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Summary

A reliable inference of networks from data is of key interest in many scientific

fields. Several methods have been suggested in the literature to reliably

determine links in a network. These techniques rely on statistical methods,

typically controlling the number of false positive links, but not considering

false negative links. In this thesis new methodologies to improve network

inference are suggested. Initial analyses demonstrate the impact of false

positive and false negative conclusions about the presence or absence of links

on the resulting inferred network. Consequently, revealing the importance of

making well-considered choices leads to suggest new approaches to enhance

existing network reconstruction methods.

A simulation study, presented in Chapter 3, shows that different values

to balance false positive and false negative conclusions about links should

be used in order to reliably estimate network characteristics. The existence

of type I and type II errors in the reconstructed network, also called biased

network, is accepted. Consequently, an analytic method that describes the

influence of these two errors on the network structure is explored. As a result

of this analysis, an analytic formula of the density of the biased vertex degree

distribution is found (Chapter 4).

In the inverse problem, the vertex degree distribution of the true underly-

ing network is analytically reconstructed, assuming the probabilities of type I

and type II errors. Chapters 4-5 show that the method is robust to incorrect

estimates of α and β within reasonable limits. In Chapter 6, an iterative

procedure to enhance this method is presented in the case of large errors on

the estimates of α and β.

The investigations presented so far focus on the influence of false positive
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and false negative links on the network characteristics. In Chapter 7, the

analysis is reversed - the study focuses on the influence of network character-

istics on the probability of type I and type II errors, in the case of networks

of coupled oscillators. The probabilities of α and β are influenced by the

shortest path length and the detour degree, respectively. These results have

been used to improve the network reconstruction, when the true underlying

network is not known a priori, introducing a novel and advanced concept of

threshold.
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Chapter 1

Introduction

Complex systems are of key interest in multiple scientific fields, ranging from

medicine via physics, mathematics, engineering to economics [6, 9, 19]. These

systems can be modelled, or represented as networks, where nodes are the

elements of the system and links represent the interactions between them.

Networks are ubiquitous in many fields of study [28]; examples include the

Internet, airline connections, scientific collaborations and citations, trade

market contacts, social relationships, cellular and ecological systems, trans-

portation systems, power grids, and the human brain [1, 2, 3, 24, 25, 39, 47,

49, 62, 66, 68].

Brain connectivity analyses are one of the key topics in the Neurosciences.

The complexity of the interaction of various regions of the brain necessitates

studying the brain as a whole rather than just its individual parts. The

application of network theory has facilitated these analyses, leading to a

better understanding of the structure and function of the nervous system

[60].

In a more theoretical framework in physics, networks are also studied to

investigate synchronization phenomena of coupled oscillators as well as the

analysis of chaotic behaviour and corresponding phenomena in dynamical

systems [16, 38, 41, 54].

Defining the structural properties of networks, and specifically their char-

acteristics, is of fundamental importance to understand the complex dynam-
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ics of systems [40]. For instance, in the case of optimizing vaccination strate-

gies, a wide understanding of network characteristics allows controlling the

network dynamics, and consequently controlling the spread of diseases [18].

To capture particular features of a network, properties or characteristics

have been introduced in the literature [50]. For instance, the node degree

and the shortest path length are two of the most used characteristics. The

node degree describes the number of links of a node, while the shortest path

length is the minimal number of links separating two nodes [48]. The node

degree distribution is a key property to study the general structure of the

connectivity of a network, and it is predominantly used in this thesis for this

reason.

Some complex systems can be directly observed such as power grids, or

transportation systems. In these kinds of systems, the network topology

is known a priori, and its characteristics can be investigated. Other com-

plex systems cannot be directly observed, therefore network structure is not

known a priori, and must be inferred indirectly. When the underlying net-

work is not known a priori, reliably inferring network structure from data is

crucial to represent the system accurately; this is known as the inverse prob-

lem. The functional network of the human brain, that is the brain network

used to solve certain problems or manage certain tasks, is one prototypical

example where the network has to be inferred. This can be achieved from

observed electroencephalography or functional magnetic resonance imaging

data. Understanding the functioning or malfunctioning of the human brain

is of key interest, for example to treat brain-related diseases such as epilepsy,

Parkinson’s disease, or stroke [12, 52, 53].

When a network is to be inferred from data, typical analysis techniques

provide a measure of connectivity strength for each link. Statistical methods

are then used to decide whether these measures pass a certain threshold, and

thereby provide a means to decide if the corresponding links are considered

present. If a link is erroneously detected, this is called false positive link and

it is referred to as a type I error. Likewise, an existing link that remains

undetected is called false negative link and it is referred to as a type II error.

The probability of detecting a false positive link is usually denoted by α,
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while β refers to the probability that an existing link remains undetected.

Classical statistical methods aim to reconstruct with high certainty the

presence of links, i.e., the analysis has high specificity, and the standard

value of 0.05 for α is often chosen [17, 22, 23, 33, 35, 57, 59]. The decision

to set α = 0.05 does not take into account the probability of false negative

links, since, usually, high specificity implies low sensitivity, meaning a high

chance of missing links. Intuitively, there is an inverse relationship between

the probabilities of type I and type II errors ; hence, it is typically impossible

to have both α and β equal to zero.

When the aim is to reconstruct with high certainty the presence of a

given link, a low value for α must be used, and a high probability for false

negative links must consequently be accepted. When instead the aim is

to recover the general structure of the network, and reliably infer certain

network characteristics, for instance the shortest path length, or node degree,

balancing α and β is necessary.

This thesis focuses on the investigation of false positive and false negative

links in inferred networks, and their effect on inferring accurate network

characteristics. The analyses performed in this work have led to an improved

reconstruction method by overcoming statistical limitations, namely type I

and type II errors are taken into account in the inference thereby enhancing

the results.

After a brief introduction of the mathematical background (Chapter 2),

a simulation study investigating the impact of type I and type II errors

on network topologies and characteristics is presented in Chapter 3. These

results are analysed in a more theoretical framework and an analytic formula

of the density of the biased node degree distribution is found in Chapter 4.

Additionally, the inverse problem is studied - the density of the node degree

distribution of the true underlying network is found as a function of the

detected node degree distribution and the probabilities of type I and type II

errors. A further analysis shows that this procedure is robust with respect

to errors in α and β as they typically occur when they have to be estimated

from data (Chapter 4). This implies that wrong estimates of type I and type

II errors, within certain bounds, do not cause the reconstruction of the node



Chapter 1.0 − Gloria Cecchini 12

degree distribution to be rendered invalid.

Mathematical properties of the functional relationship between the true

and the detected node degree distributions found in Chapter 4 are discussed

in Chapter 5. The analysis in Chapter 4 is advanced in Chapter 6, suggesting

an iterative procedure to reconstruct the node degree distribution in the case

of uncertain estimates of α and β; this procedure is especially useful when

large errors on the estimates of α and β are expected, and consequently the

robustness, shown in Chapter 4, is not guaranteed. Lastly, in Chapter 7

networks of coupled oscillators, which are often used as models in various

applications, are investigated. The investigation presented in the previous

chapters is here reversed - the study focuses on the influence of network

characteristics on the probability of type I and type II errors. These results

are then applied when the underlying true network is not known a priori, to

improve the network reconstruction, introducing a new concept of threshold.



Chapter 2

Mathematical background

This chapter is dedicated to mathematical definitions and results that form

the basics of the work presented in the following chapters. The background

knowledge presented here belongs to three different fields, namely probability

theory, network theory, and test of hypothesis.

2.1 Probability theory

This section follows the ideas of [23, 63]. If not stated otherwise, the ideas

and concepts have been taken from these books.

The field of probability theory refers to the study of random events. The

set of all possible outcomes of an experiment, also referred to as realisations,

is called sample space Ω, and an event is a subset of Ω. When different

possible outcomes exist, the field of probability theory provides methods to

quantify the likelihood of the realisations or in general events.

Operations and relationships from set theory can be used to study proba-

bility theory, such as the complement, the union, and the intersection. Con-

sider the sample space Ω, the complement Ac of an event A is the set contain-

ing all the realisations of Ω that are not in A, i.e., Ac = Ω \A. Consider two

or more events A1, · · · , An, the union
⋃n
i=1Ai is the set of all the realisations

contained in at least one of the events. The intersection
⋂n
i=1Ai is the set

of the realisations contained in all events. The events A1, · · · , An are said to

13



Chapter 2.1 − Gloria Cecchini 14

be disjoint, or mutually exclusive, if the intersection of each pair of events is

the null event, i.e., Ai ∩ Aj = ∅ for every i 6= j.

Given a sample space Ω, the first aim of probability theory is to assign a

measure to quantify the chance of each event in Ω to occur; this measure is

called probability P. To ensure consistency, the probability P has to satisfy

the following axioms:

(i) P(Ω) = 1,

(ii) for every event A in Ω, P(A) ≥ 0, and

(iii) if A1, · · · , An are disjoint events in Ω, then P (
⋃n
i=1Ai) =

∑n
i=1 P(Ai).

Some fundamental properties can be derived from the axioms described

above, such as:

(i) P(∅) = 0,

(ii) for every event A in Ω, 0 ≤ P(A) ≤ 1,

(iii) if A ⊂ B ⇒ P(A) ≤ P(B),

(iv) for every event A in Ω, P(Ac) = 1− P(A), and

(v) for events A and B in Ω, P(A ∪B) = P(A) + P(B)− P(A ∩B).

In general, if Ω is finite and all the realisations are equally likely, the

probability of an event A is the ratio of the cardinalities of A and the sample

space, i.e., P(A) = |A|/|Ω|. Combinatorics is a useful tool to establish the

cardinality of sets. An ordered subset is called a permutation, while an

unordered one is called a combination. The number of permutations of k

objects from a set of n elements is

Pn,k =
n!

(n− k)!
(2.1)

without repetitions, and

P r
n,k = nk (2.2)
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with repetitions. The number of combinations of k objects from a given set

of n elements is

Cn,k =

(
n

k

)
=

n!

(n− k)!k!
(2.3)

without repetitions, and

Cr
n,k =

(
n+ k − 1

k − 1

)
=

(n+ k − 1)!

n!(k − 1)!
(2.4)

with repetitions.

An important concept in probability theory is independence. Generally,

it is crucial to check whether two or more events are mutually independent,

since the realisation of one event might influence the probability of the other.

Two events A and B in Ω are independent if P(A ∩ B) = P(A)P(B), and

dependent otherwise, [42]. Generalising this concept, events {Ai}i∈I in Ω are

independent if

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai) (2.5)

for every finite subset J of I.

If two events are dependent, then the probability of an event is condi-

tioned by the realisation of the other. The conditional probability of event

A given event B occurred, with P(B) > 0, is

P(A|B) =
P(A ∩B)

P(B)
. (2.6)

If two events A and B are independent, the probability of A should not

be influenced by the occurrence of B, i.e., P(A|B) = P(A).

One of the main concepts in probability theory is the so-called random

variable. Random variables are a generalisation of the concept of events.

It is in general possible to associate any outcome of an experiment to a

real number; a random variable is a function X : Ω → R that assigns a

real number to each realisation in Ω. If the sample space Ω is either finite

or countably infinite, the random variable is said to be discrete. If Ω is

continuous, X is said to be continuous; a precise definition is beyond the
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scope of this work.

In both the discrete and continuous case, the cumulative distribution

function (CDF), or short distribution function, of a random variable X is

defined as the function FX : R→ [0, 1] such that for every realisation x of X

FX(x) = P(X ≤ x), (2.7)

is the probability that the random variable X takes values smaller than or

equal to x.

The probability mass function (PMF), or short probability function of a

discrete random variable X is the function fX : R→ [0, 1] such that

fX(x) = P(X = x). (2.8)

The analogous of PMF for a continuous random variable X is the probabil-

ity density function (PDF), or short density. It is defined implicitly as the

function fX : R→ [0, 1] with

FX(x) =

∫ x

−∞
fX(t)dt. (2.9)

In many situations, it is useful to consider more than one random variable,

and it is convenient to introduce the so-called joint probability. Let X and

Y be two discrete random variables, the joint probability mass function is

fX,Y (x, y) = P(X = x, Y = y) (2.10)

and the respective marginal probability mass functions of X and Y are

fX(x) =
∑

y fX,Y (x, y) and fY (y) =
∑

x fX,Y (x, y).

In the case that X and Y are two continuous random variables, the joint

probability density function fX,Y (x, y) is defined as

P(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (x̄, ȳ)dx̄dȳ (2.11)

and the respective marginal probability density functions of X and Y are
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fX(x) =
∫
R fX,Y (x, y)dy and fY (y) =

∫
R fX,Y (x, y)dx [31].

Another important property of random variables is their expected value.

The expected value, or mean, of a random variable X is

E(X) =
∑
x

xfX(x) (2.12)

if X is discrete, and

E(X) =

∫
xfX(x)dx (2.13)

if X is continuous. The notations µ, µX , or E(X) are usually used syn-

onymously. One of the main properties of the expected value is linearity,

i.e., E(
∑n

i=1 aiXi) =
∑n

i=1 aiE(Xi) for random variables X1, · · · , Xn and

a1, · · · , an ∈ R. Also, if X1, · · · , Xn are independent, then E(
∏n

i=1Xi) =∏n
i=1 E(Xi).

To have a better insight about the general behaviour of a random variable,

it is useful to understand the dispersion of the possible outcomes from the

expectation. To measure this quantity, it is either the variance or its square

root, the standard deviation, that is used. The variance

V(X) = E[(X − E(X))2] (2.14)

of a random variable X is defined as the expected value of the quadratic

difference of X and its expected value; the standard deviation

σX =
√
V(X), (2.15)

is the square root of the variance and it is denoted by σ, σX , or SD(X).

Two measures to quantify the joint variability of two random variables

and the strength of their linear relationship are the covariance

Cov(X, Y ) = E[(X − µX)(Y − µY )] (2.16)

and the correlation

ρ(X, Y ) =
Cov(X, Y )

σXσY
, (2.17)
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where X and Y are random variables with means µX , µY and standard de-

viations σX , σY . Note that if X and Y are independent random variables,

then their covariance and correlation are zero.

In many scientific fields, some prototypical probability distributions are

often used to describe various phenomena. The most frequently and widely

used probability distributions are the uniform, Bernoulli, binomial, and nor-

mal distributions. The continuous random variable X is said to be uniformly

distributed in [a, b], if its PDF is

f(x) =
1

b− a
I[a,b], (2.18)

where I is the characteristic function. The expected value and variance of a

uniform distribution are E(X) = (a+b)/2 and σ2 = (b−a)2/12, respectively.

A discrete random variable X has Bernoulli distribution if there are only

two possible realisations of X, say 0 and 1, also named failure and success.

Call p ∈ [0, 1] the probability P(X = 1) = p, the Bernoulli PMF

f(x) = px(1− p)1−x =

p if x = 1

1− p if x = 0
(2.19)

is defined for x ∈ {0, 1}; its expected value is E(X) = p, and its variance is

σ2 = p(1− p).
The binomial distribution with parameters n ∈ N and p ∈ [0, 1] is the

discrete probability distribution of the number of successes k of n independent

trials which have Bernoulli distribution. It is denoted by B(n, p) and the

corresponding PMF

f(k) =

(
n

k

)
pk(1− p)n−k. (2.20)

is defined for k ∈ N. The expected value and variance of a binomial distri-

bution are E(X) = np and σ2 = np(1− p).
A continuous random variable has normal distribution with mean µ and
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SD σ, and it is denoted by X ∼ N(µ, σ2), if its PDF is

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (2.21)

One of the main results of probability theory is the Central Limit Theorem

[58]. It says that the distribution of the sum of independent random variables

can be approximated with a normal distribution. This theorem is a key con-

cept in probability theory since only few hypotheses about the distribution

of the variables are required, which implies that it can be applied in many

cases. The Central Limit Theorem states that even though the distribution

may be far from being normal, yet for large sample size, the distribution of

the standardized sample mean is approximately standard normal. Namely,

given X1, · · · , Xn independent and identically distributed random variables

with finite mean µ and standard deviation σ, then for every a ∈ R

lim
n→∞

P
(∑n

i=1Xi − nµ√
nσ

≤ a

)
=

∫ a

−∞

1√
2π
e−x

2/2dx. (2.22)

2.2 Network theory

In this section, an introduction to the fundamental theoretical tools used to

describe and analyse networks is given. If not stated otherwise, the ideas

and concepts have been taken from [48].

A network is defined as a set of nodes with links between them. In graph

theory, a branch of mathematics that studies networks, a different notation

is used: networks are called graphs, and nodes and links are called vertices

and edges, respectively. In this thesis, the notation form network theory and

graph theory are used synonymously.

The most common and efficient way to represent a network mathemati-

cally is the adjacency matrix. Consider a network G with n vertices labelled

1, · · · , n with n ∈ N. The adjacency matrix A of G is the n× n matrix with
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elements

Aij =

1 if there is link from node i to node j,

0 otherwise.
(2.23)

Networks can be directed or undirected. In an undirected network, con-

nection of v1 to v2 implies the connection of v2 to v1. Note that this implies

that the adjacency matrix is symmetric. In a directed network, this symme-

try is broken, therefore if a path from v1 to v2 exists, a path from v2 to v1

does not necessarily exist. Therefore, the adjacency matrix is not necessarily

symmetric.

To describe various real-world scenarios it is useful to define a network

whose links are not only binary connections. Weighted networks have been

introduced in the literature, and they are characterised by their adjacency

matrix whose elements are real numbers.

In the literature, many other types of networks exist, e.g., simple, multi-

graph, or multi-layer. It is beyond the scope of this work to describe them

in detail.

