic potential such as Legionella spp. whose relative abundance is higher in the 

released effluent than in the inflow of the investigated WWTP. It further indicates that water 

bodies such as wastewater and lake sediments can serve as reservoir and vector, even for non-

typical water-borne or water-transmitted pathogens such as C. difficile.   
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ZUSAMMENFASSUNG 

Wasser ist lebensnotwendig und somit eine essentielle Ressource. Jedoch sind unsere 

Süßwasser-Ressourcen begrenzt und ihre Erhaltung daher besonders wichtig. 

Verschmutzungen mit Chemikalien und Krankheitserregern, die mit einer wachsenden 

Bevölkerung und Urbanisierung einhergehen, verschlechtern die Qualität unseres Süßwassers. 

Außerdem kann Wasser als Übertragungsvektor für Krankheitserreger dienen und daher 

wasserbürtige Krankheiten verursachen. 

Der Leibniz-Forschungsverbund INFECTIONS‘21 untersuchte innerhalb der 

interdisziplinären Forschungsgruppe III – „Wasser―, Gewässer als zentralen Mittelpunkt für 

Krankheiterreger. Dabei konzentrierte man sich auf Clostridioides difficile sowie aviäre 

Influenza A-Viren, von denen angenommen wird, dass sie in die Gewässer ausgeschieden 

werden. Ein weiteres Ziel bestand darin, die bakterielle Gemeinschaften eines Klärwerkes der 

deutschen Hauptstadt Berlin zu charakterisieren, um anschließend eine Bewertung des 

potentiellen Gesundheitsrisikos geben zu können.   

Bakterielle Gemeinschaften des Roh- und Klarwassers aus dem Klärwerk unterschieden 

sich signifikant voneinander. Der Anteil an Darm-/Fäkalbakterien war relativ niedrig und 

potentielle Darmpathogene wurden größtenteils aus dem Rohwasser entfernt. Ein potentielles 

Gesundheitsrisiko konnte allerdings von potentiell pathogenen Legionellen wie L. lytica 

festgestellt werden, deren relative Abundanz im Klarwasser höher war als im Rohwasser. Es 

wurden außerdem drei C. difficile-Isolate aus den Klärwerk-Rohwasser und einem städtischen 

Badesee in Berlin (Weisser See) gewonnen und sequenziert. Die beiden Isolate aus dem 

Klärwerk tragen keine Toxin-Gene, wohingegen das Isolat aus dem See Toxin-Gene besitzt. 

Alle drei Isolate sind sehr nah mit humanen Stämmen verwandt. Dies deutet auf ein 

potentielles, wenn auch sporadisches Gesundheitsrisiko hin. (Aviäre) Influenza A-Viren 

wurden in 38.8% der untersuchten Sedimentproben mittels PCR detektiert, aber die 

Virusisolierung schlug fehl. Ein Experiment mit beimpften Wasser- und Sedimentproben 

zeigte, dass für die Isolierung aus Sedimentproben eine relativ hohe Viruskonzentration nötig 

ist. In Wasserproben ist jedoch ein niedriger Titer an Influenza A-Viren ausreichend, um eine 

Infektion auszulösen. Es konnte zudem auch festgestellt werden, dass sich „Madin-Darby 
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Canine Kidney (MDCK)―-Zellkulturen im Gegensatz zu embryonierten Hühnereiern besser 

eignen, um Influenza A-Viren aus Sediment zu isolieren. 

Zusammenfassend lässt sich sagen, dass diese Arbeit mögliche Gesundheitsrisiken 

aufgedeckt hat, wie etwa durch Legionellen im untersuchten Berliner Klärwerk, deren relative 

Abundanz in geklärtem Abwasser höher ist als im Rohwasser. Desweiteren wird indiziert, 

dass Abwasser und Gewässer als Reservoir und Vektor für pathogene Organismen dienen 

können, selbst für nicht-typische Wasser-Pathogene wie C. difficile.  
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Water as both a crucial resource and environment for microorganisms 

The Earth is covered by around 70% water which is essential to all living beings. 

However, fresh water makes up only about 2.5% of the total water on Earth. Therefore, the 

maintenance of clean fresh water resources is crucial. However it is threatened by scarcity and 

pollution, which can result in animal and human health risks. Fresh water resources are 

influenced by climate change, population growth and migration, urbanization and industrial 

development [1–4]. Furthermore, freshwater ecosystems are under particular ecological 

pressure via increasing temperatures due to global climate change and anthropogenic 

activities leading to chemical pollution and introduction of (alien) invasive species with 

dramatic subsequent changes in biodiversity [2, 5–8].  

Aquatic environments harbour a broad spectrum of microorganisms including bacteria, 

viruses and protozoa. Bacteria play a crucial and important role in aquatic systems and drive 

globally important biogeochemical cycles. They provide nutrients for primary production by 

remineralisation processes, use dissolved/particular organic matter (DOC/POC) as a carbon 

source and serve as food for protozoan and the higher trophic food chain (Figure 1) [9–12]. In 

addition to carbon, bacteria take part in sulphur [13, 14], nitrogen [15, 16], phosphorus [17–

19] and other important element cycles by oxidation or reduction of compounds, which are 

then available for other metabolic processes.  

Aquatic bacterial communities are complex and well adapted to their environment. 

However, disturbances by environmental stress such as invasive species [20–22], temperature 

change, different atmospheric CO2 concentrations, precipitation and UV radiation [23–25] can 

change the composition of the bacterial community probably resulting in an alteration of 

ecosystem functions. Furthermore, disturbed microbial communities might enable the growth 

of harmful or pathogenic microbes [26–28] which further constitutes a health risk for humans 

and animals. 
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Figure 1: Simplified schematic representation of the food chain starting from primary production by 

phytoplankton to piscivores and the associated microbial loop. Bacteria use the dissolved organic matter (DOC) 

that is produced by the food chain and serve as food for protozoan (modified after Lalli and Parson, 1997 [9]). 

 

Wastewater treatment plants 

Wastewater treatment plants are crucial to maintain hygiene and to reduce pollution of the 

environment, particularly fresh water resources. Historically, urban drainage systems were 

constructed in ancient civilizations such as Indus, Minoan, Persians and Romans to avoid 

nuisance flooding, collect rainwater and transport waste [29–33]. Furthermore, wastewater, 

particularly waste from dry sewage systems, was used as fertilizer on farmland. The first 

modern-day wastewater treatment plants to reuse wastewater were constructed in the 1840‘s 

and 1850‘s [34, 35].  

Cleaning of wastewater in a modern WWTP usually consists of a mechanical treatment 

followed by a biological treatment that can be combined with a chemical treatment. Most 

WWTPs have a disinfection step such as (partially) UV irradiation treatment or chlorination 

before releasing the effluent into the environment. The (activated) sludge that is produced 

during the treatment is dehydrated and incinerated (Figure 2). The mechanical treatment 

starts with screens to collect and remove coarse and fine solid material. Afterwards, sand and 

gravel are removed in grit chambers. Remaining solids initially settle in the primary clarifier, 

which are then part of the sludge. The core of the biological treatments consists of the aeration 
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tanks, which are rich in oxygen. Microorganisms remove nutrients such as phosphorus, 

ammonium, nitrate, nitrite and carbon and at the same time anaerobic (enteric) pathogens are 

eliminated. Nutrients can additionally be removed by chemical precipitation. In the secondary 

clarifier a final settling of solids can occur, before the water is disinfected with UV light or 

chlorine and released into the aquatic environment [36–38].  

There are challenges associated with wastewater treatment, particularly in big cities. 

Although WWTPs provide cleaned wastewater, they can still be a source for pollution and 

contamination of the natural aquatic environment via WWTP effluent. WWTPs collect and 

concentrate wastewater from various sources including industry, hospitals and households.  

Thus, the wastewater can contain high levels of pharmaceuticals such as antibiotics, 

pathogens and (toxic) chemicals which might not be removed at all or not completely [39–

41].  

 

Figure 2: Schematic representation of the general wastewater treatment which consists of a mechanical 

treatment to remove sand, gravel and other solids, a biological treatment with aeration to remove anaerobic 

pathogens and most of the nutrients and a final disinfection step.  
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Pathogens in water and water as a vector 

Water was considered first as a vector for pathogen transmission by the physician John 

Snow during the cholera outbreak in London, 1854. When he marked the locations of 

households where people died on a map, he could see that the cases were almost all restricted 

to the Golden Square area. This area differed from other areas in its source of drinking water 

which was a very polluted section of the Thames River [42–44]. Robert Koch found Vibrio 

cholera in the intestines and stool of cholera patients and identified Vibrio cholera as the 

causative agent for the disease [45, 46]. With this finding it was clear that fecal contamination 

of water is a serious health risk.  

However, fecal contamination, particularly through (municipal or agricultural) wastewater 

is only one way of introducing pathogens into water sources [47]. Figure 3 shows a schematic 

representation of possible ways pathogens can be introduced into natural open water sources. 

Wild animals, such as birds and rodents, can be a source of pathogens in aquatic 

environments. Waterfowl, for instance, can shed avian influenza A viruses via their feces 

[48], while rodents are known to be the natural reservoir for pathogenic leptospires that are 

shed via their urine [49–51]. Heavy rainfall and storm water can introduce pathogens from the 

environment such as Clostridium perfringens, Salmonella spp. and Leptospira spp. that are 

swept in from agricultural soil [52–58]. Humans and their recreational activities are also a 

possible source of pathogens [59, 60]. A study by Plano et al. [59], for instance, demonstrated 

that humans can shed methicillin-resistant Staphylococcus aureus (MRSA) into the water 

during swimming. Even bacteria of the genus Enterococcus, mainly fecal bacteria, can be 

released into the environment by bathers [60].  

For many of the above mentioned pathogens such as MRSA, influenza A and Leptospira 

spp. it has been shown that they are persistent and stable in water and that they can remain  

infectious [61–64]. Typical cases of waterborne illness including possible symptoms and 

causative agents are listed in Table 1. There are many bacterial pathogens which are able to 

cause waterborne illness, e.g. Aeromonas hydrophila, Campylobacter spp., Escherichia coli, 

Legionella spp. Leptospira spp., Pseudomonas aeruginosa, Salmonella spp., Vibrio cholera, 

Vibrio vulnificus and Mycobacterium marinum. 



GENERAL INTRODUCTION 

7 

 

However, there are also pathogens that have been frequently detected and isolated from 

the aquatic environment, but for which no reports of waterborne illness exist yet or they are 

quite rare [65–67]. Examples for such bacterial pathogens are MRSA and Clostridioides 

difficile. They are mainly known as nosocomial pathogens, but have been isolated from 

wastewater, freshwater and marine environments [66, 68–71]. For MRSA it has even been 

shown that it persist in water for at least 14 days [63]. This raises the question if they could 

become emerging waterborne pathogens in the future.  

The concentration of pathogens, their survival and pathogenicity in water is influenced by 

a variety of environmental factors such as temperature, salinity, pH and nutrients [61–64]. 

Studies indicate that climate change, particularly ocean warming and heavy rain fall increase 

the incidence of water-borne or -transmitted disease, as many pathogens grow better at higher 

temperatures [72–74] as shown for Vibrio spp. in the Baltic Sea, for instance [75]. Moreover, 

there is evidence that aquatic pollution, particularly microplastics might serve as an additional 

vector for pathogens by being a substrate for forming biofilms [76, 77]. Urbanization and 

growing populations can have a negative effect on aquatic systems by increasing 

contamination and pollution [1, 56, 78–80]. Thus, urban waters might require more extensive 

monitoring programs in comparison to rural or undisturbed water.  
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Figure 3: A schematic representation of potential ways, how pathogens can be introduced into natural open 

water sources. Wastewater, animals, the environment and storm water, humans and the agriculture can be 

sources of pathogens. The contaminated water can then serve as vector and infect animals and humans. Clipart 

black pictures are freely available from http://www.iconsdb.com. 

 

 

http://www.iconsdb.com/
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Table 1: Typical waterborne diseases, their symptoms and causative agents (modified from Perkins et al. [81] 

including additional references for illness caused by Salmonella spp. [82, 83], Campylobacter spp. [84, 85] and 

V. cholera [42]). 

Disease Symptoms Causative agents 

Leptospirosis  Acute febrile illness,  Leptospira spp. 

Legionnaires‘ disease, 

Pontiac Fever 

pneumonia, influenza-like illness, 

fever, headache, muscle aches 
Legionella spp. 

Cryptosporidiosis 
Diarrhea, abdominal pain, fever, 

nausea, vomiting, weight loss 
Cryptosporidium spp. 

Giardiasis 

Abdominal cramps, arthralgias, 

diarrhea, hives, nausea, pruritus, 

vomiting 

Giardia intestinalis 

Other gastrointestinal 

infection 

(bloody) diarrhea, fever, vomiting, 

gastroenteritis, hemolytic uremic 

syndrome in severe cases 

Diarrheagenic or Shiga 

toxin-producing- Escherichia 

coli, Salmonella spp.,  

Campylobacter spp. 

Viral gastroenteritis 
Abdominal pain, diarrhea, nausea, 

vomiting 

Adenovirus, hepatitis A, 

norovirus, rotavirus 

Cholera Gastrointestinal symptoms Vibrio cholera 

Skin and soft tissue 

infections 

Dermatitis, cellulitis, pruritus, skin 

erythema, soft tissue edema, skin 

necrosis, folliculitis 

Vibrio vulnificus, Aeromonas 

hydrophila, Mycobacterium 

marinum, Pseudomonas 

aeruginosa 

Algal bloom–related 

illness 

Gastrointestinal symptoms, skin and 

lung irritation 

Cytotoxins of algae (mainly 

cyanobacteria) 
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Thesis outline 

This thesis project took place within the ‗Interdisciplinary Research Group (IRG) III – 

Water‘ of the Leibniz Alliance Project ‗INFECTIONS‘21 - Transmission Control of 

Infections in the 21th Century‘ to examine whether water can act as a hub and/or reservoir for 

pathogens. We investigated the bacterial communities and the occurrence of selected 

pathogens in water and sediment samples. We analyzed five different lakes (Appendix Figure 

A1), and inflow and effluent of a wastewater treatment plant in Berlin, Germany and 

surroundings reflecting urban and rural habitats for comparison.  In addition, a seasonal 

sampling and measurement of abiotic factors such as temperature, pH and nutrient 

concentration allowed us to analyse the data in an ecological context. The concept of the 

doctoral research is shown in Figure 4 with following objectives: 

 

Figure 4: Concept of the doctoral research study within the IRG III – ‗Water‘ of the Leibniz alliance project 

INFECTIONS‘21. Sediment samples of lakes as well as inflow and effluent samples of a wastewater treatment 

plant (WWTP) were taken. Bacterial communities were defined by whole 16S rRNA gene sequencing in the 

WWTP samples (Chapter 1). Influenza A virus and Clostridioides difficile were selected as pathogens for 

further investigations (Chapters 2 and 3). Electron microscope images of influenza A virus [86] and C. difficile 

[87] are shown, respectively. Clipart black pictures are freely available from http://www.iconsdb.com. 
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1. Characterization of bacterial communities in wastewater with enhanced taxonomic 

resolution by full-length 16S rRNA sequencing (Chapter 1) 

In big cities, WWTPs collect huge amounts of wastewater from different sources 

including households, hospitals and industry. Furthermore, WWTP can serve as habitat for 

numerous bacteria including pathogens as wastewater is rich in nutrients and particular 

carbon. Thus, there is a risk to WWTP employees of waterborne infection. With the effluent 

pathogens and other bacteria might reach natural water bodies and may represent a health risk 

for humans and animals. Whole 16S rRNA amplicon sequencing was performed with single 

molecule real time (SMRT) cell technology on the Sequel System of Pacific Biosciences 

(PacBio), USA to address following hypotheses:  

H1:  The bacterial communities differ from inflow to effluent indicating internal WWTP 

processes.  

