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Introduction

Partial differential equations arise in various branches of mathematics, physics, and
engineering in a natural way. They describe a large variety of different situations.
Elliptic equations are an important subclass with applications in almost all areas of
mathematics, from harmonic analysis to geometry, as well as in numerous fields of
physics. The standard example of an elliptic equation is Laplace’s equation, Au = 0,
its solutions describe the behaviour of electric, gravitational, and fluid potentials,
and are therefore significant in many applications, especially in electromagnetism,
astronomy, and fluid dynamics. An important method to express the solutions of
elliptic partial differential equations is to extend the class of the operators to the
so-called pseudo-differential operators. A basic reference is the work of Kohn and
Nirenberg [15] where pseudo-differential operators have been established as a calculus,
see also Hormander [12], [11], Kumano-go [19], Shubin [46].

The analysis on manifolds with geometric singularities (such as conical points,

edges, or corners) is motivated by models of the applied sciences, especially of me-
chanics, elasticity theory, particle physics, and astronomy, as well as by pure mathe-
matics, such as geometry and topology. More information on the general role of the
singular analysis for models in mechanics may be found in [9]. The singularities can
arise either from the geometry of the underlying configuration or from the operator
itself. For example, the standard Laplacian in polar coordinates takes the form of a
singular operator, an example of a special class of differential operators, the so-called
Fuchs type operators.
The “traditional” analysis is based on adequate algebras of pseudo-differential oper-
ators that contain geometric differential operators, e.g., Laplacians, associated with
corresponding singular Riemannian metrics, together with the parametrices of elliptic
elements. This paper is aimed at studying pseudo-differential operators on configura-
tions with such singularities.

Our investigations are focused on new elements of the analysis on configurations
with higher singularities, especially on problems appearing on infinite cones which
require the development of pseudo-differential structures from the point of view of
conical exits to infinity. The new difficulty in the case of higher singularities comes
from singularities on cross sections of cones that generate non-compact edges going
to infinity with the new corner axis variable. To illustrate the idea, let us first con-
sider, for example, the Laplacian on a manifold with conical singularities (say, without
boundary). In this case the ellipticity does not only refer to the “standard” princi-
pal homogeneous symbol but also to the so-called conormal symbol. The latter one,
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iv INTRODUCTION

contributed by the conical point, is operator-valued and singles out the weights in
Sobolev spaces, where the operator has the Fredholm property.

Another example of ellipticity with different principal symbolic components is the
case of boundary value problems. The boundary, say smooth, interpreted as an edge,
contributes the operator-valued boundary (or edge) symbol which is responsible for
the nature of boundary conditions (for instance, of Dirichlet or Neumann type in the
case of the Laplacian). In general, if the configuration has polyhedral singularities
of order k, we have to expect a principal symbolic hierarchy of length k£ + 1, with
components contributed by the various strata. In order to characterise the solvability
of elliptic equations, especially, the regularity of solutions in suitable scales of spaces,
it is natural to embed the problem in a pseudo-differential calculus, and to construct
a parametrix. For higher singularities this is a program of tremendous complexity.
It is therefore advisable to organise the general elements of the calculus by means
of an axiomatic framework which contains the typical features, such as the cone- or
edge-degenerate behaviour of symbols but ignores the (in general) huge tail of k — 1
iterative steps to reach the singularity level k.

At present the analysis of PDEs on manifolds (or, more generally, stratified spaces)

with regular singularities is an important research field with many open problems and
new challenges. Moreover, there are traditional aspects with a long history, motivated
by applications to models in physics and other sciences. Let us give some references
on crucial results and recent development of the calculus.
The “concrete” (pseudo-differential) calculus of operators on manifolds with conical or
edge singularities may be found in several papers and monographs, see, for instance,
[32], [36], [35], [5]. Operators on manifolds of singularity order 2 are studied in [37],
[41], [20], [7]. Theories of that kind are also possible for boundary value problems with
the transmission property at the (smooth part of the) boundary, see, for instance, [31],
[14], [9]. This is useful in numerous applications, for instance, to models of elasticity
or crack theory, see [14], [10], [8]. Elements of operator structures on manifolds with
higher singularities are developed, for instance, in [40], [1]. The nature of such theories
depends very much on specific assumptions on the degeneracy of the involved symbols.
There are worldwide different schools studying operators on singular manifolds, partly
motivated by problems of geometry, index theory, and topology, see, for instance,
Melrose [21], Melrose and Piazza [22], Nistor [27], Nazaikinskij, Savin, Sternin [23],
[24], [25], and many others. We do not study here operators of “multi-Fuchs” type,
often associated with the notation “corner manifolds”. Our operators are of a rather
different behaviour with respect to the degeneracy of symbols. Nevertheless the various
theories have intersections and common sources, see the paper of Kondratyev [16] or
papers and monographs of other representatives of a corresponding Russian school,
see, for instance, [29], [30].

Tools and technical background

Among the tools used here to investigate elliptic partial differential equations are
pseudo-differential operators. They have the important property that they form an
algebra of operators, which contains the differential operators. In the classical frame-
work they are established as a well-developed theory. To each pseudo-differential op-
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erator one associates a symbolic structure; a chosen mapping in opposite direction
from symbols to operators is often called quantisation. This is a general idea, which
means that the quantisation process does not only make sense for elliptic operators,
but also for parabolic and hyperbolic ones. Symbols are much easier objects than
operators, and it may be very efficient to reduce questions on the nature of pseudo-
differential operators or on the solvability of equations to the level of symbols. For
example, when X is a smooth compact manifold, the standard notion of ellipticity
requires the invertibility of the associated homogeneous principal symbol o, (-) which
is defined on the cotangent bundle T*X \ 0.

The calculus of pseudo-differential operators is motivated by the task of express-
ing parametrices of elliptic partial differential equations in terms of classical pseudo-
differential operators that invert the elliptic partial differential operators up to inte-
gral operators with smooth kernels. Based on such considerations, Schulze founded
and developed pseudo-differential theories for degenerate elliptic operators, where the
degeneracy reflects in a natural way the presence of singularities on the underlying
configuration. Recall that there are several pseudo-differential scenarios, adapted to
specific degenerate operators, and there are, of course, interactions between different
approaches. The desired algebras and the notion of ellipticity is not only governed by
the symbol coming from the interior part of the configuration, but every singularity
has its own precise contribution represented by a symbol which is now operator-valued.
In this new situation, ellipticity means the invertibility of all symbolic components.
This entails the existence of parametrices within each algebra and also the Fredholm
property in appropriate scales of weighted Sobolev spaces.

Singular operator calculus

Before we give an overview of the main content of the work let us here recall some
elements of the singular operator calculus.
Let M be a manifold with a conical singularity v € M, i.e., M\ {v} is smooth, and M
is close to v modelled on a cone X2 := (R x X)/({0} x X) with base X, where X
is a closed compact C'*° manifold. We then have differential operators of order y € N
on M\ {v}, locally near v in the splitting of variables (r,z) € Ry x X of the form

A= T—ug)aj(r) (—r;)j (0.0.1)

with coefficients a; € C®(Ry,Diff* /(X)) (here Diff(-) denotes the space of all
differential operators of order v on the manifold in parentheses, with smooth coeffi-
cients). Observe that when we consider a Riemannian metric on Ry x X := X" of
the form dr? + r2gx, where gx is a Riemannian metric on X, then the associated
Laplace-Beltrami operator is just of the form (0.0.1) for u = 2. For such operators we
have the homogeneous principal symbol oy, (A) € C>(T*(M \ {v}) \ 0), and locally
near v in the variables (r, z) with covariables (p, £) the reduced symbol

5¢(A)(T7$,p7f) = T“Uw(A)(’r,:L‘J’_lp,f)

which is smooth up to r = 0. If a symbol (or an operator function) contains r and p
in the combination rp we speak of degeneracy of Fuchs type. The ellipticity condition



vi INTRODUCTION

with respect to oy is the usual one for the homogeneous principal symbol on the
main stratum of the configuration, plus an extra requirement for the reduced symbol,
namely,

Gy (A)(r, @, p, &) # 0 for (p,§) # 0.

We will then shortly speak about o-ellipticity.

It is interesting to ask the nature of an operator algebra that contains Fuchs type
differential operators of the from (0.0.1) on X, together with the parametrices of
elliptic elements. An analogous problem is meaningful on M. Answers may be found
in [36], including the tools of the resulting so-called cone algebra. As noted above
the ellipticity close to the tip » = 0 is connected with a second symbolic structure,
namely, the conormal symbol

oe(A)(w) =S a; (0w’ : H*(X) — H*"(X) (0.0.2)

M-

j=0

which is a family of operators, depending on w € I‘nTH_,y, I'g:={w e C:Rew = G},
n = dim X. Here H*(X) is the standard Sobolev spaces of smoothness s € R on
X. Ellipticity of A with respect to a weight v € R means that (0.0.2) is a family of
isomorphisms for all w € I'na_ . The bijectivity of (0.0.2) is a condition on a kind of
non-linear eigenvalues of a (in general) meromorphic operator function in the complex
plane.

On the infinite cone X2 the ellipticity refers to a further principal symbolic structure,
to be observed when r — oco. The behaviour in that respect is not symmetric under
the substitution r — r~!. The present axiomatic approach will refer to “abstract”
corners represented by r — 0. The considerations are based on specific insight on
families of reductions of orders in given scales of spaces (in the simplest case H*(X),
s € R, when the corner is a conical singularity). In order to motivate our general
constructions we briefly recall the form of corner operators of second generation.

First, a differential operator on an open stretched wedge Ry x X x Q3 (r,z,y),
Q) C RY open, is called edge-degenerate, if it has the form

A=ph Z aja(r,y) <7’§r)j(rDy)°‘, (0.0.3)

Jtlal<p

ajo € C®(Ry x Q,Diff*~UteD (X)) Observe that (0.0.3) can be written in the
form A = r=#Op,. ,(p) for an operator-valued symbol p of the form p(r,y,p,n) =

Blr,y,rp,mn), Blr,y, p,i) € C(Ry x Q, LI (X;R;ED), and

Op,., (p)u(r,y) = // =Pt =y (1 g o m)u(r!,y )dr' dy dpdn.

Here L (X; ]Rl)\) denotes the space of classical parameter-dependent pseudo-differen-
tial operators on X of order p, with parameter A € R!, that is, locally on X the
operators are given in terms of amplitude functions a(z, £, A), where (£, ) is treated
as an (n + [)-dimensional covariable, and we have L~=°(X;R!) := S(R!, L~>°(X))
with L7°°(X) being the (Fréchet) space of smoothing operators on X.
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Analogously as in the conical case the homogeneous principal symbol o, (A) gives rise
to a reduced symbol &, (A) close to r = 0 which is again smooth up to » = 0. Then
we define oy-ellipticity in a similar manner as in the case of conical singularities. If
we assume oy-ellipticity of the operator (0.0.3) then the values of the principal edge
symbol

oA Ay =r"" > aa(0,y) (_Taar) (rn)?, (0.0.4)
Jtlal<p

(y,m) € T*Y \ 0, consist of Fredholm operators
on(A)(y,n) : LX) — KT7H(XD), (0.0.5)

however, only when their subordinate conormal symbol
ll/ .
oeon(A)(y,2) =D ajo(0,y)z" : H(X) — HH(X) (0.0.6)
j=0

is a bijective family for all z € T nl_ (the spaces K*7(X") here are explained in
Subsection 3.1.3). Clearly, a reasonable concept of ellipticity requires the bijectivity
of (0.0.5), not only the Fredholm property, since parametrices should be associated
with the tuple of inverse symbols. At this moment we see that, similarly as in the
calculus of boundary value problem, where ellipticity is connected with additional
elliptic boundary conditions, we need here elliptic edge conditions, characterised on
the level of symbols by additional entries of a family of block matrices

,Cs,w(X/\) Icsf;t,'yfp,(X/\)

A(K)
ym): & — o
m@)) YU o ot

oA = (7 7

which fill up the upper left corner op(A) to a family of isomorphisms by suitable
finite-rank entries oA (7T'), oa(K) and o (Q), respectively. For the ellipticity, a first
essential question is what can be really said about the additional edge conditions,
especially about the dimensions j_, j. By virtue of

J+ —Jj— =1indon(A)(y,n)

we have to answer an index question, and we even need more, namely the kernels and
cokernels of o5 (A)(y,n) including their dimensions.

Now let Diffgeg(M ), for a manifold M with edge Y, denote the space of all dif-
ferential operators on M \ 'Y of order p that are locally near Y in the splitting of
variables (r,z,y) € Ry x X x Q of the form (0.0.3). If we replace in the definition
the edge covariable 7 by (1,A) € R9* (¢ = dimY") we obtain parameter-dependent

families of operators in Diffy,, (M). Similarly as (0.0.1) an operator of the form

tm S (2)

is called corner-degenerate if a; € C*°(Ry, Diffge_gj (M)), j =0,1,..., u. The corner
o

conormal symbol o¢(A)(z) = > i, a;j(0)27, z € Tamums1 ;s for a corner weight § €
2
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R, is just a parameter-dependent family in Diffgcg(M ) with parameter Imz on the
indicated weight line. The program to study such operators close to the tip ¢ — 0 (see
[1], [7]) is just a concrete realisation of the present theory.

Structure of the work and main results

This thesis is divided into three chapters. Chapter 1 is devoted to necessary ele-

ments of the analysis of pseudo-differential operators. In the first section we establish
basics on the calculus of pseudo-differential operators on open smooth manifolds, with
symbolic structures, distributional kernels, Sobolev spaces, operator algebra aspects,
and ellipticity. Here we recall the calculus in the scalar case, which can be generalised
to the operator valued case. Then we pass to material on operators on manifolds
with conical singularities, with tools such as Mellin transform, Mellin quantisation,
weighted spaces, and cone algebra.
In the second section we investigate a class of operators defined on manifolds with
conical exits to infinity. The manifold M with conical exits to infinity is here defined
in terms of free R -actions, where the orbit space X is a smooth manifold and repre-
sents the base of the cone. In the general case it is not necessary that X is connected.
So the manifold M may have several exits to infinity, according to the finite number
of connected components of X. First we consider pseudo-differential operators defined
in the Euclidean space, as we see that the latter is an example of a manifold with exits
to infinity. Then we study the effect of changing the coordinates of the open conical
set, on which the operator is defined. In this respect we partly follow the approach
of Schrohe [33]. Finally we define the desired operators on M. Here we also address
some important results concerning the existence of a parametrix for elliptic operators
and the elliptic regularity.

In Chapter 2 we study operators on (infinite) cylindrical manifolds X= 2 R x X,
with a closed compact manifold X as the base, from an alternative point of view.
First we consider families of parameter-dependent operator functions on X=, with
special degeneracy in the parameter and show that the push forward of the associated
operators from cylinders to cones forms a class of operators in the exit calculus on
infinite cones. Motivated by this, we develop a new calculus of pseudo-differential
operators on cylindrical manifolds with conical exits to infinity. The operator-valued
symbols studied here have two orders, one along the axial variable r and the other
on the inner base of the cone X. To start with we consider the operators on smooth
functions with compact support. Then, after characterising the smoothing elements
in the calculus, we prove the continuity between Schwartz spaces and extend them
to continuous operators between tempered distribution spaces. It seems in a way
astonishing that the smoothing operators within this calculus depend only on the
“inner” order, so they exist for any order along the axial variable. Actually, because
of the degeneracy of the parameters one can compensate the order along r. The bigger
the r-order is, the more times one needs to differentiate in order to make estimates as
in (2.2.34) possible. Finally we define a scale of Sobolev spaces on cylindrical spaces,
based on L?-norms, such that our new operators are continuous between them and
the elliptic ones are even isomorphisms when the parameter is large enough. It turned
out that this new calculus is a step for the iterative calculus which is the intention of
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this approach. The technique partly refers to Kumano-go’s formalism on oscillatory
integrals which is in its classical form very effective. In our case we are faced with
a new (very substantial) difficulty, namely, the degenerate behaviour of amplitude
functions near infinity. One of the main issues it to overcome this difficulty. We do
this in combination with interpreting the amplitude functions as operator families
globally acting on X, the cross section of the cylinder. This is also a very essential
element to make the iterative ideas of the corner theory work.

In Chapter 3 we study operators with certain degenerate operator-valued ampli-

tude functions, motivated by the iterative calculus of pseudo-differential operators on
manifolds with higher singularities. In the first section we introduce spaces of sym-
bols based on families of reductions of orders in given scales of (analogues of Sobolev)
spaces, followed by a standard example from the parameter-dependent cone calculus.
Here, in contrast to [41], [42], we develop the aspect of symbols, based on “abstract”
reductions of orders which makes the approach transparent from a new point of view.
A typical feature here are certain new estimates of norms in weighted spaces on the
base with respect to a growing parameter. In a similar case those were also observed
in Chapter 2. The second section is devoted to the specific effects of an axiomatic
calculus near the tip of the corner. The full calculus involves two separate theories,
one near the tip of the corner and the other at the conical exit to infinity. The corner
axis is represented by a real axis R 3 r, and the operators take values in vector-valued
analogues of Sobolev spaces in r. The solutions are expected to have asymptotics near
the tip of the corner determined by the non-bijectivity points of the Mellin symbol. In
this context, we prove the existence of a parametrix and show a continuity statement
between weighted spaces with asymptotics. Worth mentioning that here we only con-
sider scales of Hilbert spaces having the compact embedding property, although one
can sometimes drop this condition by imposing that the smoothing operators within
the calculus should be compact operators.
The theory presented in this chapter holds as an iterative calculus where the example
considered in Subsection 3.1.3 obeys it. In other words, if the manifold X has conical
singularities then the axiomatic calculus holds true with suitable scales of spaces and
reductions of order. However, when X has edges or higher singularities, it seems that
this approach is not so convenient for some aspects of the iterative calculus. There
is therefore another approach in preparation by my supervisor Schulze that is more
adapted to the case when X has higher singularities. The structures studied in the
second section of Chapter 2 are motivated by the iterative calculus in that way.



INTRODUCTION



Acknowledgment

First of all, I would like to express my deepest appreciation to my supervisor Professor
B.-W. Schulze, for his support and encouragement that made this thesis possible, for
all the time he spent guiding my way in the beautiful world of Mathematics, and for
his infinite patience with me.

I would also like to thank all the former colleagues and friends that I met during my
stay at the University of Potsdam for all the support, for the invaluable advices, and
for the beautiful time we spent together, especially, Dr. Nicoleta Rablou, Dr. Andrea
Volpato, Dr. C.-I. Martin, Yawei Wei, Wannarut Rungrottheera, Nadia Habal, and
Katharina Wallroth.

In addition, I thank my family in Syria for their spiritual support and for every thing
I learned from them.

Last, but not least, I am deeply grateful to my wife Rim for her love and for every
thing she did to make me concentrate on my work.

xi



xii ACKNOWLEDGMENT



Chapter 1

The pseudo-differential cone
calculus

1.1 Basics in pseudo-differential operators

1.1.1 Spaces of symbols

Definition 1.1.1. (i) The space of symbols S*(U x R™) for an open set U C R™

(iii)

and an order ;i € R is defined to be the set of all a(x,&) € C°(U x R™) such
that

sup (&)~ TPIDe D a(a, ©)] (1.1.1)
rzeK,EER™

is finite for all multi-indices o € N, g € N", and compact K C U. Here
8 a1 a A,

D% = <_i8 ) ..... (—ia ) L ii=/—1 and (€)== (1+|¢]?)z.
xT1 Tm

Let SW (U x (R™\ {0})) denote the space of all f(z,£) € C=(U x (R™\ {0}))
that are positive homogeneous in & of degree p, i.e.,

f(@, A8) = N f(x,€)
for all X € Ry and all (z,£) € U x (R™\ {0}).

The space S8 (U x R™) of so-called classical symbols is defined as the subspace of
all a(z,&) € SH(U x R™) for which there is a sequence of homogeneous compo-
nents a(,—j (z, &) € S#= (U x (R*\{0})), j € N, such that for every excision

function x(§) (i.e., x € C®(R™), x(§) = 0 for [§] < co, x(&) =1 for [§] > ¢
for certain 0 < ¢y < ¢1) we have

N
ord (a(x,é) - Zx(&)a(uﬁ(%&)) — —00

Jj=0

as N — 00.
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We call O'Z (z,&) == a(y)(z,§) the homogeneous principal symbol of a of order p. In
view of a(, (7, ) = limy oo A™*a(x, A§) we can recover 01‘2 in a unique way. Applying
the same procedure to a1 (z, ) := a(z, &) —x(£)a(, (z,§) € S#~1(U xR") for the order
p — 1 we obtain a(,_1)(z,£). Thus we obtain the unique homogeneous components

agu—j)(z,€), j € N. Here we refer to the standard fact that
XSO (U x (R {0})) € (U x R")

for every excision function x and any p € R. If a relation or an assertion is valid for
general and classical symbols we write “(cl)” as subscript.

Note that estimates with respect to (£) control growth properties for |£| — oco. Later
on we also employ some function § — [£], [{] > ¢ > 0 and [£] = [¢] for [£] > &1
for some fixed ¢; > 0. The specific choice will be unimportant. Therefore, if we say
nothing else, from now on we assume c¢; = 1.

Remark 1.1.2. All notions and constructions concerning symbols on U x R™ can
be generalised to symbols given in an open conic subset I' C U x R™. For instance,
a € SH(T") means that a(x,&) € C(T), and the condition (1.1.1) is replaced by

sup(§) 9 Dg DY a(x, €)| < oo
for all (z,&) €T, |¢| > 1, (x, %) varying over a compact subset of U x S™7L,

Remark 1.1.3. The spaces S*(U x R™), S8 (U x R™) are Fréchet spaces in a natural
way. The expression (1.1.1) for « e N g€ N* K C U compact forms a semi-norm
system for the space S*(U x R™). Moreover, on S’ (U x R™) we have a system of
linear operators

i+ SH(U x R™) — SW=9(U x (R"\ {0})), j €N, (1.1.2)

that determine the (unique)components of a(x,£) of homogeneities p — j, for every
j €N, and
pn : SE(U x R™) — SH=WNFD( x R™), N € N (1.1.3)

where (pna)(z,€) == a(x, §) —Z;VZO x(&)nj(a)(x,§). We then endow S¥ (U x R™) with
the topology of the projective limit with respect to the mappings (1.1.2), j € N and
(1.1.3), N e N.

For future references let us recall here the definitions of the projective and inductive
limit topologies. Let E be a vector space and {E,, @ € I} be a family of Fréchet spaces.

e Suppose that we are given, for each index o € I, a linear map p, : £ — F,.
On E we define the weakest locally convex topology such that all the mappings
Do are continuous. Equipped with this topology, E is a Fréchet space, we call it
the projective limit of the spaces E, with respect to the mappings p,, denoted
by liinae ; E,. A basis of neighbourhoods of zero in this topology is defined as
follows: in each E,, we consider a basis of neighbourhoods of zero U, (5 € Jo);
let Vi, 5 be the preimage of U, s under p,; then, all the finite intersections of sets
Va,3, when a and 3 vary in all possible ways, form a basis of neighbourhoods
of zero in the projective topology on E.
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e Suppose now that we are given, for each index a € I, a linear map ¢, : Fo, — E,
such that F = |, ¢a(F«). We may then define on E the strongest locally convex
topology such that all the mappings ¢, are continuous. A convex subset U of E
is a neighbourhood of zero in this topology if, for every «, U N g (FE,) is of the
form ¢, (U, ), where U, is a neighbourhood of zero in E,. We call E with this
topology the inductive limit of the spaces E, with respect to the mappings ¢,

and we denote it by li_rr>1o(E s E,.

Let us now fix some convenient notation. The subspace S’ (R™) of all z-independent
symbols a(¢) is closed in S% (U x R™), and we have

SH(U xR™) =C™ (U, SQ(R”))
We now recall the following well known theorem.

Theorem 1.1.4. Let aj(z,§) € Séic’i)(U x R™), j € N, with p; — —oo for j — oo
(and p; = p—j in the classical case for some p € R). Then there exists an a(x,§) €
Sé‘d)(U x R™), p = max{yu; : j € N}, such that ord(a(z,§) — Z;V:O a;(z,£)) — —oo
as N — oo, and a(z,§) is unique modulo S™°(U x R™).

An explicit proof may be found, for instance, in [39, Section 1.1.2]. As usual a(z, )
is called an asymptotic sum of the symbols a;(x,&), j € N, written

Q(I,g)“JZE:aj(x,S)

We can construct a(z, ) as a convergent series

a(,€) = ix (5) 032, €)

in S*(U x R"™), with an excision function x and constants c¢; > 0 tending to oo
sufficiently fast as j — oo, where for every M > 0 there exists an N = N(M) € N
such that Z?‘;NH x(&/cj)a;(z, &) converges in SF=M(U x R™).

Example 1.1.5. Given a(x,§) € Sé‘cl)(ﬂ x R™), b(z,8§) € S{,(Q x R™) for open
Q C R"™ we have

(02 a(x,€)) Db, &) € S (@ x R™)

for every a € N™. The asymptotic sum

(o#0)(w.6) = 3~ (0Fa(z,€)) Db(a, ) (114)

a€eNn

is called the Leibniz product of the symbols a(x, &) and b(x,£). In order to fix notation

by the Leibniz product we understand a choice of an element (a#b)(z,§) € Ség)”(ﬂ X

R™) such that (a#b)(x,&) ~ ZaeNn i(@?a(m,f))ng(x,g),
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Remark 1.1.6. The Leibniz product defines an associative multiplication between
symbols (always modulo symbols of order —c0), i.e.,

a(@, §)# (b(w, §)#c(x,€)) = (a(@,§)#b(x, §))#c(w, ).

In particular, parentheses may be omitted and for j € N we may set

a?l = a(x, &) Fa(x, &)# - - #a(x, )

j factors

1.1.2 Pseudo-differential operators and distributional kernels

With symbols as in Definition 1.1.1 we associate operators as follows. For U := 2 x Q
for an open set  C R™ we will mainly write (z,2’) € Q x  instead of x.

Definition 1.1.7. (i) For a(z,2’,£) € S*(2 x 2 x R™) we set
Op,(a)u(z) == // ez, 2! € u(a")da' dg

for d¢ .= (2m)~"dE, uw € CFP(2);
(il) we set

Lfil)(Q) = {Opz(a) ca(z, 2’ €) € S(”Cl)(Q x Q) x R”)} )

The elements of Lé‘cl)(Q) are called (classical) pseudo-differential operators in 0 of
order u. Sometimes we omit the subscript x and simply write Op(a) if there is no
ambiguity.

Let us recall a few well known properties of pseudo-differential operators. First of
all every A € L*(2) defines a continuous operator

A C(Q) — C=(9).

Let Ko € D'(2 x Q) denote the distributional kernel of A. We then have
sing supp K4 C diag (2 x Q). We obtain K4 in a unique way by forming

(Kag,u®uv) = /(Au)(m)v(x)dx
for u,v € C§°(§2). Another representation of K4 is
Kale,a') = [ %o, o' e

In particular, taking a symbol a(§) € Séfs D (R™) (with constant coefficients) and defin-
ing

Ha)(©) = [ eCale)ds = (Fa) ©)
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F~1is the inverse Fourier transform, we have
Ka(x,2') = k(a)(x — o).

The operator A is called properly supported if for arbitrary compact K C 2 the
sets (K x Q) Nsupp K4 and (© x K) Nsupp K4 are compact.

Proposition 1.1.8. Every A € L*(Q) can be written in the form A = Ag+ C, where
Ag € L*(Q) is properly supported and C € L~>°(£2).

Proof. Let us choose an arbitrary function w(z,z’) € C*(Q x Q) that equals 1 in an
open neighbourhood of diag (2 x Q) and such that both (Q x M”") (" suppw and (M x
Q) (N supp w are compact for arbitrary compact M, M’ C Q. Then, for A = Op(a) with
a(z,z’, &) € SH(QAxQxR™) we can set Ay = Op(wa) which is properly supported, and
C = Op((1—w)a). The kernel of C'is K¢ = (1—w(z,2"))Ka(z,2') € C®(QxQ). O

Remark 1.1.9. Every A € L*(Q)) can be extended (in the distributional sense) to
an operator A : E'(2) — D'(Q). If A is properly supported then A induces continuous
operators

A:CR(Q) = CR(Q), A:C™(Q) — C®(Q),

which extends to
A:E'(Q)—E(Q), A:D(Q) — D).

1.1.3 Kernel cut-off

In this section we outline some useful material on the so-called kernel cut-off operator,
first applied to symbols a(§) € Séﬁ N (R™). Observe that for every p € R we have

St

(R") c S'(R™), S™°[R") =SR").
Recall that the Fourier transform Fu() := [ e~ u(z)dz defines isomorphisms
F:SR") — SR"), S'R") — S R").
We then have the following important lemma.
Lemma 1.1.10. For every a(§) € SH(R™), p € R, the distribution k(a)(() =
(F~1a)(¢) € S'(R™) has the following properties:
(i) singsupp k(a) C {0};

(i) if ¥(Q) is any cut-off function at 0 (i.e., Y(¢) € C§*(R™),v(¢) =1 for |{] < co,

Y(¢) =0 for || > ¢1 for certain 0 < ¢o < c¢1), we have

(1= 9()k(a)(C) € S(R™).
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Proof. (i) The Fourier transform satisfies the identities
F A€ DEa)(0) = (~OP DUF ) Q)
for arbitrary a € §'(R™),~,d € N". In particular,
k(€7 (=29 a) (€) = PV DZk(a)(¢), N € N. (1.15)

From (—A¢)Va € SF72N(R™) we obtain [([*Vk(a)(¢) = k ((—A¢)Va) (¢) € CT(R™)
for p — 2N < —n — r. Since N is arbitrary, it follows that k(a)(¢) € C°°(R™\ {0}).

(ii) We have £7(—Ag)Na(¢) € SH2N+1MI(R™) for every v € N”, N € N. For
N satisfying p — 2N + |y| < —n we get |k (£7(—=A¢)Va) (¢)] < ¢ with a constant
¢ =c(y,N), for all ( € R™. In other words (1.1.5) gives us

sup
CER™

(1= () [N Dk(a)(€)] < o0
for all v and sufficiently large N = N(v). This implies the same estimate for all N.
This means (1 —(¢))k(a)(¢) € S(R™). O
For every ¢ € C5°(R') we now define an operator
Hz(p): Séld) (R") — Sétcl) (R™)

by setting
Hr(p)a(§) == Fee {p(Q)k(a)(C)}- (1.1.6)

An important example is the case Hx(1)) for a cut-off function v as in Lemma 1.1.10.
In this case we have

Hr(1—)a(§) = a(§) mod S~ (R™.

Definition 1.1.11. Let S*

() (C") denotes the subspace of all h(z) € A(C") such that

(E +in) € Sy (BE)
for every n € R™, uniformly for n varying in compact sets.

The space Sé*c l)(C") is Fréchet in a natural way.

Theorem 1.1.12. For every ¢ € C§°(R"™) the function Hr(p)a(§) has an extension
as a holomorphic function in £ + in € C™, and we have

Hz(p)a(§ +in) € S, (C™). (1.1.7)

Proof. Let us first show that Hr(p)a € S#(R"), i.e., that [Dg Hz(p)a(§)| < c(§)*
for every o € N with some constant ¢ = ¢(a) > 0, for all £ € R™. We have

DEHF(p)a(€) = / e o(C)(—C) R (a) () = / e (OOR(DEa) (C)dC.
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Using F(uv) = (Fu) x (Fv), it follows that

DeHr()a(6) = [ ol€ - D a(d)dé. (1.18)

Since ¢ is a Schwartz function, we obtain
| D¢ Hr(p)a(§)] < /I@(ﬁ —&)|ID%a(&)|dé < CN/<§ — &N gyrlelag

for every N € N, with a suitable constant ¢y = ¢y (@, ). Applying Peetre’s inequality

L+ |’ S<2‘S|(1+| — )" £ €R"and s € R (1.1.9)
EamE < Tr—y or every &,y and s , 1.

we get ~ ~
<§>u—|a\ < c<§>u—|a\<£ _ €>\u—\all.

This gives us

DEHr(g)a(€) < e (€)r1e /<5 _ = N+lu-lallgg.

Choosing N so large that —N + | — |a|| < —n we get the asserted estimates, namely
DgHr(p)a(§) < dn (e, a){€)*~1el with constants dy (¢, a) that can be estimated by
a finite number of semi-norms with respect to ¢ in the Schwartz space.

Now Hzr(p)a(§) extends to a function in A(C™), since it is the Fourier transform of
a distribution with compact support in £. We have

Hr(9)al€ +in) = / e~ (0 Yk(a)(C)dC = Hor(py)a(€)

for 0,(¢) := e%"p(¢) € C§°(R™). To prove (1.1.7) notice first that from (1.1.8) it is
easy to prove that ¢(¢) — (Hr(p)a) (§) is a continuous operator C5°(R¢) — S*(Ry)
for every a(§) € S#(R™). Then the latter continuity yields the assertion. O

Remark 1.1.13. For every ¢ € C§°(R™) the operator Hzr(p) induces a continuous
map

Hr(p) : S,

() (Rn) - S“

e (C")

for every p € R.

1.1.4 Elements of the calculus
Let A € L*(2) be a pseudo-differential operator. Then we call an element o(z,§) €
SH(Q x R™) a complete symbol of A if A— Op(c) € L™°(Q).

Theorem 1.1.14. To every a(x,z’,&) € S*(Q x Q x R™) there is a o(x,£) € SH(2 x
R™) with Op(a) = Op(c) mod L~°(Q) and o(x,&) admits the asymptotic sum

o(w,€) ~ 3 2 DEoa(r, 2!, €)= (1.1.10)

[e3%
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Moreover, there is a &(z',§) € S*(Q2 x R™) with Op(a) = Op(6) mod L™°°(Q) that
has the asymptotic expansion

5(',€) ~ 3 (- D) O ala, o', €) amar (1.1.11)

We call o(xz,£) a left symbol of the operator and &(x',§) a right symbol.
Proof. The proof basically follows from Taylor’s formula:

Let f € C*°(R™). Then for all positive integers N,

fcam= 3 Ty x5 1 / 0 (@7 )¢ + o)

le| <N i=n 7
(1.1.12)
for all {,n € R".

