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Abstract 

Human information processing depends critically on continuous predictions about upcoming events, but the temporal 
convergence of expectancy-based top-down and input-driven bottom-up streams is poorly understood. We show that, 
during reading, event-related potentia Is differ between exposure to highly predictable and unpredictable words no later 
than 90 ms after visual input. This result suggests an extremely rapid comparison of expected and incoming visual 
information and gives an upper temporal bound for theories of top-down and bottom-up interactions in object recognition. 
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I ntrod uction 

Perception is not the result of passive bottom-up transmission of 
physical input [I]. Instead active top-down projections continu­
ously in teract with earliest stages of sensory analysis. This insight 
increasingly influences our understanding of cognitive efficiency 
[2- 5]. For instance, attention enhances neural responses to visual 
stimuli in extrastriate and striate visual cortices [6] , and already on 
the subcortical level in the LGN [7]. In fact, studies using 
functional magnetic resonance imaging (fMRI) revealed modula­
tions in cortical and subcortical areas even prior to sensory input of 
expected stimuli [7- 9]. vVe regard such anticipatory activity as 
top-down predictions engaging lower-level areas involved in 
sensory processing to grant fast and smooth perception of 
forthcoming stimuli. Given that the quantity of feedback 
connections to primary sensory areas even outnumbers pure 
feedforward input [5] the interplay of top-down and bottom-up 
flow appears as a major principle of perception . 

Beyond fMRI-based evidence about spatial characteristics of 
neural activity, temporal information contributes to the compre­
hension of bottom-up and top-down processes. Employing the 
high temporal resolution of electroencephalography (EEG), 
research predominantly focused the influence of a ttention on the 
time course of visual perception [10]. For instance, spatial 
attention modulates alpha band activity over occipital areas prior 
to the appearance of an expected target [11 ,12]. After stimulus 
onset amplitudes on the PI component evolving at around 70 ms 
are enhanced for stimuli appearing at attended compared to 
unattended locations [13- 16]. Influences of object- and feature­
based a ttention have typically been observed la ter with a post­
stimulus onse t at 100 to 150 ms [17- 22]. 

However, despite the undisputed role for top-down control, 
attention cannot be equated with feedback flow per se. Gilbert 
and Sigman [4] expanded the traditional concept of attention-based 
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top-down influences and denominated expectations and perceptual task 
as further forms. Although these concepts are strongly overlapping 
and can hardly be separated, the critical distinction lies in the 
amount of information top-down streams carry. For example, 
directing attention to a certain location presumably contains less 
information than a task affording predictions about the identity of 
an upcoming stimulus at that position. In particular, strong 
expectations of a certain stimulus may involve a form of hypothesis 
testing tha t compares characteristics of the incoming signal to 
stored representations even prior to object identification [4]. This 
idea is implemented in models integrating bottom-up and top­
down processes, such that feedforward streams transmitting 
sensory information converge with feedback activity carrying 
knowledge and hypotheses about stimuli. For instance, McClel­
land and Rumelhart [23,24] proposed that word identification is 
driven by the in teraction of linguistic and context-based 
knowledge with incoming featural information. Indeed, the 
amount of top-down feedback can be quantified at the level of 
individual participants [25]. Grossberg [26] suggested that 
stimulus-related signals are enhanced, when top-down predictions 
are correct and match sensory inputs (cf., [27- 30]). According to 
such theories, the congruence of prediction and input facilitates 
stimulus processing, potentially a t early perceptual levels. An open 
question is, however, at what point in time perception benefits 
from the comparison of top-down and bottom-up processes, when 
strong predictions are involved . 

