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Abstract. The semiarid northeast of Brazil is one of the most
densely populated dryland regions in the world and recur-
rently affected by severe droughts. Thus, reliable seasonal
forecasts of streamflow and reservoir storage are of high
value for water managers. Such forecasts can be generated
by applying either hydrological models representing under-
lying processes or statistical relationships exploiting correla-
tions among meteorological and hydrological variables. This
work evaluates and compares the performances of seasonal
reservoir storage forecasts derived by a process-based hydro-
logical model and a statistical approach.

Driven by observations, both models achieve similar sim-
ulation accuracies. In a hindcast experiment, however, the
accuracy of estimating regional reservoir storages was con-
siderably lower using the process-based hydrological model,
whereas the resolution and reliability of drought event pre-
dictions were similar by both approaches. Further investiga-
tions regarding the deficiencies of the process-based model
revealed a significant influence of antecedent wetness con-
ditions and a higher sensitivity of model prediction perfor-
mance to rainfall forecast quality.

Within the scope of this study, the statistical model proved
to be the more straightforward approach for predictions of
reservoir level and drought events at regionally and monthly
aggregated scales. However, for forecasts at finer scales of
space and time or for the investigation of underlying pro-
cesses, the costly initialisation and application of a process-
based model can be worthwhile. Furthermore, the application
of innovative data products, such as remote sensing data, and

operational model correction methods, like data assimilation,
may allow for an enhanced exploitation of the advanced ca-
pabilities of process-based hydrological models.

1 Introduction

Drought is a type of natural hazard characterised by mete-
orological, hydrological, and water management conditions,
affecting many regions around the globe. Generally, it arises
due to a shortage of water availability. A general valid or
comprehensive definition, however, is hardly achievable due
to many different possible causes, complex relationships, and
feedbacks among its determining factors and, consequently,
different impacts on nature, society, and economy. As such,
different categories can be distinguished ranging from me-
teorological (lack of rainfall) and hydrological (shortage of
consumable water resources) to agricultural (water deficit
for crops or husbandry) and socio-economic droughts (not
enough of income to pay water price). For the characteri-
sation of droughts, different statistics can be computed de-
scribing duration, frequency, and severity based on various
predictors and thresholds (Mishra and Singh, 2010).

The semiarid northeast of Brazil (NEB) is one of the
world’s most densely populated dryland regions (Marengo
et al., 2017). Its climate is characterised by a short rainy
season with high interannual variability. As a consequence,
already since the colonisation in the 16th century, regularly
occurring severe droughts causing famine and mass exodus
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have been reported. Drought occurrence is primarily driven
by sea surface temperature (SST) anomalies in the eastern
Pacific, i.e. the El Nifio—Southern Oscillation (ENSO), and
the northern tropical Atlantic region (i.e. the Tropical At-
lantic SST Dipole) influencing the location of the Intertrop-
ical Convergence Zone (ITCZ), which is the main source of
rain during the rainy season in the NEB area (Hastenrath,
2012). Profound governmental actions for drought mitiga-
tion since the late 19th century resulted, among others, in
the construction of thousands of small reservoirs and sev-
eral large dams for water storage and provision within the
dry season and during dry spells. Still, severe drought events
might endanger water supply, as has happened in the cur-
rent series of drought years since 2012. Even the regular
years (in terms of rainfall amount) of 2017 and 2018 were
not able to eliminate or significantly alleviate water scarcity,
resulting in filling states of the largest reservoirs of less than
10 % (for the current state of water provision and statistics of
the state of Ceard see http://www.hidro.ce.gov.br; last access:
6 April 2019 and the drought monitor http://msne.funceme.
br; last access: 6 April 2019). In addition, climate change is
likely to aggravate water scarcity, calling for efficient strate-
gies in the management of water storages (de Araujo et al.,
2004; Krol et al., 2006; Braga et al., 2013).

Reliable seasonal forecasting, i.e. forecasts of streamflow
and reservoir storages for the upcoming rainy season, can
be of significant value for water managers (Sankarasubrama-
nian et al., 2009). Accurate precipitation forecasts over sev-
eral months are still a challenge for dynamical climate mod-
els. However, many dryland regions are located in areas with
distinct dry and rainy seasons, the latter often connected to
large-scale atmospheric circulation patterns. Therefore, sta-
tistical models relating meteorological or SST indices with
streamflow or a combination of statistical and process-based
models are applied in many dryland regions in the world to
provide seasonal forecasts (e.g. Schepen and Wang, 2015;
Seibert et al., 2017; Sittichok et al., 2018).

For the northern NEB region, the high correlation of rain-
fall and droughts with SST anomalies in the eastern Pacific
and tropical Atlantic, together with correlation of presea-
son rainfall, offers a favourable setting for seasonal predic-
tion (Souza Filho and Lall, 2003; Sun et al., 2006; Has-
tenrath, 2012). Several studies exist for the area, typically
employing one or several (realisations of) general circula-
tion models (GCMs) driven by SST predictions, downscaled
to a finer scale by statistical or dynamical downscaling ap-
proaches, whose meteorological (especially rainfall) outputs
are eventually used as forcing in a hydrological model pro-
ducing streamflow and/or reservoir level forecasts. For in-
stance, Galvao et al. (2005), Block et al. (2009), and Alves
et al. (2012) employed different hydrological models of vary-
ing complexity to generate streamflow and/or reservoir level
predictions. While model performance over daily timescales
was generally reported to be low, over longer aggregation pe-
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riods, such as at a monthly or seasonal scale, acceptable re-
sults could be achieved.

In a recent study, Delgado et al. (2018b) investigated the
use of a statistical relationship to provide seasonal reservoir
level predictions. They used the two GCMs ECHAM4.6 and
ECMWEFE, with the meteorological output of each downscaled
by three different statistical approaches, generating ensem-
bles of wet-season (i.e. January to June) hindcasts for each
year in the period 1981 to 2014. Based on these meteoro-
logical hindcasts, they calculated a number of meteorolog-
ical drought indices which are compared with observations
to evaluate the skill of the predictions. Using reservoir stor-
age as a target variable, they further computed hydrological
drought indices and fitted a multivariate linear regression to
predict these indices using the meteorological indices as pre-
dictors. Even though there was variation among the GCM
and downscaling combinations, the occurrence of meteoro-
logical drought could mostly be predicted with skill. Fur-
thermore, their relatively simple statistical model was able to
predict also hydrological droughts with skill. However, the
absolute hindcast error was often not appreciably better than
climatology, i.e. the observed long-term average of a vari-
able.

While being straightforward to apply and computation-
ally advantageous, such statistical relationships, in contrast
to process-based hydrological models, do not represent un-
derlying processes and are less flexible in terms of the output
variable and their spatial and temporal resolution. However,
what remains is the question of how to balance accuracy, op-
erability, and usability from the perspective of water man-
agers and stakeholders. As such, this study complements the
work of Delgado et al. (2018b), employing a process-based
hydrological model instead of a statistical model. Thus, the
aim is to present and evaluate a forecasting system, predict-
ing seasonal reservoir levels and the occurrence of hydrologi-
cal droughts for the Jaguaribe River basin, located within the
NEB region. Three different objectives are put into focus:
first, the process-based hydrological model and the statisti-
cal model of Delgado et al. (2018b) shall be evaluated and
compared in terms of reservoir level simulation performance.
Second, the process-based hydrological model as an opera-
tional forecasting tool is to be verified in a hindcast experi-
ment. Third, major sources of prediction and simulation er-
rors in the modelling system are to be investigated. Thereby,
the question of whether the costly initialisation and use of a
complex hydrological model is worthwhile in comparison to
a much simpler statistical relationship is to be answered, and
guidelines for further research and the improvement of the
forecasting system shall be given.

