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Introduction

One method of embedding groups into skew fields was introduced by A. I. Mal’tsev and
B. H. Neumann (cf. [I8 19]). If G is an ordered group and F is a skew field, the set
F((@)) of formal power series over F' in G with well-ordered support forms a skew field
into which the group ring F[G] can be embedded. Unfortunately it is not sufficient
that G is left-ordered since F'((G)) is only an F-vector space in this case as there is no
natural way to define a multiplication on F'((G)). One way to extend the original idea
onto left-ordered groups is to examine the endomorphism ring of F'(G)) as explored by
N. I. Dubrovin (cf. [5, 6]). It is possible to embed any crossed product ring F[G;n, 0]
into the endomorphism ring of F((G)) such that each non-zero element of F[G;n, 0]
defines an automorphism of F'((G)) (cf. [5, [10]). Thus, the rational closure of F[G;n, o]
in the endomorphism ring of F'(G)), which we will call the Dubrovin—ring of F[G;n, o],
is a potential candidate for a skew field of fractions of F|G;n,o]. The methods of N. I.
Dubrovin allowed to show that specific classes of groups can be embedded into a skew
field. For example, N. I. Dubrovin contrived some special criteria, which are applicable
on the universal covering group of SL(2,R). These methods have also been explored by
J. Gréter and R. P. Sperner (cf. [10]) as well as N.H. Halimi and T. Ito (cf. [11]).
Furthermore, it is of interest to know if skew fields of fractions are unique. For example,
left and right Ore domains have unique skew fields of fractions (cf. [2]). This is not the
general case as for example the free group with 2 generators can be embedded into non—
isomorphic skew fields of fractions (cf. [12]). Tt seems likely that Ore domains are the
most general case for which unique skew fields of fractions exist. One approach to gain
uniqueness is to restrict the search to skew fields of fractions with additional properties.
I. Hughes has defined skew fields of fractions of crossed product rings F[G;n, o] with
locally indicable G which fulfill a special condition. These are called Hughes—free skew
fields of fractions and I. Hughes has proven that they are unique if they exist [13] [14].
This thesis will connect the ideas of N. I. Dubrovin and 1. Hughes. The first chapter
contains the basic terminology and concepts used in this thesis. We present methods
provided by N. I. Dubrovin such as the complexity of elements in rational closures
and special properties of endomorphisms of the vector space of formal power series
F((G)). To combine the ideas of N.I. Dubrovin and I. Hughes we introduce Conradian
left-ordered groups of maximal rank and examine their connection to locally indicable
groups. Furthermore we provide notations for crossed product rings, skew fields of frac-
tions as well as Dubrovin—rings and prove some technical statements which are used in
later parts.

The second chapter focuses on Hughes—free skew fields of fractions and their connection
to Dubrovin-rings. For that purpose we introduce series representations to interpret
elements of Hughes—free skew fields of fractions as skew formal Laurent series. This
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allows us to prove that for Conradian left—ordered groups G of maximal rank the state-
ment “F[G;n, o] has a Hughes—free skew field of fractions” implies “The Dubrovin ring
of F[G;n, 0] is a skew field”. We will also prove the reverse and apply the results to give
a new prove of Theorem 1 in [I3]. Furthermore we will show how to extend injective
ring homomorphisms of some crossed product rings onto their Hughes—free skew fields
of fractions. At last we will be able to answer the open question whether Hughes—free
skew fields are strongly Hughes—free (cf. [I7, page 53]).



1 Basics

1.1 Rational closure and complexity

Definition 1.1.1 If R is a ring with 1, a subring S of R is called rationally closed in
R,if 1 € S and s7! € S for every s € SN U(R). For every subset M C R

ﬂ{S C R| M CS,S is a rationally closed subring in R}

is called the rational closure of M in R.

Remark 1.1.2

1. The rational closure of M in R is the smallest rationally closed subring of R con-
taining M.

2. If D is a skew field, each subring which is rationally closed in D is itself a skew field.

Theorem 1.1.3 ([8, Propositon 2.1]) Let A be an ordinal number and N(A) be the free
abelian Ny-monoid with basis {\ € On | A < A}. For all z,y € N(A), there are k € N,
)\17---7)\1:: € On and Nyyeo oy Mg, My, ..., My € Ny with A\ < --- < A\ and
$:n1)\1+"'+nk>\k,
Y =miA + -+ Mg

If there is a minimal ¢ < k with n; # m;, we define x < y for n; < m;. This relation
defines a well-order on N(A) which satisfies

r<y—ux+z<y—+z.

for all z,y,z € N(A).

Definition 1.1.4 Let R be a ring with 1, M C R and D be the rational closure of M
in R. We define a recursive series (D, )<, of subsets in R with v € On such that the
union of the series is D. We start with

DO = {0},
Dy :={0,1,—-1} UM U —M.

If @ € On is a limit ordinal number, we define D, =, <o Do Otherwise there is an
o’ € On with « = o/ + 1. Here we distinguish the following cases.
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Case 1: D, is not additively closed. Then there is a minimal a; + -+ 4+ o, € N(&/)
with Dy, +---+ D,, € D,. We define

D, =Dy U(Dy, + -+ D,,).

Case 2: D, is not multiplicatively closed but additively closed. Then there is a minimal
a;+ -+ a, € N(o) with Dy, -+ D,,, € Dy. We define

o = Do U(UDwu)" ﬂ<n)>'

TES

Case 3: D, is a ring but not rationally closed in R. Then there is a minimal a; < o
with D' Z D,. We define

D, =Dy UD,!

Case 4: If D, is a rationally closed subring of R, we define D, = D,.

Since this series is strictly ascending for the first three cases, there exists a minimal
v < card R with D, = D,.,. Therefore D, is the rational closure of M in R.

Definition 1.1.5 ([8, Definitions 2.2, 2.3]) With the notation like in Definition [1.1.4]
we define cp(a) := min{a < v | a € D,} as the complexity of a € D. Furthermore we
define

a <b <= cp(a) < cp(b),
a<1b <= cp(a) < cp(b)

for all a,b € D.

Remark 1.1.6 It is important to note that the complexity depends on M and not
purely the rational closure of M. If M and M’ have the same rational closure they may
define different complexities.

Definition 1.1.7 (|8 page 38|) If a € D is not a sum of elements with lesser complexity,
we call a (additively) indecomposable. Otherwise it is called additively decomposable
and there are ay,...,a, € D with a =ay +--- + a, and cp(a;) + - - - + cp(a,) minimal
in N(v). This representation as a sum is called a complete additive decomposition of
a. If a € D is additively indecomposable, we call a a complete additive decomposition
of a itself.

Remark 1.1.8 (|8, Proposition 3.1]) If a € D, a # 0 is additively indecomposable,
{b€ D|b<a} is an abelian group with respect to +.



1.1 Rational closure and complexity

Theorem 1.1.9 (|8 Theorem 3.6]) If a € D is additively decomposable and a;+- - -+a,
is a complete additive decomposition of a as well as

"L‘:al—f-..._f_a/j’

Yy=aj1+ -+ an

for some j € {1,...,n — 1}, the following statements hold true.

i) The sums a; + ---+a; and aj+1 + - - - + a, are complete additive decompositions
of x and y respectively.

ii) For 2,y € D with 2/ <z and ¢ <y we have 2’ + ¢/ < a. If additionally 2’ < z or
vy’ <y holds, then 2/ + 1/ < a.

Remark 1.1.10

1. Fach additively decomposable element in D is a sum of two elements with lesser
complexity.

2. The above theorem can be generalized for any finite sum.

Definition 1.1.11 Let a € D be additively indecomposable. If a € D is not a prod-
uct of elements with lesser complexity, we call ¢ an atom. Otherwise it is called
multiplicatively decomposable and there are aq,...,a, € D with a = a;---a, and
cp(ar) + -+ + cp(a,) minimal in N(v). This representation as a product is called a
complete multiplicative decomposition of a. If a € D is an atom, we call a a complete
multiplicative decomposition of a itself and for a € D; we call a a proper atom.

Theorem 1.1.12 ([8, Proposition 4.1]) If a € D is a proper atom, it is a unit in D and
a™! < a. Furthermore {b € D | b<da} is a subring in D and for each unit b € D the
following holds:

bilﬂa*1:>b§1a,
blaga!l=b<a.

Theorem 1.1.13 ([8, Theorem 4.6]) If a € D is multiplicatively decomposable and
ay - - - ay is a complete multiplicative decomposition of a as well as

x:al---aj,

y:aj+1...an

for some j € {1,...,n — 1}, the following statements hold true.

i) The products a; ---a; and aji; - - - a, are complete multiplicative decompositions
of = and y respectively.

ii) For o',y € D with 2’ <z and ' <y we have 2’y < a. If additionally 2/ < x or
y' <y, then 2’y < a.
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Remark 1.1.14

1. Each multiplicatively decomposable element in D is a product of two elements with
lesser complexity.

2. The above theorem can be generalized for any finite products.

Theorem 1.1.15 (|8, Proposition 4.8, Theorem 4.9]) Let M as in Definition be
a subgroup of the group of units in R. Then the following statements hold.

i) If a € D and g € M U —M, then cp(ag) = cp(ga) = cp(a).

ii) If a € D\ {0} is additively indecomposable, then a is a unit in D. If additionally
cp(a) > 1, then ™! <ta and a™ ! is additively decomposable.

Proposition 1.1.16 Let S, Ry, Ry be rings with 1 and ¢ : Ry — Ry as well as
t; S — R; be injective ring homomorphisms with ¢(1) = 1 and ¢(1) = 1 for
i € {1,2} such that

S—2s R,
\i |+
R

is a commutative diagram. If Ry is the rational closure of ¢1(.S) in Ry, then ¢ is uniquely
determined by the commutative diagram.

Proof. Let ¢' : Ry — Rs be an injective ring homomorphism such that

SL>R1

N

Ry

is a commutative diagram. We will show ¢(r) = ¢'(r) for all » € R; by induction on
cp(r). The induction basis is r = ¢;(s) for some s € S. Since the above diagrams are
commutative we conclude

p(r) = p(u(s)) = 1als) = ' (1(s)) = ¢'(r).

If r is additively decomposable there are r1,r, € Ry with r = r{ + ry and r{,79 < r as

seen in Remark [I.1.10] Thus,
IH
p(r) = p(ri+r2) = (r1) +@(r2) = @' (r1) + ¢'(r2) = @'(r +12) = ¢'(r).

If r is multiplicatively decomposable there are r{,ry € Ry with r = riry and ry,ro <7
as seen in Remark [1.1.14] Thus,

p(r) = p(rir2) = p(r1)e(rs) = @' (r1)¢' (1r2) = ' (r1m2) = ¢ (7).
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If  is a proper atom, then r—! </r as seen in Theorem [1.1.12. Thus,

p(n) =) =P =),

]

Proposition 1.1.17 Let S, R be rings with 1, D be a skew field and ¢ : D — R,
11 : S — D as well as 15 : S — R be injective ring homomorphisms with ¢(1) = 1
and ¢;(1) = 1 for ¢ € {1,2} such that

S—~D

N

R

is a commutative diagram. If D is the rational closure of ¢1(S) in D, then ¢(D) is the
rational closure of 15(5) in R.

Proof. Since D is a skew field and ¢ is injective, p(D) is also a skew field and as such
rationally closed in R. Furthermore, ¢,(S) C D implies 15(S) = ¢(11(S)) C (D).
Therefore, if R’ is the rational closure of 15(S) in R, then R' C ¢(D). Let D’ be the
inverse image of R’ under ¢. If d € D’ is a unit in D, then ¢(d) € R’ is a unit in R
which implies ¢(d™!) = ¢(d)™ € R and thus d~! € D’. Therefore, D’ is rationally
closed in D. As ¢(11(S)) = 12(S) C R implies ¢1(S) € D" and D is the rational closure
of 11(S) in D, we conclude D C D'. Therefore ¢(D) C ¢(D') = R'. O

1.2 Conradian left—ordered groups and locally
indicable groups

Definition 1.2.1 If G is a group and < is a total order on GG, then < is called left—order
of G and G is called left-ordered with respect to < if

a<b= ca<cb

for all a,b,c € G. Analogously one defines right-orders. If < is a left-order and a
right—order at the same time it is called an order of G and G is called ordered group
with respect to <.

Remark 1.2.2

1. If G is a left—ordered group and nothing more is said, we will use < as the symbol
for the corresponding left—order. Even if there are multiple left—ordered groups we
will use the same symbol if there is no danger of confusion.

2. If GG is abelian and < is a left—order of G, then < is an order of G.
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n

3. If G is a left—ordered group it is torsion—free since e < gimpliese < g < g> < --- < g
and therefore e # ¢g" for all n € N.

Definition 1.2.3 If G is a group then a subset P C ( is called a positive cone of G, if
the following properties are fulfilled:

i) P-PCP,
i) PNP 1=,
iii) G=PUPU{e}

Theorem 1.2.4 (cf. [4 page 267|[16, section 1.5.]) If G is a left-ordered group then
P. :={a € G |e < a} is a positive cone of G such that

a<be=a'be P

for all a,b € G.

Theorem 1.2.5 (cf. |4, page 267|[16] section 1.5.]) If G is a group and P is a positive
cone of G then

a<bi<albeP

for all a,b € GG defines a left—order of G such that P = P_.

Remark 1.2.6

1. Asseen above each left—order admits a corresponding positive cone and vice versa.
Therefore we will use both terms interchangeable.

2. If G is a right—ordered group, then P. :={a € G | e < a} is a positive cone such
that a < b is equivalent to ba=! € P. for all a,b € G. Conversely, each positive
cone P of a group G defines a right-order < on G such that P = P.. Thus, each
left-order of a group has a corresponding right-order and vice versa. This way
one can translate statements about left-orders and right-orders of groups into
each other. This comes in handy as we will mainly use left-orders even though
most of the literature is about right—orders.

Definition 1.2.7 If G is a left-ordered group and C' C G is a subset (subgroup) of G
then C' is called convex subset (subgroup) of G, if

a<b<ec=beC

forall b € G and a,c € C.

Remark 1.2.8 For a subgroup C' of the left-ordered group G it is sufficient to prove
that e < a < b implies a € C for all a € G and b € C to prove that C' is a convex
subgroup of G.
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Theorem 1.2.9 (|16, Theorem 2.1.1]) If G is a left—ordered group the following state-
ments hold:

i) The set of all convex subgroups is totally ordered with respect to C.

ii) The intersection as well as the union of any nonempty family of convex subgroups
is a convex subgroup.

