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Abstract

Virtual 3D city models represent and integrate a variety of spatial data and georeferenced
data related to urban areas. With the help of improved remote-sensing technology, official
3D cadastral data, open data or geodata crowdsourcing, the quantity and availability of
such data are constantly expanding and its quality is ever improving for many major
cities and metropolitan regions. There are numerous fields of applications for such data,
including city planning and development, environmental analysis and simulation, disaster
and risk management, navigation systems, and interactive city maps.

The dissemination and the interactive use of virtual 3D city models represent
key technical functionality required by nearly all corresponding systems, services, and
applications. The size and complexity of virtual 3D city models, their management, their
handling, and especially their visualization represent challenging tasks. For example,
mobile applications can hardly handle these models due to their massive data volume
and data heterogeneity. Therefore, the efficient usage of all computational resources
(e.g., storage, processing power, main memory, and graphics hardware, etc.) is a key
requirement, for software engineering in this field. Common approaches are based on
complex clients that require the 3D model data (e.g., 3D meshes and 2D textures)
to be transferred to them and that then render those received 3D models. However,
these applications have to implement most stages of the visualization pipeline on client
side. Thus, as high-quality 3D rendering processes strongly depend on locally available
computer graphics resources, software engineering faces the challenge of building robust
cross-platform client implementations.

Web-based provisioning aims at providing a service-oriented software architecture
that consists of tailored functional components for building web-based and mobile
applications that manage and visualize virtual 3D city models. This thesis presents
corresponding concepts and techniques for web-based provisioning of virtual 3D city
models. In particular, it introduces services that allow us to efficiently build applications
for virtual 3D city models based on a fine-grained service concept. The thesis covers five
main areas:

1. A Service-Based Concept for Image-Based Provisioning of
Virtual 3D City Models It creates a frame for a broad range of services related
to the rendering and image-based dissemination of virtual 3D city models.

2. 3D Rendering Service for Virtual 3D City Models This service provides
efficient, high-quality 3D rendering functionality for virtual 3D city models. In
particular, it copes with requirements such as standardized data formats, massive
model texturing, detailed 3D geometry, access to associated feature data, and
non-assumed frame-to-frame coherence for parallel service requests. In addition,
it supports thematic and artistic styling based on an expandable graphics effects
library.

3. Layered Map Service for Virtual 3D City Models It generates a map-like
representation of virtual 3D city models using an oblique view. It provides high
visual quality, fast initial loading times, simple map-based interaction and feature
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data access. Based on a configurable client framework, mobile and web-based
applications for virtual 3D city models can be created easily.

. Video Service for Virtual 3D City Models It creates and synthesizes videos

from virtual 3D city models. Without requiring client-side 3D rendering capabilities,
users can create camera paths by a map-based user interface, configure scene
contents, styling, image overlays, text overlays, and their transitions. The service
significantly reduces the manual effort typically required to produce such videos.
The videos can automatically be updated when the underlying data changes.

. Service-Based Camera Interaction It supports task-based 3D camera interac-

tions, which can be integrated seamlessly into service-based visualization applica-
tions. It is demonstrated how to build such web-based interactive applications for
virtual 3D city models using this camera service.

These contributions provide a framework for design, implementation, and deployment

of future web-based applications, systems, and services for virtual 3D city models. The

approach shows how to decompose the complex, monolithic functionality of current 3D

geovisualization systems into independently designed, implemented, and operated service-

oriented units. In that sense, this thesis also contributes to microservice architectures for

3D geovisualization systems—a key challenge of today’s I'T systems engineering to build

scalable IT solutions.



Zuammenfassung

Virtuelle 3D-Stadtmodelle représentieren und integrieren eine grofle Bandbreite von
Geodaten und georeferenzierten Daten tiber stddtische Gebiete. Verfiigbarkeit, Quantitét
und Qualitét solcher Daten verbessern sich sténdig fiir viele Stddte und Metropolregionen,
nicht zuletzt bedingt durch verbesserte Erfassungstechnologien, amtliche 3D-Kataster,
offene Geodaten oder Geodaten-Crowdsourcing. Die Anwendungsfelder fiir virtuelle
3D-Stadtmodelle sind vielfaltig. Sie reichen von Stadtplanung und Stadtentwicklung,
Umweltanalysen und -simulationen, iiber Katastrophen- und Risikomanagement, bis hin
zu Navigationssystemen und interaktiven Stadtkarten.

Die Verbreitung und interaktive Nutzung von virtuellen 3D-Stadtmodellen stellt
hierbei eine technische Kernfunktionalitit fiir fast alle entsprechenden Systeme, Services
und Anwendungen dar. Aufgrund der Komplexitdt und Groflie virtueller 3D-Stadtmodelle
stellt ihre Verwaltung, ihre Verarbeitung und insbesondere ihre Visualisierung eine grofie
Herausforderung dar. Daher kénnen zum Beispiel mobile Anwendungen virtuelle 3D-
Stadtmodelle, wegen ihres massiven Datenvolumens und ihrer Datenheterogenitit, kaum
effizient handhaben. Die effiziente Nutzung von Rechenressourcen, wie zum Beispiel
Prozessorleistung, Hauptspeicher, Festplattenspeicher und Grafikhardware, bildet daher
eine Schliisselanforderung an die Softwaretechnik in diesem Bereich. Heutige Ansétze
beruhen héufig auf komplexen Clients, zu denen 3D-Modelldaten (z.B. 3D-Netze und 2D-
Texturen) transferiert werden miissen und die das Rendering dieser Daten selbst ausfiihren.
Nachteilig ist dabei unter anderem, dass sie die meisten Stufen der Visualisierungspipeline
auf der Client-Seite ausfithren miissen. Es ist daher softwaretechnisch schwer, robuste
Cross-Plattform-Implementierungen fiir diese Clients zu erstellen, da hoch qualitative
3D-Rendering-Prozesse nicht unwesentlich von lokalen computergrafischen Ressourcen
abhéngen.

Die webbasierte Bereitstellung virtueller 3D-Stadtmodelle beruht auf einer serviceori-
entierten Softwarearchitektur. Diese besteht aus spezifischen funktionalen Komponenten
fiir die Konstruktion von mobilen oder webbasierten Anwendungen fiir die Verarbeitung
und Visualisierung von komplexen virtuellen 3D-Stadtmodellen. Diese Arbeit beschreibt
entsprechende Konzepte und Techniken fiir eine webbasierte Bereitstellung von virtuellen
3D-Stadtmodellen. Es werden insbesondere Services vorgestellt, die eine effiziente Ent-
wicklung von Anwendungen fiir virtuelle 3D-Stadtmodelle auf Basis eines feingranularen
Dienstekonzepts ermdglichen. Die Arbeit gliedert sich in fiinf thematische Hauptbeitrage:

1. Ein servicebasiertes Konzept fiir die bildbasierte Bereitstellung von vir-
tuellen 3D-Stadtmodellen Es wird ein konzeptioneller Rahmen fiir eine Reihe
von Services in Bezug auf das Rendering und die bildbasierte Bereitstellung virtueller
3D-Stadtmodelle eingefiihrt.

2. 3D-Rendering-Service fiir virtuelle 3D-Stadtmodelle Dieser Service stellt
eine effiziente, hochqualitative 3D-Renderingfunktionalitét fiir virtuelle 3D-Stadtmo-
delle bereit. Insbesondere werden Anforderungen, wie zum Beispiel standardisierte
Datenformate, massive Modelltexturierung, detaillierte 3D-Geometrien, Zugriff auf
assoziierte Fachdaten und fehlende Frame-zu-Frame-Kohérenz bei parallelen Service-
Anfragen erfiillt. Der Service unterstiitzt zudem die thematische und gestalterische
Stilisierung der Darstellungen auf Basis einer erweiterbaren Grafikeffektbibliothek.



vi

3. Layered-Map-Service fiir virtuelle 3D-Stadtmodelle Dieser Service gene-
riert eine kartenverwandte Darstellung in Form einer Schrigansicht auf virtuelle
3D-Stadtmodelle in hoher Renderingqualitét. Er weist eine schnelle initiale Lade-
zeit, eine einfache, kartenbasierte Interaktion und Zugang zu den Fachdaten des
virtuellen 3D-Stadtmodells auf. Mittels eines konfigurierbaren Client-Frameworks
kénnen damit sowohl mobile, als auch webbasierte Anwendungen fiir virtuelle 3D
Stadtmodelle einfach erstellt werden.

4. Video-Service fiir virtuelle 3D-Stadtmodelle Dieser Service erstellt und syn-
thetisiert Videos aus virtuellen 3D-Stadtmodellen. Nutzern wird ermdglicht 3D-
Kamerapfade auf einfache Weise iiber eine kartenbasierte Nutzungsschnittstelle zu
erstellen. Weiterhin kénnen die Szeneninhalte, die Stilisierung der Szene, sowie Bild-
und Textiiberlagerungen konfigurieren und Ubergéinge zwischen einzelnen Szenen
festzulegen, ohne dabei clientseitige 3D-Rendering-Fahigkeiten vorauszusetzen. Das
System reduziert den manuellen Aufwand fiir die Produktion von Videos fir virtu-
elle 3D-Stadtmodelle erheblich. Videos kénnen zudem automatisiert aktualisiert
werden, wenn sich zugrunde liegende Daten é&ndern.

5. Servicebasierte Kamerainteraktion Die vorgestellten Services unterstiitzen
aufgabenbasierte 3D-Kamerainteraktionen und deren Integration in servicebasierte
Visualisierungsanwendungen. Es wird gezeigt, wie webbasierte interaktive Anwen-
dungen fiir virtuelle 3D-Stadtmodelle mit Hilfe von Kameraservices umgesetzt
werden koénnen.

Diese Beitrige bieten einen Rahmen fiir das Design, die Implementierung und die
Bereitstellung zukiinftiger webbasierter Anwendungen, Systeme und Services fiir virtuelle
3D-Stadtmodelle. Der Ansatz zeigt, wie die meist komplexe, monolithische Funktiona-
litdt heutiger 3D-Geovisualisierungssysteme in unabhéngig entworfene, implementierte
und betriebene serviceorientierte Einheiten zerlegt werden kann. In diesem Sinne stellt
diese Arbeit auch einen Beitrag fir die Entwicklung von Microservice-Architekturen fiir
3D-Geovisualisierungssysteme bereit — eine aktuelle Herausforderung in der Softwaresys-
temtechnik in Hinblick auf den Aufbau skalierender IT-Lésungen.
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Chapter 1

Introduction

This chapter provides an introduction into the the context of thesis, its motivation, and
its main contributions. Furthermore, it presents the structure of the remaining chapters.

1.1 Virtual 3D City Models

This thesis focuses on service-oriented concepts and techniques for a web-based access
and visualization of virtual 3D city models. These models denote a fundamental category
of 3D geospatial models for a broad range of 3D geospatial applications.

“Virtual 3D city models represent spatial and geo-referenced urban data by means
of 3D geovirtual environments that basically include terrain models, building models,
vegetation models as well as models of roads and transportation systems. In general,
these models serve to present, explore, analyze, and manage urban data. As a char-
acteristic element, virtual 3D city models allow for visually integrating heterogeneous
geoinformation within a single framework and, therefore, create and manage complex
urban information spaces.” [DBB06] The web-based access and visualization of virtual
3D city models represent key challenges for digital transformation processes and for the
design, implementation, and deployment of corresponding I'T applications, systems, and
services.

The areas of application for virtual 3D city models are continuously growing and in-
clude the following: city planning [XQO06; Fer™15; PIB17] , urban design [XQO6], disaster
and emergency management [KGP05; Mor™11; Dem™*16], physically-based simulation
(estimation of solar radiation [Wie™15; Cha™17], shadow and lighting simulation [LHO5;
Bil*16], noise distribution [KL16; Zhat16; LBL17; Kum™17], or air quality), energy
application [Diitb™11; Str*11; KK12; Nout14], infrastructure planning [Ros10; Nout14;
SK14], navigation [SR08; Cap*12], mobile network planning [Lie*10], or collaborative
urban problem solving and public participation [KD10; WHG10; DK14; Bra®16]. Several
studies examine the specific conditions and constraints that affect the successful imple-
mentation of virtual 3D city models in specific domains (e.g., urban planning [HC15]).
As Biljecki et al. point out, virtual 3D city models “have been predominantly used
for visualisation; however, today they are being increasingly employed in a number of
domains and for a large range of tasks beyond visualisation.” [Bil*15] That is, virtual
3D city models are becoming more and more computational models.

All of these applications rely on 3D visualization as a key feature to display, manip-
ulate and evaluate 3D geoinformation. Consequently, visualization is a crucial part of
nearly every application, service, and system that uses virtual 3D city models.

In recent years, computing paradigms have shifted towards mobile, distributed
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applications that run on a variety of devices and platforms. The desktop application as
former primary target platform for visualization applications is increasingly challenged
by the constantly growing demand for a user experience that spans different devices and
platforms (noted as number one strategic trends “Gartner Top 10 Strategic Technology
Trends for 2016™). Service-oriented architectures (SOA) for visualization provides a key
means to address issues of hardware and software heterogeneity. It also addresses the
increasing demand for distribution of large-scale data especially common in the context of
3D visualization. Consequently, a future key factor for the success of technology related
to virtual 3D city models will be their web-based architecture and deployment.

This thesis focuses on concepts and techniques for web-based provisioning, web-based
interaction, and web-based applications of virtual 3D city models. To this end, it considers
the following four research areas (Fig. 1.1):

3D Computer Graphics and the implementation of rendering techniques and data pre-
processing techniques for 3D datasets;

Geovisualization for the interactive display of 3D geodata and georeferenced data;

Service-Oriented Computing providing tools and concepts for building distributed ap-
plications that integrate data from different service sources and requires services to
be orchestrated; and

3D User Interaction managing the interaction between the user and the 3D geovirtual
environment (3D GeoVE).

Thesis
Context

Service-
Oriented
Computing

Visualization Interaction

Figure 1.1: Main research areas of this thesis: a) 3D Computer Graphics, b) Geovisualization,
¢) Service-Oriented Computing, and d) 3D User Interaction.

This thesis is inspired by the vision to design and implement geovisualization-oriented
service components as small, independently usable and reusable functional components
that are connected over a network. It aims to develop an alternative to already existing
monolithic approaches and software architectures. Accordingly, it incorporates a growing
number of standards set by the Open Geospatial Consortium (OGC) that define modeling,
encoding, and retrieval of 2D and 3D geodata, such as feature geometry and attributes,
maps, and renderable 3D scenes. In particular, CityGML [Kol09] provides a widely
accepted standard for semantic, geometric, and appearance modeling of virtual 3D city
models. Recently, the OGC released a standard for the retrieval of scene data and image
depictions of 3D GeoVEs called 3D Portrayal Service (3DPS) [Hag™17].

'https://www.gartner.com/doc/3231617, last accessed 2016/05,/06
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There are numerous solutions that implement virtual 3D city model preprocessing
and visualization using client-side 3D rendering. However, image-based provisioning of
virtual 3D city models has not yet received a broad attention in research and application
yet, but will certainly become a crucial technology requirement for distributed, web-
based or mobile applications and systems. Image-based approaches allow for a robust
distribution of depictions of virtual 3D city models. They offer major advantages such
as visual quality that is independent of end-user hardware and avoids the transfer of
massive raw geometry and texture data to client applications.

In this thesis, the term ‘provisioning of virtual 3D city models’ is used as follows:

Preprocessing, compacting, distributing, and visualizing virtual 3D city models
so that they can be efficiently used within a distributed, web-based environment.

Provisioning also encompasses features such as data fusion, content selection, content
authoring, and media encoding in such a way that the depictions of virtual 3D city
models can be efficiently transmitted to and effectively used by client applications. It
also includes media creation derived from virtual 3D city models such as synthesized
digital videos.

1.2 Motivation

The general motivation of thesis is the idea to built a service-based framework that
allows us to construct applications that use high-quality 3D visualization of massive,
heterogeneous virtual 3D city models in a web-based environment with low software
and hardware requirements, e.g., limited 3D rendering capabilities of mobile or low-end
desktop clients.

In today’s information technology and system architectures, the monolithic stan-
dalone systems are slowly disappearing and getting replaced by service-based, decentral-
ized systems. Within those system, each service provides a dedicated, sometimes only
small set of features. The provisioning of virtual 3D city models based on a SOA using
a network (either intranet or the internet) simplifies the data management of complex
data sources as required for virtual 3D city models. It facilitates the construction of
application-specific solutions based on a toolbox of services, and leads to scalable ap-
proaches for the deployment of such service-based solutions. It also provides a solution to
overcoming the hardware diversity regarding 3D rendering capabilities of today’s end-user
platforms.

A promising approach building such solutions are image-based approaches for provi-
sioning virtual 3D city models using portrayal services where complex model data is kept
on the server side. This approach effectively limits the resources required for accessing
and displaying those models on the client side. Furthermore, the image-based portrayal
as a core functionality of such systems allows for the provisioning of virtual 3D city
models in a new and intuitive way by using different media (e.g., video clips) that are
generated by higher-level services that rely on robust rendering services,and integrate
this rendering functionality from different rendering services.

Taking the above-mentioned motivation into account, the following research questions
have been identified that are addressed in this thesis:
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1. Service Decomposition. How can the functionality of 3D geovisualization sys-
tems be decomposed into smaller units that can be operated and maintained
individually? How can such systems be orchestrated (e.g., for geodata infrastruc-
tures (GDI)) and what are the requirements for each of these components (e.g., in
terms of performance)?

2. 3D Rendering Services. How can large-scale virtual 3D city models be rendered
by a service-based approach and in a robust and efficient way on different, possibly
resource-limited end-user platforms and devices? In particular, efficient 3D rendering
must be provided within the constraints of a service and its deployment. How
should scalability aspects for serving multiple clients at the same time be addressed?

3. Interactivity. How can interaction be supported for clients that are not able to
handle the 3D models locally (e.g., due to restricted hardware capabilities or if raw
data is not accessible due to privacy reasons)?

4. Media Generation. How can services provide features to automatically synthesize
standard visual media such as digital videos for virtual 3D city models in an
automated manner? And how can those be processed automatically, e.g., if the
underlying data changes?

1.3 Contributions

The key contributions of this thesis include:

1. A service-based concept for image-based provisioning of virtual 3D city
models by a group of geovisualization services that address layered maps, camera
control, and video export as key features required by applications and image-based
provisioning of virtual 3D city models (Chapter 4).

2. Design and implementation of a 3D rendering service for virtual 3D city
models that takes into account the specific geometric and graphics characteristics
of virtual 3D city models as well as the requirements for building data pipelines
between different services operating on images of virtual 3D city models (Chapter 5).

3. Design and implementation of a layered map service for virtual 3D city
models generating so called layered maps as tile-based, map-like oblique views of
virtual 3D city models, which allow for exporting the contents of virtual 3D city
models by means of standard tile-based map chunks. (Chapter 6).

4. Design and implementation of a video service that synthesizes videos for
virtual 3D city models (Chapter 7) based on a high-level description of the underlying
camera animation.

5. Design and implementation of a camera interaction service that supports
3D camera interaction and animations for virtual 3D city models within web-based
geovisualization solutions (Chapter 8).

Parts of the work described in this thesis have been previously peer-reviewed and
published as scientific papers and journal contributions. Selected key publications include:
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o J. Klimke, B. Hagedorn, and J. Déllner, “A Service-Oriented Platform for Inter-
active 3D Web Mapping”, in Service-Oriented Mapping, 2012, pp. 127-139.

e J. Doéllner, B. Hagedorn, and J. Klimke, “Server-based rendering of large 3D
scenes for mobile devices using G-buffer cube maps”, in Proceedings of the 17th
Int. Conf. on 3D Web Technology, 2012, pp. 97-100.

« J. Klimke, B. Hagedorn, and J. Déllner, “A Service-Based Concept for Camera
Control in 3D Geovirtual Environments”, in Progress and New Trends in 3D
Geoinformation Sciences, 2013, pp. 101-118.

« J. Klimke, B. Hagedorn, and J. Déllner, “Scalable Multi-Platform Distribution of
Spatial 3D Contents”, Int. J. 3-D Inf. Model., vol. 3, no. 3, pp. 35-49, 2014.

o J. Klimke, B. Hagedorn and M. Trapp and J. Déllner “Web-based and Mobile
Provisioning of Virtual 3D Reconstructions”, In R. Franken-Wendelstorf and E.
Lindinger and J. Sieck, ed., Tagungsband der 12. Konferenz Kultur und Informatik:
Reality and Virtuality, pages 17-28, 5 2014 Werner Hiilsbusch Verlag.

The following prototypical components and services have been implemented as part
of this thesis to show the feasibility of the service-based provisioning concepts:

3D Data Parsing and Optimization This component is responsible for importing virtual
3D city model contents. In particular, 3D geometry, 2D textures, and georeferenced
data attributes are reorganized to allow for efficient access and rendering on a
GPU. Furthermore, a database back-end has been developed to keep features, their
attributes, and their hierarchy accessible and usable for the rendering process as
well as for semantics-based styling.

3D Rendering Service This service implements techniques for efficient, high-quality
3D rendering of virtual 3D city models as well as an interface for data selection
and retrieval from an underlying database as standardized, self-describing service
interface based on the OGC 3DPS. It allows for efficient styling of city model
objects based on their attributes (thematic visualization) using an XML-based
description language. The implementation and rendering algorithms are specifically
designed to handle large-scale data, i.e., large in size and spatial extent), textured
3D geodata, and the geometric and graphics characteristics of typical virtual 3D
city models.

Layered Map Service This service exports virtual 3D city model contents by means of
a stylized, tiled map-like oblique view (also called “3D map” or “bird’s eye view
map”) of the virtual 3D city model. In addition, it allows for combining these views
with additional information layers. For each map, contents can be configured, in
particular, model elements can be selected such as terrain textures and client-side
points-of-interests, or feature geometry.

Mobile and Web Applications based on Layered Maps Three proof-of-concept appli-
cations for mobile devices based on Apple iOS and Android operating systems
have been implemented that are based on the layered map service. They provide
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application-specific user interfaces optimized for map usage. Consequently, these
applications, consequently, form a kind of blueprint to build application-specific or
customer-specific I'T solutions based on the proposed services.

Video Service for Virtual 3D City Models This service synthesizes videos of virtual 3D
city models; its implementation relies on 3D portrayal services. A service request
delivers as result a digital video in a predefined video encoding standard. This
service also provides a map-based front-end that allows users to configure the
camera related parameters as well as the composition and timing of video elements
(e.g., overlays, blendings).

Camera Service This service provides functionality for computing camera positions,
viewing directions and camera paths within a virtual 3D city model. Its implemen-
tation relies on 3D portrayal services. With this service, applications can build
advanced camera controls for virtual 3D city models in a service-oriented way
without they themselves having to implement camera models or camera behavior
functionality.

1.4 Structure

The remaining part of this thesis is structured as follows.

Chapter 2, Foundations introduces foundations and terminology of related topics of
this thesis.

Chapter 3, Related Work provides an overview of previous research relevant for this
thesis.

Chapter 4, A Service-Based Concept for Image-Based Provisioning of Virtual 3D City
Models presents the overall service-oriented concept related to the image-based
provisioning of virtual 3D city models, supporting multiple end-user platforms,
devices, and media.

Chapter 5, 3D Rendering Service for Virtual 3D City Models describes the 3D ren-
dering service for virtual 3D city models and its implementation.

Chapter 6, Layered Map Service for Virtual 3D City Models presents the layered map
service as well as its implementation and usage by web applications and mobile

apps.

Chapter 7, Video Service for Virtual 3D City Models introduces the video service and
its implementation.

Chapter 8, Service-Based Camera Interaction introduces the concept for camera ser-
vices and its implementation.

Chapter 9, Case Studies provides an overview of the use cases that illustrate application
and usage of the services introduced in this thesis.

Chapter 10, Summary and Outlook summarizes the key contributions of this thesis
and provides an outlook of possible future research topics.



Chapter 2

Foundations

This chapter outlines key terminology and concepts for the geospatial area, computer
graphics and visualization, service-orientation, and virtual 3D city models that are used
throughout this thesis.

2.1 Foundations Related to Geospatial Topics

Geodata According to ISO/TC 211 standard terminology, geodata or geographic data is
“data with implicit or explicit reference to a location relative to the Earth” [ISO14].
The term geospatial data is often used in the same way. Data linked to or related to
spatial locations is frequently named georeferenced data. For example, a transaction
for a payment made by credit card in a shop can be spatially referenced to the
shop location. Therefore it denotes georeferenced data.

Geospatial Feature Geospatial features refer to digital representations of real-world
entities or phenomena. “It has a spatial domain, a temporal domain, or a spa-
tial/temporal domain as one of its attributes.” [KRT09] For example, a park can
be represented as a geospatial feature by its surrounding polygon.

Open Geospatial Consortium The Open Geospatial Consortium (OGC) is the interna-
tional organization dedicated to developing open standards for the global geospatial
community. OGC standards are used in industry and science to ensure inter-
operability and transparency. They are present in all fields of geoinformation
systems, applications, and services in a variety of domains such as “Geosciences &
Environment; Defense & Intelligence; Smart Cities, including IoT & Sensor Webs,
mobile tech, and the 3D & Built Environment; Emergency Response & Disaster

Management; Aviation; Energy & Utilities; and many more.”!

Virtual 3D City Model A virtual 3D city model is a digital representation of geospatial
features, geodata and georeferenced data of an urban area. It represents both
man-made and natural objects in terms of 3D models such as building models as
textured or untextured 3D geometry. See Section 2.4 for a more detailed description
of this topic.

CityGML CityGML [Grot12] “is a common information model for the representation
of 3D urban objects” [Maoll]. It serves as modeling and encoding standard for
virtual 3D city models defined by the OGC and is based on Geography Markup

https://www.opengeospatial.org accessed at September 7th 2018
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Language (GML) [Por07]. It allows for defining city model objects at different
levels of detail, describes the appearance of its components, specifies structures
and relationships among these elements, and assigns semantics according to entity
categories.

KML KML [Burl5] is “an XML language focused on geographic visualization, including
annotation of maps and images”; it is part of the technology on top of which
GoogleEarth is implemented. KML includes not only the presentation of graphical
data on the globe, but also the control of the user’s navigation in the sense of where
to go and where to look. Since KML is tightly related to virtual 3D globes, it is
designed to cover common application cases such as placement of position markers,
map images, or 2D and 3D objects.

Google Earth The Google Earth? desktop application, the most prominent example of a
web-based 3D geovisualization application, supports exploring 2D and 3D geodata,
fetched from external services or provided by users on their local machine. While
fundamental geodata is provided by Google, the solution supports the integration
of customer-specific 2D data (e.g., terrain textures or geometry terrain overlays
provided by OGC Web Map Service (WMS) or as georeferenced image files) and
3D data (e.g., georeferenced 3D models encoded in OGC KML). It also provides a
user interface for defining and rendering of virtual 3D tours and their video export.
Classified as a medium to thick client application, 3D rendering in Google Earth is
implemented on the client side, limiting the amount of data and rendering effects
that can be applied to the current system configuration. Nevertheless, there have
been efforts to integrate 3D portrayal services with Google Earth in the context of
the OGC 3D Portrayal Interoperability Experiment ($DPIE) [SHC12], particularly
using the Web 3D Service (W3DS) [SK10] for geometry-based 3D portrayal and
Web View Service (WVS) [Hagl0] for image-based 3D portrayal.

Virtual Environment Virtual environment (VE) denotes computer-generated, three-
dimensional representations of a virtual 3D scenes. VE generally refers to “inter-
active, virtual image displays enhanced by special processing and by non visual
display modalities, such auditory and haptic, to convince users that they are im-
mersed in a synthetic space” [Ell94]. The users perceive themselves to be within
the VE where interaction takes place. For example, the CAVE [Cru™92| represents
a strongly immersive virtual environment. Related technology is frequently based
on techniques from Virtual Reality (VR) and Augmented Reality (AR), whose 3D
virtual scenarios allow for a simulation of a realistic experience for its users. Its
contents are typically organized by a 3D scene graph.

3D Geovirtual Environment A 3D Geovirtual Environment (3D GeoVE) refers to a
virtual environment that models physical environments similar to our real world
or imaginary spaces. Frequently, virtual 3D city models are the base data used
to build 3D GeoVEs. 3D GeoVEs “make use of one or more ‘aspects of virtuality’
to reflect components of the real world in intuitive ways.” [FMO01] For example,

2https://www.google.com/earth/
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large-scale CAVE [Cru™92] can be used to provide an immersive experience for
urban design projects.