This study touches on issues of atmospherical sciences,
hydrology, and water resources management. As terminol-
ogy partially differs, a clarification on certain terms used
throughout the paper can be consulted in Appendix, Sect. A.
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2 Study site

The study area comprises the Jaguaribe River basin in the
state of Ceard, northeast Brazil (see Fig. 1). The catchment is
of crucial importance in terms of water supply for the whole
state and has been intensively investigated in numerous stud-
ies (e.g. Bronstert et al., 2000; Gaiser et al., 2003; de Aradjo
et al., 2004; Krol et al., 2006; Mamede et al., 2012; van Oel
et al., 2012; de Figueiredo et al., 2016). It covers an area
of about 70000 km? with a rural population of 2.7 million.
Additionally, it is the source of water for the metropolitan
area of Fortaleza with 2.6 million people (IPECE, 2016). An-
nual precipitation sums up to, on average, 755 mm per year,
whereas 90 % of rainfall occurs within the rainy season be-
tween January and June. Potential evapotranspiration is high
with more than 2000 mm per year. The mean annual temper-
ature is about 25 °C with little variation. Rainfall, however,
is mostly convective with only a few events of high inten-
sity per year and a strong inter-annual variation caused by
SST anomalies resulting in a northward shift of the ITCZ
inducing recurrent droughts that can last over several years
(see also Sect. 1; Hastenrath, 2012; Marengo et al., 2017).
As the geology is characterised by a primarily crystalline
basement with low-density fractures, water supply needs to
be secured by surface water resources. Accordingly, thou-
sands of small and several large reservoirs were constructed.
The small reservoirs are typically bordered by uncontrolled
earth dams, mainly serving for water provision of rural pop-
ulation and livestock. Conversely, large so-called strategic
reservoirs contain a barrage with intake devices for active
regulation, are sometimes also used for hydropower produc-
tion, and serve as water resources for larger towns and cities
and industrial farming. These settings cause meteorological
droughts (lack of precipitation) and hydrological droughts
(lack of surface water) to be often out of phase (de Aradjo
and Bronstert, 2016; van Oel et al., 2018).

For the present study, the Jaguaribe catchment was sub-
divided into five subregions, named after the main tributary
river or the major reservoir at its outlet: Banabuid, Orés, Sal-
gado, Castanhdo, and Lower Jaguaribe (see Fig. 1 for their
location).

3 Data and methods
3.1 General workflow

The aim of this study is to elucidate the application potential
of a process-based hydrological model for water resources
and drought prediction. Consequently, hindcasts of reservoir
volumes and hydrological drought indices shall be produced,
driving the model by meteorological hindcasts. The general
workflow is illustrated in Fig. 2.

A process-based hydrological model was first calibrated
to observations and an initial model run conducted for the
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Figure 1. Overview over the Jaguaribe watershed (c) and location
within Brazil (b) and South America (a). The five regions of interest
(red numbers) are (1) Lower Jaguaribe, (2) Banabuid, (3) Castan-
hio, (4) Orés, and (5) Salgado. Thin black lines in (c¢) outline sub-
basins, which are the computational units within the model. Black
dots are rainfall stations considered within the study. Background
grid lines refer to the gridded meteorological dataset of Xavier et al.
(2016).

period of 1980 until 30 June 2014. This initialisation run
was driven by observed meteorology and at each 1 January
the storage volume of each strategic reservoir was replaced
by the observed value. Furthermore, if available, measured
reservoir releases through a dam’s intake devices were fed
into the model in order to make use of as much informa-
tion as available to produce simulations as realistic as pos-
sible. The first year of the run was used as a warm-up to
bring the model states into equilibrium. At each end of year,
the model’s state variables, including soil moisture, ground-
water, river, and small (i.e. non-strategic) reservoir storages,
were stored. This entire procedure is intended to mimic the
conditions in a real forecast situation.

In a specific hindcast run, the model was then re-initialised
with the saved model states and driven by hindcast meteo-
rology. These runs were conducted successively for the wet
seasons (1 January to 30 June) of 1981 to 2014. The result-
ing strategic reservoir volumes were used to infer drought in-
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Figure 2. Workflow for the generation and evaluation of hindcasts
of hydrological drought indices.

dices which were evaluated employing verification metrics.
To distinguish uncertainties from the meteorological hind-
casts and in order to investigate mere model performance,
the model runs were performed in two ways: driven by ob-
servations (simulation mode) and meteorological hindcasts
(hindcast mode).

The runs were conducted for both the process-based model
initialised and calibrated within this study and a statistical
model, which is a regression approach derived by Delgado
et al. (2018b) for the same study area. Consequently, verifi-
cation metrics were calculated and analysed for both model
approaches and both forcing modes.

In order to identify the strengths and weaknesses of the
process-based model, the results of the simulation runs were
further analysed. In this context, the model output (reservoir
storage) was stratified. The details of the individual process-
ing steps are described in the following.

3.2 Data

To parametrise the hydrological model, various spatial data
were obtained including a 90 m x 90m SRTM digital ele-
vation model (DEM), a soil map provided by the Research
Institute for Meteorology and Water Resources of the state
of Ceard (FUNCEME) along with soil parameters from a
local database (Jacomine et al., 1973) from which the nec-
essary model parameters were calculated employing pedo-
transfer functions, a land cover map from the Brazilian Min-
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istry of the Environment with parametrisations assembled by
Giintner (2002), and a map of small and strategic reservoirs
provided by FUNCEME. Reservoir parameters were made
available by the Company for Water Resources Management
of Ceard (COGERH) and FUNCEME and include the year
of dam construction, storage capacity, and water-level-lake-
area—storage-volume relationships along with daily resolu-
tion time series of water levels and artificial water release.
A time series of daily precipitation for 380 stations within
and in close vicinity around the study area were provided by
FUNCEME. Other daily meteorological time series needed
by the model (relative humidity, air temperature, and in-
coming shortwave radiation) were derived from the gridded
dataset (0.25° x 0.25° resolution) of Xavier et al. (2016).

3.3 Meteorological hindcasts

Daily meteorological hindcast data for the period 1981
to 2014 used as input into the hydrological model stem
from an ensemble (20 members) of ECHAM4.6 GCM runs
(Roeckner et al., 1996) which were bias corrected by empir-
ical quantile mapping (EQM) (Boé et al., 2007; Gudmunds-
son et al., 2012). Although Delgado et al. (2018b) identified
some deficiencies regarding this product, there was no clear
better-performing alternative. In addition, ECHAM4.6 is al-
ready employed operationally by the local water authority
FUNCEME (Sun et al., 2006), and, in contrast to other sea-
sonal forecast systems like those by ECMWE, it comes with-
out further costs for operational use, making it the candidate
for future operational application. The 20-member ensem-
ble runs of ECHAM4.6 were conducted and results provided
by FUNCEME. More information is given in Delgado et al.
(2018b).

3.4 The process-based model
34.1 Introduction to WASA-SED

The hydrological model WASA-SED, version rev_257, was
employed for the process-based hindcasts of reservoir vol-
umes. WASA-SED is a deterministic, process-based, semi-
distributed, time-continuous hydrological model. The repre-
sentation of hydrological processes focuses on dryland envi-
ronments. A complex but efficient hierarchical spatial disag-
gregation scheme allows for application over large scales up
to an order of magnitude of 100000 km? (Giintner and Bron-
stert, 2004; Mueller et al., 2010). Reservoirs can be simu-
lated by treating large strategic reservoirs in an explicit man-
ner while representing smaller ones as lumped water bod-
ies of different size classes to efficiently account for water
retention of many small reservoirs in a study region (Giint-
ner et al., 2004). The model was developed for and success-
fully applied in the semiarid areas of northeastern Brazil
(Medeiros et al., 2010; Medeiros et al., 2014; Krol et al.,
2011; de Aradjo and Medeiros, 2013) and used for other
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dryland regions, such as in India (Jackisch et al., 2014) and
Spain (Mueller et al., 2009; Mueller et al., 2010; Bronstert
et al., 2014).

3.4.2 Model parametrisation and calibration

The model was parametrised using the lumpR package for
the statistical environment R (Pilz et al., 2017). This included
the delineation of catchment and model units, assembly, cal-
culation, and checking of parameters, and the generation of
the model’s input files. Meteorological data were interpo-
lated to the respective spatial units (sub-basins). For rain-
fall, this step used the Thiessen polygon method as imple-
mented in the Information System for Water Management
and Allocation (SIGA) (Barros et al., 2013). For the other
meteorological variables, inverse distance weighting (IDW)
from the R package geostat (Kneis, 2012) was used. Reser-
voir data were processed and prepared for the model. A total
of 36 strategic reservoirs within the study area was selected
for explicit treatment in the model according to their size and
importance for water management.

