
Mathematisch-Naturwissenschaftliche Fakultät

Chandrashekar Devchand | Jean Nuyts | Gregor Weingart

Matryoshka of Special Democratic Forms

Postprint archived at the Institutional Repository of the Potsdam University in:
Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 841
ISSN 1866-8372
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-429002
DOI https://doi.org/10.25932/publishup-42900

Suggested citation referring to the original publication:
Communications in Mathematical Physics 293 (2010) 545, 545–562  
DOI https://doi.org/10.1007/s00220-009-0939-5
ISSN (print) 0010-3616
ISSN (online) 1432-0916





Digital Object Identifier (DOI) 10.1007/s00220-009-0939-5
Commun. Math. Phys. 293, 545–562 (2010) Communications in

Mathematical
Physics

Matryoshka of Special Democratic Forms

Chandrashekar Devchand1, Jean Nuyts2, Gregor Weingart3

1 Institut für Mathematik der Universität Potsdam, Am Neuen Palais 10,
D-14469 Potsdam, Germany. E-mail: devchand@math.uni-potsdam.de

2 Physique Théorique et Mathématique, Université de Mons-Hainaut,
20 Place du Parc, B-7000 Mons, Belgium. E-mail: jean.nuyts@umh.ac.be

3 Instituto de Matemáticas, Universidad Nacional Autónoma de México,
62210 Cuernavaca, Morelos, Mexico. E-mail: gw@matcuer.unam.mx

Received: 6 January 2009 / Accepted: 3 August 2009
Published online: 2 October 2009 – © The Author(s) 2009. This article is published with open access at
Springerlink.com

Abstract: Special p-forms are forms which have components ϕµ1...µp equal to +1,−1
or 0 in some orthonormal basis. A p-form ϕ ∈ �p

R
d is called democratic if the set of

nonzero components {ϕµ1...µp } is symmetric under the transitive action of a subgroup
of O(d,Z) on the indices {1, . . . , d}. Knowledge of these symmetry groups allows us to
define mappings of special democratic p-forms in d dimensions to special democratic
P-forms in D dimensions for successively higher P ≥ p and D ≥ d. In particular, we
display a remarkable nested structure of special forms including a U(3)-invariant 2-form
in six dimensions, a G2-invariant 3-form in seven dimensions, a Spin(7)-invariant 4-form
in eight dimensions and a special democratic 6-form� in ten dimensions. The latter has
the remarkable property that its contraction with one of five distinct bivectors, yields,
in the orthogonal eight dimensions, the Spin(7)-invariant 4-form. We discuss various
properties of this ten dimensional form.

1. Introduction

Special holonomy plays an important role in field theories. For instance, supersymmetry
often requires that target manifolds have special holonomy. This property is also impor-
tant for Yang-Mills theories. In dimensions greater than four, special holonomy offers
the possibility of constructing solutions of the Yang-Mills equations satisfying the gen-
eralised self-duality equations first introduced for flat Euclidean spaces in [1] (see also
[2–4]);

1
2 Tmnpq Fpq = λFmn, m, n, · · · = 1, . . . , d. (1.1)

Here, Fmn are components of the curvature of a Yang-Mills connection ∇ taking values
in the Lie algebra of the gauge group and Tmnpq are components of a 4-form T . This
4-form acts as an endomorphism on the space of 2-forms. The curvature F restricted to
eigenspaces of T corresponding to nonzero eigenvalues λ satisfy the Yang-Mills equa-
tions ∇m Fmn = 0 in virtue of the Bianchi identities ∇[m Fnp] ≡ 0. Interesting examples
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are the 4-forms invariant under (Sp(n)⊗Sp(1))/Z2, Spin(7) and G2 corresponding to
Yang-Mills equations on quaternionic Kähler and exceptional holonomy manifolds (see
e.g. [5–10]). Further examples of special holonomy structures are the U(n) invariant
Kähler 2-forms in 2n (real) dimensions and the G2 invariant Cayley 3-form in seven
dimensions. It turns out that the latter forms are not only related to each other, but also
to interesting higher rank forms in higher dimensions.

Recall that a constant p-form ϕ in a d-dimensional Euclidean space is a calibration if
for any p-dimensional subspace spanned by a set of orthonormalised vectors e1, . . . , ep,

(ϕ(e1, . . . , ep))
2 ≤ 1 , (1.2)

where equality holds for at least one subspace. Constant p-forms can always be rescaled
to be calibrations. Many of the interesting calibrations which characterise special hol-
onomy manifolds can be presented as special forms, all of whose nonzero components
saturate the bound (1.2) (see Definition 1).

In this article, we wish to highlight relationships between special p-forms in d dimen-
sions and certain special P-forms (P ≥ p) in D dimensions (D ≥ d), governed by
discrete symmetries. Symmetric ways of embedding the d-dimensional space in the
D-dimensional space leads us to a notion of democratic forms. We study examples,
focusing our attention on specially interesting structures in dimensions seven, eight and
ten. A remarkable nested structure, reminiscent of a matryoshka1, emerges in succes-
sively higher dimensions. In particular, this structure provides new examples of self-
dualities.

2. Special Forms, Symmetries and Democracy

We concentrate on what we call special forms. Let (e1, . . . , ed) denote an orthonormal
basis of R

d .

Definition 1. A special p-form ϕ is a p-form ϕ ∈ �p
R

d on d–dimensional
Euclidean space R

d in the orbit under the special orthogonal group SO(d,R) of

ϕ =
∑

1≤µ1<···<µp≤d

ϕµ1···µp eµ1 ∧ eµ2 ∧ · · · ∧ eµp (2.1)

with ϕµ1...µp ∈ {−1, 0, 1}.
Hence, a p-form ϕ is special if there exist d orthonormal basis vectors eµ, µ = 1, . . . , d
such that for any subset of p vectors eµ1 , . . . , eµp we have

ϕµ1...µp = ϕ(eµ1 , . . . , eµp ) ∈ {−1, 0, 1}. (2.2)

Trivial examples are the volume forms in d dimensions, which provide the Hodge-
duality operators mapping p-forms to (d−p)-forms. Further well-known examples are
the G2-invariant Cayley 3-form in seven dimensions defined by the structure constants
of the octonions, and the Spin(7)-invariant 4-forms in eight dimensions (see Sects. 4.3
and 4.4).