2.2.1 Network characteristics

To capture particular features of a network, a variety of measures or charac-

teristics have been introduced [50]; here, some of the key network character-

istics are described.

In an undirected network, the vertex degree describes the number of links

of a node; if the vertex v has k edges attached, its vertex degree is dv = k. For

directed networks, the vertex degree is characterised by the vertex in-degree

dinv , which is the number of edges pointing towards it, and the vertex out-

degree doutv , which is the number of edges originating from it. In a network

of n nodes, both the in-degree and the out-degree of a vertex are numbers

between 0 and n − 1; self-connections are not considered. Usually, in a

directed network the vertex degree dv = dinv + doutv refers to the sum of the

vertex in-degree and the vertex out-degree.

The frequency distribution of the vertex degrees is called vertex degree
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distribution; it is an important property of the entire network, and a defining

characteristic of the network structure.

For two randomly selected nodes v1, v2 in a network of n nodes, the short-

est path length `v1v2 measures the number of links separating them if the

shortest path is taken. For connected nodes v1, v2, when the oriented edge

v1 → v2 exists, the shortest path length is `v1v2 = 1. The average path length

γ =
1

n(n− 1)

∑
v1 6=v2

`v1v2 (2.24)

gives a measure for the entire network, for n > 1. The efficiency

ε =
1

n(n− 1)

∑
v1 6=v2

1

`v1v2
(2.25)

is defined as the sum of the inverse of the shortest path lengths. If a net-

work is unconnected, i.e., a network that has two nodes for which the path

between them does not exist, the shortest path is infinitely long for uncon-

nected nodes, hence considering the average of the shortest path lengths is

not meaningful. Efficiency for unconnected nodes will be zero, therefore a

meaningful network average of the efficiency can be obtained.

Assortativity or assortative mixing by degree is a characteristic that ex-

presses the preference for high-degree vertices to attach to other high-degree

vertices, and low to low, respectively. Instead, in a network that shows dis-

assortative mixing, high-degree vertices are preferencially connected to low-

degree ones [45]. Assortativity can be measured as the correlation coefficient

of degrees of pairs of connected nodes

ass =

∑
ij(Aij − didj/2etot)didj∑
ij(diδij − didj/2etot)didj

, (2.26)

where A is the adjacency matrix, di is the degree of the vertex i, etot is the

total number of edges, and δij is the Kronecker delta. When there is not

assortative mixing, the terms in the sum at the numerator simplify and the

correlation is zero; for assortative mixing, the correlation is positive, and it



Chapter 2.2 − Gloria Cecchini 22

goes to 1 when di = dj for every existing link i→ j; for disassortative mixing,

the correlation is negative.

The tendency of a network to form tightly connected neighbourhoods

can be measured by the clustering coefficient. There exist two definitions

of the clustering coefficient as measures for the entire network - the average

local clustering coefficient and the global clustering coefficient. The latter

is defined as the ratio of three times the number of triangles to the number

of pairs of adjacent edges in a network [10, 47]. For undirected networks,

the local clustering coefficient C measures the probability that two vertices,

that are connected to another vertex, are connected to each other. In other

words, the local clustering coefficient Cv of a vertex v is the ratio between the

number of triangles in the network with v as one vertex of the triangle, and

the number of all pairs of vertices connected to v. The generalized definition

of the local clustering coefficient of a vertex v for directed networks

Cv =
(A+AT )3vv

2[dv(dv − 1)− 2A2
vv]
, (2.27)

where A is the adjacency matrix of a directed network, considers the directed

triangles formed by v [28].

Using the idea of a local clustering coefficient, a new network characteris-

tic, called the detour degree, is defined as part of the research for this thesis.

For each edge e, the detour degree is the number of oriented triangles that

have e as a side, and the other two sides oriented such that the combination

of them creates a path with the same origin and end of e. Namely, for every

oriented edge v1 → v2 from node v1 to node v2, the detour degree ∆v1v2 is

the number of oriented paths of length 2 from v1 to v2. For example, in the

case shown in Fig. 2.1, the detour degree is ∆v1v2 = 2, since there exist two

directed paths of length 2 from v1 to v2 through k1 and k2. Since the edge

between v1 and k3 is oriented towards v1, a path from v1 to v2 through k3

does not exist.
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Figure 2.1: Example of detour degree ∆v1v2 = 2.

2.2.2 Network topologies

In many scientific fields, some prototypical networks that have some specific

characteristics in common, but random in other aspects, are often used to

describe various complex systems. These types of networks are called ran-

dom networks. Here, some of the most frequently and widely used network

topologies are presented.

Erdős-Rényi networks are random networks in which the set of nodes is

fixed, and each pair of nodes is connected with independent probability pc.

The probability mass function of the node degree distribution of an Erdős-

Rényi network

P(dv = k) =

(
n− 1

k

)
pkc (1− pc)n−1−k (2.28)

is a binomial distribution, where n is the number of nodes in the network.

Watts-Strogatz networks are also referred to as small-world networks.

They are characterised by a high local connectivity with some long-range

“short-cuts”. Watts-Strogatz networks are built from a regular network, i.e.,

a network where every node has the same node degree. With probability pr

each link is rewired to another node randomly selected. The node degree

distribution has probability mass function

P(dv = k)=

min(n−1−k,2c)∑
i=max(2c−k,0)

(
2c

i

)(pr
2

)i (
1− pr

2

)2c−i
e−cpr

(cpr)
k−2c+i

(k − 2c+ i)!
, (2.29)

in the assumption of the number of nodes n� c, where 2c is the node degree

of every node in the initial regular network [44].
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Barabási-Albert networks are constructed using a preferential attachment

procedure. The main feature of these types of networks is that their node

degree follows a power law; they are so-called scale free networks. They are

constructed by adding nodes to an existing network. Each new node, with

a certain number b of links attached to it, is connected to the network. The

probability for one of these b links to be connected with any existing node

is proportional to the degree of that node. The node degree distribution has

probability mass function [5]

P(dv = k) =
2b(b+ 1)

k(k + 1)(k + 2)
. (2.30)

2.3 Test of hypothesis

The ideas and concepts of this section have been taken from [23], if not stated

otherwise.

A statistical hypothesis is a claim or assumption about a certain param-

eter or probability distribution. To verify if this assumption is true, a test

needs to be performed. A test of hypothesis considers two complementary

hypotheses; the null hypothesis H0 is the initial assumption that is consider

to be true, and the alternative hypothesis H1 or Ha is the complement of H0.

There are only two possible conclusions from a test of hypothesis: reject H0

or not reject H0.

To decide whether the null hypothesis is rejected, the concept of p−value

has been introduced. The p−value is the probability of finding values more

extreme or equal to the observed results, when the null hypothesis is true.

The significance level α is the threshold for the p−value of the test, i.e.

if the p−value of the test is smaller than or equal to the significance level,

the null hypothesis is rejected. The standard value for the significance level

is usually set to α = 0.05, meaning that there is 5% chance of erroneously

rejecting the null hypothesis, and the test is said to be statistically significant

[17, 22, 23, 33, 35, 57, 59].

It is possible to perform three kind of hypothesis tests - upper-tailed,

lower-tailed, and two-tailed; the difference between them resides in the choice
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Figure 2.2: Three kind of hypothesis tests: upper-tailed, lower-tailed, and
two-tailed; the blue areas correspond to the rejection regions, and they are
equivalent to α, for each case.

of the alternative hypothesis. Assume that the null hypothesis isH0 : µ = µ0,

and the test statistics is z = x−µ0
σ/
√
N

, where x, σ, and N are the sample mean,

the standard deviation, and the sample size, respectively. The alternative

hypothesis can be formulated as shown in Table 2.1, where zα is the value

for z such that the rejection area corresponds to α.

Test Alternative Rejection region Figure
hypothesis

Upper-tailed µ > µ0 z ≥ zα Fig. 2.2a
Lower-tailed µ < µ0 z ≤ −zα Fig. 2.2b
Two-tailed µ 6= µ0 z ≤ −zα/2 or z ≥ zα/2 Fig. 2.2c

Table 2.1: Three kind of hypothesis tests and corresponding rejection regions.

When a test of hypothesis is performed, H0 might erroneously be rejected,

or H0 might erroneously not be rejected when it is false. These possible errors

are

• type I error - rejecting the null hypothesis H0 when it is true, and

• type II error - not rejecting H0 when it is false.

The type I error corresponds to a false positive conclusion, and the prob-

ability of this error to occur corresponds to the significance level α of the
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test. The type II error corresponds to a false negative conclusion, and the

probability of this error to occur is referred to as β.

Sensitivity and specificity are measures of the performance of a test. A

test that has a low proportion of type I errors is said to have high specificity;

sensitivity is related in the same way to type II errors.

When a test of hypothesis is used to establish if two variables are lin-

early correlated, a measure of linear correlation is introduced (Eq. (2.17)).

When the correlation coefficients are estimated from a sample, they have a

certain distribution that depends on the dimension of the sample and the

true correlation coefficient. As shown in [37], for data that follow a bivariate

normal distribution, the exact probability density function of the estimated

correlation coefficients r for a sample of N data points with true correlation

coefficient ρ is

f(N, ρ, r) =
(N−2)Γ(N−1)(1−ρ2)N−12 (1−r2)N−42

√
2π Γ(N− 1

2
)(1−rρ)N−

3
2

2F1

(
1

2
,
1

2
;
2N−1

2
;
rρ+1

2

)
,

(2.31)

where Γ is the gamma function and 2F1(·, ·; ·; ·) is the Gaussian hypergeo-

metric function. Note that this function is defined for −1 ≤ r ≤ 1 and

rρ 6= 1.

Consider a two-tailed test with null hypothesis of no correlation, i.e. the

Pearson correlation coefficient is 0. The significance level α can be expressed

as a function of the coefficient rτ such that

α =

∫ −rτ
−1

f(N, 0, r) dr +

∫ 1

rτ

f(N, 0, r) dr, (2.32)

meaning that the rejection region is obtained for coefficients −1 ≤ r ≤ −rτ
and rτ ≤ r ≤ 1, as shown in Fig. 2.3. Consequently, estimated coefficients

−rτ < r < rτ do not lead to a rejection of the null hypothesis. The proba-

bility of false negative conclusions

β =

∫ rτ

−rτ
f(N, ρ, r) dr (2.33)
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Figure 2.3: Density distribution of correlation coefficients r for a sample
of N = 100 data points with true correlation coefficient ρ = 0 (solid blue
line) and ρ = 0.25 (dashed black line), i.e. f(100, 0, r) and f(100, 0.25, r) as
described by Eq. (2.31). The area in blue is the α value corresponding to
rτ = 0.18, and the area in light blue is the respective value of β.

is calculated once rτ is fixed, see Fig. 2.3.

Equations (2.32) and (2.33) show the dependence of α and β on the vari-

ables N, rτ , ρ, i.e., α = α(N, rτ ) and β = β(N, ρ, rτ ). Therefore, β(N, ρ, α) is

a function of α.

Figure 2.4 shows the relation between α and 1/β for N = 100 data points

taken from a bivariate normal distribution. Different values for the true

correlation coefficient are used, i.e., ρ varies from 0.3 to 0.45 in steps of 0.01.

2.4 Conclusion

In this chapter mathematical definitions and results belonging to three dif-

ferent scientific fields are presented. Probability theory, network theory, and

test of hypothesis are the background knowledge that form the basis of the

work presented in this thesis. Network is the topic of main interest of this the-

sis. Probability theory gives the basis of not only to define random networks,
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Figure 2.4: Relation between α and 1/β for correlation of 100 data points.
Colours refer to different correlation coefficients, as indicated in the legend.

but also to express their characteristics, such as the vertex degree distribu-

tion. With the test of hypothesis, two fundamental concept are introduced:

type I and type II errors.

In this thesis new methodologies to improve network reconstruction from

data are suggested. These techniques rely on statistical methods, and take

into account type I and type II errors in the reconstruction analysis.



Chapter 3

Improving network inference:

the impact of false positive and

false negative conclusions about

the presence or absence of links

As part of the research for this thesis, the following manuscript has been

published [15]. This chapter discusses the concepts presented in this publi-

cation.

3.1 Introduction

Recently, many research groups have focused on the inference of networks

from data such as brain networks from observed electroencephalography or

functional magnetic resonance imaging data [12, 52, 53, 61]. Particular em-

phasis is paid to the understanding of the normal functioning, e.g. healthy

brain, as well as malfunctioning, e.g. diseased brain, of these networks. In

the example of the brain, this promises to disclose information about how the

brain processes signals and how alterations thereof cause specific diseases. A

key hypothesis is that important characteristics are not specific to individ-

ual subjects but rather common in a given population. This is reflected by

29
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the fact that brain networks, but also other networks, are typically classified

into few main prototypic networks [46, 48], e.g., Erdős-Rényi [26, 27], Watts-

Strogatz [64, 65], Barabási-Albert [4, 5] networks. These are three types of

random networks, see Sec. 2.2.2. In this chapter, binary undirected networks

of these three topologies are considered.

These prototypical models for networks are in turn characterised by few

parameters; procedures have been described to generate these networks with

their well-established characteristics [46, 48], see Sec. 2.2.1. Some of the

key characteristics are the node degree distribution, the number of links,

the global clustering coefficient, and the efficiency. In this chapter, these

characteristics are considered since they are meaningful in random networks

and give a global description in large networks [48].

In the Inverse Problem, the challenge is to infer the network topology

from data. Two challenges are particularly relevant: (i) the reliable inference

of links in the network once the nodes have been fixed [43, 69] and (ii)

the successful usage of the characteristics above to uniquely determine the

topology of network [7, 8].

Classical statistical methods to estimate links in a network aim to identify

present links with high certainty, see Chapter 1. Typically the standard

value of 0.05 for the probability of false positive links α is often chosen. The

decision to set α = 0.05 does not take into account the probability of false

negative links β. The investigation in this chapter focuses on whether these

common rules of type I and type II errors should be modified to achieve a

more reliable inference of the correct topology of network. To this aim, their

influence on the network topology and characteristic is analysed.

This chapter is structured as follows. Section 3.2 explains statistical errors

and their influence on the network topology. A simulation study in the case

of Erdős-Rényi, Watts-Strogatz and Barabási-Albert networks is presented

in Sec. 3.3.
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3.2 Inference reliability

Several methods have been suggested in the literature to address the chal-

lenge of reliable inference of links in the network. To determine the presence

of links, these techniques usually rely on statistical inference [17, 22, 23, 33,

35, 57, 59].

Let G denote the true network. As a consequence of the choice of α and

thereby β, leading to a non-zero probability of detecting false positive and

false negative links, the detected network GD will be a “mixture” of true

links, false positive links, absent links and false negative links. Therefore,

the number of detected links is generally different to the number of links of

G. Also the node degree distribution, the global clustering coefficient and

the efficiency are in general biased. To quantify the bias, a distance between

distributions is used for each characteristic. Several distance measures are

conceivable and have been investigated; for sake of simplicity and to make

the arguments clearer, only the distance

δ = |µ1 − µ2| (3.1)

between two distributions is considered, as the modulus of the difference

of the distribution’s mean values. For example, the distance between the

node degree distribution of G, which has mean µG, and the node degree

distribution of GD, which has mean µGD , is δ = |µG − µGD |.
To investigate the relation between α and β, N = 100 data points taken

from a bivariate normal distribution are considered, see Sec. 2.3. This choice

is motivated by the fact that the Pearson correlation coefficient is used to

establish if two variables are linearly correlated. To inspect in particular

links with medium strength, the correlation ρ varies between 0.3 and 0.45 in

steps of 0.01. Using Eq. (2.31), α and β are found in Eqs. (2.32)-(2.33). The

relation between 1/β and α is shown in Fig. 2.4.

Visual inspection of Fig. 2.4 shows that a linear relationship is a good

approximation. Fitting linear functions to the curves shows that their re-

spective slopes vary between 0.1 · 10−3 and 1.1 · 10−3. These slopes will differ
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if different parameters, such as the number of data points N , are chosen.

The more data points are considered the more accurate the analysis. Note

that the inverse proportionality of α and β implies that an infinite number

of data points N is needed to have both α and β equal to zero.

As an example of how the choice of α and consequently β affects the

estimated network characteristics, Erdős-Renyi networks Gpc are considered.

The probability of connection pc was varied between 0.01 and 0.99 in steps of

0.01. The detected networks GD
pc were generated by artificially introducing

false positive links with probability α and false negative links with probability

β. The probability α varies between 0.005 and 0.1 in steps of 0.001, the

relation between α and β was fixed by

β =
10−3

α
, (3.2)

which represents a choice motivated above. Moreover, this choice corresponds

to a method, which has relatively high sensitivity and specificity, i.e., 0.005 <

α, β < 0.2. For each value of pc and α, 200 networks with n = 100 nodes

were generated. Figure 3.1 shows the true densities of the node degree derived

from Gpc (dashed lines) together with the average densities derived from the

detected networks GD
pc (solid lines). Results for α = 0.05 and α = 0.02 are

shown. Different colours represent different Erdős-Renyi networks defined by

the parameter pc, for clarity, densities are plotted for pc in steps of 0.1 only.

The distances (Eq. 3.1) between the true density and the detected density

for each pair of pc and α are shown in Fig. 3.2. For some values of pc

the distance is negligible, which means the detected node degree is almost

identical to the true node degree. The optimal α, i.e. the one with the

smallest distance between true density and detected density, depends on pc.

