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Abstract

Background: For heterogeneous tissues, such as blood, measurements of gene expression are confounded by
relative proportions of cell types involved. Conclusions have to rely on estimation of gene expression signals for
homogeneous cell populations, e.g. by applying micro-dissection, fluorescence activated cell sorting, or in-silico
deconfounding. We studied feasibility and validity of a non-negative matrix decomposition algorithm using
experimental gene expression data for blood and sorted cells from the same donor samples. Our objective was to
optimize the algorithm regarding detection of differentially expressed genes and to enable its use for classification
in the difficult scenario of reversely regulated genes. This would be of importance for the identification of
candidate biomarkers in heterogeneous tissues.

Results: Experimental data and simulation studies involving noise parameters estimated from these data revealed
that for valid detection of differential gene expression, quantile normalization and use of non-log data are optimal.
We demonstrate the feasibility of predicting proportions of constituting cell types from gene expression data of
single samples, as a prerequisite for a deconfounding-based classification approach.
Classification cross-validation errors with and without using deconfounding results are reported as well as sample-
size dependencies. Implementation of the algorithm, simulation and analysis scripts are available.

Conclusions: The deconfounding algorithm without decorrelation using quantile normalization on non-log data is
proposed for biomarkers that are difficult to detect, and for cases where confounding by varying proportions of
cell types is the suspected reason. In this case, a deconfounding ranking approach can be used as a powerful
alternative to, or complement of, other statistical learning approaches to define candidate biomarkers for molecular
diagnosis and prediction in biomedicine, in realistically noisy conditions and with moderate sample sizes.

Background
For studies involving heterogeneous tissue samples,
detection of differential gene expression from molecular
profiles, as well as identification of biomarkers is a pro-
blem of validity: molecular profile variation and changes
in cell type proportions between tissue samples are con-
founded [1-4]. However, heterogeneous tissues are fre-
quently used (e.g. blood, tumor) and further confounded
in pathological situations where diseased tissue is fre-
quently infiltrated by immune cell populations. The

most widely used material is blood, which is frequently
sampled for diagnostic or prognostic purposes. Blood is
frequently used as surrogate tissue in many clinical stu-
dies for reasons of accessibility, ease of storage and pro-
cessing. Valid biomarkers from blood are thus often
targeted [2]. Regarding tissue heterogeneity, however,
blood is an extreme example since inter-individual dif-
ferences and disease-specific changes, amongst other
reasons, lead to high variability in composition ([5,6], cf.
our data, figure 1).
Cell sorting of blood cells, or - in the case of solid tis-

sues - micro-dissection [7], depend on sophisticated
equipment. Hence, biomarker studies under field condi-
tions, especially in resource-poor countries, have to rely
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on molecular profiling from whole blood samples. Ide-
ally, biomarkers with prominent and clear signals can be
used which remain detectable in spite of varying cell
type populations. However, biomarker signals for more
subtle differences are most likely not detectable due to
confounding tissue compositions. Figure 2 gives an over-
view over possible scenarios:
Figure 2A, shows the non-problematic case for homo-

geneous tissue (e.g. culture of homogeneous cell popula-
tions under synchronizing conditions) without any
confounding or interpretation problems (left), or tissue
with fixed cell type proportions. For these cases, there is
no confounding problem [3].
Figure 2B, refers to two cases for which in-silico

approaches exist for deconfounding: The simple case
(figure 2B, left) refers to a situation in which a gene of
interest is exclusively expressed in a certain cell type
(one amongst others, in varying proportions), and the

proportions of this cell type in the study samples have
been determined.
Such cell type-specific gene is differentially expressed

if the interaction term in the linear model

y p g pi i i i       0 1 2 (1)

is significant. Here, yi depicts the log-ratio of gene
expression signals for a specific gene in a common
reference design (sample i), but it could also be a vector
of log-intensities for one-color chips after normalization.
b0 is the overall mean for this gene, representing the
background signal (without any cells of the cell type
exclusively expressing this gene). The binary factor g
represents patient (g = 1) or control status (if g = 0) for
the respective sample, and pi denotes the proportion of
the immune cell population in question as confounding
factor. The variable g × p indicates the interaction effect
of study group and immune cell proportion. Finally, εi
denotes the residual for sample i. An important
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Figure 1 Experimentally defined proportions of different blood cell types. Individual proportions of PBMCs are depicted (CD3+ cells, CD14+

cells, and Others) for groups of TB patients and TST+ individuals. Cell type proportions are highly variable, even between individuals within a
group.
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assumption for this modeling approach is that single-cell
gene expression is independent of cell type proportions.
For an example of this type of analysis see the contribu-
tion by Jacobsen et al. (2006) [1]. Similar problems and
their solutions were presented by Kriete and Boyce
(2005) [8] combining tissue composition data and gene
expression data, as well as by Gosh (2004) [9], for the
latter without estimates of the cell type proportions. If
gene expression is no longer restricted to a specific cell
type (as in figure 2B, right), we are dealing with the

problematic case for which it is harder to disentangle
influences of single-cell gene expression and variation in
cell type proportions. A few similar approaches exist
dealing with such a case, all employing an iterative opti-
mization of the decomposition as given by equation 2:

