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Abstract 

Background: Hybrids represent a cornerstone in the success story of breeding programs. The fundamental principle 
underlying this success is the phenomenon of hybrid vigour, or heterosis. It describes an advantage of the offspring as 
compared to the two parental lines with respect to parameters such as growth and resistance against abiotic or biotic stress. 
Dominance, overdominance or epistasis based models are commonly used explanations. 

Conclusion/Significance: The heterosis level is clearly a fu nction of the combination of the parents used for offspring 
production. This results in a major challenge for plant breeders, as usually several thousand combinations of parents have to 
be tested for identifying the best combinations. Thu s, any approach to reliably predict heterosis levels based on properties 
of the parental lines would be highly beneficial for plant breeding. 

Methodology/Principal Findings: Recently, genetic data h,ave been used to predict heterosis. Here we show that a 
combination of parental genetic and metabolic markers, identified via feature selection and minimum-description-Iength 
based regression methods, significantly improves the predictiion of biomass heterosis in resulting offspring. These findings 
will help fu rthering our understanding of the molecular basis of heterosis, revealing, for instance, the presence of non linear 
genotype-phenotype relationships. In addition, we describe a possible approach for accelerated selection in plant breeding. 
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I ntrod uction 

T he introduction of the concept of hybrids probably represents 
the most important single innovation in plant breeding. Central to 
the concep t of hybrid breeding is the phenomenon of heterosis or 
hybrid vigour [I] , which essen tially describes the superiority of the 
hybrid line derived from two parental inbred lines with respect to 
numerous parameters, with yield being the most important one. I t 
is crucial to note that the superiority of the hybrid is not only 
realized in comparison to the two parental lines but most 
importantly also in comparison to lines obtained by classical line 
breeding [2] . Crops strongly relying on hybrid breeding include 
maize [2] , rye [3] , sugar beet [4] , rice [5] or oilseed rape [6,7]. 

Despite its central importance for the hybrid breeding concept, 
the molecular basis responsible for the heterosis effects is far from 
being understood. From a genetics perspective, dominance, 
overdominance or epistasis based models are commonly used as 
explanations for heterosis [8]. 

One central observation in hybrid breeding programs is that the 
extent of heterosis is strongly dependent on the two parental lines. 
T h us, with respect to yield, for instance, heterosis can vary 
strongly depending upon the specific combination. In addition to 
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its puzzling biological complexity, this represen ts a severe 
challenge to plant breeding, as usually the best combination of 
two paren tal lines can only be determined by trial and error. 
T herefore many thousands of testcrosses are required in order to 
find the optimal parental combination for the trait of interest. 
Numerous attempts have been followed with the goal to reduce the 
level of uncertain ty concerning suitable parental combinations and 
to achieve some level of predictability . Not surprisingly mostly 
genetic markers of the two paren ts were used in these approaches 
[9- 12]. 

Despite the fact that genetic markers have proven to be highly 
useful in plant breeding for marker-assisted selection of simple 
traits that are difficult to assay [13- 15], they have their limitations 
when it comes to complex phenomenons involving many genes, 
such as heterosis. Even using dense genetic maps, marker in tervals 
can still cover several hundred genes [16] , i.e. their genetic 
resolution is low and their ability to account for complex 
in teractions between several or many genes and their products is 
limited . 

vVe set out to test whether heterosis prediction can be improved 
by using more complex parameters of the parental line than 
genetic markers. To this end, we decided to investigate paren tal 
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metabolic markers, i. e . relative levels of particular metabolic 
compounds, with regard to their predictive power for biomass 
heterosis in the plant model organism Arabidopsis tlzalialla. The 
reason for choosing these predictors is that metabolite levels are 
the result of more genes than those represented by genetic 
markers, and as a rule they are also influenced by several genes 
and/ or their products. 

As shown in the R esults section, the predictive power of genetic 
data for heterosis is significantly improved by combining it with 
metabolic measurements of one parent, suggesting complex 
mechanisms underlying heterosis. Finally, when analyzing the 
minimal set of metabolic and genetic markers needed for heterosis 
prediction in the two different testcross populations used, three 
classes can be identified . Firstly, there are markers highly 
predictive in both kinds of testcross combinations, secondly, we 
find markers specifically predictive for one kind of tes tcross 
combination, and there are also markers negligible in any of our 
prediction models. 

Results 

Design of the experiment and analysis 
As described in the Introduction, heterosis levels are a function of 

the two parental lines used to produce the offspring. Classical 
heterosis experiments are performed between two completely 
different parental lines, which have been inbred to a high degree 
and are essentially homozygous, resulting in a highly heterozygous FI 
offspring. We here deliberately chose a different and genetically 
simpler experimental set-up as a first step towards investigation of the 
information carried by metabolic markers in comparison to, or in 
combination with, molecular genetic markers. To this end, a 
recombinant inbred line (RIL) population consisting of 359 lines 
derived from a cross between the two Arabidopsis tlzalialla accessions 
C24 and Col-O [17] was used. The mean frequency of C24 alleles and 
Col-O alleles per RIL was 48% and 50%, respectively. The remaining 
fraction comprised heterozygous regions and a few missing values (cr 
M ethods section for details). The 359 RILs served as one parental 
population. They were backcrossed with both, the C24 and the Col-O 
accessions, resulting in a total of 718 testcross-progeny. 

Genetic Markers 

Heterosis Prediction Markers 

The analysis of a full or half diallele involves crosses among 
numerous lines with different degrees of relatedness, and in each 
cross only a subset of the genetic factors responsible for heterosis 
might be shared with any other cross. In contrast to that, in our 
much simpler experimental design one parent was kept constant 
(C24 and Col-O respectively, cr Figure I). Consequently, we were 
able to use prediction models which consider just the metabolic/ 
genetic markers of the particular RIL parent, since those of the 
second parent are constants. We merely had to distinguish the two 
different response effects C24-heterosis and Col-heterosis, i.e . the 
relative biomass gain when a RIL is backcrossed to C24 and Col-
0, respectively. In that way, we were able to detect not only 
markers for heterosis prediction, but also factors which are 
involved in heterosis in only one particular testcross se tting, for 
instance in Col-O testcrosses. Such Col-heterosis specific markers 
hold the potential to reveal loci with dominance for C24 or 
overdominance effects, whereas C24-heterosis specific markers 
indicate dominance for Col-O or overdominance . 