The model was calibrated independently for each of the
five regions in the study area (see Fig. 1). Calibrated output of
upstream regions was used as boundary condition for down-
stream regions. Due to lack of data for Lower Jaguaribe, the
calibrated parameters of Castanhdo were transferred. How-
ever, sufficient data were available for further analyses. The
calibration period spanned 2003 to 2010, which includes
both wet (2004 and 2009) and dry (2005, 2007, and 2010)
years.

Daily reservoir volume increase in the strategic outlet
reservoir of a specific region was used as a target variable as
reservoir level measurements were assumed to be more reli-
able than streamflow observations. Streamflow in the area is
highly variable and rivers, especially in the downstream part
of the catchment, are characterised by broad and dynamic
cross sections and dense riparian vegetation inducing large
uncertainties in streamflow measurements derived from rat-
ing curves. However, reservoir management has a strong im-
pact on reservoir dynamics and only a limited number of data
on artificial releases were available, while there was even no
information on overspill (which does not often occur at the
large strategic reservoirs) and only rough estimates of with-
drawals. To minimise the impact on calibration, only posi-
tive volume variations (i.e. net reservoir volume gain), which
are effectively caused by runoff draining into the reservoirs,
were considered for calibration. Therefore, daily net losses
of volume, which are largely determined by such manage-
ment influences, were set to zero and therefore effectively
excluded from the calibration. However, for the region of Sal-
gado, streamflow measurements had to be used as this spe-
cific region does not contain a strategic reservoir at its outlet.

In total, 15 parameters were chosen for calibration. As ob-
jective function, a modified version of the Nash—Sutcliffe ef-
ficiency (NSE) called benchmark efficiency (BE) following
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Schaefli and Gupta (2007) was employed. It is calculated as
< 2
z (Gobs (1) — gsim (2))

t=1
BE=1-— , (1)

Z (qobs (1) — qbench(t))2

t=1

with ¢ being the index of time containing N time steps
within the calibration period; gops represents the observa-
tions; ¢sim represents the simulations; and gpench, instead of
being the average of the observations as in the traditional
NSE, represents the mean of the observations for every Ju-
lian day over all years within N (i.e. the mean annual cycle).
In this way, a value of BE > 0 means the model is able to re-
produce the average yearly dynamics better than simply us-
ing statistics. Consequently, a value of BE = 1 signifies per-
fect agreement of simulations with measurements. Eventu-
ally, BE as a performance measure employs a much stricter
criterion on simulated hydrological dynamics compared to
using the NSE measure.

For  calibration, the dynamically dimensioned
search (DDS) algorithm (Tolson and Shoemaker, 2007)
implemented in the R package ppso (Francke, 2017) was
used. Since DDS was developed for computationally de-
manding hydrological models it is able to obtain satisfying
results within the order of 1000 to 10000 model calls. For
this study, the number of calls was limited to 5000 for
every region, which resulted in about 10000 h of CPU core
processing time on a high-performance cluster.

3.4.3 Analysis of simulation performance and
influencing factors

An objective of this study is to analyse the simulation per-
formance of the process-based model in more detail and to
identify possible influencing factors. Instead of using a sin-
gle goodness of fit measure, as for automated calibration, dif-
ferent aspects of model performance should be investigated.
Therefore, the Kling—Gupta efficiency (KGE) was chosen as
a performance measure along with its three components cor-
relation, bias, and deviation of standard deviations of sim-
ulations and observations (see upper part of Table 1). Like
NSE and BE, KGE scales from minus infinity to one where
one is the optimum value achieved for maximum correlation
(i.e. COR = 1) and no deviation of means and standard de-
viations. To assess which factors influence the model perfor-
mance, several candidate descriptors where selected, which
are presented in the lower section of Table 1. These descrip-
tors were tested for their capability to explain model perfor-
mance in time and space in a regression approach by using
these descriptors as predictors and the performance metrics
as the response variable.

For the analysis, the calibration period 2003 to 2010 was
used. Each response variable (i.e. performance metric) was
calculated for each of the 36 strategic reservoirs located in

Hydrol. Earth Syst. Sci., 23, 1951-1971, 2019
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Table 1. Response and predictor variables used for the analyses of the process-based model performance.

Abbrev.  Explanation

Responses

KGE Kling—Gupta efficiency (Gupta et al., 2009): 1 — \/ (COR — 1)2 4+ BIAS? + VAR?

COR Pearson correlation of simulations y and observations o: %[yroo) with cov being their covariance and o their standard deviations
BIAS Deviation of means u: % —le[—1,00)

VAR Deviation of variability: % —1le[—1,00)

Predictors

Aup Upstream catchment area of the reservoir (kmz)

Veap Reservoir volume capacity (hm3)

Tresup Number of upstream reservoirs (—)

Ayol Rising or falling period of reservoir volume (-)

Pmax Maximum regional daily precipitation sum over rising/falling period of a year (mm)
Preg Regional precipitation sum over rising/falling period of a year (mm)

P> Regional precipitation sum over the entire previous year (mm)

P36 Regional precipitation sum over 36 months of the preceding years (mm)

the study area. Furthermore, each year was divided into a
falling period, where the difference of reservoir levels for two
consecutive days was negative, and a rising period, where
the difference was greater than or equal to zero. For each
reservoir, year, and period, the respective performance was
computed and analysed separately. This resulted in a to-
tal of 32 reservoirs times 8 years times two periods mi-
nus some missing observations, i.e. 484 values to be aggre-
gated for each response variable. The predictors were ei-
ther static and unique for each reservoir (upstream catch-
ment area Ayp, T€SErvoir capacity Veap, number of upstream
TESETVOIrS Npesup), Tegion-specific and dynamic as aggrega-
tion over a certain amount of time (maximum daily precip-
itation Ppax, regional precipitation sum Preg, regional pre-
cipitation over the last 12 months P, and over the last
36 months P3¢), or a grouping variable by itself (reservoir
level is currently rising or falling Aye) (see also Table 1 for
more information).

To identify predictor importances and their specific influ-
ence on the performance measures, a random forest analy-
sis was conducted using the R package party (version 1.3-
1). In general, random forests consist of an ensemble of re-
gression trees, where each tree is fitted using a bootstrap
sample of the training dataset and only a subsample of all
available predictors. This eliminates typical problems of tra-
ditional regression tree approaches, such as a high sensitivity
to small changes in the data and the likelihood of overfit-
ting (Breiman, 2001). For this study, a refined random forest
algorithm was employed, which is better suited for predic-
tors of different types (e.g. mixed categorical and continuous)
and produces more robust measures of predictor importance
in the case of correlated predictor variables (Hothorn et al.,
2006; Strobl et al., 2007, 2008).

Hydrol. Earth Syst. Sci., 23, 1951-1971, 2019

For each response variable, an individual random forest
was built. Except for Ay (categorical), each predictor and
response variable was treated as numerical. To generate ro-
bust estimates of predictor importance, 1000 regression trees
were built per forest (otherwise standard parameter values of
the algorithm were used). The most influential predictors for
a certain response were then distinguished by an importance
measure, which in this study was derived by permuting the
values of each predictor and measuring the difference in pre-
diction accuracy of the random forest before and after permu-
tation (also termed permutation importance in contrast to the
often used Gini importance or mean decrease in impurity). In
addition, the permutation of predictor values was done by ac-
counting for potential correlation among predictor variables
(hence termed conditional permutation importance) as sug-
gested by Strobl et al. (2008).

In order to get an impression of the concrete effect of each
predictor instead of the mere variable importance, the two
leaf nodes with the highest and lowest median response val-
ues for each tree were identified. For these two nodes, the
ranges of each numerical predictor (except Ayo1) were classi-
fied into four groups ranging from small to large to facilitate
visual investigation.

3.5 The statistical model: a regression approach

A goal of this study is to answer the question of whether the
application of a complex process-based simulation model is
worthwhile in comparison to a much more convenient sta-
tistical approach to generate seasonal forecasts of reservoir
storage and drought indices. To achieve this, the regression
model of Delgado et al. (2018b), which was developed for
the same study area, was employed. They fit a multivariate
linear regression (MLR) model individually for each of the

www.hydrol-earth-syst-sci.net/23/1951/2019/
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Table 2. Regional equations used for the calculation of monthly volume changes with the statistical approach. Table extracted and extended
from Delgado et al. (2018b) (Table A1). For details and abbreviations see text.

