
Mathematisch-Naturwissenschaftliche Fakultät

Eva Pechouskova | Melanie Dammhahn | Markus Brameier | Claudia 
Fichtel | Peter M. Kappeler | Elise Huchard

MHC class II variation in a rare and 
ecological specialist mouse lemur reveals 
lower allelic richness and contrasting 
selection patterns compared to a 
generalist and widespread sympatric 
congener

Postprint archived at the Institutional Repository of the Potsdam University in:
Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 728
ISSN 1866-8372
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-429789
DOI https://doi.org/10.25932/publishup-42978

Suggested citation referring to the original publication:
Immunogenetics 67 (2015) 4, pp. 229–245 
DOI https://doi.org/10.1007/s00251-015-0827-4
ISSN (print) 0093-7711
ISSN (online) 1432-1211





ORIGINAL PAPER

MHC class II variation in a rare and ecological specialist mouse
lemur reveals lower allelic richness and contrasting selection
patterns compared to a generalist and widespread sympatric
congener

Eva Pechouskova & Melanie Dammhahn & Markus Brameier &

Claudia Fichtel & Peter M. Kappeler & Elise Huchard

Received: 2 December 2014 /Accepted: 30 January 2015 /Published online: 18 February 2015
# The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The polymorphism of immunogenes of the major
histocompatibility complex (MHC) is thought to influence the
functional plasticity of immune responses and, consequently,
the fitness of populations facing heterogeneous pathogenic
pressures. Here, we evaluated MHC variation (allelic richness
and divergence) and patterns of selection acting on the two
highly polymorphic MHC class II loci (DRB and DQB) in the
endangered primate Madame Berthe’s mouse lemur
(Microcebus berthae). Using 454 pyrosequencing, we exam-
inedMHC variation in a total of 100 individuals sampled over

9 years in Kirindy Forest, WesternMadagascar, and compared
our findings with data obtained previously for its sympatric
congener, the grey mouse lemur (Microcebus murinus). These
species exhibit a contrasting ecology and demography that
were expected to affect MHC variation and molecular
signatures of selection. We found a lower allelic rich-
ness concordant with its low population density, but a
similar level of allelic divergence and signals of histor-
ical selection in the rare feeding specialist M. berthae
compared to the widespread generalist M. murinus.
These findings suggest that demographic factors may
exert a stronger influence than pathogen-driven selection
on current levels of allelic richness in M. berthae.
Despite a high sequence similarity between the two conge-
ners, contrasting selection patterns detected at DQB suggest
its potential functional divergence. This study represents a first
step toward unravelling factors influencing the adaptive diver-
gence of MHC genes between closely related but ecologically
differentiated sympatric lemurs and opens new questions re-
garding potential functional discrepancy that would explain
contrasting selection patterns detected at DQB.
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Introduction

The island of Madagascar, one of the world’s biodiversity
hotspots, has faced rapid deforestation over the last century,
resulting in population fragmentation of many endemic pri-
mates (Lemuriformes) (Ganzhorn et al. 2001; Mittermeier
et al. 1992; Schwitzer et al. 2013a, b), 94 % of which are
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currently classified as threatened (Schwitzer et al. 2013a).
Many of these species are highly arboreal, inhabit restricted
biogeographic ranges and exhibit fast life histories and higher
population turnover compared to most anthropoid primates;
however, the average life span is thought to be compromised
by high extrinsic mortality pressure in the wild populations
(Kraus et al. 2008; Fichtel 2012; Kappeler 2012). These
characteristics make lemurs particularly vulnerable to
an ongoing habitat degradation that may disrupt gene flow and
cause local demographic fluctuations. This may in turn result
in an irreversible loss of genetic diversity in lemurs, especially
those species with restricted spatial distribution. Given the
ongoing rate of deforestation, rapid surveys of remaining ge-
netic diversity and its potential consequences for the future
viability of these populations are essential to determine con-
servation priorities (Kremen et al. 2008). Although difficult to
detect in small populations (Chikhi et al. 2010), signals of
demographic or genetic bottlenecks or decreasing genetic di-
versity at neutral markers seem present across lemur taxa
(Louis et al. 2005; Olivieri et al. 2008; Markolf et al. 2008;
Radespiel et al. 2008; Craul et al. 2009; Razakamaharavo et al.
2010; Holmes et al. 2013; Baden et al. 2014). However, little
is known regarding its potential fitness consequences and the
capacity of such populations to maintain an effective level of
functional (adaptive) genetic variation (allelic richness and
divergence), sufficient to ensure their health and survival.

Genes of the major histocompatibility complex (MHC) are
well suited to study the adaptive maintenance of genetic var-
iation given their immune function (Klein 1986) and extreme
polymorphism (e.g. Hedrick 2002; Garrigan and Hedrick
2003; Sommer 2005; Piertney and Oliver 2006; Spurgin and
Richardson 2010). MHC genes are coding for MHC mole-
cules (cell surface glycoproteins) that trigger the immune re-
sponse by presenting antigens at antigen-binding sites (ABS)
to T-lymphocytes, which then activate further components of
the immune system. Each MHC molecule can bind only a
limited array of antigens, and a number of mechanisms may
increase the spectrum of antigens recognised, including gene
duplications, extensive allelic diversity, polymorphism at
ABS (Hughes and Nei 1988), or polymorphism outside
ABS that may alter the 3D positioning of ABS contact resi-
dues (Bjorkman and Burmeister 1994).

