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Introduction

One method of embedding groups into skew �elds was introduced by A. I. Mal'tsev and
B. H. Neumann (cf. [18, 19]). If G is an ordered group and F is a skew �eld, the set
F ((G)) of formal power series over F in G with well�ordered support forms a skew �eld
into which the group ring F [G] can be embedded. Unfortunately it is not su�cient
that G is left�ordered since F ((G)) is only an F�vector space in this case as there is no
natural way to de�ne a multiplication on F ((G)). One way to extend the original idea
onto left�ordered groups is to examine the endomorphism ring of F ((G)) as explored by
N. I. Dubrovin (cf. [5, 6]). It is possible to embed any crossed product ring F [G; η, σ]
into the endomorphism ring of F ((G)) such that each non�zero element of F [G; η, σ]
de�nes an automorphism of F ((G)) (cf. [5, 10]). Thus, the rational closure of F [G; η, σ]
in the endomorphism ring of F ((G)), which we will call the Dubrovin�ring of F [G; η, σ],
is a potential candidate for a skew �eld of fractions of F [G; η, σ]. The methods of N. I.
Dubrovin allowed to show that speci�c classes of groups can be embedded into a skew
�eld. For example, N. I. Dubrovin contrived some special criteria, which are applicable
on the universal covering group of SL(2,R). These methods have also been explored by
J. Gräter and R. P. Sperner (cf. [10]) as well as N.H. Halimi and T. Ito (cf. [11]).
Furthermore, it is of interest to know if skew �elds of fractions are unique. For example,
left and right Ore domains have unique skew �elds of fractions (cf. [2]). This is not the
general case as for example the free group with 2 generators can be embedded into non�
isomorphic skew �elds of fractions (cf. [12]). It seems likely that Ore domains are the
most general case for which unique skew �elds of fractions exist. One approach to gain
uniqueness is to restrict the search to skew �elds of fractions with additional properties.
I. Hughes has de�ned skew �elds of fractions of crossed product rings F [G; η, σ] with
locally indicable G which ful�ll a special condition. These are called Hughes�free skew
�elds of fractions and I. Hughes has proven that they are unique if they exist [13, 14].
This thesis will connect the ideas of N. I. Dubrovin and I. Hughes. The �rst chapter
contains the basic terminology and concepts used in this thesis. We present methods
provided by N. I. Dubrovin such as the complexity of elements in rational closures
and special properties of endomorphisms of the vector space of formal power series
F ((G)). To combine the ideas of N.I. Dubrovin and I. Hughes we introduce Conradian
left�ordered groups of maximal rank and examine their connection to locally indicable
groups. Furthermore we provide notations for crossed product rings, skew �elds of frac-
tions as well as Dubrovin�rings and prove some technical statements which are used in
later parts.
The second chapter focuses on Hughes�free skew �elds of fractions and their connection
to Dubrovin�rings. For that purpose we introduce series representations to interpret
elements of Hughes�free skew �elds of fractions as skew formal Laurent series. This
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Introduction

allows us to prove that for Conradian left�ordered groups G of maximal rank the state-
ment �F [G; η, σ] has a Hughes�free skew �eld of fractions� implies �The Dubrovin ring
of F [G; η, σ] is a skew �eld�. We will also prove the reverse and apply the results to give
a new prove of Theorem 1 in [13]. Furthermore we will show how to extend injective
ring homomorphisms of some crossed product rings onto their Hughes�free skew �elds
of fractions. At last we will be able to answer the open question whether Hughes�free
skew �elds are strongly Hughes�free (cf. [17, page 53]).
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1 Basics

1.1 Rational closure and complexity

De�nition 1.1.1 If R is a ring with 1, a subring S of R is called rationally closed in
R, if 1 ∈ S and s−1 ∈ S for every s ∈ S ∩ U(R). For every subset M ⊆ R⋂

{S ⊆ R |M ⊆ S, S is a rationally closed subring in R}

is called the rational closure of M in R.

Remark 1.1.2

1. The rational closure of M in R is the smallest rationally closed subring of R con-
taining M .

2. If D is a skew �eld, each subring which is rationally closed in D is itself a skew �eld.

Theorem 1.1.3 ([8, Propositon 2.1]) Let Λ be an ordinal number and N(Λ) be the free
abelian N0�monoid with basis {λ ∈ On | λ ≤ Λ}. For all x, y ∈ N(Λ), there are k ∈ N,
λ1, . . . , λk ∈ On and n1, . . . , nk,m1, . . . ,mk ∈ N0 with λk < · · · < λ1 and

x = n1λ1 + · · ·+ nkλk,

y = m1λ1 + · · ·+mkλk.

If there is a minimal i ≤ k with ni 6= mi, we de�ne x < y for ni < mi. This relation
de�nes a well�order on N(Λ) which satis�es

x < y =⇒ x+ z < y + z.

for all x, y, z ∈ N(Λ).

De�nition 1.1.4 Let R be a ring with 1, M ⊆ R and D be the rational closure of M
in R. We de�ne a recursive series (Dα)α<γ of subsets in R with γ ∈ On such that the
union of the series is D. We start with

D0 := {0},
D1 := {0, 1,−1} ∪M ∪ −M.

If α ∈ On is a limit ordinal number, we de�ne Dα =
⋃
α′<αDα. Otherwise there is an

α′ ∈ On with α = α′ + 1. Here we distinguish the following cases.

3



1 Basics

Case 1: Dα′ is not additively closed. Then there is a minimal α1 + · · · + αn ∈ N(α′)
with Dα1 + · · ·+Dαn 6⊆ Dα′ . We de�ne

Dα = Dα′ ∪ (Dα1 + · · ·+Dαn) .

Case 2: Dα′ is not multiplicatively closed but additively closed. Then there is a minimal
α1 + · · ·+ αn ∈ N(α′) with Dα1 · · ·Dαn 6⊆ Dα′ . We de�ne

Dα = Dα′ ∪

( ⋃
π∈Sn

Dαπ(1)
· · ·Dαπ(n)

)
.

Case 3: Dα′ is a ring but not rationally closed in R. Then there is a minimal α1 ≤ α′

with D−1
α1
6⊆ Dα′ . We de�ne

Dα = Dα′ ∪D−1
α1

Case 4: If Dα′ is a rationally closed subring of R, we de�ne Dα = Dα′ .

Since this series is strictly ascending for the �rst three cases, there exists a minimal
γ ≤ cardR with Dγ = Dγ+1. Therefore Dγ is the rational closure of M in R.

De�nition 1.1.5 ([8, De�nitions 2.2, 2.3]) With the notation like in De�nition 1.1.4
we de�ne cp(a) := min{α < γ | a ∈ Dα} as the complexity of a ∈ D. Furthermore we
de�ne

aE b⇐⇒ cp(a) ≤ cp(b),

aC b⇐⇒ cp(a) < cp(b)

for all a, b ∈ D.

Remark 1.1.6 It is important to note that the complexity depends on M and not
purely the rational closure ofM . IfM andM ′ have the same rational closure they may
de�ne di�erent complexities.

De�nition 1.1.7 ([8, page 38]) If a ∈ D is not a sum of elements with lesser complexity,
we call a (additively) indecomposable. Otherwise it is called additively decomposable
and there are a1, . . . , an ∈ D with a = a1 + · · ·+ an and cp(a1) + · · ·+ cp(an) minimal
in N(γ). This representation as a sum is called a complete additive decomposition of
a. If a ∈ D is additively indecomposable, we call a a complete additive decomposition
of a itself.

Remark 1.1.8 ([8, Proposition 3.1]) If a ∈ D, a 6= 0 is additively indecomposable,
{b ∈ D | bC a} is an abelian group with respect to +.
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1.1 Rational closure and complexity

Theorem 1.1.9 ([8, Theorem 3.6]) If a ∈ D is additively decomposable and a1+· · ·+an
is a complete additive decomposition of a as well as

x = a1 + · · ·+ aj,

y = aj+1 + · · ·+ an

for some j ∈ {1, . . . , n− 1}, the following statements hold true.

i) The sums a1 + · · · + aj and aj+1 + · · · + an are complete additive decompositions
of x and y respectively.

ii) For x′, y′ ∈ D with x′ E x and y′ E y we have x′ + y′ E a. If additionally x′ C x or
y′ C y holds, then x′ + y′ C a.

Remark 1.1.10

1. Each additively decomposable element in D is a sum of two elements with lesser
complexity.

2. The above theorem can be generalized for any �nite sum.

De�nition 1.1.11 Let a ∈ D be additively indecomposable. If a ∈ D is not a prod-
uct of elements with lesser complexity, we call a an atom. Otherwise it is called
multiplicatively decomposable and there are a1, . . . , an ∈ D with a = a1 · · · an and
cp(a1) + · · · + cp(an) minimal in N(γ). This representation as a product is called a
complete multiplicative decomposition of a. If a ∈ D is an atom, we call a a complete
multiplicative decomposition of a itself and for a 6∈ D1 we call a a proper atom.

Theorem 1.1.12 ([8, Proposition 4.1]) If a ∈ D is a proper atom, it is a unit in D and
a−1 C a. Furthermore {b ∈ D | b C a} is a subring in D and for each unit b ∈ D the
following holds:

b−1 E a−1 =⇒ bE a,

b−1 C a−1 =⇒ bC a.

Theorem 1.1.13 ([8, Theorem 4.6]) If a ∈ D is multiplicatively decomposable and
a1 · · · an is a complete multiplicative decomposition of a as well as

x = a1 · · · aj,
y = aj+1 · · · an

for some j ∈ {1, . . . , n− 1}, the following statements hold true.

i) The products a1 · · · aj and aj+1 · · · an are complete multiplicative decompositions
of x and y respectively.

ii) For x′, y′ ∈ D with x′ E x and y′ E y we have x′y′ E a. If additionally x′ C x or
y′ C y, then x′y′ C a.
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1 Basics

Remark 1.1.14

1. Each multiplicatively decomposable element in D is a product of two elements with
lesser complexity.

2. The above theorem can be generalized for any �nite products.

Theorem 1.1.15 ([8, Proposition 4.8, Theorem 4.9]) Let M as in De�nition 1.1.4 be
a subgroup of the group of units in R. Then the following statements hold.

i) If a ∈ D and g ∈M ∪ −M , then cp(ag) = cp(ga) = cp(a).

ii) If a ∈ D \ {0} is additively indecomposable, then a is a unit in D. If additionally
cp(a) > 1, then a−1 C a and a−1 is additively decomposable.

Proposition 1.1.16 Let S,R1, R2 be rings with 1 and ϕ : R1 −→ R2 as well as
ιi : S −→ Ri be injective ring homomorphisms with ϕ(1) = 1 and ιi(1) = 1 for
i ∈ {1, 2} such that

S
ι1 //

ι2

��

R1

ϕ

��
R2

is a commutative diagram. If R1 is the rational closure of ι1(S) in R1, then ϕ is uniquely
determined by the commutative diagram.

Proof. Let ϕ′ : R1 −→ R2 be an injective ring homomorphism such that

S
ι1 //

ι2

��

R1

ϕ′

��
R2

is a commutative diagram. We will show ϕ(r) = ϕ′(r) for all r ∈ R1 by induction on
cp(r). The induction basis is r = ι1(s) for some s ∈ S. Since the above diagrams are
commutative we conclude

ϕ(r) = ϕ(ι1(s)) = ι2(s) = ϕ′(ι1(s)) = ϕ′(r).

If r is additively decomposable there are r1, r2 ∈ R1 with r = r1 + r2 and r1, r2 C r as
seen in Remark 1.1.10. Thus,

ϕ(r) = ϕ(r1 + r2) = ϕ(r1) + ϕ(r2)
IH
= ϕ′(r1) + ϕ′(r2) = ϕ′(r1 + r2) = ϕ′(r).

If r is multiplicatively decomposable there are r1, r2 ∈ R1 with r = r1r2 and r1, r2 C r
as seen in Remark 1.1.14. Thus,

ϕ(r) = ϕ(r1r2) = ϕ(r1)ϕ(r2)
IH
= ϕ′(r1)ϕ′(r2) = ϕ′(r1r2) = ϕ′(r).
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1.2 Conradian left�ordered groups and locally indicable groups

If r is a proper atom, then r−1 C r as seen in Theorem 1.1.12. Thus,

ϕ(r) = ϕ(r−1)−1 IH
= ϕ′(r−1)−1 = ϕ′(r).

Proposition 1.1.17 Let S,R be rings with 1, D be a skew �eld and ϕ : D −→ R,
ι1 : S −→ D as well as ι2 : S −→ R be injective ring homomorphisms with ϕ(1) = 1
and ιi(1) = 1 for i ∈ {1, 2} such that

S
ι1 //

ι2

��

D

ϕ
��
R

is a commutative diagram. If D is the rational closure of ι1(S) in D, then ϕ(D) is the
rational closure of ι2(S) in R.

Proof. Since D is a skew �eld and ϕ is injective, ϕ(D) is also a skew �eld and as such
rationally closed in R. Furthermore, ι1(S) ⊆ D implies ι2(S) = ϕ(ι1(S)) ⊆ ϕ(D).
Therefore, if R′ is the rational closure of ι2(S) in R, then R′ ⊆ ϕ(D). Let D′ be the
inverse image of R′ under ϕ. If d ∈ D′ is a unit in D, then ϕ(d) ∈ R′ is a unit in R
which implies ϕ(d−1) = ϕ(d)−1 ∈ R′ and thus d−1 ∈ D′. Therefore, D′ is rationally
closed in D. As ϕ(ι1(S)) = ι2(S) ⊆ R′ implies ι1(S) ⊆ D′ and D is the rational closure
of ι1(S) in D, we conclude D ⊆ D′. Therefore ϕ(D) ⊆ ϕ(D′) = R′.

1.2 Conradian left�ordered groups and locally

indicable groups

De�nition 1.2.1 If G is a group and < is a total order on G, then < is called left�order
of G and G is called left�ordered with respect to < if

a < b =⇒ ca < cb

for all a, b, c ∈ G. Analogously one de�nes right�orders. If < is a left�order and a
right�order at the same time it is called an order of G and G is called ordered group
with respect to <.

Remark 1.2.2

1. If G is a left�ordered group and nothing more is said, we will use < as the symbol
for the corresponding left�order. Even if there are multiple left�ordered groups we
will use the same symbol if there is no danger of confusion.

2. If G is abelian and < is a left�order of G, then < is an order of G.

7



1 Basics

3. IfG is a left�ordered group it is torsion�free since e < g implies e < g < g2 < · · · < gn

and therefore e 6= gn for all n ∈ N.

De�nition 1.2.3 If G is a group then a subset P ⊆ G is called a positive cone of G, if
the following properties are ful�lled:

i) P · P ⊆ P ,

ii) P ∩ P−1 = ∅,
iii) G = P ∪ P−1 ∪ {e}.

Theorem 1.2.4 (cf. [4, page 267][16, section 1.5.]) If G is a left�ordered group then
P< := {a ∈ G | e < a} is a positive cone of G such that

a < b⇐⇒ a−1b ∈ P<

for all a, b ∈ G.

Theorem 1.2.5 (cf. [4, page 267][16, section 1.5.]) If G is a group and P is a positive
cone of G then

a < b :⇐⇒ a−1b ∈ P

for all a, b ∈ G de�nes a left�order of G such that P = P<.

Remark 1.2.6

1. As seen above each left�order admits a corresponding positive cone and vice versa.
Therefore we will use both terms interchangeable.

2. If G is a right�ordered group, then P< := {a ∈ G | e < a} is a positive cone such
that a < b is equivalent to ba−1 ∈ P< for all a, b ∈ G. Conversely, each positive
cone P of a group G de�nes a right�order < on G such that P = P<. Thus, each
left�order of a group has a corresponding right�order and vice versa. This way
one can translate statements about left�orders and right�orders of groups into
each other. This comes in handy as we will mainly use left�orders even though
most of the literature is about right�orders.

De�nition 1.2.7 If G is a left�ordered group and C ⊆ G is a subset (subgroup) of G
then C is called convex subset (subgroup) of G, if

a < b < c =⇒ b ∈ C

for all b ∈ G and a, c ∈ C.

Remark 1.2.8 For a subgroup C of the left�ordered group G it is su�cient to prove
that e < a < b implies a ∈ C for all a ∈ G and b ∈ C to prove that C is a convex
subgroup of G.
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1.2 Conradian left�ordered groups and locally indicable groups

Theorem 1.2.9 ([16, Theorem 2.1.1]) If G is a left�ordered group the following state-
ments hold:

i) The set of all convex subgroups is totally ordered with respect to ⊂.
ii) The intersection as well as the union of any nonempty family of convex subgroups

is a convex subgroup.

De�nition 1.2.10 If G is a left�ordered group and a ∈ G, a 6= e we de�ne

C−a :=
⋃
{C ⊆ G | C is a convex subgroup of G with a 6∈ C},

C+
a :=

⋂
{C ⊆ G | C is a convex subgroup of G with a ∈ C},

Ca := C−a 〈a〉.

Remark 1.2.11

1. We de�ne C−e := C+
e := Ce := {e}.

2. Theorem 1.2.9 shows that C−a and C+
a are convex subgroups of G. Furthermore

C+
a (C−a ) is the smallest (biggest) convex subgroup of G (not) containing a (for

a 6= e).

De�nition 1.2.12 Let G and H be left�ordered groups. A group homomorphism
ϕ : G −→ H is called order�preserving if

ϕ(a) < ϕ(b) =⇒ a < b

for all a, b ∈ G.

Remark 1.2.13

1. The above property is equivalent to a ≤ b =⇒ ϕ(a) ≤ ϕ(b) for all a, b ∈ G.
2. The kernel kerϕ is convex in G.

3. If G and H are left�ordered groups with corresponding positive cones PG and
PH then a group homomorphism ϕ : G −→ H is order�preserving if and only if
ϕ(a) ∈ PH implies a ∈ PG for all a ∈ G.

Theorem 1.2.14 ([4, 3.5 and Remark before 3.6]) Let G be a left�ordered group and
C be a convex normal subgroup of G. Then G/C is a left�ordered group with respect
to the positive cone

P := {gC ∈ G/C | g > e and g 6∈ C}

and the canonical homomorphism ϕ : G −→ G/C is order�preserving.