Region Formula R?
. SPI SPI SPI
Lower Jaguaribe  0.689 + 2.222SPI; + 0.035 SPITS +2.116SPI; SPI|, + 1.072;;1125].T11122 + 0.2868551’11 SPTII326 N 0.38
Orés 0.416 +2.428SPEI| SPI +2.233SPI; SPI;5 — 0.173SPl3 Sprre +4.197SPEI} gpgf2 — 0.003 5pers Sprs 036
Salgado —0.377 + 2.002% +2.454SPEI| SPI| 4 2.600SPEI; SPI36 + 4.205%11122SPE11 +0.314SPI, % 0.45
= SPI SPI SPI SPI
Castanhdo 2.947 +3.468SPI| — 1.147 gppl- — 1.270gpgl-SPEIL36 — 0.791SPL) priS- + 1.412SPE 1 gppi 0.21
Banabuid 4.812+4.638SPI| — 13.853SPI |, — 2.293SPI|3SPEI36 + 15.317SPEI 5 ghis — 0.341 gpis- T2 0.23

subregions also defined in this study. As a response variable,
regional volume changes were used (approach M2 in Del-
gado et al., 2018b). As possible predictors, meteorological
drought indices (standardised precipitation index, SPI; and
standardised-precipitation—evapotranspiration index, SPEI)
aggregated over time periods of 1, 12, and 36 months, respec-
tively, were considered in their study. To account for correla-
tion among predictors, ratios of predictors exhibiting signif-
icant correlation to each other were used. Genetic optimisa-
tion with respect to the Akaike information criterion (AIC)
was employed to determine the specific predictors for each
subregion. To enforce model parsimony, not more than five
predictors should be used in the regression equation. For the
model fit, all available observations within the analysis pe-
riod were used (monthly values from 1986 to 2014, less a
few missing values). The resulting equations are presented in
Table 2.

To generate hindcasts, the predictors of the equations (the
SPI and SPEI values over different time horizons) were cal-
culated on a monthly scale to obtain monthly forecasts of
regional reservoir volume changes for each rainy season of
the hindcast period. Regional storage volume values could
then be obtained by successively adding predicted volume
changes to the measured value of December of the previ-
ous year, which served as a base value for each rainy sea-
son. Even though the shown model fits for monthly volume
changes were rather poor (low R? values in Table 2), the de-
rived absolute reservoir level values were in good agreement
with measurements (Delgado et al., 2018b).

To compare the mere simulation performances, both the
process-based and the statistical model were first driven by
observed meteorology to exclude the effect of the down-
scaled GCM runs. In a second step, the two approaches were
evaluated for real hindcasts.

3.6 Drought hindcasting
3.6.1 Hydrological drought quantification
As water stored in surface reservoirs is of primary impor-

tance to water supply, hydrological drought indices based on
surface reservoir filling level appear to be the most adequate
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choices to identify and characterise hydrological droughts in
the study area. Thus, in line with Delgado et al. (2018b),
for the quantification of hydrological droughts the regionally
and monthly aggregated reservoir storage was defined as a
drought indicator:

R;
2V
i=1

I = , 2
=R 2
3 Ve
1=

with ¢ being the time index, Vti the volume stored in reser-
voir i of a certain region R; (i.e. one of the five subregions
of interest illustrated in Fig. 1), and V¢, the storage capacity
of that reservoir. This metric was calculated for each of the
five regions of interest (R) and each month of the hindcast
period (wet seasons, January to June, of 1981 to 2014). For
each month the last daily value was taken.

A drought was then defined as

1 if I; <qo3

b = 0 if I, >qo3’

3)
where D =1 denotes drought, D = 0 indicates no drought,
and go3 is the 0.3 quantile of / over the hindcast period.
The definition of g¢ 3 is based on the choice of local deci-
sion makers who defined this value as a warning threshold
for reservoir scarcity. In Sect. 5.1 the impact of this deci-
sion will be discussed. The threshold was applied to each
region individually and, thus, resulted in regionally different
drought thresholds. As such, the results of this study will be
comparable to the work of Delgado et al. (2018b).

3.6.2 Verification of drought hindcasts

Hindcasts of reservoir volumes (V,i) and, consequently, the
hydrological drought index (/;) were verified employing
the root mean square error (RMSE), the relative operat-
ing characteristic skill score (ROCSS), and the Brier skill
score (BSS). Definitions and discussions of the various fore-
cast verification metrics can be found in textbooks such as
Wilks (2005). In the following, short explanations for each
selected measure shall be given.
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The RMSE is a deterministic measure and was derived by
calculating the root of squared differences of hindcasts and
observations averaged over all values of the hindcast period:

N

RMSE = % D (Itf - 15)2, )

t=1

where N is the number of forecasted time steps, and the su-
perscripts “f” and “0” denote forecast and observation, re-
spectively. It was calculated multiple times by using as Itf
each GCM member individually and, in addition, the median
of members as the deterministic value. The metric quanti-
fies the average magnitude of hindcast errors in units of the
target variable, i.e. in this case regional reservoir storage in
percent points, and is therefore useful for the interpretation of
the suitability of the model for water managers who rely on
accurate forecasts of volumes to coordinate reservoir opera-
tion. As such, the RMSE refers to the attribute of accuracy.
The lower the RMSE, the lower the forecast error and the
higher the accuracy.

The ROCSS quantifies the ability of a model to correctly
discriminate between events and non-events. In this con-
text, an event is defined as a hydrological drought which, in
turn, is distinguished by the drought index falling below the
0.3 quantile (go.3) as explained above. The ROCSS is based
on the ROC curve which plots the probability of event de-
tection against the false alarm rate for different thresholds of
forecast probability defining an event. Taking the area under
the curve (AUC) of this graph, the skill score can be calcu-
lated as

ROCSS =2-AUC — 1. 5)

The value ranges between —1 and 1 with values lower than or
equal to zero indicating the false alarm rate being greater than
or equal to the probability of event detection and, thus, the
model having no skill. A value of one represents the highest
score, i.e. the model is able to predict every event and non-
event correctly. As such, the ROCSS is a measure for event
resolution of probabilistic forecasts.

The Brier score (BS) measures the mean squared error
of probabilistic forecasts and indirectly contains information
about reliability, resolution, and the variability of observa-
tions (the latter being commonly referred to as uncertainty).
As such it can be calculated as

BS = %i(Df—Df)z. ©)

t=1

The corresponding skill score (BSS) compares the BS of a
forecast model with that of a simple reference forecast, in
our case climatology:

BS
BSS=1-—— > )

b
Sreference
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Figure 3. Comparison of accuracy in predicting relative reservoir
storage for the process-based and statistical model in simulation
mode (i.e. run with observed forcing). The underlying analysis pe-
riod comprises monthly values of the rainy season (January to June)
over the hindcast period (observations available since 1986 un-
til 2014 with some data gaps in between, resulting in a maximum of
174 values for each subregion).

with BS;eference = 0.3, corresponding to g 3, the initially de-
fined long-term average probability of drought occurrence
(as described above). It follows that BSS € (—o0, 1] and a
forecast model having skill relative to the reference model if
BSS > 0.

4 Results

4.1 Comparison of model performance in simulation
mode

Figure 3 compares the performances of the process-based
and statistical model in simulating relative regional reser-
voir storage driven by observed meteorology. The regional
RMSE varies between 5 % and 18 %, whereas for the whole
catchment both modelling approaches achieve a result of
about 13 %. Overall, the performance differences between
the two models are small for all regions. Only for Salgado
the statistical model shows a lower RMSE compared to the
process-based model, and the difference among the two ap-
proaches is largest (6 %). For all other regions, the process-
based model exhibits a slightly higher accuracy, and the in-
terregional ranking is equal for both approaches. Generally
speaking, both models show a comparable performance, sug-
gesting they are equally suitable for their application in hind-
cast mode.
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Figure 4. Model performance in hindcast mode for the two model
approaches. In the top panel, horizontal dashed lines in the bars
mark the results obtained with observed forcing (simulation mode,
as in Fig. 3). Note that for RMSE low values indicate a better per-
formance while for ROCSS and BSS higher values are favoured.