Balancing selection, primarily exerted by pathogen pres-
sure, is thought to represent one of the major forces driving
MHC polymorphism (reviewed in Bernatchez and Landry
2003; Sommer 2005; Piertney and Oliver 2006; Milinski
2006; Spurgin and Richardson 2010). Three non-mutually
exclusive evolutionary mechanisms have been proposed to
explain this polymorphism. First, due to the codominant ex-
pression of MHC alleles and the function of MHC molecules
in the immune response, MHC heterozygous individuals may
be at an advantage in a population facing heterogeneous path-
ogen pressures (i.e. heterozygote advantage; Doherty and

Zinkernagel 1975). Second, MHC alleles that are advanta-
geous in protection against dominant pathogens in a given
environment (Apanius et al. 1997) may temporarily rise in
frequency, until pathogens evolve resistance to the most com-
mon host alleles, which are then progressively replaced by
rarer alleles (i.e. frequency-dependent selection; Snell 1968;
Bodmer 1972; Borghans et al. 2004). Finally, parasite com-
munities typically vary in space and time and may thereby
select distinct sets of MHC alleles in host populations (i.e.
fluctuating selection; Hedrick 1999; Spurgin and Richardson
2010; Eizaguirre et al. 2009, 2012). As a result, patterns of
selection on MHC genes are likely to be durably affected by
the diversity and frequency of MHC alleles present in the host
population and, hence, by its demography (Hedrick 1972;
Borghans et al. 2004). The interruption of gene flow across
fragmented populations and the reduction of effective popu-
lation sizes can therefore result in a loss of genetic diversity
through genetic drift and inbreeding (Wright 1969; Keller and
Waller 2002; Frankham et al. 2002) andmay disrupt balancing
selection (Hughes and Yeager 1998) that might consequently
compromise population capacity to respond to changing path-
ogenic pressures (O’Brien and Evermann 1988).

In support of this assumption, a possible link between high-
ly divergent or specific MHC genotypes and individual fitness
(Schad et al. 2005; Schwensow et al. 2007, 2010a, b; Sommer
et al. 2014) and mate choice (Schwensow et al. 2008a, b;
Huchard et al. 2013) has been suggested for two widely dis-
tributed lemurs—Microcebus murinus and Cheirogaleus
medius (Cheirogaleidae, Primates). Consequently, the evalua-
tion of MHC variation retained in populations of endangered
confamiliar species can provide valuable insights to assess
their viability. The complexity of MHC genotyping has long
impaired detailed genetic studies of free-ranging species with
unknown genomic organisation. Next-generation sequencing
(NGS) technologies promise progress in this area by overcom-
ing some of the technical difficulties associated with the com-
plexity of MHC genotyping and by allowing cost-effective
processing of large datasets (reviewed in Babik 2010;
Huchard and Pechouskova 2014; Koboldt et al. 2013;
Lighten et al. 2014a).

Here, we investigated MHC variation (allelic richness and
divergence) and patterns of selection of two highly polymor-
phic MHC class II genes, DRB and DQB, in the endangered
Madame Berthe’s mouse lemur, Microcebus berthae (B1ab.i-
iii, Andriaholinirina et al. 2014), by genotyping a total of 100
individuals sampled over 9 years in three study areas. This
world’s smallest primate (ca. 30 g) is endemic to the dry forests
of the Menabe region in western Madagascar (Schmid and
Kappeler 1994; Ganzhorn et al. 2001; Schäffler and Kappeler
2014), which has recently been identified as a priority site for
conservation (Schwitzer et al. 2013a). The distribution of
M. berthae is restricted to an area of less than 810 km2 within
two forest fragments and a narrow corridor connecting them
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(e.g. Rasoloarison et al. 2000; Schäffler andKappeler 2014). Its
population density varies across its geographic range (30–100
individuals/km2) and seems to be affected by habitat heteroge-
neity and anthropogenic disturbances (Schwab and Ganzhorn
2004; Schäffler and Kappeler 2014).

Next, we compared our findings with data obtained across
a similar temporal scale from a population of M. murinus, a
sympatric congener (e.g. Weisrock et al. 2010), which in com-
parison to M. berthae presents several key ecological and
demographic differences. M. berthae is a feeding specialist
relying mostly on dispersed fast depleting resources, such as
homopteran secretions or arthropods. This feeding strategy is
thought to promote an intense scramble competition leading to
spatial avoidance, overdispersion and lower rate of social in-
teractions among conspecifics (Dammhahn and Kappeler
2009). In contrast, the more opportunistic feeding niche of
M. murinus, including diverse plant and animal matter, seems
to reduce competition and facilitate spatial proximity and so-
cial interactions among conspecifics (Dammhahn and
Kappeler 2008a, b, 2010). The ecological flexibility of
M. murinus is also reflected by its wide distribution across
southern and western Madagascar. Its population density is
higher and population size larger in Kirindy Forest than those
of M. berthae (Eberle and Kappeler 2004; Dammhahn and
Kappeler 2005, 2008b). We expect these inter-specific con-
trasts to influence MHC variation. First, given that allelic rich-
ness appears to be a function of effective population size
(Hedrick 1985), we expect MHC allelic richness of
M. berthae to be lower than inM. murinus. Second, the larger
population ofM. murinus might harbour a more diverse array
of pathogens (Anderson and May 1978; Nunn et al. 2003;
Hughes and Page 2007; see also Altizer et al. 2007), and this
effect might be enhanced by a broader feeding niche and more
frequent encounters with conspecifics offering a greater
chance of pathogen encounter and transmission. In contrast,
low population densities and low rates of social interactions in
combination with a narrow feeding niche could result in re-
laxed pathogen-mediated pressure inM. berthae. As such, we
predict to detect weaker tracks of pathogen-driven selection
on M. berthae MHC alleles compared to M. murinus.

Methods

Sample collection and DNA extraction

DNA samples were collected from M. berthae from three sub-
populations captured between 2005 and 2013 using baited
Sherman life traps set within 25-ha study areas (N5, CS7 and
Savannah) located within a 12.500-ha concession of Kirindy
Forest of the Centre National de Formation, d’Etude et de
Recherche en Environnement et Foresterie (CNFEREF) de
Morondava (Madagascar: 44° 39′ E, 20° 03′ S, Kappeler and

Fichtel 2012). The centres of the study areas N5-CS7 and
Savannah-CS7 are situated ca. 2–2.5 km and N5-Savannah ca.
4–4.5 km away from each other, respectively. In total, we col-
lected samples from 100 individuals, with sample sizes reflecting
contrasting population densities and sampling effort across the
years at each study area (Electronic supplementary material
ESM 1; N5: n=80; 42♂/37♀/1 n.a.; CS7: n=14, 1♂/13 n.a.;
Savannah: n=6, 3♀/3♂). At first capture, each individual was
briefly immobilised with 10 μl Ketanest 100 (s.c.) (Rensing
1999), individually marked with a sub-dermal microtransponder
(Trovan, Usling, Germany) for other studies (e.g. Dammhahn
and Kappeler 2005, 2008a, b, 2010), and a small ear biopsy of
2–3 mm2 was taken and preserved in 70 % ethanol. Genomic
DNAwas extracted from ear biopsies following standard proto-
col (QiagenQIAmpDNAMini-Kit, QiagenGermany).We have
adhered to the Guidelines for the Treatment of Animals in
Behavioural Research and Teaching (Animal Behaviour 2006,
71: 245-253) and the legal requirements of the country
(Madagascar) in which the fieldwork was carried out.