Definition 1.2.10 If G is a left—ordered group and a € G, a # e we define

C, = U{C C G| C is a convex subgroup of G with a € C'},
Cr.= ﬂ{C’ C G| C is a convex subgroup of G with a € C'},
C, =C, (a).

Remark 1.2.11
1. We define C; := C} := C, := {e}.

2. Theorem shows that C, and C; are convex subgroups of G. Furthermore
CH (C;) is the smallest (biggest) convex subgroup of G (not) containing a (for

a

a # e).

Definition 1.2.12 Let G and H be left-ordered groups. A group homomorphism
¢ : G — H is called order—preserving if

pla) < pb) = a<b
for all a,b € G.

Remark 1.2.13
1. The above property is equivalent to a < b= ¢(a) < ¢(b) for all a,b € G.
2. The kernel ker ¢ is convex in G.

3. If G and H are left-ordered groups with corresponding positive cones P and
Py then a group homomorphism ¢ : G — H is order—preserving if and only if
©(a) € Py implies a € P for all a € G.

Theorem 1.2.14 (|4, 3.5 and Remark before 3.6]) Let G be a left—ordered group and

C' be a convex normal subgroup of G. Then G/C is a left-ordered group with respect
to the positive cone

P:={¢9CeG/C|lg>eand g¢C}

and the canonical homomorphism ¢ : G — G/C' is order—preserving.
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Remark 1.2.15
1. The above order of G/C is called canonical left-order of G/C.

2. If C is a convex normal subgroup of the left-ordered group G, then there is an
order—preserving correspondence between the convex subgroups of G/C and the
convex subgroups of G' containing C'. [4], after 3.6]

Theorem 1.2.16 (cf. [4, Lemma 4.1]) Let G be a left-ordered group. The following
properties are equivalent.

i) For all a,b € G with e < a,b there exists an n € N with ab < (ba)".
ii) For all a,b € G with e < a < b there exists an n € N with b < a~'0"a.
iii) For all a,b € G with e < a, b there exists an n € N with a < ba™.

Definition 1.2.17 A left—order < is called Conradian left—order if it has one of the
properties in Theorem [1.2.16| and a left—ordered group is called Conradian left—ordered
group if its left-order is a Conradian left—order.

Remark 1.2.18 Each ordered group is also Conradian left-ordered.

Definition 1.2.19 A left-ordered group G is called Archimedean left-ordered group if
for all a,b € G with e < b there exists an n € N with a < b™.

Theorem 1.2.20 (cf. [4], 3.8|[16, Theorem 2.2.1]) If G is a left—ordered group, then G
is Archimedean left—ordered if and only if there exists an order—preserving isomorphism
of G onto a subgroup of the additive group R.

Remark 1.2.21 Since R is commutative, each Archimedean left—order is also an order.
Therefore we will also use the term Archimedean order.

Theorem 1.2.22 (|4, 4.1]) Let G be a left-ordered group with respect to <. The
following statements are equivalent.

i) The left-order < is a Conradian left—order.

ii) For every a € G the subgroup C; is a normal subgroup of C;" and C;/C; is an
Archimedean ordered group with respect to the canonical order.

Corollary 1.2.23 If G is a Conradian left-ordered group and a € G then C, is a
subgroup of C;7 and C; is a normal subgroup of C,,.

10



1.2 Conradian left—ordered groups and locally indicable groups

Definition 1.2.24 Let GG be a group and A be a set of subgroups of G. We call A a
subnormal system if the following holds:

i) {e},G € A.

ii) A is totally ordered with respect to C.

)
iii) If A" C A, A # 0, then NA,UA € A.
)

iv) If A, A’ € A such that A is the direct successor of A’ in A, then A’ is a normal
subgroup of A. We call A/A’ factor of A.

Remark 1.2.25

1. If A is a subnormal system and a € G, a # e, we define A, = J{A € A|a g A}
and AT := ({A € A | a € A}. As one can easily see, A} is the direct successor
of A, in A. Furthermore A} (A, ) is the smallest (biggest) element of A (not)
containing a.

2. Theorem [1.2.22| shows that a left—ordered group G is Conradian left-ordered if
and only if the set of all convex subgroups of GG is a subnormal system such that
the canonical left-orders of its factors are Archimedean orders.

Lemma 1.2.26 If G is a group and A is a subnormal system in G such that each factor
of A admits a Conradian left—order, there is a Conradian left—order on G so that the
canonical homomorphisms of the factors of A are order preserving. Especially each
element of A is a convex subgroup of G.

Proof. We define P := {a € G\ {e} | aA, > A }. If a,b € P one can assume that
b e A}. We examine the following cases

Case 1: If b € A, then ab € AJA,; C Al and abA,; = aA; > A, which implies
ab & A, . Hence A, = A; and therefore ab € P.

Case 2: If b € A, then A, = A, and A; = AF. Since A/A; is left—ordered we
conclude abA; > A, which also implies ab & A . Since ab € ATAS = AT we
have A, = A, and therefore ab € P.

These cases prove P- P C P. If a € P then aA, > A, . This implies a 'A; < A, and
since A, = A7, we conclude a ¢ P. Thus PN P! = 0. If a € G with a # e, then
aA; > A7 ora Ay > A;. Since Ay = A, this proves G = PU P! U {e}. Hence
P is a positive cone and defines a left-order < of G.

Let A/A’" be a factor of A and ¢ : A — A/A’ be the corresponding canonical ho-
momorphism. If a € A with ¢(a) > e, then aA, > A and therefore a > e. Thus
¢ is order—preserving according to Remark [1.2.13] Furthermore this shows that A’ is
convex in (G as it is the kernel of .

If A € A with A = @G it is obviously convex. Otherwise A is convex since

A= (] A,

a€G\A

11
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where each A7 is convex as seen above and the nonempty intersection of convex sub-

groups is itself convex according to Theorem [1.2.9]

For a,b € G with e < a,b we can assume that b € AT. Since a > e we have aA; > A .

Let ¢ : A7 — Af /A, be the canonical homomorphism. We examine the following

cases.

Case 1: If b € A, then abA; = baA; = aA; < a®?A; = (ab)?A,; = (ba)*A;. Thus
ab < (ba)? and ba < (ab)? since p is order—preserving.

Case 2: If b ¢ A, then A, = A, and therefore bDA, > A as b > e. Since AT /A7 is a
Conradian left-ordered group there exists an n € N with abA; = aA; DA, <
(DA, aA; )" = (ba)"A, . Thus ab < (ba)™ since ¢ is order—preserving.

This proves that < is a Conradian left—order. O

Theorem 1.2.27 If G is a group and A is a subnormal system in G such that each
factor of A is abelian and torsion—free, there exists a Conradian left—order of G with
the following properties:

i) Each element of A is a convex subgroup of G.

ii) For each a € G the finitely generated subgroups of C /C. are cyclic.

Proof. Because of Lemma [1.2.26] it is sufficient to prove this statement for torsion—free
abelian groups, whereas the second property is obtained by considering the following

diagram and Remark
CH/Cr « CF /A7 C AH/A;

Let H be an additively written abelian torsion—free group. Then ~ defined by
(a,m) ~ (b,n) <= na = mb

for all a,b € H and m,n € N is an equivalence relation on H x N. If one defines
2= {(b,m) € HxN | (a,n) ~ (bym)} and H' := {% | a € H,n € N} then H’
equipped with the operation

a b ma -+ nb

n m nm

for all 2, % € H' is an abelian torsion—free group such that H — H',h % is
an injective group homomorphism. Furthermore H’ is divisible and can therefore be
viewed as a Q—vector space. It has a Q basis B which we assume to be well-ordered.
Let B = {v, | @ < v} for an ordinal number v € On. For each 8 < v we define Hz as
the subspace of H' with basis {v, | @ < g}. Thus A := {Hz | 8 < v} is a subnormal
system in H’ with factors which are isomorphic to Q. Lemma implies that there
exists a Conradian left—order on H’ such that the elements of A are convex subgroups
of H'. This induces a Conradian left—order on H such that the factors of the subnormal
system of its convex subgroups are isomorphic to subgroups of Q. Thus each finitely

generated subgroup of such a factor is cyclic. O]

12



1.3 Group extensions and crossed product rings

Definition 1.2.28 A Conradian left-ordered group G has maximal rank if for each
a € G the finitely generated subgroups of CF/C.~ are cyclic.

Lemma 1.2.29 If GG is a Conradian left-ordered group with respect to <, there exists
a Conradian left-order <’ on G such that G with <’ has maximal rank and each convex
subgroup of G with respect to < is also a convex subgroup with respect to the <.

Proof. Let A be the set of all convex subgroups of G with respect to <. According
to Remark A is a subnormal system with Archimedian ordered factors. Since
Archimedian ordered groups are abelian and torsion—free we can apply Theorem
which proves the claim. O

Definition 1.2.30 (|16, page 50]) A group G is called locally indicable if for every
finitely generated nontrivial subgroup U of G there is a nontrivial homomorphism from
U onto Z.

Theorem 1.2.31 (|21, Theorem 4.1.|[15]) A group is locally indicable if and only if
there exists a Conradian left—order of the group.

1.3 Group extensions and crossed product rings

Remark 1.3.1 Details about crossed product groups (group extensions) can be found
in [22] and |1, Chapter 4.1].

Definition 1.3.2 Let H and N be groups and ¢ : H — AutN,a — o, as well as
n: H> — N be functions. We call (N, H,n, o) a factor system if the following is true
for all a,b,c € H and u € N:

1) 77<CL7 6) = 77(67 a) =6
11) Uao-b(”) - U(aa b)"ab(“)n(aa b)_17
iii) o4 (n(b, ) n(a, be) = n(a, b)n(ab, c).

Remark 1.3.3 If u € N then o.0.(u) = n(e,e)oz(u)nle,e)™ = e-o.(u) - e = o.(u)
and since o, is an automorphism we conclude o, = idy.

Definition 1.3.4 Let (N, H,n, o) be a factor system. Then N X, , H is defined as the
set N x H equipped with the operation

(u,a)(v,b) := (uo,(v)n(a,b), ab).

This set is called crossed product group of N and H with respect to the factor system
(N,H,n,o).

13
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Theorem 1.3.5 If (N, H,7,0) is a factor system, N X, , H, the crossed product group
of N and H with respect to (N, H,n,0), is a group,

t:N— Nx,,H, ur— (u,e)
is an injective homomorphism and

m:Nx,o, H— H, (u,a) — a
is a surjective homomorphism with kernel ker 7 = +(N).

Theorem 1.3.6 Let G, H be groups, N be a normal subgroup of G and G/N = H.
Then there exists a factor system (N, H,7n, o) such that G = N x,,, H.

Remark 1.3.7 Details about crossed product rings can be found in |20, Chapter 1].

Theorem 1.3.8 Let F' be a skew field, G be a group and (F*,G,n,0) be a factor
system. For any fixed set X and bijective map z : G — X, g — x,, define F[G;n, 0]
as the left F-vector space with basis X. FEach element of F[G;n,o] has a unique
representation in the form

E :ag$g
geG

with ay4 # 0 for only finitely many g € G and
<Z agxg> (Z bhxh> = Z Z agTq - by
e heG geG heG
with
agy - bpxy = ag04(bp)n(g, h)xg

defines a multiplication on F[G;n, o] such that F[G;n, o] is a ring with 1. We call
F[G;n, 0] a crossed product ring.

Remark 1.3.9 Let F[G;n, o] be a crossed product ring.
1. There are canonical embeddings of F' and F* %, , G into F[G;n, o] and the group
of units of F[G;n, o] respectively. These are
m F — F|G;n, 0], a — aze,
oy F* %, . G — U(F[G;n,0)), (a,9) — az,,.
We will view F' and F* %, , G as subsets of F[G;n,0].

2. For T C Fand U C G we will write TU = {ax, | a € T,g € U}. Thus,
F*G = F* x,,G.

14



1.3 Group extensions and crossed product rings

Theorem 1.3.10 If G is a left-ordered group and F[G;n, 0] is a crossed product ring,
then the group of units in F[G;n, o] is equal to F*G.

Proof. As noted in Remark each ar, € F*G is a unit in F[G;n,0]. Now let
bizp, + - - + by, be aunit in F[G;n, o] with m € N, b; € F* and h; € G for j < m.
Without loss of generality one can assume that hy < --- < hy,. f ayzg, + -+ 4+ anzy, is
the inverse of byxy, + -+ -+ bz, withn € Nj a; € F* and ¢; € G for i < n, as well as
pairwise different g;, we have

Te = (alxgl + e + an'l‘gn) (blxhl + e + bmxh'm)

and therefore

0= Z a’ixgibjmhj: Z \(aio—gz‘(bj)n(givhﬂ)/mg

-~

#0

i<n,j<m i<n,j<m

gihj=g gihj=g
for all g € G with g # e. We choose ',i" < n with g;yh; minimal and g;»h,,, maximal
in G. If 7 <m and i < n, we observe

gi’hl < gzhl < gihja for j §é 1

gih1 < gihy < gih;, fori # i } = giha < gihy, for (i, j) # (', 1).

Thus there is only one pair (7, j) with g;h; = gihy. For this we conclude e = g;h; = gihy.
Similarly g;«h,, = e which implies m = 1. Hence byzp,+- - -+bp,xp,, = bixp, € F*G. [

Theorem 1.3.11 Let Gy, G5 be left-ordered groups and Fy[G1;m1, 01], F2[Ga; 12, 02] be
crossed product rings as well as

@ F1[Gysm, 01]) — F3[Ga;na, 09

be a ring homomorphism with ¢(1) = 1. Then ¢(F;) C F, and there exists a unique
group homomorphism ¢ : G; — Gs, such that for every g € G there is an a € Fy'
with o(zg) = azy(g).

Proof. If a € Fy with a =0 or a =1, then p(a) =0 € F; or p(a) =1 € F,. Now let
us choose an a € Fy with a # 0,1. Then a as well as a — 1 are units in F}[Gy, m, aq].
Therefore ¢(a) and ¢(a—1) are units in F5[Gs, 1, o). Theorem[1.3.10]implies that there
are b € Fy, g € Gy with p(a) = br,. Thus bz, — xz. = p(a) — (1) = p(a — 1) € Fy'Gs.
Theorem now implies g = e and therefore ¢(a) = bz, € F>.