To have a general result for the optimal choice of α when estimating a

network characteristic of a given network topology, the sum over pc is taken

to marginalise out the influence of pc for each α. This integrated quantity is
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Figure 3.1: Densities of the node degree distributions for Erdős-Rényi net-
works of n = 100 nodes and different parameters pc = 0.01, ..., 0.91 in steps
of 0.1 represented by colour. The densities of the node degree distributions
for the respective original networks Gpc (dotted lines) and detected networks
GD
pc (solid lines) are shown.

called the total distance δtot, i.e.

δtot =
∑
pc

δ(pc). (3.3)

To identify the optimal choice of α, the interest is in finding where the mini-

mum of the total distance δtot is located. Figure 3.3 shows δtot for the example
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of the node degree of Erdős-Rényi networks. In this example, the minimum

of δtot is located at α = 0.030. This suggests that in order to optimally

reconstruct the node degree of an Erdős-Rényi network α = 0.03 should be

chosen, which is close to the standard choice of α = 0.05 but distinctively

smaller.
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tions, Eq. (3.1). Colour code expresses distance values.

0.02 0.04 0.06 0.08
α

1

2

3

4

δtot

Figure 3.3: Total distances δtot between node degree distributions of Erdős-
Rényi networks depending on α. The minimum is located at α = 0.030.
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3.3 Results

The analysis presented in the previous section is applied to Erdős-Rényi, with

probability of connection pc [Eq. (2.28)], Watts-Strogatz, with probability of

rewiring pr, and c = 2 [Eq. (2.29)], and Barabási-Albert networks, with

parameter b [Eq. (2.30)].

For each network topology, four different network characteristics are in-

vestigated: node degree, number of links, global clustering coefficient and

efficiency. The distance δ, which depends on both α and the parameter of

the network topology (pc, b or pr) is presented as density plot for all the inves-

tigated characteristics and network topologies in Fig. 3.4. All 12 investigated

scenarios show a dependence of the distance on the choice of α, suggesting

that an optimum exists. For some scenarios, in particular node degree and

number of links for Watts-Strogatz and Barabási-Albert networks, depen-

dence of the distance on the parameter (pr or b) is negligible. For other

scenarios such as the global clustering coefficient in Watts-Strogatz networks

the question arises if marginalising out the influence of pr is distorting the

results. Detailed results for each network topology are presented below.

For Erdős-Rényi networks of n = 50, n = 100, and n = 250 nodes, pc

varies from 0.01 to 0.99 in steps of 0.01. Figure 3.1 shows an example of some

of these values in steps of 0.1. The results of the total distance δtot for the

node degree of Erdős-Rényi networks are shown in Fig. 3.3. The minimum

of δtot is located at α = 0.030 (β = 0.033). For the remaining network

characteristics, the Erdős-Rényi networks also show a clear minimum of the

total distance in dependence on α. The specific values of α for the respective

minimal total distances however vary; they are summarised in Table 3.1.

The optimal α for efficiency is noticeably smaller than for the other network

characteristics. Moreover, a broad range for pc is used to cover the broad

spectrum of Erdős-Rényi networks. Marginalising out the dependence of the

distance δ on pc may therefore be distorting the results (see also dependence

on pc in Fig. 3.4). For a specific application, narrowing the range of pc to

values relevant for the application is recommended.

The set of Barabási-Albert networks of n = 50, n = 100, and n = 250
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Erdős-Rényi Barabási-Albert Watts-Strogatz

node
de-
gree

α

No.
of
nodes

α

effic. α

global
clust.
coef.

α

pc b pr

0 1

Figure 3.4: Distance δ for Erdős-Rényi, Barabási-Albert, and Watts-Strogatz
networks with 100 nodes. Distance δ is calculated using Eq. (3.1), and it is
normalised between 0 and 1. For each network topology the control param-
eter pc varies from 0.01 to 0.99 in steps of 0.01, b from 1 to 10 in steps of 1,
or pr from 0.01 to 0.99 in steps of 0.01 on the x−axis, and the probability of
false positive α from 0.005 to 0.1 in steps of 0.001 on the y−axis.
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Network Topology n = 50 n = 100 n = 250
and Characteristic α β α β α β

Erdős-Rényi:
node degree 0.031 0.032 0.030 0.033 0.031 0.032
number of links 0.031 0.032 0.030 0.033 0.031 0.032
global clustering coeff 0.035 0.029 0.031 0.032 0.031 0.032
efficiency 0.016 0.063 0.012 0.083 0.020 0.050

Barabási-Albert:
node degree 0.018 0.056 0.012 0.083 0.007 0.143
number of links 0.018 0.056 0.012 0.083 0.007 0.143
global clustering coeff 0.024 0.042 0.021 0.048 0.019 0.053
efficiency 0.015 0.067 0.010 0.100 0.007 0.143

Watts-Strogatz:
node degree 0.009 0.111 0.007 0.143 0.004 0.250
number of links 0.009 0.111 0.007 0.143 0.004 0.250
global clustering coeff 0.008 0.125 0.006 0.167 0.004 0.250
efficiency 0.009 0.111 0.006 0.167 0.004 0.250

Table 3.1: Table of α and β values for minimal total distances δtot of each
network topology and characteristic.

nodes is chosen with parameters b = 1 to b = 10 varying in steps of 1. The

total distances δtot for the node degree of networks with n = 100 nodes are

shown in Fig. 3.5. The minimum is found for α = 0.012 (β = 0.083), it is

more pronounced than that for the Erdős-Rényi networks. Again, the other

network characteristics and number of nodes all show a single minimum.

The values for optimal α and β are summarised in Table 3.1. For this net-

work topology a noticeably different optimal value for α was found for the

clustering coefficient.

Finally, the set of Watts-Strogatz networks of n = 50, n = 100, and

n = 250 nodes is chosen with parameter pr varied between 0.01 and 0.99 in

steps of 0.01. The distances between the distributions of the node degree,

the number of links, the global clustering coefficient and the efficiency are

analysed. The minimum of the total distance for the node degree of networks

with n = 100 nodes is found for α = 0.007 (β = 0.143). The total distances

between node degree distributions for these networks are shown in Fig. 3.6.
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Figure 3.5: Total distance δtot between node degree distributions of Barabási-
Albert networks of n = 100 nodes depending on α. The minimum is located
at α = 0.012 (β = 0.083).
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Figure 3.6: Total distance δtot between node degree distributions for Watts-
Strogatz networks of n = 100 nodes depending on α. The minimum is located
at α = 0.007 (β = 0.143).
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For all four characteristics and different values of n clear minima can be

identified and the values for optimal α are similar (Table 3.1). The results

for the efficiency however have to be interpreted with case as the distance

shows a clear dependence on the parameter pr (see Fig. 3.4).

3.4 Discussion

Three topologies of networks are considered, namely Erdős-Rényi, Watts-

Strogatz, and Barabási-Albert. For each topology, and for a specific charac-

teristic, e.g. the node degree distribution, the number of links, the efficiency

or global clustering coefficient, the rate of false positive and false negative

conclusions about links can be optimally chosen in order to have less biased

reconstruction.

For Erdős-Rényi networks, the values for α identified with the method

presented above, are close to standard choice of α of 0.05. Standard alpha

values are suboptimal when the topology of network is different. For the set

of Barabási-Albert networks, the values that yields the most reliable results

of the node degree are α = 0.012 and consequently β = 0.083. In this

case, standard alpha values lead to a bigger distance between distributions

of the node degree. The Watts-Strogatz networks yield the most reliable

results for an even smaller value for α = 0.007 and consequently β = 0.154.

Moreover, for the optimal choice of α the corresponding β is rather high.

This shows that the reliability of detecting individual false negative links

in a network is less important than failing to recognise false positive links

when network characteristics are estimated. Accepting a high rate of false

negative links may thus be required when the aim is to infer a specific network

characteristic.

This work shows that the standard choice of α of 0.05 is not optimal when

the aim is to reconstruct the entire network topology. Moreover, α needs to

be adjusted depending on specific network topologies and characteristics.

For example, consider Erdős-Rényi networks with pc = 0.11 and assume the

relationship between α and β is Eq. 3.2. As result of 200 simulations, the

mean of the node degree distribution of the original network Gpc is 11 and
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the mean for estimation using α = 0.05 is 15. Choosing α = 0.03 results

in a mean of the node degree distribution of 13. The choice of α = 0.03 is

motivated by the assumption that the original network is known to be an

Erdős-Rényi network with unknown parameter pc, see Table 3.1. For the

same study, when the aim is to infer the efficiency ε, the value is ε = 0.51

for the true network, ε = 0.56 for the one with α = 0.05, and ε = 0.51

when α = 0.012. The more it is known about the network of interest, the

more accurate the reconstruction is since the simulation study can be tuned

accordingly.

As mentioned in Sec. 3.2, the relationship between α and β depends on

the number of data points N , therefore the values of α and β leading to

the minimal distance will change for different values of N . Nevertheless, the

results will remain qualitatively the same.

The size of the network, i.e. the number of nodes, also influences the

result. The number of false positive and false negative conclusions about

the presence of links depends on the number of total links in the network.

Keeping the same values of α and β and increasing, for example, the size

of the network, leads to larger number of false positive and false negative

detections of links. As shown in Table 3.1, for Erdős-Rényi networks the

values of α and β leading to the minimal distance almost do not change.

The reason is that the number of links increases proportionally with the

number of nodes for each pc. This does not happen for Barabási-Albert and

Watts-Strogatz networks; the values of α leading to the minimal distance

present a decreasing trend because of their constructions.

The node degree distribution, the number of links, the efficiency, and the

global clustering coefficient have been considered as example characteristics

to show that the results depend on the characteristic under investigation.

Nevertheless, the approach described in this chapter can be readily applied

to other characteristics, as well as other network topologies.
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3.5 Conclusion

False conclusions about the presence of links in a network typically alter

network characteristics, such as the node degree distribution, the number

of links, the global clustering coefficient and the efficiency. Identification of

the underlying network topology relies on these characteristics and is thus

hindered by false conclusions about links as well. For these reasons, the

analysis of false positive and false negative conclusions about links is of key

importance.

In this chapter, assuming to know the underlying network topology, the

influence of false positive and false negative conclusions about links in a

network have been investigated. The values of α and β leading to minimal

distance (difference in mean values) between the true network and the biased

one change depending not only on the network topology, but also on the

network characteristic of interest. Therefore, in the Inverse Problem, when

the challenge is to infer the network topology from data, different values

for α and β might be favourable when estimating different characteristics.

In [15], the authors speculate that the simulation study can be used as an

iterative procedure to achieve a better network reconstruction. Namely, when

the network topology is not known a priori, various values for α can be

chosen to perform the first iteration step of the network reconstruction. The

result of this first step gives an idea of the network topology of interest. For

the second iteration step the value for α can be adjusted according to the

findings of the first step. This procedure can be iterated using the simulation

study suggested in this chapter in each iteration step, ultimately leading to

a reconstruction of the network tailored to its previously unknown network

topology. This iterative procedure is presented in Chapter 6.

This result suggests various values for statistical inference could be con-

sidered within a simulation study to determine the optimal α for the network

characteristic of interest. If several network characteristics are of interest, it

may be useful to adjust the value of α for each characteristic.

The results presented in this chapter are analysed in a more theoretical

framework in the next chapter.



Chapter 4

Analytical approach to network

inference: investigating the

degree distribution

As part of the research for this thesis, the following manuscript has been

published [14]. This chapter discusses the concepts presented in this publi-

cation

4.1 Introduction

In this chapter, an analytical framework on network inference is presented; on

the network level, it links the reconstructed network structure contaminated

by type I and type II errors (Sec. 2.3) to the true underlying one. While the

framework is rather general, the vertex degree distribution is used to derive

the functional relationship between the reconstructed and true underlying

network. This enables one to obtain superior estimates for the vertex degree

distribution, see Sec. 2.2.1. It has been shown that including the vertex

degrees into stochastic blockmodels improves their performance for statistical

inference of group structure [36]. The functional relationship depends on the

choice of type I error, type II error and the dimension of the network.

The chapter is structured as follows. In Sec. 4.2 a theoretical analysis of

43
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the method is presented. Section 4.3 shows some cases where the method

presented in Sec. 4.2 is applied.

4.2 Materials and methods

In Sec. 4.2.1, the influence of type I and type II errors on the network

structure, i.e. false positive and false negative conclusions about links, is

studied. In Sec. 4.2.2 different methods to solve the Inverse Problem are

presented. Section 4.2.3 contains a brief description of the generalization to

directed networks.

4.2.1 Networks change

In this section, only undirected networks are considered. Later (Sec. 4.2.3) a

generalization to directed networks is presented.

Consider a network G with n nodes and vertex degree distribution defined

by the probability function P , i.e., Pi = P(d = i) is the probability that the

degree d is i, for i = 0, · · · , n − 1, see Sec. 2.1. Note that the degree of a

vertex is between 0 and n− 1, since each vertex can be connected to at most

n− 1 remaining vertices.

The focus of this section is to study the influence of type I and type II

errors on the vertex degree distribution of a given network G. Let G′ be

the network detected when type I and type II errors occur. Therefore, α

expresses the probability that a link absent in G is present in G′ and β is the

probability that a link present in G is no longer present in G′. Hence, the set

of edges of G′ is a combination of true positive links and false positive links

of G. The vertex degree distribution of G′ is characterised by the probability

function P ′.
Consider a vertex and assume it has degree k, therefore there are k links

connected to it and n − 1 − k absent links. The aim is to evaluate the

probability that this vertex has vertex degree k′ in G′. The vertex degree

k′ = j + i (4.1)
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is given by the sum of true positive links j and false positive links i; addi-

tionally, i and j have to satisfy

j ≤ k and (4.2a)

i ≤ n− 1− k. (4.2b)

The condition described by Eq. (4.2a) guarantees that the number of false

negative links is larger or equal than zero, and smaller or equal than the

number of the original true positive links, i.e., 0 ≤ k − j ≤ k. Likewise,

the number of false positive links must be non-negative and smaller or equal

than the number of the original non-present links, Eq. (4.2b).

The probability that a vertex has degree k′ in G′, knowing it has degree

k in G is

P(d′ = k′|d = k) =

k′∑
i=0

(
k

k′ − i

)
(1− β)k

′−iβk−k
′+i

(
n− 1− k

i

)
αi(1− α)n−1−k−i

if k′ ≤ k and k′ ≤ n− 1− k
k∑
i=0

(
k

i

)
(1− β)iβk−i

(
n− 1− k
k′ − i

)
αk
′−i(1− α)n−1−k−k

′+i

if k < k′ ≤ n− 1− k
n−1−k′∑
i=0

(
k

k − i

)
(1− β)k−iβi

(
n− 1− k
k′ − k + i

)
αk
′−k+i(1− α)n−1−k

′−i

if k′ ≥ k and k′ > n− 1− k
n−1−k∑
i=0

(
k

k′ − i

)
(1− β)k

′−iβk−k
′+i

(
n− 1− k

i

)
αi(1− α)n−1−k−i

if n− 1− k < k′ < k.

(4.3)

The probability P(d′ = k′|d = k) is a piecewise function for all combina-

tions of i and j satisfying Eqs. (4.1) and (4.2). To obtain Eq. (4.3) consider,
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as an example, the first case, i.e., k′ ≤ k and k′ ≤ n− 1− k.

The probability of having j true positive links, over all possible k original

true positive links, is

P(no. true positive links = j) =

(
k

j

)
(1− β)jβk−j, (4.4)

which is the binomial distribution B(k, 1 − β). Since j = k′ − i [Eq. (4.1)],

Eq. 4.4 corresponds to the first part of the first case of Eq. 4.3. Similarly,

the probability of having i false positive links is

P(no. false pos links = i) =

(
n− 1− k

i

)
αi(1− α)n−1−k−i, (4.5)

which is the binomial distribution B(n− 1− k, α).

The first case of Eq. (4.3) can be obtained combining Eqs. (4.4) and

(4.5), changing variable j according to Eq. (4.1), and considering all possible

combinations of i and j. All the other cases can be derived in the same way

following the conditions in Eq. (4.2). A more detailed argumentation can be

found in Sec. 5.2.1.

The law of total probability

P(d′ = k′) =
n−1∑
k=0

P(d′ = k′|d = k)P(d = k) (4.6)

for k′ ∈ {0, · · · , n− 1}, is applied to obtain the matrix equation

[
P(d′=0)

...
P(d′=n−1)

]
︸ ︷︷ ︸

=P ′

=

[
P(d′=0|d=0) ··· P(d′=0|d=n−1)

...
...

...
P(d′=n−1|d=0) ··· P(d′=n−1|d=n−1)

]
︸ ︷︷ ︸

=A

·

[
P(d=0)

...
P(d=n−1)

]
︸ ︷︷ ︸

=P

, (4.7)

i.e.,

P ′ = AP . (4.8)
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The matrix A = A(n, α, β) depends on n, α and β and has determinant

detA = (1− α− β)
n(n−1)

2 , (4.9)

therefore it is invertible if and only if α 6= 1− β, see Sec. 5.4 for a proof. A

complete analysis on the matrix A is presented in Chapter 5.

Assuming G is known, Eq. (4.8) characterises the influenced of type I

and type II errors on the vertex degree distribution, and it allows to find the

vertex degree distribution of the network G′.

4.2.2 Inference of networks’ vertex degree distribution

Section 4.2.1 analyses the impact of type I and type II errors on the vertex

degree distribution of a given network. Equation (4.8) allows to obtain P ′

from P . This section focuses on the inverse problem, i.e., inverting Eq. (4.8),

to infer the original vertex degree distribution from an observed one. When

{α, β} 6= {0, 0}, {1, 1}, since the convergence to zero of the determinant of A

scales like x
n(n−1)

2 for |x| < 1 [Eq. (4.9)], numerical issues arise for relatively

small n when inverting the matrix A to find P through P = A−1P ′. The

cases for α, β = 0 and α, β = 1 are discussed in Sec. 5.3.

