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Abstract

The main motivation of this study is to develop a method and an elaborate index that are
capable of identifying effective changes in flood runoff processes over time. The effective
change proxy selected is the stream discharge time series as it is already an integration of
spatio-temporal variations of processes within a catchment. As a result of the changes in
the boundary conditions of a hydrological system, such as the characteristics of climate,
river drainage, and catchments land surface, change in the runoff dynamics is expected.
Urbanization, climate change, and different water management practices could have a
substantial impact on the characteristics of floods, such that the causative mechanism
related process typology of a flood could become unusual from how it is used to be. In
addition, different processes can also cascade to cause unprecedented flood dynamics. In
this study, the aforementioned effective change discusses on visible characteristics change
of the catchment outlet runoff that can be triggered by any modified boundary conditions.

The common practice of analyzing the occurrence of an extreme or rare flood is calculating
its return period over a long flood time series. However, this return period is often
based upon the index of the peak discharge or maximum water level and therefore is
not comprehensive enough to describe the rarity of the process typology. In order to
extend the analysis to include more comprehensive runoff characteristics, we introduce the
characterization of runoff dynamics that considers the shape of the hydrograph, portrayed
as a phase space trajectory. To distinguish the event hydrograph further, the approach
is taken to the next level by considering the non-linear and non-monotonic relationship
between magnitudes of different time points by using Taken’s time delay embedding
theorem. This takes the implicit temporal succession of discharge values into consideration,
such that the impact of the initial conditions on the flood events is considered as a
characteristics vector in the multi-dimensional time delay phase space. This mentioned
temporal succession of discharge values is herein called a temporal cascade. This study
argues that the proposed characterization of runoff dynamics which includes the continuous
shape of hydrograph shape and the temporal cascade is more elaborate and is a better
proxy to detect rare flood processes.

As the first application attempt in Hydrology, Recurrence Plot (RP) and Recurrence
Quantification Analysis (RQA) are used to visualize and determine the overall similarity
between flood runoff dynamics i.e. through a quantitative index as to whether or not a
certain dynamic is rare among historical observations. Rooted from the field of theoretical

physics, these tools have gained considerable popularity over the past decades in several sci-




entific disciplines, from economics, physiology, neuroscience, paleoclimatology, astrophysics
to engineering, especially for non-linear time series analysis and studying the behavior of
a complex system. This study includes application examples dedicated to hydrologists
to better understand the concept of characterizing runoff dynamics and the usefulness of
the additional hydrograph similarity index. This study also extends the current state of
RP and RQA with improved robustness towards artifacts and the influence of noise and
is adapted to the observation runoff series. This includes the practical method to safely
parameterize the time delay embedding and RP, and an extended version of the RP and
RQA to reduce the influence of noise, in order to prevent further artifacts. The examples
utilize the runoff time series from the Dresden gauging station of the Elbe river catchment
located in East Germany from the period of 1901 to 2010. In this study, we showcase
examples of rare and unseasonal floods detected by their unusual runoff dynamics that are
found to be related to their documented causative mechanism. The advantage of using
such a rarity index over the approach of comparing conventional hydrograph indices is

assessed and discussed.
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Zusammenfassung

Ziel dieser Arbeit ist es, eine Methode und einen umfassenden Index, die die Quantifizierung
von Verdnderungen in Hochwasserabfliissen iiber die Zeit ermoglichen, zu entwickeln.
Als Proxydaten zur Detektion von Verdnderungen dienen Abflusszeitreihen, da diese
raumlich-zeitliche Anderungen von Prozessen im Einzugsgebiet integrieren. Einhergehend
mit Verdnderungen in den Rahmenbedingungen hydrologischer Systeme, beispielsweise
Klima&nderungen, Veranderungen im Flussnetzwerk oder der Bodenbedeckung, sind Veran-
derungen in der Abflussdynamik zu erwarten. Urbanisierung, Klimawandel und veranderte
wasserwirtschaftliche Nutzung kénnen erheblichen Einfluss auf Hochwassercharakteristika
haben, sodass die auf die abflussverursachenden Prozesse bezogene Hochwassertypologie
obsolet wird. AuBlerdem kann es zur Uberlagerung verschiedener Prozesse und der Bildung
prazedenzloser Hochwasserdynamiken kommen.

Ublicherweise wird seltenen Hochwasserereignissen eine iiber einen langen Zeitraum
bestimmte Wiederkehrwahrscheinlichkeit zugewiesen. Allerdings wird die assoziierte
Wiederkehrdauer haufig nur auf der Grundlage des Hochstwasserstandes ermittelt und
ist nicht umfassend genug, um die unterschiedlichen Prozesstypen zu erfassen. Um um-
fassendere Abflussmerkmale in die Hochwassercharakterisierung aufzunehmen, wird die
Charakterisierung der Abflussdynamik mittels der kontinuierlichen Gestalt des Hydro-
graphen und als Kurve im Phasenraum empfohlen. Durch die Beriicksichtigung des
Taken‘schen Satzes zur Einbettung der Zeitverzogerung konnen ereignisbasierte Hydro-
graphen weiter unterschieden werden. Dieser Ansatz nutzt die zeitliche Abfolge gemessener
Abflusswerte, sodass der Einfluss der anfianglichen Werte auf das Hochwasserereignis als
charakteristischer Vektor im multidimensionalen Phasenraum interpretiert werden kann.