The present study used event-related potentials (ERPs) to 
delineate the earliest interaction between expectations about the 
identity of incoming signals and input-driven information in visual 
word recognition. Sentence reading is perfectly suited to 
investigate the issue. As a well-overlearned everyday activity, it 
involves highly optimized object recognition processes ranging 
from individual letters and sublexical units to whole words, 
thereby engaging both early and higher levels of the visual sys tem 
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[31]. Critically, earliest visual cortices were found to be selectively 
sensitive to trained, letter-like shapes [32] . Furthermore, during 
normal reading, rapid input rates of four to five words per second 
require high perceptual efficiency and encourage fast stimulus 
processing. This is crucial since modulations of early sensory 
processes are primarily engaged, when task demands and 
perceptual load are high [10,33,34]. Finally, sentence contexts 
afford strong and form-specific predictions for upcoming words. 
Indeed, increased neural activity was measured on articles (i.e. , al 
an) when their phonological form mismatched the initial phoneme 
of a highly predictable but not yet presented noun (e.g., airplanel 
kite [35] ; see also [36]). 

vVe manipulated predictability of target words in sentences to 
investigate at what point in time after visual onse t expectations 
about upcoming stimuli are verified . To push the necessity of 
efficient visual processing and to measure neural responses under 
near-normal conditions, words were presented a t a high rate 
approximating natural reading speed [37 ,38]. Provided that match 
and mismatch of stimulus and prediction evoke distinct neural 
responses [5] , an early difference between ERPs for predictable 
and unpredictable words represents an upper bound for the 
latency of top-down and bottom-up interactions. 

Materials and Methods 

Participants 
Thirty-two native German readers (24 female; 29 right-handed; 

mean age: 27 .3, SD: 6.8), recruited at Freie Universitat Berlin, 
received course credit for participation. They had normal or 
corrected-to-normal vision and reported no history of neurological 
diseases. The experiment was performed in accordance with the 
ethical standards laid down in the 1964 Declaration of Helsinki. In 
agreement with the ethics and safety guidelines at the Freie 
Universitat Berlin, we obtained a verbal informed consent 
sta tement from all individuals prior to their participation in the 
study. Potential participants were informed of their right to abstain 
from participation in the study or to withdraw consent to 
participate at any time without reprisal. 

Materials 
A total of 144 sentence units formed the stimulus materials. 

Each unit comprised two context sentences and one neutral 
sentence. The latter was identical across conditions except for 
target words setting up a two-by-two factorial design of frequency 
and predictability (Figure lA). 

144 pairs of high (e.g. , Schiff [ship]) and low frequency (e.g. , 
Zepter [seeP/er]) open-class words served as targets. High frequency 
words comprised lemma and word form frequencies greater than 
100 and 10 occurrences per million, respectively. For low 
frequency words, lemma and word form frequencies were lower 
than 10 per million. Frequency norms were taken from the DvVDS 
data base [39]. High and low frequency words from one pair were 
members of the same class (i.e. , nouns, verbs, or adjectives) and, 
where possible, shared the same number of letters; they differed in 
one letter in I 9 of the 144 cases, in two letters in 4 cases and in 
three letters in I case . Target length varied between three and 
eight letters and was matched across conditions. 

Target pairs were embedded at the sixth to eighth word position 
in neutral sentence frames and were always followed by at least two 
more words. Two context clauses preceding the neutral sentences 
triggered predictability of target words: High frequency targets were 
of high predictability in context I and oflow predictability in context 
2. For low frequency targets the pattern was reversed. Predictability 
norms were assessed in an independent cloze task performed by a 
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total of 151 voluntary participants; none of them took part in the 
EEG experiment. In the cloze procedure, a context sentence was 
presented together with words of the corresponding neutral sentence 
up to the position prior to the target. Participants then guessed the 
word that would most likely continue the sentence fragmen t. They 
were asked to write a t least one, but no more than three guesses per 
sentence . Each participant was presented with only one context per 
sentence unit and worked through a part of the stimuli. In total, 
every sentence was rated by at least 30 subjects. Predictability was 
computed as the proportion of participants correctly predicting the 
target word with one of their guesses. In the 144 sentence units 
entering the stimulus materials both low and high frequency words 
reached cloze values of at least 0.5 in the high predictability 
conditions while not exceeding 0.1 in the low predictability 
conditions. Target word statistics are depicted in Table I. 

Figure IB illustrates the distribution of predictability values in 
the categories. Most low predictability targets had cloze values of 
zero; in the high predictability condition the number of targets 
increased with predictability. Gloze values were similarly distrib­
uted for low and high frequency words. 