The least squares method is a standard approach to solve problems like

Eq. (4.8). Although the matrix A is not singular, for reasonable parameter

values for n, A is typically ill-conditioned, therefore the pseudoinverse of the

truncated singular value decomposition of A is used.

The singular value decomposition of a matrix A is the factorization of the

matrix into the product of A = UWV T where W is a diagonal matrix and

the columns of the matrices U and V are orthonormal [67]. The elements

w1, · · · , wn on the diagonal of W are called singular values of A and they are

ordered such that w1 ≥ w2 ≥ · · · ≥ wr > wr+1 = · · · = wn = 0, where r is

the rank of A.

The singular value decomposition is a tool to compute the pseudoinverse

of a matrix. If A has singular value decomposition A = UWV T , its pseu-

doinverse A+ is defined as A+ = VW+UT , where W+ is obtained from W

replacing all the non-zero elements with their reciprocals.
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The truncated singular value decomposition is a method for regulariza-

tion of ill-posed least squares problems [32]. Once the singular value de-

composition A = UWV T is found, the matrix W is truncated at, e.g., rank

t such that only the first t singular values are considered; this matrix is

usually called Wt. More precisely, Wt is a diagonal matrix with elements

w1 ≥ w2 ≥ · · · ≥ wt > wt+1 = · · · = wn = 0, with t < r. The truncated

diagonal matrix Wt is used to find an approximation of the matrix A us-

ing its decomposition, i.e., At = UWtV
T . The optimal value for t has been

studied in [29, 30]. The matrix At is the closest approximation of A of rank

t, [32]. The matrix Wt is used to calculate the pseudoinverse of At, i.e.,

A+
t = VW+

t U
T , and therefore to solve Eq. (4.8), namely

P = A+
t P ′. (4.10)

4.2.3 Generalization for directed networks

For directed networks the vertex degree is characterised by the vertex in-

degree and the vertex out-degree [48]. Usually, in a directed network the

vertex degree is the sum of the vertex in-degree and the vertex out-degree

(Sec. 2.2).

Both the in-degree and the out-degree of a vertex are numbers between 0

and n−1, if n is the number of vertices of the network (Sec. 2.2.1). Therefore,

the analysis shown in Secs.4.2.1-4.2.2 remains valid if either the vertex in-

degree or the vertex out-degree are considered instead of the vertex degree.

An undirected network with n nodes has at most n(n − 1)/2 edges. A

network with n nodes has at most n(n− 1) directed edges; a generalization

for other characteristics is likely more complicated, and therefore requires a

more in-depth analysis.

4.3 Simulation study

To demonstrate the abilities as well as limitations, the analysis presented in

Sec. 4.2 is applied to some typical simulated networks. Note that this ap-
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proach is derived analytically; simulation studies are predominantly needed

to demonstrate its applicability in real-world examples and to check for nu-

merical issues, etc. There might be practical issues, e.g., due to the dimension

of the network, and with the aim to show how these challenges can be over-

come, a simulation study is presented to explore the concrete applicability of

this method.

Five network topologies that present different characteristics are pre-

sented so to have a spectrum of networks as wide as possible to which apply

the analysis. Namely, consider Erdős-Rényi, Small-World, Scale-Free net-

works, a three-dimensional grid, and a network of randomly connected com-

munities [48]. The probabilities α and β of type I and type II errors vary

in the range 1% − 10% mimicking a typical analysis method that has high

sensitivity and high specificity. Nevertheless, both lower and higher values

for α and β can be chosen and the results obtained are qualitatively the same

as the ones presented below.

Consider an Erdős-Rényi network G with 100 nodes and a probability of

a connection of 0.2. The vertex degree has binomial distribution B(100, 0.2).

Adding and removing links with probabilities α = 0.05 and β = 0.03 results

in a new network G′. The vertex degree distribution of G′ is calculated empir-

ically by counting the vertices’ degrees. Applying the procedure explained

above, the vertex degree distribution of the original network is estimated.

Figure 4.1 shows the results using the cut-off for the truncated singular value

decomposition method of 0.5, i.e., Wt contains only singular values greater

than 0.5. The choice of t is motivated by smoothness and regularity of the

solution obtained.

Figure 4.1 shows the histogram of the degrees of the vertices of the original

network G, the density of the detected network G′, the reconstructed vertex

degree distribution of the original network P resulting from Eq. (4.10), and

the result when a non-negative constraint is applied to the truncated singular

value decomposition to avoid that numerical issues result in negative solu-

tions. More precisely, the lsqnonlin Matlab function is used with lower bound

condition lb = zeros(n); this function implements the trust region reflective
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Figure 4.1: Density histogram of the original vertex degrees, blue bars, de-
tected density vertex degree distribution, gray dotted line, the result of net-
work reconstruction using Eq. (4.10) knowing A and P ′, solid red line, and
the result when a non-negative constraint is applied to the truncated sin-
gular value decomposition, black dashed line. The original network is an
Erdős-Rényi network with 100 nodes and probability of connection 0.2.

algorithm [11, 20]. The density of G′ is estimated by

P ′i =
number of nodes with vertex degree = i

number of nodes
(4.11)

its empirical distribution, and this is used to infer the original network.

Figure 4.2 shows the result when the original network G is a Small-World

network. It is built from the regular network of 100 nodes, vertex degree 4,

and probability of rewiring 0.4. The network G′ is obtained by adding and

removing links at random with probabilities α = 0.03 and β = 0.05 respec-

tively. The cut-off for the truncated singular value decomposition method is

0.33.

Figure 4.2 shows the histogram of the degrees of the vertices of the original

network G, the density of the detected network G′, the reconstructed vertex
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Figure 4.2: Density histogram of the original vertex degrees, blue bars, de-
tected density vertex degree distribution, gray dotted line, the result of net-
work reconstruction using Eq. (4.10) knowing A and P ′, solid red line, and
the result when a non-negative constraint is applied to the truncated singu-
lar value decomposition, black dashed line. The original network is a Small
World network with 100 nodes and probability of rewiring 0.4.

degree distribution, and the result when a non-negative constraint is applied

to the truncated singular value decomposition.

Figure 4.3 shows the result when the original network G is a Scale-Free

network. It is built using a preferential attachment model for network growth.

At each step a vertex, with a link attached to it, is added. The probability

that the new vertex attaches to a given old one is proportional to its vertex

degree. This procedure is repeated until the network has 100 nodes. The

network G′ is obtained by adding and removing links at random with prob-

abilities α = 0.1 and β = 0.03 respectively. The cut-off for the truncated

singular value decomposition method is 0.4.

Figure 4.3 shows the histogram of the degrees of the vertices of the original

network G, the density of the detected network G′, the solution of Eq. (4.10),

and the result when a non-negative constraint is applied to the truncated
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Figure 4.3: Density histogram of the original vertex degrees, blue bars, de-
tected density vertex degree distribution, gray dotted line, the result of net-
work reconstruction using Eq.(4.10) knowing A and P ′, solid red line, and
the result when a non-negative constraint is applied to the truncated singular
value decomposition, black dashed line. The original network is a Scale-Free
network with 100 nodes.

singular value decomposition.

The method presented in this chapter is now applied to another example

- the original network G is a three-dimensional grid 4 × 5 × 5; note that G

has 100 nodes. The network G′ is obtained by adding and removing links at

random with probabilities α = 0.1 and β = 0.05 respectively. The cut-off

for the truncated singular value decomposition method is 0.38. Figure 4.4

shows the histogram of the degrees of the vertices of the original network G,

the density of the detected network G′, the solution of Eq. (4.10), and the

result when a non-negative constraint is applied to the truncated singular

value decomposition.

The last example presented is the case when G is a network of three

randomly connected communities. It is built by constructing three Erdős-
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Figure 4.4: Density histogram of the original vertex degrees, blue bars, de-
tected density vertex degree distribution, gray dotted line, the result of net-
work reconstruction using Eq.(4.10) knowing A and P ′, solid red line, and
the result when a non-negative constraint is applied to the truncated singular
value decomposition, black dashed line. The original network is a 4× 5× 5
grid.

Rényi networks, with probability of connection 0.3, 0.6, and 0.9, and each

with 33 nodes. Then, nodes from different communities are connected with

probability 0.1. The network G′ is obtained by adding and removing links at

random with probabilities α = 0.05 and β = 0.03 respectively. The cut-off

for the truncated singular value decomposition method is 0.42. Figure 4.5

shows the histogram of the degrees of the vertices of the original network G,

the density of the detected network G′, the solution of Eq. (4.10), and the

result when a non-negative constraint is applied to the truncated singular

value decomposition.

Another interesting aspect is the influence of type I and type II errors

and the proposed method on the reconstruction of individual nodes and not

just the correct distribution. This is particularly relevant for nodes that have
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Figure 4.5: Density histogram of the original vertex degrees, blue bars, de-
tected density vertex degree distribution, gray dotted line, the result of net-
work reconstruction using Eq.(4.10) knowing A and P ′, solid red line, and
the result when a non-negative constraint is applied to the truncated sin-
gular value decomposition, black dashed line. A network of three randomly
connected communities is used as original network.

a degree much larger than average, so-called hubs.

In the Scale-Free example, Fig. 4.3, the detected distribution appears

to be smoother than the original, implying that a hub might have been

converted to a non-hub. Analysing this in more detail, there is convincing

evidence that this is not the case - hubs are correctly identified as hubs.

Consider a node d that has degree k in G that has n nodes. Due to

type I and type II errors, this node in G′ has degree d′, a random variable

with distribution shown in Eq. (4.3). Taking realisations of this random

variable, and inverting the process using Eq. (4.10), allows us to compare

individual degrees for a given node of the true network with the reconstructed

one. Consider a network with n = 100 nodes, a node d with degree k =

75, probabilities of type I and type II errors of α = 0.05 and β = 0.03,
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Figure 4.6: Reconstruction of the degree of a single node with original degree
k = 75.

respectively, and simulate 100 realisations of the random variable described

above. Figure 4.6 shows the reconstruction of the degree of d using these

realisations. The result does not only show an improvement from the detected

degrees k, but also illustrates the high accuracy of the reconstruction method.

Figure 4.7 shows the reconstruction of various degrees, i.e., k from 10 to

90 in steps of 10, using the same parameters n = 100, α = 0.05, β = 0.03,

and 100 realisations each. This again demonstrates that the method reliably

reconstructs the correct degree for this individual node. Further simulations,

not presented here, varying α and β between 0.01 and 0.1, show qualitatively

the same results. In every case, the reconstruction is very robust, and this

suggests that it is extremely unlikely that a hub is reconstructed as a non-

hub. Moreover, the reconstruction works correctly not only on the general

distribution, but also when it is applied to single nodes.
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Figure 4.7: Reconstructions of the degree of single nodes with original degrees
k from 10 to 90 in steps of 10.

4.4 Robustness of reconstruction

As stated above, the reconstruction method assumes the probabilities of type

I and type II errors to be known a priori. While the type I error is controlled

by statistical methods, the type II error must be inferred or reasonable as-

sumptions from simulations, or prior studies, about the type II error must

be available. To show the impact of violations of this and thereby the ro-

bustness of this method, the performance of the reconstruction is analysed

when perturbations on α and β are introduced.

Figures 4.8-4.11 demonstrate the robustness of the approach for various

examples. Figures 4.8-4.9 are used to show robustness with respect to β,

while Figs. 4.10-4.11 show the robustness with respect to α. The perturba-

tions are quantified in percentage using the parameter δ, e.g. the perturba-

tions of β are expressed by β+δβ. Note that, since 0 ≤ β ≤ 1, the conditions

for the perturbations are −1 ≤ δ ≤ 1/β − 1; namely, called βp = β + δβ the
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perturbed β, then the conditions can be derived

0 ≤βp ≤ 1

0 ≤β + δβ ≤ 1

−1 ≤δ ≤ 1/β − 1.

(4.12)

Negative values for δ represent underestimated values for β and positive

overestimated values for β. The same argument is used for the perturbation

of α.

Figure 4.8 shows the reconstruction of a Scale-Free network with 100

nodes for the true value of β = 0.03, and also for various values of β deviating

up to 1000% from the true value, i.e., βp = 0.33. The cut-off for the truncated

singular value decomposition method is 0.1 and the probability of type I error

is α = 0.05, assuming to control the family-wise error rate at this value, i.e.,

the probability of making at least one type I error ; it is beyond the scope of

this work to discuss cases in which the technique selected to reconstruct the

network violates this assumption - however, below the results for different

deviations from the true α are used to generate the plots to investigate its

robustness. Figure 4.8 shows that this approach is robust to rather large

perturbations of β, in both negative and positive directions. Up to δ = 500%,

the bias of the reconstruction is negligible; only if δ = 1000% or more deviates

the reconstruction significantly from the true one, although it still performs

better than the näıve approach of trusting the identified network structure.

Figure 4.9 shows the reconstruction of an Erdős-Rényi network with 100

nodes and probability of a connection of 0.2 for the true value of β = 0.03,

and also for various values of β deviating up to δ = 400% from the true value

of β. The cut-off for the truncated singular value decomposition method is

0.55 and the probability of type I error is α = 0.05. Also in this case, the

method is robust to large perturbations of β, in both negative and positive

directions. A deviation of more than 400% is needed for the method to fail

and not to have an improvement over the näıve approach.

Figure 4.10 shows the reconstruction of an Erdős-Rényi network with 100

nodes and probability of a connection of 0.2 for the true value of α = 0.05,
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Figure 4.8: Density histogram of the original vertex degrees, blue bars, de-
tected density vertex degree distribution, gray dotted line, and the results
when a non-negative constraint is applied to the truncated singular value
decomposition using the true β, black dashed line, and perturbations from
the true β, red, blue, yellow, and green solid lines. The original network is a
Scale-Free network with 100 nodes.

and α deviating up to −85%. The cut-off for the truncated singular value

decomposition method is 0.6 and the probability of type II error is β = 0.03.

Figure 4.10 shows that the method is affected by relatively large perturba-

tions of α. Namely, for δ < −85% and δ > 50%, the reconstructions deviate

significantly from the true one. The reason is that sparse networks are sus-

ceptible to perturbation of type I error. Figure 4.11 shows the reconstruction

of a denser network, i.e., an Erdős-Rényi network with probability of a con-

nection of 0.8, for the same true values of α and β. In this case, a deviation of

150% or more is needed for the method to fail. The comparison of Figs. 4.10

and 4.11 leads to the conclusion that dense networks are more robust to

perturbations of type I error than sparse networks. This is intuitively moti-

vated by the fact that the type I error affects links that are not present in
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Figure 4.9: Density histogram of the original vertex degrees, blue bars, de-
tected density vertex degree distribution, gray dotted line, and the results
when a non-negative constraint is applied to the truncated singular value
decomposition using the true β, black dashed line, and perturbations from
the true β, red, blue, yellow, and green solid lines. The original network is
an Erdős-Rényi network with 100 nodes and probability of connection 0.2.

the network, and therefore it has a bigger influence on a sparse network.

The above results demonstrated that a rough estimate for α and β is

sufficient to get an accurate reconstruction; the method is robust to relatively

large perturbations of these two errors. Rough estimates of these parameters

are typically available from simulation studies or prior knowledge about the

system. Note again that the role of α and β are different; α is often controlled

and can be obtained from known statistics of the techniques under the null

hypothesis; β is more difficult as the true alternative would need to be known.

Given the above simulations, the algorithm is more robust with respect to β

than α, which aligns with the different role of these two errors. As mentioned

at the beginning of Sec. 4.3, α and β vary in the range 1%− 10%. Choosing

either lower or higher values for the true α and β does not affect the general
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Figure 4.10: Density histogram of the original vertex degrees, blue bars,
detected density vertex degree distribution, gray dotted line, and the results
when a non-negative constraint is applied to the truncated singular value
decomposition using the true α, black dashed line, and perturbations from
the true α, red, blue, yellow, and green solid lines. The original network is
an Erdős-Rényi network with 100 nodes and probability of connection 0.2.

qualitatively result of the analysis, but it changes the range of perturbation

that leads to the failure of the reconstruction method.

4.5 Conclusions

In this chapter, the impact of false positive and false negative conclusions

about the presence or absence of links on the vertex degree distribution of a

network is explored. Using an analytical approach, this dependence on the

dimension of the network and the probabilities of type I and type II errors

is investigated. Equation (4.8) describes the density of the vertex degree

distribution of the biased network and thus allows to calculate the influence

of false positive and false negative conclusions about links on any kind of
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Figure 4.11: Density histogram of the original vertex degrees, blue bars,
detected density vertex degree distribution, gray dotted line, and the results
when a non-negative constraint is applied to the truncated singular value
decomposition using the true α, black dashed line, and perturbations from
the true α, red, blue, yellow, and green solid lines. The original network is
an Erdős-Rényi network with 100 nodes and probability of connection 0.8.

network, assuming the probabilities of type I and type II errors are known.

In the inverse problem, the aim is to reconstruct the original network.

Equation (4.10) enables to calculating analytically the vertex degree distri-

bution of the original network if the biased one and the probabilities of type I

and type II errors are given. When the dimension of the network is relatively

large, numerical issues arise and consequently the truncated singular value

decomposition is used to calculate the original network vertex degree dis-

tribution. Numerical simulations show that the vertex degree distribution is

correctly recovered in all the cases discussed; the cases presented are designed

to cover a variety of network topologies and therefore degree distributions.