H2:  With whole 16S rRNA sequences a better phylogenetic resolution (up to species level) 

can be achieved.   

H3: WWTPs exhibit a potential risk for the contamination of the environment with 

pathogenic bacteria.   

2. Genomic analysis of three Clostridioides difficile isolates from urban water sources 

(Chapter 2) 

C. difficile, an anaerobic spore-forming bacterium, is mainly known as enteric, 

nosocomial pathogen producing toxins, with which they can cause diarrhoea, 

(pseudomembranous) colitis and other gastrointestinal disease, particularly in association with 

antibiotic treatment [88–92]. It has been shown that this pathogen can also be present and 

viable in the (aquatic) environment [68, 69, 93, 94]. Conventional and quantitative PCR 

(qPCR) of 16S rRNA, toxin A and toxin B genes combined with cultivation on selective 

chromID® C. difficile agar plates (bioMérieux, France) were performed. Genomes of isolates 

were sequenced with Illumina and PacBio technology. The hypothesis behind this study was: 

H4: There is a higher prevalence of C. difficile occurrence in urban than in rural waters due 

to a higher risk/possibility of fecal contamination in the urban environment. 
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3. Recovery of influenza A viruses from lake water and sediments by experimental 

inoculation (Chapter 3) 

Influenza A viruses cause disease in a variety of hosts such as humans, livestock and 

marine mammals [95–97]. The natural viral reservoir is birds, particularly waterfowl from 

which influenza A viruses are shed into water bodies via feces [98–102]. We applied 

conventional PCR of a 104-bp fragment of the matrix gene that is conserved through all 

influenza A viruses [103] followed by Sanger sequencing for confirmation. Further analyses 

included conventional PCR on hemagglutinin genes [104, 105] or the whole genome [106], as 

well as cultivation with Madin-Darby Canine Kidney (MDCK) cells and embryonated 

chicken eggs. With the assumption that sediment of lakes heavily used by waterfowl serve as 

reservoir for avian influenza A viruses, we tested following hypotheses: 

   H5: Influenza A virus frequently occur in sediment samples.  

   H6: Lake sediments serve as a reservoir for different strains of influenza A viruses. 

   H7: Influenza A viruses can be regrown from sediment samples and thus, maintain 

infectivity. 

We additionally performed an experimental inoculation of sediment and freshwater 

samples with four different IAV strains. We aimed to define the minimum infectious dose that 

is required to recover IAV from those samples and to test the following hypothesis: 

   H8: The recovery efficiency of influenza A viruses from experimentally inoculated 

samples depends on the virus concentration, sample type (water vs. sediment), strain 

and the cultivation method used (MDCK cells vs. embryonated chicken eggs). 
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ABSTRACT 

Wastewater treatment is crucial to environmental hygiene in urban environments. 

However, wastewater treatment plants (WWTPs) collect chemicals, organic matter, and 

microorganisms including pathogens and multi-resistant bacteria from various sources which 

may be potentially released into the environment via WWTP effluent. To better understand 

microbial dynamics in WWTPs, we characterized the bacterial community of the inflow and 

effluent of a WWTP in Berlin, Germany using full-length 16S rRNA gene sequences, which 

allowed for species level determination in many cases.  

Significantly distinct bacterial communities were identified in the wastewater inflow and 

effluent samples. Dominant operational taxonomic units (OTUs) varied both temporally and 

spatially. Disease associated bacterial groups were efficiently reduced in their relative 

abundance from the effluent by the WWTP treatment process, except for Legionella and 

Leptospira species which increased from inflow to effluent.  

This indicates that WWTP, while effective, may increase the release of some potentially 

pathogenic bacteria into the environment. The higher taxonomic resolution of full-length 16S 

rRNA genes allows for improved resolution of potential pathogenic taxa and other harmful 

bacteria which is required to reliably assess health risk.  

 

Keywords: Wastewater treatment plant, bacterial community, full-length 16S rRNA gene 

sequencing, SMRT cell technology (PacBio®), urbanization 
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INTRODUCTION 

Drinking water is a critical resource for which it is challenging to maintain hygiene in 

urban areas under persistent anthropogenic influence 
1–4

. Pollutants and antibiotic resistant 

bacteria are constantly released by wastewater treatment plants (WWTP) into the environment 

which can result in human and (aquatic) animal health risk 
5–11

. Treated sewage is also a 

major source of human-derived bacteria in the urban water environment, including potential 

pathogens that may survive the treatment process. Sewage inflow partly reflects the bacterial 

community of humans 
12,13

. Accordingly, in two WWTPs in Hong Kong, China, pathogenic 

bacteria such as Clostridium perfringens, Legionella pneumophila and Mycobacterium 

tuberculosis like species were found to be common 
14

. Thus, the WWTP effluent may not be 

completely depleted of (human) pathogens and the microbiome of the effluent and its 

nutrients may even promote the growth and proliferation of pathogenic bacteria in the 

environment. For example, Wakelin et al. 
15

 demonstrated that constant effluent input in 

combination with increased nutrient levels in the sediment downstream of a WWTP in 

Australia affected the bacterial community in the sediment substantially and increased the 

overall diversity. In addition, a study in rural Bangladesh revealed anthropogenic 

contamination of groundwater pumped from shallow tubewells with faecal bacteria from the 

genera Shigella and Vibrio 
16

 indicating the potential risk of faecal contamination of the 

natural environment via anthropogenic effluents.  

WWTPs are considered hotspots for antibiotic resistant genes and for the spread of 

bacteria into the environment 
9,17

. The presence of antibiotic resistant bacteria also increases 

the potential risk of gene transfer to non-resistant bacteria 
18–20

. Several environmental 

bacteria are prone to developing multidrug resistance such as Acinetobacter spp., Aeromonas 

spp. and Pseudomonas spp. 
21–23

. Adapted to humid and various aquatic environments these 

human-derived bacteria are part of the microbial communities in municipal WWTPs 24–26. 

For example, an increase of antibiotic resistant Acinetobacter spp. in WWTPs has been shown 

by Zhang et al. 
21

.  

In addition, bacterial communities of wastewater include members of different taxonomic, 

biochemical and physiological groups, of which many provide advantageous functions for 

water cleaning, such as nutrient removal. However, these communities also contain bacteria 
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of human and animal origin which may interact with the bacterial communities of natural 

waters (e.g. rivers and lakes) in unpredictable ways. There are few studies comparing WWTP 

bacterial communities in inflow and effluent with the few undertaken restricted to a few 

countries, i.e. the USA, Hong Kong (China), and Spain 
5,12,13,27,28

. Furthermore, these studies 

provide a relatively low taxonomic resolution since molecular identification is limited to short 

hypervariable regions of the 16S rRNA gene due to amplicon size constraints in sequencing 

on the Illumina or Roche 454 platforms 
5,12,13,27,28

. Having only a restricted phylogenetic 

resolution, these methods do not allow for the reliable identification of human pathogenic 

bacteria in the environment. Full 16S rRNA gene sequencing, however, can provide improved 

taxonomic identification on the genus and species level. Therefore, we used single molecule 

real time (SMRT) sequening (PacBio® Sequel platform) to sequence full-length bacterial 16S 

rRNA gene PCR amplicons in order to improve the characterization of bacterial communities 

in wastewater samples. Inflow and effluent samples from a WWTP in Berlin (Germany) were 

collected every three months for one year to characterize in detail and compare the bacterial 

communities including potentially pathogenic bacteria. 

 

RESULTS 

Bacterial community composition and dominant OTUs  

Using an OTU clustering cut-off of 99% sequence similarity, we were able to identify a 

total of 7,068 OTUs (initial data) of which 3,860 were left after rarefaction. Bacterial phyla 

and genera representing more than 1.0% of the total bacterial community were defined as 

dominant. Predominant phyla in the inflow were Firmicutes, Proteobacteria, Bacteroidetes 

and Actinobacteria with an average abundance of 52.2 ± 4.4%, 37.8 ± 4.7%, 4.9 ± 1.9%, and 

2.2 ± 0.2%, respectively. In contrast, the effluent was dominated by Proteobacteria (54.8 ± 

3.3%), Bacteroidetes (15.7 ± 1.1%), Firmicutes (14.3 ± 5,0%), Actinobacteria (2.6 ± 0.4%), 

Planctomycetes (2.9 ± 1.1%), Acidobacteria (1.3 ± 0.4%) and Verrucomicrobia (2.1 ± 0.4%) 

(Fig. 1, Fig. 2).  
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Families of the most dominant phyla Proteobacteria, Bacteroidetes and Firmicutes 

contributing in at least one sample more than 1% are shown in Figure 4. Firmicutes were 

dominated by Acidaminococcaceae, Enterococcaceae, Eubacteriaceae, Lachnospiraceae, 

Peptostreptococcaceae, Ruminococcaceae, Streptococcaceae, Veillonellaceae, 

Christensenellacea and Clostridiaceae 1 with Lachnospiraceae and Ruminococcaceae as 

most abundant. Proteobacteria were mainly represented by the families Aeromonadaceae, 

Comamonadaceae, Enterobacteriaceae, Moraxellaceae, Neisseriaceae, Rhodobacteraceae, 

Rhodocyclaceae Campylobacteriaceae and Xanthomonadaceae. For the phylum 

Bacteroidetes the families Bacteroidaceae, Chitinophagaceae, Cytophagaceae, 

Flavobacteriaceae, Porphyromonadaceae, Prevotellaceae, Rikenellaceae and Saprospiraceae 

were dominant.  

 

Figure 1: Composition of the bacterial community in inflow and effluent at the phylum level. The average 

abundance (after rarefaction) and only phyla contributing more than 1.0% to the total bacterial community are 

shown. 
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Figure 2: Boxplots showing the average relative abundance of the dominant bacterial phyla between inflow and 

effluent. The p-value (p) indicates the significance of the differences based on a PERMANOVA with p < 0.05 

being significant.  
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OTUs contributing in at least one sample more than 1% to the total bacterial community 

are listed in Table 1. In addition, OTUs that significantly differ between inflow and effluent 

are marked in Table 1 and belong to multiple genera: Ca. Accumulibacter, Ca. 

Competibacter, Comamonadaceae unclassifed, Dechloromona, Nitrosomonas, Nitrospira, 

Paracoccus, Rhodoferax, unclassified Run-SP154, Simplicispira, Streptococcus, unclassified 

Saprospiraceae and Uruburuella.  

Using full-length 16S rRNA reads, we were able to reliably identify many OTUs at high 

taxonomic resolution (often at species level) by comparing them with reference sequences 

from known bacterial species (Table 1, Table 2) based on the global SILVA alignment 

(SINA Aligner) for rRNA genes 29. With the OTU sequences of the genus Acinetobacter we 

could show for example, that a better taxonomic resolution was produced in comparison with 

short-read sequences, which were generated by extracting a 477 bp fragment of the 

hypervariable regions V3-V4 according to the primer pair of Klindworth et al. 
30

. Out of 113 

OTUs related to the genus Acinetobacter 18 could be affiliated to a species when using full-

length and 10 when using the hypervariable region V3-V4. However, the bootstrap values 

were always lower when using short sequences. Two OTUs yielded different phylogenetic 

results depending on sequence length (Supplementary Table S1, Supplementary Fig. S9). 

 

Inflow versus effluent samples and dominant OTUs 

Principal coordinate analysis defined two main clusters: inflow and effluent samples (Fig. 

4). Within the inflow cluster the samples from April and October were most similar to each 

other, whereas in the effluent cluster February and April or July and October samples were 

clustered more closely together. A permutational multivariate analysis of variance 

(PERMANOVA) revealed a significant difference between inflow and effluent samples with a 

p-value of 0.02. Furthermore, the dominant bacterial phyla Bacteroidetes, Firmicutes, 

Planctomycetes and Verrucomicrobia differed significantly in their relative abundance 

between inflow and effluent samples, whereas the phylum Actinobacteria did not show a 

significant difference between both sample groups (Fig. 2). 
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Table 2: Affiliation of OTUs from potentially harmful bacterial genera and their presence in the inflow (IN) and 

effluent (EFF). This is based on the global SILVA alignment (SINA Aligner) for rRNA genes 
31

.  