For each g € Gy there are a € FJ® and ¢’ € Gy with p(z,) = axy. Let ¢ : G; — G4 be
defined by ¢(g) :=¢'. If g, h € G4, there are a,b € F* and ¢/, i/ € G5 with ¢(z,) = azy
and ¢(xp,) = bxy. Since

o(xgn) = ©(m2(g, 1))~ @(n2(g, ) (xgn) = co(na(g, h)zgn) = co(zgrn) = co(ag)e(an)
=:ceF)

= caxybxy = cacs, (b)n2(g', ') xgp

>

15



1 BASICS

we conclude 1 (gh) = ¢’h" = 1(g)w(h). Thus @ is a group homomorphism. At last, ¢ is
uniquely defined by ¢ since for each g € G there is an a € Fy* with p(zy) = azyg. O

Remark 1.3.12 If F[G;n, o] is a crossed product ring and H is a subgroup of G, then
F[H;n|gxu, o] is a crossed product ring and

v FIH;nlpxm,olu) — F[G;n,0], ayxp, + -+ + app, —> a1xp, + -+ + apxp,

is an injective ring homomorphism with ¢(1) = 1. We will write F[H;n, o] instead of
F[H;n|gxm,o|x) and can interpret F[H;n, o] as a subring of F[G;n, o].

Proposition 1.3.13 Let F[G;n, 0] be a crossed product ring. Then the following
statements hold.

i) Ifay,...,a, € Fand gy,...,g, € G for some n € N, then there is an a € F with

n
H AjTg, = AT g,...q, -
i=1

Furthermore a = 0 implies a; = 0 for some 7 < n.

ii) If g € G then there is an a € F* with 2! = azg-1.

Proof.
i) We will prove this by induction on n. For n = 1 there is nothing to show. If n > 1
we have
n n
H
H Ailg; = A1Lg, H AiTg; = 17,0 Ty, g, = 104, (a")0(g1, G2 - 'gnlxgr-yn‘
i=1 =2

~
=€l

If @ =0 then a; = 0 or 0, (a’) = 0, where the latter implies ' = 0 and therefore
a; = 0 for some ¢ < n with ¢ # 0 by induction hypothesis.

ii) Since

1

l'g—ll'g = 77(97179>xg_19 = 77(97 79)':667

1:

we have 2, ' = n(g™", g) 1wy O
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1.4 Formal power series

1.4 Formal power series

Remark 1.4.1 In the following section I will be a skew field and T' a totally ordered
nonempty set without maximal or minimal elements. Furthermore we define I' :=
['U{oo} together with v < oo for all vy € T.

Definition 1.4.2 Let m : I' — F be a function. Then suppm = {y € I' | m(y) # 0}
is called the support of m. If suppm is a well-ordered subset of I' we call m a formal
power series (over I' with coefficients in F'). Furthermore F'(I')) denotes the set of all
formal power series over I' with coefficients in F'.

Remark 1.4.3
1. F((T) is a right F—vector space with respect to the operations

m+m' T — F, v m(y)+m(y),
ma:T' — F | v+— m(y)a

for m,m’ € F((G)) and a € F.

2. For m € F(I')) we define m., := m(y) for all v € I' and write m as the formal
sum Z'yGI‘ ym. or just > ym, if there is no ambiguity. Then we have

Dy + 3l = 3 (my 4 ).
(Z 7m7> a4 = ZV(mva)

3. If suppm = {71,...,7} for some n € Ny we also write m = y1m,, +- - - +y,m.,,.

4. We write 7 instead of y1. Thus, we can treat I" as a subset of F'(I")).

Definition 1.4.4 For {m; | i € I} C F((T')) the formal sum ) ,_, m; is called convergent
if for every v € I there are only finitely many i € I with v € suppm; and | J,.; supp m;
is well-ordered.
Remark 1.4.5

1. If .., m; is convergent then
m:F—>F,’yr—>Zmi(’y)
iel

is a well-defined function and suppm C (J,.;suppm; is well-ordered. Thus,
m € F(I')). We write .., m; :== m.
2. If Y .., m; is convergent then ) ._,, m; is convergent for each I’ C I.

3. We will write ) m, instead of ), , m; if there is no ambiguity.

17
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4. For m € F((I')) we can interpret ym., as an element of F'(I')). In this case the sum
> ym., is convergent and therefore the formal sum coincides with the convergent
sum.

5. If > m; is convergent then {m; | i € I} is called summable in |5, §4 Definition 2|.

Lemma 1.4.6 Let J,I be index sets m; € F(I) for all j € J such that >, m;
converges and J; C J for all ¢ € I such that J = Uie[ J; is a disjoint union. Then
> ics, My converges for all @ € I. If mi := 3 ., m; then >, m] converges and

ZjeJ m; = Zie] m;.

el

Proof. Since J; C J for each ¢ € I there is nothing to show for the first convergence.
Because of supp m; C [, ;. suppm; we have

Jsuppmi < | J | suppm; < | ) suppm;
iel icl jed; jeJ

which implies that J,., suppm; is well-ordered. If v € I' with v € suppm] for some
i € I then there exists a j € J; with v € suppm;. Since J = J,, J; is a disjoint union
and there are only finitely many j € J with v € suppm; there are only finitely many
i € I with v € suppmj. Thus ) _,_, mj converges.
For a fixed v € I" the set J' := {j € J | v € suppm;} is finite. If J! := J' N J; for all
i € I then J' = J,, J; is a disjoint union. Hence

dom(n) =Y m(n) =) my(y) =) mi(y)

JjeJ jed’ i€l jeJ! i€l
_ ’s
and Y. ;m; = >, ;m; is proven. O

Remark 1.4.7 ([9]) Let I, J be index sets and m;; € F((I')) foralli e [ and j € J. If
> (ijye1xs Mij converges then 3., my; converges for all ¢ € I, }7,.; m; converges for

m; = ZjEJ m;; and Z(i,j)e[xjmij = Y ic;m;. This is proven by Lemma if one
chooses J' :=1 x J and J] := {i} x J for all i € I.

Theorem 1.4.8 (cf. [7,9]) For A C I' anti-well-ordered we define
Us = {m e F(T) | ¥y € A s m(7) = 0}
and
:={Ua | A CT is anti-well-ordered}.

There is a topology on F((I')) such that F((I')) is a topological F—vector space and 4
forms a basis for the neighborhood filter of O. Hereby we will consider F' as topological
field with respect to the discrete topology.

18



1.4 Formal power series

Remark 1.4.9

1. We will always consider F'((I')) as a topological F-vector space with respect to
this topology.

2. An endomorphism f of F(T")) is continuous if and only if for every Un € 4 there
is a UA’ € I with f(UA’) g UA.

3. The set of all continuous endomorphisms of F((T')) forms a subalgebra with 1 of
the endomorphism algebra of F(T")).

4. For details about topological vector spaces see [24].

Theorem 1.4.10 For m € F(I')) and m; € F/(I")) with ¢ € I the following statements
are equivalent.

i) The sum ), , m; is convergent with »_._, m; = m.

ii) For every anti-well-ordered A C T" there is a finite I’ C I such that

ZmiEm—I—UA

iel’

and m; € Up for each i € I'\ I'.

Proof. "i)==ii)": Let A C I' be anti-well-ordered. Since ) .., m; is convergent,
U,er supp m; is well-ordered and thus A" := AN J,; suppm; is finite. For each v € T’
we define I, = {i € I | v € suppm,}. Since ), ,m; is convergent, each I, is finite.
Furthermore I, = () for v € A\ A’. Now we define

I'={icllm¢Un}t=JI,=J L

YEA yEA!

Since A’ and each I, are finite, I is finite. Furthermore m; € U, for each i € I\ I’ by
the definition of I’. At last, if v € A, then

m(y) =Y mi(y) = mi(y)

i€l el

and thus >, ., m; € m + Ua.

"i)=1)": Let A C J,;suppm; be a strictly decreasing sequence. As such it is anti-
well-ordered and therefore there is a finite I’ C I like in the premise. For i € I\ I’ we
have m; € U and thus supp m;NA = (). Therefore, we conclude that A C J,.,, suppm;
and since |J;.,, suppm; is a finite union of well-ordered subsets of I' it is itself well-
ordered. As A is well-ordered and anti—well-ordered it has to be finite which shows
that (J,.; suppm; is well-ordered.

For any v € I" we define A := {~}. Thus, there is a finite I’ C [ like in the premise. For
each ¢ € I, if v € suppm;, then m; &€ Ux and therefore i € I’. As I’ is finite there are

only finitely many ¢ € I with v € suppm,. Hence ) ., m; is convergent. Furthermore,
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we have
(Z m) (1) = mi(y) =m(v),
iel iel’
since ), ;,m; € m+ Ua. This shows >, m; = m. O

Theorem 1.4.11 (cf. [7, 9]) Let f be an endomorphism of F((I')). The following
statements are equivalent:

i) The endomorphism f is continuous.
ii) If > m; is convergent, then > f(m;) is convergent and f (> m;) = > f(m;).

Proof. "i)==ii)": Let }_,_; m; be convergent with m = > .., m; and A C I' be an
anti-well-ordered set. Since f is continuous there is an anti-well-ordered set A’ C T’
with f(Ua/) C Ua. According to Theorem since ) .., m; is convergent there is
a finite set I’ C [ such that

EE:THiG m + Uns
iel’

and m; € Uas for each i € '\ I'. Thus, we have

> fmi)=f (Zm> € f(m+Us) = f(m)+ f(Us) C f(m) + Ua,

iel’ i€l
and f(m;) € Ua for each ¢ € I\ I'. This shows that ) ., f(m;) is convergent with

Yoicr f(mi) = f(m) = f (Ziel mi)'

"ii)==1)": For any anti-well-ordered A C I' we define

A":={y €T |supp f(v) N A # 0}.

Let {7; | i € I} C A’ be a strictly increasing sequence. Then )+, converges in F((I")).
According to the premise this implies that »_ f(7;) converges with >~ f(v;)=f O i)
Therefore, there is a finite I’ C I, such that

Zf(%‘) €f <Z%> +Ua

icl’ i€l

and f(v;) € Ua for each i € I\ I'. Thus supp f(v;) N A =0 for each i € I\ I'. Since
supp f(7i) N A # () for each ¢ € I this implies I = I’. Hence I is finite. As each strictly
increasing sequence in A’ is finite, A’ is anti-well-ordered.

For m € Uxn/ we can write m = Z'yEF ym.. According to the premise we know that

> ver f(ym,) is convergent with > . f(ym,) = f(m). Thus

f(m) = Zf(va) € Ua

~el cla

and therefore f(Ua/) C Ua. O
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1.4 Formal power series

Remark 1.4.12 In [5, §5 Definition 1] the notion of o-linearity is introduced. Theorem
1.4.11| shows that o-linear endomorphisms and continuous endomorphisms are exactly
the same.

Definition 1.4.13 A map f: F(I") — F(T) is called v—compatible if
v(m) <v(m') <= v(f(m)) <o(f(m))

holds for all m,m’ € F((T")), where

v:F(T) —T,mr—
00 else.

. {min suppm for m # O

Remark 1.4.14
1. If f is a v—compatible endomorphism of F((I")) then f is injective.

2. The v—compatible automorphisms of F'((I')) form a group with respect to the
composition.

3. In [5 §5 Definition 2| v—compatible endomorphisms are called monotone.

Theorem 1.4.15 ([0, Lemma 3|9, 23]) If f is a v—compatible continuous automorphism
of F((T) then f~! is also a v—compatible continuous automorphism.

Definition 1.4.16 A map f : F(I') — F({I")) is called v—compatible on I" if

v < <= o(f(v) <v(f(v))

for all 7,7 € I". Furthermore f is called surjective on I' if for every v € I" there exists
a " €I such that v = v(f(y)).

Remark 1.4.17 A mapping f : F(I') — F(T')) which is v—compatible on I' (sur-
jective on T') is called locally monotone (locally surjective) in [, §5 Definition 2, §5
Definition 4].

Theorem 1.4.18 (cf. |5, §5 Theorem 1|[9]) If f is a continuous endomorphism of F((I"))
then the following statements are equivalent:

i) f is a v—compatible automorphism,

ii) f is v—compatible on I' and surjective on T'.

Definition 1.4.19 An endomorphism f of F'(I')) is called monomial if for every v € T’
there exist v/ € I' and m., € F such that f(y) = y'm..
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Lemma 1.4.20 (cf. [5, §7 Proposition 1|[9]) Let G be a group of monomial contin-
uous v—compatible automorphisms of F'((I')). If D is the rational closure of G in the
endomorphism ring of F(T")) then

supp f(m) C {v(g(7)) | g € G, € suppm}

for all f € D and m € F(I)).

1.5 Skew fields of fractions of crossed product rings

Remark 1.5.1 For the remainder of this chapter F' will be a skew field, G a Conradian
left—ordered group and F[G;n, o] a crossed product ring.

Definition 1.5.2 If Ris aring and D a skew field then D is called skew field of fractions
of R if there is an injective homomorphism ¢ : R — D with ¢(1) = 1 such that D is
the rational closure of p(R) in D. The map ¢ is called the associated embedding of R
into D.

Remark 1.5.3 Since ¢ is injective one can interpret R as a subring of D.

Definition 1.5.4 Let R be a ring with 1 containing F[G;n, o] as a subring such that
both have the same 1. If U is a subgroup of G and g € G, then Ry is the rational
closure of F*U (or F[U;n,0]) in R and R} := Ret, Ry = Re- as well as Ry := Rg,.

Remark 1.5.5 If we are using complexity as in Definition for Ry or its derived
rings as in Definition [1.5.4] we will consider F'*U as the starting set M if nothing else
is specified.

Proposition 1.5.6 If D is a skew field of fractions of F[G;n, o], then a:ngg_x’; =D,
for all g € G and k € Z.

