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Abstract

The main motivation of this study is to develop a method and an elaborate index that are
capable of identifying effective changes in flood runoff processes over time. The effective
change proxy selected is the stream discharge time series as it is already an integration of
spatio-temporal variations of processes within a catchment. As a result of the changes in
the boundary conditions of a hydrological system, such as the characteristics of climate,
river drainage, and catchments land surface, change in the runoff dynamics is expected.
Urbanization, climate change, and different water management practices could have a
substantial impact on the characteristics of floods, such that the causative mechanism
related process typology of a flood could become unusual from how it is used to be. In
addition, different processes can also cascade to cause unprecedented flood dynamics. In
this study, the aforementioned effective change discusses on visible characteristics change
of the catchment outlet runoff that can be triggered by any modified boundary conditions.

The common practice of analyzing the occurrence of an extreme or rare flood is calculating
its return period over a long flood time series. However, this return period is often
based upon the index of the peak discharge or maximum water level and therefore is
not comprehensive enough to describe the rarity of the process typology. In order to
extend the analysis to include more comprehensive runoff characteristics, we introduce the
characterization of runoff dynamics that considers the shape of the hydrograph, portrayed
as a phase space trajectory. To distinguish the event hydrograph further, the approach
is taken to the next level by considering the non-linear and non-monotonic relationship
between magnitudes of different time points by using Taken’s time delay embedding
theorem. This takes the implicit temporal succession of discharge values into consideration,
such that the impact of the initial conditions on the flood events is considered as a
characteristics vector in the multi-dimensional time delay phase space. This mentioned
temporal succession of discharge values is herein called a temporal cascade. This study
argues that the proposed characterization of runoff dynamics which includes the continuous
shape of hydrograph shape and the temporal cascade is more elaborate and is a better
proxy to detect rare flood processes.
As the first application attempt in Hydrology, Recurrence Plot (RP) and Recurrence

Quantification Analysis (RQA) are used to visualize and determine the overall similarity
between flood runoff dynamics i.e. through a quantitative index as to whether or not a
certain dynamic is rare among historical observations. Rooted from the field of theoretical
physics, these tools have gained considerable popularity over the past decades in several sci-
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entific disciplines, from economics, physiology, neuroscience, paleoclimatology, astrophysics
to engineering, especially for non-linear time series analysis and studying the behavior of
a complex system. This study includes application examples dedicated to hydrologists
to better understand the concept of characterizing runoff dynamics and the usefulness of
the additional hydrograph similarity index. This study also extends the current state of
RP and RQA with improved robustness towards artifacts and the influence of noise and
is adapted to the observation runoff series. This includes the practical method to safely
parameterize the time delay embedding and RP, and an extended version of the RP and
RQA to reduce the influence of noise, in order to prevent further artifacts. The examples
utilize the runoff time series from the Dresden gauging station of the Elbe river catchment
located in East Germany from the period of 1901 to 2010. In this study, we showcase
examples of rare and unseasonal floods detected by their unusual runoff dynamics that are
found to be related to their documented causative mechanism. The advantage of using
such a rarity index over the approach of comparing conventional hydrograph indices is
assessed and discussed.
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Zusammenfassung

Ziel dieser Arbeit ist es, eine Methode und einen umfassenden Index, die die Quantifizierung
von Veränderungen in Hochwasserabflüssen über die Zeit ermöglichen, zu entwickeln.
Als Proxydaten zur Detektion von Veränderungen dienen Abflusszeitreihen, da diese
räumlich-zeitliche Änderungen von Prozessen im Einzugsgebiet integrieren. Einhergehend
mit Veränderungen in den Rahmenbedingungen hydrologischer Systeme, beispielsweise
Klimaänderungen, Veränderungen im Flussnetzwerk oder der Bodenbedeckung, sind Verän-
derungen in der Abflussdynamik zu erwarten. Urbanisierung, Klimawandel und veränderte
wasserwirtschaftliche Nutzung können erheblichen Einfluss auf Hochwassercharakteristika
haben, sodass die auf die abflussverursachenden Prozesse bezogene Hochwassertypologie
obsolet wird. Außerdem kann es zur Überlagerung verschiedener Prozesse und der Bildung
präzedenzloser Hochwasserdynamiken kommen.
Üblicherweise wird seltenen Hochwasserereignissen eine über einen langen Zeitraum

bestimmte Wiederkehrwahrscheinlichkeit zugewiesen. Allerdings wird die assoziierte
Wiederkehrdauer häufig nur auf der Grundlage des Höchstwasserstandes ermittelt und
ist nicht umfassend genug, um die unterschiedlichen Prozesstypen zu erfassen. Um um-
fassendere Abflussmerkmale in die Hochwassercharakterisierung aufzunehmen, wird die
Charakterisierung der Abflussdynamik mittels der kontinuierlichen Gestalt des Hydro-
graphen und als Kurve im Phasenraum empfohlen. Durch die Berücksichtigung des
Taken‘schen Satzes zur Einbettung der Zeitverzögerung können ereignisbasierte Hydro-
graphen weiter unterschieden werden. Dieser Ansatz nutzt die zeitliche Abfolge gemessener
Abflusswerte, sodass der Einfluss der anfänglichen Werte auf das Hochwasserereignis als
charakteristischer Vektor im multidimensionalen Phasenraum interpretiert werden kann.

Im Rahmen dieser Arbeit wurden, erstmals im Bereich der Hydrologie, ‚Recurrence Plot‘
(RP) und ‚Recurrence Quantification Analysis‘ RQA eingesetzt, um die Seltenheit bzw.
Ähnlichkeit von Abflussdynamiken zu visualisieren und identifizieren. Ebenso werden
Anwendungsbeispiele im Bereich der Hydrologie, die das Konzept der Charakterisierung
von Abflussdynamiken und den Nutzen des eingeführten Ähnlichkeitsindex verdeutlichen,
vorgestellt. Außerdem wurde die Methodik weiterentwickelt und zeichnet sich nun durch
erhöhte Robustheit gegenüber Störeinflüssen und eine bessere Anpassung an Abflussmes-
sungen aus. Ein abschließendes Anwendungsbeispiel untersucht den in Dresden gemessenen
Abfluss des ostdeutschen Elbe-Einzugsgebietes im Zeitraum von 1901 bis 2010. In dieser
Studie werden Beispiele seltener und saisonunabhängiger Hochwasserereignisse, die durch
ihre ungewöhnliche Abflussdynamik herausstechen, gezeigt und mit zugrundeliegenden

iii



abflussbildenden Prozessen in Verbindung gebracht.
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1 Introduction

1.1 Motivation

The main motivation of this study is to develop a method and an elaborate index that are
capable of quantifying changes of flood runoff processes over time. The particular data
interest for the change proxy is the stream discharge time series. This is because stream
discharge is already an integration of spatio-temporal variations of processes starting
from water input, storage, and routing or transfer within a catchment, and essential to
characterize a hydrological regime [Harris et al., 2000, Ternynck et al., 2016]. Therefore the
use of catchment outlet streamflow dynamics for the study of flood change allows minimum
resources or datasets and appropriate to capture the effective change of a catchment system
as it is after all the end result of processes within.

Although there are already variety of indices derived from flood event discharge series, i.e.,
those used to describe hydrograph characteristics, they are quite limited in characterizing
the whole extent of runoff dynamics, such as the continuous shape of the flood hydrograph
is not captured and neither is the dynamics influence of its antecedent states being
considered. Therefore, arguably, these indices are not elaborate enough to be related to
the changes in runoff processes.

The intended use of such elaborate hydrograph characteristics is to be able to compare
the similarity of process dynamics between one flood event to another, and also to assess
how unusual is a particular flood event to all others that has happened before. For instance
this could be hydrograph characteristics that has never been observed before i.e. rare due
to unusual process dynamics, or the type of hydrograph that is not usual at a particular
season i.e. unseasonal (see illustration of Fig. 1.1). In contrast to just using peak runoff as
the indicator for rare events, shape of the hydrograph could further distinct a particular
event characteristics as it contains the flow dynamics of how flood water continually build
up and recess through time.

The chosen approach is through representing flood hydrographs as phase space trajecto-
ries to exploit their time sequence properties and have their similarity or rarity analyzed
and quantified using Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA).
The concept of phase space to represent hydrograph time sequence property or herein also
called runoff dynamics is presented briefly in section 1.1.4. Using both RP and RQA to
analyse phase space trajectories has gained considerable popularity over the past decades
in several scientific disciplines, from economy, physiology, neuroscience, paleoclimatology,
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Figure 1.1: Illustration of the intended use of elaborate hydrograph characteristics to assess
unseasonal and rare floods within the catalog of historical observations

astrophysics to engineering, especially when focusing on non-linear times series analysis and
characterizing the behavior of complex systems [Aceves-Fernandez. et al., 2012, Carrubba
et al., 2010, Crowley, 2008, Eroglu et al., 2016, Goswami et al., 2018, Marwan and Meinke,
2004, Oberst and Lai, 2015]. However, such approach is challenged by potential artifacts
when not being parameterized properly and can be sensitive to noise that are common
in observation series. Furthermore, since such approach has not been used in hydrology,
it is therefore important to adapt their application to hydrological data and assess their
applicability and usefulness for the intended analysis of change in flood dynamics.

1.1.1 Changes in Boundary Conditions

Along with the changes in the boundary conditions of hydrological system, such as the
characteristics of climate, river and catchments land surface, changes in runoff dynamics
are expected. Urbanization, climate change, and different water management practice
could have a substantial impact on the characteristics of floods, such that the typology
of the flood might become unusual and possibly include a cascade of processes. This
referred flood typology is mainly the types of causative mechanisms of flood that can
be weather related like those defined to include long-rain floods, short rain floods, flash
floods, rain-on-snow floods and snowmelt floods [Merz and Blöschl, 2003]. The causative
mechanism of flood can also be defined further to include failures and unusual conditions
of the catchment or drainage, such as those resulting from dam or levee break, landslide,
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ice jam, debris flow, failure of urban drainage, lake and sea level rise, etc. For instance
the disastrous extent of flash flood hazard in Braunsbach of Southwest Germany in May
2016 was not just caused by the extreme rainfall intensity fallen over steep slopes alone,
therefore the rapid direct runoff, but rather a cascade with debris flow originated from
the landslides mass of the unsteady slopes, riverbank incision, and eroded sediment that
further destroyed the village [Ozturk et al., 2018].
A report by The Climate Service Centre in Germany, showed that overall amount of

precipitation in Germany has increased by 10.2 percent relative to the long term average
from 1961 to 1990 and this is mainly contributed by the high increase of the precipitation
during winter [Brasseur et al., 2017]. The average wintertime precipitation has increased
by 47 mm between 1881 and 2014. Green house gases based future projections from this
study also show most simulations lead to a further increase in the next one hundred years.
Moreover, the study also indicate an increased potential of severe storms and hail. Heavy
and intense rainfall during winter is rather untypical for the season. Such could also lead
to rare flood typology, for example where unseasonal heavy rainfall falls shortly upon cold
frozen ground in the winter. This frozen ground reduces infiltration and hence water flows
rapidly as surface runoff and result in a flashy and pronounced peak discharge. Another
example of a rare flood typology is ice jam, where ice debris are being carried downstream
by rainfall inflow and accumulate at a particular river section and jam the system to cause
inundation, although due to the increased temperature during winter, such typology is
expected to become less.
The impact of the increased intensity of precipitation would be more pronounced had

the change of land surface become more impervious, thus leading to faster response of
discharge with dominant surface runoff. Such surface imperviousness can be contributed by
soil sealing which is dominantly a byproduct of urbanization with the examples of increased
road networks, paved surface, and buildings [European Commission, 2012]. Germany for
instance has experienced the conversion of land to urban use at a rate of 80-130 hectares
per day between 1993 and 2004 [European Commission, 2012]. The increase of built-up
areas can also be further supported through satellite imagery, for instance the built-up
index dataset of Global Human Settlement (GHS) derived from Landsat imagery. Fig. 1.2
shows a side by side comparison of the built-up index in Germany between 1975 and 2014,
where the built-up footprint proportion are shown as a ratio from 0 to 1, has shown the
noticeable increase over the whole country, and especially in the west side.
However, the moderate impact of land cover change towards flood peak and volume is

predominantly within the boundary of convective rainfall (i.e usually during summer) and
hence quite local, as compared to the advective ones especially in meso-scale catchment
scale i.e. above 100 km2. Moreover, its impact gets smaller with the increase of catchment
size due to the superimposition of flood waves from different tributaries as concluded by
Bronstert et al. [2007] on the Rhine catchment study. In addition, it is also worthy to note
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Figure 1.2: Comparisons of satellite based (Landsat) GHS built-up index between 1975 and
2014, dataset downloaded from Joint Research Centre of European Commission,
with 250m resolution, and the index indicates a proportion (or ratio) of the
built-up area within a grid cell

that there has been an increased of forest cover in Germany with an approx. 10,000 km2

over the past 4 decades [Federal Ministry of Food Agriculture and Consumer Protection
(BMELV), 2011]. However, according to Bronstert et al. [2007], although forested areas
would naturally increase the water retention capacity, the forests in Central Europe often
grow in mountainous regions with thin soils and low-permeable bedrock. Therefore the
overall storage capacity of the soil in these areas is limited to a smaller scale impact. Their
study also indicates that the highest relevance towards the magnitude of flood peaks is
rather the antecedent soil moisture prior to the storm, and yet a flood peak or its return
period is not a suitable indicator to assess the impact of land-cover on floods as it provides
a very limited insights on the runoff generation processes in a catchment. Possibly, this is
in line with the research shown by Bormann et al. [2011], Petrow and Merz [2009], where
no increase consensus of flood peak magnitude and frequency is concluded for the second
half of the 20th century in Germany, and that the observed changes are more pronounced
in the winter as compared to the summer.
Moreover, to complicate the matter, alterations in the river are also known to have

dominated European history for hundred of years, in particular with the motivation for
navigation, flood protection and, more recently, hydropower and environmental restoration
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[Hall et al., 2014]. Bronstert et al. [2007] suggested that river training measures might
affect floods at a similar level or larger, than land use change for large basin in the past
decade. The floodplains of the larger rivers in Germany have lost on average two-thirds of
their former area [BMU/ BfN, 2009, Follner et al., 2010]. In Rhine catchment for instance,
where floodplains have been reduced by 60% [UBA/ UBA, 2013], study by Vorogushyn
and Merz [2013] showed that river training had caused a systematic superposition of flood
waves of the Rhine and its tributary, the Neckar River, which had increased the annual
maximum floods by about 10% for the analysis period between 1950-2009.
However, in line with the view of Bronstert et al. [2007] the assessment of changes in

flood process with respect to runoff generation process dynamics might require a more
elaborate indicator instead of flood peak index alone. Furthermore, the analysis of flood
seasonality is commonly attached to the season classified strictly based on calendar months
e.g. summer is defined to be from June to August, instead of the real flood typology.
Therefore, if any of the typical summer flood typology i.e. convective rainfall flood is
occurring beyond the calendar season, this method is unable to capture this interesting
aspect of change. In the study of Vormoor et al. [2015] for instance, it is concluded that
the increased winter temperatures have replaced snow-melt with rainfall as the dominant
causative mechanism of the flood in the Norwegian catchments, and in line with the change
of flood seasonality.

In case the changing boundary have a pronounced and effective impact on the increase
rarity of flood typology and shift of seasonality, this study is to develop method and index
to quantify any effective change observed from the discharge series of the catchment’s
outlet through the elaborate characteristics of their flood hydrographs.

1.1.2 Conventional Hydrological Signatures for Flood Event and Their Limitations

A range of indicators extracted from discharge time series, in the following called hy-
drological signatures, have been used to describe rainfall-runoff event hydrographs. The
hydrograph peak (Qp) for instance is the most popular hydrological signature in flood
risk assessment due to its close relationship with the socio-economic impact of floods.
Other important hydrological signatures are mean flow (Qmean), discharge volume (V ),
event duration (td), time to peak (tp), recession time (tf ), base flow index (BFI), or the
rising and falling limb slope of the hydrograph (∆Qrise and ∆Qfall) and could provide
more information to the flood causative mechanism. For instance, the attempt from Gaál
et al. [2015] to classify intra-seasonal flood typology using volume to peak discharge ratio.
However, they are rarely incorporated to the analysis of flood change. These signatures
have been used mainly as general similarity indices of hydrological characteristics, that
are not necessarily flood, i.e. required for classification, regionalisation, prediction, and
model calibration [Bárdossy, 2006, Merz and Blöschl, 2003, Peel and Blöschl, 2011, Sawicz
et al., 2014, Westerberg and McMillan, 2015, Westerberg et al., 2016]. Although the
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consideration of other hydrological signature would provide more insight to the runoff
causative mechanism or the typology of the flood, just like flood peak they represent only
a single element of the hydrograph (Qp, td, tp, and tf), or their derivations are resulted
from statistical aggregate of a hydrograph (Qmean, V , BFI and ∆Qrise, and ∆Qfall). For
instance, as also discussed in Chapter 4, slope based indices often provide a misleading
depiction of the flood hydrograph with multi-peaks, as its derivation lump or average across
characteristics of several sub-events i.e. referred by the multi-peaks. Furthermore, we
argue that these signatures are not comprehensive enough to describe the flood causative
mechanism implied by the shape of the hydrograph.