The outcomes of this work are general results that enable to reconstruct

analytically the vertex degree distribution of any network. The analytic for-
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mula [Eq. (4.10)] that allows to find the original vertex degree distribution

depends only on the detected vertex degree distribution and on the proba-

bilities of type I and type II errors. This method is a powerful tool since the

vertex degree distribution is a key characteristic of networks. Moreover, this

method can be used to reconstruct individual node degrees to a very high

accuracy. This should positively impact on various measures that can be de-

rived from the networks. The proposed method should outperform standard

approaches in terms of betweenness centrality, identification of hubs, and

other network characteristics. This should be rigorously assessed in future

research.

A limitation of this work is the assumption that the probabilities of type

I and type II errors are known a priori. Nevertheless, the method is ro-

bust to relatively large perturbations of these two errors. Therefore, wrong

estimates of type I and type II errors, within certain bounds, do not cause

the reconstruction of be rendered invalid. Note again that in application the

type I error is typically controlled, while an estimate for the type II error can

only be obtained through prior experiments/knowledge or simulation stud-

ies. As shown in various simulations, the reconstruction method is robust

to considerable deviations in β, which supports the usefulness of the tech-

nique over and above providing deeper insights into the role of these errors

in network reconstruction; the approach is promising for real-world applica-

tions. Note though that it is always advisable to utilise simulation studies

to characterise the advantageous and limitations in a concrete application at

hand. Further analyses should study possible statistical approaches to infer

these parameters employing Bayesian approaches or simulation studies. It is

recommended to perform the latter to get an estimate of the type II error in

particular.

Future studies should investigate analytically the influence of type I and

type II errors on other network characteristics, e.g. the number of edges,

the global clustering coefficient, and the efficiency, as shown through simu-

lation studies in Chapter 3. As a consequence, more information about the

original network can be found and, therefore, combining them all a better

reconstruction of the network can be achieved.



Chapter 5

Poisson-binomial distribution:

the case of the sum of two

binomial distributions

5.1 Introduction

Chapter 4 presents the influence of type I and type II errors about the pres-

ence or absence of links on the vertex degree distribution, when a network is

reconstructed. As shown in Eq. (4.8), the density of the biased vertex degree

distribution is found using the matrix operator A = A(n, α, β), whose ele-

ments are the conditional probabilities P(d′ = k′|d = k) defined in Eq. (4.3).

The aim of this chapter is to study the properties of this matrix.

An important remark here is that the distribution, described by each

element of the matrix A, is a special case of a Poisson binomial distribution.

The Poisson binomial distribution is the distribution of a sum of independent

Bernoulli random variables that are not necessarily identically distributed.

This probability distribution has been first introduced by Poisson in 1837,

and lately, it has been widely investigated [13, 21, 34, 70]. In this chapter,

a special case of this distribution is analysed; the random variable d′|d = k

consists of a sum of n − 1 Bernoulli trials, k of those have probability of

success 1−β each, and each of the remaining n− 1− k trials has probability

63
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of success α.

In Sec. 4.2.1, the probabilities P(d′ = k′|d = k) are derived and briefly

discussed. Section 5.2 is dedicated to analyse such probabilities in a more

theoretical framework; those probabilities are analysed and a more accurate

explanation of their properties is given (Secs. 5.2.2 - 5.2.3 - 5.3). The validity

of Eq. (4.9) for the determinant of matrix A is proven is Sec. 5.4, and other

properties of the matrix are discussed in Sec. 5.5.

5.2 Probabilities and matrix A

Consider a network G with n nodes and vertex degree distribution defined by

the probability function P , as shown in Chapter 4.2.1. Call G′ the network

detected when type I and type II errors occur, assume that α is the proba-

bility of a type I error and β is the probability of a type II error. Therefore,

α expresses the probability a non-existing link in G is present in G′ and β is

the probability that an existing link in G is no longer present in G′. Hence,

the set of edges of G′ is a combination of true positive links and false posi-

tive links of G. The vertex degree distribution of G′ is characterised by the

probability function P ′.

5.2.1 Probability P(d′ = k′|d = k)

Consider a vertex and assume it has degree k, i.e., there are k links connected

to it and n− 1− k absent links. The aim is to evaluate the probability that

this vertex has vertex degree k′ in G′. Figure 5.1 represents, in terms of

random variables, the steps of the process of obtaining k′.

The random variable Z describes the degree k of the considered vertex;

note that Z takes values in {0, · · · , n− 1}. From the set of k original links,

j true positive links are taken with probability

P(Y1 = j) =

(
k

j

)
(1− β)jβk−j, (5.1)

whereas β is the probability of a type II error.
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n−1

kZ n−1−k

i Y2jY1

k′ X

+

lin
ks

no-links

t.p.l. f.p.l.

Figure 5.1: Schematic explanation of the construction of the probability
P(d′ = k′|d = k). In a network of n vertices, the vertex degree of a selected
vertex is assumed to be k. From the existing k links, j true positive links
(t.p.l.) are selected; from the remaining n− 1− k non-existing links, i false
positive links (f.p.l.) are selected. The sum (⊕) of j true positive links and i
false positive links gives the vertex degree k′. Random variables are indicated
in blue, and their realisations in black.

Similarly, since the probability to erroneously detect a link is α, and there

are n− 1− k absent links, the probability of having i false positive links is

P(Y2 = i) =

(
n− 1− k

i

)
αi(1− α)n−1−k−i. (5.2)

Note that Eqs. (5.1) and (5.2) are the same as Eqs. (4.4) and (4.5), expressed

in terms of random variables. The random variables Y1 and Y2 describe the

number of true positive links and false positive links, respectively; they have

distribution Y1 ∼ B(k, 1 − β) and Y2 ∼ B(n − 1 − k, α), following from

Eqs. (5.1) and (5.2).

The number of true positive links cannot be larger than the number of

originally existing links; likewise, the number of false positive links cannot

exceed the number of originally non-existing links. Therefore, j and i have

to satisfy j ≤ k and i ≤ n− 1− k, Eq. (4.2).

The vertex degree k′ = j + i is given by the sum of true positive links j
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and false positive links i, Eq. (4.1), and it is described by the random variable

X. Hence, X = Y1 + Y2 is the sum of two independent random variables.

The random variable X takes value k′ if Y2 = i and Y1 = k′ − i, for any

i ∈ {0, · · · , k′} when k′ ≤ k and k′ ≤ n− 1− k, because of conditions j ≤ k

and i ≤ n− 1− k [Eq. (4.2)]. Therefore, the probability mass function of X

given Z = k is

P(X=k′|Z=k) =
k′∑
i=0

(
k

k′−i

)
(1−β)k

′−iβk−k
′+i

(
n−1−k
i

)
αi(1−α)n−1−k−i (5.3)

if k′ ≤ k and k′ ≤ n− 1− k.

All the other cases, i.e., when k′ > k or/and k′ > n−1−k, can be derived

in the same way. The probability that a vertex has degree k′ in G′, knowing

it has degree k in G is [Eq. (4.3)]

P(X = k′|Z = k) =

k′∑
i=0

(
k

k′ − i

)
(1− β)k

′−iβk−k
′+i

(
n− 1− k

i

)
αi(1− α)n−1−k−i

if k′ ≤ k and k′ ≤ n− 1− k
k∑
i=0

(
k

i

)
(1− β)iβk−i

(
n− 1− k
k′ − i

)
αk
′−i(1− α)n−1−k−k

′+i

if k < k′ ≤ n− 1− k
n−1−k′∑
i=0

(
k

k − i

)
(1− β)k−iβi

(
n− 1− k
k′ − k + i

)
αk
′−k+i(1− α)n−1−k

′−i

if k′ ≥ k and k′ > n− 1− k
n−1−k∑
i=0

(
k

k′ − i

)
(1− β)k

′−iβk−k
′+i

(
n− 1− k

i

)
αi(1− α)n−1−k−i

if n− 1− k < k′ < k.

(5.4)
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5.2.2 Compact Form

Equation (5.4) can be written in a more compact form

P(d′=k′|d=k)=

min{k,n−1−k′}∑
i=max{0,k−k′}

(
k

i

)
(1−β)k−iβi

(
n−1−k
k′−k+i

)
αk
′−k+i(1−α)n−1−k

′−i.

(5.5)

Equation (5.5) can be obtained from Eq. (5.4) considering through proper

transformations. The first equation of Eq. (5.4) is valid for k′ ≤ k and

k′ ≤ n− 1− k, therefore max{0, k− k′} = k− k′ and min{k, n− 1− k′} = k.

The substitution x = k − k′ + i of the sum increment i leads to Eq. (5.5),

changing the name of the increment x back to i.

The second equation of Eq. (5.4) is valid for k < k′ ≤ n− 1−k, therefore

max{0, k − k′} = 0 and min{k, n− 1− k′} = k. The substitution x = k − i
of the sum increment leads to Eq. (5.5).

The third equation of Eq. (5.4) is valid for k′ ≥ k and k′ > n − 1 − k,

therefore max{0, k − k′} = 0 and min{k, n − 1 − k′} = n − 1 − k′. In this

case there is no need of any substitution to obtain Eq. (5.5).

The fourth equation of Eq. (5.4) is valid for n− 1− k < k′ < k, therefore

max{0, k−k′} = k−k′ and min{k, n−1−k′} = n−1−k′. The substitution

x = k − k′ + i of the sum increment leads to Eq. (5.5).

5.2.3 Elements of matrix A

As shown in Chapter 4.2.1, the elements of the matrix A are the conditional

probabilities defined by either Eq. (5.4) or (5.5). Since the element Auv

corresponds to the probability P(d′ = k|d = k′) for u = k+ 1 and v = k′+ 1,

the matrix A = A(n, α, β) is an n× n matrix with elements

Auv =

min{v−1,n−u}∑
i=max{0,v−u}

(
v − 1

i

)
(1− β)v−1−iβi

(
n− v

u− v + i

)
αu−v+i(1− α)n−u−i,

(5.6)

for u, v ∈ {1, · · · , n} and real numbers α, β ∈ [0, 1].
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k′ < n− 1− k

k′ < k
k′ > k

k′<n−1−k

k′ > k

k′ > n− 1− k

k′>n−1−k

k′ < k

0

n− 1

0 n− 1
k

k′

(a) Matrix A with elements defined by
Eq. (5.4) or (5.5), and Eq. (4.7), using in-
dices k′, k.

u < n− v + 1

u < v
u > v

u<n−v+1

u > v

u > n− v + 1

u>n−v+1

u < v

1

n

1 n
v

u

(b) Matrix A with elements defined by
Eq. (5.6), using indices u, v.

Figure 5.2: Block conditions of matrix A.

The cases k′ Q k and k′ Q n − 1 − k are not only the conditions for the

piecewise function defined in Eq. (5.4), but they also define the lower and

upper bound of summation in Eq. (5.5), and consequently of Eq. (5.6) with

shifted variables u and v. Therefore, the matrix A is defined in four blocks as

shown in Fig. 5.2, using both the notations k, k′ and u, v. As demonstrated

below in Sec. 5.3, the matrix A shows a structure with four blocks for extreme

values of α and β, see Fig. 5.3.

5.3 Matrix A: special cases

In this section, special cases for the matrix A are discussed, i.e., when α and

β take limit values of 0 and 1. Additionally, the case for β = 1 − α is also

analysed, and it is the first to be examined.

The case for β = 1 − α is of key importance since it is the condition

that makes the analysis in Chapter 4 impossible, in fact in this case the

determinant of A is exactly zero, as shown below [Sec. 5.4]. Roughly, this

happens because true and false positive links are indistinguishable. More

precisely, refer to Fig. 5.1, when the random variables Y1 and Y2 have the
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same probability of success, then it is not possible to reconstruct the random

variable Z, since there is no distinction between the two sets made of k and

n− 1− k links. Mathematically, when β = 1− α, the Eq. (5.6) becomes

Auv(n, α, 1−α)=

min{v,n−u}∑
i=max{0,v−u}

(
v−1

i

)
αv−1−i(1−α)i

(
n−v
u−v+i

)
αu−v+i(1−α)n−u−i

= αu−1(1− α)n−u
min{v,n−u}∑
i=max{0,v−u}

(
v − 1

i

)(
n− v

u− v + i

)

=

(
n− 1

u− 1

)
αu−1(1− α)n−u . (5.7)

Note that Auv(n, α, 1−α) does not depend on v but only on u, therefore

each line has all identical elements, hence matrix A has structure

A(n, α, 1− α) '
[ • • •
? ? ?
◦ ◦ ◦

]
. (5.8)

If α and β are both zero, then the random variables Y1 and Y2 take values

k and 0 with probability 1, respectively; hence, P(X = k′|Z = k) = 1 if

k′ = k, and 0 otherwise. Therefore, since Auv = P(X = u + 1|Z = v + 1),

the matrix

A(n, 0, 0) '
[
1
1
1

]
(5.9)

is the identity.

If α, β = 1, the random variables Y1 and Y2 take values 0 and n − 1 − k
with probability 1; hence, P(X = k′|Z = k) = 1 if k′ = n − 1 − k, and 0

otherwise. Therefore, the matrix

A(n, 1, 1) '
[

1
1

1

]
. (5.10)

is anti-diagonal with all elements equal to one.

If α = 0, then the random variable Y2 takes value 0 with probability 1;

hence, the random variable X is identical to Y1, i.e., P(X = k′|Z = k) =(
k
k′

)
(1 − β)k

′
βk−k

′
if k′ ≤ k, and 0 otherwise. This equation expresses the

probability that k′ true links are chosen from the original k links; this is in



Chapter 5.3 − Gloria Cecchini 70

agreement with the condition that the probability P(X = k′|Z = k) is zero

for k′ > k. Note that it can also be obtained by Eq. (5.5) using i = k − k′

for the sum increment. Since Auv = P(X = u + 1|Z = v + 1), this equation

is equivalent to

Auv(n, 0, β) =


(
v−1
u−1

)
(1− β)u−1βv−u u ≤ v

0 u > v.
(5.11)

Notice that matrix

A(n, 0, β) '
[ • • •
• •
•

]
. (5.12)

is upper triangular.

If α = 1, then the random variable Y2 takes value n−1−k with probability

1; hence, P(X = k′|Z = k) =
(

k
n−1−k′

)
(1−β)k−n+1+k′βn−1−k

′
if k′ ≥ n−1−k,

and 0 otherwise. This equation expresses the probability that k′− (n−1−k)

links are chosen from the original k true links; since n− 1− k false positive

links have already been chosen, the probability P(X = k′|Z = k) must be

zero for k′ < n− 1− k. Note that it can also be obtained by Eq. (5.5) using

i = n− 1− k′ for the sum increment. Therefore, this equation is equivalent

to

Auv(n, 1, β) =


(
v−1
n−u

)
(1− β)v−1−n+uβn−u u ≥ n− v + 1

0 u < n− v + 1.
(5.13)

Note that the matrix A has structure

A(n, 1, β) '
[ •
• •
• • •

]
. (5.14)

If β = 0, then the random variable Y1 takes value k with probability

1; hence, P(X = k′|Z = k) =
(
n−1−k
k′−k

)
αk
′−k(1 − α)n−1−k

′
if k′ ≥ k, and 0

otherwise. This equation expresses the probability that k′ − k false positive

links are chosen from the original n − 1 − k non present links; since k true

links are already present, the probability P(X = k′|Z = k) must be zero for

k′ < k. Note that it can also be obtained by Eq. (5.5) using i = 0 for the
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sum increment. This equation is equivalent to

Auv(n, α, 0) =


(
n−v
u−v

)
αu−v(1− α)n−u u ≥ v

0 u < v.
(5.15)

Notice that matrix

A(n, α, 0) '
[ •
• •
• • •

]
. (5.16)

is lower triangular.

If β = 1, then the random variable Y1 takes value 0 with probability

1; hence, the random variable X is identical to Y2, i.e., P(X = k′|Z =

k) =
(
n−1−k
k′

)
αk
′
(1 − α)n−1−k−k

′
if k′ ≤ n − 1 − k, and 0 otherwise. This

equation expresses the probability that k′ false positive links are chosen from

the original n − 1 − k non present links; therefore, for k′ > n − 1 − k this

probability is zero, since the number of false positive links cannot be larger

than the original n−1−k non-present links. Note that it can also be obtained

by Eq. (5.5) using i = k for the sum increment. This equation is equivalent

to

Auv(n, α, 1) =


(
n−v
u

)
αu(1− α)n−u−v+1 u ≤ n− v + 1

0 u > n− v + 1.
(5.17)

Notice that the matrix A has structure

A(n, α, 1) '
[ • • •
• •
•

]
. (5.18)

Figure 5.3 summarises the results obtained in this section. For extreme

values of α and β, matrix A has distinct structures. These results not only

underline the role of α and β, as shown in this section, but they also help in

analytical calculations, such as the ones for the determinant in Sec. 5.4.
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[ • • •
? ? ?
◦ ◦ ◦

]

[
1
1
1

]

[
1

1
1

]

[ • • •
• •
•

] [ •
• •
• • •

]

[ •
• •
• • •

]

[ • • •
• •
•

][
1 1 1

]

[
0

1 1 1

]

1

0 1

α
=

1−β

α

β

Figure 5.3: Matrix A: special cases. Matrix A(n, α, 0) middle below;
A(n, 1, β) middle right; A(n, α, 1) middle above; A(n, 0, β) middle left;
A(n, 0, 0) bottom left; A(n, 1, 0) bottom right; A(n, 1, 1) top right; A(n, 0, 1)
top left; A(n, α, 1− α) center.