2.2 Foundations Related to Computer Graphics and
Visualization

Rendering The term rendering refers to processes and techniques that synthesize digital
images based on computer graphics models and procedures. Rendering represents
the core task of today’s computer graphics hardware and is largely implemented
using graphics processing units (GPUs). In most interactive applications, the
image-generation process needs to be “fast enough” to provide the illusion of a
steady image flow, i.e., a frame rate of more than approx. 8-15 frames per second
is required to achieve real-time rendering [Ake™*18].

Image-Based Rendering Image-based rendering denotes those rendering approaches

using “images rather than geometry as main primitives for rendering novel views”
[SCKOT7] of a specific 3D scene. It allows for optimizing the depiction of complex 3D
scene geometry and is well suited for server-side rendering. In general, generated
images can be transferred efficiently to clients that reconstruct the original 3D scene
based on these images [HHD11]. For example, a rendering server can generate a
six-sided cube map of a 3D scene, then transfer it to a client viewer, which displays

it [DHK12].

Visualization The notion visualization refers to a cognitive activity or process that allows

humans to obtain insights and understanding about data and its correlations [Spel4].

In general, it can be seen as “the activity of forming a mental model of something”
[Speld]. Visualization aims at mapping data in a way so that the human eyes
can see (perception) and the human mind can understand (cognition) the data
and its underlying characteristics, i.e. its structure, relationships, outliers, and
clusters [RF94]. Visualization creates “graphical models and visual representations
from data that support direct user interaction for exploring and acquiring insight
into useful information embedded in the underlying data.” [OL03] The impact and
importance of visualization arises from the strong human perceptual and cognitive
abilities such as automatic pattern finding: “Visual displays provide the highest
bandwidth channel from the computer to the human. Indeed, we acquire more
information through vision than through all of the other senses combined” [War12].
Historically, visualization started as Scientific Visualization and was motivated by
the first applications that visualized scientific data [MDBS87; Bro™92; Spel4].

Information Visualization The notion information visualization refers to the visualiza-
tion of abstract data, i.e., it includes those concepts, methods, and techniques
that allow us to visualize non-geometric data, either numerical or non-numerical
data, in particular high-dimensional information spaces [War12]. For information
visualization, it is essential to define a process that maps abstract data to renderable
geometry and graphics. It “creates graphical models and visual representations
from data that support direct user interaction for exploring and acquiring insight
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into useful information embedded in the underlying data” [OL03]. The abstract
and possibly high-dimensional data needs to be “spatialized”, i.e., it is trans-
formed into a lower-dimensional space and into geometric representations using
computational algorithms and spatial metaphors. This way, spatialization helps
us discover patterns, structures, and relationships within high-dimensional data
using our human perceptual and cognitive abilities [Geet05]. Common techniques
for information visualization include scatter plots [Cle93], parallel plots [Ins97], or
dust-&-magnet [YiT05] representations.

Geovisualization The visualization of geospatial or georeferenced data is frequently

called geographic visualization [DMKO5] or, slightly more specific, geovisualiza-
tion [MACT99]. It was initially defined by MacEachren et al. as “the use of concrete
visual representations — whether on paper or by computer displays or other media
— to make spatial contexts and problems visible, so as to engage the most powerful
of human information-processing abilities, those associated with vision” [Mac™92].
So, the notion generally refers to methods, concepts, and techniques that are based
on or make use of the spatial nature of the data and that apply principles found in
cartography and map making. The visualization of geospatial data has its roots
more than thousand years ago when maps became fundamental tools to understand
and explore our physical environment and the world in general [Nol06].

The Visualization Pipeline The visualization pipeline describes the technical visualiza-

tion process, i.e., the process of creating visual representations of data as a data
flow model. The model of the pipeline consists of by three major conceptual
stages [HM90]:

Preprocessing Stage: Gathers, fuses, and integrates raw data from different data
sources. It can filter, complement, convert or prepare data to simplify it for
processing in later stages.

Mapping Stage: Transforms preprocessed data into visual representations, i.e.,
renderable graphic representations by means of geometric primitives and
graphics attributes, e.g., visual features, shape, size, color, or texture.

Rendering Stage: Transforms mapped data into displayable images and synthe-
sized visual representations.

Dos Santos and Brodile [SB04] extended this model for improved processing of
multivariate data. They split the preprocessing stage into a separate data analysis
and a filtering step. The data analysis generates an improved dataset by applying
different methods, e.g., error correction, data smoothing, transformation, or clus-
tering algorithms. The filtering stage extracts the portion of the overall data that
is to be visualized. Fig. 2.1 shows this extended pipeline model. Here, users are
able to configure data processing more precisely by adjusting the data analysis and
filtering process separately.

Another key component in the visualization pipeline is the human user. The human
perceptual and cognitive system allows us to visually and cognitively process
the visualized information. By perception and the ensuing interpretation of the
generated images by users, a mental model is built that allows users to recognize
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Figure 2.1: Model of the visualization pipeline describing the stage-wise generation of visual

Geometric
Data

representations. The depiction follows the four parted model for a visualization pipeline introduced
by Dos Santos and Brodlie [SB04]. The user can modify each stage of the visualization pipeline to
adjust the visualization forming a visualization cycle.

connections and analyze the dataset. Colin Ware gives a detailed description
of the steps and processes of the visualization pipeline [Warl2]. In connection
with the technical stages, the so-called visualization cycle is formed, i.e., the user
configures data selection and filtering, defines data mappings, and interactively
explores the resulting visualization; based on their feedback, the stages can then be
reconfigured [Ups™89]. Step by step, users form and update their internal mental
model.

Distributed Visualization Pipeline Technically, the stages of the visualization pipeline
could be implemented in a distributed manner. Depending on the stages that are
implemented on client side and on server side, three different types of systems
are distinguished based on the type of data that is transmitted via a network: 1)
Thick clients fetching filtered data from thin servers, 2) medium clients fetching
mapped data (i.e., geometric primitives or textures) from medium servers, and 3)
thin (lightweight) clients fetching rendered images from thick servers (see Fig. 2.2).
End-user hardware and software requirements (e.g., processing power, disk and
main memory capacity and GPU capabilities) differ based on the distribution type
and the corresponding types of client applications.
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Figure 2.2: Functional segregation of the visualization pipeline into server and client components
for three principal client types [DC98].

2.3 Foundations Related to Service-Orientation

Service-Oriented Computing The term service-oriented computing (SOC) refers to a
computing paradigm that uses services as its core building blocks to design, construct
and deploy complex software systems in a distributed way and within heterogeneous
environments. SOC envisions “cooperating services that are being loosely coupled
to flexibly create dynamic business processes and agile applications that may span
organizations and computing platforms, and can adapt quickly and autonomously
to changing mission requirements.” [PG03]

Service-Oriented Architecture The principles and concepts for SOC are investigated in
the field of SOAs. They provide “a paradigm for organizing and utilizing distributed
capabilities that may be under the control of different ownership domains. It
provides a uniform means to offer, discover, interact with and use capabilities to
produce desired effects consistent with measurable preconditions and expectations.”
[Mact06]
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Service In the context of software engineering, in particular in the fields of SOC and SOA,
the term service refers to a concept for software components with specific properties:
They “provide autonomous, platform-independent, computational elements that can
be described, published, discovered, orchestrated and programmed using standard
protocols to build networks of collaborating applications distributed within and
across organizational boundaries.” [KA07] In the context of geographic information
systems, a wide range of services has been defined and standardized by the OGC.

Web Feature Service The Web Feature Service (Web Feature Service (WFS)) standard-
ized by the OGC, allows access to feature data including their 2D or 3D geometries
and their properties, encoded in standardized formats. The WF'S standard uses the
OGC Filter Encoding Standard [Vrel4b] for defining complex spatial and nonspatial
queries to a WFS instance. Besides defining a query interface, the WFS standard
also defines an optional Transaction operation that allows data insertion, update,
and deletion.

3D Portrayal Service The 3D Portrayal Service (3DPS), as defined by the OGC, “is a
geospatial 3D content delivery implementation specification” [Hag™17] intended to
build interoperable service-oriented 3D geovisualization systems and applications.
This standard specifies how 3D geodata portrayals are described, selected, and
delivered. The 3DPS provides two delivery schemes: The Scene Eztension for
requesting 3D scene data that is rendered by clients and the View Eztension for
requesting rendered images of 3D scenes. As this thesis primarily handles image-
based 3D portrayal, the term 3DPS refers to the View Extension of the 3DPS
unless otherwise noted.

Web-Based Provisioning Web-based provisioning of virtual 3D city models, in the con-
text of this thesis, refers to the methods, concepts, and techniques that allow for
transmitting, rendering, and use of virtual 3D city models in typical web-based
computing environments such as web browsers or 3D apps on smartphones. To
implement those approaches, SOA and SOC are key concepts used to design corre-
sponding geovisualization services. For example, the OGC 3DPS can be used to
build such systems.
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2.4 Virtual 3D City Models

Virtual 3D city models are a major category of data models that form the basis for
3D GeoVEs [DBBO06]. They represent entities of our built and natural environments by
means of data entities that reflect their principal characteristics in terms of geometry,
appearance, structure, and semantics. Their use is not limited to visualization applications,
i.e., they are a generic computational models for analysis, simulation, visualization, and
documentation. Virtual 3D city models are analogous to physical 3D city models that
have been used throughout centuries for purposes of urban planning and design.

Various types of 2D geodata, 3D geodata, and georeferenced data are frequently used
to assemble a virtual 3D city model. In most cases, virtual 3D city models cannot be
created from geodata from a single source alone (e.g., 3D point clouds acquired by laser
scanning) since they require several layers of information (e.g., terrain models, building
models, infrastructure objects). For that reason, systems and applications dealing with
virtual 3D city models must be able to handle different types, qualities, precision, and
acquisition times of geodata and georeferenced data. Consequently, virtual 3D city models
are usually complex, massive, distributed, and heterogeneous.

2.4.1 CityGML

The City Geography Markup Language (CityGML) is an international standard published
by the OGC for modelling and encoding virtual 3D city models. CityGML is widely
accepted and supported by a variety of tools for 3D modelling, authoring, and checking
model consistency [Wagt13; Alat14; Wen'17]. In its 12 thematic modules, it defines
principal components and entities that constitute a virtual 3D city model [GroT12].
Tab. 2.1 lists these modules and the corresponding entities or concepts that are being
modelled therein.

Module Description

Appearance Textures and materials for other types

Bridge Bridge-related structures, possibly split into parts

Building The exterior and possibly the interior of buildings with individual

surfaces that represent doors, windows, etc.

CityFurniture Auxiliary objects in an urban environment (e.g., benches, traffic
lights, signs, etc.)

CityObjectGroup | Grouping concepts for groups of objects of other types

LandUse Areas that reflect different land uses, such as urban, agricultural,
etc.

Relief The shape of the terrain

Transportation Transportation infrastructure such as roads, railways and squares

Tunnel Tunnels, possibly split into parts

Vegetation Areas with vegetation or individual vegetation objects such as trees

WaterBody Lakes, rivers, canals, etc.

Generics Other types that are not explicitly covered

Table 2.1: CityGML modules and the objects covered
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The corresponding model entities are described by CityGML in an object-oriented
manner by classes, their attributes, as well as by the relationships between these classes.
The model is built as an application schema of the OGC GML [Por07]. It extends the
language in terms of additional classes, attributes, constraints and modules. A core
feature of CityGML is a concept for Level of Detail (LOD) that enables modelling the
objects of a virtual 3D city models in different geometric and semantic detail. There are
five levels of detail LOD levels defined for objects, e.g., buildings:

LODO represents buildings by their 2D footprints.
LOD1 provides block models, i.e., 3D extruded footprints without roof structures.
LOD2 provides differentiated boundary surfaces and roof structures.

LOD3 provides architectural models of the outside hull in high geometric detail including
openings for windows and doors.

LOD4 adds elements for modelling indoor structures such as rooms, interior doors, stairs,
or furniture.

2.4.2 Generation and Management of Virtual 3D City Models

A growing number of administrations and businesses have set up processes for generating
and updating virtual 3D city models. However, when quality and precision requirements
apply their models, those processes are far from being completely automated. For that
reason specifically, generating a virtual 3D city model is still a cost- and time-intensive
task.

Today, virtual 3D city models are generally created today from a variety of heteroge-
neous sources of 2D and 3D data [Ros™09], such as Geographic Information System (GIS)
datasets, i.e., Digital Terrain Model (DTM), road network geometry, land use data,
cadastral data, aerial photographs. Additional data sources can also include high-detail,
textured 3D building models or architectural models [DBB06]. Latest approaches are
based on remote sensing data (e.g., dense 3D point clouds), from which 3D object rep-
resentations can be derived (e.g., 3D building models) [Bre00; DolT06; ZN08; RKD13].
However, due to the complexity of man-made and natural environments, it remains
difficult, or is nearly impossible to create a complete match for all for objects of interest
(e.g., due to temporary construction work, parked cars, or partially built infrastructures).
Nevertheless, some existing approaches allow a derivation of operational LOD2 models
in a highly automated manner by using a combination of data sources, such as a 2D
building cadastre, LiDAR scans, and aerial images [CXL17; RB16]. A comprehensive
description of the various approaches to generate virtual 3D city models is outside the
scope of this thesis; Musialski et al. [Mus*13] provide a good introduction on this topic.

2.4.3 Application Domains

Applications of virtual 3D city models are manifold, since they are used as base data for
applications both in administrative areas (e.g., cadastre, urban planning, or simulations)
as well as in various industries (e.g., city marketing, real-estate industry, or renewable
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energies). Different fields of applications take advantage of their steadily increasing
availability and quality in terms of resolution, coverage, and precision [MAK10; BilT15].
Example application fields include:

o Disaster and Emergency Management [KGP05; Mort11; Dem™16]

¢ Urban Planning [XQ06; Fer™15] and Public Participation [WHG10; DK14; Bra™*16]
o Energy Planning and Simulation [Diib™11; Str*11; KK12; Nout14]

o Training [RBKO7]

o Simulation of Noise Propagation [KL16; Zha'16]

o Visibility Analysis [ED09; AMH13; NF14]

o Archaeology and Heritage [Trat10; Agat10; RC15; PIB17]

o Semantic Supported Statistical Analysis [BLS17]

CityGML provides the Application Domain Extension (ADE) as “a built-in mech-
anism of CityGML to augment its data model with additional concepts required by

particular use cases” [BKN18]. An overview of numerous ADEs that have been created
is provided by Biljecki, Kumar, and Nagel [BKN18|.

2.5 Modeling Notation

Two different modeling languages are used in this thesis: a) The Fundamental Modeling
Concepts (FMC)3 [KGTO06] and b) the Unified Modeling Language (UML). FMC is
primarily used to describe system structures, architectures, and behavior on a more
conceptual level while UML is used more for the implementation specific modeling.

3A compact introduction into the FMC modeling notation can be found at http://www.fmc-modeling.
org/download/notation_reference/FMC-Notation_Reference.pdf (accessed September 8th 2018)
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Chapter 3

Related Work

This chapter gives an overview of relevant related work for this thesis. It briefly introduces
the concepts and presents how they relate to the contributions of this thesis.

3.1 Web-Based Provisioning of Virtual 3D City Models

There are three major research areas for web-based provisioning of virtual 3D city models
that are relevant for this thesis: Service-oriented approaches in GIS, web-based approaches
in computer graphics, and the provisioning of virtual 3D city models as oblique image
tiles. In the following, related work concerning these areas is briefly described.

3.1.1 Service-Oriented Approaches in GIS

Service orientation has been playing a key role for about two decades in the scope of
geoinformation systems and for interoperability among these systems. The term service is
defined by the OGC as “a distinct part of the functionality that is provided by an entity
through interfaces” [Perll]. These interfaces are “a named set of operations that charac-
terize the behavior of an entity” [Per11]. A service operation is defined as “a specification
of a transformation or query that an object may be called to execute. Each operation has
a name and a list of parameters.” [Perll] In particular, the OGC has defined a number
of influential standards for geodata encoding and service interfaces for data exchange
such as the WMS [La 06] for retrieval of map images, the WFS [Vrel4a] for retrieval
and modification of feature data, the Web Coverage Service (WCS) [Baul8] for retrieval
of geospatial coverages, the Web Processing Service (WPS) [MP15] for implementation
of processing functionality. All of these standards provide a common GetCapabilities
operation that provides service meta information, e.g., available service operations and
information about the data provided by the service. Encoding formats standardized by
OGC include, e.g., the GML [Por(07] describing features, the Filter Encoding [Vrel4b] pro-
viding means for query encoding, Styled Layer Descriptor (SLD) [Lup07] and Symbology
Encoding (SE) [Mil06] describing map styling, KML [Burl5] for describing geographic
annotation and visualization scenarios. Furthermore, more recent works have been
investigating how SOC and SOA principles can be applied to building and operating
interactive, web-based geovisualization systems [HD10; SHC12; KG15; Hagl6].

The software reference architecture for geovisualization relying on image-based repre-
sentations was introduced by Hildebrandt [Hill4]. It uses per-pixel data for information
about depth, object ID, or object class. It aims at building lightweight, interactive
geovisualization clients, that use techniques for image-based rendering introduced ear-
lier [HHD11; DHK12]. A recently presented example of a geovisualization system based
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on the OGC 3DPS has uses the standard as an interface for different rendering back-ends
based on ray tracing [Gut™16].

“Typically, within GIS there is a clean cut between raw geodata and visualization
properties.” [NZ08] In standard OGC WMS, styling is limited to a set of predefined
styles that are provided in a proprietary way by the WMS implementation. Accordingly,
the client-side styling of features cannot be influenced, e.g., by thematic mapping. The
OpenGIS Styled Layer Descriptor Profile [Lup07], as an extension to the OGC WMS,
“explains how WMS can be extended to allow user-defined symbolization of feature and
coverage data. This profile defines how the SE standard can be used with WMS. ”
[Per11] It can be used to describe rule-based styles that are applied to features, which are
selected by filters specified in OGC’s Filter Encoding [Vrel4b]. The OpenGIS Symbology
Encoding Implementation Standard [Mul06] (SE), “specifies the format of a map-styling
language for producing georeferenced maps with user-defined styling. SE is an XML
language for styling information used to portray Feature and Coverage data. SE may
be used together with SLD. As SE is a grammar for styling map data independent
of any service interface specification it can be used flexibly by a number of services
that style georeferenced information or store styling information that can be used by
other services.” [Perll]. The OGC SE defines Symbolizer elements that describe “how a
feature is to appear on a map. The Symbolizer describes not just the shape that should
appear but also such graphical properties as color and opacity.” [Miil06] Five types
of symbolizers are defined: LineSymbolizer, PolygonSymbolizer, PointSymbolizer,
TextSymbolizer, RasterSymbolizer. Current OGC standards are limited to 2D styling
and do not apply styling in 3D. However, some approaches extend the mechanisms of
SLD and SE for styling in 3D portrayal by adding additional symbolizers, as well as
symbolizer properties and an extension for 3D portrayal services [NZ08; HFR07; Bast08;
RKT09; NZ09] that is analogous to SLD for WMS.

This thesis is based on the ideas of service orientation for geovisualization. The
concepts and techniques are aligned with the aforementioned OGC standards that support
the reusing of service components. The contributions of this thesis are targeted at higher-
level services for applications using virtual 3D city models, providing a key functionality
for their visualization. For thematic styling, a styling language for 3D portrayal is
introduced that is aligned with approaches mentioned above.

3.1.2 Web-Based Approaches in 3D Computer Graphics

Web-based approaches for 3D computer graphics are becoming key technologies for
the development of a various application areas, e.g., teaching and education [Blut11],
e-commerce [GR15], and medicine [Con™11]. Applications can be separated into client-
side and server-side 3D rendering approaches. Generally, approaches that render 3D
computer graphics in a web browser are described as either declarative approaches or
imperative approaches [Jan™13]. In declarative approaches, 3D scenes are described
using specialized modeling languages and encoding standards such as the Extensible
3D (X3D) [BDOT], a successor of the Virtual Reality Modeling Language (VRML) that
was introduced already in the early 1990s [Pes95]. Other approaches integrate 3D scene
descriptions into the HTML5 Document Object Model (DOM), such as X3DOM [Beh*09]
and XML3D [Son™10]. In contrast, imperative approaches for web-based 3D graphics
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specify the rendering process itself and often provide more flexibility for implementing
3D graphics applications. The WebGL API, standardized by the Khronos Group!, is
today’s key implementation tool for web-based 3D rendering, since it is supported by
all major mobile and desktop browsers at the time of writing. The Khronos Group also
specified the GL Transmission Format (gI/TF), a 3D scene format that “has been designed
with modern graphics card and web technologies, especially WebGL, in mind. gITF 1.0
has been launched by Khronos in October 2015 and received support from the industry
from the beginning. glTF supports only basic elements of 3D scenes (node hierarchy,
materials, textures, animation, cameras, lights), which is sufficient for most applications.”
[SBN16]. A general overview about web-based visualization approaches is provided by
Mwalongo et al. [Mwa™16].

In contrast to client-side techniques for 3D rendering, “remote rendering techniques
permit streaming of high-quality 3D graphics onto a wide range of devices, and recent
years have also seen much research on methods of content delivery for web-based 3D
applications” [Evat14]. This concept shifts complex and computationally expensive 3D
rendering to server side and delivers rendered images to client applications. There are
several approaches to enabling interactive 3D graphics through remote rendering based
on a) video streaming [DHS05; Tiz*11], b) streaming of OpenGL commands [Hum™*01;
Gla*13], ¢) transmission and display of rendered framebuffers [Lam™03; Grit05], or d)
image-based rendering [DHK12; WV14]. A comprehensive survey of remote rendering
systems is provided by Shi and Hsu [SH15].

Unfortunately, standard approaches for both remote and client-side, browser-based
3D-rendering cannot be directly transferred to the specific demands of virtual 3D city
models as they exhibit specific data characteristics such as predominant texture data for
facades or large number of relatively small polyhedral 3D building models. When virtual
3D city models become large, general approaches typically fail in real-time application
scenarios.

In this thesis, a 3D rendering service implementation is proposed that can handle
these challenges of massive, textured, virtual 3D city models. This service provides a
lean, technical foundation for other services and modes of provisioning of virtual 3D city
models as introduced in Chapter 4. It applies specialized 3D rendering techniques and
provides simple-to-use components. A user can easily select objects in virtual 3D city
models or configure camera position and orientation himself. This approach does not
require the geometry and texture data of a virtual 3D city model to be transferred to
the clients.

3.1.3 Provisioning of Virtual 3D City Models Based on Oblique Image Tiles

One major challenge for 2D portrayal services, such as the OGC WMS, is that they are
not “scalable to large numbers of users due to a lack of ability to cache requests and this
is implicit in the way the standards are written.” [Bat*10] In order to avoid this issue,
tile-based map services are been used for 2D portrayal. They trade “the flexibility of
custom map rendering for the scalability possible by serving of static data (base maps)
where the bounding box and scales have been constrained to discrete tiles.” [MPN10]
Tile-based provisioning of maps is one of the key techniques for easy to use, immediately

https://www.khronos.org/webgl
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accessible applications with minimal hardware and software requirements. Prominent
examples for such services are the OGC Web Map Tile Service (WMS-T) [MPN10] and
the OpenGeo Tiled Map Service (TMS)?. By reducing rendered map images to tiles with
fixed scales and bounds and named layers, these tiles are commonly addressed by a tuple
containing their integer coordinates in x and y direction, their zoom level z and the layer
name. This method allows for efficient multi-level caching of map tiles on server side
and client side. It significantly reduces the amount of data that has to be transferred
and processed, especially for large numbers of clients using such a tiled representation of
geodata.

In analogy to the tile-based map services for applications based on 2D maps, Lian
et al. stated that tiled “2.5D maps have the potential to augment the value and extend
the use of existing virtual 3D city models.” [Lia™16]. In 2016, they provided a step by
step workflow for generating such 2.5D maps from virtual 3D city model datasets using
orthographic camera projections. Christen and Nebiker [CN15] presented an image-based
provisioning approach for complex 3D models based on tiled G-Buffer representations.
They used color, object id, and normal maps to simulate different lighting situations
using client-side deferred lighting. Image-tiles are organized in a quadtree providing tile
zoom levels, where only the most detailed zoom level is rendered by the 3D renderer and
the remaining levels are derived using image processing.

The approach to generate 2.5D tiled maps from a large-scale virtual 3D city model
also uses orthographic projections and rendering. In contrast to the approach presented
by Christen and Nebiker, the tile generation process allows for a detailed configuration,
which allows for different, scale-dependent contents to be included for each zoom level
of generated tiles, as it is common in 2D cartography. In addition, the layered map
approach approach supports run-time reconfiguration of maps by using overlay layers that
allow for visualization of different planning variants or provide switchable annotations.
These additional map layers can be combined with the help of standard 2D blending
techniques on a per-pixel basis. Insofar the the layered map approach is able to provide
a tile dataset that is designed specifically for the use case to be supported by a layered
map application.

3.2 Export of Virtual 3D City Models as Videos

Many applications aim to export contents of virtual 3D city models as common visual
media formats, e.g., digital videos. Videos provide an easy to use medium that is well
suitable to communicate virtual 3D city model contents. Those contents can be directly
fed into usual web content management systems. Consequently they are found on websites,
video platforms (e.g., YouTube), social media platforms, and even being incorporated into
presentations. Generation of these videos requires software features that either partially
or completely automatically produce videos based on corresponding camera animations.
Technically, videos are generated by rendering the clip frame by frame and then encoding
these frames using video encoding standards such as H.264 MPEG4 [ISO04].

The OGC standardized KML encoding provides the means for defining camera
animations, from which videos can be generated. Besides features for description of

thtps ://wiki.osgeo.org/wiki/Tile_Map_Service_Specification
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visualization scenarios (i.e., scene content and camera orientation), KML provides tours
(see kml:Tour element at 9.23 in [Burl5]) to model camera animations and scene content
over time. The general concept for tour modeling is illustrated in Fig. 3.1. It supports
simple camera animations, periods without camera movements, general animations of
visualization parameters (e.g., showing/hiding items), and timed sound effects. However,
KML does not provide the means to express complex video projects and thus does not
support including text overlays or blending between different parts of a video.

Tour stops here
FlyTe FlyTo Pause, then FlyTo Wait FlyTo
SoundCue AnimatedUgpdate
AnimatedUpdate
is truncated.
AnimatedUpdate
e |
0 1 2 3 4 5 <] 7 ] ] 10 11 12 13 14 15 16

seconds

Figure 3.1: Ouerview of KML tour modeling. Source: Google KML documentation®

Video authoring with 3D geovisualization as in KML Tours in the Google Earth
desktop client?, mainly defines the positions for camera keyframes and the transitions
between them, based on the KML model for camera paths and transitions. These camera
paths are then rendered at the selected frame rate and resolution using the local rendering
engine for video generation.

There are several other visualization solutions (e.g., Autodesk LandXplorer, ESRI
ArcGIS, Viewers by Agency 9) for generating videos from 3D geodata. They all require
local 3D capabilities for the videos to be rendered locally. While there are some approaches
for 3D visualization that are based on remote rendering, there are currently service-based
approaches for web-based authoring and video generation videos from massive 3D geodata.
In particular, none of them generate videos at a high abstraction level with thin clients
that do not require client-side 3D rendering. Such an innovative approach is presented in
this thesis.

Grimstead et al. presented the Resource Aware Virtual Environment [GAWO09)] tar-
geting heterogeneously sized hardware, wherein high-end devices execute local rendering
of the scene, while rendering services serve low-end devices, such as PDAs, an enable
mobile usage of the visualization system.

Camera control and video export represent two key challenges for a service-oriented
3D visualization systems: Both are high-level services that are meant to operate on
lower-level services to generate images and access data thereby ensuring flexibility,
interoperability, reusability, and a consistent body of geodata for all applications based
upon these service instances. Most importantly, they are to be decoupled from rendering
services, and supposed to handle the model data that is required to compute and design a
camera animation across the services in an efficient way. Insofar, they are good candidates
to enhance a SOA for image-based web provisioning of virtual 3D city models.