1.1.3 Sequence as a Substantial Information

What makes a certain English word unique to provide a specific meaning is its sequence of
letters or characters. For instance when the 6 letters combination word ’LISTEN’ is shuffled
(see Fig. 1.3), it could generate a permutation of 720 words, mostly non-meaningful words
and some words that have totally different meaning. Further we can also consider shuffling
phrases like ’ELEVEN PLUS TWO’ into one of the possibilities ’TWELVE PLUS ONE’.
Although the two phrases contains the same histogram of letters, and can be summarized
with a value of 13, the process mechanism and reasons why they are 13 are not the same.

LISTEN

sequence
SILENT TINSEL ENLISTINLETS

ESTLIN ILNEST LENSIT NELSIT

TWELVE PLUS ONEELEVEN PLUS TWO

sequence

(1)

(2)

(a)

(b)

(b)

Original Shuffled

= 13 = 13

Figure 1.3: The important sequence of letters in a word and a phrase, examples from
shuffling ’LISTEN’ and ’ELEVEN PLUS TWO’ into non meaningful words
and words or phrase with different meaning

Similar to the information in words and phrases, the distinct information of hydrograph
also depends on the sequence of the runoff magnitude in time. This essentially translates
into the shape of the hydrograph, and known to vary on climatic inputs, catchment and
river conditions or characteristics. For instance, the high rising slope of the hydrograph
represents how flashy is the river flow possibly correspond to short intensive rainfall or even
the catchment steep slope and sealed surface that prevent much infiltration. Moreover,
the shape of a particular flood hydrograph is sensitive to its antecedent condition. For
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instance if prior to a flood, there existed a moderate rainfall-runoff event that already
sufficient to saturate the catchment’s soil moisture and hydraulics capacity, the subsequent
event, i.e. flood would easily build up upon the existing condition and easily overflow the
system and trigger a flashier hydrograph and hence a more severe flood (see illustration in
Fig. 1.4). In this study, the implicit effect of such antecedent condition(s) towards the
subsequent event is herein called a temporal cascade.

Base flow

Surface flow

steeper

overflowalmost 
full

normal 
state

higher 

antecedent

Figure 1.4: The impact of antecedent conditions towards the severity of a flood or an event

1.1.4 Runoff Dynamics Derived from Hydrograph Time Sequence Property and
Represented by Phase Space Trajectory

Motivated by the need of a more elaborate hydrological signature and the recent assessment
for state-of-the art flood analysis tool [Hall et al., 2014] which suggests the exploration
of non-linear time series analysis tools to reveal the underlying dynamics that are more
comprehensive to explain the degree of complexity, this study investigates the potential
of characterizing flood dynamics from the perspective of phase space construction. By
doing so, the characterization of a hydrograph envelopes the whole continuous shape of
the hydrograph instead of its partial elements. In addition, with the help of Taken’s time
delay embedding method [Takens, 1981], a multi dimensional phase space trajectory can
be created to include the relationship of different magnitudes in time. For instance, a
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2-dimensional phase space vector can be regarded as an autocorrelation scatter plot where
the x and y axes are the extracted values of the original time series that are separated
by a shift of τ , however the trajectory is the set of connected vector based on their time
sequence instead of scattering points. A 3-dimensional phase space contains three variable,
i.e. x, y and z with time delay of τ and 2τ , and so on for higher dimensions (see illustration
Fig. 1.5).
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Figure 1.5: Illustration example of a phase space trajectory constructed from a flood
hydrograph

In another words, A 1-dimensional phase space trajectory is simply the continuous shape
of a hydrograph, while higher dimensional phase space further include the the mentioned
relationship of discharge magnitudes at different time to capture a temporal cascade. By
using this approach we are able to consider the relationship of antecedent conditions
towards a flood magnitude illustrated in 1.4. Further illustration and example of this time
delay embedding approach are shown in Chapter 4, section 4.2.1. The mentioned time
sequence property of hydrograph represented through phase space trajectory is herein
called runoff dynamics.

1.1.5 Challenges in the Assessment of Recurring Runoff Dynamics

Recurrence Plot (RP) and its quantification (RQA) are powerful tools that are able
to analyze and quantify the recurrence of similar dynamics portrayed by phase space
trajectory [Marwan et al., 2007] and therefore is of our interest to use for analyzing flood
runoff dynamics. Although both RP and RQA’s applications are known in wide range of
disciplines in analyzing processes in a complex system, to the authors’ knowledge, they
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have not been used in hydrology. Therefore, their applications for hydrology need to be
adapted to the corresponding observation data.
In general, the application of time delay embedding method and RPs, require proper

parameters set that is well-suited for the dataset. Sub-optimal parameters can result
in artifacts and therefore mislead an evaluation [Marwan, 2010]. Although conventional
methods to determine optimum embedding parameters exist, Marwan [2010] concludes that
these method often overestimate the required parameters. Optimum distance threshold (ε),
required in defining similar dynamics for the construction of RP, is also essential. Besides,
in the real world application, observation signals are often induced by noise, and that
can lead to further artifacts in RP and RQA. Therefore it is of our interest to properly
setup the method with correct parameters and ensure its robustness before any conclusive
application.

1.2 Specific Objectives and Structure

The main objective of this method development is to derive a more elaborate index capable
of quantifying the similarity of runoff dynamics between flood hydrographs, that provides
a better association to a flood causative mechanism in contrast to conventional hydrograph
indices.

The specific objectives formulated in this doctoral study are emphasized on the method
development that is well-suited to hydrological data, instead of the application to evaluate
flood change e.g. in a specific region. The developed method is directed at analyzing
rare or unusual flood runoff dynamics from the perspective of phase space trajectories,
that accounts the whole continuous shape of the hydrograph, and considers relationships
between different runoff magnitudes in time to possibly include the characteristics impacts
of antecedent events. The chosen tool and measure to compare these trajectories are
Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA). However further
development to properly utilize and adapt this method to the runoff dataset is necessary.
Parameters uncertainty for example is still an issue, as wrong choice of parameters can
result in artifacts and therefore mislead a conclusion. Furthermore, the method is also
known to be sensitive to noise. Therefore, further development is needed because of the
aforementioned challenges faced and that its application in hydrology is not yet available
as reference. This study also attempts to provide application examples dedicated to
hydrologists without theoretical physics background and intend to use such method for
analyzing runoff dynamics.
These specific objectives are formulated as forms of questions listed below:

1. What does phase space trajectory and time delay embedding mean for hydrological
time series, i.e. discharge?
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2. How to determine a safe parameters set when creating a phase space trajectory using
time delay embedding?

3. How to define a threshold for similar runoff dynamics in order to properly construct
an RP and what are the pitfalls to avoid?

4. Are the current RP and RQA methods robust for noise-present observational series
and how to improve its robustness to prevent artifacts?

5. How to apply RP and RQA to evaluate similar runoff dynamics between floods?

6. How to adapt the method to evaluate a common or rare flood runoff dynamics?

7. What are the advantages of using such approach to quantify similar runoff dynamics,
and how does it compare with other existing similarity index, e.g. hydrological
signatures?

8. What is the implication of rare runoff dynamics in its relation to causative mechanism?

The following Fig. 1.6 presents the structure of how these specific research questions
are discussed and presented in the doctoral thesis. Please note that the actual chapter
name is different from the summarized topics shown in this figure.
In the Chapter 2 and 3, the focus of the research will be in the method development,

where parameterization tool and artifact avoidance technique related to the method will
be introduced and discussed. In particular, research question 2 will be addressed. Chapter
2 will cover the topic of phase space reconstruction and its parameterization by addressing
research questions 3 and 4, while Chapter 3 will discuss the robustness of the method (i.e.
RP and RQA) for observation dataset with regards to the questions 1, 5, 6, 7, and 8. The
application for hydrograph similarity and rare flood dynamics will then be discussed in
chapter 4 along with examples and analysis.
The application example of Chapter 4 uses the runoff time series extracted from the

Dresden gauging station of the Elbe river catchment located in the East Germany from
the period of 1901 to 2010. The example compares the runoff dynamics between all
the flood events happening in February and March that are commonly separated into
winter and spring flood typology but in fact easily coincide. This is done by constructing
inter-comparison matrix of runoff dynamics between each flood in a pair-wise manner.
This study showcases examples of rare and unseasonal flood dynamics indicated by the
approach and are related to their documented unusual causative mechanism or herein
referred to as typology. The resulting similarity and rarity indication derived from this
approach are also compared with those using conventional hydrological signatures. Added
values of such approach are then analyzed and discussed.
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1.3 Author Contribution

Most of the works presented in this thesis have been performed by the author of this thesis
(D. Wendi). Though, all co-authors of the manuscripts (see Chapter 2 to 4) have helped
to develop and accomplish this research. Valuable feedbacks, questions and comments
from colleagues within the associated research institution i.e. NatRiskChange research
training group of the University of Potsdam, Hydrology section of German Research Centre
for Geosciences (GFZ) and Potsdam Institute for Climate Impact Research (PIK) have
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provided insights in approaching the research questions.
The three studies i.e. presented in Chapter 2 to 4 of this PhD thesis have been submitted

to international and peer reviewed journals. In fact two of these manuscripts have been
accepted and published by the time of this thesis submission. These manuscripts layouts
have been adjusted to the formatting of this thesis, yet main text and figures remain
as published, except with the standardized equation for e.q. 3.2 with the additions of
summarizing key points of each manuscript where it was not available in the published
version of Chapter 2 and 3.

Specific author contributions are as follows,
Chapter 2 - Research questions and rough conceptual idea of overcoming artifacts in
embedding were suggested by N. Marwan followed by his methodological advice and
consultation. D. Wendi carried out the actual design of the embedding parameterization
framework, programmed and implemented the parameterization method, evaluated the
method with test cases or datasets, and wrote the manuscript with inputs of all co-authors.
B. Merz provided inputs, comments, and proofread the manuscript.

Chapter 3 - D. Wendi drafted the problem statements with regards to RP and RQA
artifacts and their issues with noise, developed conceptual idea, designed method, for-
mulating equations, programmed and tested the new or extended methods with various
test cases and compared with the existing ones, conducted evaluations of the method
robustness, and wrote the manuscript along with the inputs from co-author. N. Marwan
brainstormed along and provided specific suggestions and feedbacks to the method design,
testing framework, and the manuscript.

Chapter 4 - D. Wendi suggested and developed the main idea of analyzing runoff
dynamics to evaluate hydrograph similarity and rarity, evaluated and presented the CRP
and the RQA added value in contrast to traditional methods, conducted the method
applications for Dresden flood series, evaluated the proposed similarity and rarity index in
comparisons with conventional hydrograph indices and wrote the manuscript with inputs
of all co-authors. B. Merz provided expert knowledge, inputs and suggestions on the
presentations of the method and evaluations, and provided comments, corrections, and
feedbacks to the manuscript. N. Marwan provided method expert knowledge to the study,
comments and feedbacks to the manuscript.
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• Recurrence Plot parameterisation and how to avoid artifacts
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Abstract

As an effort to reduce parameter uncertainties in constructing recurrence plots, and in
particular to avoid potential artifacts, this paper presents a technique to derive artifact-safe
region of parameter sets. This technique exploits both deterministic (incl. chaos) and
stochastic signal characteristics of recurrence quantification (i.e. diagonal structures). It is
useful when the evaluated signal is known to be deterministic. This study focuses on the
recurrence plot generated from the reconstructed phase space in order to represent many
real application scenarios when not all variables to describe a system are available (data
scarcity). The technique involves random shuffling of the original signal to destroy its
original deterministic characteristics. Its purpose is to evaluate whether the determinism
values of the original and the shuffled signal remain closely together, and therefore
suggesting that the recurrence plot might comprise artifacts. The use of such determinism-
sensitive region shall be accompanied by standard embedding optimization approaches,
e.g. using indices like false nearest neighbor and mutual information, to result in a more
reliable recurrence plot parameterization.



2 In Search of Determinism-Sensitive Region to Avoid Artifacts in Recurrence Plots

2.1 Introduction

Recurrence is a fundamental property of many dynamical systems, which can be exploited
to characterize the system’s behavior in phase space, while a recurrence plot (RP) is
the visualization tool for the analysis of this property. In this study, the phase space
reconstruction method of time delay embedding [Packard et al., 1980, Takens, 1981] is used
(Eq.4.1). Such a reconstruction is particularly useful when not all variables required to
describe the system are available (i.e. data scarcity or limited set of observation variables),
and where the topology of the system dynamics ~̂xi can still be created using only a single
variable or observation ui.

~̂xi =
m∑
i=1

ui+(j−i)τ~ej. (2.1)

where m is the embedding dimension and τ is the time delay. The vectors (~ej) are unit
vectors and span an orthogonal coordinate system (~ei · ~ej) = δi,j. The calculation of
recurrence as elements of the RP is based on Eq.2.2:

Ri,j(ε) = Θ(ε− ‖~xi − ~xj‖), i, j = 1, ..., N. (2.2)

where N is the number of measured points ~xi, ε is a threshold distance, ‖ · ‖ is a norm and
Θ(·) the Heaviside function.

The RP is basically the visual representation of the square matrix, in which the matrix
elements correspond to those times at which a state of a dynamical system recurs (columns
and rows correspond then to a certain pair of times). RPs are especially useful for non-
stationary pattern in time series [Eckmann et al., 1987, Marwan et al., 2007]. Besides using
RPs for the visual analysis of time series, RPs can also quantify structures hidden within
the series through recurrence quantification analysis (RQA)[Marwan et al., 2007, Zbilut
and Webber, 1992]. In RQA, important elements are the diagonal and vertical/horizontal
straight lines because they reveal typical dynamical features of the investigated system,
such as range of predictability, chaos-order, and chaos-chaos transitions [Trulla et al., 1996].
One of the prominent diagonal line measures is called determinism (DET, Eq.4.3), from
which the system predictability can be inferred.

DET =
∑N
l=lmin lP (l)∑N

i,j Ri,j

(2.3)

where P (l) = {li; i = 1, ..., Nl} is the histogram of the lengths l of diagonal structures, and
Nl is the absolute number of those diagonal lines.

For a deterministic signal (including chaos), many diagonal lines in the RP are typical,
leading to high value of DET [Marwan, 2010]. However, single, isolated recurrence points
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2 In Search of Determinism-Sensitive Region to Avoid Artifacts in Recurrence Plots

can occur if states are rare, if they do not persist, or if they fluctuate heavily. For instance,
stochastic or random signals would comprise such single points and result in a very low
DET.

Since the use of RPs relies on the reconstructed phase space, its parameters uncertainty
includes those of the phase space reconstruction method, such as embedding dimension
(m) and time delay (τ), in addition to the recurrence threshold (ε). Standard approaches
for finding optimal embedding parameters are false nearest neighbours (FNN) for m, and
auto-correlation or mutual information (MI) for τ [Fraser and Swinney, 1986, Kantz and
Schreiber, 2005, Kennel et al., 1992]. Other methods include wavering-products, fill-factor
or integral local deformation [Buzug and Pfister, 1992]. Moreover, Marwan [2010] concludes
that τ is sometimes overestimated by auto-correlation and mutual information, and that
the choice of the embedding dimension has to be considered with care, as a wrong choice
artificially increases diagonal lines, and hence DET, and leads to artifacts. For instance, a
RP resulting from a random series should exhibit scattered or non-deterministic patterns
(i.e. single points). However, when m increases to 2 and beyond with τ = 1, the number
and the length of diagonal lines start to increase and dominate the plot as artifacts. This
may be misinterpreted as if the series was highly deterministic (Fig. 2.1).
In this study, we focus on the artifacts related to these embedding parameters. The

impact of the recurrence threshold (ε) is not elaborated, since the selection of the optimal
values of the recurrence threshold has been discussed earlier Gao2009, Koebbe1994,
Zbilut1992, Zbilut2002, Mindlin1992, Schinkel2008, Thiel2002. Hence, the recurrence
threshold is fixed to a 10% recurrence rate (recurrence points density). Supplementary
information on the impact of changing this threshold is enclosed in the appendix. The
appendix also includes the evaluation of DET values of a correlated random series, using
an AR1 series as example, to showcase that high DET values are indeed associated with
deterministic systems instead of its auto-correlation structures, although there are also
cases at certain parameter values where the number / length of diagonal lines artificially
increase. It is important to note that the proposed technique is not intended to be
used as a new, independent method, but rather as an additional consideration during
parameterization, when the dynamical system is known to be deterministic.

2.2 Methodology

Artificially biased line length distributions due to the embedding can overlay the true
line length distributions and lead to wrong conclusions. Hence, it would be desirable
to separate the contribution of the embedding induced line length distributions from
the real underlying dynamics. However, separating both contributions is not possible
without additional knowledge about the system (such as precise model or amount of
observational noise). Therefore, we propose an approach that minimizes the contribution
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2 In Search of Determinism-Sensitive Region to Avoid Artifacts in Recurrence Plots

Figure 2.1: Misleading DET values of random series (a); sub-figure (b) shows the artificial
increase of DET when embedding dimension (m) increases, while (c) to (e)
show the corresponding RP with the increase of diagonal line structures at
high embedding dimension (m = 7).

of the embedding. This approach is based on comparing the fraction of recurrence points
that form diagonal lines in the RPs of the original time series (which includes both the real
underlying dynamics as well as the embedding effect) with that of a random time series
(which consists of the embedding effect only). As random time series we use simply shuffled
versions of the original time series, because this preserves its value distribution and, thus,
allows to use the same recurrence threshold and allows to compare the resulting RPs. As
mentioned above, RPs of random time series should consist mainly of single points, but
embedding artifacts would increase the fraction of recurrence points that form diagonal
lines in the RP. Thus, this fraction measure is well suited for our purpose. Moreover, this
measure is equal to the DET measure. Other measures that use the line length distribution
(e.g., average and longest line length, entropy of the length distribution) would be possible
but are less intuitive and interpretable. The advantage of the DET measure is that it
considers the influence of scattered points that appears within the RP as well in addition
to just the diagonal lines. While the index of average and longest line length could easily
suffer from large statistical uncertainty and are easily influenced by a few extreme values.
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In order to compare the line length distributions of the original and the shuffled time
series, we define DETo for the original time series and DETi for the shuffled version. For
a number of shuffling iterations (i.e. n times), the resulting difference (called determinism
distance, see Eq. 2.4) is calculated for each shuffle (Fig. 2.2).