For the ERP study, randomized stimuli were divided into lists 
such tha t each participant was presented with every sentence unit 
only once. A Latin square design provided that each version of a 
sentence unit was presented to the equal number of participants. 
This resulted in 72 high and 72 low predictability trials per subject, 
with 36 high and low frequency words in either category. 

Procedure 
Participants were seated a t a distance of 60 cm from the 

monitor in a dimly lit room and were asked to silently read two­
sentence stories for comprehension. A trial started with a context 
sentence that was displayed in its entirety until subjects pressed a 
button. Thereafter, a fixation cross, preceded and followed by a 
500 ms blank interval, indicated for 1000 ms the required fixation 
position at monitor center. The stimuli of the neutral sentence 
together with their adjacent punctuation were then presen ted 
word by word with a stimulus onse t asynchrony (SOA) of 280 ms 
(i.e. , stimulus: 250 ms; blank: 30 ms). The presentation sequence 
of context and neutral sentences is schematized in Figure I C . After 
the neutral sentence, either the next trial was initiated (66.67%) or 
a three-alternative multiple-choice question was inserted to test 
sentence comprehension (33.33%). Questions referred to the 
conten t either of the context or the neutral sentence, but were 
never rela ted to the target word. 

Participants were asked to avoid eye movements and blinks 
during the in terval of word-wise sen tence presentation. After eight 
practice trials and 72 sentence units of the main experiment, they 
took a short break. Stimuli (font: Courier New; size: 18 p t) were 
presented in black on a white background. 

Electrophysiological recording and data processing 
EEG data were recorded from 50 scalp locations corresponding 

to the 10120 international system . Impedances were kept below 
10 Ht All scalp electrodes and one channel on the righ t mastoid 
originally referenced to the left mastoid were re-referenced omine 
to the average of scalp electrodes. T wo horizontal and two vertical 
EOG electrodes recorded bipolarly oculomotor signals and blinks. 
Data continuously recorded with a sampling rate of 512 H z were 
re-sampled omine to 256 H z. Amplifier se ttings cut off frequencies 
below .0 I and above 100 H z. Data were bandpass filtered omine 
from .1 to 30 H z (24 dB; 50 Hz notch). 

EEG data contaminated by muscular artifacts and drifts were 
rejected omine via visual inspection. Independent component 
analysis (Vision Analyzer, Brain Products GmbH, Germany) was 
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Figure 1. Stimuli and procedure. (A) Stimulus example. High (ship) and low freq uency (sceptei) targets were embedded in a neutral sentence 
frame. Two context sentences triggered low or high predictability of target words. (S) Distribution of predictability values. Bars ill ustrate the 
distribution of target predictability across the stimulus material. Low predictability targets (orange) include cloze probabilities no larger than .1. High 
predictability words (blue) comprise cloze va lues of at least .5 . Lines reflect the dispe rsion of predictability norms within low (light orange ci rcles) and 
high frequency (light blue squares) ca tegories. Note that the entire corpus comprises a total of 576 predictability values, since each of the 144 
sentence units involves a low and a high frequency target that both serve as low and as high predictability word. (C) Presentation sequence. A 
context sentence was fully displayed until participants pressed a button. After a fi xation cross, the neutral sentence was presented word by word at 
monitor center. Each word was displayed for 250 ms and followed by a 30 ms blank sc reen. 
doi: 10. 1371 ijournal.pone.0005047.g00 1 

used to remove oculomotor artifacts and blinks. Additionally, an 
automatic algorithm rej ected segments with an absolute amplitude 
larger than 90 f.tV in a t least one channel. The rej ection procedure 
resulted in the exclusion of 3 .1 7% of all target intervals (Iow 
frequency - low predictability: 2.78%; low frequency - high 
predictability: 2.1 7%; high frequency - low predictability: 3.82%; 

Table 1. Descriptive stat istics of ta rget words. 

LF-LP LF-HP HF-LP HF-HP 

Mean SO Mean SO Mean SO Mean SO 

Word form 3.76 2.08 3.76 2.08 155.58 194.63 155.58 194.63 
freq. 

