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Abstract

The last years have shown an increasing sophistication of attacks against
enterprises. Traditional security solutions like firewalls, anti-virus systems and
generally Intrusion Detection Systems (IDSs) are no longer sufficient to protect
an enterprise against these advanced attacks. One popular approach to tackle
this issue is to collect and analyze events generated across the IT landscape
of an enterprise. This task is achieved by the utilization of Security Information
and Event Management (SIEM) systems. However, the majority of the currently
existing SIEM solutions is not capable of handling the massive volume of data
and the diversity of event representations. Even if these solutions can collect the
data at a central place, they are neither able to extract all relevant information
from the events nor correlate events across various sources. Hence, only rather
simple attacks are detected, whereas complex attacks, consisting of multiple
stages, remain undetected. Undoubtedly, security operators of large enterprises
are faced with a typical Big Data problem.

In this thesis, we propose and implement a prototypical SIEM system named
Real-Time Event Analysis and Monitoring System (REAMS) that addresses the
Big Data challenges of event data with common paradigms, such as data nor-
malization, multi-threading, in-memory storage, and distributed processing. In
particular, a mostly stream-based event processing workflow is proposed that
collects, normalizes, persists and analyzes events in near real-time. In this
regard, we have made various contributions in the SIEM context. First, we
propose a high-performance normalization algorithm that is highly parallelized
across threads and distributed across nodes. Second, we are persisting into
an in-memory database for fast querying and correlation in the context of at-
tack detection. Third, we propose various analysis layers, such as anomaly-
and signature-based detection, that run on top of the normalized and correlated
events. As a result, we demonstrate our capabilities to detect previously known
as well as unknown attack patterns. Lastly, we have investigated the integration
of cyber threat intelligence (CTI) into the analytical process, for instance, for
correlating monitored user accounts with previously collected public identity
leaks to identify possible compromised user accounts.

In summary, we show that a SIEM system can indeed monitor a large enter-
prise environment with a massive load of incoming events. As a result, complex
attacks spanning across the whole network can be uncovered and mitigated,
which is an advancement in comparison to existing SIEM systems on the mar-
ket.
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Zusammenfassung

Die letzten Jahre haben gezeigt, dass die Komplexität von Angriffen auf
Unternehmensnetzwerke stetig zunimmt. Herkömmliche Sicherheitslösungen,
wie Firewalls, Antivirus-Programme oder generell Intrusion Detection Systeme
(IDS), sind nicht mehr ausreichend, um Unternehmen vor solch ausgefeilten An-
griffen zu schützen. Ein verbreiteter Lösungsansatz für dieses Problem ist das
Sammeln und Analysieren von Ereignissen innerhalb des betroffenen Unterneh-
mensnetzwerks mittels Security Information and Event Management (SIEM)
Systemen. Die Mehrheit der derzeitigen SIEM-Lösungen auf dem Markt ist
allerdings nicht in er Lage, das riesige Datenvolumen und die Vielfalt der Er-
eignisdarstellungen zu bewältigen. Auch wenn diese Lösungen die Daten an
einem zentralen Ort sammeln können, können sie weder alle relevanten Infor-
mationen aus den Ereignissen extrahieren noch diese über verschiedene Quel-
len hinweg korrelieren. Aktuell werden daher nur relativ einfache Angriffe er-
kannt, während komplexe mehrstufige Angriffe unentdeckt bleiben. Zweifel-
los stehen Sicherheitsverantwortliche großer Unternehmen einem typischen Big
Data-Problem gegenüber.

In dieser Arbeit wird ein prototypisches SIEM-System vorgeschlagen und
implementiert, welches den Big Data-Anforderungen von Ereignisdaten mit
gängigen Paradigmen, wie Datennormalisierung, Multithreading, In-Memory-
Speicherung und verteilter Verarbeitung begegnet. Insbesondere wird ein größ-
tenteils stream-basierter Workflow für die Ereignisverarbeitung vorgeschlagen,
der Ereignisse in nahezu Echtzeit erfasst, normalisiert, persistiert und analysiert.
In diesem Zusammenhang haben wir verschiedene Beiträge im SIEM-Kontext
geleistet. Erstens schlagen wir einen Algorithmus für die Hochleistungsnormali-
sierung vor, der, über Threads hinweg, hochgradig parallelisiert und auf Knoten
verteilt ist. Zweitens persistieren wir in eine In-Memory-Datenbank, um im
Rahmen der Angriffserkennung eine schnelle Abfrage und Korrelation von Er-
eignissen zu ermöglichen. Drittens schlagen wir verschiedene Analyseansätze,
wie beispielsweise die anomalie- und musterbasierte Erkennung, vor, die auf
normalisierten und korrelierten Ereignissen basieren. Damit können wir bereits
bekannte als auch bisher unbekannte Arten von Angriffen erkennen. Zuletzt
haben wir die Integration von sogenannter Cyber Threat Intelligence (CTI) in
den Analyseprozess untersucht. Als Beispiel erfassen wir veröffentlichte Iden-
titätsdiebstähle von großen Dienstanbietern, um Nutzerkonten zu identifizieren,
die möglicherweise in nächster Zeit durch den Missbrauch verloren gegangener
Zugangsdaten kompromittiert werden könnten.

Zusammenfassend zeigen wir, dass ein SIEM-System tatsächlich ein großes
Unternehmensnetzwerk mit einer massiven Menge an eingehenden Ereignis-
sen überwachen kann. Dadurch können komplexe Angriffe, die sich über das
gesamte Netzwerk erstrecken, aufgedeckt und abgewehrt werden. Dies ist ein
Fortschritt gegenüber den auf dem Markt vorhandenen SIEM-Systemen.
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Chapter 1

Introduction

With the ongoing digitization and datafication [1, p. 15] of our society, more and
more parts of our daily lives are moving from the physical into the digital and con-
nected world. Companies, organizations and public authorities are migrating their
services, computer systems, and data into the open Internet. Related concepts like e-
government, e-health and Industry 4.0 are more prevalent than ever. While this trend
bears big opportunities, it also induces significant threats. As data is processed and
stored in networks accessible from the Internet, attackers can more easily manipulate
or disrupt this data processing as well as steal private or confidential data.

Attackers are performing their malicious activities in ways that are getting more
sophisticated and harder to trace. Two large groups of attackers are mostly respon-
sible for this development. On the one hand, there is a relatively low-skilled group
of attackers, e.g., script kiddies and average cybercriminals that make use of highly
sophisticated attack tools created by others. With these tools, they can perform many,
mostly automated, advanced single-step attacks on various targets. On the other hand,
there is a group of highly-skilled attackers, e.g., nation-states or state-sponsored, that
are performing complex multi-step attacks to penetrate selected high-level targets.
We call an attack to be single-stepped, if there is only a single attack activity on a sin-
gle machine, whereas multi-step attacks involve multiple attack activities on poten-
tially multiple machines. The group of highly-skilled attackers uses their knowledge
to create sophisticated attack tools for themselves and low-skilled attackers. Both
groups of attackers pose a significant threat for large enterprises. The sheer amount
of attackers in the first group can find the less protected systems on the Internet. The
second group of attackers is able to circumvent security software and can find ways
into a network that seems to be fully protected at first glance.

Looking at recent media reports and statistics of security firms and organizations
allows the conclusion that the number of sophisticated and large-scale attacks is in-
creasing. According to the Munich Re insurance company, 90% of businesses have
experienced cyberattacks in the past years [2]. The project Information is Beauti-
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ful [3] takes a look at data breaches in particular and visualizes some of the worst in-
cidents over the past years. Frighteningly, a considerable number of incidents caused
the breach of more than 10 million records of personal identifiable information, such
as from Equifax [4], the US Office of Personnel Management (OPM) [5] or JPMorgan
Chase [6]. Additionally, a new group of sophisticated attacks, the so-called Advanced
Persistent Threats (APTs) [7], is emerging [8]. In contrast to traditional cyberattacks,
the employed attack methods are highly advanced, and the attackers are moving very
carefully in the target’s environment, often for an extended amount of time. These
properties make APTs almost impossible to detect with normal intrusion detection
mechanisms. Popular cases of APTs are the APT1 attack [9], targeting various inter-
national companies, and the attack on the German parliament (Bundestag-Hack) [10].

The current situation of an ever-increasing number of security incidents seems
hopeless at first glance. According to the Ponemon Institute [11], the mean time to
detect a data breach is about 197 days. However, like crimes in the physical world, at-
tackers leave behind digital traces during their break-ins that can be used for tracking
and the mitigation of their attacks. On the one hand, software and hardware sensors
on computer systems and networks monitor various activities and produce events,
especially security-related events or security events, as manifestations of these activ-
ities. Each produced event is written into a so-called event log, a list of all previously
occurred events. On the other hand, many contextual data sources complement the
previously mentioned event data with security-related information. The correlation
of these data sources can help to reveal the traces of an attacker. Nevertheless, the
processing and analysis of security-related data, also referred to as security data in
the following, is still a challenging task. The reasons for that are manifold, as listed
in the following.

1. As networks are growing in size, there is an overwhelming number of sen-
sors that produce an even more overwhelming number of security-relevant data.
(Volume)

2. To detect attacks as they are conducted, it is desirable to process all the pro-
duced data in near real-time. (Velocity)

3. As data sources are very heterogeneous, the provided data is represented in
various formats. The data may be fully structured, partially structured or com-
pletely unstructured. Furthermore, the provided information differs signifi-
cantly in the level of detail. (Variety, Veracity)

4. Many data sources keep their data stored locally and require a consumer to
actively ask for the data. This makes a comprehensive overview of all ongoing
activities and security-relevant data difficult.
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5. To detect advanced network attacks, the data of multiple sources has to be
correlated. In many cases, existing data has to be enriched to be correlated.
(Veracity)

In today’s network environments, heaps of data from various sources are not effec-
tively used. Even worse, security data that could support the detection and prevention
of network attacks lies dormant on various systems in the network. Therefore, it is not
uncommon after a major data breach that special security firms and professionals are
hired for long-lasting manual investigations [12, 13] of raw security events to assess
what has happened. Nevertheless, as networks get bigger and attacks more complex,
this cannot be handled in a timely manner anymore.

1.1 Problem Statement

A new direction in handling the processing and analysis of security data, particularly
security events, are so-called SIEM systems. The 1st generation of these systems was
able to gather and manage alerts, i.e., security-critical events, from various sensors.
The 2nd generation of SIEMs has the goal to incorporate all kind of security and event
data into one big system [14]. This 2nd generation of SIEMs seems promising for
solving the current problems of massive security data. However, looking at products
on the market in the SIEM sector [15] reveals that the development is lagging far be-
hind. Systems that are attributed to the 2nd generation, cannot handle the vast amounts
of data fast enough, making a real-time attack detection infeasible. Additionally, it
is not ensured that these systems can handle the load of the most critical security
event sources, i.e., servers and routers, in large enterprises. The main issue of current
SIEMs, as well as general security solutions, is the process of gathering, normaliz-
ing and persisting unstructured security data, which is also commonly known as the
ETL-process in data processing [1, 16].

The previously described problems in the real-time attack detection can be seen as
a typical Big Data challenge [1]. The processing of security data is characterized by
the popular 4 V’s of Big Data, i.e., volume, velocity, variety, and veracity [17]. These
characteristics make it hard for traditional computer systems and technologies to han-
dle the data on time. Fortunately, this situation is currently changing with the advent
of plentiful memory, fast processing and fast networks for small money. Technologies
that were not imaginable, mainly because of limited resources, are now becoming a
reality [14, 18]. Concrete developments in this direction are in-memory databases,
such as SAP HANA, and massive parallel and distributed processing clusters, which
are realized with technologies like Google’s MapReduce or solutions like Hadoop,
Spark, or Storm.
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1.2 Thesis Contributions

In this thesis, we show how the deluge of security-related data can be addressed
with the efficient use of new Big Data technologies and the optimization of data pro-
cessing, i.e., mainly the ETL/ELT-process with normalization and persistence. Our
primary approach is the comprehensive normalization of security data, the persis-
tence into an in-memory database, and the parallelization of all event processing. As
the data is normalized and persisted in an in-memory database, we propose further
techniques for correlation and analysis, also partly known as Complex Event Pro-
cessing (CEP) [16, 19, 20], of normalized security events and external cyber threat
intelligence (CTI). The analysis can be applied to the data in near real-time, meaning
as soon as the events have been generated in the monitored network. This enables
immediate mitigation of ongoing or future attacks.

To show that our approaches work practically, we have created two prototypical
implementations of Big Data analysis systems. The first system, named REAMS, can
be categorized as a SIEM system and analyzes security event logs to detect attacks
from various activities in a network. The second system, called ILC, collects and ana-
lyzes publicly leaked identity data as contextual security information for the REAMS
system.

In particular, this thesis provides four main contributions to the research commu-
nity.

1. A Scalable High-Performance Event Processing Workflow:

The analysis of security-related events is an integral part of security investiga-
tions but is also extremely challenging to conduct because of the huge amount
and diversity of available event data. At the moment, these challenges make it
almost impossible for security investigators to detect ongoing attacks in time.
As support for this challenging task of security investigators, we have created a
highly efficient event processing workflow that performs the gathering, full nor-
malization, enrichment, persistence of event data in near real-time [21, 22, 23,
24, 25]. All these steps together enable advanced event analytics that was not
feasible before, such as complex search queries, pattern detection, and machine
learning.

The main focuses of our proposed workflow are an accurate and complete nor-
malization of available event information, an efficient persistence into an in-
memory database for fast event access, and the best possible event throughput
with parallel processing.

In the first part of the workflow, we normalize the event data by first extract-
ing all relevant event information and then put it into the Object Log Format
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(OLF) [26, 27], a fully-structured and comprehensive event format. The nor-
malization procedure works with a knowledge base that contains normalization
rules for each available event type. As part of this knowledge base, we came
up with an efficient algorithm to find the corresponding rule for a given raw
event [28]. Once the extracted information is stored in OLF, missing event
information is enriched, and existing information is unified [29, 30], e.g., by
categorizing the event semantics.

In the second part of the workflow, we are persisting normalized OLF events in
a column-based in-memory database, namely the SAP HANA1. The persistence
has been optimized by using minimal SQL statements and the adjustment of
performance controls within the SAP HANA Database Management System
(DBMS) [25].

In addition to the implementation of the processing steps, we have put another
focus on the maximal parallelization of the entire workflow and each of its
steps to make normalized events available in near real-time for further process-
ing. The workflow has been made horizontally scalable by supporting the dis-
tribution to multiple processing nodes and vertically scalable by making use of
multi-threading in conjunction with fast inter-thread communication [24, 25].
Altogether, we can achieve event throughputs for normalization and persistence
of around 280 000 evts./s [25], which is considerably faster, i.e., factor 9-10,
than most SIEM solutions on the market and is more than sufficient to handle
the load of events in large enterprise networks [15, 31].

Our presented approach shows that large data volumes can be normalized and
persisted with high speed. This functionality is a foundation for further analyt-
ics on normalized security data and enables the detection of advanced attacks
in the following work.

2. Attack Detection on Normalized Events:

Full normalization of event data is the cornerstone for efficient security anal-
ysis. It makes the information of raw events easily accessible and allows fine
grained access to common data fields like IP addresses, domain names, ports,
application names, and usernames. Furthermore, the common data model al-
lows the correlation of events by a selected number of data fields. As part of our
work, we show different techniques to detect attacks from normalized events.

The simplest technique is a complex search query on the structured data. It
can deliver a broad overview of the data and gives an idea of existing nodes
in a network and what kind of activity is going on them [32]. We also show

1SAP HANA - https://hana.sap.com/abouthana.html
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how these queries can be used to find some obvious attack attempts within a
network.

Another approach is the employment of attack signatures on the data. Such
signatures are either manually created or are derived from CTI or various ex-
isting signature languages. We show that simple attacks or suspicious activities
can be automatically identified with single-event signatures. On top of that, we
also show how more complex attacks, identifiable by a chain of events, can be
detected with multi-event signatures [33]. For this, we have modified an exist-
ing signature language and engine to describe behavior on normalized events.
An attack pattern detection on normalized events makes it possible to formu-
late typical attack behavior only once in a signature and then reuse it across all
kind of applications. This is an improvement over traditional attack signatures,
which were customized to each application.

3. Searching the Dark- and Deep-Web for Leaked Identity Data to Mitigate
Attacks:

Every day, many companies and service providers on the Internet are breached,
and their user data is released to the public, which is also known as a leak.
These data leaks contain identity data such as email addresses, usernames, pass-
words, and financial data.

Releasing this data puts the victims and many related companies at a high risk
since the data is usually widely misused by cybercriminals. There are differ-
ent strategies to make use out of the data. Firstly, an attacker uses the detailed
identity information to impersonate the victim, which is known as identify theft.
Secondly, criminals use the credentials to login into other services and pri-
vate networks, such as company networks. This is possible as many users are
reusing usernames and passwords across multiple services and even at private
or corporate networks.

Identity leaks are a major threat that has to be considered for personal and en-
terprise security. We have carefully investigated the topic of identity leaks and
acquired an insight into the underground economy of leak sharing and trading.

During this investigation, many publicly accessible leaks have been collected
manually, and common leak locations are automatically monitored for future
leaks [34]. We are now able to collect hundreds of leaks each month. Based
on this collected leak data, we have created a workflow to normalize the iden-
tity information in these leaks, extract affected identities, warn the victims and
generate meaningful statistics on password security on the user and service
provider side [34, 35, 36, 37].
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4. Implementation of Prototypical Big Data Security Analytics Systems for
Event Logs (REAMS) and Leak Data (ILC):
As a result of our research on the normalization and analysis of security-related
Big Data, we created two large prototypical systems that prove our claims.

We have created the Real-Time Event Analysis and Monitoring System (REAMS)2

for monitoring security-related event logs. The main idea of this system is the
combination of capabilities from Intrusion Detection Systems (IDSs) and
SIEMs into one system, meaning that common attack detection techniques,
i.e., anomaly- and signature-based detection, are applied on centrally managed
event information. Another idea is to apply parallel processing and use in-
memory storage to reach near real-time processing of event information. Our
system has been already practically used to analyze log data with billions of
events from two well-known global companies.

Another system we have created is the Identity Leak Checker (ILC)3, the goal
of which is to warn victims of identity theft and produce statistics on password
security for security awareness. This system consists of three components, a
backend component that collects publicly accessible and leaked identity data
from the Internet, a web interface that allows victims to find out whether their
data is affected by these leaks and how secure their password is, and a client that
enables domain owners to monitor all users in their domain. Because identity
breaches are more prevalent than ever, and people are aware of their threat, we
have registered more than 7.5 million requests in our service.

1.3 Thesis Organization
This thesis is organized into three parts.

Part I introduces the general topic of Big Data. Chapter 2 defines the Big Data
term and covers the fundamental properties of Big Data. The following Chapter 3
then shows current paradigms and strategies to deal with such data. The last Chapter 4
shortly introduces some popular tools for Big Data processing that are currently used
in the community.

The second part is the main part of the work and brings the concepts of Big Data
processing into the security monitoring context. Chapter 5 describes the challenges of
implementing security in enterprise networks and presents an architecture and work-
flow for a Big Data SIEM. Chapter 6 then goes deeper into the workflow’s stream-
based processing steps, which are essential for the provision of events in a common
format to later analysis steps. Chapter 7 solely focuses on the optimization of the

2HPI REAMS - https://sec.hpi.de/reams
3HPI Identity Leak Checker (ILC) - https://sec.hpi.de/ilc
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most time-consuming step of the workflow, i.e., the normalization. This optimization
is the basis for the desired real-time processing. The scaling of the entire workflow to
multiple processors and nodes is discussed in Chapter 8. Chapter 9 goes over from the
preparation of the data to the analysis on top of it. Multiple techniques are described
on how attacks can be detected within log events. In the last chapter of Part II, details
about the nature of identity leaks are revealed. It is further described how information
from these leaks can be automatically processed to warn users of identity theft later.

The third part brings the theoretical considerations of the last chapters into the
practice. More specifically, two prototypical Big Data platforms are presented that
are realizing previous ideas on event analysis and the monitoring for identity leaks.
Chapter 11 describes REAMS, the system that collects and analyzes huge amounts of
log events in an enterprise network to detect advanced attacks. Chapter 12 presents
our productive implementation of a system that gathers and provides information on
compromised accounts of public identity leaks to individuals and enterprises.

The last Chapter 13 concludes our work and proposes ideas for further work on
the topic.
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Chapter 2

The Anatomy of Big Data

The collection and analysis of data was always an important process to understand
phenomena and find correlations in sciences. In the past centuries, data has been
carefully collected and analyzed manually to gain new knowledge. As this task was
so time-consuming, scientists were limited to rather small datasets and could only
focus on selected problems. Since computers had entered our lives a few decades
ago, the way we look at data and information has fundamentally changed.

With the help of computers and digital sensors, the process of collection and anal-
ysis of data can be fully automated and performed in short time with high accuracy.
As a result, we are not limited to selected problems anymore. We can monitor vari-
ous phenomena simultaneously with ease and collect data points with a precision of
nanoseconds or less. The datasets we have now at hand are getting bigger and bigger.
We have moved on, from a world of small and limited datasets to a world of data
abundance, where huge datasets are available on almost any imaginable facet of our
lives. Trends like the Internet of Things (smart objects, Industry 4.0), e-health, e-
government, cloud computing and of course event log monitoring are supporting this
development. The value of the collected data can be immense. Refrigerator data can
be used to derive product preferences of customers, smartwatch data can give details
on the wearer’s health status, security events can help to uncover attacks, and so on.

The availability of large amounts of data on almost everything is a valuable chance
to understand our world better. Nevertheless, the analysis of all this data, the extrac-
tion of information and the derivation of new knowledge is still a major challenge to
be faced. Our traditional analysis methods are not working efficiently anymore, be-
cause they were mostly designed for small datasets and are not using the potentials of
new hardware. Instead, new methods have been created that can process Big Data fast
by making use of new processing paradigms and current developments in hardware,
such as multi-processing, in-memory technology, and data partitioning.

This chapter gives an overview of the problems related to this new data deluge,
which is also referred to as Big Data.
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2.1 Definition of Big Data
Before we dive deeper into the technologies and possible processing paradigms of Big
Data, a general definition of the term should be established. In fact, there are many
discussions on what Big Data really means and what the term covers [1]. Although
many people are talking about Big Data, there is no single definition everyone has
agreed on, yet. Therefore, we have selected some common definitions that can be
found when dealing with Big Data.

1. “Big data refers to things one can do at a large scale that cannot be
done at a smaller one, to extract new insights or create new forms of
value, in ways that change markets, organizations, the relationship
between citizens and governments, and more.”

(Mayer-Schönberger et al. [1, p. 6], 2013)

2. “Big data is high-volume, high-velocity and/or high-variety infor-
mation assets that demand cost-effective, innovative forms of infor-
mation processing that enable enhanced insight, decision making,
and process automation.” (Gartner, IT Glossary)

3. “Datasets whose size is beyond the ability of typical database soft-
ware tools to capture, store, manage, and analyze”

(McKinsey [38], 2011)

4. “Big data technologies describe a new generation of technologies
and architectures, designed to economically extract value from very
large volumes of a wide variety of data, by enabling high-velocity
capture, discovery, and/or analysis.”

(Gantz et al. [39], IDC, Sponsored by EMC Corporation, 2011)

The four definitions show that the Big Data term can be interpreted differently
and that they focus on multiple key points. The first definition focuses on different
types of data processing and its potential for revealing new insights. Definition 2
puts a focus on the properties of the data that is being processed. It makes clear
that there is usually a large amount of data and that its structure makes it hard to
be processed. Definition 3 is of a relative nature, as it puts the data into relation to
the current processing capabilities and concludes that there are not enough resources,
yet. Definition 4 covers the specific technologies and software components that are
required to handle the new kind of data. It implies that the algorithms and systems
we were using before cannot be used anymore, because they are not efficient enough.
Additionally, this quote reiterates that the data has specific properties that make it
hard to process.
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A reasonable classification for the various types of definitions has been given by
Hu et al. [40]. They classify definitions into attributive, comparative, and architec-
tural definitions, which together cover the most important key points of Big Data.

Attributive: The key point in these definitions are the various properties of the data,
which are usually referred to as the V’s, such as volume, velocity, and variety.

Comparative: The main part of these definitions is that the data is compared to the
data we can already handle. In this case, Big Data is mostly considered to be
not processable with existing means, such as hardware, software or algorithms.

Architectural: These kinds of definitions are focused on special frameworks re-
quired to process the data, such as frameworks handling parallel processing
and the distribution of the processing.

For sure, typical definitions do not fit into only one class. For example, Defini-
tion 2 by Gartner fits into the attributive and architectural group, because it requires
the 3 V’s (attributive) and talks about new forms of information processing (architec-
tural).

2.1.1 The 7 V’s
The attributive definition describes Big Data by its typical characteristics that distin-
guish it from traditional data. In literature, these characteristics are often referred to
as the V’s, since all of them can be written with the letter V at the beginning.

Volume: The volume indicates the size and quantity of the data. While traditional
datasets were in the range of mega- or gigabytes and a few thousand records,
newer datasets are moving into the range of tera- to petabytes with billions or
even trillions of records.

Velocity: The velocity describes the speed at which data is arriving. In the past,
datasets were once collected and not changed afterwards. This has changed
with Big Data, since data sources, especially any kind of sensors, are contin-
uously producing new data records. The speed at which the data is arriving
is getting higher and higher and makes it almost impossible to put in a single
storage system.

Variety: The variety describes the fact that the structure and content of the produced
data are more and more diverse. While traditional data was produced by a
single data source with a predefined representation, there are now various het-
erogeneous data sources that produce different sorts of data in very different,
mostly unstructured, representations.
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Veracity: The veracity is related to the quality of the data. In the past, data was once
produced and checked for its integrity and quality. Incorrect data was discarded
to keep a consistent dataset. With Big Data, this level of single record quality
is not necessary anymore, because the volume and velocity can compensate for
minor mistakes.

Value: The potential of Big Data is enormous as it allows to derive insights that were
not easy to obtain before. The mere volume and diversity of the data alone can
reveal new correlations. Because of these capabilities, the estimated value of
the new kind of data is immense. However, the value is only unleashed when
the data is carefully prepared for further analysis.

Variability: The variability describes differences in the meaning of information
within the data. It means that an extracted piece of information can be inter-
preted in multiple ways, but only one interpretation is right. Only in conjunc-
tion with the context of the information, the true meaning can be derived.

Visualization: Especially with a vast amount of data, it becomes difficult to under-
stand the meaning behind the data. Therefore, a clear visualization of the data
and its analysis results is crucial to derive new insights. However, finding a
good visualization is a challenging task that still has to be faced.

The main characteristic of Big Data, as the name implies, is that the data is big
or has a large volume, as mentioned in Definition 2. Looking at some big Internet
companies reveals that datasets of many petabytes (PB) up to a few exabytes (EB)
are not unusual. Netflix maintains around 60 PB (2016) of content [41], Facebook
manages a dataset of around 300 PB (2014) [42], and Google is estimated to even
store around 10 – 15 EB (2014) in their data centers [43]. Concerning the worldwide
data, Mayer-Schönberger et al. [1] estimate that there are 1.2 zettabytes (ZB) of data
in 2013. The satellite data expert Richard Currier [44] even believes that there are
4ZB of data only generated in 2013. Dragland [45] guesses that around 90% of all
data was generated in the past two years and according to IBM [46], every day around
2.5EB of new data is created.

Gartner has introduced a broader set of properties as the 3 V’s, i.e., volume, ve-
locity, and variety. The importance of velocity becomes clear when we look at the
user interactions that big Internet companies have to handle. Each user interaction
is related to a piece of data that is generated on the service side and can be used for
analytical purposes. The company Visual Capitalist has assembled an overview [47]
of what happens in one minute on the Internet. According to their statistic, each
minute, Google receives ≈3.7 M search queries, Facebook experiences ≈973 k login
attempts, and ≈187 M emails are sent. For one day, these numbers sum up to more
than a billion actions to handle. Such a large amount of incoming data is well above
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the figures we are familiar with. Handling such speed of arriving data is a typical
problem of Big Data. The variety of data is another key factor of Big Data. Large
datasets, such as from Facebook, Google and Twitter, are mostly user-provided and
therefore unstructured and in textual form. Additionally, various data sources are pro-
ducing data without employing a common representation for their data. Analyzing
such data is another major challenge for today’s Big Data algorithms.

The 3 V’s are the fundamental attributes of Big Data. Additional attributes have
been added later, for example by IBM [48]. They have proposed to add veracity for
the 4 V’s, since with a large variety and volume the quality of the data becomes an
inevitable challenge. Shortly after that, IBM added another V, namely value, to the
attributes, making it the 5 V’s. The newest definitions are even referring to 7 V’s, as
they are all listed above.

Our Definition on Big Data As a conclusion of all the above definitions of Big
Data, we have created our own understanding of the term that will also be the basis
for the considerations in the following part of this work. Two facets are particularly
prominent in all discussions about the Big Data term, i.e., volume and velocity. We
consider these two properties as the foundation of our view on Big Data. Furthermore,
we share the view of Mayer-Schönberger et al. that Big Data does not have to be
necessarily big in absolute numbers, but it constitutes a big part of a comprehensive
set of data [1]. However, for a typical Big Data problem, we consider datasets with
hundreds of millions of records as regular size and expect throughputs of more than
10 000 records/s for live datasets. Due to these extreme conditions, we consider it as
necessary that new technologies and processing architectures are inevitable. Another
important factor in our view of Big Data is the variety and variability. In particular,
the information lying dormant within the data cannot be easily extracted and needs
special treatment, i.e., prior indexing or normalization, and solutions, such as flexible
storage and query mechanisms.

2.2 Data Representation
One key attribute of Big Data is variety, indicating that the data has a broad spectrum
of representations. A representation can be considered as the methods used to store
or exchange information. The following subsections give a short overview of the
representational characteristics of Big Data, such as the data structure and data types.

2.2.1 Data Structure
Data has to be structured to make it understandable for machines and available for
algorithms, so that it can fit into program’s data structures or a database’s table struc-
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ture. When new data arrives, it can be in three different states, i.e., structured, semi-
structured and unstructured.

Structured: The data is fully structured, and each piece of information can be di-
rectly mapped to a data field. In other words, the data is ready to be put in a
table structure. Due to these properties, structured data can be processed ef-
ficiently and without prior preparation. According to a study by the company
IDC [39], 5-10% of all data is structured.

Semi-Structured: Semi-structured data has some elements that are structured,
but most of it is unstructured. Usually, the structured part is some meta-
information. However, the actual content is mostly unstructured. The struc-
tured metadata can be easily represented in a relational database, but the
unstructured part makes a reasonable analysis of the data difficult and therefore
requires some pre-processing. According to the IDC study, also 5-10% of all
data is semi-structured.

Unstructured: Unstructured data has no distinct format and the information encoded
in this data is not easily extractable. Examples of such data are images, videos,
audio, but also any kind of text. Today, unstructured data is the most common
and makes up 80-90% of all data.

Unstructured data is considered as one of the main challenges of Big Data but also
contains much valuable information. Consequently, methods on how to make use of
arbitrary text, images and videos are heavily researched.

2.2.2 Common Data Types

The overview of data representations has revealed that a large part of available Big
Data is unstructured. This nature of the data can be better understood with a look at
some common data types [17].

Text Data: Text is used for the transfer of human knowledge and information and
can be found in books, documents, websites, and more. Incorporating all this
information into data analysis can bring entirely new insights and chances.
While a single person is not able to read all existing literature about a topic,
a machine that understands how to handle text could easily do. However, the
understanding of text is still a challenge, because it is unstructured and involves
a complex grammar. New methods like Natural Language Processing (NLP)
and machine learning allow the interpretation of human language by machines.
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Sensor and Log Data: A sensor is a device or software that measures a specific
physical or chemical parameter or detects occurrences of predefined events.
Upon a measurement or detection, a sensor emits a textual event log entry
that specifies which parameter has been measured or what kind of event has
been observed. With the currently ongoing datafication, sensors are measuring
almost any imaginable parameter and their use is growing unstoppably. The
challenge of sensor data is the partial or missing structure and a missing com-
mon format to express the observed event or parameter. In this thesis, we will
show how to solve the problem of unstructured or semi-structured log data.

Multimedia Data: Audio, music, photos, graphics, and video are becoming increas-
ingly popular on the Internet and are used to document many parts of our life.
As the saying “A picture is worth a thousand words” implies, multimedia data
can contain important information that can be useful for analysis. The chal-
lenge of multimedia data is to interpret what it represents, since all available
data consists of encoded physical signals, e.g., acoustic waves. Techniques like
object detection for pictures or voice recognition for audio are addressing this
issue.

Handmade Data Tables: This data type covers information that was collected man-
ually and combined in a table or register, such as for car owners, residents
(census data), products (catalogs), companies (yellow pages and commercial
registers) and landlines (white pages). Much of this data was created before the
era of Big Data, but is still relevant for Big Data analysis because of the data
coverage and completeness. Since such data tables are created manually and
were initially intended for reading by humans, they often contain both, written
text and information fields.

2.3 Challenges of Big Data
The presented characteristics make clear that the handling of Big Data is connected
to many challenges. Many of these challenges can be directly derived from the 7 V’s.
In the following, we present an overview of the main challenges to understand why
certain technologies are used for the processing of Big Data and to which processing
phases special attention should be paid.

Huge Amount of Data and High Throughput The most prevalent challenges for
Big Data are its volume and velocity. They make it particularly difficult to process
datasets in real-time and require new strategies for processing and storage. On the one
hand, traditional mechanical hard drives can provide plenty of storage space but are
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sometimes not fast enough to handle incoming data. On the other hand, in-memory
storage can handle incoming data very fast but has only limited space available. Even
if data can be stored fast enough, the fast access to it also has to be ensured to enable
further complex analytics.

Missing Structure and Different Formats The interpretation of the data contents
are another major challenge in the processing of Big Data. The interpretation is re-
garded difficult, as the more significant part of data is unstructured (80-90%) and
different formats for the representation are used. This fact requires complicated pre-
processing steps, such as indexing or normalization, which extract relevant infor-
mation from the raw data. The extracted information then has to be converted and
put into a common data structure to enable access for comprehensive analytics and
queries.

Data Quality Data originates from many different sources and is produced by a
large variety of sensors and sensor types. Not all the provided data is as accurate as
one would wish, be it because of misconfiguration, missing calibrations, software or
hardware deficiencies or simply failures. Sometimes, the sheer amount of data can
overcome some of these inaccuracies. Nevertheless, not all these issues, particularly
missing information, can be solved with data volume. For the remaining mistakes,
another pre-processing step needs to be deployed that can complete missing informa-
tion from the context and can identify and fix deviating or wrong values.

Correlation The power of Big Data lies in the correlation of multiple data sources
to create a big picture. This correlation can be realized with manual queries, au-
tomated correlation algorithms or machine learning approaches. Still, before such
methods can operate efficiently, the data needs to be moved to a structured form and
a certain level of quality has to be established. Only then, a data analyst can start to
find the right features within the data that can reveal new insights.

In this thesis, we show how many of the above challenges can be solved in the context
of event-based security analytics.

18



Chapter 3

Big Data Processing

Big Data is characterized by properties that make it difficult to process. The mech-
anisms and tools we have used in the past to process data are mostly not capable of
handling this new kind of data, which is huge, has no clear structure and has deficien-
cies in quality. Nevertheless, making use of Big Data can give us new insights we
were not able to obtain before.

In this chapter, we present different existing approaches and technologies to deal
with Big Data and present a processing workflow covering the steps from raw data to
the analysis of structured data.

3.1 Data Processing Paradigms
Traditional data was typically in the range of thousands of data records, which did not
require performance-optimized algorithms. Big Data is often in the range of millions
or even billions of records, which requires a new elaborate strategy for processing.
In particular, it becomes inevitable to use all available resources for processing and
to come up with new best practices and paradigms for handling data volume and
velocity.

3.1.1 Aiming for Scalability
Scalability can be seen as the capability of a system to handle a growing amount
of work or data. It is a necessity for the processing of large and increasing data
volumes. Unfortunately, many existing algorithms and processing paradigms were
not designed with scalability in mind, making their adoption to Big Data difficult.
In general, scalability can often be achieved by adding more resources and making
algorithms or programs ready for parallel processing. The methods to implement
scalability can be grouped into two categories: horizontal and vertical scalability.
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Horizontal Scalability This category includes methods that add additional computer
systems or nodes to achieve higher performance. The distribution of the pro-
cessing task to multiple nodes is typically coordinated over the network. Hor-
izontal scalability is known to be a cost-effective and easily implementable
solution since many relatively low-end nodes can be combined into huge com-
puting clusters, which can even outperform supercomputers.

Vertical Scalability This type of scaling adds computing resources or additional
hardware to a single node. The most common types of resources added or
improved are CPUs or main memory. Vertical scaling has the advantage that
smaller scale-ups are easier to achieve and could be cheaper, because no net-
work is needed and only one hardware component with better performance has
to be added. Nevertheless, as soon as larger scale-ups are required, the cost of
better hardware explodes and makes the scaling economically unattractive.

Add Nodes Add Nodes

(a) Horizontal Scaling
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(b) Vertical Scaling

Figure 3.1: Types of scaling

Both types of scaling are desirable for high-performance processing infrastruc-
tures. Vertical scaling allows the efficient use of a single machine whereas horizontal
scaling combines multiple such single machines to a more powerful cluster. A system
architect has to find the right balance between both solutions.

3.1.2 Methods of Performance Scaling
A large part of the scaling for Big Data can be achieved with a small set of meth-
ods. Some of these methods are already used for decades to scale applications, but
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there are also methods that have just been introduced with the rise of Big Data. The
following describes five of the most popular methods.

Multi-Threading A thread is a unit of code that is executed in a processor core.
A single process can have multiple threads, and each processor core can execute one
thread at a time. With the advent of multi-core processors, one computer can run
multiple threads in parallel and thus one process can have multiple parallel execution
paths. The term multi-threading means that a program executes multiple tasks simul-
taneously to achieve better performance. According to Amdahl’s law, a program can
be sped up by the number of available processor cores if the code is fully paralleliz-
able [49]. Multi-threading is a typical method of vertical scaling, because it relies on
the addition of more processor cores to an existing system.

Distributed Processing A single machine is limited in the processing resources it
can provide. The idea of distributed processing is to use the processing resources of
multiple computers being connected over a network, a so-called cluster. The com-
puting nodes do not even need to be very powerful, because processing power can
also be reached with many low-end computers. Additionally, an existing cluster can
be easily expanded with more nodes. Distributed processing is a typical method of
horizontal scaling and is one of the primary methods to keep up with Big Data.

In-Memory-Databases Traditional DBMS have used hard drives to store data and
are slow when they access data records. To overcome the long-lasting hard drive
access, they are keeping hot data, i.e., data that is often accessed, in caches within the
main memory. Due to the slow access and hardware limitations, these DBMSs are
not suitable for large amounts of data. In-memory databases are a new generation
of DBMS that move the storage of data to main memory and the caching to the
CPU-caches, making data access and analysis extremely fast [50]. This approach is
feasible, since a large main memory and powerful processors are getting popular and
cheap. In large companies, machines with 1 TB and more of main memory are not
unusual anymore. In-memory databases can be grouped into the category of vertical
scaling, as the performance improvement is achieved by adding more main memory.

Data Partitioning Another method for improving the performance of a DBMS is
to use data partitioning. The idea is to split up the table data into so-called partitions,
which contain independent subsets of the columns or rows of the original table. For
row-based partitioning, a partitioning scheme decides into which partition a row is
put. A DBMS can handle its partitions on a single machine or can distribute them to
multiple nodes. The distribution of the data partitions, also called sharding, allows a
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DBMS to handle data requests independently on different machines and can, there-
fore, reduce loads significantly. One of the major challenges of sharding is to find
an efficient partitioning scheme that supports the separation of the data in a way that
each request can be processed in a dedicated partition. Due to the distribution of data
to multiple nodes, sharding is considered as a method of horizontal scaling.

Message Brokers and Queues In a distributed processing cluster, nodes and work-
flow components are exchanging messages to coordinate processing steps and to
transmit working tasks. As a consequence, the fast and reliable transfer of messages
to all cluster components is utterly important for a well-functioning Big Data work-
flow. A message broker or queue is a system that coordinates the message transfer
between so-called publishers and subscribers. A message queue receives message
streams from multiple publishers and assigns the messages to a topic queue, accord-
ing to the requirements of the publisher. On the other side, a subscriber asks the
broker for messages from a specific topic queue. The publisher/subscriber concept
allows asynchronous communication between workflow components and supports
their decoupling. The message queue itself is a fault-tolerant list of messages where
each message is addressable over an index. Accordingly, a subscriber can rewind and
reprocess data as needed. A retention policy defines how long a queue should hold the
received messages. Since a message queue supports the fast exchange of messages in
clusters, it can be seen as an example of horizontal scaling.

3.1.3 Batch- and Stream-Processing
In the context of Big Data, there are two modes of processing that are often men-
tioned, i.e., batch- and stream-processing. The modes are distinguished by the way
the data is consumed, which is either one data point at a time or the whole dataset
at once. Each of the modes has advantages in particular use cases. The main differ-
ences are what kind of data can be processed, the performance in terms of volume
and velocity and what kind of operations can be applied during the processing.

Batch-Processing This mode is a popular way of data processing, where a dataset
is processed as a whole and in one finite run. It was already used in the past to process
smaller finite datasets but is now also commonly used to process Big Data, such as
historical data, i.e., data gathered and stored in the past for possible future analysis.

The performance of batch-processing is in favor of data volume. It can process
large chunks of data in a relatively short time, meaning it has a high throughput,
because it has access to the complete dataset and can fully parallelize the processing
in the best case. On the other hand, the processing results take rather long to produce,
meaning it has a high latency, because the complete dataset has to be processed first.

22



CHAPTER 3. BIG DATA PROCESSING

Depending on the size of the dataset, it could take from hours up to days until the final
results are delivered. In many cases, there are also no intermediary results available.

Batch-processing can be applied multiple times on the same data and keeps the
original data sound. This kind of reprocessing is a feature that is often required for
Big Data applications that collect all the data they receive in one large dataset. To get
the newest analysis results on the data, they apply the processing again and again on
the whole dataset. In case there are problems with any processing step, results can
be recalculated when the problem is solved. Batch-processing is also powerful in the
kind of operations it can apply on the data, since the size of the dataset is known from
the beginning and data records can be accessed many times, in contrast to stream-
processing. This allows even very complex analytics on the data, as resources can be
well estimated and do not need to be kept in use infinitely.

Stream-Processing This is a new mode of processing that is designed for live-data
or, in other words, data that is arriving in a continuous infinite stream. Each record
within the stream is handled individually without access to the whole dataset. Since
many Big Data applications produce new data every second, stream-processing is
necessary to provide real-time analysis of this data.