The orbits of special p-forms under SO(d,R) or O(d,R) play a major role in the fol-
lowing. Clearly there are only a finite number of orbits of special p-forms parametrised

1 matrëxka, a nested Russian doll.
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by the components ϕµ1...µp ∈ {−1, 0, 1} under these two groups. Note however that
distinct sets of components may give rise to special p-forms in the same orbit, because
the subgroups SO(d,Z) ⊂ SO(d,R) or O(d,Z) ⊂ O(d,R) map the special form
ϕ in Eq. (2.1) into a special form parametrised by different components. These groups
are isomorphic to the semidirect product of the permutation group Sd acting naturally
on d−1 or d copies of Z2, namely SO(d,Z) ∼= Sd � Z

d−1
2 or O(d,Z) ∼= Sd � Z

d
2 .

Thus, special p-forms which appear to be different may nevertheless be in the same
orbit under SO(d,R) or O(d,R). The action of an element (σ, η1, . . . , ηd) ∈ Sd � Z

d
2 ,

on the components of ϕ is given by

ϕi1 ... i p 
→ ηi1 . . . ηi p ϕσ(i1) ... σ (i p), (2.3)

where η2
i = 1 , i = 1, . . . , d. If π(σ) is the parity of σ , the elements of the subgroup

SO(d,Z) ⊂ O(d,Z) are those with η1η2 . . . ηdπ(σ) = 1. The orbit of a special p-form
may always be labeled by a choice of a representative (2.2).

If a p-form ϕ is special, then −ϕ is obviously also special as is its Hodge dual
(d−p)-form �ϕ. For p odd, −ϕ is always in the O(d,R) orbit of ϕ; for instance using
the parity transformation e j 
→ −e j , j = 1, . . . , d. We note that forms which can be
brought to the special form (2.1) by a rescaling are also interesting.

An alternative description of special forms was given in [11]. Oriented sets were
defined as equivalence classes of finite, totally ordered sets up to even permutations,
i.e. every set has two different orientations differing by a “sign”. Thus the oriented
subsets of {1, . . . , d} are in bijective correspondence to oriented coordinate subspaces
R

p ⊂ R
d via s = {µ1, . . . , µp} 
−→ eµ1 ∧ . . . ∧ eµp . A special p-form can be

thought of as a function from the set of oriented subsets {µ1, . . . , µp} ⊂ {1, . . . , d} to
ϕµ1...µp ∈ {−1, 0, 1} with the property that the function’s values on the two different ori-
entations of the same subset differ by a sign. Consequently a special p-form is specified
completely by either of the two sets I± of oriented subsets {µ1, . . . , µp} ⊂ {1, . . . , d}
with ϕµ1,...,µp = ±1. We will call the set I := I+ ∪ I− the support, |ϕ| := 1

2 |I| the

weight of ϕ. We denote by µ(a) := {µ(a)1 , . . . , µ
(a)
p }, a = 1, . . . , |ϕ|, the elements in I+,

i.e.

ϕ =
|ϕ|∑

a=1

e
µ
(a)
1

∧ · · · ∧ e
µ
(a)
p
. (2.4)

Restricted to the p-dimensional subspace spanned by any {µ1, . . . , µp} belonging to the
set I+, the form ϕ is equal to the p-dimensional volume form and hence its components
are

ϕµ1...µp = εµ1...µp , (2.5)

where ε is the completely antisymmetric tensor with p indices. This means in particular
that a special form ϕ in d dimensions has non-zero components given by

ϕσ(1)σ (2) ... σ (p) = ε12 ... p for all σ ∈ H, (2.6)

where H is an appropriate set of permutations σ of the indices {1, . . . , d} which map
{1, . . . , p} to {µ1, . . . , µp} ∈ I+.

We can define a metric on the vertex space Pp(d), the space of (unoriented)
p–element subsets of {1, . . . , d}, by setting dist(s, s̃) = p − |s ∩ s̃| and visualise
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the restriction of this metric to the set I+ by drawing a graph with labeled edges, the
vertices correspond to the elements of I+, the edges run between vertices of distance
strictly less than p and are labeled by this distance [11]. The graph of a special p-form
ϕ does not completely specify the components ϕµ1...µp ∈ {−1, 0, 1} up to the action of
O(d,Z); we still need to specify some relative sign. Nevertheless the graph gives a very
condensed way of encoding the characteristics of a special p-form. In particular it is a
useful tool in calculating the bisymmetry group introduced below.

• We call a p-form ϕ permutation symmetric under the action of some element σ ∈ Sd
if

ϕσ(i1) ... σ (i p) = κϕi1 ... i p , {i1, . . . , i p} ∈ I+, (2.7)

with κ=1. The set of all such transformations is the permutation symmetry group
of ϕ, Gr ⊂ Sd , where r = |Gr |, the order. If κ= − 1, we call the permutation
σ a permutation antisymmetry. If there exists one such antisymmetry τ , then there
are r antisymmetries στ with σ ∈ Gr and the set B = {σ , στ | σ ∈ Gr } ⊂ Sd
forms a group of order 2r , which we call the permutation bisymmetry group. The
permutation symmetry group Gr is an invariant subgroup and B/Gr = Z2.

• We call a p-form orthogonal symmetric under the action of an element
(σ, η1, . . . , ηd) ∈ Sd � Z

d
2 if

ϕσ(i1) ... σ (i p) = κηi1 . . . ηi pϕi1 ... i p , {i1, . . . , i p} ∈ I+, (2.8)

with κ=1. The set of all such transformations forms a group called the orthogonal
symmetry group of ϕ, denoted by Ĝs ⊂ Sd � Z

d
2 , where s = |Ĝs |.

If κ= − 1, the transformation (σ, η1, . . . , ηd) is called an orthogonal antisymmetry.
The union of orthogonal symmetries and orthogonal antisymmetries will be called
the orthogonal bisymmetries.