Lemma freq. 4.87 2.68 4.87 2.68 362.19 875.30 362.19 875.30 

Predictability .01 .02 .83 .13 .01 .02 .84 .13 

Length 5.32 1.11 5.32 1.1 1 5.36 1.16 5.36 1.16 

Word position 6.94 .76 6.94 .76 6.94 0.76 6.94 .76 

Target word norms [mean and standard deviation (SD)] according to t he 2 x2 
experimental manipulation of frequency (Iow: LF; high: HF) and predictability 
(Iow: LP; high: HP). 144 target word pairs consisted of 92 noun-, 37 verb-, and 15 
adjective-pa irs. 
doi:10.1371/journal.pone.0005047.t001 
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high frequency - high predictability: 3.9 1%). In the remammg 
da ta, the continuous EEG signal was divided into epochs from 
200 m s before to 700 ms after the target. Epochs were corrected 
relative to a 200 ms pre-stimulus baseline. 

Effect onset was detected on the basis of95% confidence intervals 
computed from 5000 bootstrap samples of single-average difference 
curves. Sampling points were considered as significan t a t the 5%­
level, when upper and lower bound of the confidence band shared 
algebraic signs for an interval exceeding 10 ms. ERP amplitudes 
collapsed across sampling points in the epoch from 50 to 90 ms were 
examined in repea ted measures analyses of variance (ANOV A). The 
Huynh-Feldt correction was applied to adjust degrees of freedom 
(rounded down) and P-values for violations of the sphericity 
assumption. 

Results 

Grand average ERPs for low and high predictability target 
words are illustrated in Figure 2A for a sample of nine scalp 
electrodes . C urves are displayed for the interval from 200 ms 
before target onset up to the appearance of the target-succeeding 
word a t 280 m s. Inspection of the data suggested amplitude 
differences at a surprisingly early latency - well before 100 ms. 
Amplitudes for high compared to low predictability words were 
more negative at posterior left locations and more positive at 
anterior right sites. 
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Figure 2. Grand averages for a sample of nine electrodes. ERPs for low (orange) and high predictability (blue) target conditions when (A) the 
target word or (S) the target-preceding word was presented. Background shading illustrates the stimulus sequence (gray: word present; white: blank 
screen). Dashed lines border the interval from 50 to 90 ms. 
doi:l0.1371 /journal.pone.0005047.g002 

The visual impression was corroborated in statistical analyses 
examining temporal onsets and durations of the first predictability 
effect (Figure 3A). From 0 to 100 ms, a total of 19 out of 50 scalp 
electrodes revealed significant amplitude differences with an 
average onset latency of 60 ms (SD: 4 ms) and a mean duration 
of 28 ms (SD: 16 ms). The earliest effect emerged at 52 ms post­
stimulus. The topographical latency map (Figure 3B) identified 
early predictability effects at right anterior and left posterior sites . 

Based on these resuits, we conducted statistical tests on mean 
amplitudes in the epoch from 50 to 90 ms after stimulus onset 
(dashed lines in Figure 3A). An ANOVA with frequency (2), 
predictability (2), and electrode (50) as within-subject factors 
yielded a main effect of electrode [R2,70) = 14.66; P<.OOI ; 
partial-11 2 = .32 1] and, critically, an interaction of predictabil­
ityxelectrode [R4,132) =2.97; P=.01 9; partial-11 2 =.098]. Nei­
ther the interaction of frequency xelectrode (P= .298) nor the 
three-way interaction (P= .478) was significant (note that only 
interactions with the factor electrode are meaningful in this 
ANOVA because the average reference sets mean amplitudes 
across scalp channels to zero). 

In order to strengthen evidence that the observed predictability 
effect was related to the experimental manipulation of targets, we 
examined ERPs for the two words prior to the target. These 
stimuli were identical across all conditions and were not subject to 
the predictability modulation from context sentences. H ence, 
amplitudes should not reveal any significant differences in the 
critical interval from 50 to 90 ms. ANOV As with frequency (2), 
predictability (2), and electrode (50) as factors yielded no reliable 
effects for frequency, predictability, or the in teraction of 
frequency xpredictability (all Fs< I). Additionally, ANOV As on 
each of the two target-preceding words were performed in seven 
successive epochs of 40 ms, ranging from 0 to 280 ms after 
stimulus onset. None of these intervals revealed significant effects 
involving the factors frequency, predictability, or the in teraction of 
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frequency xpredictability (all Ps> .1 5). Grand average ERPs for 
the target-preceding word are displayed in Figure 2B. 