To determine the degree of heterosis displayed in the two 
different testcross se t-ups, biomass was measured in the testcross­
progeny and compared to the mean of the biomasses of the two 
corresponding parental lines (cf. Figure I). Thus the relative mid 
parent heterosis was observed to vary from approximately - 36 
per cent to 99 per cent depending on the parental lines used . 
Analyses of the genetic markers and the metabolic profile of the 
RIL population have been described previously [17- 19]. 

For training and evaluating the prediction models, we applied a 
partial least squares (PLS) approach [20] , using a leave-one-out 
validation (LOOV) test (cf. Methods section for details). 

Using all available genetic or metabolic markers for 
heterosis prediction leads to an overfitting problem 

In a first approach we compared the whole set of available 
genetic versus metabolic markers according to their suitability for 
heterosis prediction . Applying PLS-modelling on all 110 genetic 
markers, the Pearson correlation between observed and in cross­
validation predicted heterosis was 0.39 for the C24 crosses and 
0.35 for the Col-O crosses. Using, on the other hand, all available 

~~ X ~~ H~3terosis Prediction 
Metabolic Profile ---

P1 
(C24 or Col-D) 

~ ~ 
lC RIL 

RIL 

" " 
rMPH = 

lC __ RIL - mean ( P1 , RIL ) 

mean ( P1,RIL) 

Figure 1. Rationale of the experimental outline. The experimental set-up comprised the two Arabidopsis thaliana accessions C24 and Col-O, 
which served one at a time as the first parent of the testcrosses. One of 359 recombinant inbred lines derived from the two original accessions acted 
as the second parent. The analysis implicated the metabolic profile and genetic markers of the RILs, which were then used to predict the relative mid­
parent heterosis rMPH in biomass. The latter is defined as the relative biornass gain of the testcross as compared to the mean biomass of its parents 
(cf. Methods section for details) and therefore manifests itself not until the next generation. P1 describes the shoot biomass of the first parent, RIL the 
shoot biomass of the particular recombinant inbred line and TC_RIL the shoot biomass of the corresponding testcross. The function mean(o, .) refers 
to the arithmetic mean of the respective values. 
doi:10.1371 /journal.pone.0005220.g001 
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18 1 metabolic markers as predictor set, the corresponding 
numbers were 0.27 for C24 crosses and 0.24 for Col-O testcrosses. 

These results show that some prediction has been achieved. But 
the level of predictive power is very low, above all in the case of the 
18 1 metabolic markers. We believe this to be a problem of 
overfitting, indicated by the fact that the larger predictor set yields 
the smaller prediction success in cross-validation. 

Feature selection overcomes the problem of overfitting 
and leads to an almost equal predictive power of genetic 
and metabolic predictors 

In order to rank the available variables according to their 
contribution to the response, we utilized the variable importance 
in the projection (VIP), which calculates the contribution of each 
predictor variable to the response in the respective PLS-model 
[20,2 1]. To reduce the number of variables in the respective 
models we kep t only those with a high contribution. We 
determined the threshold via optimizing the predictive power in 
LOOV. Subsequently the reduced model that resulted in the 
highest predictive power was selected. 

Applying this feature selection approach to our four PLS models 
(i.e. heterosis according to the Col-O or C24 parent using either 
metabolic or genetic markers) led to improvements of the 
predictive power to values of about 0.40 (cf. Table I), irrespective 
of the use of exclusively genetic or exclusively metabolic markers. 
Due to the different degree of the overfitting problem, improve­
ments were more substantial in case of metabolic as compared to 
genetic markers resulting in a nearly equal predictive power of 
both marker sets (cf. Figure 2 A- D and Table S I). 

Combining metabolic and genetic markers leads to 
substantial improvements of heterosis prediction 

vVe wan ted to answer the question of whether a combination of 
genetic and metabolic markers improves the predictability of 
heterosis as compared to the use of genetic markers alone. Since 
our variable selection algorithm allowed to overcome the problem 
of overfitting when dealing with a high number of predictors, we 
were now in a position to apply this algorithm on the combined set 
of metabolic and genetic markers (i.e . a total of 29 1 predictors) and 
test their suitability for heterosis prediction using PLS regression 
(cf. Figure 2). 

As shown in Table I, the combination of metabolic and genetic 
markers leads to a strong improvement of the predictive power in 
LOOV as compared to the genetic or metabolic marker based 
models. The improvement was highly significant in each case, 
since the estimated confidence intervals of the respective 
correlation values did not overlap (cf. Table S I). 

Table 1. Predictive power (PP) in leave-one-out validation of 
the respectively optimal selections of predictors for the 
relative mid-parent heterosis regarding the two different 
testcross set-u ps. 

Response variable 

pp of optimal genetic selection 

pp of optimal metabolic selection 

pp of optimal combined genetic­
metabolic selection 

doi:10.1371/journal.pone.0005220.t001 
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C24-
heterosis 

0.42 

0.40 

0.50 

Col-heterosis 

0.41 

0.38 

0.48 

3 

Heterosis Prediction Markers 

Marker identification via minimum-description-Iength 
(MDL) based strategies 

One advantage of the experimen tal design used here is the 
identification of variables that are important for heterosis 
prediction in both testcross populations as compared to 
variables that are strongly relevan t in the prediction models 
for only one kind of combination, i.e . either with C24 or with 
Col-O. H owever, in order to p erform this analysis, the number 
of variables in the resp ective models had to be reduced further 
to a minimal set of variables whose predictive power does no t 
differ significantly from the optimal predictive power. T o 
achieve this goal we developed a M DL based strategy (cf. 
M ethods section). Application of this approach to the single 
metabolic models, to the genetic models and to the combined 
models led to a substantia l reduction in the number of variables 
needed, as compared to the number of measured variables, in 
each case (cf. T able S2 and Figure 2). Thus, 68 out of the 110 
available genetic and 98 out of the 18 1 available metabolic 
markers were omitted in each of the corresponding four 
minimal models investigated without any significan t loss of 
predictive power , as compared to the optimally achievable 
predictive power in the particular predictor set. This means that 
more than half of the markers measured turned out to be of no 
significant relevance for heterosis prediction in our analysis, 
neither in the case of C24 nor in the case of Col-O testcrosses (cf. 
T able S3). 