5.4 Matrix A: determinant

This section is dedicated to prove that the matrix A has determinant

detA = (1− α− β)
n(n−1)

2 . (5.19)

To prove this, some intermediate steps are needed. First, the limit cases for

extreme values of α and β are analysed.

5.4.1 Limit cases

In this subsection, it is proven that the determinant of A satisfies Eq. (5.19),

when β = 1− α or α, β = 0, 1, i.e., the special cases shown in Sec. 5.3.

If β = 1−α, Eqs. (5.7) and (5.8) show that each line of A(n, α, 1−α) has

all identical elements, i.e., each line is a multiple of vector [1, · · · , 1]; hence,

all the lines are linear depend and therefore the determinant is detA(n, α, 1−
α) = 0.

If α, β = 0 then the matrix A is the identity and therefore the deter-

minant is detA(n, 0, 0) = 1, see Eq. (5.9). If α, β = 1 then the matrix

A is anti-diagonal with all elements equal to one, then the determinant is
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detA(n, 1, 1) = (−1)
n(n−1)

2 , (Eq. (5.10)).

If α = 0, β 6= 0, then the matrix A(n, 0, β) is upper triangular [Eqs. (5.11)-

(5.12)] and therefore the determinant is the product of the elements on the

diagonal Auu(n, 0, β) = (1− β)u−1, i.e.,

detA(n, 0, β) = (1− β)
n(n−1)

2 . (5.20)

If α = 1, β 6= 0, 1, the matrix A(n, 1, β) has all zeros above the anti-

diagonal [Eqs. (5.13)-(5.14)] and therefore the determinant is the product

of the elements on the anti-diagonal Auu(n, 1, β) = βu−1 and sign given by

(−1)
n(n−1)

2 , i.e.,

detA(n, 1, β) = (−β)
n(n−1)

2 . (5.21)

If β = 0, α 6= 0, 1, the matrix A(n, α, 0) is lower triangular [Eqs. (5.15)-

(5.16)] and therefore the determinant is the product of the elements on the

diagonal Auu(n, α, 0) = (1− α)n−u, i.e.,

detA(n, α, 0) = (1− α)
n(n−1)

2 . (5.22)

If β = 1, α 6= 0, 1, the matrix A(n, α, 1) has all zeros below the anti-

diagonal [Eqs. (5.17)-(5.18)] and therefore the determinant is the product

of the elements on the anti-diagonal Auu(n, α, 0) = αn−u and sign given by

(−1)
n(n−1)

2 , i.e.,

detA(n, α, 1) = (−α)
n(n−1)

2 . (5.23)

This concludes the study of the determinant of A for the special cases

presented in Sec. 5.3, proving that the determinant of A satisfies Eq. (5.19),

when β = 1− α or α, β = 0, 1.

5.4.2 Transformations

To prove Eq. (5.19) for every dimension n of the matrix A, it is useful to

describe it in terms of dimension n − 1. In this way, a mathematical in-

duction can be used as a technique for the proof. In this subsection, linear

transformations to define A of dimension n in terms of dimension n− 1 are



Chapter 5.4 − Gloria Cecchini 74

presented.

Future calculations become shorter if the transpose AT of matrix A is

considered. Considering AT instead of A does not affect the calculation of

the determinant since detAT = detA.

Consider the matrix A, defined by Eq. (5.6), and call ATn the transpose

of A of dimension n. The cases for α, β = 0, 1 or β = 1 − α have already

been discussed in Sec. 5.4.1; here, the case for 0 < α, β < 1 and β 6= 1− α is

considered. Note that Call ATn the matrix with elements

anij =



anij
(1− α− β)n−1

(1− α)n−1
i = 1(

anij −
ani1a

n
1j

an11

)
1− α

1− α− β
i = 2(

anij −
β

1− α
ani−1,j

)
1− α

1− α− β
i = 3, · · · , n

(5.24)

where anij are the elements of the matrix ATn . The aim is to prove that

ATn =


(1− α + β)n−1

0 ATn−1

 . (5.25)

Before proving this identity, the case for n = 3 is presented to fully

understand the nature of the transformations in Eq. (5.24).

The transpose of the matrix A for n = 3 is

AT3 =

 (1− α)2 2(1− α)α α2

(1− α)β (1− α)(1− β) + αβ α(1− β)

β2 2(1− β)β (1− β)2

 . (5.26)

The aim is to manipulate the matrix applying linear transformations so

that its determinant is not altered. First, one step of Gauss elimination

is performed; this gives all zeros in the first column, apart from the first
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element. After such calculation matrix AT3 becomes

AT3  

 (1− α)2 2(1− α)α α2

0 1− α− β − αβ
1−α + α

0 2(1−α−β)β
1−α

(1−2α)β2

(1−α)2 − 2β + 1

 . (5.27)

Secondly, multiply the first row with (1−α−β)2
(1−α)2 and the other two rows

with 1−α
1−α−β ; then sum to the last row, the second row times β

1−α . Note that

these operations do not change the determinant; the matrix becomes

AT3 =

 (1− α− β)2 2α(1−α−β)2
1−α

α2(1−α−β)2
(1−α)2

0 1− α α

0 β 1− β

 . (5.28)

Note that the bottom right 2× 2 submatrix is identical to AT2 , i.e.,

AT2 =

[
1− α α

β 1− β

]
. (5.29)

To get to the transformations in Eq. (5.24), following the steps presented in

the example of n = 3, the general case of dimension n is inferred.

The first step, i.e., the Gauss elimination, corresponds to the transforma-

tions

ânij =

anij i = 1

anij −
ani1
an11
an1j i = 2, · · · , n .

(5.30)

Multiplying the first row with (1−α−β)n−1

(1−α)n−1 and the other rows with 1−α
1−α−β

corresponds to

̂̂
anij =


(1−α−β)n−1

(1−α)n−1 ânij i = 1

1−α
1−α−β â

n
ij i = 2, · · · , n

=


(1−α−β)n−1

(1−α)n−1 anij i = 1

1−α
1−α−β

(
anij −

ani1
an11
an1j

)
i = 2, · · · , n.

(5.31)

Finally, except the first two rows, sum to each row its previous row times
β

1−α leading to
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anij =


̂̂
anij i = 1, 2̂̂
anij −

β
1−α

̂̂
ani−1,j i = 3, · · · , n

(5.32a)

=


(1−α−β)n−1

(1−α)n−1 anij i = 1

1−α
1−α−β

(
anij −

ani1
an11
an1j

)
i = 2

1−α
1−α−β

[(
anij −

ani1
an11
an1j

)
− β

1−α

(
ani−1,j −

ani−1,1

an11
an1j

)]
i = 3, · · · , n

(5.32b)

=


· · · i = 1

· · · i = 2

1−α
1−α−β

[
anij −

β
1−αa

n
i−1,j −

an1j
an11

(
ani1 −

β
1−αa

n
i−1,1

)]
i = 3, · · · , n

(5.32c)

=


· · ·

· · ·
1−α

1−α−β

[
anij−

β
1−αa

n
i−1,j−

an1j
an11

(
(1−α)n−iβi−1− β

1−α(1−α)n−i+1βi−2
)]

(5.32d)

=



anij
(1− α− β)n−1

(1− α)n−1
i = 1(

anij −
ani1a

n
1j

an11

)
1− α

1− α− β
i = 2(

anij −
β

1− α
ani−1,j

)
1− α

1− α− β
i = 3, · · · , n.

(5.32e)

Note that Eq. (5.32e) is identical to Eq. (5.24).

To prove Eq. (5.25), the identity ani+1,j+1 = an−1ij has to be verified, i.e.,(
an2j −

an21a
n
1j

an11

)
1− α

1− α− β
= an−11j (5.33)

and(
ani+1,j+1 −

β

1− α
ani,j+1

)
1− α

1− α− β
= an−1ij for i = 2, · · ·n− 1 (5.34)



Chapter 5.4 − Gloria Cecchini 77

are valid. To achieve this, the calculation is split into six cases, i.e.,

i = j,

j > i

j ≥ n− i− 1
,

j > i

j < n− i− 1
,

j < i

j > n− i
,

j < i

j < n− i
,

j < i

j = n− i
. (5.35)

For each of these conditions, the identity ani+1,j+1 = an−1ij has been verified

using analytic computations in Wolfram Mathematica 11.2.0.0. The fol-

lowing pages show the code, and respective results, of such computations.

The notation used in the code is the following: f[n,α, β,k’,k] corresponds to

P(d′=k′|d=k) [Eq. (5.5)]; c refers to the column of the matrix, i.e., k + 1 or

v; r refers to the row of the matrix, i.e., k′ + 1 or u. Therefore, the notation

f[n, α, β, j, i] corresponds to the element ani+1,j+1.
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5.4.3 Determinant: the proof

Using the results obtained so far in this chapter, it can now be proven that the

n×nmatrix A, defined by Eq. (5.6), has determinant detA = (1−α−β)
n(n−1)

2 .

For α, β = 0, 1 or β = 1 − α, the proof is presented in Sec. 5.4.1; hence,

assume 0 < α, β < 1 and β 6= 1 − α. Since a matrix and its transposed

have the same determinant, the matrix ATn is used for the mathematical

induction.

The base of induction is n = 2; in this case the matrix is

AT2 =

[
1− α α

β 1− β

]
(5.36)

and it has determinant detAT2 = 1− α− β.

The inductive step consists in assuming that detATn−1 = (1−α−β)
(n−1)(n−2)

2 ,

i.e., the inductive hypothesis for dimension n− 1, and proving the statement

for dimension n.

Since 0 < α, β < 1 and β 6= 1−α, the results in Sec. 5.4.2 can be applied.

The transformations defined by Eq. (5.24) guarantee that the matrix ATn

has the same determinant as ATn . According to Eq. (5.25), the determinant

of ATn can be written as detATn = (1− α − β)n−1 detATn−1 . The inductive

hypothesis is now applied, i.e.

detA = detATn

= detATn

=(1− α− β)n−1 detATn−1

=(1− α− β)n−1(1− α− β)
(n−1)(n−2)

2

=(1− α− β)
n(n−1)

2 , (5.37)

which concludes the proof.



Chapter 5.5 − Gloria Cecchini 82

5.5 Other properties

The matrix A is a left stochastic matrix, i.e., a real valued square matrix

with each column summing up to 1. Namely, the n× n square matrix A has

each of its entries defined as a probability, i.e., a real number between 0 and

1. The sum of column j is

n∑
i=1

Aij =
n∑
i=1

P(d′ = i− 1|d = j − 1) =

=
n−1∑
i=0

P(d = j − 1|d′ = i)P(d′ = i)

P(d = j − 1)
=

=
1

P(d = j − 1)

n−1∑
i=0

P(d = j − 1|d′ = i)P(d′ = i) =

=
1

P(d = j − 1)
P(d = j − 1) =

= 1 (5.38)

where the second and the forth equalities are obtained using Bayes theorem

and the law of total probability.

Note that, since A is a left stochastic matrix, AT is a right stochastic

matrix, i.e., each row has sum 1.

5.5.1 Eigenvectors and eigenvalues

Call V the matrix of eigenvectors ofAT , it can be shown that V = {Vk′k}k′,k∈{0,··· ,n−1}
has elements
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Vk′k =
1(

n−1

k′

)



k′∑
i=0

(
k

i

)(
n−1−k
k′−i

)
βi−k(−α)k−i

if k′ ≤ k and k′ ≤ n−1−k
n−1−k∑
i=0

(
k

k′−i

)(
n−1−k

i

)
βk
′−k−i(−α)k−k

′+i

if n−1−k < k′ ≤ k
n−1−k′∑
i=0

(
k

n−1−k′−i

)(
n−1−k

i

)
βk
′−n+1+i(−α)n−1−k

′−i

if k′ ≥ n−1−k and k′ > k
k∑
i=0

(
k

i

)(
n−1−k
k′−i

)
βi−k(−α)k−i

if k < k′ < n−1−k.

(5.39)

Equation (5.39) can be proven to be valid for n ≤ 50 using analytic computa-

tions in Wolfram Mathematica 11.2.0.0. For dimension of the matrix n > 50,

better strategies to compute the determinant should be investigated to re-

duce computational time. The strategy in Sec. 5.4 to prove the determinant

of A might be successful also in this case.

Equation (5.39) can be written in a compact form as

Vk′k =
1(
n−1
k′

)min{k,n−1−k′}∑
i=max{0,k−k′}

(
k

i

)(
n− 1− k
k′ − k + i

)
β−i(−α)i, (5.40)

using Eq. (5.5); and also with the matrix indices u, v ∈ {1, · · · , n} in the

form

Vuv =
1(
n−1
u−1

)min{v−1,n−u}∑
i=max{0,v−u}

(
v − 1

i

)(
n− v

u− v + i

)
β−i(−α)i. (5.41)
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The inverse of the matrix V has elements

V−1uv = (−1)u+v
(
n− 1

v − 1

)(
n− 1

u− 1

)
βn−1

(α + β)n−1
Vuv (5.42)

for u, v ∈ {1, · · · , n}. Also in this case, Eq. (5.42) can be demonstrated for

n ≤ 50, and has to be rigorously proven for a general n.

Still speculating about the validity of these equations to be true for a

general n, it can be shown that the eigenvalues

λi = (1− α− β)i−1 (5.43)

of AT are all distinct values, i.e. they have algebraic multiplicity 1, for

i ∈ {1, · · · , n}. Call Λ the matrix of the eigenvalues, i.e.,

Λ =

[ λ1
...

λn

]
, (5.44)

the eigendecomposition of AT is AT = VΛV−1.
The formulation of the determinant of A does not contradict the validity

of these equations, since it can be calculate as the product of all its eigenval-

ues, i.e.,

detA =
n∏
i=1

λi (5.45)

=
n∏
i=1

(1− α− β)i−1 (5.46)

= (1− α− β)
n(n−1)

2 , (5.47)

that is the same result mathematically proven in Sec. 5.4. Note that the

eigenvalues of A are the same as the ones of AT .

As mentioned in Sec. 4.2.1, the matrix A is invertible if and only if detA 6=
0, i.e., α 6= 1− β. Also, for 0 < α, β < 1, the determinant of A converges to

zero when n goes to infinity, since |1− α− β| < 1.
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5.5.2 Gauss elimination

Another interesting property of matrix A is the structure of the matrix when

performing Gaussian elimination. Performing n−1 steps of Gauss elimination

on the n× n matrix A, the diagonal matrix obtained has elements

di = (1− α)n−2i+1(1− α− β)i−1. (5.48)

Also in this case, this formulation can be demonstrated for n ≤ 50, and has

to be rigorously proven for a general n.

As an example, the matrix A of dimension n = 5, after 4 steps of Gauss

elimination is

(α−1)4 0 0 0 0

0 −(α−1)2(α+β−1) 0 0 0

0 0 (α+β−1)2 0 0

0 0 0 − (α+β−1)3
(α−1)2 0

0 0 0 0 (α+β−1)4
(α−1)4


. (5.49)

This is an interesting property that might prove to be useful in future studies.

5.5.3 Mean and variance

In this subsection, mean and variance of the probability distribution P(d′ =

k′|d = k) are calculated. As described in the scheme in Fig. 5.1, Y1 and Y2 are

the independent random variables with binomial distributions B(k, 1 − β),

[Eq. (4.4)], and B(n−1−k, α), [Eq. (4.5)], respectively. The random variable

X = Y1 + Y2 is given by the sum of Y1 and Y2.

The mean is a linear operator, therefore it follows that E(X) = E(Y1) +

E(Y2), hence

E(X) = k(1− β) + (n− 1− k)α. (5.50)

Since Y1 and Y2 are independent random variables, the variance of their sum
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is V(X) = V(Y1) + V(Y2), therefore

V(X) = kβ(1− β) + (n− 1− k)α(1− α). (5.51)

5.6 Conclusion

In this chapter, a special case of a Poisson binomial distribution is analysed.

The conditional probabilities of random variables d′|d = k define the matrix

A, introduced in Chapter 4. The random variables d′|d = k consists of a sum

of n − 1 Bernoulli trials, k of those have probability of success 1 − β each,

and each of the remaining n−1−k trials has probability of success α, whose

probabilities correspond to special cases of Poisson binomial distributions.

In this chapter, several properties of the matrix A are discussed, and

a proof for the determinant of the matrix A is presented, concluding the

analysis presented in Chapter 4. Further analyses should focus on the ana-

lytical proofs of eigenvectors (Eq. 5.40) and eigenvalues (Eq. (5.43)) possibly

applying the strategy used to prove the determinant of A (Sec. 5.4).

The results presented in this chapter should be generalised to the full

case of the Poisson binomial distribution. The distribution of a sum of in-

dependent Bernoulli random variables that are not identically distributed

should be investigated and analysed considering the properties disclosed in

this chapter.



Chapter 6

Iterative procedure for network

inference

6.1 Introduction

Chapter 3 describes the influence of false positive and false negative conclu-

sions about links on the network structure. Several simulation results are

presented and optimal values for each network topology and characteristic

are shown. Section 3.5 speculates that the simulation study presented could

be used as an iterative procedure to achieve a better network reconstruc-

tion. This chapter is dedicated to such a procedure. The results obtained in

Chapter 4 are implemented in this procedure, since they provide an analytic

framework to reconstruct the vertex degree distribution of the network.

Roughly, the iteration procedure consists of choosing various values for

α to perform the iteration steps of the network reconstruction. For the

first step, the standard value for α of 0.05 can be chosen as an example.

The result of this first step gives a first estimate of the network topology of

interest. For the second iteration step the value for α is adjusted according to

the findings of the first step. This procedure is iterated, ultimately leading

to a reconstruction of the network characteristic tailored to its previously

unknown network topology.