To scrutinize the predictability effect on the target word we 
grouped the 50 scalp electrodes into nine regions according to a 
grid of three sagittal (left, midline, right) and three coronal 
(anterior, central, posterior) fields (see Figure 4A). ERP amplitudes 
were collapsed across electrodes in corresponding regions and 
submitted to an ANOVA with the factors frequency (2), 
predictability (2), and region (9). The main effect of region 
[RI ,5 1) = 13.27; P<.OOI; partial-11 2 = .300] and the interaction of 
predictability xregion [R2 ,80) = 3.36; P= .028; partial-112 = .098] 
were significant. No other factors were statistically reliable (all 
Ps> .1 5). Post-hoc two-way ANOVAs with the factors frequency 
(2) and predictability (2) in each of the nine regions yielded 
significant predictability effects at anterior-midline [R I ,3 1) = 4 .47; 
P= .043; partial-112 = .1 26] , anterior-right [RI ,3 1) = 4.73; P= .037; 
partial-11 2 =.1 32], central-right [RI,31 ) =9.43; P=.004; partial-
112 = .233] , and posterior-left sites [RI ,3 1) = 10.67; P= .003; partial-
112 = .256; shown in Figure 4B] . The main effect of frequency and 
the interaction of frequency xpredictability were not reliable in 
any of the nine regions (all Ps> .1 0). 

Finally, we conducted separate analyses for low and high 
frequency words in the posterior-left region , which yielded the 
strongest effect (Figure 4A- C) . As shown in Figure 4C, we 
consistently found more negative amplitudes for high than for low 
predictability words within the low frequency (~3 1 ) = - 2.25; 
P= .032) as well as within the high frequency condition 
(~3 1 ) = - 2.54; P= .016). 

Discussion 

The present study examined the earliest index for the interplay 
between expectancy-based top-down and stimulus-driven bottom­
up processes in sentence reading. ERPs to predictable and 
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Figure 3. Latencies of the first predictability effect. (A) Gray bars 
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on 50 scalp electrodes. In the interval from 50 to 90 ms (dashed lines), 
the effect emerges on 19 channels. (8) The onset topography reveals 
early predictability effects at right anterior and left posterior sites. 
doi:10.1371 /journal.pone.0005047.g003 

unpredictable words differed in an in terval from 50 to 90 ms after 
stimulus onset, a latency that is considerably faster than most 
previous reports of interactions between top-down and bottom-up 
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information in visual perception. I t should be noted that other 
target properties cannot serve as an explanation for the effect 
because low and high predictability conditions utilized the same 
words in identical sen tence frames; only preceding context 
sentences rendered targets expected or unexpected. Words prior 
to the target did not evoke differential ERPs across frequency and 
predictability conditions, corroborating the view that the observed 
effect resulted from the experimental manipulation of the target 
word. Importantly, the predictability effect held across levels of 
word frequency (Figure 4C) pointing to the reliability of the result. 
Furthermore, the independence from frequency rules out visual 
word familiarity as an explanation. W e therefore propose that 
ERP differences have emerged from a rapid match of form-specific 
predictions with incoming visual patterns. 

The finding contributes to the idea that active top-down 
predictions p lay a major role in early visual processing [2-
4, 12,23,24,26- 30,32]. As was no ted previously, the large amount 
of feedback connections warrants projections to early cortical 
regions (e.g., [5] ). Accordingly, fMRI studies have revealed top­
down activations of primary sensory areas prior to the occurrence 
of expected stimuli [7,9]. In visual word recognition, predictions 
were shown to pre-activa te form-specific patterns of expected 
words (e .g., [35]). The present data indicate, that these predictions 
are verified very rapidly with the actual incoming stimulus, i.e., 
before 90 ms after visual onse t. 

