
Dissertation

Towards Automated Advanced Vulnerability Analysis

by

Marian Gawron

Supervisors

Prof. Dr. Christoph Meinel

Chair Internet-Technologies and -Systems

Hasso Plattner Institute at University of Potsdam

March, 2019

This work is licensed under a Creative Commons License:
Attribution – NonCommercial – NoDerivatives 4.0 International.
This does not apply to quoted content from other authors.
To view a copy of this license visit
https://creativecommons.org/licenses/by-nc-nd/4.0/

Published online at the
Institutional Repository of the University of Potsdam:
https://doi.org/10.25932/publishup-42635
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-426352

Abstract

Abstract

The identification of vulnerabilities in IT infrastructures is a crucial problem

in enhancing the security, because many incidents resulted from already known

vulnerabilities, which could have been resolved. Thus, the initial identification

of vulnerabilities has to be used to directly resolve the related weaknesses and

mitigate attack possibilities. The nature of vulnerability information requires

a collection and normalization of the information prior to any utilization, be-

cause the information is widely distributed in different sources with their unique

formats. Therefore, the comprehensive vulnerability model was defined and dif-

ferent sources have been integrated into one database. Furthermore, different

analytic approaches have been designed and implemented into the HPI-VDB,

which directly benefit from the comprehensive vulnerability model and especially

from the logical preconditions and postconditions. Firstly, different approaches

to detect vulnerabilities in both IT systems of average users and corporate net-

works of large companies are presented. Therefore, the approaches mainly focus

on the identification of all installed applications, since it is a fundamental step

in the detection. This detection is realized differently depending on the target

use-case. Thus, the experience of the user, as well as the layout and possibilities

of the target infrastructure are considered. Furthermore, a passive lightweight

detection approach was invented that utilizes existing information on corporate

networks to identify applications. In addition, two different approaches to rep-

resent the results using attack graphs are illustrated in the comparison between

traditional attack graphs and a simplistic graph version, which was integrated

into the database as well. The implementation of those use-cases for vulnerability

information especially considers the usability. Beside the analytic approaches,

the high data quality of the vulnerability information had to be achieved and

guaranteed. The different problems of receiving incomplete or unreliable infor-

mation for the vulnerabilities are addressed with different correction mechanisms.

The corrections can be carried out with correlation or lookup mechanisms in re-

liable sources or identifier dictionaries. Furthermore, a machine learning based

3

Abstract

verification procedure was presented that allows an automatic derivation of im-

portant characteristics from the textual description of the vulnerabilities.

4

Zusammenfassung

Zusammenfassung

Die Erkennung von Schwachstellen ist ein schwerwiegendes Problem bei der

Absicherung von modernen IT-Systemen. Mehrere Sicherheitsvorfälle hätten

durch die vorherige Erkennung von Schwachstellen verhindert werden können,

da in diesen Vorfällen bereits bekannte Schwachstellen ausgenutzt wurden. Der

Stellenwert der Sicherheit von IT Systemen nimmt immer weiter zu, was auch

mit der Aufmerksamkeit, die seit kurzem auf die Sicherheit gelegt wird, zu

begründen ist. Somit nimmt auch der Stellenwert einer Schwachstellenanal-

yse der IT Systeme immer mehr zu, da hierdurch potenzielle Angriffe verhin-

dert und Sicherheitslücken geschlossen werden können. Die Informationen über

Sicherheitslücken liegen in verschiedenen Quellen in unterschiedlichen Formaten

vor. Aus diesem Grund wird eine Normalisierungsmethode benötigt, um die

verschiedenen Informationen in ein einheitliches Format zu bringen. Das damit

erzeugte Datenmodell wird in der HPI-VDB gespeichert, in die auch darauf auf-

bauende Analyseansätze integriert wurden. Diese Analysemethoden profitieren

direkt von den Eigenschaften des Datenmodells, das maschinenlesbare Vor- und

Nachbedingungen enthält. Zunächst wurden verschiedene Methoden zur Erken-

nung von Schwachstellen in IT Systemen von durchschnittlichen Nutzern und

auch in Systemen von großen Firmen entwickelt. Hierbei wird der Identifikation

der installierten Programme die größte Aufmerksamkeit beigemessen, da es der

grundlegende Bestandteil der Erkennung von Schwachstellen ist. Für die Ansätze

wird weiterhin die Erfahrung des Nutzers und die Eigenschaften der Zielumge-

bung berücksichtigt. Zusätzlich wurden zwei weitere Ansätze zur Repräsentation

der Ergebnisse integriert. Hierfür wurden traditionelle Angriffsgraphen mit einer

vereinfachten Variante verglichen, die auch in die Datenbank integriert wurde.