Im Rahmen dieser Arbeit wurden, erstmals im Bereich der Hydrologie, ,Recurrence Plot
(RP) und ,Recurrence Quantification Analysis* RQA eingesetzt, um die Seltenheit bzw.
Ahnlichkeit von Abflussdynamiken zu visualisieren und identifizieren. Ebenso werden
Anwendungsbeispiele im Bereich der Hydrologie, die das Konzept der Charakterisierung
von Abflussdynamiken und den Nutzen des eingefiihrten Ahnlichkeitsindex verdeutlichen,
vorgestellt. Aulerdem wurde die Methodik weiterentwickelt und zeichnet sich nun durch
erhohte Robustheit gegeniiber Storeinfliissen und eine bessere Anpassung an Abflussmes-
sungen aus. Ein abschlieBendes Anwendungsbeispiel untersucht den in Dresden gemessenen
Abfluss des ostdeutschen Elbe-Einzugsgebietes im Zeitraum von 1901 bis 2010. In dieser
Studie werden Beispiele seltener und saisonunabhéngiger Hochwasserereignisse, die durch

ihre ungewohnliche Abflussdynamik herausstechen, gezeigt und mit zugrundeliegenden
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abflussbildenden Prozessen in Verbindung gebracht.
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1 Introduction

1.1 Motivation

The main motivation of this study is to develop a method and an elaborate index that are
capable of quantifying changes of flood runoff processes over time. The particular data
interest for the change proxy is the stream discharge time series. This is because stream
discharge is already an integration of spatio-temporal variations of processes starting
from water input, storage, and routing or transfer within a catchment, and essential to
characterize a hydrological regime [Harris et al., 2000, |Ternynck et al.; 2016]. Therefore the
use of catchment outlet streamflow dynamics for the study of flood change allows minimum
resources or datasets and appropriate to capture the effective change of a catchment system
as it is after all the end result of processes within.

Although there are already variety of indices derived from flood event discharge series, i.e.,
those used to describe hydrograph characteristics, they are quite limited in characterizing
the whole extent of runoff dynamics, such as the continuous shape of the flood hydrograph
is not captured and neither is the dynamics influence of its antecedent states being
considered. Therefore, arguably, these indices are not elaborate enough to be related to
the changes in runoff processes.

The intended use of such elaborate hydrograph characteristics is to be able to compare
the similarity of process dynamics between one flood event to another, and also to assess
how unusual is a particular flood event to all others that has happened before. For instance
this could be hydrograph characteristics that has never been observed before i.e. rare due
to unusual process dynamics, or the type of hydrograph that is not usual at a particular
season i.e. unseasonal (see illustration of Fig. [L.1). In contrast to just using peak runoff as
the indicator for rare events, shape of the hydrograph could further distinct a particular
event characteristics as it contains the flow dynamics of how flood water continually build
up and recess through time.

The chosen approach is through representing flood hydrographs as phase space trajecto-
ries to exploit their time sequence properties and have their similarity or rarity analyzed
and quantified using Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA).
The concept of phase space to represent hydrograph time sequence property or herein also
called runoff dynamics is presented briefly in section [I.1.4] Using both RP and RQA to
analyse phase space trajectories has gained considerable popularity over the past decades

in several scientific disciplines, from economy, physiology, neuroscience, paleoclimatology,
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Figure 1.1: Illustration of the intended use of elaborate hydrograph characteristics to assess
unseasonal and rare floods within the catalog of historical observations

astrophysics to engineering, especially when focusing on non-linear times series analysis and
characterizing the behavior of complex systems |Aceves-Fernandez. et al., 2012} |(Carrubba
et al., 2010, |Crowley, 2008, |Eroglu et al., 2016, |(Goswami et al., 2018, Marwan and Meinke,
2004, |Oberst and Lai, |2015]. However, such approach is challenged by potential artifacts
when not being parameterized properly and can be sensitive to noise that are common
in observation series. Furthermore, since such approach has not been used in hydrology,
it is therefore important to adapt their application to hydrological data and assess their

applicability and usefulness for the intended analysis of change in flood dynamics.

1.1.1 Changes in Boundary Conditions

Along with the changes in the boundary conditions of hydrological system, such as the
characteristics of climate, river and catchments land surface, changes in runoff dynamics
are expected. Urbanization, climate change, and different water management practice
could have a substantial impact on the characteristics of floods, such that the typology
of the flood might become unusual and possibly include a cascade of processes. This
referred flood typology is mainly the types of causative mechanisms of flood that can
be weather related like those defined to include long-rain floods, short rain floods, flash
floods, rain-on-snow floods and snowmelt floods [Merz and Bléschl, 2003]. The causative
mechanism of flood can also be defined further to include failures and unusual conditions

of the catchment or drainage, such as those resulting from dam or levee break, landslide,
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ice jam, debris flow, failure of urban drainage, lake and sea level rise, etc. For instance
the disastrous extent of flash flood hazard in Braunsbach of Southwest Germany in May
2016 was not just caused by the extreme rainfall intensity fallen over steep slopes alone,
therefore the rapid direct runoff, but rather a cascade with debris flow originated from
the landslides mass of the unsteady slopes, riverbank incision, and eroded sediment that
further destroyed the village [Ozturk et al.l 2018].

A report by The Climate Service Centre in Germany, showed that overall amount of
precipitation in Germany has increased by 10.2 percent relative to the long term average
from 1961 to 1990 and this is mainly contributed by the high increase of the precipitation
during winter [Brasseur et al., [2017]. The average wintertime precipitation has increased
by 47 mm between 1881 and 2014. Green house gases based future projections from this
study also show most simulations lead to a further increase in the next one hundred years.
Moreover, the study also indicate an increased potential of severe storms and hail. Heavy
and intense rainfall during winter is rather untypical for the season. Such could also lead
to rare flood typology, for example where unseasonal heavy rainfall falls shortly upon cold
frozen ground in the winter. This frozen ground reduces infiltration and hence water flows
rapidly as surface runoff and result in a flashy and pronounced peak discharge. Another
example of a rare flood typology is ice jam, where ice debris are being carried downstream
by rainfall inflow and accumulate at a particular river section and jam the system to cause
inundation, although due to the increased temperature during winter, such typology is
expected to become less.

The impact of the increased intensity of precipitation would be more pronounced had
the change of land surface become more impervious, thus leading to faster response of
discharge with dominant surface runoff. Such surface imperviousness can be contributed by
soil sealing which is dominantly a byproduct of urbanization with the examples of increased
road networks, paved surface, and buildings [European Commission), 2012]. Germany for
instance has experienced the conversion of land to urban use at a rate of 80-130 hectares
per day between 1993 and 2004 [European Commission, |2012]. The increase of built-up
areas can also be further supported through satellite imagery, for instance the built-up
index dataset of Global Human Settlement (GHS) derived from Landsat imagery. Fig.
shows a side by side comparison of the built-up index in Germany between 1975 and 2014,
where the built-up footprint proportion are shown as a ratio from 0 to 1, has shown the
noticeable increase over the whole country, and especially in the west side.