9



1 Basics

Remark 1.2.15

1. The above order of G/C is called canonical left�order of G/C.

2. If C is a convex normal subgroup of the left�ordered group G, then there is an
order�preserving correspondence between the convex subgroups of G/C and the
convex subgroups of G containing C. [4, after 3.6]

Theorem 1.2.16 (cf. [4, Lemma 4.1]) Let G be a left�ordered group. The following
properties are equivalent.

i) For all a, b ∈ G with e < a, b there exists an n ∈ N with ab < (ba)n.

ii) For all a, b ∈ G with e < a < b there exists an n ∈ N with b < a−1bna.

iii) For all a, b ∈ G with e < a, b there exists an n ∈ N with a < ban.

De�nition 1.2.17 A left�order < is called Conradian left�order if it has one of the
properties in Theorem 1.2.16 and a left�ordered group is called Conradian left�ordered
group if its left�order is a Conradian left�order.

Remark 1.2.18 Each ordered group is also Conradian left�ordered.

De�nition 1.2.19 A left�ordered group G is called Archimedean left�ordered group if
for all a, b ∈ G with e < b there exists an n ∈ N with a < bn.

Theorem 1.2.20 (cf. [4, 3.8][16, Theorem 2.2.1]) If G is a left�ordered group, then G
is Archimedean left�ordered if and only if there exists an order�preserving isomorphism
of G onto a subgroup of the additive group R.

Remark 1.2.21 Since R is commutative, each Archimedean left�order is also an order.
Therefore we will also use the term Archimedean order.

Theorem 1.2.22 ([4, 4.1]) Let G be a left�ordered group with respect to <. The
following statements are equivalent.

i) The left�order < is a Conradian left�order.

ii) For every a ∈ G the subgroup C−a is a normal subgroup of C+
a and C+

a /C
−
a is an

Archimedean ordered group with respect to the canonical order.

Corollary 1.2.23 If G is a Conradian left�ordered group and a ∈ G then Ca is a
subgroup of C+

a and C−a is a normal subgroup of Ca.

10



1.2 Conradian left�ordered groups and locally indicable groups

De�nition 1.2.24 Let G be a group and Λ be a set of subgroups of G. We call Λ a
subnormal system if the following holds:

i) {e}, G ∈ Λ.

ii) Λ is totally ordered with respect to ⊂.
iii) If Λ′ ⊆ Λ, Λ′ 6= ∅, then

⋂
Λ′,
⋃

Λ′ ∈ Λ.

iv) If ∆,∆′ ∈ Λ such that ∆ is the direct successor of ∆′ in Λ, then ∆′ is a normal
subgroup of ∆. We call ∆/∆′ factor of Λ.

Remark 1.2.25

1. If Λ is a subnormal system and a ∈ G, a 6= e, we de�ne ∆−a :=
⋃
{∆ ∈ Λ | a 6∈ ∆}

and ∆+
a :=

⋂
{∆ ∈ Λ | a ∈ ∆}. As one can easily see, ∆+

a is the direct successor
of ∆−a in Λ. Furthermore ∆+

a (∆−a ) is the smallest (biggest) element of Λ (not)
containing a.

2. Theorem 1.2.22 shows that a left�ordered group G is Conradian left�ordered if
and only if the set of all convex subgroups of G is a subnormal system such that
the canonical left�orders of its factors are Archimedean orders.

Lemma 1.2.26 If G is a group and Λ is a subnormal system in G such that each factor
of Λ admits a Conradian left�order, there is a Conradian left�order on G so that the
canonical homomorphisms of the factors of Λ are order preserving. Especially each
element of Λ is a convex subgroup of G.

Proof. We de�ne P := {a ∈ G \ {e} | a∆−a > ∆−a }. If a, b ∈ P one can assume that
b ∈ ∆+

a . We examine the following cases

Case 1: If b ∈ ∆−a then ab ∈ ∆+
a ∆−a ⊆ ∆+

a and ab∆−a = a∆−a > ∆−a which implies
ab 6∈ ∆−a . Hence ∆−ab = ∆−a and therefore ab ∈ P .

Case 2: If b 6∈ ∆−a then ∆−b = ∆−a and ∆+
b = ∆+

a . Since ∆+
a /∆

−
a is left�ordered we

conclude ab∆−a > ∆−a which also implies ab 6∈ ∆−a . Since ab ∈ ∆+
a ∆+

b = ∆+
a we

have ∆−ab = ∆−a and therefore ab ∈ P .
These cases prove P ·P ⊆ P . If a ∈ P then a∆−a > ∆−a . This implies a−1∆−a < ∆−a and
since ∆−a = ∆−a−1 we conclude a 6∈ P . Thus P ∩ P−1 = ∅. If a ∈ G with a 6= e, then
a∆−a > ∆−a or a−1∆−a > ∆−a . Since ∆−a = ∆−a−1 this proves G = P ∪ P−1 ∪ {e}. Hence
P is a positive cone and de�nes a left�order < of G.
Let ∆/∆′ be a factor of Λ and ϕ : ∆ −→ ∆/∆′ be the corresponding canonical ho-
momorphism. If a ∈ ∆ with ϕ(a) > e, then a∆−a > ∆−a and therefore a > e. Thus
ϕ is order�preserving according to Remark 1.2.13. Furthermore this shows that ∆′ is
convex in G as it is the kernel of ϕ.
If ∆ ∈ Λ with ∆ = G it is obviously convex. Otherwise ∆ is convex since

∆ =
⋂

a∈G\∆

∆−a ,

11



1 Basics

where each ∆−a is convex as seen above and the nonempty intersection of convex sub-
groups is itself convex according to Theorem 1.2.9.
For a, b ∈ G with e < a, b we can assume that b ∈ ∆+

a . Since a > e we have a∆−a > ∆−a .
Let ϕ : ∆+

a −→ ∆+
a /∆

−
a be the canonical homomorphism. We examine the following

cases.

Case 1: If b ∈ ∆−a then ab∆−a = ba∆−a = a∆−a < a2∆−a = (ab)2∆−a = (ba)2∆−a . Thus
ab < (ba)2 and ba < (ab)2 since ϕ is order�preserving.

Case 2: If b 6∈ ∆−a then ∆−a = ∆−b and therefore b∆−a > ∆−a as b > e. Since ∆+
a /∆

−
a is a

Conradian left�ordered group there exists an n ∈ N with ab∆−a = a∆−a b∆
−
a <

(b∆−a a∆−a )n = (ba)n∆−a . Thus ab < (ba)n since ϕ is order�preserving.

This proves that < is a Conradian left�order.

Theorem 1.2.27 If G is a group and Λ is a subnormal system in G such that each
factor of Λ is abelian and torsion�free, there exists a Conradian left�order of G with
the following properties:

i) Each element of Λ is a convex subgroup of G.

ii) For each a ∈ G the �nitely generated subgroups of C+
a /C

−
a are cyclic.

Proof. Because of Lemma 1.2.26 it is su�cient to prove this statement for torsion�free
abelian groups, whereas the second property is obtained by considering the following
diagram and Remark 1.2.15.

C+
a /C

−
a � C+

a /∆
−
a ⊆ ∆+

a /∆
−
a

Let H be an additively written abelian torsion�free group. Then ∼ de�ned by

(a,m) ∼ (b, n) :⇐⇒ na = mb

for all a, b ∈ H and m,n ∈ N is an equivalence relation on H × N. If one de�nes
a
n

:= {(b,m) ∈ H × N | (a, n) ∼ (b,m)} and H ′ := { a
n
| a ∈ H,n ∈ N} then H ′

equipped with the operation

a

n
+

b

m
:=

ma+ nb

nm

for all a
n
, b
m
∈ H ′ is an abelian torsion�free group such that H −→ H ′, h 7−→ h

1
is

an injective group homomorphism. Furthermore H ′ is divisible and can therefore be
viewed as a Q�vector space. It has a Q basis B which we assume to be well�ordered.
Let B = {vα | α < γ} for an ordinal number γ ∈ On. For each β ≤ γ we de�ne Hβ as
the subspace of H ′ with basis {vα | α < β}. Thus Λ := {Hβ | β ≤ γ} is a subnormal
system in H ′ with factors which are isomorphic to Q. Lemma 1.2.26 implies that there
exists a Conradian left�order on H ′ such that the elements of Λ are convex subgroups
of H ′. This induces a Conradian left�order on H such that the factors of the subnormal
system of its convex subgroups are isomorphic to subgroups of Q. Thus each �nitely
generated subgroup of such a factor is cyclic.

12
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De�nition 1.2.28 A Conradian left�ordered group G has maximal rank if for each
a ∈ G the �nitely generated subgroups of C+

a /C
−
a are cyclic.

Lemma 1.2.29 If G is a Conradian left�ordered group with respect to <, there exists
a Conradian left�order <′ on G such that G with <′ has maximal rank and each convex
subgroup of G with respect to < is also a convex subgroup with respect to the <′.

Proof. Let Λ be the set of all convex subgroups of G with respect to <. According
to Remark 1.2.25 Λ is a subnormal system with Archimedian ordered factors. Since
Archimedian ordered groups are abelian and torsion�free we can apply Theorem 1.2.27
which proves the claim.

De�nition 1.2.30 ([16, page 50]) A group G is called locally indicable if for every
�nitely generated nontrivial subgroup U of G there is a nontrivial homomorphism from
U onto Z.

Theorem 1.2.31 ([21, Theorem 4.1.][15]) A group is locally indicable if and only if
there exists a Conradian left�order of the group.

1.3 Group extensions and crossed product rings

Remark 1.3.1 Details about crossed product groups (group extensions) can be found
in [22] and [1, Chapter 4.1].

De�nition 1.3.2 Let H and N be groups and σ : H −→ AutN, a 7−→ σa as well as
η : H2 −→ N be functions. We call (N,H, η, σ) a factor system if the following is true
for all a, b, c ∈ H and u ∈ N :

i) η(a, e) = η(e, a) = e,

ii) σaσb(u) = η(a, b)σab(u)η(a, b)−1,

iii) σa (η(b, c)) η(a, bc) = η(a, b)η(ab, c).

Remark 1.3.3 If u ∈ N then σeσe(u) = η(e, e)σe2(u)η(e, e)−1 = e · σe(u) · e = σe(u)
and since σe is an automorphism we conclude σe = idN .

De�nition 1.3.4 Let (N,H, η, σ) be a factor system. Then N oη,σ H is de�ned as the
set N ×H equipped with the operation

(u, a)(v, b) := (uσa(v)η(a, b), ab).

This set is called crossed product group of N and H with respect to the factor system
(N,H, η, σ).

13
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Theorem 1.3.5 If (N,H, η, σ) is a factor system, N oη,σH, the crossed product group
of N and H with respect to (N,H, η, σ), is a group,

ι : N −→ N oη,σ H , u 7−→ (u, e)

is an injective homomorphism and

π : N oη,σ H −→ H , (u, a) 7−→ a

is a surjective homomorphism with kernel kerπ = ι(N).

Theorem 1.3.6 Let G,H be groups, N be a normal subgroup of G and G/N ∼= H.
Then there exists a factor system (N,H, η, σ) such that G ∼= N oη,σ H.

Remark 1.3.7 Details about crossed product rings can be found in [20, Chapter 1].

Theorem 1.3.8 Let F be a skew �eld, G be a group and (F×, G, η, σ) be a factor
system. For any �xed set X and bijective map x : G −→ X , g 7−→ xg, de�ne F [G; η, σ]
as the left F�vector space with basis X. Each element of F [G; η, σ] has a unique
representation in the form ∑

g∈G

agxg

with ag 6= 0 for only �nitely many g ∈ G and(∑
g∈G

agxg

)(∑
h∈G

bhxh

)
:=
∑
g∈G

∑
h∈G

agxg · bhxh

with

agxg · bhxh := agσg(bh)η(g, h)xgh

de�nes a multiplication on F [G; η, σ] such that F [G; η, σ] is a ring with 1. We call
F [G; η, σ] a crossed product ring.

Remark 1.3.9 Let F [G; η, σ] be a crossed product ring.

1. There are canonical embeddings of F and F×oη,σG into F [G; η, σ] and the group
of units of F [G; η, σ] respectively. These are

π1 :F −→ F [G; η, σ] , a 7−→ axe,

π2 :F× oη,σ G −→ U(F [G; η, σ]) , (a, g) 7−→ axg.

We will view F and F× oη,σ G as subsets of F [G; η, σ].

2. For T ⊆ F and U ⊆ G we will write TU := {axg | a ∈ T, g ∈ U}. Thus,
F×G = F× oη,σ G.

14



1.3 Group extensions and crossed product rings

Theorem 1.3.10 If G is a left�ordered group and F [G; η, σ] is a crossed product ring,
then the group of units in F [G; η, σ] is equal to F×G.

Proof. As noted in Remark 1.3.9 each axg ∈ F×G is a unit in F [G; η, σ]. Now let
b1xh1 + · · ·+ bmxhm be a unit in F [G; η, α] with m ∈ N, bj ∈ F× and hj ∈ G for j ≤ m.
Without loss of generality one can assume that h1 < · · · < hm. If a1xg1 + · · ·+ anxgn is
the inverse of b1xh1 + · · ·+ bmxhm with n ∈ N, ai ∈ F× and gi ∈ G for i ≤ n, as well as
pairwise di�erent gi, we have

xe = (a1xg1 + · · ·+ anxgn) (b1xh1 + · · ·+ bmxhm)

and therefore

0 =
∑

i≤n,j≤m
gihj=g

aixgibjxhj =
∑

i≤n,j≤m
gihj=g

(aiσgi(bj)η(gi, hj))︸ ︷︷ ︸
6=0

xg

for all g ∈ G with g 6= e. We choose i′, i′′ ≤ n with gi′h1 minimal and gi′′hm maximal
in G. If j ≤ m and i ≤ n, we observe

gi′h1 ≤ gih1 < gihj, for j 6= 1
gi′h1 < gih1 ≤ gihj, for i 6= i′

}
=⇒ gi′h1 < gihj, for (i, j) 6= (i′, 1).

Thus there is only one pair (i, j) with gihj = gi′h1. For this we conclude e = gihj = gi′h1.
Similarly gi′′hm = e which impliesm = 1. Hence b1xh1+· · ·+bmxhm = b1xh1 ∈ F×G.

Theorem 1.3.11 Let G1, G2 be left�ordered groups and F1[G1; η1, σ1], F2[G2; η2, σ2] be
crossed product rings as well as

ϕ : F1[G1; η1, σ1] −→ F2[G2; η2, σ2]

be a ring homomorphism with ϕ(1) = 1. Then ϕ(F1) ⊆ F2 and there exists a unique
group homomorphism ψ : G1 −→ G2, such that for every g ∈ G1 there is an a ∈ F×2
with ϕ(xg) = axψ(g).

Proof. If a ∈ F1 with a = 0 or a = 1, then ϕ(a) = 0 ∈ F2 or ϕ(a) = 1 ∈ F2. Now let
us choose an a ∈ F1 with a 6= 0, 1. Then a as well as a − 1 are units in F1[G1, η1, α1].
Therefore ϕ(a) and ϕ(a−1) are units in F2[G2, η2, α2]. Theorem 1.3.10 implies that there
are b ∈ F2, g ∈ G2 with ϕ(a) = bxg. Thus bxg − xe = ϕ(a)− ϕ(1) = ϕ(a− 1) ∈ F×2 G2.
Theorem 1.3.10 now implies g = e and therefore ϕ(a) = bxe ∈ F2.
For each g ∈ G1 there are a ∈ F×2 and g′ ∈ G2 with ϕ(xg) = axg′ . Let ψ : G1 −→ G2 be
de�ned by ψ(g) := g′. If g, h ∈ G1, there are a, b ∈ F×2 and g′, h′ ∈ G2 with ϕ(xg) = axg′
and ϕ(xh) = bxh′ . Since

ϕ(xgh) = ϕ(η2(g, h))−1︸ ︷︷ ︸
=:c∈F×2

ϕ(η2(g, h))ϕ(xgh) = cϕ(η2(g, h)xgh) = cϕ(xgxh) = cϕ(xg)ϕ(xh)

= caxg′bxh′ = caσ2g′(b)η2(g′, h′)︸ ︷︷ ︸
6=0

xg′h′
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we conclude ψ(gh) = g′h′ = ψ(g)ψ(h). Thus ψ is a group homomorphism. At last, ψ is
uniquely de�ned by ϕ since for each g ∈ G1 there is an a ∈ F×2 with ϕ(xg) = axψ(g).

Remark 1.3.12 If F [G; η, σ] is a crossed product ring and H is a subgroup of G, then
F [H; η|H×H , σ|H ] is a crossed product ring and

ι : F [H; η|H×H , σ|H ] −→ F [G; η, σ] , a1xh1 + · · ·+ anxhn 7−→ a1xh1 + · · ·+ anxhn

is an injective ring homomorphism with ι(1) = 1. We will write F [H; η, σ] instead of
F [H; η|H×H , σ|H ] and can interpret F [H; η, σ] as a subring of F [G; η, σ].

Proposition 1.3.13 Let F [G; η, σ] be a crossed product ring. Then the following
statements hold.

i) If a1, . . . , an ∈ F and g1, . . . , gn ∈ G for some n ∈ N, then there is an a ∈ F with

n∏
i=1

aixgi = axg1···gn .

Furthermore a = 0 implies ai = 0 for some i ≤ n.

ii) If g ∈ G then there is an a ∈ F× with x−1
g = axg−1 .

Proof.

i) We will prove this by induction on n. For n = 1 there is nothing to show. If n > 1
we have

n∏
i=1

aixgi = a1xg1

n∏
i=2

aixgi
IH
= a1xg1a

′xg2···gn = a1σg1(a′)η(g1, g2 · · · gn)︸ ︷︷ ︸
=:a∈F

xg1···gn .