Figure 2.2: Scheme of the proposed artifact avoidance method.

For non-optimal embedding, we expect a rather high contribution of the embedding in
the line length distributions in both, the original time series and in the shuffled version.
Therefore, DET should have high values in both cases and should not differ so much from
each other. For optimal embedding, and if there are deterministic structures in the RP of
the original time series, the DETi of the shuffled time series should be very low whereas
DETo of the original time series has still larger values. The distinctive high and low
values of DET in deterministic and stochastic systems are exemplified in this paper using
Lorenz and Gaussian random series. In this example, both the original and embedded
Lorenz systems show DET values of around 0.8 to 0.9 with τ fixed at 3 following the first
minimum of its auto-mutual information, with m varying from 1 to 10. In contrast, for
the Gaussian random series, the DET values are shown to be between 0 to 0.2 (Fig. 2.3).

The resulting difference (determinism distance) betweenDETi andDETo would therefore
be high. The undesired effect by the embedding should be minimal for the difference
between DETi and DETo. Both median (Md) and standard deviation (Sd) of these
distances are used for identifying this determinism-sensitive region (Eqs. 2.4 and 2.5).
The further (larger) the Md of each parameter combination, the safer it is in terms of
avoiding the mentioned artifacts, under the condition that Sd should be reasonably small
(e.g. within 0.1).

Md = Mediani=1...n(|DETo −DETi|). (2.4)

Sd =

√√√√ 1
n− 1

n∑
i=1

[
|DETo −DETi| −

1
n

n∑
i=1
|DETo −DETi|

]2

. (2.5)
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Figure 2.3: Examples for high and low DET values from deterministic (Lorenz) and
stochastic (Gaussian random) signals.

where DETo and DETi are the recurrence determinism values of the original series and
each shuffled iteration (i), and n is the total number of shuffling iteration.

2.3 Case study applications

This paper presents 2 application examples using Lorenz series derived from a mathematical
model, and daily runoff observations from the station Burghausen at the Salzach River
in south Germany. These signals are chosen for its non-linear characteristics with known
presence of determinism [Martins et al., 2011, Sivakumar, 2000]. The resulting region of
artifact-safe parameter set will be presented and discussed in section 4. Caution should be
taken when τ = 1 because artificially high DET values can lead to misinterpretations (Figs.
2.1b, d, and e), and hence should be excluded. In addition to the resulting artifact-safe
region as the boundary of the parameter sets, the final choice of the parameter set is still
necessary to be optimal, i.e. being able to reconstruct the topology of system dynamics
and minimal in the sense not to over-reduce data points in the signal. There are many
approaches to find optimal embedding parameters, such as the standard approaches men-
tioned in section 2.1.

2.3.1 Lorenz Series

The Lorenz system with known non-linear, non-periodic, 3-dimensional and deterministic
chaos behaviour (i.e. with parameters α = 10, ρ = 28, β = 8/3 and sampling time

33



2 In Search of Determinism-Sensitive Region to Avoid Artifacts in Recurrence Plots

∆t = 0.05) is chosen as the first application example, following Eq.2.6) [Lorenz, 1963,
Sparrow, 1982]. Its RP and characteristics have also been studied by Marwan et al. [2007]

dx

dt
= α(y − x); dy

dt
= x(ρ− z)− y; and dz

dt
= xy − βz. (2.6)

This Lorenz system is described by 3 variables and integrated using the Euler scheme,
and hence, we know the 3-dimensional phase space that describes the topology of the
system dynamics. In this study, the x variable is used as our Lorenz series test set
(Fig. 2.4a) with its phase space reconstructed using the time delay embedding method.
Thereafter, its DET is calculated. The reliability of these DET values is checked by
using median and standard deviation of their determinism distance values (Md and Sd)
to qualitatively evaluate how much the constructed RP of a certain parameter set is
influenced by artifacts.

This Lorenz series is derived from a mathematical model with well-known phase space
topology and recurrence characteristics, whereas real world observations are most likely
contaminated by noise. Therefore, we also investigate the impact of noise on the method,
i.e. in respect to the values of determinism and determinism distance. Gaussian white
noise with a magnitude range corresponding to the standard deviation of the Lorenz signal
is applied, i.e. added to the signal (Eq. 2.7).

x̃(t) = x(t) + kβ(t). (2.7)

where, x̃(t) is the resulting new series with the addition of noise and x(t) is the original
series (Lorenz); k is the noise level, while β(t) is the Gaussian white noise with magnitude
range corresponding to the standard deviation of x(t). The noise levels used are 5%,
10%, 30% and 50%. For each of the noise-added signal, its determinism and determinism
distance are calculated.

2.3.2 River Runoff Series

The second test application uses daily river runoff observations extracted from station
Burghausen in south Germany for the year 1961. This station measures the streamflow
of the Salzach River with a catchment area of 6,600 km2. The time series (Fig. 2.4b) is
used as a test set representing real world data, i.e.it is potentially non-stationary and
contaminated by noise and observation error.
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Figure 2.4: Test applications of (a) Lorenz - x variable and (b) Burghausen daily runoff
series (1961).

2.4 Results and Discussion

This section presents the results of our proposed method for selecting an artifact-safe
parameter region with the assumption of recurrence rate fixed at 10%. The range of
embedding parameters bounds embedding dimension (m) from 1 to 10 and time delay (τ)
from 1 to 20.

2.4.1 Lorenz Series

The Lorenz series is known for its deterministic feature, i.e.high determinism value, yet
certain parameter combinations can give incorrect, low determinism values, e.g.when m = 1
or m = 10, τ = 6 (Figs.2.5a, b, and c). Increasing the time delay at high embedding
dimension is also seen to thicken the line structures of the RP (Fig. 2.5i). Low determinism
values reflect non-optimal parameterization, and hence, misleading RP structures (Figs.2.5d
and g) with diagonal lines structures as wobbly and perpendicular to the main diagonal
[Marwan et al., 2007]. In order to assess the reliability of the resulting RP corresponding
to the m and τ parameter combinations, the proposed shuffling techniques is applied to
find the determinism-sensitive region.
Using the proposed technique (n = 100 shuffles), Md is low for the case without

embedding (m = 1) as well as for τ = 1, when m > 1 (Fig. 2.6). The latter suggests
artifacts due to embedding. Those parameter values where Md is high, e.g. for τ ≥ 2,
when m > 1, can be considered to be less influenced by embedding artifacts. It can be
noticed that when τ and m are higher, Md starts to decrease and to fluctuate, as indicated
by Sd. In this case, the use of the median is quite reliable due to the low Sd value (i.e.
below 6%).
The identified determinism-sensitive region is suggested to be referenced with the

standard approaches, such as FNN and MI, to find the optimal parameter set. This
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also serves to prevent the use of unnecessarily high parameter values that result in the
reduction of data points (i.e. by (m− 1)τ). For instance, in the case of the Lorenz series,
the optimal parameter set found by the standard approach is m = 3 and τ = 3 (Fig. 2.7)
which coincides well with the domain of high Md values.

To investigate the impact of noise as in a real world scenario, Gaussian white noise
with different noise levels is added to the signal as described in section 2.4.1. Figs. 2.8a
and b show both false nearest neighbor and mutual information characteristics for the
added-noise signal. The false nearest neighbor approach slightly increases at the optimal
dimension of 3 causing a shift to the next dimension value, i.e. m = 4). When the
noise level reaches 30 and 50%, the mutual information characteristics start to differ
from the original, whereas the noise levels of 5 and 10% still preserve the original signal
characteristics. Noise needs to be handled with care, as high level noise contamination
potentially alters the determinism of the signal. It decreases in this case when Gaussian
white noise is added, hence the determinism distance between the original and the shuffled
series gets smaller.

2.4.2 River Runoff Series

A river runoff series is used to represent an example for field observations which are usually
contaminated with noise. River runoff is typically a non-linear deterministic series and
exhibits chaos properties [Martins et al., 2011, Porporato and Ridolfi, 1997, Sivakumar,
2000], hence, its DET is expected to be high. However, its recurrence determinism is
low when parameter m = 1 and when both m and τ reach high values, e.g. m > 8 and
τ > 9 (Fig. 2.9a). For instance, for τ = 10 the DET value starts to decrease when m > 7
(Fig. 2.9b), while for m = 10 the increase of τ (i.e. above 4) also starts to reduce DET
values (Fig. 2.9c).

When evaluated through 100 shuffles, the parameter set of τ = 1,m > 1 should not
be used due to the clear artifact potential suggested by its low determinism distance
(see Fig. 2.10a: first column and Fig. 2.10c: black line). The artifact-safe region could
then be deduced from the high determinism distance domain corresponding to different
combination parameter sets. For example when median determinism distance values above
0.8 imply high dissimilarity between the recurrence of the original signal and the shuffled
ones (see Fig. 2.10a). The Sd values in this case are also low to safely use the median
values (see Fig. 2.10b).

As cross-checked with the standard approach of parameter identification (Fig. 2.11a),
the suggested optimal embedding parameters in this case would be τ = 10 days and m =
5.
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2.5 Summary

We propose a method to identify a determinism-sensitive parameter region with minimal
impact of artifacts due to embedding when constructing a Recurrence Plot (RP). The
method utilizes both deterministic (incl. chaos) and stochastic characteristics of recurrence
quantification, i.e. diagonal structures, as indicated by their determinism values. It is
useful when the evaluated signal is known to be deterministic. The method involves
randomly shuffling the time series for an abundant number of times in order to destroy its
original characteristics and its determinism. Thereafter, determinism values are calculated
for each shuffle iteration and compared with the determinism of the original signal at a
range of parameters, resulting in a measure called determinism distance.
The matrix of the median values of this measure is plotted to depict the determinism-

sensitive parameter region. The larger the determinism distance, i.e. the closer to 1, the
safer the parameter set is to avoid potential artifacts. The optimal parameter set can
be selected from the consideration of this artifact-safe region together with the standard
approach of using false nearest neighbors and mutual information and auto correlation.
Noise needs to be handled with care, since it affects the determinism structures of the

signal or decreases the determinism values, therefore reducing the determinism distance be-
tween original and shuffled series. One could apply this method as an artifact-precautionary
measure especially when intending to choose high values of embedding parameters.
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Figure 2.5: Recurrence characteristics of the chaotic, deterministic Lorenz signal: (a) deter-
minism corresponding to m and τ ; (b) change in determinism corresponding to
an increase of the embedding dimension (m) from the RP, with τ = 1, 3, and
10; (c) change in determinism corresponding to an increase of the time delay
(τ), with m = 1, 3, and 10; (d) to (f) RP of different embedding dimension
with fixed τ = 1; and (g) to (i) RP of different embedding dimension with
fixed τ=3. All RPs and recurrence measures are calculated based on fixed 10%
recurrence rate.
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Figure 2.6: Determinism distance of the Lorenz series: (a) median (Md) and (b) standard
deviation (Sd) of determinism distance between the RP of shuffled and original
Lorenz series. (c) and (d) show the median determinism distance corresponding
to τ = 1, 3, 10 and m = 1, 3, 10.
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Figure 2.7: Embedding parameters for the Lorenz series resulting from standard approaches:
(a) false nearest neighbor (FNN) with median and bounds derived from pa-
rameter set 1 ≤ τ ≤ 10, and (b) mutual information (MI).
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Figure 2.8: Impact of noise levels of the Lorenz series on (a) false nearest neighbor, (b)
mutual information, (c) determinism, and (d) median determinism distance
extracted at m=1, 3, 5 with τ=1. (e) and (f) present the extracted values
with parameter bounds of 3 ≤ m ≤ 5 , τ=3 and 10, and 10% recurrence rate
(ε). Noise added is Gaussian white noise with noise levels derived from the
percentage of the signal standard deviation.

41
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Figure 2.9: Recurrence characteristics of daily river runoff series: (a) determinism corre-
sponding to m and τ , (b), change in determinism corresponding to increasing
embedding dimension (m) from the RP, with tau=1, 3, 7; and (c) change in
determinism corresponding to increasing time delay (τ), with m=1, 3, 7.

Figure 2.10: Determinism distance of runoff series: (a) median and (b) standard deviation
of the determinism distance between the RP of shuffled and original runoff
series. (c) and (d) show the median determinism distance corresponding to
τ = 1, 3, 10 and m = 1, 3, 10.
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Figure 2.11: Embedding parameter selection for daily river runoff using the standard
approach: (a) false nearest neighbor with median and bounds derived from
parameter set 1 ≤ τ ≤ 10 and (b) mutual information with first minimum
found at τ = 10

.
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Continuous Dynamical Systems

Published as: Wendi, D. and Marwan, N. (2018). Extended recurrence plot and quantifi-
cation for noisy continuous dynamical systems. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 28(8), 085722. https://doi.org/10.1063/1.5025485
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• Reducing thick line artifacts in Recurrence Plot (RP)

• Local minima based Recurrence Plot with 2 parameters

• Overcoming disrupted and deviated diagonal Lines due to noise

• Alternative Determinism index for noisy signals based on sliding diagonal window
approach
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Abstract

One main challenge in constructing a reliable recurrence plot (RP) and hence its quantifi-
cation (RQA) of a continuous dynamical system is the induced noise that is commonly
found in observation time series. This induced noise is known to cause disrupted and
deviated diagonal lines despite the known deterministic features and, hence, biases the
diagonal line based RQA measures and can lead to misleading conclusions. Although
discontinuous lines can be further connected by increasing the recurrence threshold, such
approach triggers thick lines in the plot. However, thick lines also influence the RQA
measures by artificially increasing the number of diagonal and the length of vertical lines
(e.g., Determinism (DET ) and Laminarity (LAM) become artificially higher).

To take on this challenge, an extended RQA approach for accounting disrupted and
deviated diagonal lines is proposed. The approach uses the concept of a sliding diagonal
window with minimal window size that tolerates the mentioned deviated lines and also
considers a specified minimal lag between points as connected. Such is meant to derive a
similar determinism indicator for noisy signal where conventional RQA fails to capture.
Additionally an extended local minima approach to construct RP is also proposed to
further reduce artificial block structures and vertical lines that potentially increase the
associated RQA like LAM. The methodology and applicability of the extended local
minima approach and DET equivalent measure are presented and discussed respectively.



3 Extended Recurrence Plot and Quantification for Noisy Continuous Dynamical Systems

3.1 Introduction

As a fundamental property of many dynamical systems, recurrence can be exploited to
characterize the system’s behavior from their phase space topology. A recurrence plot
(RP) is a visualization tool for the analysis of this property. In this study, the phase space
reconstruction method of time delay embedding Packard et al. [1980], Takens [1981] is
used to create the topology of the system dynamics ~xi from a variable ui (Eq.3.1).

~xi =
m∑
i=1

ui+(j−i)τ~ej. (3.1)

where i is the current time point and j is other time point, m is the embedding dimension,
and τ is the time delay. The vectors (~ej) are unit vectors and span an orthogonal coordinate
system (~ei · ~ej) = δi,j.

The RP is basically the visual representation of the square matrix, in which the matrix
elements correspond to those times at which a state of a dynamical system recurs (columns
and rows correspond then to a certain pair of times). The calculation of a recurrence point
as an element of the RP matrix R is usually based on Eq. (3.2). RPs are especially useful
for analyzing non-stationary time series Eckmann et al. [1987], Marwan et al. [2007].

Ri,j(ε) = Θ(ε− ‖~xi − ~xj‖), i, j = 1, ..., N. (3.2)

where N is the number of measured points ~xi, ε is a threshold distance, ‖ · ‖ is a norm and
Θ(·) the Heaviside step function.

Besides using RP for the visual analysis of time series, RP can also be used quantitatively
to unveil hidden structures from the series through recurrence quantification analysis
(RQA)Marwan et al. [2007], Zbilut and Webber [1992]. In RQA, important elements
are the diagonal and vertical lines because they reveal typical dynamical features of the
investigated system, such as range of predictability, chaos-order, and chaos-chaos transition
Trulla et al. [1996]. One of the prominent diagonal line measures is determinism (DET ),
from which the system’s predictability can be inferred:

DET =
∑N
d=dmin dP (d)∑N

i,j Ri,j

(3.3)

where P (d) = {di; i = 1, ..., Nd} is the histogram of the lengths d of connected diagonal
lines, and Nd is the absolute number of those diagonal lines.