Applying (1.1.12) on a(z,2’, &) with respect to the second variable we obtain
1
a(z,2',€) = Z — (@ —2)*0a(z, 2, §)lo=s + (2,2, §) (1.1.13)
a!
la<M

with a remainder 7/ (z, 2/, €) € SH(Q x Q x R™). For every N we can choose M so
large that |z — 2’| ~2Nrys (2, 2, €) € SH(2 x Q x R™). This means that we can find an
ay € SPEHV(Q x Q x R™) such that Op(ryr) = Op(an). Applying Op on both sides
of (1.1.13) we obtain

Op(a) = 3" ~Op(Dgdalr, o', )=z + Op(ax).

lal<M

If we form (1.1.10) by carrying out the asymptotic sum we obtain immediately Op(a)—
Op(o) = Op(ay) for another ay € S#~2¥(Q x Q x R™). This is true for every N and
hence Op(a) —Op(o) € L~°°(). The second statement can be proved in an analogous
manner by interchanging the role of z and z’. O
In other words, every A € L*(2) has a complete symbol. Furthermore, the map

Op: S*(Q xR™) — LH(Q)
induces an (algebraic) isomorphism
SHQ X R™)/ST®(Q x R™) = L*¥()/L™>°(Q), (1.1.14)
and o7 (A) gives us a linear mapping
ol LA (Q) — SW(Q x (R™\ {0}))

that is surjective, and ker aw =L L@Q).
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Theorem 1.1.15. Let A € L¥*(Q2) and A* its formal adjoint, defined by
(Au,v) = (u, A™), u,v € C5°(2)

with the L?-scalar product (-,-). Then A* € L*(Q), and if A= Op(a) mod L™>°(Q)
for some a(x, &) € SH(QXR™), we have A* = Op(a*) mod L~°°(Q) with an a*(x,&) €
SH(Q2 x R™), and

H~> %D?@g‘a(x@). (1.1.15)

Analogously, if *A is the formal transposed of A with respect to (-,-) we have ‘A €
L*(Q) and *A = Op(c) mod L=%°(Q), with c(x,£) € S¥(Q x R™), and

o~ éD?Gﬁa(z, o). (1.1.16)

Theorem 1.1.16. Let A € L*(Q),B € LY(Q) and A or B be properly supported.
Then AB € LM (Q). If A= Op(a) mod L™>°(Q), a(z,&) € S*(Q2xR"™), B = Op(b)
mod L™°(0), b(x,&) € S¥(2 x R™), then AB = Op(c) mod L~=*°(Q) for a symbol
c(z, &) € SFTY(Q x R™) given by the formula (1.1.4).

The prove can be found in any basic book on pseudo-differential operators, for
example, in [46] or [39].
Remark 1.1.17. Let A € L(Q), B € L%(Q). Then A* € L*(Q), AB € L™ (Q) (if

one factor is properly supported) and

oy (A) =0l (4), oy (AB) = oyj(A)oy(B).

The Leibniz product c(x &) = a(z, §)#b(z, ) of a and b is unique mod S~°(£ x
R™). Let us set e¢(x) := €' and consider a properly supported A € L*(f2). Then

oa(z,§) = e_¢(x)Aeg (1.1.17)

is a C* function in (x,&). Moreover, (1.1.17) is a complete symbol of A satisfying
A = Op(ca). If the operator A is also given by A = Op(a) for an a(z,z’,§) €
SH(2 x Q x R™), then (1.1.17) has the asymptotic sum (1.1.10).

1.1.5 Continuity in Sobolev spaces

As noted above every A € L*(Q) for open 2 C R™ can be regarded as a continuous
operator

A:C§R(Q) = C(N).
In this section we extend A to continuous operators between Sobolev spaces. The
Sobolev space H*(R™) of smoothness s € R is defined as the closure of C§°(R") with
respect to the norm

fulli={ [ n<£>28|<fu><§>|2d§}é . (1.1.18)

In particular, H°(R™) = L?(R"). The operator norm in £(HS(R”), H’“(R”)) will be
denoted by || - [|s,r-
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Proposition 1.1.18. Let a(§) € S*(R™), u € R, and A = Op(a). Then A extends
to a continuous operator A : H*(R") — H* #*(R") and a — A induces a continuous
operator SH(R™) — L(H*(R™), H*"#(R™)) for every s € R.

Proof. Let v € C§°(R™). Then we have

| Aull?_, = / ()20 | (F Au) (€) [2de
- / (€26 a(e) F(6)Pde
- / (€26 a(€) 2| F(€) P < 2 ul]?

for ¢ = supgcgn () 7|a(§)] < oco. O

Theorem 1.1.19. Let a(z,§) € S*(R™ x R™) be a symbol with a(x,&) =0 forxz ¢ K
for some compact set K C R™. Then Op(a) has a continuous extension

At H¥(R™) — H* H(R")

for every s € R and we have ||Als s—, < écn for a constant ¢ > 0 and

¢y = sup (5)7"/ (11— Am)Na(x,g)’dx

£€Rn

_ 2 o
for any natural number N > w Here A, =31, 8673 is the Laplacian in R™.

Proof. The function b(¢, &) := [e™"a(x, {)dz satisfies

b(¢,&)| < en(¢) 2N (E)" (1.1.19)

for every N € N with some constant ¢y > 0. In fact, we have (*b((,§) =
[ e~ D%a(x, £)dx for every a € N™ which gives us for arbitrary N

(2N (¢, €)| = ‘/e‘”g(l — A)Na(x, &)dzx| < en ()M (1.1.20)

Next we set K(&,n) :=b(n —&,£){(£)7*(n)*~* and observe that

/ K (€. m)]de, / K (€ m)ldy < c (1.1.21)

for all n, and ¢ for some constant ¢ > 0. In fact, (1.1.19) gives us together with Peetre’s
inequality

(K (&) <en(€—m 2N <§g)su < en (€ — p)ls—nl=2N



BASICS IN PSEUDO-DIFFERENTIAL OPERATORS 11

which yields (1.1.21) when we choose 2N > n + |s — p|. Applying now the Fourier
transform F,_,, to Au(z), u € C§°(R™), we obtain

Au)o) = [ e =0 Oata,ie)dcde = [ bl ¢ Oa)ae

This yields for any v € H*~*(R")

[@miean= [[ vtn-eomieacan

_ / K (&m)o(n) () ~*a(€)(€)*dgdn.
We then obtain

[(Au, v)| = [(Au, 8)| <

o ([ 1kt Idfdn) (/[ e qu()ldﬁdn>

< clolluslull.

In the latter estimate we have employed (1.1.21). Hence it follows that sup |m|”’v>| <
n—s

c|lul|s, where sup is taken over all v € H*~*(R™)\{0}. This yields || Au||s—, < c[Jul|s for

some ¢ > 0 (since sup, ¢ gu—s(rn)\ {0} df}”“i defines an equivalent norm in H*~#(R™)).

The latter constant is of the form ¢ = éey with é > 0 and ¢y from (1.1.19). For ¢y
we have from (1.1.20)

ey = sup { /| (1-A ,6)|dx

EGR"
for any N > W This completes the proof. O

Corollary 1.1.20. The operator M., of multiplication by ¢ € C§°(R™) induces con-
tinuous operators

M, « H*(R") — H*(R") (1.1.22)

for all s € R. Moreover, ¢ — M, represents a continuous operator C§°(R™) —
L(H*(R™)) for every s € R.

In fact » € C§°(R™) can be regarded as an element in S°(R"™ x R™) with compact
support with respect to . Then M, corresponds to Op(¢), and we can apply Theorem
1.1.19 which shows at the same time the continuity C§°(R"™) — L(H*(R"™)).

Remark 1.1.21. Theorem 1.1.19 has an obvious generalisation to symbols a(x,§) €
S(R’;7 S”(Rg)), Then, in particular, M, for ¢ € S(R™) induces continuous operator
(1.1.22) and the corresponding mapping S(R™) — L(H?®*(R™)) is continuous for every
seR.
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For an open  C R™ we denote by H () the subspace of all v € D'(§2) such
that pu € H*(R™) for every ¢ € C§°(Q). Moreover, HS,,_(2) denotes the subspace

comp
of all w € H*(R™) with compact support suppu C Q. u — |pulls, ¢ € C5°(0Q),

represents a semi-norm system on H} () which defines a Fréchet topology in the

space Hf (). Moreover, H () may be regarded as the inductive limit of the

comp
spaces H*(K) := {u € HE,,,,(R) : suppu C K} for compact K C Q. Every H*(K)
can be interpreted as a closed subspace of H*(R™). The following theorem is an easy
consequence of the above Theorem 1.1.19.

Theorem 1.1.22. Fach A € L*() induces continuous operators

A HS () — HEM(Q)

comp loc

for all s € R. If A is properly supported the corresponding operators

A @) = Hialh(0), A Hiy() — Hi ()

comp comp loc

are continuous for all s € R.

1.1.6 Ellipticity

In this section we study the ellipticity of pseudo-differential operators in any open set
Q CR™

Definition 1.1.23. An operator A € L‘(‘Cl)(Q) is called elliptic (of order p) if for any
left symbol a(x, &) € Séfsl)(Q x R™) of A (i.e., A= Op(a) mod L™>°(R)) there exists
ap(z,§) e S@S(Q x R™) such that

1= p(z,&)a(z,€) € S5 (Q x R™). (1.1.23)

In this case we also say that the symbol a(x, &) is elliptic.

Remark 1.1.24. If a(z,§) € SL(Q x R") is elliptic and o},(x,§) the homogeneous
principal symbol, then a(z,§) is elliptic if and only if afj}(gc,f) # 0 for all x € Q,
€ € R"\{0}. In this case we find a p(x,§) € S;"(Q x R™) which satisfies the relation
(1.1.23).

In fact, we can set p(z,&) = x(€) (ol (z, §))_1 for any excision function x(¢).

Theorem 1.1.25. If A € L?Cl)(Q) is elliptic there exists a properly supported operator
Pe L(_Cf) (Q) such that
I—PA,I— AP e L™(Q).

The operator P is called a parametriz of A.
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Proof. For the proof it is enough to find a p(z,§) € S(_CS (€ x R™) such that for any

left symbol a(x, &) € S, (2 x R™) of the operator A we have
()

1—p(z,§)#a(z,§),1 —alz,#p(z,£) € STF(Q X R™).

In fact, it then suffices to define P as a properly supported representative (modulo
L=°°(Q)) of Op(p). Let us construct p(z,§) in such a way that 1 — p(z, §)#a(z,§) is
of order —oo. Then, in a similar manner we can construct another p(x, ) such that
1—a(z,§)#p(x, ) is of order —co. A simple algebraic argument then gives us p = p
mod S™°. In other words we will content ourselves with the multiplication from the
left. In this proof for abbreviation we omit (z,£) in the symbols and also write S’é‘c D

rather than S&l)(Q x R™).
By assumption there is a p1 € S f; such that

1—pia e S(zll)
By virtue of p1a — p1#a € S(Cll) we also obtain

c::l—pl#aeS(_dl).

This gives us c¢#/ € S(fcfly cf. the notation in Remark 1.1.6, i.e., we can form the
asymptotic sum
oo
j 0
> M e S,
§=0

cf. Theorem 1.1.4. It easily follows that

oo
ZC#] #(1—-¢)=1.
j=0

This gives us together with p1#a =1 —c¢

> | #pita =1,

Jj=0

i.e., we may set p := (Z;io c#j) #p1, which is as desired.

1.1.7 Mellin pseudo-differential operators
In this section we introduce basic notations and observations about the Mellin trans-

form on R, weighted Sobolev spaces and operators in those spaces.
The classical Mellin transform is defined by the formula

Mu(z) = /rz_lu(r)dr, (1.1.24)
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first for u € C§°(R4) and then extended to more general distribution spaces, espe-
cially, weighted Sobolev spaces, also vector-valued ones.

Let A(U), for some open U C C, denote the space of all holomorphic functions
in U (in the Fréchet topology of uniform convergence on compact subsets); more
generally, if E is a Fréchet space, A(U, E) will denote the space of all holomorphic
functions in U with values in E, with the topology of the projective tensor product
A(U,E) = A(U)®, E. Let us recall here that the topology of A(U)®, E is defined as
the strongest locally convex topology on the space A(U) ® E for which the canonical
bilinear mapping (h,e) — h®e, A(U) x E — A(U) ® E is continuous. A semi-norm
on the space A(U, E) can be defined as follows. Let p and ¢ be semi-norms on A(U)
and E, respectively. Then for § € A(U) ® E we set

(p®q)(0) = infzp(hj)q(ej),

where the infimum is taken over all finite sets of pairs (h;, e;) such that 0 = 3, h;®e;.

Let us now go back to the Mellin transform and recall that M defines a continuous
operator

M : C(Ry) — A(C).

Let I's := {z € C,Rez = 3}. Then M composed with the restriction to I'g gives rise
to a continuous operator C§°(Ry) — S(I'g) for every . Moreover, it is well known
that the weighted Mellin transform

Myu(z) == Mu(2)|r,

M, CE(Ry) — S(Ts )

extends by continuity to an isomorphism

N=

M,y LA(Ry) — LA(T —)

Nl

for every v € R, and the identity
_ 1
7™ ull L2 (ry) = (27) 72 ||M7u||L2(F%7W) (1.1.25)

holds. The inverse has the form

(M;lg) (r)= % r~*g(z)dz.
r

-

[

We call M., the weighted Mellin transform (with the weight +).
For u(r) € C§°(R4) we set

(Syu)(t) = e~ (EDhy(e™),

which induces an isomorphism S, : C§°(Ry) — C5°(R) and we have

(Myu)(g — 7 +i7) = (FSyu)(r).
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These relations allow us to define Mellin pseudo-differential operators. In the sim-
plest case we can take symbols f(z) € Sé‘l)( 1_,) and then set

OpX/[(f)U(T) 'y z—>r{f "/,T'—’Zu)(’z)}’ (1126)
first for v € C§°(R4). Using the identity M (r~7u) (2) = Mu(z —y) we can also write
opa (fu(r) = rTopy (T77f) r™?

where (T~7f) (z) := f(z — ) and op,, := opY;. Another interpretation of (1.1.26) is

T —y+ie) 1 , dr’
opy, (f / f(§ —7+2p)u(r’)7dp
0

é“‘-xg

for dp = (27) " Ldp. Writing x = —logr, 2’ = —logr’ we obtain
[e.e] [e.e]
Y i(z—ax) (r ") (=) 1 . —x’ ’
opy (flu(r) = € p 277 f(§ — v+ ip)ule” " )dz'dp.

By virtue of
/ 1
plo—z )(%—*Y)f(5 — v +ip) € S(”Cl)(Rm X Ry x Rp)

it follows that
OPX/[(f) € L(d) (R+)

with L‘(L 1)( +) being defined as the space of pseudo-differential operators on Ry,
based on the Fourier transform.

Definition 1.1.26. Let ¥ C R”™ be an open set, and pn € R. Then S(Cl) Ry x X xC x

R™)po1 is defined to be the space of all h(r,z,z,§) € A((C,S'(Cl) (Ry x X x R™)) such
that
h(r,z, B +ip,€) € Sy (Ry x X x R E")

for every B € R, uniformly in compact 3-intervals.

Observe that the kernel cut-off procedure of Subsection 1.1.3 can be formulated in
terms of Mellin transform rather than the Fourier transform. More precisely, we have
the following result.

Let C% (R4 ) denote the subspace of all ¢ € C°°(R) such that

sup |(td;)Fp(t)| < oo for all k € N.

teR,

For every such ¢ € CF (R4 ) and every 8 € R we have a kernel cut-off operator

HM(QO) : f(’l",$,6+ 7:7-7 f) - h(’l",l‘,ﬁ + iTa f)



16 THE PSEUDO-DIFFERENTIAL CONE CALCULUS

given by Ha(@)f := Mp(t)M~1f, which defines a bilinear continuous map

O3 (Ry) x S!

(Cl)(EJr x X xTgxR") — SV

() (R4 x T xTg x R")

for every u € R. In particular, for supp ¢ compact we obtain a bilinear continuous
operator

Co°(Ry) x S,

(ey(R+ x T x T x R") — S

() (R4 x T x T x R™).

Theorem 1.1.27 (Mellin quantisation). Let p(r,z,p,&) € S5(Ry x ¥ x R})z")
and

p(r,z,p,§) == p(r,x,7p,§),

then there exists an h(r,z,z,€) € SH(Ry x ¥ x C x R")o1 such that
Op,..(p) = 0Py Op,(h) mod L™ (Ry x %)

for every B € R.

We now introduce weighted Sobolev spaces on R based on the Mellin transform.
They will contain the smoothness s € R and in addition the weight v € R.

Definition 1.1.28. H*7(R,) for s,y € R is the closure of C§°(Ry) with respect to
the norm

[l

1 . 2
Mo (Ry) = {27” / (1+2%) IMW(Z)FdZ} :

T
-

=

We set
H(R) = HO(Ry).
In view of (1.1.25) we have
HOY(Ry) =L (Ry), HO(Ry) = LA(Ry).

The transformation u(r) — (Syu)(t) extends to an isomorphism

Syt HYY(Ry) — HP(R)
for every s,v € R. In other words, we have

||U||HSW(R+) ~ ”S’YUHHS(R)

in the sense of equivalence of norms.
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1.2 Operators on a manifold with conical exits to
infinity

1.2.1 Manifolds with conical exits to infinity

Let M be a C'°° manifold, m = dim M, equipped with a free R -action z — dyz, A €
R4, z € M. Then the orbit space X is a C'*° manifold, and we have a diffeomorphism

e: M —Ry x X, e(z) =: (r,z), (1.2.1)

such that e(drz) = (Ar,z) for all A € Ry, 2 € M. We will say that M is endowed
with the structure of an infinite (straight) cone, if there is fixed an open covering U
of M by neighbourhoods of the form V = e~ (R, x U), where U runs over an open
covering i of X by coordinate neighbourhoods, and charts

x:V—-T
for conical ' C R™ (i.e., z € I' & Az € T for every A € R, ), such that

x(0x2) = Ax(2)
for every A € R4, z € M. The manifold X will also be called the base of the cone.

In this notation we mainly focus on what happens “at infinity”, i.e., over
e 1((R,00) x X) for any R > 0.

Definition 1.2.1. A C* manifold M is said to be a manifold with conical exits (to
infinity), if M contains a submanifold My endowed with the structure of an infinite
(straight) cone such that if X is the base of the cone and e : Mo — Ry x X a map
in the sense of (1.2.1) the set

My := M\ e ' ((R,00) x X) (1.2.2)
s a C'*° manifold with boundary OMy = X, for a certain R > 0.
On Mg,y = My \ e *((0,R) x X) for some R > 1 we can define dilations

Oy : M[R,oo) — M[R,oo) for A > 1.
By definition a manifold M with conical exit can be written as a union

M = My U M.,

Let us fix a corresponding partition of unity {0, s} in such a way that @ €
Cs°(intMp) and ¢o € C§° (e ((Ro,00) x X)) for some 0 < Ry < R with R as in
(1.2.2).

Example 1.2.2. (i) M = R™ can be regarded as a manifold with conical exits
when we set My, := R™ \ {0}; then X = S™~! and My := {x € R™ : |z| < R}
for any R > 0.

(ii) The finite cone X =R, x X for a C* manifold X has a conical exit. In this
case we can set Mo = X, and My := (0, R] X X for any R > 0.
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Let us now endow M with a Riemannian metric g as follows. Choose any Rieman-
nian metric go on MyUC:, where C; 2 [R,¢) x X, for some & > 0, is a collar neighbour-
hood of X in M, and a Riemannian metric g; on My, and set g = wgo + (1 —w)g1,
where w € C%°(My U C;) is a function with 0 <w < 1and w = 1in Mo U C, /5. We
define g; as a conical metric by setting g; = dr? + r?gx for any Riemannian metric
gx on X.

In the following notation we assume, for simplicity, that the base X of the cone
is a compact closed C° manifold. Let H%9(M) for s,g € R denote the space of all
u € H{ (M) such that

ex(poct)(r, @) € HEf o (X™) (= (r) 7 H,

cone cone

(X™M). (1.2.3)

Here Hj  .(X") is the subspace of all f € Hj (R x X)|g, xx such that for every
coordinate neighbourhood U on X and every diffeomorphism £ : Ry x U — T to
an open conical subset T' € R2Z*! such that k(Ar,z) = As(r,z) for all A € Ry,

(r,x) € Ry x U, we have
(1 —w)pu) (s~1(2)) € H*(RET)

for every cut-off function w and ¢ € C§°(U). We set

|

(1.2.4)

el ron iy = {10 e neasy + Nlew (oot ey}

where H*(int-) means the standard Sobolev space of smoothness s on a compact C*°
manifold with boundary. The space H®*9(M) can also be equipped with a Hilbert
space scalar product such that the associated norm is equivalent to (1.2.4).

By
S(M) := lim H"* (M)
keN

we obtain an analogue of the Schwartz space on a manifold M with conical exits.
Furthermore, we need an analogue of the Schwartz space S(R™ x R™) for the case
M x M that we define to be the complete projective tensor product

S(M x M) := S(M)&,S(M).
Concerning the complete projective tensor product see (1.2.10).

Remark 1.2.3. The spaces H%9(M) have similar properties as those in R™. We have
continuous embeddings H® 9’ (M) — HS9(M) for s’ > s, g > g that are compact for
s' > s, g > g. Moreover, the scalar product (-,-)r2(nry, which we take linear in the
first and anti-linear in the second argument, induces a non-degenerate sesquilinear
pairing

H*9(M)x H™579(M) — C,

such that H=%79(M) can be identified with the dual of H%9(M).
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1.2.2 Calculus in the Euclidean space

According to Example 1.2.2 (i) we interpret the Euclidean space R™ as a manifold
with a conical exit. Pseudo-differential operators will refer to symbols in the sense of
the following definition.

Definition 1.2.4. (i) The space S*¥(R™ x R™) for p,v € R is defined to be the
set of all a(z,§) € C=(RY x RY") such that

sup ()~ gy DY DY a(w, €)| (12.5)
z,£ER™
is finite for every a, 3 € N™,
(ii) The space SH¥* (R™ x R™ x R™) for p, v,/ € R is defined to be the set of all
a(z,2’,§) € C(RY x R x RY") such that
sup (z)"vFlel <x/>—u’+|a'\ (g)—r1ol !D?Dg//D?a(x, ', £)| (1.2.6)
x,x’ ,EER™
is finite for every a, o/, 3 € N™,

Remark 1.2.5. The expressions (1.2.5) for o, 8 € N™ form a countable semi-norm
system that turns S*¥ (R™ x R™) to a Fréchet space. A similar observation is true of
(1.2.6) in connection with the space S*"¥ (R™ x R™ x R™).

Theorem 1.2.6. Let aj(z,&) € S*¥i(R™ x R™), j € N, be an arbitrary sequence,
such that u; — —o0, v; — —00 as j — o0o. Then there exists an a(x,&) € SHY(R™ x
R™) for p = max{u;;j € N}, v = max{v;;j € N}, such that for every N € N there
is an M = M(N) € N such that

M
a(2,6) = 3 a;(,€) € SN DW= (NED (R rm),
=0

For any other a(z,&) € SHY(R™ x R™) with this property we have
a(w,§) - d(x,€) € STUT(RT x R™) i= [ S (R™ x R™).

J7R%
Any choice of a as in Theorem 1.2.6 will be called an asymptotic sum of the a;’s,

written a ~ Z;io a;. It can be proved that when x(z,¢) is an excision function in
(z,€) € R®™, then there exists a sequence of constants ¢; > 0 such that a(x,§) =

Do X <x’§> a;j(z,&) converges in SH(R™ x R™).
¢j

Remark 1.2.7. Given a(x,§) € SH(R™xR™), b(z,§) € ST (R™XR™), p,v,0,7 €
R, we can form the Leibniz product (a#b)(x,&) as the asymptotic sum

1 [e3 [
(a#tb) (2,€) ~ Y — (¢ a(x,€)) DIb(,€)
in the space SFTTVTT(R™ x R™), taking into consideration that (G?a(x, €))Dyb(x,€)
belongs to Stto—lalvtr=lal(Rm  R™) and Theorem 1.2.6.



20 THE PSEUDO-DIFFERENTIAL CONE CALCULUS

Lemma 1.2.8. For p > 0 There is a function w(z,z’') € S%00(R™ x R™ x R™)
(independent of the covariable &) such that

{1 v —a'| < £(a),

w(z,2’) =
0 |z—2a|>px).

Proof. Let ¢ € C*°(R) be a function such that 1(t) = 1 for |¢| < % and ¥(t) = 0 for
[t| > 1; then it suffices to set w(z,z") = Y(|lz — 2’|/ p{z)). O

Remark 1.2.9. a(x,£) € S#¥(R™ x R™) implies w(x,z')a(z,£) € SHO(R™ x R™ x
R™) for any w as in Lemma 1.2.8.

Let us set

Op(a)u(z) := // =z, 2! (e )da' de (1.2.7)

for an a(x,2’,€) € SH¥* (R™ x R™ x R™) and u € S(R™). Then, using standard
technique on pseudo-differential operators (especially, oscillatory integral arguments)
we obtain a continuous operator

Op(a) : S(R™) — S(R™).

Remark 1.2.10. Operators (1.2.7) make sense for amplitude functions that may be
much more general than S*¥" (R™ x R™ x R™), see, for instance, Kumano-go [19].
If necessary we will give more comments on possible specific properties of a(x,x’,§).

Let us set
L#Y(R™) := {Op(a) : a(z,§) € SH(R™ x R™)},

and
LT ®(R™) = ] L*"(R™).
n,vER

We now formulate a number of properties of these spaces.

Theorem 1.2.11. (i) The space L~°%~°(R™) coincides with the space of all inte-
gral operators of the form Cu(x) = [ e(z,z")u(2’)dz’ for c(z,z’) € S(R™ xR™).

(ii) We have
LMY (R™ ={0p(a)+C : a(z,2’,&) € SO (R™ x R™ xR™),C € L™°%"°(R™)}.
(iii) The map
Op : SHY(R™ x R™) — LMY (R™) (1.2.8)
s an isomorphism.

Remark 1.2.12. Using Remark 1.2.5 and Theorem 1.2.11 (iii) we obtain a Fréchet
space structure in L*Y(R™).
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Theorem 1.2.13. Every A € L¥¥(R™) induces continuous operators
A H¥(R™) — H7HI7V(R™)
for all s,g € R. Here H*9(R™) := (x) 9H*(R™).

Let us now consider classical symbols. First identify S*(R™) with the set of all
a(€) € S*O(R™ xR™) which are independent of z. Then we have the subclass S (R™)
of classical symbols, its Fréchet topology is induced from the one on S*(R™) plus the
Fréchet topology of the projective limit of the mappings

n: SHR™) = SEUTIR™ {0}),j €N
pn : SHER™) — SH-VFD(R™) N e N
as in Remark 1.1.3. This turns S%(R™) to a nuclear Fréchet space.

We now consider the spaces S}j(Rf") and S¢(R}") with respect to the variables £ and
x, respectively, and set

ShY (R™ x R™) := Sh(R) @S (RY). (1.2.9)
We then obtain the subspace

SM;V (R’H’L X Rm) C Su;u(Rm % Rm)7

Clg;z
of so-called classical symbols (in £ and z), and we set
LY (R™) :={O0p(a) : a(z, ) € STV (R™ x R™)}.

For brevity, we sometimes drop the subscripts &;x and write S5, L/" instead of
S 51:1 and L’C‘fgw, respectively. If a consideration is valid both for classical and general
symbols or operators, we write subscripts (cl)g_z and (cl), respectively.

Recall that @, stands for the complete projective tensor product. If E and F are two
Fréchet spaces, every element § € E®, I is the sum of an absolutely convergent series

0= Ann ® yn, (1.2.10)
n=0

where (),,) is a sequence of complex numbers satisfying Y > |\,| < oo, and (z,,)
(respectively (y,,)) is a sequence converging to zero in E (respectively F'). For more
information about the projective tensor product and its completion see the book of
Treves [47] or Ko6the [17]. If G is another Fréchet space and o : E — G a continuous
map, we also obtain a continuous operator

c®id: E®,F — G&,F.
A similar relation holds with respect to the second factor. In particular, let

oy ShRE) — SWRE\ {0})
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and
oe : SHRT) — SR\ {0})

denote the operators that map a symbol to its homogeneous principal components
of order p and v in the corresponding variables £ and x, respectively. This induces
operators

oy : SG7 (R™ X R™) — SE(R™\ {0)&~55(R™) (1.2.11)
and
oo : ShY (R™ x R™) — SHR™)@-5™) (R™\ {0}) (1.2.12)

(here, for simplicity, we omitted corresponding identity maps for the other factors).
Now we can apply o in (1.2.11) with respect to & and oy, in (1.2.12) with respect to
£. Tt is well known that the resulting maps coincide and define a map

Ope =0y @ 0c : S‘u:x (R™ x R™) — SEW(R™\ {0})&,5W) (R™ \ {0}).

cl

We call
o(a) == (oy(a),0e(a), oy.e(a))
the principal symbol of the classical symbol a(z, &) € Séfjll;& (R™xR™). For A = Op(a)

we also write
o(A) :=o(a),

and oy (A) 1= 0y (a), 0e(A4) := 0e(a), oy e(A) =0y e(a).
Remark 1.2.14. Let us consider arbitrary elements
py(z,€) € SW(RE\ {0})0rSH(RY),
Pe(x, &) € SH(RE)&-S™ (R \ {0}),
Pye(,€) € SWRE\ {0h)@,5™ (R \ {0}),

such that
Ue(pw)(ﬂ?a@ :Uw(l?e)(%f) :p¢,e($7§)' (1'2'13)
Then there exists an element p(z,§) € Sﬁ:r (R™ x R™) such that

op(p) = py, 0e(p) =Pey, Type(D) = Dye-

In fact, let x be an excision function in R™. Then it suffices to set

p(x,€) = x(§)py(x, &) + X (T){Pe(2,8) — X(§)Pye(2,6)}- (1.2.14)

Moreover, if a(z,&) € S(‘fl:t (R™ x R™) is an arbitrary symbol with

O’w(a) = Dy, Ue(a) = DPe, O'w,e(a) = DPiyes

then we have
a(z,€) —p(w,€) € G4 THR™ X R™).

Clg;m
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Definition 1.2.15. An operator A € L*¥(R™) is called elliptic of order (u,v) if for
the symbol a(x,&) € SHY(R™ x R™) in the representation A = Op(a), (¢f. Theorem
1.2.11 (iii)), there is a p(z,§) € S™H~Y(R™ x R™) such that

1 —p(z,8a(z, &) € STHHR™ x R™). (1.2.15)
Remark 1.2.16. An Operator A € L"(R™) is elliptic if and only if
oy(A)(z, &) # 0 for all (z,£) € R™ x (R™\ {0}),

0e(A)(z,&) # 0 for all (z,&) € (R™\ {0}) x R™,
oye(A)(x,€) # 0 for all (z,&) € (R™\ {0}) x (R™\{0}).

These conditions are independent of each other. For instance, A = Op(a) for a(z,§) =
(EY + (x)V satisfies the first two conditions, but the third one is violated.

Theorem 1.2.17. For an operator A € L*¥(R™) the following conditions are equiv-
alent:

(i) the operator
A HS9(R™) — H5 19~V (R™) (1.2.16)

is Fredholm for some s = sg, g = go € R;

(ii) the operator A is elliptic.

The Fredholm property of (1.2.16) for sg,go € R implies the same for all s,g € R.

Theorem 1.2.18. An elliptic operator A € L’(‘C;S(Rm) has a parametric P €
L™ (R™), e,
I—PA, [ — AP € L~ (R™).

Proof. Let us first consider the non-classical case. Let a(x, &) be the (according to the
bijection (1.2.8) unique) symbol associated with A and choose p(z,€) as in (1.2.15).
Then

p(z,&)a(z,€) =1 mod S~HI(R™ x R™)

implies

p(x,&)#a(z,€) =1 mod S™HTHR™ x R™).
Thus there is a ¢(z,£) € STH7H(R™ x R™) such that

p#Ha=1—c. (1.2.17)

Then, if ¢#7 means c# - - - #c with j factors, and using that the Leibniz product is
associative, it follows that

> H#(1—c)=1 mod STTF(R™ x R™);
§=0
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(the infinite sum is interpreted as an asymptotic sum). Thus (1.2.17) gives us
(Zc#j)#p#a =1 mod ST®T®(R™ x R™).
3=0

Therefore, q := (Z;io A N#p € STHTV(R™ x R™) has the property q#a = 1

mod ST °(R™ x R™). By virtue of Op(q)Op(a) — Op(q#a) € L=°°>°(R™), and
Op(g#a) = 1 mod L~>~>°(R™) shows that Op(q) is a left parametrix of A. In a
similar manner we obtain a right parametrix which shows that Op(q) is a two-sided
parametrix, and we may set P = Op(g). In the classical case we can proceed in an
analogous manner using that asymptotic summation preserves classical symbols. Let
a(z,£) be classical; then if we set

py(a,€) = 0y (a)(@,€), pe(,€) = 0. (a)(2,€), py.elw,€) = oy (a)(@,€),
it can be easily verified that
Uw(pe)(x?g) = Cfe(pw)(x,f) = pw,e(xaf)a

and hence, according to Remark 1.2.14, there exits an element p(z, £) € Sc_lgl_”(]Rm X
R™) such that

0'1/;(]3)(.%,5) :pdl(mag)v Jc(p)(xag) :pc(xag)v O’w,c(p)(lﬂ,f) =p¢,c(x,€).