Proof. At first we will show xg_er’g“ C Dg_ for all r € Dg_, using induction on the

complexity of r € D;. For r € FC there are a € F and h € C with r = axy,.
Applying Proposition we have z *azyzl = 'z -kpge for some o/ € F. Since
C, is a normal subgroup of C; we conclude g~*hg* € C and therefore z,*azz} =
a'Tyrpge € FC; C Dy

If r is additively decomposable there are ry,...,r, € D, with r = r; +---+ 7, and
r1,...,m, <\r. Applying the induction hypothesis we have

—k,. K —k k —k,. Kk —k,. K -
T, rry = x, (e )T, = x, Xy e A x ra, € Dy
——
€Dy €Dy
If r is multiplicatively decomposable there are rq,...,r, € D, with 7 = ry---r, and
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1.5 Skew fields of fractions of crossed product rings

r1,...,m, <r. Applying the induction hypothesis we have

:v;k'r’:clgg = x;k(rl . ‘rn)xlg“ = Ex;krlxlgl- . ‘\(:I:;krna:g)J €D,.
TV TV
€D, €D,

If r is a proper atom, there is a ry € D with ry <7 and r = ri'. Applying the induction
hypothesis we have

ko k _ k.1 k _ ( —k_ ky“l -
r,rry =x, = (v, rwg) € D,
eDy

. —k )=k - ky——k -
This shows T, Dg z, C Dg for all k € Z, and therefore also ngg " C Dg for all

k € Z, which completes the proof. O

Corollary 1.5.7 If D is a skew field of fractions of F[G;n,0], g € G, ny,...,n; € Z
and ay,...,a; € D, for some k € N, then there is an a € D, with

k

[P 7 ni+-+ng
H alxg = CLCCg .
=1

Proof. We use induction on k and apply Proposition [1.5.6, If £ = 1 there is nothing
to show. For k > 1, by induction hypothesis, there is some o’ € D, with

k
R
H a;r, = axy )
=2
Therefore
k
T ny /et ng ni /N1 L nitneteetng ni+-+ng
Haza:g a1z, a'ry ayrytax,™ Ty az,
1=1 M
eD;
with a = a;(z}*a’z;™) € D by Proposition m ]

Definition 1.5.8 Let D be a skew field and z an indeterminate over D. If a,, € D for
alln € Z and a,, = 0 for all n < N and some N € Z then the formal sum

g anpx”

ne”L

is called (skew) formal Laurent series over D in z.

Remark 1.5.91f f = > _, a,2" is a (skew) formal Laurent series over D in z as in
Definition we will also write f =" -y a,2" or f =3 a,z".
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Theorem 1.5.10 (cf. [3, Chapter 1.5]) Let D be a skew field, o an automorphism of
D, x an indeterminate over D and D][x;0]] the set of all skew formal Laurent series
over D in x. Then D[[z;c]] is a skew field with respect to the canonical addition and
multiplication defined by

(Z anmn) . (Z bnx”) = chx”

whereas

Cp 1= Z aro®(by).

k+l=n

We call Dl[[x;0o]] the ring of skew formal Laurent series over D in .

Remark 1.5.11 For f € D[[z;0]] with

f= Zanx”

and a, = 0 for all n € Z, n < 0 the inverse of 1 — f in D[[z; ]| can be calculated by
applying the geometric series. The idea is to use (1 — f)™' =1+ f+ f2+..., although
it is not formally defined. If

(1- f)il = anxn’

then b, = apy + - -+ + an, Whereas ay,, is defined by

fk = Z ak,nxn

for each k € Ny. Thus,

k
ag " = E H Ay, ™

ni+--+np=n i=1
or

k
A = E H ap, 2™ | 7"

ni+--+np=n i=1

for all n,k € Z, k > 0. If k € Ny and ny,...,n, € Z, then Hle an, 2™ # 0 implies
an, 7 0 and therefore n; > 1 for all ¢ < k. Hence ny + --- +ng > k if Hle ap, 2™ # 0.
By contraposition ay, = 0 for all k,n € Z with k > n. We can write

bn:2< 5 Ha:) o

k>0 \ni+-+4nr=n i=1
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1.5 Skew fields of fractions of crossed product rings

since the occurring sums have only finitely many non-zero summands. For f € Dl[z; o],

~

f # 0 with
f = Z anx™
such that N € Z is minimal with ay # 0 we write
f=(ana™)) (ana™)ana” = (anz™) Y ca”

with ¢, = (ayz™) tan, oY, Then ¢, = 0 for all n € Z, n < 0 and ¢y = 1. Applying
the above results leads to

~1
(g cnx”> = "

with ¢, € D defined by

for all n € Z. Now

f—l _ (Z cn$n>1 (deN)—l _ Zénxn<deN)_1 _ Z[;nxn

with b, := éuy v N (anaN) 1z € D. Thus,

Bn - Z Z H(_Cni>$m :E_(n—i_N)ZB?H—N(CAZNZ'N)_l:E_n

k>0 ML yeeny niEN =1
ni+-Ang=n+N

k
— Z Z H—(&NxN)_ldn#Na:”#N (deN)_lx_”.

k>0 MY yeeny np€eN i=1
ni+--+ng=n+N

Proposition 1.5.12 (cf. [3, page 88|) Let D be a skew field, o an automorphism of
D and z an indeterminate over D. For the skew Laurent polynomial ring D[z, x™!; o]
there is a unique injective ring homomorphism ¢ : D[z, 2~ '; 0] — D][z;c]] such that
t(aga® + -+ a2t) = a,a™ for all k,l € Z, k <1 and a, € D for n € Z with a,, =0
for n & {k,...,1}. We call ¢ the canonical embedding of D[x,z~!; 0] into D[[z;0]] and
view D[z, 27 ;0] as a subring of D|[z;0]].
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Remark 1.5.13 Let D; be a skew field, o; an automorphism of D;, z; an indeterminate
over D; for i € {1,2} and ¢ : Di[zy,27;01] — Dalrs, 25 05] an injective ring
homomorphism such that ¢(D;) € Dy and ¢(x,) = dab for some d € D,, d # 0 and
[ € N. Then

Y Dy[[xy; 01]] — Da|[xa; 09]], Zanx? — Z&nacg

with @, := a,,(dzb)™z;™ if there is some m € Z with n = Im and a,, = 0 else, is a
well-defined injective ring homomorphism such that

Difzy, 27" 00 —— Di[[x1; 01]]

‘| |

Dy[wg, 25" 9] —2> Da[[9; 0]

is a commutative diagram, whereas (1, t5 are the canonical embeddings. Furthermore, v
is uniquely defined by ¢. This allows us to view D;[[z1; 01]] as a subring of Ds[[z5; 09]].

1.6 Dubrovin—rings
Theorem 1.6.1 (cf. [10]) Forge Ganda € F,a#0

Jary : F(G) — F(G). Y ymy =Y g7 (04, (an(g,7))m.)

TV
veG veG cF

is a monomial, continuous, and v—compatible automorphism of F'(G)). The map
[ FlGin, 0] — End(F(Q)), a1y, + - + anTg, = Jarag, T+ + fanay,

is a well-defined injective ring homomorphism.
Proof. Let g € G and a € F, a # 0 be fixed. For m € F((G)) and v € G we define

my = g7 (0gy(an(g,7))m,) € F(G)).

If v € G, then suppm., = {gv} for v € suppm and supp i, = 0 else, since 7, = 0
is equivalent to m, = 0. If v/ € G, then o/ € suppm., implies v/ = g7 and therefore
v = g~'%. Thus, there is only one v € G with 7' € supp .. Since suppm is well-
ordered and G is a left—ordered group, gsuppm is well-ordered. Hence

U supprn, = | gv=gsuppm
yeG YEsupp m

implies that (J ~ec Supp ., is well-ordered. Thus > g My converges and Jaz, is well—
defined. Furthermore, we have shown that supp f,.,(m) = gsuppm. If v € G, then
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1.6 Dubrovin-—rings

supp faz, (v) = {97}, hence f4;, is monomial.

Let A C G be anti-well-ordered. Then g~ !A C G is anti—well-ordered. If m € Us-1a,
then v & suppm for all v € g~ 'A. Thus, gy & gsuppm = supp fu,, (m) forally € g7'A
and therefore, v & supp fuz, (m) for all v € A. Hence fo,,(Uj-1a) € Ua and f,,, is
continuous.

If v, € G with v < 9/, then v(faz, (7)) = 97 < 97 = v(faz, (7)), since G is a
left-ordered group. Hence f,,, is v—compatible on G. Furthermore, if v € G, then
O(faz,(9717)) = g9~y = v with g~'y € G. Hence f,,, is surjective on G. Since fuq,
is continuous, v—compatible on G and surjective on G we can apply Theorem
which proves that fu,, is a v—compatible automorphism.

For g € G we define f; : F — End(F((G)), a = fur, whereas fo := 0. If ay,a0 € F
and m € F((@)), then

filar+az)(m) = g7 (04y((a1 + az)n(g,7))ms)

veG
=" g7 (04, (an(g.7))ms) + Y g7 (04, (azn(g.7))m,)
vEG vEG

= folar)(m) + fo(az)(m).

Hence f; is a group homomorphism. Since F'[G;7, 0] is a left vector space with basis
{zy | g € G} it is also a direct sum of copies of the additive group F. We define
the group homomorphisms ¢, : F' — F[G;n,0], a — ax, for all g € G. According
to the universal property of direct sums there exists a unique group homomorphism

f: F[G;n,0] — End(F((G))) such that

F —— F[G:n,0]

Ny

End(F (&)
is a commutative diagram for each g € G. If g,y € G and a, m, € F, then

Ty gty = T an(g,V)Tey = og,(an(g,v))

and thus

flazg)(ymy) = faz,(yms) = g7 (0gy(an(g,7))my) = g7 (2, azgzym,) .
Therefore,

Fllarzg, ) (azzg,))(ymy) = f((a1$g1a2xg2x5;1}a>xg1gz)(’Ymv)
eF
(9192 v I(QIQQ aﬂglaziﬁgﬂvg_iq?wgl%xvmv)

— 9 92’7)( 91(927 alxglxgﬂxgzl”/azxgzx“/mv)
)
)

(a12g, 7 (= gzva2x92xvmv))

=/ (92
f(alxgl f(angz)(fym“/)'
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for all a;,as € F* and ¢1, g2 € G. Since all occurring endomorphisms are continuous,
this proves f((a1z4,)(asxy,)) = flaizy,)f(azx,,). This is sufficient to prove that f is
a ring homomorphism. If ¢g;,...,9, € G are pairwise different and a4,...,a, € F for
some n € Ny, then f(a1z, + -+ + apzy,) = 0 implies

glo-gl (al) + U + gno-gn (an) = falxgl (6) + o + fanzgn (e) = 0

Hence 0, (a1) = -+ = 04, (an) = 0, since gy, ..., g, are linearly independent in F(G)).
Therefore a; = - -+ = a,, = 0 which means that f is injective. O

Definition 1.6.2 The rational closure of f(F*G) in End(F((G))) with f as in Theorem
[1.6.1]is called the Dubrovin-ring of F[G;n,0].

Remark 1.6.3 The Dubrovin-ring R of F[G; 7, o] is the rational closure of f(F[G;n,0])
in End(F((G))). Since f is injective, we can interpret F'[G;n, o] as a subring of R.

Lemma 1.6.4 Let R be the Dubrovin-ring of F[G;n,0] and I a set. If ¢ € G with
g>eanda; € R, n; €Zfor all i € I such that for each n € Z there are only finitely
many i € I with n; <n and a; # 0, then

"
E a;Ty'm
icl

converges for all m € F((C)) such that Y, a;zyim € F((C))).

i€l

Proof. Since G is a Conradian left—ordered group, the factor group C’; /C, is Archi-
median ordered. Because of Lemma we have
supp a;vy'm C {v(azxpy) | avy, € F*C, v € suppay'm}
C{hy|heC,,v€g"suppm}
= C, g™ suppm C C;C;C; C C’;
for each ¢ € I. Let v € G be fixed. If i € I with v € suppa;z;'m then a; # 0 and

there are 7' € suppm C C; and ¢ € C with v = cg™'. Since v(m) < 9/, we have
v(m)C, <+'Cy . Hence

- _ N S V— . N — T4 —

1Cy = g™y Cy = g"y'Cy = g™u(m)C

g

which implies yo(m)~'C; > g™ C; . Since Cf/C; is Archimedian ordered there is an
n € N with

g"Cy < qu(m)'Cy < (9Cy )" = g"Cy

and thus n; < n. Hence there are only finitely many ¢ € I with v € supp a;z;'m.
Let M be a nonempty subset of | J,_, supp a;xy'm and v € M. As seen above there is
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1.6 Dubrovin-—rings

an n € N with yv(m)™'Cy < ¢"C; . For all i € I and v € G with n; > n and 7' <~
we have
Yo(m)'Cy <qu(m)~'C, < g"Cy < g™ C;,

and therefore o' & supp a;x'm. We define I' :== {i € I | n; < n,a; # 0}, which is
a finite set by assumption. Since |J,., supp a;xy'm is a finite union of well-ordered
sets it is well-ordered itself. Because of v € M N|J,., supp a;Ty'm, there is a smallest
element vy in M N {J,c;y supp agzyim. If o/ € M with 4" < 5, then 7" < 4 < v and
~' € supp a;xy'm for some ¢ € I. The argumentation above shows n; < n and thus
i € I' by definition of I', which means v € M N, supp a;z;'m and therefore 7 < 7.
Hence 7y is the smallest element of M and (J,., supp a;xy'm is well-ordered.

Since supp a;ry'm C Cf for all i € I we conclude supp ) a;zyim C CJ. Hence
Yo airym € F(CF). O

Corollary 1.6.5 Let R be the Dubrovin-ring of F|G;n,0], g € G with ¢ > e and
an, € R for all n € Z. If there exists an N € Z such that a, = 0 for all n < N, then

n
E anTym

neL
converges for all m € F/(C)) and ) _, ayaym € F(C])).