OTU Presence Genus Affiliated species 

Pairwaise 

sequence 

identity 

Node support 

(bootstrap 

value) 

OTU004330 IN, EFF 

A
er

o
m

o
n

a
s A. sharmana (KC469704.1) 99.6% 97.3 

OTU001375 IN, EFF A. sobria (X60412.1) 99.0% 96.9 

OTU027282 EFF A. jandaei (X60413.1) 99.0% 87.4 

OTU000640 IN, EFF A. australiensis (HE611955.1) 99.2% 79.4 

OTU000065 IN, EFF A. media (X60410.1) 99.7% 100 

OTU014486 IN 
A

ci
n

et
o

b
a

ct
er

 
A. beijerinckii (KU308266.1) 99.7% 98.7 

OTU017554 IN A. schindleri (AJ278311.1) 97.9% 98.7 

OTU025938 IN, EFF A. haemolyticus (AY047216.1) 99.1% 77.5 

OTU006694 IN A. celticus (MBDL01000001.1) 99.7% 100 

OTU004317 IN, EFF A. lwoffii (KT369856.1) 98.6% 95.3 

OTU012127 IN A. albensis (KR611794.1) 98.7% 100 

OTU004358 IN A. harbinensis (KC843488.1) 98.6% 95.9 

OTU011363 IN A. ursingii (APQC01000001.1) 99.6% 100 

OTU014283 IN A. oleivorans (KF749341.1) 98.0% 78.0 

OTU020140 IN A. radioresistens (AM495259.1) 99.1% 100 

OTU017557 IN A. rudis (EF204258.3) 99.3% 100 

OTU012742 IN A. baumannii (X81660.1) 98.6% 100 

OTU025639 IN A. indicus (LC191521.1) 99.1% 88.2 

OTU025642 IN A. gerneri (APPN01000079.1) 99.4% 100 

OTU020183 IN A. gandensis (KM454858.1) 99.6% 100 

OTU003228 IN, EFF A. junii (KJ620866.1) 99.4% 100 

OTU027605 IN 

C
lo

st
ri

d
iu

m
 

C. frigidicarnis (AF069742.1) 98.2% 100 

OTU004478 IN, EFF C. perfringens (AB610566.1) 99.7% 100 

OTU034705 EFF C. colicanis (AJ420008.1) 98.3% 100 

OTU019193 IN C. paraputrificum (AB627079.1) 98.5% 91.1 

OTU022098 IN, EFF C. disporicum (DQ855943.1) 99.6% 94.1 

OTU024338 IN C. botulinum type F (X68171.1) 99.5% 85.0 

OTU037193 IN C. butyricum (KY203641.1) 99.0% 100 

OTU005080 IN, EFF C. beijerinckii (LC071788.1) 99.6% 87.9 

OTU014508 IN, EFF C. puniceum (X71857.1) 98.1% 81.2 

OTU009104 IN, EFF 
Legionella 

L. feeleii (LBHK01000101.1) 99.4% 100 

OTU020580 EFF L. lytica (X66835.1) 99.3% 100 

OTU014279 IN Leptospira L. alstonii (CP015217.1) 99.8% 96.1 

OTU006502 EFF 

P
se

u
d

o
m

o
n

a
s 

P. pohangensis (DQ339144.1) 98.0% 97.8 

OTU001532 IN, EFF P. pseudoalcaligenes (AJ628163.1) 98.6% 100 

OTU030991 IN, EFF P. guangdongensis (LT629780.1) 99.6% 100 

OTU001564 IN, EFF P. alcaligenes (CP014784.1) 99.8% 100 

OTU017978 IN P. aeruginosa (DQ641680.1) 99.6% 100 

OTU025592 EFF P. psychrotolerans (AJ575816.1) 99.0% 100 

OTU020427 IN P. kunmingensis (JQ246444.1) 98.5% 100 

OTU032410 IN P. monteilii (AF064458.1) 98.8% 82.9 

OTU001416 IN, EFF P. baetica (FM201274.1) 99.6% 99.5 

OTU002122 IN P. gessardii (KJ589457.1) 98.8% 86.1 

OTU000948 IN, EFF P. palleroniana (FNUA01000001.1) 98.8% 76.2 

OTU007640 IN 

Y
er

si
n

ia
 Y. massiliensis (EF179119.1) 99.3% 98.9 

OTU036842 IN Y. frederiksenii (AF366379.1) 99.3% 99.9 

OTU036840 IN Y. enterocolitica (CHYV01000006.1) 99.3% 100 

OTU006891 IN Y. intermedia (JX429054.1) 99.5% 94.8 
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Figure 4: Principal coordinate analysis (PCoA) of the bacterial community based on Bray-Curtis similarity. 

Inflow and effluent samples are defined as circles and squares, respectively. Different sampling time points are 

indicated by blue colour for February, green colour for April, red colour for July and brown colour for October.  

 

Phylogenetic analysis of genera that contain known pathogens 

The advantage of full-length 16S rRNA gene sequencing was that, with some restrictions, 

more refined and reliable taxonomic assignment, even to the species level, was possible. 

While most of the previous studies used only the information of certain hypervariable regions 

of the 16S rRNA, we were able to use all phylogenetically relevant sites of the whole 16S 

rRNA gene. We therefore attempted to identify OTUs to a higher taxonomic level (e.g. 

species level), focusing on bacterial groups known to contain strains relevant for human 

health (Table 2). The analysis was carried out using maximum likelihood based phylogenetic 

approaches and including reference sequences from the SILVA database 
31,32

. Three major 

groups of OTUs were identified representing (1) waterborne/-transmitted bacteria (i.e., 

Legionella, Leptospira, Vibrio and Mycobacterium) 
33–36

, (2) enteric bacteria (i.e., 

Campylobacter, Clostridium, Salmonella, Shigella and Yersinia) 
37–42

, and (3) environmental 

bacteria (i.e. Acinetobacter, Aeromonas and Pseudomonas) that include important nosocomial 

pathogens, which can also acquire multi-drug resistance 
43–47

. 
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Waterborne bacteria: Legionella, Leptospira, Mycobacterium and Vibrio 

Legionella spp. and Leptospira spp. contributed to up to 0.9% and 1.0% to the bacterial 

community after rarefaction, respectively with increasing numbers from inflow to effluent 

(Fig. 5). Identified OTUs were closely related to Legionella lytica, L. feeleii (Supplementary 

Fig. S1), and Leptospira alstonii (Supplementary Fig. S2). The genus Mycobacterium was 

only present in the October effluent samples with a relative abundance of 0.02%, whereas 

Vibrio was not detected in either the inflow or the effluent (Fig. 5). 

Enteric bacteria: Campylobacter, Clostridium, Escherichia/Shigella, Salmonella and Yersinia 

Campylobacter and Salmonella spp. were not detectable. The genus Clostridium (sensu-

stricto) contributed between 0.1-0.9% to the bacterial community. Escherichia/Shigella and 

Yersinia decreased from inflow to effluent in relative abundance with Yersinia spp. being 

absent from the effluent samples (Fig. 5). According to our phylogenetic analyses probable 

species are Clostridium perfringens, C. botulinum, C. butyricum (Supplementary Fig. S3), 

Yersinia massiliensis, Y. frederiksenii, Y. enterocolitica, and Y. media (Supplementary Fig. 

S4). OTUs from the Escherichia/Shigella group did not show clear sequence similarity with 

any known species. 

Environmental bacteria: Acinetobacter, Aeromonas and Pseudomonas 

The genera Acinetobacter, Aeromonas and Pseudomonas were present in all samples, but 

their relative abundance decreased from inflow water to effluent in each of the sampled 

months (Fig. 5). Acinetobacter and Aeromonas spp. represented up to 9.5% and 5.8% of the 

bacterial community in the inflow, but only up to 1.3% and 1.1% in the effluent, respectively, 

while Pseudomonas spp. contributed only between 0.02% and 0.5% to the total bacterial 

community decreasing from inflow to effluent. OTUs were closely related to the described 

species Acinetobacter beijerinckii, A. haemolyticus, A. baumannii (Supplementary Fig. S5), 

Aeromonas sharmana, A. media (Supplementary Fig. S6), Pseudomonas alcaligenes, and P. 

aeruginosa (Supplementary Fig. S7).    
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Figure 5: Relative abundance (after rarefaction) of genera with known potential pathogens. They were grouped 

in environmental, waterborne and enteric, and are shown for each sample of inflow and effluent.  
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DISCUSSION 

Few studies describing the bacterial community in inflow water vs. effluent from a 

WWTP based on sequence data have been performed despite the potential for contamination 

of water bodies in highly urbanized areas 
5,12,13,27,28

. Most studies have focused on specific 

bacterial groups or sampled only inflow water, activated sludge or the effluent. We found 

distinct compositional differences between the microbiomes of WWTP inflow water and 

effluent using a whole 16S rRNA gene sequencing approach.  

At the phylum level there were two distinct clusters based on inflow and effluent specific 

bacterial communities, which showed only minor temporal differences (Fig. 1). Abiotic 

parameters such as oxygen concentration as well as competition among different bacterial 

species with different metabolic characteristics are very likely responsible for the observed 

differences in bacterial community composition in the WWTP inflow vs. the effluent. At the 

OTU level, however, there is evidence for seasonal or temporal differences (Table 1), but 

with only four time points sampled we could not draw any strong conclusions regarding 

seasonality.  

While at the phylum level only minor differences occur between geographically 

distributed WWTPs, they differ strongly in the composition of the most abundant genera 

5,12,27,28
. For example, our inflow samples shared seven dominant genera with the inflow water 

of a WWTP in Wisconsin (USA) 
28

 and nine 
12

 or three 
27

 genera with a WWTP in Hong 

Kong (China). The genera Acinetobacter and Arcobacter were dominant in all studies and are 

likely common members of WWTPs worldwide 
5,12,27,28

.  

The differences could be further explained by other environmental parameters such as pH, 

temperature and salinity. The WWTP in Hong Kong, for example, treated wastewater has a 

salinity of 1.2% since it contains ca. 30% of seawater used for the toilet flushing system in 

Hong Kong 
27

. This may possibly favour other bacterial groups in comparison to WWTPs that 

treat freshwater. Other reasons for the contrasting results might be the use of different small 

pore size filters for collecting bacteria and the application of different DNA extraction and 

sequencing methods. While part of the WWTP bacterial community reflects the human 

microbiome 
13,48,49

, some bacteria likely stem from industrial waste. Environmental bacteria 
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may reach the WWTP via rainfall and wildlife such as rodents inhabiting the drainage system. 

This might also explain observed regional differences in the bacterial community of WWTPs. 

The dominant bacteria found in the current study can be useful or even necessary for the 

treatment process. Comamonas denitrificans has been shown to be a key organism in WWTPs 

and thus is very useful by its efficient denitrifying activity 
50,51

. Its higher abundance in the 

outflow samples agreed with its presence in biofilms of the WWTP facility itself, including 

activated sludge 
50–53

. Other species have been identified as abundant members in activated 

sludge and were suggested to be involved in nutrient removal including nitrite oxidation by 

Nitrospira spp. or enhanced biological phosphorus removal by Simplicispira limi 
54–58

, which 

were also abundant in the effluent of the current study. 

Bacteria can be harmful for humans and animals by being pathogenic and/or by carrying 

antibiotic resistance genes. We grouped bacterial genera that contain known pathogenic 

species into three categories: waterborne, enteric or environmental bacteria that are prone to 

multidrug resistances.  

Among waterborne bacteria Vibrio cholera is a well-studied waterborne pathogen 
34,59

 and 

has been found in WWTPs in Hong Kong, South Africa, USA and Brazil 
14,60–62

. 

Contamination of WWTPs by cholera bacteria is likely human patient derived. As the 

incidence of cholera in Germany is negligible, this would explain why we never detected 

OTUs related to the genus Vibrio. Legionella and Leptospira, two other classical waterborne 

bacterial genera comprise known pathogenic species such as Legionella pneumophila and 

Leptospira interrogans. Interestingly, the relative abundance of OTUs belonging to these two 

genera increased from inflow to effluent samples indicating a potential health risk due to 

contamination of the environment or infection risk for WWTP workers. Legionella spp. are 

intracellular parasites and can replicate in free-living amoebae 
63,64

. They likely form biofilms 

in the WWTP, which can promote bacterial growth and persistence in the aquatic 

environment 
63,64

. In the current study, L. lytica and L. feeleii were identified as closest 

relatives (Supplementary Fig. S1). While the OTU related to L. lytica is exclusively present in 

the inflow samples, the OTU related to L. feeleii was detected in both inflow and effluent 

samples. Both species are known to cause pneumonia in humans when inhaled via aerosols 
65–

68
 and may present a potential health risk as Legionella spp. in WWTP aerosols are not 



CHAPTER 1 

31 

 

unusual 
69–71

. Wastewater, being enriched in nutrients and carbon, dissolved oxygen 

concentrations of 6.3-10.3 mg/L, and relatively high temperatures of 14.5-24.6 °C 

(Supplementary Fig. S8), provides favourable conditions for replication of Legionella spp. 
72–

74
. These pathogens remain challenging to control as they grow successfully within protozoa 

and biofilms, where they are relatively protected against disinfectants, grazers and other harsh 

environmental conditions 
72

.   

The increase of Leptospira in the wastewater effluent could be associated with the 

presence of saprophytic leptospires that reproduce outside of a host and inhabit various 

aquatic environments 
75,76

. Pathogenic Leptospira, however, can survive in water but do not 

reproduce outside of a host and thus may be introduced via an infected person or animals such 

as rodents, which are their natural reservoir and shed leptospires into their environment via 

urine 
75,76

. Our phylogenetic analyses showed that the OTU affiliated with L. alstonii clustered 

with known pathogenic species such as L. interrogans and L. mayottensis 
77,78

 and was only 

present with one read in one of the inflow samples and thus, is likely derived from an infected 

human or rodent. All other Leptospira OTUs, were exclusively present in the effluent samples 

and belonged to saprophytic species such as L. idonii and L. biflexa 
79,80

 or were represented 

by their own cluster (Supplementary Fig. S2). This indicates that wastewater might favour the 

growth of saprophytic leptospires. While pathogenic leptopires grow much better at 

temperatures of around 30°C, saprophytic Leptospira spp. also replicate well at lower 

temperatures, as low as 10°C 
81

. The temperatures of our wastewater samples varied between 

14.5-24.6 °C during the sampled year (Supplementary Fig. S8). Furthermore, the ability to 

form biofilms may enhance their survival and/or replication in such an environment. 

However, as most of these OTUs seem to be related to saprophytic leptospires, we would 

assume a low health risk potential for humans and animals. 

Enteric pathogens can secrete (entero-) toxins, which can damage the gastrointestinal tract 

of infected individuals 
82–84

. They are part of the excreted faecal microbiota of humans in the 

WWTP inflow, but can also be introduced by animals such as rodents 
85

. In the current study, 

Clostridium (sensu-stricto), Escherichia-Shigella, and Yersinia were mainly not abundant in 

the inflow, having a maximum relative abundance of 0.9% and were reduced in or absent 

from the effluent (Fig. 5). Campylobacter and Salmonella spp. were not detected at all, which 
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could mean that the sequencing depth was too low to detect them. While Escherichia-Shigella 

and Yersinia heavily decreased the relative abundance, Clostridium (sensu-stricto) remained 

mainly stable as observed previously 
12

. These findings indicate that the wastewater treatment 

works well in removing enteric bacteria by introducing oxygen, preventing serious health risk. 

Environmental bacteria such as Acinetobacter, Aeromonas and Pseudomonas spp. can be 

multidrug resistant 
43,86,87

 and some species also have a pathogenic potential such as 

Pseudomonas aeruginosa and Acinetobacter baumannii 
88,89

. OTUs related to species like P. 

aeruginosa and A. baumannii were not abundant and only present in the WWTP inflow 

suggesting that the treatment procedures are effective against these species. Although the 

overall relative abundance of these three genera was reduced, they were not completely 

removed during the treatment process.  