Now we continue as in the first part of the proof. Since the Leibniz product of classical
symbols is again classical, we have ¢ := (3272, c#)#p € SH77(R™ x R™) and

cleiz
satisfies ¢#a = 1 mod S™°%~°°(R™ x R™). This shows us that Op(q) € L"""(R™)
is a parametrix of A. O

1.2.3 Invariance under push forwards

Let ' C R™ be an open set of the form
F={zeR™\{0}:z/|z| €U} (1.2.18)
for a coordinate neighbourhood U on the unit sphere S™1. Let
SEV(T x R™)  (SE"Y (I x T x R™))

denote the subspace of all a(z,£) € S (R™ xR™) (a(z,2’,£) € SV (R™ x R™ x
R™)) such that there is a I’y C T of the form

Fo={zeR™: |z| >¢, z/|z| € Uy} (1.2.19)
for some € > 0 and Uy open, Uy C U, with

a(x, ) =0forx ¢ Ty (a(z,2’,€) =0 for z,2" € T).
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Moreover, let So(I'xI") denote the set of all ¢(x, ') € S(R™ xR™) such that ¢(z, ") =
0 whenever z ¢ Ty or 2’ & I’y for some I'y C I of the form (1.2.19). Define L, °~*°(T")
to be the space of all C' € L=°~°°(R™) with kernel in So(T" x T'), and

LE¥(T) = {Op(a) + C s ale, €) € SE¥ (T x R™), C € L7 (T},

In an analogous manner we define Lf) (T") as the corresponding subspace of Lf™ (I")

with symbols in ngc'/lw(l’ x R™) 1= S(’fl&”r (R™ x R™) N S§ (T x R™).
Consider a diffeomorphism _
p:I'—=T
between open conical sets of the form (1.2.18), where

P(AZ) = Ap(T)
forall \€ R, Z €. Given an 4 € Lg"”(f) we now form the operator push forward
A = p, A by setting B
A= (g Ay
with the function pull back *.
Theorem 1.2.19. The operator push forward ¢, induces an isomorphism

@, : LY(T) — LYY () (1.2.20)

for every u,v € R.

The proof will be given in several steps. In particular, following the lines of Schrohe
[33], we derive an asymptotic expansion for the symbol a(x,&) of ¢.A. First it is
evident that ¢, restricts to an isomorphism

0 Ly () — Ly > (D). (1.2.21)

Therefore, we may assume

Au(z) = // e F=Eeq (3 E)u(i)di'dE, @ € S(R™),

for an a(z, &) € S (T x R™). Let w(Z, ') be a function supported near the diagonal,
as in Lemma 1.2.8, and write

A = Op(a) = Op(a,) + Op(as). (1.2.22)

We shall show in Lemma 1.2.25 below that Op(as) € Ly ™"~ *°(T"). Theorefore, it is
enough to consider A; := Op(a; ). We now insert @(z') = u(z’) where 2/ = ('), i.c.,
@ = p*u. Let us set, for convenience, x := ¢~ 1. Then Aju(z) := (¢*) L A;p*u takes
the form

Aju(z) = // e (X(@)=x(=))EG, (x(x),x(2),€)u(z’)| det dx(z")|da’ €. (1.2.23)

In order to reformulate the latter expression we employ the following lemma.
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Lemma 1.2.20. Let z,2' € T and |z — 2’| < §(x) for a sufficiently small constant
0>0. Let

D(x,2') == / dx (2" + t(z — z'))dt.

0
Then we have

(i) x(z) — x(z') = D(x,2")(x — a'), moreover, DAz, \z’) = D(x,z') for every
PNS R_;,_,'

(ii) D(z, ') is invertible for |z — 2’| < p{x) for a constant 0 < p < 4.

Proof. (i) is the mean value theorem. The property (ii) follows from the invertibility
of dx(z) = D(x,x) and from the homogeneity of the transformation x. O

We now return to the formula (1.2.23) and write
Aju(z): = // ei(x(ﬂﬁ)—x(ac’))éd1 (X(x)7x(£/) é) (z )|det dx(z )|dx'd£,
// @8, 2! E)u(a!)da! dE (1.2.24)

for € := *D(z,2')¢ and
o, /,€) 1= i1 (x(z), X(&), D (@, )¢) | detdx(a')|des DLz, 27)|.  (1.2:25)
Let us now characterise the behaviour of ¢(z, 2/, €). First observe that

c(x,2’, &) € SHO(R™ x R™ x R™).

Applying Taylor’s formula (1.1.12) with respect to the second variable at x we
have for every N € N

—plel
C(l‘,x/,f) = Z %Dz’c(xﬂxlvg) (JJ - x/)G + TN(JJ,J)/,f)

lo|<N v
where N
rn(z,a’, &) = (N +1) Z %w(m,x’,f)(w —a')?
16]=N-+1
with ro(z,2',§) = fo —t)NDY c(z,x + t(a' — x),§)dt. It follows that
Op(c) = Op Z 585 0 c(x, 2 5)‘ - + Op(ry) (1.2.26)
[o|<N

where Op(ry) = Op( Z\GI:NH %8?7“9(:107 x',é)). More precisely, setting

1
co(x, 2’ &) = @359Dz,c(x,x',§), (1.2.27)
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0 € N™ and
N—|—1

CN(xa xl7 f) =

/ RDY (v, x+t(a' —x),§)(1—t)Ndt, (1.2.28)
|0]= N+1

we have

//ei(mfz/)g( 9)‘6|D6,C(x,x/,f)

and

//e“ﬂﬂ—m Ern(z, 2, u(a)da' A = // W28 (@, 2!, Eu(x)da'de (1.2.30)

for u € S(R™), N > p+m. This follows by integration by parts and using the relation
agaei(mfx )E — Z|a|(l‘ _ x/)aei(xfa: )5, a € N™.

(z — ") ou(z’)dz'de

' =x

://ei(Iﬂ”,)éc(;(x,x,f)u(:zr/)dx/df (1.2.29)

Theorem 1.2.21. We have by(z, &) = co(x, z, &) € SHI0V=I0/R™ x R™) for every
6 € N™. Moreover, if we define a symbol b(x,&) € SHY(R™ x R™) by the asymptotic
sum b(z,&) ~ D genm bo(x, ), we have

Op(c) = Op(b) mod L™°7°(R™).

For the proof we establish a number of auxiliary results. First, for §# € N™ and
0 <t <1 we define the functions
cot(z, 2’ &) = 85D0/c(x z+t(a' —x),§),
fulw, @', €) = (x(@) x (o + e’ = 2), D7 (2,3 + ' — 0))€),
g:(x, x’) | det dx (z + t(2' — 2))],
he(z,x) }detD Y,z + (2! —m))’

By definition we have the relations

c= figih1, cg = %ang'(flglhl)a co.e = O¢ DY (frgihe).
Lemma 1.2.22. (i) We have for j >0
(x+t(z' —2)) 7 < Clx)y Iz —a')
for a constant C > 0 independent of t for 0 <t < 1.
(ii) For every a,a’, 3 € N™ we have
\D“Da:gf(z,ﬂf’)l < C<I>7‘a+a"<z — af)letel,
[DEDY h(,a')] < Cla) 714 — o) ot
D3 D3 D¢ ful, ', )] < Ol ) Iore i — afylorerl,

where C' > 0 is a constant independent of t for 0 <t < 1.
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Proof. (i) is a consequence of Peetre’s inequality (1.1.9). The estimates in (ii) follow
by using (i), the homogeneity of the transformation x, and the Leibniz rule, together
with induction. O

Corollary 1.2.23. For all multi-indices a, o', 3,0 € N™ we have
() |D3D% Dielr,a’,6)] < C{ey—17Ia)r=lote’l (g — 7)o’

(i) |D2D% Do (.2, €)| < OEy—1F01zyr=l0atall (g grylovarta’l,

(i) cp(z,z,&) € SHIOV=IOl(R™ x R™);

(iv) |Dg Dy Dfen(a,a',€)] < CLeyN =1l ()r=N=tlodkell( — )N Hecke'l,
for all (z,2', &) € R¥, with some C > 0 (depending on the multi-indices).
Remark 1.2.24. There is a constant C' > 0 such that

D3 Dy D e, €)] < CLE 1)
for all (z,2',€&) € R3™.

In fact, by virtue of Corollary 1.2.23 (i) it is enough to observe that (x —a') < C{(x)
on the set {(z,2) € R*™ : ¢(x,2',&) # 0}, for some C > 0.

Proof of Theorem 1.2.21. Let us set by (x,§) = ZIB\SN co(z,x,€) and form

g(xvx/7£) = CN(Z',Z'/,E) - (b - bN)($7§)
Then Op(c) — Op(b) = Op(y).
By virtue of (1.2.26) and (1.2.30) we have Op(c) — Op(ry) = Op(by), which

implies

Op(c) — Op(b) = Op(c — bn) — Op(b — bx) = Op(rn) — Op(b — by)
= Op(cen) — Op(b — by).

The function g(z,z’, ) satisfies the estimates
IDEDY Dg(w, o’ €)| < (e~ N1 g Noledkell(y — ) Nletell - (1.2.31)

For cy(xz,2’,€) this is contained in Corollary 1.2.23 (iv), while b(z,§) — by (z,&) €
Su=Nw=N(Rm » R™) also satisfies such estimates. To complete the proof of Theorem
1.2.21 it is enough to show that Op(g) € L™°~°(R™), i.e., that this operator has
an integral kernel k(z,2’) € S(R™ x R™). The kernel has the form

k(e.a') = / ey (2, ! €)de.
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By virtue of the estimates (1.2.31) where N is arbitrary we have
DD k(z,a') = / DD (! (5 2! €)}ae (1.2.32)
with admitted differentiation under the integral sign. Next observe that for arbitrary
natural M and «,a’ € N™ we have
sup [(z)M (z — /Y DD k(xz, 2')| < oo, (1.2.33)

where sup is taken over all z;, 2’ € R™. In fact, inserting (z—a') 2L (1—Ag)Feilz =2 =
e@=28 in (1.2.32) for arbitrary L, integrating by parts and using (1.2.31) gives us
immediately (1.2.33), for N large enough. The estimate (1.2.33) implies k(z,2’) €
S(R™ x R™). In fact, it is enough to observe that

1+ |2 + |2'] < ela)(z — ')

for some ¢ > 0.

O
Lemma 1.2.25. Let d(z,2’,§) :== (1—-w(z,2'))a(z,§) fora(z,£) € S (I xR™) and
w(z,z') supported near the diagonal as in Lemma 1.2.8. Then Op(d) € L=°°>°(T").

Proof. We apply Taylor’s formula on d(z, 2, &) with respect to a’

(aj - xl)a + ?”N(:E,:ZT/,f) = TN(‘T75L'/3§)7

z'=x

—)lel
Ao = 3 CO Dy, ¢

la|<N

where
/ (_i)N+1 I /
TN(-’TJ,%,S):(N‘FI) Z 7'7’04(.%,%,6)(1'71‘)01
|a]=N+1 «
and L
o, §) = [ (1= 07D (e + '~ 0), €.
0

Now if we set

N+1
dN(JT, x/ag) = Z T—"'_a?’ra(xa x/a§)7N S N7
la|=N+1 '

we get that Op(d) = Op(dy). This implies that Op(d) has a kernel of the form

') = [ €y (o, ),
For dn we have the estimate
|DSDS Dldy(z,2',€)| < (g~ N8l (g)v=N=t=lotall(y g7y N¥1tlatal])

which can be proved in a similar manner as (1.2.31). It is now easy to see, as in the
proof of Theorem 1.2.21, that k(z,z’) € S(R™ x R™). O
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Proof of Theorem 1.2.19. The formula (1.2.22) together with Lemma 1.2.25 and re-
lation (1.2.21) reduces the assertion to the operator A; = Op(a;). We then have

Ay = ¢, Ay = Op(c), cf. the formula (1.2.24). The expression (1.2.25) for ¢(x,2’,¢)
shows us that

e(x,a/,€) € SEO(T x T x R™),

provided that w(Z,Z’) is chosen in a suitable manner. Now Theorem 1.2.21 gives
us A; = Op(b) mod L™%7%°(R™) for b(z,&) ~ > 4co(x,x,§). By virtue of formula
(1.2.27) the asymptotic sum can be carried out in S (I'xR™). Thus Op(b) € L™ (T).
Moreover, (1.2.26) together with (1.2.28) and (1.2.30) gives us

Op(c) = Op(b) mod Ly>*">(I),
where, as we saw, Op(b) € LE™(T), and hence, A; € Ly (T). O

Theorem 1.2.26. The operator push forward induces an isomorphism

¢ut Ly (T) — Lgig(T)
for every p,v € R.

The proof will be given in Subsection 1.2.4 below, after some additional material on
classical symbols and operators.

1.2.4 Classical symbols and operators with exit property

In this section we deepen the material on classical symbols and operators in the
pseudo-differential calculus with exit property. First observe the following relations.

Example 1.2.27. Let us take functions py,pe, Py of the form

Py (@,8) == f()(§) 9(x),
pe(m,ﬁ) = f(g) g(u)(x>7
pw,e(xvg) = f(/L) (f) g(v)(x)
for arbitrary f(§) € SHRY), g(x) € SH(RLY), where f() and gq, are the respective

homogeneous principal parts of f and g. Then the relation (1.2.13) is satisfied, and
we can form the function p(x,&) by (1.2.14).

Remark 1.2.28. Ana(z,§) € S (R™ xR™) belongs to S (R™ xR™) if and only
if there exist elements .

Py, €) € SUTI(RE\ {0})@r S5~ (RY), (1.2.34)

Pej(z,€) € S5 (RE) @S (R \ {0}), (1.2.35)

Ppej(,€) € SEID(RE\ {01 @SV (R \ {0}) (1.2.36)



OPERATORS ON A MANIFOLD WITH CONICAL EXITS TO INFINITY 31

J €N, such that if we form p; analogously as (1.2.14) in terms of (1.2.34), (1.2.35),
and (1.2.36), then we have

N
a(z,€) =Y pj(w,€) € S WD (NFD) R g,

Jj=0

for every N € N. In this case we also have

Py,0 = 0p(a), Peo = 0e(a), Ppeo = Oyp.e(a),

and

7—1 J—1 J—1
pos = o <a—zpl> R <a-zpl> s = <a—zpl) |
1=0 =0

=0

Let Sé”] (R™ x R™) be the space of all a(z,£) € C°(R™ x R™) such that
a(x, \&) = Ma(z,&) forall A > 1,2 e R™,|¢| > ¢

for a ¢ = ¢(a) > 0. In an analogous manner we define s (R™ x R™) by interchanging
the role of x and &. Set

Sl .— griv S;[CV]7 Sluliv .— guiv S&[ﬂ]'

Let S(’fl;[u] (R™ x R™) denote the subspace of all a(z, &) € S#[F(R™ x R™) such that
there are elements ax(x,§) € Sgt_k} N SLV], k € N, satisfying

N
a(,&) =Y ag(x,&) € SHINTUV(R™ x R™)
k=0
for all N € N. Moreover, define Sé‘l;:(Rm x R™) to be the subspace of all a(x,§) €

Sk (R™ x R™) such that there are elements ay(x,&) € SHF#(R™ x R™),k € N,

satisfying
N

a(z,8) = > ax(x,&) € SHNFIV(R™ x R™)
k=0
for all N € N. By interchanging the role of z and £ we obtain analogously the spaces
SEEY(R™ x R™) and S47(R™ x R™).
The following theorem gives us an equivalent definition of the spaces 551:, (R™ x

R™), cf. (1.2.9), which we will use for proving Theorem 1.2.26. A proof of Theorem
1.2.29 can be found in [48].

Theorem 1.2.29. Sé‘lgyz (R™ x R™) is the space of all a(xz,£) € SH(R™ x R™) for

which there are sequences

ar(2,6) € SETM keN and bi(z,€) € S 1eN (1.2.37)

cl
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such that
N N
- Zak(x7§) € S(I:LI:(N+1);U7 (I((E,f) - Zbl(xué-) € S(éli;/ (N (1238>
=0

for all N € N.

Proof of Theorem 1.2.26. After the proof of Theorem 1.2.19 in the preceding section
it is enough to verify that the symbol b(z, £) is classical which follows when we show
that the summands by(z, ) in the asymptotic expansion of b(z,§) are classical. Let
us mainly consider c(z, x,§); the arguments for cg(z, x,§),0 # 0, are similar.

Since the function a(z, 5 ) is classical in § and & we can find homogeneous components

an(#,€) € SETHVR™ x R™), bi(#,€) € S5 TIR™ x R™), (1.2.39)

Cl—

k,7 € N such that

N
a(7,6) — Y an(@,€) € 8 VTR x R™)
k=

M
a(#,6) — Y _bi(#,6) € SE~ (M (gm  R™)

for every N, M € N. Apart from the factor w(, '), which drops out when we restrict
ourselves to the diagonal, we can substitute the variables (Z,¢) as

i=x(x), &='d(v)¢,

in the homogeneous components (1.2.39) (using that ‘D~!(z,x) = 'dx~'(x), see
Lemma 1.2.20), and obtain a resulting homogeneous components in z and & of

C(.T, €z, f) = d(X(z)deil(x)g)'

For every ay, of the first sequence in (1.2.39) there is a sequence
@ e st Mnst i jen,
such that

L
)= > @l (#,€) € SR TIAD(R™ X R™), L € N.
=0

<.

Setting ai(x,f) = di (X(x),tdxfl(x)g), and because of the homogeneity properties
of x, it is easy to see that

ai,(w, &) € SY ™M n g,
for every k,j € N, and that

L
k(z,&) — Za (z,&) € ShRv=LFD(R™ » R™), L € N,
j=
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where ay,(z,€) = a(x(z),'dx "' (z)§). This means that a(z,&) € Sg‘;k];”(Rm X
R™),k € N, from which it follows that

Z

c(z,2,6) = Y ax(z,€) € ST NTITR™ x R™),
k=0

for every N € N. For the second sequence of (1.2.39) we can argue in a similar way.
This completes the proof. O

Remark 1.2.30. The invariance under p, : A= A of the principal symbols is as
follows:

op(A)(E,€) = op(A)(@,€), (2,€) € R™ x (R™\ {0});
0e(A)(7,€) = 0e(A)(2,€), (7,€) € (R™\ {0}) x R™;
Te(A)(Z,€) = 0yo(A)(2,6), (Z,€) € R™\{0}) x (R™\ {0}).

1.2.5 Exit calculus on manifolds

In this subsection we recall some elements of the exit calculus on a manifold M with
conical exits to infinity.

On the manifold M we fix the partition of unity {wo,¢1,...,on}, N € N, in
such a way that ¢y € C§°(int My) and ¢; € C§°(V;), where V; is of the form
V; = e’l((R+,oo) X Uj) =Ty,j7=1,...,N, for some conical sets I'y C R™ and
{U1,...,Un} forms an open covering of X by coordinate neighbourhoods (cf. the no-
tations at the beginning of Subsection 1.2.1). Furthermore, we choose another system
{%o0,%1,...,¥n} of functions g € C§°(int M) and ¢; € C°°(V;) that are for j > 1
pull backs of elements in C°°(T';) that vanish near 0I'; and are homogeneous of order
zero for large |z|, such that ¢;¢; = ¢, for all j =0,...,N.

Definition 1.2.31. L?CS(M) for u,v € R is defined to be the space of all operators
A= Z;V:() @i Ajibj+C for arbitrary Ag € Li, (intMo), A; € L' (V;), j=1,..., N,
C e L™7°(M).

Let us now define complete symbols for L#¥(M) and principal symbols for
LY (M). The manifold M is written as a union UjV:OV] We choose coordinate
neighbourhoods {O4,...,0.} on Vy = intMy such that V C UlL:() O; and charts
ki : Op — Q for open sets ; CRP, [ =1,...,L, (pis the dimension of the manifold
My), and x; : V; — T'j, j = 1,...,N. Then {O1,...,0r,V1,...,Vy} is an open
covering of M with the charts {x;};=1,.. 1, and {x;};=1,.. ~. Consider the system
of operators (x1)«Alo, € LM (%), (x;)+Alv, € L*¥(Iy) for all I and j. Using the
isomorphisms

LH(0) /L™ () = SH(Q x RP)/S™°(Q x RP),
LM¥(Ly) /L5 7%°(Ty) = SV (T x R™)/ST°9 (0 x R™)



34 THE PSEUDO-DIFFERENTIAL CONE CALCULUS

we find corresponding local symbols oq, (A) and or, (A) that are unique modulo sym-
bols of order —oo and (—oo; —o0), respectively. We set

o(A) = {0, (A),...,00,(A),0r, (A),... o (A)} (1.2.40)

and call o(A) a complete symbol of A. Furthermore, for A € L (M) the compo-
nents of (1.2.40) are classical, and we obtain the system of homogeneous principal
components

oy(A) ={op.0,(A),...,0p.0,(A), 041, (A), ..., 001 (A)}

that represents an invariantly defined function oy (A) € C°>°(T*M \ 0), homogeneous
of order u. In addition, we have the principal exit symbols

0e(A) ={oer;(A)}j=1,..N, Tpe(A) ={oper,;(A)}j=1, .~

which are defined on 551: (I'; xR™) in an analogous manner as for R™. In the classical
case we set '

o (A) = {oy(A),0e(A), 04 o(A)}-
Theorem 1.2.32. A € L¥¥(M), B € L%?(M) implies AB € LFYEY+7(M) and
we have o(AB) = o(A)#0o(B), where # means the Leibniz product of the local

representatives in corresponding local coordinates. In the classical case we obtain
o(AB) = o(A)o(B) with component-wise multiplication.

Definition 1.2.33. An operator A € L*¥(M) is called elliptic (of order (u;v)) if
o(A) is elliptic in the sense that there is a tuple of symbols

p:{pQU"'apQLapF17"'7pFN}7

po, € STH(y x RP), pr, € STHY(I'; x R™), such that the components of o(A)#p
are equal to 1 modulo symbols of order —oco and (—o0; —00), respectively.

Theorem 1.2.34. For an operator A € L (M) the following conditions are equiv-
alent:

(i) A is elliptic (of order (u,v));

(i)
A: HS9(M) — H¥#977(M) (1.2.41)

is a Fredholm operator for any choice of s = sg,9 = go € R.

If A is elliptic there is a parametrix P € L=#~"(M) in the sense that 1 — PA, 1 —
AP € L=°%7°(M) holds, and (1.2.41) is a Fredholm operator for all s,g € R.

Remark 1.2.35. Let A € L"" be elliptic. Then Au = f € H%I(M), u €
H=°%=%°(M) implies u € HSTH9TV (M) for all s,g € R.

Moreover, ker A is a finite-dimensional subspace V' of S(M), and there is another
finite-dimensional subspace W C S(M) such that im ANW = {0} and im A+ W =
H#%9(M) when A considered as an operator on H*~#977(M). Thus ker A, coker A and
ind A are independent of the Sobolev smoothness and of weights at infinity.



Chapter 2

Operators on infinite
cylinders

2.1 The behaviour of push forwards from cylinders
to cones

2.1.1 Characterisation of push forwards

Let X be a closed compact manifold, say of dimension n, and U C X a coordinate
neighbourhood such that there is a diffeomorphism y; : U — B to the open unit ball
B in R™. Let [] : R — R4 be a positive function such that [r] = |r| for |r| >const> 0
and set

I'={(r,z) e Ry xR":r e R4, % = [r]z,z € B}, (2.1.1)

and consider the diffeomorphism
B:Ry xU—T, B(r,xy'(z)) = (r,[r]2). (2.1.2)
Set
S(XM) i={ueC™®(X"): (1-w(r)ueSR,C*X))}

for some cut-off function w. This is a Fréchet space in a natural way. Moreover, define
S(XN x XM = S(XM@,S(XM).

As a moderate generalisation of the definitions in the preceding section we define
a class of pseudo-differential operators on X”*, now with the parameter n € R4, which
will play later on the role of the edge-covariable. It can be easily verified that, for
q = 0, the following definition is compatible with Definition 1.2.31.

Definition 2.1.1. The space L*"(X";RY) is defined to be the set of all A(n) €
LA (XN, RY) with the following properties:

35
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(i) For every ¢, € C°(X) with supp ¢ Nsuppt = O we have

QA € L™ °(XNRY) =8 (Rq,L_OO;_OO(XA)) ;

(ii) for every ,v € C*°(X) supported in the same coordinate neighbourhood of X
the push forward of (1—w)pA(n)Y(1—w') under 8 for arbitrary cut-off functions
w(r),w'(r) is equal to Op(a)(n) for some a(r, &, p,&,n) € SH (R x RIF™ x
RY), ¢f. Definition 1.2.4 (i) (the parameter n is considered as a covariable).

To motivate Definition 2.1.1 consider a differential operator on X" x Q 3 (r,z,y)
of the form
A=r7# Z ajo(r,y)(=r0,) (rDy)*

Jtlel<p

with coefficients ajo € C°° (R x Q,Diff“_(j‘*'la‘)(X)), X closed compact manifold,
Q C R? open. Such an operator is called edge-degenerate. Here Diff” (X) denotes the
space of all differential operators of order v € R on X with smooth coefficients.

We are interested in the behaviour of the so-called homogeneous principal edge symbol

UA(A)(Z/W) =t Z aja(ovy)(*rar)j(r"])a (213)

Jtla|<p

which is a family of differential operators on X”. The dependence on y € Q will be
ignored in this section. For every fixed n € R? the operator o (A)(n) is of Fuchs type
close to r = 0. To employ (2.1.3) as an edge symbol we need ox(A)(n) for n # 0
on the infinite stretched cone X”, including » — oco. The structures for r — 0 and
r — oo cannot be reduced to each other by the transformation » — r~!. Therefore,
the properties for 7 — oo are discussed separately, and we just encounter an aspect
of operators on a manifold with conical exits to infinity. Let us identify a coordinate
neighbourhood on X with the open unit ball B C R”; then we obtain

x

oA = 3 bpa(@)DI(—r) ()", (2.1.4)

JHvl+lel<p

bjya € C(B). Transforming R x B 3 (r,z) to the conical set I' := {(r,z) € R :
Z/r = x € B},  := (#1,...,%,), the operator (2.1.4) in the coordinates (r,z) € T
takes the form

oa(A)(m)=r7r > pithIFlely, (3 DIDIn” (2.1.5)

Jtvl+H el <p

for certain ij € C*°(T") only depending on & /r. For the parameter-dependent homo-
geneous principal symbol of (2.1.4) with the covariables (p, £) and parameter n € R?
we have

Ty (UA (A)) (T7 Z, P, E’ 77) =r# Z bj’YOé (‘P‘C)(firp)jg7 (Tﬁ)a

JHvl+lel=n
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and for (2.1.5)

Oy (U/\(A)> (j?paéa 77) = Z j'ya( )p]€7

JHy I+ lel=p
where bjya(F) = bjya(x) for &/r = .
Remark 2.1.2. (i) For every fived n # 0 the operator (2.1.5) belongs to L*°(T);

(ii) the ellipticity of (2.1.4) in the sense

Gu(on(A)(r, 2, 5,61 == > biralz)(—ip) & #0

JHvI+lel=p

for all (p,&,7) € R4\ {0} entails the exit ellipticity of (2.1.5), for every

fized n # 0, i.e.,
oy (on(A)) (@ p.E) = D bjpo(@)p'E # 0 for all (p,€) € RM™\ {0}
J+lvl=p
0o(on(A)(E: &) = D bpal@p’ I #0 for all (p,€) € R,
J+lvl+lal=p

0’¢)C(0'/\(A))(i',p7 g) = Uw(f/\(A)(.’z, Ps g) # 0 for all (pa g) € RlJrn \ {O}v
for all (r,%) €T.
To study operators on X” for r — oo it is convenient to ignore specific effects
for r — 0 and to consider operators on X~ = R x X (now with two conical exits

r — 400). After that we can localise the results again to r > R for some R > 0 by a
multiplication by 1 — o(r) for a cut-off function o(r).

In our case for o5(A)(n) there is an element

plr, p,ii) € C*° (R, Ly (X3 R;HD)) (2.1.6)
such that, when we set
p(r,psn) = p(r, [r]p; [r]n), (2.1.7)
we have
(1= a(r))on(A)(n) = r~"Op,(p)(n). (2.1.8)
In fact, 7o (A)(n) is of the form Op, (p1(rp,n)) for some py(p,7) € L (X;R;;q),
and we obtain (2.1.8) when we first fix the function » — [r] such that [ | = |r| for

|r| > R and then choose o(r) in such a way that 1—o(r) vanishes for r < R (including
the negative r half-axis). Then it suffices to set

ﬁ(r7ﬁ7ﬁ) = (1 - U(T))ﬁl(ﬁ7 ﬁ)

Let L’(‘ N (X;R x (R?)\ {0})) denote the set of (classical) parameter-dependent

families of operators in Lé‘cl) (X) with parameters (p,n) € Rx (R?\{0}). The definition



38 OPERATORS ON INFINITE CYLINDERS

is analogous to the case of parameters in R x R%, but for completeness we formulate
it in detail. If (Uy,...,Un) is an open covering of X by coordinate neighbourhoods,
(¢1,...,Nn) a subordinate partition of unity, (¢1,...,%y) a system of functions
Y; € C§°(U;) such that ¢; = 1 on suppy;,j = 1,...,N, and x; : U; — X charts,

¥ C R™ open, then every A(p,n) € L?Cl) (X;R x (R7\ {0})) has the form

N
A(p.n) =Y ¢ {(x;)+0p,(a;)(p.m) } ¥ + Clp.m). (2.1.9)
j=1

Here a;(z,2’,p,&,n) is an element of S*(X x ¥ x R[l;g” x (RZ\ {0})). The space
SH(U x RM™ x (R7\ {0})), U C R? open, consists of all

p(z,p,&,m) € CF(U x R™ x (R {0}))

such that
sup(p, &,n) * I DEDY  p(, p, & m)] (2.1.10)

is finite for every o € N¢, 3 € N*"+4 where sup is taken over all z € K, (p,&,n) €
R4 x (R7\ {0}), |n| > h, for every compact K C U C R? and h > 0. The subspace
SH(UXR™™ x (R7\{0}) is defined similarly as in the case of covariables (p,7) € R'™.
The operator C(p,n) in (2.1.9) is smoothing in the sense C(p,n) € S(R x (R?\
{0}), L7°°(X)); here S(Rx (R7\{0})) is the Schwartz space over Rx (R7\{0}), defined
to be the set of all f(p,n) € C>(R x (R7\ {0})) such that x(n)f(p,n) € S(R**9) for
every excision function x(n) in RY.

The spaces Lé‘cl) (X;R x (R?\ {0})) are Fréchet in a natural way.

The idea of the following considerations is to construct operators in the exit cal-
culus on X= in terms of operator functions Op,.(a)(n) with symbols

a(r, p,n) = a(r, [rlp, [r]n),

a(r,p,n) € C® (R,L’{Cl) (X;R; x (]Rf-] \ {O}))), with a suitable dependence on r at

infinity. Let us study the behaviour of our operator families under push forward from
coordinates (r,z) € Ry x R™ to (r,Z) € Ry x R™ via
X:(rz)— (rz), T :=[r. (2.1.11)

To this end we follow the lines of Schrohe and Schulze [34]. We choose the function
r — [r] in such a way that [r] = r for » > 1. The main aspect concerns r — oco. In
order to avoid a cutting out factor for a neighbourhood of = 0 for simplicity we take
symbols that are smooth up to r = 0 and employ (2.1.11) as a diffeomorphism

x:Ry xR® - R, x R".

The Jacobi matrix of its inverse xy~!(r, %) = (r,Z/[r]) has the form

L 1 0
103 = (Lo easp 111) —
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with I being the (n X n) identity matrix. Let us define
1
Fr, 3,0, &) = / J(r+ 90" —1),5+9@F — )9, (.)€ Ry x R
0

which is an invertible (n + 1) X (n + 1)-matrix. For 7,7/ > 1 from (2.1.12) we obtain

~ A~ AN 1 0
Fr.a,r, 1) = (N(r,gz,r’,f’) M(r, r’)f)

for

logr—logr’ / Uz 93 — i
M= 4 TP N = [ D g
o T=T o (r+9(" —r))

r?

Let us show that

1 r'g—ri’ T—' / /
T o ) 10 — 10 ) s
N(r, @' &) =37 ( r r—(logr —logr’) ), w7 (2.1.13)
S, r=r1

In fact, for the case r # r’, we can write (f:ag((ﬁ:j%? = (r+19(;”l’4))2 + T+19(l;,4) with

coefficients a, b, determined by a+ b(r +9(r' —r)) = & +9(&' — &) which holds when

/=~ ~/ ~/ = .
P2t h = L=2 Thus we obtain
T —r A

a+br==z,b(r'—r)=3"—2,1e,a=

e et PR C R S
/o (7"+19(r’—7“))2d19_ /0 (T+19(r’—7"))2+b/0 r+d(r =)
1 ' ) !
‘“l‘(ﬂ—r)(rw(w_m) *b{wrlog(’“”(’"‘”)h

1 +blogr’—logr.
r'r r—r
Otherwise, for 7 = r/, we simply obtain N by the integral r—2 fol (Z+ 9@ — 2))dv

which yields altogether (2.1.13).
Observe that det F' depends only on (r,r’). For r,r’ > 1 it follows that

= ((1) 1;?) (2.1.14)

for R(r,r") := M~Y(r,r’); this gives us det ‘F~1 = R"(r,7").

Lemma 2.1.3. Let j € O (R x Ry, S" (R x R? x Ry x RZ x (RY\ {0}))), and
set

p(?”, T/7 x, .13/, P, 67 7]) = ﬁ(ra T/, z, J)/, rp, 57 ’I"’I’])
for any fired n € R2\ {0}. Then we have

X+ (Op,...(p)) = Op,.;(q)
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A1)
for q(r,r' &, &, p,&,n) = p (r, v, [% [‘;’f—] -l (Tg’) ,rn) | det tF=1(r, )| [F] 7.

For r,v" > 1 we obtain the simpler expression

~ A
ﬁ(r,r' % x— ,7p+ RNE, R@rn) |[R™ (r, ") ||7"| ™.