In addition, laminarity LAM is a measure based on the distribution of the RP’s vertical
lines:

LAM =
∑N
v=vmin vP (v)∑N

i,j Ri,j

(3.4)

where P (v) = {vi; i = 1, ..., Nv} is the histogram of the lengths v of connected vertical
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structures, and Nv is the absolute number of those vertical lines.
For a deterministic continuous dynamical system (including chaos), many diagonal lines

in the RP are typical, leading to a high value of DETMarwan [2010]. However, single,
isolated recurrence points can occur if states are rare, if they do not persist, or if they
fluctuate heavily. For instance, stochastic or random signals would comprise such single
points and result in a very low DET .

Nevertheless, pitfalls and artifacts are not unusual when constructing RP such as those
occurred with wrong choice of embedding parameters or high threshold (ε) Marwan [2010],
Schultz et al. [2011], Wendi et al. [2018]. Thick lines for instance could easily occur in
continuous dynamical systems due to the temporal correlation of the phase space trajectory
and hence causing the RP to contain redundant information Schultz et al. [2011]. Such
thick lines artificially increase the number of diagonal lines and even introduce vertical
lines that lead to artifacts in RQA such as an increase in DET and LAM . With regards
to these thick lines Schultz et al. suggested a local minima based RP with additional
threshold ε to overcome this issue and demonstrated the benefits on the Lorenz system as
an example. The minima are found in each column of the RP and should correspond to
the closest neighbors of a state (within the range ε). Such method is shown to minimize
line thickness without requiring much computational effort as would be necessary for
perpendicular or iso-directional RPs that had also been suggested to overcome the line
thickness problem. Additionally, Schultz et al. concluded that such local minima based
RP resulted in less dependency when choosing the ε. In our study we call this approach
LMT (i.e., local minima with threshold), while we refer the local minima without any
constraint parameter as LM. LM and LMT method difference is further illustrated on
(Fig. 3.1d, such that LM would considers all local minima found while LMT only considers
the local minima below the ε, indicated by the region of orange shade).
However, in the real world application, observation signals are often induced by noise,

and that can lead to further artifacts in our RP and RQA. Especially, in the regular RP
(using a distance threshold ε), the induced noise could easily disrupt and deviate the
position of recurring points (Fig. 3.1). Nevertheless, such is no exception when using LM
approach, the mentioned artifacts are still present due to the induced noise. It is also
important to note that in this study we only consider the contamination of noise by adding
Gaussian to a one dimensional input signal (i.e. of a continuous dynamical systems or in
this case Lorenz) given the desired signal SNR (signal to noise ratio) in decibels.
The impact of noise is obvious in the traditional distance threshold based RP, LM,

and LMT (Fig. 3.2). Visible block clusters can be observed in the threshold based RP
(Fig. 3.2c) especially along the lines of identity (known as LOI, i.e. the middle diagonal
line) where perfect continuous line is expected) and in the LMT (Fig. 3.2e) despite the
reduction of thick lines (marked with red rectangles). Despite the thick lines in threshold
based RP result in the visually clearer diagonal lines, this is not necessarily correct as they
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(a)

(b)

(c)

(d)

Blue = Lorenz 
Red = Lorenz with noise

ɛ

τm
local 
minima

Figure 3.1: Phase space trajectories of Lorenz series (dx
dt
, with σ = 10, ρ = 28, β = 8

3): (a)
without noise and (b) with noise (SNR=20dB); (c) zoom-in view of both signal
trajectories; (d) extracted phase space distance (y-axis) between a selected
point at the phase space trajectory and all other trajectory points by time lag
(x-axis) and corresponding local minima (blue and red points, indicating local
minima of no noise and noisy Lorenz recpectively). The shaded orange region
refer to the region where local minima with threshold (ε) are used for RP with
LMT approach. The embedding parameters of all phase space are fixed at
m = 3, τ = 3.

artificially introduce more diagonal lines and block structures that increase vertical lines
and hence artificially increasing LAM (i.e. in our example and increase by 0.35). This is a
problem because such laminarity characteristics is not expected for the Lorenz system.
The increase of LAM is also noticed in the LMT approach (by 0.11). Meanwhile, the
LM RP (Fig. 3.2d) is dominated by visible long vertical lines which, therefore, drastically
increase the LAM when compared to the RP of the Lorenz without noise (increase by
0.69).

As to tackle the problems with noisy continuous signals (blocks and vertically extended
structures), we propose an additional constraining parameter to the LMT in order to
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reduce the mentioned artifacts (i.e., block cluster and increase in LAM) and we call this
method local minima based RP with 2 parameters (LM2P). This LM2P approach is
further explained in section 3.2. Although LM2P is found to improve the reliability of RP
and RQA as evaluated from its deviation from the RP constructed from uncontaminated
signal (i.e., without noise), the disrupted or discontinuous diagonal lines due to noise are,
however, still a bottleneck in deriving a system representative DET value, e.g., such that
the deterministic Lorenz would still yield a very low DET value despite its RP deterministic
pattern (i.e., DET of 0.24 instead of 0.59 found in the RP of Lorenz without noise). Such
is also noticed in different Lorenz system with varying ρ parameters (Fig. 4.3), where DET
of the noise induced signals (both LMT and LM2P) show a very low DET values closer to
the stochastic system rather than the reference DET generated from the RP of Lorenz
with no noise. This reference RP (shown in all figures as Lorenz no noise) is generated
using LM2P approach, although there is hardly any difference to the one generated using
LMT approach (i.e. when no noise is present). Therefore, we also propose a new measure
to account this mentioned diagonally clustered points that do not necessarily form strict
diagonal lines as required for the conventional RQA calculation of, e.g., DET. The methods
and findings are presented and discussed in the following sections.

3.2 Local Minima based RP with 2 Parameters (LM2P)

Vertical distance between recurrence points in the RP correspond to the time between
recurring states (recurrence time). However, noise can reduce these recurrence times by
introducing many new local minima in the distance matrix, and by this artificially adding
many new recurrences (visible as the clusters and vertical structures in Fig. 3.2). In order
to reduce the number of these noise-induced minima, we introduce a minimum distance
τm required between the local minima as a new additional parameter. This τm in addition
of ε is also illustrated on Fig. 3.2d. Because the local minima approach now consists of
two parameters (i.e. ε and τm), we call this approach "local minima with 2 parameters"
(LM2P). By doing so, we exclude the minima that are found next to each other due to
the induced noise. The resulted minima with reasonable τm are expected to separate the
potentially recurring pattern despite the local noise. This selection of τm however should be
minimized that one does not exclude the recurring pattern due to large τm that potentially
overlaps the sequence of the signal. It should also be reasonably sized to avoid the noise
artifact. The optimal τm as implied by Fig. 3.3a has to be larger than the maximum of
the local minima of the phase space distances as found in a random system (i.e., Gaussian
white noise) and smaller than the one of the assessed deterministic signal (in this case
Lorenz). Such criterion can be found by using the auto-correlation function (ACF) of the
assessed signal. This should be chosen larger than the first minimum lag of white noise,
and lower than the first minimum lag of the assessed signal. In this case we obtained the
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first minimum by using a threshold of autocorrelation value less or equal to 0.1, and we
infer the safe choice of τm to be below 15 at Lorenz with ρ = 80 (see Fig. 3.3b). Since
the τm of Gaussian noise is found to be around 3, we could infer the safe τm for our noisy
Lorenz signal to be above 3 (lets say 5) (see Fig. 3.3a) and below 15 as guided by ACF.
The RP based on the LM2P approach solves the mentioned issues on thick lines and block
patterns as well as the vertical artifacts due to noise. First, for the noisy signal the LM2P
RP (Fig. 3.2f) yields a closer pattern to the one of the uncontaminated time series (i.e.,
without noise) as seen in Fig. 3.2a and b. Furthermore, the block clusters are now removed
and vertical lines due to noise disappeared (Fig. 3.2f). This is confirmed by the low LAM
value that is similar to the one of the signal with no noise (difference only 0.02). However
disrupted lines due to noise are still visible to cause low diagonal line based RQA measures
(e.g., DET, difference 0.35) despite the agreement of the RP patterns. The conventional
RQA measures based on strict diagonal structures (i.e., connected points with 45◦ slope)
are not always satisfactory especially in the case of noisy signals, where diagonal lines can
be disrupted by the noise. The disruption of line is prominent and shown to vary with the
noise level (see Fig. 3.4). For instance noise impact with SNR of 30dB already causes the
median values (probability exceedance of 0.5) of the line length to 1 (i.e. no connected
points) and that the relative longest diagonal line within the RP already drops to 30%.
Despite the solution in increasing ε could be promising in connecting the disrupted and
deviated lines Thiel et al. [2002], such approach undesirably thickens the structures in
the RP and eventually causes an artificial increase in diagonal and vertical lines, and,
therefore, biases RQA.

3.3 Determinism Indicator Using Diagonal Sliding Window

In order to resolve the aforementioned reliability issues (i.e., DET sensitivity to disrupted
and deviated diagonal lines), we propose another approach to derive a more robust
determinism indicator that is less sensitive to noise. This approach uses a sliding window
(wi) of size ws and iterates at a lag of τw (distance from the main diagonal LOI) from the
left corner of the RP until the end point of the RP (right corner) minus the window size
(N − ws). The conceptual diagram of this method is presented in Fig. 3.5a. The RP of a
deterministic signal tends to form a cluster of diagonal structures despite the wiggly and
disrupted lines (i.e., up to the user tolerance deviation criteria set by ws, and maximum
gap or discontinuity distance of D(max) as exemplified in the rotated view of the window
for sub-figure (Fig. 3.5b) RP of Lorenz without noise, (c) Lorenz with noise using LM2P,
(d) Lorenz with noise using LMT, and (e) RP of a random signal (i.e., Gaussian noise)
with typical scattered recurrence points all over the space.

For each wi the fraction of recurrence points, (RRwi
) is calculated as the ratio of the

number of recurrence points (Rwi
) over the area of the window Awi

, Eq. (3.5). In this
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approach ws should be set considerably small (2 or 3) to consider only small wiggling or
deviation of the diagonal lines due to noise. Such limited window, e.g., with ws = 2 allows
each perpendicular cell or point (i.e., Rdi

binary values) along the length of the window
(i, ..., i+ ws− 1 ) to be aggregated like a logical OR function as dk. In addition, for every
dk at window wi, the diagonal recurrence point distance along the axis k is calculated
between each consecutive recurrence points as D or ∆k (Fig. 3.5f). The ratio of frequency
distribution of the gaps distance that is within the threshold D(max) is the emphasis for
our calculation. In this case, user should allow minimal gap tolerance to consider the such
discontinuity as diagonal line (e.g. gap of 1 or 2 point distance). These variables are then
used to formulate an alternative determinism indicator DDwi

for each window (wi) and
DDET as the index for the whole RP:

RRwi
= 1
Awi

n∑
i,j=wi

Rwi,j
(3.5)

where Awi
is the area of the diagonal window (i.e., number of cells in each window), Rwi,j

is the recurrence point within the window calculated from the starting point of the window
(wi) up to the maximum possible length (N − ws).

DDET = log

 1
N

∑N
i DDwi

1
N

∑N
i RRwi



DDwi
=

∑D(max)
j DjP (Dj)∑N
j lwi

−DjP (Dj)

D = ∆k, for {dk ∈ B : dk = 1}

dk = ∨ni Rdi
, n = i+ ws− 1

(3.6)

where dk is calculated as the logical OR aggregate function of horizontal cells Rdi
within

the window size ws (from Rdi...n
where n = i + ws − 1. P (Dj); , j = {1, ..., ND} is the

frequency distribution of the gap distance k between consecutive diagonal recurrence
points (dk ≡ 1) where D(max) is the maximum threshold of distance allowed, and lwi is
the maximum length of wi (lwi

= nk), and ND is the absolute number of those distances
stored in D.

The calculated RRwi
and DDwi

of every window are then compared for their probability
of exceedance. Based on Lorenz with parameter ρ = 80, the distributions of the exceedance
are distinct between those of Lorenz and Gaussian process, with better performance of
LM2P over LMT (i.e., closer to the one of Lorenz with no noise) especially for DDwi
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(Fig. 3.6a, b). Furthermore, the correlation coefficient (r) of RRwi
and DDwi

between
the RP of the Lorenz signal with no noise as reference and the other RPs are assessed
respectively for varying ρ (Fig.3.6c, d). Unlike the conventional RQA (i.e. DET is low
for the noisy Lorenz signal and appear closer to the one of Gaussian noise and thus, the
correlation to the reference is low), the correlation between LM2P RP of the reference
(i.e., no noise) and the noisy signal is higher.

Furthermore, the resulted DDETs for varying ρ are also plotted in comparison with the
DET values of Lorenz with no noise as reference (Fig. 3.7b). Although the DDET values
of Lorenz with noise (both LMT and LM2P) are slightly lower than the one without noise,
their values are rather distinctive from the one of Gaussian noise. Meanwhile, two periodic
windows (P1 and P2) of the Lorenz system as indicated by maximum Lyapunov exponent
below 0 (Fig. 3.7a (red)) are also captured by the DDET measure, while the RQA DET
could only capture the high deterministic features of Lorenz in the 2nd periodic window
(P2). DDET values can be seen to range from approx. 2 to 3 for the periodic system,
fluctuating around a value of 1 for the chaotic regime, and dropped to almost −1 when it
is Gaussian noise or stochastic process.

Although a higher embedding dimension could further insinuate the implicit deterministic
features and, hence, increase DET values, the impact of induced noise as shown in Fig.3.8
would still result in distinct difference (i.e., underestimation) as compared to the signal
without noise. In contrast, DDET values of the noisy Lorenz are found to be much closer
to the Lorenz without noise regardless of the embedding dimension. Such differentiates
stochastic systems like white noise further from the deterministic signal. Furthermore,
applying LM2P in this case does not require to choose high embedding. The LM2P
approach outperforms the other approach for all ρ parameters (Fig.3.7b) and with varying
embedding dimension (Fig.3.8).

Despite the selection of optimum ws could be attributed to the amount of noise, i.e. the
lower the signal to noise ratio (SNR) the expected deviation is larger, the large choice of
ws could result in recurring sequence being aggregated within a window. In our test case,
we focus on the example of Lorenz series with 20dB SNR which is already considered to
be quite a prominent noise contamination case. With this SNR, the choice of ws = 2 is
already shown effective to derive a representative DDET (i.e. close to the signal without
noise), and as shown in Fig.3.9 the increase of ws would only decrease the reliability of
DDET (i.e. DDET values between non noisy and noisy signal start to distant apart and
that the DDET values of the deterministic signal start to decrease). In this figure, it is
also shown that the LM2P approach would yield more robust DDET values with respect
to the increase of ws in contrast with LMT approach where the decrease of DDET deviate
further from the non-noisy signal.
Moreover, this example can be used to study the sensitivity of the new approach with

respect to noise. The DDET values for SNR ranging from 30 to 20dB are still close to the
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DDET values of the non-noisy signal (Fig. 3.10). On the contrary, DET is very sensitive
to noise and the drop in SNR to 20dB causes a drastic change in the DET and implies a
closer relationship to a stochastic process. However, in the case of extremely noisy signal
i.e. SNR below 20dB, even DDET cannot be longer deemed to be reliable.

3.4 Conclusion

1) RP artifacts such as thick lines can be reduced using the LMT (i.e. introduced by
Schultz et al. [2011]) and LM2P method (i.e. introduced in this paper). However, when
noise is present in the continuous system, the LMT approach is still shown to contain
block like clusters and artificial vertical lines that eventually increase the RQA measure
LAM. This however can be resolved by using the LM2P approach, where an additional
parameter constraint (i.e., minimum distance τm between the local minima) is introduced
in addition to the threshold. The parameter τm can be guided by using the location of the
first zero auto-correlation function (ACF). The recommended τm should be smaller than
the first zero ACF but larger than the ACF of the stochastic process.

(2) Although the LM2P (and LMT) approach reduce the mentioned artifacts and visually
appear to have agreement between RPs created from pure and noisy signals (i.e. closer
representation of LAM values), their conventional RQA calculated based on diagonal lines
lengths (i.e. DET) is heavily underestimated. Such is due to the impact of the induced
noise that disrupts and deviates the recurrence points. Therefore the strict quantification
based on connected points that form 45◦ diagonal lines would fail to capture the recurring
dynamics’ property.

3) To resolve the RQA reliability with mentioned disrupted and deviated diagonal lines,
an alternative approach for calculating a determinism indicator is proposed. This uses a
diagonal sliding window concept with minimal window size (ws) designed to capture the
mentioned deviated lines at each window time lag (τw).
4) As to account the disrupted lines (i.e., cluster of points with minimal distance), we

propose an index measured from the distribution of this minimal diagonal point distance,
and their recurrence rate at each window iteration (wi). Such allows disrupted points
with minimum distance to be considered as a diagonal line and, hence, providing a DET
equivalent measure.