X SC . (2)

Here, X denotes the classical gene expression matrix
(genes by samples). S, the signature matrix, gives the
cell type specific gene expression profiles (genes by cell

Figure 2 Cases of gene expression in tissue context. (A) Non-problematic cases; (B) Confounding of cell type proportions and cell-type
specific gene expression: simple and problematic case, deconfounding is possible; (C) worst case: gene expression depends on cell type
proportion, deconfounding not possible.
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types), and C, the concentration matrix, gives cell type
proportions over samples (cell types by samples).
An alternative formulation is given in equation 3 for

the mixture of two cell types (with cell type specific
expression signatures s1,i and s2,i for gene i):

x c s c sk
i

k i k i  1 21, ,( ) (3)

where xi
k denotes the expression value of the ith gene

in the kth heterogeneous sample and 0 ≤ ck ≤ 1 denotes
the fraction of the first cell type in the kth mixture;
equivalent expressions are used in [4,10,11]. Venet et al.
(2001) [10] were first to study this approach. In their
contribution they made use of a de-correlation
approach, which tends to improve the reconstruction of
simulated cell type specific gene expression profiles.
Experimental data were also used but without the possi-
bility to validate their deconfounding results in a
straight forward way. Lu et al. (2003) [11] described a
similar approach for analyzing yeast cell cycle expression
patterns. Likewise, Stuart et al. [12] investigated prostate
tumor tissue. Lahdesmaki et al. (2005) [4] for the first
time introduced an approach, which also estimated the
appropriate numbers of cell types for deconfounding
analysis.
However, none of these prior approaches systemati-

cally studied:

- reconstruction of cell type specific gene expression
profiles validated with experimental data;
- sample size effects;
- realistic simulation parameter settings derived from
appropriate experimental data, with noise conditions
as in a typical clinical study;
- the power of detection of differential gene expres-
sion in comparison with a classical approach;
- how to use a deconfounding approach in a classifi-
cation task.

These are the core objectives which our study aims to
contribute.
The experimental basis includes an experimental gene

expression data set of 40 Agilent two-color arrays for
two groups of a field study: tuberculosis patients
(denoted TB cases) and healthy household contacts with
a positive tuberculin skin test (denoted TST+, healthy
controls).This dataset is part of the Grand Challenges in
Global Health Project: Grant Number 37772, “Biomar-
kers of protective immunity against Tuberculosis in the
context of HIV/AIDS in Africa” (funded by the Bill &
Melinda Gates Foundation through the Grand Chal-
lenges in Global Health Initiative). From each of the
enrolled individuals, RNA was prepared from a whole-
blood sample. From the same samples, cells with active

gene expression, peripheral blood mononuclear cells
(PBMC), were isolated and cell type proportions deter-
mined. CD3+-cells (T-lymphocytes) were enriched in
these samples and collected for RNA preparation (for
more details on the experimental dataset see Methods).
Resulting data contain proportion and cell type specific
gene expression profile for the most prominent RNA
containing cell type in blood, as well as the whole blood
gene expression signal of the same samples. This design
constitutes a valuable validation dataset for testing and
further developing an algorithm for deconfounding, as
estimated cell type specific gene expression profiles can
be compared to those of FACS-sorted cells.
In our contribution, we study applicability and optimi-

zation of the deconfounding approach for detection of
differential regulation of features in a univariate
approach, as well as an approach using deconfounding
for the classification task, towards identification of bio-
marker panels in heterogeneous tissues.

Methods
Experimental data
Gene expression data are part of the Grand Challenges
in Global Health Project: Grant Number 37772, “Bio-
markers of protective immunity against Tuberculosis in
the context of HIV/AIDS in Africa” (funded by the Bill
& Melinda Gates Foundation through the Grand Chal-
lenges in Global Health Initiative; http://www.biomar-
kers-for-tb.net/. PBMC from 40 TB cases and from 40
healthy household contact controls were extracted and
analyzed by flow cytometry for proportions of CD3+ T-
lymphocytes and CD14+mononuclear phagocytes as
described before [1]. All donors gave informed consent.
This study was approved by local ethics committees in
Stellenbosch (South Africa) (N05/11/187) and Berlin
(EA 10 1/176/07, Germany).
Signals of gene expression in whole blood as well as in

CD3+ cells, for the Human Whole Genome Oligo 44K
Agilent arrays (GE2_44k_1005) were measured accord-
ing to manufacturer’s protocols. The microarray design
was an independent swop design as recommended by
Landgrebe et al. [13]: 50% of each group ("TB”, “TST+”,
“TST-”) were labelled with Cy3, the other half using
Cy5. Pairs for hybridization on an array were chosen to
match regarding age and gender. For validation of the
deconfounding algorithm we used CD3+ proportions.
CD3+ cells sorted by fluorescence-activated cell sorting
(FACS) were subjected to RNA extraction and microar-
ray measurements of gene expression following the
same procedure as for the whole blood samples. More
details about the observational field study as well as the
gene expression dataset will be published separately (see
http://www.biomarkers-for-tb.net/publications).
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Gene expression data were normalized using R-pack-
age limma [14]: background correction using the
method normexp [15], lowess normalization was applied
for each array (within array normalisation), quantile nor-
malisation on the set of all arrays (between array nor-
malisation) as recommended [16]. As proposed by [17],
gene expression intensities for both groups were
obtained as in Equations 4 and 5 from re-parameterizing
the normalized log-ratios (M) and mean log-intensities
(A) resulting from the limma analysis.