However, the moderate impact of land cover change towards flood peak and volume is
predominantly within the boundary of convective rainfall (i.e usually during summer) and
hence quite local, as compared to the advective ones especially in meso-scale catchment
scale i.e. above 100 km?. Moreover, its impact gets smaller with the increase of catchment
size due to the superimposition of flood waves from different tributaries as concluded by

Bronstert et al.| [2007] on the Rhine catchment study. In addition, it is also worthy to note
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Figure 1.2: Comparisons of satellite based (Landsat) GHS built-up index between 1975 and
2014, dataset downloaded from Joint Research Centre of European Commission,
with 250m resolution, and the index indicates a proportion (or ratio) of the
built-up area within a grid cell

that there has been an increased of forest cover in Germany with an approx. 10,000 km?

over the past 4 decades [Federal Ministry of Food Agriculture and Consumer Protection|
(BMELV), 2011]. However, according to Bronstert et al. [2007], although forested areas

would naturally increase the water retention capacity, the forests in Central Europe often

grow in mountainous regions with thin soils and low-permeable bedrock. Therefore the
overall storage capacity of the soil in these areas is limited to a smaller scale impact. Their
study also indicates that the highest relevance towards the magnitude of flood peaks is
rather the antecedent soil moisture prior to the storm, and yet a flood peak or its return
period is not a suitable indicator to assess the impact of land-cover on floods as it provides

a very limited insights on the runoff generation processes in a catchment. Possibly, this is

in line with the research shown by Bormann et al. [2011], [Petrow and Merz| [2009], where

no increase consensus of flood peak magnitude and frequency is concluded for the second
half of the 20th century in Germany, and that the observed changes are more pronounced
in the winter as compared to the summer.

Moreover, to complicate the matter, alterations in the river are also known to have
dominated European history for hundred of years, in particular with the motivation for

navigation, flood protection and, more recently, hydropower and environmental restoration
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[Hall et al., 2014]. Bronstert et al.| [2007] suggested that river training measures might
affect floods at a similar level or larger, than land use change for large basin in the past
decade. The floodplains of the larger rivers in Germany have lost on average two-thirds of
their former area [BMU/ BfN| [2009, Follner et al., 2010]. In Rhine catchment for instance,
where floodplains have been reduced by 60% [UBA/ UBA| 2013|, study by [Vorogushyn
and Merz [2013] showed that river training had caused a systematic superposition of flood
waves of the Rhine and its tributary, the Neckar River, which had increased the annual
maximum floods by about 10% for the analysis period between 1950-2009.

However, in line with the view of Bronstert et al.| [2007] the assessment of changes in
flood process with respect to runoff generation process dynamics might require a more
elaborate indicator instead of flood peak index alone. Furthermore, the analysis of flood
seasonality is commonly attached to the season classified strictly based on calendar months
e.g. summer is defined to be from June to August, instead of the real flood typology.
Therefore, if any of the typical summer flood typology i.e. convective rainfall flood is
occurring beyond the calendar season, this method is unable to capture this interesting
aspect of change. In the study of [Vormoor et al.| [2015] for instance, it is concluded that
the increased winter temperatures have replaced snow-melt with rainfall as the dominant
causative mechanism of the flood in the Norwegian catchments, and in line with the change
of flood seasonality.

In case the changing boundary have a pronounced and effective impact on the increase
rarity of flood typology and shift of seasonality, this study is to develop method and index
to quantify any effective change observed from the discharge series of the catchment’s

outlet through the elaborate characteristics of their flood hydrographs.

1.1.2 Conventional Hydrological Signatures for Flood Event and Their Limitations

A range of indicators extracted from discharge time series, in the following called hy-
drological signatures, have been used to describe rainfall-runoff event hydrographs. The
hydrograph peak ((),) for instance is the most popular hydrological signature in flood
risk assessment due to its close relationship with the socio-economic impact of floods.
Other important hydrological signatures are mean flow (Qnean), discharge volume (V),
event duration (¢;), time to peak (¢,), recession time (), base flow index (BFI), or the
rising and falling limb slope of the hydrograph (AQ;ise and AQfq;) and could provide
more information to the flood causative mechanism. For instance, the attempt from [Gaal
et al. [2015] to classify intra-seasonal flood typology using volume to peak discharge ratio.
However, they are rarely incorporated to the analysis of flood change. These signatures
have been used mainly as general similarity indices of hydrological characteristics, that
are not necessarily flood, i.e. required for classification, regionalisation, prediction, and
model calibration |Bardossy}, 2006, [Merz and Bloschl, [2003, Peel and Bloschl, 2011, Sawicz
et al 2014, [Westerberg and McMillan|, 2015, [Westerberg et al., 2016]. Although the
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consideration of other hydrological signature would provide more insight to the runoff
causative mechanism or the typology of the flood, just like flood peak they represent only
a single element of the hydrograph (Q,, t4, t,, and ts), or their derivations are resulted
from statistical aggregate of a hydrograph (Qmean, V, BFI and AQ,ise, and AQ sqy). For
instance, as also discussed in Chapter 4, slope based indices often provide a misleading
depiction of the flood hydrograph with multi-peaks, as its derivation lump or average across
characteristics of several sub-events i.e. referred by the multi-peaks. Furthermore, we
argue that these signatures are not comprehensive enough to describe the flood causative

mechanism implied by the shape of the hydrograph.

1.1.3 Sequence as a Substantial Information

What makes a certain English word unique to provide a specific meaning is its sequence of
letters or characters. For instance when the 6 letters combination word "LISTEN’ is shuffled
(see Fig. , it could generate a permutation of 720 words, mostly non-meaningful words
and some words that have totally different meaning. Further we can also consider shuffling
phrases like 'ELEVEN PLUS TWOQO'’ into one of the possibilities " TWELVE PLUS ONE’.
Although the two phrases contains the same histogram of letters, and can be summarized

with a value of 13, the process mechanism and reasons why they are 13 are not the same.