• We denote by L(a) ⊂ Gr (or L(a) ⊂ Ĝr ) the permutation (or respectively orthogo-
nal) stabiliser of the oriented set µ(a) ∈ I+ as the set of σ ∈ Gr (or Ĝr ) such that
{σ(µ(a)1 ), . . . , σ (µ

(a)
p )} ≡ {µ(a)1 , . . . , µ

(a)
p } up to an even permutation. We define the

permutation (resp. orthogonal) stability group as

L =
|ϕ|⋂

a=1

L(a). (2.9)

For example, the d-dimensional completely antisymmetric tensor εi1 ... id has the alter-
nating group Ad as its permutation symmetry group and B = Sd , the symmetric group,
as its permutation bisymmetry group which is also its orthogonal symmetry group. The
stability group L of the set of indices {1, 2, . . . , d} of its sole nonzero component is Ad
itself. As a consequence, for a form ϕ, a symmetry (resp. antisymmetry) which is an even
permutation in Sd corresponds to a symmetry (resp. antisymmetry) of �ϕ. On the other
hand, a symmetry (resp. antisymmetry) of ϕ which is an odd permutation corresponds
to an antisymmetry (resp. symmetry) of �ϕ.

Definition 2. A p-form with components ϕi1i2...i p is called democratic if there is a
transitive action of one of the permutation bisymmetry groups on {1, . . . , d}. In other
words, for any i1, i2 ∈ {1, . . . , d} there exists at least one element σ of one of the
permutation bisymmetry groups such that σ(i1) = i2.

Hodge-duality is clearly a bijection amongst democratic forms.
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The interplay between two related p- and P-forms in dimensions d and D
respectively and the connections between their related symmetry and bisymmetry groups
turns out to be an interesting subject of study. We shall use these in order to discuss
the ‘presentations’ of some particularly interesting special forms and also to construct
P-forms on D-manifolds from p-forms (p ≤ P) on d-manifolds (d < D).

3. Higher Dimensional Forms from Lower Dimensional Forms

We consider interesting ways of constructing P-forms� in a D–dimensional space R
D

from p-forms ϕ on a d–dimensional subspace R
d of R

D , with P = p + b , D = d + a
and 0 ≤ b ≤ a. Let us embed R

d in R
D in such a way that the first d basis vectors of

R
D are identical to the basis vectors ei , i = 1, . . . , d of R

d . We label the basis vectors
of R

D by indices i = 1 , . . . , d , d+1 , . . . , D−b, D−b+1 , . . . , D.
Given the components of a p-formsϕ ∈ �p

R
d and an appropriate subgroup H ⊂ SD ,

we may define a P-form � ∈ �P
R

D with nonzero components given by
{
�
(i1) ... 
(i p)
(D−b+1) ... 
(D) = ϕi1 ... i p | i1, . . . , i p ∈ {1, . . . , d} , 
 ∈ H

}
, (3.1)

where the 
 ∈ H satisfy the following

Compatibility condition:
Consider any two sets of indices {i1, . . . , i p} and { j1, . . . , jp} belonging to {1, . . . , d}
such that ϕi1...i p = ϕ j1... jp . If two permutations 
,
′ ∈ H have the property that

{
(i1), . . . , 
(i p),
(D−b+1), . . . , 
(D)}
= {
′( j1), . . . , 


′( jp),

′(D−b+1), . . . , 
′(D)} (3.2)

then 
,
′ must be compatible in the sense that

�
(i1)...
(i p)
(D−b+1)...
(D) = �
′( j1)...
′( jp)
′(D−b+1)...
′(D). (3.3)

It is clear that the restriction of� to the d-dimensional subspace yields ϕ, i.e.�|Rd = ϕ,
since the identity obviously belongs to H .

As we shall see in the next section, interesting cases arise when the forms are special
and the subgroup H is chosen so as to ensure democracy amongst the indices of �.
Particularly interesting examples correspond to the following three restrictions of (3.1):

A: For D = d , P = p, consider the non-zero components of a p-form
� ∈ �p

R
D , with discrete symmetry group Gr (see (2.7)). These are generated

as the orbit under some subgroup H ⊂ Gr of a set of |ϕ| ≤ |�| given non-zero
components, ϕ

µ
(a)
1 ... µ

(a)
p
, a = 1, . . . , |ϕ|, which define � thus:

�
σ(µ

(a)
1 ) ... σ (µ

(a)
p )

= ϕ
µ
(a)
1 ... µ

(a)
p
, a = 1, . . . , |ϕ|, σ ∈ H ⊂ Gr . (3.4)

In other words, all the components of � arise from this formula. A presentation
P[m; n](�) of the p-form � is defined as the set of components ϕ

µ
(a)
1 ... µ

(a)
p

= 1,

a = 1, . . . ,m:=|ϕ| together with a set of n permutations generating a presentation
of H .

B: For D > d , P = p, a p-form ϕ on R
d defines a p-form� on R

D with components
{
�
(i1) ... 
(i p) = ϕi1 ... i p | i1, . . . , i p ∈ {1, . . . , d}, 
 ∈ H

}
, (3.5)

where H is some subgroup of SD .
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C: For D = d + q , P = p + q, a p-form ϕ on R
d defines a (p+q)-form � on R

d+q

with components
{
�
(i1) ... 
(i p)
(d+1) ... 
(D) = ϕi1 ... i p | i1, . . . , i p ∈ {1, . . . , d}, 
 ∈ H

}
, (3.6)

where H is some subgroup of SD .

4. Examples

Numerous examples of the constructions in (3.4), (3.5) and (3.6) can be generated,
many rather trivial, e.g. the extension of a 1-form in one dimension to a 2-form in
two dimensions. However, relationships between p-forms invariant under the following
subalgebras of so(D) provide interesting examples:

a) so(d) ⊂ so(D) , d < D,
b) su(n)⊕ u(1) ⊂ so(2n),
c) g2 ⊂ so(7),
d) spin(7) ⊂ so(8).

In particular these examples fall into a remarkable nested structure of forms in succes-
sively higher dimensions up to eight. Furthermore, this matryoshka extends to interesting
examples of special forms in ten dimensions.

4.1. so(d)-invariant forms. The so(d)-invariant d-forms clearly provide completely
trivial examples. The unique nonzero component ε1...d = 1, together with id ∈Sd pro-
vides a presentation. Moreover the so(d)–invariant d-form ε can be extended to the
so(D)-invariant D-form ε for D > d as follows:

ε
(i1) ... 
(id )
(d+1) ... 
(D) = εi1 ... id , 
 = id . (4.1)

Clearly, the d-dimensional completely antisymmetric tensor εi1 ... id is fully democratic,
the bisymmetry group Sd acting transitively on its indices.