M I I A I ITB control TB control   log log (log log )
1
2

(4)

log logI A M I A MTB control   1
2

1
2

(5)

Summarizing, for each of the 40 TB cases and the 40
healthy household contact controls we were able to ana-
lyze gene expression data of whole blood as well as for
the sorted CD3+ cells of the same samples together with
their FACS-measured cell type proportions for the CD3
+ cell population.
Deconfounding algorithm: implementation and
enhancements
The basis of our deconfounding algorithm was imple-
mented as proposed by Venet et al. (2001) [10] and Lah-
desmaki et al. (2005) [4] using R [18]:

input X and n
normalize columns of X (either centre,
or by quantile normalization)
generate start values for S and C
apply constraints to S and C (see below)
(*) fix S, calculate C using lsqnonneg-
algorithm
apply constraints for S
fix C, calculate S using lsqnonneg-
algorithm
apply constraints for C
if | X - SC | < a or number iterations > b
then EXIT and report S and C
else continue at (*)

where X is the gene expression matrix measured from
heterogeneous tissue (rows: genes, columns: samples), S
and C as in equation 2, iteration exit criteria were set a
= 0.1 and b = 100. The Least squares non-negative
matrix factorization algorithm is implemented as in the
MATLAB function lsqnonneg [19]. The constraints are:

1. S non-negative and normalized (either centered,
or by quantile normalization [16])
2. 0 ≤ cij ≤ 1 for all elements of C (cell type i,
sample j)

3. ∑i cij = 1 for all samples j (i.e. cell type propor-
tions sum to 100%)

Our implementation is available as an R-package and
has additional options for using quantile normalization
instead of global normalization proposed previously
[10]. Moreover, it is possible to run the deconfounding
on log-values of the normalized intensities or on non-
log data. Finally, our implementation does not apply the
de-correlation proposed by Venet et al. [10].
To assign the right cell type for each of the estimated

profiles, our implementation relies on a majority count
decision involving the estimated gene expression profiles
from nmarker = 9 markers. Five of these markers are con-
sidered to be expressed exclusively for a specific cell
type (positive marker genes) and the remaining four
exclusively not in this cell type (negative marker genes).
Marker genes were chosen according to a priori molecu-
lar immunological knowledge. For our experimental
dataset we used CD3D, CD3E, CD3G, CD2 and CD7 as
positive markers, and CD19, FCGR1A, CD14 and
MARCO as negative markers for the CD3+ T cells.
Simulated data
Cell type specific gene expression profiles (columns of
the signature matrix S) were simulated according to a
gamma distribution such that expectation value and var-
iance were those of the experimental data (shape a =
12.5 and scale b = 0.65):

I a bgene ~ ( , ) (6)

As by Venet et al. [10], biological variance was mod-
eled as multiplicative error term �, technical variance as
additive error term �. For our experimental data, varia-
tion was found to increase with mean signal intensities.
Therefore, we decided to model a constant coefficient of
variation instead of standard deviation:

X Igene gene   ε (7)

where h = 0.17 and � ~ N(0, c · Igene), using c = 0.1 as
estimated from our experimental data.
Gene expression values for negative marker genes had

expression Xmarker, neg = 6.0, positive marker genes had
Xmarker, pos = 12.0 in the expressing cell type - as
observed for the marker genes in our experimental
study. Cell type proportions, Csim, were drawn from the
uniform distribution between cell type specific maxi-
mum and minimum values as in our experimental flow
cytometry data. The simulated gene expression matrix,
Xsim, was calculated from simulated cell type-specific
gene expression profiles, Ssim, and simulated cell type
proportions, Csim, corresponding to equation 2:
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X S Csim sim sim (8)

To investigate the algorithm’s capabilities regarding
detection of differential expression of single features and
for classification, two groups of gene expression profiles
were simulated, e.g. corresponding to TB patients and
TST+ controls in our experimental data. We simulated
nsample = 100 individuals in each group. For each gene
expression profile ngenes ∈ {1000, 10000} genes were
considered, with nmarkers = 10 and ndiff ∈ {20, 600} dif-
ferentially expressed biomarkers.
Differential expression was simulated by adding Δdiff ∈