Original Shuffled
(1)
(@ ESTLIN ILNEST LENSIT NELSIT
LISTEN e . - e
(b){ INLETS : i SILENT { { TINSEL : { ENLIST |
sequence
(2)
ELEVEN PLUSTWO|=13 (o TWELVE PLUS ONE =13

sequence

Figure 1.3: The important sequence of letters in a word and a phrase, examples from
shuffling 'LISTEN’ and "ELEVEN PLUS TWO’ into non meaningful words

and words or phrase with different meaning

Similar to the information in words and phrases, the distinct information of hydrograph
also depends on the sequence of the runoff magnitude in time. This essentially translates
into the shape of the hydrograph, and known to vary on climatic inputs, catchment and
river conditions or characteristics. For instance, the high rising slope of the hydrograph
represents how flashy is the river flow possibly correspond to short intensive rainfall or even
the catchment steep slope and sealed surface that prevent much infiltration. Moreover,

the shape of a particular flood hydrograph is sensitive to its antecedent condition. For
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instance if prior to a flood, there existed a moderate rainfall-runoff event that already
sufficient to saturate the catchment’s soil moisture and hydraulics capacity, the subsequent
event, i.e. flood would easily build up upon the existing condition and easily overflow the
system and trigger a flashier hydrograph and hence a more severe flood (see illustration in

Fig. . In this study, the implicit effect of such antecedent condition(s) towards the
subsequent event is herein called a temporal cascade.

higher

. Base flow

steeper
antecedent

Rainfall (mm)
Runoff (m3/s)

Time

Hydraulics
Capacity

Soil
Moisture

almost
full

overflow

Figure 1.4: The impact of antecedent conditions towards the severity of a flood or an event

1.1.4 Runoff Dynamics Derived from Hydrograph Time Sequence Property and
Represented by Phase Space Trajectory

Motivated by the need of a more elaborate hydrological signature and the recent assessment
for state-of-the art flood analysis tool [Hall et al., [2014] which suggests the exploration

of non-linear time series analysis tools to reveal the underlying dynamics that are more

comprehensive to explain the degree of complexity, this study investigates the potential
of characterizing flood dynamics from the perspective of phase space construction. By
doing so, the characterization of a hydrograph envelopes the whole continuous shape of
the hydrograph instead of its partial elements. In addition, with the help of Taken’s time

delay embedding method [Takens, [1981], a multi dimensional phase space trajectory can
be created to include the relationship of different magnitudes in time. For instance, a

21



1 Introduction

2-dimensional phase space vector can be regarded as an autocorrelation scatter plot where
the x and y axes are the extracted values of the original time series that are separated
by a shift of 7, however the trajectory is the set of connected vector based on their time
sequence instead of scattering points. A 3-dimensional phase space contains three variable,
i.e. x, y and z with time delay of 7 and 27, and so on for higher dimensions (see illustration
Fig. |1.5)).

Flood hydrograph 3-dimensional phase space
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conditions

Figure 1.5: Illustration example of a phase space trajectory constructed from a flood
hydrograph

In another words, A 1-dimensional phase space trajectory is simply the continuous shape
of a hydrograph, while higher dimensional phase space further include the the mentioned
relationship of discharge magnitudes at different time to capture a temporal cascade. By
using this approach we are able to consider the relationship of antecedent conditions
towards a flood magnitude illustrated in Further illustration and example of this time
delay embedding approach are shown in Chapter 4, section The mentioned time
sequence property of hydrograph represented through phase space trajectory is herein

called runoff dynamics.

1.1.5 Challenges in the Assessment of Recurring Runoff Dynamics

Recurrence Plot (RP) and its quantification (RQA) are powerful tools that are able
to analyze and quantify the recurrence of similar dynamics portrayed by phase space
trajectory [Marwan et al. 2007] and therefore is of our interest to use for analyzing flood
runoff dynamics. Although both RP and RQA’s applications are known in wide range of

disciplines in analyzing processes in a complex system, to the authors’ knowledge, they
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have not been used in hydrology. Therefore, their applications for hydrology need to be
adapted to the corresponding observation data.

In general, the application of time delay embedding method and RPs, require proper
parameters set that is well-suited for the dataset. Sub-optimal parameters can result
in artifacts and therefore mislead an evaluation [Marwan, [2010]. Although conventional
methods to determine optimum embedding parameters exist, [Marwan/| [2010] concludes that
these method often overestimate the required parameters. Optimum distance threshold (),
required in defining similar dynamics for the construction of RP, is also essential. Besides,
in the real world application, observation signals are often induced by noise, and that
can lead to further artifacts in RP and RQA. Therefore it is of our interest to properly
setup the method with correct parameters and ensure its robustness before any conclusive

application.

1.2 Specific Objectives and Structure

The main objective of this method development is to derive a more elaborate index capable
of quantifying the similarity of runoff dynamics between flood hydrographs, that provides
a better association to a flood causative mechanism in contrast to conventional hydrograph
indices.

The specific objectives formulated in this doctoral study are emphasized on the method
development that is well-suited to hydrological data, instead of the application to evaluate
flood change e.g. in a specific region. The developed method is directed at analyzing
rare or unusual flood runoff dynamics from the perspective of phase space trajectories,
that accounts the whole continuous shape of the hydrograph, and considers relationships
between different runoff magnitudes in time to possibly include the characteristics impacts
of antecedent events. The chosen tool and measure to compare these trajectories are
Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA). However further
development to properly utilize and adapt this method to the runoff dataset is necessary.
Parameters uncertainty for example is still an issue, as wrong choice of parameters can
result in artifacts and therefore mislead a conclusion. Furthermore, the method is also
known to be sensitive to noise. Therefore, further development is needed because of the
aforementioned challenges faced and that its application in hydrology is not yet available
as reference. This study also attempts to provide application examples dedicated to
hydrologists without theoretical physics background and intend to use such method for
analyzing runoff dynamics.

These specific objectives are formulated as forms of questions listed below:

1. What does phase space trajectory and time delay embedding mean for hydrological

time series, i.e. discharge?

23



1 Introduction

2. How to determine a safe parameters set when creating a phase space trajectory using

time delay embedding?

3. How to define a threshold for similar runoff dynamics in order to properly construct

an RP and what are the pitfalls to avoid?

4. Are the current RP and RQA methods robust for noise-present observational series

and how to improve its robustness to prevent artifacts?
5. How to apply RP and RQA to evaluate similar runoff dynamics between floods?
6. How to adapt the method to evaluate a common or rare flood runoff dynamics?