If a = 0 then a1 = 0 or σg1(a′) = 0, where the latter implies a′ = 0 and therefore
ai = 0 for some i ≤ n with i 6= 0 by induction hypothesis.

ii) Since

xg−1xg = η(g−1, g)xg−1g = η(g−1, g)xe,

we have x−1
g = η(g−1, g)−1xg−1 .
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1.4 Formal power series

1.4 Formal power series

Remark 1.4.1 In the following section F will be a skew �eld and Γ a totally ordered
nonempty set without maximal or minimal elements. Furthermore we de�ne Γ̂ :=
Γ ∪ {∞} together with γ <∞ for all γ ∈ Γ.

De�nition 1.4.2 Let m : Γ −→ F be a function. Then suppm := {γ ∈ Γ | m(γ) 6= 0}
is called the support of m. If suppm is a well�ordered subset of Γ we call m a formal
power series (over Γ with coe�cients in F ). Furthermore F ((Γ)) denotes the set of all
formal power series over Γ with coe�cients in F .

Remark 1.4.3

1. F ((Γ)) is a right F�vector space with respect to the operations

m+m′ : Γ −→ F , γ 7−→ m(γ) +m′(γ),

ma : Γ −→ F , γ 7−→ m(γ)a

for m,m′ ∈ F ((G)) and a ∈ F .
2. For m ∈ F ((Γ)) we de�ne mγ := m(γ) for all γ ∈ Γ and write m as the formal

sum
∑

γ∈Γ γmγ or just
∑
γmγ if there is no ambiguity. Then we have∑

γmγ +
∑

γm′γ =
∑

γ
(
mγ +m′γ

)
,(∑

γmγ

)
· a =

∑
γ(mγa).

3. If suppm = {γ1, . . . , γn} for some n ∈ N0 we also write m = γ1mγ1 + · · ·+ γnmγn .

4. We write γ instead of γ1. Thus, we can treat Γ as a subset of F ((Γ)).

De�nition 1.4.4 For {mi | i ∈ I} ⊆ F ((Γ)) the formal sum
∑

i∈I mi is called convergent
if for every γ ∈ Γ there are only �nitely many i ∈ I with γ ∈ suppmi and

⋃
i∈I suppmi

is well�ordered.

Remark 1.4.5

1. If
∑

i∈I mi is convergent then

m : Γ −→ F , γ 7−→
∑
i∈I

mi(γ)

is a well�de�ned function and suppm ⊆
⋃
i∈I suppmi is well�ordered. Thus,

m ∈ F ((Γ)). We write
∑

i∈I mi := m.

2. If
∑

i∈I mi is convergent then
∑

i∈I′mi is convergent for each I ′ ⊆ I.

3. We will write
∑
mi instead of

∑
i∈I mi if there is no ambiguity.
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4. For m ∈ F ((Γ)) we can interpret γmγ as an element of F ((Γ)). In this case the sum∑
γmγ is convergent and therefore the formal sum coincides with the convergent

sum.

5. If
∑
mi is convergent then {mi | i ∈ I} is called summable in [5, �4 De�nition 2].

Lemma 1.4.6 Let J, I be index sets mj ∈ F ((Γ)) for all j ∈ J such that
∑

j∈J mj

converges and Ji ⊆ J for all i ∈ I such that J =
⋃
i∈I Ji is a disjoint union. Then∑

j∈Jimj converges for all i ∈ I. If m′i :=
∑

j∈Jimj then
∑

i∈I m
′
i converges and∑

j∈J mj =
∑

i∈I m
′
i.

Proof. Since Ji ⊆ J for each i ∈ I there is nothing to show for the �rst convergence.
Because of suppm′i ⊆

⋃
j∈Ji suppmj we have⋃

i∈I

suppm′i ⊆
⋃
i∈I

⋃
j∈Ji

suppmj ⊆
⋃
j∈J

suppmj

which implies that
⋃
i∈I suppm′i is well�ordered. If γ ∈ Γ with γ ∈ suppm′i for some

i ∈ I then there exists a j ∈ Ji with γ ∈ suppmj. Since J =
⋃
i∈I Ji is a disjoint union

and there are only �nitely many j ∈ J with γ ∈ suppmj there are only �nitely many
i ∈ I with γ ∈ suppm′i. Thus

∑
i∈I m

′
i converges.

For a �xed γ ∈ Γ the set J ′ := {j ∈ J | γ ∈ suppmj} is �nite. If J ′i := J ′ ∩ Ji for all
i ∈ I then J ′ =

⋃
i∈I J

′
i is a disjoint union. Hence∑

j∈J

mj(γ) =
∑
j∈J ′

mj(γ) =
∑
i∈I

∑
j∈J ′i

mj(γ) =
∑
i∈I

m′i(γ)

and
∑

j∈J mj =
∑

i∈I m
′
i is proven.

Remark 1.4.7 ([9]) Let I, J be index sets and mij ∈ F ((Γ)) for all i ∈ I and j ∈ J . If∑
(i,j)∈I×J mij converges then

∑
j∈J mij converges for all i ∈ I,

∑
i∈I mi converges for

mi =
∑

j∈J mij and
∑

(i,j)∈I×J mij =
∑

i∈I mi. This is proven by Lemma 1.4.6 if one
chooses J ′ := I × J and J ′i := {i} × J for all i ∈ I.

Theorem 1.4.8 (cf. [7, 9]) For ∆ ⊆ Γ anti�well�ordered we de�ne

U∆ := {m ∈ F ((Γ)) | ∀γ ∈ ∆ : m(γ) = 0}

and

U := {U∆ | ∆ ⊆ Γ is anti�well�ordered}.

There is a topology on F ((Γ)) such that F ((Γ)) is a topological F�vector space and U
forms a basis for the neighborhood �lter of O. Hereby we will consider F as topological
�eld with respect to the discrete topology.
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Remark 1.4.9

1. We will always consider F ((Γ)) as a topological F�vector space with respect to
this topology.

2. An endomorphism f of F ((Γ)) is continuous if and only if for every U∆ ∈ U there
is a U∆′ ∈ U with f(U∆′) ⊆ U∆.

3. The set of all continuous endomorphisms of F ((Γ)) forms a subalgebra with 1 of
the endomorphism algebra of F ((Γ)).

4. For details about topological vector spaces see [24].

Theorem 1.4.10 For m ∈ F ((Γ)) and mi ∈ F ((Γ)) with i ∈ I the following statements
are equivalent.

i) The sum
∑

i∈I mi is convergent with
∑

i∈I mi = m.

ii) For every anti�well�ordered ∆ ⊆ Γ there is a �nite I ′ ⊆ I such that∑
i∈I′

mi ∈ m+ U∆

and mi ∈ U∆ for each i ∈ I \ I ′.

Proof. "i)=⇒ii)": Let ∆ ⊆ Γ be anti�well�ordered. Since
∑

i∈I mi is convergent,⋃
i∈I suppmi is well�ordered and thus ∆′ := ∆ ∩

⋃
i∈I suppmi is �nite. For each γ ∈ Γ

we de�ne Iγ = {i ∈ I | γ ∈ suppmi}. Since
∑

i∈I mi is convergent, each Iγ is �nite.
Furthermore Iγ = ∅ for γ ∈ ∆ \∆′. Now we de�ne

I ′ := {i ∈ I | mi 6∈ U∆} =
⋃
γ∈∆

Iγ =
⋃
γ∈∆′

Iγ.

Since ∆′ and each Iγ are �nite, I ′ is �nite. Furthermore mi ∈ U∆ for each i ∈ I \ I ′ by
the de�nition of I ′. At last, if γ ∈ ∆, then

m(γ) =
∑
i∈Iγ

mi(γ) =
∑
i∈I′

mi(γ)

and thus
∑

i∈I′mi ∈ m+ U∆.
"ii)=⇒i)": Let ∆ ⊆

⋃
i∈I suppmi be a strictly decreasing sequence. As such it is anti�

well�ordered and therefore there is a �nite I ′ ⊆ I like in the premise. For i ∈ I \ I ′ we
havemi ∈ U∆ and thus suppmi∩∆ = ∅. Therefore, we conclude that ∆ ⊆

⋃
i∈I′ suppmi

and since
⋃
i∈I′ suppmi is a �nite union of well�ordered subsets of Γ it is itself well�

ordered. As ∆ is well�ordered and anti�well�ordered it has to be �nite which shows
that

⋃
i∈I suppmi is well�ordered.

For any γ ∈ Γ we de�ne ∆ := {γ}. Thus, there is a �nite I ′ ⊆ I like in the premise. For
each i ∈ I, if γ ∈ suppmi, then mi 6∈ U∆ and therefore i ∈ I ′. As I ′ is �nite there are
only �nitely many i ∈ I with γ ∈ suppmi. Hence

∑
i∈I mi is convergent. Furthermore,
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we have (∑
i∈I

mi

)
(γ) =

∑
i∈I′

mi(γ) = m(γ),

since
∑

i∈I′mi ∈ m+ U∆. This shows
∑

i∈I mi = m.

Theorem 1.4.11 (cf. [7, 9]) Let f be an endomorphism of F ((Γ)). The following
statements are equivalent:

i) The endomorphism f is continuous.

ii) If
∑
mi is convergent, then

∑
f(mi) is convergent and f (

∑
mi) =

∑
f(mi).

Proof. "i)=⇒ii)": Let
∑

i∈I mi be convergent with m =
∑

i∈I mi and ∆ ⊆ Γ be an
anti�well�ordered set. Since f is continuous there is an anti�well�ordered set ∆′ ⊆ Γ
with f(U∆′) ⊆ U∆. According to Theorem 1.4.10, since

∑
i∈I mi is convergent there is

a �nite set I ′ ⊆ I such that ∑
i∈I′

mi ∈ m+ U∆′

and mi ∈ U∆′ for each i ∈ I \ I ′. Thus, we have∑
i∈I′

f(mi) = f

(∑
i∈I′

mi

)
∈ f(m+ U∆′) = f(m) + f(U∆′) ⊆ f(m) + U∆,

and f(mi) ∈ U∆ for each i ∈ I \ I ′. This shows that
∑

i∈I f(mi) is convergent with∑
i∈I f(mi) = f(m) = f

(∑
i∈I mi

)
.

"ii)=⇒i)": For any anti�well�ordered ∆ ⊆ Γ we de�ne

∆′ := {γ ∈ Γ | supp f(γ) ∩∆ 6= ∅}.

Let {γi | i ∈ I} ⊆ ∆′ be a strictly increasing sequence. Then
∑
γi converges in F ((Γ)).

According to the premise this implies that
∑
f(γi) converges with

∑
f(γi)=f (

∑
γi).

Therefore, there is a �nite I ′ ⊆ I, such that∑
i∈I′

f(γi) ∈ f

(∑
i∈I

γi

)
+ U∆

and f(γi) ∈ U∆ for each i ∈ I \ I ′. Thus supp f(γi) ∩∆ = ∅ for each i ∈ I \ I ′. Since
supp f(γi)∩∆ 6= ∅ for each i ∈ I this implies I = I ′. Hence I is �nite. As each strictly
increasing sequence in ∆′ is �nite, ∆′ is anti�well�ordered.
For m ∈ U∆′ we can write m =

∑
γ∈Γ γmγ. According to the premise we know that∑

γ∈Γ f(γmγ) is convergent with
∑

γ∈Γ f(γmγ) = f(m). Thus

f(m) =
∑
γ∈Γ

f(γmγ)︸ ︷︷ ︸
∈U∆

∈ U∆

and therefore f(U∆′) ⊆ U∆.
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1.4 Formal power series

Remark 1.4.12 In [5, �5 De�nition 1] the notion of σ�linearity is introduced. Theorem
1.4.11 shows that σ�linear endomorphisms and continuous endomorphisms are exactly
the same.

De�nition 1.4.13 A map f : F ((Γ)) −→ F ((Γ)) is called v�compatible if

v(m) < v(m′)⇐⇒ v(f(m)) < v(f(m′))

holds for all m,m′ ∈ F ((Γ)), where

v : F ((Γ)) −→ Γ̂ , m 7−→

{
min suppm for m 6= O
∞ else.

Remark 1.4.14

1. If f is a v�compatible endomorphism of F ((Γ)) then f is injective.

2. The v�compatible automorphisms of F ((Γ)) form a group with respect to the
composition.

3. In [5, �5 De�nition 2] v�compatible endomorphisms are called monotone.

Theorem 1.4.15 ([6, Lemma 3][9, 23]) If f is a v�compatible continuous automorphism
of F ((Γ)) then f−1 is also a v�compatible continuous automorphism.

De�nition 1.4.16 A map f : F ((Γ)) −→ F ((Γ)) is called v�compatible on Γ if

γ < γ′ ⇐⇒ v(f(γ)) < v(f(γ′))

for all γ, γ′ ∈ Γ. Furthermore f is called surjective on Γ if for every γ ∈ Γ there exists
a γ′ ∈ Γ such that γ = v(f(γ′)).

Remark 1.4.17 A mapping f : F ((Γ)) −→ F ((Γ)) which is v�compatible on Γ (sur-
jective on Γ) is called locally monotone (locally surjective) in [5, �5 De�nition 2, �5
De�nition 4].

Theorem 1.4.18 (cf. [5, �5 Theorem 1][9]) If f is a continuous endomorphism of F ((Γ))
then the following statements are equivalent:

i) f is a v�compatible automorphism,

ii) f is v�compatible on Γ and surjective on Γ.

De�nition 1.4.19 An endomorphism f of F ((Γ)) is called monomial if for every γ ∈ Γ
there exist γ′ ∈ Γ and mγ′ ∈ F such that f(γ) = γ′mγ′ .
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Lemma 1.4.20 (cf. [5, �7 Proposition 1][9]) Let G be a group of monomial contin-
uous v�compatible automorphisms of F ((Γ)). If D is the rational closure of G in the
endomorphism ring of F ((Γ)) then

supp f(m) ⊆ {v(g(γ)) | g ∈ G, γ ∈ suppm}

for all f ∈ D and m ∈ F ((Γ)).

1.5 Skew �elds of fractions of crossed product rings

Remark 1.5.1 For the remainder of this chapter F will be a skew �eld, G a Conradian
left�ordered group and F [G; η, σ] a crossed product ring.

De�nition 1.5.2 If R is a ring andD a skew �eld thenD is called skew �eld of fractions
of R if there is an injective homomorphism ϕ : R −→ D with ϕ(1) = 1 such that D is
the rational closure of ϕ(R) in D. The map ϕ is called the associated embedding of R
into D.

Remark 1.5.3 Since ϕ is injective one can interpret R as a subring of D.

De�nition 1.5.4 Let R be a ring with 1 containing F [G; η, σ] as a subring such that
both have the same 1. If U is a subgroup of G and g ∈ G, then RU is the rational
closure of F×U (or F [U ; η, σ]) in R and R+

g := RC+
g
, R−g := RC−g

as well as Rg := RCg .

Remark 1.5.5 If we are using complexity as in De�nition 1.1.5 for RU or its derived
rings as in De�nition 1.5.4, we will consider F×U as the starting set M if nothing else
is speci�ed.

Proposition 1.5.6 If D is a skew �eld of fractions of F [G; η, σ], then x−kg D−g x
k
g = D−g

for all g ∈ G and k ∈ Z.

Proof. At �rst we will show x−kg rxkg ⊆ D−g for all r ∈ D−g , using induction on the
complexity of r ∈ D−g . For r ∈ FC−g there are a ∈ F and h ∈ C−g with r = axh.
Applying Proposition 1.3.13 we have x−kg axhx

k
g = a′xg−khgk for some a′ ∈ F . Since

C−g is a normal subgroup of C+
g we conclude g−khgk ∈ C−g and therefore x−kg axhx

k
g =

a′xg−khgk ∈ FC−g ⊆ D−g .
If r is additively decomposable there are r1, . . . , rn ∈ D−g with r = r1 + · · · + rn and
r1, . . . , rn C r. Applying the induction hypothesis we have

x−kg rxkg = x−kg (r1 + · · ·+ rn)xkg = x−kg r1x
k
g︸ ︷︷ ︸

∈D−g

+ · · ·+ x−kg rnx
k
g︸ ︷︷ ︸

∈D−g

∈ D−g .

If r is multiplicatively decomposable there are r1, . . . , rn ∈ D−g with r = r1 · · · rn and
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1.5 Skew �elds of fractions of crossed product rings

r1, . . . , rn C r. Applying the induction hypothesis we have

x−kg rxkg = x−kg (r1 · · · rn)xkg = (x−kg r1x
k
g)︸ ︷︷ ︸

∈D−g

· · · (x−kg rnx
k
g)︸ ︷︷ ︸

∈D−g

∈ D−g .

If r is a proper atom, there is a r1 ∈ D−g with r1Cr and r = r−1
1 . Applying the induction

hypothesis we have

x−kg rxkg = x−kg r−1
1 xkg = (x−kg r1x

k
g)︸ ︷︷ ︸

∈D−g

−1 ∈ D−g .

This shows x−kg D−g x
k
g ⊆ D−g for all k ∈ Z, and therefore also xkgD

−
g x
−k
g ⊆ D−g for all

k ∈ Z, which completes the proof.

Corollary 1.5.7 If D is a skew �eld of fractions of F [G; η, σ], g ∈ G, n1, . . . , nk ∈ Z
and a1, . . . , ak ∈ D−g for some k ∈ N, then there is an a ∈ D−g with

k∏
i=1

aix
ni
g = axn1+···+nk

g .

Proof. We use induction on k and apply Proposition 1.5.6. If k = 1 there is nothing
to show. For k > 1, by induction hypothesis, there is some a′ ∈ D−g with

k∏
i=2

aix
ni
g = a′xn2+···+nk

g .

Therefore

k∏
i=1

aix
ni
g = a1x

n1
g a
′xn2+···+nk
g = a1 x

n1
g a
′x−n1
g︸ ︷︷ ︸

∈D−g

xn1+n2+···+nk
g = axn1+···+nk

g

with a = a1(xn1
g a
′x−n1
g ) ∈ D−g by Proposition 1.5.6.

De�nition 1.5.8 Let D be a skew �eld and x an indeterminate over D. If an ∈ D for
all n ∈ Z and an = 0 for all n < N and some N ∈ Z then the formal sum∑

n∈Z

anx
n

is called (skew) formal Laurent series over D in x.