5) The new measure is able to capture the deterministic property of the Lorenz system
(for varying parameter ρ from 80 to 110) despite the induced noise with signal to noise
ratio of 20dB, as assessed from their window’s RRw and DDwi

correlation agreement,
distribution, and DDET variation for different ρ values as compared to the system without
noise. In addition, it also captures the two periodic windows of the Lorenz system in
both noisy and non-noisy signal, where the conventional RQA-DET measure fails to
capture them. The conventional DET measure also tends to distinctly underestimates the
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determinism and, hence, appears to be closer to the indication of a stochastic process when
the induced noise is present. Furthermore, the use of DDET allows minimal embedding
dimension to match the noisy system with the non-noisy one, and their performance are
in general rather constant in spite of the embedding.
6) However, it is worth to note that the magnitude range of this measure differs from

the conventional DET measure. The challenge remains to set up a standard of range for
which a more intuitive scale of determinism can be easily inferred. Nevertheless, the new
DDET measure and the diagonal sliding window is a promising concept when the known
continuous system dynamics is induced by noise, which is very common in real world
observations. More research could focus on the more specific attribution of the measures
and different types of noise. Furthermore, the relation of the signal to noise ratio to the
window size (ws) necessary to capture the expected deviation and the maximum diagonal
distance to consider for the tolerance of line disruption should be elaborated in future
studies.
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(c) (d)

(e)

(a) (b)

(f)

Figure 3.2: RPs of the Lorenz series (dx
dt
, with σ = 10, ρ = 28, β = 8

3), and additionally
induced with noise (SNR=20dB). The following RPs are constructed using (a)
LMT of Lorenz with no noise, while (b) is the zoomed-in view of the same RP,
(c) distance threshold of ε = 5th percentile of phase distances, (d) LM only, (e)
LMT with same ε parameter used in (a), and (f) LM2P with the same ε and
τm = 10. The red rectangles in (c) and (e) are used to indicate the mentioned
block clusters. The embedding parameters of all RP are fixed at m = 3, τ = 3

.
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Figure 3.3: Safe choice of parameter τm by using ACF: (a) Local minima of the phase
space distance for Lorenz and Gaussian noise. While (b) is the inferred safe
τm to choose based on first minimum τ of auto-correlation (chosen threshold,
ACF ≤ 0.1).

(a)

Circled: longest diagonal length
(excluding LOI)

(b)
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Figure 3.4: (a) Probability exceedance of diagonal line lengths and (b) relative longest
diagonal line length (%) of Lorenz of ρ = 80. with response to induced noise,
i.e. indicated by signal to noise ratio (SNR)
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Figure 3.5: Concept of diagonal sliding window: (a) A considerably small ws size window
(wi) slides diagonally through the RP. For each window, RRwi

and DDETwi

are calculated (Eqs. (3.5) and (3.6)). Sub-figures (b) to (e) show a zoom in
rotated view of a diagonal window to exemplify an RP of Lorenz without noise,
RPs with noises constructed with LMT and LM2P, and a RP of Gaussian white
noise respectively. Sub-figure (f) with reference to (a) shows the calculation
concept of diagonal distance between (D or ∆k) recurring points at each
window (rotated view) derived from an aggregate of cells (OR logic) from i to
i+ ws− 1.
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(c) (d)

(a) (b)

ρ = 80 ρ = 80

RRwi DDwi

Figure 3.6: Probability of exceedance of (a) RRwi
and (b) DDwi

values of diagonal windows
between Lorenz no noise and the LMT and LM2P of the one with noise (shown
here is only Lorenz with ρ = 80), and Gaussian noise. Correlation coefficient
r of (c) RRw and (d) DDET for all RPs with reference to the RP of Lorenz
with no noise. The embedding parameters of all the assessed RPs are fixed at
m = 3, τ = 10, ε = 5th, τm = 10 ws = 2, τw = 2.
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DDET values for:

(a)

(b)

P1 P2

Figure 3.7: (a) Maximum Lyapunov exponent of the Lorenz system with varying ρ param-
eters (with values below 0 indicating periodic dynamics highlighted as red).
(b) DDET values of Gaussian noise, and Lorenz with varying parameters with
reference to DET. Green boxes emphasize the two Lorenz periodic windows
P1 and P2 (indicated by max.Lyapunov exponent below 0). The RP measures
are calculated based on embedded approach: m = 3, τ = 10, ε = 5th, τm = 10
(for LM2P), and ws = 2, τw = 2 (for DDET calculation).
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ρ = 80, τ = 10

(a)

(b)

Figure 3.8: (a) Impact of embedding parameter (m on the DDET measure. Shown here
is the example of ws for full Lorenz system (i.e. created without embedding,
using 3 variables) RP (LM2P) set for 2 ≤ ws ≤ 10 and additionally ws = 50
and Gaussian noise with ws = 2 as reference.
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Closer DDET value when ws =2

ρ = 80

Figure 3.9: (a) Impact of window size parameter (ws on the DDET measure. Shown here
is the example for DDET of embedded Lorenz system using LMT and LM2P
approach in response to changing ws in comparison with Lorenz without noise
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Figure 3.10: (a) Impact of induced noise SNR level on the DDET and DET measure.
Shown here is the example of noisy Lorenz series with SNR from 5 to 30db as
compared to Lorenz with no noise. All measures are based on RPs generated
using LM2P and embedded approach with m = 3, τ = 10, ε = 5th, τm = 10
ws = 2, τw = 2.
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Keypoints:

• First application of Recurrence Plots in hydrology

• Novel method for quantifying hydrograph similarity based on runoff dynamics

• Time delay embedded phase space trajectory allows to consider relationships between
magnitudes of different point in time
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Abstract

This paper introduces a novel measure to assess similarity between event hydrographs. It
is based on Cross Recurrence Plots and Recurrence Quantification Analysis which have
recently gained attention in a range of disciplines when dealing with complex systems. The
method attempts to quantify the event runoff dynamics and is based on the time delay
embedded phase space representation of discharge hydrographs. A phase space trajectory
is reconstructed from the event hydrograph, and pairs of hydrographs are compared to
each other based on the distance of their phase space trajectories. Time delay embedding
allows considering the multi-dimensional relationships between different points in time
within the event. Hence, the temporal succession of discharge values is taken into account,
such as the impact of the initial conditions on the runoff event. We provide an introduction
to Cross Recurrence Plots and discuss their parameterization. An application example
based on flood time series demonstrates how the method can be used to measure the
similarity or dissimilarity of events, and how it can be used to detect events with rare
runoff dynamics. It is argued that this methods provides a more comprehensive approach
to quantify hydrograph similarity compared to conventional hydrological signatures.



4 Assessing Hydrograph Similarity and Rare Runoff Dynamics by Cross Recurrence Plots

4.1 Introduction

The shape of flood event hydrographs can vary substantially between regions and between
events for a given catchment, depending on catchment and event characteristics. Variations
in hydrographs can be expected for different event types, e.g. driven by different climatic
factors, and for different catchment conditions. For instance, short-rain floods triggered by
moderate to substantial rainfall tend to show a faster response compared to snowmelt driven
floods [Merz and Blöschl, 2003]. Hence, the hydrograph is a fingerprint of the processes
involved in the rainfall-runoff event [Blöschl et al., 2011]. Quantifying the similarity
or dissimilarity of event hydrographs has received increasing attention in the field of
surface water hydrology [Haaf and Barthel, 2018], for example within the ’Predictions in
Ungauged Catchments’ initiative [Hrachowitz et al., 2013], or for assessing the performance
of hydrological models [Ehret and Zehe, 2011].

A range of indices, herein also called hydrological signatures, have been used to describe
rainfall-runoff event hydrographs. The hydrograph peak (Qp) is the most popular hydro-
logical signature in flood risk assessment and flood design due to its close relationship
with the socio-economic impact of floods. Other important hydrological signatures are
discharge volume (V ), event duration (td), time to peak (tp), recession time (tf ), base flow
index (BFI), or the rising and falling limb slope of the hydrograph (∆Qrise and ∆Qfall).
These signatures have been used as event similarity indices required for classification,
regionalisation, prediction, change and extreme event analysis, and model calibration
[Bárdossy, 2006, Merz and Blöschl, 2003, Peel and Blöschl, 2011, Sawicz et al., 2014,
Westerberg and McMillan, 2015, Westerberg et al., 2016]. However, these indices either
represent a single element of the hydrograph only (Qp, td, tp, and tf), or they are a
statistical aggregate of the hydrograph (V , BFI and ∆Qrise, and ∆Qfall). Other studies
have introduced the consideration of multi-variate signatures altogether to better exploit
the information contained in the hydrograph, for examples the studies of Brunner et al.
[2017], Ehret and Zehe [2011], Hannah et al. [2000], Ternynck et al. [2016].

In this study we propose a more elaborate hydrological signature to quantify similarity
between event hydrographs. Our signature is based on the phase space representation
of discharge hydrographs and attempts to consider the event runoff dynamics more
comprehensively. Instead of using a single element index or a joint considerations of
statistical aggregates of the hydrograph signatures, it considers the entire, continuous
hydrograph shape, i.e. the time sequence and additionally its dependence on the antecedent
conditions of the flood event.
In our approach a phase space trajectory is reconstructed from the corresponding

hydrograph using Taken’s time delay embedding method [Takens, 1981]. Please note that
the official term ’reconstruct’ is used instead of ’construct’ because the theory claims that
this embedding allows recreating the system behavior, represented by the phase space
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geometry, by just using the time series of one of the system variables [Packard et al., 1980,
Takens, 1981]. However, we apply the embedding method in a more practical manner, such
that the reconstructed phase space trajectory allows the analysis of the multi-dimensional
relationship between discharge values in different points in time. This means that we
can implicitly consider antecedent conditions of the flood, i.e. discharge values prior to
the flood peak. Their consideration are important for flood analysis, as for instance, a
moderate rainfall prior to a flood may partially saturate the catchment and lead to a high
flood event peak – much higher than would be expected from the event precipitation alone.
The specific method we propose are Cross Recurrence Plots (CRP), as a variation

of Recurrence Plots (RP), and their quantification (RQA - Recurrence Quantification
Analysis) as the basis for quantifying hydrograph similarity. RP and RQA are used in order
to visualize and quantify phase space trajectories especially at higher dimensions where
such trajectories cannot be visualized anymore [Marwan et al., 2007]. Both RP and RQA
have gained considerable popularity over the past decades in several scientific disciplines,
from economy, physiology, neuroscience, paleoclimatology, astrophysics to engineering,
especially when focusing on non-linear times series analysis and characterizing the behavior
of complex systems [Aceves-Fernandez. et al., 2012, Carrubba et al., 2010, Crowley, 2008,
Eroglu et al., 2016, Goswami et al., 2018, Marwan and Meinke, 2004, Oberst and Lai,
2015]. However, to the authors’ knowledge, RP, CRP and RQA have not been used in
catchment hydrology, let alone in comparing hydrograph dynamics, despite the popular
exploration of chaos theory, which also builds on phase space trajectories. Such phase
space trajectories for example have been used for hydrological forecasting or gap-filling of
hydrological time series [Sivakumar, 2000].

This paper introduces Cross Recurrence Plots (CRP) as a novel approach for assessing the
similarity or dissimilarity of rainfall-runoff events based on the phase space representation
of their hydrographs. We argue that this approach better captures the underlying runoff
dynamics compared to the traditional hydrological signatures. Not only the comparison
method is based on the entire shape of hydrograph, but also configurable to capture the
relationships of magnitudes at different time through time delay embedding. Since such
methodological application in catchment hydrology has no references yet, the paper first
provides a practical introduction to CRP and RQA. To introduce the methodology, we
contrast it with the traditional way of comparing time series, i.e. through correlation
analysis using scatter plots and correlation coefficients. It is important to note that, in
contrast to correlation analysis, CRP and RQA are not restricted to comparing time series
of the same length
Our application example, using historical floods at the Elbe River runoff station at

Dresden, Germany, compares flood events of varying durations that occured in February
and March during the period 1901-2010. These two months show the highest number of
annual maxima at the gauge Dresden. The application example illustrates the potential
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of the method to quantify similarity of hydrographs between events and to detect their
unusual runoff dynamics. This could be events with unseasonal runoff dynamics, i.e. an
unexpected flood type for a certain season, or events with rare event characteristics, i.e.
never seen before runoff dynamics.

We see the potential of this method to be used for a wide range of questions in hydrology.
An obvious extension would be to quantify the similarity of longer epochs, e.g. annual
periods, instead of flood events. Another example would be the detection and attribution of
change in hydrological time series by investigating whether changes in the runoff dynamics
can be identified.

4.2 Methodology

4.2.1 Cross Recurrence Plot

The Cross Recurrence Plot (CRP) is a variation of the Recurrence Plot (RP). RP was first
introduced by Eckmann et al. [1987] to visualize the recurrence behavior and properties of
dynamical systems through their phase space topology. A dynamical system is represented
by a phase space trajectory, and RP is used to identify recurring states of this system,
i.e. whether a certain pattern recurs in time. This recurring states are represented by the
diagonal lines in the 2 dimensional plot where x and y axis represent time. In contrast,
CRP is a tool to analyze time synchronization and similarity between two time series by
comparing their phase space trajectories that can also be reconstructed through time delay
embedding [Marwan et al., 2002a].
In CRP, continuously connected points that form diagonal lines indicate that (parts

of) the time sequence patterns of the two hydrographs are similar to each other. Hence,
the longer these diagonal lines, the longer are the patterns that are similar between
the hydrographs. Time delay embedding can also be additionally implemented to allow
the reconstruction of a high-dimensional phase space trajectory from univariate time
series. This means that multiple subsets of values within a single time series are extracted
according to a time delay τ and plotted in the phase space to describe the relationships of
magnitudes at different time distanced by τ .

For instance, a 2-dimensional phase space vector can be compared to an autocorrelation
scatter plot where the x and y axes are the subset values of the original time series that
are separated by a shift of τ . A 3-dimensional phase space contains a third variable, i.e. x,
y and z with time delay of τ and 2τ , and so on for higher dimensions. Fig. 4.1a shows
an extracted flood hydrograph with three peaks or sub-events. The rising slope at each
sub-event i (defined as the gradient from the start of the sub-event to its peak) is higher
for the second and third peaks. This can be explained mainly by the increasing wetness of
the catchment from the first to the third sub-event. This kind of cascading relationships
in time where the initial or antecedent conditions are important information motivates the

67



4 Assessing Hydrograph Similarity and Rare Runoff Dynamics by Cross Recurrence Plots

use of multi-dimensional, time delay embedded, phase space analysis.

1 point in xi is created by 
3 points in time series Qt
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Figure 4.1: Multiple-peak flood event (a) and its 3-dimensional phase space reconstruction
(b). The phase space vector consists of three dimensions, whereas each axis
shows the values of the original hydrograph separated by the time delay τ and
2τ . Red circles show exemplarily the reconstruction for one point in the phase
space.

This time delay phase space reconstruction follows Takens’ embedding theorem [Packard
et al., 1980, Takens, 1981]:

~xi = (ui, ui+τ , ..., ui+(m−1)τ ) (4.1)

where m is the embedding dimension and τ is the time delay, and ui is a univariate time
series or in this case our discharge series (Qt).

When comparing two time series, phase space trajectories (xi and yj) are reconstructed
from both time series, and the pointwise similarity of the two trajectories can be assessed
based on their distance and visualized with CRP (see Fig. 4.2). The CRP is a 2-
dimensional matrix encoding the similarity structure of two high-dimensional, embedded
systems. It is a visual representation of a rectangular matrix in which the matrix elements
(recurrence points CRi,j(ε)) correspond to times at which the states (i, j) of the two
dynamical systems are equal or similar (defined by their phase space distance and a
threshold ε):

CRi,j(ε) =

1, if ‖~xi − ~yj‖2 < ε

0, otherwise
i = 1, ..., N, j = 1, ...,M (4.2)

where N andM are the number of measured points in the compared phase space vectors ~xi
and ~yj , ε is a cutoff threshold for distances between the vectors, and ‖ · ‖2 is the Euclidean
norm.
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Figure 4.2: Comparison of two phase space trajectories ~xi and ~yj constructed from time
series Qx and Qy using distance threshold ε (a) to define recurrence points in
the CRP (b).

To exemplify the concept of CRP and to demonstrate its differences to the widely used
tools scatter plot and cross correlation analysis, Fig. 4.3 compares two hydrographs using
scatter plots and CRP. One of the differences between the CRP and the scatter plot is
that the scatter plot axes represent magnitudes, while in the CRP they represent the time
of occurrence of the two series. When two identical time series are compared, CRP shows
a single diagonal line (45◦ angle) that divides the CRP matrix symmetrically (Fig. 4.3.1c,
green line). As differences increase this straight diagonal line will become more and more
distorted, e.g., becoming perforated and wiggled. Then this line could be quantified by
DET in order to derive a similarity measure (section 2.2). Further, it is worth to note that
the high-dimensional embedding results in embedding loss with a size of (m− 1)τ . This
embedding loss is a result of reconstructing the phase space vectors corresponding to the
number of dimension (m) and time delays (τ) and, thus, the size of the CRP is shorter by
(m− 1)τ and needs to be cautioned.

The first example shows the CRP when comparing two identical hydrographs patterns
Qa and Qb which occur at different times, i.e. Qb is shifted by 17 time units (Fig. 4.3.1a).
Despite the time shift, the CRP still indicates the similarity of the two time series as
indicated by the diagonal line. In addition, it shows the time shift. This similarity cannot
be derived from the scatter plot without knowing the time shift in advance. Hence, the
scatter plot and correlation analysis (Pearson correlation coefficient R = 0.17) could lead
to the wrong conclusion that there is no similarity between Qa and Qb. The CRP approach
is useful for detecting recurring runoff dynamics, possibly related to the same causative
mechanism, which do not necessarily happen at the same season. It should also be noted
that the CRP is useful for comparing hydrographs regardless of their, possibly dissimilar,
duration.
The second example compares Qa with a random system dynamics where Qb is a

randomly shuffled time sequence of Qa (Fig. 4.3.2a - 2c). In this case, the CRP does not
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show any diagonal lines. Similarly, the scatter plot does not indicate a relationship, but it
should be cautioned that the correlation analysis suggests a substantial anti-correlation
(Pearson correlation coefficient R = −0.28).