Genetic markers important as heterosis predictors 
overlap with heterosis quantitative trait loci (QlL) 

When comparing the relative importance of the 110 genetic 
markers as judged by their contribution to heterosis prediction 
with the genetic analysis of heterotic biomass QTL, a substantial 
overlap is observed (cf. Figure 3). In particular this is true for the 
following markers that bear a special meaning. 

Eight genetic markers turned out to be highly predictive for 
heterosis in both testcross populations. This was indicated by their 
presence in the minimal genetic model and in the minimal 
combined genetic-metabolic model for both, C24- and Col­
heterosis prediction. Five of those highly predictive markers are 
located at the top of chromosome 4, a region containing important 
QTL for heterosis and biomass per se [22] , cf. Meyer et at. (2008 
submitted). The same is true for the two highly predictive markers 
at chromosome 3. The remaining one important marker at bottom 
of chromosome I also coincides with one heterotic QTL (cf. 
Figure 3). 

Fifteen genetic markers are specific for predicting heterosis in 
either the Col-O or the C24 crosses. They are con tained in the 
minimal genetic model and in the minimal combined genetic­
metabolic model for one testcross population, but in none of the 
corresponding models for the other testcross population . T wo of 
these markers are specific for Col-heterosis prediction. They are 
both located at the bottom of chromosome 3, while the thirteen 
markers specific for C24-heterosis prediction are distributed to all 
five chromosomes. Also in the case of the specific genetic markers 
there is some overlap with QTL (cf. Figure 3). 

Identified metabolic markers deviate from normal 
distribution 

Applying the MDL based feature selection method to the 
metabolic markers, we identified the most important ones with 
respect to heterosis prediction (cf. T ables S4 and SS). Sixteen of 
them are contributing to the minimal models only in the C24 
testcrosses, while ten metabolic markers in our models are of 
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Heterosis Prediction Markers 

Figure 2. Predictive power of genetic (A, B), metabolic (C, D) and combined (E, F) marker sets for C24- and Col-heterosis. The 
diagrams shown here demonstrate the trade-off between overfitting and loss of information in the different models. The x-axis represents the 
number of predictors used to train the respective model. Red dots display the predictive power of the particular model in leave-one-out validation 
(LOOV) . Panel A, C and E correspond to C24-heterosis, the remaining ones to Col-heterosis. The number of predictors, which maximizes the predictive 
power, is referred to as Opt, and it differs in the various models. In each case, the predictive power decreases by incorporating too many predictors in 
the corresponding model. This effect is due to overfitting. On the other hand, loss of information occurs, if too few predictors are selected in the 
model. Min refers to the minimal number of predictors that does not yet imply a significant loss of predictive power. The corresponding predictive 
power is still within the estimated confidence interva l (gray lines) of the maximal predictive power. Black dots demonstrate the estimation of these 
confidence interva ls. They represent the predictive power of the optimal predictor set when using jackknife resampled data (et. Methods section for 
details). 
doi:10.1371 /journal.pone.0005220.g002 

specific importance with respect to Col-heterosis prediction (cf. 
T able 2). 

On the other hand, fourteen metabolic markers were identified 
as importan t for heterosis prediction irrespective of the paren t (cf. 
Table 2). Five of the la tter display metabolic QTL again a t top of 
chromosome 4, including cellobiose and propanoic acid [22] . 

When comparing different metabolic markers concerning the 
distribution of their levels among the 359 RILs, it becomes obvious 
that the highly predictive markers tend to deviate from normal 
distributions (cf. Figure 4). The distribution is bimodal in the case 
of the most important metabolic markers, in other cases it is just 
too broad a t the basis to pass for a single normal distribution . The 
devia tion from a normal distribution seems to abate with 
decreasing importance of the metabolite in the prediction models 
(cf. Figure SI). 

Discussion 

Combination of genetic markers with metabolite markers 
leads to a significant improvement of heterosis 
prediction, which implies the existence of epistatic gene 
effects 

As shown in the R esults section, the combined use of selected 
genetic and metabolic variables of the RIL population leads to a 
significant improvement of the predictive power for the heterosis 
effect observed in the progeny of both test parents, i.e. the C 24 
and the Col-O testcrosses. 

The cause of this can at least partially be rationalised . I t can be 
assumed that heterosis is primarily, if not exclusively, dependent 
on the match of the two alleles (or sets of alleles) derived from both 
parents, suggesting that complete genetic information should be 
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Figure 3. Discrete VIP of genetic markers for Col-heterosis and C2:4-heterosis prediction, including overlap with QTL. Each of the 110 
genetic markers and its position on a Chromosome (Chr) is represented by two circles. The circle size indicates high (large circles), medium and low 
(small circles) VIP in the genetic model for Col-heterosis (circle left of chromosome) and C24-heterosis prediction (circle right of chromosome). We 
refer to the VIP as high and medium, if the corresponding marker is contained in the minimal genetic model and in the optimal genetic model, 
respectively. Markers specific for Col-heterosis prediction and those specific for C24-heterosis prediction are coloured in dark blue and in light blue, 
respectively. To allow positional comparison, support intervals of biomass QTL and three kinds of heterosis related QTL detected by Meyer et al. 
(2008, submitted) are plotted as coloured boxes along the chromosomes (grey: biomass, green: Z2 [40], dark blue: absolute mid-parent heterosis 
concerning Col-O, referred to as aMPH_Col, light blue: absolute mid-parent heterosis concerning C24, referred to as aMPH_C24). Horizontal lines 
represent the position of genes directly involved in reactions including metabolites, which are contained in the respective minimal metabolite model 
and the combined genetic-metabolic model (Col: left of chromosomes, C24: right of chromosomes). For specific metabolites genes were coloured 
accordingly. 
doi:10.1371 /journal.pone.0005220.g003 
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Heterosis Prediction Markers 

Table 2. Metabolic markers highly predictive (pred) in both testcross (IC) populations and those specifically for heterosis (het) 

prediction in one certain testcross set-up, each in alphabetical order. 