Proof. First recall that if V' is a Fréchet space with the countable semi-norm system
(m,).en then

CgO(R+ X E+7V) = {f(?",?"l) S COO(R+ X R+7V) :

sup (afaf/lf(r, ")) < oo for every v, k, k' € N}.

rr! ERy xRy
For u(r, ) € C(R,. x R"), (x*u)(r, @) = u(r, [r]z) we have
- (0D, () u(r, ) = - onbl W) () (2.15)
= [[]] I T S Dt et o dpa

) N s & PR
= [[[[ e ””ZWM'])%(r,r’,f—],z—] o, & )l &))" dr' i dpde;
T T

= (- f,'}) e~ (7m0 a) (7)
= ((r, &) — ("', &) 'Fr, 3,0, &) (2’)
For the right hand side of (2.1.15) we thus obtain

=~ A
i(r—r")p+i(i—3)€ 5 1 LT vpel (”P> )
€ p r7 r b ) ) ) T/r]
1 (g (;
u(r', 2)[r'] 7" | det *F 1 |dr! dzdpd.
The assertion then follows from (2.1.14). O
Proposition 2.1.4. Let p(r,r’,z, 2’ p,&,n) be as in Lemma 2.1.3 and fix again n €

R2\ {0}. Then if o(x),¢' () € CF(RE) have disjoint supports and w(r),w(r) are
cut-off functions (equal to 1 for r < 1), the push forward

X+ (1= w(r))e(x)O0p, . (p)¢ (x) (1 — w'(r)))

is an integral operator with kernel in S(R x R,C°°(R™ x R™)).
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Proof. Let us set w(r,r,z,z') = (1 — w(r))p(x)¢'(2’)(1 — '(r")). For u(r,z) €
C§° (R ™) and L € N with 4 — L < —n — 1 we have

Cuf (1 = w)pOp(p)¢' (1 — &' )u(r, )
//// i(r—r")p+i(z—a')¢ w(r, e’z 2 )p(r, v’z 2’ rp, & rp)u(r’, o) dr' do' dpdé
= //// ei('r-_r )P+i(1’—-’lﬁ )§|{L' - x/l—QLw(7’7x77a/7x/)A£ﬁ(r7 T/71',$/7’I°p,§7’]“’]7)

u(r’, 2" )dr'dz' dpd€.
The integral exists, and we obtain Cu(r,z) = [[ K(r,r',z,2")u(r’, 2")dr'dz’ for

Ky =t [[ e

wr(r,r z,x’) =z —x

D (r, 1! @, 2 (AED) (r ', 3,27, p, & ) dpd,

"172Ew(r, 2,7, 2"). Using the identity

b= (r, r’,x,x’)AJp\fgei(TT Jorite=aie _ (555 ) et N oy (2.1.16)

’
r—r

r

for b(r,r',x,2') :=

1/2
+ |z —2a |2> , and applying once again integration by
parts it follows that

Cu(r,z) =r~* //// ei("?r')p+i(w*w')£wL(T’ vz, 2)

biQN(T) Tl? 'T7 x/)A;\nggﬁ(T’ T/) z? 1‘/’ p7 57 r’r})u(r,7 x/)d/r,dl:(jpdf'

Thus C is an integral operator with kernel

K(r,v' x,x) //'TTPH(I 2 )Ep— 2N (! 2,2
UJL(T,T y Ly T )Ap gA.gp(Ta T‘/am7x/ap7€7rn)dpd€‘

From the symbolic estimates |A AP w7l p, & )| < elp, & rm)H AN T2 (that
are only relevant for r > 1, v’ > 1 and for (m x’) € supp ¢ X supp ¢') we obtain

‘K(T‘, ', .7;/)| < CT_1|wL<T7 ', .Z‘/)|b_2N(7“, ', x/) //<p7 g, T77>H_2N_2Ldpd€~
For n € R?\ {0} fixed we employ the estimate

(0, &) N=2E = (p € ) E(p, &) TETEN <efp, O (rp) 7PN (2.117)

r > 1, for some ¢ > 0. For b=2V we have b=2N (r, 7/ x,2')(rn) 72N < c|r — ¢/|72N
which gives us for the kernel the estimate |K(r,r',z,2')| < er~tr — /| 72N (rn) L.
Choosing N so large that L = 2N it follows that

K (r, 0 2, 2")| < e{r)™N ()™

for r > 1. The strong decrease in x, 2’ is clear anyway, since ¢ and ¢’ are of compact
support. For the derivatives of the kernel we can argue in an analogous manner. The
push forward of K under x gives us [r] ™" K (r,7’,2/[r], @ /[r']) € S(R x R, C*°(R" x
R™)). 0
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Proposition 2.1.5. Let p,p,w,w’ be defined as in Lemma 2.1.3 and let o, €
C§°(R™). Moreover, let (r,r") € Co°(R x R), where ¢(r,7") =0 for |r —r'| <& and
Y(r,r') =1 for |r —1'| = 2e for some e > 0. Then . ((1 — w)¢Op,. . (p)ve' (1 —w'))
is an integral operator with kernel in S(R x R,C*°(R" x R™)).

Proof. Let u(r,z) € C$°(R'™) and define w(r,r’,z,2’) as in the preceding proof.
Then we have

Cu(r,x) := (1 = w)p(Op(p)) vy’ (1 — wu(r, z)

//// ir=r")ptilw—a") w(r,r’ z 2" )(r, ')

p(T.7 r ) x’ xl? Tp? 5’ Tn)u(rl’ xl)dr/dm/dpdg‘

Substituting rp = p’ and then going back to p it follows that

Cu(r,z) = 7} //// Ty (! (e, )

p(r,r’ x 2’ p, & rn)u(r’, 2 )dr'da'dp, dE. (2.1.18)

Using the identity (2.1.16) for N large enough and integrating by parts we obtain

Cu(r,z) =r~" //// !Ny =2N (. o 0 V(1! 2, 2 V(1)

Ai\{&-ﬁ(r7 7’-/7 x? xl? p? 5’ Tn)u(r/3 xl)dr/dx/dpdg‘

Thus C' is an operator with kernel

K(r,r' z,x") // (2 ot (= x)ib_QN(rr z, ')
w(r,r ,(E,QC )7/)(7"77“ )Ap,gp(Ta 7,/’ xaxla Pafv”?)dpdf

Due to the symbolic estimates |Ap P(rr' 2’ p, & rn)| < ep, &, rn)*~2N the integral
with respect to p, { exists. Let us choose any fixed L € N such that y — 2L < —n —1
and write 4 — 2N = p — 2L — 2M for N = M + L. Similarly as (2.1.17) we have an
estimate (p, &, )P 2N < c(p, EYF2L(rn)72M for all » > 1, n € R?\ {0} fixed. This
gives us an estimate for the kernel K of the form

|K (r, 7z, 2")| < er 025 (r ! xy a Yw (v 2, )07 2M (!, 2 Yap ()| () —2M
(2.1.19)
There is a constant ¢ > 0 such that

672 (!, &Y (1) () T2 < () M () T

Taking into account that |b=2L(r,r’,z, 2" )w(r,7’,2,2')| is at most of polynomial
growth in 7,7’ for large r,7’ and that M independently of L can be chosen as large
as we want, we see that K(r,r’,z,a’) is strongly decreasing for r — oo, ' — oo.
Moreover, the support with respect to z,z’ is bounded because of the involved fac-
tors ¢(x), ¢’ («’). Similar considerations are valid for the derivatives of K of any order.
Thus K belongs to S(RxR™ xR xR"™), and the push-forward under  is as desired. [
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2.1.2 Estimates near the diagonal

We will here restrict the variables to the set

7

! “’”<0}
r| T

57

<

7,‘/

z
‘ Sca
r

for some C > 0. Observe that on W we have

[r] ~ '] ~ [r, 3] ~ [, %]
(for instance, [r] ~ [r'] means the existence of constants ¢y, ca > 0 such that ¢;[r'] <
[r] < ea[r'] for all r, 7).

Lemma 2.1.6. For R(r,7’) = M~Y(r,r") and S(r,7’',%,3") := R(r,7")N(r,7’, Z,%)
(¢f. the notation in (2.1.14))we have on the set W

(i) |DEDL R(r,r")| < c(rt=F=Y) for some ¢ > 0, and R(r,7") > cor for some co > 0;

(ii) |D’jD£,Dg‘D§,S(T, &, &) < e(rm1=1B1=k=1) for some ¢ > 0.
The left hand side vanishes for |o| + || > 1.

On W the function S satisfies the SY%00-estimates and R the S%1:-estimates (cf. the
notation in Definition 1.2.4).

Proof. (i) We consider the case r # 1/, since otherwise the function R obviously
satisfies the desired properties. Let us write R(r,7’) = ro(r'/r) for p(t) = %.
We then have R(r,r’) < cr and R(r,r’) > cor. For the derivatives we have also
such estimates, namely, 79, R(r,7") = 7 (p(t) — tOrp(t)) li=r/r < cr, and, similarly,
7’0 R(r,7") < er. Since r*D¥ can be written as a linear combination of operators
(rD,)?, 1 < j <k, we obtain 7*D¥(+")! DL, R(r,7") < er.

(ii) We have
1
N (o', 3,8 < max{fal, &) [ (4007 =) 0 = max{(al, 7]} rv)
0

Since Z/r and #'/r are both bounded and R(r,r’) < cmin{r,r'}, it follows that
|S| < e. Moreover, we have

i+ 9(F — i)
))2+k+l :

1
DFDL N (ry v &, 7)) = c,d/ (1 — )k
0 (7’ +I90 —r

Then, analogous estimates as above show that these terms can be estimated by
cmax{|z|, |&'|}r27F 1,

Now (i) together with the Leibniz rule gives us the assertion for o« = g = 0. If
la| + 8] = 1 the integrand is equal to (1 —d)*+lgHHIB (r +9(r' — r))_Z_k_l, and we
can argue as before. O
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Lemma 2.1.7. Let S be as in the preceding lemma. For every fized n # 0 there are
constants c¢,d > 0 such that

orlp, €] < [rp+ S& RE, ] < erlp, ] (2.1.20)

on the set W.

Proof. In this proof we again denote by c¢ different positive constants. For the first
estimate of (2.1.20) we observe that if |p,£| < 1 the term in the middle of (2.1.20)
is > [rn] > cr > crlp,&]. Therefore, we may assume |p,&| > 1. Let v = sup|S| + 1
and consider the cases |p| < 2v|¢| and |p| > 2v|| separately. In the first case we have

1< (o + 6P} < ((2)? + DIEP)* = (2y)[€]- For |p| < 2y¢] this implies

rlp.€] = rlp. €] < r((20)2E1 + €)% = 2nriel. (2.1.21)
Moreover, we have
[rp + S& RS, ] = c[RE] = ¢|RE| = er[¢]
for a suitable ¢ > 0, and (2.1.21) entails
[rp + S& RE, r] = crfp, €]

For |p| > 2v|&| we observe that
T 1 r
[rp + S€| = [rpl —[SE| = 5lpl + 5lpl = 7I€] = 5lpl = erlp, €].
In the last inequality we employed that

1
(27)?

[0, €] = lp, €l = (Io” +1€17)% < (Ipl2 + Ipl2>2 = (29 "lel-

Thus we have proved the estimate from below.
For the second inequality we first observe that R < ¢r and hence

[RE¢] < crlg] < erlp, €]

In a similar manner we obtain [rp + S¢&| < ¢([rp] + [SE]) < cr[p,&]. This yields the
desired estimate from above. O

Theorem 2.1.8. Let p(z, ', p,&,7) € SHR"XR" xRIT"xRY), p € R, p(x), ' (z) €
C§°(R™), and choose cut-off functions w(r),w’(r) =1 forr < 1. Fixn # 0, and define

p(r7 m) l‘/7 p7 57 ,'7) = ﬁ(‘r’ ‘T/7 Tp? 67 TT])'
Then for the push forward under x we have
X (1= w(r))e(@)Op, . (p)¢' () (1 — (1)) = Op,.:(q)

for a symbol q(r,r', &, 7, p,&) € SHHO(RUF™ x RIF" x RY™) . [ts symbol semi-norms
can be estimated by those for p.
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Proof. The terms (1 —w), (1 —w’) vanish for < 1. From Lemma 2.1.3 we know that
the symbol q(r,r', %, &', p,£) of the push forward is of the form

p@/r, & /r',rp + S& RE,rn) (1 — w(r)) (1 — w'(r)) @(@/r)e (& /r")R™ (r,r") (r') 7"

Since supp ¢ and supp ¢’ are bounded, Z/r and &' /r’ may assumed to be bounded. In
addition we may assume |r — 7’| to be small, since by Proposition 2.1.5 it is admitted
to multiply the symbol by a function supported near » = r’, modulo some rapidly
decreasing remainder. In fact, since 7,7’ > 1 we may assume |r/r’ — 1| < 1. Therefore,
we only need to verify the symbolic estimates on the set W, for ¢ vanishes on the
complement. In the following let

Vo= (&/r, @' /', rp+ SE RE, )

then we have

Dz, 5(V) = (Dz, ) (V)r~" + (Do) (V) Y 93, Sk
h=1

Dop(V) = > {(Ds,5) (V) (= /r?) + (D,p) (V) (p + 0rSkés) (2.1.22)
k=1

+ (Dep) (V)06 + (D3,5) (V)
Dypp(V) =(Dpp) (V)r, De, p(V) = (Dp) (V)S; + (De,p) (V)R-

Here Sy and & denote the components of S and &, respectively. The derivatives with
respect to Z’ and 7’ can be easily deduced from those.
If we concentrate on W then 9z, Sp& satisfies the estimates for an SH~19-symbol,
p+ 0, Sk& and 9, RE, for an SH%9-symbol, while 7! and 7y, /r? satisfy those for an
S%=1.0_gymbol. Also (r,%) — ¢(Z/r) and (r',3") — (3'/r') are S%-symbols on W.
According to Lemma 2.1.7 and using the relations [r, ] ~ [r] ~ R ~ [r'] ~ [/, %] on
W we can estimate the derivatives of p as follows:

|Dp(V)], | Dz, (V)| < clr, 7] o, €%,

‘Dpﬁ(v)‘v |D6115(V)‘ < C[Tv ‘%]H[pv 5]#-17

and hence we obtain
|DLDg DE DY DEDY g(r, ", 7,7, p,€)| < clr, &)1 11k &) 181K [, gl =L,

provided that the total number of derivatives is < 1. The form of the derivatives in
(2.1.22), together with the above observations on the functions 0z, Sk&k, ..., Zx/r?
shows that the general result follows in an analogous manner. O

2.1.3 Global operators

Given a C'°° manifold X, n = dim X, with a system of charts x, : U, — R", ¢+ € I we
consider the cylinder R x X with the charts

1xk :RxU —RxR"
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The cylinder can also be equipped with the structure of X=, a manifold with conical
exits to infinity, r — +o00, and we define a diffeomorphism

X Rx X — X< (2.1.23)
by the local transformations x : R x R — R x R", x(r,z) = (r, [r]x).

Theorem 2.1.9. Let X be a C*° manifold and P(p,7) € L“(X;R;;q). Then, if

w(r),w'(r) are cut-off functions, and P(r,p) := ]s(rp7 rn), for any fived n # 0, we
have
X ((1 — w(r))Opr(P)(l — w’(r))) € LM (X7™).

Proof. Let (U,),er be an open covering of X by coordinate neighbourhoods, dif-
feomorphic to R™, and let (¢,),c;r be a subordinate partition of unity. Then we
can write Op,.(P) = >_, ;7 ».0p,(P)py, and it suffices to show the assertion for
(1 —w)e,0p,.(P)ex(1 —w'). However, this is an immediate consequence of Theorem
2.1.8. O

It is instructive to study the other way around, i.e., to express pseudo-differential
operators in R?" with smooth symbols across £ = 0 in polar coordinates with respect
to & for & # 0. Let M be a C'°° manifold and let us fix a point v € M, interpreted
as a conical singularity. We define Lgeg(M ) as the space of all operators of the form
or *0p,.(p)o’ + (1 — o)A (1 — ") + C, for a symbol p(r,p) = p(r,rp), p(r,p) €
C*>(Ry, LE(X;R;)), Aine € LE(M \ {v}) and C € L™°°(M \ {v}). 0,0’, 0" are cut-
off functions satisfying

o' <=0
(If f and g are two functions such that g = 1 on the support of f then we write this
symbolically as f < g.)

Theorem 2.1.10. There is a canonical embedding
La(M) vy = Lieg (M)
for every p € R.
Proof. Set n 4+ 1 := dim M, and choose a chart y : U — R for a coordinate
neighbourhood U of the point v with x(v) = 0. Due to the pseudo-locality of pseudo-

differential operators it suffices to show that x.(A[v)|ri+n\ {0 belongs to Lgeg(RH")

for some fixed operator A € L!(M).
In other words, we may assume M = R!*" o = 0. Modulo a rotation in R*" it
suffices to concentrate on a cone I' C R!*" written as

={z=(rray,...,rx,) :r €Ry, x € B}
for B :={(x1,...,2,) € R" : |z| < 1}. We consider the diffeomorphism
B:RyxB—-T, B(r,z) = (r,rx),

and show that

(87").Alr € Lk, (B2),
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B2 = (R, x B)/({0} x B).

The reason why we take the simpler transformation § instead of passing to the
polar coordinates is that they are both diffeomorphic to each other. In fact, for C' =
I' N S™ there is a diffeomorphism & : R, x C — R, x B induced by the orthogonal
projection of R'*"™ 3 (%¢,1,...,%,) to the hyperplane {%y = 1, (Z1,...,%,) € R"}.
The transformation x, which is homogeneous of degree 1 in r, induces an isomorphism
C? — B in the category of the respective manifolds with conical singularities. This
gives rise to an isomorphism Lgeg(C'A) — Lﬁeg(BA), and we may identify C® with
rufo}.

Modulo a remainder in L~°°(T") (which can be ignored) we assume
(Alr0) &) = Opsla)u(z) = [ [ & %a(z, Eula)di'de

for an a(z,€) € SE(RM™ x R™™). By definition, the points Z = (Zo, Z1,...,3,) € T
and (r,z1,...,7,) € Ry X B are related via 74(Z) = (r,Z1/7,...,3n/7) = (r,2),
x = (x1,...,2y,). Then for the associated covariables (p, &) we have

((B71)+Alr) f(r,z) = Op(b)f(r, ),

(modulo a smoothing operator that is again negligible) where

b(r, z, p, 5)}(7«,%):6*1(%) ~ Z % (aga) (CE’ 467 () (§>) o (33«7 <§)>

(XEN1+"
(2.1.24)

(e (0)-met

and 6(z,2) = B71(2) — 7HE) —dB @) (2 - %), ¥ = F(r,z) = (r,rz). Let
us simplify the notations in the asymptotic sum of (2.1.24). We have 3~1(z) =
(r(@),z1(2),...,x,(Z)) for

for

(2.1.25)

’I"(.i‘) :.fﬁo,.%‘j(.i‘) :i‘j/fo fOI"j = 1,...,’[7,.

Writing for the moment r(Z) = z(Z), we have d8~(2) = (93,%i(Z))i=o0,...n and

i=0
J=0,...;n

hence we can write d3~1(Z) in the variables (r,z) € R, x B as follows
1/~ - r 0
dﬁ 1(3}) =r ! (tl’ 1) )

6 —lx , where 1 stands for idg», and Z(r,z) = (r,rz). Thus

the summands in the asymptotic expansion (2.1.24) have the form

é (92a) (:%(r, ), r! (rp . x£)> m, (gz(r, z), (2’)) . (2.1.26)

ie., 'dB3=1(z) = r7! (
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In order to characterise the function I, ((r, rx), (g)) we first note that

5(3.5) = (t—rz—a) -1t (_’;m (1)) (;::J ,

5(%,2) (g) =(1—r')(z—2)t.

Let a = (o/,a") for o’ € N and o” € N*. Using 0z, =t7'0,,, j = 1,...,n, it follows
that D¢ = Dg{)’t*la”ng”? z = (#21,...,2n). Moreover, we have Dg‘o/ = D¢, o’ € N.
This yields

ie.,

D?ei(lfrflt)(zfz)ﬁ — D?’t7|a”\D?”ei(lfrflt)(zfm)f
_ sz’ {t—\a”|(1 . T—lt)\a”|§a”ei(1—r71t)(z—ac)£}
_ D?/ {f\o/q(l _ r71t)\a/'|}ga”ei(krlt)(zﬂ)g

since the differentiation of the exponent produces vanishing terms after the substitu-

tion t = r, z = 2. We can write D’ {t_‘o‘”|(1 — r_lt)‘a”|} as a sum of the form

O[/ ’ " 1" " ’ 12
> <k>D§‘ “RTIDE (L — )T = N T gt 71O IT R TR (L — T gl R
k<a’ k<a’

for some constants c, . After substituting ¢ = r, 2 = x we see that the last sum van-
ishes unless || < o/, then it contains only one term, namely, the one corresponding
to k = |a”]. In other words, we can ignore all other terms and write

DY {t"o‘"‘(l - r*lt)‘“"‘} = cot = 1o

for some constant c,. We substitute in (2.1.25) and obtain

I, <(r, rx), (g)) = Dgei(l—flt)(z—w)ﬁ

_ Cat—o/r—hx”|§oz”ei(1—7'71t)(z—ﬂc)§

t=r
Z=x

= cqrloled” (2.1.27)

where for o we have the inequality |a|/2 = (o/ + |&”])/2 > |&”], since II, = 0
otherwise.
In order to show that

b(r,a,p,&) = r "p(r,z,rp,€)  mod S™F(Ry x Bx RE")

for a function p(r, z, p,£) € SH(RxB XR¥7LTL), it suffices to know that the homogeneous
components b, (r,z,p,&), j € N, have the form

b(#*j) (’I“, Z, P, f) = r_#ﬁ(ll«*j) (’I“, TP, 5)
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for certain p(,—j)(r,z, p,§) € C°(Ry x B, S(“_j)(R})z”\{O})). In fact, the asymptotic
sum p(r, z, p, &) ~ Z;io VP, E)D(u—j) (1,7, p,&) (for some excision function 9(p,§))
can be carried out in Sé‘l(@Jr x B x R})E"). Thus it remains to show that p(,_;) are
as desired. We first consider the homogeneous components of

(92a) (@(r,2),77 (rp — w€), 7€)
of homogeneity order yi—|a|—j, j € N, that are of the form f;(r,z,r~ ! (rp—z€),r7'€)
for some f;(r,z,7,§) € C* (]R+ x B, S(“_M_j)(R?‘” \ {O}))7 j € N. This means, we
have '
Fi(ryw, e rp — &), r71E) = v P £ rp — w6, ).

However, that f;(r,z,p — x£,£) € C™ (Ry x B x (R*\ {0})) and f;(r,z, A(p —
z€), )\f) = )\“"O‘ijj(r, x,p—x, &) for all A € Ry give us

BT € >
TR

where f1 ;(r,x, p—2§,&) € C™ (RJF X B x S”) with S™ being the unit sphere in Rfl;g”.
It follows that f;(r,z,p — x&,&) can be written as a function

fj(rwxaﬁ_ 1{75) = |ﬁ?€‘u_|a‘_jfl7j <

f(u—|a|—j) (T‘,l‘,ﬁ, 5) eC™ (@-‘r X Bvs(ﬂilalij) (R}}:En \ {O}))a

and we obtain that the component of (an) (Z(r,z),r " (rp—=x€),r &) of homogene-

ity p — |a| — j has the form r—# (r|a|+jf(#,‘a|,j)(r,m,rp,«s)). From (2.1.24), (2.1.26),
and (2.1.27) we finally write b(r, x, p, £) as an asymptotic sum

— Tpvg 3 "
b(?", z, p, g) =r# Z X () ’r]f(,u—|a\—j) (Tv z,Tp, g)fa )
aeNtT? €
jEN
for some excision function x(p,&) and some sequence of constant (c;) en tending to
oo fast enough. O

2.2 A new parameter-dependent calculus on infinite
cylinders

2.2.1 Operator-valued symbols with parameter

We now consider (operator-valued) symbols depending on the covariables p, 7 in edge-
degenerate form. Since we are interested in operators on the manifold X= modelled
on a cylinder R x X 3 (r,z), interpreted as a manifold with conical exits |r| — oo, X
smooth and closed, we ignore the edge-degeneracy at 7 = 0 and consider symbols of
the form

a(r, p,n) = a(r, [r]p,[rn) (2.2.1)
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for a(r, p,7) € C*> (R, L% (X; R/l;:%q)). To be more precise, we assume
a(r, p, i) € S” (R, L (X3 R;5D)), (2:2.2)

i.e., we take standard symbols in r € R of order v € R with values in L% (X; R;;q),
1 € R. We study operators

Op,(a(r, [r]p, [r]n)) : C¥(R x X) — C°(R x X) (2.2.3)

for any fixed n € R?\ {0} and observe the behaviour for |r| — oco. The continuity of
(2.2.3) follows from Op,.(a(r, [r]p, [r]n)) € LE(R x X) for every . Some aspects can
be deduced from what we did in Subsection 2.1.1 as we proved that the push forward
under the transformation (2.1.11), say, for r > 0, gives rise to an operator with exit
behaviour. In particular, we see that (2.2.3) induces a continuous operator

Op, (a(r, [rlp, [1ln)) : S(R, C=(X)) — S(R,C=(X)) (2.2.4)

for every fixed n # 0. Also other properties of operators (2.2.3) for |r| — oo can
be deduced from the results of Section 2.1.1. However, when we replace later on
the cross section X by a manifold with singularities, it is instructive also to refer
to the degenerate behaviour of the operator-valued amplitude functions in a more
direct manner. This is just what we are doing here in the case when X is smooth.
In particular, we will prove the continuity (2.2.4) once again. At the same time we
observe some general properties of the symbols (2.2.1) for (2.2.2). In other words, the
crucial definition is as follows:

Definition 2.2.1. (i) Let E be a Fréchet space with the (countable) system of
semi-norms (m;)jen; then S*(R, E), v € R, is defined to be the set of all a(r) €
C>™(R, E) such that

m; (DEa(r)) < cr]™F

for allr € R,k € N, with constants ¢ = c(k,7) > 0,

(ii) S™" for p,v € R denotes the set of all operator families

a(r, p,n) = a(r,[r]p, [r]n)
fora(r,p,n) € ¥ (]R, LH(X; R;;’q)) (referring to the natural nuclear topology of
the space L" (X;]R;Eq)).

cl

For future references we state and prove a standard property on the norm growth
of parameter-dependent pseudo-differential operators.

Theorem 2.2.2. Let M be a closed compact C> manifold and A(\) € L¥(M;R!)
a parameter-dependent family of order u, and let v > u. Then there is a constant
¢ =c(s,p,v) >0 such that

LA 2 (s (ary,are - (aryy < e(A)maxtimn=rt (2.2.5)
In particular, for p <0, v =0 we have

Al £¢rrs (ary, e (1)) < A (2.2.6)
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Moreover, for every s',s"” € R and every N € N there exists a u(N) € R such that
for every u < u(N), k= u(N) — u, and A(X) € LY (M;R") we have

AN £ et (ary, e aryy < €N 75 (2.2.7)

for all A € R, and a constant ¢ = c(s', ", u, N, k) > 0.

Proof. In this proof we write || - [lsr,s» = [l - | o+ (ar), 11+ (a1))- The estimates (2.2.5)

and (2.2.6) are standard. Concerning (2.2.7) we first observe that we have to choose
1 so small that A(\) : H¥ (M) — H* (M) is continuous. This is the case when

"< —pie, p<s —s" Let RS =5'(\) € Lji/_sl (M,R") be an order reducing
family with the inverse R* =" ()\) € L(ffs” (M, R"). Then we have

R () B (M) — B (M),
ie., RS~ (\A(N) : H¥ (M) — H® (M). The estimate (2.2.6) gives us
IR AN s < eHH =0
for 1 < s' — 5. Moreover, (2.2.5) yields ||[R*' =" (A)||s.s» < ¢(A)*' =" Thus

||A(>‘)HS”S” = HRS - (A)RS oF ()‘)A(A)“S”S”
< R W)l s IR (AN [lsr,er < e(A) = DFmE" =D = o

>

)"

In other words, when we choose (V) in such a way that p < s’ — s, and u(N) < —N,
then (2.2.7) is satisfied. In addition, if we take u = p(N) — k for some k& > 0 then
(2.2.7) follows in general. O

Corollary 2.2.3. Let A()\) € LY}(M;R"), and assume that the estimate
AN [s7,5 < e{A)™N
holds for given s',s" € N and some N. Then we have
IDS AN v < ey~
for every o € NL.

Now we go back to Definition 2.2.1 and establish some properties of the S*"
spaces that play a role in our calculus.

Proposition 2.2.4. (i) ¢(r) € S7(R), a(r,p,n) € S*" implies (r)a(r,p,n) €
Srvte,

(ii) For every k,l € N and oo € N? we have

a€ S = dlac S 0fae SR gra e gl tlel
r P n :

(iit) a(r,p,n) € 8", b(r,p,n) € ™ implies a(r, p,n)b(r, p,n) € SHTT7,
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Proof. (i) is evident. (i) For simplicity we assume ¢ = 1 and compute
xa(r,[r]p, [rln) = (0 + [r] pds + [r]'nd5)a) (r. [r]p, [r]n)
: o y 41 1
PR St bt
ara(r, [rlp, [rn) = (8- + (1) /[r))pds + (1] /[r))705)a) (r, [r] p, [r]n) € S*¥ 1.
By induction it follows that dLa € §**~! for all | € N. Moreover, we have

Gpa(r, [rlp, [rln) = [rl(95a)(r [r]p, [r]n)

which gives us d,a € SH=Lr L “and, by iteration, Qlja e §# Rk Tn a similar manner

we can argue for the n-derivatives.
(iii) By definition we have
a(r, p,n) = a(r, [r]p, [r]n), b(r, p,m) = b(r, [r]p, [r]n)

for a(r, p, ) € S¥(R, Liy(X,R.ED), b(r, p,77) € S7(R, LE (X, R;59)). Then the asser-
tion is a consequence of the relation

(@b)(r, p,7m) € S+ (R, L4 (X, RLE)).

Corollary 2.2.5. For a(r,p,n) € 8", b(r, p,n) € 8% for every k € N we have
k k +i—k 4D
dya(r, p,n)D;b(r,p,n) € ST
Remark 2.2.6. (i) Let ¢1,p02 € C®(R) be strictly positive functions such that
@;(r) =|r| for|r| > ¢; for some c; >0, j =1,2. Then we have
SHV = {a(r, ©1(r)p, p2(r)n) = a(r, p,7) € S” (R, L‘C‘l(X;R;%q))} ;

(ii) a(r,p,m) € S* implies a(Ar,p,m) € S* for every X € R,..

Proof. (i) We can write

a(r,e1(r)p, p2(r)n) = a(r, 1 (r)[rlp, ¥2(r)lrln)

for ¢;(r) € C*(R), ¢;(r) =1 for |r| > ¢ for some ¢ > 0, j = 1,2. Then it suffices to
verify that
. _ v 1
a(r,1(r)p, a(r)i) € (R, L (XGRS 5);

however, this is straightforward.

(ii) It is evident that the relation a(r,p,7) € S”(R, Lgl(X;R:E:%q)) implies
a(Ar, p, i) € S¥ (R,Lé‘l(X;R%;q)). Therefore, it suffices to show a(r, [Ar]p, [Ar]n) €
SHv. Let us write

a(r, [Ar]p, [Arln) = a(r, o (r)[rlp, oa(r)[r]n)
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for @ (r) := [Ar]/[r]. We have @x(r) = X for |r| > ¢ for a constant ¢ > 0, i.e.,
ox(r) — A € C§°(R). Thus there is an r-excision function x(r) (i.e., x € C*(R),
x(r) =0 for |r| < ¢y, x(r) =1 for |r| > ¢1 for certain 0 < ¢y < ¢1) such that

x(r)a(r, [Ar]p, [Ar]n) = x(r)a(r, [r]Ap, [r]An),

which belongs to §*. It remains to characterise (1 — x(r))a(r, x(r)[r]p, o (r)[r]n)
which vanishes for |r| > ¢;, and a simple calculation shows

(1= x(r)a(r,ex(r)p, ea(r)il) € C5° (R, L (X5 R;5H),
which is contained in §*'~°°. O

Proposition 2.2.7 (Asymptotic summation). Let
a;(r, p,7) € 8" (R, LA/ (X;R'T9)), 5 €N,

be an arbitrary sequence, u,v € R. Then there is an a(r,p,7n) € S¥ (]R L (X, RHq))
such that

a— Za] € S (R, LH (N+1) (X R'*9))
for every N € N, and a is unique modulo S¥ (R,L;C’O(X;Rl‘*‘q)).

Proof. The proof is similar to the standard one on asymptotic summation of
symbols. We can find an asymptotic sum as a convergent series a(r,p,7n) =
Z;iox(( 71)/c;)a;j(r, p,7) for some excision function x in R'™? with a sequence

¢j >0, ¢; — 0o as j — oo so fast, that 3372 v\ x ((5,7)/¢;) a(r, p,7) converges in
S” (R, ijl_(NH)) for every N. O

2.2.2 Continuity in Schwartz spaces

The Schwartz space S(R, E) with values in a Fréchet space E can be interpreted as
the projective tensor product S(R)®, E, using the nuclearity of S(R). In particular we
have the space S(R, C*(X)). Occasionally we will write S(R x X) := S(R,C*°(X)).

Theorem 2.2.8. Let p(r, p,n) = p(r, [r]p, [r]n), B(r, p,7) € S” (R, L (X; R};ﬁq)), i.e.,
p(r,p,n) € S*¥. Then Op,.(p)(n) induces a family of continuous opemtors

Op,(p)(n) : S(R,C*(X)) — S(R,C>(X))
for every fixed n # 0.