The performance of stream-processing behaves in the opposite way of batch-
processing, meaning it has low latency paired with low throughput. It is optimized
for velocity and designed to deliver analysis results in real-time. However, as a con-
sequence of that, it takes longer to process larger datasets since records are processed
one-by-one.

In the context of stream-processing, the one-by-one scheme has limitations for
advanced analytics, because stream-operations do not have random access to all avail-
able data. All applied operations are limited to a single record. Another problem is
the volatility of the processed data. Since already processed data is not kept, an error
during the processing can lead to the loss of previous results and therefore inaccu-
racies. This is a contrast to the batch-processing approach, where there is always a
chance of reprocessing.

Micro-Batch Processing This mode of processing is a mixture of the previously
described modes and combines their advantages. Micro-batching is processing rather
small batches, i.e., a few hundred or thousand records, in one run. In other words,
it is processing a stream of small batches. The small batches enable it to produce
preliminary analysis results in very short time and the processing is considerably
faster than the one-by-one processing used for stream-processing.

The processing capabilities of micro-batch-processing are similar to stream- and
batch-processing. Micro-batch-processing can be used to analyze large batches with
quick intermediary results and reliable processing. Nevertheless, the accessibility

23



CHAPTER 3. BIG DATA PROCESSING

to all available data is still limited to this approach and makes complex analytics
challenging.

Concluding, it can be said that all of the processing modes have their advantages and
disadvantages, as shown in Table 3.1. Batch-processing is well-suited for performing
complex analytics on massive datasets. Stream-processing is designed to work on
live-data and is capable of delivering intermediary results on the data. Micro-batch-
processing is a compromise between the previous two modes but is still not flexible
enough to perform any kind of complex analytics. According to Akidau [51], well-
designed stream-processing systems are not only faster than batch-processing, but
they can even provide a superset of batch-processing functionality. This is why some
people already regard stream-processing as the processing mode of the future.

Mode Processing Entity Latency Throughput Operations
Batch Huge batches Very High Very High Complex

Stream One record Very Low Low Lightweight
Micro-Batch Tiny batches Low High Normal

Table 3.1: Comparison of processing modes

3.1.4 Data Immutability
One of the main bottlenecks for a scalable Big Data architecture is the data per-
sistence. An important role for the performance of that persistence plays the
(im)mutability of a storage system, which defines how persisted data records are
accessed and updated.

Mutable Storage Systems In architectures that were developed in the past, all
data was stored in relational databases where a table row represents one data record.
Whenever a record has to be updated with new values, the corresponding row in the
table has to be found in an index and the changed data fields are overwritten with new
values. During the time where a field is overwritten with a new value, the database
makes sure that the updated field and its relational dependencies are locked and not
read or modified by concurrent database accesses. Only these locks can keep the sys-
tem in a consistent state and prevent damage to the data. The property that a data field
is overwritten in place is called mutable. The mutability of traditional database sys-
tems is one of the significant hurdles for scalability, because index lookups and locks
cause considerable delays when records are inserted and updated. While the delay
is negligible for small datasets that are only accessed and changed occasionally, it
becomes a big problem for huge datasets that are accessed very frequently.
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Immutable Storage Systems Mutability and scalability are hard to achieve to-
gether. Therefore, data scientist and engineers came up with new models of databases
that are focusing on immutability for better scalability. An immutable database has
the property that any changes to the data are not realized through updates, but inserts,
so that no more locking is required. Although an immutable database system only
supports the addition of new data, modifications on existing data can be achieved
with timestamping. With this method, each database operation is represented with a
new database entry that includes a timestamp on when the operation was performed.
So, the database consists of the whole history of operations ever performed on the
data. The current state of the data can be derived by applying all the operations in
order of their insertion. Additionally, a user can recover any historical state of the
database. Due to the fact that no records are deleted or changed, and it is known
which operation has been performed first, the database system can present a consis-
tent state when no further operations are applied. Still, in an intermediary state where
some operations are still outstanding, it might not be possible to present consistent
results, especially on different nodes of a distributed database system. This type of
consistency of a database system is also called eventual consistency.

Examples of immutable DBMSs are several NoSQL databases, such as Cassan-
dra, the SAP HANA database as well as the HDFS from Hadoop.

CAP-Theorem The CAP-theorem, also known as Brewer’s theorem [52], states
that a distributed system can only fulfill two of the three properties consistency, avail-
ability, and partition-tolerance at the same time. So, when designing a distributed
database system, one can pick two of the properties but has to sacrifice the third.
Since no distributed system can prevent network failures, partition-tolerance is con-
sidered as a must-have property. So, in reality, there is a choice between availability
and consistency.

An article by Marz [53] summarizes the effects of both choices quite well. When
availability is chosen over consistency, a read may return a different value than what
was just written. A system that aims to achieve consistency at some point, i.e., even-
tual consistency, can perform repairs on the data and the database will be sound in
the end. When consistency is chosen over availability, it can happen that the database
system either does not perform operations on time or that errors are returned on an
operation because a part of the system is not available. A user then has to wait un-
til the full system gets up again. However, any changes to the data are immediately
available, which is also called immediate consistency.

Both presented combinations are very hard to realize and have much potential
for errors. In his article, Marz sees the use of immutable databases as a solution
to simplify the development of distributed database systems, because there are no
incremental updates anymore that make the implementation of the consistency prop-
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erty difficult. He also proposes a database architecture that he claims can beat the
CAP-theorem. The details of this architecture will be described in more detail in
Section 3.2.

The mutable model of database systems was designed for small datasets in environ-
ments with low memory resources. In the Big Data era, with abundant memory and
huge datasets, mutable database systems are replaced with more and more immutable
database systems. These immutable databases do not only perform much better, but
can, at the same time, provide immediate consistency easier and allow recomputation
on errors.

3.1.5 Processing Reliability

So far, we have focused on the scalability of a processing architecture. Another fac-
tor that plays into the design of a processing architecture is the fault tolerance and
the met processing guarantees. When running a Big Data infrastructure with a large
number of nodes, there is a relatively high chance that one of the nodes or the commu-
nication between the nodes fails. The fault tolerance of the system defines whether
the interrupted execution caused by failure will be repeated and proper execution
is guaranteed. However, it should be considered whether a guaranteed execution is
needed or whether it is sufficient just to repeat the processing of the entire dataset, if
necessary.

According to many definitions of Big Data [1], huge amounts of data can com-
pensate for potential errors and losses of single records. Thus, even if a few records
are failing during the processing, the eventual results of an analysis will still be simi-
lar. Furthermore, it has to be considered that many data analysis routines are repeated
regularly, in particular for batch-processing systems, which make the guaranteed ex-
ecution redundant. In the end, it is the choice of the architect or analyst, whether the
processing of each individual record is important and analysis results must be correct
at each time. In any case, the complexities that come with a guaranteed processing
cause performance degradation.

In the literature, there are three common error semantics for the reliability of
distributed systems, i.e., at-most-once, at-least-once and exactly-once [54, 55].

At-Most-Once This is the simplest form of reliability guarantee and does not provide
fault tolerance. In short, a record is distributed once and is not replayed in an
error case, so no additional mechanisms are required to implement it. If a
record is lost within the transmission or its processing fails, then it would be as
if the record never existed.
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At-Least-Once This semantic already provides some basic level of fault tolerance.
It means that each record will be processed eventually, but it cannot be pre-
vented that a record is processed multiple times. A mechanism that can ensure
this semantic is the acknowledgment. Whenever a record has been fully pro-
cessed, it is acknowledged, and the processing of further records can go on. If
a record is lost or the processing fails, there will be no acknowledgment and
the record will be replayed after a timeout. In the worst case, some operations
are performed twice for the same record.

Exactly-Once This is the strictest form of reliability and ensures that each record
is processed at least once but prevents duplicate processing. Consequently, a
record must be replayed in case the current processing failed, but the results of
the processing are only considered once. Generally, exactly-once semantics are
difficult to achieve and put limitations on the performed operations. However,
lost records can be handled with acknowledgments. To ensure that a record is
not processed multiple times, each operation performed on it must have no side
effects or, in other words, be idempotent. Even if a record would be processed
twice, the result of the processing will be as if the record was only processed
once. As a conclusion, a workflow with non-idempotent operations cannot
fulfill exactly-once semantics.

3.2 The Big Data Workflow
The analysis of Big Data can be considered as a complex workflow that transforms
raw data from various data sources into some final analysis result. This workflow is
not a single big transformation algorithm but consists of multiple processing steps
that each contribute an essential part to the overall transformation. The processing
steps are usually executed sequentially, and each step is either executed as a single
instance or is run in parallel in multiple instances to achieve better performance. In
the following, we first present some common architectures for Big Data processing
to show in which environments the workflow is executed. Afterwards, we introduce
and describe common processing steps as they are found in Big Data workflows.

3.2.1 Known Processing Architectures
The efficient processing of large amounts of data requires a sophisticated software
architecture that can make use of parallel computing resources and is highly scalable.
The key factor for such an architecture is a clever combination of the two processing
paradigms stream- and batch-processing in a way that only their advantages come
into play.
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The design and creation of efficient Big Data processing architectures have
been the interest of many companies, especially Internet companies like Twitter and
LinkedIn, and has been discussed in various blog posts of researchers. Over time, two
approaches have gained the most reputation in the community and have found their
way in many Big Data analysis infrastructures. These two approaches are described
in the following.

3.2.1.1 Lambda Architecture

This architecture was initially introduced by Marz in a blog post [53] in 2011 and
was later refined in his book [56]. It is meant to eliminate the influence of the CAP-
theorem in data processing and can handle complex operations on any kind of data
and still produces results with low latency. The Lambda architecture consists of three
layers, i.e., the speed-, batch-, and serving-layer. Figure 3.2 shows the composition
of these layers in the architecture.
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Figure 3.2: Lambda Architecture

The batch-layer is the core of the architecture and precomputes complex views
on the master dataset, which is a copy of all data that ever arrived and is constantly
growing with new data. Since a master dataset can easily cover multiple billions of
records and the batch-processing can only deliver results after all records have been
processed, there are usually large delays of multiple minutes up to hours for a single
run of the batch-layer. As soon as the pre-computed results are available, they are
written into a mutable database for the access of the serving-layer and the batch-layer
starts a new run over the master dataset to incorporate new data that has arrived since
the last run.
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The speed-layer, also referred to as real-time-layer, is the complement of the
batch-layer and is responsible for processing the data of the last few hours with low
latency. It puts all its processing results as views into a mutable database, so that a
system user can see the state of analysis in near real-time. Nevertheless, the incre-
mental character of the performed operations and the difficulties connected to muta-
ble databases makes the speed-layer susceptible to processing, hardware, and human
errors.

The serving-layer acts as an access point to the data previously prepared by the
batch-layer. The batch-layer already provides intermediary results that take longer to
process within its database, but these results are not consumable for a system user.
Therefore, the serving-layer applies further queries and provides aggregated views on
the preliminary data. Eventually, it delivers the results with minimal latency to the
system user.

According to Marz [53], the combination of speed- and batch-layer can reduce
the influence of the CAP-theorem. When choosing availability over consistency, the
batch-layer can easily provide eventual consistency because of the immutability. In
the speed-layer, the consistency of the data is not as relevant, because the batch-layer
eventually overwrites all the results produced by this layer after a few hours.

3.2.1.2 Kappa Architecture

The Lambda architecture was introduced as a solution to support the processing of
large volumes of data with low latency and with the capability of reprocessing. The
key concept of the architecture is to use stream- and batch-processing together. How-
ever, exactly this concept brings some difficulties in practice. Both processing modes
are rather different in the way they handle data and need different logic to achieve
the same results. For the Lambda architecture, this means that each processing task
needs to be implemented twice, once for the batching and once for streaming.

An approach that addresses the problem of reimplementation in the Lambda archi-
tecture was proposed by Kreps in a blog post in 2014 [57] and is called the Kappa ar-
chitecture. The main idea of the Kappa architecture, which is illustrated in Figure 3.3,
is to eliminate the batch-processing and incorporate the batch data into the stream-
processing. The reprocessing of data is now also handled by stream-processing, and
higher throughput is achieved with parallelism and new hardware capabilities.

The processing in the architecture works as follows. Similar to the Lambda archi-
tecture, all arriving data is first written into an immutable master dataset that allows
fast reading. Then, a single stream-processing instance works on the master dataset
and writes the processed results into a table. Whenever the reprocessing of the data
is requested, a new stream-processing instance is started on the master dataset again.
As soon as the new processing instance has caught up with the master dataset, the
previous processing instance is stopped. The serving-layer of the Kappa architec-
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Figure 3.3: Kappa Architecture

ture is responsible for providing different views on the result table of the most recent
processing instance.

Interestingly, the Kappa architecture shows that Big Data processing can be han-
dled entirely with stream-processing. It confirms the idea of Akidau [51] that stream-
processing can be seen as a superset of batch-processing if enough resources are
available.

3.2.2 Traditional ETL/ELT-Process

Data Sources

Extract
Central Data 

Store
(Data Warehouse)

Transform Load

Figure 3.4: ETL-Process

The so-called Extract-Transform-Load (ETL) process is a fundamental data pro-
cessing workflow that moves bulk data from various operational systems into a data
warehouse, a single source of data on which all analysis is applied [58]. While data
warehouses become less relevant as they are too slow and inflexible [59], the ETL-
process is still relevant for feeding large amounts of data from various sources into a
central data store, as it is common for Big Data processing. The defined process is
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rather simplistic as it only consists of three high-level steps that give the ETL-process
its name: extract, transform and load. The tasks of the steps are listed below, and
Figure 3.4 illustrates the interaction between them.

1. Extract: Collect the data from all available data sources. A challenge of this
step are the heterogeneous systems, their incompatible interfaces and the high
variance in the formats of the provided data. To correctly extract the data from
all sources, the extraction component needs to support all variations of inter-
faces and data formats.

2. Transform: Apply multiple transformation rules and functions on the raw ex-
tracted data in a way that the data can later be readily used for complex queries
and analysis. Typical transformation functions are normalization, translation,
cleaning, aggregation, filtering, or ordering.

3. Load: Move the previously transformed data into the final target, which can be
a database, a message queue or a data warehouse.

There are many discussions on the eligibility of the ETL-process in today’s Big
Data architectures. People argue that the transformation is too heavy-weight to be
performed in real-time and propose to pass the raw data directly to the data store. Any
transformation would then either be provided within the data store or when the data
is read. This kind of processing workflow is also commonly referred to as Extract-
Load-Transform (ELT)-process, because it swaps the two steps load and transform.

Although the ETL/ELT-processes cover an essential part of the Big Data process-
ing workflow, namely moving the data from their sources to a single data store in-
stance, they do not further specify when and how analysis is performed on the stored
data. Due to these limitations, a more detailed processing workflow is desirable,
which is introduced next.

3.2.3 Our Processing Workflow
The processing workflow is the basis to understand which operations and transfor-
mations have to be applied on a given set of raw data. For now, there is no common
workflow that fits all purposes, but rather many different workflows for various spe-
cific tasks to be performed on the data. In the following, we introduce a workflow that
is more comprehensive than the presented ETL-process and is based on the typical
processing steps that can also be found in literature about Big Data processing [16,
40, 60, 61, 62]. This workflow is used as the underlying framework for the main
contributions of the following work and is therefore focused on the fast processing of
high volumes of event data and incorporates data correlation and complex analytics.
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Figure 3.5: Processing workflow used in this work

A first overview of the workflow is depicted in Figure 3.5. The lower part of the
architecture reveals that there are altogether five major processing steps, each having
some common associated operations. The following list describes each of them in
more detail.

1. Collection: This step is comparable to the extract step of the ETL-process. It
is the first step in the workflow and handles the collection of raw data from the
various data sources. Three major tasks have to be performed for the collection.
The first task is the discovery of possible sources by looking for systems that
are offering data. The second task is the extraction of data records from the
found data. The last major part is the retrieval and acquisition of the extracted
data so that it can be passed to the next processing steps.

2. Pre-Processing: The second step in the workflow prepares the received raw
data for further analysis and persistence. One of the most important tasks in
this area is the normalization of the raw unstructured data into a common struc-
tured format so that the following steps can easily access all available data
fields. Since many of the received data records are incomplete or inaccurate,
the data further needs to be enriched and tagged with contextual knowledge
from a maintained knowledge base. Additionally, some data types are trans-
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formed for easier processing.

3. Pre-Analysis: The pre-analysis step performs the first rudimentary checks on
the data records. A possible task in this step is the derivation of additional
knowledge from all passing records, such as the frequency and variation of val-
ues for specific data fields. Another possible task is to find simple patterns in
the data and make findings of these patterns immediately visible to the follow-
ing steps. To simplify analysis on the data at a later time, the pre-analysis can
already perform rudimentary aggregations of records with similar properties.

4. Persistence: The persistence is similar to the load phase of the ETL-process
and is a central part of the processing workflow. It moves incoming live records
into a permanent data store. The data store is an immutable storage that is later
also used as the master data for more complex analysis and enables recompu-
tation as well as fast batch-based processing.

5. Post-Analysis: This step allows to apply complex analytical methods on all
available data in the data store. Such analytical methods could be complex
queries with aggregation, filtering, and ordering, or machine learning for find-
ing anomalies in the data, or the identification of complex patterns by correlat-
ing multiple records with each other. The post-analysis step is also a suitable
place for an analytical interface with which researchers and analysts can query
and correlate data.

The five processing steps are distributed over two different phases in the workflow.
The first phase is the stream-processing phase that can handle the live data with low
latency and transforms the records into a structured form. Essentially, the operations
executed in the first phase of the workflow have much in common with the operations
of the ETL-process, but they are now handled with stream-processing. In compari-
son to the Lambda architecture, the pre-processing is not repeated for real-time and
historical data but is only performed once for the live-data and is then stored for later
batch-processing. In the unlikely event that some new pre-processing or pre-analysis
operations become available, the raw events in the master dataset are reprocessed and
existing records are overridden with timestamping, as mentioned for the modification
of immutable database records.

The second phase focuses on the processing of historical data from the central
data store. However, instead of using the typical batch-processing approach for mas-
ter datasets, we propose to use stream-processing as used in the Kappa-architecture
and mentioned by Akidau [51]. The data that is processed in this phase is already
structured, so that operations can focus on the pure analysis. On top, all the process-
ing is error-tolerant, because the processed data originates from the central data store
that is immutable and can be read again and again without losing data.
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Tools and Libraries for Big Data

The last two chapters have introduced the theoretical aspects of Big Data. We now
take a closer look at tools and libraries that bring this theory into practice. In particu-
lar, we are focusing on the tools and libraries from the two areas of parallel processing
and data persistence.

4.1 Parallel Processing
Parallel processing is an important mean for scaling programs vertically on the same
machine and horizontally over a number of computing nodes. Vertical scaling is
achieved through multi-threading, which is already built into modern operating sys-
tems, whereas horizontal scaling is achieved through work distribution in the network.
The coordination of work between multiple threads or nodes is a challenging task, as
it requires efficient communication between processors. In the following subsections,
we present known ways of so-called Inter-Process Communication (IPC) and further
introduce frameworks that support a developer to parallelize programs vertically and
horizontally.

4.1.1 Inter-Process Communication (IPC)
The coordination of processors for parallel processing encompasses status messages
and the passing of tasks to processors with free resources. Depending on the data
to be processed, hundreds of thousands of messages are exchanged within a second.
Obviously, this communication becomes a bottleneck for Big Data processing.

Netty Netty is an event-driven network library for the Java programming language1

that is optimized for high-performance network communication. In contrast to many
1Netty Project - https://netty.io
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standard network libraries, Netty focuses on asynchronous communication, also
known as non-blocking I/O (NIO), and reduces unnecessary copying of network data
between device and operating system memory.

The performance, simplicity and large active community make Netty popular for
the communication within distributed Big Data systems, such as HBase, Storm, and
Spark, which are described later.

LMAX Disruptor The LMAX disruptor is a software pattern and library that al-
lows a high-speed exchange of messages between concurrent threads [63, 64]. It was
originally created for the purpose of high-frequency trading where low-latency and a
high message throughput are the key to success.

Traditionally, messages between threads were exchanged by so-called blocking
queues as shown in Figure 4.1, a concurrent queue implementation where a consumer
thread waits for incoming messages to be put into the queue by a producer thread. As
with many concurrent data structures, the blocking queue has the disadvantage that
any write access to the queue needs locks. Thus, whenever a producer thread puts new
messages to the queue, the full data structure needs to be locked and the consumer
threads have to wait for the locks to be released [64]. Particularly this locking causes
small but remarkable latencies when many messages have to be exchanged in a short
time.

T1

T2

T3

T4

Producers Consumers

Figure 4.1: The blocking queue concept

The disruptor is a solution that reduces the number of locks to a minimum and
consequently allows message exchange with tiny latencies. It mainly consists of two
components, a ring buffer, and multiple sequences. Figure 4.2 demonstrates the con-
cept of the disruptor. The ring buffer is a bounded data structure where each slot of
the buffer represents a message to be exchanged. When a producer wants to publish
a new message, it asks the disruptor for a free slot in the ring buffer and puts in its
message. Then the disruptor tells the consumers that a new slot with a message is
available for consumption. The slots that are filled by the producers and emptied by
the consumers are tracked with sequences. When a new slot is filled, the sequence is
incremented, and the consumers know that there is a new message they have not con-
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sumed. When the sequence number exceeds the slots of the ring buffer, the sequence
number is wrapped, and the disruptor begins at the first slot of the ring buffer.
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Figure 4.2: The disruptor concept

The sequences are one of the few points that require concurrent access within the
disruptor. This concurrent access can be safeguarded with a lock on the increment
operation of the sequence, which can be performed in a very short time. In case of
the existence of only a single consumer or producer, this locking can even be entirely
skipped. An advantage of the disruptor, in comparison to the blocking queue, is that
a message in a slot can be processed not only by a single consumer, but by a chain of
different consumers.

4.1.2 Distributed Processing Frameworks
The distribution of processing tasks to multiple nodes and their processor cores is a
complex problem that can be handled with many already existing processing frame-
works. The frameworks are distinguished by the type of processing they support,
which is either stream-, batch- or micro-batch-processing. Depending on the use case,
i.e., whether live- or historical data should be processed, one framework can have sig-
nificant advantages over the others, especially in terms of latency and throughput. The
following selection of frameworks is currently most popular for Big Data processing.

Apache Hadoop (Batch-based) Apache Hadoop is one of the first and most popu-
lar frameworks for the distributed processing of Big Data in a cluster and was initially
published in 2006. It is an implementation of the MapReduce algorithm in combina-
tion with the Hadoop Distributed File System (HDFS).

The MapReduce algorithm was originally proposed by Google in 2004 [65] and
consists of the map operation, which transforms the values of a dataset to multiple
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intermediate key-/value-pairs, and the reduce operation, which combines multiple
intermediary values with the same key to a final value for that key. Since each of the
operations can be independently run on a subset of the dataset, MapReduce can be
executed in parallel on multiple nodes and is highly scalable. The HDFS, which is
based on the Google File System (GFS) [66], is used by Hadoop to initially distribute
the full dataset to all cluster nodes. As a result, each worker node can retrieve the
data faster from multiple nodes over the HDFS or can even access the local copy of
the data because it is itself part of the HDFS. Because of the initial migration of the
data to a distributed file system and the type of operations that are applied to the data,
Hadoop is primarily seen as a batch-processing system.

From today’s view, Hadoop has various limitations that are related to its use of
MapReduce and the HDFS. Firstly, the Map Reduce operations are limited in their
functionality and it can be hard to express a task only with these abstractions. Sec-
ondly, Hadoop works in an inflexible and slow iterative manner, meaning that each
operation is handled in a separate run that consists of reading from HDFS, processing
with MapReduce and writing of the results to HDFS.

Apache Spark (Batch- and Micro-Batch-based) Spark is a new kind of process-
ing framework that was initially proposed by researchers from the University of
Berkeley in 2012 to overcome the limitations of Hadoop [67].

The Spark engine is based on the concept of Resilient Distributed Datasets
(RDDs), i.e., intermediary processing states. An operation is performed on top of
an existing RDD and the results are output to a new RDD. A complete task can,
therefore, consist of a sequence of multiple RDDs and their operations. In contrast to
Hadoop, the available operations are more comprehensive than map and reduce and
the results of an operation are written to an RDD instead of into HDFS. In the end,
the RDD acts as a cache which is either kept in memory or on the hard drive.

The various optimizations allow Spark to be up to 100x faster than Hadoop and
let it be more flexible in its operations. Also, Spark comes in two versions to sat-
isfy the need for batch- as well as stream-processing. The core of Spark is tailored
to batch-processing, but there is an integrated streaming component, being called
Spark Streaming, that works with micro-batches. In fact, Spark Streaming uses the
existing implementation of the batch component but splits the incoming dataset into
multiple smaller chunks beforehand. As a side effect of the combination of batch-
and stream-processing in one framework, Spark can be easily used to create Lambda
architectures, because the same analysis code can be used for the stream- and batch-
layer.

Apache Storm and Trident (Stream- and Micro-Batch-based) Storm is one of
the first stream-processing frameworks for Big Data and was created by Nathan Marz
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from Twitter. It was initially published in 2011 and was moved to the Apache Foun-
dation in 2013.

The central concept of Storm is to distribute a topology, which is the terminology
for a task’s processing pipeline, with so-called spouts and bolts over multiple nodes.
A spout represents a data source of a topology that continuously produces data and
a bolt can be considered as a single processing step within the pipeline. Since Storm
is a streaming framework, a topology is once started and then runs infinitely, if not
explicitly stopped. As new data arrives in the spouts, it is passed through the whole
topology. In comparison to Hadoop and Spark, a majority of the data is passed be-
tween the nodes via network instead of accessing data from HDFS. This is because
the whole workflow is split over multiple nodes instead of distributing the workflow
as a whole to multiple nodes.

The implementation of Storm already uses some of the technologies we have
presented before. In particular, Netty is used for the communication between different
nodes and the LMAX Disruptor is employed to pass data records from the network
to the worker threads of a bolt and vice versa [68].

Trident is another processor that is integrated with the Storm release but is micro-
batch-based with exactly-once processing. Trident makes use of the Storm core, but
further abstracts the operations similar to SQL. Instead of expressing how something
is achieved, it is expressed what has to be achieved in terms of sorting, grouping or
aggregation [54]. As a result of the micro-batching and the abstraction of operations,
Trident is claimed to be faster and easier to use than Storm.

Twitter Heron (Stream-based) Heron is a new stream-processing framework that
is developed at Twitter and was published in early 2016. It is the successor of Apache
Storm and is mostly backwards compatible with the Storm API.

Heron was completely reworked in its architecture in comparison to Storm. In the
Storm architecture, a record has to pass multiple queues and threads before it reaches
a bolt. In Heron, the number of threads is reduced to two, one that receives and
sends records and another that performs the processing. Another objective of Heron
is to improve scheduling, debugging and resource allocation of the workers. So, in
comparison to Storm, Heron only handles a single task for each worker.

According to Ramasamy [69], the performance of Heron is significantly better
than that of Storm and the management of topologies is much more comfortable. In
experiments, the throughput of a Heron topology was around 10-14x higher than with
Storm.

Each of these frameworks provides a comprehensive and flexible platform for
analysis algorithms with a wide range of capabilities, e.g., fault tolerance, central-
ized management and adaptability to existing systems. The main point in which
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these systems are different is their way of processing, whether they perform batch-
or stream-processing or work on historical or live data, respectively. Although pro-
cessing frameworks can simplify the handling of Big Data, there is also an important
downside to be considered. The flexibility and adaptability make these frameworks
susceptible to errors and potentially decreases the performance because of the many
possible alternatives that need to be considered during processing.

4.2 Persistence
The persistence or storage of data creates a bridge between stream- and batch-
processing. Based on the type of data and the analysis that is performed on it,
special persistence frameworks can be used that support an analysis use case. In
the following, a list of common storage systems with their individual capabilities is
presented.

HDFS and HBase The Hadoop Distributed File System (HDFS) is a common dis-
tributed file system that is based on the Google File System (GFS) [66] from 2003. It
provides scalability, reliability, and availability and allows to store huge files, which
would be too big to be placed on a single hard drive, across multiple cluster nodes
with commodity hardware.

A distributed column-based NoSQL-database system that works on top of
the HDFS is HBase. It is based on the BigTable database initially proposed by
Google [70] and is optimized for schema-less sparse data. It breaks up a row by its
columns and stores each non-empty column with its value in a separate entry in the
database. This allows a dynamic schema as well as an efficient compression, because
empty values are dropped, and equal values can be combined. Each entry in HBase
is indexed by its row, which allows fast access to all values of a row. A special
characteristic of HBase is its immutability with immediate consistency, which makes
it to a CP(Consistency,Partition-Tolerant)-system according to the CAP-theorem.

Cassandra Cassandra is another column-based distributed NoSQL-database that
was inspired by Google’s BigTable and Amazon’s Dynamo. The data structure that
Cassandra uses to store a row is very similar to that of HBase. However, it is possible
to create secondary indices to access subsets of rows faster. In contrast to HBase,
Cassandra is more focused on availability and only provides eventual consistency,
which makes it to an AP(Availability,Partition-Tolerant)-system.

MongoDB This is a popular document-based NoSQL-database that tries to in-
corporate typical concepts of traditional Relational Database Management Systems
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(RDBMSs). It stores each data record as a JSON/BSON object and is not bound
to a fixed schema. Indexing in MongoDB is not limited to a record’s primary key.
Instead, indices are supported on arbitrary attributes, enabling fast querying of data.
MongoDB is implementing CP according to the CAP-theorem.

SAP HANA SAP HANA is a commercial in-memory data platform by SAP that
is designed for real-time Big-Data processing. It combines an RDBMS with various
tools for advanced data analytics, enterprise data management, and a dedicated ap-
plication server. The core of HANA is the in-memory database engine. This engine
operates purely in-memory and implements various optimizations on the hardware as
well as software level to deliver an optimal processing performance.

On the hardware level, HANA leverages the available hardware to not only scale
horizontally but also vertically, e.g., by making optimal use of main memory, CPU
caches and supporting different processing architectures as Massive Parallel Process-
ing (MPP) and Single Instruction, Multiple Data (SIMD) [50].

On the software level, HANA uses a columnar storage and an insert-only scheme.
In the column-based approach, the rows of a table are separated by their columns and
all values of a column are stored in a sequence. This is a shift from the traditional
model, where all values of a row are stored in a sequence. Looking at common an-
alytics tasks, also known as Online Analytical Processing (OLAP), it turns out that
usually only a small number of columns is used for analysis, so that a columnar ac-
cess can significantly improve performance. The insert-only principle is HANA’s
immutability concept. It means that each insert, update or delete on the data is repre-
sented as a new record with an implicit time-stamp. The immutability is not directly
visible to a user but is internally used to manage data. To keep the memory footprint
of databases small, HANA comes with a built-in mechanism, called merging, to com-
bine multiple updates on one record to an eventual record. Due to its immutability and
the provided immediate consistency, HANA is classified as a CP-system according to
the CAP-theorem.

It can be observed that there is a development of storage systems to rather targeted
solutions. Depending on the use case, there are DBMSs for documents, key-value
pairs, and structured relational data. A large part of the systems is going into the
direction of a schema-less NoSQL architecture. The scalability of these systems is
mostly achieved with the distribution of storage and processing in a cluster. A special
case in the group of distributed databases is SAP HANA. This RDBMS does not only
scale horizontally, but also scales vertically by retaining the data in the main memory
and making massive use of parallel processing.
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4.3 Conclusion
Various libraries and tools support the analysis of Big Data. They can either be used
as a basis for a more complex Big Data analysis infrastructure or can themselves be
used to build new analysis tools.

A group of readily available tools are distributed processing frameworks, such as
Hadoop, Spark, and Storm. They can simplify the handling of Big Data by providing
a platform to host analysis code. However, it has to be considered that their high
complexities are prone to bugs and their adaptability causes performance loss. In
other words, for use cases that require high performance and scalability, it might be
worth looking into a customized solution, e.g., under the use of the presented IPC
solutions.

On the persistence side, there is a large variety of different systems that have their
special field of application. While most of the systems are focusing on the distribution
to a cluster only, the SAP HANA also enters the way of vertical scaling with its in-
memory approach. This development is interesting, because rather complex analysis,
such as machine learning and general statistics, can be performed on a single machine
without extensive data exchange over the network.
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Chapter 5

Approaching Enterprise Security
with Big Data Processing

The protection and security of our computer networks are becoming increasingly
important, as more and more of our personal data is moved into the digital world.
Already, the amount and sophistication of attacks are dramatically rising, as attackers
are discovering the value of our digital data. In addition, to protect networks nowa-
days, one has to deal with highly complex and heterogeneous infrastructures. While
small networks could be handled by a team of a few administrators in the past, the
complexities of modern network infrastructures are easily overwhelming all available
resources.

One problem is the limitation of existing attack detection tools to only a small
part of the overall infrastructure. They are missing the big picture of what is going on
in a network and are not able to correlate multiple suspicious activities for a multi-
step attack. Furthermore, these tools are often tailored to support the detection of
well-known attack patterns but are not capable of detecting novel attack techniques.

A solution to the above problem is already in sight, but some serious issues need to
be addressed. Already today, there is a large variety of sensors that are monitoring and
recording each activity within and outside of our networks and there are even more
data sources that provide general context information about all imaginable facets of
a network. Each step of an attacker and the details of his malicious activities can be
traced. Nevertheless, due to a large number of activities happening in- and outside
of a network, these traces are going under in the flood of event data and make it a
challenge for traditional tools to detect attacks.

The development of Big Data technologies can be a way out of the misery of log
management in enterprise networks. It can enable the analysis of extensive, mostly
still dormant, data sources and makes more sophisticated attack detection possible.
In the following of this chapter, we first show the current state of security systems
and their methods of attack detection and then present our approach on how security
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can be handled in growing networks with the help of Big Data processing.

5.1 Current State of Attack Detection

The detection and prevention of computer attacks is a topic since the late 1980s with
the appearance of the Morris worm. Since then, network security measures have
evolved from perimeter security, i.e., building a barrier around the network, and indi-
vidual computer protection to security suites that monitor each activity in a network.
It can be observed that each development step of these measures has incorporated
more data into the analysis because it is required to detect the increasingly sophis-
ticated attacks. The following sections introduce the categories of attacks and then
follow with existing detection systems and their incorporated data sources.

5.1.1 Attack Categorization

A computer network, be it small or large, that is connected to the public Internet is a
potential target for cyberattacks. How significant this number of network attacks is,
can be seen in reports from various IT-security organizations [71, 72, 73]. They are
pointing out to thousands of attack incidents every year in enterprise as well as gov-
ernment networks. The attacks security operators of these networks are confronted
with, can be categorized into two groups, simple single-step and advanced multi-step
attacks.

5.1.1.1 Simple Single-Step Attacks

The more significant parts of attacks on the Internet are unsophisticated and auto-
mated, such as mass-phishing campaigns, automatic account takeovers with default
credentials, or scripted SQL injection attacks. These simple attacks are mostly con-
ducted with attack tools that are downloadable from public websites and are easy to
use for everyone. Although these tools are publicly available, they can still be highly
sophisticated if they were written by skilled professionals. Consequently, unsophisti-
cated attackers can exploit complex vulnerabilities and cause severe damage.

The attack methods of simple attacks are usually well known and are limited to
the exploitation of a single target. Because of the latter property, simple attacks are
also referred to as single-step attack, because they only use one attack technique to
exploit a target. As the employed attack methods of simple attacks are well known,
there are existing protective measures that can be deployed against them. However,
these measures are often not employed over the entire network, so that attackers can
find remaining loopholes in the protected network.
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5.1.1.2 Advanced Multi-Step Attacks

As companies and governments are protecting their networks better and are putting
increasingly valuable information and systems into their networks, attackers are up-
grading and are putting more effort into their attacks to gain unauthorized access to
these networks and their confidential data. Such advanced attacks consist of multiple
attack steps that gradually lead the attacker deeper into the targeted network. Each
attack step uses its dedicated attack technique and has one specific target. The em-
ployed attack techniques can either be similar to a simple attack or are employing
customized attack tools or exploits only adapted to the selected target. Because of the
multi-step character of the attack, advanced attacks are also referred to as multi-step
attacks.

One popular type of a more sophisticated attack is the so-called APT [7, 8, 74],
which is known for its highly motivated and organized threat actors, such as cyber
armies of governments [9] or professional spy companies [75], that are employing
advanced, customized attack tools and techniques with the goal to stay as long as
possible in the target environment to steadily exfiltrate valuable information. Fig-
ure 5.1 shows a scenario for a multi-step attack, as it could be part of an APT attack.
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Figure 5.1: Example of a more complex multi-step attack

At the first step of the attack, the attacker sends a phishing email message to the
secretary of a leading employee. The email address for this secretary could be ex-
tracted from the public website of the targeted enterprise. With the opening of the
message, a malware is executed and a remote shell from the secretary’s computer
to the attacker is established. As a result, the attacker gains access to the secre-
tary’s computer and, thus, access to the enterprise network. With access to the sec-
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retary’s email software, the attacker convinces an administrator of the network via
spear phishing to log into the secretary’s computer. The attacker then obtains the
domain credentials of the administrator by using a tool like Mimikatz. In step 3, the
attacker uses these administrator credentials to get access to the central Active Di-
rectory server of the company, which then allows him to issue a golden ticket with
Mimikatz in the fourth step. With this golden ticket, the attacker can access the work-
station of a leading engineer in the company, which gives him access to confidential
documents of the newest developments of the company.

5.1.2 Attack Detection Systems

Over the years, many types of security tools with different strategies for the detec-
tion of attacks have been developed. A categorization of these tools is possible with
regards to their deployment and their detection approaches.

5.1.2.1 Intrusion Detection Systems (IDSs)

This group of systems is performing their detection directly on the local system by
monitoring all ongoing activities. In the case a malicious activity is detected by an
IDS, it produces an alert that can be consumed by a security operator or another sys-
tem. Generally, there is a distinction between IDSs that monitor an endpoint (HIDS)
and the ones that monitor an intermediary network node (NIDS). Due to the fact that
an IDS is only deployed on a single system, it would only be able to identify a simple
single-step attacks.

Host-based IDSs (HIDSs) This version of an IDS is deployed on a network end-
point (host) and monitors all kind of operating system resources. A popular rep-
resentative of this group are anti-virus programs that detect malicious software by
searching for known malware signatures. A new type of HIDS is the so-called end-
point protection solution that monitors the behavior of running programs to identify
malicious activities.

Network-based IDSs (NIDSs) The Network-based Intrusion Detection System
(NIDS) is deployed on an intermediary network node and monitors network traffic
that passes by. It is primarily used to detect remote attacks on network endpoints
in an intranet and not on the deployed device itself. The monitoring of the network
traffic typically covers the inspection of packet headers as well as the payload of
the packets and its effects on the target. This is a slight but important difference to
the firewall, which is only inspecting packet headers with IP addresses and ports to
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decide whether it is allowed to pass through. However, some newer generation fire-
walls, especially application layer gateways/firewalls, can be counted into the group
of NIDSs.

Intrusion Prevention Systems (IPSs) A special form of IDS is the so-called In-
trusion Prevention System (IPS). In contrast to an IDS, it additionally mitigates and
prevents attacks as they are detected.

5.1.2.2 Security Information and Event Management (SIEM) Systems

A SIEM is a combination of Security Information Management (SIM) and Security
Event Management (SEM). On the one hand, SIM specifies the management of all
available security-related information, such as asset, alert and vulnerability informa-
tion, in one platform. On the other hand, SEM specifies the collection of all avail-
able event data in one centrally deployed system. A SIEM is centrally deployed in
the network and, according to Gartner’s initial definition, provides real-time event
management and historical analysis of security data from a wide variety of heteroge-
neous sources [76]. In practice, a SIEM mainly retrieves event data from networking
hardware, such as routers and switches, operating systems, applications, and security
solutions, such as firewalls and IDSs. Furthermore, information about the network
infrastructure and common security threats, so-called cyber threat intelligence (CTI)
being described later in this chapter, can be incorporated into the SIEM for more
advanced analytics. With all this information at hand, a SIEM system can observe
single-step attacks at a specific point in the network and multi-step attacks involving
multiple network nodes. A drawback of SIEMs is their limit to only detect attacks
without the option to mitigate them.

5.1.3 Detection Methods

There are two main techniques on how security investigators and automated security
systems detect attacks [77].

5.1.3.1 Signature-based Detection

An attack signature is a formal description of an attack pattern from previously ob-
served attacks. The signature-based detection, also referred to as misuse detection,
uses these signatures to identify known attack patterns on the monitored system. In
practice, there are many different forms of signatures, from simple indicators, over
heuristics and neural networks to multi-step signatures that describe complex attack
strategies.
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Indicator Of Compromise (IOC) One particular trend in the development of sig-
natures are so-called indicators of compromise (IOCs), which describe activities or
artifacts that were observed by third parties during an evident attack. If someone
observes the specified activity or artifact in the own network, then this is an indica-
tor that the same type of attack is ongoing as previously observed by the third party.
Examples for IOCs are a single IP address, a URL or a file hash.

5.1.3.2 Anomaly-based Detection

An anomaly is the deviation of the system behavior from the norm. The anomaly-
based detection assumes that an uncompromised system is the norm and that an
anomaly in the system behavior points out to malicious activity. Before a security sys-
tem can use the anomaly-based approach, it must either learn the current state via ma-
chine learning or have the normal behavior pre-programmed. As the anomaly-based
detection is not based on static attack patterns, it can reveal attacks that were previ-
ously unknown. However, the approach is also known for delivering false-positive
results, because, in fact, not all anomalous behavior is necessarily malicious.

5.1.4 Data Sources for Attack Detection

The presented security solutions are working on different types of data sources to
reveal attacks. Each data source can deliver a different view on the current security
status. We are distinguishing the following three groups of data sources.

5.1.4.1 System Parameters and Behavior

This is the traditional data source for attack detection and covers information about
the resources and behavior of the local system. On a typical system, there are
resources like files, processes and network sockets and behavior like API calls,
command-line calls that can be monitored to reveal malicious activities.

A HIDS is a good example of a tool that heavily relies on monitoring of the local
system. For example, it observes the creation of processes and network sockets to
detect the execution of malicious programs and their connection to a remote-control
server. A NIDS also monitors the network traffic passing through the host system.

The system behavior and system resources are volatile in nature. Security tools
working on this data are acting on live data and alert the user as soon as an attack
was detected. Once an alert has been raised, it is not possible to revisit what other
activities took place at that time.
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5.1.4.2 Event Logs

Event logs are a solution for the previously described volatility problem of system
information. The idea is to create events for each observed activity or status change
in a hardware component, an operating system or software application, which are
all collected in a system-local event log. This event log acts as a repository of past
activities and records important activities as they occur. In comparison to volatile
system information, event logs allow to perform historical attack detection and enable
a detailed investigation of past incidents.

To create a common understanding, we are using the following terminology
throughout this thesis.

Event This is an activity that has taken place and has been observed by a system.