Highly pred in both TC set-ups 

Alanine 

Cellobiose 

Glycine 

Oxalic acid 

Propanoic acid 

Urea 

7 Unknowns 

doi:10.1371 /journal.pone.0005220.t002 

A 

Unknown 31 

1.0 

z.. ~ ·Ui 
C 
<ll 

~ 0 
0 

~ 
0 

-10 -5 0 5 

Normalized Metabolite Level 

c 
Unknown 81 

~ 

z.. ~ ·Ui 
c 

l. 
<ll 

~ 0 
0 

0 
6 

-10 -5 0 5 

Normalized Metabolite Level 

Specific for C24-het pred iction Specific for Col-het prediction 

Fumaric acid 

Galactose 

Glucose-6-phosphate 

Maleic acid 

Maltose 

Putrescine 

Raffinose 

Salicylic acid 

Tyrosine 

7 Unknowns 

B 

Cellobiose 

-5 0 

Gluconic acid 

Glycerol-3-phosphate 

Fructose-6-phosphate 

2,4-Hydroxy butanoic acid 

,,-Tocopherol 

5 Unknowns 

5 

Normalized Metabolite Level 

D 

Suberic Acid 

Normalized Metabolite Level 

Figure 4. Histograms of particular metabolic markers over all 3S9 investigated RILs. Here, unit area histograms are presented, i.e. the 
particular curve shows proportions rather than absolute numbers. Thus it constitutes a simple density estimate. The x-axis demonstrates normalized 
metabolite levels and is divided into equidistant intervals. The y-axis represents the relative frequency per interval. The panels A and B show the two 
metabolic markers with the highest VIP in each investigated model, i.e. Unknown 31 (using a functional group prediction service offered by the Golm 
Metabolome Database [41] at least one hydroxyl group was predicted to be present in Unknown 31) and Cellobiose. The levels of these highly 
predictive metabolic markers deviate obviously from normal distributions, namely they display bimodal distributions. The deviation from a normal 
distribution seems to abate with decreasing importance of the particular metabolic marker in the models. This is demonstrated by the two examples 
C and D of metabolic markers, which have in average the lowest VIP in our models. 
doi:10.1371 /journal.pone.0005220.g004 
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sufficient for predicting he terosis. The genetic markers used here 
and in most other studies however are far from representing a 
comple te coverage of the entire genome. On the other hand, in 
our study, individual genetic markers con tain much information 
on the neighbouring regions, since we investigated a RIL 
population. Each line carries on average 1. 86 recombinations 
per chromosome, and the average length of segmen ts of a certain 
parental origin is 32.06 cM [2 3]. As illustrated by the slow decay 
of linkage disequilibrium among markers, the information 
carried by ind ividual markers decreases only slowly with 
increasing distance. Consequently, strong individua l gene effects, 
which are independent of other genes, should be reflected by our 
gene tic markers, i.e . their effects should be recognised as effects 
of the marker alleles closely linked in coupling. H owever , in 
those cases where many genes are involved , genetic markers will 
not provide much information, especially if each gene contrib­
utes only a minor effect, which, in addition is dep ending on other 
genes (i.e . when epistasis has a high influence). In this situation, 
more integrated markers, such as m etabolite levels, will 
contribute a decisive part of information, since they reflect the 
combined effect of many genes. 

In our analysis, metabolic markers turned out to carry 
information on heterosis that is complementary to the genetic 
markers' information . Therefore, one should assume that epista tic 
gene effects are actually involved in heterosis. This is consisten t 
with recen t analyses which indica te a strong role for epistasis in the 
manifestation of heterosis in Arabidopsis [24 ,25]. 

Heterosis Prediction Markers 

Concerning an effective genetic heterosis prediction model, the 
complex trait thus would require to be modelled via complex 
nonlinear interactions of the differen t genetic markers. Since we 
know little concerning gene-gene interactions in relation to their 
influence on the trait of our in terest, too many possibilities exist for 
modelling such a nonlinear phenomenon. Thus, nonlinear gene 
interactions should be integrated indirectly by using metabolic 
markers. This is very simple to model, since this approach 
essen tially follows a linear combina tion of genetic and metabolic 
markers (cf. Figure 5). Nevertheless, this simple combined model 
appears to cover a t least some parts of the complex gene-gene 
interactions, which are not yet cap tured by linear combina tions of 
the available genetic markers, indicated by its significantly 
increased predictive power. 

Parental biomass, as an even more integrated variable 
than metabolite levels, is a strong but not a steady 
predictor for heterosis 

Biomass is an in tegrated variable reflecting the action (and thus 
presence) of many, if not all, genes of the respective genotype. W e 
therefore expected , following the argument used for metabolic 
markers, that the RILs' biomass as additional predictor is even 
more valuable. 

Actually, just like metabolic markers (cf. Table I), the RILs' 
biomass alone holds some considerable information on heterosis. 
Namely, RILs with a low biomass tend to have a higher potential 
for heterosis effects and vice versa, which is indicated by a negative 

DNA: Markers X1 , X2, .. . 

~ ______ R,N_A __ ~ 

Proteins ~ Z1 = X1 *X2 
Z2 = X1 *X3*X5 

Metabolites Z1 , Z2, ... 

Genetic Model Y= X1 + Phenotype Y Y = Z1 + Z2 + ... Metabolite Model 

= X1*X2 + X1 *X3*X5 + .. . 