3https ://developers.google.com/kml/documentation/touring
*https://earth.google.com
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The approach for video generation presented in this thesis, includes a unique solution
for the description of video scenes from virtual 3D city models and their standards-based
generation on server side. It provides a more holistic approach for web-based video
generation, since it integrates a description of the 3D scene to be rendered, its styling,
camera paths, and its transition over time. It also includes the features for video authoring
that allows allow for scene transitions, text and image overlays, object-specific highlights,
or complex image-based rendering styles, often are neglected by many other applications
for visualization of virtual 3D city models. Consequently, the video service described in
this thesis provides a more comprehensive solution for the video-based communication of
virtual 3D city model contents than existing approaches and solutions.

3.3 Camera Control within Virtual 3D City Models

“Camera control, which encompasses viewpoint computation, motion planning and editing,
is a component of a large range of applications, including data visualization, virtual walk-
throughs, virtual storytelling and 3D games” [CONO8]. This section introduces relevant
topics within the area of interaction with virtual 3D environments. An introduction and
general overview of interaction techniques is provided Jankowski and Hachets [JH15]
survey paper.

3.3.1 Challenges of Virtual Camera Controls

“A 3D world is only as useful as the user’s ability to get around and interact with the
information within it” [TRCO1]. Interaction is considered to be a non-trivial task for all
kinds of virtual environments [FitT08; Rus™00] — many negative side effects of camera
control, such as the lost-in-space syndrome or motion sickness, are well-known. The
manipulation and steering of a virtual camera in 3D represents a complex task especially
for non-expert users — “indeed users find it problematic to deal simultaneously with
all seven degrees of freedom” [CONOS8]|. Fuhrmann and MacEachren state that “core
problems for users of these desktop GeoVEs are to navigate through, and remain oriented
in, the display space and to relate that display space to the geographic space it depicts.”
[FMO1].

Chen and Bowman advocate that any design for 3D interaction techniques should
be application and domain specific [CB09]. They propose to decompose the interaction
tasks into sub tasks that consist of universal interaction tasks (e.g. navigation, selection
or manipulation). Camera control in all kinds of virtual environments should assist users
in effectively exploring the 3D space and in avoiding confusing or disorienting viewing
situations, preventing “getting-lost” moments, and it should provide time-coherent,
continuous camera movements [BBD05]. A virtual camera’s behavior may also depend
on the semantics of the underlying 3D model: “A high degree of usability is achieved
because users can trigger complex navigation commands in a task and goal oriented way
taking advantage of the navigation properties and affordances inherent to elements of
geovirtual environments.” [DHS05] For example, strictly task-oriented camera techniques
could generate camera animations with respect to high-level navigation intentions such
as “from here, go to the closest landmark”. Thus, the camera control can be partially
automated to achieve a higher degree of effectiveness and reliability for user interactions
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within a 3D environment.

3.3.2 Automated Camera Control

“Automatic camera control refers to the automated computation of static and dynamic
camera parameters according to goal specifications typically without any direct user input.”
[HT14] Automated camera control techniques try to assist users with camera navigation
tasks by providing higher-level, task-driven camera manipulation that adapts to a current
situation in a geovirtual environment in terms of scale, geometry, object semantics, or
feature attributes, among other. In such advanced approaches, the camera control process
can generally a) interpret navigation intentions, b) derive path information, and c) adjust
the visualization. This way, users can express their navigation intentions by simple inputs
to a client application, such as pressing user interface controls, selecting objects in the
scene, or sketching paths or gestures [HHD10]. The user input is then interpreted based
on heuristics and corresponding rules, and potentially complex camera animations can be
automatically generated. With the help of spatial and logical constraints, navigation in 3D
geospatial models can be simplified. Hildebrandt and Timm present a three-fold concept
based on “users point to navigate, users are lead by suggestions, and the exploitation of
semantic, multiscale, hierarchical structurings of city models” [HT14].

3.3.3 Camera Control for Thick Clients and Thin Clients

For distributed applications using thick clients and medium clients, the rendering stage
of the visualization pipeline is implemented on client side, where the required data, such
as model geometry or points of interest, is directly available [AKO03]. For those clients,
various camera-control techniques can be implemented in a straightforward way, while
thin clients need supplementary services to support their navigation needs, since only
very limited model information is available on client side.

There is currently no support for camera interaction in official standards for 3D
portrayal services, i.e., in the OGC 3DPS standard. More importantly, in its current
version 1.0, it does not provide standardized operations for camera interaction at all. Its
predecessor, the Web View Service [Hagl0], discussion paper already contained proposed
service operations to support, e.g., ray casting or camera position retrieval.

The services presented in this thesis focus on supporting thin client solutions, which
do not have local access to a city model’s geometry or feature data.






Chapter 4
A Service-Based Concept for

Image-Based Provisioning of
Virtual 3D City Models

This chapter presents a concept for image-based provisioning of virtual 3D city models,
supporting multiple end-user platforms, devices, and media.

4.1 Image-Based Provisioning

While most existing approaches for 3D visualization of virtual 3D city models are built
upon geometry-based provisioning, i.e., clients generate images based on streamed 3D
geometry and 2D texture data, our approach for image-based provisioning differs with
respect to the following aspects:

Decoupled Complexity Image-based provisioning keeps the original virtual 3D city model
on the server side and generates image-based data, which is streamed to clients.
This way, model complexity is decoupled from visualization complexity. The server
handles the possibly large, massive virtual 3D model, while clients receive and
process image-based data of fixed size (e.g., rendered views). Consequently, client
applications can be implemented in a lean and efficient way as they do not need
to provide a fully featured 3D city model rendering engine and less data has to
be transmitted as no geometry and texture data from the original virtual 3D city
model has to be streamed.

Model Security The original virtual 3D city model does never leave its safe place on the
server side. Only image-based, derived representations are sent out to the clients.
In particular, if models contain sensitive data, their secure treatment represents a
crucial requirement for applications to get acceptance and to fulfill data privacy
policies.

High-Quality Rendering As the image-based approach relies on server-side rendering,
advanced 3D rendering techniques can be applied, which generally require extensive
rendering resources and features to reach a high degree of rendering quality (e.g.,
ambient occlusion, shadowing, antialiasing, or illustrative rendering styles). These
rendering techniques, if executed on client side, would most likely exceed the GPU
resources of mobile clients and would consume significant energy.
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Cross-Platform Compatibility It would be difficult to provide cross-platform implemen-
tations for advanced rendering techniques as the GPU feature support differs on
various devices and platforms, especially on mobile or browser-based clients. These
techniques, however, depend on many sophisticated and advanced graphics func-
tionality. A large number of branches in the source codes and, consequently, high
costs for software development and maintenance would be the result. The image-
based provisioning, in contrast, relies on a server-side rendering implementation,
which gets executed in a known server environment with known computer graphics
hardware and GPU capabilities.

Software Maintenance The image-based provisioning for virtual 3D city models leads
to a high degree of maintainability as it avoids client-specific implementations with
respect to the core 3D graphics technology. In the long run, the diversity of mobile
clients and web browsers is even more likely to increase and, hence, cross-platform
software developments of geometry-based clients becomes increasingly complex and
can lead to unforeseen costs.

Robustness The robustness of 3D visualization applications benefits from a known
server environment with possibly specific high-performance hardware. The core
3D graphics functionality can be tested in that environment — a similar test on a
variety of mobile clients and web browsers would be almost unmanageable due to
the enormous variety of hardware and software configurations. In addition, the
server-side rendering as the most time and resource consuming process steps can be
deployed in distributed environment improving the overall robustness and reliability
of the service operation.

Reusability A collection of image-based services for visualizing virtual 3D city models
allows us to assemble and configure different applications, systems and high-level ser-
vices by reusing these components in the sense of service-based building blocks. For
example, a set of image-based styling services can be used to configure application-
specific visualization applications [Hil16].

Scalability Another key quality of the image-based provisioning of virtual 3D city models
is its scalability. This is achieved, e.g., by pre-generating image sets for a priori
known or frequently used configurations, applying server-side as well as client-side
caching strategies, and generating secondary media such as digital videos, which
then can be independently distributed and used by corresponding services (e.g.,
video platforms) and applications (e.g., media viewers).

This way, in particular, applications using virtual 3D city models can be built with
low hardware and software requirements — an essential point for I'T applications
and IT solutions in industry.

These advantages and characteristics of image-based provisioning are key to a number
of today’s and future applications. For example, for end-user applications such as public
participation tools in the context of city planning and development, it is necessary to allow
many different stakeholders — with their diverse, possibly low-cost devices — to access
the given virtual 3D city model and keep it in a safe environment (e.g., if copyrighted
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architecture models are included). Another example represent mashups that require
interactive access to virtual 3D city models based on service composition and chaining.
As image-based provisioning decouples model complexity from visualization complexity,
it can be integrated more seamless and more efficient way compared to geometry-based
approaches with significant client-side complexity. To foster the separation of concerns,
to enable reuse of functional components, and to ensure cross-platform compatibility, an
image-based provisioning concept and its service-based software architecture have been
developed in this thesis.

4.1.1 Image-Based Provisioning Process

Conceptually, the image-based provisioning of virtual 3D city models generally involves
five steps (see Fig. 4.1):

1. Virtual 3D city model data has to be selected, fetched, decoded, stored, and
optimized for efficient 3D rendering.

2. The contents, their mapping to graphical primitives, and their appearance (styling)
have to be specified and configured as portrayal configuration.

3. Images have to be synthesized (rendered) from the virtual 3D city model.
4. The images need to be transmitted to clients.

5. The images are received, handled, and displayed by clients; users may interact with
these representations, and possibly new images need to be requested.

End-User Application

User

- /
3D City Model Data s Data Image
(e.g. CityGML) Import \ Display

Figure 4.1: An overview of the image-based provisioning process for virtual 3D city models. Image
synthesis takes prepared renderable data and feature data and gemerates images. Scene content
and styling are defined by a separate portrayal configuration. End-user applications fetch and
display required images and display them to users. Depending on the type of end-user application,
the portrayal configuration can be changed by end-user applications and image-generation adjusts
accordingly.

There are several levels of interactivity for end-user applications, e.g., regarding
changes of 3D camera position, camera orientation, or scene contents. The portrayal
configuration can therefore either be configured statically for applications or changed
on the fly through client interaction. The following sections describe different client
types as well as core functional components of the presented approach for image-based
provisioning of virtual 3D city models.
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4.1.2 Provisioning Schemes

Provisioning schemes for image-based provisioning of virtual 3D city models can be
identified based on the type data that is used by clients to portray and interact with
a virtual 3D city model. The schemes provide different characteristics based on the
interaction features provided, updating processes, and the numbers of clients to be served
in parallel using a given amount of rendering service resources:

Live Rendering Clients that retrieve on-demand rendered images from a 3D rendering
service allow users to chose camera configurations, scene contents, and styling when
retrieving images from a 3D rendering service. As live rendering of such images of
virtual 3D city models requires dedicated rendering resources, the number of clients
that can be served in parallel tightly depends on the number and the capacity
of available rendering service instances. Further, rendering resources need to be
provided constantly during the run time of an application.

Pregenerated Images For many applications, an on demand rendering of virtual 3D
city models is not always necessary. In contrast to individually rendered images
per client during run-time, pregenerated images of virtual 3D city models for a
limited set of scene configurations and stylings, and classes of camera parameters,
can be served by simple web servers and do not require 3D rendering resources to
be available during run-time. Due to this preselection of scene contents, clients are
restricted in their interaction capabilities. This scheme is well suited for scaling
for a large number of parallel clients as no expensive 3D rendering resources are
required during application run time.

Videos Videos represent one of the most important digital media formats; they can be
used and processed by countless content management systems, authoring systems,
and presentation applications. As an easily accessible and usable type of media,
digital videos derived from virtual 3D city models provide effective means for
communicating geospatial information. They are key to release the added values
virtual 3D city model can unroll in business processes.

Clients managing and viewing derived digital videos are using videos to portray
single objects or areas with a virtual 3D city model. Videos are rendered in advance
of the application run time showing dedicated scene configuration an paths. They
can provide, e.g., in detail tours of selected parts of a virtual 3D city model that
are styled according to the application purpose, e.g., a presentation of a project to
be built. This scheme also provides limited interactivity in clients. As videos can
be hosted on simple web servers or external video portals, the schema scales well
for a large number of corresponding clients.

Depending on the application use case, different client types can be applied to
provide the required properties for the overall application, i.e., in terms of scalability,
interactivity, and compatibility. For most cases within an application, such as portrayal
of the spatial context in an urban environment, a client using pregenerated images can be
sufficient, but for specialized, maybe less frequently used functions in an application a live
rendering client may be the better choice. For building applications, the corresponding
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advantages of client types can be combined, as all of the mentioned client applications
are light weight — they do not have specific requirements.

4.2 Service-Oriented Architecture for
Image-Based Provisioning of Virtual 3D City Models

The management and visualization of virtual 3D city models requires a complex set of
functionality to be implemented. A SOA is proposed in this thesis that enables reuse of
functionality an shows how these services can be orchestrated and configured for different
image-based applications for virtual 3D city models. Fig. 4.2 shows the SOA, its services
and their relationships of our prototype system. There are five general service layers,
which are described in detail in the following;:

1. Data Import

2. 3D Rendering

3. Application Data Provisioning

4. End-User Applications

5. Configuration and Administration.

The four services — 3D rendering service, layered map service, video service, camera
service — form the core software components developed for image-based provisioning of
virtual 3D city models in this thesis.

4.2.1 Data Import

The data import layer is responsible for transforming virtual 3D city model data into
efficiently renderable internal data structures, called rendering data. Data from different
formats and sources, e.g., semantics-based virtual 3D city models encoded in CityGML,
detailed architectural models in CAD formats or 3D computer graphics formats (e.g.,
Collada or X3D), together with referenced 2D textures is converted into compact and
spatially organized native formats as optimized geometry and optimized textures. In that
respect, a data import service is connected to a specific rendering service implementation
as the formats and data structure is specific to the rendering service implementation. A
relation to the underlying geospatial features and objects is maintained using a feature
database where feature data and metadata about features contained in source data are
stored. This metadata includes, e.g., 2D geometry footprints, information about the
origin of features, and their IDs in the original data sources.

As virtual 3D city models can change over time, the data import can process updated
source data and update the rendering data and feature information. It is key to automate
related workflows.

4.2.2 3D Rendering

The 3D rendering layer is implemented on the server side as a service based on the View
FEaxtension of the OGC 3DPS interface. This interface allows us to configure camera
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Figure 4.2: Querview of the service-oriented architecture for image-based provisioning of virtual 3D city models.
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parameters, scene contents and styling using named layers with corresponding named
styles and parameterizable image-based styling. Styling can also depend on feature data
stored in the feature database that is available to the rendering process. The 3D rendering
uses the imported and transformed rendering data to efficiently select, load, and render
depictions of virtual 3D city models.

4.2.3 Application Data Provisioning

The application data provisioning layer provides two image-based provisioning services,
i.e., the layered map service and the video service, which invoke a 3DPS to generate
image-based artifacts such as image views, tiled image-sets for layered maps, or videos. It
also contains a feature data provisioning service that converts application-specific feature
data (e.g., points of interest (POIs), 2D feature geometry and feature attributes) into
compact formats, called application data, that can easily accessed and processed by client
applications. This data may be accumulated from the feature database created during
data preprocessing or from external services. The layer also hosts the camera service as
a utility service that provides camera path computation.

4.2.4 End-User Applications

End-user applications access a given virtual 3D city model data via application data
provisioning, including layered image tiles, videos, and feature data. These applications
are built to run as browser-based web apps, or native mobile apps for Android or iOS
operating systems. Their implementation uses platform-specific software modules and
libraries, which provide the virtual 3D city model viewing and interaction functionality.
However, they do not have to implement a 3D rendering engine for virtual 3D city models
(as this is done by the 3D rendering service), i.e., these apps tend to be lightweight
with respect to the computer graphics techniques. This way, the software development
efforts to build and maintain such apps are significantly lower compared to thick-client
applications. To further reduce software development efforts, an app framework has been
created that can be configured for a given scenario, e.g., for a specific area of interest,
for combinations of content layers including, e.g., visualization variants for evaluation of
different plannings. In many of our test scenarios, viewing virtual 3D city models in a
straightforward way, the blueprint configuration is only essential part to implement an
application using the image-based provisioning framework. For applications that require
an individual scene configuration per user, a live tile endpoint of the layered map service
can be used to query the required image tiles that are generated during application run
time by a 3D rendering service instance. While this provides greater flexibility for users,
it requires server-side 3D rendering resources to be available at run-time to serve these
client applications.

Widely compatible applications that work with a minimum of server and client
resources can be built by combining the different approaches for image-based provisioning.
Users can be enabled to interactively configure their scene views when required, but
for many applications and use cases the provisioning method using preprocessed data
is usually preferable, since it keeps the required user interaction limited to a simple
map-based interaction.
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4.2.5 Configuration and Administration

For each given virtual 3D city model, an image-based provisioning requires a scenario
description that consists of a description of the virtual 3D city model data, the 3D
rendering service configuration (e.g., the available scene contents as named 3DPS layers,
available rendering styles, available terrain styles, selectable styling and rendering methods
etc.), and the configuration for light-weight end-user applications displaying rendered
images together with prepared feature and POI data. Scenario descriptions contain all
the information necessary to configure services for generation of condensed application
datasets. This way, an automated update of contents for all kinds of clients and media
can be performed by repeated invocation of the service-based provisioning process.

The information about available service endpoints for data preprocessing, 3D ren-
dering of preprocessed data (including content to layer mappings and required rendering
styles), and data provisioning settings (target format, additional data sources to include,
etc.) are managed as scenario configurations as well. They are particularly important
to orchestrate the services required for generation of application datasets. The data
generation process can be derived and executed by invoking the necessary services using
the arguments given by the scenario configuration.

Service administration also includes managing and assigning available hardware
resources, i.e., GPU-based server systems for 3D rendering involving creation of 3D
rendering service instances that generate image data for provisioning jobs. It specifies,
e.g., the number of active rendering server nodes or creates cloud instances, such as
amazon EC2 GPU instances, which can be requested an run on demand, bypassing the
need to administer and operate the hardware.

4.3 Services

The following services provide the implementation of the described back-end functionality
for image-based provisioning of virtual 3D city models. Their specific implementation is
described in more detail in the following chapters.

3D Rendering Service

An image-based 3D rendering service has been designed and implemented as one core
component. The service is responsible for synthesizing images of the virtual 3D city
model and can generate different information layers (e.g., color images, depth image,
object-id images) on a per-frame basis. Its implementation takes into account the specific
statistical and graphics properties of virtual 3D city models, e.g., a large number of
relatively small polyhedral objects (e.g., buildings), a high number of 2D textures (e.g.,
for facades). Further, the implemented rendering techniques are designed to handle
parallel requests that do not provide frame-to-frame coherence, as these occur when
multiple clients are using a 3D rendering service. It provides an OGC standardized 3DPS
interface that allows for detailed configuration of the resulting images. This also involves
styling of virtual 3D city models and feature data access.
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Layered Map Service

The layered map service generates a tile-based representation of a given virtual 3D city
model from a bird’s eye perspective. It uses the 3D rendering service to synthesize
the corresponding images. Based on layered maps, clients can blend-in and integrate
application-specific georeferenced data by means of superimposed information layers. It
is the key service to a broad range of applications that want to access contents of virtual
3D city models by means of this map-related 3D visual representation.

Video Service

The video service provides users with a high-level user interface to author and generate
videos from virtual 3D city models. Users can model camera paths and varying scene
contents over time, apply blending effects and overlays. Videos are rendered using
3D rendering services for image generation. This way, the service can generate video
presentations that combine image data served by different service instances in one video.

Camera Service

Camera control and navigation is a complex and potentially domain-specific subject.
It can be refactored and encapsulated by a separate service that computes camera
views and camera paths to be used by camera animations. It is intended to serve as a
blue-print service for more application-specific or domain-specific camera services. Its
implementation can take advantage of the detailed and explicitly defined semantics of
components of virtual 3D city models to provide higher-level, assisting 3D navigation
and exploration functionality.






Chapter 5
3D Rendering Service for
Virtual 3D City Models

In this chapter, design and implementation of a 3D rendering service for large-scale
virtual 3D city models is presented.

5.1 Concept and Requirements

This service implements techniques for efficient, high-quality 3D rendering of virtual 3D
city models as well as an interface for data selection and retrieval from an underlying
database as standardized, self-describing service based on the View Extension defined by
the OGC 3DPS specification. It allows for efficient, individual styling of features in a
virtual 3D city model based on their attributes using an XML-based description language.
The 3D rendering service is designed for the specific geometric and graphics characteristics
of large-scale, massive virtual 3D city models as well as for the requirements for building
data pipelines between different services operating on images of virtual 3D city models.
It constitutes the basic rendering functionality to implement image-based provisioning of
virtual 3D city models for the approaches presented in this thesis.

Objects contained in a model can differ significantly, e.g., in terms of geometric
detail and precision, the availability and resolution of textures, as well as their semantic
structure. For example, CAD-based models usually have a higher geometric complexity
and precision than building models that have been automatically generated from remote
sensing data. The massive amount of data, for building geometry and textures, terrain
data, (map) image layers, and feature attributes, requires specialized rendering techniques
to enable the efficient and high-quality image synthesis. In particular, service-based
rendering for image-based provisioning of virtual 3D city models demands for rendering
techniques that are able to cope with massive virtual 3D city model data and with
multiple clients requesting images of different parts of the model in parallel.

Besides the 3D rendering engine, the efficient organization and access of rendering
data plays a major role for rendering large-scale virtual 3D city models. Here, a data
import service has been created that implements data integration for large-sized virtual
3D city model data into the rendering system, including preprocessing and optimizing
input data. While input data for building and terrain models can be provided in a
variety of computer graphics and GIS formats, the service implementation primarily
targets CityGML-based datasets as it is the international standard for modeling and
interchanging virtual 3D city models [Gro™12; Kol09; SBN16]. The data import service
is aware of feature data and attributes. It processes the models in a way, that the
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original features and their attributes can still be accessed and mapped to the optimized,
renderable geometry generated by the service. Further service operations are provided
for accessing feature data and attributes.

5.1.1 Requirements

The requirements for a 3D rendering service for virtual 3D city models differ from the
requirements typically found in 3D graphics engines for real-time applications, e.g.,
computer games or CAD applications. In the following, the functional and non-functional
requirements for a web-based 3D rendering service are grouped into two categories: a)
requirements for the rendering process and b) requirements for feature data and its
applicability to build image-based end-user applications.

Rendering Process Requirements

Robust Rendering of Heterogeneous Datasets Data from heterogeneous sources with
varying resolutions and different quality levels, as it is common for virtual 3D
city models [BilT15; Jul™ 18], should be integrated into the rendering process in a
robust way. Services should support the combination of different datasets so that a
consistent resulting image can be generated. The rendering implementation and
the data import should be able to handle, or even to fix errors in data modelling
(geometric and semantic) and encoding as far as possible.

Massive Model Rendering Virtual 3D city models become more and more available
and precise, e.g., due to improved remote-sensing technology (e.g., fast, high
precision laser-scan devices or high-resolution aerial cameras), geometric processing
(e.g., building model reconstruction), and resulting shorter update cycles. In
contrast to authored 3D models, as they are used, e.g., in computer games, the
geometry and textures of real wold models cannot be reused and are therefore
hard to optimize. The generated datasets represent massive models and the
corresponding implementation of a 3D rendering service has to handle such complex
3D models using limited hardware resources. For example, the rendering process
and data management should adapt to the available hardware resources to avoid,
e.g., slowdown of rendering or the service stopping to work due to hardware overload
(due depletion of GPU memory, main memory, or disk space).

Configurable High-Quality Rendering The 3D rendering service should be able to main-
tain high rendering quality even for massive models. Rendering styles and rendering
effects should be easily configurable by adjusting request parameters, without prior
knowledge of the implementation and without modification of rendering source code.
This eases the configuration of scene views and styling parameters by facilitating
the easy experimentation with the visual results during development and use of
image-based applications and, thereby, can lead to an improved quality of resulting
applications and foster a reuse of implemented rendering techniques. This way,
also users with no explicit skills in computer graphics can achieve good results by
determining styling parameters by experimentation.
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Scalability for Multiple Users A 3D rendering service should account for being used by
multiple users in parallel. Here, GPU resources are found to be a limiting factor
when it comes to service-based rendering. The service implementation should
therefore use its hardware resources efficiently and apply parallelization wherever
possible to obtain high utilization of GPU and CPU resources and fast execution
results.

Missing Frame-to-Frame Coherence The performance of common real-time rendering
techniques depends strongly on frame-to-frame coherence. The selection of 3D
geometries and textures to render a frame depends strongly on the position and
viewing direction of the virtual camera as well on the current scene configuration.

In our service-based approach multiple clients can access the service in parallel.
Therefore, frame-to-frame coherence cannot be assumed when building processing
and 3D rendering techniques. The 3D rendering service, therefore, must be aware
of scattered camera settings and mixed scene configurations.

Requirements for Feature Data and Attributes

For dealing with feature data and attributes in image-based visualization systems the
following requirements have been identified to support building applications on top of a
3D rendering service:

Information Access via Service Interface The service interface should provide or link
feature data and attributes for any object that is depicted in a generated image.
For this, a mapping from (at least) the ID of a feature in its source dataset (e.g., a
CityGML virtual 3D city model) or service to pixels in the rendered image needs
to be kept throughout the rendering process. Mechanisms are required to map this
information in both directions. This way, information from external services can
be linked, e.g., using Web Feature Services for retrieving detailed feature data in
image-based GIS applications.

Feature Specific Thematic Visualization For feature-specific parameterization of ren-
dering effects, e.g., to create thematic visualizations from 3D feature data, feature
identities and attributes should be available in shader programs during the ren-
dering process. This way, shading and rendering algorithms can involve attribute
mappings for providing highly efficient attribute-based styling also for a massive
amount of features as they are contained in large-scale virtual 3D city models.

5.2 Service Interface

The 3D rendering service provides the following service operations aligned to the 3DPS
standard:

GetCapabilities The operation provides machine readable information that provide
metadata about the service and its operations based on the OGC Web Service
Common Standard [WG10]. The GetCapabilities response also contains the
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T

Figure 5.1: Exzample of an image generated by a GetView request. It shows the virtual 3D city
model of Berlin, layered terrain textures (road names on top of the aerial image), planning models
(palace at the bottom left in shaded style), POI layers with labels. Several rendering effects are
applied as image styling (screen space ambient occlusion, anti-aliasing, color improvement).

additional parameters, e.g., for in-detail configuration of the rendering and styling
process for GetView operations.

GetView The core operation of the image-based 3DPS for retrieving rendered G-Buffers.
It allows to configure data, scene styling, image-based styling and other properties
that influence the rendering process. The service provides a range of additional
parameters, e.g. to enable and configure specialized rendering techniques or to
configure image styles. An example of an image generated by a GetView operation
is provided in Fig. 5.1. The corresponding key-value encoded request can be found
at Listing 5.1.

GetFeatureInfoByRay Operation for retrieving feature data using a ray cast into the 3D
scene. Returns object ID, feature ID, and available feature attributes if an feature
was hit by the ray cast.

GetFeatureInfoByObjectId Operation for retrieving feature data using a scene configura-
tion and a particular object ID. It returns the same data as the GetFeatureInfoByRay
request.

GetPosition The operation provides functionality for ray-casting in 3D scenes, i.e.,
to compute 3D scene intersections for 2D image coordinates, a core feature for
interaction in image-based visualization applications. Further it allows to project 3D
points to 2D image coordinates. For both, the camera projection parameters need
to be provided to the operation. Its implementation is based on the specification of
the operation in the WVS discussion paper [Hagl0]. It requires the scene content
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and projections to be defined by parameters, in particular content layers and their
styles.

1 https://<host:port>/<service_endpoint_path>?