Event Record This is the digital representation and description of the observed
event. Depending on the context, we also commonly refer to an event record
as event, log event, log entry or log message.

Event Log An event log is a list of records of events that have been observed over a
longer period.

5.1.4.3 External Cyber Threat Intelligence (CTI)

External intelligence is a new kind of data source for attack detection. Instead of
only relying on information that was produced by the own systems, information on
threats from third parties is included in the detection process. These third parties
might already have experienced a new kind of attack that is not widely known, yet.
This advantage in knowledge of third parties can protect another network from similar
attacks. In the following, we distinguish two types of external knowledge.

Known Weaknesses One type of external information is intelligence about po-
tential weaknesses being exploited in the wild. Knowing these weaknesses can
give defenders an advantage by installing dedicated protection mechanisms against
these weaknesses. Examples for knowledge bases of weaknesses are vulnerability
databases (HPI-VDB1), platforms for extended port and service scans (Shodan2)
and directories of breached services or accounts (Zone-H3 and the later presented
HPI-ILC).

1HPI Vulnerability Database - https://hpi-vdb.de
2Shodan - https://shodan.io
3Zone-H - https://zone-h.org
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Known Attack Indicators IOCs are another type of external intelligence that con-
sist of simple observable activities or artifacts, such as IP addresses, domain names,
URLs and file hashes.

5.2 Enterprise Security as Big Data Challenge
Enterprises and organizations are facing a difficult challenge by keeping their net-
works clean from script kiddies, threat actors and other types of attackers. Especially
the fact that many larger networks are encompassing thousands of devices, some of
them even directly connected to the Internet, complicates the monitoring of a network
in its entirety. Each device that is added to a network needs to be monitored because
it creates another potential attack vector that can be leveraged by an attacker.

To establish a protection against cyberattacks, an enterprise can set up security
software that monitors their networks. However, there are also limitations in the
capabilities of traditional security software, i.e., mainly IDSs and firewalls, in the
monitoring of complex networks. In particular, these solutions were not designed to
operate in a network, but on a single machine. Thus, the correlation of monitoring
results, i.e., alerts, from individual segments of a network is not easily possible. A
solution that addresses this shortcoming are the relatively new SIEM systems, which
are correlating the monitoring results from multiple machines by gathering event logs
of applications, systems, and security solutions, i.e., IDSs and firewalls, from all over
the network. By this, they are becoming the single source for all kind of security-
related investigations. Some new generations of SIEMs are even integrating CTI to
reveal IOCs in their logs. The SIEM development is an important step to be able to
detect threats in all parts of a network and to identify and trace sophisticated multi-
step attacks. However, also with SIEMs, the reality shows that existing solutions
have not reached the point of development where all devices in a network can be
monitored simultaneously. Current SIEMs are barely able to monitor the most critical
parts of a network, such as operating servers [31], because they are overwhelmed by
the sheer quantity and diversity of the data to be processed. To get an understanding
of the nature of this data, the following subsections give a more detailed picture of
the volume/velocity and variety of security-related information in large networks.

Volume of Security-Related Information Event logs have become one of the most
valuable resource for the tracking of attacks in networks. Many companies have real-
ized this and are now building up their log management and are gradually increasing
the number of log sources to monitor each corner of the network. According to a
survey [31] conducted by the SANS Institute in 2014 with 522 participants, around
97% of the companies already collect logs, and 85% see the detection/tracking of
malicious behavior as the main reason to do so. In addition, the respondents reveal
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that the Big Data nature and the correlation of the logs are their main challenges for
log management. Looking at a typical company network, the reason for these chal-
lenges becomes clear. Even small networks are having dozens or hundreds of devices
that need to be incorporated into the monitoring. In larger enterprise networks, the
number can grow to more than 100 000 active devices and more than 10 000 operating
servers. Considering that each of these devices can generate logs, then the sum of all
collected logs in a network can easily exceed a billion log events a day. Processing
and storing all of them simultaneously seems to be an insurmountable task.

Examples from the industry show that a billion events are not even the end. Gart-
ner, in its annual “Magic Quadrant for SIEM” [15] report, defines that a very large
SIEM deployment has a sustained event rate of ≈2.1 G evts./d (25 k evts./s) that
needs more than 50 TB of backing store. Furthermore, there are reports from com-
panies like Hewlett-Packard (HP) [78] that claim to produce security events with a
rate of 1 T evts./d (11.5 M evts./s) in a network of 300 000 employees. With their
security solution, HP is merely able to process a tiny fraction of around 3 G evts./d
of these. Also Barclays [79] and Goldman Sachs are bringing up event rates of multi-
ple G evts./d and log volumes of a few TB/d for their current deployments. Barclays
was able to process only a small fraction of 500 M evts./d with their SIEM, too. The
fact that companies are not able to process all their logs can also be deduced from
the SANS survey. According to them, only 50% of the respondents monitor desktop-
s/laptops and less than 20% are monitoring mobile devices, although breach inves-
tigation reports show that many data breaches are caused by phishing on employee
devices [73].

Apart from event logs, which make up the most substantial part of security-related
information, there is also a significant amount of CTI that a SIEM can use to find
known threats. According to a survey [80], around 55% of the companies are using
their SIEM to correlate events with CTI. The demand for CTI has also led to a wide
range of CTI providers, and many security companies are providing their own threat
feeds. However, the challenge in the handling of CTI is not necessarily the huge
number of indicators, but the fact that all these indicators need to be compared to
all incoming events. Therefore, already a few million indicators can overwhelm the
processing of the whole SIEM. Some of the more influential representatives on the
CTI market, such as IBM X-Force4, Anomali ThreatStream5 or AlienVault OTX6,
already have around a million indicators each in their data feeds.

Variety of Security-Related Information Another challenge for SIEMs is the
large variety in representation, content, and exactness of security-related informa-

4IBM X-Force - https://www.ibm.com/security/xforce/
5Anomali ThreatStream - https://www.anomali.com/platform/threatstream
6Alient Vault OTX - https://www.alienvault.com/open-threat-exchange
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tion [31]. As long as the collected data is not available in a common format, i.e., the
data is normalized, it cannot be further processed and analyzed, which means it is
not usable for security investigation. The reason for the large variety is mostly due
to heterogeneous data sources and an insufficient standardization of the formats that
represent the information.

Event logs are again the primary type of security-related information with a high
variety. According to Gartner’s annual report, a typical SIEM has to handle 300 event
data sources for a small deployment and 900 data sources for a very large deploy-
ment [15]. Any of these data sources could implement a different event format. At
the moment, there are mainly two formats that are used across multiple data sources,
i.e., Syslog for the UNIX world and Windows Event Log for the Windows world. Both
formats have fundamental problems. Syslog is more of a format wrapper and is only
semi-structured. It represents some meta-information, such as time and source, in a
structured way, but leaves the description of the observed activity, i.e., the message, in
a raw unstructured form. Windows Event Log is also a wrapper for Windows-based
log events and is tailored to the Windows ecosystem. Other approaches to bring the
normalization of event formats forward, such as Common Event Format (CEF) or
Common Event Expression (CEE), have never brought it to wide use.

The situation that there is a wide variety of event formats that do not use a com-
mon data model, makes the work of SIEM systems extremely hard. A SIEM that
wants to handle all these logs needs to implement special rules that can extract and
map relevant information to a common model. Unfortunately, currently existing
SIEM systems are not able to handle this variety and only focus on the structured
information of a few common formats, such as Syslog. However, most of the unstruc-
tured information, which is considered the most valuable for security investigation,
remains in its original form.

The diversity of data is not only limited to event logs but can be found for CTI,
too. Similarly to event logs, there are many different sources for threat intelligence
that represent their indicators in different formats. Luckily, the biggest providers
are delivering their IOCs in either Structured Threat Information Expression (STIX),
Cyber Observable eXpression (CybOX) or Open Indicators of Compromise (Ope-
nIOC) [80]. However, some smaller sources are not adhering to these standards and
are using Comma Separated Values (CSV) or plaintext lists. Furthermore, the usage
of the standards does not always guarantee that all data is available in a structured
form, because some vendors put detailed information in descriptive fields. As a re-
sult, SIEMs that want to incorporate CTI need to support the three common standards
and be prepared to further normalize information.

Based on the above points, the processing of security-related information in a large
enterprise network can be seen as a Big Data challenge. In essence, there is a huge
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volume of data, i.e., event logs and CTI, that needs to be collected from a wide range
of sources and this data is mostly semi- or unstructured and is not represented in a
common data format. SIEMs in their current form are not able to process such big
security data, either because they are not fast enough to handle the event throughput,
or they cannot comprehensively normalize the incoming data.

The examples from the industry show that current SIEM systems are even far
away from handling all upcoming data. While Gartner [15] defines a SIEM with a
sustained throughput of 25 k evts./s big enough for very large deployments, HP has to
cope with throughputs of up to 10 M evts./s. Other reports from the industry reveal
that even a throughput of around 50 k evts./s cannot be handled with their current
SIEM deployments, although they are only including event logs from the most critical
systems and leave out all kind of activity on desktops and laptops. Including all event
logs from such a network could easily increase this throughput to over 1 M evts./s.

Surely, something has to be improved for SIEM systems to cope with these issues.
Presumably, the current generation of SIEMs is not able to process all this data be-
cause they are not making use of already established Big Data processing paradigms.
Our goal is to show that a SIEM with these techniques is indeed able to handle all
data in a large network.

5.3 A Big Data SIEM for Enterprise Security
Current SIEMs are not capable of handling the Big Data challenge well, because
they are much designed like traditional software systems, meaning they are process-
ing data sequentially, are using disk-based single-node RDBMSs for data storage and
analysis, and are expecting a common data format for incoming data. Together, these
shortcomings lead to an overall limited processing performance as well as inefficient
access to relevant event information. As a result, today’s SIEMs are only able to
handle a small fraction of security-related data and cannot perform further analysis
because they do not adequately normalize their data. Already, there are technolo-
gies and approaches available to address these typical Big Data problems, but many
vendors are not taking the necessary steps to integrate them into their products.

In the following, we propose approaches and an architecture for a prototypical
real-time SIEM system that makes use of existing Big Data technologies to handle
security-related event data for enterprise networks.

5.3.1 System Approaches
The main objectives of such a Big Data SIEM are high-performance event processing
and the preparation of event information for further complex security analytics. In
addition, the SIEM should not only be able to gather event data at a central place, as
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many existing SIEM solutions already do, but should come with established attack
detection methods that are known from IDSs, i.e., signature- and anomaly-based de-
tection as well as machine learning (ML) approaches. The strategy to achieve these
objectives is to combine the concepts of Big Data processing, which were presented
in Chapter 3, with optimized data models and algorithms for security-relevant event
data. In particular, the following optimization strategies are leveraged for the system.

Processing Workflow The high throughput of incoming data is one of the biggest
challenges of real-time event processing in enterprise networks. We are addressing
the high throughput of events with a specialized Big Data processing workflow that
is inspired by the general workflow presented in Section 3.2.3. It comes as an exten-
sion to the well-known ETL process and as a slight variation of the general-purpose
processing architectures, i.e., Lambda and Kappa, which is more optimized to the
requirements of event processing. In particular, our workflow is designed for parallel
processing and distinguishes between a preparation phase where incoming data is
collected, pre-processed and persisted and an analysis phase where the prepared and
persisted data is analyzed in bulk.

We consider the massive parallelization of the processing workflow as one of the
key performance factors because multi-core CPUs and fast network links are becom-
ing the standard. Thus, our parallelization incorporates multi-threading for vertical
scalability and network-based task distribution for horizontal scalability. The system
is flexible to either be on a single high-end machine or a range of network-connected
low-end machines. Today, many distributed processing frameworks are available to
parallelize processing tasks multiple processing nodes, such as the solutions men-
tioned in Section 4.1.2. We want to make use of these distribution frameworks in our
systems and see whether they can push the performance of a SIEM to the necessary
levels. As an alternative to these frameworks, we also want to evaluate whether the
processing performance can be further improved by tailoring the parallel processing
paradigms to our concrete use case of a given event structure. One approach we want
to review in particular is disruptor-based multi-threading.

Data Normalization In large company environments, event data originates from a
broad range of heterogeneous event sources that produce highly disparate event for-
mats. As typically with Big Data sources, this information is semi-structured or even
unstructured, which makes automated processing difficult. At the moment, many
SIEM systems are indexing unstructured event data they receive and perform a rudi-
mentary normalization that extracts important meta-information, such as time or data
source. In fact, these SIEMs are like a large and central event repository where a se-
curity operator issues text searches. Unfortunately, the possibilities for further anal-
ysis on indexed data is limited, because a majority of relevant information is hidden
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in unstructured parts that can be queried with text searches. Advanced techniques,
like field-based correlation or machine learning, are simply not feasible. A possible
reason, why SIEMs do not perform more accurate normalization, could be the high
processing overhead of a comprehensive normalization. Current systems would not
be able to perform a full normalization with high event loads.

As part of our SIEM system, we concentrate on the full and fast normalization of
events, which means that all relevant event information is extracted and represented
with common data fields. This full normalization has the effect that all relevant event
information can be accessed and stored more efficiently than unstructured data. In
the case of data access, individual event properties are directly addressable and can
be correlated with each other. As the same type of information is always represented
with the same normalized field, we can always refer to this normalized field to ac-
cess a type of information in all events. In the case of storage, the normalization
results in fully structured information that can be accessed faster and could even be
compressed at a high rate, depending on the complexities of the event fields. The
described full normalization goes far beyond what is currently implemented in exist-
ing SIEMs and allows entirely new ways of attack analysis. For example, an attack
detection algorithm can correlate multiple security-related events by their source and
target IP address to perform a root cause analysis. To solve the throughput problem
that many SIEMs have, we are integrating the normalization into the pre-processing
step of the workflow that operates on multiple events simultaneously. In addition,
we are applying optimizations to the normalization algorithm, which consider the
specific hierarchical structuring of many event formats.

In-Memory Data Persistence A bottleneck in Big Data systems is the data per-
sistence because all new data has to be persisted as soon as it arrives, and complex
analytical functions potentially need to read the majority of past data. Existing SIEM
solutions, such as Splunk [81], ArcSight [82], fluentd [83], and IBM QRadar [84], are
relying on distributed, schema-less and disk-based databases, which are either self-
developed or open-source solutions, such as HDFS, MongoDB, ElasticSearch, and
Cassandra. While these persistence solutions allow scaling the capacity of storage
easily, a study by Rabl et al. [85] shows that these systems have problems in their I/O
performance in general and with their write performance in particular.

For our SIEM, we want to try a new persistence approach that leverages the nor-
malized and structured event data and enables its faster access for analytical purposes.
Looking at the persistence methods from Section 4.2, then the in-memory approach
seems to fit this requirement the best because all persisted data is immediately ac-
cessible, and the data can be stored with a schema that can hold the structured event
information. Especially with the growing size of main memory in today’s systems,
live and large parts of historical event data could be kept in the main memory. In case
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the event data exceeds the size of available memory, it is moved into a distributed stor-
age, such as HDFS. SAP HANA, as currently one of the furthest developed in-memory
database, comes with advanced analytical capabilities, such as machine learning and
graph analytics, operating directly on the database without prior exports. Thus, we
consider SAP HANA as a suitable candidate to implement the primary persistence
for our SIEM.

IDS-based Attack Detection The eventual idea of event collection and analysis
is to reveal and prevent ongoing attacks on an enterprise network. In the industry,
security solutions are mostly focused on the searching and browsing of event data,
but the step to an automated reporting of incidents or threats is missing. This could
mainly be grounded in the Big Data properties of event data. As a matter of fact,
our previously presented approaches have already paved the way for the handling of
such characteristic event data, so that we can now go the next step to an automated
detection of malicious behavior in event data.

Automated attack detection with signature- and anomaly-based techniques is tra-
ditionally performed in IDSs, which mainly operate on system behavior and resources
of a single machine. We propose to combine the advantages of SIEM and IDS into
one system, which, foremost, means that the detection is applied to event data.

This has the major advantage that suddenly not only attacks on each system in an
enterprise network can be detected, but also complex attacks spanning over a whole
network. In addition, in contrast to normal IDSs, the operation on event data allows
revealing malicious activities as they occur or have happened long in the past, assum-
ing that the event data from this time is still at hand.

5.3.2 System Architecture

Now that different processing approaches have been presented, we propose a SIEM
architecture that combines all these approaches into one system. This new SIEM is
called Real-Time Event Analysis and Monitoring System (REAMS) and alludes to the
English word reams, meaning a massive amount of something. An overview of the
core components of REAMS is depicted in Figure 5.2.

The core system is represented by the large box in the middle of the picture. At the
outer boundary of that box, there are inputs and outputs of the system. The primary
input (left) into REAMS is from data sources within the monitored network infras-
tructure. It encompasses event data from different kinds of sources and additional
infrastructure information, such as installed software and registered users, collected
by dedicated host agents. Another input (bottom left) is external threat intelligence.
It provides the system with security-related information that is utilized for event an-
notations and incorporated into the detection of attack patterns and anomalies. A
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Figure 5.2: REAMS architecture being derived from our Big Data workflow

small fraction of this intelligence, namely event information that directly affects the
monitored infrastructure, is fed as event input into the system. The two database sys-
tems (bottom right) act as the storage system for the SIEM. The focus of this storage
system is the HANA platform as a hot storage, which can perform event storage and
analysis directly in main memory. Optionally, a distributed DBMS can be attached
to the HANA platform for historical data and data that exceeds the size of available
memory.

At the core of REAMS, the previously mentioned processing workflow is imple-
mented, which means there are a stream-based preparation phase and a batch-based
analysis phase which are capable of processing multiple events in parallel either on
the same machine or on a processing cluster.

Within the preparation phase, the event data goes through three steps, i.e., pre-
processing, pre-analysis and persistence. The pre-processing prepares the event data
to be easily consumable for analysis algorithms and covers normalization, enrich-
ment, and annotation of the original event. The pre-analysis step comes directly after
the pre-processing. It performs some preliminary analysis on the normalized and
structured event information, such as single-event signature detection or the counting
and grouping of events by selected criteria. However, it should be noted that this
analysis must be fast enough to handle the incoming streaming throughput. In the
last step, the normalized event data is persisted to the storage system, i.e., primarily
the HANA platform, and made available to the analysis phase.

Within the analysis phase, the persisted and structured events from the storage
system are correlated with each other or with external threat intelligence. As primary
methods of analysis, we are relying on the signature- and anomaly detection as typical
methods of IDSs as well as additional ML and data correlation approaches.
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5.4 Conclusion
In this chapter, we have presented the current state of attack detection in general and
enterprise networks in particular. While there are many different solutions to detect
attacks on individual systems, there are only limited solutions for attack detection in
the entire network. As networks and attacks are becoming more complex, it is crucial
to correlate security-related information from as many sources as possible to get a
complete picture of the activities in a network. We have analyzed the challenges that
are related to the collection from such sources and the correlation of their data and
conclude that enterprises are confronted with a Big Data problem when it comes to
their security. As a solution to the problem, we propose approaches that can deal
with the challenges of analyzing the activities in enterprise networks and come with
an architecture that incorporates the introduced approaches into one system.

In the following chapters, we describe the details of our approaches and present
how they interact with each other to perform attack analysis in enterprise networks.

60



Chapter 6

Stream-based Processing
of Big Event Log Data

Related Publications

• Andrey Sapegin, David Jaeger, Amir Azodi, Marian Gawron, Feng Cheng, and Christoph
Meinel. “Hierarchical Object Log Format for Normalisation of Security Events”. In: Intl.
Conference on Information Assurance and Security. 2013 [26]

• Amir Azodi, David Jaeger, Feng Cheng, and Christoph Meinel. “Runtime Updatable and
Dynamic Event Processing using Embedded ECMAScript Engines”. In: Intl. Conference
on IT Convergence and Security. 2014 [29]

• David Jaeger, Feng Cheng, and Christoph Meinel. “Enriching Normalized Security Event
Logs for Deeper Security Analytics”. 2018 [30]

The processing of security-related data in enterprise networks is considered a Big
Data problem because it fulfills multiple of the well-known 7V’s. Currently, existing
security products, in particular SIEM systems, are not able to handle this challenge
well in their current state of development. Because of these shortcomings, we have
proposed an architecture for a new type of SIEM in Chapter 5 that utilizes Big Data
paradigms and our specific Big Data workflow to better handle volume, velocity, and
variety of security-related data. In this architecture, we are employing our proposed
Big Data workflow (see Section 3.2.3)) that separates the processing into a stream-
based preparation phase and batch-based analysis phase. In the following of this
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chapter, we are diving deeper into the stream-based phase of this architecture and
concentrate on the processing of event logs as security-related data. The full stream-
based workflow is shown in Figure 6.1.
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Figure 6.1: Stream-based part of our SIEM described in this chapter

The workflow starts with the collection of the events from various sources. In the
following step, the raw event data from the source is transformed into a common event
format by normalization, enrichment, and annotation. Afterwards, the normalized
event undergoes some quick checks that deliver some additional value to the event,
such as a comparison to known IOCs. In the last part of the workflow, the event is
persisted to the database, where it can be further analyzed in the batch-processing
phase, which is further described in Chapter 9.

As a goal of the stream-based phase, we want to fully normalize and persist log
events with a throughput that goes far beyond the typical 50 k evts./s of currently ex-
isting SIEMs and be able to handle the log management in large enterprise networks
with a single SIEM. Furthermore, the performed normalization has to be compre-
hensive enough to perform complex attack detection, such as multi-step signature
detection, anomaly detection, and further machine learning.

6.1 Data Collection

As the first step in the processing workflow is the collection of data from various data
sources in the enterprise network. In larger networks, the number of sources can go
into thousands or even hundreds of thousands. As the goal is to get an overview of all
potentially malicious activities in the network, it is desirable to capture events from
all these sources.
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Figure 6.2: Levels of event sources

6.1.1 Types of Event Log Sources

Event logs are produced everywhere where actions are performed and observed.
Therefore, sources of event data can be found at various locations and on different
levels of abstraction within a network. On the highest layer, event logs can be found
on systems like hosts, infrastructure components and additional appliances that are
ensuring the security of the network. On each of these systems, there are multiple
layers of event sources, like hardware components or hypervisors, the operating sys-
tem, applications, like web, file or email servers, and in particular security solutions,
such as IDSs, firewalls and other SIEM systems [86].

6.1.2 Existing Methods of Collection

The methods in which sources provide their logs are as different as the sources them-
selves. Altogether, there are three methods to obtain logs from a source.

Agent (Push) An agent is deployed on the system where the source is located. It
forwards the logs it reads directly from the source, such as from a file or a local
database. This method is most flexible but requires some effort for setup. Also,
there must be a server to receive the logs on the SIEM side.

Client (Pull) The client remotely connects from the SIEM to the log source and
receives all logs over an API. Obviously, the source must provide an API and
the client must implement the same protocol. Some typical sources that provide
such APIs are other SIEMs or SNMP-devices.

Server (Push) This is the most convenient method of log retrieval, but also the most
limited. The server waits for incoming events that are sent by a corresponding
log client at the source. The most popular server implementation is a Syslog
server [87].
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Many existing SIEM products come with a Syslog server and have some custom
clients to read logs directly on the source. In addition, there is usually a functionality
to forward all arriving logs to another Syslog server.

6.1.3 Proposed Log Collection
In order to receive as much data as possible, we propose to use a Syslog server and
another log server with a customized communication protocol. The customized server
is used to receive logs from a custom agent or a LogStash [88] agent. In addition to the
two servers, there are modules to receive logs from Splunk [81] and Graylog [89]. By
supporting the ingestion of logs from other SIEMs, we can easily connect our system
to an existing log management environment and test on productive log entries.

6.2 Basic Normalization of Raw Events
An event record that arrives at the collector is in a raw state, meaning that its data
representation and context are unknown and that the information it bears cannot be
extracted straightaway. To be able to extract further information from a raw event,
the SIEM has to analyze the event record’s representation and determine the data
format. As soon as the format is known, the SIEM can start to normalize the provided
information to a unified data model that is easily consumable.

Currently existing SIEMs have major shortcomings in the normalization of events
because they are not able to perform a thorough analysis of event formats in real-time.
As a consequence, less performant SIEMs only support a small set of very popular
event formats, such as Syslog, or are not able to provide their extracted information in
a comprehensive data model. Furthermore, formats like Syslog are just wrappers for
more elaborated formats and are only providing rudimentary meta-information about
the event. The extraction of essential information about the activity, which we call
deep normalization, remains out of reach for current SIEMs.

In the following, we introduce the basics of event representation and then propose
the deep event normalization used within our SIEM, which includes the determination
of the event format and the extraction of relevant information into our unified event
format OLF, as presented in Section 6.2.2.2.

6.2.1 Event Representation
An event itself is an abstract concept that has no particular representation. To serialize
an event, e.g., as a record in a file or database or to transfer it to another server, it has
to be transformed into a binary or textual representation. In addition, if multiple
event records are combined in an event-stream, as in a log file or network transfer,
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additional separation of records has to be implemented. Following variations of event
representations are typical.

6.2.1.1 Single-Line vs. Multi-Line

Events that are represented in a textual form come in two variations. They are either
limited to a single line or spread over multiple lines. The single-line representation is
the most prevalent form of representation and is preferred because it is easier to parse
and interpret. Usual text editors and many programming libraries already come with
a functionality to distinguish lines in a file and can present them accordingly. Multi-
line event records are mainly used in two special cases. Firstly, they are used to make
large events, which would exceed a reasonable length of a single line, more readable.
Secondly, they are used for events that are gradually updated, e.g., if a progress should
be represented. When dealing with the interpretation of multi-line log entries, it is
challenging to identify all lines belonging to one entry, because the writing of one
record can be interrupted by the writing of another event. This interference can lead
to the intermixing of lines from two separate events. To handle this problem, some
event representations introduce a relational identifier that signifies the event to which
a line belongs.

6.2.1.2 Event Separation

There are various concepts for the separation of event records in a list or stream of
events. The primary goal of the separation is that a human reader or machine can
easily derive the start and end of a given record.

Delimiter-based Separation A simple but also widespread method of separation
is by a unique delimiter between two records. Single-line event records are using
a simple newline character (\n) to delimit different entries. Examples of a line-
based separation are the Syslog and Apache log formats as shown in Listing 6.1. For
multi-line records, there are delimiters like doubled newlines (\n\n) or a sequence
of dashes (- - -). Examples of these formats are audit logs of Apache’s mod-security.

Listing 6.1: Delimiter-based separation in standard Syslog (shortened)
Mar 13 13:07:06 ws5 sshd: Failed password for john from 10.0.3.1 port 5631 ssh2\n
Mar 14 05:33:22 ws5 sshd: Accepted password for fred from 10.0.3.2 port 5416 ssh2\n

Pattern Separation Another form of separation for multi-line event records is by
an implicit pattern of the record. This pattern must be so unique, that it is possible
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to identify the beginning of a new event easily. A common case where such pattern-
based separation is necessary are logs from the Apache Tomcat web server, as shown
in Listing 6.2.

Listing 6.2: Pattern-based separation for Java exceptions in Syslog (shortened)
05-Mar-2017 10:30:04.124 SEVERE [main] o.a.coyote.AbstractProtocol.init Failed to

initialize end point...
java.lang.NullPointerException

at o.a.tomcat.util.net.NioEndpoint.bind(NioEndpoint.java:360)
at o.a..tomcat.util.net.AbstractEndpoint.init(AbstractEndpoint.java:730)
at o.a.coyote.AbstractProtocol.init(AbstractProtocol.java:456)
... 14 more

05-Mar-2017 10:30:04.125 SEVERE [main] o.a.c.core.StandardService.initInternal
Failed to initialize connector...

o.a.catalina.LifecycleException: Failed to initialize component...
at o.a.catalina.util.LifecycleBase.init(LifecycleBase.java:106)
at o.a.catalina.core.StandardService.initInternal(StandardService.java:567)
... 20 more

The two event records can be separated by their unique date and time format
(dd-MMM-yyyy hh:mm:ss.SSS1) and the severity tag (SEVERE). The previously
mentioned Syslog format is also suitable for pattern separation, as it has a prominent
date and time (MMM dd hh:mm:ss) at the beginning and some distinct fields for the
host and application afterwards.

Structured Separation A different method of separation is the use of well-defined
structures, such as XML or JSON, for the records. As structures are self-contained,
they do not need a special delimiter or pattern to define the boundaries of a record.
Listing 6.3 shows an event record in the XML-format, which has an element <Event>
that highlights the start and end.

Listing 6.3: XML-based event records in Windows (shortened)
<Event>

<System>
<Provider Name="Microsoft-Windows-Security-Auditing" />
<EventID>4648</EventID>
<TimeCreated SystemTime="2017-04-02T17:23:37.000Z" />
<EventRecordID>4326</EventRecordID>
<Channel>Security</Channel>

</System>
<EventData>...</EventData>

</Event>

6.2.1.3 Event Structure

There are three variations on how events are represented, i.e., structured, semi-
structured and unstructured.

1Format according to Java’s SimpleDateFormat
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Structured A fully structured representation keeps each piece of information sepa-
rate and is designed for machine-readability. When interpreting events in this format,
no complicated parsing is necessary as all information is distinguishable right away.
An example of a fully structured log format is the Common/Combined Log Format
(CLF) [90], as shown in Listing 6.4, which is used in web servers and proxies.

Listing 6.4: A CLF-record of an Apache Web Server
10.0.3.1 - - [02/Apr/2017:14:08:39 +0200] "GET /index.htm HTTP/1.0" 200 6762 "https

://google.de" "Mozilla/5.0 (Windows NT 6.1; rv:52.0) Gecko/20100101 Firefox
/52.0"

Unstructured A fully unstructured representation puts all event information in a
textual form or in a form that is hard to interpret by a machine but easier to consume
by a human. Furthermore, an unstructured format is more expressive than a strict
structured format. Listing 6.5 shows an unstructured log record that describes a failed
login.

Listing 6.5: Unstructured event record from an OpenSSH server
Failed password for john from 10.0.3.1 port 5631 ssh2

Semi-structured A semi-structured representation combines machine-readability
of the structured and the flexibility of the unstructured representation. Typically, the
structured part of the record holds important meta-information while the unstructured
part describes the observed activity in a detailed textual form. A popular log format
that uses the semi-structured representation is Syslog [87]. Listing 6.6 shows an
example of a Syslog record that integrates unstructured application logs.

Listing 6.6: Semi-structured event record in the Syslog format
Mar 13 13:07:06 ws5 sshd[431]: Failed password for john from 10.0.3.1 port 5631 ssh2

6.2.2 Event Formats
The different ways of representing an event are precisely defined in event formats.
These formats describe how a group of events is transformed into the digital form
and should be comprehensive enough to express each property of an event. At the
moment, there is a large variety of different event formats, and many applications or
devices are even using their custom format to serialize their events. This fact becomes
a challenge when serialized events need to be normalized. Fortunately, there have
been efforts to standardize the representation of events, at least slightly, by providing
event formats for common use cases.
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6.2.2.1 Known Standardized Event Formats

Syslog Syslog is a standard around message logging that includes a structured log
format as well as a transport protocol for the transmission of log messages between
systems. There are two versions of the protocol, the older informational BSD Sys-
log from RFC 3164 [87] and the newer standardized Syslog from RFC 5424 [91].
Since BSD Syslog is still mostly used today, we are focusing on BSD Syslog in the
following. The goal of the format is to provide an easily parseable message wrapper
that standardizes the representation of necessary meta-information. As can be seen
in Listing 6.6 and 6.7, a Syslog message consists of a header and an application mes-
sage. The header contains meta-information like the event priority, creation time and
information about the host and application where the event occurred. The message
part is free to use for the event-producing application.

Listing 6.7: Structure of a Syslog message
PRI TIMESTAMP HOSTNAME APP-NAME[PROC-ID]: MSG

Common Event Expression (CEE) This format is an open specification by the
MITRE Corporation that provides a unifying event format with a corresponding trans-
port protocol and was developed together with industry and academia [92] as a result
of missing unified event formats. The format has the goal to provide a unified event
structure with high flexibility. The main idea is an object-oriented representation of
the event information. The high flexibility is achieved by using CEE Profiles. A
profile consists of a field dictionary, i.e., the set of supported fields, and an event tax-
onomy, i.e., a vocabulary for common event tags. The Core Profile is the foundation
of CEE and contains the most basic fields and tags. Further profiles can be provided
by product vendors, communities of interest and others and are laid on top of the Core
Profile. Listing 6.8 shows an example of a CEE event.

Listing 6.8: Example of a CEE message for the event in Listing 6.6
{ "time": "2017-03-13T13:07:06Z",

"host": "ws5",
"app": {"name": "sshd"},
"user": {"name": "john"},
"src": {"ipv4": "10.0.3.1", "port": 5631},
"action": "login", "status": "success" }

As of November 2014, the funding for the development of CEE was stopped and
the project is suspended by MITRE.

Common Event Format (CEF) This format [93] is an effort by the SIEM vendor
of ArcSight to standardize and unify existing logs into one common log format. It
aims to simplify the integration of various logs into one large log management and
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analysis platform, the ArcSight ESM. CEF is fully-structured and consists of key-
value pairs of relevant event information and is also flexible to be extended with
new information. By default, CEF is integrated into a Syslog message and therefore
extends it to a structured logging alternative. The structure and an example of a CEF
message is presented in Listing 6.9.

Jan 18 11:07:53 host CEF:Version|Device
Vendor|Device Product|Device Version
|Signature ID|Name|Severity|[
Extension]

Sep 19 08:26:10 host CEF:0|Security|
threatmanager|1.0|100|worm
successfully stopped|10|src=10.0.0.1
dst=2.1.2.2 spt=1232

Listing 6.9: The CEF message format and example [93]

Other Formats In addition to the previously mentioned formats, there are further
efforts to standardize log formats. In particular, SIEM vendors are often using their
own formats to unify many existing formats into a common format. We have already
mentioned the CEF by ArcSight, but there are others like the Log Event Extended
Format (LEEF) from IBM QRadar [84], the Graylog Extended Log Format (GELF)
from Graylog [89], and the Common Information Model (CIM) from Splunk [81].
Another group of formats are domain-specific formats, such as the various formats
for IDSs, like the Intrusion Detection Message Exchange Format (IDMEF), Incident
Object Description Exchange Format (IODEF), CybOX, and the Common Intrusion
Specification Language (CISL), and web servers, like Common Log Format (CLF)
and the Extended Log Format.

6.2.2.2 OLF: Our Object-based Event Format

The practice of event management reveals that the above formats have some short-
comings that make their use difficult. In fact, some of these formats never made
it across the standardization phase, such as CISL or CEE, since they are not used in
real-world systems. Another problem is that the formats represent events in a very dif-
ferent level of detail. While the Syslog format only provides basic meta-information
about an event in a structured form, the CybOX format is over-specified and gets lost
in details.

Because of these shortcomings and the difficulty to change the organization of
existing formats, we have created the Object Log Format (OLF) in our research
team [26]. OLF unites the flexibility and object-orientation of the CEE and the va-
riety of fields from CEF and other application specific logs. Furthermore, we have
put a focus on the security aspects of an event by integrating information about vul-
nerabilities as Common Vulnerabilities and Exposures (CVE), weaknesses (Common
Weakness Enumeration (CWE)) and the mapping to an attack kill-chain phase (Ad-
versarial Tactics, Techniques & Common Knowledge (ATT&CK)), which are used for
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Figure 6.3: Event Structure of the Object Log Format (OLF)

APTs [9, 94]. An overview of the event structure of OLF is presented in Figure 6.3
and described in more detail in the work by Sapegin et al. [26].

6.2.3 Existing Event Normalization Methods
The transformation of raw events into a common format is achieved via a dedicated
normalization method. This method can be considered as the core of a SIEM because
it decides how far the collected events will be usable for later analysis. The research
community, as well as productive log management/SIEM systems, have brought up
a range of such normalization methods that have been utilized with varying degrees
of success. Altogether, these existing methods can be categorized into four major
groups.

Rule-Matching This method is based on predefined normalization rules that de-
scribe how relevant information can be extracted from events of a specific for-
mat or type. The most popular implementation for rule-matching is based on
a normalization with regular expressions (regexes), where each regex matches
one specific event format and uses matching groups to reference relevant infor-
mation from it. In a special form of regex, the so-called named-group regular
expression (NGRE) [95], the matching groups are further accompanied with a
name that is used to map a group to a field in the unified event format. A chal-
lenge of the rule-matching approach is the overhead of finding the right rule
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that matches the format of a given event record.

Tokenization/Indexing The idea of this method is to identify and extract distinct
fields within a raw event record. For this purpose, an event record is split into
its structural components, also known as tokens. Each token is then checked
against known static parts of common event formats and against frequent data
types in log events, such as IP addresses, hostnames or notations of time. A
common implementation for tokenization is Apache Lucene2. A limitation of
the tokenization approach is the loss of the context in which the event informa-
tion was embedded.

Natural Language Processing (NLP) This normalization method is based on the
fact that many event formats are employing human-readable text to represent
their content. As a consequence, this text can be decomposed by its language
structure, such as subject, object, and verb. The components then help to de-
duce the meaning of the event similarly to how a human reader would see it.
Examples of NLP implementations are Stanford’s CoreNLP library or SAP
HANA’s text analysis features [96]. An example of the NLP technique was
described by Kobayashi et al. in their work [97]. The problem with the NLP
approach is its dependency on human-readable event formats and the difficult
interpretation of the language components.

Custom Methods The custom implementation for the normalization can be most ef-
ficient because it can be tailored to the properties of a log format. For example,
a custom solution could have two dedicated pieces of code to normalize CSV
data and Syslog events. Due to the effort that is necessary to support a par-
ticular format, custom normalization is not applicable to very heterogeneous
environments with many log formats. Examples of an implementation of the
custom method are LogStash [88] and Sawmill [98].

In productive SIEM systems, the rule-matching approach has probably gained the
most attention. It can be found in products like ArcSight [82], Splunk [81], Alien-
Vault USM [99], and Graylog [89]. Regular expressions can reliably extract pieces of
information from different formats, and the rules can be extended easily since regular
expressions are a well-known concept in IT.

6.2.4 A Customized Rule-Matching Approach
An investigation on currently existing rule-matching implementations shows that they
have big variations in their rule design, normalization capabilities and matching per-
formance. There is no universal implementation that works best for all of them. One

2Apache Lucene - https://lucene.apache.org
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thing that is rather consistent among the implementations is the utilization of regexes
to identify an event format and extract relevant event information. As part of our Big
Data SIEM, we have created a rule-matching variant that uses concepts from the exist-
ing implementations and is based on an advanced form of regex, namely the NGREs.
It further realizes a form of deep normalization that extracts as much information as
possible from an event record.

6.2.4.1 Concept of Information Categories

The regex-based rule-matching approach is based on the idea that event records of the
same type have organized their information in the same way, even if the event content
is in a textual form and unstructured. We distinguish three information categories for
an event, i.e., static, dynamic and semantic, as shown in the example in Listing 6.10.

Listing 6.10: Log Event from Listing 6.6 with information categories (static, dynamic,
semantic)
Mar 13 13:07:06 ws5 sshd[431]: Failed password for john from 10.0.3.1 port 5631 ssh2

The static portion acts as a structural frame of the event and is distinct for each
type of event. As a result, the static part can be regarded as a suitable candidate
to identify an event format. Some typical static parts of an event record are textual
phrases, white spaces, and punctuations. In the above example, there are static words
like for, from, and port that join the informational fields to a human-readable text
snippet. Additionally, spaces, brackets, and colons are used to structure the provided
information better.

The dynamic portion of a format is the content that changes with each instance of
an event. It is usually the most valuable part of an event record because it contains
the information that distinguishes an event from other events. Although each piece
of dynamic content is changing from event instance to event instance, it has a fixed
data type and is represented in the same format, such as a common time format or a
number representation. In Listing 6.10, the IP address and port number are examples
of dynamic event components.

The semantic portion of an event is an implicit piece of information that classifies
the event into various categories, such as the performed action and the outcome

of the observed event. Semantic information is usually difficult to extract from an
event instance in an automated fashion, but it is sufficient to determine it manually
once for each event type. When the event has been identified as being of a specific
type, the event is tagged with the previously determined semantic information. For
our example, the event could be tagged with login as the action and failed as
the outcome.
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Listing 6.11: Regular expression for the event in Listing 6.10
(\w+ \d+ \d+:\d+:\d+) (\S+) (\S+?)\[(\d+)\]: Failed password for (\S+) from (\S+)

port (\d+) (\S+)

6.2.4.2 Matching Different Information Categories

Assuming that a large number of events is following the information categories pre-
sented above, then the static and dynamic parts of an event, i.e., the explicit parts of
the content, can be identified with the help of a regex. To create such a regex, the
static parts of an event can be directly copied over, and the dynamic parts can be cap-
tured with the concept of matching groups. Whenever this regex matches an event,
meaning that the static parts in the event are corresponding to the static parts of the
regex, the information in these groups can be retrieved with an associated identifier.
For the above example, the regex from Listing 6.11 can be constructed.

The static parts of the event are directly represented in the regex with a bold font.
These parts ensure that the typical characteristic of the login event can be recognized,
and the format be determined. The dynamic parts of the event are represented with
sub-regexes and are embraced with pairs of parentheses that constitute the matching
group. In the regex from Listing 6.11, the first pair of parentheses is the matching
group for the date and time of the event. The second pair is reserved for the host that
produced the event.

An extension of the regular regex, as shown in Listing 6.11, is the named-group
regular expression (NGRE). It allows to label a matching group with a name that
can be used to retrieve its value. Although this labeling is a rather simple change
in the addressing of a matching group, it can bring a significant benefit for event
normalization. The labeled name can act as a mapping key for the field name in the
unified OLF event. Listing 6.12 shows how the previous regex would have to be
changed.

Listing 6.12: A regex using named-groups to address event fields
(?<time>\w+ \d+ \d+:\d+:\d+) (?<producer.host>\S+) (?<producer.appname>\S+?)\[(?<

producer.processId>\d+)\]: Failed password for (?<subjectUser.username>\S+) from
(?<network.srcIpv4>\S+) port (?<network.srcPort>\d+) (?<application.proto>\S+)

Now there are group names like time and producer.host that correspond to
fields of OLF.

6.2.4.3 Integration of Regular Expression Templates

A drawback of regex-based rules is that the creation of more complex regexes is seen
as a challenging task by developers. Especially the definition of the dynamic parts of
the regex requires knowledge on the concept of character classes, matching groups,
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and multiplicity of sub-regexes. Furthermore, the way in which a regex is written has
a major impact on the matching performance. In particular, an inexperienced regex
writer could produce constructs that lead to excessive backtracking with very low
execution performance. To take the burden of defining regexes for rather complex,
but still common, parts of events, a concept of regex templating is introduced. With
this, an expert only creates a common regex once. After that, the template can be
referenced by name in the full regex of the normalization rule. Ideally, the SIEM
would even ship with a set of common templates so that a SIEM operator does not
have to prepare templates by himself.