Proof. We have
OM@WWWOZ/émMnMMMMW,
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first for u € C§°(R,C*(X)). In the space S(R,C>(X)) we have the semi-norm
system
m,s = aaﬁ s
Tm,s(u) = max sup |[[r]* 0 u(r)acx)

for m € N, s € Z, which defines the Fréchet topology of S(R, Cc> (X)) If necessary
we indicate the variable r, i.e., write mp, 5., rather than m,, ,.
The Fourier transform F,._,, induces an isomorphism

F: S(RT,HS(X)) — S(RP,HS(X))
for every s. For every m € N there exists a C' > 0 such that
Wm,s;ﬂ(]:u) < C7Tm+2,s;r(u) (228)

for all u € S(R, H*(X)) (see [19, Chapter 1] for scalar functions; the case of functions
with values in a Hilbert space is completely analogous). We have to show that for
every m € N and § € Z there exist m € N and s € Z, such that

T, (Op(P)u(r)) < ey s(w) (2.2.9)

for all u € S(R,C*(X)), for some ¢ = c(1m, §) > 0. According to Proposition 2.2.10
below we write the operator Op(p)(n) in the form

Op,.(p)(n)o(r)~Mo(r)™ = (r) =M Op, (barn) (n) o (r)* +Op, (darw) (n) o (r) M (2.2.10)

for a symbol byn(r,p,m) € S"”,N € N and a remainder dyn(r,p,n) satisfying
estimates similar to (2.2.19).
We have

10p,.(p) (Mu(r) s (x) = H/ "p(r, pym)idp )dp”H§(X)

H/ 7 () Mg (r, o, ) (F)M ) (p )deHE(X)+|Opr(deN)(n)<T>Mu(T)|Hg(X)'
(2.2.11)

For the first term on the right of (2.2.11) we obtain for s := § + p and arbitrary
MeN

H/ irp( Mp v (r, p,n)<p>ﬁ(<7’/>1‘4\it)(p)de )
H3(X)
/ 1o Mpaen(ry 0, M (o)™ ()M 01) (0) | 5 (x)
< S?£R2<p>*M< e o) e o 400 0

Moreover, we have

/ YN (7)Y M) (0) | 22y < iggm”f“n« M) (o) - (x) / (p)~2dp

L —

< CWM+2,s;p((<r>Mu) (p)) < WM+4,S;T(<T>MU)) < CWM+M+47S;’I‘(U)
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Here we employed the estimate (2.2.8). Thus (2.2.11) yields

70,5 (Op(p) (n)u)

<c sup () M) M barn (rs ) | 2eme (), 15 (X)) T a4 374,000 ()
(r.p)ER?
+ 0,5 (O, (darn) () ()M ). (2.2.12)

The factor csup,. , g2 <p>*M<r>*M||bMN(r, ps Ml as (x), 17 (x)) is finite when we ad-

equately choose M and M. In fact, since by (r, p,m) € S*” we see from Theorem
2.2.2 that

bar (7, p, 7])||L(HS(X),H§(X)) < c(r)([r]p, [T]U>max{”’0}-
Thus

)M ()Y M lbarn (v, o)L 2z oyar5 0y < (o)™ M (1)Y= M ([ p, [r]m) mex(10),

If ;4 < 0 then it suffices to choose M > v and M > 0. Let 4 > 0 then we can write

(o)™ )M o () e 0 100y < o)™ ()= (ol
(L+ (1202 + [r2Inf)2

(14 7r2)(M=v)/2(1 4 p2)M/2
oo ([P0 + )2

T (14 r2)(M-0)/2(1 4 p2)M/2

This means that if we choose M > u + v, M > u then

sup ()M (Y Mbarn (v, p, ) || 2oare (x0), 17 (x)) < 00
(r,p)ER?

Next we consider the second term on the right hand side of (2.2.12). We have
10D, (darn) () () u(r) | 125 x)

- H / e"p<p>-MdMN<np,n><p>M(<r/>f%)<p>de

H3(X)
/ 1) s (7, p, ) ()™ (WM 0) () 115 0,
_( v (o)™ ™ darn (s o, ) | 222 (), 15 <X>>/|| () M) (o)1= x) dp-
r,p)ER2

From the analogue of the estimate (2.2.19) for dpn (7, p, ) we see that for N suffi-
ciently large it follows that the right hand side of the latter expression can be estimated
by

[ 1) (@70 o)l do

< ilelgp)M“H(( r)Mu) (p>||Hs<x>/<P>‘2@p < CTan a5 ().
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In other words we have proved
Woﬁg(Op(p)(n)u) < c(7rM+M+47s(u) + 772M+4,5(u)) <ecmp s(u) (2.2.13)

for s =8+ p, L := max{M + M+ 4,2M + 4}. For m 5 we write

3. 0p(p)(Mu(r) = / P ap(r, p,n)a(p)dp + / e"?p(r, p,n)Du(p)dp,
rOp(p)(n)u(r) = / e (ipp(r, pym)) a(p)dp + / e Pip(r, p,n)d,a(p)dp.
From Proposition 2.2.4 we have
0,p(r, p,n) € S*V71, id,p(r, p,n) € SHTHVTL
Thus we obtain
§g§H8A3p0ﬁ(nﬁwrﬂhquyfECWL+Ls@O,
ilelg [rOp(P) (Mu(r)|l rs(x) < e(mr,s—1(u) + Trg1,s(w) < empqs(u),

i.e., m1,5(0Op(p)(n)u) < empq1,s(uw). Analogously, one can prove (2.2.9) for arbitrary
m € N, § € Z, and suitable m, s. O

2.2.3 Leibniz products and remainder estimates

Let a(r,p,7) € S*(R,LY), b(r,p,7) € S”(R, L") where LV = L‘CL](X;R})E‘I). The
operator functions

a(r, p,n) = a(r, [r]p, [r]n),  b(r, p,n) := b(r, [r]p, [r]n)

will be interpreted as amplitude functions of a pseudo-differential calculus on R con-
taining 7 as a parameter (below we assume 7 # 0). We intend to apply an analogue
of Kumano-go’s technique [19] and form the oscillatory integral

a#tb(r, p,n) = // e Ta(r, p+1,0)b(r +t, p,n)dtdr (2.2.14)

which has the meaning of a Leibniz product, associated with the composition of
operators. The rule

Op,(a)(n)Op,.(b)(n) = Op,.(a#b)(n) (2.2.15)

for n # 0 will be justified afterwards. Similarly as in [19], applying Taylor’s formula
on a(r,p + 7,7m) with respect to the second variable at the point p we get for any
NeN

N Tk FN+1 1 -
ol 7o) = 3 et + T | a=o¥ @ o+ orma.
2 |
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We substitute in (2.2.14) and, using the identity e~#7"7% = (—D;)ke™"" k € N, we
write

a##b(r, p,n Z i // 7”78’“ a(r, p,n)(DEb) (r 4 t, p, n)dtdr

N // - {/ 1 =)N (@) a)(r, p+ 0, n)de} (DNF) (1 + t, p,m)dtdr
(2.2.16)

Then, by means of the Fourier inversion formula we see that the first term of the right
hand side of (2.2.16) is equal to Zszo %Gﬁa(n 0,m)DEb(r, p, 7).
Setting cx(r, p, 1) := 7 95a(r, p,n) Dyb(r, p,n) and

rp, :
N // o { / —0)Y (9, a)(r,p+ b, n)do} (DY) (r + 1, p, m)dtdr
(2.2.17)

we can decompose a#b in the form

N
a#b(r, Ps 77) = ch‘(Ta Py 77) +TN(T7 P 7])' (2218)
k=0

By virtue of Corollary 2.2.5 we have cx(r, p,1) = é(r, [r]p, [r]n) for some ¢ (r, p,7) €
SYH7(R, LTF7F). Let us now characterise the remainder.

Lemma 2.2.9. For every s’,s" € R, k,l,m € N, there is an N € N such that
1D DN (7, pm)llsr s < e(p) ™" (r) = ) ™™ (2.2.19)

for all (r,p) € R?, |n| > e >0,14,j €N, for some constant ¢ = c(s',s", k,l,m, N, &) >
0, here || - s = Il - | 2 (x), 1" (x))-

Proof. By virtue of Proposition 2.2.4 we have
~ —k+k 7 i,k
aga(r, [r]p, [r]n) € S*=5VFEarb(r, [r]p, [rn) € S*
for every k. Let us set

ant1(r, [r]p + [r)0T,[r]n) == (aj,\’“a)(r, p+61,1m),
b (r+ t [+ tp, [+ thn) := (DY T10)(r + £, p,m).

By virtue of Theorem 2.2.2 for every sg,s” € R and every M there exists a u(M)
such that for every p < u(M) and p(p,7) € Lk, (X;R;;q) we have

1p(p: )lso,5 < ey~ (2.2.20)
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for all (p,7) € R4, ¢ = c(sp, 8", pu, M) > 0. In addition, for s’, sy € R there exists a
B € R such that ||p(p,7)]s.s, < c(p, )P for all (p,7) € R, ¢ = c(s, sp, 1) > 0. We

apply this to ay41(r, p,7) and 5N+1(r, p,1), combined with the dependence on r € R
as a symbol in this variable. In other words, we have the estimates

||&N+1(rv p~7 ﬁ) HSoys” < C<T>y+(N+1) <ﬁ7 ﬁ>7]wa (2221)
o410, 5 D750 < er)? =05, ) (22.22)

here we applied the above mentioned result to an4; for the pair (sg,s”) for N suf-
ficiently large, and for by, the second estimate for (s, sp) with some exponent B.
Let us take sg := s’ — [i; then we can set B = max{fi,0}. The remainder (2.2.17) is
regularised as an oscillatory integral in (¢,7), i.e., we may write

() = 7 [[ €@ - ) ) - )"

{/0 (1 =) Nany1(r, [r]p + [r]6T, [T]n)d@} 5N+1(r +t,[r+t]p, [r+ tln)dtdr
(2.2.23)

for sufficiently large L, K € N. For simplicity from now on we assume ¢ = 1; the
considerations for the general case are completely analogous. Then we have for every
<L

02 ana(r, [rlp + 1107, [rln) = (93 an+1) (r, [rlp + [r]6, [r]n) ([r]0)*,

and for every k < K

OFbn 1 (r+t,[r+t]p, [r +tIn) = (07 bn41) (r +t, [r + t]p, [r +t]n)
+ (02 by ) (r + 1, [+ tlp, [+ tn) (O, [r + £]) %
+ (G%kI;NH) (r+t,[r +tlp, [r + t]n)(nd[r +t])** + R,

where R denotes a linear combination of other mixed derivatives, for example,

O H(0pb+1) (r + 8, [+ tlp, [+ ) (s [r + 1))}
= Z Cij (6§(355N+1)(T+ta [T’+t]p, [T+t]77))035+1[7’+t]a

i+j=2k—1
O (Dsbn 1) (r + 1, [r + tlp, [r + tn) (nd:[r + 1))}
= > (0 @gbny)(r+t,[r +tlp, [r 4+ tn))nd! T + 1]
itj=2k—1
for some coefficients c;;.

From (2.2.21) we have

102 an 41 (7, [r]p + r[6)7, [ s, < elr) D ((rlp + [ror, [rlm) =~ (Ir]0)*,
(2.2.24)
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see Corollary 2.2.3, and (2.2.22) gives us
1O br+2) (4, [+ tlp, [+ 1) |50 < elr+6)7~ N4, [+ 1) (2.2.25)
(where we take N so large that 7 — (N + 1) < 0), and

1025 bn 1) (r + ¢, [r + tlp, [r + tn) (pOi[r + £)**||sr s,
< elr 4+ 7N e 4 t]p, [+ ) B2 pdyr + ] 12F,  (2.2.26)

1025 bn-41)(r + 8, [r + t]p, [r + 1) (nd:r + 1) | 5,
< c(r+ 7 N[+ o, [r + ) P sl + 412, (2.2.27)

The above mentioned mixed derivatives admit similar estimates (in fact, better ones;
so we concentrate on those contributed by (2.2.24), (2.2.25), (2.2.26), (2.2.27)).

We now derive an estimate for |7 (r, p,n)||s,s. From (2.2.23) we obtain

v < [[[ 107 - atyr oy
(1= 0V a1+ 107, (b 48,1+ e+t o O

||TN(T7 P 7])|

The operator norm under the integral can be estimated by expressions of the kind
L= c(r) YN (p ) mNHED( 72 () 2K [ p 4[]0, [r)m) =™ 2 ([r]0)*
([r+tlp, [+ ) P {1+ [+ o, [+ tm) "> (p** + [n*)|(De[r + 1])°*]}
Il < L, k < K, plus terms from R of a similar character. We have, using Peetre’s
inequality,
<T>u+(N+1)<,r+t>z77(N+l) < <T>V+f/<t>|ﬂf(N+1)\.
Moreover, we have ([r]p + [r]07, [r]n) 2 ([r]0)* < c([r]n)~ 2] < cfor [n| > e >0

(as always, ¢ denotes different constants), and

([ + tlp, [+ tln) =>*([p** + [0]*)|(@u[r + )]
< c{(lr+tlo) 2 (I + 8lpl)* + {[r + thn) = ([ +tn))** i + 472 < ¢,
using [(9y[r +t])%F| < ¢, [r +1]72F < c for all r,t € R and. This yields
1< el (17O (028 ) =2K (1] 1 (116, 1)~ (i + £]p, -+ ).

Writing M = M’ + M" for suitable M’, M"" > 0 to be fixed later on, we have

1"

([rlp + [F)6m [rjm) =™ = ([rlp + [r)6m, [rlm) =™ ([r]p + [)6, [r]m) ™
< e([rlm) =M ([ Irlm) =M (0™ < e [r)m) M ([r]o) M ([ror) M
We applied once again Peetre’s inequality which gives us also

(Ir +tlp, Ir + ) < e([r +t1p) " ([r + tIn)”
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since B > 0. Thus
I< c(r) 7 () 7= (NEDI2L () =2 (o) M (0111 p) B ([r) ) =™ ([ +#]m) B ([r]m) ="

Let us show that (t)~Z([r +t]p)B([r]p) = < c. In fact, this is evident in the regions
|r| < C,Jt| < Cor|r|>C, |t| < C for some C > 0. For |r| < C, |t| > C the estimate
essentially follows from 1+ t2p? < (1 + #2)(1 + p?). For |r| > C, |[t| > C, we can
suppose that [r +t] > C, and hence, [r +t] = |r + |, [r] = |r|. Then the estimate
follows from

_ - Lt |r+ P2l _ 1+ |rpl” + [tol* + 2[rtp?]
£y ([r + t]p)*([r 2= <
e = G ) = T W el + o

1 2 4 tpl? 4+ 2|rtp? 2rtp?
<e +|7“p|+2/)+2|7"pléc(1+ \T2p| i
L+ |rp? + tpl L+ |rpl? + [tp]

In the last inequality we employed that

Rl
T+ rpl2+tp|2 — r2+12 124292 442 — '

> < const.

Analogously we have (t) =B ([r + t]n)B([r]n) =B < c. This gives us the estimate

I < cfr) 7 7= (VHDImREE2E () Z2 [ror) M (] ) P () P
Finally, using (7)™ (+)=M"([r]07)M" < ¢ for all 0 < § < 1 and all r, 7, we obtain
B-M’

I§C<7">V+17+M <t>|17—(N+1)\—2L+2B<T>—2K+M <[,r,] B-M <[T]

p) )

forall m,t € R, p,7 € R, 0 < 6 < 1. Choosing K and L so large that
—2K+M'<-1, [p—(N+1)|-2L+2B< -1,

it follows that [y (r,p, n)llsrr < c(r) 7+ ([rn)B=M (p)B=M" for £ 0. Here

we used that ([r]p)P~M" < ¢(p)B~M" for B— M” < 0. Let us now show that for

B-M' <0

([r]n)B=M" < cfr)BM () B-M (2.2.28)
for all |n| > ¢ > 0 and some ¢ = ¢(g) > 0. In fact, we have
20,12 2 2 1 1
[ m” I m> . <o,

L+(lrlnl* 1+l L+ [rIn> )72+ ol =2 + [7]2 —
ie., (1+[r]n]?)~! < ¢[r]72(n)~2 which entails the estimate (2.2.28). It follows
ot < C<T>V+D+MN+B_]\/[/<

>B—M”< B—I\/I’.

m)
Now B is fixed, and M, M" can be chosen independently so large that

I (r, p, )] p

B-M"<-k, B-M<-m, v+i+M'+B-M <-I
Therefore, we proved that for every s’,s” € R and k,l,m € N there is an N € N such
that

5 (ry )|l < (o)™ (r) "Hm) ™™ (2.2.29)

for all (r,p) € R2, || > € > 0. In an analogous manner we can show the estimates
(2.2.19) for all i, j. O
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Proposition 2.2.10. For every a(r,p,n) € S"" and p(r) = [r]” (which belongs to
S7) for every n # 0 we have (as operators Op,.(a(r, [r]p, [r]n)) : C (R, C=(X)) —
C*(R,C*(X)))

Op,.(a)(n) o ¢ = ¢ o Op,(d)(n) + R(n) (2.2.30)
for some d(r,p,n) € S and a remainder R(n) = Op, | (rn)(n) which is an operator
function v (r,p,n) € C°(R x R x R, L(H*(X), H* (X))) for every given s',s"
and sufficiently large N = N(s',s") € N, satisfying the estimates (2.2.19) for all
(r,p) € R? and all |n| > ¢ > 0.

Proof. We apply the relation (2.2.18) to the case b(r, p,n) = ¢(r), where N is so large
that the remainder forms a bounded operator H* (X) — H* ,( ), and obtain

Op(a) 0 ¢ = Op(aie) = Zop<k, fatr pDe)) RO (2231

= Op(rn) and ry(r,p,n) is as in (2.2.19). For the sum on the right hand
side of (2.2.31) we have

S~ 0p ( ket pmnketr))

k=0
R
= ¢(r) o Op <a(r, p,n) + dpa(r, p, n)vﬁ + kzz 219 alr:p, n)%(ﬂ) ,
for some @ (r) € C§°(R), k =2,..., N. Let us set
al L,
d(n) = a(r, p,n) + dyalr, p,n [— + > 0kalr p.m)en(r).
k=2

Then, using Proposition 2.2.4, we easily see that d(n) € S*". This completes the
proof. O

Let us now return to the interpretation of (2.2.14) as a left symbol of a composition
of operators. From Theorem 2.2.8 we know that

Op,.(a)(n), Op,(b)(n) : S(R,C*(X)) — S(R,C>(X))

are continuous operators. Thus also Op,.(a)(n)Op,.(b)(n) is continuous between the
Schwartz spaces. This shows, in particular, that the oscillatory integral techniques of
[19] also apply for our (here operator-valued) amplitude functions, and we obtain the
relation (2.2.15).

Let A(n) = Op,.(a)(n) for
a(r,p,n) :=a(r,[r|p, [r]n), a(r,p,7) € S¥ (R, LgI(X;R;;q)).

Then we form the formal adjoint A*(n) with respect to the L?(R x X )-scalar product,
according to

(A(n)u, U) L2(RxX) (u, A (n)v) L2(RX X)
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for all u,v € S(R,C>(X)). As usual we obtain

A*(n)v(r') = Op,.(a™) (n)v(r')

for the right symbol a*(1’, p,n) = a(r’, p,n) = a(r’, [r']p,[r']n). Similarly as before we
can prove that
Op,.(a*)(n) : S(R,C= (X)) — S(R,C*(X))

is continuous for every 7 # 0. Thus by duality it follows that
Op,(a)(n) : '(R,&'(X)) — S'(R,&'(X)) (2.2.32)

is continuous for every n # 0. By &’ (R, 5’(X)) we mean here the space of all contin-
uous functionals on & (R, C>(X )) with the strong topology of the bounded conver-
gence. Another way to interpret the space S(R, COO(X)) is to say that f € £'(X) &
[ € H*(X) for some real s € R; then S'(R,£’(X)) means the inductive limit of the
spaces L(S(R), H*(X)) over s € R.

Remark 2.2.11. From the identifications

gx) =), s®= () H™®),

sER m,geR
for H™9(X) = (ry"9H™(X), we see that
uwe S'(R,E(X)) < weLl(H™(R),H*(X))
for a certain s € R and some m,g € R dependent on s.

Lemma 2.2.12. For every s, € R and k,I,m € N there exists a real
w(s', 8" k,l,m) such that for every a(r,p,n) € S*", v € R we have

la(r, p,)lls s < c{p) ™" (r)~Hm) ™™

(r, p) € R?, whenever u < p(s',s", k,1,m), |n| >¢&>0.

Proof. The proof is straightforward, using Theorem 2.2.2, more precisely, writing
a(r,p,n) = a(r, [r]p, [r]n), we have the estimate

lla(r, p, 77)”5/,5” < C<T>V<ﬁv 77>_N

for every fixed N € N when p is chosen sufficiently negative (depending on N),
uniformly in r € R. Then, similarly as in the proof of Lemma 2.2.9, we obtain for
suitable N and given k,l,m that {[r]p, [r]n)™N < c(p)~F(r)=H(n)=™ for |n| > ¢ >
0. O

Corollary 2.2.13. Leta(r,p,n) € S~ (:: Nuer S“”’). Then for every s',s" € R,
k,l,m € N we have

1Dy Dja(r, p,m)|lsr,sm < elp) ™" ()~ ) ™™

for all (r,p) € R2, |n| > e >0, i,j €N, for some constants ¢ = c(s',s", k,l,m,e) > 0.
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Proposition 2.2.14. The kernels c(r,7',n) of operators Op,.(a)(n) for a € ST,
v € R, belong to

/

C=(R7\ {0},S(R x R, L(H* (X), H* (X))), (2.2.33)

for all §',s" € R, and are strongly decreasing in n for |n| > & > 0 together with all
n-derivatives, more precisely, we have

sup [|(1)* D} (r, )7 DY D e(r, '), < 00 (2.2.34)

for every 8 € N4, o, 0,7, 7" € R with sup being taken over all |n| > >0, (r,r') € R.

Proof. If we show the result for v = 0 from Proposition 2.2.4 it follows immediately
for all v. Write a(r, p,n) = a(r, [r]p, [r]n) for a(r,p,7) € S°(R, L_‘X’(X;R;j%q)). Then

we have

‘|Dg,ﬁd(rv ﬁv ﬁ)”s’,s” S C<ﬁ7 77]>_N

for v € N'*4 and each N € N. For a sufficiently large N this easily gives us
IDLDLDs alr, p,n)lls s < elp) ")~ ) ™™
for every k,l,m € N, |n| > ¢ > 0. Now the kernel of Op,.(a)(n) has the form
/ e =rq(r, p, n)dp = / e (14 fr =/ P) M (1= A)Malr pom)dp (2:2.35)

for every sufficiently large M. This implies

H/e"(’“‘””a(n p,n)dp

—M
= /H (L+]r=r"?)" 7@ =2a,)"a(r, p,n)s s dp

< (1t lr =) M iyl / (P dp

-M

gc(1+|rfr’\2) (ry"Hn)™™ < oo

for k > 2. In a similar manner we can treat the (r,r’)- and 7-derivatives of the
kernel. O

Definition 2.2.15. (i) Let L™°°°°(X=;R%\{0}) denote the space of all operators
with kernels ¢(r,r',n) as in Proposition 2.2.14. Moreover, for purposes below,
let L™°7°°(X™=) denote the space of all operators with kernels

ciri’)e [ SRxR,LHY(X),H (X))).

s’,s""eR
(ii) Let L (X=;R2\ {0}) denote the space of all operators of the form

A(n) = Op,(a)(n) + C(n),

depending on the parameter n € R2\ {0}, for arbitrary a(r,p,n) € S*" and
operators C(n) € L™°>7°(X=;R7\ {0}).
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Theorem 2.2.16. (i) For every j(5,7) € Ly(X:R;5"), s < 0, and p(r, p,1) =
p([r]p, [r]n), the operator

Op,(p)(n) : L* (R x X) — L*(R x X) (2.2.36)
is continuous for every n € R7\ {0}, and we have

10D, (P) (Ml (23 x)) < c(n)® (2.2.37)
for all |n] > e,e >0 and a constant ¢ = c¢(e) > 0.
(ii) In the case s < 0 the operator
[}~ 90p, (p)(n) : L*(R x X) — L*(R x X) (2:2.38)

is compact for every g < 0 and n # 0.

Proof. (i) For the continuity (2.2.36) and the estimate (2.2.37) we apply a version of
Calderdn-Vaillancourt theorem which states that if H is a Hilbert space and a(r, p) €
C> (]R x R, ,C(H)) is a symbol satisfying the estimate

m(a) = k,sllzlgl HDfDlpa(r, Pl ey < oo (2.2.39)
(r,p)ER?
the operator
Op,(a): L*(R,H) — L*(R, H)
is continuous, where
0P, (@)l £(z2(m,m)) < em(a)

for a constant ¢ > 0. In the present case we have

a(r, p) = p([r]p, [r]n) (2.2.40)

where 17 # 0 appears as an extra parameter. It is evident that the right hand side of
(2.2.40) belongs to C*°(R x R x R?, £(L*(X))). From the assumption on p(p,7) we
have

sup 1500 Ml cz2x)) < e(p,n)° (2.2.41)

for all (p,77) € R4 and some ¢ > 0. In fact, the latter estimate corresponds to (2.2.5)
for s=v=0and y=s <0. For (2.2.39) we first check the case [ = k = 0. We have

sup ([r]p, [r]n)* < c(n)” (2.2.42)
(r,p)ER?

for all |n| > e > 0 and some ¢ = ¢(g) > 0. Thus (2.2.41) gives us

sup [|p([7]p, [r]m)ll 22 (x)) < e(n)®
(r,p)ER?

for such a ¢(e) > 0. Assume now for simplicity ¢ = 1 (the general case is then
straightforward). For the first order derivatives of p([r]p, [r]n) in r we have

0, p([rlp, [r]n) = [r) (00 + nd3)p([r]p, [r]n) (2.2.43)
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!

for [r]’ = 4 [r]. For the derivatives of p with respect to f, 7} we employ that 9;p(p, ),
05p(p,7) € L~ (X; R;;q). Thus, similarly as before we obtain

102 :5(5, M) (L2 (x)) < elp i)

for any a € N2, |a| = 1. This gives us for the right hand side of (2.2.43)

sup || [T]_l[r]/([r]Paﬁ + [r]n95)p([r]p, [7“]77)H.C(L2(X))
(r,p)ER?

< sup[r]~!|[r]p + [rnl([r]p, [r]n)* "
< c(n)* suplr]~H[rlp, [FIn|([r]p, [F]n) " < c(n)®.

Here we employed (2.2.42). For the derivative of p([r]p, [r]n) in p we have

sup 9,3, [rln) |2 )y = sup [[1)(@) ([l )l ez x)
< esuplr{[rlp. [rln)* ™" < e(n)®

for all |n| > e > 0. This gives altogether the estimate (2.2.37). To obtain (2.2.36) we
only need to note that L?(R, L?(X)) = L*(R x X).

(ii) For s < 0 the operator
[r]7*"Op,.(p)(n), n # 0 fixed,
can be regarded as an operator with symbol
a(r,p) € S (R x R; L*(X), L*(X)) (2.2.44)

with values in compact operators L?(X) — L?(X), since X is compact. The symbol
class on the right of (2.2.44) refers to the trivial group action on L?(X) (cf. the
notation in (3.1.8)). In order to verify (2.2.44) we have to check the estimate

1670, r] ==+ 95([r]p. [rIm)l| cz2 )y < e(r)? ™" (p)* (2.2.45)

for all (r,p) € R? and k,[ € N. First, because of

)= p([r]p, [l eceecx)y < elrl ™" ([rlp, [rln)™ < e(r)?(p)° (2.2.46)

for all (r, p) € R? and some constant ¢ > 0, the estimate (2.2.45) is true for k = [ = 0.
Let us now check (2.2.45) for k = 0, [ = 1. In this case we have 9,[r] = 5t9p([r]p, [r]n) =
[r]=5+9+1(05p) ([]p, [r]n). Since (9;p)(p, 1) € L H(X; Rlilq) we are in the same situ-
ation as (2.2.46) with s — 1 instead of s. Inductlvely we obtain (2.2.45) for arbitrary
leNand k=0. For £k =1 we have

0, (I~ @) (o, Irlm) ) = (=5 + g + D) )=+ (0k5) (e, )
[ () (057 5) (s [rn) + )=+ ] ([ n) (05050 [ [ ).

For the first term on the right hand side we have

I(=s + g+ D) [ ] @05) (o, [ ez < elr]?™ o)™
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The other two terms admit analogous estimates since /3(6%“]5)(5, 7), ﬁ((“)ﬁa/l;ﬁ)(ﬁ, M) €

Lil_l(X;R;;q). In other words we obtain (2.2.45) for & = 1 and arbitrary [. The
higher r-derivatives can be treated in an analogous manner, i.e., we obtain (2.2.45)
in general. Consequently we have proved that

(1= 5([r]p, [r]n) € S (R x R; L*(X), L*(X).

The values of the operator function [r]|~t9p([r]p, [r]n) are compact for s,g < 0.
Finally we use the following lemma, its proof can be found in [43, Chapter 7]:

Lemma 2.2.17. Let H,ﬁ be two Hilbert spaces with group actions, and a(y,n) €
S$9(RY x R4, H,H), s,g < 0; moreover, let a(y,n) : H — H be a compact operator
for every (y,n) € R?1. Then

Op(a) : (y)~/ W (R, H) — (y)" W (R?, H)
is compact for every s', g € R.
By virtue of Lemma 2.2.17 the operator
[r]7*t90p(p) : WO (R, L*(X)) — W° (R, L*(X))
is compact. It remains to note that
WO(R, L*(X)) = L*(R, L*(X)) = L*(R x X).
O

Remark 2.2.18. Using Calderdn-Vaillancourt theorem one can also prove that any
operator A € L*°(X=;R?\ {0}) induces continuous operators

A(n) : L*(R x X) — L*(R x X).
Theorem 2.2.19. Let a € SV, b e SM7; then we have

Op,.(a)(n)Op,.(b) (1) € L' 7 (X R\ {0}).

Proof. According to (2.2.15) the composition can be expressed by a#b, given by the
formula (2.2.14). By virtue of Corollary 2.2.5 we have

1 = ~
Eaf,fa(r, p,n)DFb(r, p, ) € SHHEZRVED

i.e., this symbol has the form ¢ (r, p,n) = ¢ (r, [r]p, [r]n) for some
é(r, 7 i) € S (R, LR XGRS ED).

Applying Proposition 2.2.7 we form the asymptotic sum

>l pyii) ~ &, p, i) € SUTT (R, L (X REED).
k=0
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Setting ¢(r, p,n) = é(r, [r]p, [r]n) from (2.2.18) we obtain

N

Op, (a#b)(n) = Op,(c)(n) + Op, <Z Ck — C> (n) + Op,.(rn)(n)

k=0

modulo L™°7°(X=;R9\ {0}), where (fo:o Ck — c) (r,p,n) € SFHA-N+D Gince
this is true for every N € N Lemma 2.2.12 gives us the right remainder esti-
mate also for ||Op,,(§:,]€\f:0 ¢k — ©)||s,s, and it follows altogether that the kernel of
Op,.(a#b)(n) — Op,.(c)(n) has finite semi-norms (2.2.34) as indicated in Proposition
2.2.14 for arbitrary o, 5 € N, o, 7,7 € R, ', 8" € R, |n| > & > 0. O

Theorem 2.2.20. Let p(p,77) € LE(X;R™9) be parameter-dependent elliptic of order
s € R, and set p(r, p,n) = p([r]p, [r]n). Then there exists a C' > 0 such that for every
[n| > C the operator

[r]7*0p,.(p)(1) : S(R,C(X)) — S(R,C>(X)) (2.2.47)
extends to an injective operator
[r]7*Op,(p)(n) : L*(R x X) — &' (R, &'(X)). (2.2.48)
More precisely, considering [r]=*Op,.(p)(n) as an operator
[1]7°0p,.(p)(n) : L*(R x X) — L(S(R), H'(X)), (2.2.49)

which is continuous for some t € R, then it is injective.

Proof. First, according to (2.2.32) there is a ¢ such that (2.2.49) is continuous for all
g,1 € R. For the injectivity we show that the operator has a left inverse. This will be
approximated by Op,.(a) for

a(r, p,n) == [r1*p 1 ([r)p, [r]n) (2.2.50)

where p(—V(p,7) € L7°(X;R'"9) is a parameter-dependent parametrix of p(g, 7).
Setting
b(r,p,n) == [r]7°B(Ir]p, [r]n) (2:2.51)

we can write the composition of the associated pseudo-differential operators in r for
every N € N in the form

Op,.(a)(n)Op,(b)(n) = Op,(a#d)(n) = Op, (1 + ex(r,p,n) +rn(r, p.n))  (2.2.52)
for ey (r,p,m) = fo:l w0%a(r, p,n)DEb(r, p,n) has the form
en(r, pym) = én(r, [r]p, [r]n) for some én(r, p,7) € S°(R, L' (X;RT7)).

Moreover, the remainder 7y is as in (2.2.17). From Theorem 2.2.16 for s = —1 we
know that

0P, (en) (M)l 2z2®xx)) < c(n) ™"
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for |n| > e. Moreover, Lemma 2.2.9, applied to s’ = s” = 0 together with an operator-
valued version of the Calderén-Vaillancourt theorem, gives us

10D, (rn) (M) | cp2@xx)) < c(n) ™"

for sufficiently large N. Thus for every |n| sufficiently large the operator on the right
of (2.2.52) is invertible in L2(R x X), i.e., Op,.(b)(n) has a left inverse which implies
the injectivity. O
Theorem 2.2.21. A € L""(X=;R?\ {0}), B € L"”(X=;R?\ {0}) implies AB €
Lr vt (xX=;R7\ {0}).

Proof. Let us write

A(n) = Op,.(a)(n) + Ci(n), B(n) = Op,(b)(n) + Ca(n)

for a € 8", b e §*7 and Cy(n),Ca(n) € L™ (X=;R%\ {0}). Then we have

AB = Op,.(a)(1)Op,.(b)(n) + C1(n)Op,.(b)(n) + Op,.(a)(n)Ca2(n) + C1(n)Cx2(n)-

Theorem 2.2.19 implies that Op,.(a)(n)Op,.(b)(n) € LF7(X=;R%\ {0}). More-
over, the composition of smoothing families is again smoothing. It remains to show
that

C1(1)Op,.(b)(n), Op,.(a)(1n)Ca(n) € L™°72(X=; R\ {0}). (2.2.53)
To this end we write C1(n) = Op,(c1)(n), Ca(n) = Op,(c2)(n) for ¢g € S,
ca € ST for some vi,v9 € R. Then, by virtue of (2.2.15), C1(n)Op,.(b)(n) =
Op,(c1#b)(n), Op,(a)Ca(n) = Op,(a#c2)(n). Finally we observe that ci#b €
STt and afte, € 872 and hence they are as in Corollary 2.2.13, which
completes the proof. O

Remark 2.2.22. [t is sometimes desirable to consider operators of the form A(n')
for some A(n) € L™ (X=;RI\{0}) where n' € RI\{0} fized. Then we can easily pass
to new parameter-dependent situation by replacing n* by én',5 € R. This produces a
family A(on') € L*"(X=;R\ {0}). For instance, if A and B are two operators, in
order to characterise the composition

A(n")B(n?)

for fived nt,n?* € R2\ {0} we can apply Theorem 2.2.21 to A(én'), B(6n?), and then
set § = 1.