Notably, the predictability effect occurred substantially ea rlier 
than in previous research. W e consider two explanations why 
top-down effects at comparable latencies have been rarely 
reported before. First, we presume tha t powerful top-down 
proj ections are required to produce m easurable influences at 
early latencies. In previous studies, effects potentially were 
in discoverable or absen t as a consequence of insufficiently strong 
feedback information . For example, effects of spatial attention 
were usually found from around 70 ms on PI amplitudes, 
whereas the C I component from 50 to 90 ms was unaffected 
[13- 16]. H owever, variable SOAs inducing temporal uncertainty 
may have reduced the strength of attention towards upcoming 
stimuli. By contrast, with fixed SOAs and individual differences 
taken into account, attention effects on the C I were found after 
57 ms [40]. Beyond that, top-down influences vary in the 
amount of information they carry [4]. Feedback signals issuing 
spatial selection are presumably weaker than expectations pre­
activating form-specific represen tations of predicted stimuli 
[35,36]. The present data indicate that word predictability 
afforded top-down modulations that were strong enough to affect 
earliest p ercep tual processes . 

As a second explanation, we presume that the observation of 
early top-down modulations depends on the perceptual task (see 
also [4]). In particular, early processes are enforced when task 
demands and perceptual load are sufficiently high [10,33,34]. In 
word recognition, normal reading speed of four to five words per 
second se ts tigh t time constraints for stimulus processing. 
Compared to that, ERP reading experiments typically used slow 
rates of one or two words per second and potentially missed 
adequate demands. Those mostly revealed predictability effects 
from 200 to 500 ms on the N400 component [4 1- 43] ; only a few 
authors reported earlier effects, from 120 to 190 m s [44,45]. 
Employing a quasi-normal reading speed , the present setup 
presumably approximated temporal conditions word recognition 
is optimized for and encouraged rapid integration of both top­
down and bottom-up information. This is comparable to auditory 
sentence processing a t normal speaking ra te, where expected and 
unexpected inflections on adjectives evoked differential ERPs no 
later than after 50 ms [36]. 

March 2009 I Volume 4 I Issue 3 I e5047 



Verification of Predictions 

A B C 
Topography at 50 to 90 ms ein S<chiff v ' ein Schiff v ' 

ein Z<epter v ' ein Zept er v ' 
anterior -2 - 2 High frequency 

:> :> 
2; - 1 2; - 1 

central Cl> Cl> 
"0 "0 

.~ ~ 
Ci Ci 
E E « « 

- 1 

~ :> 
~ -1 

Cl> Cl> 
U "0 

-0.5 0 0.5 c: 
~ Cl> 

Amplitude [IN] iD Ci 
:::: E 
is « 

1 
I I 

--- High predictability 
- 200 -100 0 ·100 200 300 400 0 100 200 300 400 --- Low predictabi lity 

Time [ms] Time [ms] 

Figure 4 . Predictability effect in scalp regions. (A) Topography of mean amplitude differences (Iow minus high predictability) in the epoch 
from 50 to 90 ms. Nine regions of scalp electrodes are delimited by black borders. (S) Mean amplitudes from seven electrodes at the posterior left 
region. In the inte rva l from 50 to 90 ms (dashed lines), amplitudes are more negative for high (blue) than for low predictability (orange) word s. The 
lower panel shows the difference waveform (Iow minus high predictability). Mid-gray and light-gray error bands depict 95% and 99% confidence 
intervals, respectively, computed from 5000 bootstrap samples. Background shading illustrates the stimulus sequence (g ray: word present; white: 
blank sc reen). (C) Within-frequency class ERPs at the posterior left region. The ea rly effect of predictability is independent from target frequency. 
Background shading reflects the stimulus sequence (shaded: word present; white: blank sc reen). 
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These two proposals are neither exclusive nor exhaustive and, 
certainly, a number of additional factors will influence the timing 
of convergence between bottom-up and top-down streams in 
visual processing. To examine the validity of the present 
suggestions and to complete the p icture of short-latency top-down 
effects, further research will be necessary. The reconciliation of 
these findings with feedback modulations occurring later in time 
will contribute to a comprehensive understanding about the 
interplay of internal brain states and information from the 
environment. 