7. What are the advantages of using such approach to quantify similar runoff dynamics,
and how does it compare with other existing similarity index, e.g. hydrological

signatures?
8. What is the implication of rare runoff dynamics in its relation to causative mechanism?

The following Fig. presents the structure of how these specific research questions
are discussed and presented in the doctoral thesis. Please note that the actual chapter
name is different from the summarized topics shown in this figure.

In the Chapter 2 and 3, the focus of the research will be in the method development,
where parameterization tool and artifact avoidance technique related to the method will
be introduced and discussed. In particular, research question 2 will be addressed. Chapter
2 will cover the topic of phase space reconstruction and its parameterization by addressing
research questions 3 and 4, while Chapter 3 will discuss the robustness of the method (i.e.
RP and RQA) for observation dataset with regards to the questions 1, 5, 6, 7, and 8. The
application for hydrograph similarity and rare flood dynamics will then be discussed in
chapter 4 along with examples and analysis.

The application example of Chapter 4 uses the runoff time series extracted from the
Dresden gauging station of the Elbe river catchment located in the East Germany from
the period of 1901 to 2010. The example compares the runoff dynamics between all
the flood events happening in February and March that are commonly separated into
winter and spring flood typology but in fact easily coincide. This is done by constructing
inter-comparison matrix of runoff dynamics between each flood in a pair-wise manner.
This study showcases examples of rare and unseasonal flood dynamics indicated by the
approach and are related to their documented unusual causative mechanism or herein
referred to as typology. The resulting similarity and rarity indication derived from this
approach are also compared with those using conventional hydrological signatures. Added

values of such approach are then analyzed and discussed.
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Figure 1.6: Structure of the thesis presentation with regards to the specific research

questions

1.3 Author Contribution

Most of the works presented in this thesis have been performed by the author of this thesis
(D. Wendi). Though, all co-authors of the manuscripts (see Chapter 2 to 4) have helped
to develop and accomplish this research. Valuable feedbacks, questions and comments
from colleagues within the associated research institution i.e. NatRiskChange research
training group of the University of Potsdam, Hydrology section of German Research Centre
for Geosciences (GFZ) and Potsdam Institute for Climate Impact Research (PIK) have
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provided insights in approaching the research questions.

The three studies i.e. presented in Chapter 2 to 4 of this PhD thesis have been submitted
to international and peer reviewed journals. In fact two of these manuscripts have been
accepted and published by the time of this thesis submission. These manuscripts layouts
have been adjusted to the formatting of this thesis, yet main text and figures remain
as published, except with the standardized equation for e.q. with the additions of
summarizing key points of each manuscript where it was not available in the published
version of Chapter 2 and 3.

Specific author contributions are as follows,

Chapter 2 - Research questions and rough conceptual idea of overcoming artifacts in
embedding were suggested by N. Marwan followed by his methodological advice and
consultation. D. Wendi carried out the actual design of the embedding parameterization
framework, programmed and implemented the parameterization method, evaluated the
method with test cases or datasets, and wrote the manuscript with inputs of all co-authors.

B. Merz provided inputs, comments, and proofread the manuscript.

Chapter 3 - D. Wendi drafted the problem statements with regards to RP and RQA
artifacts and their issues with noise, developed conceptual idea, designed method, for-
mulating equations, programmed and tested the new or extended methods with various
test cases and compared with the existing ones, conducted evaluations of the method
robustness, and wrote the manuscript along with the inputs from co-author. N. Marwan
brainstormed along and provided specific suggestions and feedbacks to the method design,

testing framework, and the manuscript.

Chapter 4 - D. Wendi suggested and developed the main idea of analyzing runoff
dynamics to evaluate hydrograph similarity and rarity, evaluated and presented the CRP
and the RQA added value in contrast to traditional methods, conducted the method
applications for Dresden flood series, evaluated the proposed similarity and rarity index in
comparisons with conventional hydrograph indices and wrote the manuscript with inputs
of all co-authors. B. Merz provided expert knowledge, inputs and suggestions on the
presentations of the method and evaluations, and provided comments, corrections, and
feedbacks to the manuscript. N. Marwan provided method expert knowledge to the study,

comments and feedbacks to the manuscript.
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Abstract

As an effort to reduce parameter uncertainties in constructing recurrence plots, and in
particular to avoid potential artifacts, this paper presents a technique to derive artifact-safe
region of parameter sets. This technique exploits both deterministic (incl. chaos) and
stochastic signal characteristics of recurrence quantification (i.e. diagonal structures). It is
useful when the evaluated signal is known to be deterministic. This study focuses on the
recurrence plot generated from the reconstructed phase space in order to represent many
real application scenarios when not all variables to describe a system are available (data
scarcity). The technique involves random shuffling of the original signal to destroy its
original deterministic characteristics. Its purpose is to evaluate whether the determinism
values of the original and the shuffied signal remain closely together, and therefore
suggesting that the recurrence plot might comprise artifacts. The use of such determinism-
sensitive region shall be accompanied by standard embedding optimization approaches,
e.g. using indices like false nearest neighbor and mutual information, to result in a more

reliable recurrence plot parameterization.
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2.1 Introduction

Recurrence is a fundamental property of many dynamical systems, which can be exploited
to characterize the system’s behavior in phase space, while a recurrence plot (RP) is
the visualization tool for the analysis of this property. In this study, the phase space
reconstruction method of time delay embedding [Packard et al., 1980, Takens, |1981] is used
(Eq. Such a reconstruction is particularly useful when not all variables required to
describe the system are available (i.e. data scarcity or limited set of observation variables),
and where the topology of the system dynamics :f_c; can still be created using only a single

variable or observation u;.

Fo= Y tirgoied. (2.1)
=1

where m is the embedding dimension and 7 is the time delay. The vectors (€;) are unit
vectors and span an orthogonal coordinate system (€; - €;) = d¢;;. The calculation of
recurrence as elements of the RP is based on Eq[2.2}

Rij(e) = O(e = |7 = 7)), 4,5 = 1., N. (2.2)

where N is the number of measured points ;, € is a threshold distance, || - || is a norm and
O(-) the Heaviside function.