Remark 1.5.9 If f =
∑

n∈Z anx
n is a (skew) formal Laurent series over D in x as in

De�nition 1.5.8 we will also write f =
∑

n≥N anx
n or f =

∑
anx

n.
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Theorem 1.5.10 (cf. [3, Chapter 1.5]) Let D be a skew �eld, σ an automorphism of
D, x an indeterminate over D and D[[x;σ]] the set of all skew formal Laurent series
over D in x. Then D[[x;σ]] is a skew �eld with respect to the canonical addition and
multiplication de�ned by(∑

anx
n
)
·
(∑

bnx
n
)

:=
∑

cnx
n

whereas

cn :=
∑
k+l=n

akσ
k(bl).

We call D[[x;σ]] the ring of skew formal Laurent series over D in x.

Remark 1.5.11 For f ∈ D[[x;σ]] with

f =
∑

anx
n

and an = 0 for all n ∈ Z, n ≤ 0 the inverse of 1 − f in D[[x;σ]] can be calculated by
applying the geometric series. The idea is to use (1− f)−1 = 1 + f + f 2 + . . . , although
it is not formally de�ned. If

(1− f)−1 =
∑

bnx
n,

then bn = a0,n + · · ·+ an,n whereas ak,n is de�ned by

fk =
∑
n∈Z

ak,nx
n

for each k ∈ N0. Thus,

ak,nx
n =

∑
n1+···+nk=n

k∏
i=1

anix
ni

or

ak,n =

( ∑
n1+···+nk=n

k∏
i=1

anix
ni

)
x−n

for all n, k ∈ Z, k ≥ 0. If k ∈ N0 and n1, . . . , nk ∈ Z, then
∏k

i=1 anix
ni 6= 0 implies

ani 6= 0 and therefore ni ≥ 1 for all i ≤ k. Hence n1 + · · · + nk ≥ k if
∏k

i=1 anix
ni 6= 0.

By contraposition ak,n = 0 for all k, n ∈ Z with k > n. We can write

bn =
∑
k≥0

( ∑
n1+···+nk=n

k∏
i=1

anix
ni

)
x−n,
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1.5 Skew �elds of fractions of crossed product rings

since the occurring sums have only �nitely many non�zero summands. For f̂ ∈ D[[x;σ]],
f̂ 6= 0 with

f̂ =
∑

ânx
n

such that N ∈ Z is minimal with âN 6= 0 we write

f̂ = (âNx
N)
∑

(âNx
N)−1ânx

n = (âNx
N)
∑

cnx
n

with cn := (âNx
N)−1ân+Nx

N . Then cn = 0 for all n ∈ Z, n < 0 and c0 = 1. Applying
the above results leads to (∑

cnx
n
)−1

=
∑

ĉnx
n

with ĉn ∈ D de�ned by

ĉn =
∑
k≥0

 ∑
n1,...,nk∈N
n1+···+nk=n

k∏
i=1

(−cni)xni

x−n

for all n ∈ Z. Now

f̂−1 =
(∑

cnx
n
)−1

(âNx
N)−1 =

∑
ĉnx

n(âNx
N)−1 =

∑
b̂nx

n

with b̂n := ĉn+Nx
n+N(âNx

N)−1x−n ∈ D. Thus,

b̂n =
∑
k≥0

 ∑
n1,...,nk∈N

n1+···+nk=n+N

k∏
i=1

(−cni)xni

x−(n+N)xn+N(âNx
N)−1x−n

=
∑
k≥0

 ∑
n1,...,nk∈N

n1+···+nk=n+N

k∏
i=1

−(âNx
N)−1âni+Nx

ni+N

 (âNx
N)−1x−n.

Proposition 1.5.12 (cf. [3, page 88]) Let D be a skew �eld, σ an automorphism of
D and x an indeterminate over D. For the skew Laurent polynomial ring D[x, x−1;σ]
there is a unique injective ring homomorphism ι : D[x, x−1;σ] −→ D[[x;σ]] such that
ι(akx

k + · · ·+ alx
l) =

∑
anx

n for all k, l ∈ Z, k ≤ l and an ∈ D for n ∈ Z with an = 0
for n 6∈ {k, . . . , l}. We call ι the canonical embedding of D[x, x−1;σ] into D[[x;σ]] and
view D[x, x−1;σ] as a subring of D[[x;σ]].
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Remark 1.5.13 Let Di be a skew �eld, σi an automorphism of Di, xi an indeterminate
over Di for i ∈ {1, 2} and ϕ : D1[x1, x

−1
1 ;σ1] −→ D2[x2, x

−1
2 ;σ2] an injective ring

homomorphism such that ϕ(D1) ⊆ D2 and ϕ(x1) = dxl2 for some d ∈ D2, d 6= 0 and
l ∈ N. Then

ψ : D1[[x1;σ1]] −→ D2[[x2;σ2]] ,
∑

anx
n
1 7−→

∑
ânx

n
2

with ân := am(dxl2)mx−n2 if there is some m ∈ Z with n = lm and ân = 0 else, is a
well�de�ned injective ring homomorphism such that

D1[x1, x
−1
1 ;σ1]

ι1 //

ϕ

��

D1[[x1;σ1]]

ψ

��
D2[x2, x

−1
2 ;σ2]

ι2 // D2[[x2;σ2]]

is a commutative diagram, whereas ι1, ι2 are the canonical embeddings. Furthermore, ψ
is uniquely de�ned by ϕ. This allows us to view D1[[x1;σ1]] as a subring of D2[[x2;σ2]].

1.6 Dubrovin�rings

Theorem 1.6.1 (cf. [10]) For g ∈ G and a ∈ F , a 6= 0

faxg : F ((G)) −→ F ((G)) ,
∑
γ∈G

γmγ 7−→
∑
γ∈G

gγ (σgγ(aη(g, γ))mγ)︸ ︷︷ ︸
∈F

is a monomial, continuous, and v�compatible automorphism of F ((G)). The map

f : F [G; η, σ] −→ End(F ((G))) , a1xg1 + · · ·+ anxgn 7−→ fa1xg1
+ · · ·+ fanxgn

is a well�de�ned injective ring homomorphism.

Proof. Let g ∈ G and a ∈ F , a 6= 0 be �xed. For m ∈ F ((G)) and γ ∈ G we de�ne

m̂γ := gγ (σgγ(aη(g, γ))mγ) ∈ F ((G)).

If γ ∈ G, then supp m̂γ = {gγ} for γ ∈ suppm and supp m̂γ = ∅ else, since m̂γ = 0
is equivalent to mγ = 0. If γ′ ∈ G, then γ′ ∈ supp m̂γ implies γ′ = gγ and therefore
γ = g−1γ′. Thus, there is only one γ ∈ G with γ′ ∈ supp m̂γ. Since suppm is well�
ordered and G is a left�ordered group, g suppm is well�ordered. Hence⋃

γ∈G

supp m̂γ =
⋃

γ∈suppm

gγ = g suppm

implies that
⋃
γ∈G supp m̂γ is well�ordered. Thus

∑
γ∈G m̂γ converges and faxg is well�

de�ned. Furthermore, we have shown that supp faxg(m) = g suppm. If γ ∈ G, then
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1.6 Dubrovin�rings

supp faxg(γ) = {gγ}, hence faxg is monomial.
Let ∆ ⊆ G be anti�well�ordered. Then g−1∆ ⊆ G is anti�well�ordered. If m ∈ Ug−1∆,
then γ 6∈ suppm for all γ ∈ g−1∆. Thus, gγ 6∈ g suppm = supp faxg(m) for all γ ∈ g−1∆
and therefore, γ′ 6∈ supp faxg(m) for all γ′ ∈ ∆. Hence faxg(Ug−1∆) ⊆ U∆ and faxg is
continuous.
If γ, γ′ ∈ G with γ < γ′, then v(faxg(γ)) = gγ < gγ′ = v(faxg(γ

′)), since G is a
left�ordered group. Hence faxg is v�compatible on G. Furthermore, if γ ∈ G, then
v(faxg(g

−1γ)) = gg−1γ = γ with g−1γ ∈ G. Hence faxg is surjective on G. Since faxg
is continuous, v�compatible on G and surjective on G we can apply Theorem 1.4.18
which proves that faxg is a v�compatible automorphism.
For g ∈ G we de�ne f ′g : F −→ End(F ((G))) , a 7−→ faxg whereas f0 := 0. If a1, a2 ∈ F
and m ∈ F ((G)), then

f ′g(a1 + a2)(m) =
∑
γ∈G

gγ (σgγ((a1 + a2)η(g, γ))mγ)

=
∑
γ∈G

gγ (σgγ(a1η(g, γ))mγ) +
∑
γ∈G

gγ (σgγ(a2η(g, γ))mγ)

= f ′g(a1)(m) + f ′g(a2)(m).

Hence f ′g is a group homomorphism. Since F [G; η, σ] is a left vector space with basis
{xg | g ∈ G} it is also a direct sum of copies of the additive group F . We de�ne
the group homomorphisms ιg : F −→ F [G; η, σ] , a 7−→ axg for all g ∈ G. According
to the universal property of direct sums there exists a unique group homomorphism
f : F [G; η, σ] −→ End(F ((G))) such that

F
ιg //

f ′g %%

F [G; η, σ]

f
��

End(F ((G)))

is a commutative diagram for each g ∈ G. If g, γ ∈ G and a,mγ ∈ F , then

x−1
gγ axgxγ = x−1

gγ aη(g, γ)xgγ = σgγ(aη(g, γ))

and thus

f(axg)(γmγ) = faxg(γmγ) = gγ (σgγ(aη(g, γ))mγ) = gγ
(
x−1
gγ axgxγmγ

)
.

Therefore,

f((a1xg1)(a2xg2))(γmγ) = f
(
(a1xg1a2xg2x

−1
g1g2︸ ︷︷ ︸

∈F

)xg1g2

)
(γmγ)

= (g1g2)γ
(
x−1

(g1g2)γa1xg1a2xg2x
−1
g1g2

xg1g2xγmγ

)
= g1(g2γ)

(
x−1
g1(g2γ)a1xg1xg2γx

−1
g2γ
a2xg2xγmγ

)
= f(a1xg1)

(
g2γ

(
x−1
g2γ
a2xg2xγmγ

))
= f(a1xg1)f(a2xg2)(γmγ).
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for all a1, a2 ∈ F× and g1, g2 ∈ G. Since all occurring endomorphisms are continuous,
this proves f((a1xg1)(a2xg2)) = f(a1xg1)f(a2xg2). This is su�cient to prove that f is
a ring homomorphism. If g1, . . . , gn ∈ G are pairwise di�erent and a1, . . . , an ∈ F for
some n ∈ N0, then f(a1xg1 + · · ·+ anxgn) = 0 implies

g1σg1(a1) + · · ·+ gnσgn(an) = fa1xg1
(e) + · · ·+ fanxgn (e) = 0.

Hence σg1(a1) = · · · = σgn(an) = 0, since g1, . . . , gn are linearly independent in F ((G)).
Therefore a1 = · · · = an = 0 which means that f is injective.

De�nition 1.6.2 The rational closure of f(F×G) in End(F ((G))) with f as in Theorem
1.6.1 is called the Dubrovin�ring of F [G; η, σ].

Remark 1.6.3 The Dubrovin�ringR of F [G; η, σ] is the rational closure of f(F [G; η, σ])
in End(F ((G))). Since f is injective, we can interpret F [G; η, σ] as a subring of R.

Lemma 1.6.4 Let R be the Dubrovin�ring of F [G; η, σ] and I a set. If g ∈ G with
g > e and ai ∈ R−g , ni ∈ Z for all i ∈ I such that for each n ∈ Z there are only �nitely
many i ∈ I with ni ≤ n and ai 6= 0, then∑

i∈I

aix
ni
g m

converges for all m ∈ F ((C+
g )) such that

∑
i∈I aix

ni
g m ∈ F ((C+

g )).

Proof. Since G is a Conradian left�ordered group, the factor group C+
g /C

−
g is Archi-

median ordered. Because of Lemma 1.4.20 we have

supp aix
ni
g m ⊆ {v(axhγ) | axh ∈ F×C−g , γ ∈ suppxnig m}
⊆ {hγ | h ∈ C−g , γ ∈ gni suppm}
= C−g g

ni suppm ⊆ C−g C
+
g C

+
g ⊆ C+

g

for each i ∈ I. Let γ ∈ G be �xed. If i ∈ I with γ ∈ supp aix
ni
g m then ai 6= 0 and

there are γ′ ∈ suppm ⊆ C+
g and c ∈ C−g with γ = cgniγ′. Since v(m) ≤ γ′, we have

v(m)C−g ≤ γ′C−g . Hence

γC−g = cgniγ′C−g = gniγ′C−g ≥ gniv(m)C−g

which implies γv(m)−1C−g ≥ gniC−g . Since C
+
g /C

−
g is Archimedian ordered there is an

n ∈ N with

gniC−g ≤ γv(m)−1C−g < (gC−g )n = gnC−g

and thus ni < n. Hence there are only �nitely many i ∈ I with γ ∈ supp aix
ni
g m.

Let M be a nonempty subset of
⋃
i∈I supp aix

ni
g m and γ ∈ M . As seen above there is
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1.6 Dubrovin�rings

an n ∈ N with γv(m)−1C−g < gnC−g . For all i ∈ I and γ′ ∈ G with ni > n and γ′ ≤ γ
we have

γ′v(m)−1C−g ≤ γv(m)−1C−g < gnC−g < gniC−g

and therefore γ′ 6∈ supp aix
ni
g m. We de�ne I ′ := {i ∈ I | ni ≤ n, ai 6= 0}, which is

a �nite set by assumption. Since
⋃
i∈I′ supp aix

ni
g m is a �nite union of well�ordered

sets it is well�ordered itself. Because of γ ∈M ∩
⋃
i∈I′ supp aix

ni
g m, there is a smallest

element γ0 in M ∩
⋃
i∈I′ supp aix

ni
g m. If γ′ ∈ M with γ′ ≤ γ0, then γ′ ≤ γ0 ≤ γ and

γ′ ∈ supp aix
ni
g m for some i ∈ I. The argumentation above shows ni ≤ n and thus

i ∈ I ′ by de�nition of I ′, which means γ′ ∈M∩
⋃
i∈I′ supp aix

ni
g m and therefore γ0 ≤ γ′.

Hence γ0 is the smallest element of M and
⋃
i∈I supp aix

ni
g m is well�ordered.

Since supp aix
ni
g m ⊆ C+

g for all i ∈ I we conclude supp
∑
aix

ni
g m ⊆ C+

g . Hence∑
aix

ni
g m ∈ F ((C+

g )).

Corollary 1.6.5 Let R be the Dubrovin�ring of F [G; η, σ], g ∈ G with g > e and
an ∈ R−g for all n ∈ Z. If there exists an N ∈ Z such that an = 0 for all n < N , then∑

n∈Z

anx
n
gm

converges for all m ∈ F ((C+
g )) and

∑
n∈Z anx

n
gm ∈ F ((C+

g )).

Lemma 1.6.6 Let R be the Dubrovin�ring of F [G; η, σ], g ∈ G with g > e and
r1, . . . , rk ∈ R, N1, . . . , Nk ∈ Z for some k ∈ N. If ai,n ∈ R−g are continuous for all
n ∈ Z, i ∈ {1, . . . , k} and ai,n = 0 for all n < Ni, i ∈ {1, . . . , k} such that

rim =
∑
n∈Z

ai,nx
n
gm

for all m ∈ F ((C+
g )), then

∑
n∈Z

 ∑
n1,...,nk∈Z
n1+···+nk=n

(
k∏
i=1

ai,nix
ni
g

)
m


converges for all m ∈ F ((C+

g )) and

r1 · · · rkm =
∑
n∈Z

 ∑
n1,...,nk∈Z
n1+···+nk=n

(
k∏
i=1

ai,nix
ni
g

)
m

 . (1.1)

Proof. As seen in Corollary 1.5.7, if n1, . . . , nk ∈ Z, there is an an1,...,nk ∈ R−g with∏k
i=1 ai,nix

ni
g = an1,...,nkx

n1+···+nk
g which means that(
k∏
i=1

ai,nix
ni
g

)
x−(n1+···+nk)
g = an1,...,nk ∈ R−g .
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Let n ∈ Z be �xed for now. If n1, . . . , nk ∈ Z with an1,...,nk 6= 0 and n1+· · ·+nk ≤ n then
ai,ni 6= 0 for all i ∈ {1, . . . , k}, which implies ni ≥ Ni for all i ∈ {1, . . . , k}. Therefore,

Ni ≤ ni ≤ n−
∑
j 6=i

nj ≤ n−
∑
j 6=i

Nj

for all i ∈ {1, . . . , k}. Thus, there are only �nitely many (n1, . . . , nk) ∈ Zk with
an1,...,nk 6= 0 and n1 + · · ·+ nk ≤ n. According to Lemma 1.6.4 the sum

∑
(n1,...,nk)∈Zk

(
k∏
i=1

ai,nix
ni
g

)
m︸ ︷︷ ︸

=an1,...,nk
x
n1+···+nk
g m

(1.2)

converges for all m ∈ F ((C+
g )). Because of Lemma 1.4.6 and

Zk =
⋃
n∈Z

{(n1, . . . , nk) ∈ Zk | n1 + · · ·+ nk = n}

being a disjoint union,

∑
n∈Z

( ∑
n1+···+nk=n

(
k∏
i=1

ai,nix
ni
g

)
m

)

converges for all m ∈ F ((C+
g )) and is equal to (1.2).

To prove (1.1), we will use induction on k. For k = 1 prerequisite and claim are
identical and there is nothing to show. If k > 1 we can apply the induction hypothesis
on r1 · · · rk−1. Thus

r1 · · · rk−1 (rkm)
IH
=
∑
n∈Z

 ∑
n1+···+nk−1=n

(
k−1∏
i=1

ai,nix
ni
g

)
rkm


=
∑
n∈Z

 ∑
n1+···+nk−1=n

(
k−1∏
i=1

ai,nix
ni
g

)(∑
nk∈Z

ak,nkx
nk
g m

)
=
∑
n∈Z

∑
nk∈Z

 ∑
n1+···+nk−1=n

(
k∏
i=1

ai,nix
ni
g

)
m

 .