Lemma 1.6.6 Let R be the Dubrovin-ring of F[G;n,0], g € G with ¢ > e and
r1,...,7x € R, Ni,..., N, € Z for some k € N. If a;,, € Rg_ are continuous for all
neZ,ie{l,...,k} and a;,, =0 for all n < N;, i € {1,...,k} such that

rim = E amxgm

ne”L

for all m € F((C;)), then

k

2 2 (Haway)m

nel ni,...,nLEL =1
ni+--+ng=n

converges for all m € F/(C;")) and

ryeeeTEm = Z Z (H ai’nix;“) m | . (1.1)

nez N1y, NEEL =1
ni+---+ng=n

Proof. As seen in Corollary if ny,...,np € Z, there is an an, ., € R, with

k ni — n1+-ng ;
[[im1 @i,y = g, T, which means that

k
M —(n1+-tng) _ -
(H a@nixg’) xg( ! W= a,, e € Ry

i=1

29



1 BASICS

Let n € Z be fixed for now. If ny, ..., ny € Zwith a,, ., # 0and ny+---+n, < nthen
a;n; 7 0 for all ¢ € {1,...,k}, which implies n; > N; for all i € {1,...,k}. Therefore,

J# J#

for all i € {1,...,k}. Thus, there are only finitely many (ni,...,n;) € ZF with
Qny,..my, 7 0 and ng + - + 1y < n. According to Lemma the sum

> <H Ui, ) (1.2)
YEZK

(n1,e5m i=1

J/

n1+ +n
=Aanq,..., nLg k

converges for all m € F((C7)). Because of Lemma and

g

U{nl,..., YEZE g+ +np=n}
nez

being a disjoint union,

2 ()

neZ \ni+--+nr=n \i=1

converges for all m € F/((C;")) and is equal to (1.2).

To prove (1.1)), we will use induction on k. For k = 1 prerequisite and claim are
identical and there is nothing to show. If £ > 1 we can apply the induction hypothesis
onry---rp_i. Thus

k-1
H n;
Ty TR (rpm) = Wi, Ty | T

neZ \ni+-4+ng_1=n \i=1

(5 (i) (5

nezZ \ni+--4+nr_1=n \1=1 ng€EZL

(2 X (Ma)n

nez ng€Z \ni+--+ng_1=n \i=1

Hereby we use, that the a;,,xy" are continuous. Using the convergence in (1.2) as well
as applying Lemma |1.4.6| and the facts that

U{nl,... EZk|n1+ +nk_1:n];

nez _ ]\/[n
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1.6 Dubrovin-—rings

is a disjoint union and
My = {(n1, ..., k1) c 7F1 |ni+-+npg1=n}x2Z

for all n € Z we observe that

> (Mot )| X (Mo )

(n1,..,mE)€LE \1=1 n€Z \ (ni,...np)ezk \i=1
nittng_1=n

(2 T (Mes)n

n€Z \ng€Z \ni+-+ng_1=n \i=1

Thus we have proven (1.1)). O
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2 Hughes—free embeddings

2.1 Hughes—free skew fields of fractions

Definition 2.1.1 (cf. [I3]) Let F[G;n, 0] be a crossed product ring and G a locally
indicable group. A skew field D is called a Hughes—free skew field of fractions of
F|G;n,o] if D is a skew field of fractions of F[G;n, o] and the following holds. For
each finitely generated subgroup H of G and each normal subgroup N of H such
that H/N is an infinite cyclic group with AN as a generating element of H/N every
t € F*xy, is left transcendental over the rational closure Dy of F[N;n,o] in D, that
is, a,t"™ + -+ + a1t + ag = 0 implies a,, = --- = a9 = 0 for all aq,...,a, € Dy and all
n € Ny. The associated embedding is called Hughes—free embedding.

Definition 2.1.2 Let F[G;n, o] be a crossed product ring and G a Conradian left—
ordered group with maximal rank. A skew field D is called a free skew field of fractions
of F[G;n,o] if D is a skew field of fractions of F[G;n,0]| and any ¢t € F*z, is left
transcendental over the rational closure D of F[C,;n,0] in D for each g € G\ {e}.

g
The associated embedding is called free embedding.

Proposition 2.1.3 Let F[G;n, o] be a crossed product ring and G a Conradian left—
ordered group with maximal rank. If D is a Hughes—free skew field of fractions of
F[G;n, o] then it is also a free skew field of fraction of F[G;n, o] with respect to the
same embedding.

Proof. According to Theorem [1.2.31] G is locally indicable. For any g € G, g # e let
ag,.--,an € Dy and t € F>*x, be such that

apt" + -+ ait +ag = 0.

Since ag, ..., a, € Dg_ there are gq,...,qr € C’g_ for some k € N such that ag,...,a, €
Dy, ....gn)- 1f we define U := (g,91,...,9x) C C’; and N :=UNC, then N is a normal
subgroup of U such that U/N is infinite cyclic and gN is a generating element of U/N.
Because of g1,...,gr € UNC, = N we know that ag,...,a, € Dy and since D is a
Hughes—free skew field of fractions of F[G;n, o] this implies a9 = --- = a, = 0. Thus
we have proven that D is a free skew field of fractions of F[G;n,o]. O
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2 HUGHES-FREE EMBEDDINGS

2.2 Series Representations

Remark 2.2.1 For the remainder of this chapter we will assume that F[G;n, o] is
a crossed product ring whereas GG is a Conradian left-ordered group with maximal
rank with respect to < and D is a free skew field of fractions of F[G;n, o] with
L : F|G;n,0] — D as the associated embedding. Furthermore, in most cases we
will consider F'[G;n, o] to be a subring of D.

If g € G then z, induces an automorphism on F[G;n, o] by conjugation. It is an exten-
sion of 0, and can also be extended onto D, as seen in Proposition . We will denote
all these automorphisms by o,. If g # e then z, is left transcendental over D since D is
a free skew field of fractions of F'[G; 7, 0] and therefore an indeterminate over D_". The
skew Laurent polynomial ring D_ [z, x;l; o4] is an Ore-domain (cf. [I, Chapter 1.1 es-
pecially Proposition 1.1.4.]) with the unique skew field of fractions D (z,; o ) which is
isomorphic to Dy. Since D [[x4; 0,]] contains a skew field of fractions of D [z, z,"; 0]
there is a unique embedding of D, into D [[x4; 0,4]] such that

Dy (xg;04) D

|~

Dy [z, $;1§ 04| — D;ng; Al

g

is a commutative diagram [I, page 88]. We will consider D, to be a subring of
Dg_[[xgﬁ agl]-

Remark 2.2.2 We formally define D, [[z.; 0.]] :== F and write each d € D_ [[z.; 0.]] in
the form

d= Zanxg

with ap = d and a, =0 for n € Z, n # 0.

Definition 2.2.3 If d € D and g € G, g > e such that d € D, C D, [[z,;0,4]], we call

d= Zanxg € D, [[zy; 0]l

neZ

series representation of d. If additionally a, <1 d holds for all n € Z or d € F* and
g = e, we call the series representation proper. If there is an A € G such that x;ld
or dz; ' has a (proper) series representation, it is called a (proper) left or right series
representation respectively.
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2.2 Series Representations

Theorem 2.2.4 1 d € D and h € G such that

x,:ld = Z%ZUZ S D;[[xg; a4l]

nez

is a left series representation and g,ﬁ € G with g, h='h € Cy as well as g > e, then
there exist a,, € Dg_ for all n € Z such that

vtd =" anry € Dy [z 04]),

ne”L

is a left series representation such that one of the following alternatives holds.
i) If Cf = C’;, then for each n € Z there exist n € Z and b,c € FG such that
a5 = ba,c € Dg_ or az = 0.
i) If C; - Cg, then there are b,c € FG and N € Z with a,, = bdc € Dy forn =N
and a, = 0 for n # N.

Proof. Since g,h~*h € C, there are I,m € Z and ¢/, I/ € C; with g = ¢'¢" as well as
h='h = h'¢™. Hence there exist I/, € FCy with zy = c’xlg and :cizlxh = b'z}'. As seen
in Remark this allows us to view D, [[xy;0,]] as a subring of D [[x4;05]]. We
examine the following cases.

Case 1: C; = C’;. For g = g = e there is nothing to show. If g, g > e then [ > 0. For

each n € Z there exists a ¢, € FC, with zy = (c/:cl) =c x . Therefore we
have
ld—x TRy, d—x xh E anty = by E an
nez nez
b/xma —m ln+m
= E nC PR
nez

We define a; := b’xmanc T, me D for n,n € Z with n =In+m and a; =0
else, to get

-1 ~ n
T d= E anTy.
nez

/
n

Because of V', a,,c
ba dx.™ e FG.

g’ng

Case 2: Cf # C7. Then C; C O, which implies z,'d e D, C D, as well as

€ D, we have Qyym = b’xmancnxgm € D, as well as

1al x5 Lopa,td = b'mmxhld = (b'm;"mhl dz;™ )mrg”

€EFG eFrG

Since x, 'd, V' € Dy, we have b’m;”xgldxfm € D;. We define N :=m. H

g
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2 HUGHES-FREE EMBEDDINGS

Remark 2.2.5 The left series representation of x;ld as given in Theorem is proper
if and only if the left series representation of z, 'd is proper and Cr = C;.

Theorem 2.2.6 Let

-f;:zldz = Zai,nxgi S D;[[xgm Ugi“

nel

be left series representations of dy,...,d, € D. There exist g,h € GG with g > e and
+ _ o+ + + +
Cg —Cg1 U---UCgkUCh,lh1 U---UC’h,lhk
as well as
gi,...,0k, h_lhl, ey h_lhk S Cg.

For d := dy + - - - + d}, there exists a left series representation

:z:;ld = Z anty € D;[[xg; a4l

ne”l

with a, = a1, + - -+ + ay,. Hereby for each n € Z and ¢ € {1,...,k} there are n’ € Z
and b, c € F'G with a;, = ba;,c € Dg_, i = bd;c € Dg_ or a;, = 0. Furthermore, for
each n € Z there exist i € {1,...,k}, n’ € Z and b,c € F'G with a4;,, = ba;,yc € D, or
a;pn = 0.

Proof.  One can choose any h € h,C; U- - -UhkC!;:. Since the convex subgroups of GG are
ordered with respect to C one of the convex subgroups Cjf ..., C G,y .o f—:_*lhk
is maximal, which we will denote by C*. As G has maximal rank there is a g € CT,
g > ewith Cf = C* and g1,...,gx, b he,...,h 7 hy, € Cy. According to Theorem

there exists a left series representation

x, N d; = Zdi,niﬂg € D, [[zg; 04]l,

neL

for each ¢ € {1,...,k}, such that for every n € Z there are n; € Z and b, c € FG with

(A],Z‘7n = bai,nic € D;, di,n = bdic € D; or &i,n =0.

We examine the following cases.

Case 1: There is an i € {1,...,k} with CJ = CJ.. Then for each n € Z there are
n; € Z and b,c € F'G with a;,, = ba; »,c € D, or a;, =0.

Case 2: Cf # CJ for all i € {1,...,k}. Then thereis a j € {1,...,k} with Cj =
C}‘Ltlhj. Furthermore, for each i € {1,...,k} there are N; € Z as well as

b,c € FG with a;, = bd;c € D, for n = N; and a;,, = 0 else. To show that for
each n € Z there exists an ¢ € {1,...,k} with a;,, = 0, it is sufficient to prove,
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2.2 Series Representations

that Ny, ..., N are not all the same. According to Theorem we have
h=th; € g IC’ for all i € I. Since Cj = G, iy we know that h™'h; & Cy

and therefore N] # 0. By choice of h there isaj €{l,...,k} with h € hyCJ .
Hence h™'h; € Cf  C Cg, which implies Ny = 0. O

Theorem 2.2.7 Let dy,...,d, € D and hy, ..., hyy € G, such that each d;xy,,,, with

i€ {l,...,k} has a left series representation
x}:il (dixhwrl) = Z ai,n-??;i = D;ngw Ogi]]'
nez

Then there are g, h € G with g > e and
+ _ o+ +
Cg _Cglu'“UCgk
as well as
g1, .-, Gk, h_lhl c Cg,

such that d := d; - - - dyxp, ., has a left series representation

x;ld = Zanx;‘ € Dg_[[:vg; a4l]

ne”L

with

k

an = Z (H di,mxgi> z
ni+-+np=n \i1=1

Hereby, for each ¢ € {1,...,k} and n; € Z there exist n’ € Z and b,c € FG such

that a;,, = ba;,c € Dg_, Qin, = bd;c € Dg_ or a;,, = 0. Furthermore, there is an

i € {1,...,k} such that for each n; € Z there exist n’ € Z as well as b,c € FG with

(Alimi = bai,n/c c Dg_ or CALZ',TLZ. = 0.

Proof. Since the convex subgroups of G are totally ordered with respect to C, one
of the convex subgroups C ,...,C;, is maximal, which will be denoted by C*. We
may choose any h € hyC* and since G' has maximal rank there isa g € C, g > e

with CF = C* and g1,...,gk,h 'hy € Cy. According to Theorem and since

hy'hy, ... hithy, € C, there exist left series representations
-1 .
 (diwn,) = Y @yt € D, [[eg; 0]
ni1€Z

for dyxp, and

H(d; iThiyy) Z in vy € Dy [[x4504]]

n;EL
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2 HUGHES-FREE EMBEDDINGS

for dyxy,,, with i € {2,...,k}, such that for every n; € Z there aren’ € Z and b,c € FG
with CALLm = bai,n/c € Dg_7 di,ni = bd,’l’hHlC € Dg_ or CALivn =0.
Now we have

k k
rld=x7'dy - dpx = o7 'dx i ldx = Qi . T = a,x”
h =T, a1 klhyyy = Lp G1dhy hy @ithipr = Litg T g
i=2 i=1 n,€Z nez
and
k
~ n; -n
a, = E Hamixgl x, "
ni+-+nrg=n \i1=1

Since Cf = C; holds for at least one i € {1,...,k} there exist n’ € Z and b,c € F'G
for each n; € Z, such that a;,, = ba;,yc € D or G;n, = 0. O

Remark 2.2.8 The analogous statements about right series representations for Theo-

rems [2.2.4] 2.2.6] [2.2.7 are also true.

Theorem 2.2.9 Each element d € D with cp(d) > 1 has a proper left series represen-
tation. If

z,'d = Zanx;’ € Dy, C D, [[xy;04]]

neZ

is a proper left series representation then C’; and the left coset hC‘;r are uniquely
determined by d. The analogous statement for proper right series representations and
right cosets also holds.

Proof. We will only prove the statements about left series representations as the re-
spective statements about right series representations can be proven similarly. We will
use induction on the complexity of d. The induction basis is cp(d) = 1. Then d € FG
and there are g € G, b € F with d = bz, = x;}l (z4-1bz,). By choosing h = ¢g~! and
a = x,1bxr, € F we are done. For the induction step we can assume d € D with
d¢ FG.