87
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6.2 Network inference: procedure

Chapter 4 shows that the vertex degree distribution of a network is influ-

enced by false positive and false negative conclusions about the presence or

absence of links. The analytic formula [Eq. (4.8)] shows the dependence of

the biased vertex degree distribution on the network’s dimension and the

probabilities α and β of type I and type II errors, respectively. In Sec. 4.2.2,

the density of the vertex degree distribution of the original network is found.

Equation (4.10) P = A+
k P ′ enables to calculating analytically the vertex

degree distribution of the original network if the biased one and the proba-

bilities of type I and type II errors are given; P and P ′ are the densities of

the vertex degree distributions of original and biased networks. The matrix

A+
k is the pseudoinverse of the truncated matrix A using the singular value

decomposition, where A maps P into P ′, i.e. P ′ = AP . Note that A depends

on n, α, β, where n is the number of vertices in the network.

As stated in Sec. 4.5, a limitation of this method is the assumption that

the probabilities of type I and type II errors are known a priori. It has been

shown that wrong estimates of these two errors, within certain bounds, do

not cause the reconstruction of be rendered invalid. The iterative procedure

presented in this chapter explores the way to adjust the estimates of these

two errors, so to improve the reconstruction of the network of interest.

In Sec. 2.3, it is shown that α and β are reciprocally dependent. Their

functional relationship depends on the nature of the problem taken into ac-

count. Consider, for example, a network of coupled oscillators, and assume

to be able to detect the dynamic of every node. Perform an hypothesis test

of no-correlation for every pair of nodes; if the p−value of the test is smaller

than or equal to the significance level α, then the link between the corre-

sponding nodes is considered to be present. In a real-world application, an

estimate for the distribution of such correlation coefficients as a function of

the number of data points N and the true correlation coefficient ρ should be

available. Nevertheless, there exist cases in which ρ is not the same for every

link; consider, e.g., a network of coupled oscillators where the initial coupling

strengths are not the same for all the links. For sake of simplicity, and to
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make the argument clearer, this chapter assumes that these correlation coef-

ficients are identically distributed and follow the distribution in Eq. (2.31).

In this case, it is reasonable to assume that it is possible to estimate ρ, given

the distribution of the correlation coefficients. The relationship between α

and β is described by Eqs. (2.32) and (2.33). Once α is chosen,

β = β(N, ρ, α) (6.1)

can be found as a function of α,N, and ρ.

Each step of the iterative procedure uses the information provided so far

to reconstruct the vertex degree distribution of a network, when the biased

one is given.

The first step of iteration consists itself of various parts. After acquiring

data from a network, estimate the true correlation coefficient ρ. Fix the

significance level to α = 0.05 and perform the hypothesis test as explained

above. The result of the test gives the so-called biased network, and therefore

the vertex degree distribution P ′ can be calculated using Eq. (4.11). Knowing

N and ρ, β = β(N, ρ, α) is found, since α has been fixed, and therefore the

matrix A can be evaluated. All the ingredients needed to solve Eq. (4.10) are

now available, hence the vertex degree distribution P of the original network

is calculated, and this concludes the first iteration step. Table 6.1 summarises

the procedure of the first iteration step.

Section 4.4 shows that wrong estimates of α and β, within certain bounds,

do not cause the reconstruction P = A+
k P ′ [Eq. (4.10)] of be rendered invalid.

In addition, as shown in various simulations, the robustness on perturbations

of α and β of the reconstruction method performs differently depending on

the network topology of interest. Therefore, the procedure explained above

and summarised in Table 6.1, can be enhanced using this result. Namely, the

density of the vertex degree distribution P0, that is inferred at the last step

of the procedure, is used to perform a robustness analysis varying the value

of α, and consequently of β [Eq. (6.1)]. The value of α, that gives the most

robust result, is used to iterate the procedure. A general step of iteration is

summarised in Table 6.2.
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.
Estimate

corr. coeff. ρ
Fix thresh.
α = 0.05

Calculate
A = A(n, α, β)

Find
β = β(N, ρ, α)

Calculate
distribution P ′

Evaluate
P = A+

k P ′

.

Table 6.1: Network Inference: procedure scheme. After taking data, a cor-
relation analysis has to be performed. The value of the true correlation ρ is
estimated. A value for the significance level α = 0.05 is chosen as a threshold
and all the values for which the null hypothesis is not rejected are discarded.
The probability density function P ′ of the vertex degree distribution of the
biased network is calculated. The value for β is found using Eq. (6.1), there-
fore also A is computed. Knowing P ′ and A, the probability density function
P of the original vertex degree distribution is calculated using Eq. (4.10).

The robustness analysis consists of simulating several different biased

networks G′(α) varying α, starting from a network G0 with vertex degree

distribution P0. For each G′(α), a robustness analysis is performed, as ex-

plained in Sec. 4.4. Namely, call P∗0 (α, δ) the density of the reconstructed

vertex degree distribution, using as biased network G′(α), and a perturbation

δ on α.

To quantify the bias between P0 and P∗0 (α, δ), the Kolmogorov-Smirnov

distance is considered. The Kolmogorov-Smirnov test is a test based on the

closeness of two distributions, which uses the Kolmogorov-Smirnov statis-

tic, also called distance, to perform a test of hypothesis. The Kolmogorov-

Smirnov distance is the largest difference between the two distributions [57].
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.
Estimate

corr. coeff. ρ
Fix thresh.
α = α(P0)

Calculate
A = A(n, α, β)

Find
β = β(N, ρ, α)

Calculate
distribution P ′

Evaluate
P0 = A+

k P ′

.

Table 6.2: Network Inference: procedure scheme with iteration. After taking
data, a correlation analysis has to be performed. The value of the true corre-
lation ρ is estimated. A value for the significance level α is chosen depending
on P0 that is the vertex degree distribution inferred in the previous step. All
the values for which the null hypothesis is not rejected are discarded. The
probability density function P ′ of the vertex degree distribution of the biased
network is calculated. The value for β is found using Eq. (6.1), therefore also
A is computed. Knowing P ′ and A, the probability density function P of the
original vertex degree distribution is calculated using Eq. (4.10).

The Kolmogorov-Smirnov distance

D(α, δ) = max |F∗0 (α, δ)−F0|, (6.2)

is the distance between P0 and P∗0 (α, δ), where F0 and F∗0 (α, δ) are the

distributions of P0 and P∗0 (α, δ), respectively.

6.3 Simulation study, results and discussion

In this section a simulation study is presented to show the applicability of the

method described in the previous section. Consider an Erdős-Rényi network

with n = 100 nodes and probability of connection 0.2. Fix the true correla-
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Figure 6.1: Kolmogorov-Smirnov distance D(α, αp) obtained from D(α, δ),
where αp = α + δα, i.e., the perturbed α (x-axis). An Erdős-Rényi network
with n = 100 nodes and probability of connection 0.2 is used for the analysis.

tion coefficient ρ = 0.3 and the number of data points N = 100, following

the density f(100, 0.3, r) [Eq. (2.31)] a value for the correlation is assigned at

random to each link; while for each absent link the value is chosen at random

with distribution f(100, 0, r). Fixing the significant level to α = 0.05 and

selecting all the links above this threshold, the biased or detected network is

obtained. The procedure explained above is now applied to find the vertex

degree distribution of the original network.

The result of the first iteration P0 = A+
k P ′ is used to perform a robustness

analysis and the densities of the vertex degree distributions are calculated

P∗0 (α, δ). Once the Kolmogorov-Smirnov distance D(α, δ) is evaluated, the

value of α that gives the most robust results is chosen. Figure 6.1 shows the

Kolmogorov-Smirnov distance; for simplicity, the x-axis represents the value

of the perturbed α, i.e., αp = α + δα. In this case, various values of α give

robust results, α = 0.0239 is chosen and the procedure is iterated.

Figure 6.2 shows the results of three iteration steps. Note that the value

of the true correlation coefficient ρ = 0.3 is assumed to be correctly inferred,
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Figure 6.2: Results for three iteration steps of the reconstruction of an Erdős-
Rényi network with n = 100 nodes and probability of connection 0.2, starting
with correct inference of α and β.

and the theoretical distributions f(100, 0.3, r) and f(100, 0, r) are used to

find β when the standard value of α = 0.05 is fixed. Since a value for the

correlation is assigned at random to each link, the actual value for α, and

consequently β, will slightly differ form the theoretical values. As shown

in Sec. 4.4, small perturbations of α and β do not cause the failure of the

reconstruction method; in this example, this is reflected by the fact that

the result of the first iteration gives already a correct reconstruction. The

results for the other two iteration steps are shown here to demonstrate that

the process converges, and once the correct reconstruction is achieved, the

following results do not deviate from it. The difference of the three curves is

due to the smoothness of the solutions.

Figure 6.3 shows the results of three iteration steps, when the estimate

of α, and consequently β is initially wrong. Namely, the true correlation

coefficient ρ = 0.3 is still assumed to be correctly inferred, α = 0.05 is

used to construct the detected network, but α = 0.07 is used to evaluate

P0 = A+
k P ′. Even if the result of the first iteration step does not provide a



Chapter 6.4 − Gloria Cecchini 94

Figure 6.3: Results for three iteration steps of the reconstruction of an Erdős-
Rényi network with n = 100 nodes and probability of connection 0.2, starting
with wrong inference of α and β.

correct reconstruction, already at the second step this bias is corrected.

The method described in the previous section is now applied to a Scale-

Free network of 100 nodes. Figure 6.4 shows the Kolmogorov-Smirnov dis-

tance D(α, αp) obtained after the first iteration step. Interestingly, the values

for α that give the most robust results are obtained for α as small as pos-

sible; intuitively, this means that high certainty about the presence of links

is needed to recover the scale-freeness property of a network. Note that this

is in agreement with the results shown in Fig. 3.4; in the case of Fig. 3.4,

the relation between α and β is different from the case presented in this sec-

tion, nevertheless, the general concept of keeping α as small as possible to

correctly recover the scale-freeness property, remains valid.

Figure 6.5 shows the results of three iteration steps, when the estimate

of α, and consequently β is initially wrong; the same values for ρ, true and

wrong value of α are used. Also in this case, the second iteration step provides

a correct reconstruction, which is improved at the third step.
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Figure 6.4: Kolmogorov-Smirnov distance D(α, αp) obtained from D(α, δ),
where αp = α + δα, i.e., the perturbed α (x-axis). A scale-free network of
100 nodes is used for the analysis.

Figure 6.5: Results for three iteration steps of the reconstruction of a scale-
free network with n = 100 nodes, starting with wrong inference of α and
β.
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6.4 Conclusion

The analysis presented in Chapter 4 is advanced in this chapter, and an

iterative procedure to reconstruct the vertex degree distribution is suggested.

This procedure should be used when the estimates of α and β might not

be accurate and large errors on these estimates might occur; therefore, the

robustness, shown in Chapter 4, is not guaranteed.

This iteration procedure allows to gain, at each step, a better insight on

the network topology. Consequently, the value for α can be tuned to obtain

a more robust reconstruction, thereby achieving a better result. It is shown,

using some examples, that this method converges to the correct reconstruc-

tion of the vertex degree distribution. Furthermore, only few iteration steps

are needed to achieve this goal.

Future investigations should apply this iterative procedure to various net-

work topologies, to demonstrate that these results are not only case specific.

Moreover, future studies should analyse the robustness of this procedure and

find the size of perturbation needed to make the reconstruction fail even after

various iteration steps. Finally, with the aim to make this procedure even

more general, methods to infer ρ should be investigated. Furthermore, the

case in which the inference of ρ is not accurate should be carefully studied.



Chapter 7

Impact of network

characteristics on false

conclusions about links

7.1 Introduction

The investigations presented so far in the thesis focus on the influence of false

positive and false negative conclusions about links on the network structure.

In Chapter 3, such an influence is analysed on network characteristics. It is

shown that within the same network topology, the values for α and β leading

to the least biased results change depending on the network characteristic of

interest. In this chapter, the analysis is reversed - the study focuses on the

influence of network characteristics on the probability of type I and type II

errors to occur.

Assuming to know the underlying true network, a simulation study is per-

formed in Sec. 7.2 to show the dependence of the probability of false positive

and false negative links, and the shortest path length and the detour degree,

respectively. These results are then applied in Sec. 7.3 when the underlying

true network is not known a priori, to improve the network reconstruction.

97
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7.2 Dependence of false conclusions on net-

work characteristics

This section focuses on the study of the dependence of false positive and false

negative conclusions about links from network characteristics. To this aim,

two different oscillatory systems and reconstruction methods are considered,

see Sec. 7.2.1.

The original network that has to be reconstructed is G; the subscriptions

G1 and G2 are specified only when there is the need to differentiate the

oscillatory system and reconstruction method used, see Sec. 7.2.1. Call S the

matrix of all directed connection strengths inferred, i.e., Sij is the strength

of connection i→ j. When the aim is to reconstruct the original network G,

i.e. to find the binary asymmetric adjacency matrix A, from the observed

connection strengths S, a threshold has to be chosen. If the connectivity

measure passes a certain threshold, the link between the corresponding nodes

is assumed to be present.

As shown in Chapter 2.3 for the case of Pearson correlation coefficients,

also using the reconstruction methods presented in this section, the recon-

structed coupling strengths have a certain distribution. This distribution is

given by the sum of the distributions of the coupling strengths constructed

from to the existing and not existing links. Consequently, type I and type

II errors can occur when inferring the connections. Assuming to know the

underlying true network, the interest is to check whether it is more likely to

have a false conclusion depending on a specific local network characteristic.

Sections 7.2.2 and 7.2.3 show that false positive conclusions are influenced

by the shortest path length, while the detour degree influences false negative

conclusions.
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7.2.1 Reconstruction methods

The first case study consists of a directed network G1 of coupled phase os-

cillators [56]

φ̇k = ωk + ε
∑
j

Akj sin(φj − φk −Θjk). (7.1)

The frequencies ωk are uniformly distributed in the interval (0.5, 1.5), the

phase shifts Θjk are uniformly distributed in the interval (0, 2π), and A is the

adjacency matrix. The coupling constants are reconstructed using pairwise

algorithm described in [55].

The second case study considered is a directed network of pulse-coupled

neuronlike oscillators; such a network is indicated in this chapter with G2.

The model presented in [16] uses passive observation of pulse trains of all

nodes to reconstruct networks of pulse-coupled neuronlike oscillators. It is

assumed that units are described by their phase response curves and that

their phases are instantaneously reset by incoming pulses. Using an itera-

tive procedure, the properties of all nodes are recovered, namely their phase

response curves and natural frequencies, as well as strengths of all directed

connections. For the purpose of this thesis, only the reconstructed coupling

strength are considered.

7.2.2 False positive and shortest path length

A false positive conclusion about a link i→ j occurs when the reconstructed

coupling strength passes the chosen threshold, but the directed link i → j

does not exist. This means that there is a relatively strong strength of

connection between node i and node j. This might happen because node i

influences a third node k, which in turn influences node j, i.e., i → k and

k → j. Intuitively, this is likely to happen when the path between i and j is

short. It is reasonable to assume that the strength of interaction decreases

for each intermediate step. This concept corresponds to speculating that

α is influenced by the shortest path length. Namely, a non-existing link

i → j is erroneously considered present with probability α that depends

on its shortest path length `ij (see Sec. 2.2 for the definition). In [43], the
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Figure 7.1: Reconstructed coupling strengths and relationship of αk as a
function of the threshold, for NIT = 100 Erdős-Rényi networks G1 with
n = 100 vertices, probability of connection p = 0.15, ε = 0.3, and Ng = 500.

authors state that this type of error is typical in a bivariate analysis. Call

αk the conditioned probability to observe a non-existing link i → j, under

the condition that its shortest path length is `ij = k. As described before,

it is more likely to have a false positive conclusion about a link when this

non-existing link connects two nodes with shorter distance, i.e., if k1 < k2

then αk1 > αk2 .

A simulation study is made to demonstrate this speculation. Consider

G to be an Erdős-Rényi network with n = 100 vertices and probability of

connection p = 0.15. For each network, NIT simulations are made to have

enough statistical data. The same value ε for the coupling strength is used

for all connections. A number Ng of data points is used to perform the

reconstruction methods explained above.

Figure 7.1 shows an example of NIT = 100 simulations of a network, of

type G1, with original coupling strength ε = 0.3; Ng = 500 data points are

used for the reconstruction method. The histogram of the reconstructed cou-

pling strengths [Fig. 7.1a] shows that the distributions of the true and absent

links are not clearly separated, and therefore type I errors are expected for

any value of the threshold. Figure 7.1b shows, as a function of the threshold,

the conditioned probabilities α2 and α3 under the condition that the shortest

path length is ` = 2 and ` = 3, respectively. Note that αk for k > 3 does
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not exist, due to the dimension and density of the network topologies. For

every value of the threshold, the curve α2 is always above α3, as speculated

above. Additionally, Fig 7.3 shows results for various values of ε and Ng.

In all the cases shown, the relationship between the probability of a false

positive conclusion about a link and its shortest path length is qualitatively

the same.

7.2.3 False negative and detour degree

A false negative conclusion about a link i→ j occurs when the reconstructed

coupling strength is below the chosen threshold, but the directed link i→ j

does exist. This might happen because node i not only influences node j

directly, but it also influences it through many other short paths. Therefore,

node j is influenced from all of the nodes involved, hence the interaction

between i and j is corrupted. Intuitively, such effect is noticeable when the

detours are rather short, and it becomes bigger when the number of detours

increases. This concept corresponds to speculating that β depends on the

detour degree (see Sec. 2.2 for the definition), and it is more likely to have a

false negative conclusion about a link when it has a larger detour degree. The

larger the detour degree k2 > k1 is, the more likely a type II error βk2 > βk1

occurs, where βk is the conditioned probability to miss an existing link i→ j,

under the condition that its detour degree is ∆ij = k.

