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1. IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

It is well known that the inverted Collatz sequence can be represented as a graph or a tree.
Similarly, it is acknowledged that in order to prove the Collatz conjecture, that one needs
to show that this tree covers all (odd) natural numbers. A structured reachability analysis
is hitherto not available. This paper does not claim to solve this million dollar problem.
Rather, the objective is to investigate the problem from a graph theory perspective. We first
define a tree that consists of nodes labeled with Collatz sequence numbers. This tree will
then be transformed into a sub-tree that only contains odd labeled nodes. Finally, we provide
relationships between successive nodes.

1.1 Motivation

The Collatz conjecture is a number theoretical problem, which has puzzled countless re-
searchers using myriad approaches. Presently, there are scarcely any methodologies to de-
scribe and treat the problem from the perspective of the Algebraic Theory of Automata. Such
an approach is promising with respect to facilitating the comprehension of the Collatz se-
quences "mechanics". The systematic technique of a state machine is both simpler and can
fully be described by the use of algebraic means.

The current gap in research forms the motivation behind the present contribution. The
present authors are convinced that exploring the Collatz conjecture in an algebraic manner,
relying on findings and fundamentals of Graph Theory and Automata Theory, will simplify
the problem as a whole.

1.2 Related Research

The Collatz conjecture is one of the unsolved mathematical Millennium problems [1]. When
Lothar Collatz began his professorship in Hamburg in 1952, he mentioned this problem to
his colleague Helmut Hasse. From 1976 to 1980, Collatz wrote several letters but missed
referencing that he first proposed the problem in 1937. He introduced a function g :N→N
as follows:

g(x) =

3x+1 2 ∤ x

x/2 otherwise
(1.1)

This function is surjective, but it is not injective (for example g(3) = g(20)) and thus it is
not reversible.
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4 1.2. Related Research

In his book The Ultimate Challenge: The 3x+1 Problem [2], along with his annotated
bibliographies [3], [4] and othermanuscripts like an earlier paper from 1985 [5], Lagarias has
reseached and put together different approaches from various authors intended to describe
and solve the Collatz conjecture.

For the integers up to 2,367,363,789,863,971,985,761 the conjecture holds valid. For
instance, see the computation history given by Kahermanes [6] that provides a timeline of
the results which have already been achieved.

Inverting the Collatz sequence and constructing a Collatz tree is an approach that has
been carried out by many researchers. It is well known that inverse sequences [7] arise
from all functions h ∈ H , which can be composed of the two mappings q,r : N → N with
q :m 7→ 2m and r :m 7→ (m− 1)/3:

H = {h :N→N | h = r(j) ◦ q(i) ◦ . . . , i, j,h(1) ∈N}

An argumentation that the Collatz Conjecture cannot be formally proved can be found
in the work of Craig Alan Feinstein [8], who presents the position that any proof of the
Collatz conjecturemust have an infinite number of lines and thus no formal proof is possible.
However, this statement will not be acknowledged in depth within this study.

Treating Collatz sequences in a binary system can be performed as well. For example,
Ethan Akin [9] handles the Collatz sequence with natural numbers written in base 2 (us-
ing the Ring Z2 of two-adic integers), because divisions by 2 are easier to deal with in this
method. He uses a shift map σ on Z2 and a map τ :

σ (x) =

(x − 1)/2 2 ∤ x

x/2 otherwise
τ(x) =

(3x+1)/2 2 ∤ x

x/2 otherwise

The shift map’s fundamental property is σ (x)i = xi+1, noting that σ (x)i is the i-th digit
of σ (x). This property can easily be comprehended by an example x = 5 = 1010000 . . . =
x0x1x2 . . ., containing σ (x) = 2 = 0100000 . . .

Akin then defines a transformation Q :Z2→Z2 by Q(x)i = τ i(x)0 for non-negative inte-
gers i which means Q(x)i is zero if τ i(x) is even and then it is one in any other instance. This
transformation is a bijective map that defines a conjugacy between τ and σ : Q ◦ τ = σ ◦Q
and it is equivalent to the map denoted Q∞ by Lagarias [5] and it is the inverse of the map
Φ introduced by Bernstein [10]. Q can be described as follows: Let x be a 2-adic integer.
The transformation result Q(x) is a 2-adic integer y, so that yn = τ (n)(x)0. This means, the
first bit y0 is the parity of x = τ (0)(x), which is one, if x is odd and otherwise zero. The next
bit y1 is the parity of τ (1)(x), and the bit after next y2 is parity of τ ◦ τ(x) and so on. The
conjugancy Q ◦ τ = σ ◦Q can be demonstrated by transforming the expression as follows:
(σ ◦Q(x))i =Q(x)i+1 = τ (i+1)(x)0 = τ (i)(τ(x))0 =Q(τ(x))i

A simulation of the Collatz function by Turing machines has been presented by Michel
[11]. He introduces Turing machines that simulate the iteration of the Collatz function,
where he considers them having 3 states and 4 symbols. Michel examines both turing ma-
chines, those that never halt and those that halt on the final loop.