1, 2, 5} to the expression values of the biomarker genes
in the first cell type. Figure 3 illustrates the generation
of simulated profiles.
Power study: valid biomarkers with and without
deconfounding
We simulated a gene expression experiment with sam-
ples mixed out of two cell types (CD3 and other) for
10,000 genes, where 600 genes were differentially
expressed. For the differentially expressed genes we
simulated all eight possible combinations of NEUTRAL,
UP and DOWN. Sample sizes of the two groups under
comparison (alike TB and TST+ healthy control) varied
from nsamples ∈ {4, 10, 20, 40, 80, 120}. Simulated gene
expression data were analyzed as the experimental data.
As for the latter we were able to analyze a simulated
whole blood sample (mixture of the two cell types) as
well as the two cell type-specific gene expression profiles

after deconfounding. Simulated whole blood gene
expression data were analyzed using the t-test, ranking
candidates for differential expression using p-values and
- to enable a direct comparison - considering the 100
top candidates as positive candidates for differential
expression. The cell type-specific gene expression pro-
files (columns of the signature matrix Ŝ ) estimated
from deconfounding were ranked using absolute log-
fold-change values. Also here the 100 top candidates
were chosen.
Classification in the case of reversely regulated
differentially expressed biomarkers
The worst-case scenario for biomarker detection in het-
erogeneous tissues arises when cell types involved
express differentially regulated biomarkers in opposite
directions. In this case, in the tissue RNA isolate, signals
for differential expression likely cancel each other and
hamper detection of respective biomarkers markedly. To
identify a possible exit strategy, we conducted a simula-
tion study for this worst-case scenario, again considering
noise values estimated from the experimental data in
this study.
To exemplify the worst-case classification task, we

simulated differential gene expression as above, but also
subtracted the same value from the expression values of
the second cell type. This way, for all cells in the mix-
ture averaged over all samples, no differential expression
is expected, while for the single cell types it is more or
less evident. Gene expression profiles for new samples,
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for validation of the trained classifiers in the classifica-
tion scenario, were generated using the identical signa-
ture matrices, Ssim, as for the training step, but with
new values for the concentration matrices as well as for
the noise term realizations.
Canonical classification approach
For feature selection, t-tests were used to identify bio-
marker candidates from the simulated heterogeneous
tissue gene expression data: The top ncand � {10, 20}
were chosen to train a linear discriminant function as
classificator. Classification errors in a validation (500
new cases simulated) for this classical classification
approach were then compared to a deconfounding rank-
ing approach, which is described in the following.
Deconfounding ranking approach
For the training dataset, a deconfounding analysis was
run and ncand candidates top ranked for differential
expression were picked from gene-wise mean absolute
differences between the corresponding columns of the
estimated signature matrices, Ŝ , for the two groups. In
addition, using the simulated whole blood expression
data, Xsim, from the training dataset, a random forest
predictor was trained to estimate the cell type propor-
tions Ĉ , resulting from the deconfounding algorithm
run from the same training-data [20,21].
Input to this statistical learning step were the gene

expression data in Xsim for the nmarkers = 20 marker
genes. For each new individual during the validation
part of the study, cell type proportions were estimated
from the simulated whole blood gene expression profile
using the trained random forest machine. Deconfound-
ing results Ŝ of the training dataset for the two groups
A and B were then multiplied with the estimated cell
type proportions for the new individual, to result in
group-specific gene expression profiles ˆ .,x A

sample and
with ˆ .,x B

sample with the cell type proportions of the sam-
ple in question. The actual gene expression signals of
the sample at the chosen ncand biomarker loci were then
compared to these group-specific gene expression
matrices and the following summary score computed:

 group gene, new individual gene, new individual
gro abs x x( uup

gene

cand

)



1

n

(9)

Classification was based on choosing the group for
which ggroup was minimal.
Implementation and availability
R-package deconf implementing the deconfounding
algorithm and options, R-scripts for data simulation,
data analysis and an anonymized part of the experimen-
tal dataset is available as additional file 1 (Windows R-
package) and additional file 2 (tar-gz archive).

Results
As the experimental data offered gene expression pro-
files for whole blood, i.e. a heterogeneous tissue which
is a mixture of several cell types, and in addition the
gene expression profiles from CD3+ cells of the same
samples, and the respective CD3+ proportions (deter-
mined by FACS), we were able to use this information
as a basis for a validation study for the proposed decon-
founding algorithm.
In addition, to methodologically optimize the decon-

founding algorithm as well as to investigate its usability
to detect differentially expressed genes and biomarkers
usable for classification of new patients (with only whole
blood expression profiles measured) - we had to rely on
simulation studies.
Summarizing, our study was designed to answer four

questions. For which data scale and algorithm settings
do we achieve:

- The best estimate of cell type-specific expression
profiles (columns of signature matrix)? Data basis:
experimental data.
- The best marker-based identification of recon-
structed cell type-specific gene expression profiles
(columns of Ŝ )? Data basis: simulation study (para-
meters estimated from experimental data).
- The largest power to detect differential expression?
Data basis: simulation study (parameters estimated
from experimental data).
- The smallest prediction errors for the classification
task? Data basis: simulation study (parameters esti-
mated from experimental data).