454 library preparation

PCR amplification targeting the two loci of the most variable
parts of the MHC class II region, DRB and DQB, was per-
formed using primers that flank the functionally important
ABS and captured the full variability in the congener
M. murinus (Schad et al. 2004; Averdam et al. 2011). PCR
reaction mix and amplification conditions are summarised in
ESM 2. Each individual PCR product (further referred to as
amplicon) was electrophoresed on 1 % agarose gel to verify
successful amplification. Primer design and the preparation of
locus-specific amplicon libraries were described elsewhere
(Huchard et al. 2012). Sequencing was conducted according to
standard protocols for GS Junior sequencing (Roche, 454 pyro-
sequencing). All sequencing reads retrieved from a total of six
sequencing runs were processed according to a post-sequencing
quality control procedure following Huchard et al. (2012).

454 library processing

Allelic discrimination and evaluation of the number of loci

Artefactual alleles introduced by PCR or sequencing errors
and assessing the sequencing depth necessary for reliable
genotyping are well-known technical challenges associated
with NGS that might compromise the reliability of assess-
ments of MHC polymorphism (reviewed in Babik 2010;
Lighten et al. 2014a).

Here, we adjusted some of the filtering steps proposed by
previous authors (e.g. Babik et al. 2009; Galan et al. 2010;
Zagalska-Neubauer et al. 2010; Huchard et al. 2012) to dis-
criminate true versus artefactual alleles, relying on two central
assumptions: (1) Artefactual alleles should show high
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similarity to one of the two parental sequences they originated
from within amplicons, either by single point mutation or
indels causing a shift in the reading frame, or by recombina-
tion of the two parental sequences (chimeras), and (2)
artefactual alleles should be relatively rare, compared to true
alleles, both across and within amplicons. In contrast to stud-
ies mentioned above, we did not identify artefactual alleles
based on global allelic frequency thresholds established across
amplicons but evaluated allele status both across and within
each amplicon.

Both manual alignment (Multalin; Corpet 1988) and two
numeric indices of allelic frequency were used to critically
evaluate a potential number of loci and to discriminate true
alleles from artefacts: (1) the mean per amplicon frequency
(MPAF) of any given allele as the proportion of reads from an
amplicon assigned to this allele, averaged across all amplicons
possessing this allele, and (2) the relative per amplicon fre-
quency (RPAF) of each allele as the proportion of reads re-
trieved for each given allele within a given amplicon. We
predicted that artefactual alleles should be relatively rare,
compared to true alleles across amplicons (reflected by low
MPAF) and within amplicons (reflected by low RPAF). While
MPAF can help to identify artefacts returned at low frequen-
cies across sequencing runs, RPAF can help to identify het-
erogeneities in the distribution of within-amplicon allelic fre-
quency. These can be either artefactual alleles that occur non-
randomly across sequencing runs or at high frequencies only
in few amplicons, skewing their MPAF (i.e. run-specific se-
quencing errors or homopolymers) (see also Lenz and Becker
2008; Harismendy et al. 2009; Gilles et al. 2011; Sommer
et al. 2013; Lighten et al. 2014a, b), or cross-amplicon con-
taminations of true alleles (with high MPAF and low RPAF).
The occurrence of such DNA carryover contaminants has re-
cently been acknowledged as an underrated source of
genotyping errors associated with NGS (Huchard et al.
2012; Li and Stoneking 2012; Sommer et al. 2013; Lighten
et al. 2014a, b). Here, we did not systematically eliminate
these suspected contaminants by using a fixed threshold for
a minimum frequency per amplicon (here referred to as
RPAF) under which alleles are filtered out within amplicons
(e.g. Sepil et al. 2012; Huchard et al. 2012), to avoid eliminat-
ing true alleles and thereby generating potential allelic dropout
(van Oosterhout et al. 2006; Sommer et al. 2013). Rather, the
status of amplicons suspected of contaminations by true al-
leles was clarified by replicating affected amplicons.

In the first step of the allele sorting procedure, we attempted
to evaluate whether target genes may be duplicated in order to
assess the sequencing depth required to ensure reliable
genotyping. Although there was no indication of a loci dupli-
cation in M. murinus (Averdam et al. 2011; Huchard et al.
2012), we could not assume the same in M. berthae due to
extensive variation in the genomic organisation of MHC with-
in and across species (e.g. Kelley et al. 2005; Winternitz and

Wares 2013; Lighten et al. 2014b). Therefore, we investigated
the MPAF and RPAF distribution of the most common to the
least common alleles across all amplicons, assuming that in the
case of non-duplication, we would detect a notable drop be-
tween the two most common and remaining alleles (see also
Babik et al. 2009; Huchard et al. 2012). Next, we evaluated our
findings by manual alignment of all alleles within each
amplicon and attempted to discriminate artefactual from true
alleles based on our assumptions—similarity to parental allele
and lowMPAF and RPAF.When the status of alleles remained
ambiguous, affected amplicons were replicated. Finally, we
replicated those few amplicons that passed allele sorting with
more true alleles than expected given the estimated number of
loci to check whether this came from the genuine locus dupli-
cation or from an artefact.