If d is additively decomposable let d = dy + - - - + di, with dy,...,d; <<d be a complete
additive decomposition of d. Applying the induction hypothesis there are proper left
series representations

x};ldi = Zai,nx;‘i = D;[[a:gi; o4l

neL

for dy,...,dy. Since d ¢ F'G we know that hy =--- = h; and g; = --- = gx = e are not
both true. Because of Theorem there are g,h € G with g > e

+ _ o+ + + +
CH=CHu---UC,UCH,, U---UC,

_1hk
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as well as
g1, .-, Gk, hilhl, ceey hilhk € Cg,

such that for d := d; + - - - + d}, there exists a left series representation

x;ld = Zanx;‘ € Dg_[[xg; a4l

nez

with a, = a1, + -+ + Gk, Hereby, for each n € Z and i € {1,...,k} there are n’ € Z
and b,c € FG with a;,, = ba;,c, a;, = bd;c or a;, = 0. Applying Theorem [1.1.15
leads to

iy = ba; pc<a;,y <d;,
&Ln = bdlc Sl dl

or a;, = 0 <d,. Furthermore for each n € Z there exist i € {1,...,k}, ' € Z and
b, c € F'G with CALZ‘,TL =0<d; or CALZ"” = bam/c <d; if d; g F*@.

Let us assume that there is an n € Z such that no i € {1,...,k} satisfies a;,, < d;.
Then d; € F*G for all i € {1,...,k}. Thus, there are N; € Z and b,c € FG for each

1€ {1, . ,k} with CALim = bdlC if n = Nz and &i,n =0 else. If Nl == Nk then
k
d =, (Z an> ol € FG
i=1

for an n € Z, which contradicts cp(d) > 1. Therefore, for each n € Z there is an
ie{l,...,k} with a;,, = 0 < d;, a contradiction to the above assumption.

Thus, we have proven that a;, < d; for each ¢ € {1,...,k} and a;, < d; for some
ie{l,...,k}if n € Z. Therefore, a,, = a1, + -+ g, <dy +---+di = d by Theorem
[[.1.9] This implies that the left series representation

z,'d = Zanl‘g € D, [[xg; 0]]
nez
is proper.
If d is additively indecomposable and multiplicatively decomposable then d admits a
complete multiplicative decomposition d = d; - - - dj, with dy,...,d, << d. We will define

Pis1,. .., hy in such a way, that d;xy,,, has a proper left decomposition

xi:il(dixhw-l) = Z ai,na‘jgbi S D;ngz? Ugi]]

ne’l

for i € {1,...,k} and we choose hyyy :=e. If hyyq,...,h;r1 are chosen, we can apply
the induction hypothesis because of cp(d;zy,,,) = cp(d;). Hence d;xp,,, has a proper
left series representation of the required kind. As the d; are proper atoms, we know
that g1,...,gr > eforalli € {1,...,k}. According to Theorem [2.2.7 there are g,h € G
with g > e and

+ +
Og _Cglu"'UCgk
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2 HUGHES-FREE EMBEDDINGS

as well as
gi,- -5 9k, hilhl S Cg

such that d := d; - - - dyxp, ., has a left series representation

:z:,:ld = Z anTy € Dg_[[xg; a4l

nel

with

k
~ n; -n
ap = E Hamixgl x, "

nyttng=n \i=1

Hereby, for each i € {1,...,k} and n; € Z there are n’ € Z and b,c € FG with
Qjm;, = ba; e <a;n Id;, a5, = bdic <d; or a;,, = 0 <d;. Furthermore, there is an
i € {1,...,k} such that for each n; € Z there exist n’ € Z as well as b,c € FG with
Ui, = ba;pc<a;, Qd; or a;,, =0<d;.

If n; € Z is fixed for each i € {1,...,k} we know that a;,, z;" < a;,, < d; holds for all
i€ {l,...,k} and G2} < d;p < d; is true for some i € {1,..., k}. Therefore, we can
apply Theorems |[1.1.15/ and [1.1.13]| to show

k k
n; -n ~ n;
| |az niy | 2, < | |aivnixg <d.
i=1

i=1

<d;

Since d is additively indecomposable we can furthermore apply Remark and con-
clude

ap = iy, @ r, " <d,
> (o)

ni+--+ng=n =1
e

<ld

which shows that the associated left series representation is proper.
If d is a proper atom then d~! < d according to Theorem [1.1.12| which implies that d—1
has a proper right series representation

d 'zt = Z anty € D, [[z4;04]].
ne”L
Then é, <d~" <d and therefore a,2} <1d~' <d for each n € Z. Let N € Z be minimal with

ay # 0. Since d is a proper atom ((deN)_l)_1 < d~! implies (&NxN)_l < d according
to Theorem [1.1.12] Now we have z, ' d = x,*, (d 'z ay) ™! = (x, Loy, ) (d 7 ey )7L
Hence d has a left series representation

tphd = anry € Dy [lag; 0],

nez
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2.2 Series Representations

with
k
_ -1 -1 (s N\l ni+N | (~ N\l _—n
an = E E (xh,lxh ) H (ang) EznﬁN:z:g \(&ng) ng <d
k>0 n1,...,ngEN =1 v R g
ni4-+ng=n+N <d <d <d

according to Theorem [1.1.12] for the complexity and Remark [1.5.11] for calculating the
inverse of d 1z, .
To prove the uniqueness we take a d € D with cp(d) > 1 as well as hy, ha, g1, 92 € G,

g1, g2 > e such that d has proper left series representations

-17__ ) n
Ty, d= E AinTy,

nez

for i € {1,2}. As the series representations are proper, there are at least two n € Z for
each 7 with a;, # 0.
We first show h,Cy N hyCf # 0 and assume equality. Without loss of generality let
g :=hy'hy > e. Then hy'hy & CJ, CF and therefore C}, C C C . Hence
1 1 _
xy, d,x, d € Dy

There is a ¢ € F'* with x,;llxhz = CLp1p, = CTg. Therefore we know that

0=ua,' (d—d) =, d— (z, an,) ;) d

-1 ~1 -1, _
=x, d—cz, (xh2 d) T, Ty = ao+ a1z,

with ag = :c,;lld € D, and a1 = —cxy (x,;;d) a:g_l € D,. Since D is free, we conclude
that 0 = a¢ = :c,;lld and especially d = 0, which contradicts cp(d) > 1. It remains to
show that C| = C} since then h,C; N hyCy # () would imply Gy = hyCJ. We
assume C # C . Without loss of generality let C;) C C . As G has maximal rank,
there is a g € G, g > e with CJ = C] and gy, hi'hy € C,. Without loss of generality
we can assume that g, = g. Furthermore, we define h := h;. Since x,:;d €D, C Dg_
and x,;llth € FCy there is an N € Z and a by € D, with byz) = x;llxmx,:zld. Hence

0= x,;l(d —d) = x,;lld — :c,;llthx,;ld = (Z al,n:cg> — bN:céV = Z AnTy
nel ne’l
with a, = a1, € Dg‘ for all n € Z with n # N as well as ay = a1y — by € Dg_. Since

at least two of the a,, are not zero some of the a,, are not zero. This is a contradiction,
since x, is an indeterminate over Dg_. O
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2 HUGHES-FREE EMBEDDINGS

2.3 Embedding Hughes—free skew fields of fractions
into Dubrovin—rings

Theorem 2.3.11fd e D, d # 0,

17 n
x, d= g anly

ne’l

is a proper left series representation and ¢’ € GG then d € D;, if and only if g, h € C;?.

Proof. "<=": For x;'d € D, we have d € x;,D, C Dy D} C D;, because of g, h € C’;?.
"—": We will prove this statement by contradiction. Without loss of generality we
can assume h = e if h € Cf.

Case 1: h ¢ C,. Then ¢ € C; and therefore d € D, C D; . Furthermore we have
Df C D, , since h # e and hence g € C,". Thus

0= z,'d — x,'d
S~~~ S~~~
€z, 'D,;  eDfCD;

Since D is a free skew field of fractions we conclude z;'d = 0 and d = 0, which
contradicts d # 0.
Case 2: h € C;C and g & C;,. Then C; C C’;C C C; and hence d € D;C C D, as well
as h = e. As such we get
Zanxg = x,:ld =de D,
nez

and hence the contradiction d = agz) = ag < d. O

Corollary 2.3.2 For ¢ € G and d € D;, (d € D) the following statements hold.

i) If d is additively decomposable in D there are dy, ..., d; € D;, (dy,...,dy € D;)
such that d = d; + - - - + d;, is a complete additive decomposition of d in D.

ii) If d is additively indecomposable and multiplicatively decomposable there are
di,....d; € D;, (dy,...,dy € D) such that d = d;---d is a complete multi-
plicative decomposition of d in D.

Proof. Since D, = J{D}.|g" € C,} it is sufficient to prove the statements for d € DJ,.

i) Because d is additively decomposable, it has a complete additive decomposition
d=d +---+d; in D. Similar to the proof of Theorem [2.2.6] one gets a proper

left series representation of d from proper series representations of dy, ..., d, with
+ _ + + +
Cy=CoU---UC UGy, U---UCy, .
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2.3 Embedding Hughes—free skew fields of fractions into Dubrovin—rings

i)

According to Theorem we know that g,h € C,; and as such
-1 -1 + +
gl;---7gk7h hl,...,h hkng QC’Q,,

which also leads to h; € hC; C C’;{C; C C; for each i € {1,...,k}. Hence
di,...,d; € D;;

Since d is additively indecomposable and multiplicatively decomposable, it has a
complete multiplicative decomposition d = d} ---d}, in D. Similar to the proof of
Theorem [2.2.7there are hy, . .., hy41 and one gets a proper left series representation
of d from proper series representations of dyxp,, ..., d,xp, ., With

Cl=Ccqu---ucy.

According to Theorem we know that g, h € C’; and as such
g1,-- g €C; C O

Hence

d= (azhx,;ldllx;m) (:c,;;dgxhg) e (x,;jd%achkﬂ) )

N N J/ N J/

€y Dy, DY, eD;;:ngt €Dy, CDY,
We define dy = zpx, djzy, and d; = x) ' djxy,,, for i € {2,...,k}. By Theorem
1.1.15| this implies cp(d;) = cp(d}) for all i € {1,...,k}. Thus, d = dy---dj is
a complete multiplicative decomposition of d in D with dy,...,d; € D;C, since
d=d)---d) is a complete multiplicative decomposition of d in D. H

Theorem 2.3.3 Let R be the Dubrovin-ring of F[G;n,0]. There exists a unique ring
isomorphism ¢ : D — R such that

F|G;n,0]—=D

RN

R

is a commutative diagram. Furthermore, every non-zero element of R is a v—compatible
continuous automorphism of F(G)).

Proof. Let k be the supremum of the complexities of the elements in D. We will
construct a series of maps ¢, : D, — R for 1 < a < k with the following properties.

i)
i)

iii)

If 8 < a, then p.|p, = @g.
Ifd € D, and b,c € FG, then ¢, (bdc) = by, (d)c.
If g € G, then 9,(D; N D,) € R, and ¢,(D; N D,) C Ry .
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2 HUGHES-FREE EMBEDDINGS

iv) Each non-zero element of ¢, (D,) is a continuous, v—compatible automorphism.
v) If d € D, with cp(d) > 1 and

_§ : /I on
d= Clnf['g/

ne”Z

is a proper series representation as well as m € F((C};)), then

Po(d)m = Z Palay,)zym,

nez
whereas the right sum is convergent.

vi) If d;; € D, for all : < k and j <, then

koL kol
ZHdU =0= ZHQpQ(dZ‘j) =0.

i=1 j=1 i=1 j=1

We define ¢, : Dy — R,azx, — ax, and as such the above properties are fulfilled,
whereas [iv]) was shown in Theorem Assume that o > 1 is fixed and the maps ¢g
are defined for all 3 < a. If a is a limit ordinal number we will define ¢, == (s, a
and the properties are obviously fulfilled. For the remainder we assume that « is a
successor ordinal number. If d € D with cp(d) < a we define ¢, (d) := po-1(d), which
implies fi) trivially. Thus, let d € D be with cp(d) = a. For b,c € FG with b = 0 or
¢ = 0 and independent of the definition of ¢, (d), we have

Pa(bde) = pa(0) = @a-1(0) = 0 = by, (d)c
and thus [tf) holds for b = 0 or ¢ = 0. Because of Vi), if a1, ..., a,bi,...,b € Doy then

G+ bag=bi 4+ b
= a+ - Fap+ (=b)+ -+ (b
(
)
Pa1(a1) + -+ + Pa1(ar) = Pa1(b1) = -+ — Pa1(b) =0
= Qa-1(a1) + -+ @a—1(ar) = @a-1(b1) + -+ @a-1(b)

)
Ya-1(a1) + -+ @a-1(ar) + Pa-1(=b1) + -+ @a_1(=b;) =0
(

and

To define ¢, (d) we will examine the following cases.
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2.3 Embedding Hughes—free skew fields of fractions into Dubrovin—rings

Case 1: Let d be additively decomposable. Then d has a complete additive decompo-
sition d = dy + - - - + di and we define

Va(d) = pa-1(di) + - + @a—1(d).