A function-theoretic approach this problem has been provided by Berg and Meinardus
[12], [13] as well as Gerhard Opfer [14], who consistently relies on the Bergs and Meinardus
idea. Opfer tries to prove the Collatz conjecture by determining the kernel intersection of
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two linear operators U, V that act on complex-valued functions. First he determined the
kernel of V, and then he attempted to prove that its image by U is empty. Benne de Weger
[15] contradicted Opfers attempted proof.

Reachability Considerations based on a Collatz tree exist as well. It is well known that
the inverted Collatz sequence can be represented as a graph; to be more specific, they can be
depicted as a tree [16], [17]. It is acknowledged that in order to prove the Collatz conjecture,
then one needs to demonstrate that this tree covers all (odd) natural numbers.

The Stopping Time theory has been introduced by Terras [18], [19], [20]. He introduces
another notation of the Collatz function T (n) = (3X(n)n +X(n))/2, where X(n) = 1 when n is
odd and X(n) = 0 when n is even, and defined the stopping time of n, denoted by χ(n), as the
least positive k for which T (k)(n) < n, if it exists, or otherwise it reaches infinity. Let Li be a
set of natural numbers, it is observable that the stopping time exhibits the regularity χ(n) = i
for all n fulfilling n ≡ l(mod2i), l ∈ Li , L1 = {4}, L2 = {5}, L4 = {3}, L5 = {11,23}, L7 = {7,15,59}
and so on. As i increases, the sets Li , including their elements, become significantly larger.
Sets Li are empty when i ≡ l(mod19) for l = 3,6,9,11,14,17,19. Additionally, the largest
element of a non-empty set Li is always less than 2i .

Many other approaches exist as well. From an algebraic perspective Trümper [21] ana-
lyzes The Collatz Problem in light of an Infinite Free Semigroup. Kohl [22] generalized the
problem by introducing residue class-wise affine, in short, by utilizing rcwa mappings. A
polynomial analogue of the Collatz Conjecture has been provided by Hicks et al. [23] [24]
and there are also stochastical, statistical and Markov chain-based and permutation-based
approaches to proving this elusive theory.
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2.1 The Connection between Groups and Graphs

Let (ak) be a numerical sequence with ak = g(k)(m), then a reversion produces an infinite
number of sequences of reversely-written Collatz members [7].

Let S be a set containing two elements q and r, which are bijective functions over Q:

q(x) = 2x
r(x) = 1

3 (x − 1)
(2.1)

Let a binary operation be the right-to-left composition of functions q ◦ r, where q ◦ r(x) =
q(r(x)). Composing functions is an associative operation. All compositions of the bijections q
and r and their inverses q−1 and r−1 are again bijective. The set, whose elements are all these
compositions, is closed under that operation. It forms a free group F of rank 2 with respect
to the free generating set S, where the group’s binary operation ◦ is the function composition
and the group’s identity element is the identity function idQ = e. F consists of all expressions
(strings) that can be concatenated from the generators q and r. The corresponding Cayley
graph Cay(F,S) = G is a regular tree whose vertices have four neighbors [25, p. 66]. A tree
is called regular or homogeneous when every vertex has the same degree, in this case, d(v) = 4
for every vertex v in G. The Cayley graph’s set of vertices is V (G) = F, and its set of edges is
E(G) =

{
{f , f ◦ s} | f ∈ F,s ∈

(
S ∪ S−1

)
\ {e}

}
[25, p. 57]. More precisely, the vertices are labeled

by the elements (strings) of F.

In conformance with graph-theoretical precepts [26], [27], [28] we specify a subgraph H
of G as a triple (V (H),E(H),ψH ) consisting of a set V (H) of vertices, a set E(H) of edges, and
an incidence function ψH . The latter is, in our case, the restriction ψG|E(H) of the Cayley
graph’s incidence function to the set of edges that only join vertices, which are labeled by a
string over alphabet {r,q} without the inverses: E(H) = {{f , f ◦ s} | f ∈ F,s ∈ S \ {e}}.

This subgraph corresponds to the monoid S∗, which is freely generated by S follows
related thoughts [21] that examine the Collatz problem in terms of a free semigroup on the
set S−1 of inverse generators. Note that this semigroup is not to be confused with an inverse
semigroup "in which every element has a unique inverse" [29, p. 26], [25, p. 22].