Assessment of minimum sequencing depth and genotyping
reliability

Based on the estimated number of loci, we proceeded with a
final screening step to evaluate the sequencing depth neces-
sary for accurate genotyping using the program ‘Negative
Multinomial’ (http://www.lirmm.fr/~caraux/Bioinformatics/
NegativeMultinomial/) developed by Galan et al. (2010).
Amplicons that did not return a sufficient amount of reads
based on this estimate were re-genotyped.

The efficiency of allele-sorting was then evaluated through
two steps. First, assuming that artefacts originated during a
single PCR reaction or introduced by a genotyping mistake
would not occur independently in many amplicons, we inves-
tigated the relationship between the MPAF of each allele and
the number of amplicons possessing this allele. We then cor-
related both values before and after allele sorting. Here, we
expected a positive relationship before allele sorting—due to
the fact that artefacts should display both low MPAF and be
retrieved in few individuals only—that would disappear after
allele sorting (Babik et al. 2009; Huchard et al. 2012). Second,
a set of amplicons were additionally replicated for each
loci within independent sequencing runs (DRB n=23; DQB
n=27) to assess the reliability of our genotyping for each locus
within.

Sequence analysis and phylogeny reconstruction

All true alleles were retained for downstream analysis,
including those that were possessed by one individual
only to prevent the elimination of rare alleles leading to
an underestimation of allelic richness and to avoid generat-
ing false homozygotes. However, these alleles were not sub-
mitted in public repositories.

Allelic divergence was evaluated by computing average
pairwise distances (number of differences) among all pairs
of nucleotide and amino acid sequences in each locus in
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MEGA 6 (Tamura et al. 2013). Evolutionary relationships
between amino acid sequences of both loci found by this study
inM. berthae and previously inM. murinus were constructed
in MEGA, using a neighbour-joining algorithm with Poisson
correction (Saitou and Nei 1987; Zuckerkandl and Pauling
1965). Mimu sequences originated from 664 individuals
captured within the study area CS7 between the years
2000 and 2010. These Mimu alleles were retrieved using
454 technology and comparable allele validation steps
(see Huchard et al. 2012). The repeatability of sequence
alignment was determined by a bootstrap analysis with
1000 replications.

Allelic richness of both loci detected within the study pop-
ulation of M. berthae was compared to those previously de-
scribed forM. murinus (Huchard et al. 2012). To evaluate the
number of alleles detected for a given sampling effort, we
conducted a permutation test in R (www.r-project.org). Here,
we randomly selected 10 individuals and counted the number
of distinct alleles detected. This procedure was repeated 100
times to calculate a mean and SD for each sampling effort,
adding 10 individuals at each step until 100. This procedure
was conducted for both M. berthae and M. murinus and
plotted for both loci to illustrate the number of distinct
alleles detected per given sampling effort.

Population genetic analysis

Linkage disequilibrium between DRB and DQB loci was test-
ed using a likelihood ratio test, where the null hypothesis of no
association between loci (linkage equilibrium) is compared to
the hypothesis of a possible association (Slatkin and Excoffier
1996). The significance of the procedure is found by comput-
ing the null distribution of this ratio under the hypothesis of
linkage equilibrium using 10,000 permutations implemented
in Arlequin 3.5.1.3. (Excoffier and Lischer 2010). Using
GENEPOP v 1.2 (Rousset and Raymond 1995), a null allelic
frequency was estimated by maximum likelihood estimation
(EM algorithm; Dempster et al. 1977), and deviations from
Hardy-Weinberg equilibrium (HWE) were calculated for
each locus separately using the exact U-score test
(Rousset and Raymond 1995), with the alternative hypoth-
esis predicting heterozygote excess. The extent of genetic dif-
ferentiation among sub-populations (regardless of sex and
year cohort) was examined by pairwise FST at both loci using
Arlequin (10,000 permutations, Wright 1965). Comparisons
between adult males and females and across year cohorts were
not included due to uneven and small sample sizes (see above
and ESM 1).

Test of positive selection

The presence of positively selected sites (PSS) was investigat-
ed in both genes separately. PSS are characterised by ω>1

with ω=dN/dS, and dN and dS being the relative amounts of
substitutions at non-silent (dN) and silent (dS) codon sites.
First, we investigated the strength of positive selection using
the likelihood ratio modelling approach. We compared two
models of the codon evolution: the null model, where ω<1
and varies according to the beta distribution (model M7), and
a model allowing an additional class of sites, where ω>1, to
account for a possible occurrence of PSS (model M8) using a
likelihood ratio test (LRT) (in Yang et al. 2000). If model M8
fits the data better than M7, PSS were identified through
Bayes Empirical Bayes (BEB) procedure and retained for
evaluation by the next step if statistically significant (Yang
et al. 2005), using the package CodeML implemented in
PAML 4.7 (Yang 2007).

As a second approach, we estimated values of dN and dS
and their standard errors by calculating the pairwise number of
silent and non-silent substitutions (Nei and Gojobori 1986)
applying Jukes-Cantor correction for multiple hits implement-
ed in MEGA. This rather conservative approach considers all
possible evolutionary pathways (excluding termination co-
dons) leading from one codon to another as equally probable
and is thereby expected to provide conservative (minimum)
estimates of numbers of substitutions compared to the positive
selection hypothesis ω>1 (Nei and Kumar 2000). A codon-
based Z-test of selection was performed to test whether both
PSS (ω>1) and non-PSS (ω<1), identified by the previous
approach using BEB procedure, were under positive selection.
Furthermore, we compared ω in ABS and non-ABS. Their
location was derived from referential human sequences
(HLA-DQB, HLA-DRB; Bondinas et al. 2007) and compared
with previously detected PSS and non-PSS. Finally, overall
values of dN and dS were calculated.

Results

Allelic discrimination and evaluation of the number of loci

A total of 321 unique sequences were retrieved for DRB from
148 amplicons (including 49 replicates, see below) and 105
sequences for DQB from 130 amplicons (including 32 repli-
cates), in the range of 162–170 bp (excluding primers). For
more details and statistics of sequencing outcome, see ESM 3.
The distribution of MPAF and RPAF from the first to sixth
most common alleles averaged across all amplicons revealed a
notable drop of frequency between the two most common and
remaining alleles, suggesting no duplication of either locus
(ESM 4).