4.2. u(n)-invariant forms. Consider the u(n)-invariant 2-form ω on R
2n , with non-zero

components

ω12 = ω34 = ω56 = · · · = ω(2n−1)(2n) = 1. (4.2)

The vertex space P2(2n) consists of n points. The permutation symmetry group of the
2-form ω is Gn! = Sn , the group of permutations of the n ordered pairs of indices,
{1, 2}, {3, 4}, {5, 6}, . . . , {(2n − 1), (2n)}, generated by

σ1 := ( 1 3 )( 2 4 )( 5 )( 6 ) · · · ( 2n ),
(4.3)

σ2 := ( 1 3 5 · · · 2n−1 )( 2 4 6 · · · 2n ).

The number of permutation antisymmetries is also n!, generated by the composition of
the generators in (4.3) with, for example, the permutation

τ1 := ( 1 2 )( 3 4 )( 5 6 ) . . . ( 2n−1 2n ). (4.4)
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There are 2nn! orthogonal symmetries and 2nn! orthogonal antisymmetries. These are
either permutation symmetries or permutation antisymmetries multiplied by 2n possible
sign factors.

The 2-form ω, as well as the 2k-forms ϕ = 1
k! ω

k , k ≤ n, are democratic and special.
For example, the permutation symmetry group of the 4-form 1

2 ω
2 is the permutation

bisymmetry group of ω and it has no antisymmetries.

Example 4.2.1. Starting from any one non-zero component, say ω12, the other compo-
nents in (4.2) can be generated by the subgroup Hn ⊂ Gn! generated by σ2. Hence a pre-
sentation is given by P[1; 1](ω) = {ω12 ; σ2}. For n = 3 the invariant subgroup H3 is the
commutator subgroup (the closure of the set of elements of the form b−1a−1ba ∀a, b ∈
G6).

Example 4.2.2. The 2-form ω ∈ �2
R

2n may be constructed from the 2-form in two
dimensions, ε ∈ �2

R
2, with non-zero component ε12 = 1 thus:

ω
(a)
(b) = εab , a, b = 1, 2, 
 ∈ {σm
2 | m = 1, . . . , n} = Hn ⊂ Gn!, (4.5)

where Hn is the subgroup generated by σ2 in (4.3).

4.3. The g2-invariant form. Consider the G2 invariant special 3-form ψ on R
7 , with

non-zero components ψabc given by any choice of the structure constants of the imag-
inary octonions. Let {ea, a = 1, . . . 7} denote the standard basis for Im(O) � R

7, with
eaeb = ψabcec − δab. A choice of the structure constants ψabc is given by

ψ127 = ψ163 = ψ154 = ψ253 = ψ246 = ψ347 = ψ567 = 1. (4.6)

The vertex space P3(7) consists of 7 points. The 7-valent graph connecting these ver-
tices has all edges labeled by distance 2. The permutation symmetry group of ψ (and
naturally of its 4-form dual �ψ) is a group of order twenty-one, G21, generated by the
permutations

σ3 := (1 2 5 4 6 7 3), (4.7)

σ4 := (1 3 5)(2 4 6)(7). (4.8)

The permutation σ3 generates the commutator subgroup H7 ⊂ G21. Since the per-
mutation symmetry group includes an order 7 permutation, the form ψ is manifestly
democratic. There are no permutation antisymmetries τ . Using Maple we have deter-
mined that the number of orthogonal symmetries is 672, with an order 168 commutator
subgroup generated by either

{(1 5 7)(2 4 6)(3), (1 2 6 5)(4 7)(3), (1 4 7)(2 5 3)(6)} (4.9)

or, alternatively, by

{(1 4)(2 3)(5)(6)(7), (1 2 4 7 6 3 5), (1 3 4)(5 6 7)(2)}. (4.10)

The number of orthogonal antisymmetries is also 672, obtained from the orthogonal
symmetries by multiplying all the ηi by −1.
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Example 4.3.1. The component choice (4.6) can be generated from any non-zero
component in (4.6) by the iterated action of σ3. Thus a presentation is given by, for
instance, P[1; 1](ψ) = {ψ127 ; σ3}. Alternatively, a less economical presentation is
given by P[3; 1](ψ) = {ψ127, ψ136, ψ246 ; σ4}.
Example 4.3.2. The components of the 4-form dual �ψ ∈ �4

R
7 can be obtained in the

following way:

�ψ
(1)
(2)
(3)
(4) = ε1234 , 
 ∈ H7 ⊂ S7 (4.11)

where H7 is the group generated by the permutation σ3 = (1 2 5 4 6 7 3).

Example 4.3.3. The 2-form ω in R
6 given by (4.2) for n=3 affords an extension to the

3-form ψ thus:

ψ
(i)
( j)
(7) = ωi j , i, j = 1, . . . , 6 , 
 ∈ H ⊂ S7 , (4.12)

where there are three types of ‘minimal’ choices of H , having only one generator:

• H = H7 generated by σ3 = (1 2 5 4 6 7 3),
• H = H3 generated by (1)(2 6 5)(3 4 7),
• H = H3 generated by (2)(1 3 6)(4 7 5).

Composing the mappings in Eqs. (4.5) and (4.12) immediately yields:

Example 4.3.4. Consider the two dimensional form ε ∈ �2
R

2, ε12 = 1. It yields the
components (4.6) of the 3-form ψ in seven dimensions:

ψ
(i)
( j)
(7) = εi j , i, j = 1, 2, 
 ∈ H7 ⊂ S7. (4.13)

Choosing H7 to be the group generated by σ3 = (1 2 5 4 6 7 3) again gives the set of ψ’s
in (4.6). In fact, choosing H7 to be the group generated by any seven-cycle of the form
(1 2 ∗ ∗ ∗ 7 ∗) or (1 2 ∗ 7 ∗ ∗ ∗) provides equivalent choices of components of this
3-form.

This example yields a simple mnemonical construction of the structure constants of the
imaginary octonions.