X1 + X1 *X2 + X2 + 

Y = X1 + Z1 + X:Z + Combined Genetic-Metabolic Model 

Figure 5. Simplified display of the idea behind the modelling f'l)r the different predictor sets. The chain of causality from genes to 
phenotype is displayed here. Since genes are at the starting point of the causal chain, one established way to model a phenotype Y is to use genetic 
markers X and combine them linearely (genetic model in red ). Using instead predictor variables Z, which are close to the phenotype, such as 
metabolites, presents another promising way to predict a complex phenotype, since those variables integrate already parts of the complex gene 
interactions (represented by products Xi*Xj) . The advantage is that we do not need to know, which genes actually interact in which way, and that the 
model can stay simple. It just linearely combines metabolite variables, thus integrating non-linear interactions indirectly (metabolite model in blue). In 
the end, one might use a combination of both approaches, i.e. combinin9 different levels of the causal chain, to explain as much as possible of the 
complex phenotype. Hence one integrates linear relationships concerning the response as well as non-linear gene interactions, while sticking to the 
simple model ansatz of a linear combination of genetic predictors X and metabolite variables Z (combined model in violet). 
doi:l0.1371 /journal.pone.000S220.g00S 
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coefficient of the biomass variable in the corresponding prediction 
models. This tendency is weaker in the case of Col-heterosis than 
in the case of C 24-heterosis, as the predictive power of the pure 
biomass model is 0.44 for C 24-heterosis and 0. 35 for Col-heterosis 
in LOOV. 

The combina tion of the RILs' metabolic markers and the 
biomass variable as predictors yields a predictive power of 0.51 
and 0.47 for C 24- and for Col-heterosis respectively. These 
numbers correspond approximately to the predictive power of the 
combined metabolite-genetic models (cf. Table SI ). Furthermore 
the number of essential variables is massively reduced in the 
metabolite-biomass models as compared to the metabolite-genetic 
models (cf. Table S2). H ence, in combination with metabolite 
measurements, the biomass variable is more efficient than the 
genetic markers. 

On the other hand, we added the genetic markers as predictors 
to the pure biomass model. In that way, the predictive power has 
been increased in both testcross populations to an almost equal 
amount, from 0.44 and 0.35 up to 0.60 and 0. 50 respectively, for 
the C24 and the Col-O testcrosses, independently of the presence 
or absence of metabolic markers as predictors. In both tes tcross 
populations, these numbers represent a significant improvement, 
as compared to all considered models (cf. Table S I). But because 
of the difference of predictive power in the two testcross 
populations, which depends clearly on the different predictive 
power of the biomass variable itself, the la tter is - though a strong­
but no t a steady predictor for heterosis according to differen t 
acceSSlOns. 

Dominance effects as an explanation for further 
differences in (24 and (01-0 models 

Some of the predictors, such as parental biomass, are 
significantly correlated to the heterosis effect in a t least one of 
the testcross populations. Accordingly, their contribution in the 
respective multivariate models is high . Such variables show an 
interesting difference in their influence on heterosis prediction in 
the two testcross popula tions. 

In contrast to the biomass variable, which correlates stronger 
with C24-heterosis (Pearson correlation : - 0.45) than with Col­
heterosis (Pearson correlation: - 0.36), the remaining highly 
predictive markers are more important for Col- than for C 24-
heterosis. The most important single effect is that of the first 
genetic marker a t top of chromosome 4 . I ts correlation with Col­
heterosis is 0.40, as compared to 0 .1 7 with C24-heterosis. The four 
subsequent markers on top of chromosome 4 also have a higher 
single effect on Col-heterosis (correlations between 0.3 1 and 0.35) 
than any marker has on C 24-heterosis, where the strongest 
correlation (apart from the biomass variable) is - 0.20 with a 
specific marker in the middle of chromosome 3. 

Since the most important single effects are stronger on Col­
heterosis than on C 24-heterosis, the contribution of the corre­
sponding markers in the multivariate genetic model is also higher 
in the case of Col-heterosis (cf. Figure S2). H ere a small number of 
highly predictive markers is already sufficient to describe the 
response. In consequence, the minimal genetic prediction model 
for C 24-heterosis contains much more variables than the 
corresponding Col-heterosis model (cf. Table S2). 

Naturally, this affects also the combined genetic-metabolic 
models (cf. Table S2), not only because the most important 
metabolic markers also have a slightly stronger effect on Col­
heterosis, but above all because in the Col-O model the 
incorporation of the marker at top of chromosome 4 boosts the 
predictive power in one step, whereas in the C 24 model many less 
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important markers are necessary for the same lIlcrease (cf. 
Figure 2). 

These observa tions about the substantial influence of top of 
chromosome 4 for Col-heterosis (VIP-ranking I in the minimal 
genetic model) in connection with its minor influence on C 24-
heterosis (VIP-ranking 22 in the minimal genetic model) can be 
explained in the following way. I t is crucial for strong Col-heterosis 
that the respective testcross is heterozygous at top of chromosome 
4, i.e . that the corresponding parental RIL carries C 24 alleles at 
this locus, indica ted by a positive coefficien t of the marker in the 
model (cf. M ethods section for the coding of the genetic data). For 
C 24 testcrosses it does not matter (as much) which allele is present 
at this special genetic region. This fact suggests tha t C24 has a 
(partial) dominance effect at top of chromosome 4. We assume the 
dominance effect to be a partial one [2 6,27] , since in the C24 
model the presence of C 24 alleles of the corresponding RIL parent 
has still a slightly significant positive effect on the degree of 
heterosis. This is confirmed by the detection of a biomass QTL 
with a partially dominant effect in this region (cf. Meyer et at. 2008 
submitted). 

vVe found an opposite trend for the genetic marker in the 
middle of chromosome 3, which is only important for C 24-
heterosis (VIP-ranking 5 in the minimal genetic model). Indica ted 
by the negative sign of the coefficient, the respective RIL parent is 
required to carry Col-O alleles at this locus to yield high heterosis 
in C24 testcrosses, whereas it does not matter for Col-O testcrosses 
whether they are homozygous or heterozygous a t this locus. 
Consequently Col-O is assumed to be dominant at the middle of 
chromosome 3. The same rational is applicable for some other 
accession-specific markers at other loci. Nevertheless, as men­
tioned above, we have to take into account also epistatic effects, in 
consequence of which the single dominance effects are often not as 
clearly revealed . 