Within 321 DRB sequences, 286 (89 %) displayed MPAF
<0.05 and were identified by manual alignment as artefacts
(95 %) or contaminants (5%), following our criteria. From the
remaining 35 (11%) alleles withMPAF≥0.05, 13 alleles were
identified as artefacts. Additionally, five alleles occurring
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within a single amplicon (MPAF 0.05–0.08) were identified as
contaminants and discarded (see below). The remaining
17 alleles (MPAF 0.08–0.69) were retained as true al-
leles. In DQB, 74 (70 %) of all 105 sequences displayed
MPAF<0.05, and all of those were eliminated as artefacts
(95 %) or contaminants (5 %). Among 31 remaining se-
quences with MPAF≥0.05, four more sequences were
eliminated as artefacts and five as contaminants (MPAF
0.06–0.24). The remaining 22 sequences were retained as true
alleles. In both loci, artefacts with MPAF≥0.05 mostly repre-
sented homopolymer indels—occurring either at inconsistent
frequencies across sequencing runs, within a single sequenc-
ing run or amplicon—and their elimination was further sup-
ported by running replicates of affected amplicons. Nine out
of 14 contaminants were eliminated by running replicates and
three in DRB and two in DQB occurred within one amplicon
that was due to extensive inflation of artefacts, and thereby
inconclusive genotype, excluded in each locus. Overall, 304
(95 %) sequences in DRB and 83 (79 %) in DQB were elim-
inated. After allele sorting, only three (out of 96 individuals)
and six (out of 98 individuals) amplicons had more than
two true alleles in DRB and DQB, respectively. In all
of them, the existence of a third and in one case fourth
allele could be excluded by re-sequencing affected amplicons,
which further confirmed our assumption that both loci were
non-duplicated.

Assessment of minimum sequencing depth and genotyping
reliability

Based on our conclusions of no loci duplication, we used the
probabilistic model (Galan et al. 2010) and estimated that a
minimum of 18 reads were required for reliable genotyping of
each given locus with a confidence level of 0.95. All
amplicons with <18 reads (DRB 26; DQB 5) were re-
genotyped and replaced in the dataset, except of three
amplicons in DRB that did not return >18 reads in the second
genotyping attempt. Additionally, 23 amplicons for DRB and
27 for DQBwere genotyped in replicates to estimate genotyp-
ing reliability, and all of them showed a perfect reproducibility
of assigned genotypes.

The correlation between the MPAF of each allele and the
number of amplicons possessing this allele was significant
before allele sorting in both loci (Pearson’s correlation,
DRB n=321 alleles, r=0.78, P<10−15; DQB n=105 al-
leles, r=0.69, P<10−15), largely driven by the presence
of alleles that had both low MPAF and low frequency
(ESM 5). This correlation disappeared in DQB after
discarding artefacts (Pearson’s correlation n=22 alleles,
r=0.22, P=0.33) and was weakened in DRB, though
still significant (Pearson’s correlation, DRB n=17 alleles, r=
0.64, P<0.006).

Sequence analysis and phylogeny reconstruction

From the total of 17Mibe-DRB and 22Mibe-DQB sequences
found in 96 and 98 individuals of M. berthae, respectively,
none have been described previously. Accession numbers of
these alleles as well as the full nucleotide sequence of alleles
occurring in only one individual are given in Appendix
(Table 3).

Average nucleotide divergence (number of differences) be-
tween sequences was comparably high in both loci
(mean±SD; DRB 17.07±2.44; DQB 14.44±2.16). Among
Mibe-DRB sequences, we found 47 (29 %) variable nucleo-
tide sites and 35 (21 %) among Mibe-DQB sequences. Each
nucleotide sequence of both loci translated into a unique ami-
no acid sequence and the absence of stop codons suggests that
all sequences can encode functional proteins. Amino acid se-
quences revealed 23 (43 %; DRB) and 23 (41 %; DQB) var-
iable sites out of 54 and 56 sites (see below), and comparable
amino acid divergence was found in both loci (mean±SD;
DRB 11.73±2.0, DQB 10.76±1.82).

The reconstruction of evolutionary relationships between
amino acid sequences of both species revealed two distinct
loci-specific clusters, with the exception of three Mibe-DQB
sequences (Mibe-DQB*017, *016 and *007), that clustered
separately among DRB sequences of both M. berthae and
M. murinus (Fig. 1). These three Mibe sequences were re-
trieved independently at least in two and up to 11 individual
amplicons across different sequencing runs, and their presence
and loci identity were confirmed by replicating from one to
three amplicons possessing affected sequences. Moreover,
these three sequences clustered with other DQB sequences
when including only Mibe sequences in the analysis
(data not shown). There was no clear separation between
sequences of the two species in either locus (Fig. 1), and the
level of amino acid divergence was comparable within (see
above and Huchard et al. 2012) and between allelic pools of
the two species (Mimu vs. Mibe-DRB 11.6±2.1; DQB
11.3±1.9). Additionally, an insertion (two codons) caus-
ing fragment length polymorphism in DQB, homologous
to the one previously described in 19 Mimu-DQB se-
quences (Huchard et al. 2012), was detected in seven Mibe-
DQB sequences. This insertion did not result in a shift of the
reading frame, and there was no evidence for stop codons that
would indicate a loss of function. These sequences created
large distinct clusters, except for one Mibe sequence
(Mibe-DQB*008, Fig. 1).

Allelic richness (number of distinct alleles) estimated
for a given sampling effort (number of sampled individ-
uals) through re-sampling procedure in M. berthae and
M. murinus is shown in Fig. 2. The estimated mean of distinct
alleles detected per sampling effort is lower in M. berthae in
both loci, indicating lower overall allelic richness for a given
sampling effort in this study population.
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Population genetic analysis

The null hypothesis of linkage equilibrium between loci could
be rejected (χ2=810.33, df=396,P<10−06). Allelic distribution
patterns were relatively similar in both genes across all sub-
populations with allelic frequencies varying widely within each
locus from 1 to 33 % in DRB and 1 to 27 % in DQB (Fig. 3).