4.4. The spin(7)-invariant form. Consider the Spin(7)-invariant self-dual 4-form φ in
d = 8 [1] with non-zero components

1 = φ1234 = φ1256 = φ1278 = φ1357 = φ1386 = φ1485 = φ1476

= φ2385 = φ2376 = φ2475 = φ2468 = φ3456 = φ3478 = φ5678. (4.14)

We note that each pair (i, j) of indices occurs precisely thrice and the contrac-
tion with any 2-plane spanned by {ei , e j } yields the u(3)-invariant 2-form (4.2) with
φ(ei , e j , · , ·)|R6 = ω. The vertex space P4(8) consists of 14 points. In the correspond-
ing graph, every vertex is connected to 12 others by edges of distance 2 and to one
antipodal point at distance 4. This form is democratic and has a permutation symmetry
group G168 generated by

σ5 := (1 2)(3 6 7 4 5 8),
(4.15)

σ6 := (8)(1 2 5 4 6 7 3).
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The permutation σ6 has a 1171 cycle decomposition. Its powers, apart from the
identity, generate six independent permutations having the same cycle decomposition.
There are 8 such permutations, corresponding to all 8 choices of the 1-cycle. In all they
generate 48 permutations in the class 1171.

The permutation σ5 has a 2161 cycle decomposition. Clearly, its inverse, σ 5
5 , also.

Further, σ 2
5 and σ 4

5 have 1232 cycles. There are 28 permutations of each of these four
types, corresponding to all choices of the 2-cycle in σ5. So, these generate 56 per-
mutations in each of the classes 2161 and 1232. The third power, σ 3

5 , generates a 24

cycle. There are seven such permutations. Including the identity, we therefore have the
168 = 48 + 56 + 56 + 7 + 1 elements of G168.

The permutation σ5 clearly decomposes into the product of the order 3 and order 2
permutations

σ7 := (1)(2)(3 5 7)(4 6 8),
(4.16)

σ8 := (1 2)(3 4)(5 6)(7 8),

and a presentation for G168 is given by σ6 and σ7.
The commutator subgroup of G168 is the order 56 group generated by σ6 and σ8. It

contains the 48 elements in the class 1171, the seven elements in the class 24 and the
identity.

The orthogonal symmetries of (4.14) total 10752 elements, with the commutator sub-
group being the order 1344 group generated by (7)(1 3 2 8 4 5 6) and (6)(1 5 7 2 8 3 4).
The form φ has no antisymmetries.

Example 4.4.1. The order 12 subgroup H12 ⊂ G168 leaving the component φ1234 invari-
ant is generated by σ8 and

σ9 := (1)(6)(2 3 4)(5 8 7). (4.17)

It has 14 left-cosets corresponding to the 14 components of φi jkl , more precisely the
action of the 14 cosets on φ1234 generates the 14 non-zero components of φ.

The 4-form φ in (4.14) may be constructed in various ways from the so(n)-, su(3)⊕
u(1)-, and g2-invariant forms discussed above.

Example 4.4.2. Starting from the 4-form in R
4 we can generate the 4-form φ in eight

dimensions with components (4.14) thus:

φσ(1)σ (2)σ (3)σ (4) = ε1234, σ ∈ H12 ⊂ S8, (4.18)

where H12 is the group generated by σ8 and σ9.

Example 4.4.3. From the components (4.6) of the g2-invariant formψ ∈ �3
R

7, we may
obtain the Spin(7)-invariant 4-form φ:

φσ(i)σ ( j)σ (k)σ (8) = ψi jk, i, j, k = 1, . . . , 7, σ ∈ H ⊂ S8. (4.19)

By choosing H appropriately, we obtain the components (4.14). Two possibilities are
a) H = H6 generated by σ5 = (1 2)(3 6 7 4 5 8), b) H = H8 generated by the set
{(1 2)(3 4)(5 6)(7 8), (1 3)(2 4)(5 7)(6 8), (1 5)(2 6)(3 7)(4 8)}.
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The φmnpq obtained this way satisfy the well-known relations (e.g. [1]),

φi jk8 = ψi jk, φi jkl = 1
6εi jklmnpψmnp, i, . . . , p = 1, . . . , 7. (4.20)

Example 4.4.4. Analogously to (4.13), we may directly obtain the Spin(7)-invariant set
of φ’s in (4.14) from εi j , ε12 = 1, in two dimensions:

φσ(i)σ ( j)σ (7)σ (8) = εi j , i, j = 1, . . . , 2, σ ∈ H21 ⊂ S8 , (4.21)

where H = H21 is generated by (3)(1264758) and (1)(6)(234)(587).

5. A D = 10 Structure from a Spin(7) Structure in d = 8

5.1. Construction of a 6-form in D = 10 from a Spin(7)-invariant 4-form in d = 8. Con-
sider the Spin(7)-invariant self-dual 4-form φmnpq in d = 8 given in (4.14). Its discrete
symmetry group G168 generated by the permutations (4.15) include the Z2 × Z2 trans-
formations generated by the 24 cycles

ρ1 := (18)(27)(36)(45), ρ2 := (14)(23)(58)(67). (5.1)

Define the permutation σ of d indices, for d even,

σ := (135 . . . d−1)(246 . . . d) , (5.2)

which acts on the set of ordered pairs {1, 2}, {3, 4}, {5, 6}, . . .. We see that for d = 8,
this mapping squared, σ 2 = ρ1 · ρ2.

We want to embed the form φ (4.20) into a form in R
10 with orthonormal basis

(en)n=1,...,10. For the components, we shall denote the 10th index by a 0. Clearly, a
6-form �0 in ten dimensions which reduces to the above 4-form in eight dimensions
may be defined in a trivial fashion by requiring the non-zero components to be given by

�0
mnpq 9 0 = φmnpq , m, n, p, q = 1, . . . , 8, (5.3)

i.e. the 6-form �0 contracted with the volume form on the 9–10 plane yields the
Spin(7)-invariant tensor (4.20). However, there is a less trivial possibility.

Consider a 6-form �1 in D = 10 with non-zero components

�1
σ(m) σ (n) σ (p) σ (q) 1 2 = φmnpq , m, n, p, q = 1, . . . , 8. (5.4)

We note that the components of �1 are compatible with the components of �0, in that

�1
mnpq 9 0 = �0

mnpq 1 2, m, n, p, q = 3, . . . , 8. (5.5)

Similarly, the further 6-form having non-zero components

�2
σ 2(m) σ 2(n) σ 2(p) σ 2(q) 3 4 = φmnpq , m, n, p, q ∈ {1, . . . , 8}\{3, 4} (5.6)

is consistent with both �0 and �1, i.e.