The RP is basically the visual representation of the square matrix, in which the matrix
elements correspond to those times at which a state of a dynamical system recurs (columns
and rows correspond then to a certain pair of times). RPs are especially useful for non-
stationary pattern in time series [Eckmann et al.,|1987, Marwan et al., 2007]. Besides using
RPs for the visual analysis of time series, RPs can also quantify structures hidden within
the series through recurrence quantification analysis (RQA)|Marwan et al., 2007, |Zbilut
and Webber| 1992]. In RQA, important elements are the diagonal and vertical /horizontal
straight lines because they reveal typical dynamical features of the investigated system,
such as range of predictability, chaos-order, and chaos-chaos transitions [Trulla et al., |1996].
One of the prominent diagonal line measures is called determinism (DET, Eq., from
which the system predictability can be inferred.

N Rz,]

i’j

DET (2.3)

where P(l) = {l;;i =1, ..., N;} is the histogram of the lengths [ of diagonal structures, and
N is the absolute number of those diagonal lines.
For a deterministic signal (including chaos), many diagonal lines in the RP are typical,

leading to high value of DET [Marwan), 2010]. However, single, isolated recurrence points
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can occur if states are rare, if they do not persist, or if they fluctuate heavily. For instance,
stochastic or random signals would comprise such single points and result in a very low
DET.

Since the use of RPs relies on the reconstructed phase space, its parameters uncertainty
includes those of the phase space reconstruction method, such as embedding dimension
(m) and time delay (7), in addition to the recurrence threshold (¢). Standard approaches
for finding optimal embedding parameters are false nearest neighbours (FNN) for m, and
auto-correlation or mutual information (MI) for 7 [Fraser and Swinney, (1986, Kantz and
Schreiber|, 2005, Kennel et al| [1992]. Other methods include wavering-products, fill-factor
or integral local deformation [Buzug and Pfister} [1992]. Moreover, Marwan|[2010] concludes
that 7 is sometimes overestimated by auto-correlation and mutual information, and that
the choice of the embedding dimension has to be considered with care, as a wrong choice
artificially increases diagonal lines, and hence DET, and leads to artifacts. For instance, a
RP resulting from a random series should exhibit scattered or non-deterministic patterns
(i.e. single points). However, when m increases to 2 and beyond with 7 = 1, the number
and the length of diagonal lines start to increase and dominate the plot as artifacts. This
may be misinterpreted as if the series was highly deterministic (Fig. .

In this study, we focus on the artifacts related to these embedding parameters. The
impact of the recurrence threshold () is not elaborated, since the selection of the optimal
values of the recurrence threshold has been discussed earlier Gao2009, Koebbel994,
Zbilut1992, Zbilut2002, Mindlin1992, Schinkel2008, Thiel2002. Hence, the recurrence
threshold is fixed to a 10% recurrence rate (recurrence points density). Supplementary
information on the impact of changing this threshold is enclosed in the appendix. The
appendix also includes the evaluation of DET values of a correlated random series, using
an AR1 series as example, to showcase that high DET values are indeed associated with
deterministic systems instead of its auto-correlation structures, although there are also
cases at certain parameter values where the number / length of diagonal lines artificially
increase. It is important to note that the proposed technique is not intended to be
used as a new, independent method, but rather as an additional consideration during

parameterization, when the dynamical system is known to be deterministic.

2.2 Methodology

Artificially biased line length distributions due to the embedding can overlay the true
line length distributions and lead to wrong conclusions. Hence, it would be desirable
to separate the contribution of the embedding induced line length distributions from
the real underlying dynamics. However, separating both contributions is not possible
without additional knowledge about the system (such as precise model or amount of

observational noise). Therefore, we propose an approach that minimizes the contribution

30



2 In Search of Determinism-Sensitive Region to Avoid Artifacts in Recurrence Plots

(a) (b)

Gaussian Random Series

] Determinism of random series

maghitude

-4 : . ‘ s :
0 20 40 60 80 100 -—N® T Lo~ 2
time embedding dimension (m
(c) (d) (e)
100 =1, 7=1, DET=0.19 100 52 =3 7=1, DET =0.71 10 M =7, 7=1,DET=0.92
T er e e Bl AT A
8o LT 80 LT L I ey 80
¢ TR NSRRI -1 L ‘
: ﬁ& IR ey )
o B0F o 60 .-.-.I"}ﬁ*__-"""'..-ﬁ;-r'._.-’:“:{ g 60
i el £ L AL T T I A = ‘
ot RN Lo el i F 40
.'.:' " - - -\:.: ..-' :_l' S '.ﬂ::
.|_-_."_ - . .- - e
20 e 20 (0t M ATAEE en o
; e .
0 O'I:"'- ."'-’.":.. jg"?.’.:r 'ﬂ..E 0
0 50 100 0 50 100
time time

Figure 2.1: Misleading DET values of random series (a); sub-figure (b) shows the artificial
increase of DET when embedding dimension (m) increases, while (c) to (e)
show the corresponding RP with the increase of diagonal line structures at
high embedding dimension (m = 7).

of the embedding. This approach is based on comparing the fraction of recurrence points
that form diagonal lines in the RPs of the original time series (which includes both the real
underlying dynamics as well as the embedding effect) with that of a random time series
(which consists of the embedding effect only). As random time series we use simply shuffled
versions of the original time series, because this preserves its value distribution and, thus,
allows to use the same recurrence threshold and allows to compare the resulting RPs. As
mentioned above, RPs of random time series should consist mainly of single points, but
embedding artifacts would increase the fraction of recurrence points that form diagonal
lines in the RP. Thus, this fraction measure is well suited for our purpose. Moreover, this
measure is equal to the DET measure. Other measures that use the line length distribution
(e.g., average and longest line length, entropy of the length distribution) would be possible
but are less intuitive and interpretable. The advantage of the DET measure is that it
considers the influence of scattered points that appears within the RP as well in addition
to just the diagonal lines. While the index of average and longest line length could easily

suffer from large statistical uncertainty and are easily influenced by a few extreme values.
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In order to compare the line length distributions of the original and the shuffled time
series, we define DET, for the original time series and D ET; for the shuffled version. For

a number of shuffling iterations (i.e. n times), the resulting difference (called determinism
distance, see Eq. is calculated for each shuffle (Fig. [2.2)).

SignaI/ Recurrence
] ] —>| Determinism
Time Series (Original) ) Determinism
: . Distance
| Recurrence | Original — Shuffled|
L — === —>» Determinism |—
Shuffle ntimes (Shuffled)

Figure 2.2: Scheme of the proposed artifact avoidance method.