Clearly, the present data point to the efficiency of stimulus 
encoding in visual perception. Evidence from electro- and 
magneto-encephalography revealed that bottom-up activation 
spreads in the primary visual cortex at around 50 ms post­
stimulus and is rapidly transmitted to higher cortical areas . 
Activity reaches a large proportion of extrastriate and frontal 
regions within 70 and 80 ms, respectively [46,47]. Can these 
signals be interpreted and compared to stored information before 
90 ms? Converging empirical support comes from visual search . 
Sigman and colleagues showed that extensive training with letter­
like shapes grants selective responsiveness in earliest visual cortices 
[32]. Further , complex search patterns that were either predictive 
or unpredictive with respect to target position evoked differential 
magneto-encephalographic responses from 50 to 100 ms at 
occipital sites . Since participants were not aware of the pattern­
target associations, this result points to fast elaboration of visual 
input that rapidly contacts unconscious memory [48]. An 
explanation for the high processing speed of visual input is 
provided by recent theories proposing that meaningful informa­
tion is already extracted from the first 1- 5% of the bottom-up 
signal. Thereby, top-down processes, acting as temporal bias, 
increase stimulus saliency [49,50] . Consistent with these ideas, our 
data indicate that in the presence of strong predictions, the cortex 
matches pre-activated representations with incom ing stimuli 
shortly after the visual signal is available . 

. .-(/ffj: PLoS ONE I www.plosone.org 6 

This interpretation is in line with models assuming interactions 
between feedforward and feedback information (e.g., [23,24,26-
30]). For instance, Di Lollo and co-workers [27] proposed that 
early visual processes generate preconscious hypotheses about the 
identity of an incom ing stimulus. These hypotheses re-en ter low 
visual areas and are iteratively compared with the input. An 
affirmative match enhances the signal and affords conscious 
perception of a stimulus. This interactive view of feedforward 
and feedback information successfully accounted for findings 
from backward masking, assuming that top-down hypotheses 
from a briefly presented target mismatch the visua l input a fter a 
mask has superseded the bottom-up target signature [27,51]. 
Further, rapid resumption of an interrup ted visual search 
indicates that preprocessed patterns evoke target-specific hy­
potheses which are swiftly tested against sensory information 
[52,53] . The present data extend this view suggesting that top­
down hypotheses also em erge from the interpretation of semantic 
con texts . Thereby, the instan taneous match with the visual inpu t 
is compatible with the idea that top-down influences dynamically 
reconfigure filters in the visual system to grant optimal processing 
of relevant information from incoming signals [54] . T hus, visual 
perception appears as an active process that rapidly compares 
internal semantic representations with task-relevant aspects of 
incoming stimuli [55- 57]. 

The observed predictability effect was strongest over posterior 
electrodes . This region is situated above the left hemispheric 
occipito-temporal network that is strongly linked to the so-called 
visual word form area [58,59] . As these cortical structures are 
gradually sensitive to the processing of word-like stimuli [31] , 
they reflect a plausible ground for the matching of top-down 
predictions and incoming signals. Another relevant structure may 
be the foveal portion of the retinotopic cortex that was shown to 
receive category-specific feedback information as response to 
peripherally presented objects. H ence, V I was proposed to serve 
as scratch pad for the storage and computation of task-relevant 
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visual information [60] (see also [4]). Note, however, that 
suggestions about underlying sources of the predictability effect 
remain sp eculative, as no strong inferences about localization can 
be drawn on the basis of the present ERP data. 

In conclusion, previous research has shown that predictions 
about upcoming words pre-activate representations of specific 
word forms. The present results ind icate that, under near-normal 
reading speed, these predictions are checked in an interval from 
50 to 90 ms after the visual input. Though reading is ideally 
suited to examine this issue, rapid verification of expected 
physical input is fundamental to many domains, including object 
recognition in general [5] and movement control [61]. If 
replicable across a wide range of tasks, our finding provides a 
critical temporal constraint for theories of top-down and bottom-
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up interactions as well as novel insights about the efficiency of 
stimulus encoding. 
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