Reconstruction of cell type-specific gene expression
profiles and cell type proportions in experimental data
The deconfounding algorithm was applied to the whole
blood gene expression matrices for both groups of indi-
viduals (TB and TST+) both using the quantile normali-
zation as well as global mean normalization approach
for log- and non-log-intensities. Numbers of cell types
was set to nCT = 2. Deconfounding results - estimated
cell type-specific gene expression profiles Ŝ as well as
cell type proportions Ĉ - could be compared to
the actual experimental data (see figure 4, figure 5 and
table 1):
Figure 4 displays mean values of the measured CD3+

expression profile in TB patients against both estimated
columns of the signature matrix Ŝ .
For the displayed example in figure 4, non-log data

were quantile normalized: Experimental data show con-
siderable variation when compared to the estimates after
deconfounding. As expected, cell type 1 is evidently bet-
ter correlated with the experimental CD3+ profile than
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cell type 2. The correlation is best for large expression
values.
Also, referring to figure 5, even though there is lower

correlation between experimental and estimated cell
type proportions, the indicated regression lines in the
scatter plots for experimental and estimated proportions
show the correct tendencies for the respective cell types.
Table 1 (first row) depicts correlations of mean mea-

sured profiles with the estimates from deconfounding
results for the comparison between the four methodolo-
gical algorithmic alternatives.
Deconfounding quality as function of sample size
(simulation study)
To investigate the influence of sample size on the qual-
ity of deconfounding results, we had to rely on simula-
tion studies which were aimed at mirroring
experimental data distribution and noise as realistically
as possible. Figure 6 (middle panel) shows the simula-
tion results for nsample = 20, which approximates the
sample size for the GC6 experimental data (cf. figure 4)

- and also a typical value for such type of clinical study
involving high-throughput analyses. The effect of sample
size is clearly distinguishable for simulation results using
nsample = 4 (figure 6, left) and nsample = 120 (figure 6,
right) respectively.
Cell type assignment using markers (simulation study)
The deconfounding algorithm itself does not assign a
cell type to the estimated cell type specific expression
profiles (columns of Ŝ ). Therefore, to find out in which
of the two possible orders the two estimated cell type
profiles (CD3+ and others) reside, one has to rely on
expression signals of cell type specific markers. Regard-
ing the analysis of the experimental data, such markers
were chosen based on a priori immunological knowl-
edge. In our simulation studies, we simulated 5-10 posi-
tive CD3+ marker genes, which were expressed at high
levels (simulated level for Xmarker, CD3 = 12), whereas
these marker genes showed a low mean expression in
the alternative cell type (simulated level for Xmarker, other

= 6). These expression levels were used as observed for

Table 1 Profile reconstruction versus differential gene expression: alternatives for deconfounding algorithm settings

Optimal deconfounding algorithm settings

log/quant log/not quant not log/quant not log/not quant

cor reconstr 0.86 0.85 0.73 0.68

DGE power 0.47 0.46 70 0.62

Correlations of measured and estimated cell type-specific gene expression profiles ("cor reconstr.”) as well as power for detection of differential expression ("DGE
power”, see text) – for all four combinations of using logs or not, applying quantile or global mean normalization, respectively, for the deconfounding algorithm.

−4 −2 0 2 4

−1

0

1

2

3

4

−1 0 1 2 3

−1

0

1

2

3

4

1

8

19

37

55

73

109

145

181

217

721

Counts

cell type 1 cell type 2

m
ea

su
re

d 
C

D
3 

pr
of

ile

estimated CD3 profile estimated CD3 profile
Figure 4 Validation of estimated gene expression profiles. Validation of gene expression profile estimates with experimental data from FACS
sorted CD3+cells: Left panel: measured gene expression intensities for CD3+cells versus intensities estimated for cell type 1. Right panel:
measured gene expression intensities for CD3+cells versus intensities estimated for cell type 2.

Repsilber et al. BMC Bioinformatics 2010, 11:27
http://www.biomedcentral.com/1471-2105/11/27

Page 8 of 15



45 55 65

30
50

70

ct1(2)/CD3 (TB)

estimated ct1 [%]

or
ig

in
 C

D
3 

[%
]

35 45 55

30
50

70

ct2(2)/CD3 (TB)

estimated ct2 [%]

or
ig

in
 C

D
3 

[%
]

45 55 65

20
40

60

ct1(2)/Other (TB)

estimated ct1 [%]

or
ig

in
 O

th
er

 [%
]

35 45 55

20
40

60

ct2(2)/Other (TB)

estimated ct2 [%]

or
ig

in
 O

th
er

 [%
]

A B

DC

Figure 5 Validation of estimated cell type proportions. Validation of cell type proportion estimates with experimental data (FACS counts for
CD3+cells): A: measured proportion of CD3+ cells versus estimated proportions for cell type 1. B: measured proportion of CD3+ cells versus
estimated proportions for cell type 2. C: measured proportion of non-CD3+cells versus estimated proportions for cell type 1. D: measured
proportion of non-CD3+cells versus estimated proportions for cell type 2. Linear regression lines are displayed in red.