The estimated frequency of null alleles was low in both loci
(<0.01). The comparable observed and expected level of het-
erozygosity could be found at both loci across all sub-
populations (DRB, HO=0.91, HE=0.90; DQB, HO and
HE=0.92), and heterozygote excess was not detected in
either locus (DRB, FisW&C=−0.007, P=0.58; DQB,
FisW&C=0.005, P=0.80).

Fig. 1 Evolutionary relationships between amino acid sequences for 17
Mibe-DRB (black circles) and 22Mibe-DQB sequences (grey circles for
sequences without 6-bp insertion and red circles for sequences with the
insertion) described in this study, including 59 Mimu-DRB (black
triangles) and 58 Mimu-DQB sequences (grey triangles for sequences
without two-codon insertion and red triangles for sequences with it)

described in Huchard et al. (2012). The tree configuration was derived
using neighbour-joining algorithm (Bootstrap 1000; Poisson correction)
inMEGA 6. Only bootstrap values exceeding 50% are shown. Accession
numbers and nucleotide sequences of M. berthae are presented in
Appendix (Table 3) (colour figure online)
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Pairwise comparisons did not reveal any genetic differen-
tiation in either loci among the three sub-populations (for all

pairs, FST<0.001; P=0.49-0.84), suggesting intact/ongoing
gene flow among them. The allelic frequencies within each
sub-population and across year cohorts of the largest sub-
population (N5) are shown in ESM 6.

Test of positive selection

The significant deviation of the LRT statistics from a χ2 dis-
tribution allowed rejection of the null model assuming neutral
evolution (M7) in favour of a model allowing for a class of
sites being subjected to diversifying selection (M8) for both
loci (Table 1). In DRB, nine PSS were identified (CI 99%, n=
7; CI 95 %, n=2). Eight of those occurred at homologous
positions with HLA-ABS, and another one was located within
a three amino acid distance (Fig. 4b). In DQB, 13 PSS were
detected (CI 99 %, n=11; CI 95 %, n=2). Six out of 13 PSS
were homologous to HLA-ABS, seven other located within
one to four amino acid distance (Fig. 4a). In comparison, two
out of three DQB-PSS described in M. murinus (Huchard
et al. 2012) were homologous to those identified in
M. berthae (positions 5 and 16). Additionally, six PSS were
homologous between the two species in DRB.

Fig. 2 Estimation of allelic richness for a given sampling effort through
re-sampling procedure, showing the number of distinct alleles detected
when randomly drawing an increasing number of individuals from our
sample inM. berthae (red) andM. murinus (blue). Given the similarity of
the observed pattern between DRB and DQB, only the plot for DQB loci
is shown. The dotted lines indicate the standard deviation around the
estimated mean (solid line) (colour figure online)

Fig. 3 The distribution of allelic
frequencies (i.e., rate of
occurrence) of 17MHC-DRB and
22 MHC-DQB alleles within the
study population of M. berthae
(DRB, nind=96; DQB, nind=98)
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The estimated values of dN and dS (±SE) through
evolutionary pathways method (Table 2) confirmed the

results of the first analysis by revealing an elevated dN
relative to dS in all ABS versus non-ABS and in all
PSS versus non-PSS. Codon-based Z-tests of selection
indicated that all PSS and ABS have been affected by
positive selection in both loci.

Table 1 Evaluation of the goodness of fit for different models of codon evolution and estimated parameter values

Model LnLa Kappa (ts/tv) AIC ΔAICb Parameters

MHC-DRB

M0—one ω −922.27 0.79 1846.12 184.38 ωc=0.61

M7—nearly neutral with βg −839.49 0.86 1680.7 18.96

M8—positive selection with β (ω0≤1, ω1>1)h −830.14 0.73 1661.74 Best p0d=0.78, p1e=0.22 , ωf=3.01

MHC-DQB

M0—one ω −873.89 1.34 1750.45 150.84 ω=1.29

M7—nearly neutral with β −810.82 1.66 1624.97 25.36

M8—positive selection with β (ω0≤1, ω1>1) −798.3 1.5 1599.61 Best p0=0.73, p1=0.27, ω=4.24

AIC Akaike information criterion, Kappa (ts/tv) transition/transversion rate
a Log likelihood of a model
b Difference between the value of the AIC of a given model and the best model
c dN/dS
d Proportion of sites with ω≤1
e Proportion of positively selected sites (ω>1)
f Estimated value of ω for sites under positive selection
g For all sites, ω≤1 and the β distribution approximates ω variation
hA proportion of sites evolves with ω>1

Fig. 4 Amino acid variation plots forMibe-DQB andMibe-DRB alleles.
Human antigen-binding sites (ABS) are indicated with the letter h
(Bondinas et al. 2007), and positively selected sites (PSS) are indicated
by black (P>99 %) and grey triangles (P>95 %). The insertion of two
codons at positions 24–25 in seven DQB alleles causes a gap in sequences
of DRB loci

Table 2 Results of evolutionary pathway method (MEGA 6) to
estimate values of dN and dS (±SE) for ABS and non-ABS defined by
homology with HLA and for PSS and non-PSS identified by Bayes
Empirical Bayes (BEB) analysis (PAML)

Positions Number of
codons in each
category

dN dS Z P

MHC-DRB

ABS 11 0.59±0.09 0.05±0.04 5.038 0.000

Non-ABS 43 0.05±0.02 0.06±0.03 -0.470 0.639

PSS 9 0.75±0.08 0.17±0.14 3.226 0.002

Non-PSS 45 0.06±0.02 0.04±0.02 0.484 0.629

All 54 0.13±0.03 0.06±0.03 1.921 0.057

MHC-DQB

ABS 11 0.35±0.11 0.01±0.01 3.123 0.002

Non-ABS 43 0.07±0.02 0.04±0.02 1.493 0.138

PSS 13 0.50±0.09 0.04±0.04 4.912 0.000

Non-PSS 41 0.04±0.01 0.03±0.02 0.783 0.435

All 54 0.12±0.03 0.03±0.02 3.174 0.002

FromNei and Gojobori 1986, Bondinas et al. 2007, and Yang et al. 2005.
P probability of dN=dS using Z-test of selection. All positions
containing gaps and missing data were eliminated
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Discussion

This is a first description of the polymorphism of two
MHC class II genes in the endangered Madame Berthe’s
mouse lemur. We detected a total of 17 Mibe-DRB and
22 Mibe-DQB unique sequences which showed high
divergence and tracks of past positive selection. Below,
we compare patterns of variation and selection in
M. berthae with those previously described for M. murinus,
a closely related sympatric congener, that differs in several
key aspects of its demography and ecology and discuss
potential implications of these results on population
viability.