Definition 2.2.23. An A € L" *(X=;R?\ {0}) is called elliptic if it can be
written in the form

A(n) = Op,(a)(n) + C(n)

for C(n) € L™°°~=°(X=;RI\{0}), a(r, p,n) € 8" for which there is a b(r, p,n) €
STHHETY such that

1 —a(r, p,m)b(r, p,n), 1 — b(r, p,m)a(r, p,n) € S~ 7.
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Proposition 2.2.24. Let Ay € L " (X=; R\ {0}), Ay € L~ FH7(X=;R9\ {0})
be elliptic. Then Ay Ay € LHHR—WHRFVHT (= Ra\ {01) is also elliptic.

Proof. By definition we can write
Ai = Op(ai) + CZ

a;(r, p,n) = a;(r, [r]p,[r]n), i = 1,2, and there are corresponding symbols b;(r, p,1) =
bi(r, [r]p, [r]n), i = 1,2. Then we have

A1 Ay = Op(ai#az) = Op(as) + C3

for as(r, p,n) = as(r, [rlp, [r]n) € SHTA-WFR+TH Cp e [7°7° Now it suffices to
set bs(r, p,n) := ba(r, p,n)b1(r, p,n), and it follows that

1-— a3b3 =1- (al#ag)b2b1 =1- a1a2b2b1 — (al#ag — a1a2)b2b1. (2254)
Using asby = 14 ¢o, a1by =1+ ¢ for ¢1,c9 € S~ 171 it follows that
1—ajasboby = 1—&1(14-62)[)1 =1—ai1bi—aicby = 1—(1—‘1-61)—0;162()1 = —c1—aicobs.

From Proposition 2.2.4 (iii) it follows that the right hand side of the latter relation
belongs to §~1 1. Moreover, we have

(a1#tas — ayas)bibs € SHuTA=L = (ptp)+v+P—1 g—(ut+i) ptia—(v+o) ~ g—1,—-1

Thus the right hand side of (2.2.54) belongs to S~"~!. In a similar manner we can
check that 1 — bgaz € S~47L. O

Theorem 2.2.25. Let A € L HT7(X=;R%\ {0}) be elliptic. Then there exists a
parametriz P € L™*H7Y(X=;R9\ {0}) in the sense that

1— AP, 1—PAe L™ °(X=;R?\ {0}).

Proof. By definition we can write A = Op(a) + C for an a € 8" ~#*" such that for
some p € STHH Y we have 1 —ap,1 —pa € S~ 7!, and C € L™ (X=;R?\ {0}).
Let us form Py = Op(p); then

APy = Op(a#p) mod L™,
Let us write a#p = ap + (a#p — ap). From a#p = ap mod S~ and ap = 1
mod S~ 171 it follows that APy = 1+ D for some D € L™V, A formal Neumann
series argument gives us a K € L™~ such that (1+ D)(1 + K) = 1+ C for some
CeL " and Py(1+ K) € L™""7"(X=;R?\ {0}) is then a right parametrix of
A. In a similar manner we conclude that there is a left parametrix, i.e., we may set
P=P(1+K). O
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2.3 Parameter-dependent operators on an infinite
cylinder

2.3.1 Weighted cylindrical spaces

Definition 2.3.1. Let s,g € R and fiz some p(p,7) € Lgl(X;R;Eq) as in Theorem
2.2.20. Then HZ9 (X=) is defined to be the completion of S(R x X) with respect to
the norm

1]+ Op,. () (")l 22 (R x)

for any fived n* € RY, |nt| > C for some C > 0 sufficiently large, and n = dim X.

Setting p*9(r, p,n) := [r] =5+ 972 p([r]p, [r]n), from Definition 2.3.1 it follows that
Op(»*9)(n') : S(R x X) — S(R x X)
extends to a continuous operator

Op(p™*)(n') : Hiifo(X™) = L*(R x X). (2:3.1)

cone

Moreover, the operator P(n) = Op(p*9)(n) € L5195 (X=;R?\ {0}) is elliptic
and hence it has a parametrix P(-1(n) € L™*7972 (X=;R9\ {0}). We can choose
P(=1(n) in such a way that for some C' > 0

P () = P~(n) for [n] > C.
In fact, the relation
1= PP (n) = Cn) € L~>72(X=;R7\ {0})

allows us to replace P(—1)(n) by (1- X(n))P(_l)(n) + x(n)PY (n) (1- C(n))_l for

an excision function x(n) such that x(n) = 1 for |n| > C so large that (1 — C(n))
exists.

Theorem 2.3.2. The operator (2.3.1) is an isomorphism for every fized s,g € R and
Int| sufficiently large.

Proof. We show the invertibility by verifying that there is a right and a left inverse.
By notation we have p*9(r, p,n) = [r] =797 2 p([r]p, [r]n) € S~ *T9" 2. The operator
family p(p,7) € L3(X; Rllsj%q) is invertible for large |p,7| > C for some C' > 0.
There exists a parameter-dependent parametrix p(—1 (5, 7) € L (X; R;%q) such that
PV (5, 0) = p(p, 7)) for [,7]] > C. Let us set

P9, o) = Il ) € S0,
and P*9(n) := Op(p*9)(n), P=>79(n) := Op(p~*~9)(n). Then we have

P*9(n)P~*79(n) = 14 Op(en)(n) + Ry (n) (2.3.2)
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for some ¢y (r,p,n) € S~ and a remainder Ry (n) = Op(ry)(n) where 7y is as in
Lemma 2.2.9. We have Op(cy)(n) — 0 and Rx(n) — 0 in £(L?*(R x X)) as |n| — oc;
the first property is a consequence of Theorem 2.2.16 (i), the second of the estimate
(2.2.19). Thus (2.3.2) shows that P*9(n) has a right inverse for |n| sufficiently large.
Such considerations remain true when we interchange the role of s,g and —s, —g. In
other words, we also have

P=5=9(n)P*9(n) = 1+ Op(en)(n) + R ()

where Op(éy)(n) and Ry(n) are of analogous behaviour as before. This shows that
P#9(n) has a left inverse for large |n|, and we obtain altogether that (2.3.1) is an
isomorphism for n = n', |n!| sufficiently large. O

2.3.2 Elements of the calculus

The results of Section 2.2.3 show the behaviour of compositions of parameter-
dependent families Op(a)(n) for a(r,p,n) € S*” and n # 0, first on S(R x X).
In particular, it can be proved that, when we concentrate, for instance, on the case
s’ = 5" = 0, the inverses of operators of the form 1+ K : L?(R x X) — L?(R x X),
for K € L™°7°°(X=;R?\ {0}), can be written in the form 1+ L where L is again
an operator of such a smoothing behaviour. Moreover, there are other (more or less
standard) constructions that are immediate by the results of Section 2.2. For instance,
if we look at an element c(r, p,n) € S~ as ¢y in the relation (2.3.2). By a formal
Neumann series argument we find a d(r, p,n) € S0 such that

(1 + Op(c)) (1 + Op(d)) =1+ Op(ry)
for every M € N with a remainder rj; which is again as in Lemma 2.2.9.
Theorem 2.3.3. Let a(r, p,n) € S " and |n| # 0. Then
Op(a)(n) : S(R x X) — S(R x X)
extends to a continuous operator

Op(a)(n) : Hifhe(X™) — HE ™" (X7) (2.3.3)

cone

for every s,g € R.

Proof. Let u € S(R x X), and set || - |ls;g := || - | gz, (x=), in particular, || - [o;0 =

cone

| - [|L2(rx x)- By definition we have [|ul|s;y = [[Op(p*9)(n*)ull0;0. Then we have

10p(a)(n)ul|s—p:g—v = [[0P(P°#97") (") Op(a) (n)ullo;0
= [ Op(p*~*97")(n")Op(a)(n)Op(p>?) " (n")Op(P*?) (" Yullo  (2.3.4)

for |n'| large enough. Here the parameter n € R?\ {0} is also fixed. In order to apply
Remark 2.2.18 we pass to the operator functions Op(p*~#97v)(dn'), Op(a)(én), etc.,
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§ € R\ {0}, and obtain families Op(a) € L" """ (X=;R; \ {0}), etc., cf. Remark
2.2.22. Those can be multiplied within our calculus, and it follows that

Op(p*#97)(6n")Op(a)(5n)Op(p™?) " (6n') € L*O(X=; R\ {0}).

By virtue of Remark 2.2.18 this is a family of continuous operators in L?(R x X), and
hence, returning to 6 = 1, the right hand side of (2.3.4) can be estimated by

10p(p*~*9=")(n")Op(a)(n)Op(p*?) " (n")
for a constant 0 < ¢ < oo. O

Theorem 2.3.4. Let A € L* "1(X=;R%\ {0}) be elliptic. Then there is a C > 0
such that

0:0Op(™) (" )ulloo = cllullsiq

cone cone

A(n) : HE9 (X=) — HS 1977 (X %) (2.3.5)
(1)

is an isomorphism for every |n| > C and s,g € R. The parametrizx B €
L7H=7(X=; R\ {0}) can be chosen in such a way that B(n) = A=Y(n) for |n| > C.

Proof. Let us form the operator

Ao(n) = Op(p* 97" () A(n)Op(p**) "V (n) (2.3.6)

where Op(p*9)(=1) is a parametrix of Op(p*9). Then Ay is elliptic, cf. Proposition
2.2.24, and hence it has a parametrix Aéﬁl) such that

1= Ao(m AT () =: Cr(m), 1 AS V() Ag(m) =: Ci(n) € L™7(X=;R7\ {0}).

The operator 1 — Cj(n) : L*(R x X) — L?(R x X) is invertible for large |5/, and by
. - Z - -1 .
replacing Aé 1)(77) by (1-— X(n))Ag 1)(7]) + x(n)Aé 1)(77) (1—Ci(n)) ~ for a suitable
excision function x(7) we obtain another parametrix, again denoted by Aé_l)(n)7 but

with the property

A ) = 45" ) for ] > €
for a suitable C' > 0. Now, using the relation (2.3.6) we find a parametrix B(n) of
A(n) by setting

B(n) = Op(p™*) "V () Ay~ (m)Op(p* ") ()
which is invertible for |n| > C for C > 0 sufficiently large. O

Theorem 2.3.5. For every s’ > s, g > g we have a continuous embedding

E: HS9(X™) — HS9 (XX) (2.3.7)

cone cone

that is compact for s’ > s, g > g.

Proof. We first show that there is a continuous embedding. To this end we choose an
elliptic element B € L* = 79 T2 (X=;R9\ {0}) that induces isomorphisms

B: HS9(X=) — L*(R x X),

cone
’ n

B HE9(X™) = Higm "9 3 (X7)

cone
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for every |n| > C for some constant C' > 0. Then, according to the following diagram

Hs 19’ (X ) L, Hs:9 (Xx)

ng le (2.3.8)
PR x X) —Po ., gioeio=o' =% x=),

in order to prove that E is continuous it suffices to show that Fy is a continuous
embedding.

We write Eg(n) as a composition PQ where Q(n) := Opr([r]f(sl’ng/*gq(r,p, n) €
Lm0 lm) (=R \ {0}) for q(r,p,n) = ([rlp,[rJn) and some param-
eter dependent elliptic ¢(p,7) € Li;_S(X;R;Eq) of order s’ — s, and P(n) :=
(Q(n) Hgggic(xx))fl for |n| sufficiently large. It is clear that Q(n) is elliptic in the
sense of Definition 2.2.23 and hence represents an isomorphism

Qn) : LA(R x X) — Hipe ™7 73 (X

for every |n| large enough. Therefore, it is sufficient to show that

P(n) : Hoot ¥ 73 (X7) = Hoom 979 73 (X%) (2.3.9)
is continuous for 7 sufficiently large. Then, since Eyz(n) = P(n ) (n) is the identity
operator on H2%%°(X=), it is also the identity operator on H2 9 (X=), i.e., it repre-

sents an embedding operator.
Now, if we define Py(n) by the commutative diagram

s—s'i9-9'—% = P s—s'i9—9' - % =
Heone (X ) ——— Hcone (X )

|s |s
LPRxX) —2 .  L2RxX)
for some elliptic B(n) € e L%~ (=s)t9=d' (X=; R\ {0}), it is easy to find an element
Po(p,7) € Ly s (X; Riq) such that Py(n) is written in the form

Py = Op, (I~~~ po(r. [rlp, [rl)) - mod L™ (X5 R7\ {0}),

[n| > C > 0, for po(r, [r]p, [r]n) = Po([r]p, [r]n). Finally, by virtue of Theorem 2.2.16,
the operator
Py(n) : L*(R x X) — L*(R x X) (2.3.10)

is continuous for s' > s, ¢ > g and for every 1) # 0. Hence P(n) = (B(n)) "' Py(n)B(n)
is continuous.

For the compactness we apply Theorem 2.2.16 again and obtain that (2.3.10) is
compact for s’ > s, ¢ > g, i.e., P(n) = (B(n))"'Py(n)B(n) is compact, since it
is the composition of continuous operators with a compact one. This implies that
Ey(n) = P(n)Q(n) is compact for s’ > s, ¢’ > g, and also E is compact for s’ > s,
g’ > g, because of the commutative diagram (2.3.8). O
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Chapter 3

Axiomatic approach with
corner-degenerate symbols

3.1 Symbols associated with order reductions

3.1.1 Scales and order reducing families

Let & denote the set of all families £ = (E®)secr of Hilbert spaces with continuous
embeddings E¥ < E?, s’ > s, such that E> := [ g E® is dense in every E°,s € R
and that there is a dual scale £* = (E*®),cr with a non-degenerate sesquilinear pairing
(,)o : E® x E*Y — C, such that (-,-)o : E® x E** — C, extends to a non-degenerate
sesquilinear pairing

E°xE*° —=C

[(u,f)ol

for every s € R, where supc p-—s\ (0} g and sup,¢ g\ 10} [(g-v)o]

llglles
norms in the spaces E* and E*~*, respectively; moreover, if £ = (E®)scr, £ = (E®)ser

are equivalent

are two scales in consideration and a € LV(E,&) = (), L(E°, E*7H), for some
1 € R, then
sup |lalls,s—pu < 00
s€[s’,s"]
for every s’ < s”; here || ||s,5 :== || - \|£(Es ey~ Later on, in the case s = § = 0 we often
write [| - || == | - flo.o-

A scale £ € € is said to have the compact embedding property, if the embeddings
E* < E* are compact whenever s’ > s.

Remark 3.1.1. Every a € E“(S,g) has a formal adjoint a* € /J”(g*,é’*), obtained
by (au,v)o = (u,a*v)o for allu € E>,v € E*®.

Remark 3.1.2. The space LH(E,E) is Fréchet in a natural way for every p € R.

75
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Definition 3.1.3. We call a system (b*(n))ucr of operator functions bH(n) €
C>(R%,LM(E,E)) an order reducing family of the scale £, if b*(n) : B — ES™F
is an isomorphism for every s,u € R, n € R, b%(n) = idgs for every s € R,n € RY,
and

(i) ng”(n) € C= (R, £+=1I(£,£)) for every B € NY;
(i) for every s € R, 8 € N? we have

max sup [|b°~* () { Db (n) 1o (n)[lo,0 < o0
|8|1<k n[ebxq |
s€[s’,s"

for all k € N, and all reals s’ < s"';

(iii) for every p,v € R, v > p, we have

sup Hb"(ﬁ)lls,H < C<77>B

s€[s’,s"]

for all n € R? and s’ < s with constants c(u,v,s), B(p,v,s) > 0, uniformly
bounded in compact s-intervals and compact p, v-intervals for v > p; moreover,
for every p < 0 we have

18 (M o0 < c(m)*

for all m € RY with constants ¢ > 0, uniformly bounded in compact p-intervals,
u<0.

Clearly the operators b* in (iii) for ¥ > p or pu < 0, are composed with a corre-
sponding embedding operator.
In addition we require that the operator families (b*(n))” " are equivalent to b=*(n),
according to the following notation. Another order reducing family (b} (1)).er, n € RY,
in the scale £ is said to be equivalent to (b*(n)).cr, if for every s € R, 3 € N9, there
are constants ¢ = ¢(, s) such that

-1

163 ) (D20 () Yo * () oo < <,

o=~ H1P ) { DB ()30~ (0)lloo < e,

for all n € R?, uniformly in s € [¢/,s”] for every s’ < s”.

Remark 3.1.4. Parameter-dependent theories of operators are common in many
concrete contexts. For instance, if Q is an (open) C* manifold, and L'}(Q,R?) is the
space of all parameter-dependent pseudo-differential operators on  of order u € R,
with parameter n € R?, where the local amplitude functions a(x,£,n) are classical
symbols in (&,m) € R"M4, treated as covariables, n = dim (), while L=°°(,RY) is
defined as the space of all Schwartz functions in n € R? with values in L=°°(R2), the
space of smoothing operators on 2. Later on we will also consider specific examples
with more control on the dependence on n, namely, when Q@ = M\ {v} for a manifold
M with conical singularity v.
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Example 3.1.5. Let X be a closed compact C* manifold, E* := H*(X), s € R, the
scale of classical Sobolev spaces on X and b*(n) € Lij(X;RE) a parameter-dependent
elliptic family that induces isomorphisms b*(n) : H*(X) — H* #(X) for all s € R.
Then, from Theorem 2.2.2, for v > u we have

||bl" (77) Hﬁ(Hé (X),HS*I/(X)) S C<77>7T(P'1V)

for all n € R, uniformly in s € [s',8"] for arbitrary s',s", as well as in compact p-
and v-intervals for v > u, where

7w (p, v) == max{p, p — v} (3.1.1)

with a constant ¢ = c(p, v, s',s") > 0. Observe that

<€777>H 7 (p,v)
S <o 312

for alln € R,

Remark 3.1.6. Let b°(7,7) € L3 (X; R:%q) be an order reducing family as in Exam-
ple 3.1.5, now with the parameter (7,7) € RYT? rather than n, and of order s € R.
Then, setting b*(t,T,n) := b*([t|r, [t|n) the expression

1

{ [ 143 0py ) )

fornt € RI\ {0}, |n'| sufficiently large, is a norm on the space S(R,C>(X)). Here
n = dimX. Let HS, (R x X) denote the completion of S(R,C>(X)) with respect
to this morm. Observe that this space is independent of the choice of n', |n'| suffi-
ciently large. For references below we also form weighted variants HS9 (R x X) :=

cone
) 9H: (R x X), g €R, and set

cone

H?9 (R+XX) = H3Y (RXX)|R+X)(. (313)

cone cone

As is known, cf. [14], the spaces HS9 (R x X) are weighted Sobolev spaces in the
calculus of pseudo-differential operators on Ry x X with |t| — oo being interpreted as

a conical exit to infinity.

Another feature of order reducing families, known, for instance, in the case of
Example 3.1.5, is that when U C RP is an open set and m(y) € C®(U) a strictly
positive function, m(y) > ¢ for ¢ > 0 and for all y € U, the family b5(y,n) :=
b*(m(y)n), s € R, is order reducing in the sense of Definition 3.1.3 and equivalent to
b(n) for every y € U, uniformly in y € K for any compact subset K C U. A natural
requirement is that when m > 0 is a parameter, there is a constant M = M(s',s”) > 0
such that

[16° ()b~ (ma)lo,0 < cmax{m, m~'} (3.1.4)

for every s € [§',s"], m € Ry, and n € RY.

We now turn to another example of an order reducing family, motivated by the
calculus of pseudo-differential operators on a manifold with edge (here in “abstract”
form), where all the above requirements are satisfied, including (3.1.4).
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Definition 3.1.7. (i) If H is a Hilbert space and r := {kx}xer, a group of iso-
morphisms ky : H — H, such that A — k\h defines a continuous function
Ry — H for every h € H, and kxk, = Kxp for \,p € R, we call K a group
action on H.

(ii) Let H = (H®)ser € € and assume that H° is endowed with a group action
k= {katrer, that restricts (for s > 0) or extends (for s < 0) to a group action
on H?® for every s € R. In addition, we assume that K is a unitary group action
on H®. We then say that H is endowed with a group action.

If H and x are as in Definition 3.1.7 (i), it is known that there are constants
¢, M > 0, such that

£allcemy < emax{A, A7} (3.1.5)

for all A e R,.
Denote by W#(RY, H) the completion of S(RY, H) with respect to the norm

1
2
lalbwe e = { [ gt}

w(n) = Fy—nu(n) is the Fourier transform in R?. The space W*(R?, H) will be referred
to as edge space on R? of smoothness s € R (modelled on H). Given a scale H =
(H?®)ser € € with group action we have the edge spaces

W* = W*(R%, H®), s € R.

If necessary we also write W?*(R?, H®),. The spaces form again a scale W :=
(WS)SER S

For purposes below we now formulate a class of operator-valued symbols
SH(U x RY; H, H) . (3.1.6)

for open U C RP and Hilbert spaces H and H , endowed with group actions k =
{katrer,: & = {Fa}taer, , respectively, as follows. The space (3.1.6) is defined to be

the set of all a(y,n) € C>(U x RY, L(H, H)) such that

sup () FHR DS DS aly, kil oy <00 (3.LT)
(y,m) €K XRY

for every compact K C U,a € NP, 3 € N%.

Remark 3.1.8. (i) Analogous symbols can also be defined in the case when Hisa
Fréchet space with group action, i.e., H is written as a projective limit of Hilbert
spaces Hj,j € N, with continuous embeddings H; — Hy, where the group action
on fIO restricts to group actions on ﬁj for every j. Then S*(U x R%; H, fI) =
lim _ S"(U x R%; H, H;);
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(ii) another generalisation can be made when one controls the variable y at infinity
by defining the symbol class

SHV(U x RY H, H) i (3.1.8)
as the set of all a(y,n) € C (U x RY, L(H, ﬁ)) such that

sup <77>_H+|m <y>_y+‘a| ||/~$<;7>{D§D5a(y7 77)}"{07) ||£(H,ﬁ) < 00,
(y,m) €K xRY

for allaa e NP, 3 € N9.

Consider now an operator function p(§,n) € C™ (Rg;q, L+(H,H)) that represents

a symbol

p(&,m) € SHRELT HY H ™M)

for every s € R, such that p(§,n) : H® — H** is a family of isomorphisms for all
s € R, and the inverses p~1(&,n) represent a symbol

pH(&m) € STHRELT HS H ™)
for every s € R. Then b*(n) := Op,(p)(n) is a family of isomorphisms
bi(n) : W — W?*™H neRI,
with the inverses b=#(n) := Op,(p~1)(n). Here W& = W*(RE, H®), s € R.
Proposition 3.1.9. (i) We have
1" ()| cqwo,woy < e(m)* (3.1.9)
for every p <0, with a constant c(u) > 0.
(ii) For every s,u,v € R, v > u, we have
16 r) v vy < ey HHMER M= (3.1.10)
for all n € RY, with a constant c(u,s) > 0, and M(s) > 0 defined by
all e e, prey < M) for all A > 1.

Proof. (i) Let us check the estimate (3.1.9). For the computations we denote by j :
H—# < HO the embedding operator. We have for u € W©°

1 ()l = / 1306, m) (Fu) (&) 3o de
- / g gy By PUE Mgy ey (F0) (€) ol
< / 1 gt 38 om0y 1 Gy PLE Ay ey (F) (€l

<c / 157y PCE 8 |7 10,11y 157y (F ) (€) [0l

<c sup (&, n)*|ullFyo-
£€RP
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Thus [|b"(n)]| c(wo,wo) < csupeeps (€ n)" < c{n)*, since p < 0.

(ii) Let j : H*~* — H*" denote the canonical embedding. For every fixed s € R
we have

1o (myully - = / (€7 ke ip (& M) (Fomg) (€) | o dé
= / (€)% kg (€ M) (€)°(€) " kgy (Fomgt) (€)1 dE
= sup (&) g} ap (€ Mo 2o e / (€)%l gy Famul(©) 7o dE-

For the first factor on the right hand side we obtain

b dp (&Il e ey < g it | ecare—re o) 1K D0 M)k | 2gare oo
< C”"C(gp(ga??)/ﬁ(g) ||L(Hs’Hs_,l,)
with a constant ¢ > 0. We employed here that ||/f<_5j/~c<5>||£(st7Hku) < ¢ for all
& € RP. Moreover,
56y P(& Mk leare premsy
< HK(_sK(g’n)||L(H57M’H57“)ngmp(g’n)ﬂ<§’">”L(HsvHS*“)H"W}Tm“({)”ﬁ(HS,HS)

< el&mP e my @)1 leqs—r, memm) e m—1 @)l o, me)

B

As usual, ¢ > 0 denotes different constants (they may also depend on s); the numbers
M(s), s € R, are determined by the estimates

6l ms) < eAMG) for all A > 1.

We obtain altogether that

M o .
N0* (Dl cows wrs—vy < Cfeuéi <5<’£7>7Z (<f<’§;7>)M( w)+M(s)

< c<n>ﬂ(u,u)+M(s—u)+M(S)7

cf. formula (3.1.2). O

It is also not difficult to check that the operators in Proposition 3.1.9 also have the
uniformity properties with respect to s, s, v in compact sets, imposed in Definition
3.1.3.

3.1.2 Symbols based on order reductions

We now turn to operator valued symbols, referring to scales

E=(F%ser, &= (FE%)er € C.
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For purposes below we slightly generalise the concept of order reducing families by
replacing the parameter space R? 5 i by H > 7, where

H:= {77 — (,,7/777//) c Rq'—‘—qu L q= q/ + q//7n// ?é O} (3.1.11)

In other words for every 1 € R we fix order-reducing families b () and b*(n) in the
scales £ and &, respectively, where n varies over H, and the properties of Definition
3.1.3 are required for all n € H. In many cases we may admit the case H = R as well.

Definition 3.1.10. By S*(U x H;E,E) for open U C RP, u € R, we denote the set
of all a(y,n) € C>=(U x H, L"(£,£)) such that

D5DPa(y,n) € 0= (U x H, £+~ 1P1(£,8)), (3.1.12)

and for every s € R we have

max sup  [[b* P () {DY D aly, n) 1o~ () ll0.0 (3.1.13)
[al+]8|<k y€K,n[€]HI,|n\]Zh ’
s€([s’,s"

is finite for all compact K C U, k€ N, h > 0.

Let SH(H; &, &) denote the subspace of all elements of SH(U x H; &, E) that are
independent of y.
Observe that when (b*(n)).cr is an order reducing family parametrised by n € H
then we have

b (n) € S*(H; €, E) (3.1.14)

for every u € R.

Remark 3.1.11. The space SH(U x H; E,E) is Fréchet with the semi-norms

am max  sp [FG) DDl ) les (3115)
|aH‘|B|§k(y,n)el[(x]]{,\az\zh,
se[s’, s

parametrised by compact K CU, s € Z, a € NP, 3 € NZ, h € N\ {0}. We then have

SHU x H;£,E) = C* (U, SH(H; €,£)) = C®(U) &, 5" (H; &, E).

We will also employ other variants of such symbols, for instance, when 2 C R™ is
an open set,

SHRy x Qx H;E,E) := C%(Ry x Q, SH(H;E,E)).

In order to emphasise the similarity of our considerations for H with the case
H = R? we often write again R? and later on tacitly use the corresponding results for
H in general.
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Remark 3.1.12. Let a(y,n) € S*(U x RY) be a polynomial in n of order p and & =
(E®)ser any scale of Hilbert spaces and identify D;"Dﬁa(y,n) with (D;‘Dﬁa(y,n))e
with the embedding v : E5 — E*~#+181 Then we have

o> =+ ) { D DR aly, m}b* () llo.0 < 1Dy DY aly, m)l|[b=#+ ()
< ey 1By —rHIBl = ¢

0,0

forall B e N1, |8 < u,y € K CU, K compact (see Definition 3.1.3 (iii)). Thus
a(y,n) is canonically identified with an element of SH(U x R4 E,E).

Proposition 3.1.13. We have
ST2(U x RGE,E) = () SM(U x RLE,E) = O (U,S(R, L™(E,£))).
peER

Proof. Let us show the assertion for y-independent symbols; the y-dependent case is
then straightforward. For notational convenience we set £ = &; the general case is anal-
ogous. First let a(n) € S™°(R% &, &), which means that a(n) € C(R?, L7°(E,£))
and

16> (M { Dy a(n) }o~* (n)lo,0 < ¢ (3.1.16)
for all s € R, N € N, # € N? and show that
sup [|(n)" Dya(n)]s,; < oo (3.1.17)

IS

for every s,t € R, M € N, 8 € N4. To estimate (3.1.17) it is enough to assume ¢ > 0.
We have

[{m™ Dl a(n)|ls = 67 ()b (1) (m)™ D a(n)b™* (n)b* ()| s.¢ (3.1.18)

for every k € N, k > 1. It is sufficient to show that the right hand side is uniformly
bounded in n € R? for sufficiently large choice of k. The right hand side of (3.1.18)
can be estimated by

M6~ () o157~ ()lo,0 18" () Dy a(m)d™* (0) o016 () ls,0.

Using ||bkt(n)Dga(n)b*S(n)HO,O < ¢, which is true by assumption and the estimates

16°(ls.0 < em)®, 167 @)lloe < e(m™,

with different B, B’ € R and [[b =% (n)o0 < e(n)I =R (see Definition 3.1.3 (iii))
we obtain altogether

Im™M Dla(n)||s.e < c(n)M+B+HB+O=R1

for some ¢ > 0. Choosing k large enough it follows that the exponent on the right
hand side is < 0, i.e., we obtain uniform boundedness in 1 € RY.

To show the reverse direction suppose that a(n) satisfies (3.1.17), and let 8 € N9,
M,s,t € R be arbitrary. We have

16 (m) D a(m)b™* () llo.0 < [16° () (m) ™™ [le.0ll(m) > D aln)[|s,ell (n) =07 (n)

|O,s-
(3.1.19)
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Now using (3.1.17) and the estimates

168 () ()™M [le0 < e, 1 m) ™Mb (1) lo,s < el M,
with constants A, A’ € R, we obtain
6 () DL a(m)b™* (n)[lo.0 < c(m)*+4'~2M.

Choosing M large enough we get uniform boundedness of (3.1.19) in n € RY, which
completes the proof. O

Proposition 3.1.14. Let a(y,n) € S¥(U x R%:E,E) and p < 0. Then we have

la(y, o0 < c(n)*

forally e K C U, K compact, n € R%, with a constant ¢ = ¢(s, K) > 0.

Proof. For simplicity we consider the y-independent case. It is enough to show that
la(m)ull zo < e(n)*||lu||go for all w € E*. Let j : E~# — E° denote the embedding
operator. We then have

lla(m)ullgo = lla(mbd="(n)it" (n)ul g0 < llalm)d™" ()l 2 go go) 170" (M)ul| £o
< e [lull po.-
O
Proposition 3.1.15. A symbol a(y,n) € S*(U x R%;E,E), 1 € R, satisfies the esti-
mates

laly, m)llss—v < clm)? (3.1.20)

for every v > p, and everyy € K C U, K compact, n € R?, s € R, with constants
c=c(s,p,v) >0, A= A(s,u,v, K) > 0 that are uniformly bounded when s, u,v vary
over compact sets, v > L.

Proof. For simplicity we consider again the y-independent case. Let j : Es—H s ps—v
be the embedding operator. Then we have
la(m)ls,s—v = ||jl~7_s+u(77)63_”(77)&(77)17_8(n)bs(n)||s,st
< 136~ () llo,s—u 16°" (m)alm)b™* () lo.016° (1)]s0-

Applying (3.1.13) and Definition 3.1.3 (iii) we obtain (3.1.20) with A = B(—s+pu, —s+
v,0)+ B(s, s,0), together with the uniform boundedness of the involved constants. O
Also here it can be proved that the involved constants in Propositions 3.1.14, 3.1.15
are uniform in compact sets with respect to s, u, v.

Proposition 3.1.16. The symbol spaces have the following properties:

(i) SH(U x RqQ&E) c S’L/(U X Rq;é',g) for every u' > u;

(ii) D;‘D,BIS“(U X R‘I;E,g) C SHIBl(U x Rq;é’,g) for every a € NP, 3 € N¢;
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(iii) SH(U x R9;E,E)S"(U x R4 E, &) C ST (U x RGE,E) for every p,v € R
(the notation on the left hand side of the latter relation means the space of all
(y,n)-wise compositions of elements in the respective factors).

Proof. For simplicity we consider symbols with constant coefficients. Let us write
1= 1+ Mlo.o-

(i) a(n) € S*(R%; €, E) means (3.1.12) and (3.1.13); this implies

6= ) { D a(m) b~ ()| = ([0~ ()b~ P () { DE a(n) b= ()]
< e{m B LD am) b ()| < ellb* A ) {Dya(n) Yo~ (n)]]-
Here wee employed p — i/ < 0 and the property (iii) in Definition 3.1.3.

(ii) The estimates (3.1.13) can be written as
o>~ =D ) {Dya(m}b=* ()] < e,

which just means that Dﬁa(n) € SrIBl(RY; £, E).

(iii) Given a(n) € S*(R%; &, &), a(n) € S¥(RY; €, &) we have (with obvious mean-
ing of notation)

165~ ) { Dy a(m) Yo~ () e o) 16"~ O () { D a(m) Yog* (M| g oy < ©
for all 7,0 € N?. If a € N? is any multi-index, Djy'(aa)(n) is a linear combination of
compositions Dga(n)Dg&(n) with |y| 4 |6| = |a]. It follows that
6=~ G F 1 () DY a(m){ D7 a(m) Yo~ ()l £ ooy
— ”Es—(u-‘ru)-‘rla\ (n)Df’a(n)bas+u—|’Y| (n)bS—V-H’H (U)ng(ﬂ)b_s(ﬂ)||L(Eo,go)

< [[pt =11 ) DY a(m)bg ()] o, oy 185~ () Dy a(m)b™ ()| 2o g
(3.1.21)

for t = s — v + |v|; the right hand side is bounded in 7, since |a| — || = |4]. O

Remark 3.1.17. Observe from (3.1.21) that the semi-norms of compositions of sym-
bols can be estimated by products of semi-norms of the factors.

3.1.3 An example from the parameter-dependent cone calcu-
lus

We now construct a specific family of reductions of orders between weighted spaces
on a compact manifold M with conical singularity v, locally near v modelled on a
cone

X2 =Ry x X)/({0} x X)
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with a smooth compact manifold X as a base. The parameter n will play the role of
covariables of the calculus of operators on a manifold with edge; that is why we talk
about an example from the edge calculus. The associated “abstract” cone calculus
according to what we did so far in the Subsections 3.1.1 and 3.1.2 and then below
in Section 3.2 will be a contribution to the calculus of corner operators of second
generation.