4.2 Comparison of model performance in hindcast
mode

The uppermost panel of Fig. 4 shows that, in hindcast mode,
the accuracy in terms of RMSE considerably decreases when
compared to simulation mode for both types of models. How-
ever, in contrast to the situation in simulation mode, the sta-
tistical approach outperforms the process-based model for
all regions. While for the statistical model deterioration in
terms of RMSE is generally less than 10 %, the process-based
model achieves significantly lower accuracy with increasing
RMSE by up to almost 30 %. This degradation of model per-
formance in hindcast mode for the process-based model is
especially pronounced for the Banabuit region.

The lower two panels of Fig. 4, however, demonstrate that
both approaches are able to generate drought hindcasts with
skill. The resolution of event hindcasting of the two models
(i.e. the ROCSS) is very similar when it is combined over
the whole catchment. Regional differences are more pro-
nounced but still negligible. For some regions the process-
based model performs better, but for other regions the statis-
tical model performs slightly better. The BSS, while also in-
dicating skill, shows lower performance values which can be
attributed to lack of accuracy (as already indicated by RMSE)
and reliability.

An attribute plot, as the one presented in Fig. 5, can reveal
more details on that issue. Therein, the predicted probabil-
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Figure 5. Attribute plot of drought hindcasts aggregated over the
whole study area. Values within the gray region contribute posi-
tively to the Brier skill score (BSS). For details on the interpretation
of the plot see text.

ity of drought occurrence (obtained from the outcomes of
individual ensemble members) is plotted against the relative
frequency of observed drought occurrences (solid lines) to-
gether with the relative prediction frequency of a certain fore-
cast probability interval (dotted lines). It demonstrates sev-
eral verification attributes including resolution (the flatter the
solid lines, the less resolution), reliability (agreement with
the gray diagonal line), sharpness (dotted coloured lines),
and skill (values within the gray region contribute positively
to BSS; for unclear terms see Appendix Sect. A or consult
textbooks such as Wilks, 2005). Apparently, predictions from
both models contain skill except for low forecast probabili-
ties where both models contribute negatively to BSS. Fur-
thermore it can be seen that both approaches exhibit prob-
lems in terms of reliability. Specifically, forecast probabili-
ties are too low compared to observed occurrences, which
is generally denoted as underforecasting. This observation
appears to be a bit more pronounced for the process-based
model than for the statistical model. That also holds true for
sharpness, as the statistical approach shows slightly more
confidence for higher forecast probabilities; i.e. the relative
frequency of maximum forecast probability is higher.
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Figure 6. RMSE of regional reservoir storage hindcasts with increasing forecast horizon and lead time. Monthly values are obtained by
aggregation over the full analysis period (1986 to 2014) for a specific month. Each box reflects the distribution of the 20 ensemble members.

Coloured solid lines refer to the ensemble median taken as the deterministic forecast and analysed individually.

4.3 Model performance attribution
4.3.1 Hindcasts

The monthly aggregated accuracy of the hindcasts, i.e. per-
formance with increasing lead time, is shown in Fig. 6. Over-
all, the hindcast error (i.e. RMSE) increases with lead time
(i.e. progression of the wet season), even when using ob-
served forcing. The statistical approach generally produces
better hindcasts. Its RMSEs differ only little from runs with
observed forcing. Also the increase in RMSE with lead time
is very similar. For the process-based model, hindcasts de-
viate clearly from observation-based results (as was already
shown in Fig. 4). The error increases much more strongly
over the hindcast horizon. However, its RMSE values reach
a plateau at about 40 % in March. Generally, it can be seen
that aggregating the ensemble members by using the median
of reservoir storage hindcasts (solid lines) is usually a bet-
ter choice than most of the single ensemble members (distri-
butions shown as box plots). The spread of ensemble mem-
ber results differs for the two approaches. These ranges are
clearly larger for the process-based model in January and
February but comparable for the other months.

In Fig. 7 prediction accuracy is assessed for different wet-
ness conditions (i.e. dry, normal, wet) over different accu-
mulation time periods for rainfall. Again, when driven by
meteorological hindcasts, the statistical approach performs
best with relatively small differences compared to results
obtained using observed forcing. Under wet conditions, ir-
respective of the rainfall accumulation period, the error is
highest for most settings. The only exception from this pat-
tern shows the process-based model driven by hindcasts.
Here, the error under dry preconditions increases with in-
creasing rainfall accumulation length while the performance
under wet preconditions improves with longer accumulation
length.

Hydrol. Earth Syst. Sci., 23, 1951-1971, 2019

Table 3. Results of regional calibration of the process-based model.
BE refers to benchmark efficiency (Eq. 1) and was used for cali-
bration; PBIAS is percent bias, i.e. the average tendency for over-
or underestimation of simulations in comparison to observations.
For Lower Jaguaribe, no observations at the catchment outlet were
available.

Region BE PBIAS (%)
Banabuid 0.84 11.78

Orés 0.76 0.92
Salgado 0.79 7.37
Castanhdo 0.76 6.93
Lower Jaguaribe  [no obs.]  [no obs.]

4.3.2 Process-based simulation performance

In the preceding subsections it was shown that the process-
based model does not outperform the statistical approach.
Moreover, in hindcast mode, the process-based model often
achieved worse performance measures, especially in terms of
accuracy. This subsection therefore aims at the identification
of deficit causes by analysing the results of process-based
model calibration and potential influencing factors of simu-
lation performance in more detail.

Regional calibration performance of the process-based
model is summarised in Table 3. A good overall agreement
of simulated and observed reservoir dynamics in terms of
BE values could be achieved during calibration. However,
percent bias (PBIAS) as a performance metric not used in
the calibration shows, on the one hand, acceptable values of
no more than 12 % but, on the other hand, a consistent slight
overestimation of reservoir level dynamics. It can be further
observed that a good BE value does not correlate with a low
PBIAS.

The random forest analysis brought more insight into
process-based model performance and its influencing factors.
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Figure 7. RMSE of regional reservoir level hindcasts for different antecedent wetness conditions. Wetness is expressed by three different
accumulation horizons of rainfall (1, 12, and 36 months; left, centre, right). Each box reflects the distribution of the 20 ensemble members.
Coloured solid lines refer to the ensemble median taken as the deterministic forecast and analysed individually.

Figure 8 illustrates the importance of each potential predictor
for different performance metrics. Apparently, overall model
performance (here measured via KGE) primarily depends on
the wetness preconditions (P3¢). While reservoir size (Veap)
plays only a minor role for the overall performance metric
KGE, it clearly affects correlation and bias. (Mis)match of
standard deviation (VAR), however, is mainly determined by
both wetness conditions and reservoir size. Overall, long-
reaching antecedent wetness condition (P3g) is more impor-
tant than the conditions of the preceding 12 months (P12),
and reservoir capacity (Vcp) is dominant over upstream
catchment area (Ayp), although the latter is not negligible.
The current rainfall conditions, in terms of intensity (Ppax)
and sum over a rising/falling period (Preg), whether it is a
reservoir level increase or decrease period (Ayg), and the
number of upstream reservoirs (esyp) show little or no ex-
planatory value for any of the performance measures.

To analyse the specific influence of predictors on the re-
sponse variables, Fig. 9 relates the values of the most influ-
ential predictors to the corresponding performance measures.
This is done by plotting the occurrences of predictor cate-
gories in the highest and smallest valued leaf nodes of all
regression trees within the random forest. It shows that un-
der dry preconditions (P3¢ = min) there is a tendency for un-
derestimation of standard deviations (VAR = min), i.e. a less
variable reservoir storage series than observed, but a better a
better overall performance (KGE = max). On the other hand,
under wet conditions, especially for larger upstream catch-
ments (Ayp = high), results tend to show an overestimation
of variability (VAR = max), whereas under dry conditions in
small catchments variability is more often underestimated.
For small reservoirs correlation is mostly low. It should be
noted, however, that relationships cannot always be clearly
distinguished. For instance, a low precipitation sum over the
preceding year (P12) may result in both a high and a low
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Figure 8. Predictor importances for each response variable deter-
mined by the random forest approach. In this case conditional per-
mutation importance was used (see Sect. 3.4.3).