For non-optimal embedding, we expect a rather high contribution of the embedding in
the line length distributions in both, the original time series and in the shuffled version.
Therefore, DET should have high values in both cases and should not differ so much from
each other. For optimal embedding, and if there are deterministic structures in the RP of
the original time series, the DET; of the shuffled time series should be very low whereas
DET, of the original time series has still larger values. The distinctive high and low
values of DET in deterministic and stochastic systems are exemplified in this paper using
Lorenz and Gaussian random series. In this example, both the original and embedded
Lorenz systems show DET values of around 0.8 to 0.9 with 7 fixed at 3 following the first
minimum of its auto-mutual information, with m varying from 1 to 10. In contrast, for
the Gaussian random series, the DET values are shown to be between 0 to 0.2 (Fig. [2.3).

The resulting difference (determinism distance) between D ET; and D ET, would therefore
be high. The undesired effect by the embedding should be minimal for the difference
between DET; and DET,. Both median (M;) and standard deviation (S4) of these
distances are used for identifying this determinism-sensitive region (Egs. and [2.5)).
The further (larger) the M, of each parameter combination, the safer it is in terms of
avoiding the mentioned artifacts, under the condition that Sy should be reasonably small
(e.g. within 0.1).

My = Median,_,__,,(|[DET, — DET})). (2.4)

2

1 & 1 &
S, = J . 3 l|DETO — DET;| — =Y _|DET,— DET}|| . (2.5)
n

n—1:5 i=1
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Figure 2.3: Examples for high and low DET values from deterministic (Lorenz) and
stochastic (Gaussian random) signals.

where DET, and DET; are the recurrence determinism values of the original series and

each shuffled iteration (7), and n is the total number of shuffling iteration.

2.3 Case study applications

This paper presents 2 application examples using Lorenz series derived from a mathematical
model, and daily runoff observations from the station Burghausen at the Salzach River
in south Germany. These signals are chosen for its non-linear characteristics with known
presence of determinism [Martins et al) 2011, |Sivakumar, |2000]. The resulting region of
artifact-safe parameter set will be presented and discussed in section 4. Caution should be
taken when 7 = 1 because artificially high DET values can lead to misinterpretations (Figs.
, d, and e), and hence should be excluded. In addition to the resulting artifact-safe
region as the boundary of the parameter sets, the final choice of the parameter set is still
necessary to be optimal, i.e. being able to reconstruct the topology of system dynamics
and minimal in the sense not to over-reduce data points in the signal. There are many
approaches to find optimal embedding parameters, such as the standard approaches men-

tioned in section .11

2.3.1 Lorenz Series

The Lorenz system with known non-linear, non-periodic, 3-dimensional and deterministic

chaos behaviour (i.e. with parameters a = 10, p = 28, f = 8/3 and sampling time
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At = 0.05) is chosen as the first application example, following Eq[2.6]) [Lorenz, [1963|
Sparrow), |1982]. Its RP and characteristics have also been studied by Marwan et al. [2007]
dx dy

dz
a _ N 9% _ oy — Ba. 2.
o = aly—a) — =a(p—z) —yrand - =y — bz (2.6)

This Lorenz system is described by 3 variables and integrated using the Euler scheme,
and hence, we know the 3-dimensional phase space that describes the topology of the
system dynamics. In this study, the x variable is used as our Lorenz series test set
(Fig. ) with its phase space reconstructed using the time delay embedding method.
Thereafter, its DET is calculated. The reliability of these DET values is checked by
using median and standard deviation of their determinism distance values (M, and Sy)
to qualitatively evaluate how much the constructed RP of a certain parameter set is
influenced by artifacts.

This Lorenz series is derived from a mathematical model with well-known phase space
topology and recurrence characteristics, whereas real world observations are most likely
contaminated by noise. Therefore, we also investigate the impact of noise on the method,
i.e. in respect to the values of determinism and determinism distance. Gaussian white
noise with a magnitude range corresponding to the standard deviation of the Lorenz signal
is applied, i.e. added to the signal (Eq. 2.7).

() = x(t) + kB(). (2.7)

where, Z(t) is the resulting new series with the addition of noise and z(t) is the original
series (Lorenz); k is the noise level, while 5(¢) is the Gaussian white noise with magnitude
range corresponding to the standard deviation of z(¢). The noise levels used are 5%,
10%, 30% and 50%. For each of the noise-added signal, its determinism and determinism

distance are calculated.

2.3.2 River Runoff Series

The second test application uses daily river runoff observations extracted from station
Burghausen in south Germany for the year 1961. This station measures the streamflow
of the Salzach River with a catchment area of 6,600 km?. The time series (Fig. ) is
used as a test set representing real world data, i.e.it is potentially non-stationary and

contaminated by noise and observation error.
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Figure 2.4: Test applications of (a) Lorenz - = variable and (b) Burghausen daily runoff
series (1961).

2.4 Results and Discussion

This section presents the results of our proposed method for selecting an artifact-safe
parameter region with the assumption of recurrence rate fixed at 10%. The range of
embedding parameters bounds embedding dimension (m) from 1 to 10 and time delay (1)
from 1 to 20.

2.4.1 Lorenz Series

The Lorenz series is known for its deterministic feature, i.e.high determinism value, yet
certain parameter combinations can give incorrect, low determinism values, e.g.when m =1
orm = 10,7 =6 (Figs., b, and ¢). Increasing the time delay at high embedding
dimension is also seen to thicken the line structures of the RP (Fig. [2.5}). Low determinism
values reflect non-optimal parameterization, and hence, misleading RP structures (Figs
and g) with diagonal lines structures as wobbly and perpendicular to the main diagonal
[Marwan et al., [2007]. In order to assess the reliability of the resulting RP corresponding
to the m and 7 parameter combinations, the proposed shuffling techniques is applied to
find the determinism-sensitive region.

Using the proposed technique (n = 100 shuffles), M, is low for the case without
embedding (m = 1) as well as for 7 = 1, when m > 1 (Fig. 2.6). The latter suggests
artifacts due to embedding. Those parameter values where My is high, e.g. for 7 > 2,
when m > 1, can be considered to be less influenced by embedding artifacts. It can be
noticed that when 7 and m are higher, M, starts to decrease and to fluctuate, as indicated
by Sy. In this case, the use of the median is quite reliable due to the low Sy value (i.e.
below 6%).