Hereby we use, that the ai,nix
ni
g are continuous. Using the convergence in (1.2) as well

as applying Lemma 1.4.6 and the facts that

Zk =
⋃
n∈Z

{(n1, . . . , nk) ∈ Zk | n1 + · · ·+ nk−1 = n}︸ ︷︷ ︸
=:Mn
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is a disjoint union and

Mn = {(n1, . . . , nk−1) ∈ Zk−1 | n1 + · · ·+ nk−1 = n} × Z

for all n ∈ Z we observe that

∑
(n1,...,nk)∈Zk

(
k∏
i=1

ai,nix
ni
g

)
m =

∑
n∈Z

 ∑
(n1,...,nk)∈Zk
n1+···+nk−1=n

(
k∏
i=1

ai,nix
ni
g

)
m


=
∑
n∈Z

∑
nk∈Z

 ∑
n1+···+nk−1=n

(
k∏
i=1

ai,nix
ni
g

)
m

 .

Thus we have proven (1.1).
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2 Hughes�free embeddings

2.1 Hughes�free skew �elds of fractions

De�nition 2.1.1 (cf. [13]) Let F [G; η, σ] be a crossed product ring and G a locally
indicable group. A skew �eld D is called a Hughes�free skew �eld of fractions of
F [G; η, σ] if D is a skew �eld of fractions of F [G; η, σ] and the following holds. For
each �nitely generated subgroup H of G and each normal subgroup N of H such
that H/N is an in�nite cyclic group with hN as a generating element of H/N every
t ∈ F×xh is left transcendental over the rational closure DN of F [N ; η, σ] in D, that
is, antn + · · · + a1t + a0 = 0 implies an = · · · = a0 = 0 for all a0, . . . , an ∈ DN and all
n ∈ N0. The associated embedding is called Hughes�free embedding.

De�nition 2.1.2 Let F [G; η, σ] be a crossed product ring and G a Conradian left�
ordered group with maximal rank. A skew �eld D is called a free skew �eld of fractions
of F [G; η, σ] if D is a skew �eld of fractions of F [G; η, σ] and any t ∈ F×xg is left
transcendental over the rational closure D−g of F [C−g ; η, σ] in D for each g ∈ G \ {e}.
The associated embedding is called free embedding.

Proposition 2.1.3 Let F [G; η, σ] be a crossed product ring and G a Conradian left�
ordered group with maximal rank. If D is a Hughes�free skew �eld of fractions of
F [G; η, σ] then it is also a free skew �eld of fraction of F [G; η, σ] with respect to the
same embedding.

Proof. According to Theorem 1.2.31, G is locally indicable. For any g ∈ G, g 6= e let
a0, . . . , an ∈ D−g and t ∈ F×xg be such that

ant
n + · · ·+ a1t+ a0 = 0.

Since a0, . . . , an ∈ D−g there are g1, . . . , gk ∈ C−g for some k ∈ N such that a0, . . . , an ∈
D〈g1,...,gn〉. If we de�ne U := 〈g, g1, . . . , gk〉 ⊆ C+

g and N := U ∩ C−g then N is a normal
subgroup of U such that U/N is in�nite cyclic and gN is a generating element of U/N .
Because of g1, . . . , gk ∈ U ∩ C−g = N we know that a0, . . . , an ∈ DN and since D is a
Hughes�free skew �eld of fractions of F [G; η, σ] this implies a0 = · · · = an = 0. Thus
we have proven that D is a free skew �eld of fractions of F [G; η, σ].
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2.2 Series Representations

Remark 2.2.1 For the remainder of this chapter we will assume that F [G; η, σ] is
a crossed product ring whereas G is a Conradian left�ordered group with maximal
rank with respect to < and D is a free skew �eld of fractions of F [G; η, σ] with
ι : F [G; η, σ] −→ D as the associated embedding. Furthermore, in most cases we
will consider F [G; η, σ] to be a subring of D.
If g ∈ G then xg induces an automorphism on F [G; η, σ] by conjugation. It is an exten-
sion of σg and can also be extended ontoD−g as seen in Proposition 1.5.6. We will denote
all these automorphisms by σg. If g 6= e then xg is left transcendental over D−g since D is
a free skew �eld of fractions of F [G; η, σ] and therefore an indeterminate over D−g . The
skew Laurent polynomial ring D−g [xg, x

−1
g ;σg] is an Ore�domain (cf. [1, Chapter 1.1 es-

pecially Proposition 1.1.4.]) with the unique skew �eld of fractions D−g (xg;σg) which is
isomorphic to Dg. Since D−g [[xg;σg]] contains a skew �eld of fractions of D−g [xg, x

−1
g ;σg]

there is a unique embedding of Dg into D−g [[xg;σg]] such that

D−g (xg;σg) ///

((

Dg

��
D−g [xg, x

−1
g ;σg] //

OO

D−g [[xg;σg]]

is a commutative diagram [1, page 88]. We will consider Dg to be a subring of
D−g [[xg;σg]].

Remark 2.2.2 We formally de�ne D−e [[xe;σe]] := F and write each d ∈ D−e [[xe;σe]] in
the form

d =
∑
n∈Z

anx
n
e

with a0 = d and an = 0 for n ∈ Z, n 6= 0.

De�nition 2.2.3 If d ∈ D and g ∈ G, g ≥ e such that d ∈ Dg ⊆ D−g [[xg;σg]], we call

d =
∑
n∈Z

anx
n
g ∈ D−g [[xg;σg]]

series representation of d. If additionally an C d holds for all n ∈ Z or d ∈ F× and
g = e, we call the series representation proper. If there is an h ∈ G such that x−1

h d
or dx−1

h has a (proper) series representation, it is called a (proper) left or right series
representation respectively.
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2.2 Series Representations

Theorem 2.2.4 If d ∈ D and h ∈ G such that

x−1
h d =

∑
n∈Z

anx
n
g ∈ D−g [[xg;σg]]

is a left series representation and ĝ, ĥ ∈ G with g, ĥ−1h ∈ Cĝ as well as ĝ ≥ e, then
there exist ân ∈ D−ĝ for all n ∈ Z such that

x−1

ĥ
d =

∑
n∈Z

ânx
n
ĝ ∈ D−ĝ [[xĝ;σĝ]],

is a left series representation such that one of the following alternatives holds.

i) If C+
g = C+

ĝ , then for each n̂ ∈ Z there exist n ∈ Z and b, c ∈ FG such that
ân̂ = banc ∈ D−ĝ or ân̂ = 0.

ii) If C+
g ⊂ C+

ĝ , then there are b, c ∈ FG and N̂ ∈ Z with ân = bdc ∈ D−ĝ for n = N̂

and ân = 0 for n 6= N̂ .

Proof. Since g, ĥ−1h ∈ Cĝ there are l,m ∈ Z and g′, h′ ∈ C−ĝ with g = g′ĝl as well as

ĥ−1h = h′ĝm. Hence there exist b′, c′ ∈ FC−ĝ with xg = c′xlĝ and x
−1

ĥ
xh = b′xmĝ . As seen

in Remark 1.5.13 this allows us to view D−g [[xg;σg]] as a subring of D−ĝ [[xĝ;σĝ]]. We
examine the following cases.

Case 1: C+
g = C+

ĝ . For g = ĝ = e there is nothing to show. If g, ĝ > e then l > 0. For
each n ∈ Z there exists a c′n ∈ FC−ĝ with xng =

(
c′xlĝ

)n
= c′nx

ln
ĝ . Therefore we

have

x−1

ĥ
d = x−1

ĥ
xhx

−1
h d = x−1

ĥ
xh
∑
n∈Z

anx
n
g = b′xmĝ

∑
n∈Z

an
(
c′nx

ln
ĝ

)
=
∑
n∈Z

b′xmĝ anc
′
nx
−m
ĝ xln+m

ĝ .

We de�ne ân̂ := b′xmĝ anc
′
nx
−m
ĝ ∈ D−ĝ for n̂, n ∈ Z with n̂ = ln + m and ân̂ = 0

else, to get

x−1

ĥ
d =

∑
n∈Z

ânx
n
ĝ .

Because of b′, an, c′n ∈ D−ĝ we have âln+m = b′xmĝ anc
′
nx
−m
ĝ ∈ D−ĝ as well as

b′xmĝ , c
′
nx
−m
ĝ ∈ FG.

Case 2: C+
g 6= C+

ĝ . Then C
+
g ⊆ C−ĝ , which implies x−1

h d ∈ Dg ⊆ D−ĝ as well as

x−1

ĥ
d = x−1

ĥ
xhx

−1
h d = b′xmĝ x

−1
h d =

(
b′xmĝ x

−1
h︸ ︷︷ ︸

∈FG

d x−mĝ︸︷︷︸
∈FG

)
xmĝ .

Since x−1
h d, b′ ∈ D−ĝ , we have b′xmĝ x

−1
h dx−mĝ ∈ D−ĝ . We de�ne N̂ := m.
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2 Hughes�free embeddings

Remark 2.2.5 The left series representation of x−1

ĥ
d as given in Theorem 2.2.4 is proper

if and only if the left series representation of x−1
h d is proper and C+

g = C+
ĝ .

Theorem 2.2.6 Let

x−1
hi
di =

∑
n∈Z

ai,nx
n
gi
∈ D−gi [[xgi ;σgi ]]

be left series representations of d1, . . . , dk ∈ D. There exist g, h ∈ G with g ≥ e and

C+
g = C+

g1
∪ · · · ∪ C+

gk
∪ C+

h−1h1
∪ · · · ∪ C+

h−1hk

as well as

g1, . . . , gk, h
−1h1, . . . , h

−1hk ∈ Cg.

For d := d1 + · · ·+ dk there exists a left series representation

x−1
h d =

∑
n∈Z

anx
n
g ∈ D−g [[xg;σg]]

with an = â1,n + · · · + âk,n. Hereby for each n ∈ Z and i ∈ {1, . . . , k} there are n′ ∈ Z
and b, c ∈ FG with âi,n = bai,n′c ∈ D−g , âi,n = bdic ∈ D−g or âi,n = 0. Furthermore, for
each n ∈ Z there exist i ∈ {1, . . . , k}, n′ ∈ Z and b, c ∈ FG with âi,n = bai,n′c ∈ D−g or
âi,n = 0.

Proof. One can choose any h ∈ h1C
+
g1
∪· · ·∪hkC+

gk
. Since the convex subgroups of G are

ordered with respect to ⊆ one of the convex subgroups C+
g1
, . . . , C+

gk
, C+

h−1h1
, . . . , C+

h−1hk

is maximal, which we will denote by C+. As G has maximal rank there is a g ∈ C+,
g ≥ e with C+

g = C+ and g1, . . . , gk, h
−1h1, . . . , h

−1hk ∈ Cg. According to Theorem
2.2.4 there exists a left series representation

x−1
h di =

∑
n∈Z

âi,nx
n
g ∈ D−g [[xg;σg]],

for each i ∈ {1, . . . , k}, such that for every n ∈ Z there are ni ∈ Z and b, c ∈ FG with
âi,n = bai,nic ∈ D−g , âi,n = bdic ∈ D−g or âi,n = 0.
We examine the following cases.

Case 1: There is an i ∈ {1, . . . , k} with C+
g = C+

gi
. Then for each n ∈ Z there are

ni ∈ Z and b, c ∈ FG with âi,n = bai,nic ∈ D−g or âi,n = 0.

Case 2: C+
g 6= C+

gi
for all i ∈ {1, . . . , k}. Then there is a j ∈ {1, . . . , k} with C+

g =
C+
h−1hj

. Furthermore, for each i ∈ {1, . . . , k} there are Ni ∈ Z as well as
b, c ∈ FG with âi,n = bdic ∈ D−g for n = Ni and âi,n = 0 else. To show that for
each n ∈ Z there exists an i ∈ {1, . . . , k} with âi,n = 0, it is su�cient to prove,
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2.2 Series Representations

that N1, . . . , Nk are not all the same. According to Theorem 2.2.4 we have
h−1hi ∈ gNiC−g for all i ∈ I. Since C+

g = C+
h−1hj

, we know that h−1hj 6∈ C−g
and therefore Nj 6= 0. By choice of h there is a j′ ∈ {1, . . . , k} with h ∈ hj′C+

gj′
.

Hence h−1hj′ ∈ C+
gj′
⊆ C−g , which implies Nj′ = 0.

Theorem 2.2.7 Let d1, . . . , dk ∈ D and h1, . . . , hk+1 ∈ G, such that each dixhi+1
with

i ∈ {1, . . . , k} has a left series representation

x−1
hi

(dixhi+1
) =

∑
n∈Z

ai,nx
n
gi
∈ D−gi [[xgi ;σgi ]].

Then there are g, h ∈ G with g ≥ e and

C+
g = C+

g1
∪ · · · ∪ C+

gk

as well as

g1, . . . , gk, h
−1h1 ∈ Cg,

such that d := d1 · · · dkxhk+1
has a left series representation

x−1
h d =

∑
n∈Z

anx
n
g ∈ D−g [[xg;σg]]

with

an =
∑

n1+···+nk=n

(
k∏
i=1

âi,nix
ni
g

)
x−ng .

Hereby, for each i ∈ {1, . . . , k} and ni ∈ Z there exist n′ ∈ Z and b, c ∈ FG such
that âi,ni = bai,n′c ∈ D−g , âi,ni = bdic ∈ D−g or âi,ni = 0. Furthermore, there is an
i ∈ {1, . . . , k} such that for each ni ∈ Z there exist n′ ∈ Z as well as b, c ∈ FG with
âi,ni = bai,n′c ∈ D−g or âi,ni = 0.

Proof. Since the convex subgroups of G are totally ordered with respect to ⊆, one
of the convex subgroups C+

g1
, . . . , C+

gk
, is maximal, which will be denoted by C+. We

may choose any h ∈ h1C
+ and since G has maximal rank there is a g ∈ C+, g ≥ e

with C+
g = C+ and g1, . . . , gk, h

−1h1 ∈ Cg. According to Theorem 2.2.4 and since
h−1

2 h2, . . . , h
−1
k hk ∈ Cg there exist left series representations

x−1
h (d1xh2) =

∑
n1∈Z

â1,n1x
n1
g ∈ D−g [[xg;σg]]

for d1xh2 and

x−1
hi

(dixhi+1
) =

∑
ni∈Z

âi,nix
ni
g ∈ D−g [[xg;σg]]
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2 Hughes�free embeddings

for dixhi+1
with i ∈ {2, . . . , k}, such that for every ni ∈ Z there are n′ ∈ Z and b, c ∈ FG

with âi,ni = bai,n′c ∈ D−g , âi,ni = bdixhi+1
c ∈ D−g or âi,n = 0.

Now we have

x−1
h d = x−1

h d1 · · · dkxhk+1
= x−1

h d1xh2

k∏
i=2

x−1
hi
dixhi+1

=
k∏
i=1

∑
ni∈Z

âi,nix
ni
g =

∑
n∈Z

anx
n
g

and

an =
∑

n1+···+nk=n

(
k∏
i=1

âi,nix
ni
g

)
x−ng .

Since C+
g = C+

gi
holds for at least one i ∈ {1, . . . , k} there exist n′ ∈ Z and b, c ∈ FG

for each ni ∈ Z, such that âi,ni = bai,n′c ∈ D−g or âi,ni = 0.

Remark 2.2.8 The analogous statements about right series representations for Theo-
rems 2.2.4, 2.2.6, 2.2.7 are also true.

Theorem 2.2.9 Each element d ∈ D with cp(d) ≥ 1 has a proper left series represen-
tation. If

x−1
h d =

∑
n∈Z

anx
n
g ∈ Dg ⊆ D−g [[xg;σg]]

is a proper left series representation then C+
g and the left coset hC+

g are uniquely
determined by d. The analogous statement for proper right series representations and
right cosets also holds.