To prove that o, (d) is well-defined we have to show that it is independent
of the complete additive decomposition. Let d = d} + --- + d}, be another
complete additive decomposition of d. Then

di+--+dp=dy+--+dy
and therefore

Pa—1(d1) + -+ @a1(dk) = Qa1(d}) + -+ 4+ Pa—1(d})

according to . As seen in Corollary we can assume that dy, ..., d, € Dy
if d € D, and therefore

0ald) = @a—1(di) + -+ @a1(dp) € R,
——— ——
€Ry €Ry
which proves the first part of for this case. The second part can be proven
similarly. Furthermore, ¢,(d) is continuous, since it is a sum of continuous
endomorphisms. If b,¢ € F*G, then cp(bd;c) = cp(d;) for all ¢+ € {1,...,k}
and cp(bdec) = cp(d) by Theorem [1.1.15, Hence bdc = bdyc + - -+ + bdyc is a
complete additive decomposition of bdc in D. Therefore

1.2)
0a(bde) = pa1 (bdie) + - + parr (bdke) 2 bpa1 (d1) ¢ + -+ bpar (dy)

= b(pa-1(d1) + - + Qa1 (di)) c = bpa(d)c,

which proves [ii)) for this case.
First we will prove [v]) only for one proper series representation and treat the

general later on. As in the proof of Theorem we see that dy,...,d; have
left series representations
a:,:ldi = Zdi,nx;

neE”L

Each of them is either proper or has only one non-zero summand. Thus, we
can either apply [v]) or use the fact that the sum is finite to obtain

Pa1 (' di) = D ai(iyn)aym

nez
for each m € F(C;)) and i € {1,...,k}. Furthermore, d has a a proper left
series representation
x,:ld = Z anTy,

nez
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2 HUGHES-FREE EMBEDDINGS

Case 2:

46

with a,, = a1, + -+ ax, for each n € Z. By assumption, d has a proper series
representation, which is a proper left series representation. Hence h € C’; by
Theorem [2.2.9] Therefore, without loss of generality we can assume that h = e.
For m € F((C;)) we conclude

goa(d)m = (Spafl(dl) +oeee ¢a71<dk)) m = 90a71(d1)m +oee A+ Sﬁaﬂ(dk)m
= Z Pa—1(G1n)Tgm + -+ Z Pa—1(Qp,n)Tym

neL nez
= Z (@a—l(dl,n)xgm + -+ QOa_l(CALk’n)ZL‘Zm)
ne”
= " (Paci(nn) + -+ + Paci(Grn)) im
ne”
V1)) R . n
Z (800471<a1,n +oee A+ ak,n)xgm)
nez
= Z Pa—1(an)rym = Z Palan)zym.
nez neZ

The convergence of the sums is obtained by Lemmata [1.6.4] and [1.4.6|

Let d be additively indecomposable and multiplicatively decomposable. Then
d has a complete multiplicative decomposition d = d; - - - d, and we define

Pa(d) = Pa—1(d1) - pa—1(di)-

To prove that ¢, (d) is well-defined we have to show, that it is independent
of the complete multiplicative decomposition. Let d = d}---d}, be another
complete multiplicative decomposition of d. Then

dy-dy =d, - dy
and therefore

Pa1(d1) - -+ Pa-1(dk) = Pa-1(dy) - Pa—1(d})

according to [vi). Because of [iv)) we know that ¢o_1(d1), ..., ¢a—1(dy) are con-
tinuous, v—compatible automorphisms. Since ¢,_1(d) is a product of these au-

tomorphisms it is a continuous (Remark , v—compatible (Remark [1.4.14)
automorphism as well, which provesfiv)) for this case. As seen in Corollary

we can assume di, ... ,dy € Dy if d € D . Therefore
Pa(d) = pa-1(d1) - pa-1(dy) € Rg_7
—_— Y
€Ry €Ry

which proves the first part of for this case. The second part can be proven
similarly.
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If b,c € FG with b,c # 0 then cp(bdy) = cp(dy), cp(drc) = cp(dg) and
cp(bde) = cp(d). Hence bde = (bdy)ds - - - di—1(dkc) is a complete multiplicative
decomposition of bdc in D. Therefore,

Pa(bde) = a1 (bd1) Pa-1(d2)  + Pa—1(dk-1)Pa-1 (dic)

1.4)
DPat (dr) -+ Pas (di)
= bpa(d)c,

which proves [ii)) for this case.

We will prove [v|) only for one proper series representation and treat the general
later on. As in the proof of Theorem we define hjyq,...,h; € G with
hi+1 = e such that each x,;ldixhi ., has a series representation

—1 . ~ n
Ty, dixp,,, = E Ainy
nez

for i € {1,...,k}. Each of them is either proper or has only one non-zero
summand. Furthermore, d has a proper left series representation

z,'d = E anTy,

neZ

with

k
~ ng —Nn
a, = E H Ain Ty | 2,

ni+-+nrg=n \i1=1

for eachn € Z and h = h,. By assumption, d has a proper series representation,
which is a proper left series representation. Hence h € C; by Theorem m
Therefore, without loss of generality we can assume that A = e. This means
h, € C; since h™thy € C, C C’; as seen in the proof of Theorem @ By the
same argument as above we can therefore assume that h; = e. Applying ,

and Lemma [1.6.6] () we get

9004<d)m = (Pafl(dl) T Spafl(dk)m
= (23, Pa-1(d1)Tny) - - (2, a1 (di)zh, )M
2

a—l(If_LlldliL’hQ) ce Soa—l(z}:kldkxhkﬂ)m

£ (5 (flns)

n€Z \ni+---+np=n \i=1

pe( 3 (i)

neL ni+-+np=n \i=1

= Z Pa—1(an)zym = Z Pa(an)Tgm.

nez ne”L
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Case 3: Let d be a proper atom. Then d has an inverse d~* € D. Since d~! has a proper

48

left series representation according to Theorem we can apply [il) and
and conclude that ¢, 1(d™') # 0. As such ¢, 1(d7") is an automorphism
according to [iv) and we can define

Pald) = (par(d™) 7"

According to Theorem since p,_1(d71) is a continuous, v-compatible
automorphism, ¢, (d) is also a continuous, v—compatible automorphism, which
proves [iv). Furthermore, if d € D, , then d~' € D and thus ¢,1(d™") € R,
which implies ¢, (d) = (goa,l(d_l))*l € R;. This proves the first part of
for this case. The second part can be proven similarly.

If b,c € FG with b,c # 0 then cp(bdc) = cp(d), which implies that bdc is a
proper atom. Therefore,

Pa(bdc) = pa1((bde) ™)™ = a1 (cHdDTH) T
(c_lgpa_l(d_l)b_l)fl = b(pa_l(d_l)_lc = bpa(d)c,

which proves fii]) for this case.
We will prove [v)) only for one proper series representation and treat the general
later on. As in the proof of Theorem we construct a proper left series

representation
ztd = an T
h n<g

neL
of d by using a proper right series representation
-1, -1
T, = E an
nez

of d~1. By assumption, d has a proper series representation, which is a proper
left series representation. Hence h € Cf by Theorem [2.2.9] Therefore, without,
loss of generality we can assume that h = e. For these series representations

we obtain
— n ~ n
= E any E any

nez nez

_ ni no —-n n
= E : E : (amxg ) (amxg )Ig Lgs

nez n1,n2€Z
ni1+no=n
N

-~

€Dy

which implies

S () () =1

ni1+n2=0
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and

> (amy) (ney?) 2" =0

ni+n2=n

for n # 0 whereas the left sums are all finite. Applying [vi) and [iil) we get

Z Spa*l(anl)x;ll goafl(&m)l‘zz =1

ni1+n2=0
and
Z %00471(am)x?@afl(&nz)x;%;n =0
ni+n2=n
for n # 0.

For m € F((C;)) we define m’ := ¢, (d)m. Since d € D, Lemma [1.4.20| and
imply
suppm’ = supp pa(d) m C {v(azn(7)) | azy € F*Cy, 7 € suppm}
€RS
={hy|heCy,yesuppm C C;} CCS
and therefore m’ € F'((C;)). Thus

m = pa(d)"'m’ = pa_1(d)m' = Z soa_l(dn)x;‘m'.

nez
Hence
Zipa(an)xgm = Z Soa—l(anl)xgl (Z Soa—l(dnz)xgzm/)
nez ni1€Z no€Z
= Z Z Qpa—l(anl)xgl‘pa—l(dnz)x;mm,

ni1€Z no€Z

= Z Z Qpa—l(an1)m;1 Qpa—l(dn2)‘r22xg_n ‘Tgm,

nez n1,n2€Z
ni+ng=n

m' = pa(d)m.
The convergence of the sums is obtained by Lemma [1.6.4]

Next we will prove that|v) is independent of the choice of the proper series representation
of d. Therefore, we take two proper series representations

_ n
d= E anZy,

neZ

~ n
d= E anTy

nez

49



2 HUGHES-FREE EMBEDDINGS

and show

Pald)m = Z Palan)zgm = Z Palln)zym

nez neL

for all m € F((C})). Without loss of generality we can assume that ¢C, = ¢g*Cy
for some k € N. Remark [1.5.13 shows that we can view D [[z;04]] as a subring of
D [[x4; 04]]. Thus,

g

n_ g_ A A A A —kRY kR
E anZy =d= E apxy = E (anxgxg )xg
————

nez REL AEZ
€Dy

implies a,, = &ﬁxgx;kﬁ for all n,n € Z with n = kn and a,, = 0 else. Applying ,

—kh A

and vi)) we get @a(an) = @a-1(an) = Pa-1(anrir, ) = @olan)ziz,*". Therefore

Z @a<an)x;m = Z (wa(&ﬁ)fBZfE;kﬁ) mgﬁm = Z @a(dﬁ)xglm

nez NEZL NEZL

which proves that [v)) is independent of the choice of the proper series representation of

d.

Now we will show statement |iv)) for all d € D, with c¢p(d) = a which are additively
decomposable. According to Theorem since @, (d) is continuous it is sufficient to
show that it is v—compatible on G and surjective on G to prove that it is a continuous,
v—compatible automorphism.

If v,v € G with v < 4/ then e < v '9/. Since cp(dz,) = cp(d) > 1 there exists a
proper left series representation

z;, M (dz.,) = Z anty € Dy
nez

of dz,. Let N € Z be minimal with ay # 0. Since z; '(dz,) € D, C D we know that
2y paldr) = @olx;, ' (dxy)) € RY. This implies

Pa(d)y = @a(dra ')y = alday)zly = @a(dzy e,

Pa(d)y = pa(dzya')y = po(dey)z 'y = po(day)ky ™'Y
for some k € F*. We examine the following two cases.
Case 1: v~ 'y € CF. Applying Lemma shows

SUPD @a(d)y = supp zrpa (25, 'dr,)e = hsupp a(z;, 'dr,)e C hC’;e,
supp o (d)y' = supp Tha (), ' day)ky
= hsupp @o (2, 'dry)ky "y C hCTA 1
This implies v(pa(d)y) < v(¢a(d)y’) as otherwise there would be s,s" € Cf

with hsy™'y" < hs' and therefore e < 7'y < s7's' € C;f which would lead to
v~y € Cf since Cf is convex.
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2.3 Embedding Hughes—free skew fields of fractions into Dubrovin—rings

Case 2: v7'y" € CF. Then

Pald)y = IhSOa(xl:ldxv)e = Th Z Palan)zge,

neZ

Pald)y = wnpalay du)ky ™ =20 Y Palan)a)(ky™'y)
neL

and hence

v(@ald)y) = ho([palan)z)]e),

v(@a(d)y) = ho([palan)zy Tky™1Y).
Since ay < d we can apply i) and which shows that ¢, (an) = va_1(ay) is
v—compatible. Thus,

v([palan)z)]e) < v(lalan)z) Ty 1Y)

and therefore
v(pald)y) = ho([palan)z)]e) < ho([pa(an)z) Tky ') = v(ga(d)y').

The case study shows that ¢,(d) is v—compatible on G.

To prove the surjectivity on G we take a v € G and have to show that there exists a
v € G with v(¢s(d)y') = . This is equivalent to v(z;'pa(d)y) = e. According to
Theorem m there is an h € G such that x7 1d93;1 has a proper series representation

—1 -1 __ n
T dx,” = E anTy .-

nez

Let N € Z be minimal with ay # 0. By [i) we know that p,(ay) = pa_1(an).
Hence cpa(aN)x]gV is surjective on G and according to there is a ' € G with
v(@a—1(an)z)y') = e. Since

e € supp a(an)z)y' € C, g™y C CfY,
we conclude, that 7/ € C;“. Now we can apply [v|) which leads to

@a(x;ldxijl)fyl = Z @a(an)x;lfyl

neEL

and therefore v(pq (25 dx, " )Y) = v(ga(an)z)~') = e. Thus, @q(d) is surjective on G,

All together we have shown that ¢,(d) is a continuous, v—compatible automorphism.
At last we have to prove statement . Therefore we will use the well-ordered set
N(N(k)) for a transfinite induction. Elements in N(N(x)) will be written as

mipy @ - O mppy = @miﬂi
i=1
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2 HUGHES-FREE EMBEDDINGS

with pq, ..., pu, € N(k) and mq,...,m, € Ny. The induction will run on

& Z cp(di;) € N(N(k)).

i=1 j=1

As induction base we choose sums of the form @Z 1 Z ', cp(d;;) with cp(d;;) < a for
i <k € Nand j <. Here we can use i) and the fact that [vi)) holds for p,_1.

In our induction step we will assume d;; # 0 for all i+ < £k and j < [; without loss
of generality as the corresponding products could be disregarded. Since ¢, (d;;) is
continuous for all 7+ < k and j < [; we know that

E oL
> 11 wald)
i=1 j=1
is also continuous and it is sufficient to show that
> (H SOa(dij)) Tye = (ZH%(%‘)) =0
i=1 \j=1 i=1 j=1

holds for all v € G.
Let ¢ < k be arbitrarily fixed for now. We can choose h;1,...,h;;,+1 € G recursively
such that each d;;xp, ;, has a proper left series representation

zj+1 E :alj nxg”

ne”

dljxh

Hereby we define h;;, 11 := 7 and generate all h;; in ascending order of j. We define
hi := h; 1 and apply Theorem such that that

Ly Li
f— _1 ..
H dij | @y = Lhin Hxhi’jdljxhi,jﬂ
=1 j=1

has a left series representation

(H d”> Ty =Y it

ne”L

with

l;
~ 4 —n
Aign = § : H Aijin;Tg) | L,

ni+-+ng,=n

for suitable G;j,, € D, with G, < d;; for all j < ; and ay;,, < d;; for at least one
J <.
We define C' := C U---UC, and consider 2 cases.
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2.3 Embedding Hughes—free skew fields of fractions into Dubrovin—rings

Case 1: If ﬂle h;C = 0, we set h := h; and choose a g € G with
+ + ot
Ch1_1h2 U---U Chl_lhk =y,
hithg,....,hi'hi € C,.