�0
mnpq 3 4 = �2

mnpq 1 2, m, n, p, q = 5, . . . , 10,
(5.7)

�1
mnpq 3 4 = �2

mnpq 9 0, m, n, p, q = 1, 2, 5, . . . , 8.
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Fig. 1. The 6-form� is symmetric under 2π/5 rotations generating a Z5 symmetry. It is antisymmetric under
reflections in the dotted line

In fact the five 6-forms �N
σ N (m) σ N (n) σ N (p) σ N (q) σ N (9) σ N (0)

, N = 0, . . . , 4 are all
compatible, allowing the definition of a 6-form in ten dimensions manifestly invari-
ant under the Z5 transformations between the five ordered pairs of indices in Fig. 1
generated by σ = (13579)(24680), i.e.

{1, 2} → {3, 4} → {5, 6} → {7, 8} → {9, 10} → {1, 2}. (5.8)

This Z5-invariant 6-form has components given by

�σ N (m) σ N (n) σ N (p) σ N (q) σ N (9) σ N (0) = φmnpq ,

N = 0, . . . , 4, m, n, p, q = 1, . . . , 8. (5.9)

Explicitly, for the choice (4.14), these are given by the 50 non-zero elements

�123456 = �123478 = �123490 = �123579 = −�123580

=−�123670 =−�123689 =−�124570 =−�124589 =−�124679
= �124680 = �125678 = �125690 = �127890 =−�134579
= �134580 = �134670 = �134689 = �135679 =−�135680
=−�135789 = �135790 = �136780 =−�136890 =−�145670
=−�145689 = �145780 =− �145890 = �146789 =−�146790
= �234570 = �234589 = �234679 =−�234680 =−�235670
=−�235689 = �235780 =−�235890 = �236789 =−�236790
=−�245679 = �245680 = �245789 =−�245790 =−�246780
= �246890 = �345678 = �345690 = �347890 = �567890 = 1.

(5.10)

The vertex space P6(10) consists of 50 points, corresponding to a 49-valent graph having
two types of vertices: Type A vertices connected to 30 vertices at distance 2, 16 vertices
at distance 3 and 3 vertices at distance 4 and Type B vertices connected to 4 vertices at
distance 1, 24 vertices at distance 2, 16 vertices at distance 3 and 5 vertices at distance
4. There are 10 vertices of Type A and 40 of Type B.

The symmetries of this democratic form are as follows. The permutation symmetry
group is the order 60 alternating group A5 of five elements, the five ordered pairs in
(5.8).
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The number of permutation antisymmetries is also 60, obtained from the elements
of the permutation symmetry group by multiplication by, for example, the reflection in
the vertical axis of Fig. 1:

τ := (12)(03)(94)(85)(76). (5.11)

There are 120 orthogonal symmetries and 120 orthogonal antiymmetries. The orthogonal
symmetries which are not permutation symmetries have all their respective ηi = −1.

In the eight dimensional subspaces orthogonal to nonexceptional planes {a, b}, not in
the set (5.8), this 6-form reduces to an SU(2)-invariant 4-form, which we discuss further
in Sect. 5.3.

5.2. Self-duality. The six-form � given by (5.9) defines skew-symmetric endomor-
phisms on the space of 3-forms, yielding generalised self-duality equations analogous
to (1.1),

1
6 gm4n1gm5n2gm6n3�m1m2m3m4m5m6 Gn1n2n3 = λGm1m2m3 . (5.12)

Its 4-form dual � = �� defines a symmetric endomorphism on the space of 2-forms,
satisfying equations of the form (1.1). To find the eigenvalues of a 2k-form� on�k

R
D ,

we identify the components of the k-forms G in D dimensions,

{Gm1m2...mk , 1 ≤ m1 < m2 < · · · < mk ≤ D} (5.13)

with the components of a vector in the
(D

k

)
-dimensional space �k

R
D thus:

G A = Gm1m2...mk where A = 1 +
k∑

i=1

(mi −1
i

) = 1, . . . ,
(D

k

)
. (5.14)

On this vector the 2k-form � may be represented as a
(D

k

) × (D
k

)
matrix,

�AB = �m1...mk mk+1...m2k , A := 1 +
k∑

i=1

(mi −1
i

)
, B := 1 +

2k∑

i=k+1

(mi −1
i

)
. (5.15)

In this notation, self-duality equations like (5.12) and (1.1) take the form of matrix equa-
tions allowing direct evaluation of the eigenvalues and eigenvectors using an algebraic
computation programme like Maple or Reduce.

We find the characteristic polynomials for the 6-form (5.9) to be

(
λ6 + 51λ4 + 699λ2 + 1369

)4 (
λ4 + 42λ2 + 361

)6 (
λ2 + 1

)35 (
λ2 + 9

)
(5.16)

and that of its dual 4-form to be

(λ + 4) (λ + 1)8 (λ− 1)24
(
λ2 + 2λ− 19

)6
. (5.17)

We have checked that the stability group H ′ ⊂ SO(10) of � (or equivalently � = ��)
has dimension 16 and is the direct product

H ′ = SU (4)⊗ U (1). (5.18)



Matryoshka of Special Democratic Forms 557

Under this stabilty group the D = 10 dimensional vector module V and the 45, 120 and
210 dimensional spaces of the two- three- and four-forms, respectively, decompose as

V = 10 = 40 + 40 + 1+1 + 1−1,

�2V = 45 = 150 + 60 + 60 + 4+1 + 4−1 + 4+1 + 4−1 + 10 + 10,

�3V = 120 = 200 + 200 + 15+1 + 15−1 + (40)
3 + (40)

3

(5.19)
+ (6+1)

2 + (6−1)
2 + 1+1 + 1−1,

�4V = 210 = 20′
0 + 20+1 + 20−1 + 20+1 + 20−1 + 150 + 15′

0 + 100 + 100

+ (60)
4 + (4+1)

2 + (4−1)
2 + (4+1)

2 + (4−1)
2 + (10)

4,

where the exponent denotes the multiplicity and the subscript the U(1) charge. We iden-
tify the eigenspaces in �2V of the 4-form � as follows:

λ = +1 ⇔ 15 + 4 + 4 + 1,
λ = −1 ⇔ 4 + 4,
λ = −4 ⇔ 1,
λ = −1 − 2

√
5 ⇔ 6,

λ = −1 + 2
√

5 ⇔ 6.