Pathogens can be strongly diluted in wastewater samples and masked by other much more 

abundant bacteria. Thus, the presence of pathogens could be greatly underestimated when 

using 16S rRNA data only. For instance, in a previous study we could detect and isolate C. 

difficile from the same samples used in the current study and even detect the C. difficile toxin 

genes via quantitative real-time PCR, but the 16S rRNA dataset did not provide any evidence 

for the presence of C. difficile 
90

. Therefore, there are clearly limits to high throughput 

sequencing studies that involve a PCR step in terms of favouring abundant taxa. However, the 

current study provided evidence for the presence of other potential pathogens such as 

Acinetobacter baumannii, Clostridium perfringens, Legionella lytica, Pseudomonas 

aeruginosa and Yersinia enterocolitica by having the information of the full-length 16S rRNA 

gene, which may indicate that they are much more abundant than C. difficile, although still 

rare in the 16S rRNA dataset. Thus, further studies including isolation and cultivation 

methods are necessary to further investigate the presence and diversity of pathogens, to test 

for infectivity and to assess a realistic health risk.  Particularly, water-adapted pathogens such 

as within the genus Legionella or Leptospira potentially increase in WWTPs and hence 

should be of great interest for health risk assessment, WWTP operation and waste 

management.   
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MATERIAL AND METHODS 

Sampling 

Untreated raw inflow water and treated effluent (no contact to the environment) of a 

wastewater treatment plant (WWTP) in Berlin, Germany, were sampled four times in 2016 

(February 11
th

, April 15
th

, July 27
th

 and October 20th). The selected WWTP treated municipal 

wastewater with only a minor percentage of industrial wastewater. It contains a mechanical 

treatment followed by biological one which includes biological phosphate elimination in 

combination with nitrification and denitrification, and the production of activated sludge. The 

effluent undergoes UV sterilization before its release in the environment. The exact location 

of the sampled WWTP cannot be disclosed due to a confidentiality agreement with the 

WWTP operators. The water samples were filtered through 0.22 µm Sterivex® filters (EMD 

Millipore, Germany) connected to a peristaltic pump (EMD Millipore, Germany) to 

concentrate bacteria and subsequently stored at -20°C. From the inflow water 20-35 mL could 

be concentrated on one filter, while from the effluent it was possible to filtrate 175-500 mL. 

Temperature, pH and dissolved oxygen were measured in the inflow samples with a digital 

thermometer (Carl Roth, Germany), pH multimeter EC8 (OCS.tec GmbH & CO. KG, 

Germany), Pen type, IP 67 dissolved oxygen meter (PDO-519, Lutron Electronic Enterprise 

CO., Taiwan), respectively.  

DNA extraction 

DNA was extracted from 0.22 µm Sterivex filters using the QIAamp DNA mini kit 

(Qiagen, Germany) following the protocol for tissue with some modifications. Briefly, the 

filters were cut into pieces and put into a 2 mL tube. 0.2 µm zirconium glass beads and 360 

µL of buffer ATL were added and vortexed for 5 min at 3,000 rpm in an Eppendorf 

MixMate® (Eppendorf, Germany). Proteinase K (>600 mAU/ml, 40 µL) was added and 

incubated at 57°C for 1 h. After centrifugation for 1 min at 11,000 rpm, the supernatant was 

transferred to a new 2 mL tube and extraction was performed following the manufacturer‘s 

protocol.  
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Amplification of full-length 16S rRNA genes 

Primers 27F (5‘-AGRGTTYGATYMTGGCTCAG-3‘) and 1492R (5‘-

RGYTACCTTGTTACGACTT-3‘) were used with symmetric barcodes designed by Pacific 

Biosciences® (USA) for each sample. PCRs for each sample were run in triplicate and carried 

out in a total volume of 25 µL containing 12.5 µL MyFi
TM

 Mix (Bioline, UK), 9.3 µL water, 

0.7 µL of bovine serum albumin (20 mg/mL; New England Biolabs, USA), 0.75 µL of each 

primer (10 µM) and 1 µL of DNA. The cycling program was as follows: denaturation at 95°C 

for 3 min, 25 cycles of 95°C for 30 sec, 57°C for 30 sec and 72°C for 60 sec and a final 

elongation at 72°C for 3 min. The quality and concentration of the PCR products were 

determined using a 4200 TapeStation with D5000 tapes and reagents (Agilent Technologies, 

USA). Equimolar sample mixes were used for library preparation.  

Library preparation and sequencing 

After bead purification with Agencourt AMPure XP (Beckman Coulter, USA), 

sequencing libraries were built using the SMRTbell Template Prep Kit 1.0‐SPv3 following 

the guidelines in the amplicon template protocol (Pacific Biosciences, USA). DNA damage 

repair, end-repair and ligation of hairpin adapters were performed according to the 

manufacturer's instruction. DNA template libraries were bound to the Sequel polymerase 2.0 

using the Sequel Binding Kit 2.0 (Pacific Biosciences, USA). The data collection per sample 

was done in a single Sequel SMRT Cell 1M v2 with 600 min movie time on the Sequel 

system (Pacific Biosciences, USA). We used a 5 pM on-plate loading concentration using 

Diffusion Loading mode and the Sequel Sequencing Plate 2.0 (Pacific Biosciences, USA). 

Sequence Analysis 

Circular consensus sequences (CCS) for each multiplexed sample were generated with the 

SMRT Analysis Software (Pacific Biosciences, USA) and used for further downstream 

analyses. An average of 7 Gb total output per SMRT cell was obtained, with an average CCS 

read length of 17 kb. Mean amplicon lengths of 1500 bp were confirmed. For further 

sequence processing Mothur 1.37 was used 
91

. All sequences containing ambiguous bases, 

homopolymer stretches of >8 and shorter than 1,400 bp were removed. Sequences were 
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aligned using the align.seqs command in combination with the Silva v128_SSURef database. 

Reads that could not be aligned were removed and the remaining sequences were preclustered 

at 1% difference to account for potential PCR errors and then checked for chimeras using 

UCHIME in de novo mode 
92

. Classification was done using classify.seqs using the RDP 

classifier implemented in Mothur 
93

 and Silva v128_SSURef database 
31,32

. Sequences 

classified as Chloroplast-Mitochondria-unknown-Archaea were removed from the dataset. 

Operational taxonomic unit (OTU) clustering was done with VSEARCH (dgc mode; 
94

) as 

implemented in Mothur, using a 99% similarity cutoff to nearly represent one species per 

OTU. This cutoff was used to resolve relationships among closely related bacteria that would 

be masked when using a cutoff of 97%. Phylogenetic analyses were performed with the ARB 

software using the LTPs128_SSU tree 
95

 and the SILVA database for bacterial 16S rRNA 

genes 
31,32

. 

Phylogenetic analyses and statistics  

Maximum-likelihood phylogenies (PhyML) were built with Jukes Cantor as the 

substitution model including 1,000 bootstrap replicates by using Geneious® 9.0.5 
96

. 

Rarefaction, log standardization of OTU counts and statistical analyses were performed using 

R version 3.5.1. To compare full-length with short read sequences, we restricted the 

sequences affiliated with the genus Acinetobacter using 16S rRNA primers to a 464 bp 

amplicon covering the hypervariable regions 3-4 
30

. To test for differential abundance of 

OTUs in the inflow versus the effluent, we used the exact negative binomial test in 

combination with the quantile-adjusted conditional maximum likelihood estimation of 

dispersion of the R package edgeR 
97

. This analysis was based on TMM (trimmed mean of M 

values, where M is the log-fold-change of each OTU) normalized abundance data 
98

. The test 

basically performed a pairwise comparison of OTU relative abundances between the two 

sample groups and an OTU was considered to respond significantly when the Bonferroni-

corrected p-value was below 0.01. 
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CHAPTER 1: SUPPLEMENTARY MATERIAL  

 

Table S1: Comparison of the phylogenetic affiliation of Acinetobacter-OTUs between short 

(hypervariable region V3-V4) and full-length 16S rRNA sequence information. OTUs which could 

only be affiliated to a species when having full-length information are highlighted in bold.  

  short-length (477 bp) full-lentgh (~ 1,500 bp) 

  Affiliation % similarity Bootstrap Affiliation % similarity Bootstrap 

OTU003228 A. junii  99.0 39.4 A. junii  99.4 100 

OTU004317 A. lwoffii 98.5 67.3 A. lwoffii 98.6 95.3 

OTU004358 A. harbinensis 98.5 95.1 A. harbinensis 98.6 95.9 

OTU006694 - - - A. celticus 99.7 100 

OTU011363 A. ursingii  99.0 99.8 A. ursingii  99.6 100 

OTU012127 A. albensis 99.2 99.1 A. albensis 99.2 100 

OTU012742 A. baumannii  98.7 94.6 A. baumannii  98.6 100 

OTU014283 -  - - A. oleivorans  98.0 78.0 

OTU014486 -  - - A. beijerinckii  99.7 98.7 

OTU017554 A. schindleri  98.3 86.3 A. schindleri  97.9 98.7 

OTU017557 A. rudis 96.7 87.9 A. rudis  99.3 100 

OTU020140 A. radioresistens  98.5 94.9 A. radioresistens  99.1 100 

OTU020183 -  - - A. gandensis  99.6 100 

OTU025639 -  - - A. indicus  99.1 88.2 

OTU025642 A. gerneri  96.2 69.5 A. gerneri  99.4 100 

OTU025938 -  - - A. haemolyticus  99.1 77.5 

OTU036224 A. beijerinckii  98.3 49.7 A. tjernbergiae  94.0 70.7 

OTU037492 A. haemolyticus  97.3 66.3 A. dispersus  96.9 78.1 
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Supplementary Fig. S1: Phylogenetic tree of the genus Legionella. Maximum-likelihood tree (PhyML), based 

on whole 16S rRNA gene or partial sequences over 1,000 bp. Bootstrap percentages at nodes are shown (based 

on 1,000 iterations). GenBank accession numbers are given in brackets. Bar represents 2% sequence divergence.  
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Supplementary Fig. S2: Phylogenetic tree of the genus Leptospira. Maximum-likelihood tree (PhyML), based 

on whole 16S rRNA gene or partial sequences over 1,000 bp. Bootstrap percentages at nodes are shown (based 

on 1,000 iterations). GenBank accession numbers are given in brackets. Bar represents 2% sequence divergence. 
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Supplementary Fig. S3: Phylogenetic tree of the genus Clostridium (sensu-stricto). Maximum-likelihood tree 

(PhyML), based on whole 16S rRNA gene or partial sequences over 1,000 bp. Bootstrap percentages at nodes 

are shown (based on 1,000 iterations). GenBank accession numbers are given in brackets. Bar represents 2% 

sequence divergence. 
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Supplementary Fig. S4: Phylogenetic tree of the genus Yersinia. Maximum-likelihood tree (PhyML), based 

on whole 16S rRNA gene or partial sequences over 1,000 bp. Bootstrap percentages at nodes are shown (based 

on 1,000 iterations). GenBank accession numbers are given in brackets. Bar represents 2% sequence divergence.  
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Supplementary Fig. S5: Phylogenetic tree of the genus Acinetobacter. Maximum-likelihood tree (PhyML), 

based on whole 16S rRNA gene or partial sequences over 1,000 bp. Bootstrap percentages at nodes are shown 

(based on 1,000 iterations). GenBank accession numbers are given in brackets. Bar represents 2% sequence 

divergence. 
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Supplementary Fig. S6: Phylogenetic tree of the genus Aeromonas. Maximum-likelihood tree (PhyML), 

based on whole 16S rRNA gene or partial sequences over 1,000 bp. Bootstrap percentages at nodes are shown 

(based on 1,000 iterations). GenBank accession numbers are given in brackets. Bar represents 2% sequence 

divergence. 
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Supplementary Fig. S7: Phylogenetic tree of the genus Pseudomonas. Maximum-likelihood tree (PhyML), 

based on whole 16S rRNA gene or partial sequences over 1,000 bp. Bootstrap percentages at nodes are shown 

(based on 1,000 iterations). GenBank accession numbers are given in brackets. Bar represents 2% sequence 

divergence. 
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Supplementary Fig. S8: Measurements of pH, temperature and dissolved oxygen from inflow [IN] and 

effluent [EFF] samples. * Effluent samples were measured by the WWTP staff. 
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Supplementary Fig. S9: Phylogenetic tree of the genus Acinetobacter using 477 bp-sequences extracted 

from the whole 16S rRNA genes generated in the current study. Maximum-likelihood tree (PhyML), based 

on whole 16S rRNA gene or partial sequences over 1,000 bp. Bootstrap percentages at nodes are shown (based 

on 1,000 iterations). GenBank accession numbers are given in brackets. Bar represents 2% sequence divergence.
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ABSTRACT  

We investigated inflow of a wastewater treatment plant and sediment of an urban lake for the 

presence of Clostridioides difficile by cultivation and PCR. Among seven colonies we 

sequenced the complete genomes of three: two non-toxigenic isolates from wastewater and 

one toxigenic isolate from the urban lake. For all obtained isolates, a close genomic 

relationship with human-derived isolates was observed.  

 

NOTE  

Clostridioides difficile (homotypic synonym Clostridium difficile) is a Gram-positive, spore-

forming bacterium [1–3]. Pathogenic C. difficile strains, mainly defined by their ability to 

produce the enterotoxin A (TcdA) and/or the cytotoxin B (TcdB) [4–9], can cause 

gastrointestinal diseases such as diarrhea and life-threatening pseudomembranous colitis, 

often associated with antibiotic treatment [5, 10–14]. Whereas a role as a nosocomial 

pathogen is well-documented, evidence is accumulating that animals and non-clinical 

environments are potential reservoirs for pathogenic C. difficile strains and therefore potential 

sources of infection [10, 15–25]. Genome sequencing data is generally missing from strains 

isolated from the aquatic environment. Complete genome analyses could clarify the origin, 

evolution and adaptation of C. difficile to the non-clinical environment and provide a better 

understanding of its epidemiology. Thus, we sequenced the complete genomes of three C. 

difficile strains isolated from the sediment of an urban bathing lake and from the inflow of a 

wastewater treatment plant (WWTP) in Berlin, Germany using a combination of single 

molecule real time (SMRT) and Illumina sequencing technology. The obtained genome 

sequences were further compared to available C. difficile genomes.  

Inflow samples from a WWTP (Berlin, Germany) were collected on February 11th, April 

15th, July 27th and October 20th 2016. A volume of 25-35 mL wastewater was filtered 

through 0.22 µm Sterivex® filters (Merck Millipore, Germany). The filters were stored at -

20°C until DNA extraction according to the manufacturer‘s instructions using the QIAamp 

DNA mini kit (Qiagen, Germany). For cultivation, 50 mL of wastewater were centrifuged and 
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the pellet was stored at -20°C until further processing. The pellet was finally resuspend in 1 

mL of sterile Dulbeccos‘s 1× PBS (Sigma-Aldrich, Germany) for cultivation on chromID® C. 

difficile agar plates (bioMérieux, France) at 37°C under anaerobic condition for at least 48h. 

Sediment was sampled on August 15th, 2016 from the urban lake ‗Weisser See‘ 

(52°33'15.3"N, 13°27'48.6"E) in Berlin (Germany), which is heavily used for recreational 

activity. One gram of sediment was used exclusively for cultivation on chromID® C. difficile 

agar plates.  