Taking the login example from above, there could be templates for time, IPs,
ports, and hostnames that handle the complexity of the corresponding regex and in-
clude the right matching groups for the unified event. Listing 6.13 shows an example
of a template for the typical Syslog time.

Listing 6.13: A regex template for the Syslog time
<regex-template name="G_SYSLOG_TIME">

<regex><![CDATA[(?<time>(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\s
+(?:3[01]|[1-2][0-9]|0?[1-9])\s+\d{1,2}:\d{1,2}:\d{1,2})]]></regex>

</regex-template>

This template, together with templates for the other dynamic fields, can then be
referenced in the full regex by a special notation with two curly braces. Listing 6.14
shows an adjusted regex that utilizes templates for the more complex fields.

Listing 6.14: A regex using named-groups to address event fields
{{:G_SYSLOG_TIME}} (?<producer.host>\S+) (?<producer.appname>\S+?)\[(?<producer.

processId>\d+)\]: Failed password for (?<subjectUser.username>\S+) from {{:G_SRC
}} port {{:G_SRC_PORT}} {{:G_PROTO}}

This method of writing a regex is considerably simpler than before, because a rule
writer does not have to know how data fields as IP addresses and time values have to
be represented. The rule writer is simply using a placeholder at the position of the
data field to be matched.

6.2.4.4 Extending Normalization Rules with Static and Semantic Information

The NGRE is an integral part of our normalization rule because it allows to deter-
mine the event format and to extract the dynamic parts of an event instance. Still,
there is more to an event than its dynamic information, such as semantic and other
implicit information. To extract these parts, the event format to be matched needs to
be interpreted and understood, for example by a human.

Our approach for a normalization rule is taking care of this additional type of
information that is not directly extractable. Additionally to an NGRE, there are so-
called static-fields that hold information that is added to the unified event once the
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given NGRE matches. These static-fields are always the same for a particular rule and
are assigned manually after a thorough interpretation of an event format. Listing 6.15
shows an XML-based representation of such an extended normalization rule.

Listing 6.15: A normalization rule that support implicit event information
<rule name="ssh-failed-login">
<program-name>cpe:/a:openbsd:openssh</program-name>
<pattern><![CDATA[(?<time>\w+ \d+ \d+:\d+:\d+) (?<producer.host>\S+)...]]></

pattern>
<static-fields>

<static-field key="tag.action" value="login" />
<static-field key="tag.status" value="failure" />
<static-field key="network.dstPort" value="22" />

</static-fields>
</rule>

The rule highlights that the previous login event is not just having a source IP and
port, but actually represents an event covering a login that has failed. In addition, the
rule can even go as far as identifying the software that produced that particular event,
i.e., OpenSSH, and implying that this software listens on the well-known TCP port
of 22 by default. All this information cannot be extracted automatically by matching
against a regex.

6.2.4.5 Working with Rulesets

So far, only a single normalization rule has been considered for the matching of a
given event, but there are many different event formats that have to be handled with
a multitude of normalization rules in a real-world SIEM environment. Depending on
the heterogeneity of the monitored network, a SIEM easily has to deal with dozens
or even hundreds of rules at the same time. The collection of all these rules is called
a knowledge base (KB), because it holds the knowledge necessary to normalize an
arbitrary event.

A big challenge in the normalization process is the management of the knowledge
base and the selection of the normalization rule that matches the event. In a simplistic
approach, the SIEM runs through all rules in the KB until it finds the first one that
matches. Obviously, this solution costs performance, as many unnecessary NGREs
are applied without a match. Nevertheless, there are SIEMs on the market that match
their regexes exactly with this approach but fail to keep up with the velocity of in-
coming events.

As a solution to the rule selection, we propose a rule indexing for all rules in the
KB. The indexing delivers, based on the current context, a prioritized list of candidate
rules in which one rule most likely matches the given event. Only in the worst case,
where no candidate rule matches, all rules have to be checked against the given event.
In the case where no rule matches at all, the event remains unnormalized.
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Our default indexing approach is derived from the fact that event logs often con-
tain many similar events, whereas only a relatively small number of events are abso-
lutely distinct. As a result, many events can already be matched with a small number
of common rules. Only by ordering the rules by the number of times they have
successfully matched an event, a list of prioritized rules has been created for the in-
dexing. An even smarter approach of rule indexing is shown in Section 7.4.3 of the
next chapter.

6.2.4.6 The Full Matching Process

Putting the previous steps together, a basic normalization process can be created, as
shown in Figure 6.4.
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Figure 6.4: Process of a Rule-based Deep Normalization

In the first step of this process, a matching rule is searched in the KB by utilizing
the rule index. The first matched rule is then passed onto the next step that extracts
the named groups from the match. These extracted fields are then passed to the third
step where the named groups are mapped to fields of the unified OLF event. In the
last step, the unified event is further populated with the static fields that are specified
in the passed rule. As a result of the process, an OLF is provided that contains the
relevant event information. Taking our sample event from Listing 6.10 as a source,
an OLF event like in Listing 6.16 is created.

Listing 6.16: The unified event in Object Log Format (OLF)
{ time: "2017-03-13T13:07:06",

network: { srcIpv4: "10.0.3.1", srcPort: 5631, dstPort: 22},
producer: { host: "ws5", appname: "sshd", processId: 431},
user: { username: "john"},
application: { proto: "ssh2"},
tag: {action: ["login"], status: ["failure"]}

}
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6.3 Enrichment

The normalization of raw events into a common event format is the first step of the
pre-processing and is crucial for even the most basic types of security analytics. How-
ever, even if most of the relevant information is extracted and put into dedicated fields
of the common format, there are some pieces of information missing to make a com-
prehensive correlation and analysis of events possible. Some examples are:

• Web server logs usually do not contain information about the producing host.

• Many events either have the hostname or IP address, but not both.

• Events in the Syslog format do not specify a year in their time information.

• Many event formats do not specify a time zone in their time representation.

Although the information is not available in the event itself, it would be derivable
from other sources, such as events from the same network environment, inventory
systems or publicly available knowledge bases. In existing research, the topic of
enrichment is not deeply investigated. For example, Knight [100] proposes to resolve
hostnames with DNS-lookups and obtain more information from WHOIS queries.
However, there is no discussion about how further information could be obtained.
Casey [101] addresses the problem of unsynchronized times and missing time-zones
by implementing Network Time Protocol (NTP) clients and enforcing the UTC time-
zone on all producing hosts. This solution does not seem to be practical in a large
network environment, because some hosts might have requirements on the time-zone
or have a closed operating system that does not allow such configuration.

As a solution to all of the mentioned scenarios of missing information, we propose
three major methods of event enrichment, i.e., intra-event, inter-event, and extra-
event enrichment.

6.3.1 Intra-Event Enrichment

This method enriches a normalized event with information that is derivable from its
log entry but could be extracted by a regex-based normalization rule. Looking back at
the normalization process, then it can be derived that a regex is limited to extracting
only static information from a log entry because of its design as a finite automaton.
Any information that is encoded with a more complex logic cannot be interpreted by
it. As a solution to even extract such information, we propose lightweight processing
scripts that are attached to each normalization rule.
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6.3.1.1 Lightweight Processing Scripts

The handling of more complex data structures in a log entry requires processing logic
that goes beyond that of a regex. One solution to provide this logic could be to modify
the normalization code for each supported event format, but this would not scale for
a larger number of formats. Whenever there is a new format, the code would have
to be changed, and the SIEM needs to be redeployed. A more practical approach
is to provide additional logic as external scripts that can be executed at runtime in
an interpreter. In the case of our implementation, the Java scripting engine allows
executing JavaScript and Python code within the program context. As a script is
dependent on the type of event, such a script would be attached to a normalization
rule. If an event is normalized with the rule that has an attached script, then this event
is additionally passed through the attached script. The normalized event object is
made available to the script as a context object named evt, whose properties can be
read and modified in the script.

For a better understanding, we demonstrate the example of Cisco ASA firewalls.
These firewalls are using a Syslog variant that specially encodes Syslog’s application
specifier, as shown in Listing 6.17. In this sample log entry, the application field
(%ASA-6-302014) does not only indicate that the event originates from an ASA
firewall, but it also reveals the log priority (6) and event type (302014).

Listing 6.17: Cisco ASA log in a Syslog variant containing encoded data
Jun 11 12:26:34 10.10.10.1 %ASA-6-302014: Built outbound TCP connection 8236059 for

outside:192.168.7.4/443 (192.168.7.4/443) to inside:10.10.10.5/49350
(192.168.5.4/49350)

A dedicated normalization rule for such Cisco events is not desirable, because it
causes overhead in the rule selection process although the log is compatible with the
known Syslog format. Rather, a JavaScript snippet like in Listing 6.18 can be used
to extract the encoded fields. It reads the application field from the evt object and
writes the priority and event type back to it.

Listing 6.18: Extraction script that extracts relevant Cisco ASA information
var match = /%ASA-(\d+)-(\d+)/.exec(evt.getProducer().getAppname());
evt.getProducer().setAppname("Cisco ASA");
evt.setPriority(parseInt(match[1]));
evt.setEventTypeId(parseInt(match[2]));

To reduce the impact of the script on any normalization other than Cisco ASA
logs, this script would only be executed for events previously normalized with an
ASA normalization rule.
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6.3.2 Inter-Event Enrichment
Sometimes the information that is given in an individual log entry is incomplete and
not sufficient for further analytics. Still, such missing information can potentially
be found in contextual log entries, i.e., events occurring at the same time or in the
same environment. So, by correlating such contextual events with each other, some
of the incomplete information can be completed. Since information is derived from
other events, we call this kind of enrichment inter-event enrichment. We propose
two methods of inter-event enrichment, which are either focused on time or general
information.

6.3.2.1 Time Enrichment

The time at which an event occurred or was processed is a central field of information
in an event and allows seeing an event in the context of other events that happened at
the same time. Therefore, any time fields in an event should be as exact as possible.
Unfortunately, event producers can have different system times and even different
time-zones. Furthermore, the time information in an event can be incomplete, such
as in a typical Syslog event where the year and time-zone are missing.

The correlation of multiple events can eliminate the shortcomings of time fields,
such as missing or wrong information. In the case of missing time information, log
events with a more detailed time format from the same producer host and hence with
the same system time can be incorporated into the completion of time information.
For example, an event that only exhibits a Syslog time could be completed with time
information from an event with Apache’s CLF. Figure 6.5 illustrates this example.

Sep 28 15:12:24 combo sshd[29858]: 

Illegal user jordan from 210.99.250.240

SSHd event wrapped in Syslog

210.99.250.240 - - [25/Sep/

2017:14:37:23 -0700] "GET /index.html 

HTTP/1.0" 200 1041 "-" "-"

CLF event from Apache web server

Time Zone: PDT

Year: 2017
2017-09-25T21:37:23+00:00 2017-09-28T22:12:24+00:00

Figure 6.5: Extracting missing time information from related logs

Events that are received in real-time, meaning they were not imported as a batch
or buffered anywhere, can have the retrieval time at the SIEM as their creation time,
including its time-zone. It is possible to determine whether a group of events has been
received in a batch by checking the deltas between the creation times and retrieval
times of two individual events. If these deltas differ significantly, then the events
might have been imported as a batch. Considering the retrieval time of an event, a
small time drift to the creation time is caused by network delays when the log entry
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is sent to the central log server. This time difference, however, can be corrected by
determining the network delay time and subtracting it from the retrieval time.

∆tDelay = tRetrieval(e1)− tCreation(e1)
tCreation(e2) = tRetrieval(e2)−∆tDelay

(6.1)
(6.2)

The approach of analyzing the retrieval time for time differences is not applicable
to batch imports, because that time solely represents the time of import. Nevertheless,
there is another approach that is not that accurate but still works in most of the cases.
Typically, during batch import, the natural order of events is often very close to the
chronological order of the events. Table 6.1 gives an example of events as they might
have been imported through a batch.

Table 6.1: Identification of time drifts in context logs

Event ID Producer Creation Time Derived Time Derived Difference
1 System 1 14:37:22 14:37:22
2 System 2 12:15:29 14:37:43 ⇐ 2:22:14
3 System 3 14:38:04 14:38:04
4 System 1 14:39:02 14:39:02
5 System 2 12:16:49 14:39:03 ⇒ 2:22:14
6 System 1 14:39:04 14:39:04

In this table, Event ID corresponds to the import order. Although all events are
in chronological order, there are two events, i.e., 2 and 4, that show a creation time
that is significantly off the other four events. These four events have creation times
that confirm the chronological order. Looking at the producer systems, it seems that
System 1 and System 3 have similar system times. Only System 2 is producing
events with lagging times. Based on the assumption that the majority of systems show
the right time, the creation time of event 5 is estimated from its surrounding events,
which would be 14:39:03. Continuing with the system time delta for System 2,
the time for all its other events, namely event 2, can now also be corrected.

6.3.2.2 General Context Enrichment

In addition to time, many other fields are derivable from contextual logs. The idea is
to take information from verbose events to complete information from less verbose
events. Table 6.2 lists examples of fields that can be correlated and derived between
events.

The rows in the table can be interpreted as follows. We assume there are two
normalized events e1 and e2, where e2 should be completed with information. If e1
has values for all required and derived fields and e2 has the same values in its required
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Table 6.2: Derivation of event fields from context events

Required Fields Derived Fields
producer ID / stream ID host
host, application, user ID /
username

first name, last name, user ID, user domain, username

host, application application ID (CPE), destination port, process ID
host, netw. interface (NIC) ethernet address
host, IP / DNS name IP, DNS name
host timezone

fields as e1, then the values of e1’s derived fields can be copied to e2. For example, if
e1 has values for the IP and DNS name of a source host, then e2 with only a DNS name
can be enriched with an IP address. Of course, this enrichment is only possible where
a unique mapping from DNS to IP and no round-robin DNS entries are employed.

In practice, there is a variety of log formats that are mostly missing information
and formats that mostly act as information providers. CLF, as the most popular format
for web logs, is taking both roles, that of an information provider but also information
consumer. On the one hand, as we showed for the time enrichment, CLF provides
very detailed timestamps. On the other hand, CLF does not have details about the
destination host. To complete this piece of information, a Syslog event from the
same producer host can be utilized. Listing 6.19 shows two such events for a better
understanding.

Listing 6.19: Syslog event that completes the destination host of a CLF event
# CLF event
192.168.14.2 - - [25/Sep/2015:14:37:23 -0700] "GET /index.html HTTP/1.0" 200 1041

"-" "-"
# More detailed Syslog-event
Sep 25 23:37:24 sec.hpi.de http-monitor: HTTP-access from 192.168.14.2

Both of the events are known to be produced at the same web server. The Syslog
event indicates that this server has a hostname of sec.hpi.de, while this informa-
tion is missing in the CLF event. By enriching the CLF event with the hostname, the
source and destination of each web access become clearer.

6.3.3 Extra-Event Enrichment

The third type of enrichment is incorporating external intelligence to fill missing in-
formation in event records. This intelligence can originate from the public domain,
also called Open Source Intelligence (OSINT) [102], or from internal systems.
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6.3.3.1 Data from Open Source Intelligence (OSINT)

OSINT constitutes information that has been produced from publicly available infor-
mation and helps in the completion of specific event fields that are often unavailable
in a log entry. The following list is a selection of useful OSINT sources.

• Domain Name System (DNS) servers are resolving IP addresses to DNS
names or vice versa. There are also special passive DNS databases that are
keeping track of all past mappings between IPs and DNS names.

• WHOIS servers are mapping domain names to their geographical location and
give information about the domain registree and registrar.

• Vulnerability Databases are providing an overview of all known vulnerabili-
ties of software. They can map a vulnerability ID (CVE) to a detailed vulner-
ability description as well as a classification of its severity (Common Vulnera-
bility Scoring System (CVSS)) and affected weaknesses (CWE).

6.3.3.2 Data from Internal Systems

Another form of enrichment information is available from systems within the own
environment. The advantage is that this information is most specific and directly
related to the emitted events. We see two types of internal systems that are available
in many IT infrastructures.

• Authentication Systems are a valuable source for gaining information about
a single user, such as his permissions or group affiliation. Windows Active
Directory (AD) is one authentication system that is available in many enterprise
networks.

• Inventory Systems are maintaining a detailed overview of the monitored net-
work and its nodes. Furthermore, it is keeping track of installed software, hard-
ware, and application users for known systems.

6.4 Persistence
The persistence step is responsible for writing normalized and enriched events into
some data storage. This data storage acts as the connection point between real-time
and batch-processing, meaning that it enables to apply analysis on all events and not
on just a single event. Furthermore, all the data is kept for the record and can later
be reprocessed in any kind of log analysis tool. When persisting events, it has to be
considered how they are later accessed and analyzed, because this has an impact on
the employed type of storage system and the data representation.
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6.4.1 Storage Systems

At the SIEM market, solutions are using a wide range of mostly custom developed
storage systems. The main differences are whether the data is queryable with SQL
and whether a static schema is required. MicroFocus ArcSight and IBM QRadar
are using custom SQL databases, whereas Splunk and LogStash count on a dis-
tributed NoSQL database. As a distinction to the mentioned systems, LogStash uses
the schema-free storage system ElasticSearch, which works similar to a search en-
gine. Our experiments with three of these systems showed that the employed storage
systems have their disadvantages when it comes to very large datasets. In particu-
lar, there are limitations in either writing or querying the data, because it is mostly
kept on slower hard drives storage and records are stored sequentially instead of in
a columnar structure, which can be read and written more efficiently. In addition to
these custom solutions of the SIEM vendors, there are also other Big Data storage
solutions, such as Cassandra, MongoDB, and Hive. Although they are distributed
over multiple nodes, they also do not perform well in writing as the review by Rabl
et al. [85] suggests.

6.4.1.1 SAP HANA as Primary Storage

As an alternative to the above approaches, we are proposing the column-based in-
memory RDBMS SAP HANA as the primary storage in REAMS. All incoming
events and a large amount of recent historical events are retained in this storage,
making it also to a kind of hot storage. The main difference of SAP HANA to other
storage systems is that all tables are kept in the main memory. Therefore, all ta-
ble writes and queries are executed on top of the main memory, making the access
multiple magnitudes faster.

As an RDBMS, HANA follows the concept of tables that are structured according
to a given schema. We think that a schema has an advantage in a SIEM, especially if a
common log format like OLF is used. A set of common fields that can be accessed by
columns allows an efficient correlation and querying. As a column-based RDBMS,
HANA organizes its tables by columns instead of rows and all values of a column are
stored sequentially. Using this organization has benefits in querying tables with many
columns because then only the columns relevant to the query have to be accessed.
Another advantage that comes with a column-based structure is that a new column
can be easily added to a table, without touching all existing records. Such flexibility
in the schema is desirable if OLF is extended later.

In the context of Big Data processing, RDBMSs are often seen as unsuitable,
because they rely on the ACID (Atomicity, Consistency, Isolation, Durability) prin-
ciples. Generally, ACID has a negative performance impact due to locking that is
related to immediate consistency. However, especially for the handling of log events,
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an event in the database does not have to be changed anymore, and locking is not
required. So, the typical disadvantages of ACID do not take effect. Rather, if the
immutability of events is ensured, HANA can act similarly to the well-known Big
Data storage systems.

6.4.1.2 Open-Source Storage Systems as Secondary Storage

In addition to the hot in-memory storage, we propose three optional storage systems,
i.e., Kafka, ElasticSearch, and HDFS, that increase compatibility with other security
analytics systems.

Kafka acts as a temporary message queue that is well supported as a data source
in many existing Big Data solutions. Since all data in Kafka is written as a sequential
file to the file system, relatively high throughputs can be achieved with cheap hard-
ware. The bottleneck is more the preparation of messages for the serialization. A
consumer for the events in Kafka would read the events sequentially and can there-
fore also relatively quickly read all available data. However, especially for ad-hoc
analysis, it would be necessary that each event is read and deserialized, which is a
rather time-consuming task.

HDFS is another way to improve accessibility for external tools, such as Apache
Spark. The distributed file system is considered as a cold storage since the backing
is realized by cheap hard drives. Especially considering larger network environments
that produce petabytes of events per year, such storage is inevitable as a backup for the
in-memory database. In comparison to other storage systems, a user is free to choose
any format for storing his data as long as it can be written to a file. Nevertheless, the
two file formats CSV and Parquet are most commonly used and are well supported
as import format in Big Data applications. The disadvantage of HDFS is similar to
Kafka, i.e., any kind of analysis requires the reading and deserialization of each event.

As an experiment for the adaptability of our persistence implementation, we have
also integrated ElasticSearch as a hot storage location into REAMS. ElasticSearch
has a schema-less data model and is meant for text indexing of the model fields. Due
to this indexing, all fields of an event are searchable with a variety of different search
options, including possibly unnormalized parts. Another benefit of ElasticSearch is
the availability of powerful user interfaces, such as Kibana3 and Grafana4, which
come with all sorts of dashboards and graphs applied to the data stored in Elastic-
Search.

3Kibana - https://www.elastic.co/de/products/kibana
4Grafana - https://grafana.com/
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6.4.2 Mapping of the Event Model to a Schema
The persistence of events to a storage system requires that their event model is
mapped to the corresponding storage data model. SAP HANA, as our primary stor-
age system, is a RDBMS that is based on columnar tables, so the event model has to
be represented in multiple tables. The main question is whether an event should be
put into a single large table or split into multiple related tables.

Relational Model In the sense of a relational database, the data model should be
in accordance with the normal forms [103]. A data model in normal form reduces
data redundancies and improves data integrity, which at the same time reduces the
required storage space and improves data query times for specific use cases. In the
concrete case of our event model, the normal form separates the event model into
multiple tables representing the root object as well as the child objects of OLF, such
as application, user, and network. The records in the table for the root object refer
to the primary keys of the records of its child objects by so-called foreign keys. If
a child record with the same values already exists in a table, then, in accordance to
the normal form, the root record refers to the existing child record and no new record
would be written. From our experience, a typical event has around 4-5 child objects
in OLF initialized, hence requiring the writing of records to 5-6 tables. Also, it might
be necessary to check for previously existing child records to set the foreign keys of
the root record. Adding this together, there could be around 10 SQL queries to the
database to persist one event. This number of queries is so high that a reasonable
persistence throughput is difficult to achieve.

Master Table Model Another data model approach, which is preferable from the
view of persistence performance, is to reduce the number of tables. We propose to
use a single master table that contains all relevant fields of the event model, including
the fields of OLF’s child objects. The object hierarchy is flattened to fit into a table
structure. Only additional fields, which are not part of the default model, are stored
in a separate property table. The relation of the tables is shown in Figure 6.6. In
practice, many events would only require a single write instead of 10. For the rare
case where additional fields are present, a few more writes would be necessary. In
terms of analysis, the usage of a single table in HANA does not have such an impact
as in traditional RDBMSs, since the columnar tables and HANA’s field compression
still allow a fast table scan.

ID TIME MSG SRC_IP DST_IP ...

MASTER EVENT TABLE

KEY VALUE

PROPERTY TABLE
*1

Figure 6.6: Idea of the master table model
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Type Mapping When mapping the event model into the master table, the field types
are adopted to the storage system. In particular, fields with strings, numbers, and dates
are represented as corresponding field types in the database. This is important for a
more in-depth analysis that involves grouping and aggregation of values in the model.

6.5 Conclusion
In this chapter an event processing workflow was presented that goes from the raw
event to its representation in the database. At the beginning, there is a large variety
of events that are scattered over a wide range of heterogeneous event sources. We
have categorized these common event sources and have outlined methods of gath-
ering events from these sources into a single SIEM system. In the second step, we
normalized log entries to a common event format, so that they can be used in a struc-
tured manner for further analysis. Mostly, such normalization can be challenging,
because there are differences in how entries are represented, such as in their level of
structure, their separation from each other and their encoding of information. Our
investigation on known normalization techniques has shown that there are currently
limitations in extracting all available information from a log entry. However, for
comprehensive security analysis, each event should provide as much information as
possible. We propose a custom normalization technique that addresses this limitation
by utilizing extensible normalization rules that are based on the known technique of
regexes matching. As a result of the normalization, the events are transformed into
our common Object Log Format (OLF). Since the information contained within a
log entry is often incomplete or not normalizable with a regex, we propose multiple
methods of data enrichment from contextual information directly after normalization.
We have identified three sources of enrichment information, i.e., information within
the same event, from other events of the monitored environment and external sources.
Each category of information can provide different pieces for a more complete event
record. In the last step, we investigated the persistence of events in OLF. We have
proposed SAP HANA as the primary storage of events because its design fits well to
our use case and has various advantages over existing storage systems. Nevertheless,
we also consider three open-source storage systems, i.e., Kafka, HDFS, and Elastic-
Search, from the Big Data domain for the purpose of a cold storage as well as for
compatibility to third-party systems.

The writing of events into a storage system has paved the way for fast access to
event data and the correlation of multiple events. It is ensured that events in their va-
riety of formats are transformed into OLF. However, when dealing with Big Data, not
only the volume and variety is a challenge, but also the velocity in which events are
arriving. In the following two chapters, we further investigate how the workflow from
this chapter can be improved to handle the throughput of large enterprise networks.
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Deep normalization of events to an OLF object is one of the most time-consuming
parts in the event processing workflow. Therefore, to speed up the overall processing
workflow, also the normalization process has to keep up with the velocity of incoming
events. Many currently existing SIEMs are not fast enough to handle the event load
of large enterprises, because their normalization routines are not optimized for speed.
In this chapter, we have a look at several optimization strategies for the normalization
algorithm.
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7.1 Normalization Performance Factors
Considering that events are normalized with the proposed process, then each of the
processing steps is a potential point of optimization. Furthermore, since the process is
executed sequentially, each step can become a bottleneck of its own that slows down
the overall workflow. Therefore, it is necessary to carefully analyze all processing
steps for potentially processing-intensive tasks. By reviewing the different process-
ing tasks during basic normalization, we can identify three potentially processing-
intensive candidates that may impact the throughput.

• The application of regexes is employed to find a matching rule in the KB and
to extract information from the match. As each operation involves the applica-
tion of a regex for each normalization rule, there is much potential for overall
performance improvement.

• The assignment of information to the unified event is used during the extraction
of event information and the population of the event with static information
from the matched rule. The assignment involves the identification of the right
field in the unified event to which the information should be assigned and the
copying of the data into the unified event object.

• The efficiency of the indexing and searching within the KB decides how many
rules have to be checked and how quick a matching rule is found. Depending
on the size of the KB, a proper search algorithm can reduce the number of rules
to be checked from multiple thousands to a small, countable number.

In the basic normalization, all these tasks have not been especially considered for
their performance. The following subsections take a closer look on approaches for
the optimization of these steps together with their impact on the event normaliza-
tion throughput. All the approaches have been integrated into REAMS and are thus
focused on the implementation with Java.

7.2 Application of Regular Expressions
Regular expressions are a well-known concept of pattern-matching in computer sci-
ence and have been covered in a large number of research works. Various algorithms
and implementations for the application of a regex against a given text have been de-
veloped. In the end, most of these solutions are evaluating regular expression patterns
in finite automatons, more specifically in NFA or DFA. Each type of automaton has
its advantages and disadvantages. In particular, there are differences in their runtime,
memory consumption, and features. To come up with an efficient event matching
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algorithm that uses regexes, both types of finite automatons and their correspond-
ing implementations have to be understood and checked for their applicability to the
special domain of event matching.

7.2.1 Finite Automatons
There are two types of finite automatons that recognize regexes, the DFA and NFA.
Both take a string as input and decide whether it is accepted by the designed expres-
sion.

The deterministic finite automaton (DFA) is constructed in a way that the transi-
tion from one state to the following state is always deterministic, meaning that at a
given state there is only a single transition that triggers for the current position of the
input. Building an automaton with these properties is time-consuming and memory-
intensive, because all possible intermediate states of a regex have to be determined
and represented in the automaton. Especially for long and complex patterns, the com-
putational complexity required to convert the pattern to a DFA and the representation
of all its states explodes. On the other side, the runtime of the DFA is linear to the
input length (O(n), n is number of characters in input), because there is only a single
transition per input character. These two characteristics make the DFA particularly
fast in matching but difficult to handle for more complex regexes.

The non-deterministic finite automaton (NFA) is a superset of the DFA and al-
lows nondeterministic transitions from one state to the following state, meaning that
for a given state there can be multiple transitions that trigger for the current posi-
tion of the input. Building an automaton with these properties is significantly less
time-consuming and memory-intensive than the building of a DFA because the states
and transitions can be directly derived from the regex. However, due to its nondeter-
minism, the runtime of the NFA is much longer (O(m2n), m is number of states in
the regex) than the one of a DFA, because each possible path in the graph has to be
checked.

7.2.2 Implementation Issues of Finite Automatons
The two types of finite automatons are the theoretical concepts of regex matching,
but there are more issues to consider in the implementation of these concepts.

One challenge in the implementation of an NFA is the realization of its nondeter-
minism because there must be an algorithm that is able to try all transition alternatives
for a state at once. Backtracking is one such algorithm, which employs a try-and-error
method that iterates over all transition alternatives to find a matching path in the NFA
for a given input. Due to its iterations, backtracking should be able to find the match-
ing path if it exists, although it is not clear how long the algorithm will take to find it.
In fact, there are some pathological cases of regex constructions, such as “(a*)*b”,
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that cause the backtracking-based NFA to get stuck in trying an almost infinite num-
ber of alternatives if longer inputs are provided. As a consequence, regexes for NFAs
should be created carefully to prevent these pathological cases.

An implementation property that is also closely related to the way the backtrack-
ing works is greedy and non-greedy/reluctant matching for the quantifiers “*”, “+”,
and “{min, max}”. In the greedy matching variant, the matching algorithm tries to
consume as much input as possible for a single quantifier, whereas the algorithm tries
to consume as few as possible for the non-greedy variant. Greedy matching is the
default mode for a quantifier and means that the backtracking first consumes all pos-
sible characters until it tries the next alternative. Due to many possibly unnecessary
consumptions for the greedy variant, non-greedy quantifiers should be used in favor
of greedy quantifiers, which are denoted with an additional “?”. In contrast to the
NFA, a DFA only supports the default greedy matching, because all transitions are
deterministic with no choice of being reluctant in the state traversal.

Another factor in the implementation of automatons is the extension of pattern
matching with additional features. While early implementations, such as Perl Com-
patible Regular Expressions (PCRE) [104] before version 2.0, were merely meant for
checking a pattern against a string, later implementations added a variety of features
that allowed to reference parts of the match, i.e., back references and named capturing
groups (NGRE), and specify conditions for a match, i.e., lookarounds. Unfortunately,
many of these features are only supported for NFA implementations, because the de-
sign of the NFA is very close to the regex that specifies these features, whereas the
DFA is close to the input string and implicitly checks various parts of the regex in
parallel.

The described issues make clear that implementations with the same type of au-
tomaton share similar properties. An NFA-implementation usually has a broad range
of special features, such as capturing groups or lookarounds, and a small memory
footprint, but a relatively slow matching speed. A DFA-implementation, in contrast,
has a high matching speed, but a limited feature set and large memory footprint. Fur-
thermore, the regexes that are supported by a DFA are significantly different to what
is generally understood to be a common regex. Thus, the writing of regexes that are
compatible with a DFA is challenging.

7.2.3 Evaluating Regex Implementations
To improve the rule-matching of our SIEM, a regex implementation with high match-
ing performance and powerful regex features has to be found. For this purpose, seven
known regex implementations, which are written in the Java programming language,
have been examined for their employed type of automaton and evaluated for their
matching performance. As part of the performance evaluation, each implementation
normalizes a set of 5 M events from a productive web system. All the events are rep-
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resented in CLF and are normalizable with a single predefined regex that only uses
basic features. The results of the evaluation can be seen in Table 7.1.

Implementation Class kevts./s Rate Automaton
Java 8 Regex java.util.regex.Pattern 100.7 100% NFA

Named-Regexp com.google.code.regexp.Pattern 99.1 100% NFA
JINT kmy.regex.util.Regex 89.7 94.5% NFA

JRegex jregex.Pattern 72.9 100% NFA
PAT com.stevesoft.pat.Regex 44.7 100% NFA
RE2J com.google.re2j.Pattern 24.3 100% DFA/NFA

BRICS dk.brics.automaton.RegExp 0.0 0% DFA

Table 7.1: Performance of regular expression implementations

The table shows that the majority of the implementations are employing an NFA
for regex matching. This distribution is explainable with the much higher expres-
siveness of allowed regexes. In turn, the limitation in the regex expressiveness of
the DFA-implementation, i.e., the BRICS library, has the consequence that the pro-
vided CLF regex is not supported. Since a matching regex for BRICS would require
significant changes to the provided regex, it is not feasible to compare it against the
others. However, the matching speed for the NFA-implementations could indeed be
measured and is specified in the table. Five of the NFA-implementations were able
to normalize 100% of the 5 M events, while one implementation had problems with
events that contained IPv6 addresses. Surprisingly, the fastest of all the implementa-
tions is the Java 8 Regex (java.util.regex), which is already integrated into the
Java standard library. All the other specialized libraries for regex matching are slower
than the default regex library of the Java standard library. Also, the Named-Regexp
on the second position is closely related to the Java 8 library. It uses the matching
capabilities of Java 8 but provides some additional features for NGRE matching. One
of the slowest libraries is RE2J, which is inspired by the Google RE2 library. In
comparison to the other libraries, the RE2 library is a hybrid library that is more fo-
cused on the DFA-implementation, but also comes with an NFA-implementation for
all regexes that utilize special features.

In the end, the standard Java 8 regex library and its extended Named-Regexp li-
brary seem to be the most promising implementations for regex matching, because
they are the best performing libraries and still have rich features. The matching
throughput of both libraries is as high as 100 k evts./s with only a single thread,
which is four times as fast as the least performing regex library, i.e., RE2J. A DFA-
implementation, such as BRICS, would be too restricted in its supported regexes
and would complicate the creation of normalization rules for complex event formats.
For the REAMS implementation, the concrete matching will be performed with the
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Named-Regexp library, because it has one of the best matching throughputs and all
common regex features. In particular, the library has extended support for NGREs,
which are especially important for the mapping of event content to a unified event.

7.3 Unified Event Assignments
A normalized event is created by assigning previously extracted pieces of informa-
tion, either from a matched NGRE or from the static fields of the normalization rule,
to fields in the unified event format. This assignment consists of three steps, i.e., the
identification of the field in the unified format to which the information belongs, the
conversion of the information to the data type of the identified field, and the setting
of the value to the unified event object.

The variety of event data demands that a unified event format remains adaptable
to new types of information. Therefore, a SIEM should be extensible in its event
model and support new information fields as they appear. However, this dynamic in
the event model also becomes a challenge for assignments.

7.3.1 Property Access Approaches
The support of dynamic event models, such as in REAMS with the OLF, can be im-
plemented with two different assignment mechanisms, which are inspired by the two
ways of accessing properties in a programming object, i.e., static or dynamic.

Static access to an object is the simplest form of access, because the properties,
i.e., variables or getters/setters, to be used are statically specified in the program code.
In contrast to that, dynamic access to an object is much more flexible, because the
properties can be selected at runtime by their name or other properties. Although the
dynamic approach enables flexible programming, it is still considerably slower than
the static access to an object [105]. We have implemented and evaluated both, the
static and dynamic, assignment approaches.

Dynamic Property Access In the dynamic approach, the unified event object is
represented as a JavaBean where each property is addressable over an object notation
string. Therefore, each named matching group or static field has to have a name that
is compatible with the object notation and points to a field in the unified event format.
For example, if the name net.srcIpv4 is used in a named group of a rule’s NGRE,
then the extracted value will be assigned with the setter setSrcIpv4 in the net

object of the unified event object. The actual lookup of the setter by name and the
invocation of that setter is performed over Java’s Reflection API.

Since each group name in an NGRE or name of a static field is used as a path
to the right field in the event object, there is no further need to specify mappings
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between groups and field names to unified fields. Furthermore, specialized libraries
like Commons BeanUtils make it even easier to assign values over the JavaBeans con-
cept. The library comes with features like caching of property lookups and automated
conversion of data types if they do not match between value and final object property.

Static Property Access In the static approach, each object property is directly ac-
cessed in code, without the help of the performance-degrading reflection. The chal-
lenge with this approach is the dynamic of fields, because based on the current in-
formation field, the corresponding property has to be called directly in the code.
At first glance, this only seems possible with a rather big switch-statement or a
LambdaMetafactory that decides, based on the name of the field, to which prop-
erty the field value should be assigned. However, this still requires a rather fixed code
section that is not flexible to changes in the model.

OLF Object

msg srcIp dstIp srcPort dstPortSlots: ...

0 1 2 3 4

IP (?<srcIp>.+?) has connected to port (?<dstPort>\d+)

IP 127.0.0.1 has connected to port 80

Slot 1 Slot 4

NGRE:

Event:

Figure 7.1: Slot concept as used for assigning event fields to an OLF event

As an alternative solution to the direct calling of functions, we are proposing
to keep the values of the event object in an array of data slots. Each data slot is
dedicated to an event field and is accessible either by a field’s setter function or by a
generic setter that allows setting a field by its name or by its index. Figure 7.1 shows
how the assignment of extracted NGRE fields is achieved with the slot concept. As
a preparation, each NGRE is analyzed for extractable fields and the dedicated slot
indices for these fields are obtained. When the indices for the fields are resolved,
the NGRE is used for the matching and the matched fields are extracted. For each
of the extracted fields, the values are assigned to the data slot with the previously
determined index. When this procedure has been finished for all the matching groups
of the NGRE, the normalization rule is fully applied, and all fields in the event object
are set.
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7.3.2 Object Pooling and State Resets

Another factor that plays into the assignment is the way how unified event objects
are recreated for each new raw event instance. In the default case, a new event object
would be created with each incoming event. With this, each object would be freshly
initialized, and all fields would have the default state. However, each time a new
object is requested from the Java Virtual Machine (JVM), around 1 k B of memory
for more than 100 fields has to be requested from the operating system. Assuming
an event throughput of multiple M evts./s, then the requesting of so many relatively
large memory chunks can become a bottleneck. Furthermore, each of the requested
objects needs to be garbage collected.

The performance impact resulting from the object creation is addressable with
the object pooling concept. The idea is to create a set, or pool, of objects once at the
beginning of the program and then reuse these objects throughout the entire runtime.
Although object pooling is sometimes considered outdated, since Java’s object cre-
ation overhead has been minimized over the years, the allocation of large amounts of
memory is still a performance factor that pooling can influence.

One disadvantage of pooling is the effort needed to handle the pooled resources
and the need to reset the state every time an object is reused. In the approach of
dynamic property access, the reset is accomplished by iterating over all properties
and setting these properties to their default value. For the static approach, however,
we propose a more efficient approach that leverages the slot concept. In addition to
the object array, we are introducing a bitset for which each bit signifies whether a
specific field slot in the object has been set or changed. Since for a typical event only
a small number of fields is set, the resulting bitset only has a rather small number
of bits set, usually around 10-20. This property and the exact information about set
fields is leveraged at the static reset, because there only the fields are reset to their
default state that actually have been set or changed before. So, instead of resetting
more than 100 fields, only around 10-20 fields are reset. Details about the bitset idea
are described in Section 8.2.1.2.

7.3.3 Evaluation

To prove the performance benefits of the static approach with object pooling and the
bitset-based reset, an evaluation for all the different variations of approaches has been
conducted on 5 million Apache web server events. In particular, each type of access
has been tested with the default creation of event objects for each incoming event, the
reuse of an existing object without reset and the reuse with reset. The results of the
evaluation are shown in Figure 7.2.

The bars in the diagram show the average event throughput per second. The static
property access is more than 35% faster for all combinations, because no reflection is
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Figure 7.2: Normalization throughput with different methods of field assignments

involved. For the static access, also the two reuse variants are faster than the creation
variant. This improvement is because no new memory has to be requested with each
event. However, the reuse with a state reset is slightly slower for the static access and
significantly slower for the dynamic access. Such behavior is expected, because the
reset requires more work, but is necessary for a functioning normalization procedure.
Therefore, static property access with reuse and reset is the preferable variant for field
assignments.

7.4 Rule Organization
One of the main challenges for the rule-based normalization is still the finding of the
rule that is able to normalize a given event. Assuming the deployment of a SIEM
in an enterprise network, there are potentially hundreds if not thousands of different
event formats, each requiring a custom normalization rule. Within this large pile of
rules in the KB, the SIEM must find a matching rule for each incoming event record,
ideally fast enough to handle the extremely high throughput.

A straightforward method of finding a matching rule for a given event record
would be to test the regex of each rule against the record. If there is a rule matching
the event, then the right rule would eventually be found. On average, it would take
the SIEM n

2 tries to find the right rule among n rules in the KB. Assuming a matching
throughput of 100 k evts./s for the Named-Regexp library from Section 7.2 and a set
of 1000 normalization rules in the KB, then the SIEM would be able to normalize as
few as 200 evts./s per thread, which is unacceptable for a SIEM. For sure, a better
solution than the simple iteration of all rules has to be found.

A more efficient solution than the iterative testing of all normalization rules re-
quires that the structure and appearance of events in real-world environments are
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incorporated into the KB design. Only if the unique properties of the events are
regarded, a better organization of the rules can be achieved, which the rule search
algorithm of the KB can leverage to find a matching rule faster.

7.4.1 Homogeneity and Structure of Real-World Events
In theory, the log events in an enterprise environment can originate from a wide range
of sources and can have a variety of different, rather unstructured, formats. The
reality, however, shows that the majority of events comes from a few sources that use
a small number of different formats with a hierarchical structure. Only a minority of
the events comes from a broader range of sources and is entirely unstructured [31].

Homogeneity The observation that a majority of events comes from a few sources
can be explained with the fact that the main operations within an IT-infrastructure are
performed by a few services or systems. If these key systems are properly monitored
and their logs are gathered, then many activities in the network can already be com-
prehended. As an example of a typical company infrastructure, the following setup
can be considered.

The employees in a company use the company’s DHCP service to connect their
devices to the network and use the DNS to resolve hostnames to IP addresses. The
Internet is accessed over a web proxy and the connections are checked by a firewall.
The authentication of users and the management of IT-assets in the company domain
is provided over a central directory service. In a service-oriented company, there is
also a web server with the company’s online presence and an email service to receive
messages. To remotely access computers in the intranet of the company, services like
VPN and SSH are used. Furthermore, each workstation and server is equipped with
an operating system that additionally has some HIDS installed.

The described setup can be seen as the core network of a more complex network.
A thing that adds up to the homogeneity of logs is that some of these services are pro-
vided by only a few different products or vendors. A DNS service is often delivered
by the BIND software. A web server is typically implemented with an Apache web
server. On the OS side, many companies are relying on Microsoft Windows. From
this, it becomes clear that a productive SIEM only has to support a small number of
different event formats to derive what is happening in the network.