(5.20)

The λ = 1 eigenspace is the most interesting, satisfying a set of 21 equations amongst
the 45 components of �2V . The equations for the other eigenspaces are rather overde-
termined. For the six-form, the roots of the 6th order polynomial in (5.16) correspond to
the 4’s and 4’s, the roots of the quartic correspond to the four 6’s, the eigenspaces with
λ = i and −i transform as (20 + 15) and (20 + 15), respectively, and the two singlets
have eigenvalues ±i

√
3.

5.3. Reduction to nonexceptional planes. As we have seen, in the five exceptional
eight dimensional embeddings in ten dimensions, the 6-form (5.10) reduces to the
Spin(7)-invariant 4-form (4.14). Contracted with the bivectors spanning all the other
planes, i.e. for {a, b} not in the set of planes in (5.8), we obtain a 4-form with 17 non-
zero components Tpqrs . For example in the space orthogonal to the {1, 10} plane we
have

T1256 = −T1678 = −T2356 = −T1357 = −T3467 = −T1458 = T2457

= −T2347 = T1247 = −T2567 = T3568 = −T1238 = T2578 = T3456

= −T2468 = T3478 = T1346 = 1. (5.21)

This 4-form in the eight dimensional space orthogonal to the {1, 10} plane is invariant
under an SU(2) subgroup of SO(8). Under this SU(2) the 8-dimensional vector module
of SO(8) decomposes as:

8 = 4[0] ⊕ 2[ 1
2 ], (5.22)

i.e. four spin 0 modules and two spin 1
2 modules. Here [s] denotes the 2s +1 dimensional

module of SU(2). The infinitesimal generators of su(2) are the following 8 × 8 matrices
acting on the subspace V 2−9 spanned by the basis vectors e2, . . . , e9:
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T1 = 1

2
√

3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 0 1 0 −1 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 1 0 −1 0 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

T2 = 1

2
√

3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 1 0 −1 0
0 0 0 −1 0 1 0 0
0 0 1 0 −1 0 0 0
0 −1 0 1 0 0 0 0
0 0 −1 0 0 0 1 0
0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.23)

T3 = 1

6

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 2 0 −1 0 −1 0
0 −2 0 1 0 1 0 0
0 0 −1 0 −1 0 2 0
0 1 0 1 0 −2 0 0
0 0 −1 0 2 0 −1 0
0 1 0 −2 0 1 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

satisfying the standard commutation relations [Ti , Tj ] = εi jk Tk . These Ti ’s clearly have
nontrivial action on the subspace V 3−8 spanned by the basis vectors e3, . . . , e8. In the
eight dimensional space V 2−9 the vectors (1, 0, . . . , 0), (0, . . . , 0, 1), (0, 1, 0, 1, 0, 1,
0, 0) and (0, 0, 1, 0, 1, 0, 1, 0) are the four invariant vectors under the su(2) action. We
find that the two spinor modules in (5.22) are spanned by the basis vectors

{b1=(0, 1 +
√

3i, 0, 1 − √
3i, 0,−2, 0, 0), b2=(0, 0,

√
3 + i, 0,−√

3 + i, 0,−2i, 0)}
(5.24)

and
{
c1=

(
0, 0, 1 +

√
3i, 0, 1 − √

3i, 0,−2, 0
)
, c2=

(
0,

√
3 − i, 0, 2i, 0,−√

3 − i, 0, 0
)}
.

(5.25)

b1 and c1 are the eigenvectors of T1 with eigenvalue −i/2, whereas b2 and c2 are its
eigenvectors with eigenvalue i/2.

The above decomposition of the 8-dimensional vector module leads immediately to
the following decomposition of the 28-dimensional space of 2-forms

28 = 9[0] ⊕ 8[ 1
2 ] ⊕ [1]. (5.26)

With the 4-form T defined in (5.21), the characteristic polynomial of the self-duality
equation (1.1) is

λ4(λ2 − 5)(λ4 − 8λ2 + 3)4(λ6 − 14λ4 + 33λ2 − 12). (5.27)
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Let us now discuss the association of the roots of (5.27) with the decomposition of
the space of 2-forms (5.26) under su(2):

• We identify the eight roots of (λ2 −5)(λ6 −14λ4 +33λ2 −12), which are all distinct,
with eight of the nine spin [0] states in (5.26).

• The four zero eigenvalues correspond to the ninth spin [0] state together with the
spin [1] state.

• The remaining 16 eigenvalues, the roots of (λ4 − 8λ2 + 3)4, correspond to the spin
[ 1

2 ] states in the decomposition (5.26). Since there are only four distinct eigenvalues
±λi , i = 1, 2 the corresponding eigenspaces transform as the four dimensional
[ 1

2 ] ⊕ [ 1
2 ] representation.

6. SU(4)⊗ U(1)-Invariant 4-Forms in Ten Dimensions

As we see from the decomposition of the 210 = �4(40 + 40 + 1+1 + 1−1), SU(4)⊗
U(1) has four singlets. One of them arises from the tensor product 4 ⊗ 4 ⊗ 1 ⊗ 1 and
the other three singlets have their origin in �4(40 + 40) and correspond to the three
SU(4)-invariant 4-forms discussed in Appendix B of [1]. Choosing complex coordi-
nates z1 = x1 + i x2 , z2 = x3 + i x4 , z3 = x5 + i x6 , z4 = x7 + i x8 , z5 = x9 + i x10, the
four SU(4)⊗ U(1)-invariant forms may be expressed thus:

�A
mnpq =

∑

1≤i< j<k≤5

εmnpqzi z̄i z j z̄ j zk z̄k , (6.1)

�B
mnpq =

∑

π∈Z5

εmnpqz1 z̄1z2 z̄2(z3 z̄4+z4 z̄5+z5 z̄3) + c.c., (6.2)

�C
mnpq + i�D

mnpq = εmnpqz̄1···z̄5(z1+···+z5), (6.3)

where the sum in �B is over all cyclic permutations of (1, . . . , 5). The corresponding
vertex spaces P4(10) consist of 10 points for�A, 60 points for�B and 40 points for�C

and�D . The corresponding graphs have completely democratic vertices: For�A every
vertex is connected to 6 vertices at distance 2 and 3 vertices at distance 4. For�B every
vertex is connected to 6 vertices at distance 1, 27 vertices at distance 2, 30 vertices at
distance 3 and 6 vertices at distance 4. For �C and �D every vertex is connected to 4
vertices at distance 1, 18 vertices at distance 2, 12 vertices at distance 3 and 5 vertices
at distance 4.