Colonies were screened for C. difficile by a colony PCR on a C. difficile-specific region of the 

16S rRNA gene. A total of seven colonies originated from the WWTP in spring and summer 

as well as from the sediment of lake ‗Weisser See‘ were positive and subsequently tested for 

the presence of the toxin A- and toxin B-encoding gene by PCR. Whereas five obtained 

isolates from the WWTP inflow were tested negative for toxin A and B, two colonies from the 

lake were positive. As the isolates from the WWTP were toxin A- and toxin B-negative, we 

additionally performed a quantitative real-time PCR on the toxin genes (tcdA and tcdB) in 

combination with a PCR for the C. difficile-specific 16S rRNA region using the DNA extracts 

from the WWTP inflow samples. All PCR conditions, primer and probe sequences used in 

this study are listed in Table S1. To avoid genome sequencing of identical strains or clones 

we compared PCR-amplified and sequenced fragments of the surface layer protein A gene 

(slpA) [26, 27]. It revealed three different sequences among our seven colonies, three of 

which were then selected for complete genome sequencing: DSM 104450 (WWTP spring), 

DSM 104451 (WWTP summer) and DSM104452 (sediment, ‗Weisser See‘). For complete 

genome sequencing, cultivation and genomic DNA extraction was performed as reported 

previously [28, 29].  Genome sequencing, assembly and annotation was performed as 

described previously [30]. Briefly, SMRT reads generated on an RSII machine (Pacific 

Biosciences, USA) were assembled using the RS_HGAP_Assembly.3 protocol implemented 

in SMRT Portal version 2.3.0 yielding in the complete chromosome and their possibly present 

extrachromosomal elements of each C. difficile isolate. Sequence quality was then improved 

by mapping Illumina short-reads with >100-fold coverage onto the assembled trimmed and 

circularized replicons by using BWA (available at https://sourceforge.net/projects/bio-bwa/) 

[31, 32]. Genomes were annotated by using Prokka 1.8 software 

(https://github.com/tseemann/prokka) [33]. Sequences were deposited in GenBank under the 
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accession numbers CP021445.1 + CP021446.1 (extrachromosomal element), CP021447.1 and 

CP029345.1, respectively.  

A search in the C. difficile genome sequence database within EnteroBase 

(http://enterobase.warwick.ac.uk/species/index/clostridium; manuscript in preparation) [34; 

PMID: 29621240] revealed the following clinical C. difficile isolates as close relatives to our 

environmental isolates: CD-15-00005 (PCR ribotype 010) and CD-15-01025 (PCR ribotype 

014) [35], and C00011764 [36]. Data of these strains have been deposited in the European 

Nucleotide Archive (https://www.ebi.ac.uk/ena) under accession numbers ERR2562463, 

ERR2562464 and PRJEB4639, respectively. Illumina reads from isolate C00011764 are 

publicly available (accession number PRJEB4639) [36]. In addition, all 21 available complete 

genome sequences were downloaded from NCBI GenBank 

(https://www.ncbi.nlm.nih.gov/genbank/) for comparison (Table S2). The amino acid 

sequences of the protein-coding sequences from the raw Prokka annotations were analysed 

with Proteinortho v5.16b [37] and genomes were aligned using Parsnp [38]. A phylogenetic 

tree was constructed using FastTreeDbl and visualised using Figtree [39].  Putative 

bacteriophages were analysed using the PHASTER web server (http://phaster.ca/, [40]) and 

BLAST (http//blast.ncbi.nlm.nih.gov/, [41]).  

A total of seven C. difficile colonies were obtained from WWTP inflow and sediment of an 

urban lake in Berlin (Germany), of which three were selected for complete genome 

sequencing. Only the ones derived from the lake were positive for the toxin-encoding genes 

tcdA and tcdB by PCR. However, quantitative real-time PCR indicated the presence of tcdA 

and tcdB in WWTP inflow samples, even though the Ct-values were relatively high, which 

indicate low concentrations probably due to the high dilution in inflow water (Table S3). 

Thus, we assume that both toxigenic (indicated by qRT-PCR) and non-toxigenic strains 

(isolated) of C. difficile were present in WWTP inflow samples throughout the year, likely 

reflecting fecal contamination [42–45]. Further studies of C. difficile in wastewater including 

its survival in and spread via effluent are required as consistent contamination of the aquatic 

environment with viable C. difficile has already been demonstrated [45, 46].  

Phylogenetic analysis revealed that all three isolated C. difficile strains belong to clade 1 and 

show high similarity with human-derived isolates, having only ~5-50 SNPs (single nucleotide 
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polymorphisms) in regions that could be aligned for all strains. Whereas the WWTP isolates 

DSM 104450 and DSM 104451 were closely related to isolates CD-15-01025 (PCR ribotype 

010) and C00011764 (unknown PCR ribotype), the lake isolate DSM 104452 was closely 

related to isolate CD-15-00005 (PCR ribotype 014), respectively (Figure 1). While CD-15-

01025 was collected in Germany, 2014, C00011764 is from United Kingdom. Location and 

date of collection of strain CD-15-00005 remains unknown. Strains of the same ribotype have 

already been shown to be isolated along large temporal and geographic distances, as well as 

from different hosts, which highlights a broad dissemination through many potential 

transmission routes [47, 48]. General genome features of DSM 104450, DSM 104451, and 

DSM 104452 are shown in Table S4.  

 

 

Figure 1: Maximum-likelihood phylogenetic tree of complete sequenced strains of clade 1 based on SNPs 

(single-nucleotide polymorphisms) using Parsnp [38]. Node labels represent the maximum likelihood bootstrap 

values calculated from 1,000 repetitions and the scale bar displays 0.003 nucleotide substitutions per site.   
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The prophage content differed between the three genomes as shown in Table 1. Seven 

prophage sequences, of which four were intact and three incomplete, were identified in DSM 

104450. In addition, this isolate contained an extrachromosomal element, which closely 

matched the Clostridium phages CDSH1, phiCD38-2 and phiCD111. DSM104451 contained 

two intact and two incomplete prophage sequences. In contrast, DSM104452 had four 

prophage sequences with only one intact (Table 1).  

 

Table 1: Predicted genomic bacteriophage-related regions in three novel C. difficile isolates by PHASTER. 

Region Length Completeness CDS Best hit GC 

DSM 104450 (Extrachromosomal element) 

1 41.6 kb intact 51 Clostridium phage phiCD111 [NC_028905] 30.9% 

DSM 104450 (Chromosome) 

1 18.1 kb incomplete 16 Enterobacteria phage phi92 [NC_023693] 29.8% 

2 68.0 kb intact 91 Clostridium phage phiMMP03 [NC_028959] 28.5% 

3 27.4 kb incomplete 30 Clostridium phage phiCDHM19 

[NC_028996] 

27.7 % 

4 56.0 kb intact 84 Clostridium phage phiMMP01 [NC_028883] 28.6 % 

5 45.3 kb intact 49 Clostridium phage phiCD211 [NC_029048] 27.4 % 

6 13.3 kb incomplete 24 Clostridium phage phiMMP02 [NC_019421] 25.1% 

7 47.4 kb intact 72 Clostridium phage phiCD27 [NC_011398] 29.1% 

DSM 104451 (Chromosome) 

1 17.9 kb incomplete 16 Enterobacteria phage phi92 [NC_023693] 29.8% 

2 66.3 kb intact 88 Clostridium phage phiMMP03 [NC_028959] 28.7 % 

3 27.3 kb incomplete 30 Clostridium phage phiCDHM19 

[NC_028996] 

28.0% 

4 70.7 kb intact 78 Clostridium phage phiMMP03 [NC_028959] 29.5% 

DSM 104452 (Chromosome) 

1 18.1 kb incomplete 16 Enterobacteria phage phi92 [NC_023693] 29.8% 

2 57.4 kb intact 90 Clostridium phage phiMMP03 

[NC_028959] 

28.6% 

3 27.4 kb incomplete 30 Clostridium phage phiCDHM19 

[NC_028996] 

27.7% 

4 9.4 kb incomplete 17 Clostridium phage phiMMP02 

[NC_019421] 

26.0% 
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The pan genome of all 27 analysed complete C. difficile genomes consisted of 6,926 CDS and 

a core genome of 2,620 CDS (38%). A total of 1,513 CDS (22%) were identified as strain 

unique. DSM 104450, DSM 104451 and DSM104452 had 39, 19 and 2 unique genes, 

respectively (Table S5). C. difficile strains with the most unique genes were ATCC 43255, 

BI9, FDAARGOS_267, LEM1 and Z31. The strains 630, 630∆erm, BI1, BR81, CD196, 

DH/NAP11/106/ST-42 and DSM 1296T had few (< 10) unique genes. Please note that these 

numbers are based on only 27 genomes. Thus, future access to more complete genomes will 

provide more accurate numbers, since upto date most publically available C. difficile genome 

sequences are partial. Previous studies that have included many different strains from 

different human and animal hosts demonstrated the percentage of conserved functional core 

genes to be low between 16-19.6% [49] of which 20% encode for hypothetical proteins and 

the remaining are housekeeping genes for metabolism, biosynthesis, DNA replication, 

transcription, transport and cell division [49–51]. In the current study, the 38% core gene 

content is consistent with a number of genes conserved across the investigated strains. 

The close relationship of the lake isolate DSM 104452 to the clinical strain CD-15-00005 

(PCR ribotype 014) indicates a transmission of this strain between humans and the 

environment and its success in both of them, wich might particularly occur during intense 

recreational activity. C. difficile PCR ribotype 014 is known to cause infections and is well-

established in both human and porcine populations indicating a zoonotic or foodborne 

etiology [51]. The lake is not connected to any sewer system and is rain fed. Health risk might 

therefore be highest in summer when recreational activity in and around the lake is most 

intense.  

The low C. difficile isolation rate from WWTP inflow could in part be due to the cultivation 

methods. For example, most samples had to be frozen prior to culturing which may have 

lowered the isolation rate, though the PCR results suggest that C. difficile in general was not 

extremely abundant in our samples.  

Our study provides the first genomic evidence for C. difficile in the aquatic environment of 

Berlin, Germany. To better understand the occurrence and ecology of C. difficile in different 

aquatic environments, further studies will be necessary.  
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CHAPTER 2: SUPPLEMENTARY MATERIAL 

Table S1: Primer and probe sequences plus appropriate PCR reactions and conditions. 

Reagent Concentration Cycler conditions 

Whole 16S rRNA gene 

27F AGR GTT YGA TYM TGG CTC AG 
[52, 53] 

1492R RGY TAC CTT GTT ACG ACTT 

2× MyTaq
TM

 HS Mix (Bioline, UK) 1× Denaturation 95°C 3 min 

20 mg/mL BSA (NEB, USA) 0.56 mg/mL 30 cycles 95°C 30 sec 

Primer 27F (10 µM) 0.2 µM 57°C 30 sec 

Primer 1492R (10 µM) 0.2 µM 72°C 1 min 

Template DNA variable Elongation 72°C 3 min 

H2O variable  

C. difficile specific region of 16S rRNA gene 

Cdiff_16S_F1 TAT TTG AGA GGC ATC TCT T 
this study 

Cdiff_16S_R CCG ATT AAG GAG ATG TCA TTG G 

2× MyTaq
TM

 HS Mix (Bioline, UK) 1× Denaturation 95°C 3 min 

20 mg/mL BSA (NEB, USA) 0.56 mg/mL 30 cycles 95°C 30 sec 

Primer Cdiff_16S_F1 (10 µM) 0.2 µM 55°C 30 sec 

Primer Cdiff_16S_R (10 µM) 0.2 µM 72°C 1 min 

Template DNA variable Elongation 72°C 3 min 

H2O variable  

Colony PCR (toxin genes and slpA gene) 

tcdA_F AGA TTC CTA TAT TTA CAT GAC AAT AT 

[54] 
tcdA_R GTA TCA GGC ATA AAG TAA TAT ACT TT 

tcdB_F GGA AAA GAG AAT GGT TTT ATT AA 

tcdB_R ATC TTT AGT TAT AAC TTT GAC ATC TTT 

slpA_com_19-1_F GTT GGG AGG AAT TTA AGR AAT G 
[26] 

slpA_com_20-1_R GCW GTY TCT ATT CTA TCD TYW 

2× DreamTaq Green PCR Master Mix (Thermo 

Fisher Scientific, USA) 
1× Denaturation 95°C 10 min 

Primer tcdA_F/tcdB_F/slpA_com_19-1_F (10 

µM) 
0.1 µM 

35 cycles 
95°C 30 sec 

Primer tcdA_R/tcdB_R/slpA_com_20-1_R  (10 

µM) 
0.1 µM 55°C 30 sec 

Template DNA variable 72°C 1 min 

H2O variable Elongation 72°C 3 min 
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Quantitative RT-PCR (toxin genes), Mx3000P cycler (Agilent Technologies, USA) 

tcdA441 TCT ACC ACT GAA GCA TTA C 

[55] 

tcdA579 TAG GTA CTG TAG GTT TAT TG 

tcdB2667 ATA TCA GAG ACT GAT GAG 

tcdB2746 TAG CAT ATT CAG AGA ATA TTG T 

probe tcdAB1FAM FAM-5‘-CAC GCG GAT TTT GAA TCT CTT CCT CTA 

GTA GCG CGT G-3‘-BHQ1 

probe tcdBB2FAM FAM-5‘-CAC GCC TGG AGA ATC TAT ATT TGT AGA 

AAC TGG CGT G-3‘-BHQ1 

SsoAdvanced
TM 

Universal Probes Supermix (Bio-

Rad, USA) 
1× Denaturation 95°C 3 min 

20 mg/mL BSA (NEB, USA) 0.7 mg/mL 45 cycles 95°C 10 sec 

Primer tcdA441/tcdB2667 (10 µM) 0.5 µM 57°C 30 sec 

Primer tcdA579/tcdB2746 (10 µM) 0.5 µM 

 
Probe tcdAB1FAM/tcdBB2FAM (10 µM) 0.5 µM 

Template DNA variable 

H2O variable 

26. Joost I, Speck K, Herrmann M, Müller L von. Characterisation of Clostridium difficile isolates by slpA and 

tcdC gene sequencing. Int J Antimicrob Agents. 2009; 33:S13–8. 

52. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. Critical evaluation of two primers 

commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol. 2008; 74:2461–70. 

53. Page KA, Connon SA, Giovannoni SJ. Representative freshwater bacterioplankton isolated from Crater 

Lake, Oregon. Appl Environ Microbiol. 2004; 70:6542–50. 

54. Lemee L, Dhalluin A, Testelin S, Mattrat M-A, Maillard K, Lemeland J-F, et al. Multiplex PCR targeting tpi 

(triose phosphate isomerase), tcdA (toxin A), and tcdB (toxin B) genes for toxigenic culture of Clostridium 

difficile. J Clin Microbio. 2004; 42:5710–4. 

55. Bélanger SD, Boissinot M, Clairoux N, Picard FJ, Bergeron MG. Rapid detection of Clostridium difficile in 

feces by real-time PCR. J Clin Microbiol. 2003; 41:730–4. 
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Table S2: C. difficile strains selected for phylogenetic and comparative genome analyses. 