2 SERVICE=3DPS&

3 VERSION=1.0.0&

4 REQUEST=GetView&

5 CRS=WGS84&

6 PORTRAYALS=

7 WIDTH=3200;

8 HEIGHT=1800;

9 Projections=

10 Perspective, // Projection type

11 13.401123986820638,52.52029899107024,216.66666666666669, // POC
12 13.399299999999998,52.518100000000004,130.5709, // POI
13 0,0,1, // UP direction

14 90,50.62, // FOV x and y
15 1,87188; // distance near and far plane

16 IMAGELAYERS=COLOR; // image layer list

17 FORMATS=image/jpeg; // image layer formats

18 QUALITIES=95& // encoding quality of image layers
19 LAYERS= // selected content layers

20 TERRAIN, TERRAIN,BERLIN, PLANDATEN,

21 POI_ZWEISPRACHIGE_UND_FREMDSPRACHIGE_SCHULEN,
22 POI_MATHEMATIK_UND_IHRE_ANWENDUNGEN&

23 STYLES= // named content layer styles

24 ORTHOPHOTO, ROAD-NAMES , DEFAULT ,DEFAULT,

25 DEFAULT,DEFAULT&

26 BACKGROUND=SKY4& // selected background
27 OVERALLSTYLES=SSDO, FXAA, IMAGE_ENHANCEMENT // selected image-based styling

Listing 5.1: Key value encoded HTTP request for GetView service operation for generating
the image illustrated in Fig. 5.1. The OVERALLSTYLES parameter represents named styles
that are referred as image-based styling effects throughout this thesis.

5.3 Architecture

The 3D rendering service system consists of two top-level components: a) The data import
service implements preprocessing and optimization of source datasets, i.e., virtual 3D city
model geometry, textures, and feature data and b) the 3D rendering service implements
3DPS operations for image generation, feature data access, ray casting, and service
description. Fig. 5.2 shows the architecture of the 3D rendering service system. The data
import service and the 3D rendering service use the same optimized formats of rendering
data, i.e., optimized texture and binary geometry data, scene graph representation, and
feature database schema. The techniques for optimization and organization of virtual 3D
city models that are implemented as data import service are described in Section 5.5.

The request handler provides the interface for the service. It parses and validates
requests and enqueues requests for the handling components.

The G-Buffer generator implements the 3D rendering process that is used to generate
images for the GetView operation. It processes requests from the rendering request queue
and configures a per-request scene graph and the OpenGL rendering pipeline based on
the current rendering request.



Chapter 5. 3D Rendering Service for Virtual 3D City Models

40

Preprocessing

Configuration Service Configuration

Terrain Data 3D Rendering Service
Data Import e
: erran
(DTM™, Service a - > Styler
Terrain
Textures) || Temain [ |
Optimizer Terrain m M m M <R
Model O
AQ( Sving Rendered GetCapabilities
ontimized R Data G-Buffers <
" ptimize R
3D City Texture | | /| Textures )
Model Optimizer v e
Source A Rp R GetView
Dataset Optimized -putrer
(e.g., CityGML, Geometry N Generator —OH Image |O| <R
. A.H.o__mam _ Encoder O
v ' > Request GetFeaturelnfo Client
wnm:m N Handler ByRay
> rapl
Optimizer Image
Add. 3D E Data <R
O E GetFeaturelnfo
. ByObjectld
Feature Rendering T Data Cache Rendering
Data Request
> Data
ueue <R
Processor Q )
J <R \J
) GetPosition
AN P Scene 2 wnm:w/“%
External d Picker M mscmmms <R
( mm. M.E,_\m_,m\_mm O _ Feature Data Handler _IOI
WFS, T™S, ...) <R
A

Feature Attributes Object ID Mappings Feature Metadata Feature Geometry

Feature Database

Figure 5.2: Architecture and interfaces of the 3D rendering service system. The system provides two main components: a) a data import service for
import and optimization of large-scale models and b) the 8D rendering service itself for service-based image generation.
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The styler component evaluates the styling-specific parameters in rendering request.
It generates required data (styling data) for the G-Buffer generator to apply the different
styling variants supported by the 3D rendering service (see Section 5.6). It can also use
and modify generated G-Buffers to apply image-based styling via image postprocessing.

The request processing for GetView requests, as the main service operation of the
3D rendering service, is implemented in four major steps:

1. Request Parsing: The request handler parses requests and checks them for
validity. Valid requests are put into the rendering request queue to be processed by
the G-Buffer generator.

2. Configuration of 3D Rendering and Data Fetching: Depending on the
requested content and styles, a per-request scene graph is built, the 3D rendering
pipeline is configured, and required data for the current request (terrain, geometry,
texture, and feature data) is fetched (either from disk or from external services).
Additional G-Buffers are added to the request if they are required by requested
image-based styling effects.

3. 3D Rendering The rendering process gets executed on GPU and thematic styling
is applied. After generating G-Buffers, image-based styles are applied using the GPU
in a postprocessing step. Finally, G-Buffers are downloaded from GPU-memory
into main memory.

4. Image Encoding For each requested G-Buffer, a response image file encoded in
the required format is generated. Image encoders can work in parallel to speed up
image encoding.

The G-Buffer generator applies in-memory caching as well as disk-based caching for
rendering data to improve rendering times and avoid repeated calls to external services
that can be used to request map tiles (via WMS, WMTS, TMS), vector data for feature
terrain overlays (e.g., a road geometry layer), POIs, or additional feature attributes (e.g.,
from WFS).

The scene picker component handles GetPosition requests. It implements ray
casting using the scene graph and geometry that is also used for 3D rendering by the
G-Buffer generator.

The feature database stores data about features of the virtual 3D city model, e.g., a
mapping of the rendering data’s object ID to features or feature attributes of a source
dataset (see Section 5.5.3 for a description of the data model). The data is used by
several components in the 3D rendering service, e.g., for thematic styling, for feature ID
queries, or for delivering feature attributes to clients.

The service configuration defines the datasets that are provided for rendering as well
as the location of the corresponding data, either optimized by the data import service or
additional 8D models in computer graphic formats such as COLLADA or X3D. Further,
the scene configuration defines the grouping of datasets into scene layers that advertised
in the GetCapabilities document.
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5.4 Rendering Service Environment

The 3D rendering service implementation is expected to be executed in a server envi-
ronment, providing specific minimal hardware resources. Any techniques presented in
this chapter therefore relies on the following assumptions regarding the available server
environment:

CPU The CPU of the host system should provide parallel processing capabilities as the
techniques and algorithms are designed to run in parallel using multiple threads.
The more CPU cores are available the faster image requests can be handled. A
minimum of 4 available CPU cores is expected for hosting the 3D rendering service.

Main Memory The system main memory is used primarily for the scene graph of the
virtual 3D city model and corresponding texture and attribute data. The more main
memory is available, the more data can be cached in memory and the better the
corresponding performance of the overall system. Due to the out-of-core capabilities
of the rendering techniques, the minimum requirement for running the service should
be 2 GB main memory for smaller models and 8 GB for larger ones. Common
server environments are usually providing far more than these amounts of main
memory.

GPU 3D Rendering Service instances require access to an OpenGL enabled GPU with
sufficient GPU memory to deal with the geometry and texture amount. The more
GPU memory is available, the more of the geometry and texture data can be held
directly close to the GPU. Further, rendering techniques as well as image-based
styling techniques often require a large number of frame-buffers to be created in GPU
memory. The larger the required resolution for images, the more GPU memory is
required for the techniques to work properly and efficiently. The minimum expected
GPU memory is 2 GB. For larger models, a minimum of 4 GB GPU memory
would be recommended to handle the geometry and textures in complex rendering
techniques.

Storage The server system is expected to provide fast IO capabilities, which means that
there is a solid state disk available for storage and fast random access of texture
and geometry data of preprocessed virtual 3D city models. This is of particular
importance as geometry and textured can be required for consecutive rendering
requests that require distinct sets of geometry and texture to be rendered (missing
frame-to-frame coherence). Conventional hard drives would provide a limiting
factor to the number of nodes that can be loaded simultaneously.

Network Transferring images over a network requires large network bandwidth, depend-
ing on the requested image resolution and encoding format. A commonly available
server connection is expected to be available for transferring images (starting from
100 MBit/s).

All of these assumptions can today be provided either by physical servers or by
virtual machines or services provided by cloud environments such as the Amazon Elastic
Compute Cloud EC2 in a cost efficient way. This way, the solution can be provided in a
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variety of environments, from self-hosted servers within an organization to completely
managed remote data centers.

5.5 Optimization of Massive CityGML-Based Virtual 3D City
Models for Service-Based Rendering

CityGML as well as other encoding and transmission formats for 2D and 3D geodata are
designed to reduce and avoid information loss when exchanging data between systems
and organizations. “Although it is possible to render 3D views directly from CityGML
this language is more suitable for representation than for visualization.” [RFC13] Because
of this, it is necessary to transform and optimize geometry and textures of such a model
for OpenGL-based 3D rendering and 3D graphics hardware. There are three main goals
of such a process:

Optimization of 3D Geometry GPU hardware is heavily optimized for parallel process-
ing of vertex data. Examples for such vertex data used during 3D rendering are,
e.g., vertex positions, texture coordinates, vertex object ids, or material properties.
While rendering of geometry is implemented efficiently in hardware on the GPU,
modifications to the OpenGL state, e.g., changing material properties, matrices,
or applied textures, are expensive operations. Therefore, it is highly favorable
to organize vertex data into larger buffers containing data for multiple faces of
that geometry. This reduces the number of OpenGL state modification during
rendering significantly, since vertex and fragment shaders can access the necessary
information for rendering directly from these buffers on a per-vertex basis.

Each batch of vertex data should have a size that takes the IO and processing
capabilities of the hardware system into account. Further, the batches should only
contain vertex data for geometry that covers a common spatial area to support
loading vertex data for a specific area of interest, e.g., defined by the current camera
projection.

Texture Optimization and LOD Mechanism Textured virtual 3D city models usually
depend on large numbers of individual textures that define the appearance of model
elements such as building facades. In common 3D city model datasets, these textures
are either provided as single files that correspond to a specific geospatial extent (e.g.,
each texture file covering a specific building facade or aerial photography provided
as 2D texture) or as texture atlases that pack textures for multiple surfaces into a
single texture container [SHC12|. Both types are commonly not usable for efficient
3D rendering. For massive virtual 3D city models, textures need to be handled
efficiently by the rendering process as texture handling represents one of major
bottlenecks for rendering performance. To this end, the corresponding processing,
storage and rendering techniques apply level of detail (LOD) techniques to handle
such texture data [BD05].

Retain Feature Data Mapping The connection between rendered vertex and dataset
feature needs to be preserved. Therefore, an efficient mechanism for encoding of
this information into frame-buffers and corresponding image formats is required.
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The different data types of a virtual 3D city models are handled individually by the
data import service to achieve an optimal data organization and encoding for the 3D
rendering process. Processes that are implemented to optimize the different data types
are illustrated in Fig. 5.3.

5.56.1 Geometry and Feature Data Optimization

Virtual 3D city models are characterized by a large number of individual objects (e.g.,
buildings, streets, trees) that are spread across a geospatial extent in varying density.
Key to rendering optimization for this class of 3D models is the fact that they represent
in a sense a 2.5D model, i.e., a model predominantly distributed over a 2D plane segment.

Usually, simple 3D building models represent a large portion of the objects of a
virtual 3D city model. They are specified, e.g., as 3D extrusion shapes of their ground
polygons together with a (often simple) roof geometry. That is, most of the objects of a
virtual 3D city model are not complex in terms of 3D geometry. In particular, this is
the case for CityGML LOD2 models, which represent the majority of building models
in typical virtual 3D city models. For higher level of details (i.e., CityGML LOD3 and
LOD4), the geometric complexity is significantly higher, since these models contain, e.g.,
individual walls, windows, doors, and also indoor geometry that can also have individual
materials and textures assigned. To achieve a representation that facilitates real-time
rendering for all of these objects, there are six processing steps applied:

1. Data Parsing and Analysis: The source data is parsed, analyzed, objects are
identified (e.g., buildings in a CityGML-based city model), and corresponding
object IDs, an integer number, are assigned. The object ID refers to the object
identity within the original dataset, e.g., a CityGML document, or a cadastral
dataset). Further, texture assignments, a mapping between geometric primitive
and texture, are extracted for later optimization (see Fig. 5.3). The geometry is
extracted from source documents and converted into vertex data with their object
ID, and further available properties, such as material or color data, assigned as
vertex attributes.

2. KD-Tree Building: The vertex data is inserted into a KD-tree [Ben75] spatial
data structure to build a queryable set of geometry nodes with a comparable amount
of vertices.

3. Rendering Optimization: The vertex data nodes are optimized for rendering,
e.g., the vertex position is optimized for float representation on GPU by extracting
an offset matrix from single nodes and adjusting the vertex positions accordingly.

4. Compute Feature Properties: Feature properties, e.g., a 2D bounding box,
the maximum and minimum height, and feature attributes are extracted from the
source data and inserted into the feature database. Object ID mappings for features
are written to the feature database database.

5. Scene Graph Encoding: The final scene graph, which structures and organizes
the virtual 3D city model for rendering, is built based on the KD-tree. It is written
in a compact binary format that can be efficiently addressed and loaded by the
rendering engine.
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The resulting serialized scene graph provides homogeneously sized leaf nodes with all
the geometry for a specific spatial area. This way, loading times per node are predictable
for a given hardware configuration.

5.5.2 Texture Optimization

In contrast to 3D models in gaming or CAD, virtual 3D city models are almost entirely
based on real-world data about a given physical environment whose parts and objects
should reflect their individual appearance. This leads to a massive number of textures
that must be stored and efficiently managed by the rendering engine. For example, the
virtual 3D city model of Berlin, contains more than 5.7 million individual textures with
a resolution of about 10 cm per pixel that are used to texture buildings.

To cope with massive texture data the data import service applies virtual textur-
ing [LDNO04; Mit08]. To this end, model textures are rearranged into a single large-scale
virtual texture atlas, which is physically stored using square image tiles each covering
256 pixels of the original texture. A detailed introduction of the process and texture
coordinate calculation is provided by Mayer [May10].

A complete texture atlas that contains all original input textures would require
an enormous amount of main memory — resulting texture atlases would a physical
dimension of millions of pixels square — it cannot be processed and assembled in one
single step. Instead, sets of inhomogeneously sized, rectangular input textures originating
from the input data are joined into sub-atlases of maximum 16,384 x 16,384 pixels
using a recursive, tree-based texture placement algorithm', which ensures an efficient
fill rate of these sub-atlases. This avoids sparsely filled image tiles, which is particularly
important when tiles are uploaded to the GPU, as empty areas in tiles will never be used
by the GPU, but still consume GPU memory. A overview of the steps of the texture
optimization process can be found in Fig. 5.3.

Beside the image tiles representing a full-resolution version of the provided source
textures, several mipmap levels are generated. The storage of large numbers of texture
image tiles and their corresponding mipmap levels requires a large amount of disk space
and requires fast IO capabilities during rendering to render images efficiently. To reduce
the disk space and IO throughput required per image tile and for improving the overall
rendering process, image tiles are compressed twice: In a first step, they are encoded
using DXT5 format?, a lossy image compression format that supports transparency in
textures and can be used directly by GPUs for texturing. In a second step, the resulting
DXTS5 data is compressed using the Iz4? algorithm, which provides a high compression
ratio along with very high performance decompression. The combination of these two
compression method provides a very efficient method for storing these large-scale sets of
image tiles. For the final storage of the data, the processing creates a SQLite database
that offers a fast way for retrieving large numbers of relatively small files.

For retrieving the texture tiles during the rendering process, a tile ID and the
corresponding texture coordinate is encoded in a virtual texture coordinate that is
stored as vertex attribute. A separate rendering pass is performed during rendering that

1http: //blackpawn.com/texts/lightmaps/default.html
2https://www.khronos.org/registry/DataFormat/specs/1.1/dataformat.1.1.html
Shttps://1z4.github.io/1z4/
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produces a frame-buffer containing the IDs for the tiles that are required to render the
current frame. The required tiles are fetched from disk and uploaded into a physical
texture on the GPU.

The virtual texturing based method for texture preprocessing and rendering provides
a very efficient handling of individual textures per building. It minimizes the amount
of data to be loaded to the GPU per frame by following a view-based approach. This
way, fast rendering can be achieved also if there is little to no frame-to-frame coherence
between two consecutive requests. Further in main memory caching strategies for texture
tiles are applied to further improve loading times for textures.

5.5.3 Feature Data Modelling and Import

The image-based provisioning approach gives applications access to features, their at-
tributes, and their hierarchies via service interfaces. Feature data is contained in common
geodata formats, e.g., in CityGML, Shape files, or GeoJSON. For attribute-based styling
and access through the 3DPS interface, the data is stored in the feature database using
a unified data model together with their attributes and meta information.

Data Model

Feature data and attributes are modeled by a relational database scheme, which allows
for efficient storage and querying of feature attributes of different types, the model
specific object IDs and their mapping to feature IDs in source datasets and metadata.
Additionally, the database stores feature hierarchies using a parent reference for each
feature included in a model instance. A FeatureGeometry represents a simplified geometry
of a feature. It contains a 2D bounding polygon and a computed or given coordinate.
While the model does not store the complete geometry, as it can be accessed in source
data, store minHeight and maxHeight attributes to allow estimations of the spatial extent
using database queries.

For every feature, there can be multiple AttributeSources. Each of these sources,
e.g. a CityGML dataset that contains additional generic feature attributes, can provide
different, named feature attributes with corresponding values for a point in time. Here,
metadata about the attributes is stored as AttributeKey instance. Attribute entries
are uniquely identified by these three properties (ID of the feature, attribute key, and
timestamp). This way, different versions of the same attribute can be stored and accessed
using this model (time series support).

Feature and attribute sources store mappings of the origin dataset per feature and
attribute. This is especially important due to legal reasons (e.g., data ownership, data
licences that require to display attributions when their data is used). Further it allows to
query the original information from 3rd party data sources and to recognize features in
case of updates to be performed. The overall data model is illustrated in Fig. 5.4.

Feature Data Import

Feature data is processed during data import. The data import service creates the
necessary data structures, such as feature and attribute sources for the imported dataset,
features and their basic geometry as well as attribute keys and their values extracted
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Figure 5.4: Data model for storing features, their origin, attributes and relations. An object ID
is assigned to features that identifies a feature within its feature set. Attribute meta information,
such as the unit, type, and name of attributes, are modeled as separate AttributeKey entities. The
model is implemented with a PostgreSQL database management system using PostGIS extensions
for handling of spatial data.

from the dataset. Besides the attributes that are explicitly included in the source data
itself, the import can invoke additional algorithms that compute additional attribute
values or query additional values from other data sources or services to enrich the feature
dataset.

5.5.4 Optimization of Terrain Data

Terrain data for 3D rendering of virtual 3D city models include digital terrain models
(DTM) as well as terrain textures such as maps or aerial imagery. Most commonly,
DTMs are distributed as 2D height fields encoded, either in text-based formats such as
xyz or encoded in georeferenced image formats such as GeoTIFF. This format is also
frequently used for terrain texture data. Height fields and especially terrain textures
can provide very high resolutions, e.g., up to 5 to 10 cm per pixel for aerial imagery.
Therefore, rendering of textured terrain models requires reorganization of that data to
allow efficient access to the data during 3D rendering. The common approach to deal
with such 2D data is to apply tiling to the overall terrain model and textures. Here,
source data is split into rendered tiles at fixed scales (zoom levels)[OSG]. Tiling of image
data is supported well by existing geodata processing tools and libraries, such as the
open source Geospatial Data Abstraction Library* (GDAL), OSGEarth® or commercial
tools such as Map Tiler® or FME. The data import service supports processing of such

*https://www.gdal.org
5http: //osgearth.org
Shttps://www.maptiler.com
7https ://www.safe.com/
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file-based terrain data into tile stores using GDAL tools encoded as mbtiles® based on the
Tile Map Service [OSG] tiling schema. The created tiles can then be efficiently loaded on
demand by the 3D rendering service during runtime.

Preprocessing is only applied for file-based datasets. Service-based datasets are
integrated during runtime.

5.6 Styling Virtual 3D City Models

Styling generally defines how features and their attributes are mapped onto visual
variables (e.g., color, shape, texture) of a corresponding visual representation. Insofar, it
forms an essential functionality for most visualization applications because it defines how
to express thematic information.

The term styling is used frequently in a number of OGC standards. Services use
SLD to identify and define the styling. “SLD addresses the important need for users (and
software) to be able to control the visual portrayal of the geospatial data. The ability
to define styling rules requires a styling language that the client and server can both
understand.” ¥

The 3D rendering service implements three different approaches for styling for virtual
3D city models:

Layer-Based Styling is used to apply rendering effects based on scene graph modifications
during 3D rendering of the virtual 3D city model. Terrain image layer selection is
also implemented by layer-based styling.

Thematic Styling by SLD evaluates feature data and attributes based on a user-provided
styling description (SLD) to adjust the visual appearance based on styling rules
that evaluate attribute values.

Image-Based Styling implements rendering effects by applying image-space operations
in a postprocessing step for each generated frame.

These three approaches can be combined to achieve styling effects for virtual 3D
city models which provide, e.g., texturing of massive virtual 3D city models implemented
through layer-based styling, high-quality ambient occlusion using image-based styling, and
rendering of thematic 3D visualization using styled layer descriptions referencing feature
attributes. Together they form a styling pipeline implemented in the 3D rendering service.
An overview of this pipeline combining the styling approaches shown in Fig. 5.5. First,
layer-based styling is applied during the rendering process for G-Buffer generation. Then,
the SLD-based thematic styling is applied incorporating the required feature attribute
data. Afterwards, the generated G-Buffers are used by image-based styling techniques.
Each styling approach can further be configured by additional request parameters that
are advertised in the GetCapabilities document of the 3D rendering service. The styling
techniques are implemented in by the styler component within the 3D rendering service
architecture (see Fig. 5.2).

8MBTiles spec https://github.com/mapbox/mbtiles-spec/blob/master/1.3/spec.md
9http: //www.opengeospatial.org/pressroom/pressreleases/761
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Figure 5.5: Overview of the styling pipeline that applies the three styling approaches for virtual
3D city models within the image generation process.

5.6.1 Layer-Based Styling

Following the OGC 3DPS standard, each named layer in an image-based portrayal
request has a named style assigned. In our approach, the layer-based styling denotes
an implementation of this styling strategy. It is based on shaders and rendering passes
that are applied to the scene graph that contains the layer geometry, i.e., the style
modifies the scene graph used for 3D rendering of the virtual 3D city model, e.g., by
exchanging materials or shaders for OpenGL rendering or by introducing additional
rendering passes. The implementation of layer-based rendering styles can therefore affect
every stage of the overall rendering process, i.e., they can be implemented in geometry
shaders, vertex shaders and fragment shaders to influence the rendering result. This way,
complex rendering techniques can be implemented using this technique. But it requires
complex implementation effort to create and distribute such rendering techniques, as this
requires modification of the source code of the 3D rendering service implementation. As
one example, the technique for model texturing is implemented as layer-based styling
technique named “textured”. An example of a request using layer-based styling is
provided in Listing 5.1.

5.6.2 Thematic Styling of Virtual 3D City Models

Thematic styling defines how feature attribute values of city model features are mapped
to visual variables. E.g., the mapping a buildings value (as attribute value) to a color
value (visual variable) as illustrated in Fig. 5.7. The thematic styling in our approach
includes three components:

Styling Language for 3D The styling language encodes the feature attribute selection
and their mapping to visual variables within the 3D rendering process.

Attribute Mapping A process that fetches the required feature attributes from a database,
encodes these attributes in a way that allows for efficient access of per-feature
attribute values in GPU shader programs.
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GPU-based Representation and Selection of Rendering Styles The styling implemen-
tation uses GPU-friendly implementations to cope with attribute-based styling of
large numbers of individual features. The implementation is based on an approach
for hardware-accelerated attribute mapping for interactive visualization techniques,
which “directly transfers preprocessed input data to the GPU that subsequently
performs geometry manipulation and attribute mapping.” [Bust14]

The implemented styling language is based on the extensions to the OGC SLD to
3D proposed by Neubauer and Zipf [NZ08; NZ09]. It provides capabilities to define
styling rules using OGC Filter expressions to select features to which defined symbolizers
are applied, which define the graphical style to be applied. Currently, three types of
symbolizers are implemented:

AppearanceSymbolizer applies fill colors;
TextureSymbolizer applies parameterizable procedural texture patterns;

GeometrySymbolizer affect the geometry, e.g., by changing scaling in each dimension.

1 <?xml version="1.0" encoding="utf-8"?>

2 <StyledLayerDescriptor>

3 <NamedLayer>

4 <Name>BERLIN</Name>

5 <UserStyle>

6 <Name>Immo has appartment</Name>

7 <FeatureStyleType >

8 <Rule>

9 <Filter>

10 <PropertyIsEqualTo>

11 <PropertyName>has_appartments</PropertyName>
12 <Literal>true </Literal>
13 </PropertyIsEqualTo>

14 </Filter>

15 <AppearanceSymbolizer>

16 <Fill mix="0@.5">

17 <SVGParameter>#000QFF</SVGParameter>
18 </Fill>

19 </AppearanceSymbolizer>

20 </Rule>

21 </FeatureStyleType>

22 </UserStyle>

23 </NamedLayer>

24 </StyledLayerDescriptor>

Listing 5.2: Example of a SLD Descriptor defining one Rule element with one Filter
and one AppearanceSymbolizer to be applied. It blends the original color (mix attribute)
with a blue color.

Symbolizers may either define static values, reference feature attributes via properties,
or apply functions using these attributes to specify visual variables, e.g., color or object
scaling. Such functions could be interpolation definitions or arithmetic calculations using
feature attribute values as arguments.

An example of a SLD is provided in Listing 5.2. It defines one rule to affect the
content layer named 'BERLIN’. The Filter element defines all features to be matched
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that have an attribute has_appartments with the value true. The AppearanceSymbolizer
provided modifies the appearance of the matched features by mixing their original color
(originating either from an assigned texture or material) with the color provided as
hexadecimal color code.

To apply thematic styling efficiently for large numbers of unique features to be
rendered, e.g., buildings within a large-scale virtual 3D city models, SLD documents are
compiled to a representation that can be efficiently uploaded and evaluated by OpenGL
compute shaders. The implementation of the thematic styling adds a style evaluation
step to the 3D rendering process (i.e., the filtering and mapping stage of the visualization
process) implemented as OpenGL compute shaders. In these stages, compiled style
definitions are evaluated to create a set of rules that are evaluated during the rendering
process to apply a per-feature styling to the resulting image. The SLD documents are
parsed and compiled to an efficient OpenGL-based representation on CPU. All stages of
the (either at the geometry, rasterization or fragment processing )a preprocessing step
for styling rules to the rendering process. Fig. 5.6 shows the process for thematic styling
implemented in the 3D rendering service.

Encoded
Caching > Feature ——
Attributes

Feature
Attributes >

Filtering Mapping

Style Evaluation

v

Styled Layer | .
Descriptor ~——>> Compilation T Cosr?plged Mapping Result Buffers
(Style Definition) y v
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Figure 5.6: Applied concept for thematic styling in the 3D rendering service. Styled Layer
Descriptors are parsed and compiled into compact representations on the GPU. Style evaluation
implements the filtering and mapping stage of the visualization pipeline based on OpenGL compute
shaders. It generates mapping result buffers that contain the values for visual variables to be
applied during the OpenGL rendering process.

Style evaluation builds a set of mapping result buffers, each containing per-feature
values for the target visual variable, e.g., a saturation, vertex color, or scaling vector.

Since these buffers do not depend on the camera projection, i.e., projection type,
camera position and orientation, the style evaluation is only required if if the input data
or styling changes. Therefore they can be efficiently cached and reused for multiple
frames requesting the same style. An example applying thematic styling for multiple
visual variables is shown in Fig. 5.7.

5.6.3 Image-Based Styling

Image-based styling implements rendering effects that are not based on 3D geometry
and its vertex attributes but on per-pixel information generated during the 3D rendering
process (G-Buffers). Different kinds of per-pixel information, e.g., color, depth, object id,
or normal direction, are evaluated by fragment shaders. Image-based styling can be seen
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Figure 5.7: Example of thematic styling: Visualization of available apartments and their pricing
based on the Berlin virtual 3D city model. The 3D rendering service applies styling for each of
the 600,000 building models using two visual variables: 1) Buildings that are out of scope (no
apartments available) are flattened and the building textures are desaturated. 2) Buildings of
interest are scaled up and their textures are blended with colors reflecting the rental price per
square meter.

as a postprocessing effect on image data that has been created by the core 3D rendering
engine.

In contrast to layer-based styling on a scene graph level, image-based styling is
performed in image space at image resolution. This allows us to decouple styling from
image generation, providing advantages in terms of a more efficient development process
for image based rendering effects and increased reusability of the effect implementa-
tions [Hill6].