KGE value, whereas very low precipitation over the preced-
ing 3 years (P3g) only led to a high KGE. Furthermore, there
is no relationship between reservoir capacity and KGE.
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Figure 10. Reliability plots for different settings of (a) drought thresholds and (b) number of probability bins. Solid lines refer to the values
used in this study. The gray 1 : 1 lines in each plot illustrate perfect reliability for comparison.

5 Discussion
5.1 Robustness of performance metrics

There are two important algorithmic parameters affecting
drought predictions of this study. One is the threshold of
drought definition, i.e. the quantile of drought index observa-
tions specifying a drought, which was set to 0.3 as commonly
used in the study area among water managers. This choice af-
fects the performance values of BSS and ROCSS. The other
is the number of probability bins into which hindcasts are
grouped for further analysis, affecting ROCSS but not BSS
as BS was herein calculated without probability binning (see
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Eq. 6). Figure 10 illustrates the sensitivity of verification at-
tributes to the two parameters. It shows that a higher drought
threshold results in a more evenly running curve while a
smaller threshold of 0.2 tends to be better oriented towards
the reliability line and appears more variable (Fig. 10a). This
might result from the necessarily lower number of values of
smaller thresholds. However, altogether general conclusions
remain untouched, namely underforecasting and the statisti-
cal being superior to the process-based model. Regarding the
number of probability bins (Fig. 10b), a larger value leads
to a more variable curve. This effect can be attributed to the
decreasing number of values per bin with increasing num-
ber of bins. For this study, it was decided to use a value of
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seven as it appears to be the best compromise between suf-
ficient data availability per bin and an adequate number of
bins for further calculations (namely ROCSS). Even affect-
ing the values of ROCSS and partly BSS (not shown), it can
be concluded that the somewhat arbitrary decision on a cer-
tain drought threshold and the number of bins, as long as rea-
sonable values are chosen, does not affect the general results
of the analysis.

The RMSE as an accuracy measure is free of such decision
parameters but is admittedly influenced in a different way.
With the target variable (relative regional reservoir filling)
ranging from 0 % to 100 %, the actual maximum value of the
metric tends to be smaller during wet periods: the observed
value (which is usually greater than zero) effectively causes
the RMSE to be limited to about 40 % to 50 %. This effect is
reflected as the apparent performance plateau for the process-
based model in Fig. 6 and is also likely to affect the results
presented in Fig. 7. The effect that, when driven by hindcasts,
the process-based model exhibits larger errors under dry than
under wet conditions can be at least partially attributed to this
issue. In contrast, when models are driven by observations, it
seems reasonable that model simulation performance is gen-
erally better under dry conditions (Fig. 7). However, as no
threshold effects can be observed and the RMSE values are
always considerably lower for the statistical model, this ef-
fect should not influence general conclusions of the model
comparison.

5.2 Model comparison

In terms of simulation accuracy when driven by observations
and for drought event prediction in the hindcast mode, both
models perform equally well. Hindcast accuracy, however, is
substantially lower for the process-based approach. This re-
sult is well in line with findings of other studies that simple
statistical model approaches often perform equally well or
even better than complex process-based prediction systems,
especially in tropical regions due to exploitable correlations
among meteorological and hydrological variables (Block and
Rajagopalan, 2009; Hastenrath, 2012; Sittichok et al., 2018).
It has to be noted, however, that the process-based approach
with the WASA-SED model achieved acceptable results on
monthly (hindcasts) and even daily (calibration metrics)
timescales whereas former studies in NEB reported passable
results only aggregated over seasonal scales (Galvdo et al.,
2005; Block et al., 2009; Alves et al., 2012).

The reason for the discrepancy of model ranking between
simulation and hindcast mode can be attributed to the differ-
ent model structures. To illustrate this, Fig. 11 shows the av-
erage monthly changes of regional reservoir storage for the
different models and modes in comparison to observations.
For the simulation mode (dashed lines) it can be seen that the
process-based model, though exhibiting a constant overesti-
mation, all in all is well in line with observations. The statis-
tical model, however, shows a more or less constant storage
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change over the whole simulation horizon, resulting in over-
and underestimations and, eventually, a good overall simula-
tion performance (see Fig. 3). In hindcast mode (solid lines),
for the process-based model the overestimation of storage
change is much more pronounced and the peak shifted from
April to March. Although the statistical model now more
realistically exhibits seasonal dynamics, the general pattern
still appears too smooth, which effectively results in less
deviation from observations than the output of the process-
based model (Fig. 4). This indicates a strong influence of pre-
cipitation forcing on the process-based model while the sta-
tistical approach shows less pronounced reactions to changes
in the rainfall input. Consequently, deficiencies in this forc-
ing affect the process-based model much more. This, in addi-
tion to the plateau effect discussed in Sect. 5.1, explains the
more diverse RMSE values among the hindcast realisations
for the process-based model at the beginning of the rainy sea-
son when reservoirs are filling up (Fig. 6) and the higher
RMSE under antecedent dry conditions (Fig. 7 middle and
right panels). In contrast, for the statistical model, the general
patterns of RMSE over different lead times or under differ-
ent antecedent moisture conditions do not change in hindcast
mode when compared to simulation mode. The issue of un-
certainties arising from defective precipitation forcing will
be discussed in more detail later on.

Despite the lower prediction performance, the process-
based approach still provides benefits over the statistical
model. This includes the potential access and investigation
of multiple spatially distributed hydrological variables with
daily resolution, such as evapotranspiration, runoff genera-
tion, or streamflow, which were generated during the model
runs. This clearly excels over the statistical model, which
only yielded predictions of a single target variable. Another
advantage is that model output is not only provided in a re-
gionally and monthly aggregated manner, as for the statisti-
cal approach, but for all individual strategic reservoirs in the
area as daily time series. Figure 12 illustrates that accuracies
of individual reservoirs exhibit a slightly larger variation, but
the RMSE:s of individual reservoirs are at a similar level as
when regionally aggregated. This suggests that most of the
single reservoirs can be modelled with a comparable perfor-
mance to the regionally aggregated values.

A further advantage of a model such as WASA-SED is that
underlying processes are directly represented. As such it can
be of higher value to water managers interested not only in
streamflow or reservoir level forecasts but also in the inves-
tigation of process behaviour or assessments under changing
boundary conditions. Therein the model could be used in sce-
nario analyses, such as climate change impact assessment, or
sensitivity analyses of, for instance, uncertain meteorological
input to detect critical streamflow or reservoir stages. Fur-
thermore, the model is transferable and can be easily applied
in different regions and over different spatial and temporal
scales, only limited by computational resources and available
input data.
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Figure 12. Comparison of accuracies of the process-based model
for different spatial aggregation levels on a monthly timescale.

5.3 Deficiencies of the process-based simulation
approach

To improve the performance of the process-based model it
is first necessary to identify sources for simulation inaccura-
cies. It was shown that the process-based model achieved re-
gionally different performances. A comparison of Fig. 3 and
Table 3 reveals that regional bias during the calibration pe-
riod is in compliance with the ranking of regional simulation
errors. Moreover, although exhibiting the highest BE value,
the region of Banabuit is characterised by the largest bias
during calibration and highest simulation and hindcast errors.
As the latter is observed for both the process-based and sta-
tistical approaches, the reason is suspected to originate from
uncertainties in observations, i.e. precipitation measurements
within the region, or defective reservoir level acquisition. The
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reason for the Salgado region being out of the general pattern
for the process-based model certainly originates from the dif-
ferent calibration procedure applied here, namely the use of
streamflow measurements in contrast to reservoir dynamics
as for the other regions. In addition, the region is distinct
from other parts of the catchment in terms of environmental
settings such as larger groundwater influence and sedimen-
tary plateaus in the headwater area. Conversely, the transfer
of the calibrated parameters from Castanhdo to the Lower
Jaguaribe region seems justifiable as the simulation error was
small. Overall, reservoir size largely influences both simu-
lated storage time series and bias. Model performance, how-
ever, appears to not be superior for large reservoirs. More-
over, wetness condition in terms of antecedent rainfall sums
over the last 36 months is of major importance, i.e. dry con-
ditions lead to the best model performance in terms of KGE.
The latter is not surprising as rainfall in the study area is ex-
tremely heterogeneous both in space and time, usually char-
acterised by convective heavy precipitation events with short
durations. Thus, prolonged periods without rain constitute
a spatially more homogenous input. Conversely, the aggre-
gation of rainfall to daily sums and interpolation over sub-
basin units, on average covering an area of about 700 km?,
must necessarily induce uncertainties. The assimilation of
observed reservoir filling states at the beginning of each hind-
cast season is therefore a reasonable approach to improve
predictions and compensate for preceding rainfall input un-
certainties during the initialisation run.