The third example (Fig. 4.3.3a - 3c) compares two hydrographs with different runoff
dynamics where Qb represents an increased storage capacity in the catchment that dampens
the flow. This could result from a perturbation to the catchment such as dam construction.
Qb is obtained by a storage-based Muskingum transformation that is commonly used for
flow routing in hydrological modelling [Hattermann et al., 2014]. The parameters of the
Muskingum transformation are set as: storage constant K = 15 time units; weighting
factor x = 0.01. Due to the different runoff dynamics, the resulting CRP shows a rather
high dissimilarity in contrast to the substantial correlation coefficient r ≈ 0.4. Although
this CRP contains an inclined line, this line is rather broken and not tilted with 45◦ which
would indicate similarity.

Furthermore, It is important to note that, unlike correlation analysis and scatter plots,
CRP and RQA do not require that the two time series have the same length. In the
case of cross correlation analysis the lag would be constant for the complete piece of time
series, where CRP allows temporal changes of the temporal relationship between the two
considered time series and, thus, also non-monotonic changes in the relationship.
When working with real world observations, the presence of noise might cause the

diagonal in CRP to be discontinuous. Two examples are given Fig. 4.4, where the
hydrograph Qa is compared to similar hydrographs that have been constructed by imposing
white Gaussian noise onQa with a signal to noise ratio (SNR) of 25dB and 20dB respectively.
These values are represented in decibels (dB), a logarithmic ratio between the signal and
noise level. The diagonal line of the CRP becomes broken or contains gaps, and these gaps
are larger when the signal is more noisy. When dealing with noisy signals, one can consider
noise reduction methods, such as filtering or smoothing; for an overview see [Elshorbagy
et al., 2002].

4.2.2 Recurrence Quantification Analysis

Similar to the correlation coefficient which summarizes the information of a scatter plot,
patterns within a CRP can be quantified by Recurrence Quantification Analysis (RQA). In
our study, RQA is used to provide a similarity index for flood hydrographs. RQA can also
be used to reveal typical dynamical features of the investigated system, such as range of
predictability, chaos-order, and chaos-chaos transition [Marwan et al., 2002b, Trulla et al.,
1996]. The RQA measure determinism (DET) describes the similarity (or dissimilarity) of
two dynamical systems using the distribution of connected recurrence points that form
diagonal lines, i.e. lines in the CRP with slope 45◦, over all the points within the CRP:
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Figure 4.3: Comparison of two discharge time series (a) with scatter plot and correlation
coefficient R (b) and CRP and determinism DET (c). Example (1) compares
two identical hydrographs with a shift in their timing, example (2) compares
a hydrograph with a randomly shuffled version of the same hydrograph, and
example (3) compares two different runoff dynamics where Qb results from
a storage-based Muskingum transformation of Qa representing an increased
storage capacity in the catchment. The embedding losses are shaded in red.

DET =
∑N
l=lmin lP (l)∑N
i,j CRi,j

, (4.3)

where P (l) = {li; i = 1, . . . , Nl} is the relative frequency of the lengths l of diagonal
structures, Nl is the total number of those diagonal lines in the CRP, and lmin is the
minimum length of diagonal lines (usually two recurrence points).
This quantification based on the fraction of diagonal lines among all recurrence points

(CRi,j) considers the influence of scattered single recurrence points that occur by chance.
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Figure 4.4: Comparison of a hydrograph with noise-induced versions of the same hydro-
graph (a). CRP for a signal to noise ratio (SNR) of 25dB (b) and 20dB (c),
respectively.

DET varies between 0 and 1, indicating the range from low to high similarity in the
dynamics of the two times series. For similar continuous dynamical systems, many
diagonal lines in the CRP are typical, leading to a high value of DET [Marwan, 2010].
The similarity of the two continuous states in the phase space is strictly defined by the 45◦

diagonal line, and any other lines are not relevant for the quantification of similarity. Single,
isolated recurrence points can occur if states are rare, if they do not persist, or if their
distance fluctuate heavily. For instance, two signals with the same magnitudes but different
time sequence, and hence different dynamics, would lead to single points and result in a
low DET. For the two identical but shifted hydrographs (Fig. 4.3.1), DET is 1. Hence, this
measure correctly identifies the identical runoff dynamics of the two hydrographs in contrast
to the correlation coefficient which suggests little similarity (R = 0.17). This is because
correlation analysis is unable to capture the non-monotonic pattern in the scatter plot.
When comparing the hydrograph with its randomly shuffled version (Fig. 4.3.2), DET = 0
in contrast to the, possibly misleading, value of the correlation analysis (R = −0.28).

When comparing the two hydrographs with different runoff dynamics in Fig. 4.3.3, DET
shows a low value of 0.17 suggesting little similarity in contrast to the correlation analysis
(R ≈ 0.4).

4.2.3 Construction and parameterization of CRP

Three parameters are required in constructing the CRP. These are the two parameters for
the time delay embedding, i.e. embedding dimension m and time delay τ , as well as the
phase space distance threshold ε that defines a recurrence point. In a specific context, m
and τ can be chosen according to the requirement of the analysis, i.e. by the number of
interrelated points in time. For example, the description of events consisting of complex,
multi-peak hydrographs would require a higher number of points than regular events.
The sub-events within a multi-peak hydrograph have possibly different characteristics.
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Initial sub-events, for instance, can be regarded as antecedent conditions and might affect
the following sub-events, i.e. increase their magnitude. Therefore, their relationships
are valuable in the characterization of the event dynamics. In general, the higher the
embedding dimension and the smaller the time delay, the more complete the dynamics
can be described by the phase space trajectories. However, artifacts from the suboptimal
choice of parameters and embedding loss, which also increases with higher m and τ , should
be avoided. Two unrelated random signals for instance (Fig. 4.5a) should yield zero or
near zero value of DET and be represented by scattering recurrence points in the CRP
(Fig. 4.5b), but improper parameters could artificially increase number of diagonal lines
and hence result in artifacts, i.e. high DET value (Fig. 4.5c).

Pearson R = 0.03

(a) 2 unrelated signals 
Qb = shuffle (Qa)

(b) CRP with 
proper parameters

m=3, τ=5

(c) Improper parameters
(artifacts)
m=10, τ=1

Figure 4.5: Example of artifacts in CRP due to improper embedding parameters: compar-
ing (a) 2 unrelated random signals result in (b) CRP with proper embedding
parameters and (c) CRP with artifacts caused by improper parameters.

The standard approaches for finding the optimal embedding parameters are the method
of false nearest neighbours (FNN) for m, and the auto-correlation or mutual information
(MI) for τ [Fraser and Swinney, 1986, Kantz and Schreiber, 2005, Kennel et al., 1992].
However, Marwan [2010] concludes that τ is sometimes overestimated by auto-correlation
and mutual information, and that the choice of m has to be considered with care, as a
wrong choice artificially increases diagonal lines and DET values.

To prevent such artifacts, we have proposed a random shuffling method to determine
the safe region of embedding parameters [Wendi et al., 2018]. However, this method was
developed for the RP assessing the recurring dynamics within a single system or time
series. Here, we adapt this method for the CRP by comparing two identical time series and
shuffling the time sequence of only one of the two time series. The basic idea is, similar to
the CRP example of Fig. 4.3.2, that shuffling destroys the original sequence information
about the process, thus changing its dynamics to a different and random one. The DET
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value from the CRP of the hydrograph Qa and the shuffled one Qb should be small. A
high DET value for a certain set of parameters m and τ indicates that the CRP contains
artificially long diagonal lines and, therefore, this parameter set is assumed to be unsafe.
Safe parameter sets can be found using a DET distance matrix. The DET distance is the
absolute difference between the DET values of the original CRP i.e. constructed from the
two identical time series without shuffling, where DET is expected to be 1, and multiple
iterations of shuffling, with expected low DET values. These multiple iterations are then
summarized based on the median. The median DET distance varies from 0 to 1; the larger
the DET distance, the safer the parameter set. The optimal choice is a trade-off between
the requirements for a safe parameter region and for small embedding loss.

To demonstrate the parameterization of CRP, we use the hydrograph example in Fig. 4.1.
It has a daily resolution, but is resampled with linear interpolation to a finer resolution of
6 hours to allow the evaluation of higher embedding parameters (m and τ). We calculate
the median of the DET distances for 100 shuffling iterations for each set of embedding
parameters within the range of 1 ≤ m ≤ 10 and 6 ≤ m ≤ 60 hours (Fig. 4.6a) and the
resulting embedding loss, i.e. ratio of the loss to the time series length (Fig. 4.6b). We
select the parameter set from the region with high median DET distances (above 0.8)
and small embedding loss (below 10%). In this example, since we have decided to fix
the embedding dimension m to 3, therefore best candidates for τ selection derived from
this safe parameter region are 30 and 40 hours. Should a higher m be desired in order to
quantify the relationship of more points in time, then τ should be adjusted to match the
mentioned trade-off.

(safe)(unsafe)

(a) (b)

(m=3,τ =30) (m=3,τ =30)

Figure 4.6: Safe regions and optimal parameter sets: (a) median DET distance, (b) em-
bedding loss. The parameter set used in this study is marked with a star.

In addition to the embedding parameters, an optimal threshold for the phase space

74



4 Assessing Hydrograph Similarity and Rare Runoff Dynamics by Cross Recurrence Plots

distance ε is also essential to prevent artifacts. Thick lines, for instance, can easily occur in
continuous dynamical systems due to the temporal correlation of the phase space trajectory,
causing the CRP to contain redundant information when ε is not defined properly [Krämer
et al., 2018, Schultz et al., 2011, Wendi and Marwan, 2018a]. Fig. 4.7 illustrates this
problem for the hydrograph comparison in Fig.4.3-1. Sub-figure (a) shows the distance
matrix of the two phase space vectors (‖~xi − ~yj‖), while sub-figure (b) shows exemplary
three slices of the distance matrix at rows 20, 40 and 60, i.e. distances relative to Qa

at time 20, 40 and 60. Using simply a distance threshold ε in defining the recurrence
points leads to thick lines in the CRP for those periods where the local variance of the
hydrograph is low, i.e. at the time of Qb around 40-50 (Fig. 4.7c). Such thick lines
artificially increase the number of diagonal lines, yielding unreasonably high DET values.
Schultz et al. [2011], Wendi and Marwan [2018a] suggested a local minima-based recurrence
definition to solve this problem. The minima are found in each row of the distance matrix
and should correspond to the closest neighbors of a state within the threshold ε. This
method minimizes the line thickness (compare Fig. 4.7c and d), and requires much less
computational effort compared to alternative solutions [Schultz et al., 2011]. Moreover,
Schultz et al. [2011] shows that the local minima-based CRP is less dependent on the
selection of the threshold ε, making the method more robust. Therefore, we select and
recommend this method for calculating the CRP for comparing runoff dynamics.

4.3 Application Example and Comparison with Conventional Indices

We apply CRP and RQA to evaluate the similarity of flood hydrographs measured at
Dresden gauge from 1901 to 2010. This gauge is located in the city of Dresden, Germany,
on the Elbe River which flows from the Krkonoše Mountains in the Czech Republic to the
North Sea at Cuxhaven, Germany. This application is meant to show the potential of the
method to quantify similarity taking into account the underlying runoff dynamics, and
to detect unusual events. We also compare the results with frequently used hydrological
signatures individually and and altogether. Using this example, we attempt to provide a
practical introduction to CRP and RQA, as these methods have not been used in hydrology
so far but have been beneficial in several other disciplines.
To compile a set of flood events, we first identify the annual maximum values from

the times series of daily streamflow observations. Thereafter we select only those events
with peaks in February and March. These are the months where the highest number of
annual streamflow maxima occur. Although the same flood types, e.g., snow-melt flood or
rain-on-snow flood, may occur in these months, February and March are often classified in
different seasons, i.e. December-February (DJF) for winter and March-May (MAM) for
spring [Matti et al., 2017]. Hence, it is interesting to our analysis to which extent events
with similar dynamics occur in these two months. We further select only those events
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Figure 4.7: Illustration of the local minima approach [Schultz et al., 2011, Wendi and
Marwan, 2018a] to define recurrence points for the CRP example shown in
Fig. 4.3-1. (a) recurrence distance matrix (‖~xi− ~yj‖), (b) phase space distance
with reference to Qa at time 20, 40 and 60, and their corresponding local
minima below the applied threshold (ε = 5th percentile), (c) and (d) CRPs
resulting from the distance matrix below the threshold and from the local
minima below the threshold, respectively

.

with a peak of at least 1000 m3/s to exclude minor events. The next step consists in
deriving the complete event hydrograph for each selected peak. To this end, we partition
the streamflow into direct flow and base flow using the Boughton 2-parameters separation
method [Boughton, 1993]. The start of the flood event is defined as the day when the
direct flow reaches a minimum threshold of 50 m3/s within 30 days prior to the peak flow.
The event ends when the direct flow falls below a second threshold of 30 m3/s within 40
days after the peak. These thresholds have been subjectively determined after multiple
trials with visual inspection. This procedure results in a series of 45 event hydrographs
(shown in Fig. B.3 in Appendix B.3).

The first analysis of this event set compares the event in February 1953, which has a
commonly seen single-peak hydrograph, with all other flood events in a pairwise manner.
We construct the CRP for each hydrograph pair and use the DET measure as similarity
index. For the CRP construction in this application example, we choose m = 3 to allow
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the visual comparison of the reconstructed phase space, and τ = 30hours. This parameter
set is considered as a safe choice for all events. It is determined via the DET distance
(section 2.3), i.e. by comparing each event hydrograph to itself and its shuffled versions,
and by ensuring that the embedding loss does not exceed 10%. Each event’s median
DET distance is calculated for different parameters sets. In appendix 6 we provide the
median DET distances for all 45 events based on the selected parameter set (m = 3;
τ = 30hours), and the possible maximum DET distance for different parameter sets. For
our fixed parameter set, all median DET distances fall into a considerable safe range, i.e.
above 0.6, and the majority is above 0.8. It would be possible to maximize our DET
distances by changing their parameter sets, but this would require higher embedding
dimension (m). For instance, for the events 1937 and 1942, a higher DET distance could
be attained by increasing m to 5. Overall, longer multi-peaks events tend to have lower
DET distance for the fixed parameter set, and would require higher m values to maximize
their DET distance. Although in this example m is fixed to 3 for the purpose of phase
space visualization, it is recommended to utilize parameter sets that yield the maximum
median DET distance for a more reliable assessment.
Fig. 4.8 shows the time series of resulting DET values. Two events with high DET

values, suggesting high similarity to the 1953 event, are exemplary shown in Fig. 4.8c
(February 1916) and Fig. 4.8e (March 1969). Just like the 1953 event, their hydrographs
consist of a single peak with similar shape. In contrast, the comparison with the event in
February 1937 (Fig. 4.8d) results in a low DET value as expected by the very different
hydrograph shape with multiple peaks and considerably longer duration. A low DET
value is also noticed for the March 1992 event (Fig. 4.8f); this time the hydrograph slope is
milder with lower flow magnitude. Fig. 4.8g – f show the phase space trajectories for these
four pairwise comparisons. They illustrate that the phase space trajectories of the events
in 1916 and 1969 are much more similar to the 1953 event compared to the events in 1937
and 1992. Fig. 4.8l – o plot the CRPs for these four event pairs; the comparison with 1916
and 1969 shows extended 45◦ diagonal lines. In contrast, the CRP of 1937 shows several
short lines, however only the first one has an angle of 45◦. The CRP of 1969 consists of a
single extended line, however, this line has a smaller than 45◦ angle. Note that the CRPs
shown here are no longer square due to the different duration of the compared time series
in the x-axis, which is one of the advantages of using CRP approach.
This example of assessing the pairwise similarity of hydrographs can be extended to

evaluate the rarity of each flood in terms of its runoff dynamics by intercomparing it to
all other floods in the event set. This results in a matrix of DET values of all pairwise
hydrograph intercomparisons (see Fig. B.2 in Appendix B.2) which can be summarized
statistically. Fig. 4.9 shows such an intercomparison; each flood hydrograph of February
and March from 1901 to 2010 is compared to all the other events, and the median DET
value is used as rarity measure. Events with low median DET values have hydrograph
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shapes that reoccur rarely within the event set, whereas high values suggest that these
events have common hydrograph shapes. In case the hydrograph shape is a signature of
the underlying flood generation processes, then the median DET value can be used to
indicate unusual events in terms of flood generation. The two events with the highest and
lowest median DET values, respectively, are marked in Fig. 4.9a and their hydrographs
and phase space trajectories are shown in Fig. 4.9b – e and Fig. 4.9h. In addition, the
peak discharge and the median DET values of all events are plotted against their empirical
exceedance probability in Fig. 4.9f and g.
The 1940 event (Fig. 4.9c) has the lowest median DET value (zero), indicating that

this is the most unusual event in the whole flood series. It contains a first peak whereas
the increase and recession are very steep and the peak magnitude shows the highest
value of all February and March events of the period 1901-2010. Its second peak has
completely different characteristics. After a steep increasing limb the hydrograph shows
almost constant values for ten days. The historical archive [Schuh, 2011] reports that this
event was a rare ice jam flood caused by accumulated ice debris slightly downstream of the
gauging station. The unusual hydrograph shape suggests that, by the time of the second
peak, the ice debris had accumulated and jammed the river, so that the high flood water
level of the river was kept constant for an unusually long duration.