Image-based styling in our prototype system is implemented in a framework for
scripted shader execution named fragscript. Fragscript is based on a C++ engine for
image-based OpenGL rendering using G-Buffers and Lua [IFF96], a scripting language
that is used to describe the parameterization and execution order of OpenGL fragment
shaders for effect application. The components of the framework and its invocation
by the 3D renderer for virtual 3D city models in illustrated in Fig. 5.8. Fragscript
provides an extensible effect library that contains self-descriptive image-based rendering
effects. The fragscript API is able to publish the effect metadata, such as effect name,
required G-Buffers, or necessary as well as optional configuration parameters together
with their default values. As the library is integrated into the 3D rendering service, the
corresponding entries for 3DPS GetCapabilities can be automatically derived from the
data provided by the fragscript API. Configuration parameters for image-based styling
effects are exposed as additional parameters of the GetView operation following the
naming scheme X_<IMAGE_STYLE_NAME>_<PARAMETER_NAME>. This way, fragscript is used
as extensible effect library that provides a framework for implementation .
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Figure 5.8: Overview of components for image-based styling based on a library of effects and
a generic, scripted effect evaluator. Effect descriptions are provided to the 3D renderer. If an
image-based effect should be applied, the renderer generates the necessary G-Buffers during the
rendering process and provides the OpenGL handles to the effect evaluator. The evaluator executes
the script defining the order of shader application and return the rendered color buffer.

In rendering effect within the fragscript effect library contains the following artifacts:

Effect Description JSON formatted files containing information about:
o Effect name
e Human readable effect description
o Effect version

e Required margin: As some effect implementations expose undesired artifacts
on the edges of images, the margin setting defines how wide this margin is.

e Required input G-Buffer types

e Parameters for configuring the effect from outside the styling framework. For
each parameter the following properties are provided:

— Name

— Human readable parameter description

— Data type

— Value range

— External manipulable flag (for disabling external exposure of parameters)

o Presets: Predefined named parameter settings. A name for the default preset
can be provided.
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Fragment Shaders Text files containing valid fragment shader code or functions accord-
ing to the OpenGL Shader Language (GLSL). The files are preprocessed to assemble
the final shader code for single rendering pass. Their file names are referenced
within the effect implementation.

Effect Script Implementation of the image-based rendering effect provided as Lua script.
The implementation defines the order of application of the fragment shaders.
It configures the fragment shaders using the parameters defined in the effect
description.

The effect evaluator runs the Lua script provided with each effect. It creates the
necessary OpenGL shaders and variables, binds the input buffers provided by the G-Buffer
generator of the 3D rendering service, initializes and binds the output buffer, and executes

the effect shaders in the given order. An example of an image-based styling is provided
in Fig. 5.9.

Figure 5.9: An ezample of image-based styling applying multiple image styles (a non-photorealistic
rendering style combined with screen-space directional occlusion) being applied on a view of the
virtual 3D city model of Berlin. Although there is a large number of features portrayed in the
image, the execution time for the rendering effect remains in an equal range since execution times
only depend on image resolution instead of number of features portrayed.






Chapter 6
Layered Map Service for
Virtual 3D City Models

In this chapter, a service for layered maps and its application for web and mobile
applications is introduced. The service enables map authors to export virtual 3D city
model contents by means of a stylized, tiled map with oblique 3D view (also called “layered
map” or “bird’s eye view map”) on the virtual 3D city model and allows for combining
these views with additional information layers. For each use case, an application dataset
can be configured and generated that includes, e.g., in particular, model layers and
their styling (see Section 5.6), terrain textures, client-side points-of-interests, or feature
geometry.

6.1 Motivation and Concept

In common 3D geovisualization systems and services (e.g., Google Earth, Cesium! ),
portrayal of large-scale virtual 3d city models usually requires powerful client applications
that implement scene-based rendering for streamed 3D geometry and textures. These
applications offer a high degree of interactivity and freedom in 3D navigation. However,
this approach also leads, e.g., to long initial loading times and large amounts of data to
be transferred before the application is ready to be used. Additionally, the rendering
quality and the amount of data that is visible at once depend on the client’s computing
and 3D-rendering resources. Consequently, different end-user devices may exhibit very
different user experience regarding loading times, interactivity, visual quality, or amount
of data visible at once.

The layered map approach presented in this chapter uses oblique 3D views for the
provisioning of virtual 3D city models. This way, it addresses these challenges and enables
lightweight applications for virtual 3D city models that provide short initial loading
times.

The general idea behind the concept is to generate artificial oblique image tiles using
the 3D rendering service introduced earlier. These tiles depict the data of the virtual
3D city model for given scene content and styles that are authored especially for the
purpose of the application to be built. Several layers of information can be combined in
one map, i.e., specifically designed tile layers can augment or overlay parts of the map,
e.g., to add planning variants of real estate developments to a map. Each map tile can be
identified by the layer id — identifying the scene content and styling, the tile coordinates
( coordye = {row, column, zoom__level} ), and the map heading in degrees.

1https://cesiumjs.org
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By providing the virtual 3D city model as rendered image tiles, the complexity of
data to be transmitted to clients is reduced to image files (compressed representations
of bitmaps) that are displayed by lightweight client applications based on standard 2D
mapping frameworks. Such applications are small in code size, require only very limited
client resources, and are easy to use. This makes applications load faster and provides a
low entry barrier to virtual 3D city model applications based on this solution. Due to
the small data and code sizes to be initially transferred to clients, the 3D layered map
provides an easy and fast access to visual representations of virtual 3D city models.

6.2 Generation Process

The key goal of the layered map service is to synthesize tiled, oblique views for a given
virtual 3D city model and scene configuration. The views, generated once, can be stored,
distributed, and used similar to classical 2D map tiles. In particular, the complexity
related to processing, management, and rendering of virtual 3D city models from a client’s
perspective is massively reduced. Both, content and styling, can be configured based
on the 3DPS capabilities to match the requirements of the corresponding application.

This can also include thematic aspects when thematic styling is applied during rendering
(see Fig. 6.1).
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Figure 6.1: Fxample of a web-based layered map of the city of Berlin with thematic styling

applied. Each depicted building is assigned a specific value for its public transport reachability
index (mapped to a color scale) and the number of young people living in that area.

The process of generating such layered maps for a given virtual 3D city models can
be completely automated, e.g., to provide automated updates to packaged application
data if contents change (e.g., in case of city model updates, or additions of planning
variants to be included in an application). To define , the geographical space of a virtual
3D city model is subdivided into a regular grid of tiles at different zoom levels in analogy
to existing tiling schemes such as TMS [OSG] or OGC WMS-T. Each tile has a unique
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(a) Color Image Layer

(b) Object ID Image Layer

Figure 6.2: Example of two different layers of image data in two adjacent tiles generated for the
virtual 3D city model of Berlin using South to North viewing direction with an viewing angle of
30°. While tiles in sub figure (a) are used for user display, tiles shown in sub figure (b) contain
color encoded object IDs.

key that is composed of zoom level and grid indices; each tile covers a spatial extent that
can be computed using its key.

Oblique views for each layer are generated for different viewing directions (e.g., the
four principal directions) with supports the step-wise rotation of a view by clients by
exchanging the underlying tile sets as illustrated in Fig. 6.2.

To change the contents that are used in an application using a layered map, the
application configuration is modified and the build process for the datasets is triggered
again. Map contents include, e.g., points of interest (POI) and 2D shapes (e.g., named
roads, or polygons describing areas of interest). Additional image layers can be packed
and superimposed onto a map. In general, features depicted in image tiles can be linked
to layered map on a per-pixel basis, enabling feature data retrieval or client-side attribute-
based styling implemented using image-based 2D rendering APIs, e.g., HTML5 canvas
in case of browser-based applications. For this, an object ID layer is also transferred
to clients, which will not be visible to users, but which is used as background data for
rendering and feature identification. This way, client applications can assign a feature to
each image pixel displayed. If there is feature data available, clients can use the attribute
information together with the object ID layer to implement a simple client-side thematic
visualization, e.g., by mapping these feature attributes to visual variables, such as color
value or its saturation.

The layered map service has been applied in different application scenarios ranging
from real estate marketing, city planning, to cultural heritage visualization [Klit14].
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6.3 Architecture

The architecture for layered map applications (see Fig. 6.3) focuses on efficient distribution
of image and feature data to a possibly large number of clients. Here the layered map
service provides the central component as it encapsulates the image tile generation, i.e.,
the computation of scene content, styling, and projection parameters from tile coordinates
and layer ids. The layered map service allows for generation of complete image tile
datasets as named layers for applications that can easily be served by application data
providers that provide the same GetTile operation but serve tiles from pregenerated
image datasets only. This way, clients can be configured to either use pregenerated tiles
from application data providers or live-rendered tiles from a layered map service instance.

Tile dataset generation is initiated by the configuration service using the CreateTiles
service operation which generates tiles for specific map layers (i.e., 3DPS GetView pa-
rameter sets) for given spatial extents and map orientations.

Feature data, i.e, POI data, is prepared and optimized for applications by the feature
data provisioning service. Clients fetch the POI layers and connected information using
the GetPOlIs operation of an application data provider.

Application data providers are generally very lightweight components that scale
well, e.g., lightweight service implementation that encapsulate keyed data stores such
as cloud storage services (e.g., amazon S3) or file system based stores. This allows the
approach to scale to a large number of concurrent users fetching tiles in parallel, since
scaling the network-based delivery of files to client applications is a solved problem, e.g.,
in cloud-based environments [SI10; WHP16]. The same applies for application optimized
POI and feature datasets.

Client applications provide the user interface for applications using virtual 3D city
models based on layered maps. They are implemented for Android, iOS, and web
browsers. Clients can access runtime external data providers to provide specific business
functionality or to provide access to dynamic data, i.e., data that changes frequently.

6.4 Client Applications

A minimalist implementation of a client application for layered maps does only require
capabilities to fetch tiles from a service and display these images. For that reason, these
applications tend to be very lightweight from a software development’s point of view.
Such client applications can be easily implemented on mobile platforms (i.e., smartphones
or tablets) or on web browsers.

Their design includes a map-like user interface (also called Slippy Map in Open-
StreetMap terminology) used to explore the virtual 3D city model by shifting the map
center, changing zoom levels and rotating the view. Many tasks, such as exploring a
specific area, do not require full 3D camera navigation, which forces users to handle six
degrees of freedom.

Users can adapt displayed contents by configuring the image, POI, and feature layers
to be displayed on the map. This way, e.g., different variants of an area, either having
different 3DPS layers or points of interest selected or feature geometry displayed, can
be selected and presented to users in a robust way with low latency. Users can further
interact with the feature items on the map, since to additional information (i.e., detailed
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Figure 6.3: Overview of the architecture for layered map applications. The layered map service
generates image tiles by using 3DPS GetView operations and provides access to 3DPS feature
data and picking functionality. Clients can either access prepared application datasets or use live
rendering provided by the layered map service using an GetTile operation.

descriptions, web links, contact information, tags, and categories) can be contained in
the packaged POI and feature data format. Client applications can use the features of
the target platform, e.g., map-popups, information overlays, in-app dialogs, or external
web-browsers, to display the content provided or to forward to the URL provided in the
POI data, where additional functionality, e.g., commenting, for the corresponding item
can be implemented. This way, additional services can be connected to the map view
that implement starting points for business processes related to the objects displayed on
the layered map.

For retrieval of image tiles, client applications use the HT'TP-based service interface.
Requests contain the layer name, the tile coordinate and the view orientation. The same
service interface is provided by tile servers, which provide tiles that were previously
rendered by the layered map service, and by the layered map service itself, which is
also provided by the layered map service for rendering tiles using a 3DPS. This way,
client applications can also include image layers that are generated on the fly by 3DPS
instances without having to change the client implementation. Live rendering of image
tiles allows users to modify content selection and styling, and to include up-to-date data
in their layered map applications.

Combination of Map Layers Using Information Lenses

Client applications can use interactive information lenses to present a second map
configuration, e.g., with different scene contents or additional information layers, for a
specific area of interest at the same time. Such lenses provide provides a focus & context
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Figure 6.4: Example of a web-based layered map using an information lens to combine two map

layers in one view. The context layer shows the textured virtual 3D city model and an orthophoto
as terrain texture. The focus map is configured to show a different configuration, i.e., a planning
model and a street map as terrain texture.

mechanism for use with virtual 3D city models. This way, users can explore and connect
multiple content layers selectively without manually switching the overall map content.
Here, a region of the map, e.g., a circle around a point of interest or the current cursor
position, shows an alternative scene configuration, e.g., a planning model (Fig. 6.4 shows
an example).

The implementation of lenses relies on blending of rendered layered maps where the
content of the context map (displayed outside of the lens area) can either be replaced or
combined with the content of the focus map (inside the information lens area) on client
side. Here, the different information layers such as object IDs can be used to influence the
blending result, e.g., to apply the blending effects only to specific objects in the virtual
3D city model. As 2D rendering and blending is supported well by all target platforms,
information lenses can be rendered efficiently also on lightweight end-user devices.

6.5 Cloud-Based Deployment

With the increasing availability of high performance GPU-supported hardware, also in
major virtualized cloud-based environments (e.g., Amazon AWS, Microsoft Azure, or
Google Cloud), it becomes feasible to scale rendering infrastructures for image generation
for virtual 3D city models on demand. Most notably, pre-configured 3D rendering service
instances (e.g., based on container technology like docker [Nicl6]) are easy to deploy and
to instantiate since they encapsulate the complexity of heterogeneous operating systems
and hardware configurations. The major challenge for the cloud-based deployment of
rendering infrastructure is the data distribution since rendering instances need to have
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access to large-scale dataset in a way that allows to access data very fast. By using, e.g.,
in memory caches, as already implemented in the the presented 3D rendering service
implementation, the overhead implied through remote fetching of geometry and texture
data can be minimized. Nevertheless, it requires a certain amount of time until a 3D
rendering service instance becomes ready within a cloud environment.






Chapter 7
Video Service for
Virtual 3D City Models

In this chapter, design and implementation of a video service that synthesizes videos
for virtual 3D city models based on a high-level description of a camera animation
is introduced. For a given service request, containing a video description, the service
generates a video file encoded in a standard video format. The video service also provides
a map-based front-end that allows users to configure the camera-related parameters,
the data to render and its styling, as well as the composition and timing of additional
video elements. It applies concepts and techniques that have been presented earlier in
this thesis to enable users to create videos with a minimal set of client-side hardware
requirements.

7.1 Motivation

Common visualization applications for virtual 3D city models offer a rich set of software
features, e.g., to interactively view, explore and analyze geospatial features, but they also
require corresponding hardware and software resources and, most importantly, the 3D
model data to be available on client side for 3D rendering. However, for many application
scenarios, a lightweight, “read-only” visual access to virtual 3D city models is required
and sufficient. Videos as key visual media type, hence, represent an alternative way for
provisioning of virtual 3D city models. Editing, 3D rendering and encoding of videos
generated from virtual 3D city models typically involves a lot of manual work that makes
video production a relatively expensive, slow, and not very efficiently repeatable process.
For example, videos depicting urban development projects are often generated on a
contract basis by professional graphics agencies. For that reason, the proposed video
service aims at automating many of the steps of the video generation process. The
characteristics of videos as medium for communication of virtual 3D city models include:

Low Requirements Video delivery and playback does not require any special hardware
or software on the client side since they are commonly supported by all devices and
by a variety of different video players.

Ease of Use Video usage and handling is straightforward compared to interactive ap-
plications for virtual 3D city models as they do not require users to get into the
details of 3D navigation and 3D interaction techniques.
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Standardized Formats Video encoding is based on standardized video formats, which

are supported by almost all end-user devices, systems, and platforms.

Efficient Management and Distribution Videos are easy to store, manage, and dis-

tribute, e.g., using common video portals or content management systems for
digital media.

The following exemplary application scenarios for the video service have been

identified that benefit from video-based provisioning of virtual 3D city models:

AS.1

AS.2

AS.3

AS4

Videos for Project Communication Videos can be used as content for commu-
nication of urban planning projects to different groups of stakeholders. Automating
video production facilitates creating individualized, up-to-date variants for different
stakeholders (e.g., versions for the general public, possible investors, administration,
politics).

Videos as Documentation of Decision Processes Videos serve as documenta-
tion artifacts about discussions and decision finding processes. Textual annotations
and object highlighting can be used to enhance the contents of videos.

Videos for Location Finding Videos can be used to produce visual media that
communicates how and where to find locations in a city. For example, these videos
could complement the web information of an event website.

Videos for Operation Briefings Videos can be used for briefing operations for
events, e.g., demonstrations or festivals. Here, videos could be used to demonstrate
possible scenarios to communicate the spatial situation in the operation area.

Requirements

The following requirements for the web-based video editing and generation have been
identified:

R.1

Repeatability Virtual 3D city models tend to change over time. To keep related
video contents up to date, it should be possible to regenerate videos from a video
description automatically, i.e., without additional manual effort.

Content Integration The service is supposed to include contents from different
sources into the visualization that is recorded as video, e.g., virtual 3D city models,
architectural 3D models, results of simulations or analysis, or points of interest.

High-Quality Rendering High-quality rendering and previews during video
editing should be available regardless of the virtual 3D city model’s size and
complexity. The hardware and software used by the video service front-end should
not have any impact on the visual quality of the rendered videos.

Non-Expert User Interface The video editor front-end should be designed
towards users that are not specially trained in computer animations. It should
provide assistance to users to achieve good results already with a minimum of
effort.
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R.5 Cross-Platform Compatibility The video service front-end should run across
all platforms and devices, e.g., in a standard browser environment.

R.6 Robustness The video generation should be robust regarding weaknesses in 3D
camera paths designed by the users. The system should automatically “heal” or
support users to fix quality issues, e.g., regarding discontinuous changes in the
camera’s position, orientation or velocity.

R.7 Scalability A video generation system should be able a) to efficiently use rendering
resources, such as GPU hardware, and b) to distribute workloads to multiple com-
puting nodes for horizontal scaling. The factors that must be regarded concerning
the performance for video generation are:

a) User Count The number of users that edit or render videos in parallel defines
the required server resources, e.g., for processing video rendering request or
rendering of preview images. The system implementation should be able to
cope with growing user numbers and provide a nearly constant response time,
especially for preview images since they are required to provide an interactive
user experience.

b) Model Data Size and Complexity The video generation should be based
on a 3D rendering service that is able to handle models of nearly arbitrary size
and complexity. Further, the data quality and precision should not influence
on the video generation process.

¢) Number of Generated Videos Video generation is a very resource-intensive
process. Hence, a video rendering service should be able to scale horizontally
(also know as scale-out) [Mict07] to allow videos to be rendered in parallel
by adding additional rendering nodes. Video files require major storage
capacity. Therefore, storage systems that are used for generated videos should
be extendable to store large volumes of generated videos.

7.2 Concept

In this section, a novel approach is presented that applies service-oriented concepts
to video editing and generation from virtual 3D city models. The general idea is to
decompose a video authoring process (see Section 7.2.1) into components that can be
implemented by independent services that provide a well defined service interface. For
the specification of videos, a video description model is developed that covers the aspects
of video generation, i.e., structure, timing, scene content and styling, encoding properties,
etc. To this end, a video service system has been designed that consists of three major
parts (Fig. 7.3):

Video Editor Front-End: A browser-based wvideo editor front-end that allows for editing
video specifications.

Video Editor Back-End: A web-based video editor back-end that provides user man-
agement and project management as well as database access and persistence
functionality.
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Video Generation Service: A video generation service that generates, composes, and
encodes the frames and additional graphics elements (e.g., titles, text descriptions,
overlays) as defined by the video description.

The video editor front-end allows expert users as well as non-expert users to specify
and generate videos of virtual 3D city models based on 3D camera paths and using different
information layers regarding 2D and 3D geodata. The resulting videos are assembled
from one or more video scenes whose contents (i.e., 3D models, terrain textures, rendered
POIs) and corresponding rendering styles (i.e., applied rendering technique, highlights,
image postprocessing) can be configured individually. The user interface for camera path
definition is primarily based on 2D maps for authoring camera paths (Fig. 7.10), which
are specified by using 3D control points of BSpline curves. While the map-based portion
of the video editor front-end supports the definition of 2D curves for camera positions
with corresponding points of interest for camera animation, the 3D component (heights
of point of camera POC and point of interest POI) of the camera path components can
be configured using a lightweight image-based 3D client. For this, preview panoramas
are generated by a 3DPS. The service requests are generated using the settings from
the scene and camera configuration at a selected control point of the overall camera
path. Through combining camera paths on the map, fine-tuning of the camera’s height
and online previews, the video editor front-end provides the means to configure complex
3D camera paths and video scenes that are rendered as videos by the video generation
service.

The result of each video editing process is a video description document, which is
structured according to the video model described in Section 7.4. This model supports a
broad range of video effects and time-dependent interpolation descriptions of differently
typed parameters (e.g., vector positions, vector directions, colors, or number parameters).

7.2.1 Automating the Video Generation Process

Commonly, creating videos of virtual 3D city models involves two manual steps (Fig. 7.1):

Fly-Through Creation Creation of single video sequences each showing a camera fly-
through in a virtual 3D city model using a conventional 3D visualization application,
e.g., Google Earth that renders screencasts of live camera navigation or predefined
camera paths, often based on key-frames.

Video Postproduction Complex video sequences require manual work for postprocessing
videos to achieve a visually appealing result since complex video sequences usually
contain image or text overlays, blending effects between difference scene content,
or specialized techniques for image styling. These steps are usually performed
using standard video authoring software that implements the compositing and final
encoding of the video sequence, e.g., Adobe Premiere.

Both steps require a specially trained user to operate the tools for 3D city model
visualization, video generation and postprocessing. Video authors are required to cope
with 3D camera animation, mechanisms for scene configuration, styling and with video
editing tools. Hence, users need a special training for those specialized tools, limiting
the user group that is able to actually perform these tasks. Further, video editing tools
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Figure 7.1: The manual video generation process involves fly-through creation and video post-

production. A repeated creation of videos is commonly as expensive as its first generation as the
parts of the video scene need to be recreated and recombined in video postproduction.

as well as 3D visualization applications require powerful hardware to render large-scale
3D city models and to efficiently edit, process, and encode high resolution videos. Many
times, licenses are required for commercial solutions for each of the tools used in the
process. This also involves licensing fees that increase costs for video generation.

To address these issues, the proposed video service provides a different workflow for
video authoring with the following two steps:

Web-Based Video Editing A video author creates a description document that specifies
the video to be generated. The description is stored persistently.

Video Generation Video generation that performs frame rendering, video compositing,
and postprocessing. The input for the video generation step is an instance of a video
description model (see Section 7.4) that includes all information that is necessary
to generate a video sequence from a virtual 3D city model using 3DPSs (Fig. 7.2).

Hence, the video generation itself (frame rendering, compositing, video encoding,
etc.) does not require any manual steps. As a further major advantage of the approach,
a video description can be rendered automatically multiple times, e.g., for different
resolutions, variants, or if the underlying virtual 3D city model changed.

- ~
Video

Generation | .
(Frame Rendering, Frame - Video
Compositing, and
Video Encoding)

Figure 7.2: The automated video generation process using the video service. With the editor com-
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ponent, users specify the parameters for video generation such as camera position and orientation
over time (i.e., the camera path), the scene configuration, transitions between scene configurations,
and overlays. Instead of creating intermediate video scenes and doing the combination in a
separate manual postproduction step (Fig. 7.1), the final videos are rendered automatically from
the configured virtual 3D city model. A repeated generation of videos or variants with different
scene configurations, e.g., additional planning models, can be automated as well.

A video description, which is created by the video editor front-end, is stored in
a database. Due to this explicit representation of video specifications, videos can
be incrementally refined. Additionally, a collaborative editing of videos by different
stakeholders or contributors is possible.

To generate the actual video file, the video generation service implements interpola-
tion of camera paths as well as scene contents, generation of images and their compositing
to video frames. The process is executed by a service-based system in server environ-
ments providing sufficient hardware for 3D rendering of large-scale 3D city models ( CPU,
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GPU, main memory, hard disk, and network resources) as well as video composition and
encoding. In contrast, video descriptions can be edited on the client side without any
special requirements regarding 3D hardware or software resources, since 3D portrayal
services are used for 3D rendering.

7.2.2 Video Editing and Generation Stages

Technically, the automated video generation process requires the following six stages to
be implemented for the service-based video editing and generation:

Editing A user specifies camera path and camera velocity, the scene configurations (data
layers and styling), and the transitions between different scene configurations. Video
descriptions are the output of that stage.

Interpolation and Request Generation Camera position, camera orientation, and scene
contents are interpolated to match the specific time index of a video frame to be
rendered; the results are stored by means of 3DPS requests.

Video Frame Rendering For each video frame, images of the virtual 3D city model
(generated by 3DPS requests) and possibly additional images containing the text
and image overlays are generated.

Image Compositing The final video frame is composed of one or multiple image layers.

Encoding The composite frames are encoded into a video stream or video file using a
video codec, e.g., H.264 [ISO04].

Publishing and Distribution Encoded videos can be distributed to web sites for down-
loading or viewing. In most cases, video platforms will be used for these distribution
tasks.

7.3 System Architecture

The system design separates video editing, video generation, and 3D rendering into
distinct services that operate independently. Fig. 7.3 shows an overview of the system
architecture. The principal components of the architecture include:

Video Editor The video editor is a web application for creating and managing video
projects, in particular authoring of video descriptions, management of the video
generation process, user management and authentication, and video publication.
It is implemented as Ruby on Rails [RCT17] web-application using a HTML5
standard-based video editor front-end implemented in TypeScript [Rozl5]. It
contains two major parts:

Video Editor Front-End Users can edit camera paths, scene contents, styling, video
timings (e.g., scene order, transition effects) as well as video postprocessing
effects (e.g., image or text overlays, etc.). Further, it provides a preview of a
scene for each camera position as well as first video previews, generated by
the associated 3DPS.
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Figure 7.3: The architecture of the video service and its three main components: A web-based
video editor providing the user interface and data management for editing and distribution of
videos. A video generation service assembles single images, retrieved from one or multiple 3D
portrayal service instances. The 3D portrayal service encapsulates image synthesis for virtual 3D
city models.

Video Editor Back-End The video editor back-end provides API endpoints used
by the front-end. It implements management of projects, user data, video
data, and video jobs.

Video Editor Database Data persistence is implemented using a PostgreSQL
database based on a relational database model (video editor database). It also
copes with storage and access of rendered video files in its video store (e.g., a
local file store or a cloud-based storage).

Video Request Queue Users can create and edit video projects and submit the corre-
sponding video descriptions (video jobs) into the video request queue, implemented
by the createVideo service operation (see Section 7.5.2).

Video Generation Service The video generation service synthesizes videos from video
descriptions by interpolation of definitions for single video frames. Source images
are rendered using a 3DPS instance, combined into video frames, and encoded into
video files. It is split into two components a) a NodeJS!-based web application
providing the service endpoint, request checks and process control and b) a C++
application that implements video frame retrieval, composition, and encoding of
the final video file. The service is described in detail in Section 7.5.

3DPS 3DPS instances are used to render video frames. They encapsulate rendering and
management of virtual 3D city models. Multiple 3DPS instances can be combined,
e.g., to integrate different geodata infrastructures based on provided 3DPS.

1https://nodejs.org
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7.4 A Data Model for Video Authoring and Generation

For the description of videos to generate, a data model was designed that defines the
entities that configure the displayed scenes (i.e., selected models and their styling, position
and orientation of the camera, etc.), the timing and compositing of videos from single
frames. To address the requirements in Section 7.1, this description should support
features such as:

e Visual editing and composition of video descriptions
e Persistent storage and management of videos

e Generation of video files from virtual 3D city models using a video generation
service.

The following aspects of a data model for videos have been identified:

Time Modeling Videos from virtual 3D city models can consist of different scenes, e.g.,
when exploring two different locations. Therefore, a time-wise segmentation of the
overall video is necessary. Scene contents are defined for particular time ranges, i.e.,
which content is displayed in which time range and how it is composed from different
image sources. This information allows video generation services to compute the
required service parameters for every time index within the video, e.g., projection
parameters or parameters that influence scene styling.

Scene and Style Configuration The 3D contents and styling for a video sequence (or
its parts) define which features or model elements are included in the visualization
and how they are styled. Further, means for configuring the image-based styling of
the rendered video frames need to be provided, i.e., image-based rendering effects
as well as highlighted and other rendering service parameters can be configured to
provide a wide range of creative means for definition of video scene content. So, the
video model must be capable of defining those parameters and their interpolation
over time.