Structure The structure of events is another factor that is not as random as it first
seems. In fact, the observation of real-world events shows that a majority of events
is either wrapped in the Syslog or Windows event formats, because the previously
mentioned services mostly run on a type of UNIX or Windows system that produces
the corresponding formats. The wrapping formats hold a more application-specific
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format, which again has its own structure. If the application-specific format is even
further structured, there is a chance that there is another sub-format included in it.
Such a case of altogether three layers of event formats is especially typical for appli-
cations that produce many different event types.

An example of an application with a deeply structured format is the Snort
NIDS [106] on a Linux machine. Snort has many different event types due to its
high number of alert signatures. Each alert signature produces a particular event
type that has to be distinguished by an event consumer. Figure 7.3 shows two event
records as Snort has produced them. Both records are wrapped in the mentioned Sys-
log format (dark gray) and contain a structured Snort-specific format (lighter gray).
The Snort-specific format, again, is structured by itself and wraps a more concrete
message (lightest gray) for the alert information.

Mar  1 16:02:40 bastion snort:

[1:648:7]

[Classification: Executable code 
was detected]

[Priority: 1]:

{TCP} 4.152.207.238:3521 -> 
11.11.79.83:80

SHELLCODE x86 NOOP

(a) Snort event of type 648, i.e., an attempt to exe-
cute shellcode

Mar  1 16:02:40 bastion snort:

[Classification: Web Application 
Attack]

[Priority: 1]:

{TCP} 4.152.207.238:3718 -> 
11.11.79.84:80

[1:1807:10]
WEB-MISC Chunked-Encoding 
transfer attempt

(b) Snort event of type 1807, i.e., an attempt to in-
ject commands

Figure 7.3: Two log events produced by Snort with a similar structure

The type of format outlined in Figure 7.3 can be called hierarchically structured,
because there are many different formats wrapped in each other. Together, many
application logs from Linux systems and the Snort NIDS can be sorted into this hier-
archy. Figure 7.4 shows an exemplary format hierarchy from the Snort perspective.

The fact that many events are hierarchically structured can help in the normaliza-
tion of events. Instead of seeing an event as one bulky piece of text, an event can be
divided into multiple pieces that can be handled individually.

7.4.2 Organization of the Knowledge Base
The KB in the SIEM is one of the bottlenecks for normalization since it has to identify
a matching normalization rule for a given event from a large number of available
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Figure 7.4: Hierarchy of event formats on the example of Snort events

normalization rules. With the insights about the special homogeneity and structure
of real-world events, there are multiple ways on how the organization of matching
rules in the KB can be improved to find a rule faster and to match an event more
efficiently. In the following, one way of optimization is proposed that is based on the
decomposition of event formats by their hierarchical structure.

Flat Knowledge Base In the flat form of a KB, a normalization rule consists of an
NGRE and multiple static fields that cover an event in its entirety and do not consider
its hierarchical structure. As a result of this design, a single normalization rule can
only normalize one specific event type. Furthermore, the event log of an application
that potentially has a multitude of different event types can only be normalized with
the same amount of normalization rules. Figure 7.5 demonstrates how the two Snort
events from Figure 7.3 would be normalized with a flat KB.

Syslog Snort Rule Type 648

Event #1 (Type: 648)
(SHELLCODE x86 NOOP)

Event #2 (Type: 1807) 
(WEB-MISC Chunked-Encoding Transfer attempt)

All tags

Rule #1

Syslog Snort Rule Type 1807

All tags

Rule #2

Figure 7.5: The matching of the two events with a flat KB

The Figure shows that the two different types of events are normalized with two
distinct normalization rules, namely Rule #1 for type 648 and Rule #2 for type 1807,
which are illustrated as a set of gray boxes. Within each of the larger boxes, multiple
smaller boxes with different shades of gray represent the structural parts, i.e., Syslog,
Snort, and rule type, of an event type. Looking at both rules, it becomes clear that
they are sharing the same Syslog and Snort components with similar tags. The only
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difference in the rules are their inner parts that are specific to the event type. Ob-
viously, a flat rule comes with many redundancies that can be reduced with a more
fine-grained organization of normalization rules in the KB.

Hierarchical Knowledge Base The redundancy of the flat KB can be prevented by
applying the hierarchical structure of the event format to the normalization rules. In
such a hierarchical KB, normalization rules are organized in multiple levels like the
Snort events in Figure 7.3. In other words, an event is not mapped in its entirety to
a normalization rule, but every structural part of it is mapped to a separate normal-
ization rule. Thus, similar structural parts of events can be reused across many event
types and the structural parts that are already known and have been defined do not
need to be reformulated for a new type of event. Figure 7.6 shows how the two Snort
events can be normalized with a hierarchical KB.

Event #1 (Type: 648)
(SHELLCODE x86 NOOP)

Event #2 (Type: 1807) 
(WEB-MISC Chunked-Encoding

Transfer attempt) Syslog tags

Norm. Rule #1 Norm. Rule #2

Snort tags

Rule 
tags

Rule 
tags

Norm. Rule #3

Norm. Rule #4

Syslog Snort

Rule Type 648

Rule Type 1807

Figure 7.6: The matching of the two events with a hierarchical KB

The difference to the flat matching can be found in the way the normalization rules
are organized in levels and how they are applied to the two events. While in the flat
matching each event was only handled by a single rule, the events are now handled by
the rules #1 and #2 for the first two steps, because they share the same wrapper and
application-specific format. Only in the last step, they are handled by two separate
normalization rules that respect their differences. All kind of tagging as well as the
regexes solely apply to the currently matched sub-format and are independent of each
other.

7.4.3 Matching with a Hierarchical KB

The organization of rules in the hierarchical KB is inspired by the typical structure of
event formats and can, therefore, more efficiently match events. In the following, the
matching algorithm and the resulting differences to the flat KB are outlined.
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7.4.3.1 Matching Algorithm

In general, a KB-based matching algorithm has the task to find an applicable rule to a
given event according to a given rule context. The set of rules in which the algorithm
looks for the matching rule is called candidate rules, which indicates that these rules
are candidates for a possible match.

In the case of a flat KB, the rule context is the given event without any additional
information. The candidate rules are all available rules in the KB. Consequently, a
matching rule is found by going through all available rules and testing their regexes
for applicability on the given event.

The hierarchical KB defines its matching context as the remaining unnormalized
part of the given event and the level of the format that will be matched next, such
as wrapper, application, or sub-application level. Based on the current level, the
candidate rules are all the rules that are categorized into the current format level.
To normalize an event with a hierarchical KB, the entire event is first tested against
all rules on the wrapper level and the remaining unstructured message is extracted
for further normalization. In the following step, the previously extracted message is
tested against all the rules on the application level and the remaining unstructured
message is extracted again. So, over multiple steps, the matching goes deeper and
deeper into the hierarchy of the KB until an event without a remaining unstructured
part is found. Only then, the event has been fully normalized.

In the concrete example from Figure 7.4 and 7.6, both Snort events are checked
against the Syslog and Windows rules. When Syslog has been identified as the match-
ing rule, the relevant Syslog information is extracted, and the given tags are applied to
the unified event. Based on the extracted message part of the Syslog event, the Snort
rule is found as the matching rule and all Snort-relevant information is extracted and
assigned to the unified event. In the last step, the remaining Snort message is used
to find the rule in the sub-application level, where either the rule with type #648 or
#1807 applies. Both rules do not have a message part on their own, meaning that no
further matching is performed, and the event is fully normalized.

7.4.3.2 Comparison of Approaches

The hierarchical KB has several advantages over the flat KB in terms of structure and
performance.

The hierarchical approach is generally more organized than the flat approach in
the case where multiple event types with a very similar structure have to be normal-
ized. For the flat case, all the similar event types have to be expressed in independent
rules that share a significant part of their regexes. In the hierarchical case, the parts
of an event type that are similar, are expressed in joint rules that are shared for the
normalization of the overall event. For Snort events, the two similar event parts of
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Syslog and Snort can be shared across all event types that use the Snort or even Sys-
log format. Another benefit of separate rules for event parts is that static fields can
be specified at the event part where they apply. For example, the Snort-rule can be
tagged with information that generally applies to Snort, such as the fact that the event
is network-based (tag.domain = net), whereas the Snort alert-specific rule could
be tagged with information that only applies to that particular alert.

Also from the performance view, the hierarchical structuring of normalization
rules has benefits. As already outlined in the description of the matching algorithm,
the hierarchical approach works with a significantly reduced set of candidate rules.
For each matching level, only the rules are applied that have the previously matched
format as a parent format. For example, once an event has been identified as Syslog
event, only the application formats that are wrapped by Syslog are checked against
the event, but not any sub-application formats. In the flat approach, an event would be
checked against all event types, including specific application events. An illustration
of the two types of matching is shown in Figure 7.7.

Snort
Rule Type 

#1807Syslog

Syslog Snort
Rule Type 

#648
Apache 

(CLF)

Syslog sshd Successful Login

Syslog Snort

Syslog

Syslog sshd Failed Login

...

...

(a) Flat matching

Snort Rule 
#1807

Syslog Apache 

Snortsshd

Snort Rule 
#648

...Failed 
Login

Successful 
Login

Snort Rule 
#XXX

(b) Hierarchical matching

Figure 7.7: Comparison of matching in flat and hierarchical KB

On the left-hand side is the flat matching, which shows that many unrelated rules,
such as multiple for the SSHd application, have to be checked before the right Snort
rule is found. On the right-hand side, the hierarchical matching only checks the
topmost rules and only goes deeper into the hierarchy when one of those matches.
The other sub-application formats of Snort are only checked, if the event originates
from Snort.

The example shows that the number of rules that have to be checked in the hierar-
chical case can be significantly smaller, especially when there are many applications
with many different event types. How the hierarchical approach compares against the
flat approach in a real-world setup is shown in more detail in the evaluation later in
this section.
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7.5 Searching Rules Efficiently
The reorganization of the KB already has a major performance benefit for the normal-
ization. However, the problem that the normalization algorithm has to search through
all candidate rules with different rule contexts still persists. Therefore, the searching
algorithm is another suitable point for optimizations.

Altogether, we propose three different optimizations of the candidate search al-
gorithm that should again significantly reduce the event matching.

7.5.1 Rule Indexing

The first optimization aims for a more efficient selection of the candidate rules among
all available rules. Especially in the case of a hierarchical KB, the candidate rules are
a subset of all available rules and are filtered out by several criteria.

• Standalone: A rule with this property matches an event that can stand on its
own and is not wrapped into another event format. In other words, these rules
do not have a parent rule.

• Level: The rules in a KB are organized hierarchically by multiple levels. Each
level handles a different fragment of an event. Generally, a rule does only have
to be checked if it has an equal or lower level than the already matched level of
the event context.

• Parent: Many rules can only appear as a sub-format, also called a child, of
another format, i.e., the parent format. A rule that is not standalone and not a
child of an already matched rule is not applicable to the current event context.

The selection of rules with these criteria from the overall set of rules can be seen
as a typical indexing problem. Three different strategies for the rule indexing are
proposed and are later evaluated for their performance.

• Iteration: The simplest form of indexing, which is actually no indexing at
all, is the iteration through all rules during which each rule is checked for the
required criteria. Since each rule has to be touched to check the criteria, this
method is the slowest.

• Criteria Indexing (CQEngine): The indexing of rules by their criteria is an
easy way to access individual rules faster. We have selected the Java-based
CQEngine [107] library as a concrete indexing implementation, because it
promises to be a high-performance engine with a powerful query interface.
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• Text Indexing (Lucene): A special form of indexing is provided by the Lucene
indexing library, which is designed for high-performance text indexing. In ad-
dition to the simple indexing of the criteria for each rule, also the rule’s regex
content is indexed. This approach has the effect that candidate rules can be
further filtered by checking the current rule context against the criteria and as
well as the event content’s similarity to the indexed regex. A more detailed
description of that approach can be found in the work by Azodi et al. [23].

7.5.2 Candidate Rule Caching
The concept of rule indexing already allows to improve the selection speed for the
candidate rules, but it is still required to select them from many rules in the KB.
An approach to further improve access to the rules is to cache selection results for
different sets of indexing criteria.

7.5.3 Rule Selector
There are wrapping formats that are incorporating information about the type of event
they are wrapping. Syslog is a good example of such a format, because it has a spec-
ifier for the application that produced the wrapped format. Such a specifier, which
can also be seen as a selector, can help to reduce the number of candidate rules or can
even directly point to the exact rule that would apply. Figure 7.8 has an example of a
Snort event and shows how the rule-matching can be reduced to a minimum.

Mar  1 16:02:40 bastion snort: [1:648:7] ... [Classification: ...] [Priority: 1]: {TCP} ...:3521 -> ...:80 SHELLCODE x86 NOOP

Syslog Snort Snort Rule Type 648

Figure 7.8: Direct rule selection for a Snort event

7.5.4 Priority Lists
In cases where no rule selection is available and where still many candidate rules
are left to check, a more efficient method of rule iteration is desirable. An approach
that addresses this need is the prioritization of rules by the number of times they
successfully matched.

Since the creation of a prioritized list of rules with each incoming event and set
of candidate rules would consume too much time, we propose to prioritize only the
rules that are stored in a cached result. Furthermore, the reordering of the rules by
their frequency should be performed after some time interval that takes the processing
overhead and actuality of the frequency values into account.
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7.5.5 Evaluation

The above approaches have been implemented and evaluated for their performance
as part of our prototypical REAMS. The goal is to find the optimal combination
of approaches to achieve the best speed. For the evaluation of the approaches, we
have performed two experiments that serve different normalization scenarios. Within
the experiments, each combination of optimization approaches was run 10 times per
event dataset and on 8 parallel normalization threads.

Experiment 1: Normalization of Hierarchical Logs The first experiment focuses
on the normalization of log events that are highly hierarchical. As such, we have taken
69 030 individual Snort events from a network security challenge called Honeynet
Challenge #34 [108]. Since all these Snort events have a rather wide range of event
types, many normalization rules for Snort rules are required. Instead of specifying
all these rules manually, we have generated appropriate normalization rules for all
common Snort rules that are either specified in Snort’s default rule snapshot [109]
or the open rules from Emerging Threats [110]. With these generated rules, we were
able to normalize all available events with various combinations of our normalization
approaches. The results can be read from the diagram in Figure 7.9.
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Figure 7.9: Evaluation of various KB optimizations on 69030 Snort events, left (F) -
flat knowledge base, right (H) - hierarchical knowledge base (C - Cache, P - Priori-
tization, SL - Rule Selector)

The diagram reveals that the hierarchical implementation performs at least a mag-
nitude better than the flat implementation. Although more rules have to be applied for

104



CHAPTER 7. IMPROVING THE SPEED OF EVENT NORMALIZATION

the hierarchical approach, since there are additional wrapper and application formats,
the flat rules have much more complex regexes that need to match larger parts of the
events. What can also be deduced from the performance results is that the approach
with CQ rule indexing is generally faster than the iterative approach, but only when
used with the hierarchical KB, as in the flat KB no criteria are there to be indexed.
Lucene, as the third indexing approach, performs better than the iterative and criteria
indexing approach. However, due to its employed mechanisms, it cannot make use of
rule caching and prioritization and is also not able to outperform these optimizations
for the other approaches

From the remaining optimizations, the rule prioritization and the rule selectors
achieve the biggest performance benefits. In comparison to caching, these optimiza-
tions are effectively reducing the number of rules that have to be checked from the
candidate rules. Furthermore, the runtime of both approaches is most stable between
test runs, because the order in which rules are checked is deterministic now. In the
basic hierarchical KB, the rules are randomly ordered with each test run, resulting
in widely varying rule search times per run. The caching of rules has a performance
benefit if many different candidate lookups have to be performed. Therefore, it has
the most impact in combination with rule selectors (e.g., H:SL↔ H:C+SL), because
they produce a wide range of candidate rules. For smaller sets of candidate rules, the
impact of caching is only marginal (e.g., H:-↔ H:C).

Experiment 2: Normalization of Mixed Logs The second experiment evaluates
the normalization performance when different types of application logs are used.
Therefore, the events to be normalized consist of the Snort events from the previ-
ous experiment and additional Apache web log events that were shuffled into the
Snort events. Altogether, there are now 76 659 events that again originate from the
Honeynet Challenge #34. Comparing the test results with the results from experiment
1, then there are almost no changes in the normalization performance for the different
combinations of approaches. This is because there are only 11% more events that are
already normalized with one additional CLF rule. However, this also shows that even
intermixed hierarchical log events can be normalized without significant performance
impacts.

7.6 Conclusion
The different types of optimizations for the normalization algorithms show that con-
siderable speedups in the normalization throughput can be achieved. The applica-
tion of an NGRE to an event is one of the main operations that is performed during
the matching and can be improved by choosing a flexible and still fast regex imple-
mentation. Already the standard Java regex implementation can achieve a matching
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speed of around 100 k evts./s with a single thread for a preselected normalization
rule, which is three times as fast as other regex implementations. As a second opti-
mization point, the extraction and assignment of event information to the unified event
format can be improved by switching from a dynamic field assignment with around
18 k evts./s to a static field assignment with object pooling to around 26 k evts./s for
a preselected rule. As the last point, the optimization strategies for the rule organiza-
tion in the KB can bring some additional performance benefits. In the case in which
fully structured events have to be normalized, which is often the case, the finding
and matching of the right normalization rule can be improved by multiple orders of
magnitude by using a hierarchical KB in combination with rule prioritization, rule
selectors, and result caching.

At the moment, the optimization is targeted to executing the normalization on a
single thread. In the following chapter, we are going into the direction of parallelizing
the normalization process by using multiple CPU cores and machines.
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Chapter 8

Scaling Event Stream Processing

Related Publications

• David Jaeger, Andrey Sapegin, Martin Ussath, Feng Cheng, and Christoph Meinel. “Par-
allel and Distributed Normalization of Security Events for Instant Attack Analysis”. In:
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• David Jaeger, Feng Cheng, and Christoph Meinel. “Accelerating Event-Based Attack De-
tection with a Distributed In-Memory Platform”. In: Intl. Conference on Dependable,
Autonomic and Secure Computing. 2018 [25]

The increasing number of incoming events is one of the main challenges a SIEM
has to face in an enterprise network. Of course, it is important that each of the work-
flow steps is optimized to deliver the best performance, but the sole optimization of
algorithms is not sufficient to handle growing volumes and velocity. An essential re-
quirement for a Big Data system is to scale in both ways, horizontally and vertically.
In this chapter, we present a scaling approach that enables multi-processing for all
workflow steps by employing a multitude of threads and machines.

Due to the fact that the parallelization should apply to any processing step, we are
just focusing on the essential steps of normalization and persistence in the following.

8.1 Vertical Parallelization by Multi-Threading
With the vertical parallelization, multiple simultaneous threads are utilized to im-
prove the event throughput. The central component in this parallelization is a so-
called message distributor, which collects all incoming events and then dispatches
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them to worker threads that have free capacity. Theoretically, the parallelization is
linearly scalable, but the reality shows that this is difficult to achieve. In an enterprise
environment, such a distributor could be confronted with millions of messages per
second, so that even the tiniest inefficiency in this component has a significant impact
on the event throughput. Figure 8.1 shows which role the distributor plays for the
task of normalization.

Normalization

Event Collection

File Reader

Syslog 

Receiver

Message 

Distributor

...

Normalizer

Normalizer

Normalizer

OLF 

Distributor

Figure 8.1: Vertical parallelization with a message distributor

The organization of the components resembles that of a typical producer-
consumer scenario, in which the event collectors are producers and the event nor-
malizers are consumers. The blocking queue and the disruptor pattern presented
in Section 4.1.1 are implementing the producer-consumer scenarios. Although the
blocking queue is a well-known software pattern, it struggles with high objects
throughputs far beyond 100 k evts./s, because each time an object is consumed, all
consumer threads have to wait for the finalization of the operation to ensure the
queue’s consistency. In contrast to that, the disruptor allows that multiple consumers
and producers can access various buffer slots simultaneously without blocking each
other. Furthermore, the disruptor has the concept of object pooling already integrated
by design, because each slot acts as a pooled object that neither has to be recreated
nor disposed of. Consequently, a thread that accesses a slot does not need to lock the
ring buffer, because there are no modifications required.

Since the message distributor takes a key role in the parallelization, we evaluate
both distribution approaches for the normalization step. In our experiment, we are
normalizing 10 million Apache Web server log entries with a varying number of
worker threads. Each configuration of worker threads is run three times so that an
average normalization throughput can be determined that is less prone to outliers.
The normalization procedure is using the previously presented optimization strategies
from Section 7.4 in combination with dynamic object access.
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8.1.1 Locking Implementation with a Blocking Queue
The blocking queue is part of the Java standard library and does not require further
configuration. It is therefore easy to integrate into our implementation. The reader
and the normalizers all share a single blocking queue with a capacity of 214 (16384).
Figure 8.2 shows the throughput of the normalization with a varying number of nor-
malizer threads.
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Figure 8.2: Normalization performance with a blocking queue on a 16-core machine

Up to the point of 14 threads, the throughput is growing almost linearly with the
number of threads. However, starting from 15 threads, the throughput is declining.
This behavior is unexpected, because it implies that 2 out of the 16 cores on the
machine are not utilized. One factor that might play a role is the reader thread that
partially occupies one of these cores. Still, there is one more core that does not
seem to be utilized. To better understand what is happening with this setup, we have
monitored the runtime behavior of 15 normalizer threads, as shown in Figure 8.3.

Figure 8.3: Thread behavior during normalization (green - thread running, red -
thread blocking, yellow - thread waiting)

At first glance, the small red intervals in between the green bars of the normalizer
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threads are most apparent. Green indicates that the thread is running, while red shows
that the corresponding thread is currently in a blocking state, which means that it is
not further normalizing events. Considering the number of red intervals, it can be
inferred that a significant amount of time is spent on waiting and switching between
the two thread states. Furthermore, since the graph has rather low precision, it can
even be assumed that there are many more thread interruptions than visually shown.

The number of thread interruptions increases with the number of threads, because
every single thread then has to wait for more other threads to take data from the queue.
For this reason, the throughput also starts to drop with a certain number of threads.
The blocking becomes so extensive that each thread consumes most of its time for
waiting. Due to the way the blocking queue is designed, there does not seem to be a
solution to this inherent problem.

8.1.2 Lock-Free Implementation with the Disruptor
The disruptor is more challenging to integrate, as it requires a thoughtful configura-
tion and needs to be adapted to the type of object it passes. As main options, there are
the multiplicity of producers and consumers as well as the size of the ring buffer. Both
depend on the way the disruptor is accessed and have a direct impact on its through-
put. For multiplicity, a single producer and consumer are least flexible but achieve the
highest throughput per thread, while a multitude of producers and consumers have the
worst throughput per thread but enable complex and highly parallelized processing
scenarios. For the buffer size, the documentation [64] of the disruptor implementation
specifies that the ring buffer size should be a power of 2 and tailored to the average
throughput and number of producers and consumers.

Instead of running our experiment on just one particular configuration, we are
running it on multiple combinations of configurations to find the most optimal setting.
In each run, the combination of ring buffer size, number of consumer threads, and
utilized CPU cores is changed and the resulting normalization throughput evaluated.
The values for the configuration parameters are changed as follows:

• Buffer sizes are iterated by their exponents from 7 (27 = 128 slots) to 22 (222 =
4 194 304 slots)

• Thread numbers are tested from 1 to the number of available CPU cores

• CPU cores are varied by conducting the experiments on two different ma-
chines, one with 4 CPU cores and 4GB RAM and another one with 16 CPU
cores and 32GB RAM1

1Deployed on VMware ESXi host with 256GB RAM and 8x Intel Xeon X7560 CPUs @ 2.27GHz
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Figure 8.4: Disruptor normalization with varying buffer sizes, number of worker
threads, and CPU cores

Figure 8.4 shows the results of the experiments in two surface charts. Similarly to
the blocking queue, the throughput grows almost linearly with the number of threads.
Other than with the blocking queue, the throughput keeps on growing to the number
of available cores, which is what we would have expected from the beginning. This
indicates that the disruptor better utilizes the cores and is not hindered by locking.

The size of the ring buffer is an extra configuration parameter that influences the
throughput. Beginning from the smallest size exponent, the throughput is fluctuating
or rising with a higher size exponent. However, starting from an exponent of 18, the
normalization performance is decreasing dramatically. On average, the best perfor-
mance is achieved with size exponents between 13 (8192 slots) and 17 (65 536 slots).
Considering all the configuration parameters of the experiments, we could reach the
highest throughput of 172 k evts./s with 17 threads and a buffer size of 217 on 16
cores. The highest mean throughput was reached with a buffer size of 213.

As a comparison, we have put the throughput graphs of the blocking queue and
disruptor into Figure 8.5. As it was already expected from the conceptual comparison
of both approaches, the disruptor throughput is generally higher than that of the block-
ing queue. At the point of their highest speed, there is a difference of 28 166 evts./s
(≈20 %).

8.1.3 Limitation of Scaling

Although the vertical parallelization allows scaling the normalization by just adding
more hardware to a single machine, there is one drawback that has to be considered.
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Figure 8.5: Normalization performance with disruptor (buffer size 213) and blocking
queue on a 16 core machine

The more hardware resources a single system already has, the more expensive any
additional resources become. For example, as of 2017, a machine with at least 48
physical CPU cores costs more than $10 000. As a consequence, it is difficult to
reach normalization throughputs necessary for an enterprise setup for an affordable
price.

8.2 Horizontal Parallelization by Distributed Process-
ing Nodes

The horizontal parallelization solves the problem of scaling by distributing work to
multiple processing nodes. Usually, these nodes are low-end machines that have
cheap hardware and are easier accessible than one big machine for vertical scaling.
Still, a larger number of such low-end nodes can form a compute cluster that is more
capable than any single machine could be. In the following, we show how a well-
performing normalization can be accomplished in such a cluster.

As the main idea, we propose an architecture similar to that of Figure 8.6. In
comparison to the vertical parallelization, the event collection is divided from the
normalization by using two types of nodes, i.e., a single forwarding node and mul-
tiple normalizer nodes. The forwarding node is responsible for collecting all raw
events and is forwarding them to one of the normalizer nodes with free capacity. The
normalization nodes are similarly constructed as the master node in the vertical par-
allelization, i.e., they consist of a normalization component that manages multiple
normalizer threads.

The normalizer nodes are working independently of each other, meaning that they
do not require any synchronization between each other. This is possible because the
normalization of an event is a self-contained operation that does not need information
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Figure 8.6: Horizontal parallelization of normalization with network distribution

from the outside or the context. This fact majorly reduces the complexity of the dis-
tributed normalization to an even dispatching of work tasks to the processing nodes
and efficient processing of the tasks on these nodes. Both problems are not new and
have already been addressed by the Big Data community. The solution are so-called
distribution frameworks, such as Hadoop, Storm, or Spark, which were introduced in
Section 4.1.2. Another way of solving these two problems is a custom parallelization
approach that is based on our disruptor pattern from the last section. Although the dis-
ruptor is initially designed for fast inter-thread communication on a single machine,
it can also be used to parallelize tasks on multiple machines simultaneously.

Generally, pre-existing frameworks have the advantage that much effort was put
into making them adaptable to many different use cases and improving their process-
ing performance. However, this generic design also makes these frameworks rather
bloated and peak performance is sacrificed for some corner use cases. Our disruptor
approach, on the other hand, is only developed as part of work and crafted for the
normalization use case. Therefore, it is more performance optimized, but is rather
difficult to be reused elsewhere.

To make the integration of existing distribution frameworks into REAMS possi-
ble, our normalization algorithm needs to be reimplemented as a module for each of
the frameworks. We have performed this reimplementation for the four most com-
mon frameworks, i.e., Storm, Spark, Heron, and Trident. In the case of the disruptor
pattern, no further reimplementation was required. To find the most efficient paral-
lelization for multiple hosts, we compare these known distribution frameworks with
the disruptor approach through multiple properties, i.e., data exchange, reliability,
and processing speed on a single node.
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8.2.1 Data Exchange
In a distribution framework, the data to be processed has to be made available to
the worker nodes. Depending on the framework, this can be accomplished in two
different ways.

Passing Any incoming data resides at the master node and is managed by it. The
processing is distributed by splitting up the incoming data into small chunks of
work that are then forwarded to the corresponding worker nodes. The worker
nodes themselves only receive their small data chunks. This method of data ex-
change is usually used with stream-processing or sometimes with micro-batch-
processing. The frameworks Storm, Trident, and Heron as well as the disruptor
approach use passing to distribute work.

Distributed Reading All data to be processed is readable from the worker nodes. A
master node is responsible for distributing chunks of work to dedicated work-
ers. It does so by telling the worker from which offset the data has to be read
and how the processing partitions look like. Since this method requires that
all data is previously synced with the workers, it is mainly used by batch or
micro-batch processors that are not that time-critical. A possible alternative to
a previous sync would be the provision of the data in a message queue. Among
others, Spark uses distributed reading to distribute work.

The data exchange by passing is more suitable to stream-processing than dis-
tributed reading, which also makes passing the most suitable option for our REAMS
implementation. All the presented frameworks already have one of the data exchange
methods implemented. For our customized disruptor approach, we propose an opti-
mized passing mechanism that is based on the implementations of the stream-based
frameworks Storm, Trident and Heron.

8.2.1.1 Data Serialization

To exchange events between nodes, the event objects need to be serialized into a
byte stream that can be transmitted over the wire. How an object is represented in
a byte stream is specified over a serialization format and has a significant impact
on the serialization time and the space needed on the wire for transmission. When
looking at the landscape of distribution frameworks, then the serialization with Kryo,
Avro, and Protobuf seems to be most common among them. A more complete list of
serializers with a comparison of their key performance factors has been compiled by
Smith [111]. The libraries Avro and Protobuf provide a rather exact specification of
the serialization format, whereas Kryo comes with a default serialization but is also
flexible enough to be adapted to any other kind of serialization. Storm and Heron
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are using Kryo as their default library for object serialization and allow to optionally
switch to either Avro or Protobuf.

A closer investigation of the three common formats reveals that there are two ma-
jor methods in which object fields are brought into a byte stream. One, which is used
by Protobuf, is by generating a class according to a defined data model. This class has
getters and setters for each model field and later directly transforms these fields into
the byte stream. The other way, which is used by Avro and Kryo, is to dynamically
read the fields of an existing class either by introspection or from a description of
the data model. Both approaches have disadvantages when it comes to serialization
performance. The first way theoretically would perform well, but the necessity to use
a generated class results in time-consuming copying of data from our custom event
object that allows direct property access, which was explained in Section 7.3.1, into
that class solely to transmit an object. In detail, this leads to an additional allocation
of memory and the creation of a new object. The second way uses introspection to
get and set values of an already existing class. Also, this strategy is generally slower
than static access. Another disadvantage of Kryo and Avro serialization is that op-
tional data fields are not allowed. Especially in the case of event normalization, only
a small number of fields, like 10-20, are actually used and need to be transmitted. Re-
quiring the transmission of all fields, therefore, results in a size overhead of around
80-90%.

Our goal is to overcome the performance faults of the existing formats. First of
all, the dynamic access of object fields with introspection has to be prevented. This
is, in fact, easy to achieve with our proposed slot concept, because there, all fields
can be accessed at the same time through an object array. The information about the
type and length of the fields, which are required to serialize the fields, are available
through a metadata helper that is generated together from our event data model. As
a serialization, we use the encoding strategies of the Kryo library, such as a length-
encoding for strings and numbers. As a second step, fields with a null value are not
serialized. Of course, to indicate which field is encoded where, each field has to be
prepended with an identifier. Although this requires more space for a single field, it
still compensates for the size that would be necessary for adding all optional fields
to the serialized stream. Altogether, these two steps combine the advantages of the
existing libraries, i.e., the size and speed of Kryo’s manual serialization as well as the
optional fields of Protobuf, into one serialization approach.

8.2.1.2 Concept of Minimal Data Access

The serialization of an object into our data model still requires that all fields of the
object are read, even if they are not transmitted over the wire as they have no value
assigned. In fact, the information whether a field is relevant for transmission is al-
ready derivable during the event construction, because there all available object data

115



CHAPTER 8. SCALING EVENT STREAM PROCESSING

is assigned to the corresponding fields. In the case there is no value for a field, the
accessor of the field is not invoked, and the field remains unset in the object. Our
idea to improve the serialization is by keeping track of which fields have been set and
later only reading these set fields. We propose to track this state in OLF via a bitset
in which each bit corresponds to one slot in the field buffer. The bits are set whenever
a setter for a field is invoked and reset when the object goes back to the object pool
or a null value is assigned. As an example, Figure 8.7 shows how such a bitset could
look like for an SSH event.
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Figure 8.7: Bitset of set fields in an OLF object

The setting as well as the reading of the bitset is an operation provided by the CPU
and requires minimal overhead. The fields that have to be serialized to the wire can
thus be found out faster than iterating through all field accessors of the OLF object. In
an experiment in which we are accessing the fields of already normalized web events,
we could reach a throughput of≈1.87 M evts./s by iterating over all fields in an OLF
object. In contrast to that, the reading of only set fields as indicated by the bitset
could reach as much as ≈2.94 M evts./s, which is ≈ 57% faster. In other words, if
a throughput of 500 k evts./s for the entire processing workflow is assumed, then the
usage of the bitset concept can save almost 10% of the overall processing time. This
time can efficiently be used for other tasks, such as a more complete data enrichment.

The bitset concept is useful for more efficient data transmission and for other parts
of the processing workflow. Every component that is accessing all fields of the event
can benefit from reduced access times. In particular, the persistence component, as
well as the signature analysis module, are making use of the bitset, as shown later.

8.2.1.3 Data Transmission

After the serialization of an OLF object into a byte stream, this stream is transmitted
to a remote processing node. In a computer network, this transmission is accom-
plished over the TCP/IP-stack. As all the existing distribution framework, we choose
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the connection-oriented TCP protocol for the transport in REAMS, because the trans-
mission is more reliable, especially with increasing network bandwidth.

The Java programming language is shipped with two major network libraries that
allow building application protocols on top of the TCP/IP-stack. The Socket API is
the simplest library to use, but also has the worst performance. In a first transmission
prototype, we were able to only transmit≈5 k evts./s per connection. Even assuming
10 processing nodes, then not more than ≈50 k evts./s can be normalized because of
the limitations in transmission. Research by Welsh et al. [112] from 2000 confirms
this bad performance of the standard library. However, they also show that native
access to C sockets can achieve significantly higher throughputs. As a consequence of
this shortcoming, the Java community introduced an extended library for scalable I/O
in 2002 with the so-called Java NIO specification (JSR51 [113], JSR203 [114]). The
crucial difference of this specification to the standard Socket API is that fast buffers
are used to directly communicate between user code and I/O code in the operating
system and the possibility to perform asynchronous non-blocking operations.

We have adapted our transmission prototype implementation to use these fast
buffers and could achieve a throughput of 50 k evts./s for a single connection with-
out further tuning of the socket parameters. This is an improvement by a magnitude
by merely using data buffers more efficiently. The next step for further improve-
ment is the switching to asynchronous calls for sending the data. In this mode, the
sending thread can push a piece of data to the socket and check the outcome of the
send operation later. In the meantime, the thread can prepare further event objects for
transmission, e.g., by serializing them to a byte buffer.

The efficient handling of asynchronous socket calls is a challenging task and not
straightforward to implement. Netty is a third-party network library that has the goal
to simplify implementations against Java NIO by providing an abstraction that is
easy to work with. It supports asynchronous socket calls and additionally reduces
the copying of buffers to the necessary minimum. Therefore, at the time of writing
this thesis, Netty has become one of the most used network libraries when speed is
required. Also existing distribution frameworks, such as Storm and Spark, are using
Netty as their network library. Due to the promising features of Netty, we have also
moved our implementation to Netty and have implemented our serialization format
as a module for Netty. In our experiment with the Netty version, we could reach a
throughput of 150 – 200 k evts./s on a single sender thread, which is even higher than
our pure NIO implementation.

8.2.2 Processing Reliability
Another factor that has to be considered for distribution frameworks is how they
guarantee that each event is processed. Especially with network communication and
dynamic addition and removal of worker nodes, events may be lost during transfer
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or when a worker goes down. In the area of distributed processing, there are three
semantics distinguished for reliability, i.e., at-most-once, at-least-once, and exactly-
once semantics. Generally, implementing any of the two latter semantics costs a
significant amount of performance and therefore reduces event throughput and de-
lay. The exactly-once semantics does not even seem to be achievable for our use
case, as we rely on stream-processing and the normalization is not a fully idempotent
operation. Mainly for reasons of performance and simplicity, we will focus on the
at-most-once semantic for the evaluation of the frameworks. If at-least-once seman-
tics is really necessary, then a message queue at the beginning of the workflow can be
used. The events in the queue would be acknowledged at the end of the workflow.

8.2.3 Single-Node Performance of Distributed Frameworks

The performance of the distributed frameworks on a single node can best be deter-
mined in an experiment. We have prepared an experiment in which we are normaliz-
ing around 76 million Apache Web server logs on a single machine2 with 32 worker
threads and 24GB of Java heap space. This single machine has a local setup of all so-
lutions so that no remote network communication between multiple nodes is needed.
This limitation in communication is important because we are only interested in the
sole processing performance but not in the efficiency of the data exchange. Also, to
create equal conditions for all frameworks, we have only applied basic configuration
options without further tweaks. Figure 8.8 shows the normalization throughputs from
all experiments.

The bar diagram reveals a clear difference in the performance of the solutions.
The two slowest are the stream-based Storm with around 158 k evts./s and Spark
Streaming with 182 k evts./s. Heron, which is the successor of Storm and also
stream-based, is already significantly faster than the latter because it employs a new
processing model and fixes performance faults of Storm. After Heron, there is no
other common stream-based framework that can handle higher throughputs. Rather,
it requires a framework with batch-processing to reach even higher throughputs. One
such candidate is Trident, an extension of Storm, which is slightly faster than Heron
by using micro-batch-processing. Another candidate is the pure batch-based Spark
framework, which achieves around 330 k evts./s. What comes as a surprise is that
Spark Streaming, which is based on the batch-based Spark, does not even come close
to the performance of Spark. We assume this is the case because Spark Streaming
chunks its stream into micro-batches and reinitializes the state of the normalizer with
each batch. To reduce the processing overhead of the initialization, we have set the
time-frame for a batch to 5 seconds. Still, this tweak does not seem to be enough to

2Dedicated machine, 64GB RAM, 2 x Intel Xeon E5-2630v3 (2.4GHz) with 16 physical cores
using hyper-threading
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Figure 8.8: Normalization throughput in k evts./s for common distribution frame-
works on a single node with 16 threads

reduce the impact of the reinitialization. However, at the top of all solutions, there is
our custom stream-based disruptor approach that normalizes with up to 367 k evts./s.

The results of our experiments make clear that a customized solution can be faster
if certain features, such as adaptability and flexibility, are sacrificed. The disruptor
is around 100 k evts./s faster than the best stream-based framework and does even
slightly outperform the fastest batch-based framework. Also, since we are interested
in real-time event processing, the utilization of a batch-based framework, such as
Spark, would not be ideal because of significant processing delays. As a consequence,
we will focus on the use of the disruptor approach for distribution.

8.2.4 Multi-Node Performance using the Disruptor Pattern

We have described the building blocks for distributing processing steps over multi-
ple nodes, i.e., the processing of events on a single node, the transmission of events
between the nodes and the different forms of reliability. As the final step, we are
combining these parts into an overall solution. The solution uses the disruptor pattern
to process and transmit events in our custom serialization format, which is imple-
mented as a Netty module. Together, we expect that these approaches can scale the
performance with the number of processing nodes.

Our experimental setup consists of altogether 11 nodes. There is one master node
that reads raw logs and forwards them to up to 10 worker nodes for normalization.
The master node is a rather powerful machine that has 24 cores with 20 GB RAM.
However, all normalization nodes are running on virtual machines that are compa-
rable to commodity hardware, i.e., 4 virtual cores with just 4 GB RAM. According
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to the results from Section 8.1, the disruptor is configured to have 4 normalization
threads with a buffer size of 213. The results of our experiment are shown in Fig-
ure 8.9.
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Figure 8.9: Performance of distributed normalization with varying number of nor-
malization nodes

The graph in the diagram shows an almost linear growth of the normalization
throughput with an increasing number of nodes. On average, each node contributes
around 36 k evts./s to the throughput, reaching its highest with 363 k evts./s on 10
parallel nodes. With just 5 nodes, together having 20 cores, the distributed setup can
already reach a higher throughput (+ 14 k evts./s) than the single 16 core machine
from Figure 8.5. Consequently, a setup with multiple nodes is a viable alternative to
a single-node setup, assuming that a significantly larger system is not affordable and
multiple smaller commodity systems are at hand.

While running the experiment with 10 nodes, we have observed the CPU and
network bandwidth utilization of the master node to identify potential performance
bottlenecks. Regarding the CPU, the machine only has 3-4 cores of the 24 available
utilized, which shows that the master can be operated with many more normalization
nodes. The network bandwidth was a more critical factor because the transmission
of the data to the other nodes almost fully occupied the 1 Gb/s Ethernet connection.
Therefore, to further increase the normalization throughput, the Ethernet connection
would have to be upgraded to 10 Gb/s.

8.3 Applying the Parallelization to Persistence
The parallelization of the processing workflow with multiple threads and nodes is the
foundation for scaling event processing. In combination with various performance
optimization, we can handle the event load of a large enterprise up to the point of
normalization. A special role in the parallelization takes the persistence. It is the
outlet of the workflow and depends on the performance of the storage system. If the
storage system cannot keep up with the speed of normalization, then the persistence
becomes the bottleneck and thus prevents real-time analysis. Therefore, it has to be
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ensured that the storage system can scale with the workflow and that the persistence
is aware of how the scalable capabilities of the storage system can be used.

As outlined in the overview of storage systems for REAMS, we consider SAP
HANA to be a possible enabler for a scalable persistence, because it efficiently uses
the fast main memory as storage and can also be deployed in a distributed manner
on multiple nodes. The immutability concept of HANA additionally enables a faster
write throughput and the reliance on a schema-based data model simplifies and in-
creases the speed of advanced analysis.

In the following, we take a closer look at scaling the persistence with SAP HANA.
As a first step, we focus on query optimization and the database interaction using
HANA’s Java Database Connectivity (JDBC) API. The goal is to build table schemas
and queries that can be easily parallelized and interact with HANA in a way that
multiple queries do not interfere with each other. In the second step, the persistence
is expanded to multiple nodes.

8.3.1 Tuning the Database Access for Parallelization
The main part of RDBMS persistence consists of the issuing of SQL INSERT state-
ments to the database. Each such query is responsible for transferring one event
object into a database table. Considering our data model from Section 6.4, then this
table will be the master table that contains a column for each field in the OLF model.
Altogether, there should be 117 columns in this table.

A promising starting point for the optimization of SAP HANA queries is a com-
prehensive blog entry by Appleby on the SAP Community Network [115]. In this
article, he covers multiple performance topics, such as how to create an efficient data
model as well as how to construct SQL queries in a way that a high insert throughput
can be achieved. Based on our ideas and the ideas of Appleby, we have created a list
of potential improvements.