4 samples 20 samples 120 samples

estimated CD3 profile (log2, quant)

or
ig

in
al

 C
D

3 
pr

of
ile

 (
lo

g2
)

Figure 6 Profile estimates for simulated data. Gene expression profile estimates for simulated data, realistic noise, quantile normalisation, and
sample sizes of 4 (left panel), 20 (middle panel), or 120 samples (right panel).

Repsilber et al. BMC Bioinformatics 2010, 11:27
http://www.biomedcentral.com/1471-2105/11/27

Page 9 of 15



the experimental data. Another group of marker genes
was simulated in the reverse manner. Figure 7 shows
the distributions of estimated marker gene expression
levels from simulated data after deconfounding employ-
ing global mean (A) or quantile normalization (B). Here,
use of the robust quantile normalization was rewarding
for this critical step: Lack of a possibility to assign the
right cell types thwarts the analysis as a whole. It is also
evident, that marker gene expression levels were esti-
mated mostly correctly regarding relative values in both
cell types, whereas absolute gene expression levels were
scaled down in the estimates. However, to be able to
use these cell type specific estimated marker gene
expression levels to assign the right cell types it is only
necessary that positive markers have top expression
levels in the cell type exclusively expressing them.
Valid detection of cell type-specific differential gene
expression (simulation study)
Because we want to study the use of deconfounding for
biomarker discovery, in our power-study we compared
the t-test and our deconfounding approach regarding
their power to detect differential gene expression (candi-
date biomarkers). Figure 8 shows the central results: t-
test and deconfounding approach show comparable
results for higher sample sizes (40 ≤ nsample ≤ 120) and

cases A and B, for which differential gene expression is
either in the same direction in both cell-types or differ-
ential in one cell type only. However, for small sample
sizes in all cases, and especially also for large sample
sizes in figure 8C, the deconfounding ranking approach
detects more of the true differentially expressed genes
than the t-test. As it is for this worst-case scenario (fig-
ure 8C), where differentially expressed signals of the cell
types involved cancel each other, we aimed at assessing
application of the deconfounding ranking approach for
the classification objective for this case.
As power for detection of differential expression

(“DGE power”) we define the proportion of truly differ-
entially expressed genes in the 100 top-ranked 100 can-
didates. Table 1 (second row) depicts this power for
detection of differential expression for four algorithmic
alternatives. Choosing quantile normalization for inten-
sity values and using non-log values gives optimal
results.
Applying the deconfounding approach for classification
(simulation study)
As an important objective is to find biomarkers from
the estimated cell type specific gene expression signa-
tures resulting from the deconfounding, we have to
show how such biomarkers could be applied to a new
patient’s whole blood expression dataset. The decon-
founding algorithm results in estimates for the signature
matrix and the concentration matrix for a given group
of samples. In our case, the procedure uses simulated
gene expression profiles of 40 individuals (per study
group) to estimate two cell type-specific gene expression
profiles (CD3+ and NotCD3+). It is, however, not possi-
ble to use a single individual’s profile for deconfounding,
as for a single case there is no information available
about how a change in cell type proportions influences
measured gene expression signals. To enable the use of
the deconfounding results for classification of a new
individual, we have to either measure or estimate a sin-
gle individual’s cell type proportions. To estimate cell
type proportions from a single whole blood expression
profile we employed a random forest machine to learn
to predict cell type proportions from simulated whole
blood gene expression data using the training dataset
and the deconfounding estimates of Ĉ . For a new indi-
vidual, this trained random forest was then used to esti-
mate cell type proportions.
These were multiplied to the group-specific signature

matrices estimated by deconfounding from the two
groups in the training data. The resulting group-specific
gene expression matrices - based on cell type propor-
tions as in the new individual - were used in a majority
votes comparison approach and the individual classified
accordingly.
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We show that this deconfounding ranking approach
significantly improves classification results regarding
prediction error rates, if the differential expression of a
biomarker panel relies on genes that are regulated in
the opposite direction in the cell types involved. Figure
9 shows distributions of classification errors in 100 vali-
dation runs. Clearly, the t-test-LDA approach is not bet-
ter than mere guessing, whereas -dependent on noise
and numbers of differentially expressed genes - the
deconfounding ranking approach correctly classifies
most of the simulated cases.
Predicting cell type proportions in a single whole blood
profile in experimental data
We also regressed cell type proportions on marker gene
expression (CD3G and MARCO) in the experimental
whole blood dataset and achieved a correlation of 34%
between leave-one-out samples and their estimated pro-
portions of CD3+ cells. Figure 10 shows a scatterplot of
the leave-one-out samples and their estimated propor-
tions, as well as the distribution of correlations with 200
permutated values for the cell type proportions. Predic-
tion is significant, and its precision comparable to what
the deconfounding is able to reproduce in the simulated
data (compare figure 5).