The 1909 flood (Fig. 4.9b) has the second lowest median DET value and the 4th highest
peak discharge. This event was also recorded in the archive as unusual; very heavy rain was
combined with icy and deep frozen ground [Röttcher and Deutsch, 2009, Schuh, 2011]. The
rainfall intensity was unusually high for this season; such high intensities are rather observed
in the summer season in the Elbe catchment [Petrow et al., 2007]. The superposition of
intensive rainfall with frozen ground led to an exceptionally peakish hydrograph shape
with steep rising and falling slope. Interestingly, the antecedent catchment conditions were
rather dry. The streamflow at the event start was 90m3/s, while the median of all annual
maximal floods in February and March is 200m3/s. This event was caused by different
flood generation processes compared to the typical rain-on-snow floods [Merz and Blöschl,
2003] in February and March at the gauge Dresden, where snowmelt prior or during the
flood event increases the catchment wetness and amplifies the impact of moderate rainfall
[Nied et al., 2017].

The floods in 1995 and 2005 (Fig. 4.9d–e) have the highest median DET values, which
suggests that these events represent the most common flood runoff dynamics. Their
hydrographs show a rather prolonged recession. Fig. 4.9h compares the phase space
trajectories of these four events. The events in 1995 and 2005 are rather similar to each
other, while the events in 1909 and 1940 with the lowest median DET values have very
different trajectories.
The two events with the lowest median DET value have the highest and 4th highest

peak discharge. This could suggest a link between unusual runoff dynamics and extreme
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discharge in the sense that the extremes are generated by different processes compared
to the majority of floods. Fig. 4.10(a) plots peak discharge versus median DET values.
There is a moderate correlation (Pearson correlation coefficient r = -0.44), significant at
the 1% level. Hence, there is a tendency that floods with extreme peak discharges have
unusual runoff dynamics as shown by the floods 1940 and 1909 which are both within the
top 5 of the indices (shaded orange), and that moderate or low peaks have rather common
runoff dynamics (e.g. floods 2005 and 1995). However, not all events with extreme peaks
are characterized by rare runoff dynamics and vice versa. For instance, the 1924 flood has
a considerable peak discharge above 2000 m3/s (peak discharge rank 7) but a common
hydrograph shape (median DET rank 42), while the 1901 event with low peak discharge
(peak discharge rank 34) shows a rather unusual runoff dynamics (median DET rank
8) with five peaks and unusual fluctuations within the event. Multiple peaks are not
necessarily unusual; for instance, the event 1952 has a rather common hydrograph with
three sub-events that are smooth in their transition (median DET rank 43).

To further assess the proposed CRP-based measure against frequently used hydrological
signatures, we compare it against the baseflow index, the rising and falling slope, and the
volume and duration of the hydrograph. The rising and falling slope ∆Qrise and ∆Qfall

are calculated as the gradient during the flood event prior to the peak (i.e. from the start
of the event to the peak) and after the peak (i.e. from the peak to the end of the event),
respectively. The volume V is calculated as an approximate integral of the total discharge
using the trapezoidal method, and the baseflow index BFI is the ratio of baseflow and
total discharge volume, also derived using the same integral approximation.

We plot each signature against the median DET value for the flood event set (Fig. 4.11),
and measure its correlation using the Pearson correlation coefficient R. Falling slope and
baseflow index show a positive correlation, significant at the 1% level, i.e. events with
rare runoff dynamics show steeper recessions and a lower fraction of baseflow. This result
can be explained by the dominant flood generation processes. Floods in February and
March are typically snow-melt events or rain-on-snow events with moderate to low rainfall
leading to slow recessions. Hence, events with mild falling slopes are not considered as
rare or unusual. These dominant flood types also explain the relation between BFI and
median DET. Winter floods are often characterized by a high fraction of baseflow. The
remaining signatures do not show a significant relation with median DET.
Table 4.1 compares the top 5 events for each index. For visual comparison, all hydro-

graphs can be found in Figure B.3 in the Appendix. The most unusual event identified by
the CRP-based measure, the 1940 flood, is also unusual in terms of high peak discharge,
steep rising slope and high volume. Although its shape is clearly an outlier with a steep
first peak and a second peak which is held constant for ten days due to ice blocking the
river, the falling slope index does not suggest that this event is unusual, since both slopes
are aggregated into one value hiding the very specific event characteristics. The second
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and fourth unusual events, the floods in 1909 and 1956, are set apart from the other
events by their unusually steep rising and falling slopes and low baseflow index. The third
unusual event, the 1906 flood, is not within the top 5 events of any of the hydrological
signatures. In terms of these signatures, this event is not particularly unusual. However,
it has indeed an unsual shape with a long upfront limb with comparatively low variability.
The 1942 event, the fifth unusual flood, is also characterized as particular by the volume
and duration.

The comparison of the CRP-based similarity measure with the conventional hydrological
signatures shows that it characterizes different events as unusual. It shows moderate
correlation with the falling slope, baseflow index and peak discharge, but no significant
relation to the other signatures. These differences can be explained by the different con-
ceptual approaches: DET quantifies the event runoff dynamics by taking into account the
temporal evolution of the discharge values of the entire event. In contrast, the conventional
hydrograph signatures consider either one specific component of the hydrograph or are an
aggregated value. Hence, they provide a less comprehensive picture, as they either focus
on a specific component or lump across several characteristics, such as the slope averaged
across several sub-events. It is interesting to note that the proposed CRP-based measure
does not only characterize events with very particular hydrograph shapes as unsual, such
as the double-peak 1940 flood where the second peak is almost constant for ten days due
to ice blocking the river. It also detects events that have a common single-peak shape,
but are unusual in terms of low baseflow and steep slopes, such as the 1909 event. An
advantage of the hydrological signatures is that they provide an explanation why they
characterize an event as unusual. However, due to their specific nature several signatures
need to be considered jointly to judge whether a hydrograph is unusual.

Table 4.1: Top 5 most unusual events in terms of median DET and different hydrological
signatures. The last three columns show the match between median DET and
the hydrological signatures.

No Index 1st 2nd 3rd 4th 5th
Exact
Match

Match 
diff.
rank

Total 
Match

1 Median DET - lowest 1940 1909 1906 1956 1942

2 Peak discharge - highest 1940 1923 1947 1909 1946 1 1 2

3 Rising slope (ΔQrise) - steepest 1940 1956 1909 1916 1923 1 2 3

4 Falling slope (ΔQfall) - steepest 1909 1923 1956 1931 1948 - 2 2

5 Volume - highest 1988 1940 1937 1942 1947 - 2 2

6 Baseflow index (BFI) - lowest 1909 1956 1933 1922 1945 - 2 2

7 Duration - longest 1937 1942 1988 2009 1914 - 1 1

To compare our approach with a well-established method, we utilize these signatures as
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a joint index to identify rare events through clustering. We use hierarchical clustering with
the euclidean distance as classification factor. Each signature is normalized before the
clustering. Figure 4.12a shows a of the three main event clusters and the five outliers. of
the three main event clusters and the five outliers. Their variation across the hydrological
signatures is given in Figure4.12b The outliers 1 (1940), 2 (1909) and 3 (1956) are
characterized by high rising slope ∆Qrise and also moderate to high discharge peak, while
outliers 4 (1988) and 5 (1937) are associated with high baseflow index, long duration and
overall volume. With reference to the events’ median DET, three of these outliers are
within the lowest five, except events 1988 and 1937 with median DET are ranked 11th and
12th respectively.

Despite the close characteristics of these 1988 and 1937 events from their conventional
signatures and hence combined into a cluster, their hydrographs look visibly dissimilar.
The reason of such misleading similarity assessment lies on the calculation of certain index
instead of the clustering method. For instance ∆Qrise, where the existence of several
sub-events and hence variation of magnitudes before the flood peak enlarges the uncertainty
of the slope value as it is averaged by a slope of single line drawn from the starts of events
to their peaks. In contrast, the CRP between these 2 hydrographs show hardly any clear
diagonal lines and very low DET value indicating dissimilarity (see Fig.4.13).

4.4 Conclusions

Based on the concept of Recurrence Plots, we propose a novel hydrograph similarity
measure. The event runoff dynamics is characterized by its continuous time sequence, i.e.
the entire hydrograph shape is represented as phase space trajectory. Since the phase
space vector is reconstructed using multidimensional time delay embedding, each point
of the phase space trajectory contains the relation of several points in time within the
event hydrograph, including for example, the initial flow conditions caused by antecedent
rainfall. The phase space vectors of two events are then analyzed and compared directly
for their similarity using Cross Recurrence Plots instead of being summarized as an index
first before comparison. Thereafter the resulted CRPs are summarized using one of the
Recurrence Quantification Analysis measures called determinism (DET).

The closest concept to this similarity assessment using CRP and DET is a scatter plot
between two time series and its correlation coefficient. The comparison between these
two concepts demonstrates the benefit of the proposed method. In contrast to scatter
plots and correlation analysis, the CRP-based method allows comparing time series of
different duration, and it detects similar or identical signals that are shifted in time. In
contrast to correlation analysis, CRP is not limited to monotonic , linear relations and
the time when similar patterns occur, i.e. as long as both trajectories are common. The
most important benefit stems, however, from the fundamentally different approach of
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the CRP-based method to quantify similarity based on the multi-dimensional relation of
different magnitudes in time within an event.
We further provide recommendations how to parameterize CRP. This includes the

adaptation of a method recently proposed by Wendi et al. (2018) to properly select the
time delay and embedding dimension to prevent artifacts in the analysis. This suggests
the use of measure called DET distance to evaluate the safety of an embedding parameter
set within an acceptable embedding loss (i.e. ≤ 10% of hydrograph length). The choice of
embedding dimension (m) can be subjective as well to the user’s requirements, such as how
complex should each vector in the phase space represent, e.g. to include the implications
of a minimum number of antecedents conditions. For instance, a vector in a 4 dimensional
phase space can describe the relationship between flood peak discharge and 3 other prior
discharge values i.e. at τ , 2τ , and 3τ earlier. From our experience with the application
example, we noticed that hydrographs with longer durations and multi-peaks generally
require higher embedding dimension to attain maximum DET distance. We also suggest
the use of the local minima method with a phase distance threshold [Schultz et al., 2011,
Wendi and Marwan, 2018a] to define the recurrence points for a more robust CRP, i.e.
which is less dependent on the threshold ε and avoid thick lines artifacts.

In the application example, we show that through inter-comparing every flood hydrograph
in a pairwise manner, we can evaluate whether an event is unusual in terms of its runoff
dynamics as assessed using median values of their DETs. Interestingly, the two floods with
the lowest median DET, suggesting the most unusual runoff dynamics, are events that
are also described as unusual in the historical archives in terms of their flood generation
processes. The double-peak 1940 flood contains an almost constant second peak for several
days caused by blockage of the river due to ice debris. The second most unusual event,
the 1909 flood, was caused by the superposition of very heavy rainfall on frozen ground.
This rainfall can be described as unseasonal, as such high intensites are unusual in this
season in the study catchment.
The comparison of the proposed hydrograph similarity measure with conventional

hydrological signatures individually shows that each measure defines different events
as unusual. This was expected as each measures puts the focus on different aspects
when measuring similarity. The conventional hydrological signatures focus on particular
components of the hydrograph or lump characteristics into an aggregate value. This
provides a partial quantification of similarity only and may lead to wrong conclusions, for
instance, by hiding specific hydrograph characteristics through the aggregation.Further, our
example shows that multi-variate indices, which combine several hydrological signatures,
can still mis-identify similar hydrographs. The cause of this mis-identication is the
aggregation into a single value before the comparison.. Since the proposed measure
compares phase space trajectories that builds on time delay embedding, and hence, directly
compares the entire set of hydrograph magnitudes and their unique time sequence, we
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argue that it provides a more comprehensive similarity measure
However, when working with real world observations, the presence of noise might cause

the diagonal in CRP to be discontinuous and hence decreases the DET values or herein
used as similarity index. Therefore, if noise presence is known to be prominent, user should
consider noise reduction of the signal before conducting CRP analysis. In addition, unlike
the comparison of using commonly signatures, the similarity index DET does not easily
provide intuitive and specific meaning to the similarity found in the hydrograph. Besides,
reference in the application of hydrology is not yet available

To our knowledge, this is the first application of (Cross) Recurrence Plots and Recurrence
Quantification Analysis in catchment hydrology. We project these methods have a large
application potential in hydrology. A straightforward extension would be to analyze longer
periods, such as annual or seasonal hydrographs instead of just events, in order to evaluate
if there has been a change in the hydrological regime over time. These methods could
also be used to calibrate and validate hydrological and hydrodynamic simulation models,
by applying them as measure to quantify the agreement between simulation results and
observations.
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Figure 4.8: Comparing the February 1953 event to all other annual maxima that occurred
in February and March. (a) Reference hydrograph 1953; (b) DET values
resulting from the pairwise comparison; (c, e) example hydrographs with high
DET values; (d, f) example hydrographs with low DET values; (g – k) phase
space trajectories of the example hydrographs and the 1953 event; (l – o) CRP
plots comparing 1953 to the example hydrographs. Note that the CRP grid
are plotted with equal x and y tick axis distance of 10days
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Figure 4.9: Intercomparison of all February and March flood hydrographs: (a) median
DET values; (b, c) hydrographs of the two events with the lowest median DET
values; (d, e) hydrographs of the two events with the highest DET values; (f –
g) empirical distribution of peak discharge and median DET values; (h) phase
space trajectories for the events with the two highest and lowest median DET
values.
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Figure 4.11: Scatterplots of hydrological signatures versus median DET: (a) rising slope
∆Qrise, (b) falling slope ∆Qfall, (c) event volume, (d) baseflow index BFI, (e)
event duration. The shaded areas show the top 5 events for each signature
index. In addition, the Pearson correlation coefficient R and the P-value are
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In the following, the main findings and conclusions based on the formulated specific research
questions are summarized and discussed according to the topical structure presented in
Fig. 1.6 of the introduction chapter.

5.1 Phase Space Reconstruction & Parameterization

The main research done in this topic is presented in Chapter 2 of the thesis and also
published as [Wendi et al., 2018].

RQ-2. How to determine a safe parameters set when creating a phase space
trajectory using time delay embedding?

Artifacts can result as a wrong parameterization of time delay embedding (i.e. m and
τ) when reconstructing a phase space trajectory, and therefore misleads an RP and RQA.
An example is when a stochastic or a random signal that should result in zero or very low
DET in an RQA, show a contrary high DET value, and therefore imply a deterministic
feature (i.e. being predictable). This artifacts are shown in the RP as dominant clear and
defined diagonal lines instead of the expected scattered singular points. With regards to the
mentioned artifacts, the study in Chapter 2 proposes a practical and easy to use approach
to evaluate if a embedding parameters set used to reconstruct phase space trajectory is safe
from artifact or not. This approach exploits a sequence shuffling technique that destroys
the original information contained in the applied signal or time series, and convert the
signal into a stochastic series. In order to evaluate the parameters set, a measure called
median DET Distance that varies from 0 to 1, obtained by calculating the median of
differences between the original deterministic signal DET and the numerously shuffled
version of the signal. The larger the median DET Distance, i.e. the closer to 1, the safer
the parameter set is to avoid potential artifacts. Sets of parameters that exhibit high
medianDET Distance can be inferred to as artifact-safe region, and can be used alongside
with standard approaches such as FNN and and MI to derive an optimal parameters set.
Although not discussed in Chapter 2, this method is also applicable when using CRP, a
variation of RP which compares two phase space trajectories. Similar to the concept of
RP, when comparing two identical signal using CRP, the resulted DET should be 1, and if
the two signals are of completely different dynamics then DET should be 0. By shuffling
only one of the two series, we ensure that both signal dynamics are different, therefore
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the CRP analysis should result in 0 or a very low DET . The median DET Distance

corresponding to a certain parameter sets can then be calculated by numerously shuffling
one of the identical signals. Matrix of medianDET Distance can therefore be constructed
for different combination sets of parameters (i.e. m and τ). From this matrix, the user
is provided with options and bounds of artifact-safe parameters sets corresponding to
high medianDET Distance values. However, the user should also be cautioned that high
values of parameters could result in embedding loss and therefore the resulting RP is no
longer reliable. The method is both tested for synthetic data and real observation i.e.
runoff series and shown to be effective. Therefore, this parameterization tool can also be
used for other signals or time series. Noise however, needs to be taken care of, when using
such method as it decreases the robustness of the parameters, and in general when using
RP and RQA measures. RP and RQA sensitivity to noise then became the focal point of
the Chapter 3 and summarized in the next main finding.

5.2 Robustness of RP and RQA for Observation Data

The main research done in this topic is presented in Chapter 3 of the thesis, and also
published as Wendi and Marwan [2018b].

RQ-3. How to define a threshold for similar runoff dynamics in order to
properly construct an RP and what are the pitfalls to avoid?