MHC variation and selection patterns

A total of 17Mibe-DRB and 22Mibe-DQB unique sequences
were detected within members of the three sub-populations of
M. berthae in Kirindy Forest, Western Madagascar.
Comparison with 59 DRB and 58 DQB sequences of
M. murinus obtained previously from the same study site
(Huchard et al. 2012) revealed no clear separation of amino
acid sequences between the two species in either locus
(Fig. 1). Nucleotide and amino acid sequence similarity be-
tween alleles of the two species, as well as the presence of a
two-codon insertion located at the same position in 19Mimu-
and 7 Mibe-DQB sequences, could indicate the retention of
MHCmotifs in both loci during periods of time exceeding the
evolutionary split between species (trans-species polymor-
phism; Klein 1987). MHC sequence similarity limited to
exons encoding peptide binding regions have been detected
many times between species that were sometimes distantly
related (summarised in Klein et al. 2007; Lenz et al. 2013)
andmay represent examples of trans-species polymorphism or
result from convergent evolution (independent evolution of
similar traits in response to similar ecological pressures) (e.g.
Klein et al. 2007). In addition, the reconstruction of evolution-
ary relationships between amino acid sequences of the two
loci revealed a partial paraphyly, with three Mibe-DQB se-
quences clustering within DRB sequences. A BLAST search
of the affected Mibe-DQB nucleotide sequences revealed
Mimu-DQB sequences as a close match. Moreover, when
analysed separately, Mibe sequences generated two distinct
loci-specific clusters (data not shown) supporting their correct
assignment to DQB loci. Additionally, these sequences oc-
curred within multiple individuals and their presence was con-
firmed by replication, which excluded the possibility of se-
quencing run-specific amplification mismatch. Such
paraphyly has been also reported previously in M. murinus
by Huchard et al. (2012) and may result from a combined
effect of tight physical linkage, shared origin and high func-
tional similarity between the two loci.

In contrast to 17Mibe-DRB and 22Mibe-DQB sequences
obtained by this study from the total of ca. 100 individuals
sampled over 9 years in three study areas, 59Mimu-DRB and
58Mimu-DQB originated from 664 individuals ofM.murinus
sampled over a comparable period of time within a single
study area (Huchard et al. 2012). Allelic richness (number of
distinct alleles) for a given sampling effort (number of sam-
pled individuals) that was estimated through re-sampling pro-
cedure in dataset of both species revealed the average number
of distinct alleles detected for a given sampling effort to be ca.
twofold lower inM. berthae compared toM. murinus (Fig. 2).
This finding indicated lower allelic richness in M. berthae,
where sampling of ca. 60 individuals, compared to ca. 200
individuals inM.murinus, would allow to capture most alleles
present in the study population, deduced from an inflection in
the graph illustrating the relationship between allelic richness
and sampling effort (see Fig. 2 and Huchard et al. 2012).
Moreover, the allelic distribution across year cohorts within
the largest sub-population of M. berthae (N5) suggests that
reported allelic richness within this study site may be
overestimated, since some alleles were detected exclusively
within earlier cohorts and seem to have disappeared within
current generations (e.g. after 2008–2009) (ESM 6).
However, sample size is too small to interpret apparent fluc-
tuations in allelic frequencies that might be further enhanced
by a progressive displacement of the M. berthae population,
located at the periphery of the study area (Dammhahn
and Kappeler 2008b), or by individual migrations. The
lower allelic richness found in M. berthae matched our
predictions based on its overall lower population densi-
ties and population size relative to M. murinus (Dammhahn
and Kappeler 2005, 2008b). Even though the reasons for
lower population density of M. berthae are unknown,
factors such as a narrow feeding niche promoting in-
tense intra-specific scramble competition, larger home
ranges and less cohesive social networks in M. berthae
(Dammhahn and Kappeler 2005, 2008a, 2009, 2010),
when compared to spatially more clumped generalist
M. murinus (e.g. Eberle and Kappeler 2004), are thought to
contribute to the naturally lower population densities in this
species (Dammhahn and Kappeler 2008b). Additionally, we
observed a notable decrease in the number of newly
captured individuals across the years in the most dense-
ly populated study area (N5) despite of a comparable
capture effort across years (ESM 1). This pattern could
either be the result of a decreasing population size or,
alternatively, a spatial exclusion from the study area by
its superior competitor (Dammhahn and Kappeler
2008b), whose sub-population is shifting in recent years
into the areas previously exclusively occupied byM. berthae
(data not shown).

Finally, the small population size, specialist diet and lower
rate of social interactions among conspecifics of M. berthae
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could to some extent promote a limited array of pathogens and
its transmission across conspecifics (reviewed in Edwards and
Potts 1996; Nunn et al. 2003; Vitone et al. 2004; Rifkin et al.
2012). This could in turn result in relaxed selection, possibly
manifested not only by lower allelic richness and/or diver-
gence but also by less tracks of selection on MHC sequences.
InM. berthae, allelic divergence in both loci, as well as strong
evidence of past historical balancing selection on MHC se-
quences (Tables 1 and 2; Fig. 4), are comparable to patterns
described in M. murinus (Huchard et al. 2012) and do not
support the idea of a weaker pathogen-driven selection in
M. berthae compared to M. murinus. Thus, population size
rather than weak selection seems to constrain allelic richness
in this population.