Since ﬂf L hiC =0, there is an i’ < k with h1C # hyC. Hence hi'hy & C and

therefore C’+ C C C C’_,lh C C’;. Furthermore there is an n; € Z for each

1 < k with hy 1th_ = g”lC Therefore

(H dzy) Tyx, " = (xhl Th,) (H d”> ryx," € Dy

j=1 j=1
EFX:rg’ —
€Dy CD;
according to Proposition C, = hflthg_ = ¢g"C, implies n; = 0 and
n; # 0 for all i <k with ", = Cxr # C, . Therefore ny, ..., n are not all
1 7

identical. For n € Z we define I,, :== {i € {1,...,k} | n; = n}. We examine the
series representations

koL k li
-1 — -1 . I -
g | Idij Ty = E T, | |dw Tz, My = E ana:g,
i=1 j=1

=1 j=1 nez

with

bi li—1
an = Z$;1 <H dz]) l"y$;”i = Z(l'};ldll) (H dl]> (dihx'yl’g*”i).
j=1

icly, i€l j=2
Since nq,...,n are not all identical, we get
lLi—1 l;
@ (Cp(l’ﬁldil) + Z cp(di;) + Cp(dill%ﬂvgm)) = @ Z cp(dyj)
i€ly, j=2 i€l, j=1
koL
<D op(dy).
i=1 j=1

Because of z; ' (Ele H?:l dl-j) z, = 0, we have a, = 0 for all n € Z. Hence
we can apply the induction hypothesis on

l;—1
> (xy'da) (Hd”> dig, z,2,™) =0

i€l
and get
l; li—1
> ! (H %(dz‘j)) 2y, " =D palwy dn (H valdi) ) Paldi,zy2,™)
i€ly 7j=1 i€ly
= 0.
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2 HUGHES-FREE EMBEDDINGS

By defining M := {n4,...,n;} we conclude

koL k b
77! (Z I1 mdw)) =D T (H %(cuj))
j=1

i=1 j=1 i=1
li
. —1 —n; n
- E : E :xh H(pa(dij) Tyly Ly
neM \icl, j=1
=0
= 0.

Case 2: If ﬂle h;C # () we choose a g € G with
Chu---uC) =Cf,

gi,---,9k € Og7
h;lhg, cee h;lhk S Cg'

Without loss of generality we can assume g; = g for all i < k with C = C.
If i < k with C:t C C;, then

1,5+1

Therefore, we obtain left series representations for <H§:1 di]) x, in the form

of
l;
i (Tl ) 7.~ S
j=1 nez
with
li
Qi = Z < dij,nﬂl,”) x,”,
ni+--+n=n \j=1
where a; N, = (mf;ljdijxhi,jﬂ)%;]v“ and a;j,, = 0 holds for all 7 < [; with
n; # N;; for some N;; € Z.
We define h := h;. Without loss of generality one can assume h = hy = --- = hy,

by simply adjusting the series representations since h;'h; € C, for all i < k.
Thus, we obtain the following series representation for 0

koL k li
0= x}ZIOx7 = x;l (Z Hdij) Ty = Zx;l (H dij> T
i=1 j=1

i=1 j=1
k
J— n __ n
=D Ginty =) ]
i=1 nez nez
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2.3 Embedding Hughes—free skew fields of fractions into Dubrovin—rings

with a, = a1, + -+ +ay, for all n € Z. Since z, is an indeterminate over Dg_
we obtain

k L

_ _ E E I I ~ n;j -n

0= ap = az],nijxg 'Ig
1=1 ni1+-+n,=n \j=1

and may apply the induction hypothesis. Hereby we will only consider the non—
zero summands which means we will only use the : < k and n;;,...,ny, € Z
with n;; + -+ +ny, = n and a5, # 0 for all j < ;. Therefore, we define

TTZL = {(nih PN ,nili) € Zli

-+ ng, =n and Gy, # 0 for all j <[}
If « <k with g; € C7, we have

l;—1
D ((Zcp >+p< aa ) ch )

(n“,...,n“i)ETﬁL
_Nij ~ .
rg 7 and aijp,; = 0 for all j < I; and ny # Ny,

Thus, there is at most one tupel in T}.
If 1 <k with g € C,,, then

;-1 li
(Z cP(Gijn,; Ty”) ) + Cp(dij,nilimgﬂil‘;n> < ZCP(dij)
j=1

for all n;i,...,ng, € Z, since gy, < di; for all j < [; and a5, < d;; for at
least one j < [;. Therefore, we obtain

li—1 li
@ ((Z cp az] ni; L n” > + Cp<dij7nizix2ili$gn)> < Z Cp<dij>'
j=1

(Mi15esmir, JETE J=1

PR, _ (1
since Gjn,; = (2, dijTh, ;1)

This means
I;—1 k1
D D ((Sewtnna) i) < DY eata
=1 (ni1,.ma, ) ETE i=1 j=1
Applying the induction hypothesis we obtain

k l;i—1
= (Qijm, ) (a i ")
- Palbijn; Ly Pa ilima, g g

i=1 (n1,...,n4,) €T}

k 1
- Z Z (H Soa(dij,nij>xgij> x, "
j=1

i=1 nj1+--+ni,=n

%)



2 HUGHES-FREE EMBEDDINGS

Furthermore,

k l; k l;
(Z (H goa(dij)> xv) e=0 a:,:l (Z (H goa(dij)> x7> e=0

k l;
= Z:l:,jl (H goa(dij)> zye =0
i=1 j=1
k l;
— Z (H gpa(x,:jjdij:vhi,jﬂ)) e=0.
i=1 \j=1

We will examine the summands separately and fix ¢ < k. From the above
. . . . . -1 .
considerations we gain a series representation of Ty, dijrp, ., for each 7 <1;

-1 _ o n
mhi,j dijxhi,]’-‘rl - E : Qijndg
nez

. ~ _ _N .
and these are proper or satisfy a;, N, = xhl dljxhwﬂxg “

n € Z, n # N;; and some N;; € Z. Furthermore, T, dwxh
Theorem [1.6.6

l; I,

j=1 n€Z \ni+-+ny=n; \j=1

l;
§ : E : Pk —n n
= Do CLZ]’n” ” :L‘g xge.
J=1

n€Z \nij+-+n,=n

and a;;, = 0 for all
€ D,. Applying

i,7+1

All together we have shown that

k l;
Z (H Spa(xhjjdijxhi,jﬂ)) €
i=1 \Jy=1
l;
Z (H @a(&i%”ij)wgij) P

=1 n€Z \nia+--+ny,=n \j=1

k l;
~ N4 -n n
Z Z H Spa(a'ijynij)'rg ! xg ajg6
j=1

neZ 1=1 Nnj1+-+n,=n

B

J/

-~

=0

=0.

The convergence of the sums is secured by Lemma We conclude
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2.3 Embedding Hughes—free skew fields of fractions into Dubrovin—rings

Let ¢ : D — R be defined by ¢(d) = p.(d) for d € D with o = cp(d). Because of i)
we get p(d) = @a(d) for all @ < k with a > cp(d). Therefore, we can apply properties

ii]), fiii), [iv]), [v) and [vi) on ¢ by replacing ¢, with ¢. Since

V1))
di +ds = (dy + do) 5 o(dh) + p(da) = p(dy + do),
dydy = (dydy) L o(dy) g (do) = p(clyy)

for all dy,dy € D, we have shown that ¢ is a homomorphism. By definition ¢, is not
trivial and since D is a skew field ¢ has to be injective. Because R is the rational
closure of f(F[G;n,0]) in R and D is a skew field of fractions of F/[G;n, o], we conclude
©(D) = R according to Proposition Therefore, ¢ is surjective. This together
with also shows that each nonzero element of R is a continuous, v—compatible
automorphism. At last, the uniqueness of ¢ is obtained by Proposition [I.1.16] O

Corollary 2.3.4 (|13 page 182]) Let G be locally indicable and F[G;n, o] be a crossed
product ring with Hughes—free skew fields of fractions D; and Dy and accompanying
injective ring homomorphisms ¢; and ¢3. Then there is a unique ring isomorphism
@ : Dy — Dy such that

F[G;n,0] —= D,
X l“’
D,

is a commutative diagram.

Proof. According to Theorem and Lemma [[.2.29] since G is locally indicable
it admits a Conradian left-order < of maximal rank. Let R be the Dubrovin-ring of
F[G;n, o] with respect to < and f : F[G;n,0] — R the associated embedding. Since
D; is a Hughes—free skew field of fractions for ¢ € {1,2} it is, according to Proposition
2.1.3 also a free skew field of fractions and according to Theorem there is a
uniquely determined ring isomorphism ¢; : D; — R such that

F[G;n, 0] ——= D;

S

R

is a commutative diagram for i € {1,2}. We define ¢ := ¢, '¢;. Since o111 = f = ©aly
we have @i = ©, 'p111 = 1. The uniqueness of ¢ is obtained by Proposition [1.1.16, [

Theorem 2.3.5 Let G1,Gy be locally indicable groups, Fi, F, skew fields and let
Fi[G1;m, 01], F5[Ga;mg, 03] be crossed product rings as well as

@ F1[G1;771701] — Fz[G2§772;U2]
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2 HUGHES-FREE EMBEDDINGS

be an injective ring homomorphism such that the accompanying group homomorphism
Y Gy — Gy (see Theorem is injective. If F1[Gy;m,01] and Fy[Ge; g, 09
have Hughes—free skew fields of fractions D; and D, there exists a unique injective ring
homomorphism ¢’ : Dy — Dy such that

Fl[G1;771701]L>D1

T T

Fy[Ga;mp, 09] —= Dy
is a commutative diagram.

Proof. TLet D’ be the rational closure of 1y (F1[G1;m1,01]) in Dy, We want to show,
that D’ is a Hughes—free skew field of fractions of Fi[Gi;m,01]. If U is a finitely
generated subgroup of G; and N a normal subgroup of U such that U/N is infinitely
cyclic, there is a ¢ € G; with U/N = (¢gN). Since ¥ is injective, (V) is a normal
subgroup of ¥(U) and ¥(U)/¥(N) = (¢(g)y(N)) is infinitely cyclic. If Dayny is the
rational closure of 1y (Fy¢(N)) in Ds, then ts(azy () is transcendental over Doy
for each a € Fy, since Dy is a Hughes—ree skew field of fractions of Fy[Ga;na, 0.
We want to show, that w¢(x,) is transcendental over D), where DY, is the rational
closure of 1yp(F*N) in D'. There is an a € Fy* with ¢(x,) = axy) and therefore
Lop(xg) = ta(axy(g)). For b € F* and h € N there is a b’ € Fy,* with

o(bx) = p(b)p(rn) = ()b xyn) € Fyp(N).

Thus t29(FN) C 15 (F5t(N)) and therefore DYy C Doy ny. Since top(x,) is transcen-
dental over Dy, (yy, it is also transcendental over the subskew field D). Thus D’ is a
Hughes—free skew field of fractions of Fy[G1;m, 01].

According to Corollary there is a unique ring isomorphism ¢” : D; — D’ such
that

B [Gy;m, 00) == Dy

L2 lwu

D/
is a commutative diagram. We define ¢’ : D1 — Dy, d — ¢"(d) and

F1[G1;771>01]L>D1

T T

Fz[G2§772702] i>Dz

is a commutative diagram. Furthermore, ¢’ is injective, since ¢” is an isomorphism.
The uniqueness of ¢ is obtained by applying Proposition |1.1.16 O
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2.4 Strongly Hughes-free skew fields of fractions

Corollary 2.3.6 Let G be locally indicable and let F[G;n, o] be a crossed product
ring with a Hughes—free skew field of fractions D and accompanying injective ring
homomorphism ¢. Each automorphism ¢ of F[G;n, o] can be uniquely extended to an
automorphism ¢’ of D, such that

FlG;n,0] —=D

L

F[G;n,0]—=D
is a commutative diagram.

Proof. Let v and v’ be the associated group homomorphisms for ¢ and ¢! respectively
according to Theorem [I.3.11] Then 1’ is the associated unique group homomorphism
for ¢7'¢ = id and has to be the identity. This implies that v is injective and the
injectivity of ¢’ follows similarly. Hence, we can apply Theorem twice and there
exist unique injective ring homomorphisms ¢’ : D — D and ¢” : D — D such that

F|G;n,0] —D

i -

is a commutative diagram. Thus, we get the following commutative diagram

F|G;n,0]——=D

\ LS@”W

D

and applying the uniqueness in Corollary we observe ©”¢' = idp. Analogously we

can show ¢'¢"” = idp, which proves, that ¢’ is an automorphism. H

2.4 Strongly Hughes-free skew fields of fractions

Definition 2.4.1 Let F[G;n, 0] be a crossed product ring and G a locally indicable
group. A skew field D is called strongly Hughes—free skew field of fractions of F[G;n, o]
if D is a skew field of fractions of F[G;n, o] and the following holds. For each subgroup
H of G and each normal subgroup N of H

aTh, + -+ aprp, =0=— a1 =---=a, =0

holds for all hq, ..., h, € H generating pairwise different N-cosets and a; ..., a, € Dy
whereas Dy is the rational closure of F[N;n,0] in D. The associated embedding is
called strongly Hughes—free embedding.
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2 HUGHES-FREE EMBEDDINGS

Remark 2.4.2 As is easily seen, each strongly Hughes—free skew field of fractions is
also a Hughes—free skew field of fractions.

Theorem 2.4.3 If the Dubrovin—ring R of F[G;n, 0] is a skew field then R is a strongly
Hughes—free skew field of fractions of F[G;n, o], whereas the canonical embedding f is
also the associated strongly Hughes—free embedding.

Proof. Let H be a subgroup of G and N a normal subgroup of H. If hy,... h, € H
are generating pairwise different N—cosets and aq,...,a, € Ry then

supp a;(h;) € Nh;

for each i < n by Lemma [1.4.20, Hence Nhy,..., Nh, being pairwise disjoint implies
that supp a;(h1),...,supp a,(h,) are pairwise disjoint. Now if ayzp, + -+ + apzp, =0
then

0 = supp ((a1xp, + - + anxp,) (€)) = supp (a1 (hy) + - - + an(hy))

= U supp a; (h;)
i=1

and thus supp a;(h;) = 0 for each i < n. Since R is a skew field, each element of R
is either an automorphism or 0, which implies a; = 0 for each ¢ < n. Hence R is a
strongly Hughes—free skew field of fractions of F[G;n,o]. O

Theorem 2.4.4 Let G be locally indicable and F[G;n, o] be a crossed product ring
with a Hughes—free skew field of fractions D and accompanying embedding ¢. Then
D is a strongly Hughes—free skew field of fractions of F[G;n, o] with respect to the
embedding ¢.

Proof. Since D is Hughes—free skew field of fractions of F'[G; 7, o], the Dubrovin—ring R
of F[G;n,0] is a skew field according to Theorem By Theorem this implies
that R is a strongly Hughes—free skew field of fractions of F'[G;n, o] with respect to the
canonical embedding. This transfers to D by applying Theorem [2.3.3] O

Remark 2.4.5 Theorem answers Problem 4.8. in [I7, page 53|.
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