The metabolic balance concept indicated by metabolic 
markers with inverse contribution to (24- and (01-
heterosis prediction 

Concerning the metabolic markers important for C 24- and Col­
heterosis prediction, there are some of them, whose model 
coefficients are positive in the Col-O model while negative in the 
corresponding C 24-model (e.g. glycine) and vice versa . This 
means, for instance in the case of glycine, that high levels in the 
parental RIL are associa ted with high Col-heterosis but with low 
heterosis in the C24 testcross. On the other hand, we find in the 
Col-O parent a low level of glycine, whereas it is high in the C 24 
parent (and moderate in the FI progeny). Consequently, the fact 
that a Col-O testcross shows stronger heterosis when the 
corresponding RIL parent has a high glycine level, and a C 24 
testcross performs better when the corresponding RIL paren t has a 
low glycine level, suggests that heterosis is dependent on an 
optimally balanced level of cer tain metabolites . 

That is in agreement with the established metabolic balance 
concept of heterosis, which requires the coordination of all 
reactions and systems for efficient growth under a given 
environmen t [28,29]. Even earlier a better metabolic balance in 
the hybrids [30] or metabolic control of fluxes [3 1] has been 
proposed as possible mechanisms for heterosis. 

This idea is also supported by some of our specific metabolic 
markers (cf. Table 2), whose VIP-ranking is high in one testcross 
setting, while low in the other one. For instance the salicylic acid 
marker is strongly contributing to C 24-heterosis prediction (VIP­
ranking on position 7), but of minor importance in our models for 
predicting Col-heterosis (cf. Tables S4 and S5). Interestingly, the 
level of salicylic acid again differs in the parental accessions C 24 
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(high level) and Col-O Qow level). The coefficient for this metabolic 
marker in the C24-heterosis models is negative, which indicates 
higher heterosis potential of RILs with lower salicylic acid levels. 
This suggests that the salicylic acid level must not be too high in at 
least one parent of a well performing testcross. It could be 
interpreted in such a way that too high alertness of the plant with 
respect to pathogens (as indicated by too high salicylic acid levels) 
draws too much of the metabolism in to defense associated 
pathways, thus leading to suboptimal growth. 

Qualitative prediction of heterosis is possible using the 
combined genetic-metabolic marker set detected by our 
quantitative approach 

As described in the R esults section, combined genetic-metabolic 
models yield a correlation of approximately 0.5 between observed 
and in LOOV predicted response (cr Table I). Although this is a 
highly significant correlation, as proven by the fact that none of 
1000 random permutations of the observed response showed such 
a high correlation to the predicted response, the respective 
prediction models cannot be used for reliable quantitative 
predictions. 

H owever, an enrichment of crosses displaying a higher 
likelihood for strong heterosis would probably be helpful. To 
evaluate whether this approach might be feasible, we trained a 
linear discriminant model for C24-heterosis. This model discrim­
inates the 359 RILs into lines with high and low heterotic potential 
using our minimal genetic-metabolic predictor set. In LOOV 233 
RILs (i.e., 65%) were classified correctly by that model. 
Incorporating all 18 1 metabolic markers and all 110 genetic 
markers resulted in a discriminant model that classified only 49% 
of the RILs correctly, which corresponds to a random classifier. 
Thus the two-step approach described here, i.e . identifying in a 
quantitative model the most important set of genetic and 
metabolic markers and subsequently applying those in a 
qualitative model, might be an interesting path also with respect 
to practical applications [32]. 

In addition to the incorporation of gene interactions by 
metabolic markers, as shown in this study, we will also consider 
nonlinear relationships of the most important metabolic markers 
identified in this work. This seems to be a promising step, since on 
the one hand, the highly predictive metabolic markers show 
distributions deviating from normal ones. On the other hand, for 
linear models normal distributions of the predictors are required . 
Consequently, the consideration of some nonlinear terms in the 
discrimination model, which account for the special distributions 
of the highly predictive markers, will probably improve the 
classification success. 

Materials and Methods 

Data and software 
Data was derived from a RIL population [23] within the 

framework of Arabidopsis tlzaliana heterosis experiments that 
included the accessions C24 and Col-O [17]. W e performed a 
comparative study on a set of 359 RILs and the two corresponding 
sets of testcrosses. All variables of interest were available for each 
of these 1077 lines, and they are described below. The mean 
frequency of C24 alleles and Col-O alleles per RIL was 48% and 
50%, respectively (cf. Figure S3). In average, 2% of the markers 
were heterozygous. 

vVe investigated two sets of predictor variables, both, indepen­
dently and in combination. The first set was the metabolic profile 
of the RILs consisting of 18 1 metabolic markers. Their levels were 
measured via gas-chromatography/mass-spectrometry at 15 days 
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after sowing, and the data was normalized as described elsewhere 
[19]. Close to one half of the metabolic compounds were identified 
and 98 substances remained unknown but could at least partly be 
classified. The second predictor set was composed of 110 D NA­
markers distributed along the whole RIL genome [18]. The 
available genetic marker information had been coded in the 
following way. Depending on whether the particular D NA-marker 
featured C24 or Col-O it was quantified with I or 0 while markers 
with a heterozygous specificity were translated into 0.5. Single 
missing values have been replaced by the average of the direct 
neighboured markers' values in that RIL. If the missing value was 
at the margin, it just has been replaced by its single neighbour. 
Markers with more than ten per cent missing values had been 
deleted in advance. 

Our response variables of in terest were C24-heterosis and Col­
heterosis. These were determined by the shoot biomass of the 
particular RIL, the shoot biomass of the corresponding testcross 
C24 x RIL (or Col-O x RIL) and that of the background line C24 
(or Col-O). Shoot biomass was measured as dry weigh t at 15 days 
after sowing. The determination of the shoot biomass values (cr 
T able S6) via mixed model has been described elsewhere [17]. 

The absolute mid-parent heterosis is defined as the difference 
between the hybrid's shoot biomass and the mean shoot biomass 
of its paren ts . Dividing the absolute mid-parent heterosis by the 
mean shoot biomass of the parents, results in the relative mid­
parent heterosis, which we focus on in this analysis (cf. Figure I). 
In our case, the first parent is C24 (or Col-O) and the second parent 
is one of the 359 RILs . 

Our computations were conducted on the free software 
environment R for statistical computing and graphics [33] in the 
version 2.5 .1. Especially, we used the R package pis [34] in the 
version 2.0-1. 