1. Prepared Statements and Batching: A well-known method to improve the in-
sert performance of an application is to batch multiple similar queries with a
so-called prepared statement. This statement is a template for a specific query
and has placeholders for parameters to be provided for each instance of the
query. The DBMS only needs to parse a prepared statement once when it is
created and from then on only passes the parameters to execute this statement.
In this way, the submission of a query to the DBMS is much more space and
time efficient than a regular query. Furthermore, multiple instances of a state-
ment can be collected in a batch before they are submitted to the database. As
soon enough instances have been collected, they can all be sent to the database
in a large data chunk and can be processed more efficiently, because only one
type of statement has to be executed.
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2. Column-based vs. Row-based Tables: A distinctive feature of the HANA
database are column-based tables. In a column-based table, the values of each
column are stored sequentially in contrast to a row-based table that stores
records sequentially. The storage in columns has two major advantages. Firstly,
values can be compressed more efficiently if a column has recurring values.
Secondly, the sequential and compressed storage allows faster read and write
access to the table if a query only addresses a selection of its columns.

3. Minimal Insert Statements: We have pointed out earlier that an OLF event usu-
ally only has a small fraction of all its fields set with values. An insert statement
that covers all OLF fields would consequently have a lot of NULL fields that are
transmitted to the DBMS and are processed there with the actual fields set. We
propose to minimize the number of fields in each insert statement to reduce
the amount of unnecessarily transmitted NULLs. Our idea to achieve this mini-
mization is to replace the default insert statement that covers all OLF fields with
many much smaller insert statements that cover a subset of commonly set OLF
fields. The following steps would be necessary on the client side to implement
this idea.

(a) The slot concept with the bitmap of set fields from Section 8.2.1 en-
ables us to immediately deduce which fields are set within an OLF object.
When the object is persisted, we also know which fields are relevant for
the insert statement.

(b) For each object and its set fields, a separate insert statement is prepared
and cached for later use. If there is a cached statement with the same set
of fields, then the previously prepared statement is used. Using the insert
statement, the current object is added to its batch.

(c) If enough objects have been grouped in a statement’s batch, the statement
is submitted to the database with only set fields and no NULLs.

Even though the described procedure would be optimal in terms of reducing
empty fields in statements, there is the problem that the statements of some rare
sets of fields would never have their batch filled. These statements would either
be sent half empty or with considerable delays. A solution to this situation is
to combine statements with similar sets of fields and to a single statement that
uses the superset of all their fields.

4. Partitioning: The distribution of a table into multiple partitions is another pos-
sibility of better leveraging the processing speed of the DBMS. Each partition
is handled independently by the DBMS so that operations on them are paral-
lelizable. The parallelization is most efficient if the rows are evenly distributed
between all partitions and queries involve records from all partitions.
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5. No Constraints: Constraints, such as uniqueness of a field or a primary key, en-
sure the integrity of a table and are enforced with each change on the database.
Whenever a query is about to violate a constraint, the DBMS prevents the ex-
ecution of the query and keeps the table in a consistent state. Unfortunately,
although constraints can ensure requirements on the data model, they also have
a remarkable impact on the query performance. As a consequence of that fact,
Appleby proposes to remove primary keys from tables whenever they are not
urgently required. Since our master table is insert-only and no updates are re-
quired, the removal of the primary key is a viable option. An ID field that acts
as the primary key could solely be assigned within the persistence component.

6. Number of Connections: Instead of just maintaining a single connection to
the DBMS, multiple simultaneous connections can be established to transmit
information in parallel. According to Appleby, HANA requires one physical
core for each connection. Thus, on appropriate hardware, HANA could handle
dozens of connections simultaneously. Of course, it has to be ensured that the
queries issued over these connections do not interfere with each other, e.g.,
by locking tables or records. A drawback of multiple connections is that each
connection usually has to be maintained by an individual thread on the client
side, too. This can lead to a higher resource consumption that impacts the
overall performance. Although this could be solved with asynchronous network
connections, the JDBC API does not support this type of connection handling.

7. Database Field Types: the employed data type for a database field can have
an impact on the query performance. This is because there are differences
in the size and its predictability for each type. Appleby proposes to replace
variable length fields of NVARCHAR with fixed length fields of NCHAR. Using
fixed length fields indeed results in a higher amount of used memory, but also
speeds up inserts as HANA can better predict the size of fields in advance.

We have implemented a persistence module for REAMS with all of the previ-
ously described improvements. Since it is not clear which performance impact each
improvement has, we have evaluated multiple combinations of these improvements
in an experiment. In this experiment, we have one master node with 24 cores and
20 GB RAM that takes over the task of reading, normalizing and persisting of logs.
The master node is deployed as a virtual machine on the same host as our experimen-
tal setup for normalization. The persistence goes into an SAP HANA instance with
80 physical cores and 6 TB RAM. Table 8.1 shows the throughput values that were
achieved during the experiment.

The usage of prepared statements in combination with batches indeed has a no-
table impact on the persistence throughput. It can be deduced that the batch size
should neither be too small, i.e., below 1000, nor too big, i.e., above 8000, to achieve
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Batch Connections CHAR Type Table Type Partitions Throughput
8000 10 NCHAR Column 5 (Hash) 159 133
8000 10 NVARCHAR Row 5 (Hash) 100 016
8000 10 NVARCHAR Column 5 (Hash) 166 226
8000 10 NVARCHAR Column 1 172 342
8000 5 NVARCHAR Column 1 134 877
8000 15 NVARCHAR Column 1 171 599

15 000 10 NVARCHAR Column 1 170 672
4000 10 NVARCHAR Column 1 177 150
2500 10 NVARCHAR Column 1 179 065
1000 10 NVARCHAR Column 1 176 234

Table 8.1: Persistence throughput with various optimizations

the best results. An optimal throughput was observed with batches of 2500 queries.
Also the number of connections supposedly is a possible point of improvement, as
HANA can handle the load of multiple connections in parallel. Also here, the num-
ber should neither be too small nor too high. A set of 10 connections eventually
resulted in the highest throughput. The first two rows in the table confirm that the
column-based table surpasses the row-based table in persistence speed, as described
by Appleby. In comparison to that, the partitioning and the fixed-length string type
NCHAR have a slightly negative impact on the throughput. Nevertheless, the use of
partitioning might still be an important performance factor for further analysis tasks
on the persisted data.

Our experiment shows that all the proposed improvements of Appleby have an
impact on the performance, even if it is not as big as in his experiments and some-
times even negative. The gap in the efficiency can be explained with the experimental
setup of Appleby, because he copies the data to be persisted onto the database server
and then reads this data as a CSV file directly into the database. Unfortunately, this
procedure is not applicable to a stream-based event processing. All in all, the best
combination of improvements could achieve a throughput of 179 k evts./s by com-
bining 10 connections with a batch of 2500 queries on a column-based table.

8.3.2 Distribution to Multiple Nodes

The optimizations on the database connection have prepared the expansion of persis-
tence to multiple nodes. We have made sure that inserts are independent of each other
and do not block each other. Additionally, each node creates multiple connections to
distribute the load to multiple threads on the DBMS.

As a next step, we integrate the persistence into the model we have proposed for
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horizontal scaling. Each node gets a share of the overall event stream and passes
its events through the proposed stream-based processing workflow. Since all events
are independent of each other, it is not necessary to rearrange events to different
nodes at any point in the workflow. At the end of the workflow, each node performs
the persistence of its events. As an extension of our experiment from Section 8.2.4,
we are now normalizing and persisting with a varying number of nodes and node
configurations. Figure 8.10 visualizes the results.
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Figure 8.10: Persistence throughput with multiple nodes

As a comparison, we have also included the graph for the throughput of the
normalization from Figure 8.9. For the configuration with 4 cores, we see that the
throughput is increasing almost linearly with each additional node. The same can be
observed for the nodes with a higher number of cores, but only to a certain number of
nodes. Surprisingly, there seems to be a hard boundary at around 280 k evts./s that
cannot be passed, regardless of available processing power. We have three possible
explanations for this behavior.

1. There could be an I/O-bottleneck at the VM host we are using to deploy all the
nodes. Even if enough processing is available, the handling of all the network
connections results in too many I/O interrupts.

2. Another reason could be a limited network. In the normalization setup, we have
observed throughputs of around 180 MB/s between the master node and the
processing nodes. While this speed can be handled internally in the hypervisor,
the persistence actually requires having this bandwidth on an outbound connec-
tion to the HANA server. However, our VM host only has a 1 Gb/s connection
to this server. This strictly limits our database traffic to around 125 MB/s.

3. Although HANA is considered as an in-memory database, the data that is writ-
ten to it must be backed up on the hard drive sooner or later. HANA has a
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mechanism that performs these backups on a regular basis automatically. If
the hard drives are not fast enough, then the writing to it could be the limiting
factor for an ongoing persistence into the main storage with high throughput.

In an additional experiment, we have tried to address the points of the I/O-bottleneck
at the nodes and network bandwidth. We have deployed the nodes on multiple physi-
cal machines that have a 10 Gb/s connection to our HANA server. Nevertheless, the
throughput could not be raised above the boundary of 280 Gb/s. The possible limita-
tions of the HANA server hardware could not be addressed, which makes it difficult
to confirm that the last point applies.

One more observation that can be made from the above graphs is that larger nodes
can use their resources more efficiently, i.e., the throughput per core becomes higher.
This is expected, as each node needs a certain amount of processing resources to serve
the operating system and some fundamental services. In the end, only the remaining
resources can actually be used for processing. Therefore, if possible, larger nodes
should be employed for the distribution.

8.4 Conclusion
In this chapter, we have focused on the scaling of the stream-based event processing
workflow. Our goal was to achieve a throughput that is sufficient for monitoring
large enterprises and that is far beyond Gartner’s recommendation for a very large
SIEM deployment, i.e., 25 k evts./s, as well as event throughputs of existing SIEM
solutions, i.e., ≈50 k evts./s.

Our approach has focused on the horizontal and vertical scaling of the workflow
steps by distributing the workload to multiple threads and processing nodes. Regard-
ing vertical scaling, the main bottleneck is the distribution of the work between the
threads. We could achieve the best throughput by using the disruptor pattern as a dis-
tributor. On a single machine with 16 cores, we could reach a normalization through-
put of 171 k evts./s. As for the horizontal scaling, we have expanded our approach to
also run on multiple hosts in parallel with the help of an efficient message exchange
mechanism. This exchange mechanism in conjunction with vertical scaling enables
a normalization throughput of 363 k evts./s on 10 nodes with commodity hardware.
During our experiments, we could also observe that the throughput grows linearly
with the number of threads for the linear as well as the horizontal approach. This
means that even higher throughputs can be reached if more hardware is provided.

In the last step, we have focused on sustaining the normalization speed also for
persistence, i.e., the outlet of the workflow. We have selected the HANA database
as our primary storage system and have implemented various optimization strategies
that are known from the SAP Community. In addition to that, we have integrated a
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concept of minimal statements into the persistence module that could finally lead us
to a peak throughput of around 280 k evts./s on a distributed setup on 7 nodes with
commodity hardware. Although this throughput is smaller than with normalization
only, it is still around 10 times higher than what is required by Gartner for a very large
SIEM deployment.

All in all, the achieved throughput allows our prototypical REAMS to handle
the sustained event load of large enterprises. In order to handle peak loads of even
extremely large enterprises, such as a throughput of more than 1 M evts./s, multi-
ple instances of REAMS can be deployed in parallel and more powerful processing
nodes could be added. Furthermore, a proper buffering of events in a message queue
can help in coping with extreme event peaks. As the events are now persisted in a
normalized form, we are going over to the analysis phase of the processing workflow
in the next chapter.

127





Chapter 9

Advanced Attack Analysis
on Normalized Events

Related Publications

• David Jaeger, Martin Ussath, Feng Cheng, and Christoph Meinel. “Multi-Step Attack
Pattern Detection on Normalized Event Logs”. In: Intl. Conference on Cyber Security and
Cloud Computing. 2015 [33]

• Andrey Sapegin, Marian Gawron, David Jaeger, Feng Cheng, and Christoph Meinel.
“High-Speed Security Analytics Powered by In-memory Machine Learning Engine”. In:
Intl. Symposium on Parallel and Distributed Computing. 2015 [116]

• Amir Azodi, David Jaeger, Feng Cheng, and Christoph Meinel. “Passive Network Mon-
itoring using REAMS”. in: Intl. Conference on Information Science and Applications.
2015 [32]

• Martin Ussath, David Jaeger, Feng Cheng, and Christoph Meinel. “Pushing the Limits
of Cyber Threat Intelligence: Extending STIX to Support Complex Patterns”. In: Intl.
Conference on Information Technology: New Generations. 2016 [117]

• Andrey Sapegin, David Jaeger, Feng Cheng, and Christoph Meinel. “Towards a System
for Complex Analysis of Security Events in Large-Scale Networks”. In: Computers &
Security. 2017 [118]

• Martin Ussath, David Jaeger, Feng Cheng, and Christoph Meinel. “Identifying Suspicious
User Behavior with Neural Networks”. In: Intl. Conference on Cyber Security and Cloud
Computing. 2017 [119]

129



CHAPTER 9. ADVANCED ATTACK ANALYSIS ON NORMALIZED EVENTS

In traditional security solutions, such as IDSs and firewalls, threats and intrusions
are detected by monitoring the activities on a single system. Especially in the time
of an increasing complexity of attacks, this limitation to a single machine is not fea-
sible anymore [120]. The detection of complex attacks requires a big picture of all
activities happening in a network and is based on the correlation of such activities
with other available threat information. A SIEM system is the first step in this direc-
tion, because it collects events and alerts from a multitude of security sensors, being
spread across the network, into one view. As a next step, the collected events need to
be transformed into a unified event format, so that events from different sources and
of different types can be correlated with each other.

In our experience, many SIEM systems on the market are currently limited in this
regard, because they either cannot collect the events from all available sensors fast
enough or are not comprehensively transforming events into a unified format. As a
consequence, they are also not able to correlate events on time and therefore cannot
trace attacks that are involving multiple steps or are spanning across multiple nodes
in the network. REAMS, as our prototypical SIEM implementation, has a focus
on providing both capabilities by transforming events from various sources into the
unified OLF in near real-time, even for very large event volumes. Its storage into
the in-memory DBMS HANA, and optionally into HDFS, further allows complex
queries against the normalized event information. Therefore, REAMS is a suitable
foundation for an event correlation platform that can be utilized for attack and threat
detection.

In contrast to the detection of malicious activities on a single system by mon-
itoring its behavior, the detection of malicious activities from events is not well re-
searched. For sure, event logs have always been used to detect and understand attacks
on a system, but that was more of a manual task conducted by a security operator. The
automatic detection and correlation of malicious activities from multiple event logs,
however, is a rather new topic to this date. Theoretically, the detection of attacks
on event logs is not substantially different to the detection of attacks from system
behavior as known from IDSs, since events are an abstraction of system behavior.
Therefore, the detection approaches of an IDS apply to event logs, too.

In the following of this chapter, we take a closer look at analysis approaches of
log data. At the beginning, the role of CTI is reviewed, because it acts as an intel-
ligence source for all the detection approaches. After this, we are going over to the
simple correlation of events and then continue with signatures as an implementation
of misuse detection. Finally, we also shortly cover machine learning as an alternative
detection approach.
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9.1 The Role of Cyber Threat Intelligence (CTI)
An analysis of cyberattacks reveals that attackers are often reusing the same tactics,
techniques & procedures (TTP), tools and infrastructures (attack assets) for various
of their attacks [9, 10, 117]. On the one hand, unsophisticated attackers are reusing
well-known public attack tools and weaknesses over a long time and are performing
attacks in well-known schemes. On the other side, sophisticated hackers only have
limited resources and do not want to spend the effort in creating new tools and setting
up new infrastructures for each of their attack campaigns. They act by the thinking
that as long as the old attack tools, techniques, and infrastructures work and were not
detected by the victim, there is no need for them to change anything in future attacks.
The reuse of attack assets is a weak spot in favor of the defender.

A defender that has knowledge and information of potential cyber threats, also
referred to as CTI, is in an advantageous position, because he can detect and ward
off such threats much earlier. Therefore, the sharing of intelligence and experience
between affected parties, such as enterprises, institutions, security researchers or pre-
vious attack targets, is crucial for working cyber defense. The most common form of
exchange are indicators of compromise (IOCs), which are characteristics observable
in the monitored environment and point out to a potential threat. Today, there is an
increasing number of security solutions, such as firewalls, SIEMs, and IDSs, that in-
corporate IOCs into their security analysis [80, 120]. According to a survey by the
SANS Institute in 2015 [80], around 68% of the companies were using CTI as part
of their security operations. Around 55% are even integrating CTI into their SIEM
system or intrusion monitoring platform. Thus, the provision of CTI and particularly
IOCs to our SIEM should not be a problem.

The automated sharing of CTI is a rather new approach to cybersecurity that just
emerged from around 2010 [121]. Accordingly, many new types of sources and ex-
change formats for CTI have popped up over the recent years. Companies and in-
stitutions have created threat feeds that are providing intelligence easily consumable
for security solutions. Among the most popular exchange formats for CTI are STIX,
OpenIOC and Open Threat Exchange (OTX) [122]. In addition to that, plain listings
of indicators in the form of text or CSV files are utilized. During our investigation
of available data sources, we have identified three common groups of CTI with their
typical exchange formats.

Blacklists / Reputation Lists This is the simplest and also the most common form
of threat indicator. An indicator consists of a single observable characteristic,
such as an IP address, domain name or file hash [120]. In a blacklist, the indica-
tors are considered to be malicious, whereas in a reputation list each indicator
has an additional tag about its level of maliciousness. Typically, blacklists and
reputations lists are specifying hosts, services or files with observed negative
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behavior and are created automatically from security companies through mech-
anisms like honeypots or malware sandboxing. However, since the information
is automatically captured, blacklists/reputation lists often have questionable
quality and frequently contain false positives. For the sharing of blacklists,
vendors are providing the indicators in a simple text file, CSV file or enclosed
in a standardized sharing format, such as STIX or OpenIOC.

Application Signatures These indicators are more detailed and are used as signa-
tures for IDSs. As there are different types of IDSs, there are also different
types of indicators in this group. For example, NIDS-based signatures are de-
scribing observable network behavior and HIDS-based signatures are describ-
ing the characteristics of malicious files. The formats in which they are repre-
sented are usually customized to the domain where they are employed. Among
the most popular formats are Snort rules for NIDS signatures [109, 110] and
YARA rules for anti-virus systems. Since signature rules are rather complex
and require an understanding of the malicious behavior to be detected, they are
written manually by security professionals and are then exchanged in formats
like STIX or are combined in a large text file.

Threat Reports This category of indicators originates from concrete security inci-
dents that were described in a threat report of a security vendor. Such threat
reports are typically describing a more complex attack, so that the indicators
are related to the stages of a cyber kill chain [9, 94]. The quality of indicators
from threat reports is typically very high, as they have been investigated by a
security professional and were written manually. In comparison to blacklists,
the indicators of reports are more detailed and refer to a wide range of observ-
able data fields, such as registry keys, existing files and opened ports. As a
representation of this information, standardized formats like STIX, OpenIOC
or OTX are used.

As can be seen from the above sources for CTI, the majority of threat intelligence
is rather simple and quality information is scarce. In fact, the current intelligence fo-
cuses mainly on a single observable characteristic of a single event. The specification
of sophisticated multi-step attack techniques, as known from APTs, and intelligence
on the correlation of information is not covered and its representation in existing ex-
change formats is not supported [117]. However, according to the CTI Pyramid of
Pain [123], the more complex and sophisticated an attack characteristic is, the harder
it is to alter for the attacker. We see two reasons why such characteristics are cur-
rently not supported for detection. On the one hand, it is difficult to identify and
express complex characteristics and, on the other hand, the currently existing SIEMs
are not powerful enough to apply such intelligence on many events.
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Although the currently available threat intelligence is improvable, it is still a valu-
able source for SIEM-based analytics. Blacklists and reputation lists create the foun-
dation for signature-based detection on single events. Application signatures are
harder to integrate, because they have custom formats and are close to observable
characteristics of an operating system. Information in such detail is usually not avail-
able in events, so that only a smaller fraction of the application signatures can be
utilized in a SIEM. Intelligence from threat reports covers the most sophisticated at-
tacks that are causing the highest damage. Already, some of the threat reports, such
as from Mandiant, are describing attacks with a high level of detail, including rela-
tions between different attack steps. Since the indicators from reports are represented
in common formats, such as STIX, they can be imported into a SIEM with little ef-
fort and checked against single or multiple related events, depending on the signature
engine. However, due to the limitations of expressing complex attack patterns, these
indicators are not suitable for the correlation of events, as it would be required for the
detection of multi-step attacks.

Our goal is to integrate all of the above-mentioned sources of threat intelligence
into REAMS. In addition, we propose event-based detection approaches that are go-
ing beyond the currently existing intelligence and thereby show that the extension of
threat intelligence formats should be considered.

9.2 Simple Data Correlation
As the stream-based workflow phase is making the incoming events available in a
structured form, the most obvious type of event analysis is to apply structured queries
on top of the persisted data. A structured query supports simple operations on single
events, like filtering and sorting, but also more complex operations that set multiple
events into relation, like grouping and joining. An implementation for queries is
provided by the storage systems for the hot as well as cold storage over an SQL
engine, so that no further code is required on the SIEM implementation itself.

We are distinguishing queries on the hot and cold storage. The primary purpose
for queries on the hot storage, i.e., on the HANA database, is to get an overview of
the currently ongoing activities in the monitored environment, whereas queries on the
cold storage, i.e., on HDFS, are used to investigate past incidents.

9.2.1 Correlation Queries on the Database
A use case for queries on the databases are security dashboards that are provided
in a user interface of the SIEM. The dashboard contains the most important security
figures and is frequently updated. Examples of such figures are histograms of selected
event types, selections of particularly critical events and the summation or counting of
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event values. In addition to dashboards, the queries can check whether preset security
thresholds, such as for the number of login attempts, is exceeded. Listing 9.1 gives
an example of an SQL query on the event table that could be used for a dashboard.
It sums up all the transmitted Hypertext Transfer Protocol (HTTP) data from GET

requests for each combination of client and server. A security operator could use the
results of this query to identify site dumps or the breach of data.

Listing 9.1: SQL Query for listing IP addresses with high HTTP traffic
SELECT PRODUCER_HOST, NET_SRC_IPV4, SUM(APPLICATION_LEN) AS PROD_SUM
FROM EVENT
WHERE HTTP_METHOD = ’GET’ AND TAG_PRODUCER_TYPE = ’web_log’
GROUP BY PRODUCER_HOST, NET_SRC_IPV4
ORDER BY PROD_SUM DESC

9.2.2 Correlation Queries on HDFS with Spark
The cold storage can serve almost the same queries as the hot storage but is slower
and does not cover the most recent events. If the runtime of a query is not a critical
factor and the results are not immediately needed, as it would be in a dashboard, then
database queries can be adopted and run over all live and historical event logs. Due to
the fact that our proposed cold storage is a file system, i.e., HDFS, the queries cannot
be run directly on the cold storage. Nevertheless, common distribution frameworks,
such as Spark, can execute SQL-like queries on CSV or Parquet files that reside on
HDFS. Although the event data resides on a disk, the frameworks can still reach high
processing throughputs as the loading of the file and its processing is distributed to
many processing nodes. Listing 9.2 shows how the SQL query from Listing 9.1 could
be implemented in a Spark environment.

Listing 9.2: Spark query for listing IP addresses with high HTTP traffic
Dataset<Row> events = sparkContext.read.parquet("2017-10_events.parquet");
events = events

.where(
col("HTTP_METHOD").equalTo("GET"),
col("TAG_PRODUCER_TYPE").equalTo("web_log")

)
.groupBy("PRODUCER_HOST", "NET_SRC_IPV4")
.agg(sum(col("APPLICATION_LEN")).as("PROD_SUM"))
.orderBy(desc("PROD_SUM"));

events.show();

At first, the Parquet file with the OLF events is loaded into a so-called Spark
DataFrame. Then the query is applied to the DataFrame, which in turn converts the
query parts to distributed tasks on the processing nodes. Since Spark is based on
the MapReduce processing model, it can execute SQL queries and custom code in a
distributed manner. As a result of this functionality, even complex analysis algorithms
like signature- and anomaly-based detection could be executed on the cold storage.

134



CHAPTER 9. ADVANCED ATTACK ANALYSIS ON NORMALIZED EVENTS

9.2.3 Evaluation

To test the usability of the simple correlation approach, we have normalized ≈1.1
billion log events from a small IT infrastructure and have persisted these into a HANA
database table with the OLF data schema. On the table, we have executed various
queries that are typical for infrastructure monitoring, such as overviews of monitored
systems, service clients and existing applications. The majority of these queries can
run in a few seconds or even less. In addition to these infrastructure queries, we also
applied queries for security investigation and could identify various attack attempts.
At first, we have used the query from Listing 9.1 to identify unusually high network
traffic. In the end, we could identify a small number of machines that downloaded
multiple gigabytes of data from one of our servers to create a site dump. As a second
test, we have searched for simple SQL injection and directory traversal attempts. This
again delivered multiple thousand events.

9.3 Single-Step Signature Detection

An analysis approach known from IDSs is to detect common attack patterns with
previously defined attack signatures. In the context of a SIEM, a signature would
specify attack patterns observable in gathered events. A single-step signature is the
simplest form of signature that only applies to a single log event. Thus, it can only
cover one isolated attack step.

To a certain extent, single-step signatures are supported in existing SIEM solu-
tions. However, there are limitations on how these solutions make use of the signa-
tures provided from CTI, as outlined in Section 9.1. Our focus is to provide single-
step signature matching capabilities on top of fully normalized OLF events and inte-
grate signatures from the three presented sources of CTI into REAMS. In particular,
we want to support as many application signatures from Snort and mod-security as
possible, because they are two of the most common IDSs in the open source com-
munity and provide a large repository of signatures. If these signatures could be
integrated, then the attacks previously only detectable in network traffic can also be
detected in live and historical event logs.

The basis for our signature matching approach is a unified signature model that
supports the expressiveness for the majority of available CTI signatures and applies to
our OLF model. The existing signatures will be normalized and mapped to this model
and are then applied to the incoming event stream. The next subsections describe the
signature model, the normalization, and their application on events in more detail.
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9.3.1 Our Signature Model

Existing Models In order to find a unified signature model, we have analyzed the
features for the most predominant CTI formats, i.e., STIX/CybOX, OpenIOC, Snort
signatures, and plain CSV. In STIX and OpenIOC, the signatures are referred to as
indicators, where each indicator consists of a logical expression of multiple observ-
ables/indicator items, as shown in the example in Listing 9.3. One observable is
expressed as a predicate and mainly consists of three components: the name of the
observable property, a constant content value and an operator that specifies how the
content value should be matched against the observable property.

Listing 9.3: Snippet of OpenIOC for APT28 [124]
<Indicator operator="OR">

<IndicatorItem condition="contains" preserve-case="false" negate="false">
<Context document="DnsEntryItem" search="DnsEntryItem/Host" type="mir"/>
<Content type="string">nato-news.com</Content>

</IndicatorItem>
<IndicatorItem condition="contains" preserve-case="false" negate="false">

<Context document="DnsEntryItem" search="DnsEntryItem/Host" type="mir"/>
<Content type="string">ausameetings.com</Content>

</IndicatorItem>
...

</Indicator>

Although Snort rules have a different structure for indicators, they also follow
the idea that an indicator consists of multiple observables that have to match certain
values. Similarly to the previous two formats, multiple observables, in the form of
predicates, are joined to a logical expression of ANDs. In addition, there are modifier
functions to be applied during matching, such as case insensitivity or matching off-
sets and lengths. Listing 9.4 has an example of a Snort signature that has multiple
observables.

Listing 9.4: Trimmed Snort rule for detecting SQL injection in HTTP requests [109]
alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"SQL union select -

possible sql injection attempt - GET parameter"; flow:to_server,established;
content:"union"; fast_pattern:only; http_uri; content:"select"; nocase; http_uri
; pcre:"/union\s+(all\s+)?select\s+/Ui"; metadata:policy max-detect-ips drop,
policy security-ips drop, service http; classtype:misc-attack; sid:13990; rev
:24;)

The information in CSV or text files is much simpler than that of the previous
formats, because there are either lists or tables of observables without conditions,
operators, or modifiers. If there are multiple observables in one record, then all of
them must be present in the searched event.

Constructing a Unified Model As a result of our examination, we propose a sig-
nature model that has two main characteristics.
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1. A signature consists of observables that are organized in a tree of nested logical
operators. In other words, the signature is a logical expression of observables.

2. An observable consists of the name of the observable property, its value, a
predicate function (operator), and a modifier that specifies how the observable
property is modified before passing it to the predicate function.

Both characteristics can be found entirely or in part in the examined signature
formats, so that the proposed model is capable of bearing the information contained
in them. To understand how such a signature would look like, we have converted the
first part of the OpenIOC signature into our model, as shown in Figure 9.1. As an
illustration of the logical concatenation of observables, we have additionally added
the IP for nato-news.com and the default port 80 as observables to the signature.

AND
OR

VAL: 185.82.202.174
OP: EQ

VAL: 80
OP: EQ

VAL: nato-news.com
OP: EQ
MOD: nocase

net.dstHostnet.dstIpv4

net.dstPort

Figure 9.1: Example of a signature in our model for one of the indicators of APT28

The oval shapes are representing the logical operators that connect the observ-
ables. The rectangular boxes are representing the observables. They are referring to
data fields, such as net.dstIpv4 from the OLF model.

9.3.2 Normalization
Our signature detection approach relies on the fact that all signatures to be checked
are available in the same unified signature model. This means that all the signatures
retrieved from CTI need to be normalized to our model in order to make use of them.
As the majority of signatures is represented in the few formats we have introduced,
the normalization only has to handle a small number of different cases.

In order to normalize a format, we first have to understand the signature’s meaning
and structure. Once the structure is known, relevant indicator information is extracted
and transformed into our signature model. In the last step, the fields that are refer-
enced in observables have to be mapped to OLF fields. For OpenIOC, STIX and
CSV/text files, the transformation of the structure is rather straightforward, because
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it is similar to our model. For application signatures like Snort, this transformation is
more challenging and needs to be described in more detail.

Transforming Snort Signatures to Our Model Snort rules are well-structured, so
their parsing is least challenging. Each rule starts with information about the connec-
tion, the so-called IPInfo, which specifies the source and destination IP address and
ports of the packets to be monitored. In parentheses, after the IPInfo, further prop-
erties of the rule are specified in key/value-pairs. These properties are categorized
into generic rule information and rule options. The rule information contains meta-
information about the rule, such as the alert message, the rule ID, its revision and
a classification of the detected threat. The rule options contain the actual matching
information for the rule, such as the fields and contents to match [125].

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"SQL union select - 
possible sql injection attempt - GET parameter"; flow:to_server,established; 
content:"union"; fast_pattern:only; http_uri; content:"select"; nocase; http_uri; 
pcre:"/union\s+(all\s+)?select\s+/Ui"; metadata:policy max-detect-ips drop, policy 
security-ips drop, service http; classtype:misc-attack; sid:13990; rev:24;)

Figure 9.2: Relevant indicator information in a Snort rule (dark gray - observables,
light gray - metadata)

The illustration in Figure 9.2 again shows the same rule from Listing 9.4, but with
the snippets marked that are relevant for the creation of a new signature according
to our model. The parts marked with a dark gray color are used to build the rule
structure. In particular, the first IPInfo part is translated to observables regarding
the source and destination IP and port of our rule. In this concrete case, only the
destination HTTP port deviates from the default values, so that the rule only has to
check for port 80 or 8080. The flow information at the beginning of the second dark
gray box distinguishes whether the signature applies to a server and consequently
whether the destination in the IPInfo matches with the destination fields in OLF,
which are dstIpv4/6 and dstPort. So far, we have extracted the most important
network parameters from the first part of the signature. The remaining signature
parts in the dark gray boxes are providing additional observables as rule options.
Usually, multiple rule options together make up one observable. There is a content
or regex followed by an optional modifier and a field specification. In the figure, we
have framed the options belonging to the same observable with a black border. All
observables are referring to the HTTP Uniform Resource Identifier (URI) field. The
first two use the keyword http_uri and the pcre has the flag U that indicates to
search in the URI. After the rule options, there is even another field about the used
service in the metadata that can be incorporated into the signature as an observable.
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Snort fields OLF fields
IPInfo Source IP net.srcIpv4/6

IPInfo Source Port net.srcPort

IPInfo Destination IP net.dstIpv4/6

IPInfo Destination Port net.dstPort

content msg

http_header / http_raw_header / H/D flag app.cmd

http_method / M flag app.http.method

http_cookie / http_raw_cookie / C/K flag app.http.cookie

http_uri / http_raw_uri / U/I flag app.http.url

http_stat_code / S flag app.http.status

http_stat_msg / Y flag app.cmd

service app.proto

Table 9.1: Field mappings from Snort to OLF

The light gray text is used as meta-information that is not directly integrated into
the signature. As an example, the msg field could be taken as a subject for an alert
that is created based on the matched signature. Also from the classtype, we can
derive a CWE identifier for the alert event.

Mapping Data Fields to OLF fields After the observables have been extracted
from the original Snort signature, they are still referring to data fields of Snort. To
make them compatible with REAMS, they need to be mapped to corresponding OLF
fields. By default, Snort works on the level of network packets, so that we are mainly
limited to OLF’s fields of the network layer. In addition to that, Snort has support
for checking fields of a few application protocols, such as HTTP, SIP, SSL, GTP and
DCE/RPC [125]. OLF in its current form only has support for HTTP, so that the
signatures with an HTTP portion are most relevant for normalization.

In many cases, the fields in Snort have a direct counterpart in OLF. This means
that there is no conversion or mapping of values required. Table 9.1 presents the
mappings for most fields in Snort to OLF. The first four rows cover the mapping
of the IPInfo fields to the IP addresses and ports in OLF. Content fields without
a corresponding field specifier are not directly mappable to an OLF field, because
they refer to packet content that is typically not available in an event. As the best
try, such content could be mapped to OLF’s message field. After the content,
we list the HTTP field specifiers. In general, Snort uses multiple field specifiers for
the same HTTP information. First, there is a distinction between raw and normalized
content and secondly there is a difference whether the content is matched using the
content field or a regex. For the regex, the field is indicated by a flag on the regex.
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This results in the situation that, sometimes, four fields in Snort are mapped to only
one field in OLF. The mapping itself is rather straightforward, since OLF refers to
the same HTTP information. Only the HTTP header has a more generic mapping to
OLF’s cmd field, which holds the command issued over a protocol. In the last row of
the table is an additional mapping for the service field in Snort. Also here, OLF has a
corresponding field for the used protocol.

Combining the transformation of the rule from Figure 9.2 in the previous para-
graph with the mapping of the Snort fields to OLF according to the above mapping
table, we come to the rule in Figure 9.3.

AND

VAL: union\s+(all\s+)?select\s+

OP: Regex

MOD: nocase

VAL: 80

OP: EQ

VAL: union

OP: CONTAINS

app.http.url

app.http.urlnet.dstPort

VAL: select

OP: EQ

MOD: nocase

app.http.url

VAL: http

OP: EQ

app.proto

VAL: 8080

OP: EQ

net.dstPort

OR

Figure 9.3: Our signature model for the Snort signature

Applying the Normalization on a Complete Ruleset After we have shown the
conversion of a single rule from Snort to our signature model, we also want to apply
the same normalization to as many rules as possible from the three largest available
public Snort rulesets, which are the community and registered ruleset of Snort as well
as the Emerging Threats ruleset from ProofPoint. Together, these rulesets have 75 291
different rules, of which 9973 are targeted to the HTTP protocol. Of all these rules,
we were able to map 35 154 rules to our signature model and finally identified 5321
rules to be relevant for the matching within events. In the end, the majority is specific
to HTTP.

Although the transformation of Snort rules to our model required us to create a
customized normalizer, we can say that the effort was justified. Without writing any
signatures ourselves, we can now identify many common threats and can also easily
integrate the signatures of future upcoming threats.
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9.3.3 Matching
The normalization procedure has ensured that all the indicators from CTI, which esti-
mate multiple thousands, are available in our signature model. In the next step, these
signatures need to be applied to the events. Remembering the processing workflow,
we see two different locations where they can be applied. They can be checked during
pre-analysis in the stream-based preparation phase or the batch-based analysis phase.
The former allows identifying attacks in near real-time, whereas the latter enables
detection in historical data.

Regardless of the location, we want to employ the same matching procedure. In
the simplest procedure, the logical expression of each signature would be matched
against each incoming event. Unfortunately, this would result in poor performance as
thousands of signatures have to be checked. In previous research, people have dealt
with the matching of many rules against a set of elements. In particular, Meier has
summarized existing techniques and proposed two optimization strategies for single-
step signatures [126]. Together with these two, we employ three optimizations that
can dramatically increase the matching speed.

1. There are many signatures that only have a single observable with an equality
check to a constant value, such as in blacklists. Instead of checking each of
them individually, they can all be checked simultaneously by joining their con-
tent values into a hash list or search tree. As a result, many signatures can be
checked in almost constant time.

2. There are many signatures with more complex structures that share the same
sub-expressions for their observables. For example, there could be HTTP-
based signatures that all check for port 80 or 8080. We can save evaluation
time by identifying such shared expressions and evaluating them only once.

3. The evaluation of a logical expression, which has multiple predicates connected
by logical operators, can be improved over logical shortcuts. A logical shortcut
describes the fact that it is not always necessary to get the truth value of each
sub-expression of a logical expression to derive the final truth of the whole
expression. For example, if two predicates are connected with AND into an ex-
pression and the first predicate is known to be false, then the whole expression
becomes false, regardless of the truth value of the second predicate. Therefore,
in cases where the first predicate of an AND expression becomes false, only a
single predicate has to be evaluated to derive the expression’s outcome.

A further improvement of this principle is achieved by ordering sub-expressions/
predicates by their selectivity, i.e., the chance of prematurely deciding the re-
sult of the overall expression. If we see that a sub-expression often results in
a logical shortcut, then it makes sense to put this sub-expression at the very
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beginning of the logical expression. This reordering is conducted dynamically
as new events are matched against the signature.

The three optimizations enable us to apply single-step signatures in near real-
time. In the streaming phase, we deploy multiple matchers in parallel as consumers
of the disruptor. This is possible, as the matching runs independently for each event.
Also in the batching phase, multiple matchers can run in parallel on multiple threads
or even on multiple nodes. In order to keep track of generated alerts, the signature
matcher represents alerts as special events that are fed back into the event processing
workflow. Of course, these events do not need to be normalized again. An advantage
of the representation as an event is that all analysis algorithms can build on top of
these alerts. In other words, it would be possible to generate alerts based on another
observed alert.

9.3.4 Evaluation

As an evaluation, we have applied all the HTTP-based signatures from Snort and
Emerging Threats on a set of≈10 million normalized OLF events. As an outcome, we
could identify 1170 suspicious events that were related to 11 different signatures. The
majority of these events were either targeted to the ShellShock vulnerability (CVE-
2014-6271 [127]) (448 events) or accesses to various admin panels.

9.4 Multi-Step Signature Detection

We have presented single-step signatures as a method of revealing attack patterns
in a single event. With them, we have realized a functionality that is known from
traditional IDS systems. Due to the limitation to a single event, single-step signa-
tures are not able to verify the success of an attack and cannot track attacks spanning
over multiple hosts. This leads to the situation that some attack attempts are alerted
as successful attacks (false positives) and that some complex attack campaigns are
overlooked because each of the campaign steps was considered unsuspicious (false
negatives). Therefore, as a next step, we are correlating multiple events. We call the
description for such a correlation of events a multi-step signature, because it describes
an attack that consists of multiple attack steps. As the name implies, a single step in a
multi-step signature is comparable to the previously introduced single-step signature.

In the following, we present a signature model for multi-step signatures and ex-
plain how such signatures can be matched in REAMS.
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9.4.1 Model Based on EDL
The research community has worked on a number of models and languages for the
representation of complex signatures. Meier [128] has created an overview of these
languages and proposes a categorization by their use case. He proposes a distinction
between attack, exploit, event, detection, response, report, and correlation languages.
His detection languages come closest to our signature model, as they describe the
procedure and analysis steps required for the detection of attack patterns. Among
others, he mentions the languages P-BEST [129], STATL [130] and LAMBDA [131]
as representatives of this group. Due to the fact that these languages have mostly
been developed as part of an IDS, they are also highly adapted to the features and
the detection algorithms of these systems. This results in languages that stipulate the
detection procedure and have a limited expressiveness. As an alternative, Meier et
al. propose their abstract detection languages SHEDEL [132] and Event Description
Language (EDL) [133] that combine the features of previous languages with a higher
expressiveness and a lower dependency on a concrete IDS. We have decided to also
use EDL as a foundation for our signature model, because it is the most advanced
language and already comes with an implementation. For an understanding of EDL,
we present its basic concepts below.

Concepts of EDL As the main idea, signatures are seen as a colored Petri net. The
places of the net represent the current system or signature state. The occurrence of
an event triggers the transition between states. The tokens that traverse the states
and transitions of the net can be considered as instances of the signature. The color
of a token stands for the variable state, consisting of token features, of a signature
instance. Figure 9.4 shows an example of a signature net as it seen in EDL.

The signature example detects a brute-force attack and subsequent access to the
/etc/password credential file. Start stands for the start state at which no ma-
licious behavior was identified, yet. The final state is Suspicious Access. It
indicates that the brute-force attack and the access to the credential file were success-
ful. The remaining boxes stand for intermediate states of this attack, such as that two
failed logins were seen. The transition between states is triggered by account login or
file access events, as they are produced by Linux’ auditing functionality. The condi-
tions for the corresponding triggering event are expressed in the tabular boxes next to
the transition boxes. There are three different types of entries in these tabular boxes.
Intra-event conditions only refer to constant values and fields of the triggering event.
In fact, they are comparable to the observables of a single-step signature. Inter-event
conditions are referring to a field of the currently triggering event and a token feature,
which was set by a mapping in a previous transition. The mappings are assigning
values from the current context, i.e., from the triggering event or the current token
state, to the state of the token passed to the destination place.
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Figure 9.4: Example of a simple signature for a brute-force attack with /etc/passwd
access in the EDL

Listing 9.5: Simple EDL signature for a Windows login
EVENT UserLogin
{

PLACES
Init {

TYPE INITIAL
}

LoggedIn {
TYPE EXIT
FEATURES

STRING username
}

TRANSITIONS
Init(+) LoggedIn {

TYPE NT_AUDIT_EVENT_4624
CONDITIONS

(True)
MAPPINGS

[LoggedIn].username=AccountName
ACTIONS

warnln("User " + AccountName + " successfully logged in")
}

}

Listing 9.5 gives another example of an EDL signature, but this time in a textual
form. It describes a successful login onto a Windows machine. The structure of the
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event clearly separates the places and transitions of the signature net. The places
section covers two places for the initial Init and the final LoggedIn state. Each
place has the corresponding type specified with the TYPE keyword. In addition to the
type, a place can also have multiple features for its token. In the transition section,
there is a single transition that has a (+) directly after the Init state. This sign points
out that this transition is non-consuming. In a regular consuming transition, the token
would be moved from the source to the destination state, whereas in a non-consuming
transition the token is just copied. This has the effect that there will always be a token
in Init and there can be multiple instances of the signature at the same time. Inside
the transition, there are four further specifications. The CONDITIONS and MAPPINGS
are already known from the above signature net. The TYPE specification reveals what
kind of event triggers the transition, so in our case Windows events of type 4624. The
ACTIONS specification defines what should happen when the signature has matched.
In our example signature, there would just be a text message that informs about the
detected login.