Clade Strain Accession No. Isolation 

source/Host 

Geographic location 

and collection year 

1 

08ACD0030 CP010888.1 Homo sapiens Ontario, Canada, 2005 

CD-15-00005 ERR2562463  Homo sapiens NA 

DSM 104452  CP029345.1 Lake sediment Berlin, Germany, 2016 

LEM1 CP019469.1 Mus musculus USA, 2015 

BR81 CP019870.1 Homo sapiens South Korea, 2016 

C00011764 ERR347401  Homo sapiens United Kingdom 

DSM 104451 CP021447.1  WWTP Berlin, Germany, 2016 

DSM 27543 (630) CP010905.2 Homo sapiens Switzerland, 1982 

DSM 28645 (630∆erm) CP016318.1 Homo sapiens United Kingdom, 2005 

Z31 CP013196.1 Canis familiaris Brazil, 2009 

BI9 FN668944.1 Homo sapiens USA, 2001 

DSM 1296
T
 CP011968.1 Homo sapiens England, 1935 

ATCC43255 CM000604.1 NA NA 

FDAARGOS_267 CP020424.1 NA NA 

DH/NAP11/106/ST-42 CP022524.1 Homo sapiens Chicago, USA, 2012 

CD-15-01025 ERR2562464   Homo sapiens Germany, 2014 

DSM 104450 CP021445.1 WWTP Berlin, Germany, 2016 

2 

BI1 FN668941.1 Homo sapiens USA, 1988 

CD196 FN538970.1 Homo sapiens NA 

CIP 107932 CM000659.1 Homo sapiens Marne, Reims, France 

2007855 FN665654.1 Bos taurus USA, 2007 

R20291 FN545816.1 Homo sapiens United Kingdom 

4 

BJ08 CP003939.1 Homo sapiens Beijing, China, 2008 

M68 FN668375.1 Homo sapiens Ireland, 2006 

CF5 FN665652.1 Homo sapiens Belgium, 1995 

5 
M120 FN665653.1 Homo sapiens United Kingdom, 2007 

QCD-23m63 CM000660.1 Homo sapiens Quebec, Montreal, Canada 

 

 

https://www.ebi.ac.uk/ena/data/view/ERR347401
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Table S3: Ct-values of quantitative real-time PCR on toxin A (tcdA) and toxin B (tcdB) genes (high Ct-values 

correspond to low concentration) and result of conservative PCR on the C. difficile-specific 16S rRNA gene 

sequence ( indicates a positive result by having a band and subsequently confirmed as C. difficile by sanger 

sequening). 

 Ct-Values Bands 

 tcdA tcdB 16S rRNA 

Triplicate 1 2 3 1 2 3 - 

WWTP 

(11/2/2016) 
33.9 no Ct 36.7 37.8 38.0 37.4  

WWTP 

(15/4/2016) 
no Ct no Ct no Ct no Ct no Ct no Ct  

WWTP 

(27/7/2016) 
39.0 37.7 38.5 no Ct 38.8 no Ct  

WWTP 

(20/10/2016) 
34.1 37.8 34.9 37.4 38.4 36.9  

 

Table S4: Genome statistics of three novel C. difficile isolates from Berlin. 

Isolate Post-

filtered 

reads 

Coverage Genome 

size (bp) 

GC 

content 

No. of 

coding 

sequences  

No. of 

tRNA 

genes 

No. of 

rRNA 

genes 

DSM 104450 72,836 123x 4,229,131 28.9% 3,802 90 35 

   41,619* 30.9% 51 0 0 

DSM 104451 78,573 137x 4,164,224 29.0% 3,697 90 35 

DSM 104452 76,054 150x 4,167,361 28.8% 3,661 90 35 

* extrachromosomal element 
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Table S5: Unique coding sequences (CDS) of three novel C. difficile isolates from Berlin compared to the 

complete genome sequences of 24 C. difficile strains. 

Locus Tag Protein 

DSM 104450 (WWTP) 

CDIF104450_00551 DNA-binding protein 

CDIF104450_00733 Putative signal peptide 

CDIF104450_02138 Uridine phosphorylase 

CDIF104450_02139 Putative transcriptional regulator 

CDIF104450_04035 Single-strand binding protein 

CDIF104450_04040 Resolvase 

CDIF104450_04041 Phage terminase small subunit 

CDIF104450_04042 Phage terminase, large subunit, PBSX family 

CDIF104450_04043 Bacteriophage portal protein, SPP1 Gp6-like protein 

CDIF104450_04044 Minor capsid 2 protein 

CDIF104450_04047 Minor structural GP20 protein 

CDIF104450_04048 Phage coat protein 

CDIF104450_04051 Minor capsid 

CDIF104450_04055 Protein gp15 

CDIF104450_04056 Tetratricopeptide repeat protein 

CDIF104450_04057 Phage tail tape measure protein, TP901 family 

CDIF104450_04059 Gp14 protein 

CDIF104450_04061 Phage pre-neck appendage-like protein 

No. of hypothetical proteins 21 

DSM 104451 (WWTP) 

CDIF104451_00713 Putative signal peptide 

CDIF104451_03080 DNA-binding protein 

CDIF104451_03105 Phage anti-repressor 

CDIF104451_03353 Conjugative transposon protein 

CDIF104451_03359 Two-component system response regulator 

CDIF104451_03362 Putative signal peptide 

CDIF104451_03369 Integrase 

CDIF104451_03370 Transporter 

No. of hypothetical proteins 11 

DSM 104452 (Lake) 

CDIF104452_00682 Putative signal peptide 

CDIF104452_03333 Ribosome biogenesis GTPase YqeH 

No. of hypothetical proteins 0 



 

 

 



 

 

 

 

 

 

 

 

 

CHAPTER 3 

Recovery of influenza A viruses from lake water and sediments by 

experimental inoculation  

 

 

 

 

 

 

 

 



 

 

 

  



CHAPTER 3 

75 

 

Recovery of influenza A viruses from lake water and sediments by experimental 

inoculation  

Daniela Numberger
1
, Carola Dreier

2,3
, Colin Vullioud

1
, Gülsah Gabriel

2,4
, Alex D. 

Greenwood
1,6

*, Hans-Peter Grossart
5,7

* 

 

1 Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany 

2 Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 

Hamburg, Germany 

3 current address: University of Ulm, Institute of Neurobiology, Albert-Einstein-Allee 11, 89081 Ulm, 

Germany  

4 University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, 30559 Hannover, Germany 

5 Leibniz Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, 16775 

Stechlin, Germany 

6 Freie Universität Berlin, Department of Veterinary Medicine, Institute for Virology, Robert von 

Ostertag-Straße 7-13, 14163 Berlin, Germany 

7 University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, 14476 

Potsdam, Germany 

 

*Correspondence: Hans-Peter Grossart (hgrossart@igb-berlin.de) and Alex D. Greenwood 

(greenwood@izw-berlin.de) 

 

Running title: Recovery of influenza A viruses 

 

Submitted and under revision (in PLOS ONE).   

mailto:hgrossart@igb-berlin.de
mailto:greenwood@izw-berlin.de


CHAPTER 3 

76 

 

ABSTRACT 

Influenza A viruses (IAV) are zoonotic pathogens relevant to human, domestic animal and 

wildlife health. Many avian IAVs are transmitted among waterfowl via a faecal-oral-route. 

Therefore, environmental water where waterfowl congregate may play an important role in 

the ecology and epidemiology of avian IAV. Water and sediment may sustain and transmit 

among individuals or species.  

It is unclear at what concentrations waterborne viruses are infectious or remain detectable.  

To address this, we performed lake water and sediment dilution experiments with varying 

concentrations of four IAV strains from seal, turkey, duck and gull. To test for infectivity of 

the IAV strains in a concentration dependent manner, we applied cultivation to specific 

pathogen free (SPF) embryonated chicken eggs and Madin-Darby Canine Kidney (MDCK) 

cells.  

IAV recovery was more effective in embryonated chicken eggs than MDCK cells for 

freshwater lake dilutions, whereas, MDCK cells were more effective for viral recovery from 

sediment samples. Low virus concentration (1PFU/200 µL infection volume) was sufficient in 

most cases to detect and recover IAV from lake water dilutions, whereas in sediment higher 

viral concentrations are required to seed an infection.  

 

Keywords: Influenza A, environmental samples, cultivation, detection limit, water, sediment 
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INTRODUCTION 

Influenza A viruses (IAV) are widespread single stranded negative-sense RNA viruses 

with a broad host range including birds (1–3), humans (4–7), horses (8–10), pigs (11–13) and 

marine mammals (14,15). Waterfowl are the natural reservoirs of IAVs (2,16,17) and avian 

IAV can cause fatal outbreaks among wild birds and poultry (16–22). Human infections with 

avian IAVs demonstrate the zoonotic potential of IAVs (20,23–31).  

Avian IAVs are shed into water by birds in high concentration via faeces (3,32,33). Once 

shed, IAVs remain both environmentally persistent and infectious, particularly in cold 

freshwater (4°C, 17°C) with 0 ppt salinity (3,34,35). The role of the environment in IAV 

transmission, particularly water sources used regularly by waterfowl and other bird species is 

not fully understood. However, there is increasing evidence that water plays an important role 

in the ecology, epidemiology and transmission of avian IAV (3,24,32,36,37). Whereas human 

and other mammalian IAVs are mainly transmitted through smear infection and inhalation of 

aerosols and droplets (4,38–40), avian IAVs are transmitted via a faecal-oral-route.  Water 

may play an important role in indirect transmission via faecal contamination (3,33,37,41). 

Leung et al. (42) indicated that water such as from poultry drinking troughs, can be used 

in avian influenza surveillance . Water can be both simultaneously contaminated by multiple 

strains and infect multiple individuals. This is also true for natural water bodies which are 

often heavily used by waterfowl and consequently contaminated by IAVs. This has been 

shown for a lake used by an Alaskan dabbling duck population (32) and water bodies along 

the Atlantic Flyway (43). Thus, it could be quite useful to include lake water and sediment 

when conducting IAV surveillance of wild waterfowl populations and drinking water when 

working with any kind of poultry.   

However, the detection of infectious IAVs in water is challenging. There are no 

standardized methods for the detection and isolation of IAVs from water and sediment 

samples. In addition to the expected high dilution of virus in water bodies detection from 

sediments is complicated by high concentrations of microbes and substances that can interfere 

with viral culturing experiments, e.g. bacteria and fungi. Sediment might contain higher viral 

concentrations due to sedimentation processes and the virus might be protected there (e.g. 
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from UV-light) resulting in longer persistence (44–46). This has been demonstrated in an 

experiment in which lake sediment, duck feces and duck meat was inoculated with IAV and 

persistence was found to be longest in lake sediment (46).  

Sixty seven sediment samples from five lakes were screened by influenza virus specific 

PCR with 26 (= 38.8%) found to be positive (Supplementary Table S1). Viral isolation 

attempted from the PCR positive samples using embryonated chicken eggs and Madin-Darby 

Canine Kidney (MDCK) cell cultures was, however, unsuccessful. To determine if the lack of 

cultivation success was due to low viral concentration, dilution experiments were performed 

with water and sediment using four distinct serially diluted IAV strains with addressing the 

hypothesis that there are differences in the probability of recovering IAV from freshwater and 

sediment samples using different predictors (initial virus concentration, method and virus 

strain).  Embryonated eggs and MDCK cell cultures were then performed on the diluted 

strains to determine the minimal viral concentration needed for IAV detection by cultivation 

and the results were statistically evaluated. The results are discussed in the context of the 

persistence of IAVs in the environment and the applicability of water and sediment to IAV 

surveillance. 

MATERIALS AND METHODS 

The experimental design is shown schematically in Figure 1. The experiment was 

designed according to the protocols of virus isolation from beach sand and sediment by 

Poulson et al. (47) and Dalton et al. (43), respectively. We additionally compared our 

experimental design to a similar study in which they established a protocol to concentrate and 

recover influenza A viruses from large volumes of water (48). Instead of using a non-

pathogenic reverse-genetic virus we decided to use four different pathogenic virus strains. We 

used five dilutions and applied embryonated chicken egg and MDCK cell culturing as they 

did to obtain sufficient data.  
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Figure 1: Schematic representation of the dilution experiment design. Lake surface water and sediment were 

collected on October 16, 2015 from the lake Stechlin (Brandenburg, Germany) and influenza A virus dilutions 

were made with the collected water. Detection and recovery from inoculated water and sediment samples were 

performed by cultivation in embryonated chicken eggs and Madin-Darby Canine Kidney (MDCK) cells. 



CHAPTER 3 

80 

 

Ethics Statement 

According to the German animal protection law experiments with (11-days) embryonated 

chicken eggs do not need any specific permission. No animal experiments were performed.  

 

Sampling of lake water and sediment 

Water and sediment samples used for the inoculation experiment were taken from oligo-

mesotrophic lake Stechlin (53°08'56.7", N 13°02'33.5"E) on October 16, 2015. Surface water 

was collected with sterile 50 mL tubes and the first centimetre of the sandy sediment was 

obtained using a plexiglas tube (length 50 cm, Ø 44 mm) as a sediment corer. Samples were 

stored at -20°C. Both sample types were tested for IAV by conventional PCR of a 104 bp size 

fragment of the Matrix gene according to Ward et al. (49). After reamplification and a total of 

70 amplification cycles (Supplementary Table S1) all samples were negative. The lake water 

was sterile-filtered through 0.22 µm Sterivex® filters (Merck Millipore, Germany) before use. 

The sediment sample was mixed with a sterile spoon and separated in twenty 1 g aliquots (for 

each strain and dilution). 

 

Influenza A strains and dilutions  

The experiment was set up in such a way that IAV negative natural water and sediment 

representing realistic conditions in which IAVs are transmitted, e.g. an environment in which 

wild and domestic bird influenza outbreaks occur were used. Experiments were carried out 

under S3 laboratory condition on the Heinrich Pette Institute. The following IAV strains were 

tested: A/Seal/Massachusetts/1/1980 (H7N7) (50), A/Turkey/England/1977 (H7N7) (51), 

A/Gull/Maryland/704/1977 (H13N6) (52) and A/Duck/Alberta/35/1976 (H1N1) (53). The 

viral stocks were diluted in 1 mL sterile filtered lake water to obtain 1000, 100, 10, 5 and 1 

plaque forming units (PFU) per 200 µL (volume used for inoculation). Virus dilutions that 

were used to spike sediment samples were prepared each in a final volume of 1 mL as 

described above but in sterile Dulbeccos‘s 1× PBS (Sigma-Aldrich, Merck KGaA, Germany) 

and then added to the 1 g sediment aliquots and mixed thoroughly by shaking and inverting 

the tube. Samples that were not inoculated with influenza A viruses served as negative 

controls and showed no cytopathogenic effects in MDCK cells nor hemagglutination with 1% 
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chicken erythrocyte suspension. We did not include additional positive controls as we added 

pure virus the samples and the strains were tested before when determining their stock 

concentrations. 

 

IAV cultivation in embryonated chicken eggs 

Specific pathogen free (SPF) eggs were obtained from VALO BioMedia GmbH 

(Germany) and incubated at 37°C and 55-60% rH for 11 days. Each infection was performed 

in triplicates (three eggs per sample, for each virus strain and virus concentration) under BSL-

3 conditions at the Heinrich Pette Institute, Leibniz Institute for Experimental Virology in 

Hamburg. 200 µL of each virus dilution was used for infection of eggs. The infected amino-

allantoic fluid was then incubated at 37°C for 48 h and analysed subsequently for viral 

replication by hemagglutination assay.  