Proof. We will only prove the statements about left series representations as the re-
spective statements about right series representations can be proven similarly. We will
use induction on the complexity of d. The induction basis is cp(d) = 1. Then d ∈ FG
and there are g ∈ G, b ∈ F with d = bxg = x−1

g−1(xg−1bxg). By choosing h = g−1 and
a = xg−1bxg ∈ F we are done. For the induction step we can assume d ∈ D with
d 6∈ FG.
If d is additively decomposable let d = d1 + · · ·+ dk with d1, . . . , dk C d be a complete
additive decomposition of d. Applying the induction hypothesis there are proper left
series representations

x−1
hi
di =

∑
n∈Z

ai,nx
n
gi
∈ D−gi [[xgi ;σgi ]]

for d1, . . . , dk. Since d 6∈ FG we know that h1 = · · · = hk and g1 = · · · = gk = e are not
both true. Because of Theorem 2.2.6 there are g, h ∈ G with g > e

C+
g = C+

g1
∪ · · · ∪ C+

gk
∪ C+

h−1h1
∪ · · · ∪ C+

h−1hk
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as well as

g1, . . . , gk, h
−1h1, . . . , h

−1hk ∈ Cg,

such that for d := d1 + · · ·+ dk there exists a left series representation

x−1
h d =

∑
n∈Z

anx
n
g ∈ D−g [[xg;σg]]

with an = â1,n + · · ·+ âk,n. Hereby, for each n ∈ Z and i ∈ {1, . . . , k} there are n′ ∈ Z
and b, c ∈ FG with âi,n = bai,n′c, âi,n = bdic or âi,n = 0. Applying Theorem 1.1.15
leads to

âi,n = bai,n′cE ai,n′ E di,

âi,n = bdicE di

or âi,n = 0 E di. Furthermore for each n ∈ Z there exist i ∈ {1, . . . , k}, n′ ∈ Z and
b, c ∈ FG with âi,n = 0C di or âi,n = bai,n′cC di if di 6∈ F×G.
Let us assume that there is an n ∈ Z such that no i ∈ {1, . . . , k} satis�es âi,n C di.
Then di ∈ F×G for all i ∈ {1, . . . , k}. Thus, there are Ni ∈ Z and b, c ∈ FG for each
i ∈ {1, . . . , k} with âi,n = bdic if n = Ni and âi,n = 0 else. If N1 = · · · = Nk then

d = xh

(
k∑
i=1

âi,n

)
xng ∈ FG

for an n ∈ Z, which contradicts cp(d) > 1. Therefore, for each n ∈ Z there is an
i ∈ {1, . . . , k} with âi,n = 0C di, a contradiction to the above assumption.
Thus, we have proven that âi,n E di for each i ∈ {1, . . . , k} and âi,n C di for some
i ∈ {1, . . . , k} if n ∈ Z. Therefore, an = â1,n + · · ·+ âk,nC d1 + · · ·+ dk = d by Theorem
1.1.9. This implies that the left series representation

x−1
h d =

∑
n∈Z

anx
n
g ∈ D−g [[xg;σg]]

is proper.
If d is additively indecomposable and multiplicatively decomposable then d admits a
complete multiplicative decomposition d = d1 · · · dk with d1, . . . , dk C d. We will de�ne
hk+1, . . . , h1 in such a way, that dixhi+1

has a proper left decomposition

x−1
hi

(dixhi+1
) =

∑
n∈Z

ai,nx
n
gi
∈ D−gi [[xgi ;σgi ]]

for i ∈ {1, . . . , k} and we choose hk+1 := e. If hk+1, . . . , hi+1 are chosen, we can apply
the induction hypothesis because of cp(dixhi+1

) = cp(di). Hence dixhi+1
has a proper

left series representation of the required kind. As the di are proper atoms, we know
that g1, . . . , gk > e for all i ∈ {1, . . . , k}. According to Theorem 2.2.7 there are g, h ∈ G
with g > e and

C+
g = C+

g1
∪ · · · ∪ C+

gk
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as well as

g1, . . . , gk, h
−1h1 ∈ Cg

such that d := d1 · · · dkxhk+1
has a left series representation

x−1
h d =

∑
n∈Z

anx
n
g ∈ D−g [[xg;σg]]

with

an =
∑

n1+···+nk=n

(
k∏
i=1

âi,nix
ni
g

)
x−ng .

Hereby, for each i ∈ {1, . . . , k} and ni ∈ Z there are n′ ∈ Z and b, c ∈ FG with
âi,ni = bai,n′c E ai,n′ E di, âi,ni = bdic E di or âi,ni = 0 E di. Furthermore, there is an
i ∈ {1, . . . , k} such that for each ni ∈ Z there exist n′ ∈ Z as well as b, c ∈ FG with
âi,ni = bai,n′cE ai,n′ C di or âi,ni = 0C di.
If ni ∈ Z is �xed for each i ∈ {1, . . . , k} we know that âi,nix

ni
g E âi,ni E di holds for all

i ∈ {1, . . . , k} and âi,nixnig E âi,n C di is true for some i ∈ {1, . . . , k}. Therefore, we can
apply Theorems 1.1.15 and 1.1.13 to show(

k∏
i=1

âi,nix
ni
g

)
x−ng E

k∏
i=1

âi,nix
ni
g︸ ︷︷ ︸

Edi

Cd.

Since d is additively indecomposable we can furthermore apply Remark 1.1.8 and con-
clude

an =
∑

n1+···+nk=n

(
k∏
i=1

âi,nix
ni
g

)
x−ng︸ ︷︷ ︸

Cd

Cd,

which shows that the associated left series representation is proper.
If d is a proper atom then d−1C d according to Theorem 1.1.12, which implies that d−1

has a proper right series representation

d−1x−1
h =

∑
n∈Z

ânx
n
g ∈ D−g [[xg;σg]].

Then ânCd−1Cd and therefore ânxngCd
−1Cd for each n ∈ Z. LetN ∈ Z be minimal with

âN 6= 0. Since d is a proper atom ((âNx
N
g )−1)−1 C d−1 implies

(
âNx

N
g

)−1
C d according

to Theorem 1.1.12. Now we have x−1
h−1d = x−1

h−1(d−1x−1
h xh)

−1 = (x−1
h−1x

−1
h )(d−1x−1

h )−1.
Hence d has a left series representation

x−1
h−1d =

∑
n∈Z

anx
n
g ∈ D−g [[xg;σg]],
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with

an =
∑
k≥0

∑
n1,...,nk∈N

n1+···+nk=n+N

(
x−1
h−1x

−1
h

) k∏
i=1

−
(
âNx

N
g

)−1︸ ︷︷ ︸
Cd

âni+Nx
ni+N
g︸ ︷︷ ︸

Cd

(âNxNg )−1︸ ︷︷ ︸
Cd

x−ng C d

according to Theorem 1.1.12 for the complexity and Remark 1.5.11 for calculating the
inverse of d−1x−1

h .
To prove the uniqueness we take a d ∈ D with cp(d) > 1 as well as h1, h2, g1, g2 ∈ G,
g1, g2 > e such that d has proper left series representations

x−1
hi
d =

∑
n∈Z

ai,nx
n
gi

for i ∈ {1, 2}. As the series representations are proper, there are at least two n ∈ Z for
each i with ai,n 6= 0.
We �rst show h1C

+
g1
∩ h2C

+
g2
6= ∅ and assume equality. Without loss of generality let

g := h−1
1 h2 > e. Then h−1

1 h2 6∈ C+
g1
, C+

g2
and therefore C+

g1
, C+

g2
⊆ C−g . Hence

x−1
h1
d, x−1

h2
d ∈ D−g .

There is a c ∈ F× with x−1
h1
xh2 = cxh−1

1 h2
= cxg. Therefore we know that

0 = x−1
h1

(d− d) = x−1
h1
d−

(
x−1
h1
xh2

)
x−1
h2
d

= x−1
h1
d− cxg

(
x−1
h2
d
)
x−1
g xg = a0 + a1xg

with a0 = x−1
h1
d ∈ D−g and a1 = −cxg

(
x−1
h2
d
)
x−1
g ∈ D−g . Since D is free, we conclude

that 0 = a0 = x−1
h1
d and especially d = 0, which contradicts cp(d) > 1. It remains to

show that C+
g1

= C+
g2

since then h1C
+
g1
∩ h2C

+
g2
6= ∅ would imply h1C

+
g1

= h2C
+
g2
. We

assume C+
g1
6= C+

g2
. Without loss of generality let C+

g2
⊆ C−g1

. As G has maximal rank,
there is a g ∈ G, g > e with C+

g = C+
g1
and g1, h

−1
1 h2 ∈ Cg. Without loss of generality

we can assume that g1 = g. Furthermore, we de�ne h := h1. Since x
−1
h2
d ∈ Dg2 ⊆ D−g

and x−1
h1
xh2 ∈ FCg there is an N ∈ Z and a bN ∈ D−g with bNxNg = x−1

h1
xh2x

−1
h2
d. Hence

0 = x−1
h (d− d) = x−1

h1
d− x−1

h1
xh2x

−1
h2
d =

(∑
n∈Z

a1,nx
n
g

)
− bNxNg =

∑
n∈Z

anx
n
g

with an = a1,n ∈ D−g for all n ∈ Z with n 6= N as well as aN = a1,N − bN ∈ D−g . Since
at least two of the a1,n are not zero some of the an are not zero. This is a contradiction,
since xg is an indeterminate over D−g .
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2 Hughes�free embeddings

2.3 Embedding Hughes�free skew �elds of fractions

into Dubrovin�rings

Theorem 2.3.1 If d ∈ D, d 6= 0,

x−1
h d =

∑
n∈Z

anx
n
g

is a proper left series representation and g′ ∈ G then d ∈ D+
g′ if and only if g, h ∈ C+

g′ .

Proof. "⇐=": For x−1
h d ∈ Dg we have d ∈ xhDg ⊆ D+

hD
+
g ⊆ D+

g′ because of g, h ∈ C
+
g′ .

"=⇒": We will prove this statement by contradiction. Without loss of generality we
can assume h = e if h ∈ C+

g .

Case 1: h 6∈ C+
g′ . Then g′ ∈ C−h and therefore d ∈ D+

g′ ⊆ D−h . Furthermore we have
D+
g ⊆ D−h , since h 6= e and hence g ∈ C−h . Thus

0 = x−1
h d︸︷︷︸

∈x−1
h D−h

− x−1
h d︸︷︷︸

∈D+
g ⊆D−h

.

Since D is a free skew �eld of fractions we conclude x−1
h d = 0 and d = 0, which

contradicts d 6= 0.

Case 2: h ∈ C+
g′ and g 6∈ C

+
g′ . Then C

+
h ⊆ C+

g′ ⊆ C−g and hence d ∈ D+
g′ ⊆ D−g as well

as h = e. As such we get ∑
n∈Z

anx
n
g = x−1

h d = d ∈ D−g

and hence the contradiction d = a0x
0
g = a0 C d.

Corollary 2.3.2 For g′ ∈ G and d ∈ D+
g′ (d ∈ D

−
g′) the following statements hold.

i) If d is additively decomposable in D there are d1, . . . , dk ∈ D+
g′ (d1, . . . , dk ∈ D−g′)

such that d = d1 + · · ·+ dk is a complete additive decomposition of d in D.

ii) If d is additively indecomposable and multiplicatively decomposable there are
d1, . . . , dk ∈ D+

g′ (d1, . . . , dk ∈ D−g′) such that d = d1 · · · dk is a complete multi-
plicative decomposition of d in D.

Proof. Since D−g′ =
⋃
{D+

g′′ |g′′ ∈ C
−
g′} it is su�cient to prove the statements for d ∈ D+

g′ .

i) Because d is additively decomposable, it has a complete additive decomposition
d = d1 + · · · + dk in D. Similar to the proof of Theorem 2.2.6 one gets a proper
left series representation of d from proper series representations of d1, . . . , dk with

C+
g = C+

g1
∪ · · · ∪ C+

gk
∪ C+

h−1h1
∪ · · · ∪ C+

h−1hk
.
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2.3 Embedding Hughes�free skew �elds of fractions into Dubrovin�rings

According to Theorem 2.3.1 we know that g, h ∈ C+
g′ and as such

g1, . . . , gk, h
−1h1, . . . , h

−1hk ∈ C+
g ⊆ C+

g′ ,

which also leads to hi ∈ hC+
g′ ⊆ C+

h C
+
g′ ⊆ C+

g′ for each i ∈ {1, . . . , k}. Hence
d1, . . . , dk ∈ D+

g′ .

ii) Since d is additively indecomposable and multiplicatively decomposable, it has a
complete multiplicative decomposition d = d′1 · · · d′k in D. Similar to the proof of
Theorem 2.2.7 there are h1, . . . , hk+1 and one gets a proper left series representation
of d from proper series representations of d′1xh2 , . . . , d

′
kxhk+1

with

C+
g = C+

g1
∪ · · · ∪ C+

gk
.

According to Theorem 2.3.1 we know that g, h ∈ C+
g′ and as such

g1, . . . , gk ∈ C+
g ⊆ C+

g′ .

Hence

d =
(
xhx

−1
h1
d′1xh2

)︸ ︷︷ ︸
∈xhD+

g1
⊆D+

g′

(
x−1
h2
d′2xh3

)︸ ︷︷ ︸
∈D+

g2
⊆D+

g′

· · ·
(
x−1
hk
d′kxhk+1

)︸ ︷︷ ︸
∈D+

gk
⊆D+

g′

.

We de�ne d1 = xhx
−1
h1
d′1xh2 and di = x−1

hi
d′ixhi+1

for i ∈ {2, . . . , k}. By Theorem
1.1.15 this implies cp(di) = cp(d′i) for all i ∈ {1, . . . , k}. Thus, d = d1 · · · dk is
a complete multiplicative decomposition of d in D with d1, . . . , dk ∈ D+

g′ , since
d = d′1 · · · d′k is a complete multiplicative decomposition of d in D.

Theorem 2.3.3 Let R be the Dubrovin-ring of F [G; η, σ]. There exists a unique ring
isomorphism ϕ : D −→ R such that

F [G; η, σ] ι //

f
$$

D

ϕ

��
R

is a commutative diagram. Furthermore, every non�zero element of R is a v�compatible
continuous automorphism of F ((G)).

Proof. Let κ be the supremum of the complexities of the elements in D. We will
construct a series of maps ϕα : Dα −→ R for 1 ≤ α ≤ κ with the following properties.

i) If β < α, then ϕα|Dβ = ϕβ.

ii) If d ∈ Dα and b, c ∈ FG, then ϕα(bdc) = bϕα(d)c.

iii) If g ∈ G, then ϕα(D−g ∩Dα) ⊆ R−g and ϕα(D+
g ∩Dα) ⊆ R+

g .
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2 Hughes�free embeddings

iv) Each non�zero element of ϕα(Dα) is a continuous, v�compatible automorphism.

v) If d ∈ Dα with cp(d) > 1 and

d =
∑
n∈Z

a′nx
n
g′

is a proper series representation as well as m ∈ F ((C+
g′ )), then

ϕα(d)m =
∑
n∈Z

ϕα(a′n)xng′m,

whereas the right sum is convergent.

vi) If dij ∈ Dα for all i ≤ k and j ≤ li then

k∑
i=1

li∏
j=1

dij = 0 =⇒
k∑
i=1

li∏
j=1

ϕα(dij) = 0.

We de�ne ϕ1 : D1 −→ R, axg 7−→ axg and as such the above properties are ful�lled,
whereas iv) was shown in Theorem 1.6.1. Assume that α > 1 is �xed and the maps ϕβ
are de�ned for all β < α. If α is a limit ordinal number we will de�ne ϕα :=

⋃
β<α ϕα

and the properties are obviously ful�lled. For the remainder we assume that α is a
successor ordinal number. If d ∈ D with cp(d) < α we de�ne ϕα(d) := ϕα−1(d), which
implies i) trivially. Thus, let d ∈ D be with cp(d) = α. For b, c ∈ FG with b = 0 or
c = 0 and independent of the de�nition of ϕα(d), we have

ϕα(bdc) = ϕα(0) = ϕα−1(0) = 0 = bϕα(d)c

and thus ii) holds for b = 0 or c = 0. Because of vi), if a1, . . . , ak, b1, . . . , bl ∈ Dα−1 then

a1 + · · ·+ ak = b1 + · · ·+ bl

=⇒ a1 + · · ·+ ak + (−b1) + · · ·+ (−bl) = 0

vi)
=⇒ ϕα−1(a1) + · · ·+ ϕα−1(ak) + ϕα−1(−b1) + · · ·+ ϕα−1(−bl) = 0

ii)
=⇒ ϕα−1(a1) + · · ·+ ϕα−1(ak)− ϕα−1(b1)− · · · − ϕα−1(bl) = 0

=⇒ ϕα−1(a1) + · · ·+ ϕα−1(ak) = ϕα−1(b1) + · · ·+ ϕα−1(bl)

and

a1 · · · ak = b1 · · · bl
=⇒ a1 · · · ak + (−1) · b1 · · · bl = 0

vi)
=⇒ ϕα−1(a1) · · ·ϕα−1(ak) + ϕα−1(−1)ϕα−1(b1) · · ·ϕα−1(bl) = 0

ii)
=⇒ ϕα−1(a1) · · ·ϕα−1(ak) = ϕα−1(b1) · · ·ϕα−1(bl).

To de�ne ϕα(d) we will examine the following cases.
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2.3 Embedding Hughes�free skew �elds of fractions into Dubrovin�rings

Case 1: Let d be additively decomposable. Then d has a complete additive decompo-
sition d = d1 + · · ·+ dk and we de�ne

ϕα(d) = ϕα−1(d1) + · · ·+ ϕα−1(dk).

To prove that ϕα(d) is well�de�ned we have to show that it is independent
of the complete additive decomposition. Let d = d′1 + · · · + d′k′ be another
complete additive decomposition of d. Then

d1 + · · ·+ dk = d′1 + · · ·+ d′k′

and therefore

ϕα−1(d1) + · · ·+ ϕα−1(dk) = ϕα−1(d′1) + · · ·+ ϕα−1(d′k′)

according to vi). As seen in Corollary 2.3.2 we can assume that d1, . . . , dk ∈ D−g
if d ∈ D−g and therefore

ϕα(d) = ϕα−1(d1)︸ ︷︷ ︸
∈R−g

+ · · ·+ ϕα−1(dk)︸ ︷︷ ︸
∈R−g

∈ R−g ,

which proves the �rst part of iii) for this case. The second part can be proven
similarly. Furthermore, ϕα(d) is continuous, since it is a sum of continuous
endomorphisms. If b, c ∈ F×G, then cp(bdic) = cp(di) for all i ∈ {1, . . . , k}
and cp(bdc) = cp(d) by Theorem 1.1.15. Hence bdc = bd1c + · · · + bdkc is a
complete additive decomposition of bdc in D. Therefore

ϕα(bdc) = ϕα−1 (bd1c) + · · ·+ ϕα−1 (bdkc)
ii)
= bϕα−1 (d1) c+ · · ·+ bϕα−1 (dk) c

= b (ϕα−1 (d1) + · · ·+ ϕα−1 (dk)) c = bϕα(d)c,

which proves ii) for this case.
First we will prove v) only for one proper series representation and treat the
general later on. As in the proof of Theorem 2.2.9 we see that d1, . . . , dk have
left series representations

x−1
h di =

∑
n∈Z

âi,nx
n
g .