It will be convenient to pass to the stretched manifold M associated with M which is a
compact C*° manifold with boundary OM = X such that when we squeeze down oM
to a single point v we just recover M. Close to M the manifold M is equal to a cylinder
[0,1) x X > (¢,x) - a collar neighbourhood of OM in M. A part of the considerations
will be performed on the open stretched cone X" := R, x X 5 (£, x) where we identify
(0,1) x X with the interior of the collar neighbourhood (for convenience, without
indicating any pull backs of functions or operators with respect to that identification).
Let M := 2M be the double of M (obtained by gluing together two copies My of M
along the common boundary OM, where we identify M with M ); then M is a closed
compact C* manifold. On the space M we have a family of weighted Sobolev spaces
H*7(M),s,v € R, that may be defined as

H*Y(M):={ou+ (1—o)v:ueH"(X"),ve H(M\ {v})},

where o(t) is a cut-off function (i.e., o € C°(R4), 0 = 1 near t = 0), o(t) = 0 for
t > 2/3. Here H*7(X") is defined to be the completion of C§°(X") with respect to
the norm

2

! 2
2m/1“+1 [1bhase (T w) (Mu) (w) |72 xydw o, (3.1.22)

n = dim X, where b}, (7) € LE(X;R;) is a family of reductions of order on X,
similarly as in Example 3.1.5 (in particular, bf (1) : H*(X) — H°(X) = L*(X)
is a family of isomorphisms). Moreover, M is the Mellin transform, (Mu)(w) =

Jo© = u(t)dt, w € C the complex Mellin covariable, and
Ig:={weC:Rew =g}

for any real 3. From t9H*7(X") = H* (X)) for all 5,7,8 € R it follows the
existence of a strictly positive function h® € C°(M \ {v}), such that the operator of
multiplication by h?® induces an isomorphism

h : H*Y (M) — H®Y (M) (3.1.23)

for every s,7,0 € R. -
Moreover, again according to Example 3.1.5, now for the smooth compact manifold M
we have an order reducing family b(7) in the scale of Sobolev spaces H*(M), s € R.
More generally, we employ parameter-dependent families a(n) € Lé‘l(M ;R9). The
symbols a(n) that we want to establish in the scale H*Y(M) on our compact manifold
M with conical singularity v will be essentially (i.e., modulo Schwartz functions in 7
with values in globally smoothing operators on M) constructed in the form

a(n) := 0aedge(n)0 + (1 — 0)aint(n)(1 — 7), (3.1.24)
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a(n) |intar, with cut-off functions o(t), 5(t), 5 (t) on the half axis, supported

alnt )
2/3), with the property

(n

n [0,
0<0=<0

(here o < & means the & is equal to 1 in a neighbourhood of supp o).

The “edge” part of (3.1.24) will be defined in the variables (¢,z) € X”. Let us choose
a parameter-dependent elliptic family of operators of order p on X

p(t,7,7) € O (Ry, Ly (X5 REE).

Setting
p(t,7,n) = p(t, tr,tn) (3.1.25)

we have what is known as an edge-degenerate family of operators on X. We now
employ the following Mellin quantisation theorem.

Definition 3.1.18. Let M{(X;R?) be the set of all h(z,1) € A(C, LE (X;R2)) such
that h(B + iT,n) € Lé‘l(X;Ri)‘t,q) for every B € R, uniformly in compact B-intervals
(here A(C, E) with any Fréchet space E denotes the space of all E-valued holomorphic
functions in C, in the Fréchet topology of uniform convergence on compact sets).

Observe that also M/5(X;R?) is a Fréchet space in a natural way. Given an
f,t, 2 n)GCOO(R+xR+, H(X;T1 < R7)) we set

2

- i) 1 dt’
opy (f ft. 5*’Y+ZT sn)u(t )757,
dr = (2m)~'dr, which is regarded as a parameter-dependent weighted pseudo-

differential operator with symbol f, referring to the weight v € R. The Mellin quan-
tisation theorem states that there exists an element

h(t, z,7) € C (R, ME(X;RY)), (3.1.26)
such that, when we set 3
h(t,z,m) = h(t, z,tn) (3.1.27)
we have
opyy (h)(n) = Op;(p) () mod L™>°(X";RY), (3.1.28)

for every weight v € R. Observe that when we set

po(t,7,n) :=p(0,t7,tn), holt,z,n) = h(0,z,tn) (3.1.29)

we also have opy,(ho)(n) = Op;(po)(n) mod L™°(X";R{), for all v € R.

Let us now choose cut-off functions w(t),&(t),o(t) such that & < w < @. Fix the
notation wy,(t) := w(t[n]), and form the operator function

Geage(n) =t wy(t)ophs * (h)(1)y (1)
+ (1 — wy(£))Opy () () (1 — &y (£)) + m(n) + g(n). (3.1.30)
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Here m(n) and g(n) are smoothing Mellin and Green symbols of the edge calculus.
The definition of m(n) is based on smoothing Mellin symbols f(z) € M~>°(X;Tg).
Here M ~>°(X;Tg) is the subspace of all f(z) € L~>°(X;T'g) such that for some e > 0
(depending on f) the function f extends to an

I(2) € A(Upe, L™(X))
where Ug . := {z € C: |[Rez — 8| < ¢} and
1(6+ir) e L™*°(X;R,)

for every 6 € (8 — e, + €), uniformly in compact subintervals. By definition we then
have f(6 + i) = I(8 + i7); for brevity we often denote the holomorphic extension !
of f again by f. For f € M’OO(X;FnTH_,Y) we set
m(n) =t~ wyopy, * (f)@y

for any cut-off functions w, @.
In order to explain the structure of g(n) in (3.1.30) we first introduce weighted spaces
on the infinite stretched cone X" = R, x X, namely,

K9 XN) = wHSY (XN + (1 —w)HES (X7) (3.1.31)

for any s,7,9 € R, and a cut-off function w, see (3.1.22) which defines the norm
in H57(X”") and the formula (3.1.3) for H? (X). Moreover, we set 57(X") :=

K#79(X"). The operator families g(n) are so-called Green symbols in the covariable
n € RY, defined by

g(n) € SH(RL; K79 (XN), 8771+ (X)), (3.1.32)
g"(n) € SL(REL; Lo ~7H9 (X M), ST7H (X)), (3.1.33)

for all s,7,9 € R, where g* denotes the 7-wise formal adjoint with respect to the
scalar product of K%%9(X") =r~2L2(Ry x X) and ¢ = £(g) > 0. Here

SHXM) 1= wK>F (XM + (1 —w)S(Ry, C(X))

for any cut-off function w. The notion of operator-valued symbols in (3.1.32), (3.1.33)
refers to (3.1.6) in its generalisation to Fréchet spaces H with group actions (see
Remark 3.1.8) that are in the present case given by

K ult, T) — AT T9u(M, ), A e R, (3.1.34)
n = dim X, both in the spaces £*79(X") and S#(X").

The following theorem is crucial for proving that our new order reduction family
is well defined. Therefore we will sketch the main steps of the proof, which is based
on the edge calculus. Various aspects of the proof can be found in the literature,
for example in Kapanadze and Schulze [13, Proposition 3.3.79], Schrohe and Schulze
[34], Harutyunyan and Schulze [9]. Among the tools we have the pseudo-differential
operators on X’ interpreted as a manifold with conical exit to infinity » — oo; the
general background may be found in Schulze [39]. The calculus of such exit operators
goes back to Parenti [28], Cordes [2], Shubin [45], and others.



88 AXIOMATIC APPROACH WITH CORNER-DEGENERATE SYMBOLS

Theorem 3.1.19. We have
Oledge(n)G € S (R OV (XN), KSTHITHI (X)) (3.1.35)
for every s, g € R, more precisely,
Dﬁ{aaedge(n)&} e sH=1sl (REKCT9(XM), ICSf“HBM*“"'g(XA)) (3.1.36)

for all s,g € R and all € N2. (The spaces of symbols in (3.1.35), (3.1.36) refer to
the group action (3.1.34)).

Proof. To prove the assertions it is enough to consider the case without m(n) + g(n),
since the latter sum maps to K°79(X") anyway. The first part of the Theorem is
known, see, for instance, [9] or [3]. Concerning the relation (3.1.36) we write

Oteage ()5 = 7{ac(n) + ay(n)}5 (3.1.37)
with
ae(n) =t wyopyy * (M) (M)@y,  ay(n) == t7(1 = w,)Op, (p)(1)(1 — &y)

and it suffices to take the summands separately. In order to show (3.1.36) we consider,
for instance, the derivative 0/dn; =: 0; for some 1 < j < ¢. By iterating the process
we then obtain the assertion. We have

Oy{ac(n) + ap(m)}5 = o{Djac(n) + 00y ()} = bi(n) + ba(r) + ba(n)
with
b1(n) := ot~ {wgop} F (M) )03, + (1 = w,)Op, (D) ()05 (1 = &) |,
ba(n) := = {wgop}; # (9,0 ()@, + (1= w,)Op, (Oip) (1) (1 — &) |
by () 1= ot={ @jeon)op)y F (W) ()Dy + (85(1 = wy)) Oy () (M) (1 = 5y) }5.

In b1(n) we can apply a pseudo-locality argument which is possible since d;w, = 0
on suppwy and 0;(1 — @,) = 0 on supp (1 — wy); this yields (together with similar
considerations as for the proof of (3.1.35))

b1(77) c Sufl(Rq;;Cs,'v;g(X/\)’/Coo,'v*u;g(XA)).

Qu

)

Moreover we obtain
b2(77) c gr1 (Rq; /Csmg(XA), ;Csfuﬂ,vfﬂ;g(x/\))

since 0;h and 0;p are of order ;1 —1 (again combined with arguments as for (3.1.35)).
Concerning bs(n) we use the fact that there is a ¢ € C§°(Ry) such that ¢» = 1 on
supp d;w, @ — 1 = 0 on supp J;w and (1 — cf;) — 1 = 0 on supp 9;w. Thus, when we
set 1, (t) := ¥ (t[n]), we obtain bs(n) := c3(n) + ca(n) with

ca(n) = ot {(Byn)opy; ¥ (W) (), — (B10)Op,(P) )ity |,
ca(n) = ot~ { @jwn)opis F (M@, — ] = (B0)Op(P) WL~ 5y) = ]}
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Here, using 0w, = (w'),0;(t[n]) which yields an extra power of ¢ on the left of the
operator, together with pseudo-locality argument, we obtain

ca(n) € S*L(RY; K579 (X M), 0009 (X)),

To treat c3(n) we employ that both Ojw, and 1, are compactly supported on Ry.
Using the property (3.1.28), we have

cs(n) = ot~ (Djwn){op}; * (h)(m) — O, (p)(m) }1by&
c Su—l (Rq; ICS’"”-"(X/\), ]Coo,v—u;g(X/\)).

O

Definition 3.1.20. An operator family c(n) € S(R?,(,ex L(H*7 (M), H>*(M)))
18 called a smoothing element in the parameter-dependent cone calculus on M asso-
ciated with the weight data (v,6) € R?, written ¢ € Cq(M, (v,6);RY), if there is an
e =¢(c) > 0 such that

c(n) € S(RY, L(H™ (M), H®*T(M))),
c*(n) € S(RY, L(H>°(M), H®"T(M)));

for all s € R; here c¢* is the n-wise formal adjoint of ¢ with respect to the H%°(M)-
scalar product.

The n-wise kernels of the operators c¢(n) are in C°°((M \ {v}) x (M \ {v})). However,
they are of flatness € in the respective distance variables to v, relative to the weights
0 and ~, respectively. Let us look at a simple example to illustrate the structure. We
choose elements k € S(R?, H>9F<(M)), k' € S(R?, H>~7+¢(M)) and assume for
convenience that both & and &’ vanish outside a neighbourhood of v, for all n € R.

Then, with respect to a local splitting of variables (¢,x) near v, we can write k =
k(t,z,n) and k' = k' (t',2’,n). Set

c(nu(t,z) :== // k(t,z,n)k'(t', ', n)u(t’, 2" )t dt' dx’

with the formal adjoint

(ot 2') = // Kt ', n)k(t, z,n)v(t, z)t"dtdx.
Then ¢(n) is a smoothing element in the parameter-dependent cone calculus.
Definition 3.1.21. By C*(M, (v,y—p); R?) we denote the set of all operator families
a(n) = 0aedge(1)5 + (1 — 0)aint (1) (1 — &) + c(n) (3.1.38)

where aeage is of the form (3.1.30), aing € LA (M \{v};RY), while ¢(n) is a parameter-
dependent smoothing operator on M, associated with the weight data (v, — ).
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Remark 3.1.22. According to [6] an operator family a(n) € C*(M, (y,y — u); RY)
can be equivalently written in the form

a(n) = ot opr; 2 ())& + (1 — 0)aine(n)(1 — &) + (m + g)(n) + ¢(n)  (3.1.39)

where h is as in (3.1.27), aint(n) € Ly (M \ {v};R9), m+g is a smoothing Mellin and
Green operator and c(n) € Ca(M, (v,7 — p); R?).

Theorem 3.1.23. Let M be a compact manifold with a conical singularity. Then the
n-dependent families (3.1.24), which define continuous operators

a(n): HV(M) — H7"7~Y(M) (3.1.40)
for all s € R, v > u, have the properties:

la(m)ll cas (ar), rs—vr—rv(ary) < c(n)? (3.1.41)

for alln € R?, s € R, with constants ¢ = c¢(u,v,s) > 0, B = B(u,v,s), and, when
p <0,

la(m)l cceooary, mo0(aryy < e{m” (3.1.42)
for alln € R, s € R, with constants ¢ = c¢(u, s) > 0.

Proof. The result is known for the summand (1 — o)ain(n)(1 — &) as we see from
Example 3.1.5. Therefore, we may concentrate on

p(N) = Oledge(n)d : HY (M) — H*™"77V(M).
To show (3.1.41) we pass to

Oledge(n)T : K¥T(XN) — K707V (XM).

Then Theorem 3.1.19 shows that we have symbolic estimates, especially

||"{<_771>p(77)’€<n)||[,(ICSFY(XA)JCS—;LW*;L(XA)) < c(m*.
We have

(M| s (xry xs—vr—v(xnyy < NPl cicsm (xr) as—ma—n(x )

and

D) 2o (x) ko= (x)) = 8y K oy PRy K oy | 21 (7)o (x0))
< Nyl cgcs—nm—n(xn) o=mm—n(x ap 1Koy POy £icom (x7) jes—na=n(x 7))

gyl eics eny e ey < el FHHA

Here we used that n<n>7f<;<:]1> satisfy estimates like (3.1.5).

For (3.1.42) we employ that k) is operating as a unitary group on K%°(X"). This
gives us

() 200 (x 2y o0 (xn)) = 1Ky P K [l gco0 (x8) K00 (x 7))

< Koy syl cioo(xry e-mn(xayy < elm*. O
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Theorem 3.1.24. For every k € Z there exists an fr(z) € M_OO(X;FTLTH”Y) such
that for every cut-off functions w,w the operator

n
2

A:=1+wop,, 2 (fr)@: H¥ (M) — H*V(M) (3.1.43)

is Fredholm of index k, for all s € R.

Proof. We employ the result (cf. [38]) that for every k € Z there exists an fi(z) such
that
A:=14wop), 2 (fi)@: K> (X") — K*7(X7) (3.1.44)

is Fredholm of index k. Recall that the proof of the latter result follows from a
corresponding theorem in the case dim X = 0. The Mellin symbol f is constructed
in such a way that 1+ fx(2) # 0 for all z € 'y _, and the argument of 1+ fx(2)|r,

2 5=

varies from 1 to 27k when z € F%—’y goes from Im z = —oo to Im z = 4-o00. The choice
of w,® is unessential; so we assume that w,&o =0 for £t > 1 — ¢ with some € > 0. Let
us represent the cone M := X as a union of ([0,1+%) x X)/({0} x X) =: M_ and

(1-5,00)x X =: M, . Then
Alg; = 1+wop), * (fi)a, ﬁ\m =1 (3.1.45)

Moreover, without loss of generality, we represent M as a union ([0, 1+£)x X)/({0} x
X) UM, where M, is an open C* manifold which intersects ([0,1+ £) x X)/({0} x
X) =: M_ in a cylinder of the form (1 - 5,1+ 5) x X. Let B denote the operator on
M, defined by

B_:=Aly_ =1+wopy 2 (fi)®, By :=Alu, =1 (3.1.46)

We are then in a special situation of cutting and pasting of Fredholm operators. We
can pass to manifolds with conical singularities N and N by setting

N=M_UM,, N=M_UM,

and transferring the former operators in (3.1.45), (3.1.46) to N and N , respectively,
by gluing together the + pieces of A and A to belong to My and My to corresponding
operators B on N and B on N. We then have the relative index formula

indA — indB = indA — indB (3.1.47)

(see [26]). In the present case A and M are the same as B and N where B and N are
the same as A and M. It follows that

indA — indB = indB — indA. (3.1.48)

From (3.1.47), (3.1.48) it follows that indA = indB = indA. O

Let us now give more information about the above mentioned space

CH(M,g;RY), g = (7,7 — ),
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of parameter-dependent cone operators on M of order p € R, with the weight data
g, cf. Definition 3.1.21. The elements a(n) € C*(M, g;R?) have a principal symbolic
hierarchy

o(a) := (oy(a),on(a)) (3.1.49)

where oy (a) is the parameter-dependent homogeneous principal symbol of order g,
defined through a(n) € LE (M \ {v}; R?). This determines the reduced symbol

Gy(a)(t,z, 7,&,n) = troy(a)(t, z, tir 6t n)

given close to v in the splitting of variables (¢, x) with covariables (7, &). By construc-
tion &y (a) is smooth up to ¢ = 0. The second component, the edge symbol ox(a)(n)
is defined as

n
2

an(a)(n) =t wiyopyy * (ho) ()@ -+t~ (1=wyy )OD, (o) () (1=Gpy )+ (m+g) (1),

cf. (3.1.29), where ox(m + g)(n) is just the (twisted) homogeneous principal symbol
of m 4 g as a classical operator-valued symbol.

Every element a(n) of C*(M, g;R?) represents families of continuous operators
a(n): H>7 (M) — H*™H#77H(M) (3.1.50)
for all s € R.
Definition 3.1.25. An element a(n) € C*(M, g;R?) is called elliptic, if

(i) oy(a) never vanishes as a function on T*((M \ {v}) x R?)\0, and if 5y (a) does
not vanish for all (t,x,7,£,m), (1,€,m) # 0, up to t = 0;

(i) oa(a)(n) : KST(XN) — KSTHI=H(XN) is a family of isomorphisms for alln # 0,
and any s € R.

Remark 3.1.26. There is an extended notion of ellipticity for 2 x 2 block matriz
families which includes extra trace and potential families.

Theorem 3.1.27. Ifa(n) € CH(M,g;R?), g = (v,v — w), is elliptic, there exists an
element al=1(n) € C~*(M,g~*;RY), g~ ' := (y — u,7), such that

1—a"Y(n)a(n) € Ca(M,g;;R?), 1—a(n)a~(n) € Ca(M,g,;RY),
where g; := (7,7), g, = (v — 1,y — ).

The proof employs known elements of the edge symbolic calculus (cf. [39]); so we
do not recall the details here. Let us only note that the inverses of oy (a), 5y (a) and
on(a) can be employed to construct an operator family b(n) € C~#(M,g~!;R?) such
that

o@Dy =0y B), Fu(alD) = 54(0), oalaV) = oA(b).

This gives us 1 — b(n)a(n) =: co(n) € C~1(M, g;;R?), and a formal Neumann series
argument allows us to improve b(7) to a left parametrix a(~1) (1) by setting a(~ () :=

(Z;io cg)(n)) b(n) (using the existence of the asymptotic sum in C°(M, g;RY)). In a

similar manner we can construct a right parametrix, i.e., a{="(n) is as desired.
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Corollary 3.1.28. If a(n) is as in Theorem 3.1.27, then (3.1.50) is a family of
Fredholm operators of index 0, and there is a constant C > 0 such that the operators
(3.1.50) are isomorphisms for all |n| > C, s € R.

Theorem 3.1.29. The space C*(M, (y,v — p); R?) contains an element a(n) which
induces a family of isomorphisms

a(n) : HY (M) — H*=P=1(}) (3.1.51)

for all s € R and all n € RY.

Proof. The strategy of the proof is to construct an operator family a(n,{,A) in
CH(M, (y,y — ,u);]Rf]I?;Z), q,m 1 € N\ {0}, which is parameter-dependent elliptic
in the sense of Definition 3.1.25, then to apply Theorem 3.1.27 and finally to set
a(n) == a(n, ¢, AL for ¢, A fixed.

We choose a function
At 7,1, C) = Pa(tT, tn, ()

similarly as in (3.1.25) where py(7,7,¢) € L¥/(X; R;’;qggﬂ) is parameter-dependent
elliptic with parameters 7,7, 5 ; A. We specify py in such a way that the parameter-
dependent homogeneous principal symbol in (x,7,& A\, 7, () for (7,&,A,7,() # 0 is

equal to
5

(171 + 1€, A + 17> + <))
We now form an element

ha(z7,0) € MB(X;RETH)

analogously as (3.1.26) such that

h)\(tv Z,1, <) = h)\(27 tnv tC)

satisfies .
ops (ha)(1,¢) = Opy(p)(1,¢)  mod L™>°(X";RITTH).

For every fixed ({,\) € R"*! this is exactly as before, but in this way we obtain
corresponding (¢, A)-dependent families of such objects. We set

Obedge A (1,()0 =1 "o {WW,COPX/;E (ha) (1, Q)¢ + Xn,c Ope(pa) (1, C)%m(} o
with ;
Xnc(t) =1 —wnc), Xnc(t) :=1—=wyc(t)
Let us form the principal edge symbol
oA (Obedge,n0)(1,¢) =t~ {w|n,g|0P7w_5(hA)(777C)®|n,c| + X\n,qOPt(m)(mC)>?|n,<|}
for |n, | # 0. The latter is interpreted as a family of continuous operators

O (Obeagend)(m, €) : KWT9(XN) — 37159 (X 1) (3.1.52)
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which is elliptic as a family of classical pseudo-differential operators on X”. In addition
it is “exit” elliptic on X" in the sense of Remark 1.2.15 with respect to the conical
exit of X” to infinity. In order that (3.1.52) is Fredholm for the given weight v € R
and all s, g € R it is necessary and sufficient that the subordinate conormal symbol

0c0n(Obedge,10)(2) : H¥(X) — H7H(X)

is a family of isomorphisms for all z € T'nt1 - This is standard information from the
2
calculus on the stretched cone X”. By definition the conormal symbol is just

hix(2,0,0) : H*(X) — H*"(X). (3.1.53)

Since by construction R (B8 +i7,0,0) is parameter-dependent elliptic on X with pa-
rameters (7,\) € R'*! for every 3 € R (uniformly in finite S-intervals) there is a
C > 0 such that (3.1.53) becomes bijective whenever |7, A\| > C. In particular, choos-
ing A large enough, the bijectivity follows for all 7 € R, i.e., for all z € FnTﬂ_,y. Let

us fix A! in that way and write again

p(t,7,m,C) = pa (t1, 10, t(),
h(t,z,n,C) := izp(z,tn,tf),
bedge(na C) = bedge,/\l (77, C)

We are now in the same situation we started with, but we know in addition that
(3.1.52) is a family of Fredholm operators of a certain index, say —k for some k €
Z. With the smoothing Mellin symbol fx(z,71,() € M’OO(X,I‘nTH_,Y X R;I]JZT) as in

Theorem 3.1.24 we now form the composition

F(0,¢) := 0beage(1, )5 (1 + wycopay 2 (fr)nc)s (3.1.54)

which is of the form

bedge (1, C)F + wncopay 2 (f)@nc + 9(n,C) (3.1.55)

for another smoothing Mellin symbol f(z,n,{) and a certain Green symbol g(n, ().
Here, by a suitable choice of w, @, without loss of generality we assume that o = 1 and
& =1 on suppwy, ¢ Usuppwy.c, for all (n,¢) € R?". Since (3.1.54) is a composition
of parameter-dependent cone operators the associated edge symbol is equal to

TAF(1,¢) = oA (0beaged) (1, €) (LHwpy c10Pas 2 (Fi)Dpncl) 07 (X7) — Ko7HI7H(XM)

(3.1.56)
which is a family of Fredholm operators of index 0. By construction (3.1.56) depends
only on |n,(|. For (n,¢) € S*7=1 the unit sphere in R*" we now add a Green
operator gop on X’ such that

F(n,¢) +g0(n,¢) : K7 (X7) — K771 X7)

is an isomorphism; it is known that such gg (of finite rank) exists (for N =
dimker F(n,¢) it can be written in the form gou := ij:l(u,vj)wj, where (-,-) is
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the K%9(X")-scalar product and (vj)j=1,...N, (W;)j=1,.. ~ are orthonormal systems
of functions in C§°(X")). Setting

g(777 4) = 0-19(777 C)|777 C|#/€|177(‘90K‘G71<|5

with an excision function ¥(n, ¢) in R?*" we obtain a Green symbol with o (g)(n,() =
I, C|MH|TI7C|90H|_77,1CI and hence

oA(F (0, 0) +9(n,¢)) : K*7(XN) — K*7#771(X7)
is a family of isomorphisms for all (, () € R?" \ {0}. Setting

aedge(ny C)

e 4 =5 ~ - Y-z ~

=t {wn,copM (h) (0, Q)@y.¢c + Xn,cOp:(p)(n, C)Xn,g} (1 + Wy.cOPAs (fk)wmc)
+ [, CO(, Oy 9okl (3:1.57)

we obtain an operator family

Uacdgc(nv C)a— = F(nv C) + 9(777 C)

as announced before.

Next we choose a parameter-dependent elliptic aing (1, ¢) € L (M \ {v}; Rz?") such
that its parameter-dependent homogeneous principal symbol close to t = 0 (in the

splitting of variables (¢, x)) is equal to
(I71* + &> + Inl* + 1<) =
Then we form

a(n, ) == 0aedge(n, ()7 + (1 — o)ains(n, () (1 — é)

with 0,5,5 as in (3.1.24). This is now a parameter-dependent elliptic element of the
cone calculus on M with parameter (n,¢) € R?*". It is known (see Theorem 3.1.27)
that there is a constant C' > 0 such that the operators (3.1.51) are isomorphisms for
all |n,¢| > C. Now, in order to construct a(n) such that (3.1.51) are isomorphisms for
all n € RY we simply fix ¢! so that |[¢!| > C and define a(n) := a(n, (1). O

Observe that the operator functions of Theorem 3.1.29 refer to scales of spaces with
two parameters, namely, s € R, the smoothness, and v € R, the weight. Compared
with Definition 3.1.10 we have here an additional weight. There are two ways to make
the different view points compatible. One is to apply weight reducing isomorphisms

h™": HY(M) — H>""*(M) (3.1.58)
as in (3.1.23). Then, passing from
a(n) : H¥Y(M) — H*~H#7=H(M) (3.1.59)
to
b (n) := h~"THa(n)h : H*Y(M) — H* (M) (3.1.60)

we obtain operator functions between spaces only referring to s but with properties
as required in Definition 3.1.10.
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Remark 3.1.30. The spaces E° := H*°(M), s € R, form a scale with the properties
at the beginning of Section 3.1.1.

Another way is to modify the abstract framework by admitting scales £*7 rather
than E°, where in general v may be in R* (which is motivated by the higher corner
calculus). We do not study the second possibility here but we only note that the
variant with F®7-spaces is very similar to the one without ~.

Let us now look at operator functions of the form (3.1.60).

Theorem 3.1.31. The operators (3.1.60) constitute an order reducing family in the
spaces ES := H*Y(M), where the properties (i)-(iii) of Definition 3.1.3 are satisfied.

Proof. In this proof we concentrate on the properties of our operators for every fixed
s, i, v with v > p. The uniformity of the involved constants can easily be deduced;
however, the simple (but lengthy) considerations will be left out.

(i) We have to show that

Db (n) = DE{h™ " a(n)h'} € C=(RY, L(E*, B>~ +HIAl))

for all s € R, f € N9 According to (3.1.24) the operator function is a sum of two
contributions. The second summand

(1 —o)h™ " Fag (n)h™(1 — &)

is a parameter-dependent family in L/;(2M;R?) and obviously has the desired prop-
erty. The first summand is of the form

oh ™ {acqge(n) +m(n) + g(n) }h76.
From the proof of Theorem 3.1.23 we have
DﬁUGedge(ﬁ)ﬁ c gr-l1sl (RY; K579 (X1, ,Csfuﬂﬂmfu;g(XA))

for every 8 € N9. In particular, these operator functions are smooth in 7 and the
derivatives improve the smoothness in the image by |3|. This gives us the desired
property of ch™ " aeqge(n)h?&. The C* dependence of m(n) + g(n) in 7 is clear
(those are operator-valued symbols), and they map to K7~#¢9(X") anyway. There-
fore, the desired property of ch™ " {m(n) + g(n)}h"& is satisfied as well.

(ii) This property essentially corresponds to the fact that the product in consideration
close to the conical point is a symbol in 1 of order zero and that the group action
in K%9(X")-spaces is unitary. Far from the conical point the boundedness is as in
Example 3.1.5.

(iii) The proof of this property close to the conical point is of a similar structure
as Proposition 3.1.9, since our operators are based on operator-valued symbols refer-
ring to spaces with group action. The contribution outside the conical point is as in
Example 3.1.5. O

Remark 3.1.32. For E* := H*%(M), s € R, £ = (E®)scr, the operator functions
b*(n) of the form (3.1.60) belong to SH(RY;E,E) (see the notation after Definition
3.1.10).
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3.2 Operators referring to a corner point

3.2.1 Weighted spaces

Let & = (E®)ser € € be a scale of Hilbert spaces with the compact embedding
property and (b*(p)).cr, p € R, be an order reducing family (see Definition 3.1.3
with ¢ = 1). We define a new scale of spaces adapted to the Mellin transform (1.1.24)
and the approach of the cone calculus. In the following definition the Mellin transform
refers to the variable r € Ry, i.e., M = M,_,,.

Definition 3.2.1. For cvery s,y € R we define the space H*V(Ry,E) to be the
completion of C§° (R4, E*) with respect to the norm

1
2

1 . ,
/Fd,+1 b (Imw)Mu(w)HEodw} (3.2.1)

e ey = {3

for a d = dg € N. The Mellin transform M in (3.2.1) is interpreted as the weighted
Mellin transform M.,

_d.
2

The role of dg is an extra information, given together with the scale £. In the
example £ = (H?(X))ser for a closed compact C* manifold X we have dg := dim X.

Observe that when we replace the order reducing family in (3.2.1) by an equivalent
one the resulting norm is equivalent to (3.2.1).

By virtue of the identity
PPHT(Ry ) = (R )

for every s,v,3 € R, it is often enough to refer the considerations to one particular
weight, or to set
de = 0. (3.2.2)

For simplicity, if nothing else is said, from now on we assume (3.2.2).

Proposition 3.2.2. Let w € C°(Ry) be a cut-off function. Then the multiplication
by w induces continuous operator

My, HT (R4, E) —» HY T (R4, E)
for every s,y € R. Moreover, w — M, induces a continuous operator

e () — L(H (R4, E)).

Let us consider Definition 3.1.10 for the case U = R, ¢ = 1, and denote the
covariable now by p € R. Set

S' (R4 xRy xRy E,8) := SHRXRXRE, E)lg, 7, xr



98 AXIOMATIC APPROACH WITH CORNER-DEGENERATE SYMBOLS

and

SHR, x Ry x I E,E) =
{a(r,r",w) € C°(Ry xRy xT5, LHE,E)) = a(r, 7', 5+ip) € SH(Ry xRy xR,; &, E)}

for any § € R. The subspaces of r’-independent ((r,r)-independent) symbols are
denoted by SH(Ry x R;E,E) (SH(R;E,E")) and SH(Ry x I'5;E,E) (S*(Ts;E,€)),
respectively.

Given an element f(r,r’,w) € S*(R; x Ry x i ;€,E) we set

,7;
opl;(Hu(r) = i//oo(i)—(%—“/—&-ip)f(r r 1 _ ’Y—I—ip)u(ﬂ)df?ﬂ/dp. (3.2.3)
M ot 0 ! 9 a2 T'/

Let, for instance, f be independent of r'. Then (3.2.3) induces a continuous operator

op}(f) 1 O (R, B®) — C°(Ry, E*7H). (3.2.4)

In fact, we have op},(f) = M1, f(r,w)M. ... The weighted Mellin trans-
form M., induces a continuous operator

My C§°(Ry, B%) — S(Ty ., %)

for every s € R. The subsequent multiplication of M. u(w) by f(r,w) gives rise to
an elemen~t in (R4, S(T'y_,, E57#)), and then it follows easily that opj,(f)u €
c> (IR{+, ES*“). We now formulate a continuity result, first for the case of symbols
with constant coefficients.

Theorem 3.2.3. For every f(w) € S“(I‘%,V;
continuous operator

E,&) the operator (3.2.4) extends to a

op(f) : HYT(Ry, &) — HTHY (R, E) (3.2.5)

for every s € R. Moreover, f — op},(f) induces a continuous operator

STy E,E) — LMY (Ry, ), H (R, E)) (3.2.6)
for every s € R.
Proof. We have
2
HOp;(/[(f)’U/| Hs—u,»y(R+,§)
s 1.1 . 1 )
= /R 1" (P) My (MTF (5 = 7 +ip) (M) (5 = v +ip) [ Fod
78— 1 . —s s 1 .
= [ 001G =7+ o™ o () M) =7+ i) e
< Aullyeqe, g
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with

. 1 o
c=sup 6" (p) f(5 =7 +iP)b"*(P)ll 2o, o)
peER :
which is finite for every s € R (cf. the estimates (3.1.13)). Thus we have proved the
continuity of both (3.2.5) and (3.2.6). O

In order to generalise Theorem 3.2.3 to symbols with variable coefficients we im-
pose conditions of reasonable generality that allow us to reduce the arguments to a
vector-valued analogue of Kumano-go’s technique.