A more detailed description of the concepts and language constructs of EDL can
be found in Meier’s book [126] or research papers [133, 134].

Extension of EDL for OLF In its current form, EDL can express a wide range
of attack patterns, but is relying on the fact that these patterns are described with
event types or formats that are known in advance. Consequently, EDL has a fixed set
of supported event types and would be able to detect attacks that manifest in these
events. Our primary goal is to make EDL compatible with OLF, so that events of
any type can be processed with it. Since OLF is using nested objects, such as in
app.http.userAgent, the field notations in intra- and inter-event conditions as
well as mappings need to be extended to support the dot notation.

9.4.2 Signature Sources

As outlined in the section about CTI, threat indicators are kept simple due to the
limited expressiveness of exchange formats. Only very few of those formats can
incorporate more than one event into a pattern. The STIX format is one of those few,
because it can represent relations between observables that are not belonging to the
same event. Still, it is not possible to describe joint properties between these events,
so that it is difficult to express event sequences as used in EDL. As a solution to
this problem, Ussath et al. [117] have proposed an extension to STIX allowing the
referencing of properties from other events.

Another exchange format that has support for simple multi-step patterns is Snort.
Although it is mainly designed for single-step patterns, there are mechanisms for ex-
pressing the multiplicity of single events. For example, it can express a signature that
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requires the occurrence of multiple failed logins in a given time-frame for detecting a
login brute-force.

A completely different type of source for multi-step signatures are special cor-
relation algorithms. They are extracting sequences of events that are connected to
known threat indicators or are deviating from the normal system behavior. One such
algorithm is proposed by Ussath et al. [135]. It is based on the idea that attackers are
reusing the same infrastructure and tools within the same attack. The algorithm fol-
lows the propagation of observable malicious artifacts and is correlating these events
to an attack sequence. As a result of its analysis, the algorithm creates an EDL signa-
ture that is able to detect attacks with the same characteristics.

Obviously, the choice of multi-step signatures as CTI is limited. The established
exchange formats only provide rudimentary support for the description of such sig-
natures. The only viable source are algorithms that generate signatures based on
observed malicious behavior. In our opinion, the integration of EDL into a common
exchange format like STIX could promote the use of multi-step signatures in CTI. As
long this did not happen, manually created signatures are the main input for multi-step
signature detection.

9.4.3 Matching and the SAM Implementation

To match multi-step signatures in the form of EDL against the incoming events, we
need to create a dedicated module for our processing workflow. This module can be
put into the pre-analysis step of the stream-based phase or the signature detection step
of the batch-based phase. Fortunately, we do not need to implement EDL matching
from the beginning, as Meier et al. have created a signature engine prototype for EDL,
called SAM, together with his publications on the language. The original implemen-
tation was written in C++ (SAM), but there is also a newer version in Java (jSAM)1.
The newer Java version is most interesting, because our workflow implementation is
written in Java, too.

As already mentioned, the EDL language itself is relying on predefined event
types. Also, the jSAM implementation only comes with a few supported event for-
mats, as Figure 9.5a illustrates. Solaris, IDMEF and CWS events do not seem to
be up-to-date anymore and the NT Audits and Bro DNS events are not sufficient to
express common attack patterns. For example, a traversal attack on an Apache Web
server would remain undetectable if CLF is not supported. Also other popular event
formats, like Syslog and a majority of other Windows events, are not supported.

One of the issues of SAM is its standalone nature, which requires that all event
formats it should support have to be integrated into it. Furthermore, all generated
alerts are kept within the system, meaning that they cannot be used for further anal-

1jSAM Source Code - http://sourceforge.net/projects/jsam-project/
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Figure 9.5: Comparison of existing jSAM implementation with extended version

Listing 9.6: Transition for failed login as OLF event
TRANSITIONS

FailedLogin(-) FailedLogin
{

TYPE OLF
CONDITIONS

tag.action=="login", tag.status=="failure",
[FailedLogin].username==[FailedLogin].username,
[FailedLogin].sourceIP==[FailedLogin].sourceIP,
[FailedLogin].target==[FailedLogin].target,
[FailedLogin].app==[FailedLogin].app

MAPPINGS
[FailedLogin].count=[FailedLogin].count+1

ACTIONS
warnln("User "+[FailedLogin].username+" has another failed login on host: "

+[FailedLogin].target)
}

ysis approaches. We propose to only integrate the core of jSAM and open up its
interfaces to consume unified OLF events from REAMS and reintegrate produced
alerts as OLF events into REAMS. Figure 9.5b demonstrates this new role of jSAM
in our implementation. As a next step, we show how the proposed changes can be
realized.

9.4.3.1 Supporting OLF in jSAM

All the supported event formats are described in a configuration file, called AuditBaseTypes.xml.
As the simplest solution, we could add another section there for OLF and would have
the required support. However, this means that the format once defined in REAMS
needs to be copied over into this file, causing redundancies. As a more practical
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Listing 9.7: Transition using report_alert function
TRANSITIONS

FailedLogin TenTimesFailedLogin
{

TYPE SPONTANEOUS
CONDITIONS

[FailedLogin].count>=10
ACTIONS

report_alert(
"LoginBruteForce",
[FailedLogin].eventList,
"Brute Force is ongoing on "+[FailedLogin].target,
[FailedLogin].properties

)
}

solution, we are retrieving the format description from REAMS and are integrating
that directly into jSAM. In the original implementation, the formats are read from the
configuration file by the so-called BaseTypeReader component. We have created
an extension of this component, called OLFEventTypeReader, for the implemen-
tation of an alternative solution, which imports the OLF model of REAMS as a new
model into jSAM.

In addition to the definition, each type also needs an EventLoader transforming
incoming events into the event format of jSAM. We have created the OLFEvent-
Reader that receives OLF events from REAMS and transforms them for the use of
the signature engine. Similarly to the persistence, this kind of event transformation
benefits from the slot model of Section 7.3.1. Only set fields are read from the OLF
event and are mapped to features of the resulting OLF object in jSAM.

As a result of our changes, we can now reference incoming OLF events in EDL
signatures and detect patterns in the event stream. Listing 9.6 shows a transition for
a failed login based on OLF. As a contrast to the transition from Listing 9.5, this
transition is applicable to all kind of logins that manifest in logs, not just Windows-
based logins.

9.4.3.2 Passing jSAM Alerts to REAMS

In jSAM, each triggered signature is represented as an event. This event can then
be referenced in another signature, so that hierarchies of events and signatures can
be built. Still, produced events are only considered internally to trigger transitions of
other signatures, but are not exported out of jSAM. In addition to internal events, there
are alerting functions in the transition actions that are executed whenever a transition
is triggered. These alerting functions are used to send status messages to the system
operator.

As a simple extension, we have created the report_alert function as a tran-
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sition action. The function takes a message, a list of event IDs, and a list of event
properties for the produced OLF event. In the end, the produced events are put back
into the event stream of REAMS, where they can be used for further analysis, such
as a single-step signature or query-based detection. Listing 9.7 shows the alerting of
a failed login with report_alert.

As a more complete example, we have put the signature snippets from the previous
Listings into the signature in Figure 9.6 for the detection of login-based brute-force
attacks. The signature is solely based on OLF and internal TimerEvents. It is there-
fore applicable to all applications that indicate login attempts in log events.

Altogether, there are five places in the signature. The signature begins with the
start place init. The first transition is leading to the first_login place, which
indicates that a failed login was observed. Within the state, all important information
about the login is stored, such as the target application and the user logging in. So
far, the user is not yet suspicious, because a single failed login can happen to anyone.
Only with the next failed login, the activity is considered as a possible ongoing attack
and the signature changes to the ongoing state. Now, all consecutive login attempts
are counted, regardless of whether they are successful or failed. Once a number of at
least 10 failed logins is reached, the signature switches into the exit state. Together
with the transition to this state, the incident is reported with the report_alert

function and an alert is dispatched to REAMS. Based on the fact whether a successful
login was observed before, the report can indicate the outcome of the brute-force
attack. For all places of the signature, it is checked whether the last login happened
more than 10 seconds ago. If this is the case, then the observed activities are not
considered as a brute-force and the state is moved to the escape place.

9.4.3.3 Parallelization

Even though the matching of multi-step signatures is integrated as a module into the
parallelized processing workflow, the matching itself is not easily parallelizable. The
jSAM engine works with a signature net that keeps its state in the main memory. This
state is maintained by one thread that performs operations on the net and its states.
As the operations require access to many data structures, the concurrent access by
multiple threads is not realizable without major performance faults. Therefore, the
matching of a single multi-step signature cannot be performed with multiple threads
in parallel. A strategy to distribute the matching of signatures is to distribute indi-
vidual signatures to different threads or processing nodes. Each of those threads or
nodes then gets a full copy of all incoming events to present to their signature nets.
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Figure 9.6: EDL signature graph for login brute-force attacks

9.4.4 Evaluation

As an evaluation, we have tested the above EDL signature against a lab environment
with many different login-based services and our live-running IT infrastructure. In
the lab environment, we have first installed a database, SSH, FTP, and web server.
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Then we have attacked these services with the THC Hydra2 brute-force tool. The
signature engine was able to detect all attempts and could also distinguish successful
from failed attempts. In our live-running IT infrastructure, we can regularly identify
failed brute-force attacks against various SSH and web servers.

9.5 Machine Learning and Anomaly Detection
The previously presented approaches are mainly based on externally provided or self-
created threat intelligence. This intelligence originates from the experience a security
expert has gained by, e.g., investigating past incidents or observing known threats.
Machine learning is another way of approaching the detection of attacks. Instead of
relying on human expert knowledge, an algorithm gains its own experience by ob-
serving benign and malicious activities. With the obtained knowledge, the algorithm
can later reason by itself whether an activity seems benign or not. On the one hand,
such an algorithm can run independently of existing knowledge and can therefore
also detect previously unknown attacks. On the other hand, the results of such algo-
rithms are rather vague, meaning that they produce more false positives and negatives
than misuse detection approaches. Still, machine learning algorithms are a viable
complement to misuse detection approaches.

Machine learning algorithms are subdivided into supervised and unsupervised
learning algorithms [136]. Supervised learning algorithms are deriving their knowl-
edge from provided pairs of input and its desired output, which is also called labeled
data. Unsupervised learning algorithms are deriving their knowledge solely from in-
put data where the output is not known yet, which is also called unlabeled data. If
we apply these concepts to security analysis, then a supervised algorithm would be
provided with a set of features, such as the fields of an event, together with a label
about the event’s maliciousness. An unsupervised algorithm would be provided with
a set of features that are associated with normal behavior. Unfortunately, due to the
complexities of identifying attacks in huge amounts of security-related data, there
are only very few datasets for labeled data. Furthermore, the few existing datasets
are mostly based on set up scenarios where attacks have been simulated, such as the
KDD Cup 1999 [137].

9.5.1 Implemented Algorithms

In our team, we have applied supervised and unsupervised machine learning algo-
rithms on normalized OLF events. On the side of the supervised algorithms, Ussath
et al. [119] have experimented with a feed-forward and recurrent neural network on

2THC-Hydra - https://github.com/vanhauser-thc/thc-hydra
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a simulated login scenario. Neural networks have the advantage that they do not
need special programming and usually have much higher accuracies than traditional
supervised learning algorithms. Accordingly, the proposed algorithm could reach
an accuracy of 97% in detecting suspicious login behavior in an enterprise network.
Even though we have tested a supervised approach, our focus was more on unsu-
pervised algorithms, as they can work on unlabeled data being available in REAMS.
One of the algorithms, proposed by Sapegin et al., is an anomaly detection algorithm
that is based on the Poisson distribution and has proven to work for the detection of
anomalous login behavior [138]. Another algorithm, also proposed by Sapegin et al.,
runs k-means on chunked data and then applies a Support Vector Machine (SVM)
algorithm on the ensemble of the k-means results. As an improvement, the algo-
rithm automatically determines the optimal cluster number k and ranks the resulting
clusters by their significance [118].

9.5.2 Execution Environment

There are four major ways in which the previously mentioned algorithms are run on
the normalized events [116].

1. The basic algorithms, such as k-means, can be run directly within the HANA
database engine. HANA provides this support over its Predictive Analysis Li-
brary.

2. Advanced algorithms can be run within the HANA database over its R integra-
tion.

3. Advanced algorithms can also be run on an external R module that reads the
data either from the HANA database or any cold storage. The R module is
either coming in the form of an R server or as a script in a distributed processing
environment like Spark.

4. Neural networks are best executed on highly parallelized graphics processors
and therefore require that the data is exported from the database or cold storage
in advance. The execution is conducted on the server that has the appropriate
hardware installed.

The execution within the database has a speed advantage, as the data does not have
to be exported. Still, the external R servers are most flexible and can even distribute
the processing tasks to multiple machines if solutions like Spark are employed. The
most inflexible method is the execution on graphics cards, because the data has to be
exported and there is only limited support for work distribution.
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For a more detailed description of all the applied machine learning approaches
and their runtimes in the REAMS environment, we refer to the work of Sapegin [116,
118, 138] and Ussath [119].

9.6 Conclusion
In this chapter, we have approached the topic of event analysis and its integration into
REAMS. As a first step, we have introduced correlation queries as a simple and fast
way of filtering, grouping, and joining event data. These queries can be used to create
dashboards on the environment or to investigate incidents manually. As a second step,
we have looked into the analysis approaches known from IDSs and have adopted them
to normalized events. On the side of misuse detection, we have presented single- and
multi-step signature detection. Single-step signatures are mostly based on CTI and
are suitable for finding automated and unsophisticated attack activities in a quick and
easy manner. Multi-step signatures are more applicable to sophisticated attacks that
involve multiple stages. On the side of anomaly detection, we have introduced the
role of machine learning and have referenced two different algorithms proposed by
our team.

With the implementation of misuse and anomaly detection on top of event logs,
we have combined the advantages of SIEMs and IDSs. We can follow activities
from all monitored systems and can apply established analysis algorithms on them.
While traditional IDS systems required that signatures be written for each application
and event type individually, we can now have one signature for all applications from
various domains due to a normalized event structure. By additionally integrating
existing knowledge in form of CTI into the analysis process, the SIEM system is
operational from the very beginning and does not require the provision of manually
written signatures.

As an evaluation, we have also applied the proposed analysis approaches to the
event data of our productive systems and that of our partners. In the end, we were
able to identify numerous attack attempts with them, such as directory traversal, SQL
injections, site dumps, and login brute-force.
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Data breaches, also called data leaks, describe the break-in into a system or net-
work and the subsequent stealing and possible distribution of sensitive data from it.
They are affecting thousands of companies, services, and private users every year and
are becoming a serious threat. The objective of these attacks is mostly the stealing of
personally identifiable data, such as copies of customer databases, employee records,
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or the phishing of credentials from individual users. The attackers use the stolen per-
sonal information to pretend another person’s identity, perform social engineering or
take over victims’ accounts with their stolen credentials. The latter scenario is espe-
cially popular since many Internet users are reusing their passwords across multiple
systems and services. As a consequence, the leakage of a user’s credentials on one
service can lead to the compromise of a multitude of the user’s other service accounts.

For enterprises, the leakage of account credentials from their employees poses
a significant threat, because the strong habit of reusing passwords could allow an
attacker to gain access to the enterprise’s internal network. According to a study by
Verizon [73], around 40% of data breaches are successful due to the improper use
of credentials, such as the reuse of password or a choice of weak passwords. On
top of that, leaked personal information additionally simplifies social engineering of
employees and can enable access to confidential data and sensitive systems.

In the following, we take a closer look at a significant subset of the problem,
namely identity leaks that are published on the Internet for everyone to access. These
public leaks are particularly relevant for two reasons. On the one hand, they put
the victims at a higher risk because their easy-to-access data is misused by a larger
number of even low-skilled attackers. On the other hand, they also give victims a
chance to get to know that their data has been leaked. In fact, the awareness and
knowledge about leaked services and credentials can give an enterprise as well as
individual users an advantage over potential attackers. They can take precautions
by resetting their passwords and closely monitoring activities of affected accounts.
Unfortunately, at the moment, a large number of victims never get to know that their
personal information or credentials have been leaked. This is because such leaks are
mostly not reported in the mainstream media and the places where data is published
are not always easy to find. However, an expert that has knowledge about the leak
economy gets attention about such leaks early and can inform victims about new
leaks in time. We propose to make publicly leaked identity data available as a kind
of CTI that is also consumable in a SIEM like REAMS. An enterprise that subscribes
to a corresponding intelligence feed could be informed as soon as one of their email
addresses is affected.

In the next sections, we have a more in-depth look at the nature of public identity
leaks and show how relevant identity information is extracted from it. Then, we
describe how such information can be utilized for attack detection in the form of
specialized threat intelligence.
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10.1 Public Identity Leaks

10.1.1 Quantity
The relevance of data breaches is confirmed by a large number of leak incidents and
their affected identities from the past years. A good impression of the volume and
amount of identity leaks can be taken from the comprehensive list of public leaks
by the leak monitoring service BreachAlarm [139]. Although they do not consider
each public leak, they still try to list as many leaks as they can get their hands on. In
Figure 10.1, we have created a chart that visualizes the number of leaked identities
over each month of the past six years from as many as 21 321 individual leaks.
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Figure 10.1: Number of leaked identities in the past six years with trend line (Source:
BreachAlarm [139])

The graph clearly reveals the increase in monthly leaked identities in recent years.
In fact, the growth is even close to exponential, because the scale of the chart is
logarithmic, and the red trend line is linear in this chart. As an example, in 2013
the average volume of monthly leaks was less than 1 million identities, in late 2016,
the average was already more than 20 million per month. Especially in 2016, there
have been some impressively large leaks, such as from MySpace with around 360
million and LinkedIn with around 165 million affected identities. Yahoo has revealed
an even larger leak at the end of 2016, which is estimated to affect one billion of their
users [140]. Based on our investigations in the leak topic, we can say that already
the largest 100 publicly available leaks are responsible for more than 2 billion leaked
identities. Another site that monitors publicly accessible data breaches estimates the
total number of affected identities to more than 4 billion identities at the beginning of
2018 [141]. Putting this into relation to the world population that uses the Internet,
i.e., 4.1 billion people in December 20171, then, assuming that each user only has one
digital identity, there is almost one leaked record for each Internet user.

1Internet World Stats - http://www.internetworldstats.com/stats.htm
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10.1.2 Data Distribution

There are three ways in which stolen identity data is distributed on the Internet by
the original attacker, also referred to as leaker. The data is either shared within a
small closed group, is sold, or published for everyone. Typically, data that is initially
sold will eventually become public to everyone after some time. The motivation for
the distribution of the data is manifold. Foremost, an attacker wants to prove his
skills by publishing stolen data. He hopes to increase his reputation and recognition
in the community. Then, some attackers mainly want to get a monetary benefit by
either selling the data on forums or by misusing the stolen data to extract money from
victims’ financial services. Another group of attackers publishes the data to humiliate
or damage the reputation of the attacked service or institution and its users.

For our consideration of identity leaks, we are focusing on the distribution by
publication, because this data is easy to collect and potentially misused by many
cybercriminals. The providers of published data can be distinguished by general-
purpose and specialized leak providers. In the following, we list the most popular
sites for leak distribution and estimate how many leaks and identities are distributed
over these sites from our experience with the collection of leaks.

10.1.2.1 General Purpose Providers

These providers are hosting all kind of data and are not aware of what content they
are delivering. Therefore, they also not aware that they are hosting sensitive identity
data.

• Paste Pages (≈1-1000 ident., ≈10-100 leaks/day) are websites where people
can share their text snippets, so-called pastes, with other people. Paste pages
are often used to distribute code snippets, log files or small texts, but some of
the pages are also used to share small-sized identity leaks. Two of the most
popular paste pages are PasteBin [142] and GhostBin.

• File Hosting Providers (≈10000-100M ident., ≈1-10 leaks/day) are used to
share larger leaks, which do not meet the size constraints of paste pages, or
leaks that consist of multiple files. Common sites in this area are the free file
hosters TinyUpload, Zippyshare, or Mediafire.

• Bit Torrent (>10M ident., ≈5 leaks/year) is an ecosystem that is employed
for sharing leaks that are either too big to be uploaded to a file hoster or have a
high level of public interest.
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10.1.2.2 Leak Only Providers

This group of providers is exclusively used for the distribution of leaks and is there-
fore typically maintained by the leakers themselves to spread their successes and
prove their skills.

• Leak-Related Paste Pages (≈10-50000 ident., ≈10-15 leaks/day) have the
same concept of general page pages but are solely meant for the distribution of
leaks. To support a larger range of leaks, these leak-related sites allow larger
leaks with more than 10 000 lines. An example of a leaks-only paste page was
the now discontinued QuickLeak.

• Leak Repositories (>1000 ident., ≈50-1000 leaks/repo., ≈5 repo./year) are
providing a multitude of older leaks. They are maintained by security enthu-
siasts as well as cybercriminals as a source of research or for starting illegal
activities.

• Leak Forums (≈1-100 ident., ≈1 leak/day) are places where leakers share
their achievements with peers and provide either samples of their leaks or the
entire leak. A popular forum for the sharing of leaks was LeakForums.

10.1.2.3 Leak Announcement

While leak providers are mostly used for hosting leak files, there are also special
places where leakers announce their leaks and where they distribute links to the cor-
responding hosted files. From our experience with leaks, a large faction of leaks is
either announced on social media or special leak forums.

• Social media platforms, such as Twitter and Reddit, are a communication and
announcement platform that is used by security researchers and journalists as
well as the leakers themselves. Security researchers, like Brian Krebs or Troy
Hunt, are reporting about notable data breaches but do not reference them di-
rectly. The leakers mainly use these platforms to announce which service they
have leaked and sometimes even share links to the extracted data.

• Leak forums are an exchange platform for leaks and are also commonly used
to announce and publish leaks, but also to redistribute already published leaks.
The main user group of these forums are leakers as well as people interested
in talking about leaks and sharing their databases. To get free access to the
published data, it is often required to register for the forum. Some well-known
examples for leak forums are the discontinued LeakForums, DemonForums or
Flashback Forum.
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10.1.3 Data Origin
The information that is disclosed in identity leaks is often of similar type. In theory,
the information that is contained in identity leaks corresponds to the information that
individuals leave behind during the use of a service or system. In reality, such data can
be multiple terabytes of size and is therefore hard to handle for an attacker, because it
needs to be downloaded from the victim and transferred to a public server in case of
an intended publication. Therefore, published identity leaks are often stripped down
to only the most sensitive information of a service. This includes, but is not limited to,
user credentials (username, email, password), personal information (home address,
phone numbers, birthdays), and financial records (digital currencies, credit card, and
bank account information).

How the data in a leak is put together, is dependent on where the data was initially
extracted from.

• Database Dumps (Dumps) mostly originate from data exfiltration after a hack,
which is mostly associated with an SQL injection. According to a survey by
Risk Based Security [143], 57% of the data breaches are caused by such hack-
ing. Since the data directly comes from a database system, the information is
rather full-fledged and contains information about many users.

• Phished Credentials (Logs) originate from attacks against individual users,
such as phishing or the installation of spyware on their computers. When the
user types his credentials on the phishing site or his keyboard, they are extracted
and sent to the attacker’s server. The result of such broad attacks are long lists
of credentials, sometimes called logs that were collected from a multitude of
victims.

• Targeted Personal Leaks (DOXes) are the most dangerous type of leak and
are detailed compositions of all available information about an individual, such
as address, birthday, phone numbers, relatives, all kind of accounts with cre-
dentials. The publication of the information is used for the humiliation of a
victim and sets a low boundary for further identity theft. The sources for these
compositions are previously published identity leaks, publicly accessible regis-
ters, and social media accounts.

• Credential Combinations (Combos) are verified compositions of already ex-
isting credentials. Because of the condition that many users are reusing their
passwords in multiple places, attackers try to “stuff” (reuse) and verify previ-
ously leaked credentials on a service that is different from the original leak.
They try common passwords for the user in the hope that users are employ-
ing weak passwords. The result of these attacks are so-called combolists that
contain combinations of username and password.
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10.1.4 Representation
The representation of identity leaks is as diverse as the different sources of the leaks.
Since leaks act as a proof of an achieved hack, the leaker does not care about the
concrete representation, but is solely interested in somehow transferring the extracted
data to the recipient. To make use of the leaked data for either awareness or malicious
purposes, it needs to be parsed and moved to a common format.

In fact, the representation of raw identity leaks is closely related to the type and
their origin, whether they come from database dumps or are composed of individually
collected records. We have identified four formats that are most common for leaks.

• Comma Separated Values (CSV) is a line-based format where each line repre-
sents a single data record. Each field of the record is encoded at a fixed position
in a row and is separated from other fields with a delimiting character, such as
“,” (comma), i.e., where the name CSV comes from, “;” (semi-colon), and “:”
(colon). Listing 10.1 shows an example of a leak in the CSV-format.

Listing 10.1: Leak records in CSV-format with “:” (colon) as a separator
First:Last:Email:Pass:Birthday
John:Doe:jdoe@mail.com:password123:1978-11-03
Susan:Bennett:s.bennett@provider.net:sunshine:1966-05-24
Peter:Smith:pete56@online.org:football:1988-02-15

Due to the generic structure of CSV, it is commonly used as an exchange format
between databases and applications. This makes it predestined for use in leaks,
where information should be easily parseable and importable into other attack
tools. Unfortunately, the reality of CSV-parsing is difficult, because leakers use
many different delimiters and do not properly quote or escape fields.

• The Structured Query Language (SQL) is a standardized language for the
communication with DBMSs. Many DBMSs allow storing backups of a
database with this language, so that the resulting script can be used to reinsert
the data into another database. Since the export into SQL-scripts is built into
many DBMSs, it is an easy way for an attacker to get a full copy of a com-
promised database system. A major challenge when dealing with SQL is the
variety of dialects that let representations differ between DBMSs. Listing 10.2
gives an example of a leak record in the SQL format.

Listing 10.2: Leak record in SQL-format
INSERT INTO user(fn,ln,email,pass,bday) VALUES (’John’, ’Doe’, ’jdoe@mail.com’

, ’password123’, ’1978-11-03’);

• The JavaScript Object Notation (JSON) is an object-based key-value format
that is used for data exchange on the Internet and can be directly interpreted
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by the JavaScript engine of a web browser. To make data easily available to
web browsers, many services and database systems serve their data in JSON
right away. One example of a DBMS serving JSON is MongoDB, which is a
popular database system in the web. However, due to a configuration issue in
early MongoDBs that allowed unauthorized access to all data [144], there is a
significant number of massive leaks in JSON. Listing 10.3 shows an example
of two records from a MongoDB.

Listing 10.3: Leak records in JSON-format as it appears in a MongoDB
{ "_id" : {"$oid" : "4031ef453a"}, "first": "John", "last": "Doe", "email": "

jdoe@mail.com", "password": "password123", "bday": "1978-11-03"}
{ "_id" : {"$oid" : "4031ef453b"}, "first": "Susan", "last": "Bennett", "email

": "s.bennett@provider.net", "password": "sunshine", "bday": "1966-05-24"}

• In addition to the already listed formats, there are some other rarer formats
in which leaks can be expressed, such as HTML, ASCII-tables or completely
customized or freeform content. Such types of leaks are most difficult to be
interpreted, because the formatting is difficult to infer, and information is orga-
nized arbitrarily. In the case of HTML, a leaker uses HTML’s table or div
elements to create a tabular structure for the data. ASCII-tables are similar to
a formatting with CSV, but additional whitespace characters are used to visu-
ally align the data for a text editor. Although such tables are easy to read for a
human, they are harder to interpret for a program.

10.1.4.1 Distribution of Formats

CSV, 72, 72% 

SQL, 21, 
21% 

JSON, 6, 6% Other, 1, 1% 

Figure 10.2: Distribution of leak formats for 100 of the largest public leaks

To make clear on how widespread the presented formats are for real-world leaks,
we have analyzed the leak files of some of the largest 100 public leaks (as of May
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2015) and have assembled the diagram in Figure 10.2. This diagram highlights that
all major leaks can be grouped into the above formats and that all but one leak can be
categorized into either CSV, SQL, or JSON. Furthermore, it becomes apparent that
variations of CSV are most common with a share of 72%. On the second position are
SQL formats, which take another 21% of the share. Only a rather small fraction is
represented in the JSON format.

When looking at the detailed formatting of some of the largest leaks, there are
differences in how the leaks comply with the above formats. In particular, many
leaks have large deviations from a well-formed CSV format, which makes an auto-
mated parsing of the data difficult. Two of the main issues are an inconsistent use
of delimiters within a single record and a varying number of fields between multiple
records.

10.2 Leak Processing Workflow

As identity leaks come from various heterogeneous sources in a wide range of formats
and with different types of information in them, it is a challenging task to find out who
has become a victim and to what extent their personal information is affected. Even
more, the volume of identity data with billions of individual identities is staggering
and can be considered as a typical Big Data problem. To warn individual about their
publicly leaked data, we need to be able to process this data efficiently. Our Big Data
workflow from Section 3.2.3 is one option for the efficient processing of Big Data
and is also used as a foundation for our leak processing workflow that transforms raw
leak data to an intelligence feed for affected victims. Figure 10.3 illustrates a rough
overview of this workflow.

In the beginning, raw leaks are collected from the previously mentioned sources.
Each leak is then passed over to the identity extraction step, which consists of the
syntactical analysis of the leaked records, the extraction of relevant identity informa-
tion from each record and the interpretation of the extracted content as the properties
of a digital identity. The outcome of this step is a digital identity object. If the ex-
tracted identity contains password information, there is a hash recognition step that
determines the password storage method. This information is important to evaluate
the severity of the leaked information. The easier it is to get the cleartext password
from a record, the easier it becomes to misuse the information. In the end, the ex-
tracted digital identity with its severity is passed through a subscriber filter that selects
only those records that are relevant for the subscribed entities, such as web domain or
email address owners. Each subscriber receives an individual intelligence feed with
all his leaked records.

163



CHAPTER 10. USING IDENTITY LEAK DATA AS THREAT INTELLIGENCE
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Figure 10.3: Workflow used for processing leaks

10.2.1 Data Collection

The majority of leaks today can be found on paste pages and through announcements
on leak forums. Leaks from these two types of sources are either downloaded by an
automatic crawler or manually over a web browser.

Automatic Crawler For paste pages, social networks and selected announcement
pages, we are using a crawler that periodically checks for new publications and down-
loads potential leak files automatically. The crawler has two types of modules. In one
module altogether 14 different paste and announcement pages are checked in a sec-
ond or minute interval for new pastes or posts. In the other module, Twitter tweets of
hundreds of accounts are analyzed, links to file sharing and paste pages extracted, and
the corresponding files downloaded. The downloaded files are then further checked
for sensitive information and are discarded if they do not contain such information.
The check employs regexes that are matching common and distinguishable user in-
formation, such as email addresses or password hashes.

With the automatic crawler, we have mainly collected leaks at the beginning of
our leak collection experiment in 2014, because at this time not many larger leaks
were published and a large number of smaller leaks was spread over paste pages. As
an example, in July 2015, our crawler collected 459 leaks with a median of 11 leaks
per day. Eventually, we have gathered more than 20 000 leaks over two years. Among
those are 4100 leaks with more than 1000 accounts and 50 leaks with even more than
a million accounts. However, especially in recent years, the situation has changed,
and the majority of leaked identities is now distributed otherwise.
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Manual Collection We have recently moved from the automatic collection of leaks
to the manual collection because there is an increasing number of larger leaks shared
on either leak forums or repositories that are difficult to crawl automatically. Gener-
ally, leak forums only have a relatively short lifetime, because they are sooner or later
attacked by the members of other forums or leak collectors that do not want that more
exclusive leaks are further spreading into the public. Therefore, there is always a kind
of primary forum used at a time for posting new leaks. By monitoring these primary
forums, we can obtain links to the most recent leaks. The access to the links is either
public or is granted by registering a user account in the forum. Since the start of our
collection experiment, we collected more than 6000 identity leaks that usually hold
10 000 or more identities. As an estimation, all these leaks are exposing 10 billion
individual user accounts.

10.2.2 Identity Extraction

The extraction step is responsible for obtaining all the digital identities from raw
leaks. The extraction is organized into three sub-steps: the syntactic analysis, the
data extraction, and the semantic interpretation. We are referring to the first two also
as syntactic parsing.

Digital Identity Model Before we start with a detailed description of the extraction
steps, we want to present our understanding of a digital identity based on the infor-
mation we have observed in the collected leaks. This model is the foundation for the
threat indicators contained in the resulting intelligence feed. Figure 10.4 illustrates
the entity relations of the model.

At the center of the diagram is the LeakRecord, which stands for a single ex-
tracted digital identity. All the related objects represent certain aspects of this identity.
Left to the LeakRecord entity is the LeakSource, which provides meta-information
about the leak from which the record was extracted. The two entities EmailAddress
and Domain at the top are giving information on the email address associated to a
record and also act as the main identifier for an identity. Later, the email address
is used to filter the records by a subscriber. The entities BankAccountData and
CreditCardData at the upper right are meant for financial information and together
indicate whether the identity is susceptible to immediate financial losses. The two
entities at the bottom right give personal details about the identity, such as the name,
contact data and the birthday. This kind of information is especially critical as it can
be used for identity spoofing. The Credentials entity at the bottom left holds infor-
mation on login credentials for a service and is most critical due to passwords reuse.
To this point, the mentioned entities are populated by the identity extraction. The
remaining HashRoutine entity is provided by the hash recognition step and pro-
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LeakRecord

originalId: String

EmailAddress

userPart: String

Domain

domain: String
countryCode: String

LeakSource

leakDate: Date
name: String

HashRoutine

hashAlgorithm: String
expression: String

Credentials

password: String
hash: String
salt: String
username: String

PersonInfo

firstName: String
lastName: String
gender: Gender
birthday: Date
phone: String
ipAddress: String
ssn: String

Address

street: String
zip: String
city: String
state: String
country: String

CreditCardData

cardNumber: String
cvv: String
expirationDate: String

BankAccountData

accountNumber: String
bic: String
bankName: String 

Figure 10.4: Proposed data model for leaked digital identities

vides information about the hash algorithm used to store the credentials in the leaked
service. Later, the leak severity is derived from this entity.

10.2.2.1 Syntactic Parsing

The major challenge for the handling of identity leaks is the wide variety of formats
they are represented in, such as CSV, SQL, and JSON. Similarly to the normalization
of log events, we also want to bring records in these formats into our common dig-
ital identity model. However, in contrast to log normalization, the format in which
a leak is represented is not known beforehand. Furthermore, there are slight varia-
tions in the formats that impede the simple application of a one-fits-all parser. We
have subdivided the syntactical parsing into the classification of a leak’s format and
the format-specific parsing. Still, there might be cases where the format or its par-
ticular variant cannot be determined automatically. In that case, a manual extraction
becomes necessary.

Format Classification The classification tries to find common characteristics of a
format and then makes an estimation in which formats the file could be. In the case of
an SQL file, there have to be INSERT INTO statements. For a JSON file, every line
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has to start with curly or square brackets. A CSV file is considered to be the default
case. So whenever none of the above matches, we always assume a CSV file. A more
detailed analysis follows in the dedicated parser. Generally, once the format has been
determined, the corresponding parser is executed. If the parser fails, the next possible
format in the above order is checked for applicability.

CSV The original CSV standard [145] specifies the delimiters, escaping characters,
and quotations used for the encoding of data records in a line-based format. However,
the reality of CSV encoding looks different, because there are significant variations
from the standard. There are variants with different delimiters (,;|\t ), escaping
characters (\"), and quotations ("'). Listing 10.4 shows the same data record in
different CSV variants as they appear in leaks.

Listing 10.4: Data records in various CSV variants
1956-07-04,null,john.doe@email.com,5f4dcc3b5aa765d61d8327deb882cf99
1956-07-04,null,"john.doe@email.com","5f4dcc3b5aa765d61d8327deb882cf99"
1956-07-04;<blank>;john.doe@email.com;5f4dcc3b5aa765d61d8327deb882cf99
1956-07-04 | null | john.doe@email.com | 5f4dcc3b5aa765d61d8327deb882cf99
1956-07-04 <blank> john.doe@email.com 5f4dcc3b5aa765d61d8327deb882cf99

A challenge in CSV parsing is the detection of the current variant with all its
properties. Our approach is to look for characteristic fields with distinct formats,
such as email addresses, hashes, or IP addresses. Once we find such field, we analyze
the characters before and after it to reason about a possible delimiter character. The
extracted candidate delimiter is then applied to the whole line and the number of
fields it would separate is determined. This is done for the next consecutive lines
and the deviation in the number of separated fields is calculated. If the deviation is
sufficiently small, we have found a possible delimiter. Now we can continue to find
the quotation characters which must always precede or follow a delimiter. Only when
we have also found out the quotation characters, we can reason about the escaping
that is used in the file.

SQL Theoretically, the SQL language is standardized in an ISO standard and would
be easy to handle with an appropriate parser. In practice, however, there is a wide
variety of dialects employed by all sorts of DBMSs that deviate from the standard.
Furthermore, leakers that produce SQL dumps are not necessarily using compatible
tools and thereby generate customized format variants.

A chance to deal with the variance of the format is to only focus on INSERT

INTO and CREATE TABLE statements for data import. Especially the syntax of the
INSERT INTO statement is rather stable across all dialects and allows to be parsed
with only a few different parser variants. Listing 10.5 shows the main structure of an
insert statement.
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Listing 10.5: Basic structure of an INSERT INTO statement
INSERT INTO <tablename> (<field1>, <field2>, ..., <fieldn>)?
VALUES (<value1>, <value2>, ..., <valuen>)+;

The major points of variance in this structure are the quotations within the
<tablename>, <fieldn> and <valuen> definitions. Also, in some variants, the
field definitions are omitted in favor of a prior CREATE TABLE. Also, there can be
multiple instances of a value definition.

In order to process SQL dumps, we have created a custom SQL parser that looks
at lines containing the INSERT INTO phrase. After the phrases are found, the parser
tries to parse their related statement. During the parsing, it can detect the currently
used statement variant. For a more complete picture of the tables in a dump, the
parser is also trying to find and analyze CREATE TABLE statements. Even though
there are many custom modifiers in such statements, the core of the statement mostly
has the same structure across dialects. Hence, the extraction of existing fields and
their data types is mostly possible.

JSON Dumps in the JSON format are usually well parseable with a common JSON
parser. There are two ways in which data is represented in JSON, either there is a
single JSON object that bears all the information from a database, or there is one
JSON object per record in the database. For dumps from MongoDB, which is the
primary source of JSON dumps, the data is represented in the latter and can be pushed
line-by-line into the parser. In the case of a hierarchical structure, we are mapping all
records into a flat structure beforehand, so that fields can later be referenced with a
single key.

Manual Parsing In the case where the automatic parsing does not work, we are
falling back to the manual handling of the leak. Due to the similarity to event pars-
ing, we are also using manually provided named-group regexes to extract records and
their identity fields. In contrast to the normalization of event information, an individ-
ual regex per leak has to be provided, as the leak formats are simply too different. The
extraction of information from the matched regexes is accomplished with the same
principles as known from the event normalization, meaning that matched groups are
assigned to equally named fields of a digital identity object. This also leads to the
advantage of manual parsing over automatic, because now the extracted data records
do not need to be further analyzed to find out which record field belongs to which dig-
ital identity field. Thus, a semantic interpretation, which would follow the syntactic
parsing, is not necessary anymore.

Challenges Apart from the parsing of the above formats, there are three further
major challenges that influence the success of parsing.
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• Character encoding: As leaks originate from databases around the world,
the encoding is a major issue when extracting information. While UTF-8 is
the de-facto standard for the exchange of data in various character sets, some
databases are still configured to use regional character sets, such as Windows-
1251 for Cyrillic or GB23 for Chinese characters. Detecting which character
set is used in a leak is currently one of the most challenging problems. Pro-
gramming libraries that should be able to detect character sets, such as jChardet
or jUniversalChardet, do not work reliably, because only a few data fields like
usernames or addresses contain non-ASCII characters. The remaining of the
file mostly consists of special characters or ASCII characters. Our current ap-
proach of finding the employed character set is to try a decoding with a variety
of character sets and skip over those that produce errors during decoding. Only
if multiple sets are matching, we are falling back to the default UTF-8.

• Mixture of formats: A leak cannot always be categorized into a single format
and therefore be processed by a dedicated parser. We propose to solve the
issue by parsing the data in multiple passes with different parsers. Each pass
is removing the fractions from a file that it was able to process and hands the
remaining file to the next parser pass. Ideally, in the end, the remaining file
after all passes will be empty.

• Leaker credit banners: Some of the leaks published have the banner of its
original leaker at the beginning or end of the data. These banners do not follow
the usual format and therefore confuse the parser that then produces wrong
records. To counteract that problem, the parser can check the read data for
soundness and discard records that deviate, e.g., by the number of fields in a
record, from the majority of the other records. Although banners are disturbing
the parsing, they can also contribute meta-information about the leak, such as
the original source.

10.2.2.2 Semantic Interpretation

The result of syntactical parsing is a tabular data structure covering the raw records
from the leak. In many cases, this table does not have further information on the
data columns and the meaning of the corresponding data fields. Still, to convert
records to digital identity objects, the meanings of these fields are required. This is
the point when the semantic interpretation comes into play. It analyzes each column
of the tabular data structure and tries to derive its meaning from the type of values
it presents. We are using two different field interpreters to determine the type and
meaning of a field.
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• Word List Interpreters are using a predefined wordlist to discover known
terms in the values of a field. Use cases for such interpreter are usernames,
person names, city names or clear text passwords.

To create specialized wordlists for these field types, candidate values can be
extracted from leaks where the field semantic is already known. For example,
one could start with a basic list of 100 first names to identify a name column in
one leak. Once the column has been determined, new candidate values for first
names can be extracted from it and added to the preexisting wordlist.