Des Weiteren spielt die Datenqualität eine wichtige Rolle, da die Effizienz der

Analysemethoden von der Qualität der Informationen abhängt. Deshalb wurden

Probleme wie Unvollständigkeit und Unzuverlässigkeit der Informationen mit

verschiedenen Korrekturansätzen bewältigt. Diese Korrekturen werden mithilfe

5

Zusammenfassung

von Korrelationen und Maschinellem Lernen bewerkstelligt, wobei die automa-

tische Ausführbarkeit eine grundlegende Anforderung darstellt.

6

Contents

List of Figures 11

List of Tables 13

List of Algorithms 13

List of Listings 15

List of Equations 15

1 Introduction 17

1.1 Current Situation . 17

1.2 Significance of Vulnerability Analysis 21

1.2.1 Importance of the Application Detection 23

1.2.2 Passively Gather Information 24

1.2.3 Data Quality Assurance 25

1.3 Thesis Contributions . 26

1.4 Thesis Structure . 29

2 Glossary and Technical Standards 31

2.1 Security Goals . 31

2.1.1 Confidentiality . 32

2.1.2 Integrity . 32

2.1.3 Availability . 33

2.2 Additional Terms . 33

2.2.1 Software Bug . 33

7

Contents

2.2.2 Vulnerability . 33

2.2.3 Exploit . 34

2.3 Common Standards . 34

2.3.1 CVE . 34

2.3.2 CPE . 35

2.3.3 CVSS . 36

2.3.4 CWE . 38

2.3.5 OVAL . 38

2.3.6 CAPEC . 39

3 HPI Vulnerability Database 41

3.1 Introduction . 41

3.2 Model and Format . 41

3.3 Information Retrieval and Normalization 46

3.4 Performance Improvement . 51

3.5 Analytic Features . 56

3.5.1 Self-Diagnosis . 56

3.5.2 Program Stack . 61

3.5.3 Attack Graph . 63

3.6 Conclusion . 68

4 Use Cases of Vulnerability Information 71

4.1 Introduction . 71

4.2 Attack Graphs . 72

4.3 Detection of Vulnerabilities . 76

4.3.1 Requirements and Limitations 80

4.3.2 Browser Based Vulnerability Detection 81

4.4 Passive Vulnerability Detection 83

4.4.1 CPE Detection based on System Logs 85

4.4.2 Proxy Logs and Web Server Logs to identify Applications . 88

4.5 API for Threat Intelligence Platforms 93

4.6 Conclusion . 95

8

Contents

5 Vulnerability Data Quality 97

5.1 Introduction . 97

5.2 Information Enrichment and Correction 98

5.2.1 Integration of external Identifiers 98

5.2.2 Solution Creation . 100

5.2.3 Correction of CPE Identifiers 103

5.3 Validation of CVSS Attributes . 106

5.3.1 Naive Bayes Approach . 108

5.3.2 Neural Network Approach 111

5.3.3 Results . 117

5.4 Scoring Scheme . 126

5.5 Conclusion . 130

6 Future Work and Conclusion 133

6.1 Conclusion . 133

6.1.1 Vulnerability Detection . 133

6.1.2 Data Quality . 134

6.2 Summary of Contributions . 135

6.3 Future Work . 137

Bibliography 141

9

List of Figures

3.1 Vulnerability Model . 43

3.2 Parallel Import Performance with 4 cores 53

3.3 Parallel Lookup Performance with 4 cores 55

3.4 Example of a Program Stack . 62

3.5 Excerpt from a traditional attack graph created with MulVAL . . 64

3.6 Example Attack Graph without an attacker 67

4.1 Attack Graph Visualization with Vulnerability Information 73

4.2 Apply Solutions for Attack Graph 74

4.3 Browser Detection . 82

4.4 Firefox requests and releases in year 2015 90

4.5 Chrome requests and releases in year 2015 91

5.1 Workflow of the Neural Network Approach 113

11

List of Tables

4.1 Market Share of Web Browsers in December 2015 89

5.1 Sample of similar CPEs detected 106

5.2 Accuracy of the Naive Bayes Approach 121

5.3 Accuracy of the Neural Network Approach 123

5.4 Accuracy of Naive Bayes and Neural Network on Combined At-

tributes . 125

List of Algorithms

1 Evaluation of conditional structure of vulnerabilities 60

2 Identification of deprecated CPE identifiers 105

13

List of Listings

2.1 CPE Specifications . 35

2.2 CVSS Vector . 37

3.1 Example preconditions of Vulnerability CVE-2014-0160 45

3.2 Example postconditions of Vulnerability CVE-2014-0160 46

3.3 Sample regular expression to identify application information . . . 50

3.4 Extract of description of a web server 66

4.1 Script to gather application names and versions from Unix Systems 78

4.2 Sample Loglines of dpkg log . 87

4.3 Windows Event . 87

4.4 Sample Logline of Web Access Log 89

4.5 Sample Log Message of Arcsight 92

5.1 Regular Expressions for Solution Creation 102

List of Equations

5.2 Modified Term Frequency . 110

5.2 Modified Inverse Document Frequency 110

5.4 Classification Accuracy . 119

5.6 Final Vulnerability Score . 129

5.6 Overall Severity Score for a Machine 129

15

Chapter 1

Introduction

1.1 Current Situation

Nowadays, the security of computer systems receives continuously more atten-

tion. The systems are interconnected and integrated in nearly all fields, which

results in an immense dependability on the functionality of the computer systems.

For example, if the computer system of a doctor fails, the doctor cannot han-

dle the patients anymore, because he cannot access their file and their details.