5.4 Potential improvements

There are several options to make use of the findings of this
study and improve the forecast system in upcoming appli-
cations. In the presented study, observed reservoir level data
were assimilated into the process-based model to correct the
initial conditions for the hindcast runs by simply replacing
model states by measurements. For assimilation, more for-
mal approaches already exist, such as the rich families of
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Kalman and particle filtering approaches (e.g. Liu and Gupta,
2007; Komma et al., 2008; Vrugt et al., 2013; Sun et al.,
2016; Yan et al., 2017). These, however, require a profound
quantification of both simulation and observation uncertain-
ties and, thus, much additional information and, moreover,
significantly higher expenses in terms of data preparation,
processing, and model application. Nevertheless, they hold
the potential to better account for uncertainties in the obser-
vations, which were disregarded in this study, despite being
considerable.

Preprocessing schemes in the context of hydrological fore-
casting usually focus on the improvement of rainfall pre-
dictions used as main drivers for hydrological models (e.g.
Kelly and Krzysztofowicz, 2000; Reggiani and Weerts, 2008;
Verkade et al., 2013). This is partly already included in the
downscaling scheme applied to GCM products but may as
well be further extended. The importance of rainfall forcing
on model results, especially for the process-based approach,
was already addressed above. A further comparison of the
statistical properties (distribution of daily sums, dry/wet spell
lengths) of rainfall hindcasts used in this study with obser-
vations revealed large discrepancies. Some preliminary tests
suggested these to be responsible for the decreased accuracy
of the process-based model hindcasts (not shown). In com-
parison to observations, the hindcasts contain (i) a general
shift of rainfall seasonality towards the first months of the
rainy season; (ii) a much lower frequency of both wet and
dry periods for spell lengths up to 4 days; (iii) a lower fre-
quency of low daily rainfall values while the number of large
precipitation events is overestimated and daily extreme val-
ues are much higher; and (iv) a much higher probability that a
dry day follows a dry day, and the probability that a wet day
follows a wet day is often underestimated. These findings
indicate a high potential for improvement in future applica-
tions in the study area. As a first starting point, monthly bias
of hindcasts per region was corrected and both models were
rerun. Figure 13 shows that this relatively simple procedure
already results in a considerable decrease in RMSE for the
process-based model, even though it is still higher than for
the statistical approach. The improvement of drought fore-
cast performance in terms of BSS and ROCSS is thereby less
pronounced than the increase in accuracy. For the statistical
model, performance metrics hardly change, which can be at-
tributed to the smoothing effects of its model structure on
regional reservoir storage identified in a previous subsection
(Fig. 11).

In addition to preprocessing, post-processing approaches
directly tackle the correction of streamflow forecasts by sta-
tistical means including bias correction or the estimation of
an error model applied to predictions (e.g. Krzysztofowicz
and Kelly, 2000; Todini, 2008; Bourdin et al., 2014; Roulin
and Vannitsem, 2014). Especially when focussing on ex-
treme events, such as floods or droughts, the adequate charac-
terisation of model residuals exhibits a large potential when
incorporated into the correction of simulations and predic-
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Figure 13. As Fig. 4 but driving hindcasts with additional bias cor-
rection of precipitation on the monthly scale (dotted boxes).

tions (Farmer and Vogel, 2016). While being still an active
field of research, such means are routinely applied in opera-
tional streamflow forecasting and, in addition to rainfall cor-
rection, could further improve model performance.

The parametrisation of the process-based model could
be further improved by the use of more and different data
sources. This includes, for instance, the use of satellite data to
infer spatially distributed reservoir information with greater
detail and more accuracy than currently available. The study
area has already been of interest in ongoing research (Del-
gado et al., 2018a) and past studies (Heine et al., 2014) ad-
dressing that issue. In addition, management plans as well
as data on water abstraction and reallocation from the larger
reservoir should be included in the model but were not avail-
able for the present study. Another opportunity is to in-
crease rainfall input resolution in the model to better account
for sub-daily and spatially heterogeneous precipitation. This
could be done by improving the current spatial scaling of
rainfall in the model to account for heterogeneous patterns
and to make use of radar rainfall data recently made avail-
able in the area.

The combination of multiple models may provide fur-
ther benefits in cases where different models show strengths
in different aspects of performance (e.g. Block and Ra-
jagopalan, 2009; Schepen and Wang, 2015). However, within
this work the two employed model approaches, with respect
to simulation performance, achieved almost equal results and
did not diverge in aspects such as lead time and antecedent
moisture conditions. Thus, the combination of the two mod-
els analysed in this study is not expected to provide benefits.
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5.5 Generally valid features and broader implications
of results

The possibilities to generalise and transfer insights gained
for one particular environment and a specific hydro-
climatological setting will always be limited to questions of
transferability of model approaches and the applicability of
particular methods. In other word, one cannot expect that
the actual numbers of model performance, be it statistical
or process-based, have similar values under differing con-
ditions. Adapting the two forecast setups presented here to
other regions will presumably not lead to the same ranking
of the statistical vs. the process-based model approach. In or-
der to achieve an optimal forecast score, it is obvious that the
forecast design, e.g. selection of target variables, models, and
input data, needs to be tailored to the region of interest and
to the purpose of the forecast including the designated fore-
cast lead time. The design of the statistical forecast approach
presented here is particularly tailored to the rather specific
hydro-climatological and landscape conditions of this semi-
arid region. In our case, the statistical model relies on an-
tecedent wetness conditions of the basin, quantified by pre-
cipitation indices (SPI and SPEI) aggregated over several
months (see regression equations in Table 2). This satisfacto-
rily describes the attenuated hydrological behaviour of this
particular semiarid region, which is further influenced by
many large and small reservoirs, in order to obtain forecasts
over several months. This adaptation to the regional pecu-
liarities does not per se allow a spatial transfer of the derived
statistical model. However, the application of the underlying
statistical model principles to other regions is generally pos-
sible, given that appropriate regional information and forcing
data are available.

The transfer of a process-based hydrological model to an-
other region is, generally speaking, more straight forward,
because one can rely on the fact that the underlying physical
assumptions and process descriptions of the model are valid
for different environments and hydro-climatological condi-
tions. In other words, the hydrological model implicitly con-
tains the representation of general hydrological processes
and, therefore, represents an adequate working hypothesis
of the hydrological system at other target locations. Still,
process-based models also require a sufficient data availabil-
ity and quality at the region of interest while forecast perfor-
mance for both model types primarily depends on the quality
of rainfall forecasts.

The question of which modelling approach will finally
yield a better performance score cannot universally be an-
swered. On the one hand, this is dependent on the predic-
tive power (i.e. the strength of correlation between predictors
and target variable) of the statistical model and, on the other
hand, on the validity of the physical assumptions and govern-
ing equations of the process-based model. Both model strate-
gies benefit from good data conditions, while the required
type of data is rather different. The advantage of a statisti-
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cal model approach as presented here is that less distributed
data of the catchment are required and the model is easier to
establish and needs much less computational power. On the
other hand, the process-based model allows us to simulate
a rather large variety of hydrological variables in a spatially
distributed manner. This enables independent verification of
process-based models and leads further to a high explanatory
power of this model type, which are important advantages,
even for cases where the overall performance of a process-
based model might be lower compared to a statistical model
approach.

6 Conclusions

The aim of this work was to explore options for a seasonal
forecasting system of regional reservoir volume and drought
occurrence with lead times up to 6 months for the semiarid
northeast of Brazil. In this context, the performance of a com-
plex process-based hydrological model was evaluated against
a much simpler statistical model developed by Delgado et al.
(2018b) given the same meteorological forcing. The study
pursued three objectives.