Each of them is either proper or has only one non�zero summand. Thus, we
can either apply v) or use the fact that the sum is �nite to obtain

ϕα−1(x−1
h di) =

∑
n∈Z

ϕα−1(âi,n)xngm

for each m ∈ F ((C+
g )) and i ∈ {1, . . . , k}. Furthermore, d has a a proper left

series representation

x−1
h d =

∑
n∈Z

anx
n
g ,
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2 Hughes�free embeddings

with an = â1,n+ · · ·+ âk,n for each n ∈ Z. By assumption, d has a proper series
representation, which is a proper left series representation. Hence h ∈ C+

g by
Theorem 2.2.9. Therefore, without loss of generality we can assume that h = e.
For m ∈ F ((C+

g )) we conclude

ϕα(d)m = (ϕα−1(d1) + · · ·+ ϕα−1(dk))m = ϕα−1(d1)m+ · · ·+ ϕα−1(dk)m

=
∑
n∈Z

ϕα−1(â1,n)xngm+ · · ·+
∑
n∈Z

ϕα−1(âk,n)xngm

=
∑
n∈Z

(
ϕα−1(â1,n)xngm+ · · ·+ ϕα−1(âk,n)xngm

)
=
∑
n∈Z

(ϕα−1(â1,n) + · · ·+ ϕα−1(âk,n))xngm

vi)
=
∑
n∈Z

(
ϕα−1(â1,n + · · ·+ âk,n)xngm

)
=
∑
n∈Z

ϕα−1(an)xngm =
∑
n∈Z

ϕα(an)xngm.

The convergence of the sums is obtained by Lemmata 1.6.4 and 1.4.6.

Case 2: Let d be additively indecomposable and multiplicatively decomposable. Then
d has a complete multiplicative decomposition d = d1 · · · dk and we de�ne

ϕα(d) = ϕα−1(d1) · · ·ϕα−1(dk).

To prove that ϕα(d) is well�de�ned we have to show, that it is independent
of the complete multiplicative decomposition. Let d = d′1 · · · d′k′ be another
complete multiplicative decomposition of d. Then

d1 · · · dk = d′1 · · · d′k′

and therefore

ϕα−1(d1) · · ·ϕα−1(dk) = ϕα−1(d′1) · · ·ϕα−1(d′k′)

according to vi). Because of iv) we know that ϕα−1(d1), . . . , ϕα−1(dk) are con-
tinuous, v�compatible automorphisms. Since ϕα−1(d) is a product of these au-
tomorphisms it is a continuous (Remark 1.4.9), v�compatible (Remark 1.4.14)
automorphism as well, which proves iv) for this case. As seen in Corollary 2.3.2
we can assume d1, . . . , dk ∈ D−g if d ∈ D−g . Therefore

ϕα(d) = ϕα−1(d1)︸ ︷︷ ︸
∈R−g

· · ·ϕα−1(dk)︸ ︷︷ ︸
∈R−g

∈ R−g ,

which proves the �rst part of iii) for this case. The second part can be proven
similarly.
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If b, c ∈ FG with b, c 6= 0 then cp(bd1) = cp(d1), cp(dkc) = cp(dk) and
cp(bdc) = cp(d). Hence bdc = (bd1)d2 · · · dk−1(dkc) is a complete multiplicative
decomposition of bdc in D. Therefore,

ϕα(bdc) = ϕα−1 (bd1)ϕα−1 (d2) · · ·ϕα−1(dk−1)ϕα−1 (dkc)

ii)
= bϕα−1 (d1) · · ·ϕα−1 (dk) c

= bϕα(d)c,

which proves ii) for this case.
We will prove v) only for one proper series representation and treat the general
later on. As in the proof of Theorem 2.2.9 we de�ne hk+1, . . . , h1 ∈ G with
hk+1 = e such that each x−1

hi
dixhi+1

has a series representation

x−1
hi
dixhi+1

=
∑
n∈Z

âi,nx
n
g

for i ∈ {1, . . . , k}. Each of them is either proper or has only one non�zero
summand. Furthermore, d has a proper left series representation

x−1
h d =

∑
n∈Z

anx
n
g ,

with

an =
∑

n1+···+nk=n

(
k∏
i=1

âi,nix
ni
g

)
x−ng

for each n ∈ Z and h = h1. By assumption, d has a proper series representation,
which is a proper left series representation. Hence h ∈ C+

g by Theorem 2.2.9.
Therefore, without loss of generality we can assume that h = e. This means
h1 ∈ C+

g since h−1h1 ∈ Cg ⊆ C+
g as seen in the proof of Theorem 2.2.9. By the

same argument as above we can therefore assume that h1 = e. Applying ii),
vi) and Lemma 1.6.6 (∗) we get

ϕα(d)m = ϕα−1(d1) · · ·ϕα−1(dk)m

= (x−1
h1
ϕα−1(d1)xh2) · · · (x−1

hk
ϕα−1(dk)xhk+1

)m

ii)
= ϕα−1(x−1

h1
d1xh2) · · ·ϕα−1(x−1

hk
dkxhk+1

)m

∗
=
∑
n∈Z

( ∑
n1+···+nk=n

(
k∏
i=1

ϕα−1(âi,ni)x
ni
g

)
m

)
vi)
=
∑
n∈Z

ϕα−1

( ∑
n1+···+nk=n

(
k∏
i=1

âi,nix
ni
g

))
m

=
∑
n∈Z

ϕα−1(an)xngm =
∑
n∈Z

ϕα(an)xngm.
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Case 3: Let d be a proper atom. Then d has an inverse d−1 ∈ D. Since d−1 has a proper
left series representation according to Theorem 2.2.9 we can apply ii) and v)
and conclude that ϕα−1(d−1) 6= 0. As such ϕα−1(d−1) is an automorphism
according to iv) and we can de�ne

ϕα(d) :=
(
ϕα−1(d−1)

)−1
.

According to Theorem 1.4.15, since ϕα−1(d−1) is a continuous, v�compatible
automorphism, ϕα(d) is also a continuous, v�compatible automorphism, which
proves iv). Furthermore, if d ∈ D−g , then d−1 ∈ D−g and thus ϕα−1(d−1) ∈ R−g ,
which implies ϕα(d) := (ϕα−1(d−1))

−1 ∈ R−g . This proves the �rst part of iii)
for this case. The second part can be proven similarly.
If b, c ∈ FG with b, c 6= 0 then cp(bdc) = cp(d), which implies that bdc is a
proper atom. Therefore,

ϕα(bdc) = ϕα−1((bdc)−1)−1 = ϕα−1(c−1d−1b−1)−1

ii)
=
(
c−1ϕα−1(d−1)b−1

)−1
= bϕα−1(d−1)−1c = bϕα(d)c,

which proves ii) for this case.
We will prove v) only for one proper series representation and treat the general
later on. As in the proof of Theorem 2.2.9 we construct a proper left series
representation

x−1
h d =

∑
n∈Z

anx
n
g

of d by using a proper right series representation

d−1x−1
h−1 =

∑
n∈Z

ânx
n
g

of d−1. By assumption, d has a proper series representation, which is a proper
left series representation. Hence h ∈ C+

g by Theorem 2.2.9. Therefore, without
loss of generality we can assume that h = e. For these series representations
we obtain

1 = dd−1 =
∑
n∈Z

anx
n
g

∑
n∈Z

ânx
n
g

=
∑
n∈Z

 ∑
n1,n2∈Z
n1+n2=n

(
an1x

n1
g

) (
ân2x

n2
g

)
x−ng


︸ ︷︷ ︸

∈D−g

xng ,

which implies ∑
n1+n2=0

(
an1x

n1
g

) (
ân2x

n2
g

)
= 1
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and ∑
n1+n2=n

(
an1x

n1
g

) (
ân2x

n2
g

)
x−ng = 0

for n 6= 0 whereas the left sums are all �nite. Applying vi) and ii) we get∑
n1+n2=0

ϕα−1(an1)xn1
g ϕα−1(ân2)xn2

g = 1

and ∑
n1+n2=n

ϕα−1(an1)xn1
g ϕα−1(ân2)xn2

g x
−n
g = 0

for n 6= 0.
For m ∈ F ((C+

g )) we de�ne m′ := ϕα(d)m. Since d ∈ D+
g , Lemma 1.4.20 and

iii) imply

suppm′ = suppϕα(d)︸ ︷︷ ︸
∈R+

g

m ⊆ {v(axh(γ)) | axh ∈ F×C+
g , γ ∈ suppm}

= {hγ | h ∈ C+
g , γ ∈ suppm ⊆ C+

g } ⊆ C+
g

and therefore m′ ∈ F ((C+
g )). Thus

m = ϕα(d)−1m′ = ϕα−1(d−1)m′ =
∑
n∈Z

ϕα−1(ân)xngm
′.

Hence∑
n∈Z

ϕα(an)xngm =
∑
n1∈Z

ϕα−1(an1)xn1
g

(∑
n2∈Z

ϕα−1(ân2)xn2
g m

′

)
=
∑
n1∈Z

∑
n2∈Z

ϕα−1(an1)xn1
g ϕα−1(ân2)xn2

g m
′

=
∑
n∈Z

 ∑
n1,n2∈Z
n1+n2=n

ϕα−1(an1)xn1
g ϕα−1(ân2)xn2

g x
−n
g

xngm
′

vi)
= m′ = ϕα(d)m.

The convergence of the sums is obtained by Lemma 1.6.4.

Next we will prove that v) is independent of the choice of the proper series representation
of d. Therefore, we take two proper series representations

d =
∑
n∈Z

anx
n
g ,

d =
∑
n∈Z

ânx
n
ĝ
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and show

ϕα(d)m =
∑
n∈Z

ϕα(an)xngm =
∑
n∈Z

ϕα(ân)xnĝm

for all m ∈ F ((C+
g )). Without loss of generality we can assume that ĝC−g = gkC−g

for some k ∈ N. Remark 1.5.13 shows that we can view D−ĝ [[xĝ;σĝ]] as a subring of
D−g [[xg;σg]]. Thus, ∑

n∈Z

anx
n
g = d =

∑
n̂∈Z

ân̂x
n̂
ĝ =

∑
n̂∈Z

(
ân̂x

n̂
ĝx
−kn̂
g

)︸ ︷︷ ︸
∈D−g

xkn̂g

implies an = ân̂x
n̂
ĝx
−kn̂
g for all n, n̂ ∈ Z with n = kn̂ and an = 0 else. Applying i), ii)

and vi) we get ϕα(an) = ϕα−1(an) = ϕα−1(ân̂x
n̂
ĝx
−kn̂
g ) = ϕα(ân̂)xn̂ĝx

−kn̂
g . Therefore∑

n∈Z

ϕα(an)xngm =
∑
n̂∈Z

(
ϕα(ân̂)xn̂ĝx

−kn̂
g

)
xkn̂g m =

∑
n̂∈Z

ϕα(ân̂)xn̂ĝm

which proves that v) is independent of the choice of the proper series representation of
d.
Now we will show statement iv) for all d ∈ Dα with cp(d) = α which are additively
decomposable. According to Theorem 1.4.18 since ϕα(d) is continuous it is su�cient to
show that it is v�compatible on G and surjective on G to prove that it is a continuous,
v�compatible automorphism.
If γ, γ′ ∈ G with γ < γ′ then e < γ−1γ′. Since cp(dxγ) = cp(d) > 1 there exists a
proper left series representation

x−1
h (dxγ) =

∑
n∈Z

anx
n
g ∈ Dg

of dxγ. Let N ∈ Z be minimal with aN 6= 0. Since x−1
h (dxγ) ∈ Dg ⊆ D+

g we know that

x−1
h ϕα(dxγ)

ii)
= ϕα(x−1

h (dxγ))
iii)
∈ R+

g . This implies

ϕα(d)γ = ϕα(dxγx
−1
γ )γ = ϕα(dxγ)x

−1
γ γ = ϕα(dxγ)e,

ϕα(d)γ′ = ϕα(dxγx
−1
γ )γ′ = ϕα(dxγ)x

−1
γ γ′ = ϕα(dxγ)kγ

−1γ′

for some k ∈ F×. We examine the following two cases.

Case 1: γ−1γ′ 6∈ C+
g . Applying Lemma 1.4.20 shows

suppϕα(d)γ = suppxhϕα(x−1
h dxγ)e = h suppϕα(x−1

h dxγ)e ⊆ hC+
g e,

suppϕα(d)γ′ = suppxhϕα(x−1
h dxγ)kγ

−1γ′

= h suppϕα(x−1
h dxγ)kγ

−1γ′ ⊆ hC+
g γ
−1γ′.

This implies v(ϕα(d)γ) < v(ϕα(d)γ′) as otherwise there would be s, s′ ∈ C+
g

with hsγ−1γ′ ≤ hs′ and therefore e < γ−1γ′ < s−1s′ ∈ C+
g which would lead to

γ−1γ′ ∈ C+
g since C+

g is convex.
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Case 2: γ−1γ′ ∈ C+
g . Then

ϕα(d)γ = xhϕα(x−1
h dxγ)e = xh

∑
n∈Z

ϕα(an)xnge,

ϕα(d)γ′ = xhϕα(x−1
h dxγ)kγ

−1γ′ = xh
∑
n∈Z

ϕα(an)xng (kγ−1γ′)

and hence

v(ϕα(d)γ) = hv([ϕα(aN)xNg ]e),

v(ϕα(d)γ′) = hv([ϕα(aN)xNg ]kγ−1γ′).

Since aN C d we can apply i) and iv) which shows that ϕα(aN) = ϕα−1(aN) is
v�compatible. Thus,

v([ϕα(aN)xNg ]e) < v([ϕα(aN)xNg ]kγ−1γ′)

and therefore

v(ϕα(d)γ) = hv([ϕα(aN)xNg ]e) < hv([ϕα(aN)xNg ]kγ−1γ′) = v(ϕα(d)γ′).

The case study shows that ϕα(d) is v�compatible on G.
To prove the surjectivity on G we take a γ ∈ G and have to show that there exists a
γ′ ∈ G with v(ϕα(d)γ′) = γ. This is equivalent to v(x−1

γ ϕα(d)γ′) = e. According to
Theorem 2.2.9 there is an h ∈ G such that x−1

γ dx−1
h has a proper series representation

x−1
γ dx−1

h =
∑
n∈Z

anx
n
g .

Let N ∈ Z be minimal with aN 6= 0. By i) we know that ϕα(aN) = ϕα−1(aN).
Hence ϕα(aN)xNg is surjective on G and according to iv) there is a γ′ ∈ G with
v(ϕα−1(aN)xNg γ

′) = e. Since

e ∈ suppϕα(aN)xNg γ
′ ⊆ C−g g

Nγ′ ⊆ C+
g γ
′,

we conclude, that γ′ ∈ C+
g . Now we can apply v) which leads to

ϕα(x−1
γ dx−1

h )γ′ =
∑
n∈Z

ϕα(an)xngγ
′

and therefore v(ϕα(x−1
γ dx−1

h )γ′) = v(ϕα(aN)xNg γ
′) = e. Thus, ϕα(d) is surjective on G.

All together we have shown that ϕα(d) is a continuous, v�compatible automorphism.
At last we have to prove statement vi). Therefore we will use the well�ordered set
N(N(κ)) for a trans�nite induction. Elements in N(N(κ)) will be written as

m1µ1 ⊕ · · · ⊕mnµn =
n⊕
i=1

miµi
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with µ1, . . . , µn ∈ N(κ) and m1, . . . ,mn ∈ N0. The induction will run on

k⊕
i=1

li∑
j=1

cp(dij) ∈ N(N(κ)).

As induction base we choose sums of the form
⊕k

i=1

∑li
j=1 cp(dij) with cp(dij) < α for

i ≤ k ∈ N and j ≤ li. Here we can use i) and the fact that vi) holds for ϕα−1.
In our induction step we will assume dij 6= 0 for all i ≤ k and j ≤ li without loss
of generality as the corresponding products could be disregarded. Since ϕα(dij) is
continuous for all i ≤ k and j ≤ li we know that

k∑
i=1

li∏
j=1

ϕα(dij)

is also continuous and it is su�cient to show that

k∑
i=1

(
li∏
j=1

ϕα(dij)

)
xγe =

(
k∑
i=1

li∏
j=1

ϕα(dij)

)
γ = O

holds for all γ ∈ G.
Let i ≤ k be arbitrarily �xed for now. We can choose hi,1, . . . , hi,li+1 ∈ G recursively
such that each dijxhi,j+1

has a proper left series representation

x−1
hi,j

(dijxhi,j+1
) =

∑
n∈Z

aij,nx
n
gij
.

Hereby we de�ne hi,li+1 := γ and generate all hi,j in ascending order of j. We de�ne
hi := hi,1 and apply Theorem 2.2.7 such that that(

li∏
j=1

dij

)
xγ = xhi,1

li∏
j=1

x−1
hi,j
dijxhi,j+1

has a left series representation

x−1
hi

(
li∏
j=1

dij

)
xγ =

∑
n∈Z

ai,nx
n
gi

with

ai,n =
∑

n1+···+nli=n

(
li∏
j=1

âij,njx
nj
gi

)
x−ngi

for suitable âij,nj ∈ D−gi with âij,nj E dij for all j ≤ li and âij,nj C dij for at least one
j ≤ li.
We de�ne C := C+

g1
∪ · · · ∪ C+

gk
and consider 2 cases.
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Case 1: If
⋂k
i=1 hiC = ∅, we set h := h1 and choose a g ∈ G with

C+

h−1
1 h2
∪ · · · ∪ C+

h−1
1 hk

= C+
g ,

h−1
1 h2, . . . , h

−1
1 hk ∈ Cg.

Since
⋂k
i=1 hiC = ∅, there is an i′ ≤ k with h1C 6= hi′C. Hence h

−1
1 hi′ 6∈ C and

therefore C+
gi
⊆ C ⊆ C−

h−1
1 hi′

⊆ C−g . Furthermore there is an ni ∈ Z for each

i ≤ k with h−1
1 hiC

−
g = gniC−g . Therefore

x−1
h

(
li∏
j=1

dij

)
xγx

−ni
g =

(
x−1
h1
xhi
)︸ ︷︷ ︸

∈F×xnig

x−1
hi

(
li∏
j=1

dij

)
xγ︸ ︷︷ ︸

∈Dgi⊆D
−
g

x−nig ∈ D−g

according to Proposition 1.5.6. C−g = h−1
1 h1C

−
g = gn1C−g implies n1 = 0 and

ni 6= 0 for all i ≤ k with C+

h−1
1 hi

= C+
g 6= C−g . Therefore n1, . . . , nk are not all

identical. For n ∈ Z we de�ne In := {i ∈ {1, . . . , k} | ni = n}. We examine the
series representations

x−1
h

(
k∑
i=1

li∏
j=1

dij

)
xγ =

k∑
i=1

x−1
h

(
li∏
j=1

dij

)
xγx

−ni
g xnig =

∑
n∈Z

anx
n
g ,

with

an =
∑
i∈In

x−1
h

(
li∏
j=1

dij

)
xγx

−ni
g =

∑
i∈In

(x−1
h di1)

(
li−1∏
j=2

dij

)
(dil1xγx

−ni
g ).