Video Transitions For visually appealing video sequences, e.g, including transition effects
between scene configurations and to avoid abrupt changes of scene content, model
features for describing scene transitions (e.g., source and target scene contents, the
time range of the transition, the transition type, and the used transition technique)
are necessary.

Image Sources and Image Generation Different types of images can be used for ren-
dering a video frame (see Section 7.5.3 “ Image Sources”). They can be generated,
e.g., by a remote 3D portrayal service, a local (in-process) 3D portrayal service, a
text renderer (e.g., for text overlays), static image files, remote image files, or 2D
renderers (e.g., for 2D vector graphics). The model needs to define which image
sources, endpoints, and configurations should be used for a specific time index.

Image Compositing The final video frame at any point of a video can be composed
from different source images (layers). These image layers can be text or image
overlays, rendered images of virtual 3D city models, or transition effects between



7.4. A Data Model for Video Authoring and Generation 73

Video
Sequence 1 Sequence 2
et [ In | clipt [ out]
_% Layer 2 | In | Clip 2 |Out|
o
§ Layer 3 [m] cipsa  Jout]
)
£
v Layer n In | Clipn | Out |
time‘
>

Figure 7.4: Overview of the video model from a time, contents, and image compositing perspective.
A wvideo is divided into sequences each defining a specific range in time for the overall video. Each
sequence has a notion of image layers, each containing one or more clip definitions. A wvideo clip
defines the video content for a duration (e.g., a 3D video scene, an image or font overlay, or a
static color) together with definitions for type and timing for video transitioning.

different parts of the video sequence with different content or styling. Therefore,
the composition order and technique must be specified in a video description model
as well.

Video Encoding Properties Finally, technical parameters, such as the file format, video
encoding type, resolution, and aspect ratio, form also part of the video description.

The designed data model addresses these aspects. Here, the naming of the model
elements and classes is aligned with the wording used for existing desktop-based solutions
for video authoring, such as de facto standard applications such as Adobe Premiere or
Apple iMovie. There are three dimensions to consider when structuring a video:

e Time
e Content
e Image Compositing

The general structure of a video regarding these dimensions is illustrated in Fig. 7.4.
While a video contains information about the video encoding and other parameters that
are constant throughout the complete video, sequences create a partitioning of an overall
video into scenes of a specific duration that can be described independently. Here, clips
describe a specific scene content to be portrayed during a time period within a video
sequence. Multiple clips can cover the same time span. They are arranged as layers that
describe the order of frame compositing. In general, properties that are defined for parent
entities, such as the video video or specific sequences are inherited to the lower level
entities. Properties can be redefined in these lower level entities, e.g., video sequence
properties can overwrite properties defined for the video. This reduces the complexity
and the size of model instances since most of the properties become optional in low level
elements, as long as they should not be changed or interpolated for a specific part of the
video.
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Figure 7.5: A class diagram providing an overview of the modeling of video sequences and clips.

7.4.1 Scene Content and Timing

The video editor and the video generation service use the same model entities to describe
videos (see Fig. 7.5). This assures consistency in data exchange and common internal
structures in both components. A video is composed of sequences that contain clips. In
general, a clip provides a description how to synthesize rendered frames for a specific time
interval, specified as start time and duration in seconds. Clips are implicitly grouped
to image layers (using imageLayerIndex) defining the order for frame composition and
blending. In general, there are two subclasses of Clip:

StaticClip providing a static content over their complete definition period (fixed image
overlays, text overlays, colors, or gradients ).

VideoClip require frames to be generated by interpolation of parameters, such as camera
position and orientation, scene content, or styling parameters for a specific point in
time.

Commonly, a video clip describes camera flights through a virtual 3D city model.
The configuration of the video clip frames is encoded as Stream entity. Streams contain
the necessary information for time dependent image generation using a 3D rendering
service. They define scene contents and styling (named content layers and their selected
styles, background configuration, service endpoints) as well as additional parameters that
affect the portrayal result. The parameters of portrayal requests for a single frame is
adjusted by interpolation over time using ParameterInterpolators. This way, the model
provides a generic mechanism that allows for a variety of animated effects.

Assigned transitions connect two clips. They define the effect that is applied at the
beginning (in transition) or the end (out transition) of a clip, e.g., to apply a blending
effect.
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Camera Configuration
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Figure 7.6: Camera model for perspective projections and orthographic projections.

7.4.2 Virtual Cameras and Projections

The camera projection and additional camera related parameters have to be defined to
configure the properties of the virtual camera. The current implementation provides
support for conventional perspective and orthographic camera projections (Fig. 7.6),
specified by the point of camera (look-from position poc) and the point of interest (look-to
position poi). Both points are specified in geocoordinates in a spatial reference system,
usually defined on a per-path or per-video basis. Projection-dependent parameters
such as camera opening angles (field of view in x and y direction fovz and fovy) for
perspective projections and top, bottom, left, and right distances for view frustum planes
of orthographic projections are specified in subclasses.

Advanced projection techniques such as multi-perspective views [AZMO00; PD13;
PTD11] or projections for interactive 360 degree videos can also be supported by extending
the model and corresponding implementations in 3DPS that is used for video generation.

7.4.3 Camera Paths

A camera path is specified by a parameterized function used to calculate camera pa-
rameters depending on the normalized time interpolation parameter ¢ € [0,1]. The
interpolation method depends on the type of path and camera definition. There are
currently three path types specified that the video generation service is able to interpolate
(see Fig. 7.8 for modeling details):

Linear Keyframe Path Each component of a camera configuration gets linearly interpo-
lated between the camera configuration defined for keyframes (Fig. 7.7(a)). While
being easy to define and simple to evaluate, this approach creates notably dis-
continuous changes in camera position and camera orientation, especially when
rapidly changing camera moving directions or camera orientations. The camera
path interpolation strictly follows the polyline defined by the keyframe camera
positions and orientations since no adjustment or adaptations in terms of smoothing
camera paths are performed with this interpolation method.

Smoothed Linear Keyframe Path Smoothed linear keyframe paths are designed to com-
pensate abrupt camera orientation and position changes by applying a smooth-
ing at timestamps within a specified interval of camera configuration keyframes
(Fig. 7.7(b)). The position for a time index is calculated from two points around a
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Figure 7.7: Example of different types of camera paths. For a linear keyframe path given points
of a camera path describe a linear connection between the given points. Smoothed linear keyframe
paths apply smoothing around the control points to avoid abrupt changes of camera movement. For
Beziér paths the given points are interpreted as control points of a cubic Beziér spline providing a
smooth camera movement.

path keyframe: 1) The linear interpolation at the current time index on the polyline
given by the keyframes and 2) an interpolated position on a future time index.
The final interpolated position on the path is then given by the center between
these two points. This way, camera positions around keyframes are following a
quadratic Bézier curve, which generates smoother transitions of camera direction
and orientation changes compared to a pure linear interpolation.

Beziér Path Beziér curves provide intuitive means to design and describe continuous
and smooth curves. The Beziér path is based on interpolating cubic Bézier splines
to minimize discontinuous camera animations (Fig. 7.7(c)) . Four adjacent points
of a path are interpreted as control points of a cubic Bézier curve, which constitute
a single curve segment. For adjacent curve segments, the last control point of the
prior curve segment is equal to the first control point of the following segment. This
way, a continuous transition between curve segments is established.

Concepts for Simplified Path Modeling

Detailed specification of camera animations commonly requires a significant amount
of manual adjustment and optimization to create a smooth camera animation, i.e., to
prevent unsteady changes in camera orientation (e.g., sharp turns), camera velocity (e.g.,
sudden or strong acceleration or deceleration), or camera movement direction. To simplify
the specification from a user’s perspective, there are two basic concepts implemented in
the model specification and in the overall video service system.

Presets Most properties are optional to allow users to define usable path descriptions
with a minimum of properties set. Parameters are either provided as defaults in the
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implementation, taken transitively from parent elements, or calculated from given prop-
erties, e.g., a default field of view angle in y direction that was computed from the given
field of view in z direction and the aspect ratio of the video file. Further, there is a
temporal relation between camera path specifications. If previous camera paths define
parameters, these parameters are kept as defaults until they are overridden by setting
the parameter in later path specifications.

Gaze Assistance Second, the model provides an option that allows the video editor and
video generation service to automatically derive camera points of interest from camera
position path definitions. The lookInPathDirection flag causes the camera point of
interest for the current frame poi,, to follow the path direction by setting the poi for
frame n using pot, = pocy,+1. In case of the last frame with index m of a path segment,
the direction vector for frame n 4, = poi,, — poc, of the last ¢ frames is averaged and
applied to the last point of camera poc,,:

m—1

27
%feri<mandi>l
m—1—1

This way, paths can be specified by providing a path for the camera position only.

The other parameters can be derived using defaults or calculated from the given camera
positions, providing a plausible first path that can be incrementally refined by users. So
the model is able to cover both: simplicity for path specification and the possibility to
create more fine tuned camera paths.
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Figure 7.8: Overview of path types with interpolation facilities to create smoothed paths in terms
of velocity and general steadiness of motion.
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Figure 7.9: Architecture of the video generation service.

7.5 Video Generation Service

The video generation service processes video job descriptions based on the data model
introduced in the previous sections. It interpolates camera path and scene parameters,
fetches video frames from different services, composes these images to final video frames
and encodes the video file. Generally, video generation of virtual 3D city model is
a resource intensive process as large numbers of video frames need to be configured,
synthesized, processed, composed, and encoded. The performance of rendering video
frames is limited by the throughput of 3D rendering services since they have to manage
limited rendering resources to cope with large-scale virtual 3D city models. To this end,
it is necessary to decouple request management, video composition and encoding, and
frame rendering to allow the system to scale by adding either rendering service instances
or video generation service instances to the overall system (Fig. 7.9).

7.5.1 Architecture

The video generation service is implemented as two major components:

Request Endpoint The request endpoint service provides management functionality, e.g.,
to start, stop, and delete video processing jobs.

Video Renderer The video renderer processes video jobs, generates or retrieves video
frames, decodes and composites frames, and encodes the video files.

Both components share a video store with rendered video files that can be retrieved
by service clients, i.e., the video-editor-backend to make video files accessible by clients.
A video generation status is written by a video renderer. It contains the current state of
the video generation process (queued, started, finished, error) and the progress of the
video generation for video jobs. The status is read an processed by the status monitor.
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Request Endpoint

The video generation service request endpoint manages the job queue of the video renderer.
It implements validity checks for requests and maintains status information for video
generation jobs. Further, it provides access to finished video files.

The request dispatcher stores per-request callbacks to notify the initial caller of the
service operation about events regarding the video generation process, such as generation
status changes, finish of the generation process, or errors during generation.

The request dispatcher is notified of events in the video generation process, i.e.,
generation progress changes, completion of a generation process, and in case of errors
during the generation process.

Clients can provide URL callbacks to notify or as email addresses that receive
notifications. This way, the components can operate independently and event-based
following the idea of micro service architectures increasing scalability and robustness of
the overall system.

Video Renderer

The video renderer is implemented in C++ to improve performance characteristics and
use computing resources efficiently. It implements the camera position and orienta-
tion interpolation (path interpolator), and frame generation from different sources (see
Section 7.5.3), compositing (image compositor), and video encoding (video encoder).
Depending on the video description multiple 3D portrayal services can be invoked in a
single video generation process.

7.5.2 Service Interface

The video generation service provides a service interface based on JSON encoded requests.
For this, the request endpoint component implements processing of these requests and
dispatches them to video renderer instances for video generation. Further, it monitors
the video rendering process and manages status updates. It exposes the following service
operations via a REST-like[Fie00] interface.

CreateVideo The CreateVideo operation is called via HI'TP POST method. It requires
a JSON video description to be sent in the request body. A video job is created
from the parsed request and added to the execution queue. Jobs are then processed
as soon as there is a free instance of the video renderer available. The video renderer
returns a video ID, which is used by the remaining requests for job management
and video retrieval. On completion of the request, a given HT'TP callback is called
to notify submitting clients, i.e., the video editor web-application.

Status The Status request is issued using the HTTP GET method. It does not involve
any changes in a database or other state changes. The operation returns the
processing status of a video with a specific ID as JSON-formatted response.

GetVideo Implements video access and download via HTTP GET request.

DeleteVideo Deletes the video from the video service internal storage using a HTTP
DELETE request with the video ID as parameter.
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7.5.3 Image Sources

An image source delivers image data to be included into the video rendering process.
There are different clip types, each describing a different content type for video frames,
the images can originate from different sources, e.g.:

Remote 3DPS for rendering images of virtual 3D city models on servers and transferring
encoded images over a network.

Local 3DPS are process-internal 3D rendering services integrated into the video genera-
tion service process using a C++ library interface.

Text renderers , e.g., for generating text overlays.

Static image files that are loaded from a local store identified, e.g., by an alias name in
a video description or remotely hosted image files via URL.

2D graphics renderers |, e.g., for rendering 2D vector graphics or maps (either service-
based or integrated into video renderer).

Due to the image compositing performed by the video renderer, multiple images from
different sources (external services or local renderers) can be necessary for a single video
frame to be rendered. Using external services for image rendering or retrieval in the video
generation process provides interoperability between different geodata infrastructures,
data owners, or stakeholders. This allows us to integrate data from different sources in one
video, but it also causes a major challenge: External 3DPS cause a significant performance
overhead per image, e.g., for request processing, image encoding, image transfer, and
decoding on client side, which massively affects the overall time for retrieving single frames
for video generation. This way, application of external (network-based) 3DPSs for video
frame rendering creates a major performance challenge for implementation of a video
generation service. Further, video scenes generally cope with a specific geographic area of
interest and, therefore, they usually require only a subset of data for that particular area
in sequential order. That is, most likely, two consecutive frames require a similar subset
of geometry and texture data for rendering since they have a similar camera position and
orientation. An implementation of the rendering service can take advantage hereof using
these characteristics (frame-to-frame coherence) to apply optimized out-of-core rendering
techniques, e.g., caching of geometry and texture data, managing available resources
(in particular GPU, IO and memory resources). If a portrayal operation of a 3DPS is
invoked over a network, there is no guarantee about the order of incoming requests and
their processing due to the statelessness of such services. Requests originating from
different clients might request images of completely distinct spatial areas, resulting in no
frame-to-frame coherence as a worst case scenario.

To optimize video generation for most common cases of sequential portrayal requests,
e.g., when a camera follows a path for traversing a specific area of interest, there is
an internal renderer for virtual 3D city models implemented within the video render
that encapsulates an instance of the C++ rendering service (presented in Chapter 5)
for processing 3DPS requests. The internal rendering module uses the C++ interface
provided by the 3D rendering service library, which is aligned to the 3DPS interface
provided by the network based service. This allows us to determine the order of rendering
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requests by the calling video renderer. It aligns portrayal requests for video clips in
a way that provides a high frame-to-frame coherence and, therefore, an optimized
rendering performance for video generation. Further, rendered frames are not encoded
into transmission formats, but returned as internal image representations. This way,
the overhead for image generation of virtual 3D city models is reduced significantly, but
external 3DPS instances can still be invoked and resulting images can be combined into
one video, either through image-based operations during frame compositing or as clips or
sequences for different time ranges.

7.6 Video Editor Front-End

A wideo editor front-end has been designed and implemented that supports users to
create video descriptions in a web-based environment with a minimal set of hardware
requirements. All components that use 3D capabilities, i.e., WebGL-based clients for
image-based preview rendering, are optional and are activated only if there is support on
the client machine. In the case that WebGL rendering is not available on client browsers,
there is a replacement using 3DPS image retrieval. As a consequence, the video editor
front-end does not require any browser-plugins or 3rd-party software to be installed on
end-user systems.

The web-application provides four main functionality that are available in dedicated
interaction areas in the user interface (see corresponding numbers in Fig. 7.10):

(1) Camera path editing specifies the 2D camera movement and orientations on a
2D map,

(2) Video editing specifies video composition and timing using a timeline representa-
tion

(3) Clip editing configures the contents and styling for currently selected clips

(4) Image preview shows the currently selected scene configuration using the current
camera configuration

7.6.1 Camera Path Editor

Specifying a camera path in 3D represents a complex task, especially for inexperienced
users. For that reason, a primary objective of the user interface design for the video
editor front-end has been to reduce the complexity of the camera path specification.
The process of defining 3D camera paths has been split into two separate interaction
modes: Camera path definition, i.e., the camera position over time, and specification of
camera orientations. To this end, the camera path editor allows users to “draw” camera
paths based on control points of a B-Spline in 2D using a map (see Section 7.4.3 for
camera path modelling). The 3D component of camera positions and orientations are
kept unchanged during this map-based interaction.

The orientation as well as the camera position are defined as point of camera and
point of interest at specific camera viewpoints (waypoints). All intermediate positions
are then interpolated by the system following the curve. Users specify only the Py and
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Figure 7.10: The user interface of the video service front-end. 2D camera paths are configured
using a B-Spline in connection with focus points on a map (1). The video itself is structured into
clips that may have overlapping time frames to specify transitions from one clip configuration
(i.e., selected layers and their styling, as well as applied image styles) to another (2). Each clip
configuration is edited in the clip editor panel (3). An image preview is provided that shows the

current scene configuration using the currently selected camera position and orientation and the
current scene configuration (4).

P;5 of a cubic Beziér path segment. The missing control points P; and Ps are calculated
by the system to ease camera path specification (see Fig. 7.7(c) for an example of such a
path segment). When n waypoints are defined on the map, there are n — 1 of such path
segments created by the system — one between each pair of neighboring waypoints.

The camera path editor provides three interaction modes on the 2D map:

Path Creation An initial curve is defined by placing a number of waypoints on the map
(Fig. 7.11(a)). The camera spline and its control points are derived from these
waypoints. It provides a good initial approximation of a smooth camera path,
i.e., it avoids discontinuous movements or the the camera in terms of orientation
and position (Fig. 7.11(b)). Initial camera orientations for the control points are

calculated as the tangential vectors of the B-spline at the single control points of
the spline.

Path Editing Waypoints can be added to or removed from to a camera path to further
adjust the curve. In addition, the waypoints can be moved. Immediate feedback is
provided by updating the curve displayed on the map as well as the image preview
(Fig. 7.11(d)) providing immediate feedback.
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(a) Initial path created (b) Path derived from (c) Edit view direction (d) Editing ezisting path

by setting multiple initial input. by dragging lookTo points by dragging.
points. point.

Figure 7.11: Example of a camera path drawn on the map of the camera path editor. The camera
position interpolation is shown continuously as 2D B-Spline curve, while the camera orientation
is visible at the control points of the camera path.

Camera Orientation Users can shift the point of interest for a selected waypoint by
dragging a corresponding circle to the desired direction (Fig. 7.11(c)). A dashed
line indicates the line-of-sight with from the camera’s center of projection.

Camera velocity, defined by the the time span and the spatial distance between two
waypoints, can be configured by shifting a waypoint on the timeline. A duration of a
path segment and the resulting velocity during that segment is then derived from the
time between neighboring waypoints. The system provides users with graphical feedback
about the quality of the configured camera paths to support them with camera path
editing. In that respect, it helps users to create continuous camera movements in terms
of camera position, orientation, and velocity. The more detail about the feedback types
are provided in Section 7.6.7.

The configured path covers the complete duration of the edited video. For config-
uration of time segments with possibly changing video contents, the complete path is
separated into several video clips represented as bars between waypoints in the video
editor widget.

7.6.2 Video Clip Configuration

The clip editor widget allows users to specify the properties for the different clip types
(i.e., 3D city model scenes and different kinds of overlays). For video clips rendered
from virtual 3D city models, the scene content and styling is selected, as well as other
clip parameters can be configured. The selectable layers, their styles, image styles and
extended parameters are retrieved from the GetCapabilities operation of a 3DPS. Here,
a filter mechanism is applied in the back-end limiting the options that are available in
the front-end. The filter is configured by rules that are stored as video editor scenario in
the back-end database.

Users can configure scene layers by selecting an available layer style or a “disabled”
option otherwise. The “terrain” layer is handled separately. It can be contained multiple
times in a rendering request to enable combination of maps with 2D overlays, e.g., to
apply a road overlay over an aerial photograph. This particular layer is reserved for
terrain data by convention of the 3D rendering service implementation.

Image styles can also be activated or deactivated using a Ul element. Further, the
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3DPS may define extended parameters, which vary depending on the underlying service
implementation. These parameters can represent, e.g., image styling effects or the 3D
rendering service execution in other ways, e.g., enable or disable an optional rendering
technique. These user-configurable, extended parameters are defined in the scenario
configuration of the video editor front-end and are exposed by the user interface.
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Figure 7.12: User interface component for configuration of video composition and camera path
timing. Each defined camera configuration is presented as a numbered vertical line on a timeline
scale. Timings of video clips (blue bars), text overlay clips (orange bars), or image overlay clips
(green bars) can be configured to cover certain time spans by modifying their position and length
on the timeline. A line plot above the timeline provides feedback on specified camera path and its
timing.

7.6.3 Timeline Arrangement of Clips, Transitions, and Waypoints

Clips structure the video content ( Fig. 7.4). They are represented in the user interface
by bars covering a specific time span. Here, start and end of video clips are bound
to waypoints (e.g., the blue bars in Fig. 7.12). As static clips do not require camera
path interpolation, these are not bound to waypoints for their start and end time but
can be arranged freely on the timeline (e.g., the orange or green bars in Fig. 7.12).
On creation of the initial path, a video clip covering the complete video time is added
automatically. To refine the video description, additional video clips, overlays or other
static elements can be added to the timeline on different image layers. If two or more
video clip configurations cover the same waypoint intervals, the final video frame is
created by blending the generated images from the different clips covering a time index.
This way, different scene contents can be blended together by creating a time overlap
between multiple video clips on different layers. The video editor automatically creates
the corresponding blend-in and blend-out effects for the video description.

The time distance between waypoints can be adjusted by shifting waypoints on the
timeline. During this shift operation, the camera path and the path length between
waypoints remain constant. This way, the camera velocity can be specified individually
for each path segment between two waypoints.
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7.6.4 Adjustment of Camera Orientation and Scene Preview

Editing camera paths based on 2D maps proves to be useful as it facilitates the rapid
creation of feasible camera paths. Nevertheless, when it comes to the definition of the
height component of waypoints or points of interest the map does not reflect the camera
path sufficiently due to their 2D nature. Consequently, camera height and height of points
of interest need to be configured separately either numerically by entering the camera
height or visually using simple image-based clients for camera adjustment. Particularly
for small scale scenarios, such as indoor scenarios or pedestrian level navigation, the
adjustment of camera position and orientation need to be fine tuned in 3D to provide
the user an impression of the final view at a certain position.

A 3DPS instance renders preview images depending on the currently selected video
clip and the waypoint with its camera position and orientation. The preview image is
updated when any changes on the video clip configuration or the camera path (i.e., moving
waypoints or changing or camera orientation) are performed. There are several ways to
fine tune the camera position and orientation: a) modification of camera orientation using
arrow buttons that are displayed beneath the preview image, b) by changing the numerical
values for height of lookFrom and lookTo positions, or c¢) by using a WebGL-based client
that renders a cube map from 6 images retrieved from the 3DPS (a JavaScript based
implementation of a service-based G-Buffer cube map client presented in [DHK12]).
Here, the cube map rendering-client enables users to rotate the camera freely into a
desired position.

7.6.5 Object Selection and Highlighting Using Layered Maps

Selections of feature ids for object highlighting in synthesized videos is implemented
using a layered map. Its tiles are retrieved from a layered map service (see Fig. 7.3)
that encapsulates a 3DPS for live rendering of the scene configuration of the currently
selected video clip. The map allows to select highlighted features by picking object IDs
(Fig. 7.13). As the object ID of a feature is dependent on the current scene configuration
(enabled layers, number of features in the selected layers, version of the underlying city
model, etc.), the object ID cannot be used for persistent identification of highlighted
objects, e.g., in video descriptions. For this purpose, the object ID is translated to a
unique feature ID using a service method of the 3DPS. It is called on object ID selection
returning feature IDs, which are stored in the video description. During video generation,
highlighting is implemented using an image-based highlighting effect provided by the
rendering service implementation.

7.6.6 Text and Image Overlay Editing

To each video clip in the timeline, users can add a text or image overlays. For this, an
overlay editor has been implemented based on HTML5 2D canvas rendering applied on
top of a preview image generated by the 3DPS. For text overlays, it allows to define text,
its styling (typesetting, alignment, and font), and placement (in terms of numeric offsets)
(see Fig. 7.14). Image overlays can be provided using an image upload mechanism and
placed using offsets. Further transition animations for text and image overlays can be
defined within the time bounds of the image or text clip to allow for transitions that are
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Figure 7.13: Objects to highlight can be selected in the integrated the layered map client. The
color tiles and object ID tiles are retrieved from a layered map service based on the scene contents
and styling configurations of the currently selected video clip.

independent from the transitions of the video clip (i.e., 3D city model scene), which is
currently selected in the user interface.

7.6.7 User Feedback for 3D Camera Path Authoring

The map-based specification approach provides a simplified way of editing camera paths
in 3D. There are still challenges to be addressed to help users to understand the spatial
and timing properties of the 3D path they are creating. To this end, the video editor
front-end provides three kinds of feedback mechanisms that are built to help users to
evaluate and improve their path and scene configuration iteratively:

Image Previews Image previews are provided for any point in time of the video and
the corresponding camera position and orientation and the currently active video
clip configuration. The time index and the corresponding camera position and
orientation are selected either using the time slider in the video editor widget or by
selecting a specific waypoint on the map. To provide a more detailed view of the
scene, the preview image can be requested in high resolution, e.g., to evaluate the
visibility of objects in the rendered video.

Animation Previews The configured camera animation can be rendered by continuously
issuing 3DPS GetView requests. The camera configuration for the current timestamp
is interpolated on client side and the corresponding image is displayed in the preview
area. The two dimensions time and space are indicated individually: The current
camera position is indicated by a camera icon on the map (see Fig. 7.10) and
the time of the current video frame is indicated in the timeline (red vertical line
in Fig. 7.12). The preview animation provides users with the means to estimate
the camera path and velocity during the overall camera animation without local
rendering of a large-scale model.
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Figure 7.14: Text overlay editor used to define text, its style and position.

Metrics Diagrams for Camera Paths At the top of the timeline area (Fig. 7.12) the

following metrics of a configured camera path are plotted over video time:

Camera Height The camera height defines the height above ground of the camera
along its path and corresponding timing. As it is displayed separately from
the is separated from the 2D camera path, specified by a 2D map, to simplify
the specification process. Further, large changes of camera height in a short
amount of time can impact the orientation of viewers of videos.

Camera Velocity A velocity indicator is computed from the camera path to provide
feedback concerning velocity changes that result in strong acceleration or
deceleration in the rendered video. The resulting line (plotted in green)
allows users to recognize acceleration characteristics during path traversal and
optimize their path by adjusting the distribution of waypoints over time.

Camera Rotation Speed The camera rotation speed provides information about
the change of the camera looking angle. The plot (blue) enables users to
identify possible sudden changes in camera orientation that can complicate
the orientation in 3D for viewers of rendered videos.

Issue Indicator Indicators for possibly critical issues of a camera path are drawn as
red background for time ranges if the system identifies possible issues, derived,
e.g., from the mentioned indicators. The indicator metric is currently based on
a combination of thresholds for changes of camera height, rotation speed, and
camera velocity. Metrics used for these warnings can be extended to reflect
other properties and algorithms evaluate camera paths.

All of these mechanisms reflect adjustments to scene and path configurations imme-

diately, by adjusting preview request parameters or updating metrics diagrams. This
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way, users are supported in having short iteration cycles to build their optimal camera
paths and video configurations.

7.7 Discussion

Performance and Workload Adaptation

The current implementation provides several possibilities for scaling horizontally and
vertically for larger user bases and changing workloads respectively, but the rendering of
images remains the major bottleneck regarding scalability. Since the throughput of a video
service, in terms of rendered video frames per second, strongly depends on the capacity
of the underlying 3DPS implementations, a more parallel approach for 3D portrayal
could be applied. The current 3DPS implementation is designed to optimize utilization
of the GPU since it is the most expensive hardware resource for servers running the
service (in terms of total cost of ownership including, e.g., price and power consumption
during operation). Nevertheless, the rendering system implementation does currently not
allow for using multiple GPUs for rendering the same geodata in one process. A major
advantage of this would be the more efficient use of main memory and CPU resources
per rendering server instance. Shared caches, e.g., for terrain tiles, textures, and scene
geometry, could be used by different parallel pipelines which would statistically reduce
the effort for loading and decoding the data from disk or network resources.