In addition, nine PSS were detected across 17 Mibe-DRB
sequences and 13 across 22Mibe-DQB sequences, suggesting
that DQB may be of equal or higher functional importance
than DRB in this species. This contrasts with previous find-
ings in M. murinus, where DRB was suggested to be under
stronger diversifying selection than DQB based on their rela-
tive number of PSS (11 vs. 3) (Huchard et al. 2012).
Contrasting selection patterns could reflect divergent func-
tions of this locus in M. berthae versus M. murinus. Under
this scenario, we may also expect different levels of allelic
variation (richness and divergence) between the two loci.
This is the case in neither M. murinus nor M. berthae. This
may be due to the fact that (i) selection pressures acting on
both loci are not independent given their tight linkage, (ii)
allelic variation reflects variation in demography and not sim-
ply selection, or (iii) allelic variation and signatures of past
positive selection reflect the strength of selection over differ-
ent time scales. An elevated rate of non-synonymous muta-
tions requires a long time to accumulate (Bryja et al. 2007) as
well as to vanish after the disappearance of selection (Garrigan
and Hedrick 2003), whereas fluctuations in allelic variation
may be more dynamic.

Implications for population resistance

To assess the adaptive significance and fitness consequences
of MHC variation, it is essential to distinguish the relative
importance of different measures of MHC polymorphism
(Garamszegi and Nunn 2011). The high level of amino acid
divergence amongMibe-alleles or their effective combination
within individual genotypes may buffer potential detrimental
effects of lower allelic richness for pathogen resistance. Thus,
persistence of certain Mibe- alleles across several generations
and study areas (ESM 6) could be facilitated by their diver-
gence (i.e. divergent allele advantage hypothesis) (Richman
et al. 2001; Schwensow et al. 2010b; Lenz et al. 2009; Lenz
2011; Froeschke and Sommer 2012; Sepil et al. 2013) or by
the effect of MHC-dependent mate choice favouring specific

alleles conferring resistance against dominant pathogens (e.g.
Hill et al. 1991; Schad et al. 2005; Schwensow et al. 2007,
2010a; Axtner and Sommer 2012; Kloch et al. 2013).
However, high allelic divergence may not be sufficient to
maintain effective flexibility of the immune response in the
long-term when allelic richness is low. In small populations
with limited gene flow, genetic drift may weaken the capabil-
ity of balancing selection to maintain high levels of MHC
polymorphism through disappearance of rare allelic variants
(Hartl and Clark 1997; Ejsmond and Radwan 2011). This
might in turn compromise the capability of the host’s immune
system to keep up with the evasive mechanisms of the current,
or newly introduced pathogens. However, whether and how
MHC variation found inM. berthae translates into population
viability remains to be tested by the integration of genetic data
with further health and survival assessment.

Overall, the empirical evidence supporting a link between
MHC variation and fitness remains equivocal across taxa
(reviewed in Acevedo-Whitehouse and Cunningham 2006;
Radwan et al. 2010;Winternitz et al. 2013). Some populations
that have undergone a demographic bottleneck seem to cope
with critically low MHC variation (e.g. Ellegren et al. 1993;
Mikko and Andersson 1995; Babik et al. 2005; Gangoso et al.
2012), or low MHC allelic richness compensated by high
allelic divergence (e.g. Radwan et al. 2007; Castro-Prieto
et al. 2011), while others retained high levels of MHC varia-
tion despite facing a bottleneck that simultaneously lowered
neutral genetic diversity (Aguilar et al. 2004; Hedrick and
Hurt 2012; Oliver and Piertney 2012). Although the con-
sequences of decreasing MHC variation might be unde-
tectable over long periods of time, it might eventually
compromise the ability of small or isolated populations
to resist to ever-changing pathogen pressures in the fu-
ture, over time scales that may be difficult to measure
in most empirical studies (reviewed in Radwan et al.
2010; Spurgin and Richardson 2010). Therefore, the
continuous long-term demographic monitoring of popu-
lations for which estimates of MHC variation have been
established at one or several points in time may, in the
future, help us to refine our understanding of the time
scale over which such processes are acting, especially in
relatively short-lived species.
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Appendix

Table 3 A List and accession numbers of Mibe-DRB and Mibe-DQB sequences described by this study

Allele name Number of individuals Length (bp) GenBank accession number/nucleotide sequence (5′–3′)

Mibe-DRB*001 33 163 LN610539

Mibe-DRB*002 27 163 LN610540

Mibe-DRB*003 25 163 LN610541

Mibe-DRB*004 21 163 LN610542

Mibe-DRB*005 17 163 LN610543

Mibe-DRB*006 11 163 LN610544

Mibe-DRB*007 7 163 LN610545

Mibe-DRB*008 6 163 LN610546

Mibe-DRB*009 6 163 LN610547

Mibe-DRB*010 6 163 LN610548

Mibe-DRB*011 5 163 LN610549

Mibe-DRB*012 5 163 LN610550

Mibe-DRB*013 5 163 LN610551

Mibe-DRB*014 4 163 LN610552

Mibe-DRB*015 4 163 LN610553

Mibe-DRB*016 2 163 LN610554

Mibe-DRB*U017 1 163 CAGCGGGTGCGGCTCCTGGTGAGAGGCATCTACAACCG
CGAGGAGTTCCTGCGCTACGACAGCGACGTGG

GCAAGTACCGGGCGGTGACGGAGCTGGGCCGGCCG
GACGCCGAGTCCTTGAACCGCCAGCAGGACCACCT

GGAGCAGAGGCGGGCCGCGGTGG

Mibe-DQB*001 25 163 LN610555

Mibe-DQB*002 20 163 LN610556

Mibe-DQB*003 19 163 LN610557

Mibe-DQB*004 18 163 LN610558

Mibe-DQB*005 17 169 LN610559

Mibe-DQB*006 16 169 LN610560

Mibe-DQB*007 13 163 LN610561

Mibe-DQB*008 11 169 LN610562

Mibe-DQB*009 7 163 LN610563

Mibe-DQB*010 6 163 LN610564

Mibe-DQB*011 6 169 LN610565

Mibe-DQB*012 5 163 LN610566

Mibe-DQB*013 5 163 LN610567

Mibe-DQB*014 5 163 LN610568

Mibe-DQB*015 3 169 LN610569
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