• Regular Expression Interpreters are detecting patterns that are recurring for
certain data types. In particular, there are password hashes, birthdays, tele-
phone numbers, email addresses, and credit card numbers in this category. The
description of such patterns is provided as regexes. For an email address, the
regex (.+)@(.+)\.[a-z]

{2,6} could be used. It looks for the characteristic @ at the middle of
an address and checks whether there is a corresponding top-level domain in
the email domain. For the detection of password hashes, such as MD5 and
SHA1, the matching is even easier, because hashes have a fixed length and
are written as a hexadecimal number. An MD5 hash could be matched with
[0-9a-fA-F]{32}.

10.2.3 Hash Recognition
Credentials play a special role in the extracted identity data, since they are an at-
tacker’s key to a victim’s account. While cleartext passwords allow the login into an
account right away, hashes are a method to obfuscate the password and prevent direct
misuse. However, the usage of plain hashing functions, like MD5, SHA1, and even
SHA512, does not guarantee sufficient security, because plain hashes are susceptible
to dictionary attacks. For more secure password storage, hashes should be extended
with salts and multiple iterations of the hash calculation. The Password-Based Key
Derivation Function 2 (PBKDF2) [146] is a standardized function that implements
these security measures to securely store passwords or generally to derive shared
keys securely.

The hash recognition step is responsible for determining the hash formats and
hash routines used in a leak and derives a threat level for the affected users.

Hash Format This describes the way the hash is represented and is usually equal to
the output of one of the common hash functions, because finally all hashes are
produced as an output of a hash function.

Hash Routine This describes the way in which the hash is calculated, including the
employed hash functions, the number of hash iterations and the fact whether a
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salt or pepper is integrated. The routine specifies in detail how all these compo-
nents are combined or concatenated with each other. As a description for hash
routines, we are choosing the notation used by hashcat2 and John the Ripper3.
For instance, a routine that creates a SHA256 hash as the concatenation of a
salt with the password would be represented as sha256($s.$p). The website
Vigilante [141] gives a broad overview of routines occurring in leaks over the
past years.

Our recognition algorithm starts with an analysis of the hash format by matching
against a number of regexes, such as [0-9a-fA-F]{40} for SHA1. Due to the
fact that the routine must produce a hash that is conforming to the determined hash
format, the hash format majorly limits the number of possible hash routine candi-
dates. Sometimes the format is even so unique, that there is only one possible routine
candidate left, such as bcrypt having a $2a$ prefix.

As soon we know what kind of formats are used in a leak, we continue to try all ap-
plicable hash routines with a set of candidate passwords. If a threshold of n resolved
passwords has been reached for a combination of routine and candidate passwords,
the currently tried routine is most likely the hashing routine that was used to store
the passwords in the leak. As different routines might create the same hash under
certain circumstances, such as MD5($p1) and MD5($p2$s) if $p1 = password123,
$p2 = password, and $s = 123, n should be larger than one but still small enough
to deliver a confident result in the shortest possible time. Algorithm 1 illustrates the
checking routine in more detail with n = 10.

The backbone of the algorithm is the selection of appropriate candidate passwords
by the candidate_pws function. Based on the current record, this function gener-
ates passwords that could most likely be a match for this record’s hash. We propose
the reuse, top-password, and username strategy for the candidate generation.

10.2.3.1 Reuse Strategy

The reuse strategy is relying on the fact that users are frequently using only a few
or even a single password across all their service accounts. According to our re-
search [37] on this topic, more than 20% of users are reusing the same password
among two or more services. According to a survey by Das et al. [147], even 51% of
the respondents specified that they are reusing passwords.

The advantage of the reuse strategy is that many hashes can be resolved in a
short time, because 20% of all tried passwords are matching. Furthermore, even if a
strong password policy was employed for the assignment of passwords, many reused
passwords are strong enough to fulfill every policy. On the other side, there is a

2Hashcat - https://hashcat.net
3John the Ripper - http://www.openwall.com/john/
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Data: parsed_leak
Result: routine
hash_format← derive_hash_format(parsed_leak);
for routine in filter_routines(known_hash_routines, hash_format) do

count← 0;
for record in parsed_leak do

if count ≥ 10 then
return routine;

end
for password in candidate_pws(record) do

hash← calculate_hash(routine, password, record[salt]);
if hash = record[hash] then

increment count;
break;

end
end

end
end
return null;

Algorithm 1: Finding routines of leaked password hashes

limitation to leaks that have a user identifier and there must be many previous leaks
that are providing information on the users in the leak. According to our experiments,
around 40% of the users in each leak also appear in a previous leak. Thus, in a leak
with 1000 records, on average 80 passwords can be resolved.

10.2.3.2 Top Password Strategy

This strategy leverages the fact that users are using passwords that are easy to remem-
ber. Figure 10.5 shows the use of the most common passwords, such as password or
123456, from altogether 2.1 billion leaked credentials. As an example, 7.36% of the
users are using one of the top 1000 passwords.

Assuming that we are limiting the generation to the top 1000 passwords, we would
have an average of 74 passwords recovered on a leak with 1000 passwords, but at
a much lower match rate than the reuse strategy. An advantage of the top password
strategy is that it is independent of user-related data like email addresses or usernames
and therefore also works on a plain hash list. However, the strategy also has the
disadvantage that there is a much lower success rate if a stronger password policy is
enforced, because that would rule out the majority of the top passwords.
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Figure 10.5: Usage of top passwords

10.2.3.3 Username Strategy

A last alternative to the above two strategies is the usage of the username as a pass-
word. According to Yampolskiy [148], 2.7% of users are using their username as
their password. Therefore, a corresponding candidate generator could extract the
username and the email address from the provided record.

The strategy has the advantage that it has a relatively high match rate, because
there are only two possible candidates per record. However, similarly to the reuse
strategy, there is the requirement that usernames and email addresses are provided in
the clear.

10.2.3.4 Analysis on Strategies

Each of the above strategies has its own advantages. As a general solution, we are first
trying the reuse strategy, because it has the highest match rate. In the case of smaller
leaks, which means there are only very few candidates, the top password strategy is
usually more successful. Only as the last solution, we are using the username strategy,
since it has the lowest match rate. All in all, with a combination of all techniques,
we can determine the used hash routines for almost all leaks in a few seconds or,
in the worst case, in a few minutes, depending on the calculation complexity of the
applicable routines.

10.2.4 Subscriber Filter

The subscriber filter prepares the information provided by the identity extraction and
the hash recognition into an event feed for the subscribers of our identity-based threat
intelligence. While the information from the identity extraction still incorporates all
the leak data in a record-based data structure, the subscriber filter only delivers the
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affected identity and the type of information that was leaked about it. Figure 10.6
shows this filtering process in more detail.

email

john.doe@compa.com

hash

31f2225159782334
dcc1fd8c4a70a03f

salt

534

firstName

John

lastName

Doe

birthday

1982-05-17

phone

(585)765-4341

hcooper@compb.com
68b735827a212862
24f4eb3075005e6c

951 Helen Cooper 1975-11-23 (608)333-3343

hashAlgorithm

HASH_HEX_16_SALT

expression

md5(md5($p).$s)

name

supergameforum.com

leakDate

2018-07-12

email

john.doe@compa.com

leakName

supergameforum.com

affectedData

PW,NA,BD,PH

leakDate

2018-07-12

severity

medium

Filter: 

COMPA.COM, 

COMPA-PRODUCT.COM

Hash Recognition: Metadata:

Identity Extraction:

TI Record:

Figure 10.6: Filtering of the workflow outputs for a specific feed subscriber

As an example, there are two records for John and Helen within a leak. The leak
contains credential information, meaning the email address and hashed password, the
users’ names, birthdays and phone numbers. The hash recognition has determined
that the format is a 16-byte hex notation with a salt, which indicates that hash func-
tions like MD5, RIPEMD128 or NTLM were employed. Going deeper into analy-
sis with the top password strategy, the recognition has eventually confirmed that the
vBulletin hash routine was used, because both users have used weak passwords. As
for the metadata, we know that the leak is from a site called supergameforum.com
that was leaked at around July 2018. Taking all this information together, the filter
now only looks for leak records that are relevant for the company called Company A,
which owns the two domains compa.com and compa-product.com. Of the records in
the leak, the first record of John is applicable to the domains of Company A, because
John’s email domain equals compa.com. Therefore, the subscriber filter assembles an
intelligence feed record for John with the most important information. This informa-
tion embraces the affected user by its email address, the name of the original leak, its
date of leakage, the type of the data that was affected and the severity that is induced
by the type of information affected. It has to be noted that the TI record does only
contain the most important information necessary to react on a leaked information. In
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particular, no concrete data fields are provided on top of a simple email address and
the leak source.

In a real-world setup of the subscriber filter, of course, there would be a multi-
tenancy setup where each subscriber only sees the records that affect him. A single
subscriber can subscribe for multiple domains or even specific email addresses. In
addition to events on the leakage of domain users, the filter also creates an event in
case the domain itself is leaked and outputs all records that are part of this leak.

10.3 Leveraging Leak-Related Threat Intelligence
So far, we have described the nature of identity leaks and have presented a workflow
that issues events for observed leaks in an automated fashion to corresponding sub-
scribers. As a next step, we are integrating the provided information into a SIEM to
improve the detectability of credential misuse within IT landscapes. We are propos-
ing two methods in which leak information can be utilized in a SIEM.

10.3.1 Alerting
The simplest way is to convert the events from the feed to alerts in the SIEM system
and show them in a dashboard or alert listing. In REAMS, these alerts are represented
as OLF events with corresponding alert tags and can therefore even act as the basis
for further correlations, such as in signatures or queries.

Based on the severity of the alerts, the operator can set up actions to be executed
automatically on the occurrence of a leak or can manually act on the threat. For
example, the following actions could be conducted.

• Send out an email to the affected user to ask for a password change, if creden-
tials are leaked, or higher awareness towards spear phishing, if personal data
was stolen.

• Reset the passwords of the affected user in the network.

• Disable the account for an affected user for very critical leaks.

• Start an investigation if the leak originates from one of the enterprise’s domains.

Of course, for less severe leaks that do not have credentials included, it is not
necessary to actively change configurations, such as passwords or accounts, in the
environment. Still, even the leakage of personally identifiable information can lead to
a larger attack surface for social engineering, which is known to be a frequent attack
vector in highly sophisticated attacks [8]. To protect victims against the misuse of
their data, they should be notified as early as possible about a raised alert.
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10.3.2 Signature Derivation

As outlined earlier, signatures in a SIEM describe attack patterns that are observable
in log events. As a method of initial compromise, credential misuse is commonly part
of complex attack patterns, as they are occurring in APTs. Therefore, by integrating
the leak events into signatures, we are able to detect attacks either in their early stages
or that were previously under the radar of the IDS, mostly due to the fact that mis-
used accounts were not known to be compromised in a recent leak. Considering that
complex patterns are best represented with multi-step signatures, then the event on
a leaked credential is best used as a type of precondition, because it is usually the
requirement to perform elevated activities.

For a better understanding on the use of a leak event in multi-step signatures, we
are taking the typical scenario where an attacker got his hand on a leaked creden-
tial for a user from his target network. Usually, the attacker then would use these
credentials in the target network to gain access. Assuming that the target network
has auditing features enabled for logins, then any login would be logged together
with the user, the time of login and the IP address of the client from which the login
was requested. This log is also the possible point of detection for a signature, be-
cause an attacker most likely will use a different computer and logs in from another
location than the legitimate user. Therefore, if the login location, either geographi-
cally or network-wise, deviates significantly from the previous login, then this login
is potentially malicious. Although such a signature can work independently, a leak
event for the corresponding event gives the signature a much higher accuracy. For
example, should an employee travel to another branch of his company, the signature
without leak event would already indicate an alert if that user would log in from the
branch’s computer. If the leak event is considered in addition, there would be no alert.
Figure 10.7 shows the state graph for such a signature with a leak event.

At the beginning, the signature looks at normal login behavior of the compro-
mised user, meaning it looks at the login location of that user and remembers it for
later. After that, if there will be leak events affecting this same user, the signature
goes into the critical state and will look for other logins of that user. The trigger for
the signature will be a login that has a different login location than the initial login
before the leak. Of course, this signature only works if the credentials have not been
exploited already in the monitored environment. Hence, it is crucial that new leaks
are provided within the threat feed as early as possible.

10.4 Conclusion

Identity leaks are a major threat to the security of computer systems, networks, and
their users, as criminals are misusing the contained identity records for either social
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Figure 10.7: EDL signature for finding suspicious logins

engineering or unauthorized access to accounts. The victims of these leaks often do
not even know that their data is floating around publicly and is actively misused. Only
in the past few years, thousands of leaks with billions of affected digital identities
have surfaced in the public Internet, putting a large fraction of the Internet community
at risk.

In this chapter, we have tackled the problem of identity leaks and the related cre-
dential misuse. We have proposed a workflow that collects publicly available identity
leaks and informs the identities included therein about the fact that their data might be
misused. The core part of the workflow consists of the extraction of identity-related
information from raw leak files and an estimation of the criticality of a leak for the
affected identities. The extraction is achieved with the help of regexes that are either
derived automatically from the data format or are provided manually by an operator.
In the end, many of the normalization concepts developed for the event processing
workflow could be reused for leak processing. The estimation of the criticality is
based on the type of leaked information and the strength of the password storage.
Hence, the criticality is a measure for the victim on how important it is to react to
the leak in his environment, e.g., by resetting his password. The outcome of the two
previous steps is a condensed leak event that gives the most important information
about a particular leaked record, such as the affected identity, the type of affected
data and the criticality score. Using our workflow, we can convert data leaks either
fully automatically or semi-automatically into a threat intelligence feed for leaked
records. The processing speed for both, the extraction and evaluation are fast enough
to beat the speed of new leak publications.

The creation of the threat feed is the precondition for making leak information
available for security analytics. To show that the information can also be utilized in
a practical context, we have presented how leak information can be integrated into a
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SIEM, or particularly in REAMS. The leak events can be presented as alerts to the
operator of the SIEM, but the events are also helpful in creating advanced signatures
being aware of leaks. The integration of leaks allows to now find more covert attacks
related to credential misuse, which were previously only seen after their successful
execution. As credential misuse is typical for the initial compromise phase of APTs,
attacks are detected earlier in the kill chain and can thereby prevent major damage in
the target network. At the moment, the information on a leaked email address cannot
be expressed in existing CTI formats and is therefore also not supported in existing
SIEM products. Hence, to widely make use of leak information in enterprises, the
support for this field has to be extended in both, formats and products.
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Chapter 11

Real-Time Event Analysis and
Monitoring System (REAMS)

In the previous chapters, we have mainly looked into the theoretical aspects of a SIEM
that is capable of handling large amounts of event log data for security monitoring.
In particular, we have proposed an event processing workflow that a modern SIEM
can utilize to process and analyze security-related log events in near real-time. In
this chapter, we are moving from the theoretical considerations to the practical use
of our prototypical security analysis platform, named Real-Time Event Analysis and
Monitoring System (REAMS). REAMS has been built up gradually from 2012 and
is based on our experiences in the topic of event analysis. Since then, it has become
a comprehensive system that is used for conducting experiments and trying out new
approaches for processing and analyzing event logs. The platform is practically used
within our research group for monitoring our IT infrastructure at the HPI as well as
to analyze event logs of project partners. In the following, we are giving a rough
overview of our REAMS deployment as it is used in our testbed environment and
then follow with concrete use cases of the platform.

11.1 Real-World Deployment

The whole REAMS platform consists of multiple agent components, a core server
and a selection of user interfaces. Such a deployment is generally popular for SIEM
systems and has also been derived from our experiences with our previous prototypi-
cal SIEM implementation, called Security Analytics Lab (SAL) [149, 150]. It allows
a more fine-granular separation of tasks and access levels of the system. Figure 11.1
gives an idea of how the current SIEM deployment in our lab environment looks like.

The main components have been implemented in the Java programming language
and are running within the Java SE runtime environment. Therefore, REAMS is
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Figure 11.1: REAMS deployment running live in our lab

installable on every modern operating system that supports Java. However, we are
also accessing the data managed by REAMS with other third-party user interfaces.
Below is a detailed description of the REAMS components.

11.1.1 Agents

The agents provide the connection between the environment and the REAMS core
system. Generally, an agent is installed on an event data source or acts as a forwarder
for another agent. As the main task, an agent splits up a log file into the single events
that are contained in the file. After the splitting, the agent forwards each event to
the core server it is configured for. Theoretically, an agent can forward its events to
multiple core servers if data redundancy is required.

In our lab environment, we are mainly using Syslog agents for all UNIX-based
systems. As Syslog clients are installed on most of these systems in the standard
OS distribution, there is no need to install further software to support the monitoring
of a system. In contrast, all Windows-based systems do not provide an easy way to
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forward events to an external system, so that a dedicated agent is required. As a result,
we are using our custom REAMS agent to export events from Windows systems.

11.1.2 Core Server

The core server is the main component of REAMS and is responsible for all SIEM-
and IDS-related tasks. It implements the architecture we have proposed in Section 5.3
and therefore takes over all event processing tasks in REAMS.

As an input, the core server retrieves events from the agents or directly from log
files via its event collector module. Similarly to our architecture, the event process-
ing is subdivided into event preparation, analytics and a separate persistence into
several databases. The event preparation takes care of all the steps necessary to later
efficiently work with the events, meaning the transformation of raw events to OLF
events. The persistence moves the normalized events into a persistent storage, where
it can be correlated and accessed in larger chunks. In the end, the analytics module
realizes the analytical algorithms of REAMS, which covers single- and multi-step sig-
nature detection as well as various unsupervised outlier detection approaches, which
are based on k-means [151], ocSVM [118], and k-modes. Based on the complexity
of the algorithms, the processing is either conducted in stream- or in batch-mode.

Figure 11.2: Command-line interface of REAMS

To make the retrieved events and analysis results, such as generated alerts, avail-
able to a security operator with a graphical user-interface (GUI), the core server also
provides access to all its data via a REST-based API. An external user interface can
then choose whether it retrieves its information either from this API or directly by
accessing the persistent storage. For a quick interaction with the core server, there is
also a command-line interface (CLI). This interface can be used to load event files,
install additional modules, and trigger analytical algorithms. Thus, the core server
can even run standalone without an agent or a GUI.
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11.1.3 Graphical User Interfaces
The graphical user-interfaces (GUIs) are the primary way to interact with the REAMS
core server for a security operator, because the command-line interface only supports
the most basic tasks to be performed. Our goal is to make the interface choice as flexi-
ble as possible and therefore provide multiple ways of interacting with the server. The
most powerful way of interaction is through the REST-interface, because it provides
access to the data and also allows to execute functions on the server. Another choice
for a GUI is to access all event data directly from the persistence layer of REAMS.
In our deployment, there are HDFS, ElasticSearch, and SAP HANA as data stores.

11.1.3.1 Desktop Client Interface

The interface is a self-developed desktop application for REAMS and provides the
most functionalities on top of the server. It connects directly to the core server over
the REST-interface and therefore enables the starting of analytical functions and the
management of signatures for the core server.

Figure 11.3: Dashboard of the REAMS desktop client

As the main functions, the application has a dashboard that summarizes useful
information about the system and the currently monitored environment. This dash-
board includes an alert overview, the applications and normalization rules of normal-
ized events, the current system resource consumption and the number of all retrieved
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events and monitored hosts. Figure 11.3 shows the main tab of the application with
some previously raised alerts. A special feature of the dashboard is the presentation
of alerts in an attack graph. This attack graph visualizes all critical detected attacks
and their relations to each other. Using this visualization, a security operator can trace
the path of an attacker.

In addition to the dashboard, an operator can see a list of all events in the system
and can apply filters that only show a subset of the events, such as only those from
a specific system. The filtering is achieved with an SQL-like query language. Fig-
ure 11.4 shows the event listing tab for a REAMS instance with some demo log data
in it.

Figure 11.4: Event listing of the REAMS desktop client

At the top, a query for the events to be shown can be entered. On the left, an
operator has an overview of all the systems that are covered by all event logs, the
middle section lists the time and main message of each event, and the right panel
comes with a detailed overview of all set OLF fields of the currently selected event. At
the bottom is a histogram that allows an operator to identify time frames of unusually
low or high event load. By right-clicking on the query bar, the operator can trigger
all available analysis methods on the currently selected events. Figure 11.5 shows the
context menu with all supported methods after a mouse click. Over this menu, the
method is invoked on the core server by facilitating its REST-interface. The results
of the analysis are presented in the GUI as follows.

• Pattern Detection: New potential alerts will appear in the dashboard and the
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event listing.

• K-Means: An overview of the calculated clusters will be shown.

• Anomaly Detection: A listing of anomalous events will be shown in the event
listing.

Figure 11.5: Context menu for available analysis methods

11.1.3.2 Web-Based Interface

As an alternative to the desktop client, we are also experimenting with other web-
based user interfaces. They have the advantage that no additional software, such as a
JVM, is required on the client side. Compared to the desktop version, they are not as
powerful, since they do not interact with the core server directly. At the moment, we
are supporting the two web-based GUIs Kibana and ITOA.

Kibana Kibana is an open source data visualization tool for the ElasticSearch
database and is part of the Elastic Stack of ElasticSearch. In combination with
Logstash, it is mainly focused on event monitoring and provides many types of met-
rics, diagrams, and graphs on top of event data. Although Kibana is tailored to the
records produced by Logstash, it can visualize any kind of indexed data in Elas-
ticSearch. This means that, by having our event data persisted in an ElasticSearch
instance, Kibana is also able to visualize OLF events without further doing, assuming
that the events are correctly indexed. Figure 11.6 shows the dashboard of Kibana
with the data of a REAMS core server.

The advantage of Kibana, over the desktop-based client, is the flexibility of an
operator to create new visualizations on demand. For example, the data can be repre-
sented in a bar chart, line chart, pie chart or in a simple listing. Furthermore, there is
the possibility to visualize entities of a specific type in a graph. This could be used to
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Figure 11.6: Dashboard of the Kibana-based REAMS GUI

visualize attack graphs similarly as the desktop client. A disadvantage of the Kibana
interface is the reliance on ElasticSearch, because the persistence into ElasticSearch
and the querying on top of its indexed data is not sufficient for high event loads. In
our experiments, we could only insert around 20 k evts./s into an index. Also, more
complex queries are taking longer to process than in a HANA database. However,
this is expected, as ElasticSearch is more of a warm than hot storage.

SAP IT Operations Analytics (ITOA) SAP ITOA is a product for the monitoring
of data centers1 and is mostly running on top of SAP HANA. It mainly consists of
an adapter that is collecting and persisting events from various data sources into SAP
HANA and an application server that provides a web-based visualization of the event
information to the data center operator. The web-based GUI mainly consists of a
dashboard, an event listing, and various configuration options for the data collection
and normalization. Similarly to the dashboard of Kibana, an operator can create
diagrams and metrics based on the event data. In the event list, an operator can filter
events by fixing the values of selected fields.

Due to the fact that ITOA is based on the HANA database and the core server
writes to a HANA database by default, we can use ITOA for the visualization of OLF
events without further modifications to REAMS. Also, ITOA is flexible with the data

1SAP ITOA - https://www.sap.com/products/it-operations-analytics.
html
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Figure 11.7: Dashboard of the ITOA-based REAMS GUI

model of events and can, therefore, visualize OLF events right away, not needing
further configuration. Figure 11.7 shows a dashboard on REAMS events in ITOA. As
opposed to Kibana, ITOA can act more fluently on queries, because it is based on the
in-memory-based hot storage. Dashboards can be updated more frequently, and the
event listing works more smoothly. However, as also ITOA is directly accessing the
persistence layer of REAMS, it is not able to trigger operations, such as the loading
of log files.

A special feature of ITOA that goes beyond the capabilities of Kibana is the alert-
ing based on previously specified event patterns and actions. In regular time intervals,
ITOA checks the event data against these event patterns and then executes the corre-
sponding actions, such as generating an alert event or sending out a notification email
to an operator.

11.2 Practical Use-Cases

Using the deployment strategy from above, we have used multiple REAMS instances
in real-world scenarios. Foremost, we have set up an instance in our lab and are
monitoring many internal servers with it. In addition, we are using the analytical ca-
pabilities of REAMS for analyzing the event data of two big international companies.
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11.2.1 HPI Infrastructure
We have a setup of REAMS in our team’s lab environment that is monitoring 44 of
our servers, as depicted in Figure 11.8. All of those 44 servers are equipped with a
Syslog client that connects via SSL to a central Syslog server in our network. Further,
from this Syslog server, the events are forwarded to three separate REAMS deploy-
ments. The primary deployment is called REAMS_PROD and uses an SAP HANA
database for event persistence. The access to the instance is performed through
the core server with the custom-developed desktop client. The second deployment,
named REAMS_ITOA, also writes into an SAP HANA database with a slightly ad-
justed data schema in comparison to REAMS_PROD. It is accessed through the SAP
ITOA user interface that operates on the database. REAMS_ES is the third deploy-
ment, which persists all events into an ElasticSearch instance. The view on top of the
ElasticSearch data is provided by either the Kibana or Grafana web service.

REAMS Setup

Monitored 

Network

Syslog Server

REAMS-PROD

REAMS-ITOA

REAMS-ES

Desktop Client

SAP ITOA

Grafana

Kibana

Figure 11.8: Setup of REAMS in our infrastructure

The REAMS_PROD instance is the most long-running instance of the three de-
ployments. It has been running since September 2014 and analyzed over 2 billion
events in our production environment. Foremost, we use it to identify problems in
our infrastructure and services and are automatically detecting selected attacks during
live operations. As one example, we are running the multi-step signature detection
with two signatures, namely for login brute-force and ShellShock-based attacks. The
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detected attacks are shown on the dashboard of our desktop client, where they are
also visualized in the attack graph. Figure 11.9 shows an attack graph with the two
attack types on three of our productive systems. We have started these attacks our-
selves from two different servers. One server is located within our environment and
another one is an Internet service that tests a domain for the ShellShock vulnerability.

Figure 11.9: Detecting attacks in our environment

The advantage of the attack graph is a quick visual overview of critical attack
activities in the environment and its involved systems. The coloring, being red or
green, of the graph edges indicates whether the conducted attack has failed or was
successful. In addition, if a new type of attack is started from an already compromised
system, the attack graph will extend to a multi-stepped graph, so that the progress of
the attacker in the environment becomes apparent.

Almost on a daily basis, there are login brute-force attacks on our SSH and web
servers. In particular, we have identified numerous login brute-force attacks on our
servers located in China, which are most likely conducted from an SSH-based bot-
net. Also, we can see regular failed brute-force attacks on admin panels of our web
servers.

11.2.2 Event Data of Big International Companies
Even though the HPI deployment allows us to test REAMS in a real-world scenario,
the monitored environment is not comparable to a large enterprise and can therefore
not be considered as a Big Data challenge. However, we have projects with multi-
ple big international companies, having more than 50 000 employees, in which we
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analyze their log events. In contrast to our HPI deployment, these companies are pro-
ducing many security-relevant events that are usable for attack analysis. Their stream
of events is amounting to multiple billion events per day. With these properties, these
events are very interesting for testing our approaches.

The composition of the events we are getting from the companies is very diverse.
There are many different formats of various data sources. Even for similar types of
events, such as proxy events, there are variations in the formats between vendors and
products. As the most popular event types, there are firewall, proxy, DNS, DHCP,
VPN, router, and domain controller logs.

Since REAMS is a prototypical solution, it is not directly placed into the produc-
tion environment of the monitored enterprises. Many companies already have some
solutions for collecting events at a central place and therefore cannot easily redirect
their stream of events to our deployment. As an alternative to stream-processing,
we are receiving exports of the raw event data from the existing event management
systems, which we then import into our REAMS deployment. The rest of the event
processing is similar to the already described event processing workflow. This means,
we are normalizing the events into OLF objects and are persisting them either into a
HANA database or are exporting them into a structured file, such as CSV or Parquet,
where it can then be analyzed either by REAMS’ analytics or by external software.

Based on the normalized event data, we could evaluate our analytical approaches
for signature- and anomaly-based detection. We have experimented with attack sig-
natures derived from CTI, such as Snort signatures and lists of IP indicators, as well
as with machine learning approaches for the identification of malicious user behavior.
As a result of our experiments with the provided enterprise data, our team was able to
identify a number of potential security incidents, which could eventually be reported
to the security operations centers (SOCs) of respective companies. These incidents
included massive amounts of login attempts or the beaconing to command & control
servers.

11.3 Conclusion
In this chapter, we have described the deployment and use of our prototypical Big
Data SIEM REAMS in practice. This should show that our proposed event process-
ing workflow is not just a theoretical construct but has a real implementation that
handles large amounts of event data for security monitoring and can bring benefit to
the operators of enterprise networks.

A deployment of REAMS consists of three components, the agents that collect
the data from the sources, a core server that gathers the data from log servers or
agents at a central place and manages the normalized events, and three user interfaces
that visualize the data of the core server for a security operator. Concerning the user
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interfaces, we have shown that the core server is flexible enough to support even
third-party interfaces, such as SAP ITOA or Kibana.

We have used REAMS in its current form within our infrastructure to monitor
our servers for malfunctions and malicious activities. On top of that, we have used
REAMS to normalize and analyze huge amounts of events from our project partners
and could help them to identify further security incidents in their environment.

In the end, we have shown that REAMS is already mature enough to identify
security incidents in practice and can even operate with a better performance than
already existing SIEM solutions.
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Identity Leak Checker (ILC)

We have elaborated on the relevance of leaked identity data for enterprise and individ-
ual user security in Chapter 10. As credential misuse can be considered as one of the
main attack vectors leading to data breaches [73], the knowledge about leaked iden-
tities in the form of CTI can establish a significant advantage over an attacker. With
REAMS, we have already presented a prototypical SIEM that is incorporates CTI
into the security monitoring process of an enterprise. As a next step, we are present-
ing a platform called Identity Leak Checker (ILC) that provides such CTI on leaked
identities. The platform implements the leak processing workflow from Section 10.2
and acts as a foundation for research on the topic of identity leaks and password se-
curity as well as an awareness and notification platform for victims of identity theft.
In the following, we are introducing the deployment of the ILC and then follow with
an overview of its current use cases.

12.1 Real-World Deployment
The Identity Leak Checker (ILC) is a platform that consists of three major compo-
nents, the backend, a web interface, and a dedicated client.

12.1.1 Backend

The backend is the core of the platform. It is mainly responsible for processing leaks
according to the leak processing workflow. Foremost, this processing includes the
automated collection of smaller leaks, the normalization of leaks into our common
data model for leaked identities, and the population of the database for the web service
and native client. On top of the normalized data, the backend also creates multiple
statistical measures, such as a list of top passwords, the number of leaked credentials
per leak, and the email domains with the highest number of affected identities. The
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statistical results are written into the database, too, so that they can be shown to the
platform users.

The platform itself is composed of multiple Java program modules that can be ex-
ecuted independently by each other, depending on the implemented leak assessment
strategy. Each module is responsible for a subset of the leak processing workflow.

12.1.2 Web Interface
The web interface is the primary end-user interface to the ILC. It is based on the data
that was collected and processed in the backend before. The main functionality of
the service is a query interface for leaked identities. A user can check whether their
personal information is included in a known identity leak by entering their email
address into a search mask. Subsequently, the user receives an email with the query
result to his previously entered email address. The main page with the address input
is shown in Figure 12.1. As a secondary functionality to the email address check,
interested users can view an overview of statistics on passwords and leaks.

Figure 12.1: Main query interface of the ILC web service

The web application for the website is deployed on a Java application server
which delivers its web pages through JSP. The web application itself is connected
to a database that keeps reduced and obfuscated records of the leaked credentials, so
that a breach of the database cannot lead to further misuse.
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12.1.3 Client

The client is a more feature-rich interface to the ILC and is meant for companies and
institutions that want to monitor their email addresses and domains for breaches. It
runs locally on the user’s computer as a Java FX application but retrieves its data
over a dedicated server component on the central ILC server. The retrieved records of
affected users are in turn stored in a local database on the user’s computer or a server
in control of the user, so that the information can be used as threat intelligence in a
SIEM, such as REAMS. Figure 12.2 shows the GUI of the ILC with some demo data.
This data was initially downloaded from the ILC server to the local database and then
requested from the local database server for viewing.

Figure 12.2: Native client interface for the ILC with demo data

12.2 Practical Use-Cases

After we have described the deployment of the ILC with its three components, we
now show how these components are helping victims of identity theft in practice. A
productive setup of the ILC is running since early 2014 and is maintained and used
daily since then.
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12.2.1 Identity Leak Checker Service

The Identity Leak Checker (ILC) web service is the most visible part of the platform
and has the goal to raise security awareness in public. The service is hosted on the
Internet1 under the project overview of the HPI security group. Since the start of the
service, we have experienced a large amount of interest from users around the world.

Leak Statistics The most essential part of the ILC is the availability of as many
leaks as possible, so that many victims can be informed about the theft of their data.
While the amount of data was rather small at the start of the service, the numbers
have almost exploded in the past two years. Initially, we have started the service with
the infamous Adobe leak from October 2013 [152]. Only this leak alone affected as
many as≈150 M identities. In the two years following this leak, the rate at which new
major leaks appeared, slightly increased. The highest amount of data was published
at the end of 2016, because there were major breaches of Dropbox, LinkedIn, and
MySpace. Today, we are experiencing larger leaks almost every week, which led to
a steady increase in identities over the past two years. Figure 12.3 shows a graph
with the number of identities available in the ILC from the start in early 2014. The
maximum of leaked identities is at ≈5.9 G entries which are extracted from ≈800
leaks. Altogether, there are ≈2.35 G distinct email addresses in all leaks, meaning
that already a significant fraction of the Internet users worldwide is affected.
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Figure 12.3: Number of identities available in the ILC service

While there are a few other services that are providing similar services as the ILC,
such as Have I Been Pwned2 or BreachAlarm3, our service is distinguishable from
these services by the type of data available for querying. First of all, we are ensuring
the exactness and quality of the data by manually parsing leaks. In comparison to
other services, we are interpreting the leak as a whole and are not just extracting

1HPI Identity Leak Checker (ILC) - https://sec.hpi.de/ilc/
2Have I Been Pwned - https://haveibeenpwned.com
3BreachAlarm - https://breachalarm.com/
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email addresses. As a result, we can tell which kind of data has been leaked for an
individual. Second, we are focusing on leaks that are affecting users in Europe, and
particularly Germany, rather than on users in the USA.

User Statistics Due to the focus on the European and German language region, we
have received much attention for our service. Since the start in April 2014, we have
served≈7.5 M email address queries, of which≈1.4 M people are affected by at least
one leak. Even though the cumulative average of affected users is at around 18.66 %,
we are even achieving a positive result rate of ≈40 % on the current dataset in the
ILC.

On an average day, the service receives≈1000 requests. Interestingly, the number
of requests his highly dependent on the reports of data breaches in the mainstream
media. For example, during the report of a major leak in the German language region,
we have received up to 250 k requests per day.

Press Attention Due to regular announcements referring to our service, the impor-
tance of the security awareness topic, and the focus on the German language region,
our service has gained some media attention in Germany. The service itself and the
results of our password analyzes have been mentioned in some major German news,
such as Spiegel, Stern, Süddeutsche Zeitung for printed media and ARD Tagesschau,
and RBB Abendschau in the television program. Each report on these channels has
made many new users aware of our service, so that we are able to reach a considerable
amount of people whenever a new leak appears.

The regular news reports have also made us one of the common contact points for
information on leaks and password security. We have been contacted by investigating
authorities in Germany for adding new datasets to the service [153], so that as many
users as possible can be warned in a relatively short time.

12.2.2 Monitoring for Federal States and Companies
While the ILC focuses on individual users, we also want to provide a mechanism
for an enterprise to check all users in their domain. Many company representatives
have contacted us to support them in the lookup of all their email addresses. In
theory, a security operator could issue a request for each company email address.
However, while this would be feasible for smaller companies with a few employees,
this becomes a tedious task for large companies with thousands of employees. The
client is a solution for such use case, because a security operator can monitor all
email addresses in the company’s domain and is then able to see the request result
in the GUI. He can also extract those from the local database, in the sense of threat
intelligence.
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At the moment, we are working together with the State of Saxony (Germany).
We are monitoring all the email addresses that are in their scope of responsibility,
covering more than 2000 email domains. The results in the client are available to the
Computer Emergency Response Team (CERT) of the state, so that immediate threats
to the state’s IT environment can be detected and prevented early on. As an additional
feature to the listing of affected email addresses, the client also visualizes a threat
level for the state in the form of a pie diagram. The diagram shows the fraction of
identities that have their cleartext password or a weak password hash leaked, making
their accounts easily compromisable in case of password reuse.

12.3 Conclusion
In this chapter, we have presented a productive deployment of the ILC, a platform
that informs individuals as well as enterprises about potential account compromises
and identity theft. The platform is reachable via two interfaces, i.e., the web inter-
face, meant for individuals to check their email address for data theft and to inform
themselves about proper password use, and the client, meant for enterprise users to
gain an overview of all their affected email addresses and to derive a threat level for
their IT environment.

Over the course of multiple years, the ILC web service has been established as
one of the main contact points for individuals, i.e., private consumers and company
employees, with regards to account and password security. Our service has reached
over 7 M users in Germany and still reaches around 1000 users on an average day. We
see the web service as the most important component of the ILC, because it reaches
people in different domains, in their private life or as an employee of a company,
and directly raises awareness to potential account compromises. Also, by warning
people individually, we can immediately reduce the attack surface in enterprises since
employees are changing potentially weak credentials on their own. The client is
another tool that helps to integrate the knowledge on account compromises directly
into the security analysis process of a company. Together with the State of Saxony
in Germany, we have shown that even large networks with thousands of users can be
monitored for account compromises with a single tool. The results are available to
the state’s CERT, which informs affected individuals or institutions and coordinates
protective measures. For now, we are also working on the expansion of the client to
make the leak information readily available to companies and create ways to integrate
into their existing security landscape, such as their SIEM systems.
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Conclusion

The security monitoring of computer networks has become a challenging task, as net-
works are growing in size and attacks are getting more complex and sophisticated. In
the security community as well as in the SOCs of companies, log events are becoming
the most valuable source for tracing malicious activities and identifying attackers in
the own network. Already, in large networks, there are thousands of sensors and de-
vices that are logging each activity and event that is occurring. However, in the past,
all these events were lying dormant at the location where they have been produced.
Only recently, software that is collecting these events at a central place has emerged,
the so-called SIEM. Still, these systems are not able to keep up with the volume,
heterogeneity, and velocity of the incoming events. In other words, the processing
of events is apparently a typical Big Data problem that impedes an efficient security
analysis in real-time.

In this thesis, we have addressed the problem of processing huge amounts of
heterogeneous event data by applying the paradigms of Big Data processing. We are
proposing an event processing workflow that normalizes, persists and analyzes log
events in near real-time and incorporates external CTI for more efficient identification
of known threats. As events from various network nodes and further external threat
intelligence is now available within a single system, activities and knowledge can be
correlated for the whole network, so that complex attacks, which are mostly spanning
over multiple nodes in the network, can be detected. Our main contributions are
summarized in the following points.

• An event processing workflow was proposed and implemented that relies on
popular Big Data paradigms like multi-processing, immutability, in-memory
storage, and distribution to handle the huge amounts of event data. By com-
bining the paradigms, we can prepare events for a following real-time analysis
with ≈280 k evts./s, which is sufficient for monitoring even large enterprise
networks.
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• Multiple complex analysis approaches were proposed and implemented that are
working solely on log events and across application and host boundaries. Our
focus was the proposal of a single- and multi-step signature engine as well as
to enable the execution of machine learning algorithms, which are originally
known only from traditional IDS systems that are limited to a single machine
or application.

• External intelligence, in the form of CTI and OSINT from existing security
solutions and threat sharing platforms, has been integrated into the workflow.
This intelligence is used for deriving signatures, so that an operator of the sys-
tem can detect known attacks without further security knowledge.

• The ecosystem and economy of identity leaks have been researched and a pro-
cessing workflow that collects, normalizes, and persists information on leaked
digital identities has been proposed and implemented. The knowledge about
these compromised accounts is an essential data source for CTI, as credential
misuse is one of the main attack surfaces in enterprises. Altogether, we have
assessed leak information on almost half of the entire Internet community.

• The approaches proposed in this thesis have been implemented and integrated
into our prototypical SIEM platform, named REAMS. This SIEM is used to
analyze the log event of our IT infrastructure and that of our project partners.
In addition, we have created a leak warning service, called ILC, which informs
individuals as well as domain owners about potentially compromised accounts.

Altogether, our approaches show that security monitoring of large enterprise net-
works in near real-time is indeed possible, even though we are dealing with a Big
Data problem. We are representing all events in the same common event format, so
that events from different systems and applications can be correlated and put into
relation with each other. This enables us to trace the path of an attacker over mul-
tiple machines and over a longer time span, as it is typical for complex multi-step
attacks. Further hints about potential attack indicators are brought in by external in-
telligence, such as information on compromised accounts of the ILC or as signatures
from known open-source IDS systems. Although the proposed REAMS has solved
many challenges that are apparent in existing SIEMs, there are still some challenges
left that we face when using our system in productive environments.

One major point is the availability of event logs from all parts of the network.
In fact, many companies are just starting with the collection of logs from all their
systems, because there was no prior support in processing them. So far, the main
focus is on logs of the most critical systems, such as servers or network infrastructure.
However, to also follow the steps of an attacker on the final target, we also need
logs from workstations and ideally even mobile devices. Only by having a complete
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overview of performed activities, one can comprehend what the attacker has done on
the network.

Another challenge of event analysis is the ongoing demand for data privacy on
the user side. Especially with the introduction of the General Data Protection Regu-
lation (GDPR), enterprises are obliged to implement privacy-preserving measures for
the collected log events, such as the stripping of the host part from IP addresses or
the pseudonymization of usernames. Since the reduction of information leads to an
intended obfuscation of an individuals’ activities, some of the approaches of security
monitoring have to be adapted to this new situation of information scarcity.

In addition to the presented limitations of the approach, we are considering the
following questions for future work on the topic of advanced event analytics.

• For now, we have foremost focused on misuse detection algorithms and also
showed that anomaly detection approaches are applicable. Both detection ap-
proaches are known from IDSs. As neural networks are currently on the rise
and are promising to derive knowledge from large datasets, it would be inter-
esting to also apply these to event data. However, as the algorithms are still
supervised and there is only limited labeled data, either new labeled data has to
be created or further research on unsupervised algorithms must be conducted.

• Many enterprises already have a distributed processing framework, such as
Spark, deployed in their environment. Therefore, it makes sense to make use
of these resources and do the analytical tasks of REAMS in a Spark environ-
ment. The challenging part is to integrate and orchestrate the tasks all within
one environment.

• The signature detection is now mostly derived from existing CTI. As signatures
are an image of a known attack, it is desirable to automatically derive signatures
from findings of machine learning approaches.

• There are many threat sharing platforms on the market, but they are still limited
in the complexity of the indicators they provide. Also, their data quality is
questionable. Further research can be put into the improvement of data quality
and the sharing of more signatures or generally attack patterns. One focus could
be multi-step signatures, as there is limited support by the existing standards.
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