Latent variables 
For training the particular prediction models, we used the PLS 

approach [20,35] , which is a multiple linear regression method 
that works on latent variables. It projects the original predictor 
data into a laten t lower dimensional space and thus maximizes the 
co variance with the response variable. The corresponding R 
function within the pls package is called plsr [34]. We realise the 
optimization according to the number of latent variables via 
LOOV (i.e. N-fold cross-validation with N = 359) of the Pearson 
correlation between the observed and predicted response . This is 
achieved in R by setting the parameter validation of the function plsr 
to "LOO" . The correlation, achieved with the optimal number of 
latent variables, is referred to, in this work, as the predictive power 
of the considered set of predictors for the response of interest. The 
R function to accomplish these computations is called plsr. 

The rational of using PLS instead of ordinary least squares 
regression is the potential existence of latent variables, on which 
the particular response depends, but which are not available, 
because they cannot be measured. Fortunately, one latent variable 
often regulates not only the response of in terest but also several 
other variables, which are in fact measured in experiments. Since 
they are all influenced by the one laten t variable, many of them 
correlate strongly. Therefore we can down-weight some of the 
measured variables. The remaining variables could be considered 
as biomarkers for the particular response . That means there is not 
necessarily a causal dependence, but the biomarkers act as an 
indicator for the response. Since we consider very complex 
response effects, such as heterosis, probably several latent variables 
are involved. Thus, it is possible that two differen t latent variables 
influence the same measurable variable. For example, one of them 
up- and the other one down-regulates the measurable variable. 
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Then, knowing only the value of the measured variable, it is not 
possible to reconstruct both latent variables correctly. We 
therefore have to weight the measured variables and to select 
the optimal number oflatent variables. vVe use the PLS-algorithm 
for this purpose . Low weights in important latent variables give a 
hin t for measured variables that do not improve the prediction. 

Feature selection 
The PLS-approach is able to handle a high number of 

measured predictor variables relative to the number of samples. 
But certain response effects are very sensitive with regard to 
overfitting. Down-weighting the measured variables with a low 
contribution to the response, is not enough in this case . We 
therefore go one step further and suppress variables that 
contribute the least to the response of interest in the PLS-model. 

The contribution of a predictor variable to the response is 
measured by the VIP suggested previously [20,2 1] , i. e . the 
variable's importance in the projection of the data into such a 
space of latent variables, which corresponds best to the response. 
vVe rank the original predictor variables with respect to their VIP. 
Afterwards, low ranked variables are deleted from the model. In 
contrast to other methods [32] , we do not use a fixed cut-off 
criterion. Instead, we select such a number of original variables, 
which yields the highest predictive power in a new refitted PLS­
model. Thus, we run a nested optimization loop. The optimization 
on the higher nested scope is according to the number of original 
variables, whereas the optimization on the lower nested scope is 
subject to the number of latent variables. 

The computational costs of optimizing the number of latent 
variables increase with the number of original variables in the 
model. We therefore do not undertake those efforts for every 
possible number of original variables. The increment of our outer 
loop is ten, as a start, to get a general idea (cf. Figure S4 A). 
Afterwards, we reboot the outer loop with a refined increment of 
one, but break it after surpassing the two best arguments of the 
first boot by twenty steps (cf. Figure S4 B). This secures the 
identification of the optimal number of original variables, but it 
spares the refined search in unpromising regions with unjustified 
computational costs. 

Significance test 
To exclude the possibility that the predictive power is 

insignificant (which means that the in LOOV predicted response 
does not correlate significantly with the observed response), we 
perform a randomisation test. W e build 1000 random permuta­
tions of the true response. Then the Pearson correlation between 
the in LOOV predicted response and each permutation is 
calculated. The 1000 random correlations are compared to the 
predictive power, i.e . the correlation between the predicted 
response and the real response. 

Confidence intervals 
To judge the difference in predictive power between two distinct 

predictor sets, confidence in tervals for the predictive power of 
optimized models are estimated using jackknife resampling. Given 
a predictor set and a response variable, we randomly select 358 out 
of our 359 samples and recompute the predictive power of the 
optimal variable selection on the resampled jackknife data. The 
resampling and the recomputation of predictive power are 
repeated 200 times. This results in a specific range of values for 
the predictive power of the regarded optimal variable selection for 
the particular response. We consider the central 99% of those 200 
values as an estimation for the confidence interval. I t stretches 
from the mean of the two smallest values to the mean of the two 
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largest ones. If the estimated confidence intervals for different 
predictor sets or for differen t response variables are disjoint, we 
consider the discrepancy of the corresponding predictive powers 
significan t. 

Occam's razor 
In addition, the estimation of a confidence in terval for the 

optimal predictive power enables us to follow O ccam's razor [36]. 
This widely approved principle denotes the simplest model, which 
contains the least variables, as the best among similarly descriptive 
models. The MDL [37] and the Bayesian Information Criterion 
[38] are just two examples that implemen t this principle. Since 
modern technologies, such as gene expression chips, confront us 
with a vast number of measured variables rising above the number 
of samples, it has become crucial, in recent years, to find a 
compromise between the acceptable loss of information and the 
desired number of variables [39]. In our approach, we use the 
VIP-ranking and the confidence interval to implement the 
principle. W e look for the minimal number of highly ranked 
variables, whose predictive power is still located within the 
confidence interval estimated for the predictive power of the 
optimal variable selection (cf. Figure S4 C). vVe refer to the 
corresponding set of variables as the minimal variable selection. 

Response-specific predictors 
The predictor variables, which are always contained in the 

minimal variable selection, can be considered as biomarkers. 
Comparing the biomarkers for the two different testcross settings, 
we learn about common and specific effects, W e refer to a certain 
metabolic marker as specific for heterosis prediction in one 
testcross population, if and only if it is contained in both, the 
minimal metabolic variable selection and the minimal variable 
selection of the combined genetic-metabolic approach for one 
testcross setting, but in none of the corresponding minimal 
variable selections for the other testcross setting. On the other 
hand, we consider a certain metabolic marker as highly predictive 
for heterosis in both testcross populations, if it is contained in the 
minimal metabolic and also in the minimal metabolic-genetic 
variable selection for both testcross settings (cf. Table 2). 
Analogous definitions can be applied to genetic markers. 