Generation of videos could also be cascaded if there are videos with multiple clips
defined. Since each video clip has an independent description of scene contents and
camera path, the cascading video services could generate video data per video clip and
another service could combine the source data to produce the final result. From an
architectural perspective, the extraction of the video combination or postprocessing
capabilities would further improve the separation of concerns in the overall system
architecture and provide another separate reusable building block following the approach
of microservice architectures.

Generation of High-Quality 360° Videos

The development of hand-held devices, i.e., smartphones and end-user hardware as the
Oculus Rift, becomes more and more oriented towards virtual reality applications. This
way, 3D contents can increasingly be perceived in an immersive manner. Nevertheless,
the production of video contents powering these solutions is still quite challenging since it
demands for specialized hardware and needs to consider new objectives like an improved
prevention of motion sickness [Gol™12] or specialized projection techniques for optimal
usage of image space for video capture and rendering [AL13]. The projections used for
rendering, e.g., of spherical 360° panorama videos, could be adapted to support the
generation of low-distortion videos. These video types provide an intermediate step
between static generated video and interactive 3D rendering and interactive 3D camera
control in 3D GeoVEs since users have a limited amount of freedom to explore the
environment themselves by rotating the virtual camera while moving on a predefined
path of camera positions. To support this, the video generation service as well as the
rendering service implementation could be extended to support definition and rendering
of such camera projections.
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Standardization

The current system is built on 3DPS as 3D rendering components whose service API
is standardized by the OGC. The standardization makes the service implementations
exchangeable and provides greater separation of concerns in terms of functionality that
has to be implemented in the different components. The current modeling specification,
language, and video service API could serve as a basis for a standardized description
format and API for video generation from 3D contents.

Authorization and Permissions

In the current implementation, there is no explicit authorization mechanism when it
comes to video rendering of scene contents or specific rendering features, e.g., image
styles. The rendering back-end is currently protected by administrative measures from
being used by unauthorized users. An explicit authorization mechanism is important for
both: a) security - an unknown user might not be authorized to view a specific planning
or model - and b) monetization - different subscription plans for a video service account
might not include all models or image styles. For implementation, e.g., of a multi-tenant
system provided as a Software as a Service (SaaS), the data of each tenant need to be
reliably separated from each other. There are several points to address these issues. First,
the video service front-end requires a way to model these dependency in the database
that is evaluated for every request and explicitly for every video generation task. Further,
the video service and the image-based 3DPS could also extended to support access rights
for specific layers or styling options to assure delivery of videos and images, e.g., with
confidential contents cannot be created or downloaded by unauthorized users, e.g., using
a session based authentication mechanism that assigns access rights per session that can
be checked by executing services.






Chapter 8

Service-Based Camera Interaction

This chapter introduces a concept for services supporting 3D camera interaction in 3D
GeoVEs and, particularly, for virtual 3D city models. The introduced services can serve as
a building blocks to encapsulate interaction specific functionality in future service-based
3D geovisualization systems. Therefore, the camera interaction process is disassembled
into distinct reusable functionality that can be implemented as separate services. A 3D
camera service serves as core component that supports generation of camera definitions
and camera paths based on different input types and granularity.

8.1 Motivation

Geovirtual environments serve as means for exploring virtual 3D city models. As
Fuhrmann and MacEachren state that “core problems for users of these desktop GeoVEs
are to navigate through, and remain oriented in, the display space and to relate that
display space to the geographic space it depicts.” [FMO1] “Efficient navigation strategies
and techniques are required, which take account of the users and their goals and avoid
problems of general navigation methods, such as “getting-lost” situations and confusing
view configurations.” [HDO08] Due to the complex nature of virtual 3D city models and
their provisioning, the design and implementation of such strategies for camera control
in distributed 3D visualization systems for virtual 3D city models is a challenging task.

In current research, the area of camera control in service-based visualization systems
is still in its beginnings. There have been approaches to integrate camera position
calculation into 3D portrayal services using dedicated service operations, as defined in the
OGC Web View Service (WVS) [Hagl0] discussion paper, as the precursor of the OGC
3DPS standard. However, these operations only support simple interactions in terms of
camera positioning, but do not cover more complex techniques for user interaction or
camera path generation.

For a application of camera control in distributed, service-based visualization systems,
the following goals for system design and implementation have been identified:

Decoupling Visualization and interaction should be decoupled and implemented by inde-
pendent services to facilitate reuse of camera control functionality as independent
components of 3D geovisualization systems.

Feedback Feedback about available and pending camera movements as well as system
state information should be provided by a distributed system for 3D camera control.

Network Adaption 3D camera control should be designed to deal with limitations of
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wireless communication networks in connection with mobile clients, e.g., connection
loss, network latency, and varying bandwidth.

Multi-Channel Input The system should support different types of user input. Beside
conventional input for user interaction, such as mouse pointer or touch positions,
button events, or keyboard events, other input types could serve as input to user
interaction techniques. With increasing distribution of mobile devices, there is
a strong focus towards touch-based interaction and sensor input for all types
of applications. For example, device location, orientation, speed or other data
delivered by device sensors could influence the way the virtual camera behaves, e.g.,
to include a user’s actual position and the position and orientation for navigation
within a virtual 3D city model.

Flexible Deployment The separation of camera-control functionality should support its
implementation as web services, but also as integrated part of client applications.
This way, the decision of the location of network boundaries in concrete system
architectures can be made for every client application.

8.2 A Conceptual Framework for 3D Camera Services

The following sections introduce the conceptual framework for service-based camera
interaction.

8.2.1 Quality of Scene Views

A measurement of the quality of camera specification in 3D GeoVE strongly depends
on the usage scenario of a virtual 3D city model and is also a rather subjective matter
in terms of personal preferences. As minimal definitions for “good views”, Vazquez
et al. state that a “good view must help us to understand as much as possible the
object or scene represented.” [Vaz101] Several metrics and techniques exist that target to
quantify view quality using measures such as number of degenerated faces in orthogonal
projections [RM98], viewpoint entropy [VAzT01; VazT03], or image features such as
silhouettes or crease lines [GooT01]. Many methods exist that use those metrics to
compute and optimize scene views and corresponding camera parameters (see [Bon'18;
Sect11] for an overview). These approaches for deriving “good views” for diverse viewing
situations and application scenarios using rather complex computational techniques. The
proposed framework for 3D camera services should allow us to reuse such approaches
and implementation by providing a conceptual framework for implementation of camera
interaction and viewpoint generation techniques. In the following, no particular notion
of viewpoint quality from these works is used. Instead, the definition of “good views”
can generally be defined by service or algorithm implementations. An example of a
prototypical implementation for computation of good views and camera paths is provided
in Section 8.3.
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Figure 8.1: General camera interaction cycle for service-based 3D visualization systems.

8.2.2 Interaction Process

End-user hardware, software, and network bandwidth for interactive visualization applica-
tions are usually very heterogeneous. That causes the development of robust, compatible,
and efficient applications that provide interactive access to virtual 3D city models to
be a complex software architecture problem. 3D geovisualization systems based on thin
clients using server-side 3D rendering are one approach to deal with such limitations.
Typical characteristics of thin client solutions are that only minor parts of the overall
data of a virtual 3D city model is available on client side and can therefore be considered
for camera path computation or for supporting user interaction in general. To address
this limitation, we propose to move major parts of functionality for 3D camera control
away from client applications to services that can incorporate geometry and feature data
of virtual 3D city models on server side. This would enable reuse of camera interaction
functionality across different application. Services can be run in a scalable, controlled
server environment and, therefore, can be maintained and optimized more efficiently.
Furthermore, server-side access to geodata is usually faster and less expensive due to
faster network connections and professional grade and high-performance hardware.

To structure the interaction cycle of service-based 3D visualization systems, the
process for 3D camera control is divided into four core tasks: (Fig. 8.1):

Input Capture Input provided by a user has to be captured and encoded in a way that
allows for efficient evaluation.

Input Processing User input is preprocessed, e.g., converted, transformed, smoothed, or
patterns are recognized and a navigation command is derived from the resulting
data. This command is used to select the 3D camera service for camera path
computation.

Camera Path Computation Camera positions and orientations, and transitions between
them are computed. Specifications for camera paths are the result of this stage.

Visualization The computed camera specifications have to be applied for the client-side
visualization of the virtual 3D city model. Visual or non-visual (e.g., audible)
feedback has to be generated and integrated to complete a 3D camera-control cycle.

While input capture has to be implemented by a client application, input processing,
camera path computation and visualization can be implemented by one or multiple
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Figure 8.2: An overview of the service-based concept for camera interaction in distributed 3D
visualization applications.

services. Fig. 8.2 illustrates the concept for decomposing the core tasks for 3D camera
control into functional independent 8D interaction services and depicts their collaboration
and the types of data exchanged between them. In the following, the following major
3D camera interaction services are introduced: Input preprocessing services, command
recognition services, 3D camera services and composition services.

8.2.3 Input Capture

User input for camera interaction can have different levels of abstraction. For example,
low-level user input, such as mouse positions or mouse button events, does not express
the expected action immediately. They need to be evaluated first taking the current
application context into account. On the other hand, there are more explicit user
inputs provided by end-user client-applications that explicitly describe the action to be
performed. Examples for inputs that provide an explicit description of the task to be
performed are, e.g., buttons that have an explicit function assigned in the user interface
of a client application, e.g., a home button for resetting the virtual camera. Thus, a
specification of user inputs is required that supports a variety of inputs. User inputs are
generally captured as data annotated with timestamps to allow, e.g., for segmenting user
input in time and (display-) space (to capture and evaluate, e.g., a series of sketches or
cursor positions) and computing velocities of movements.

Additional information that is not directly originating from user actions can be
required for service-based camera interaction. Therefore, the client state, such as input
modifiers (e.g., pressed mouse buttons or keyboard modifiers) or previous navigation
commands (i.e., navigation history), may affect the mapping from input parameters to
camera navigation commands to be executed. Further, the current scene configuration
(i.e., camera specification, projection parameters, visible scene layers, etc.) specifies the
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interaction context of the user input, which affect the evaluation of a user input.

8.2.4 Input Processing

Input processing is divided into two steps: input preprocessing and command recognition.

Depending on the type of input captured by the client, an input preprocessing step
may be necessary a) to improve the quality of the input, e.g., by filtering or smoothing and
b) to convert the input data to a higher-level, analytical representation, e.g., recognizing
geometry from a series of 2D input samples.

In a command recognition step, navigation commands are derived from the pre-
processed input. These represent a more abstract description of a user’s intention and
include all the parameters required for their execution. There are three categories of
navigation commands that define the camera-control task [HDOS]:

Direct Camera Manipulation A command directly influences the values of camera pa-
rameters, such as position or orientation vectors, which specify the current view.
Commands like *turn by 30 degrees’ or 'move 100 meters into camera direction’ are
examples for such direct camera manipulation commands.

Path Oriented Navigation Command A command includes a path description that has
to be followed by a camera path. The desired path has been computed in the input
processing step or has been specified by the client directly (explicit or implicitly,
e.g., by providing a target name).

Task Oriented Navigation Command A command contains a description of a task,
which has to be fulfilled by a 3D camera service. Commands like "go to the
next feature of class X" or "inspect feature X" belong to this command category.

To describe a command and to support command recognition, a generic, structured
command schema is required that specifies, e.g., command parameters (types and possible
values). The command recognition step can involve retrieval of additional geoinformation,
e.g., from geodata or geovisualization services such as WFS, WCS, or 3DPS.

Input preprocessing as well as command recognition are optional steps in the 3D
camera control process. Simple camera-control tasks can be transmitted by a client as
navigation command, e.g., "move one meter to north" for a stepwise camera control. Such
commands may be handled directly by an appropriate 3D camera service.

The functionality of input preprocessing and command recognition steps are encap-
sulated by respective service types, input preprocessing services and command recognition
services.

8.2.5 Camera Path Computation

Camera path computation is the core task for camera-control in virtual 3D city mod-
els. 3D camera services compute camera paths from navigation commands and their
parameters. Conceptually, one 3D camera service implements one technique for camera
path computation. This includes the generation of camera path components, e.g., camera
positions, orientations, or other information that can be associated with a camera tran-
sition, e.g., textual annotations. Each of those can be computed by distinct functional
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components that apply specific algorithms and navigation constraints per path compo-
nent. For example, a specific position component could determine camera positions only
along a street network, while a specific orientation component could aim to keep nearby
landmarks visible.

A 3D camera service may request additional (geo-) data, e.g., from a WFS, WCS, or
3PDS (image-based or scene-based) to provide, e.g., a higher-level, semantics-based camera
control or to fulfill constraints for camera parameters. To ensure a consistent behavior,
these additional services have to be based on the same geodata as the visualization
services themselves.

Based on a navigation command, a 3D camera service is selected using a 3D camera-
service registry, which holds information about the available 3D camera service instances,
the navigation commands they support, and additional metadata.

8.2.6 Camera Path Specification

Camera paths, generated by 3D camera services, represent transitions from one set of
camera parameters to another. Parameters required for the specification of a view of a
3D virtual environment are its projection parameters, commonly the camera position, its
orientation in 3D space and the view frustum definition.

For camera services, two types of representations of camera paths are distinguished:

Sampled representations of camera paths include of a series of camera-specification
samples. Those can be created either using fixed or variable sample times. An adaptive
sampling rate of camera specifications allows for more efficient representations of camera
paths by applying more dense sampling for time periods where camera parameters change
more rapidly, e.g., because of increased movement speed or sharp camera turns.

Analytical representations provide a function definition for each camera parameter
to compute their values for an arbitrary point in time during a camera transition. For
simplicity, these path are often defined by piecewise functions, e.g., multiple Bézier
splines, linear or even constant functions for stopping the camera for a specific amount
of time. Furthermore, this enables the specification of storyboard-like camera transitions.
The overall time for the complete camera path animation is normalized. A camera path
specification contains a recommended overall animation time, which would produce a
comfortable camera motion.

There are several path-related computational tasks in distributed 3D camera control
systems that can be implemented as reusable utility services, e.g., for path manipulation
(conversion, transformation, smoothing, composition) or camera orientation computation.
Further, existing standards-based implementations of services, e.g., for geocoding of
locations or conventional 2D routing using street networks may be used for camera path
generation in 3D GeoVEs.

8.2.7 3D Camera Service

To be managed in a service registry and allowing consumers to bind correctly to their
operations, 3D camera services are required to express general service information as well
as functional and additional non-functional metadata. 3D camera service capabilities
should include metadata regarding the following aspects:



8.3. 3D Camera Service Implementation 97

Service identification Type and version of the service, service description.

Camera control metadata Available path description formats, covered geospatial region,
supported spatial reference systems, available navigation commands including
command parameters.

Quality of service metadata Information such as expected computation time, result
accuracy, available level of collision avoidance (e.g., guaranteed, best-effort, or no
avoidance).

Application context Information regarding, e.g., user information, usage information,
network conditions, and device properties.

8.2.8 Service Operations

The 3D camera service exposes the following service operations:

GetCapabilities A camera service provides a GetCapabilities operation that provides
service metadata. The format of the GetCapabilities request and response is
aligned to the same operation operation In particular, the GetCapabilities response
includes the available service operations. It further contains the metadata for each
supported operation and which computation modes are available for clients to call.
This also includes a list of available and required parameters for these operations.

GetCamera Calculates a set of camera positions and orientations, optionally with further
projection parameters assigned. If several camera specifications are returned, a
conviction score is assigned to each entry of the list. The higher the assigned
score, the “better” the selected algorithm expects the camera position to fit quality
demands. Algorithms promoted in the GetCapabilties operation response can be
selected using a MODE parameter. For viewpoint calculation of features and sets of
features, a list of feature IDs must be provided as parameter. The request should
then return a “good view” for all the features contained in the request.

GetCameraPath Calculates a camera path for a given set of a) 3D points to visit during
the camera transition or b) a set of features to inspect during the camera path.
As with the GetCamera operation, the GetCameraPath operation provides a MODE
parameter to select specific path generation algorithms.

While the GetCapabilities operation is mandatory, a service must provide at least
one of the operations GetCamera or GetCameraPath.

8.3 3D Camera Service Implementation

As proof of concept, a 3D camera service has been designed and implemented that
generates camera configurations for single features as well as collision-free camera paths
for a series of given objects of interest. It provides a novel building block for visualization
applications, which is specifically useful for thin client implementations that are usually
unable to access global geometric and semantic information needed to perform complex,
assisting camera interaction.
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The implementation of this service does not focus on advanced techniques for collision
avoidance but serves as a proof of concept for service-based 3D camera interaction in
virtual 3D city models. Its objective is to demonstrate applicability for large software
systems and environments, e.g., as utility service for the video service front-end described
in Chapter 7.

The current implementation of the camera service provides a single mode of compu-
tation for each of the GetCamera and GetCameraPath operations (see Section 8.2.8). As a
simple definition of a “good view” of objects and resulting good camera paths, algorithms
should provide camera specifications and camera animation paths that are a) collision
free and b) show the requested features within the view frustum. Further, the checks and
computations that are necessary for collision avoidance should scale to very large virtual
3D city models. The implemented algorithms target in particular outdoor navigation in
virtual 3D city models. It exploits properties of such models for efficient computation
of camera paths, e.g., the 2.5D distribution of building within an urban area that is
modelled by a virtual 3D city model.

8.3.1 Data Sources and Precision

The camera service uses two different data sources:

Feature Data Feature data is fetched from the spatial feature database introduced in
Chapter 5. The service uses 2D footprints of objects as well as other feature
attributes such as maximum and minimum height of a feature. Further, spatial
queries are used to determine possible 2D intersections with other features that
could possibly obscure the line of sight towards a feature of interest or cause
collisions on a camera path.

Additionally, the feature data can serve as a basis for determining the camera view
direction, e.g., by trying to include landmark buildings into camera view frustums
that could ease orientation within for users within the urban environment.

Depth Images For an area of interest the service requests depth images from a 3DPS
using an orthographic projection with a top-down perspective with north as top
direction. In this way, a rasterized height map is retrieved that covers the area
of interest whose complexity and data size is independent of the number and
complexity of features within this area. An example of a height map generated
from the virtual 3D city model of Berlin can be found in Fig. 8.3. Distances from
the projection plane of the virtual camera are encoded as normalized values of the
interval [0..d¢,] where dy,, is the distance of the camera far plane. Within such
a height map, the spatial bounding box of each pixel can be calculated using the
camera projection parameters, i.e., camera position and view frustum specification.
This enables the service to efficiently sample height values at specific positions or
even determine minimum and maximum heights along a 2D path or area efficiently.

While feature data queries provide a consistently high accuracy based on the geometry
stored in the feature database, the accuracy of queries based on depth images depends
on the resolution of the fetched depth image (resulting in a specific size of a pixel
within the height map) and the numerical resolution of the depth values (16bit or 32bit
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Figure 8.3: FExample of a depth map covering 1km? around the Alexanderplatz in Berlin. The
image was generated by a 3DPS from the virtual 8D city model of Berlin. It contains gray values
encoding the normalized distance from camera near (black) to far plane (white).

floating numbers that cover the interval between the near and far plane). The depth map
precision in each dimension defines a minimum size of objects to be considered for collision
avoidance and path planning. The service implementation deals with that by adaptation
of the requested resolution of depth images to maintain a minimum precision during
camera viewpoint transition. For common outdoor camera navigation, a 16 bit encoding
precision of floating point depth values provides a sufficient overall height precision of
about 2c¢m in case of a view frustum depth of 1000m.

8.3.2 GetCamera Implementation

The GetCamera implementation currently supports a single mode that computes views
on selected features in a way, that a) the features of interest fits into the view frustum
— the distance to the feature is derived from its 3D bounding box stored in the feature
database — and b) the four cardinal directions are used as 2D viewing directions. First,
a check for possible obstacles along the viewing axis is performed using a database to
identify 2D intersections between the Point of Camera (POC') and the centroid of the
features of interest. If there are possible intersections, a height field retrieved from a
3DPS is sampled along the line of sight originating from the feature centroid towards
the initially determined camera position. If an obstacle has been identified, the camera
position and the corresponding line of sight is shifted towards the top direction in a way
that there is an unobstructed view towards the feature of interest is possible. See Fig. 8.4
for an illustration of the principle.

8.3.3 GetCameraPath Implementation

The GetCameraPath implementation uses a similar technique to derive camera paths that
provide a collision free transition of one origin camera position to a set of targets specified
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Figure 8.4: Mechanism for obscurance resolution using sampled heights h, from height maps.
Possible obscurances are detected in two steps. First, a 2D intersection is performed using the
feature database. Second, the height of an object (h,) is sampled using a height map retrieved
from a 3DPS. If an obscurance was detected, the viewing direction is shifted up adjusting the
initial POC' to POChew. The amount of this shift is computed from h,.

as feature of interest (using a feature id) or target camera specification. In case of a
feature target, the GetCamera implementation is used to derive the camera viewpoint for
each intermediate target. The algorithm creates path segments each connecting a pair
of adjacent viewpoints. Here, the same method for image-based collision detection and
avoidance is applied that is also used in the GetCamera implementation with a minor
modification: Instead elevating the camera position for a viewpoint, in case of a detected
collision with a city model feature, an additional path segment is inserted into the
path that provides a collision free transition between the beginning of the original path
segment and the newly inserted intermediate camera viewpoint. This process is repeated
incrementally until a collision free path is found, or stops if no collision free path can be
determined.
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Case Studies

This chapter discusses a number of case studies to illustrate how the concepts and
techniques described in this thesis can be applied to real-world use cases. The following
cases studies for various model datasets evaluate and validate their functionality and
investigate how to improve their compatibility with data formats and modeling variants as
well as the robustness of the presented preprocessing and rendering techniques. The case
studies generally show the applicability of this thesis’ concepts and their implementations.
The use cases represent a selection of representative scientific and commercial projects
that were realized.

0.1 Datasets

Datasets used to differ significantly in terms of size (e.g., covered area, number of features,
number of textures, and data volume), data format (i.e., well structured 3D source data
in CityGML, scene based 3D graphics formats, GIS feature data in formats and 2.5D
data generated from OpenStreetMap geometry and attributes), modelled detail (LOD ),
and data quality (e.g., correctness and precision of geometry).

The following list provides an overview of the datasets and the projects that have
been conducted to validate the service functionality and to prove the applicability of the
thesis concepts. An overview of the datasets and their properties is provided in Tab. 9.1.

DS.1 Berlin Virtual 3D City Model Between 2003 and 2005, the Senate Department
for Economics and Urban Development of Berlin initiated the development of an
official virtual 3D city model of Berlin [D61T06]. It was one of the first 3D models
of its scale, as it covered the entire Berlin area featuring fully textured 3D building
models, most of them with feature attributes assigned. Throughout the years, this
virtual 3D city model has been regularly adjusted and extended. Data is recaptured
on a regular basis and the 3D building stock is continuously updated and a selection
of high-detail 3D architectural models have been added to the model over the years,
such as the Berlin Central Station in CityGML LOD4 and hundreds of buildings in
LOD3. In addition to the CityGML building models, other types of data sources
were included to further enrich the model:

o High-resolution aerial images and different map layers (e.g., street map, or a
standard ground value map )

e High-resolution terrain model

e Vegetation models, i.e., a street tree cadastre covering the overall city and
automatically derived tree positions for the Tiergarten with a total of several
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Covered .
Dataset Format # Objects Textures LOD Area Terrain and Maps goam._ Data an.w_ mﬁmnum._
5 Size Quality Properties
km
heterogeneous LOD,
LOD2 separate terrain model, 31 including indoor models,
Berlin CityGML 2.0  ~534, 000 ~5,750,000 LOD3 ~ 900 aerial photo and GB good multiple appearances,
LOD4 map layers semantic attributes included
planning models / variants
- CityGML o 3”85 model EMW:WmP
Paris CityGML 1.0 ~14,000 LOD2  ~ 100 Terrain medium OIIOBEReOUS LA
(texture atlases) as TIN GB semantic attributes included
° errors in CityGML encoding
separate terrain model, .
. LOD1 X 3 multiple appearance types
N b tyGML 2. ~ 15,5 ~ 100, ~1 rial ph ‘
uremberg CityG 0 5,500 00,000 LOD2 0 aerial photo and GB good mixed textured / untextured
map layers
) . . untextured LOD2 model,
Geneva CityGML 2.0 ~ 1400 @ w:w_w:: ) WWWN ~ 1.5 voﬁmﬂmdwﬁwmhm QMMMM model, MLW good complex roof structures,
& P single textured high-detail LOD3 buildings
157 LOD3 3 highly detailed 3D geometry models,
Roman Cologne Collada® ~ 187 high resolution ~ 5 Textured 3D terrain model good high resolution textures,
LOD4 GB .
texture atlases Collada as standard CG format
High resolution terrain model, 37 Homogeneous massive model,
Rotterdam CityGML 1.0  ~ 195000 ~ 26200 LOD2 ~ 320 Map and aerial photos as files Q,.w medium Open Data,

and OGC services

CityGML Quality

Table 9.1: Overview of datasets used in different projects to approve the concepts and implementations.

“Collada is a XML-based format for interchange of 3D assets defined by Khronos Group. See https://www.khronos.org/collada/
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ten thousands vegetation objects.

Several planning models in different detail levels (from simple block models to
detailed architectural planning)

Numerous POI layers available from web services

With the amount of 3D building models that are included here, as well as the
overall size and richness of information of the dataset, this virtual 3D city model is

an excellent test case for the services and techniques for web-based provisioning of

virtual 3D city models described in this thesis.

DS.2 Paris 3D The Paris virtual 3D city model was provided by IGN France for use
within the OGC 3D Portrayal Interoperability Experiment (3DPIE) [SHC12]. The
model covers the inner city of Paris in textured CityGML LOD2. The entire terrain

model and its texture are encoded in CityGML, significantly increasing the amount

of texture data included in this model. This type of model challenges the texture

preprocessing, management, and rendering of the presented 3D rendering service.

Furthermore, textures contained in the model are prepackaged texture atlas files

that are referenced multiple times within one or even multiple CityGML.

DS.3 Nuremberg Virtual 3D City Model

The virtual 3D city model of Nuremberg combines model parts with different LODs
and characteristics. It contains the following datasets:

Textured LOD2 building models encoded in CityGML for the inner city area
LOD1 building models encoded in CityGML for remaining city parts
Terrain textures, i.e., orthophotos and an official map layer

Medium resolution terrain model in 5m raster

POI extracted from OpenStreetMap

As the model was provided by the Bayerische Vermessungsverwaltung (Bavarian
surveying office) it is a good example of virtual 3D city models that are currently

used in administrative contexts.

DS.4 Geneva Virtual 3D City Model The Geneva virtual 3D city model was used
the context of a technology demonstration session during the OGC Technical

Committee meeting in June 2014 in Geneva, Switzerland. It contains several data

sources that should be combined into a single visualization:

CityGML building models in LOD2 and textured LOD3 for a small number
of textured buildings

Feature data for these buildings accessible via OGC WFS
Vegetation data Tree position

Geneva terrain model (high resolution) and general Swiss terrain model (low
resolution)

High resolution orthophotos (summer and winter)

This dataset is an excellent example to demonstrate the different types of data

sources that can provide data for a virtual 3D city model.
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DS.5

DS.6

9.2

The

Roman Cologne The virtual 3D city model of Cologne! during the Roman
period was created in course of a collaboration of archaeologists, designers, and
software experts from the Archaeology Institute at the University of Cologne, the
Koln International School of Design (KISD), the Cologne University of Applied
Sciences, the Hasso-Plattner-Institute (HPI), and Cologne’s Romano-Germanic
Museum. Those institutions aimed to create a detailed reconstruction of the
Roman settlements in Collogne period based on archaeological findings. The model
is extraordinarily precise resulting in a high degree of geometrical complexity and
large amounts of high resolution texture data (see Tab. 9.1 for figures).

The Roman Cologne dataset is not encoded as a semantics-driven 3D model, but
given as a collection of COLLADA [BF08] files that reference high-resolution texture
atlases for texturing. As this is a standardized format for exchanging of general-
purpose 3D models, the Roman Collogne model represents a well suited test case
for processing and visualization of general purpose, massive 3D computer graphic
models.