When constructing an RP, a reliable distance threshold is required to define similar
phase space trajectories. This parameter can also introduce artifacts when it is not defined
properly, such that unnecessary thick lines and lumps of recurrence points can occur in
the RP, and cause the corresponding RQA to be unreliable. Such thick lines for instance
artificially introduces more diagonal lines and hence a misleadingly increase the DET
value. Furthermore, additional points in the lumps of recurrence points can also decrease
the DET value, while these lumps could artificially form other structures like horizontal or
vertical lines that mislead other RQAs. To overcome these artifacts, the study in Chapter
3 proposes and recommends constructing an RP using an improved version of the original
local minima (LM) approach bySchultz et al. [2011] with additional parameters called
LM2P. The LM2P is shown to be superior over the LM approach that the RP becomes less
sensitive to the choice of the threshold parameter, and could avoid the mentioned artifacts
caused by artificial thick lines and lumps of recurrence points. This is also applicable to
the CRP as introduced in Chapter 4 of the study.

RQ-4. Are the current RP and RQA methods robust for noise-present ob-
servational series and how to improve its robustness to prevent artifacts?
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However, despite the resolved artifacts of thick lines and block structures in the RP, a
problem persists when analyzing noisy signal, such as the disrupted and deviated diagonal
lines in the RP. To take on this challenge, an extended RQA approach for accounting
disrupted and deviated diagonal lines is proposed with the use of sliding diagonal window
when quantifying the characteristics of RP. This sliding diagonal window is defined with
minimal window size to tolerate the mentioned deviated diagonal lines and considers the
gaps in the disrupted lines. In particular, this approach provides an alternative measure
for determinism, and called DDET that is effective to analyze noisy signals.

Throughout extensive test sets of Lorenz chaotic series (for varying parameter ρ from 80
to 110), unlike the conventional DET , this new measure is able to capture the deterministic
property despite the induced noise, and clearly distinguishes the stochastic signals from
the deterministic ones. Of course, provided that the signal to noise ratio (SNR) is within
a reasonable range, for instance the SNR of 20dB is still shown to visibly capture the
periodic characteristics of Lorenz series whereas the DET measure fails to do so.

This new approach is also shown to minimize the requirement of embedding dimension
in contrast to the conventional approach, and therefore reduces the potential embedding
loss. However, the range of DDET values different to those of conventional DET measure
that are more intuitive to interpret (between 0 and 1). Nevertheless, this extended version
of RQA is concluded to be a promising concept when analyzing noisy signals. Due to the
more extensive calculation approach, the complex parameters required by the additional
sliding window, and the immaturity of this extended RP and RQA, I do not attempt to
introduce this as yet to the hydrological application, especially when understanding to the
simpler RP and RQA concept is yet to be established. Therefore, in the current stage, I
would recommend the traditional approach of noise filtering technique [Elshorbagy et al.,
2002] that is more intuitive to tackle the prominent noise presence in the time series.

Despite the application interest for the method is targeted towards analyzing streamflow
dataset, the extended RP and RQA in Chapter 3 can also be adopted by other signals
with similar characteristics, i.e. deterministic and continuous, with known issues of noise
contamination.

5.3 Application for Hydrograph Similarity & Rare Flood Dynamics

The main research done in this topic is presented in Chapter 4 of the thesis, and also
submitted for Water Resources Research (WRR) in Sept 2018.

RQ-1. What does phase space trajectory and time delay embedding mean
for hydrological time series
As a fingerprint of the processes involved in the rainfall-runoff event, a hydrograph is
a substantial proxy to distinguish the mechanism typology of a certain flood. However,
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as the traditional hydrological signatures that describe hydrograph are quite limited to
only contain partial characteristics, and its derivation method is known to lump several
multi-peaks or sub-events characteristics within an event hydrograph, e.g. slopes. There-
fore, I develop a method to consider a more elaborate characteristics of hydrographs when
quantifying their similarity or dissimilarity, i.e. to envelope its temporal evolution or shape
and referred to as runoff dynamics. To do so, similarity between two hydrographs can be
quantified from the perspective of phase space trajectory. Trajectories that fall within
a defined distance threshold can be considered to be similar. Moreover, Taken’s time
delay embedding allows a higher dimensional phase space trajectories to be reconstructed
[Takens, 1981]. This means relationship of different and multiple magnitudes in time can
be referred to as a vector in the phase space. This approach takes the temporal succession
of discharge values into consideration, such that the impact of the initial conditions on
the runoff events are considered as a characteristics vector in the multi-dimensional phase
space. Therefore the reconstructed phase space now contains more information typical to
a certain process of runoff generation, including the dependency of each discharge level to
the others. As the phase space with dimension above 3 can no longer be directly visualized
by human eyes, this study proposes the means of CRP and its RQA i.e. DET index to
summarize the similarity between two trajectories.

RQ-5. How to apply RP and RQA to evaluate similar runoff dynamics
between floods?
CRP as a variation of RP allows the comparisons of two hydrograph’s runoff dynamics
and therefore their similarity to be visualized by a 2-dimensional binary matrix, where
the occurrence of clear diagonal lines in the plot is the indication of similar dynamics.
In addition, the similarity structures (diagonal lines) in CRP can also be quantified by
DET index as part of an RQA. This index ranges intuitively between 0 and 1 to indicate
different dynamics to full similarity respectively. As to illustrate the concept of CRP, we
demonstrated its difference to the widely used scatter plot and the cross correlation analysis
using Pearson index (R). The strengths of CRP and DET as compared to scatter plot
and R are their ability to detect similarity and the synchronization despite the different
time of occurrence, i.e. when the compared identical hydrograph is shifted with time delay,
and without the need of the two compared series sharing the same duration or length. In
addition, CRP and DET are also shown to be superior when distinguishing two completely
different dynamics.

RQ-6. How to adapt the method to evaluate a common or rare flood runoff
dynamics?
The assessment of the pairwise hydrograph similarity can be extended to evaluate the
rarity of each flood runoff dynamics by inter-comparing it to all other floods in the event
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set or samples. This results in a DET matrix from all the CRPs of the pair-wise flood
hydrographs, and can be summarized statistically, e.g., using median as an index of
common or rare dynamics. In case the hydrograph shape and the relationship of difference
discharge points in time are signatures of the underlying flood generation processes, then
the median DET value is a good indication for unusual or rare flood typology related to
the flood process mechanism.

RQ-7. What are the advantages of using such approach to quantify simi-
lar runoff dynamics, and how does it compare with other existing similarity
index, e.g. hydrological signatures?
The comparison of the median DET with conventional hydrological signatures shows that
each measure defines different events as unusual. This was expected as each measures puts
the focus on different aspects when measuring similarity. As the conventional hydrological
signatures focus on particular components of the hydrograph, the quantified similarity is
therefore not a complete set of the event characteristics. Furthermore, as some of the signa-
tures are derived as a statistical aggregate of a particular element, lets say the rising slope
of multi peak hydrograph, they can lead to a wrong representation. The proposed measure
on the other hand includes a more complete characteristics of the hydrograph, such as its
continuous shape, and the complex relationship between each discharge magnitudes to the
others in time. Therefore the approach account a temporal continuity of how a discharge
evolve in time as a function of the catchment processes involved. Therefore, I argue that
runoff dynamics and its similarity measure DET are better proxies to distinguish different
flood typologies with regards to their process mechanism, and hence more reliable to detect
rare flood processes.

RQ-8.What is the implication of rare runoff dynamics in its relation to
causative mechanism?
The application example showed that events with lowmedianDET values have hydrograph
shapes that reoccur rarely within the event set, whereas high values suggest that these
events have common hydrograph shapes. Interestingly, the two unusual flood described in
the historical archives based on their generation processes, are captured by the measure of
median DET Distance, i.e. being the two lowest, suggesting their most unusual runoff
dynamics. The double-peak 1940 flood contains an almost constant second peak for several
days caused by blockage of the river due to ice debris. The second most unusual event,
the 1909 flood, was caused by the superposition of very heavy rainfall on frozen ground.
This rainfall can be described as unseasonal, as such high intensities are unusual in this
season in the study catchment.
However, validation with historical archive is not an easy task, as they are not easily

available especially when the even happened more than decades ago. In addition, such
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archive is also expected to document only events with prominent flood peaks or water
levels, and hence reduces the availability of validation sets. Although other datasets
like meteorological conditions e.g. precipitation and temperature can be beneficial to
infer some mechanism of the flood events, they could only offer the perspective from the
meteorological forcings. Besides, deriving catchment rainfall information for instance is
subject to large spatial uncertainty especially when the density of rainfall gauges is low to
represent spatial variations. Although, physically based flood model would arguably be
the better option to simulate change of a flood process mechanism, a meso- and above
scale study requires extensive resources of dataset and computation to consider the full
interaction of different runoff generating parameters from the atmosphere to catchment
and the river in space and time. Their complex data inputs and parameters are also
subject to uncertainties. In contrast, the proposed approach and measures in this study,
require only streamflow series as proxy to learn about changes in flood processes and
therefore of a minimal resource requirement.
It should be noted as well that although the study argues that the consideration of

runoff dynamics in phase space for the quantification of rarity is more superior to using
conventional hydrological indices extracted from a hydrograph, the conventional indices
are more intuitive to describe the unusual characteristics of the flood. For instance, a
steep rising slope of the hydrograph is related to the fast response time of the catchment,
and the constituent of the discharge are mainly surface or direct runoff. Therefore, I
would recommend the consideration of runoff dynamics alongside all the other hydrological
signatures to provide a better picture for the analysis of rare or unusual flood.
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To our knowledge, this is the first application of (Cross) Recurrence Plots and Recurrence
Quantification Analysis in hydrology. We believe that these methods have a large appli-
cation potential in hydrology. As the main motivation behind this method development
was to analyze the change in flood dynamics with a more specific questions that if we
experience more or less rare flood typology with regards to its runoff dynamics and hence
possible attribution of change to climate, landuse, and river alteration, a wider extent
of the analysis could be of substantial interest. A straightforward extension would be to
analyze longer periods, such as annual or seasonal hydrographs instead of events, in order
to evaluate if there has been a change in the general hydrological regime over time instead
of just flood dynamics.

Flood change in German catchments for instance is a future study interest. Along with
the reported increase of overall precipitation especially the increase rainfall intensity during
winter, runoff dynamics is expected to have changed, especially in term of the seasonality
of with respect to event typologies. As the use of RP and RQA measures offer a more
comprehensive characteristics of runoff processes being captured in the analysis, they might
be able to provide additional insight that reflects the change in hydrological processes in
relation to the changes of the land use and river as well. The Elbe catchment for instance,
IKSE [2005] has shown an extensive dam development upstream of the catchment especially
after 1950 in the parts of Czech Republic (see in Fig. 6.1). Therefore, the impact of
such development towards the change of flood dynamics downstream, e.g. Dresden, might
be observable from the available dataset period and is therefore a substantial research
interest.
In addition, RP and RQA could also be used to calibrate and validate hydrological

and hydrodynamic simulation models, by applying them as a measure to quantify the
agreement between simulation results and observations to be more representative towards
the rainfall runoff generation dynamics. In addition, the runoff dynamics similarity index
can also be used as an or additional objective function. This is especially when source
of model parameters uncertainty is related to the performance criteria used to evaluate
and calibrate the model. The commonly objective functions range from the usual root
mean squared error (RMSE), coefficient of determination (r2), peak error, to a more
elaborated one like Nash Sutcliffe index/ efficiency (NSE), and Kling-Gupta efficiency
(KGE) as modified version of NSE. However, these objective functions are also known
to have their shortcomings. For instance, Gupta et al. [2009] mentioned that a maximized
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Figure 6.1: Development of Dam/ Reservoir in the Elbe Catchment from 1900-2003 with
the contribution from Germany and Czech Republic, with data sourced from
IKSE [2005]

NSE compromises variability and both NSE and KGE tend to underestimate peak runoff.
Furthermore, these indices are mostly designed to evaluate an aggregated error with
regards to their overall magnitude. Despite the advancement of multi-criteria calibration
approach, the specific physically meaningful hydrograph shape accuracy might still be
compromised. Therefore, by using the a more elaborate index such as DET , a more
physical process representative model and the underlying parameters can be expected.
This however requires further analysis and test cases to confirm the assumption. This
performance indicator can also be compared with those of the recent advancements, such
as the series distance metric developed by Ehret and Zehe [2011], where similarity in
terms of occurrence, amplitude and timing of hydrological events can be captured.
Furthermore, the series of artifact-safe parameterization framework and the extended

RP and RQA are not necessarily applicable just for discharge dataset. Other signals or
observation series of the same kind of dynamics, i.e., continuous and deterministic, can
also adopt these developed approach to avoid pitfalls in using RPs and RQA.
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A Appendix for Chapter 2

A.1 Impact of the Recurrence Threshold

Figure A.1 describes the impact of recurrence threshold (i.e. recurrence rate) on the
determinism distance between the original and all shuffled Lorenz time series. It can be
seen that large recurrence threshold would lead the recurrence plot into artefact as implied
by its low determinism distance (fig. A.1 b, c, e and f). Similarly when τ = 1, m > 1, the
increase of recurrence rate further decrease the determinism distance (fig. A.1 d). This
confirms us to ignore the use of such parameter value regardless of the choice of recurrence
threshold. However when m = 1, there is an increase of determinism distance i.e peaking
at 20% recurrence rate and decreases thereafter (fig. A.1 d). Despite the increase, the
determinism distance is still regarded low (i.e. below 0.5).

Figure A.1: Impact of recurrence threshold (i.e. recurrence rate) on determinism distances
(100 shuffles) corresponding to different embedding parameters. Note: on
sub-figure a, red and blue band lines are overlapped by green bands, hence
not visible
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Both original and shuffled time series experience increase of their DET values when
recurrence rate is increased (fig. A.2 a, b, and c). However, when m > 1 the increase of
DET values is rather sharp, changing significantly from low to high. The shuffled series
recurrence plots with m = 1, and recurrence rate of 20% (i.e. at the peak of DET distance)
still do not present any noteworthy deterministic features (fig. A.2 d, e, and f). In this
case, users should avoid using large threshold values and special attention should be made
on using such shuffling technique (i.e. when choosing m = 1).

Figure A.2: Impact of recurrence threshold (i.e. recurrence rate) on DET (black line
is resulted from original Lorenz time series, while the each coloured ones
are resulted from the shuffled series (n=100), while the color corresponds to
different selection of τ) with m =1, 3 and 10 respectively for sub-figures a, b
and c .Sub-figures d to e present an extracted sample of the shuffled recurrence
plot with fixed m = 1 and τ = 1, 3, and 10 respectively. Note: on sub-figure
a, red and blue band lines are overlapped by green bands, hence not visible

A.2 DET for Correlated Random Series (AR1)

In this following we include the evaluation of DET values of a correlated random series
(exemplified using AR1 series) in contrast with uncorrelated random series and Lorenz to
showcase that the high DET values is indeed associated with deterministic system instead
of its auto-correlation structures (see fig. A.3 and A.4). Although there are also cases at
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certain embedding parameter set where diagonal lines of RP artificially increase. Similar
to random uncorrelated series, when tau equals 1, AR1 appears to artificially induce long
diagonal lines and hence high DET when embedding dimension gets higher. Meanwhile,
in addition to mentioned, there appear some (but rare) relatively high DET at certain
parameter sets, e.g. when 6 ≤ m ≤ 10 and τ = 7 (See fig. A.3 and fig. A.4). However,
there is possibility that we have excluded some rare structures of a non-deterministic
signal that also showcase high DET values. Therefore, it is important to note that this
proposed technique is intended to be used when the user know that the dynamical system
is deterministic.

Figure A.3: DET of (A) random uncorrelated series (B) Lorenz and (C) AR1 and their
corresponding autocorrelation (D)
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Figure A.4: Selected recurrence plots of AR1 with different embedding parameter sets to
showcase the artificial increase of diagonal lines
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B Appendix for Chapter 4

B.1 Parameters evaluation for all events using DET distance

Figure B.1 shows the parameter set evaluations of all events through DET distance with
both the selected set ofm = 3 and τ = 30hours and sets that allow maximum DET distance.
Two events with the lowest DET distances were identified to have the hydrographs with
longest duration and highest number of multi-peaks. For these two events to result in
higher DET distance, higher embedding dimension m with different tau are required. In
general events hydrographs with longer duration that contains more multi-peaks tend to
have lower DET distance and therefore would require a higher m.

B.2 DET Matrix of All Pairwise Flood Hydrographs

Figure B.2 shows the DET Matrix of all pairwise flood hydrographs that is used for median
DET summary.

B.3 Extracted Hydrographs in Dresden Station

Figure B.3 contains all the extracted hydrographs sorted based on their median DET
values (from low that indicates rare runoff dynamics to high that indicates common runoff
dynamics).
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Figure B.1: Parameters evaluation for all events: (a)DET distances of all events based
on the selected parameters set of m = 3 and τ = 30hours (black bar), and
maximum DET distances from possible sets of parameters within 1 ≤ m ≤ 10
and 6 ≤ τ ≤ 60 hours.Examples are shown for event 1937 and 1942 where its
maximum DET distance can be achieved by using higher m; (b) and (c) are
scatter plots and correlations between DET distance and event duration and
number of multi- peaks in the hydrographs.
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Figure B.2: DETMatrix of all pairwise flood hydrographs in February and March extracted
from Dresden station from 1901 to 2010. Grey indicates no event satisfied the
selection criteria.
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Figure B.3: Hydrographs of all selected February and March floods sorted by median DET
(MD). Smaller MD values characterize more unusual events in terms of runoff
dynamics.
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