 

Hemagglutination assays 

The hemagglutination assay was performed according to Hirst (54) with some 

modifications. For the assay, 1% chicken erythrocyte suspension was prepared in 0.9% 

sodium chloride (Th. Geyer GmbH & Co.KG, Germany). Chicken blood was purchased from 

Lohmann Tierzucht, Cuxhaven, Germany. Spiked samples, negative and positive controls 

were diluted 2-fold with Dulbeccos‘s 1× PBS (Sigma-Aldrich, Merck KGaA, Germany). 50 

µL of 1% erythrocyte solution was added to each virus dilution in a 96-well V-bottom 

microtiter plate. Hemagglutination was evaluated after incubation for 30 min at 4°C by 

checking each well for agglutination of red blood cells.  

 

MDCK cell culture and cytopathogenic effect measurements 

A continuous line of Madin Darby canine kidney II (MDCK II) cells was grown in 

minimal essential medium (MEM, Gibco, Gibco  Life  Technologies, Germany) 

supplemented with 10% fetal bovine serum (Invitrogen, Thermo Fisher Scientific, USA), 1% 

L-Glutamin (Sigma-Aldrich, Merck KGaA, Germany), 1% Penicillin und Streptomycin 

(Sigma-Aldrich, Merck KGaA, Germany). Cells were infected as described before (modified 

after Gaush and Smith (55)). Infection of MDCK cells was performed at 37°C for 48 hours in 
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96-well microtiter plates containing infection medium (MEM with 1% L-Glutamin, 0.2% 

BSA, 1% each Penicillin, Streptomycin and 1 mg/mL TPCK-trypsin (Sigma-Aldrich, Merck 

KGaA, Germany). The viruses were serially diluted to obtain 1, 5, 10, 100 and 1000 PFU. 

Cytopathic effects were evaluated by light microscopy.  

 

Statistical Analysis 

The analyses were performed in R version 3.5.2 (56). We fitted a GLM logistic regression 

to predict the probability of recovery of IAV and to assess the effect of the sample type, the 

method, the strains and the initial concentration of virus. We added an interaction between the 

sample type and the method to account for the differential effect of the used method in 

different environmental conditions to the model. The model was fitted with the function 

‗fitme‘ of the spaMM package (57,58) using penalized quasi-likelihood (using Method = 

―PQL‖, in the function call).  P-values were obtained through likelihood ratio test between the 

full model and models, in which the effect under investigation was removed (using the 

function ‗spaMM::anova()‘). 

 

RESULTS 

To ensure that the hemagglutination and cytopathogenic effects observed using 

experimental IAV dilutions were caused by the introduced IAV laboratory strains and not by 

viruses in the samples themselves, non-inoculated lake water and sediment samples were 

included as negative controls. The negative controls did not show any hemagglutination or 

cytopathogenic effects. They were also all PCR negative. The cultivation results for virus 

recovery from diluted IAV freshwater and sediment samples are summarized in Table 1.  

 

Sample type 

Generally, virus recovery by culture from sediment was significantly less efficient than 

from freshwater (χ2 = 174.69, p < 0.001, Figure 2A, Figure 3) using both embryonated 

chicken eggs (log-odd = 11.18) and MDCK cell cultures (log-odd = 3.17).  
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Cultivation method 

MDCK cells and embryonated chicken eggs have different effects on the probability of 

recovery in freshwater and in sediment (χ2 = 27.68934, p < 0.001, Figure 2A, Figure 3). In 

freshwater, embryonated chicken eggs were more efficiently for recovery than MDCK cells 

(log-odd = 1.23), while for sediment samples the MDCK cells worked better (log-odd = 6.78).  

For sediment samples, all infected eggs, except for three eggs infected with the 

A/Gull/Maryland/704/1977 (H13N6) strain, were negative, whereas recovery was successful 

in MDCK cell cultures, when having ≥ 100 PFU/100 µL (Table 1, Figure 2A).  

For freshwater samples, both cultivation systems worked good with a higher probability of 

recovery in embryonated chicken eggs, as the duck strain A/Duck/Alberta/35/1976 (H1N1) 

was not recovered from starting concentrations lower than 10 PFU/200 µL when using 

MDCK cells (Table 1, Figure 2).  

 

Strains and initial virus concentration 

Strains (χ2 = 12.077, p = 0.007) and initial virus concentration (χ2 = 39.512, p > 0.001) 

also had significant effects on the probability of recovering the virus (Figure 3). Recovery 

from sediment samples was only successful when having starting viral concentrations of ≥ 

100 PFU/200 µL, whereas in freshwater samples also 1 PFU/200 µL could be sufficient to be 

recovered. In general, the probability of recovery increased with higher starting 

concentrations.  

A different probability of recovery was observed for the strains 

A/Gull/Maryland/704/1977 (H13N6) and A/Duck/Alberta/35/76 (H1N1) as 

A/Duck/Alberta/35/1976 (H1N1) showed a more efficient recovery in embryonated chicken 

eggs than in MDCK cells and A/Gull/Maryland/704/1977 (H13N6) was the only strain that 

had a small chance to be recovered from sediment samples when using embryonated chicken 

eggs.  
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Figure 2: Recovery of influenza A viruses from inoculated sediment and freshwater samples with embryonated 

chicken eggs (ECE) and Madin-Darby Canine Kidney (MDCK) cells. Graphs show all raw data points including 

each of the replicate and its distribution separated [A] only by sample type (water vs. sediment) and method 

(ECE vs. MDCK) or [B] additionally separated by strain. Dark green points represent samples with initial 

concentration ≥ 100 PFU and light green < 100 PFU. Horizontal lines signify that all samples were either 

positive or negative. Sediment samples results are shown in the left panels and freshwater samples in the right 

panels. Influenza A strains are indicated on the x-axis. 

Duck Gull Seal Turkey 

Positive 

Negative 

Positive 

Negative 

Positive 

Negative 

E
C

E
 

M
D

C
K

 

ECE ECE MDCK MDCK 

SEDIMENT FRESHWATER 

Duck Gull Seal Turkey 

A 

B 



CHAPTER 3 

86 

 

       

 

Figure 3: Predicted probability of recovering different influenza A virus strains from inoculated sediment 

(brown) and freshwater (blue) samples by embryonated chicken eggs (ECE) and Madin-Darby Canine Kidney 

(MDCK) cells. The x-axis is in log scale.   

 

DISCUSSION 

Influenza A virus sequences could be detected by PCR from environmental samples but 

isolation of IAV failed from those samples (Supplementary Table S1). This result did not 

determine whether the detected virus remained infectious, nor indicate which viral strain was 

detected. Therefore, dilution experiments were undertaken to determine the minimal viral 

concentration for four different IAV strains necessary to successfully cultivate IAV from 

water and water sediment.  

Significant differences (χ2 = 12.077, p = 0.007) in the culturing efficiency among used 

IAV strains were observed (Figure 2, Figure 3). The IAV duck strain A/Duck/Alberta/35/76 

(H1N1), for instance, grew better in embryonated chicken eggs than in MDCK cells, which is 

consistent with a higher receptor-binding affinity to avian cell surface receptors (58–60). In 
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contrast, the seal strain A/Seal/Mass/1/80 (H7N7) did not show better growth in MDCK cells 

compared to embryonated chicken eggs, which is again consistent with its avian origin 

(50,62–64). For gull strains (H13 and H16) it is known, for example that they do not  replicate 

well in MDCK cell cultures supplemented with trypsin, but efficiently grow in embryonated 

chicken eggs (65). However, caution is necessary in the interpretation of these findings here 

given the few strains tested and experiments performed. 

While the embryonated eggs worked better for virus recovery from freshwater samples, 

MDCK cells were more efficient for the recovery from sediment samples, where culturing 

attempts in embryonated eggs mostly failed (χ2 = 27.68934, p < 0.001). Although previous 

studies have shown that virus isolation is more efficient in embryonated chicken eggs than in 

MDCK cells for both swine and avian IAV (66,67), MDCK cells were more tolerant when 

using sediment, which may contain many additional contaminants compared to freshwater. 

For example, humic acids and heavy metals may impair the cultivation in embryonated 

chicken eggs, but may have a smaller effect on MDCK cells. It is known that substances in 

soil and sediment often inhibit PCR reactions and/or reduce extraction efficiency (65–67) . 

Bacteria and fungi could also interfere, but are diminished or at least reduced by sterile 

filtration through 0.22 µm filters. However, a chemical inhibition of virus infection by any 

inhibitory compounds cannot be excluded. In addition, negative control experiments with IAV 

free water and sediment did not exhibit viral, bacterial or fungal growth indicating that 

inhibition – if present - was not of microbial origin.  

The low recovery rate from sediment cultures indicates that either there was inhibition, a 

disruption of virus particles or that most of the virus remained bound to the sediment and 

were not successfully transferred into the supernatant which was then used for infection. 

Rapid and tight attachment to sediment or mineral surfaces has been shown previously for 

different viruses (44,71,72). Furthermore, it could be demonstrated that sediment can prolong 

viral survival (45,73,74). IAV persistence has been shown to be highest in lake sediment 

followed by faeces and duck meat (46). Thus, notwithstanding cultivation difficulties, 

sediment might be a viral reservoir and a good sample source for measuring IAV diversity 

and investigating its epidemiology and ecology.  

Experimentally IAV diluted freshwater samples demonstrated that minimal viral 

concentrations (1 PFU/200 µL) are needed to infect embryonated eggs or MDCK cells. For 
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recovery from sediment the minimal viral concentration is suggested to be ≥ 100 PFU/200 µL 

and MDCK cells are recommended as cultivation method. Previous work has shown that IAV 

particles are persistent and infectious in freshwater over an extended  time, e.g. over 30 days 

in non-chlorinated river water at 0°C (3) or 100 days at 17°C with salinity of 0 ppt and pH 8.2 

(35). The extended stability and low viral concentration needed to seed infection suggests that 

lake water and sediments could be involved or could enhance IAV intra- and interspecies 

transmission. 

We conclude that IAV cultivation from water samples requires minimal viral titres. 

Sediment appears to be a source of IAV as well, but further methodological development is 

needed to improve cultivation efficiency.  Our initial PCR screening of sediment samples 

from different lakes indicated the presence of IAV in 38.8% of samples (Supplementary 

Table S1). However, the inability to culture virus and the findings of the experimental 

inoculation suggests that the samples had either a virus concentration below the minimum of 

100 PFU/200 µL needed to seed infection or that the particles were degraded and no longer 

infectious. Although IAV surveillance could benefit from environmental sampling, further 

methodological development will be required to determine the effect of sample type and 

length of time between viral shedding and sample collection on the ability to cultivate IAV. 

The results of the current study suggest that such research is warranted. 
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CHAPTER 3: SUPPLEMENTARY MATERIAL 

 

Supplementary Table S1: Detection of influenza A in sediment samples.  

Lake Stechlin Dagowsee Müggelsee Weißer See Haussee 

Site 1 2 3 1 2 3 1 2 1 2 1 2 3 

October 2015 

1 cm - + - - - - - + - ‡ + + - 

3-4 cm NA NA NA - NA - - + NA + - - + 

January 2016 

1 cm - - - - - - + - ‡ ‡ + + + 

3-4 cm - - + NA NA + + NA - - - + + 

April 2016 

1 cm - - + - - + - + - ‡ - - - 

3-4 cm - + - - NA + - - - + - NA NA 

‡ indicates confirmation by sequencing and BLAST search. PCR products were purified and sanger sequenced 

on a 3130xl Genetic Analyzer using the BigDye® Terminator v1.1 Cycle Sequencing Kit according to the 

manufacturer‘s instructions (Applied Biosystems, CA, USA). 

The first and 3
rd

-4
th

 centimetre of sediment was obtained using a plexiglas tube (length 50 cm, Ø 44 mm) and 

ruler as a sediment corer. Samples were stored at -20°C till extraction. RNA from sediment samples were 

extracted using the ZR Soil/Fecal RNA MicroPrep™ (ZymoResearch). The RNA was then transcribed in cDNA 

using the SuperScript™ III Reverse Transcriptase (Invitrogen) and 10µL of extracted RNA. The second DNA 

strand was synthesized with the Klenow DNA Polymerase I (New England Biolabs). Conventional PCR of a 109 

bp fragment of the matrix gene running 35 cycles was performed according to Ward et al., 2004 (doi: 

10.1016/S1386-6532(03)00122-7). Only after a reamplification with another 30 cycles using 1 µL of the PCR 

product the amplified product was visible on a 1.5% agarose gel stained with Midori Green Direct (Biozym). 

Isolation of IAV from some of the PCR positive sediment samples using embryonated chicken eggs and MDCK 

cell cultures as described in the current study failed.  
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Pathogen screening in the aquatic environment – Challenges and methodological limits 

In water, pathogens, particularly the ones that were selected in the current study are 

strongly diluted and are most probably part of the rare community. Their detection in a 16S 

rRNA dataset depends on the sequencing depth, so that their presence might not be detected. 

Thus, the detection of pathogens in huge water sources such as lakes is quite challenging. In 

addition to the dilution effect and the much higher abundance of other microorganisms, each 

method has limitations that might lower the detection rate. Therefore, the focus was mainly on 

sediment samples, as they might contain higher pathogen concentration due to an 

accumulation and enhanced persistence or protection of the pathogens, e.g. by binding to soil 

minerals [107–112]. However, sediment samples are complicated to process as they cannot be 

used directly as sampled, but have to be washed in order to transfer the microorganisms to a 

liquid phase, e.g. when cell culture or embryonated chicken eggs are used. However, many 

microorganisms are attached to the sediment particles so that the washing solution might not 

release them [111, 113–115]. In addition, sediment can contain many inhibitory substances 

that decrease PCR or cultivation efficiency [116].  

In this study, influenza A viruses were detected in 38.8% of lake sediment samples by 

PCR of a short fragment of the matrix gene (109 bp), but the amplification of larger 

fragments, e.g. of the hemagglutinin gene and the isolation of virus by using embryonated 

chicken eggs as well as MDCK cells failed (Appendix Table A2). The amplification of larger 

fragments might have failed, because the RNA was damaged during the bead-beating step at 

the beginning of the extraction [117, 118]. The spiking experiment that is described in 

‗Chapter 3 - Recovery of influenza A viruses from lake water and sediments by experimental 

inoculation‘ revealed that low virus concentration (in our case 1 PFU/200 µL) in freshwater is 

sufficient to cause an infection, but relatively high virus concentrations (≥ 100 PFU/200 µL) 

were required to isolate virus from sediment samples. Furthermore, the samples that were first 

tested by PCR and then used for cultivation were frozen once or twice prior cultivation (due 

to logistical reasons such as S3 laboratory in another city (Hamburg) and timely ordering of 

eggs). It is known that freeze-thaw cycles have a negative effect on the infectivity of influenza 

A virus particles [119] and in the study of Quinlivan et al. (2004) [120] three fresh, unfrozen 

samples were positive on initial screening but were negative after freezing. In conclusion, the 
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best chance to isolate influenza A viruses in sediment samples is to use fresh samples and to 

prepare a culture on MDCK cells instead of embryonated chicken eggs as they seem to be 

more robust to environmental samples. In addition, MDCK cell cultures are logistically easier 

to organize and handle than embryonated chicken eggs. A PCR screening on the short matrix 

gene fragment can help to select positive samples prior cultivation to reduce sample size for 

cultivation.  