Discussion
Gene expression in heterogeneous tissues thwarts valid
interpretation of results, detection of differential
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expression, especially cell type specific regulation in
opposite directions, and hence represents a major obsta-
cle towards definition of biomarkers in difficult cases.
We propose a modified version of an in-silico decon-
founding ranking approach which estimates cell type
specific gene expression profiles from tissue expression
data, even under realistic noisy conditions. We were
able to validate these results with experimental data,
both from heterogeneous tissue (peripheral blood) and
sorted cells. In a realistically simulated example we
show how deconfounding ranking can help in detecting
differential gene expression in heterogeneous tissues.
We developed an approach to use deconfounding results
for the task of finding biomarker candidates for classifi-
cation of a new patient on the basis of his whole blood
gene expression profile and information about his cell
type proportions (either predicted or measured): This
way deconfounding ranking can propose biomarker sig-
natures even in the worst-case scenario where biomar-
kers are regulated in opposite directions in different
tissue cell-types under investigation. The resulting tissue
specific biomarkers can be considered as an initial step
for the identification of candidate biomarkers for classi-
fication. Clearly, any candidate molecular biomarker has
to be tested against existing markers, especially clinical
markers, and demonstrate a diagnostic or prognostic
gain. However, in our contribution we targeted the prin-
cipal problem of detection of molecular biomarkers
from heterogeneous tissue. Our experimental example

and the simulation studies demonstrate the problem of
confounding cell type proportions and a solution
approach using the in-silico deconfounding approach.
Our results show that by estimating cell type propor-
tions and cell type specific gene expression patterns, the
search for biomarker candidates for classification can be
significantly enhanced.
Significance and applicability of the proposed
deconfounding ranking approach
For the purpose of biomarker detection, homogeneous
cell populations are not generally a prerequisite as there
may be markers so clear that their signal can be read in
spite of the considerable variation introduced by tissue
heterogeneity. This is mostly a desired result. However,
especially in experiments where biomarkers are sought
for cases which are not easily separable otherwise (e.g.
prospective studies), they might be detected better after
taking tissue heterogeneity into account - with our work
and manuscript we want to propose an approach for
such cases.
Others have implemented and studied principles of in-

silico deconfounding [4,8-12,22], but our study for the
first time combines the following results:

- validates in-silico deconfounding results using
experimental data of a molecular field study;
- implements a realistic simulation study with
noise parameters estimated from the experimental
dataset;
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- systematically investigates the influence of sample
size on quality of estimated cell type specific gene
expression profiles;
- compares the power to detect differential expres-
sion (i.e. univariate biomarker candidates) with a
classical t-test approach;
- optimizes the deconfounding algorithm employing
a quantile normalization step as well as marker-
assisted cell type profile recognition under realistic
noise conditions;
- proposes a classification approach using the results
of a deconfounding ranking analysis and compares
these results with a classical t-test-LDA approach for
the worst-case scenario of biomarkers regulated in
opposite directions.

Our results show that, even under noisy, realistic con-
ditions of a molecular field study - involving field-col-
lected whole blood samples and considerable individual
variations between enrolled individuals -the deconfound-
ing ranking approach using non-log, quantile-normal-
ized gene expression data from whole-blood RNA can
facilitate identification of valid differential gene expres-
sion signals. These biomarker candidates can then be
used in a classification approach which - for the case
where biomarkers are regulated in opposite directions in
different cell-types - is far more powerful than canonical
discriminant analysis. In the applied clinical situation,
our approach will of course be not more than an initial
step for the identification of candidate biomarkers for
classification - which then would be entered into further
validation studies before applicable for cost efficient
clinical routine diagnostics.
Methodological constraints and requirements
A critical prerequisite of our deconfounding approach is
that, in principle, we assume independence of a cell
type-specific gene expression profile and the proportion
of the respective cell type within the heterogeneous tis-
sue. Figure 2C, illustrates the unfavorable case for which
gene expression on the single-cell level is regulated as a
function of the expressing cell-type’s proportion in the
tissue. It is conceivable that such a regulation is indeed
real for some genes - and this would not only blur esti-
mates of cell type-specific gene expression profiles, but
also produce false estimates for such specific genes. As
shown in our validation study, however, in general the
independence assumption does not lead to false results
for the estimated profile as a whole. Thus, biosignature
detection will still be enhanced by use of deconfounding
ranking even if the independence assumption for single-
cell gene expression and cell type proportion does not
hold in every respect.
Some methodological details of our study remain an