The identified determinism-sensitive region is suggested to be referenced with the

standard approaches, such as FNN and MI, to find the optimal parameter set. This
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also serves to prevent the use of unnecessarily high parameter values that result in the
reduction of data points (i.e. by (m — 1)7). For instance, in the case of the Lorenz series,
the optimal parameter set found by the standard approach is m = 3 and 7 = 3 (Fig.
which coincides well with the domain of high M, values.

To investigate the impact of noise as in a real world scenario, Gaussian white noise
with different noise levels is added to the signal as described in section [2.4.1] Figs. 2.8
and b show both false nearest neighbor and mutual information characteristics for the
added-noise signal. The false nearest neighbor approach slightly increases at the optimal
dimension of 3 causing a shift to the next dimension value, i.e. m = 4). When the
noise level reaches 30 and 50%, the mutual information characteristics start to differ
from the original, whereas the noise levels of 5 and 10% still preserve the original signal
characteristics. Noise needs to be handled with care, as high level noise contamination
potentially alters the determinism of the signal. It decreases in this case when Gaussian
white noise is added, hence the determinism distance between the original and the shuffled

series gets smaller.

2.4.2 River Runoff Series

A river runoff series is used to represent an example for field observations which are usually
contaminated with noise. River runoff is typically a non-linear deterministic series and
exhibits chaos properties [Martins et al., [2011], Porporato and Ridolfi, 1997, [Sivakumar),
2000], hence, its DET is expected to be high. However, its recurrence determinism is
low when parameter m = 1 and when both m and 7 reach high values, e.g. m > 8 and
7> 9 (Fig. 2.9n). For instance, for 7 = 10 the DET value starts to decrease when m > 7
(Fig. [2.9b), while for m = 10 the increase of 7 (i.e. above 4) also starts to reduce DET
values (Fig. [2.9¢).

When evaluated through 100 shuffles, the parameter set of 7 = 1,m > 1 should not
be used due to the clear artifact potential suggested by its low determinism distance
(see Fig. : first column and Fig. : black line). The artifact-safe region could
then be deduced from the high determinism distance domain corresponding to different
combination parameter sets. For example when median determinism distance values above
0.8 imply high dissimilarity between the recurrence of the original signal and the shuffled
ones (see Fig. [2.10p). The Sy values in this case are also low to safely use the median
values (see Fig. [2.10p).

As cross-checked with the standard approach of parameter identification (Fig. [2.11}),
the suggested optimal embedding parameters in this case would be 7 = 10 days and m =
5.
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2.5 Summary

We propose a method to identify a determinism-sensitive parameter region with minimal
impact of artifacts due to embedding when constructing a Recurrence Plot (RP). The
method utilizes both deterministic (incl. chaos) and stochastic characteristics of recurrence
quantification, i.e. diagonal structures, as indicated by their determinism values. It is
useful when the evaluated signal is known to be deterministic. The method involves
randomly shuffling the time series for an abundant number of times in order to destroy its
original characteristics and its determinism. Thereafter, determinism values are calculated
for each shuffle iteration and compared with the determinism of the original signal at a
range of parameters, resulting in a measure called determinism distance.

The matrix of the median values of this measure is plotted to depict the determinism-
sensitive parameter region. The larger the determinism distance, i.e. the closer to 1, the
safer the parameter set is to avoid potential artifacts. The optimal parameter set can
be selected from the consideration of this artifact-safe region together with the standard
approach of using false nearest neighbors and mutual information and auto correlation.

Noise needs to be handled with care, since it affects the determinism structures of the
signal or decreases the determinism values, therefore reducing the determinism distance be-
tween original and shuffled series. One could apply this method as an artifact-precautionary

measure especially when intending to choose high values of embedding parameters.

Acknowledgement

This research was carried out within the Research Training Group "Natural Hazards and
Risks in a Changing World” (NatRiskChange; GRK 2043/1) funded by the “Deutsche
Forschungsgemeinschaft" (DFG).

37



2 In Search of Determinism-Sensitive Region to Avoid Artifacts in Recurrence Plots

g 10
z - g 1
% 8 E 90.9 0.9
T = Eos 08
Es g £
o S € 0.7 0.7
o € £ T T
£ 4 5 Los =3 1 06
3 B 3 — =10
D 5 a] 05 0.5
-g - N ®m % W o~ o 2 w 2 L Q] B 8 8 2
[ NTomlNTODY embedding dimension (m) time delay (1)
time delay (7)
(d) (e) (f)
500 m=1, 7=1, DET = 0.58 m =3, T—1 DET 091 —10 7=1,DET =0.98
i D i, T S 7 '//'/,- 'z'
i // z// ‘
400 400 P00 . //, s /, .
- Sl //// /,u /‘
300 300 Sy
g g . /u///// a// .
= = vl g
200 200 A B A
E f# Y
. Lo g 2
100 100 | e zzf/;,;,/ : LS A
g FH Y “y oy
0 ; B 0 %" g g 0 : %: é é
0 100 200 300 400 500 0 100 200 300 400 0 100 200 300 400
time time time
(g) (h) (i)
500 m=1, 7=3, DET = 058 m 3, 'r—3 DET = 088 —10 'r—3 DET 086
400 400 400
2 A 300
o 300 ° 300 o vz °
-g -E - y /r//, / {/ g -E
= 200 L T 200k, NP = 200
100 100 100
0 - ' 0
0 100 200 300 400 500 0 100 200 300 400 0 100 200 300 400
time time time

Figure 2.5: Recurrence characteristics of the chaotic, deterministic Lorenz signal: (a) deter-
minism corresponding to m and 7; (b) change in determinism corresponding to
an increase of the embedding dimension (m) from the RP, with 7 = 1, 3, and
10; (¢) change in determinism corresponding to an increase of the time delay
(1), with m = 1, 3, and 10; (d) to (f) RP of different embedding dimension
with fixed 7 = 1; and (g) to (i) RP of different embedding dimension with
fixed 7=3. All RPs and recurrence measures are calculated based on fixed 10%
recurrence rate.
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