Sediment from two lakes (Dagowsee, Weisser See) and wastewater samples were 

screened for the presence of Clostridioides difficile by PCR, qPCR and cultivation (Appendix 

Table A1). As shown in ‗Chapter 2 - Genomic analysis of three Clostridioides difficile 

isolates from urban waters sources‘ we isolated and characterized C. difficile from wastewater 

inflow and the urban  lake ‗Weisser See‘. All samples, except for wastewater, were PCR 

negative. The fresh sediment sample from ‗Weisser See‘ form which we isolated C. difficile 

was not tested by PCR (Appendix Table A1).  To the best of our knowledge there are no data 

published on the prevalence of C. difficile in the aquatic environment in Germany. Studies 

from other countries have shown much higher isolation rates of C. difficile from the aquatic 

environment [68, 69, 94, 121]. Our results, particularly the negative PCR results support the 

assumption of a low prevalence in the tested samples, even if the isolation rate or diversity of 

isolates might have been increased by using fresh samples and by investing more time in 

screening colonies or applying ethanol treatment, which selects for C. difficile spores. 

In conclusion, our data provided evidence for the presence of pathogens in the 

investigated water sources emphasizing the need for improving methods to study the 

pathogens in the aquatic environment. Furthermore, we were able to isolate viable C. difficile 

cells from sediment samples and recovered infectious influenza A viruses from spiked 

freshwater and sediment samples indicating water bodies as potential reservoirs for those 

pathogens as they seem to stay infectious. 
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Wastewater treatment – Blessing and Curse 

In urban areas, particularly big cities with high population densities, wastewater treatment 

is crucial for maintaining aquatic hygiene and reducing waterborne/-transmitted diseases. Our 

characterization of the bacterial communities in inflow and effluent samples of a WWTP in 

Berlin, Germany showed that fecal/enteric and most of other potentially harmful bacteria are 

heavily reduced or decreased to undetectable levels. However, as the sequencing approach 

mainly detects abundant species, potential pathogens with low abundance might remain 

unseen. This situation is also true in the current study, where we could isolate C. difficile from 

wastewater and a lake in Berlin, but the 16S rRNA sequence data did not provide evidence for 

the presence of C. difficile. Although low abundance likely represents a low health risk, it has 

to be taken into account that a threat might also exist by an exchange of harmful genetic 

elements such as virulence factors or antibiotic resistances between low abundant and 

abundant groups [122, 123]. It has been demonstrated, for instance, that toxin-negative C. 

difficile strains can become toxin-producers by horizontal gene transfer [122]. Furthermore, 

initially low abundant species can become abundant when growth conditions are enhanced.  

WWTPs release the treated wastewater continuously, so that there is a constant contamination 

of the environment with the effluent. It is known that WWTP effluents influence and change 

the receiving environment [124–129] - a change that might favour harmful or pathogenic 

bacteria.  

In the current study of the WWTP, phylogenetic analyses revealed some OTUs were 

closely related to known human pathogens such as Acinetobacter baumannii, Clostridium 

perfringens, Legionella lytica, Pseudomonas aeruginosa and Yersinia enterocolitica. The 

presence of pathogens could be greatly underestimated when using 16S rRNA data only, 

because it is likely that pathogens are strongly diluted in wastewater samples and masked by 

other much more abundant bacteria. For instance, as already mentioned we could detect and 

isolate C. difficile from the same samples used for the 16S rRNA study and even detect the C. 

difficile toxin genes via real-time quantitative PCR, but the 16S rRNA dataset did not provide 

any evidence for the presence of C. difficile. Therefore, it might be possible that a pathogen 

might be not present, rare or low abundant on 16S rRNA sequence level, but can be detected 

and isolated by cultivation based approaches.  
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The relatively high abundance of Legionella spp. and Leptospira spp. in the WWTP of the 

current study emphasizes the need for extended standard monitoring. While health risk 

assessments are mainly based on the evaluation of fecal bacteria, cocci and coliforms (e.g. E. 

coli), other potential threats may be underestimated. Furthermore, natural, non-fecal E. coli 

populations have been found in lake soil samples and thus, it is discussed, if E. coli, is really 

suitable as an indicator for fecal contamination [130]. An environment like the WWTP, which 

provides a large supply of nutrients and organic matter and may facilitate the formation of 

stable biofilms, might favour many bacteria other than those of fecal origin that can have 

pathogenic potential. Both Legionella and Leptospira species are known to form biofilms in 

which their persistence can be enhanced [131–133]. Our findings indicate a potential risk 

posed by such bacterial groups and show that the conditions might be beneficial to highly 

pathogenic species such as Legionella pneumophila or Leptospira interrogans. Furthermore, a 

health risk for workers in WWTPs by Legionella spp. has been reported in several studies 

[134–138].   

In conclusion, there is a potential health risk associated with underrepresented groups such 

as C. difficile or by water-adapted potentially pathogenic groups such as Legionella species. 

WWTP might favour the growth of some harmful and pathogenic bacteria and influence the 

natural aquatic environment via their effluents. Furthermore, eukaryotic pathogens and 

viruses were not investigated and could be worth including in future health risk assessment 

studies of WWTPs.  

 

Water as reservoir and vector for pathogens 

As shown in Figure 3 there are many routes for pathogens to get into the aquatic 

environment. For those pathogens that are able to persist or even grow in the water, it can 

serve as both reservoir and transmission vector. In a world with increasing urbanization and 

anthropogenic impact on natural environments, aquatic systems experience increasing 

(selective) pressure, for instance, due to chemical pollution with antibiotics and biocides 

[139]. Contamination of water bodies increase, which might not only result in higher 

pathogen prevalence, but also in environmental conditions such as a changed salinity, higher 
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temperatures and high nutrients that favour the growth of pathogenic and other harmful 

bacteria such as multi-resistant ones. The release of antibiotic resistant genes and antibiotics 

into water via WWTPs or agricultural effluents has an impact on natural bacterial 

communities and might select for antibiotic resistant environmental bacteria [41, 125, 129]. A 

change or disturbance of natural microbial communities can also lead to ecological 

consequences and favour the growth of pathogenic microorganisms (dysbiosis) [27, 28, 140–

142]. With climate change the water temperatures increases, which has also been shown to 

favour pathogens such as Vibrio spp. resulting in higher infection rates in the Baltic Area [75].  

This doctoral thesis focused on the pathogens influenza A viruses and C. difficile and 

found many Legionella-related sequences in the WWTP effluent. Influenza A sequences 

were detected in 26 out of 67 (38.8%) sediment samples indicating that sediments of lakes 

(heavily) used by waterfowl might be a reservoir for influenza A viruses. The virus might 

accumulate and be relatively protected in the sediment [87–92] and infect individuals after 

resuspension in the water phase. We were not able to isolate influenza A virus from the PCR 

positive samples as discussed above, but we could show by spiking sediment and freshwater 

samples that the virus can be recovered, when present in sufficient concentrations and thus, 

infection from environmental samples might be realistic. Therefore, there is a need for further 

studies investigating influenza A viruses in the aquatic environment to understand in detail its 

ecology and epidemiology. 

C. difficile is mainly known as a nosocomial pathogen, but it could be shown that 

toxigenic strains are also present in the studied aquatic environments [68, 94, 143]. 

Furthermore, the isolation of living C. difficile cells strongly indicates the potential to cause 

an infection. However, its ecology and epidemiology in the non-hospital environment is still 

poorly understood and needs further investigation. As our isolates were closely related to 

human clinical strains, we assume that humans were the source and that the lake was 

contaminated by a person during recreational activity. This would support our hypothesis that 

in urban areas with high population densities there is a higher prevalence of human pathogens 

in aquatic environments due to a higher chance of contamination. The meaning of the findings 

of the current study need to be further studied in more detail to get more information, with 

which a health risk assessment can be modelled.  
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Figure 5: Graphical summary of the most important findings from this doctoral project. Electron microscope 

images of influenza A virus [86] and C. difficile [87] are shown, respectively. 
 

 

This work encompassed by this doctoral thesis occurred within the Leibniz Alliance 

Project ‗INFECTIONS‘21 - Transmission Control of Infections in the 21th Century‘, a project 

which characterized bacterial communities of a wastewater treatment plant and examined 

whether water can act as a hub and/or reservoir for pathogens. Figure 5 shows a graphical 

summary of the major findings and in the following the outcome with regard to the initial 

hypotheses (see H1-H8 under ‗Thesis outline‘, pp. 11-12) is given. 
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The bacterial communities of the inflow and effluent samples of the WWTP differed 

significantly mainly caused by preferential growth of the phyla Bacteroidetes, Firmicutes. 

Planctomycetes, Proteobacteria and Verrucomicobia (H1).  With the whole 16S rRNA gene 

sequence information we could relate several OTUs to known species and thus, got a better 

phylogenetic resolution in comparison to only using the V3-V4 region of the 16S rRNA gene 

(H2). While most of potential pathogens, particularly enteric bacteria, are reduced during the 

treatmenat, we could define a potential health risk by the presence of potential pathogenic 

groups such as Legionella spp. and other less abundant groups like Acinetobacter spp., 

Aeromonas spp. and Pseudomonas spp. Phylogenetic analyses revealed high relation of some 

OTUs to known pathogens such as Legionella lytica, Acinetobacter baumannii and 

Pseudomonas aeruginosa (H3). 

We could isolate three C. difficile strains from urban samples (WWTP and sediment of an 

urban lake in Berlin, Germany) which were closely related to human strains. This fit to our 

hypothesis that there is a higher C. difficile occurrence in urban than in rural waters, but with 

having only these few isolates, we cannot draw any conclusions yet on the prevalence of C. 

difficile in the aquatic environment of Germany (H4). The isolate from the bathing lake 

carried the toxin genes, so that a potential health risk exist, even if rather sporadic. Further 

studies with a higher sampling effort are necessary to test for this hypothesis. 

Influenza A viruses was detected in 38.8% of sediment samples by conventional PCR 

(H5), but it was not possible to isolate and grow viruses from those samples. Thus, we cannot 

draw any conclusions about the diversity (H6) or infectivity (H7). The inoculation experiment 

including statistical analyses of cultivation data revealed that the probability of 

recovery/detection depends on virus concentration, sample type, strain and cultivation method 

(H8). IAV recovery was more effective in embryonated chicken eggs than MDCK cells for 

freshwater lake dilutions, whereas, MDCK cells were more effective for viral recovery from 

sediment samples. Low virus concentration (1PFU/200 µL infection volume) was sufficient in 

most cases to recover IAV from freshwater dilutions. Higher viral concentrations were 

required for recovery from sediment samples. In conclusion, the inability to virus culture from 

the lake sediments and the findings of the experimental inoculation suggests that the samples 
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had either a virus concentration below the minimum of 100 PFU/200 µL needed to seed 

infection or that the particles were degraded and no longer infectious. 

This thesis showed that it is challenging to investigate pathogens in the aquatic 

environment, but that is also important to increase and improve the use of such environmental 

samples to understand the ecology and epidemiology of pathogens. This work indicates that 

water bodies such as wastewater and lake sediments can serve as reservoirs and vectors, even 

for non-typical water-borne or water-transmitted pathogens such as C. difficile. Thus, it is 

important to keep track on pathogens in aquatic systems and to improve protocols to reliably 

investigate them in the natural environment including difficult samples such as sediment. 

Urban areas as pathogen hotspots remain a focus of infectious disease research and need 

further investigation of microbial communities and pathogens. We need to understand what 

influence urbanization has on microbial communities and how microbes, particularly 

pathogens evolve in an urban area. Or was Jean-Jacques Rousseau right by saying ―Cities are 

the abyss of the human species‖ [144]?  

Based on the findings of this doctoral thesis, future studies should include the isolation 

and characterization of Legionella spp. from WWTPs as the current study provided strong 

evidence that there might be a health risk. More spiking experiments as describe in 

‗CHAPTER 3 - Recovery of influenza A viruses from lake water and sediments by 

experimental inoculation‘ are needed to improve protocols for the detection and isolation of 

pathogens from environmental samples such as water and sediment. Furthermore, studies on 

C. difficile in the aquatic environment of Germany, particularly urban areas, are necessary to 

further understand its ecology and epidemiology.  

 

―If we pollute the air, Water and soil that keep us alive and 

well, and destroy the biodiversity that allows natural systems to 

function, no amount of money will save us. ― 

David Suzuki 
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Appendix Figure A1: Lakes in Berlin, Brandenburg and Mecklenburg-Vorpommern, Germany of which surface 

water and sediment samples were collected every three months during the present PhD project.  
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Appendix Table A1: Seasonal prevalence of Clostridioides difficile in the sediment of two lakes and wastewater 

revealed by culturing (cult) and PCR detection of the C. difficile-specific 16S rRNA sequence (PCR). Da = 

Dagowsee, WS = Weisser See, WWTP = Wastewater Treatment Plant (+ positive, ‡ positive and selected for 

genome sequencing, - negative, NA no data available). 

Sediment samples from lakes 

 winter spring summer autumn 

 22. Jan 21. Apr 22. Jul 24. Oct 

 PCR Cult PCR Cult PCR Cult PCR Cult 

Da-1 - - - - - - - - 

Da-2 - - - - - - - - 

Da-3 - - - - - - - - 

  winter  spring summer autumn 

 05. Feb 14. Apr 30. Jul 15. Aug 18. Oct 

 PCR Cult PCR Cult PCR Cult PCR Cult 

WS-1 - - - - - - - - 

WS-2 - - - - - - - - 

WS-3 NA NA NA NA - ‡ NA NA 

Water samples from wastewater treatment plant 

 winter spring summer autumn 

 11. Feb 15. Apr 27. Jul 20. Oct 

 PCR Cult PCR Cult PCR Cult PCR Cult 

WWTP_IN + - + ‡ + ‡ + NA 

WWTP_EFF + NA + NA - NA + NA 

The first centimetre of the sediment was sampled from both lakes using a plexiglas tube (length 50 cm, Ø 44 

mm) as a sediment corer. The sediment was placed in 15 mL cryo vials (Carl Roth, Karlsruhe, Germany) and 

stored at -20°C. DNA from sediment samples was extracted using the NucleoSpin® Soil kit (Macherey Nagel, 

Düren, Germany) following the manufacturers‘ instructions. PCRs were perfomed as described in ‗Chapter 3 - 

Genomic analysis of three Clostridioides difficile isolates from urban water sources‘.  
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