illustrative approach, and further investigations are thus

called for. The normalization procedure has apparent
influence on the quality of cell specific profile recon-
struction as well as on the power of detection of differ-
ential expression. Our decision to use quantile
normalization was based on the finding that using the
original overall mean normalization by Venet et al. [10]
led to poor recognition of cell-types using marker gene
expression signals. Single outlier measurements could
significantly shift the whole profile, thus thwarting cell-
type identification. The quantile normalization approach
resulted in a robust, more reliable marker-assisted cell
type recognition. An improvement of the algorithm’s
capability to reconstruct cell type-specific gene expres-
sion profiles could be obtained if the starting profiles for
the iterative optimization were already seeded with an
approximate guess of what the specific cell type profile
may look like. Such information could be provided by
FACS analysis, or by expression profiles available in the
literature (see for example the work of Watkins et al.,
2009 [23]). Caution, however, is necessary to avoid
inadequate influences on study group-specific differ-
ences. Also, averaging multiple deconfounding optimiza-
tion runs could lead to a stabilizing effect for the
resulting predicted cell-type profiles. Here as well,
detailed studies are necessary.
Estimates of cell type-specific gene expression profiles

were optimal given that deconfounding was run on log-
intensities, whereas detection of differential expression
was optimal using non-log input values. We may specu-
late about the reasons for this difference: Possibly, non-
log inputs filter out or down-weight small expression
values - which in turn often play a minor role in differ-
ential expression.
For the simulated worst-case scenarios, i.e. genes

which are reciprocally regulated in the participating cell
types, the deconfounding ranking approach produced
promising results - both for achieving valid estimates of
differential gene expression and for the classification
task. However, the existing implementation could be
improved by implementing a bootstrap test for differen-
tial expression, such that not only a ranking of candi-
dates for differential expression, but also an estimate of
the number of differentially expressed features becomes
feasible. A first approach could be to draw bootstrap
samples and compute 95% confidence intervals as quan-
tiles from the bootstrap distribution of the resulting
bootstrap estimates for Ŝb (b denoting a bootstrap
index). Such a bootstrap approach could also enable
analysis of gene set enrichment with currently available
methods (e.g. [24,25]).
Outlook
The proposed deconfounding ranking approach to clas-
sification has to be considered as a first heuristic
approach. Its performance sufficiently demonstrates
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superiority over approaches that do not take into
account confounding with cell-type proportions (figure
9). However, a multivariate model of gene expression
patterns (biosignatures) is still missing. It would be
desirable to arrive at an analysis interface enabling the
use of the plethora of available statistical learning meth-
ods. Also, the classification approach is dependent on
either measurements or estimates of cell type propor-
tions in the sample that is to be classified. If the field of
application was gene expression signatures in blood, it is
certainly conceivable that a cell type proportions profile
is measured, as the necessary laboratory equipment is
now available in labs all over the world. However, in
our work we propose to try a regression approach based
on the expression profiles of the marker genes which
are also used to identify the cell type specific expression
signatures after deconfounding. This approach worked
well for our simulation study, figure 10 shows that it
also delivers sufficient results for experimental data -
comparable to what the deconfounding algorithm deli-
vers (compare figure 5). However, there is certainly
room for improvement - as apparently better estimates
of cell type proportions based on single sample whole
blood expression profiles would enable improved classi-
fication performance.
The presence of up- and down-regulated biomarkers

suggest two further possible improvements. First, gene
filtering with regard to absolut expression signals, i.e.
focussing on medium to highly expressed genes may
provide more robust signatures. Second, the identifica-
tion of gene pairs as in the top scoring pair method
[26,27] may be an alternative to the ranking approach
taken in our initial study here - and improve reliability
in the presence of noisy field measurements.
There also exist alternative approaches to the non-

negative matrix factorization approach taken by us and
[4,10]. For example, Ghosh proposes a mixture model
approach [9], and there also exist Bayesian approaches
for this task [22,28]. A comparison of existing methods
for the application with biological data from heteroge-
neous tissues would certainly be an exciting and reward-
ing field of further work. Especially modern Bayesian
methods promise to further improve the results, also
regarding more than two cell types in the heterogeneous
tissue to be resolved.
In our contribution, the deconfounding ranking

approach is applied to gene expression profiles in per-
ipheral blood samples. In principle, it is also applicable
for other molecular profiles from heterogeneous tissues,
e.g. metabolome or proteome profiles.

Conclusions
In heterogeneous tissue samples, molecular profiling is
confounded by variable cell type proportions. If

confounding is severe, as in the important surrogate tis-
sue blood, valid molecular profile measurements are
hampered. If micro-dissection or cell sorting are una-
vailable or too expensive, in-silico deconfounding offers
an alternative. We have demonstrated possible algorith-
mic adjustments and approaches for detection of cell
type-specific differential gene expression and for mole-
cular profile-based classification. Both these objectives
have not been studied previously for approaches of in-
silico deconfounding. The vigor of our study rests in the
use of an experimental validation dataset, which also
served to select appropriate realistic simulation para-
meters to emulate conditions of a molecular field study.

Additional file 1: R-package deconf(Windows) including example
data and script. R-package deconf (Windows version) which
implements the deconfounding algorithm together with options for
normalization, run-time options for the iteration process, and number of
cell-type specific gene expression profiles to be estimated. Also, some
toy examples and part of the experimental dataset are included together
with executable example scripts for demonstration purposes.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
27-S1.ZIP ]

Additional file 2: R-package deconf(tar-gz archive). R-package
deconf (tar-gz archive)
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
27-S2.GZ ]
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