Let Y X = {f | f is a map X → Y } be the set of functions, which in category theory is
referred to as the exponential object for any sets X, Y . The evaluation function ev : Y X×X→ Y
sends the pair (f ,x) to f (x). For a detailed description of this concept, see [30, p. 127], [31,
p. 155], [32, p. 54] and [33, p. 188]. We define the evaluation function evS∗ : S∗ × {1} → Q
that evaluates an element of S∗, id est a composition of q and r, for the given input value 1.

6



Chapter 2. The Collatz Tree 7

q4(1)=16

rq4(1)=5

qrq4(1)=10

q5(1)=32

q6(1)=64

q2rq4(1)=20

q3rq4(1)=40

rq6(1)=21

qrq6(1)=42

q7(1)=128

q8(1)=256

rq8(1)=85

r2q8(1)=28

q9(1)=512 q2rq6(1)=84 rq3rq4(1)=13

r2q3rq4(1)=4

q4rq4(1)=80

r3q8(1)=9qr2q8(1)=56 r3q3rq4(1)=1qr2q3rq4(1)=8

q3rq6(1)=168

qrqrq4(1)=6

q2rqrq4(1)=12

rqrq4(1)=3

idS*(1)=1root

Figure 2.1: Small section of HT with darkly highlighted subtree HU

Furthermore we define the corestriction ev0S∗ of evS∗ to N. Since a corestricion of a function
resricts the function’s codomain [34, p. 3], the function ev0S∗ operates on a subset T ⊂ S∗ that
contain only those compositions of q and r, which return a natural number when inputting
the value 1.

The set T forms not a monoid under function composition, for example evS∗(qrq4,1) = 10
and evS∗(rq6,1) = 21, but the composition qrq4rq6 does not lie in T , because the evaluation
evS∗(qrq4rq6,1) yields a value outside the codomain N. However, each element of this set
labels a vertex of a tree HT ⊂H , which is a proper subtree of H .

LetU ⊂ T be a subset of T , which does not contain a reduced word with two or more suc-
cessive characters r. The corresponding tree HU ⊂ HT reflects Collatz sequences as demon-
strated in figure 2.1.

When talking about trees having a root ("rooted trees"), another important concept should be explained:
the level of a vertex or often called depth of a vertex is the length of the path from the root to this vertex
[35, p. 804]. In other words, it is the vertex’s distance (the number of edges in the path) from the root. The
height of a vertex is its level plus one level(v) + 1 = height(v), see [36, p. 169].

2.2 Defining the Tree

The starting point for specifying our tree is HU . Due to its significance, we first concertize
HU by the definition 2.1 below, which establishes four essential characteristics.
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Definition 2.1 The graph HU possess the following key properties:

• HU is a directed graph (digraph): Fundamentally, when we consider the more
general case, an undirected graph as a triple (V ,E,ψ), the incidence function
maps an edge to an arbitary vertex pair ψ : E → {X ⊆ V : |X | = 2}. In a digraph,
the set V ×V represents ordered vertex pairs. Accordingly the incidence function
is more specifically defined, namely as a mapping of the edges to that set ψ : E→
{(v,w) ∈ V ×V : v ̸= w}, see [37, p. 15].

• HU is a rooted tree: According to Rosen [35, p. 747], a rooted tree is "a tree in
which one vertex has been designated as the root and every edge is directed away
from the root." Peculiarly, this definition considers the directionality as an inher-
ent part of rooted trees. Unlike Mehlhorn and Sanders [38, p. 52], for example,
who distinguish between an undirected and directed rooted tree.

• HU is an out-tree: There is exactly one path from the root to any other node [38,
p. 52], which means that edge directions go from parents to children [39, p. 108].
This property is implied in Rosen’s definition for a rooted tree as well by saying
"every edge is directed away from the root." An out-tree is sometimes designated
as out-arborescence [39, p. 108].

• HU is a labeled tree: For defining a labeled graph, Ehrig et al. [40, p. 23] use a
label alphabet consisting of a vertex label set and an edge label set. Since we only
label the vertices, in our case the specification of a vertex label set LV together
with the vertex label function lV : V → LV is sufficient. Originally, we said vertex
labels are strings over the alphabet S = {q, r}, through which the free monoid S∗

is generated. We illustrate labeling HU by defining lV (HU )(v) = ev
0
S∗(lV (G)(ι(v)),1),

whereby ι : V (HU ) ↪→ V (G) is the inclusion map [41, p. 142] from the set of
vertices of HU to the set of vertices from the previously defined Cayley graph G.