If we want to consider the order of importance of the 
biomarkers (cf. Tables S4 and S5), we consult their VIP in the 
corresponding minimal variable selections, which is in general 
slightly different from the VIP in the original PLS-model that 
included all measured predictor variables. 

Supporting Information 

Figure SI Additional histograms of metabolic markers over the 
359 RILs, in comparison to a random generation. The panels A-F 
show the six metabolic markers most important according to their 
VIP in the minimal metabolic and in the minimal combined 
genetic-metabolic models. Their deviation from a single normal 
distribution seems to abate with decreasing importance . Panels G­
K show the 5 metabolic markers with the lowest mean VIP in the 
comple te metabolic and the complete combined genetic-metabolic 
model for C24- and Col-heterosis, in comparison to a random 
generation of 359 numbers following a normal distribution with 
expectation zero and a standard deviation of one third (L). 
Found at: doi:10.1 37 1/ journal.pone.0005220.s001 (0.05 MB 
PDF) 

Figure S2 VIP of genetic markers in the complete (A) and in the 
minimal (B) genetic models. The figure shows the contribution of 
the 110 genetic markers, which have been arranged horizontally, 
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to the respective response in the different models. The darker the 
bar, the higher the VIP of the corresponding marker in the 
particular model. Panel A shows that, when training on the 
whole set of markers, the contribution to C 24-heterosis 
prediction is more diffused on many different markers, whereas 
it is strongly concentrated on top of chromosome 4 in the case of 
Col-heterosis. Panel B shows the VIP when trained on those 
selected genetic markers, which turned out to be essen tial 
predictors in the respective models. Each of the five chromo­
somes is represented by a t least one marker in both minimal 
models, which overlap on the chromosome 1,3 and 4 . The two 
markers a t the bottom of chromosome 3 only selected as 
predictors in the minimal Col-heterosis model were confirmed to 
be Col-heterosis specific markers by the combined genetic­
metabolic model (cf. M ethods section for details and Figure 3). 
This holds also true for a t least one marker on each chromosome 
in the case of C 24-heterosis. 
Found at: doi: 10. 137 I / journal.pone.000S220.s002 (0.11 MB TIF) 

Figure S3 Histograms of allele frequencies. The figure shows 
how the allele frequencies are distributed in the RIL popula tion. 
The panels A and B deal with the frequency of C 24 alleles and 
Col-O alleles, respectively. For each RIL there are 110 genetic 
markers fea turing C 24, Col-O or heterozygosity . The x-axis 
represents the number of the corresponding alleles per RIL. The 
y-axis presents how many of the 3S9 RILs show the corresponding 
allele frequency. The mean frequency of C 24 alleles and Col-O 
alleles per RIL is 48% and SO%, respectively. In average, 2% of 
the markers are heterozygous. The minimal frequencies for C 24 
and Col-O alleles are II % and 10%, respectively, while the 
maximal frequencies are 89% and 8S% . The standard deviation 
was about IS.4 and IS. I, respectively. Using a Mantel test 
(P< O.OOI ) to estimate association between marker matrices, we 
did not find significant differences in marker distribution between 
the two sub-populations [22] . Distorted segregation ratios were 
detected at the bottom of chromosomes I and V, at the top of 
chromosomes III and IV and in the lower region of chromosome 
III [23]. 
Found a t: doi:1 0 .1 371 / journal.pone.000S220.s003 (0.00 MB 
PDF) 

Figure S4 Fea ture selection process in metabolite model for 
C24-heterosis. Panel A shows the crude optimization of predictive 
power according to the number of predictors in the model with 
increment 10. I t determines the breakpoint for the refined version 
(panel B) to reduce the computational costs (cf. M ethods section 
for details). In the end, the in panel B determined optimal number 
Opt of variables is used to estimate a confidence interval for the 
corresponding maximal predictive power. This can be seen in 
panel C, where black dots represent the predictive power of the 
optimal variable selection when models were trained on jackknife 
resamplings of the data . Their range determines the es timate of 
the confidence in terval, which is represented by gray lines. Min is 
the smallest number of variables, whose predictive power is still 
within the es timated confidence interval of the maximal predictive 
power. 
Found a t: doi:1 0 .1 371 / journal.pone.000S220.s004 (0.03 MB 
PDF) 

Table SI Estimated confidence intervals of the optimal 
predictive power in leave-one-out validation. 

References 

I. Shull GH (1948) Whal is helerosis? Genetics 33: 439-446. 
2. Duvick D N (200 1) Biolechnology in the 19305: the development of hybrid 

maize. Nal R ev Genet 2: 69- 74 . 

... (/ffj: PLoS ONE I www.plosone.org 11 

Heterosis Prediction Markers 

Found a t: doi:10.1 371 / journal.pone.000S220.s00S (0.03 MB 
DOG) 

Table S2 Number of variables in the optimal and minimal 
predictor sets, in comparison to the number of all available 
predictors in the corresponding set. Abbreviations: H et, heterosis; 
Gen, genetic marker set; Met, metabolic marker set; Bio, biomass 
marker; Gen-Met, combined genetic-metabolic marker set etc. 
Found a t: doi:10 .1 371 / journal.pone.000S220.s006 (0.04 MB 
DOG) 

Table S3 List of metabolic markers that turned out to be 
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analysis, i. e. omission of those markers did not significantly deplete 
the predictive power in the metabolic models or in the combined 
genetic-metabolic models. 
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Table S4 List of the 40 metabolic markers highly ranked in C 24-
heterosis prediction, sorted according to the sum of their VIP in 
the minimal metabolic (met) and in the minimal combined 
genetic-metabolic (gen-met) model. Interestingly, the three highest 
ranked metabolic markers are distinct from those most important 
for biomass per se prediction [17]. 
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Table S5 List of the 40 metabolic markers highly ranked in Col­
heterosis prediction, sorted according to the sum of their VIP in 
the minimal metabolic (met) and in the minimal combined 
genetic-metabolic (gen-met) model. Interestingly, again the three 
highest ranked metabolic markers are distinct from those most 
important for biomass per se prediction [17] . 
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XLS) 
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