Through this dependability arises the requirement that those systems should

function properly at all time. Furthermore, it should not be possible to abuse

those systems, because they contain confidential information or have access to

crucial services. These requirements become even stricter if large companies are

considered. Usually, those companies lose a large share of their profit and their

reputation if a security incident occurs and their service is not available. In

addition, one of their most valuable goods is the customer data, which is often

the reason for their success. However, this customer data has to be stored se-

curely and it has to be ensured that nobody is able to gain an unauthorized

access. These facts contribute to the rising interest in security, because they also

increase the attention of attackers since they could make a lot of profit with a suc-

cessful attack. Thus, an estimation of the costs that were caused by cybercrime

in the year 2017 results in an overall amount of 445 to 608 billion dollars [36].

Hence, it is not surprising that both, attackers as well as companies, focus on

the security of their computer systems, since they can either make or save a lot

17

Chapter 1 Introduction

of money.

However, it is usually not trivial to increase a systems or a company’s security.

Modern computer systems have a high complexity, because they contain various

applications, libraries, modules, or additional software. This large amount of dif-

ferent components often excels the manually manageable number of applications.

Thus, it is difficult to create a comprehensive representation of the systems in-

ner structure and even more difficult to retain the actuality and security of each

individual component. The different applications and operating systems with

their specific version allow a tremendous number of possible combinations, which

might introduce additional interdependencies and increase the overall complexity

of the system even further. These problems already affect a single computer and

raise its complexity by a large amount, but if computer networks are considered,

administration and maintenance become more and more difficult and intricate.

Since computer networks include the interoperability and combination of various

single computer systems and add the network configuration and network de-

pendent functionality on top, the administration and security of those networks

is a challenging goal for each administrator. Therefore, it is almost impossible

to foresee all possible side effects and interoperability issues that can occur if

hundreds of computers are interconnected in a complex corporate network with

different subsystems. However, the security of those networks strongly depends

on a preliminary evaluation of all possible combinations of inconsistencies that

could finally lead to a weakness of the network. The complexity of this evaluation

of the system’s security requires an automated analysis.

Because of the past security incidents that have been published, many com-

panies introduced logging capabilities in their corporate networks. Thus, it is

possible to identify actions within the network with the goal to identify mali-

cious activity. However, large companies, which invest the money to integrate a

sophisticated logging infrastructure with a log management system or a security

information and event management system (SIEM), usually have the problem

of too many log events. The amount of log events can be controlled by an

adjustment of the log level or the logging policy. This adjustment defines the

events that should be logged and events that are omitted. However, an accurate

18

1.1 Current Situation

definition of the log level is difficult and the reduction of events is a trade-off

with the comprehensiveness of events of a possible attack. Thus, the log level

should be detailed enough to document the activity of a potential attacker, but

this results in the documentation of the normal activity of the regular users as

well. Therefore, the amount of logs reaches a volume that cannot be handled

easily. In the last report from Gartner Inc., the requirements to current SIEM

systems are estimated and divided into different deployment sizes. So, the num-

ber of events per second varies from 1,500 for small deployments to 25,000 for

large deployments [21]. Nevertheless, even 1,500 events per second accumulate

to a considerable number of events, which requires enhanced capabilities to pro-

cess or manage the aggregated information. Especially, analysis on the logs is

a challenging problem, because the overall amount of log data, which has to be

processed, consumes too much performance. Thus, many analytic approaches

can only work on a short time-frame or a limited set of pre-filtered events.