We define a tree HC by taking the tree HU as a basis and for every vertex v ∈ V (HU )
satisfying 2 | lV (HU )(v), we contract the incoming edge. We attach the label of the parent
of v to the new vertex, which results by replacing (merging) the two overlapping vertices
that the contracted edge used to connect. Visually, we obtain HC by contracting all edges in
HU that have an even-labeled target vertex, which (due to contraction) gets "merged into its
parent." Edge contraction is occasionally referred to as collapsing an edge. For more details
and examples on edge contraction, one can see Voloshin [42, p. 27] and Loehr [43].

The tree HC is aminor of HU , since it can be obtained from HU "by a sequence of any ver-
tex deletions, edge deletions and edge contractions" [42, p. 32]. The sequence of contracting
the edges between adjacent (in our case even-labeled) vertices is called path contraction.

A small section of the tree HC is shown in figure 2.2. Other definitions of the same tree
exist, see for example Conrow [44] or Bauer [45, p. 379].
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Figure 2.2: Small section of HC

2.3 Relationship of successive nodes in HC

Let v1 and v1+n be two vertices of HC , where v1 is reachable from v1+n with level(v1) −
level(v1+n) = n. Hence, a path (v1+n, . . . ,v1) exists between these two vertices. Theorem 2.1
specifies the following relationship between v1 and v1+n.

Theorem 2.1 lV (HC )(v1+n) = 3nlV (HC )(v1)
∏n
k=1

(
1+ 1

3lV (HC )(vk)

)
2−ak . In order to simplify

readability, we waive writing down the vertex label function and put it shortly:
v1+n = 3nv1

∏n
k=1

(
1+ 1

3vk

)
2−ak . The value ak ∈ N is the number of edges which have

been contracted between vk and vk+1 in HU .

In order to demonstrate the construction produced by theorem 2.1 in an illustrative fash-
ion, example 2.1 runs through a concrete path in HC .

Example 2.1 For example, the two vertices v1 = 45 and v1+3 = v4 = 5 are connected
via the path (5,13,17,45), see figure 2.2. Furthermore, one can retrace in figure 2.3 the
uncontracted path between these two nodes withinHU . When applied to this example,
theorem 2.1 produces the following:

5 = v1+3 = 33 ∗ 45 ∗
(
1+ 1

3∗45

)
∗ 2−3 ∗

(
1+ 1

3∗17

)
∗ 2−2 ∗

(
1+ 1

3∗13

)
∗ 2−3

Proof. This relationship of successive nodes can simply be proven inductively. For the base
case, we set n = 1 and retrieve

v1+1 = 3v1
(
1+ 1

3v1

)
2−a1 = (3v1 +1)2−a1 = v2

The path from v2 to v1 can conformly be expressed by a string rq · · ·q of S∗, because of v1 =
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r ◦ qa1 (v2). We set n = n+1 for the step case, which leads to

vn+2 = 3n+1v1
∏n+1
k=1

(
1+ 1

3vk

)
2−ak

= 3n+1v1
(
1+ 1

3vn+1

)
2−an+1

∏n
k=1

(
1+ 1

3vk

)
2−ak

= 3
(
1+ 1

3vn+1

)
2−an+13nv1

∏n
k=1

(
1+ 1

3vk

)
2−ak

= 3
(
1+ 1

3vn+1

)
2−an+1v1+n

= (3v1+n +1)2−an+1

In this case the path from vn+2 to vn+1 is conformly expressable by a string rq · · ·q of S∗ too,
since vn+1 = r ◦ qan+1 (vn+2).

Theorem 2.1 can be used for specifying the condition of a cycle as follows:

v1 = 3nv1
∏n
k=1

(
1+ 1

3vk

)
2−ak

2a1+···+an =
∏n
k=1

(
3+ 1

vk

) (2.2)

A similar condition has been formulated by Hercher [46]. Taking a first look at equa-
tion 2.2, we are able to recognize the trivial cycle for n = 1. One might easily come to the
false conclusion that only trivial solutions exist since we are multiplying fractional num-
bers. However, we might change our position on this triviality when we examine the follow-
ing case of using 5 instead of 3 which indeed forms a cycle in the 5x + 1 variant of Collatz
sequences:

128 = 27 =
(
5+ 1

13

)(
5+ 1

33

)(
5+ 1

83

)
A detailed elaboration of the divisibility and a deeper understanding of the treeHC needs

to be performed in order to get towards any proof of the Collatz conjecture.
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Figure 2.3: Section of HU containing the path from 5 to 45



3. Conclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and OutlookConclusion and Outlook

3.1 Summary

We defined an algebraic graph structure that expresses the Collatz sequences in the form of
a tree. Moreover, we unveiled vertex reachability properties by examining the relationship
between successive nodes in HC . This compact definitory digression serves as a basis for
further investigations of the tree HC .

3.2 Further Research

In subsequent studies, the properties of vertices in HC might be elaborated upon more
closely by taking into account a vertex’s column, row and label.
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