We find the characteristic polynomials of these 4-forms to be

�A : (λ− 1)20(λ + 1)24(λ− 4), (6.4)

�B : (λ + 2)12(λ− 3)8(λ− 2)15(λ + 3)8(λ2 + 6λ− 36), (6.5)

�C,�D : λ33(λ2 − 20)6. (6.6)

The duals of these 4-forms yield invariant 6-forms �A,�B ,�C and �D having char-
acteristic polynomials

�A : (λ2 + 1)55(λ2 + 9)5, (6.7)

�B : (λ2 + 36)1(λ4 + 60λ2 + 144)4(λ2 + 4)27(λ2 + 9)24, (6.8)

�C,�D : λ80(λ2 + 20)20. (6.9)
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Table 1. Eigenvalues of the invariant 4-forms on the irreducible summands of �2V

�2V =45 10 10 150 4+1 + 4+1 4−1 + 4−1 60 60

�A −1 4 −1 1 −1 1 1
�B −3(1+

√
5) −3(1−√

5) 2 3 −3 −2 −2
�C,�D 0 0 0 0 0 2

√
5 −2

√
5

Table 2. Eigenvalues of the invariant 6-forms on the irreducible summands of �3V

�3V =120 200 200 15±1 42
0 (40)

2 40 40 62
+1 62−1 1±1

�A i −i ±i 3i −3i i −i i −i ±3i
�B 3i −3i ±2i i(3±√

21) −i(3±√
21) 3i −3i 2i −2i ±6i

�C, �D i2
√

5 −i2
√

5 0 0 0 0 0 0 0 0

The eigenvalues of the irreducible summands of these 4-forms and 6-forms are
tabulated in Tables 1 and 2. The 4-forms �C and �D have identical eigenvalues. How-
ever, as endomorphisms of 2-forms, these do not commute.

The linear combination −�A −�C is the dual of the 6-form � constructed in (5.9).
The 4-form �A is the dual of the 6-form constructed in a similar fashion to (5.9)

from the SU (4)⊗ U (1)/Z4-invariant 4-form in eight dimensions discussed in [1]:

T SU (4)⊗U (1)
mnpq =

∑

1≤i< j≤4

εmnpqzi z̄i z j z̄ j , m, n, p, q = 1, . . . , 8. (6.10)

Using this to define a sixform as in (5.9), we obtain �A = ��A. This clearly also has
the special property that contracted with the volume form on any of the five exceptional
planes in Fig. 1 yields the eight dimensional 4-form (6.10).
�D is not invariant under the Z2 transformation indicated on Fig. 1. The four (SU(4)⊗

U(1))-invariants in ten dimensions are generated by the four dimensional centraliser of
SU(4)⊗ U(1) in GL(10,R). In other words, acting on our invariant tensor (5.9) with the
four-parameter set of global GL(10,R) transformations which commute with SU(4)⊗
U(1), yields the four-parameter set of (SU(4)⊗ U(1))-invariants above.

The four-forms �A,�B,�C and �D have permutation symmetry groups of order
240, 240, 120 and 120, respectively, all having A60 as commutator subgroups. The
number of permutation antisymmetries are 0,0,120,120, the number of orthogonal sym-
metries, 122880=120 ·210, 960, 480, 240 and the number of orthogonal antisymmetries,
0, 0, 480 and 240, respectively.

7. Comments

Having seen that interesting 6-forms arise from the formula (5.9), the question arises
whether there is a similarly constructed 8-form yielding interesting eigenvalue equations
for a 4-form invariant under some subgroup H ′′ ⊂ SO(d+4).

The anwer is “yes” for�A and�B : We may construct consistent Z6-invariant 8-forms
in 12 dimensions with components given by

�σ N (m) σ N (n) σ N (p) σ N (q) σ N (r) σ N (s) σ N (11) σ N (12) = �I
mnpqrs, N = 0, . . . , 5, (7.1)
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Table 3. Representative special 2-forms in 4 dimensions. The forms marked with D are democratic

Representative forms for p = 2, d = 4
ε12 ε13 ε14 ε23 ε24 ε34 I1 I2

A 1 0 0 0 0 0 −2 0
B1 1 1 0 0 0 0 −4 0
B2 1 0 0 0 0 1 −4 8 D
B3 1 0 0 0 0 −1 −4 −8 D
C1 1 1 1 0 0 0 −6 0
C2 1 1 0 0 −1 0 −6 8
C3 1 1 0 0 1 0 −6 −8
D1 1 1 1 1 0 0 −8 8
D2 1 1 1 −1 0 0 −8 −8
D3 1 1 0 0 −1 1 −8 16 D
D4 1 1 0 0 1 1 −8 0 D
D5 1 1 0 0 1 −1 −8 −16 D
E1 1 1 1 1 −1 0 −10 16
E2 1 1 1 1 1 0 −10 0
E3 1 1 1 −1 1 0 −10 −16
F1 1 1 1 1 −1 1 −12 24 D
F2 1 1 1 1 1 1 −12 8 D
F3 1 1 1 −1 −1 −1 −12 −8 D
F4 1 1 1 −1 1 −1 −12 −24 D

for I = A, B. The corresponding 4-form duals have characteristic polynomials:

�A : (λ + 1)35(λ− 5)(λ− 1)30,
(7.2)

�B : (λ− 2)24(λ + 2)20(λ− 4)10(λ + 4)10(λ2 + 8λ− 80).
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A. Further Results: SO(d)-Invariants

We denote by In, n = 1, . . . , N (p, d), the independent SO(d,R)-invariants constructed
from a p-form ϕ, where N (p, d) is the number of invariants.

Conjecture 1. The SO(d,R) orbit of a special p-form is characterised by the values of
the invariants.

This means that a general p-form is special if and only if the values of the invariants
are equal to the values of the invariants of a representative special p-form, in whose
orbit it then lies. If two p-forms have identical invariants, they belong to the same
SO(d,R)-orbit.

As an example we list in Table 3 the complete set of representative special 2-forms
in 4-dimensions. The values of the two independent invariants

I1(ϕ) =
∑

a,b

ϕabϕba,

I2(ϕ) =
∑

a,b,c,d

εabcdϕabϕcd (A.1)
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are given. If an arbitrary 2-form in 4-dimensions has values of I1, I2 appearing in the
table, then it is in the orbit of the corresponding representative.
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