Since n1, . . . , nk are not all identical, we get⊕
i∈In

(
cp(x−1

h di1) +

li−1∑
j=2

cp(dij) + cp(dil1xγx
−ni
g )

)
=
⊕
i∈In

li∑
j=1

cp(dij)

<

k⊕
i=1

li∑
j=1

cp(dij).

Because of x−1
h

(∑k
i=1

∏li
j=1 dij

)
xγ = 0, we have an = 0 for all n ∈ Z. Hence

we can apply the induction hypothesis on∑
i∈In

(x−1
h di1)

(
li−1∏
j=2

dij

)
(dil1xγx

−ni
g ) = 0

and get∑
i∈In

x−1
h

(
li∏
j=1

ϕα(dij)

)
xγx

−ni
g =

∑
i∈In

ϕα(x−1
h di1)

(
li−1∏
j=2

ϕα(dij)

)
ϕα(dil1xγx

−ni
g )

= 0.
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By de�ning M := {n1, . . . , nk} we conclude

x−1
h

(
k∑
i=1

li∏
j=1

ϕα(dij)

)
xγ =

k∑
i=1

x−1
h

(
li∏
j=1

ϕα(dij)

)
xγx

−ni
g xnig

=
∑
n∈M

(∑
i∈In

x−1
h

(
li∏
j=1

ϕα(dij)

)
xγx

−ni
g

)
︸ ︷︷ ︸

=0

xng

= 0.

Case 2: If
⋂k
i=1 hiC 6= ∅ we choose a g ∈ G with

C+
g1
∪ · · · ∪ C+

gk
= C+

g ,

g1, . . . , gk ∈ Cg,
h−1

1 h2, . . . , h
−1
1 hk ∈ Cg.

Without loss of generality we can assume gi = g for all i ≤ k with C+
gi

= C+
g .

If i ≤ k with C+
gi
⊆ C−g , then

x−1
hi,j

(dijxhi,j+1
) ∈ Dgij ⊆ Dgi ⊆ D−g .

Therefore, we obtain left series representations for
(∏li

j=1 dij

)
xγ in the form

of

x−1
hi

(
li∏
j=1

dij

)
xγ =

∑
n∈Z

ai,nx
n
g

with

ai,n =
∑

n1+···+nli=n

(
li∏
j=1

âij,njx
nj
g

)
x−ng ,

where âij,Nij = (x−1
hi,j
dijxhi,j+1

)x
−Nij
g and âij,nj = 0 holds for all j ≤ li with

nj 6= Nij for some Nij ∈ Z.
We de�ne h := h1. Without loss of generality one can assume h = h1 = · · · = hk
by simply adjusting the series representations since h−1

1 hi ∈ Cg for all i ≤ k.
Thus, we obtain the following series representation for 0

0 = x−1
h 0xγ = x−1

h

(
k∑
i=1

li∏
j=1

dij

)
xγ =

k∑
i=1

x−1
h

(
li∏
j=1

dij

)
xγ

=
k∑
i=1

∑
n∈Z

ai,nx
n
g =

∑
n∈Z

anx
n
g
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with an = a1,n + · · ·+ ak,n for all n ∈ Z. Since xg is an indeterminate over D−g
we obtain

0 = an =
k∑
i=1

∑
ni1+···+nili=n

(
li∏
j=1

âij,nijx
nij
g

)
x−ng

and may apply the induction hypothesis. Hereby we will only consider the non�
zero summands which means we will only use the i ≤ k and ni1, . . . , nili ∈ Z
with ni1 + · · ·+ nili = n and âij,nij 6= 0 for all j ≤ li. Therefore, we de�ne

T in := {(ni1, . . . , nili) ∈ Zli | ni1 + · · ·+ nili = n and âij,nij 6= 0 for all j ≤ li}.

If i ≤ k with gi ∈ C−g , we have

⊕
(ni1,...,nili )∈T

i
n

((
li−1∑
j=1

cp(âij,nijx
nij
g )

)
+ cp(âij,nilix

nili
g x−ng )

)
=

li∑
j=1

cp(dij),

since âij,Nij = (x−1
hi,j
dijxhi,j+1

)x
−Nij
g and âij,nij = 0 for all j ≤ li and nij 6= Nij.

Thus, there is at most one tupel in T in.
If i ≤ k with g ∈ Cgi , then(

li−1∑
j=1

cp(âij,nijx
nij
g )

)
+ cp(âij,nilix

nili
g x−ng ) <

li∑
j=1

cp(dij)

for all ni1, . . . , nili ∈ Z, since âij,nij E dij for all j ≤ li and âij,nij C dij for at
least one j ≤ li. Therefore, we obtain

⊕
(ni1,...,nili )∈T

i
n

((
li−1∑
j=1

cp(âij,nijx
nij
g )

)
+ cp(âij,nilix

nili
g x−ng )

)
<

li∑
j=1

cp(dij).

This means

k⊕
i=1

⊕
(ni1,...,nili )∈T

i
n

((
li−1∑
j=1

cp(âij,nijx
nij
g )

)
+ cp(âij,nilix

nili
g x−ng )

)
<

k⊕
i=1

li∑
j=1

cp(dij).

Applying the induction hypothesis we obtain

0 =
k∑
i=1

∑
(ni1,...,nili )∈T

i
n

(
li−1∏
j=1

ϕα(âij,nijx
nij
g )

)
ϕα(âili,nilix

nili
g x−ng )

=
k∑
i=1

∑
ni1+···+nili=n

(
li∏
j=1

ϕα(âij,nij)x
nij
g

)
x−ng .
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Furthermore,(
k∑
i=1

(
li∏
j=1

ϕα(dij)

)
xγ

)
e = O ⇐⇒ x−1

h

(
k∑
i=1

(
li∏
j=1

ϕα(dij)

)
xγ

)
e = O

⇐⇒
k∑
i=1

x−1
h

(
li∏
j=1

ϕα(dij)

)
xγe = O

⇐⇒
k∑
i=1

(
li∏
j=1

ϕα(x−1
hi,j
dijxhi,j+1

)

)
e = O.

We will examine the summands separately and �x i ≤ k. From the above
considerations we gain a series representation of x−1

hi,j
dijxhi,j+1

for each j ≤ li

x−1
hi,j
dijxhi,j+1

=
∑
n∈Z

âij,nx
n
g

and these are proper or satisfy âij,Nij = x−1
hi,j
dijxhi,j+1

x
−Nij
g and âij,n = 0 for all

n ∈ Z, n 6= Nij and some Nij ∈ Z. Furthermore, x−1
hi,j
dijxhi,j+1

∈ Dg. Applying
Theorem 1.6.6(

li∏
j=1

ϕα(x−1
hi,j
dijxhi,j+1

)

)
e =

∑
n∈Z

 ∑
ni1+···+nili=ni

(
li∏
j=1

ϕα(âij,nij)x
nij
g

)
e


=
∑
n∈Z

 ∑
ni1+···+nili=n

(
li∏
j=1

ϕα(âij,nij)x
nij
g

)
x−ng

xnge.

All together we have shown that

k∑
i=1

(
li∏
j=1

ϕα(x−1
hi,j
dijxhi,j+1

)

)
e

=
k∑
i=1

∑
n∈Z

 ∑
ni1+···+nili=n

(
li∏
j=1

ϕα(âij,nij)x
nij
g

)
x−ng

xnge

=
∑
n∈Z

k∑
i=1

 ∑
ni1+···+nili=n

(
li∏
j=1

ϕα(âij,nij)x
nij
g

)
x−ng


︸ ︷︷ ︸

=0

xnge

=O.

The convergence of the sums is secured by Lemma 1.6.4. We conclude(
k∑
i=1

(
li∏
j=1

ϕα(dij)

)
xγ

)
e = 0.
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Let ϕ : D −→ R be de�ned by ϕ(d) = ϕα(d) for d ∈ D with α = cp(d). Because of i)
we get ϕ(d) = ϕα(d) for all α < κ with α ≥ cp(d). Therefore, we can apply properties
ii), iii), iv), v) and vi) on ϕ by replacing ϕα with ϕ. Since

d1 + d2 = (d1 + d2)
vi)

=⇒ ϕ(d1) + ϕ(d2) = ϕ(d1 + d2),

d1d2 = (d1d2)
vi)

=⇒ ϕ(d1)ϕ(d2) = ϕ(d1d2)

for all d1, d2 ∈ D, we have shown that ϕ is a homomorphism. By de�nition ϕ1 is not
trivial and since D is a skew �eld ϕ has to be injective. Because R is the rational
closure of f(F [G; η, σ]) in R and D is a skew �eld of fractions of F [G; η, σ], we conclude
ϕ(D) = R according to Proposition 1.1.17. Therefore, ϕ is surjective. This together
with iv) also shows that each nonzero element of R is a continuous, v�compatible
automorphism. At last, the uniqueness of ϕ is obtained by Proposition 1.1.16.

Corollary 2.3.4 ([13, page 182]) Let G be locally indicable and F [G; η, σ] be a crossed
product ring with Hughes�free skew �elds of fractions D1 and D2 and accompanying
injective ring homomorphisms ι1 and ι2. Then there is a unique ring isomorphism
ϕ : D1 −→ D2 such that

F [G; η, σ]
ι1 //

ι2

$$

D1

ϕ

��
D2

is a commutative diagram.

Proof. According to Theorem 1.2.31 and Lemma 1.2.29 since G is locally indicable
it admits a Conradian left�order ≤ of maximal rank. Let R be the Dubrovin�ring of
F [G; η, σ] with respect to ≤ and f : F [G; η, σ] −→ R the associated embedding. Since
Di is a Hughes�free skew �eld of fractions for i ∈ {1, 2} it is, according to Proposition
2.1.3, also a free skew �eld of fractions and according to Theorem 2.3.3 there is a
uniquely determined ring isomorphism ϕi : Di −→ R such that

F [G; η, σ]
ιi //

f

$$

Di

ϕi
��
R

is a commutative diagram for i ∈ {1, 2}. We de�ne ϕ := ϕ−1
2 ϕ1. Since ϕ1ι1 = f = ϕ2ι2

we have ϕι1 = ϕ−1
2 ϕ1ι1 = ι2. The uniqueness of ϕ is obtained by Proposition 1.1.16.

Theorem 2.3.5 Let G1, G2 be locally indicable groups, F1, F2 skew �elds and let
F1[G1; η1, σ1], F2[G2; η2, σ2] be crossed product rings as well as

ϕ : F1[G1; η1, σ1] −→ F2[G2; η2, σ2]
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be an injective ring homomorphism such that the accompanying group homomorphism
ψ : G1 −→ G2 (see Theorem 1.3.11) is injective. If F1[G1; η1, σ1] and F2[G2; η2, σ2]
have Hughes�free skew �elds of fractions D1 and D2 there exists a unique injective ring
homomorphism ϕ′ : D1 −→ D2 such that

F1[G1; η1, σ1]
ι1 //

ϕ

��

D1

ϕ′

��
F2[G2; η2, σ2]

ι2 // D2

is a commutative diagram.

Proof. Let D′ be the rational closure of ι2ϕ (F1[G1; η1, σ1]) in D2. We want to show,
that D′ is a Hughes�free skew �eld of fractions of F1[G1; η1, σ1]. If U is a �nitely
generated subgroup of G1 and N a normal subgroup of U such that U/N is in�nitely
cyclic, there is a g ∈ G1 with U/N = 〈gN〉. Since ψ is injective, ψ(N) is a normal
subgroup of ψ(U) and ψ(U)/ψ(N) = 〈ψ(g)ψ(N)〉 is in�nitely cyclic. If D2ψ(N) is the
rational closure of ι2

(
F×2 ψ(N)

)
in D2, then ι2(axψ(g)) is transcendental over D2ψ(N)

for each a ∈ F×2 , since D2 is a Hughes�free skew �eld of fractions of F2[G2; η2, σ2].
We want to show, that ι2ϕ(xg) is transcendental over D′N , where D

′
N is the rational

closure of ι2ϕ(F×1 N) in D′. There is an a ∈ F×2 with ϕ(xg) = axψ(g) and therefore
ι2ϕ(xg) = ι2(axψ(g)). For b ∈ F×1 and h ∈ N there is a b′ ∈ F×2 with

ϕ(bxh) = ϕ(b)ϕ(xh) = ϕ(b)b′︸ ︷︷ ︸
∈F×2

xψ(h) ∈ F×2 ψ(N).

Thus ι2ϕ(F×1 N) ⊆ ι2
(
F×2 ψ(N)

)
and therefore D′N ⊆ D2ψ(N). Since ι2ϕ(xg) is transcen-

dental over D2ψ(N), it is also transcendental over the subskew �eld D′N . Thus D′ is a
Hughes�free skew �eld of fractions of F1[G1; η1, σ1].
According to Corollary 2.3.4 there is a unique ring isomorphism ϕ′′ : D1 −→ D′ such
that

F1[G1; η1, σ1]
ι1 //

ι2ϕ

&&

D1

ϕ′′

��
D′

is a commutative diagram. We de�ne ϕ′ : D1 −→ D2 , d 7−→ ϕ′′(d) and

F1[G1; η1, σ1]
ι1 //

ϕ

��

D1

ϕ′

��
F2[G2; η2, σ2]

ι2 // D2

is a commutative diagram. Furthermore, ϕ′ is injective, since ϕ′′ is an isomorphism.
The uniqueness of ϕ′ is obtained by applying Proposition 1.1.16.
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Corollary 2.3.6 Let G be locally indicable and let F [G; η, σ] be a crossed product
ring with a Hughes�free skew �eld of fractions D and accompanying injective ring
homomorphism ι. Each automorphism ϕ of F [G; η, σ] can be uniquely extended to an
automorphism ϕ′ of D, such that

F [G; η, σ] ι //

ϕ

��

D

ϕ′

��
F [G; η, σ] ι // D

is a commutative diagram.

Proof. Let ψ and ψ′ be the associated group homomorphisms for ϕ and ϕ−1 respectively
according to Theorem 1.3.11. Then ψ′ψ is the associated unique group homomorphism
for ϕ−1ϕ = id and has to be the identity. This implies that ψ is injective and the
injectivity of ψ′ follows similarly. Hence, we can apply Theorem 2.3.5 twice and there
exist unique injective ring homomorphisms ϕ′ : D −→ D and ϕ′′ : D −→ D such that

F [G; η, σ] ι //

ϕ

��

D

ϕ′

��
F [G; η, σ] ι //

ϕ−1

TT

D

ϕ′′

VV

is a commutative diagram. Thus, we get the following commutative diagram

F [G; η, σ] ι //

ι

$$

D

ϕ′′ϕ′

��
D

and applying the uniqueness in Corollary 2.3.4 we observe ϕ′′ϕ′ = idD. Analogously we
can show ϕ′ϕ′′ = idD, which proves, that ϕ′ is an automorphism.

2.4 Strongly Hughes-free skew �elds of fractions

De�nition 2.4.1 Let F [G; η, σ] be a crossed product ring and G a locally indicable
group. A skew �eld D is called strongly Hughes�free skew �eld of fractions of F [G; η, σ]
if D is a skew �eld of fractions of F [G; η, σ] and the following holds. For each subgroup
H of G and each normal subgroup N of H

a1xh1 + · · ·+ anxhn = 0 =⇒ a1 = · · · = an = 0

holds for all h1, . . . , hn ∈ H generating pairwise di�erent N�cosets and a1 . . . , an ∈ DN

whereas DN is the rational closure of F [N ; η, σ] in D. The associated embedding is
called strongly Hughes�free embedding.
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Remark 2.4.2 As is easily seen, each strongly Hughes�free skew �eld of fractions is
also a Hughes�free skew �eld of fractions.

Theorem 2.4.3 If the Dubrovin�ring R of F [G; η, σ] is a skew �eld then R is a strongly
Hughes�free skew �eld of fractions of F [G; η, σ], whereas the canonical embedding f is
also the associated strongly Hughes�free embedding.

Proof. Let H be a subgroup of G and N a normal subgroup of H. If h1, . . . , hn ∈ H
are generating pairwise di�erent N�cosets and a1, . . . , an ∈ RN then

supp ai(hi) ⊆ Nhi

for each i ≤ n by Lemma 1.4.20. Hence Nh1, . . . , Nhn being pairwise disjoint implies
that supp a1(h1), . . . , supp an(hn) are pairwise disjoint. Now if a1xh1 + · · ·+ anxhn = 0
then

∅ = supp ((a1xh1 + · · ·+ anxhn) (e)) = supp (a1(h1) + · · ·+ an(hn))

=
n⋃
i=1

supp ai(hi)

and thus supp ai(hi) = ∅ for each i ≤ n. Since R is a skew �eld, each element of R
is either an automorphism or 0, which implies ai = 0 for each i ≤ n. Hence R is a
strongly Hughes�free skew �eld of fractions of F [G; η, σ].

Theorem 2.4.4 Let G be locally indicable and F [G; η, σ] be a crossed product ring
with a Hughes�free skew �eld of fractions D and accompanying embedding ι. Then
D is a strongly Hughes�free skew �eld of fractions of F [G; η, σ] with respect to the
embedding ι.

Proof. Since D is Hughes�free skew �eld of fractions of F [G; η, σ], the Dubrovin�ring R
of F [G; η, σ] is a skew �eld according to Theorem 2.3.3. By Theorem 2.4.3 this implies
that R is a strongly Hughes�free skew �eld of fractions of F [G; η, σ] with respect to the
canonical embedding. This transfers to D by applying Theorem 2.3.3.

Remark 2.4.5 Theorem 2.4.4 answers Problem 4.8. in [17, page 53].
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