Rotterdam Open Data The city of Rotterdam initiated one of the first large-scale
open data initiatives, thus releasing an (semi-) automatically derived virtual 3D city
model that includes CityGML LOD2 parts. The Rotterdam data poses a number
of challenges regarding the processing and rendering. of geometry, structure and
texturing since the CityGML documents contained issues in geometric modeling
and texturing, such as falsely oriented or unclosed polygons, malicious texture
coordinates, or CityGML encoding errors. The errors are caused mainly by the
remote sensing, processing and the applied modeling techniques, are not uncommon.
They are inherent in the semi-automatic and automatic generating process for
virtual 3D city models. As such a model, the Rotterdam virtual 3D city model
creates an interesting test case for robustness of preprocessing and rendering
implementation.

Case Studies and Implemented Applications

different test cases confirm the applicability of the services and implementations

introduced in this thesis, in particular their compatibility with data formats and modeling

variants and the robustness of preprocessing, rendering, and provisioning techniques for

virtual 3D city models.

tatio

All of the aforementioned datasets were tested with the rendering service implemen-
n and selected approaches for provisioning. A selection of datasets were also used in

practical real-world application contexts. The following sections outline the case studies,

their

applied concepts, technical solutions, and applications that have been implemented

to test and evaluate the approaches and datasets.

9.2.1 Layered Maps for Location Marketing and

Yhttp://www. colonia3d.de/
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Business Development in Berlin

The Business Location Center (BLC) as a division of the Berlin Partner for Business and
Technology? is concerned with city marketing and especially with business consulting for
company relocation to Berlin. During a long-term cooperation conducted over several
years, the BLC provided the official virtual 3D city model of Berlin and valuable feedback
and requirements for testing the concepts and techniques introduced in this thesis. During
this collaborations, several testing scenarios have been identified and implemented as
mobile and web-based applications. They are introduced in this section and Section 9.2.2
and 9.2.3.

Geodata and geoinformation play a major role in the consulting process. One
major issue for their customers is to find a location that matches the specific needs
of their company, e.g., in terms of office space, production space, connections to the
public transportation network or other technical and social conditions. Commonly, the
consulting takes place in a designated presentation room that is equipped with the
technology for large-scale projections of the virtual 3D city model of Berlin as rendered
by local high-performance desktop computers. Here, the interactive 3D visualization
of the Berlin model is used in conjunction with a variety of curated POIs and other
information from internal and external databases, e.g., available business real estate,
available apartments to rent or buy, social infrastructure, research infrastructure, and a
wide range of background information that is linked to these geospatial data. In more
recent years, the consulting process had to accommodate the increasing use of mobile
devices in remote locations, e.g., at trade fairs or meetings in remote locations where no
large-scale presentation technology is available, e.g., due to missing space, or hardware
infrastructure, or bad network connection on-site.

To address these challenges, a project for an application was set up to provide
selected BLC information based on the virtual 3D city model to different stakeholders,
such as BLC customers, BLC staff, or the general public using mobile devices with the
following requirements:

Connection Quality and Stability The application is supposed to work in environments
with restricted internet access, i.e., restricted in terms of speed and stability.
Especially at events like fairs or with increased security requirements, the application
is required to generally work offline and to update its data once a connection to
the internet can be established.

Visual Quality The BLC model provides highly diverse building models (from textured
geometry in CityGML LOD2 to LOD4 including precisely modeled indoor geometry
and materials). Any application should be able to handle these characteristics
while at the same time maintaining high visual quality for the visualization. Thus,
it should apply realistic shading techniques that handle the given textures and
material properties during rendering as well as to apply a global illumination for
non-textured models.

Data from Different Sources The application is supposed to integrate data from already
existing systems that provide information necessary for conducting consulting

2https://www.berlin-partner.de
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sessions. The most important requirement here was to integrate the Berlin Partner
Real Estate Portal, which informs about business real estate offers for the city
of Berlin. Additionally, the BLC hosts a curated database for points of interest
covering different topic. It also includes planning variants of real estate developing
projects in form of additional architectural or landscape planning models.

Applied Concepts

In principle, mobile applications can be developed technically in three different ways
[Dal*13; EIK*17]: a) As native application that can uses all the capability of the end-user
platform (mainly iOS or Android driven devices), b) as mobile web application that is
exclusively based on common web technologies (JavaScript, CSS, and HTML5), or c) as
a hybrid approach where the data is kept on server side and only a lightweight front-end
is implemented on the client platform.

To meet the requirements, an application based on the layered map approach
has been implemented using the configurable client framework on the different target
platforms, i.e., Android and iOS. As is built based on platform-specific native operating
system frameworks, technologies, and languages it provides a native user experience. The
decision for a native implementation that includes (or: can handle) more fine-grained
control of data caching mechanisms and user interactions was driven by the need for a
core application functionality in scenarios where the client is offline or has to work with
an unreliable network.

The applications for the different platforms were designed with data and configuration
following the provisioning concept for layered maps. They integrate basically four types
of data:

1. Layered map tiles depict the virtual 3D city model from the four cardinal directions
and different information layers can be combined and overlaid. They offer a view
of the virtual 3D city model buildings with different variants regarding 2D maps
(a aerial photo or a custom generated 2D map layer, a transparent overlay adding
road names and routes) and two 3D plannings planning layers that replace relevant
parts of the as-is model tiles for planning area showing currently planned but not
yet built projects highlighted with a dedicated styling (see Fig. 9.1 for an example
view).

2. Business real estate offers that are accessed from an external service and processed
by a map layer plugin. These offers are expected to change frequently and are
required to be up-to-date for the consulting purpose of the mobile application.

3. POI data is integrated in compact format generated by a feature data provisioning
service (see Fig. 4.2) from different sources, e.g., an information database maintained
by the BLC. As the POI data change less frequently, caches for this data type are
configured to have long validity periods to save data transmission and facilitate
offline use. POIs provide contact data and web URLs that refer to external
information systems that for further in-depth information about the displayed
POls.
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(a) As-is situation. (b) With optional planning layer
Figure 9.1: Example view of the Berlin central station with different information layers. An
optional planning layer was generated and can be dynamically added at run time of the application.
Detailed information about the single items on the map is provided as link when item is selected.
The interaction item in the top left rotates the map view.

4. Public transport route geometry is obtained as GeoJSON? features with polyline
geometry. The mechanism can also be used to add other 2D geometry to the map,
e.g., to mark areas under development or other areas of interest.

The map tiles for the layered map are updated using the layered map service
whenever revisions of the virtual 3D city model or one of the planning layers are
performed. The necessary processes for data generation and their provisioning to web
servers are automated so the update can be performed efficiently with a minimal amount
of manual effort. This procedure allows the mobile applications to operate on the same
version of the original 3D city model data while still ensuring the advantages of a layered
map approach for provisioning of virtual 3D city models.

Scaling

When the business consulting app was released to the public, it ways downloaded over
10,000 times within a 2 month period. A single server was used to host the required
application data, i.e., app configuration files, POI data, and layered map tiles. The
system could handle the large number of parallel users with no user-noticeable slowdown
during map interaction. The combination of efficient tile organization and serving on
server side and caching mechanisms on client side allowed a large number of users to
browse the application in parallel.

Depending on the number of parallel tile requests, scaling of the server infrastructure
for tile serving was achieved by applying simple techniques such as server-side DNS load
balancing. More sophisticated techniques, e.g., a distribution of tile requests based on
spatial coverage of tiles or dynamic scaling of request processing based on cloud computing
instances could be implemented easily on server side when these simple techniques do
not provide the necessary performance.

9.2.2 Layered Maps as Berlin Welcome Guide

A second case study in the context of the the BLC project was the implementation of a
mobile welcome guide for people moving to Berlin. Instead of the business real estate
API that was used in the app for business relocation, mobile application integrates data

SIETF RFC 7946 https://tools.ietf.org/html/rfc7946
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Figure 9.2: Ezample of the application running on an 10S tablet integrating real estate offers
into a layered map. It combines several data sources visually into the virtual 3D city model using
a layered map.

on apartments to rent or to buy from an external real estate portal in conjunction with
the same feature data service mentioned before. It targets employees of companies that
are planning to relocate or expand their businesses to Berlin. The application provides
tools, in the form of layered maps and it rovides in-depth information about moving to
Berlin as structured content that supplies information, links, and contacts.

Since the availability of real estate offers varies frequently, the offers and corre-
sponding features are retrieved directly from the REST-API provided by the real estate
portal. Their processing and display is implemented directly on client side. A filter
mechanism was configured to reduce the real estate offers displayed on the layered map.
The application used the same mechanism and framework implementation that was also
used for the business consulting app. This example shows that the framework can be
used for different apps that require different data to be integrated and displayed on the
layered map. In particular, the layered maps can help users to gain an impression of a
neighborhood and its social, economical, and educational services. The creation of app
datasets could be performed efficiently by creating app configurations with the relevant
contents.

9.2.3 Video Service for the Berlin Virtual 3D City Model

In addition to the provisioning of the Berlin virtual 3D city model for mobile apps, an
instance of a video service as presented in Chapter 7 has been set up for the Berlin
Partner BLC. The option to generate videos was an important feature for BLC. Videos
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are used to communicate information about locations, e.g., potential locations where in
Berlin an investor’s business could be set up. They are used in meetings with customers
and also in presentations at trade fairs. As such video presentations of the virtual 3D
city model had to be generated by trained operators in a manual process, their creation
of used to be an expensive effort. Additionally, existing videos could not be regenerated
easily if data has been updated in the meantime, i.e., if new buildings or more detailed
models had been added.

Therefore, an instance of the system for video generation was deployed for the virtual
3D city model of Berlin for the BLC. The automated generation and their repeatability
in different variants without requiring too many skills in 3D navigation has reduced the
costs for video generation significantly. Thus, video assets can now be applied more easily
and more frequently. For example, it is now possible for consultants to prepare videos
prior to meetings or they can to provide videos to customers after a consulting session
that recaps important parts of the meeting.

Implementation and Deployment

For the service, the server system for the service was configured to meet the special
requirements of a rendering server for large-scale virtual 3D city models. Two distinct
rendering server instances were created, one responsible for rendering the video frames in
the video generator process and another one for rendering scene previews. Both service
instances use the same configuration to assure that the same layers and image styles are
available for preview and rendering. CPU, main memory, and IO resources are shared
between these two instances. However, each instance has its own GPU assigned, since a
parallel usage of the GPU for both processes results in insufficient GPU memory and
affect the rendering result. The server hardware is operated in a data center to assure
a high speed internet connection and general physical security and availability of the
service. The amount of parallel users for this system was expected to be quite low (a
total of approximately 500 users), yielding an infrequent usage pattern, so that a parallel
use of more than 3 users is improbable. Therefore, the currently selected system capacity
— a single system for video editor front-end and video generation back-end and datastore —
is expected to be sufficient. Nevertheless, if necessary, the application could be easily
scaled over a larger number of video generation nodes.

The system integrates POI data from a custom web service of the BLC. These POIs
can be used to enrich videos with domain specific information. Furthermore, several
planning models and maps (e.g., standard ground value maps, aerial photographs, and
different street maps) are integrated into the rendering service that generates video frames
and preview images as described in Chapter 7. This way, complex spatial information
can be combined in video presentations using a simple web front-end.

Usage of the Service

The service was provided in a real-world context and was potentially accessible for
the employees of Berlin Partner fiir Wirtschaft und Technologie GmbH and some of
their selected partners. During the time of observation there were two larger use cases
performed with this service.
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e A video presentation introducing 10 investment locations was authored and rendered
for a presentation at a real estate trade fair. The video provided a complex camera
path covering the complete area of the virtual 3D city model. It included acceleration
and deceleration phases and text overlay for the single locations.

e The Berlin police was provided with access to the service. It was used to generate
a briefing video for a police operation during a demonstration. The officer was able
to edit the camera path and to render corresponding videos without requiring any
further instructions.

These applications show that the video service can be handled by untrained users to
efficiently create complex video presentations after a short learning phase.

9.2.4 Health Prevention and Education for Berlin Neukdlln

The Berlin district of Neukélln has a very heterogeneous population in terms of origin
and culture. It has developed a variety of preventive health care options, child and
parental education programs to support parents living in the district during their off-
springs’ childhood and adolescence. when compared to other districts of Berlin, Neukolln
presents with a weaker social structure, especially in terms of income, level of education,
unemployment rate, and health-related factors [Meil3]. Since many of the inhabitants
have a relatively low educational level or inadequate German language skills, they cannot
easily be reached with conventional outreach strategies, such as newspaper advertisements
or specialized school programs. The district has a third party set up a system to gather
and manage information about available offers for preventive health care and parenting
support. It disseminates available offers using a web service API. To enable users to
access this information about available offers, a mobile application that enables users to
find those offers based on their location, e.g., in their direct neighborhood. For effective
communication of these offers, a mobile application was designed that incorporates the
user position and the web service API to allow users to find offers that fit their current
needs.

Mobile Application

The mobile application based on layered maps was created using the framework presented
in Chapters 4 and 6. End-user applications are based on the same client application
framework used in the layered map applications for BLC. A different configuration for
the framework and a different set of packaged application data was created. It contains
layered map tiles, POIs, and informational content to serve the specific needs of the
district of Neukdlln regarding content availability and presentation.

The following functionality was implemented:

Offer Management and Presentation Offer records are obtained from a remote third
party service. Their content and contacts are made available in a geospatial context
using the layered map client framework. Offers can be searched, filtered, and
arranged into lists.
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3D City Model layered maps The project partner describe the target group of citizens
as closely connected to their neighborhood. For that reason, the offer location of
available offers plays a major role in their presentation.

Multimedia Content The application contains contextual information, e.g., financial
support for families, general children health-care, or medical emergencies. The
information was provided in form of text, structured content (contacts, web links,
locations), and multimedia content (i.e., videos). Since the content changes fre-
quently and should ideally be available offline, it is bundled within the app package
an can only be updated together with the application.

9.2.5 OGC 3D Portrayal Interoperability Experiment

The OGC 3DPIE “is designed to test and demonstrate different approaches for service-
based 3D portrayal based on the drafts for the candidate standards for 3D portrayal”
[SHC12]. It was initiated by the Hasso-Plattner-Institut at the University of Potsdam,
GIScience research group at the University of Heidelberg, and the Fraunhofer Institute
for Computer Graphics Research. It involved different companies and organizations that
applied and combined their particular solutions for service-based 3D portrayal to test and
analyze the compatibility of data formats and service interfaces for different exemplary
virtual 3D city models. Some of the experiments conducted during the experiment
involved a combination of different visualization services that work on the candidate
standard specifications for OGC W3DS and OGC WVS.

The IGN France?, as one of the participating organizations, pro vided the Paris
3D dataset for conducting integration and visualization experiments. The dataset was
analyzed and processed to be used by the 3D rendering service. A 3D rendering service
instance was set up and the service endpoint was provided to the other participants of
the interoperability experiment. This way, other parties could integrate images of the
model in their own applications, e.g., by displaying these images as overlay in a 3D client
at specific camera positions. Thus, they could apply image-based styling techniques that
were not available in the particular client implementation by temporarily exchanging the
rendered image with the one generated by the 3D rendering service.

The result of this experiments showed, that the service interface and implementation
were capable of processing and rendering of the Paris model that contains textured terrain
as well as building models within one CityGML dataset. The 3D rendering service was
successfully used with client applications from different vendors, e.g., to apply styling
effects or to integrate data on visualization level.

9.2.6 Nuremberg Demonstrator

As a research project collaboration with the Bayerische Vermessungsverwaltung (Bavarian
surveying office), the Nuremberg virtual 3D city model was integrated into the 3D
rendering service for testing web-based provisioning. A second aspect this project was to
apply image-based techniques for image abstraction to textured virtual 3D city models.
The technique was implemented using the tools and methods introduced by Semmo et al.

“Institut national de I’information géographique et forestiére - National Institute of Geographic and
Forest Information of France, http://www.ign.fr
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abstraction applied.

in 2015 [Sem™15] for processing virtual 3D city model textures. Image-based abstraction
has been implemented as preprocessing step for texture files and CityGML documents
creating an additional CityGML appearance definition for the buildings of the virtual 3D
city model based on the abstracted image textures. For the purpose of demonstrating it
to the surveying office, the provisioning system was used to create a layered map, a mobile
application, and a cube-map based rendering application as technology demonstration.
An example of a web-based layered map showing the buildings with texture abstraction
applied can be found in Fig. 9.3.

9.2.7 Geneva Layered Map

In 2014, an example of web-based provisioning as layered maps was developed for
the 2014 “3D Geospatial Geneva Showcase”, held in the context of the June 2014
Technical Committee Meeting of the OGC. The foundation of the application data was
a heterogeneous virtual 3D city model (see Tab. 9.1) along with a WF'S that provided
feature information. The virtual 3D city model was imported into the 3D rendering
service, and a layered map service was used to generate a tile dataset for the Geneva
area with a color layer as well as an object id layer. As key developmental step, an
Android mobile application based on the layered map framework (see Fig. 9.4) was created.
It was configured to use a set of POI features, which had previously been extracted
from OpenStreetMap data using the feature data provisioning service. Additionally, the
application used an object id map layer to fetch object ids for specific positions and query
feature data and attributes from the given WFS if the user touches a building depiction
on the map. This demonstration, in particular, illustrated that background feature data
for those features portrayed on the map can be easily accessed using standard service
APIs.

The complete processing, configuration, and provisioning of the Android application
was performed in a fast and cost efficient way by using the implemented services and the

5https ://www.perey.com/3DGVA/event/
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Figure 9.4: Layered map application for the virtual 3D city model of Geneva running on an
Android phone.

client application framework for layered maps. Manual configuration and administrative
effort is thereby limited to just a few hours. This shows how the service concepts and
techniques introduced in this thesis can be used to create low-cost, robust, and standards-
based applications for communication of 3D geoinformation based on the presented
service concepts.

9.2.8 Roman Cologne

The model of the Roman Cologne was imported into the 3D rendering service to confirm
its applicability for high-detail models that were not provided in semantics-driven formats.
The 3D geometry was analyzed and optimized by the data import service, its assigned
textures were extracted and reorganized, and feature data (object names, ids, and their
position within the overall scene hierarchy) were extracted and stored in the feature
database.

A 3D rendering service instance was set up to serve generally two visualization
applications:

1. An image-based client for exploration of the model on mobile devices [Klit14]
enabling in-situ exploration of the complex 3D model. See Fig. 9.5 for an example.

2. A 3D layered map-based client for web browsers.

The service was able to handle this type of general-purpose computer graphic models
even though it contains massive geometry and texture data and does not provide a
spatial reference system. Importing and 3D rendering of this complex model created the
possibility of also accessing it on mobile devices and web-browsers which had not been
possible before.

9.2.9 Rotterdam

The 3D rendering service was also evaluated with the virtual 3D city model of Rot-
terdam as it provides a prototypical example of an open data dataset. This dataset
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Figure 9.5: The image-based application showing the highly detailed model of the Roman Cologne
running on an 10S tablet. A particular feature is selected and highlighted using the rendered object
ID layer.

was particularly challenging for the data import service implementation as the model
contained flaws in terms of geometry and data modelling. A consistent result of model
preprocessing and optimization is crucial for providing homogeneous rendering result.
For example, an inconsistent orientation of surface normals or degenerated faces in the
geometry can easily lead to graphical artifacts during 3D rendering with many shading
techniques. Thus, model preprocessing needs to handle model flaws in a way that assures
a homogeneous rendering result with different models and use cases. For the test use
case, the 3D rendering service was extended with repair functionality to cope with such
issues in imperfect datasets. With this functionality, the robustness of the service could
be improved and validated.

9.3 Hardware Requirements

All of the aforementioned case studies were successful on a range of scientific and
commercial projects. Image generation was practically feasible using a rendering server
system equipped with moderate server hardware. A typical system includes an 8 core CPU
(4 cores with hyper-threading), 64 GB RAM, 3 GB consumer grade GPU, and SSD-based
storage). The amount of main memory that is required for running a 3D rendering service
instance varied and can be configured to match the available main memory by reducing
cache sizes for texture and geometry caching. In general, the virtual texturing approach
for efficient texture handling and the compact geometry representation generated by
the geometry preprocessing proved to be applicable up to the largest model within the
range of tested models. Accordingly, the are currently no imminent limitations for the
size of models that can be rendered by the rendering service, as the most immediate
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restriction of model sizes would arise from memory and processing capacity of today’s
GPUs, which, however are continuously increasing. Consumer GPUs with 12 GB and
professional-grade hardware with more than 16 GB of GPU memory is already available.
The Berlin 3D city model, which is one of the largest and most detailed virtual 3D city
model datasets currently available, could be successfully processed and rendered with
the above-mentioned hardware specs. The concepts for image-based provisioning, layered
maps, and service-based video generation have proven their ability to massively reduce
the client-side complexity and requirements for client applications.

9.4 Conclusions from Case Studies

The case studies and applications presented in this chapter proof the applicability of the
general image-based provisioning approach based on a common framework. Several exam-
ples illustrated that the approach and corresponding services can handle the provisioning
of virtual 3D city models of different data size, complexity, and quality. Furthermore, it
was shown that the approach supports efficient, automated provisioning of applications
using virtual 3D city models with only minor preparation time.

The applications were distributed to a large number of end users since there were no
specific requirements for 3D rendering hardware on the target devices. Their platform-
specific implementation, currently iOS, Android, and HTML5 environments, can be
used to communicate spatial and also non-spatial information for different application
purposes.






Chapter 10

Summary and Outlook

10.1 Summary

Virtual 3D city models are evolving into a fundamental category of geospatial models. In
particular, they form a unique source of complex geoinformation in many application fields
in industry and administration. From a technical perspective, these models have become
increasingly more complex and massive, e.g., due to improved remote sensing technologies
and 3D reconstruction technologies. The image-based provisioning approaches presented
in this thesis substantially extend common visualization approaches for virtual 3D
city models. In particular, these services provide key benefits such as decoupling the
complexity of a model from its visualization complexity or the increased reusability
of implementation for rendering techniques and interaction techniques. The approach
supports the key I'T paradigm of SOC and leads to a software architecture that can be
implemented straightforward with a SOA.

This thesis presents concepts and techniques for web-based provisioning of and
interaction with virtual 3D city models. The corresponding service implementations show
the feasibility of these concepts and offer a foundation for developing future service-based
applications and systems. In particular, the thesis provides a 3D rendering service (based
on the OGC 3DPS standard) specifically designed to support massive virtual 3D city
model with their typically large amounts of geometry data and texture data. Furthermore,
the rendering service provides extensive styling capabilities that support thematic as well
as artistic visualization of virtual 3D city models by taking advantage of general purpose
GPU computing capabilities. The web-based provisioning techniques allow us to build IT
systems and applications that provide thematic visualization for large-scale virtual 3D
city models without transferring the complete set of required geometries, textures, and
thematic attributes to clients. This approach saves a significant amount of data to be
transferred and processed on client side and thus provides an efficient, robust mechanism
for thematic visualization applications can be provided for a diversity of end user devices.

This thesis also introduces layered maps, which provide an efficient and robust
approach for web-based 3D maps to handle massive virtual 3D city models. They provide
a map-like user interface, offer simple means to navigate through these models, have
short initial loading times, avoid performance problems regarding 3D rendering, and
can be deployed as simple web services for nearly any user device. Layered maps allow
us to integrate virtual 3D city models into existing standard web-based applications
or portals in a lightweight manner. In particular, the object ID layer can be used to
establish a bidirectional communication on a feature basis with other components of the
a web-page. Feature selection events can be emitted by the layered map client component
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or selection events from other components can be consumed, and selected features can
then be rendered differently. This way, the system is able to connect selected features
within the 3D space of a virtual 3D city model with additional information, e.g., provided
by external services.

The illustrated service for video authoring and video generation addresses a practical
need that has been observed for many applications using virtual 3D city models. Rendering
videos usually requires large efforts and manual labor. The automated video service
reduces these costs significantly and enables us to efficiently render video assets that can
be automatically regenerated when necessary to reflect changes in the underlying virtual
3D city model.

As a novel category of services in the area of service-based visualization of virtual
3D city models, interaction services offer building blocks for a service-based interaction
support that allows us to implement reusable, component-based camera interaction
techniques. Consequently, 3D clients as well as higher level services (e.g., the web-based
video editor presented in Chapter 7) can make use of existing techniques for camera
path planning, input evaluation, or navigation command recognition leading to reduced
development costs for application development and, additionally, to a more homogeneous
user experience across different applications.

Design and implementation of geo-oriented systems and applications are continuously
evolving. Scalable I'T solutions based on microservices, as “small, autonomous services
that work together” [Newl5], are gaining growing attention in research and commercial
applications [Kril8; Erl16; FDA18; Che™17; Brat17]. “Currently, microservice architec-
ture (MSA) is maturing as an architectural style for distributed software systems with
high requirements for scalability and adaptability” [RSS18]. This thesis contributes to
this objective by introducing a functional decomposition of geovisualization systems into
components for visualization, provisioning, and user interaction that can be implemented
as independent microservices.

The concepts and techniques introduced in this thesis extend the application scope of
virtual 3D city models as a tool for communication of spatial and non-spatial information.
They were evaluated and their practical applicability was demonstrated in a variety of
visualization projects using virtual 3D city models.

10.2 Outlook

The approaches for web-based 3D rendering, provisioning of and interaction with virtual
3D city models represent a key step for future image-based technology for virtual 3D city
models.

Virtual 3D city models can be used as a central information base for city-related,
georeferenced data in general. For example, base data and real-time data related to
infrastructure status, traffic flow, or environmental conditions could be integrated. Such
sensors will become a vital data source that will drive virtual 3D city models. Real-
time, streamed data has equally large potential as a basis for thematic visualization.
Future research could address this issue to connect 3D visualization of virtual 3D city
models with corresponding real-time data sources. Integrating this into an image-
based visualization process would require the definition and implementation of new,
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standardized communication protocols, server-side and client-side rendering and data
integration techniques as well as user interfaces for configuring service requests to include
this data into the visualization process.

In recent years, developments in virtualization techniques for GPU computing in
recent years have significantly reduced the complexity of building remote rendering
solutions. GPU-enabled servers or virtual machine instances are available at all major
vendors and data centers, such as Amazon Web Services, Microsoft Azure, or Google
Cloud. This suggests a promising development for remote rendering solutions, as the
complexity for deployment and scaling (i.e., creating new rendering service instances)
is massively reduced. Those developments also makes it significantly easier and more
cost-efficient to setup, deploy, and scale image-based solutions, e.g., for service-based live
rendering of virtual 3D city models, for generation of layered map tiles, or for generation
of videos. Consequently the hurdles for implementing image-based approaches, such as the
3D rendering and provisioning approaches suggested in this thesis, are significantly lower.
This opens up new areas of application that could be addressed by such image-based
solutions.

Another research direction would be to identify and classify specific use cases for
the different technological approaches for visualization of virtual 3D city models, i.e., the
geometry-based approach (e.g., implemented in the Cesium framework or by scene-based
3DPS), and the image-based approach used in this thesis. Future work could also compare
the usability and interaction methods for specific classes of use case or evaluate the
effectiveness of communication of spatial and non-spatial information in the different
approaches. Future research could also explore which type of presentation of a virtual
3D city model meets the requirements for a specific use case best, e.g., in terms of
accessibility, comprehensibility, or user orientation.

The services presented in this thesis, in particular the 3D rendering service and the
video service, provide feature-rich implementations of high-level visualization components
for virtual 3D city model applications, making them are a good starting point to add
value to existing geospatial infrastructures and services. For example, a service that
creates multimedia presentations for virtual 3D city models and their connected data
could be built that combines video fragments, images generated by a 3DPS, maps, charts,
etc. and incorporates them into multimedia presentations that can be easily distributed.

Finally, the services for image-based provisioning of complex 3D models can also
support the increasing digitization in different industries. As more and more products,
machines, and buildings are designed, produced, and maintained using digital 3D models,
e.g., as a part of a “digital twin”, the use of these models in all stages of the product
life cycle is increasingly gaining importance. In this context, image-based provisioning
services can help to handle, visualize, and communicate the increasing amount of data
created, e.g., for smart products or digital production processes. Furthermore, future
research activities could focus on transferring the concepts and techniques proposed for
the provisioning of virtual 3D city models to other areas, such as product design and
construction, facility management, machine engineering, or big data visualization and
analytics in general.
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