As before, a simulation study is made to demonstrate that this specula-

tion is true. Consider the same example presented above, i.e., NIT = 100

Erdős-Rényi networks G1. Figure 7.2a is the histogram of the reconstructed

coupling strengths (same as Fig. 7.1a). Figure 7.2b shows the conditioned

probability βk as a function of the detour degree ∆, for the value of the

threshold equal to 0.08. Links with detour degree βk for k > 7 do not exist

in the network, due to lack of enough statistical data. As shown by the error

bars, the larger the detour degree is, the fewer links with such detour degree

are present in the network. Figure 7.2b presents an upward trend demon-

strating that it is more likely to have a false negative conclusion about a

link when it has a larger detour degree, as speculated above. Additionally,
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Figure 7.2: Reconstructed coupling strengths and βk as a function of the
detour degree ∆, for NIT = 100 Erdős-Rényi networks G1 with n = 100
vertices, probability of connection p = 0.15, ε = 0.3, and Ng = 500.

Fig. 7.3 shows results for various values of ε, and Ng. In all the cases shown,

the relationship between the probability of a false negative conclusions about

a link and its detour degree is qualitatively the same.

7.2.4 Results

In Figs. 7.3 and 7.4, NIT = 100 Erdős-Rényi networks, each with n = 100

vertices and probability of connection p = 0.15 are simulated. In Fig. 7.3,

networks G1 of coupled phase oscillators are considered, while networks G2

of pulse-coupled neuronlike oscillators are considered in Fig. 7.4. Both cases

show, for various values of ε and Ng, the histogram of the reconstructed

coupling strengths, the relation of αk and the threshold, and the relation of

βk and the detour degree ∆ for a fixed value of the threshold.

The second column of Figs. 7.3 and 7.4 shows the relationship of αk and

the value of the threshold, as shown in Fig. 7.1. These plots demonstrate

that for each value of the threshold, it is more likely to have a false positive

conclusion about a link, when this non-existing link connects two nodes with

shorter distance.

The third column of Figs. 7.3 and 7.4 shows the relationship of βk and the

detour degree ∆ for a fixed value of the threshold. The value of the threshold
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changes according to the histogram in the first column. These findings show

that it is more likely to have a false negative conclusion about a link when

it has a larger detour degree. However, there are two cases in which the

relationship between β and ∆ is not increasing monotonously; this happens

in Fig. 7.3 for ε = 0.05 and Ng = 700, 800. This is motivated by the fact

that the initial value of the coupling strength ε = 0.05 might be not strong

enough to propagate on a path of length two and corrupt the strength of

the direct connection. Namely, the direct connection has coupling strength

ε = 0.05, while the two-steps path has strength ε2 = 0.0025.



Chapter 7.2 − Gloria Cecchini 104

Histogram α β

ε = 0.3
Ng =
500

ε = 0.4
Ng =
500

ε= 0.05
Ng =
700

ε = 0.1
Ng =
700

ε= 0.05
Ng =
800

ε = 0.1
Ng =
800

coupling strength threshold detour degree

Figure 7.3: Results for NIT = 100 Erdős-Rényi networks G1 - network of
coupled phase oscillators - each with n = 100 vertices and probability of
connection p = 0.15. First column represents the histogram of the recon-
structed coupling strengths; the second column shows the relation of αk and
the threshold; the third column presents the relation of βk and the detour
degree ∆ for a fixed value of the threshold.
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Figure 7.4: Results for NIT = 100 Erdős-Rényi networks G2 - network of
pulse-coupled neuronlike oscillators - each with n = 100 vertices and proba-
bility of connection p = 0.15. First column represents the histogram of the
reconstructed coupling strengths; the second column shows the relation of
αk and the threshold; the third column presents the relation of βk and the
detour degree ∆ for a fixed value of the threshold.
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7.3 Coupling strength and network charac-

teristics

In the previous section [Sec. 7.2], the dependence of α and β on the short-

est path length and the detour degree, respectively, are demonstrated. In

this section, the interest is to study properties of the distribution of the re-

constructed coupling strengths as a function of the detour degree and the

shortest path length. The aim here is to find common properties for these

characteristics, with the goal of improving network inference.

7.3.1 Weighted network

In this section, it is considered detected network the one defined by the

weighted adjacency matrix S; the elements of S are the reconstructed cou-

pling strengths. Note that even when the underlying true network is not

known a priori, the adjacency matrix S can be evaluated, and no further

assumptions are needed. The detected network is all-to-all connected with

weighted edges, without self-loops, i.e., edges that connect a node to itself.

In Sec. 2.2, the definitions provided for the shortest path length and the de-

tour degree are valid only for binary networks; a generalisation for weighted

networks is needed.

The shortest path length from node i to node j through a weighted net-

work is the minimum of the sum, over all the possible paths from i to j, of

the contributions given by the weights, i.e.,

`ij = min
(
s−1ik1 + · · ·+ s−1knj

)
, (7.2)

where sij are the elements of the adjacency matrix S, and therefore it corre-

sponds to the weight of the link i → j [51]. Note that for binary networks,

this definition is coherent with the one in Sec. 2.2. An existing link corre-

sponds to weight 1 and an absent link to weight 0, the latter would lead to an

infinite contribution in the sum. Therefore Eq. (7.2) reduces to the number

of links separating i and j if the shortest path is taken.



Chapter 7.3 − Gloria Cecchini 107

The detour degree of the link i→ j measures the contribution of all the

possible 2-step paths from i to j. In weighted networks, such a contribution

must consider the weight of the edges. Namely, the detour degree

∆ij =
∑
k

sikskj (7.3)

is scaled by the product of the weights of the two edges that form the 2-step

path; sij are the elements of the adjacency matrix S. For binary networks,

this definition is coherent with the definition in Sec. 2.2, since for skh ∈ {0, 1}
Eq. (7.3) reduces to the total number of paths of length 2 from node i to

node j. Note that, in both the binary and weighted cases, Eq. (7.3) can be

expressed by the matrix form ∆ = S2.

Using definitions in Eqs. (7.2) and (7.3), the distributions of the recon-

structed coupling strengths as a function of the shortest path length and the

detour degree are analysed in Secs. 7.3.2 and 7.3.3, respectively.

7.3.2 Coupling strength and shortest path length

Consider, like the examples presented in Secs. 7.2.2 and 7.2.3, NIT = 100 sim-

ulations of Erdős-Rényi networks of type G1, with original coupling strength

ε = 0.4, and Ng = 500 data points used for the reconstruction method. Fig-

ure 7.5 shows the distribution of the reconstructed coupling strengths as a

function of the shortest path length, or distance. All the values for the re-

constructed coupling strengths lie in the part of the plane delimited by the

curve y = 1/x; this is motivated by the fact that the shortest path length

between nodes i and j must be equal to or smaller than the inverse of the

reconstructed coupling strength sij by definition, see Eq. (7.2).

Using the true underlying network for the colour coding, Fig. 7.6 shows

the same distribution as the one in Fig. 7.5, displaying in blue the original

links and the absent links in orange. Interestingly, the reconstructed coupling

strengths of the original links lie on the 1/x curve almost entirely (98.9%);

while the values associated to the absent links have a double-distribution: on

the curve and below. This information can thus be used when the underlying
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Figure 7.7: Density histogram for the reconstructed coupling strengths as a
function of the detour degree. Colour code expresses the frequency in the
logarithmic scale.

true network is not known a priori to improve the network inference, as shown

in Sec. 7.3.4.

7.3.3 Coupling strength and detour degree

As above, consider NIT = 100 simulations of Erdős-Rényi networks of type

G1, with ε = 0.4 and Ng = 500. Figure 7.7 shows the reconstructed coupling

strengths as a function of the detour degree; the logarithmic scale is used to

express the density. From a visual inspection, a double-distribution structure

emerges from this plot.

Figure 7.8 shows the scatter plot of the reconstructed coupling strengths

as a function of the detour degree, for the original links in blue and the

absent links in orange. Note that Fig. 7.7 coincides to the density histogram

of the points plotted in Fig. 7.8. As expected the points corresponding to
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Figure 7.8: Reconstructed coupling strengths as a function of the detour
degree for the original true and absent links

the strongest coupling strengths, i.e. the ones lying in the upper part of

the plot, are originated by the original links. Furthermore, a dependence

on the detour degree emerges in both true and absent original links. The

double-distribution structure, arising from Fig. 7.7, corresponds indeed to

the distributions of true and absent original links. Therefore, for these types

of networks, when the underlying true network is not known a priori, a

different rule to decide the value of the threshold should be chosen, as shown

in Sec. 7.3.4.

7.3.4 Advanced threshold

The results presented in Secs. 7.3.2 and 7.3.3 show the dependence of the

reconstructed coupling strengths and two network characteristics - the short-

est path length and the detour degree. These results suggest that network

reconstructions might benefit from different strategies related to the defini-

tion of the threshold. The näıve choice consists in selecting a value for the

coupling strength, and all the reconstructed coupling strengths larger than

this value are considered to be present, the rest are discarded. In this section,

two novel choices for the threshold are presented.

Considering the analysis in Sec. 7.3.2, the first suggested choice for the
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Figure 7.9: Näıve threshold (white dotted-dashed line) and detour-threshold
(black dashed line), and density histogram for the reconstructed coupling
strengths as a function of the detour degree. Colour code expresses the
frequency in the logarithmic scale.

threshold consists of discarding all the reconstructed coupling strengths that

do not lie on the y = 1/x curve, where x and y are the shortest path length

and the reconstructed coupling strength, respectively. As above, consider

NIT = 100 simulations of Erdős-Rényi networks of type G1, with ε = 0.4

and Ng = 500. Take all links whose reconstructed coupling strength is the

reciprocal of the shortest path length, i.e., the points lying on the curve 1/x.

When making this choice for the threshold, the probability of false positive

links is 0.093, and the probability of false negative links is 0.011. If instead

the näıve threshold of 0.07 is used, i.e., keeping only the coupling strengths

larger than 0.07, the probabilities are α = 0.059 and β = 0.014. Note that

the probability of detecting a false positive link is slightly increased with the

new choice of the threshold, while the probability of false negative links is
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Figure 7.10: Histogram of the reconstructed coupling strengths for the true
and absent original links in three cases: (a) all the reconstructed coupling
strengths; (b) when considering the thresholds based on the shortest path
length; (c) the thresholds based on the detour degree.

decreased.

The second suggested choice for the threshold is based on the analysis of

Sec. 7.3.3. As shown, the dependence of the reconstructed coupling strengths

as a function of the detour degree, presents a double-distribution structure.

Intuitively, the new threshold is defined as the curve that corresponds to the

minimum between the two bulges of the histogram in Fig. 7.7. Figure 7.9

shows the näıve and new thresholds. When making the new choice for the

threshold, the probability of false positive links is 0.006, and the probability

of false negative links is 0.083. Note that the probability of detecting a false

negative link is increased with the new choice of the threshold, while the

probability of false positive links is decreased.

Figure 7.10 shows the histograms of the reconstructed coupling strengths

for the true and absent links in three situations: all the coupling strengths,

and when using the thresholds based on the shortest path length (path-

threshold) and based on the detour degree (detour-threshold). Figure 7.10b

shows that the path-threshold performs better then any näıve choice for the

threshold when the aim is to minimise the number of false negative. Even if a

relatively large number of false positive links is still present, the näıve choice

for the threshold would have let to an even larger number, when keeping the

same number of false negative. The goal achieved with the detour-threshold

proves to be evident from Fig. 7.10c; the number of remaining false positive
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Type of ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1
threshold α β α β α β α β
näıve 0.059 0.014 0.024 0.155 0.054 0.232 0.119 0.358
path 0.093 0.011 0.128 0.021 0.161 0.051 0.159 0.172
detour 0.006 0.083 0.008 0.186 0.024 0.256 0.084 0.338

Table 7.1: Table of proportion of false positive (α) and false negative (β)
links for three choices of the threshold (näıve, path-threshold, and detour-
threshold) and network of type G1 (see Sec. 7.2.1) with initial coupling
strength ε.

links appears to be insignificant with respect to the total.

Table 7.1 summarises the results for NIT = 100 simulations of Erdős-

Rényi networks of type G1, with Ng = 500 and initial coupling strength

ε. In all four scenarios, the result that minimises α is obtained using the

detour-threshold, and the result that minimises β is obtained using the path-

threshold.

7.4 Conclusion

Assuming to know the underlying true network, numerical simulations pre-

sented in Sec. 7.2 show that local network characteristics influence the prob-

ability of false negative and false positive conclusions about links to occur.

In particular, type I and type II errors are influenced by the shortest path

length and the detour degree, respectively [Secs.7.2.2 - 7.2.3].

When the underlying true network is not known a priori, the interest is to

check whether common rules apply for the reconstructed coupling strengths

as a function of the detour degree and the shortest path length. In Sec. 7.3 the

dependence between these quantities is analysed and common rules are found.

These relations suggest a novel approach to for the choice of the threshold.

In Sec. 7.3.4 two new advanced choices for the threshold are presented, and

each one of them leads to minimise the proportion of false positive or false

negative conclusions about links. These two new choices are a first attempt

to advanced thresholding and the results obtained are promising for further



Chapter 7.4 − Gloria Cecchini 114

studies. Future analysis should investigate how to combine these thresholds,

in a four dimensional space, with the aim to find a unique threshold that

improve both probabilities of false positive and false negative conclusions.

This should incorporate both more statistics and more understanding of the

roles of the influence of the shortest path length and detour degree on α and

β.

Further studies should also investigate if additional network characteris-

tics play a role in reconstruction analyses, and therefore could be used to

improve network inference. Furthermore, different reconstruction methods

should be studied to check whether the common rules found in this chapter

apply to a wider range of cases.



Chapter 8

Conclusions

A reliable inference of networks from data is of key interest in many scientific

fields. Several methods have been suggested in the literature to reliably

determine links in a network. These techniques rely on statistical methods,

typically controlling the number of false positive links, but not considering

false negative links. In this thesis new methodologies to improve network

inference are suggested. Initial analyses demonstrate the impact of false

positive and false negative conclusions about the presence or absence of links

on the resulting inferred network. Consequently, revealing the importance of

making well-considered choices leads to suggest new approaches to enhance

existing network reconstruction methods.

A simulation study, presented in Chapter 3, shows that different values

to balance false positive and false negative conclusions about links should

be used in order to reliably estimate network characteristics. The existence

of type I and type II errors in the reconstructed network, also called biased

network, is accepted. Consequently, an analytic method that describes the

influence of these two errors on the network structure is explored. As a result

of this analysis, an analytic formula of the density of the biased vertex degree

distribution is found (Chapters 4- 5).

In the inverse problem, the vertex degree distribution of the true underly-

ing network is analytically reconstructed, assuming the probabilities of type

I and type II errors. A further analysis shows that this procedure is robust
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with respect to errors in α and β as they typically occur when they have to

be estimated from data. This implies that wrong estimates, within reason-

able limits, do not cause the reconstruction of the node degree distribution

to be rendered invalid. In Chapter 6, an iterative procedure to enhance this

method is presented in the case of large errors on the estimates of α and β.

The investigations presented so far focus on the influence of false positive

and false negative links on the network characteristics. In Chapter 7, the

analysis is reversed - the study focuses on the influence of network character-

istics on the probability of type I and type II errors, in the case of networks

of coupled oscillators. The probabilities of α and β are influenced by the

shortest path length and the detour degree, respectively. These results have

been used to improve the network reconstruction, when the true underlying

network is not known a priori, introducing a novel and advanced concept of

threshold.

Future studies should investigate the influence of type I and type II errors

on other network characteristics, in order to enhance network inference. The

identification of functional relationships of various biased network character-

istics and their counterparts from the true network structure could result in

a better identification of the exact underlying true network, when the single

results are combined. The correct reconstruction of network characteristics

discloses important properties of the general network structure, leading to the

identification of key factors, such as small world behaviour or scale-freeness.

In the case of networks of coupled oscillators, future investigations should

explore the existence of relations of other network characteristics and the

probabilities of α and β. Further types of thresholds, like the ones described

in this thesis, can be introduced to optimise the balance of type I and type II

errors. The combination of these results leads to create one high-dimensional

threshold that considers the relations of α and β, and all the network char-

acteristics investigated. Future studies should also examine other dynamical

systems to find possible relations of network characteristics and the proba-

bilities of α and β.

In a more general framework, the work reported in this thesis, should be

tested in various complex systems, when a network is to be inferred. This
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ranges from networks of oscillators with chaotic dynamics to applications to

the Neurosciences. Another application of the methodologies investigated

in this thesis is to time-variant networks, which are a topic of interest in

numerous fields. Time-variant networks are networks with connections that

change over time. These networks are usually studied in terms of multilayer

networks, namely each time step corresponds to a layer of the network. The

methodologies described in this thesis should be applied to each single layer,

and therefore generalised for multilayer networks.

Another problem of key interest is when only a subset of all the nodes

has been observed. Using the approach presented in this work might help to

improve network reconstruction also in the case of undetected nodes. The

correct reconstruction of the vertex degree distribution of the subset of nodes

that has been observed, can be used to calculate the degrees of the undetected

nodes. It is reasonable to assume that the degrees of the unobserved nodes

follow the same degree distribution as the observed ones.
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