First, the two modelling approaches were to be investi-
gated in terms of mere simulation performance, i.e. when
driven by meteorological observations. It turned out that both
models performed almost equally well. However, regional
differences exist where the process-based model achieved
slightly better results in four out of five subregions. Fur-
thermore, regional performance ranking of both models was
equal in four regions. This suggests that data uncertainty of
meteorological input or reservoir level observations exceeds
model structural uncertainties and dictates simulation perfor-
mance in the study area.

Second, the process-based model was to be verified as
a prediction tool in a hindcast experiment and evaluated
against the statistical approach. In comparison to simula-
tion runs with observed forcing, hindcast performance of the
process-based model dropped significantly while the perfor-
mance of the statistical approach decreased only to a small
degree. This can be explained by the structure of the sta-
tistical approach which is less sensitive to rainfall forecasts.
Although this exhibits less realistic intra-seasonal dynamics
than for the process-based model, performance metrics were
eventually superior as uncertainties from precipitation hind-
casts could not propagate as much to the model output. How-
ever, apart from reservoir level predictions, forecasting of
mere drought occurrence works almost equally well for both
approaches. The two models exhibit satisfying event reso-
lution while slight deficiencies in terms of underforecasting
were detected regarding the reliability of the hindcasts.

The third and last objective was to identify the major
sources for simulation and hindcast deficiencies and pro-
vide guidelines for further improvement. In general, both
models achieve better results under dry than under wet
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(pre)conditions. An attempt to identify potential predictors
of model performance for the process-based model revealed
that reservoir size and antecedent rainfall conditions explain
most of the variance of the performance metrics while vari-
ables such as current precipitation amount and daily precip-
itation intensity are of surprisingly low importance. How-
ever, hardly any clear patterns through which these predic-
tors contribute to model performance could be identified.
Consequently, no direct means through which the process-
based model could be improved to achieve better simulation
results could be derived. Also regarding the hindcasts, pre-
cipitation was identified as the most significant source of un-
certainty. It was found that rainfall hindcasts from the down-
scaled GCM show statistical properties significantly distinct
from observations. Therefore, simple approaches, such as the
tested monthly regional bias correction, already result in im-
proved hindcast accuracies. Future studies should also con-
sider the use of more sophisticated means of preprocessing
as well as post-processing approaches, such as forecast error
modelling, or innovative data assimilation and data fusion
approaches to correct erroneous model states.

So, what is the added value of a process-based hydrolog-
ical model? In our case, when it comes to reservoir level or
mere drought event prediction on regionally and monthly ag-
gregated scales, a statistical model proved to be the better
option, as computational effort is much lower and the model
is easier to apply. Nevertheless, we advocate the applica-
tion of an appropriate process-based hydrological model in
cases where predictions on finer spatial (e.g. for individual
reservoirs) and temporal scales are desirable. In cases for
which information on more hydrological processes or vari-
ables, such as evapotranspiration or various runoff genera-
tion and concentration variables, is required, a process-based
model is the right choice. As such, due to the explanatory
power of process-based hydrological models, decision mak-
ers and stakeholders can be supported to detect and under-
stand hydrological changes in their catchments in order to
derive reasonable and sustainable decisions.

These conclusions are likely to differ among study sites,
primarily depending on the characteristics and the degree of
stochasticity of the hydro-meteorological system and avail-
able data. In regions where hydrological variables can be
described by covariates, which in turn can be forecast with
high reliability, statistical models might be advantageous.
This would more likely be the case in climatic regions that
are characterised by a high degree of seasonality, such as in
many semiarid regions around the globe. In contrast, process-
based models are independent of such correlation patterns
and are more generically applicable due to the underlying
process representations. They can be applied under any en-
vironmental and hydro-climatological conditions, for which
the incorporated process formulations constitute valid work-
ing hypotheses, and thereby primarily depend on rainfall in-
put. Consequently, they can also be used in regions charac-
terised by more chaotic weather and low predictability over
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seasonal scales, such as in temperate climatic zones, pro-
vided adequate rainfall forecasts can be delivered.

Therefore, further research is needed to increase the accu-
racy of important model drivers, i.e. for many regions as well
as in our case of dry northeastern Brazil, first and foremost
precipitation. We expect that the use of new data products,
such as rainfall radar and satellite data along with conven-
tional data from rainfall stations with sub-daily resolution,
in combination with innovative methods of data assimilation
and data fusion, may provide opportunities to improve fore-
cast accuracy, in particular for process-based hydrological
models. In that respect, the time and effort of their appli-
cation can be justified and allow for the exploitation of their
advanced capabilities.

Code and data availability. Meteorological —observations  (ex-
cept precipitation) are available from http://careyking.com/
data-downloads/ (Brazil gridded meteorological data, 2019).
Precipitation and raw data of meteorological hindcasts need to be
requested from FUNCEME. DEM raw data can be obtained via
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp (SRTM data,
2003) (tiles (horizontal/vertical): 28/13, 28/14, 29/13, and 29/14).
Reservoir data can be accessed at http://www.hidro.ce.gov.br
(Hidroweb, 2019) or requested from FUNCEME. Land cover
and soil maps are not publicly available. The WASA-SED
model is available at https://github.com/TillF/WASA-SED
(WASA-SED, 2019). Scripts to investigate or reproduce exper-
iments, analyses, and compilation of plots can be accessed at
https://github.com/tpilz/paper_drought_prediction_brazil ~ (Paper
scripts, 2019).
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Appendix A: Terminology

The word forecast generally refers to model-based estima-
tions of future meteorological or hydrological variables such
as precipitation, streamflow, or reservoir level. The term pre-
diction, in this article like in many others, can be used syn-
onymously to forecast. With hindcast we specifically denote
retrospective forecasts, i.e. predictions issued for a period in
the past building only on data available up to the time of start
of the model run. The results are then compared with obser-
vations. In some occasions, the terms forecast and hindcast
might be used interchangeably. In contrast to predictions or
hindcasts, we denote model simulations as model runs driven
by observations instead of forecasts of model forcing.

Many of the notions discussed in this article refer to the
field of forecast verification. While being standard in atmo-
spherical sciences, some terms are less common for the hy-
drological community and thus will be briefly explained in
the following. For more information, the reader is generally
referred to textbooks such as Wilks (2005). The analysis of
drought hindcasts will focus on their guality, i.e. the corre-
spondence of such hindcasts with observations. This qual-
ity as defined by Murphy (1993) can be described in terms
of nine different aspects of which five will be addressed ex-
plicitly in this study: accuracy as the average agreement of
forecast—observation pairs which is as such inversely propor-
tional to the error; reliability which, in the case of probabilis-
tic drought forecasts, quantifies the average correspondence
of forecast probabilities and observed drought occurrences;
resolution evaluating the ability of a model to correctly pre-
dict an event; sharpness describing the variability of fore-
casts of a model; and skill comparing the ability of a model
with a much simpler reference model, such as climatology
(which is the observed long-term average of a specific vari-
able) or persistence (i.e. no change of a variable or the pattern
of a quantity over the forecast period).
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Furthermore, we distinguish process-based from statisti-
cal models. The former are rather complex computer pro-
grams combining a set of mathematical equations (simple,
linear up to complex differential equations), which can be
derived from first-order principles, e.g. conservation of mass
and energy. The aim here is to represent, up to a certain de-
gree of abstraction, the governing subprocesses of the hydro-
logical cycle and their interactions. They compute estimates
of the unknown variables (e.g. river discharge, soil moisture,
reservoir storage) as a reaction to a set of input or driving
variables (e.g. precipitation, solar radiation, water abstrac-
tion). In this paper, the underlying process-based hydrologi-
cal model refers to the WASA-SED model which is described
in Sect. 3.4.1. The latter, on the other hand, relies on purely
empirical relationships between one or more predictors and
the target variable, often consisting of only a single equa-
tion, typically obtained by regression. Consequently, the re-
gression model of Delgado et al. (2018b), which is used for
model intercomparison in this study, is referred to as the sta-
tistical model or statistical approach throughout this work.
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