Given a Fréchet space V' with a countable system of semi-norms (7,),en that defines
its topology, we denote by CF (R4 x R4, V) the set of all u(r,r’) € C*°(Ry xRy, V)
such that
sup 7rL<(r8,.)k(r’87./)k/u(r, r’)) < o0

' €ERy
for all k, k" € N. In a similar manner by C% (R, V') we denote the set of such functions
that are independent of r’.
Moreover, we set

SE(Ry xRy x Ty 1 €,8) = CF (Ry xRy, S*(T'y_;€,E))

-y %—'y’

and, similarly, S’ (R4 x I’%fv;g,g) = C%O(R+,S”(F%77;5,g)).

Theorem 3.2.4. For every f(r,w) € Sp(Ry x T'1_ 1€, E) the operator opj,(f)
induces a continuous mapping

opy(f) : H* T (Ry, &) = HTH (R4, E),

and f — op),(f) a continuous operator

Sh(Ry x Ty E,8) — L(HT(Ry, ), 14 (Ry., £)
for every s € R.
Parallel to the spaces of Definition 3.2.1 it also makes sense to consider their
“cylindrical” analogues, defined as follows.

Definition 3.2.5. Let (b°(n))secr, be an order reducing family as in Definition 3.1.3.
For every s € R we define the space H*(R1,E) to be the completion of C§° (R, E>)
with respect to the norm

ulli o ) = { / Ibs(n)}'U(n)I%odn} |

Clearly, similarly as above, with a symbol a(y,y’,n) € S*(R? x R? x R%E,€E)
(when we impose a suitable control with respect to the dependence on y’ for large
|y'|) we can associate a pseudo-differential operator

Op, (@)uy) = / / SO Ma(y, o nyuly)dy'd.
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In particular, if a = a(n) has constant coefficients, then we obtain a continuous
operator

Op,(a) : H*(R%,€) — H* (R, €) (3.2.7)

for every s € R. In the case of variable coefficients we need some precautions on the
nature of symbols. This will be postponed for the moment.

We are mainly interested in the case ¢ = 1. Consider the transformation
(Syu)(y) := e Eu(e ™)

from functions in r € R, to functions in y € R. We then have the identity

(Myw)(5 = +ip) = (FSyu)(p)

with F being the one-dimensional Fourier transform. This gives us

1 . 3
{%/Rllb (U)(fsvu)(n)ﬂfgodn} — 1Syt e gy =l @, e),

i.e., Sy induces an isomorphism
Syt HY (R4, E) — H¥(R,E). (3.2.8)

Remark 3.2.6. By reformulating the expression (3.2.3) we obtain

1 =— ) ogr'—logr 1 . d?",
OB (Pulr) = 5= [ [ B o oy ip)utr!) T

. . _ ! .
Substituting r = e~ Y, v’ = e Y gives us

1 ; ’ ’ ’
op], (fu(r) = // el =¥y f(g=y oV

" or — 5 +ip)ule™ )dy'dp

N[ =

= Op,(94)v(y)

with v(y) == u(e™¥) and g(y,y', p) = G NEV) f(e7¥, 7V L — 5 +ip).
In other words, if x : Ry — Ris defined by x(r) = —logr =: y, we have (x*v)(r) =
v(=logr) or ((x )" u)(y) = u(e™") and
opr(f) = X Opy(g,)(x )"

Thus Op, (g) is the operator push forward of opy,(f) under x.

3.2.2 Mellin quantisation and kernel cut-off

The axiomatic cone calculus that we develop here is a substructure of the gen-
eral calculus of operators with symbols in a(r,p) € S*(R; x R;E,&) of the form
a(r,p) = a(r,rp), a(r,p) € S*(Ry x Rz E,E) (up to a weight factor and modulo

smoothing operators) with a special control near r = 0 via Mellin quantisation. By
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L= (R4; €, 3 ; RY) we denote the space of all Schwartz functions in € R? with values
in operators

C(())O(R+7E700) - OOO(R-HEOO)
We then define

LM(Ry; €, ERY) =
{Op,(a)(n) + C(n) : alr, p,n) € S"(Ry x RIFE,E),C(n) € L™(Ry; €, &R}

pon

Our next objective is to formulate a Mellin quantisation result of symbols

a(r,p,n) = a(r,rp,rn), a(r,p,7) € SRy x R £ 8), (3.2.9)

pn

Definition 3.2.7. By Mg(é',g;R%) we denote the set of all h(z,7) € A(C,

SH(RE; E,€)) such that

h(B+ip,7n) € S*(R, x REE,E)

for every B € R, uniformly in compact B-intervals. For q = 0 we simply write

ME(E,E).

The space M (€, E ; R%) is Fréchet with a natural semi-norm system, namely, the
one induced by A((C x RY, LF(E, 5~)) together with

sup 7, ,(hr,xra), 1, k €N,
lp|<k

where (7, ,),en denotes a countable semi-norm system for the Fréchet topology of

SK(T, x R%; €, E).

Theorem 3.2.8 (Mellin quantisation). For every symbol a(r,p,m) of the form
(3.2.9) there exists an h(r,z,7) € C*® (R, M5H(E,E;R?)) such that for h(r,z,1) =

h(r,z,rn) and every 6 € R we have
opy; (h)(1) = Op,.(a) (1)

modulo operators in L_OO(R+;5,§; RY).

This result in the context of operator-valued symbols based on order reductions
is mentioned here for completeness. It extends a corresponding result of the edge
symbolic calculus, see [6, Theorem 3.2]. More information in that case is given in [18,
Chapter 4]. Here we adapt some part of this approach to realise the kernel cut-off
principle that allows us to recognise how many parameter-dependent meromorphic
Mellin symbols exist.

Definition 3.2.9. Let S*(C x RY%;E,E) denote the space of all operator functions

h(¢.m) € A(C, SH(RY; E,E)) such that

h(p+id,n) € SHRLTL £ E)

psn

for every § € R, uniformly in compact d-intervals.
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Clearly the space S#*(C x R%; &, g) is a generalisation of M} (&, 5~), however, with
an interchanged role of real and imaginary part of the complex covariable. To produce
elements of S*(C x RY; &, E) we consider a version of the kernel cut-off operator

Hr : C&(R) x SH(R79; € E) — §#(C x R%E,E)

transforming an arbitrary element a(p,n) € S#(R"4; £ &) into (Hr(p)a)(¢,n) €

SH(C x R E,E) for any ¢ € C§°(R) (cf. Section 1.1.3). It will be useful to admit ¢
to belong to the space

C°(R) := {p € C®(Ry) : sup |Dhp(0)| < oo for every k € N}.
0cR

We set

(Hr(y) / / ~920(0)a(p — p,n)dodp, (3.2.10)
interpreted as an oscillatory integral. We now prove the following result:

Theorem 3.2.10. The kernel cut-off operator Hr : (p,a) — Hz(p)a defines a
bilinear and continuous mapping

Hr : C°(R) x SR E E) — SHRITIE,E), (3.2.11)

and (Hr(p)a)(p,n) admits an asymptotic expansion

(Hr(p) ’“Z k, De‘P )kalp,m). (3.2.12)
k=0

Proof. First note that the mapping
C(R) x SHRIYGEE) — CF(RY,, SF(Rg x Ry E,E))
(p,a) = @(0)alp — p,n),
for SE'(RgxRp; &, g) =Cp (Rg7 SHRp;E, S~)) is bilinear and continuous. For the proof
of the continuity of (3.2.11) it suffices to verify that (Hz(p)a)(p,n) € S*(R'T4; €, &)
and then to apply the closed graph theorem. By virtue of

DY (Hz(e)a)(p,n) = (Hr()(DF ) (p,n)

for every 3 € N'*7 we only have to check that for every s € R
165~ (o, m) (HE(9)a) (0, mb™* (0, )| o 0 70y < € (3.2.13)

for all (p,n) € R4, with a constant ¢ = ¢(s) > 0. We regularise the oscillatory
integral (3.2.10)

(Hr(@)a)o.n) = [ [ e17(6) (1 = ) o)) ax (0, .07

for
N(p, i) == (1= ) {(p) N alp — p,m)}- (3.2.14)
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The function (3.2.14) is a linear combination of terms
(@p) V)@ a)(p — pym) for 0 < j,k < 2.
We have

b (o, {// ~09(9)=2(1 — 93)(6)

0147) )@k a)(p— n)dedﬁ}b‘s(p, ")

L(EY,E0)

H // b (p, b (p — pm)b T (p — p,m) {e 0P (0) "2 (1 — 7)o (6)

(@5(p) ") (0% a) (p—p, m)}b~* (0=, m)b° (p—p, m)b™* (p, m)dbdp

L(EY,E0)
e [ 1B om0 = 5.1l o oI5 (0 = 1) B35 Y)
@5a)(p = psmb~(p = )| ooy 107 (0 = B, M~ (03 ) £ (120, 0y dp. (3.2.15)

For the norms under the integral we apply Taylor’s formula

M ~ M+1

Blo—p) = D O "+ [0 @) (ot .
= m! ! o
This yields
16°(p = £, )b~ (o, )|l (0, B0y < Z (2" (1(05°6°) (o, )b~ (ps )| 20, B0y

<P>MH M (aM+1ys ~ —s
T 0(14) [1(0,"76%)(p — tp, )b~ (p, )| £ (0, o) dt.

By virtue of (3.1.14), Proposition 3.1.16 and Proposition 3.1.14 we obtain

1(0,76%)(p, )b~ (p, )| (B0, B0y < c(pm) ™™

Moreover, using Definition 3.1.3 (iii), it follows that

10 16%) (o — t3,m)b ™ (p, 1) 0.0
= [[(@Y*1b°)(p — tp, m)b~* (p — B, m)b* (p — t3, )b~ (p,m)l0,0
< ell(@ %) (p — tp,mb ™ (p — tp, )llo.0lIb* (p — A, M) ls,0 105 (0, 1) 0,5
< {p— tp, )~ VTR (p ) B2 )

with certain B;(s), i = 1, 2. Here we denoted by ||-||s.; the operator norm in £(E*, E'),
s,1 € R. We thus obtain

MA10p )VB2() gup (p — t,m) ~(MHD+B1(),

[t|<1

16°(p — p,m)b™*(ps ) || (0, B0y < ()
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By Peetre’s inequality for L > 0 we have sup, <1 {(p —tp, =L <c(p)E{(p,n)~E. Thus,
choosing M so large that

—(M+1)+Bi(s) <0, —(M+1)+ By(s)+ Ba(s) <0,
it follows that

M+1<ﬁ>JVI+1—Bl(s)< >—(M+1)+Bl(s)+Bz(s)

16°(p = 2, mb™* (P M)l £ (0, 20y < () P,
c(p)A) (3.2.16)

IA

for A(s) :==2(M + 1) — Bs(s).

In a similar manner we can show that
155 (o, mb™**(p = By )l oo oy < () (3.2.17)

for some A(s) € R. Applying (3.2.16) and (3.2.17) in the estimate (3.2.15) it follows
that

165~ (o, m) (H(0)a) (ps )™ (ps )| (0 oy S € D /Iaf;(ﬁ)_QN|<ﬁ>A(s)+A(s)dﬁ-
0<j<2
(3.2.18)
Since N € N can be chosen as large as we want, it follows that the right hand side
of (3.2.18) is finite for an appropriate N. This completes the proof of (3.2.13). The
relation (3.2.12) immediately follows by applying Taylor’s formula on ¢ at 0. O

Theorem 3.2.11. The kernel cut-off operator Hr : (p,a) — Hz(p)a defines a
bilinear and continuous mapping

Hr : CP(R) x SHRM™ € E) — §#(C x R%E,E). (3.2.19)
Proof. Writing
(e p.n) = [ o0){ [ o alet mas pao

we see that (H f(cp)a) (p,m) is the Fourier transform of a distribution

W(H)/eie”,a(p’m)dp’ € S'(Rg, LM(£,E))
with compact support. This extends to a holomorphic E“(é‘,g)—valued function in
¢ = p+1id, given by

(Hr(p)a)(p +i8,1) = (Hr(gs)a) (p,1)
for s(0) = € ¢p(f). From Theorem 3.2.10 we obtain (Hz(p)a)(p + i6,m) €

SE(RIF4; £, ) for every § € R. By virtue of the continuity of § — ¢5, R — C°(R)
and of the continuity of (3.2.11) it follows that (3.2.19) induces a continuous mapping

Hr : CF(R) x SH(R9 £, E) — SH(I; x R%:E,E),

Is := {¢ € C: Im¢ = §}, which is uniform in compact d-intervals. The closed graph
theorem gives us also the continuity of (3.2.19) with respect to the Fréchet topology

of SH(C x R%E,E). O
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3.2.3 Meromorphic Mellin symbols and operators with asymp-
totics

As an ingredient of our cone algebra we now study meromorphic Mellin symbols,

starting from M%(E, E) (see Definition 3.2.7 for ¢ = 0).

Theorem 3.2.12. h € MJ(E,€) and hlp, € S'5(I';E,E) for some e > 0 entails

he MLE(E, ).

Proof. The ideas of the proof are similar to the case of the cone calculus with smooth
base X and the scales (H*(X)) see, e.g., the thesis of Seiler [44]). Let us sketch
it briefly. B

Without loss of generality we assume h|r, € S#7¢(Tg; &, £). We apply Taylor’s formula

N—-1 Vi N 1
o-+ip) = 3 PN g B [ 0¥ 005 + i

J=0

seR (

ho(p) := h(w)|r,. The terms in the first sum on the right hand side are continuous

in B with values in S”_j_E(Rp;E,E). Since they are holomorphic in w € C with
values in £4(&,€), Cauchy’s formula gives us elements in Mg_s(é',g) for all j =
0,...,N —1. Choosing N > ¢ we obtain that (9Yh)(63+ip) is continuous in 6 and 3
with values in S#¥7¢(R,; €, 8~) At the same time it is holomorphic in C with values in
LH(E, 3 ). Cauchy’s integral formula then shows that the remainder term also belongs
to MH—=(E,E). O

Proposition 3.2.13. Let h(w) € M5 (&,E), f(w) € MY(E,E); then for pointwise
composition we have h(w)f(w) € M5 (E,E).

Proof. The proof is obvious. O

Definition 3.2.14. An element h(w) € M5(E,E) is called elliptic, if for some (3 €
R the operators h(B + ip) : ES — E* " are invertible for all s € R, p € R and
h=Y(B+ip) € STH(R,E,E).

Theorem 3.2.15. Let h € M5(E,E) be elliptic. Then,
h(w): B — E*~F (3.2.20)

is a holomorphic family of Fredholm operators of index zero for s € R. There is a
set D C C, with DN {c < Rew < ¢} finite for every ¢ < ¢, such that the operators
(3.2.20) are invertible for all w € C\ D.

Proof. By assumption we have g := (h\pﬁ)’1 € S7H(Ts; g, £). Applying a version of
the kernel cut-off construction, now referring to the Mellin transform rather than the
Fourier transform, cf. (1.1.6), with a function ¢ € C§°(Ry), ¢ = 1 near 1, we obtain
a continuous operator

Ham() : S™H(T5;E,E) — MM (E,€)
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where Haq(¢)glr, = g mod §7°0(T3; €, &). Setting A~V (w) := Hpy(¢))g we obtain
=D (w) € Ma“(g,é'), and from Proposition 3.2.13 it follows that

h(w)h =V (w) € MY(E,E), hD(w)h(w) € M(E,E)
and

hw)h Y (w)|r, —1€ S7°(5;E,E), hTY(w)h(w)|r, — 1 € S™°(T;E,8),
(3.2.21)
for every 8 € R, and hence

h(w)h =Y (w) =1+ m(w), A"V (w)h(w) =1+ (w) (3.2.22)

for certain m(w) € M(;‘X’(E, &), l(w) € M5 (€,€). For every s € R and every fixed
w € C the operators

m(w) : B> — E®, l(w) : B — E®

are continuous. Therefore, since the scales have the compact embedding property,
from (3.2.22) we obtain that h(~(w) is a two-sided parametrix of h(w) for every
w, i.e., the operators (3.2.20) are Fredholm. Since h(w) € A((C,E”(ES,ES_”)) is
continuous in w € C we have ind h(w;) = ind h(ws) for every wy,ws € C. However,
since h is invertible on the line I'g it follows that ind h(w) = 0 for all w € C. Finally,
from the relations (3.2.22) we see that for every ¢ < ¢ there is an L(c,¢’) > 0 such
that the operators (3.2.20) are invertible for all w € C with [Imw| > L(c, ), ¢ <
Rew < ¢’. Then a general result on holomorphic Fredholm families gives us that
the strip ¢ < Rew < ¢ contains at most finitely many points where (3.2.20) is
not invertible. Those points just constitute the set D, it is also independent of s,
since ker h(w) is independent of s as we easily see from (3.2.22) and the smoothing
remainders; then vanishing of the index shows that the invertibility holds exactly
when ker h(w) = {0}. O

Theorem 3.2.16. The ellipticity of h with respect to I'g as in Definition 3.2.14
entails the ellipticity with respect to T's for all § € R satisfying T's N D = 0. In other
words Definition 3.2.14 is independent of the choice of 3.

Recall here that D is a discrete set in the complex plane which consists of those
points w for which h(w) = 0.

Proof. Let us apply the kernel cut-oftf operator Haq(1)c), where 9. € C§°(R4) is of
the form . (t) = ¥(et), € > 0, for some ¢ € C§°(R4). Then, setting

Hu () (B (B +ip)) =: f- € MG"(E,€)

we obtain fc|r, € S*“(Fg;g, &) and f.|r, — h™*(B+ip) as e — 0 in the topology of
S~#(['g; €, E). This shows us that f, Ir, is pointwise invertible for £; > 0 sufficiently

small. Let us set b~ (w) = f., (w). According to Proposition 3.2.13 we have g(w) :=
R (w)h(w) € M (E,E) and by construction

glr, = 1 +1 for some | € S7°(T'3; &, E).
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Then Theorem 3.2.12 yields g = 1 mod M,>(&,&). It follows that
Y|, hlp, = 14 15 for some I5 € S™°(T'5; &, &)

and hence
(14 15) " AV p, hlp, = 1.

From Proposition 3.1.13 we know that I5 € S(I's, £7°°(&,£)) and it is also clear that
(1+15)~" =14 ms for some ms € S(T's, L7°°(&,€)). Then Proposition 3.1.16 (iii)
shows that (A|p,) ™t = (14 ms)hV|p, € S™#(s; E,E). O

Add a word about asymptotics!
A sequence

R={(pjsmj,L;)}jez
is called a discrete asymptotic type of Mellin symbols if p; € C, m; € N, and L; C

L7°(&,€) is a finite dimensional subspace of finite rank operators; moreover, mcR :=
{p;,j € Z} is assumed to intersect the strips {w € C: ¢; < Rew < ¢2} in a finite

set, for every c¢; < cp. Let M;>°(€,€) denote the space of all functions m € A((C\
meR, L7, g)) which are meromorphic with poles at the points p; of multiplicity
m;+1 and Laurent coefficients at (w—pj)*(’”l) belonging to L; for 0 < k < my, and
x(w)m(w)|r, € ST5:E,E) for every § € R, uniformly in compact d-intervals, where
X is any 7c R-excision function. Moreover, we set

ME(E,E) = ME(E,E) + M7 (&, E). (3.2.23)

Theorem 3.2.17. Let h € My (&, E), [ € ME(E,E) with asymptotic types R, S and

orders p,v € R, then we have hf € Ml‘;+”(5,§) with some resulting asymptotic type
P.

Proof. The proof of this result is analogous to the one in the “concrete” cone calculus,
see [36]. O

Proposition 3.2.18. For every m € My (E,£) there exists an m~Y € Mg > (&, €)
with another asymptotic type S such that

(14 m(w)) (1 +m"D(w)) = 1.

For the proof we employ the following Lemma.

Lemma 3.2.19. Let E be a Banach space, U C C open, 0 € U, and let h €
A(U,L(E)) be an element such that h(w) = 0 on a closed subspace F C E of fi-
nite codimension. Moreover, let ay,...,any € L(E) be operators of finite rank, for
some N € N\ {0}. Then there is a 6 > 0 such that the meromorphic L(E)-valued
function

N .
J(w) =1+ h(w) + 3 ajw

is invertible for allw € Vs :={w € C: 0 < [w| < §}. Moreover, f~(w) =1 + h(w) +
Z;V:l ajw=I for w € Vs with he .A(V(; U {0}, L(E)) and finite rank operators a.
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Proof of Proposition 3.2.18. First observe that if m € £L7°°(&, ) is an operator such
that

1+m:E°— E*
is invertible for all s € R, we can define an operator g € £°(€,€) such that (1 +
m)(1+ g) = 1. This givesus 1 + m + g + mg = 1, and m,mg € L=>°(€,€) implies
g=-m(l4+g) € LT=E,E).
Moreover, our operator function 1 + m is holomorphic in C \ n¢R. Then g = (1 +
m)~!—1is holomorphic in C\ D with values in L=°°(&, £), where D C C is a countable
set such that {w € C: g < Rew < e} N{w € C : dist(w,ncR) > ¢} N D is finite
for every ¢; < ¢ and & > 0. We have a representation (1+m)~" = 377 (=1)/m’ as
a convergent series of functions with values in L(E®, E®), w € C for ¢ < Rew < ¢/,
[Im w| > C for every ¢ < ¢ and C(c, ) > 0 sufficiently large. In a similar manner we
obtain convergence of all w-derivatives of Z;‘;U(—l)j m? in a set of such a structure.
Thus, from g = —m(1+g) = —m(1+m)~! and the Schwartz property of m for large
|Im w|, uniformly in finite strips ¢ < Rew < ¢/, we obtain the same property for g
itself. It remains to show that ¢ is meromorphic with poles at the points of D, that
D has no accumulation points at mcR, and that the Laurent coefficients are of the
desired kind, namely, to belong to £7°°(&,€) and to be of finite rank. Let us verify
that there are no accumulation points of the singularities of (1+m(w)) ' Let wo be
a pole of m, i.e., wg € mcR. Then we can write

K
1+ m(w) =14+ mo(w) + Z b (w — wo)~F
k=1
with suitable K € N, mg holomorphic in a neighbourhood of wg and L~*°(&, E)-
valued, with finite rank operators bg. Note that mg #Z —1. Setting n(w)
Zszl br(w — wo) ™ we have

14+ m(w) = (1 + mo(w)) (1 + (14 mo(w)) n(w))

Now myg is holomorphic near wy and 1 + mo(w) a Fredholm family, since mq takes
values in £L7°°(&,€), therefore the singularities of (1 + mo(w))f1 form a countable
discrete set; therefore there is a § > 0 such that (1 + mo(w))71 exists for all w such
that 0 < |w — wp| < 8. Moreover, (1 + mo(w))_ln(w) can be written in the form
h(w) + Z;\;l aj(w —wp) ™7 with a suitable i which is holomorphic near wq and finite
rank operators a;, 1 < j < N. The operator (1 + mo(w))fln(w) vanishes on the
space F' := ﬂszl ker by, which is of finite codimension. Setting M := ﬂ;vzl kera; it
follows that h(w)u = 0 for all w € M N F’; the latter space is also of finite codimension.
Lemma 3.2.19 then shows that 1+ (1 —i—mo(w))_ln(w) is invertible in 0 < |w—wy| < &
for a suitable 6 > 0. 0

Theorem 3.2.20. Let h € Mg(f,g) be elliptic, then there is an f € Mg“(g, &) with
asymptotic type S such that hf = 1.

Proof. Let h(=1(w) € My"(€,€) be as in the proof of Theorem 3.2.15. Then we have
the relations (3.2.22). By virtue of Proposition 3.2.18 there exists a g € M5 (€, €),
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for some asymptotic type P, such that (1 + m(w))(1 + g(w)) = 1. This yields
h(w)f(w) =1 for f:= A=V (1 + g) which belongs to M;”(g,g), according to Theo-
rem 3.2.17. In a similar manner we find an f € Mg_“(g,é') such that f(w)h(w) = 1.
This implies f = f. O

Definition 3.2.21. A g € My(E,€) is said to be elliptic, if there is a B € R such
that (g|r,) ™' € S7#(T;E,E).

Theorem 3.2.22. If g € Mi(E,€) is elliptic, there is an asymptotic type S and an
element f € M "(&E,&) such that gf = 1.

Proof. Applying the kernel cut-off operator to (g|r,) ™" we find an =1 e M(;“(g, )
such that A=Y |r, — (g|r,) ™t € S7°(Is; £,€). By definition we have g = gy + g1 for
certain gy € M(’;(E,g), g1 € Mgm(ﬁ,g). Then h"Ygolp, = 1 mod S™=(I's; €, €)
implies h(~Ygy =1 mod My (E,€) (see Theorem 3.2.12). If follows that h(~Vg =
1+ m for some m € M;>(£,€) with an asymptotic type R (see Theorem 3.2.17).
Thus Proposition 3.2.18 gives us g~* = (1 4+ m)~'h(-1 ¢ Ms_“(é’v,é’) with some
asymptotic type S. O

Parallel to the spaces of Mellin symbols (3.2.23) we now introduce subspaces of
H7 (R4, ) with discrete asymptotics. To this end it is not necessary to specify certain

finite-dimensional spaces L; € L7>°(€,&). We consider sequences of the form

b= {(pj,mj)o<j<n (3.2.24)

with N € NU {400}, mj € N, 0 < j < N. A sequence (3.2.24) is said to be a discrete
asymptotic type, associated with weight data (v,©) (with a weight v € R and a
weight interval © = (¢,0], —oo < ¥ < 0), if for some d = dg € N

d+1 d+1
ch::{pj}ongNC{wE(C:T—7+19<Rew<T—’y},

and 7P is finite when 4 is finite, and Rep; — —oo as j — oo when ¥ = —oo and
N = +oo0. We will say that P satisfies the shadow condition, if (p,m) € P implies
(p—j,m) € Pforall j € Nwith Zt —y+9 <Re(p—j) < L — .

If © is finite we define the (finite-dimensional) space

N my
Sp(Ry, &) = ZZw(r)cjkrfpj loghr: ¢jp € B
§=0 k=0
with some fixed cut-off function w on the half-axis. We then have
Sp(Ry, &) CHXT (R, E).

Moreover, we set

He (R4, €) ==w m HTTUTE (R, E) 4 (1= w)H (R, €),
e>0
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where the intersection is endowed with the Fréchet topology of the projective limit,
and
H;’Y(R-H 5) = HS@"Y(R% 5) + SP(R-H 8)

as a direct sum of Fréchet spaces.
In order to formulate spaces with discrete asymptotics of type P in the case © =
(—00,0] we form P, := {(p,m) € P : Rep > “HL — 4 — (I + 1)} for any | € N.
From the above construction we have the spaces H}Z’? (R4, &) together with continuous
embeddings
H;;ZL(RJF,S) — H??(R+,8), leN.

We then define

Hp (R4, &) =1mHB (R4, E) (3.2.25)

lEN

in the corresponding Fréchet topology of the projective limit.

Remark 3.2.23. That u € Hp (R, E), with P being associated with (v,0), © =
(—00,0], is equivalent to the existence of (unique) coefficients cjr, € E*, 0 < k < m;,
such that for every t € Ry there is an N = N(t) € N with

N my

w(r) [ w(r) — Z chkr*pf loghr | € H* TR, E).

=0 k=0

Similarly as in the “concrete” cone calculus (see [36]) we have the following con-
tinuity result:

Theorem 3.2.24. Let f € MR(E,E) be such that mcR N F%—v =0, and P an
asymptotic type associated with the weight data (7, (19,0]), for some —oco < 9 < 0.

Then the operator
_d -
opy 2 (f) : HY Ry, E) — H M (R, €) (3.2.26)

restricts to a continuous operator
_d _ ~
opyy 2 (f) : HE (R4, €) — HG M7 (Ry, €)
for every s € R with some resulting asymptotic type Q.
The proof will be given in several steps. To this end we establish some auxiliary

lemmas. The first one is due to Cauchy’s integral formula.

Lemma 3.2.25. Let f(w) be an (operator-valued) meromorphic function with finitely
many poles at points p; of multiplicities m;+1, j =0,...,N. Then for any piecewise
smooth curve C clockwise surrounding the poles we have

N mj

1 Y o
Tm/f(w)r dw:Zchkr Pilog" r
C

=0 k=0

for some constant (operators) c;y.
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Lemma 3.2.26. Under the requirements of Theorem 3.2.24, the operator (3.2.26)
restricts to a continuous operator

_d - "
opy; 2 (f) : Sp(R+,E) = HE (R, ),
for some asymptotic type @

Proof. Let P be given by (3.2.24). We consider the case ¥ > —oo, the general case
follows immediately. For u(r) € Sp(Ry,€) there are unique elements c;, € E*,
j=0,...,N,k=0,...,m; such that

N my

E w(r)ejpr P log"® r,
=0 k=0

for some cut-off function w. Then Mu(w) is meromorphic with poles at wcP
with values in E*°. Moreover, if x(w) € C*(C) is a mcP-excision function then
x(w)Mu(w)|r, € S(T'g, E*) for every B € R (cf. [4, Chapter 1]). Now multiplying
by f we obtain an E*>_valued meromorphic function with poles at m¢ P U mc R and,

if we set g(w) := f(w)Mu(w),
xi(w)g(w)|r, € S(Tg, )

for any mc P U e R-excision function x; and any 3 € R. We have

_4d _ 1 —w
op?w"‘(f)u(r):(Mvi%g)(r):Tm_/F r~Yg(w)dw
EESU
_ L v g (w)dw + (1 — w)— / “vg(w)dw. (3.2.27)
=wy - r- w W)y - r~"g(w)dw. 2.

The second term on the right hand side of (3.2.27) belongs to (1 — w)H>"7 (R, &),
so let us concentrate on the first term. Let @ be the asymptotic type defined by
{(g;,d;)}o<j<r, L € N, where {g; }o<;<r are the poles of mc P UncR that lie between
the weight lines F% o and F%—v' For ¢ > 0 we write

-+
1 —w 1 —w
wo r~“g(w )dw—w% r~Yg(w)dw + I (r), (3.2.28)
F%*’Y Fd;rl I+
where
L(r) = wor 0 g(w)dw — v g(w)d
(r)=w— r Yg(w)dw — w— r~Yg(w)dw
211 Fd-;—l 21 Fd+1 o
1 w
—w— d
Wy — g(w)dw
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for a rectangle C. (clockwise oriented), consisting of sufficiently large intervals [— R, R]

on I a1 and T 4 and straight segments parallel to the real axis of suffi-

—y+d+e
ciently large imaginary parts. By virtue of Lemma 3.2.25 there exist an M = M () <

L and elements ¢;; € £, j=0,...,M, k=0,...,d; such that

d;

M

1 —w =~ —3qj k

wo— [T g(w)dw = E E w(r)éjrr— % log" r.
C. 7=0 k=0

Then, from (3.2.28) we obtain for any € > 0

wi, r~Yg(w)dw

27 Taps
S

M dj
1
=w— r~Yg(w)dw + Z Z w(r)éjpr~% logh r

21 -
Pasr e J=0k=0

€ wH ' E Ry, E) + S5(Ry, €)

Finally we fix € so small that all the poles of @ lie on the right of the weight line

Fdzj_,y_,’_,ﬂ_‘rs. Then we have

1 - -
— rTg(w)dw € HG (R4, &) + S5 (R4, €)
211 Tap1
T
and hence, we obtain altogether that opXJ% (flu e ng (R,.E). O

Lemma 3.2.27. The operator (3.2.26) restricts to a continuous operator
_d . B
oply 2 (f)  HE (R4, €) — Mt (R, E)
for R :=={(q,n) € R: %—7+19<Rer< %_7}.

Proof. Let us first show that the weighted Mellin transform induces an isomorphism

Mg H Ry, E) — }AIS(F% &), (3.2.29)

2l -’

where ﬁS(Fg,E) = {h(B +ip) = Fi_,v(p) for some v(t) € H*(Ry,E)}, B € R. In
fact, the Mellin and the Fourier transform relate to each other by the identity

d+1

M %u(

v —v+ip) = FepS,_aulp),

T3
here Sﬁhgu(t) = e_<%_”’)tu(6_t), cf. Section 3.2.1. Therefore (3.2.29) is consequence
of the isomorphism (3.2.8).

Now let u € Hg"(Ry,E), then u € HS (R4, &) and M, _au € HS(F% E). As

7'}/’
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a consequence of (3.2.7), the multiplication operator by f (%

continuous operator

— v + ip) induces

My H (Dags &) = H ' (Tas,E).

Moreover f/\/l,yf%u(d'H v+ ip) can be extended to an E*~F-valued meromorphic
function in the strip {w € C : % -7+ 9 < Rew < % — v} with poles at
the points ¢; at multiplicity d; + 1 and Laurent coefficients in E> such that for
any mcRe-excision function x we have x(w)f(w)M, _sulr, € }AI“”_“(FB, &) for every
8 e (d+1 v+ 9, ﬁ — 7], uniformly in compact S-subintervals. It can be proved,
analogously as in the proof of Lemma 3.2.26, that

opyy bulr) = M,_y FM._gu(r) € Mz (R, &),

Y= T3

O

Proof of Theorem 3.2.24. Let u € H3"(R4,&). Then we can write © = Ufat + Using
for some ugay € Hg' (R4, €) and uging € Sp(Ry, E). Then, by virtue of Lemma 3.2.26
and 3.2.27 we have

_d . ~ _d - ~
Op’]yu 2 (f)uﬂat S HR(_)#W(R—H g)a Op’]yv[ 2 (f)using € H@ W(R-H g)

Let @ be the asymptotic type defined as the union of the poles of both Reg and
@ with the corresponding multiplicity or, for the common poles, the sum of the
two multiplicities. Then, to prove the assertion, it is enough to notice that both
Hp T (Ry, &) and H°° 7(]R+, &) are continuously embedded in He T (Ry, g). O

The case of Mellin symbols with variable coefficients is also of interest in the corner
calculus. It is then adequate to assume f(r,w) € C*° (R+, Mp(E, 5)) and to consider
operators wop,,(f)@ in combination with cut-off functions w(r),&(r). Those induce

continuous operators Hp" (R4, &) — He, "7 (Ry, &) as well.
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