Another major impact factor is the user awareness. Several reports about

security incidents begin with the loss of credentials of a valid account, because of

some phishing email. Those emails deceive the receiver that his action is required

for a specific service. Usually, some link to the service is included, which should

be used by the receiver and directs him to a falsified page. If the user then types

its credentials to login and perform the required action, the phishing website

stores the gathered credentials and possibly redirects to the original service to

remain stealthy. Thus, the credentials from the user can be misused for malicious

activity. The number of phishing emails is ever increasing since 2015 and amounts

to the same number as normal spam emails [33]. However, many trivial phishing

emails aim at a broad target group and are easier to detect, since they contain

language mistakes or other inconsistencies. Nonetheless, it is still profitable if

only a small portion of users fall for these emails, since the effort to create those

phishing emails is rather small. Another more targeted type of phishing uses

additional information for the specific user, which can be gathered via social

engineering techniques. Those spear-phishing emails are often used in advanced

persistent threats (APTs). Famous examples of APTs that started with a spear-

phishing attack are sykipot [66], ghostnet [14], or the RSA attack [34]. Thus,

19

Chapter 1 Introduction

many attacks often begin with an unaware user that clicks on a specially prepared

link or executes a malicious program or script. Therefore, the awareness of users

has to be enhanced through training, because a single unaware employee could

introduce a malicious program or lose his credentials and the entire corporate

network will be infected.

Besides the normal user awareness, it is necessary that the administrative staff

of an IT infrastructure is aware of potential security weaknesses and disclosed vul-

nerabilities. As it was described before, many of the famous examples start with

a phishing or spear-phishing email, but they often continue with an exploitation

of detected vulnerabilities to establish a foothold in the IT infrastructure. This

foothold should guarantee a long-term access, even if the affected user recognizes

some strange behavior. Sometimes, the attackers use zero-day vulnerabilities,

which are publicly unknown, as it was the case with the RSA attack [34]. These

exploits are usually sophisticated and it is extremely difficult to detect or recon-

struct these attacks. However, those vulnerabilities are also hard to find in the

first place, which is the reason why those vulnerabilities are valuable and can be

sold or bought for high prices. On the other hand, the majority of vulnerabilities

that are exploited and lead to security incidents are already known but remain

unfixed in the IT infrastructure. A report even estimated that 99% of the vulner-

abilities that will be exploited by the end of the year 2020 are known by security

professionals at the time of the incident [20]. This results in the fact that the

majority of security incidents could be prevented by a preliminary vulnerability

detection and analysis.

Furthermore, the overall security awareness of all users of the Internet would

resolve several problems and minimize the attack surface of the corresponding

systems. In addition to the system’s security, it could also increase the difficulty

to attack multiple systems and create a large number of bots to perform large

scale denial of service attacks. Thus, the vulnerability analysis capabilities of

public available services can contribute to the security awareness and the security

overall. This was the reason for the publicly available vulnerability database from

HPI [27], which provides vulnerability information and analytic capabilities. The

HPI vulnerability database was already accepted by several users and received

20

1.2 Significance of Vulnerability Analysis

friendly and positive feedback1, such as “..I use the API of the HPI-VDB to

perform request for current security updates of affected components via script..”

Another user even states “I have discovered this offer and tried the functionality.

It is very nice that there is another possible for systems diagnosis, even with an

explanation of the vulnerabilities.” One of the first feedback, which was received,

described the HPI-VDB as “a super service, your attack detection, but how could

the detected vulnerabilities be resolved?” This feedback resulted in the idea of

a solution creation and integration into attack graphs, which will be explained

later.

1.2 Significance of Vulnerability Analysis

As it was described before, the vulnerability analysis can be utilized to enhance

the security of an IT infrastructure and prevent security incidents. However,

the complexity of modern computer systems complicates this task and makes it

challenging to perform a comprehensive detection. Additionally, the vast amount

of information about vulnerabilities has to be handled and integrated into the

detection process. This information is distributed in various sources over the

Internet, as individual vendors, researchers, or governmental institutions release

information about disclosed vulnerabilities. Vendor specific information about

vulnerabilities can be found from Microsoft in the Microsoft security bulletins [40]

for example. Certainly, some vulnerability databases are publicly available that

already encompass many vulnerability information, such as the national vulnera-

bility database (NVD) [46], Secunia [16], the open source vulnerability database

(OSVDB) [50], or the open vulnerability assessment language (OVAL) [8]. But

some of those vulnerability databases are already discontinued, for example OS-

VDB, or they include only a small set of vulnerabilities, such as OVAL or

Secunia. Furthermore, security news portals, such as SecurityFocus [59] also

publish information about vulnerabilities and in the case of SecurityFocus, it

contains information about all published information of historic vulnerabilities.

Thus, those portals could be used to find information for vulnerabilities as well.

1The mentioned quotes were extracted from emails to the HPI-VDB webadmin mail address

21

Chapter 1 Introduction

An additional source of information about recently published vulnerabilities is

rich site summary (RSS) feeds, which are offered by some vulnerability research

providers. The minimal and straightforward structure of the vulnerability infor-

mation from [70] can be utilized to extract the required information.

Therefore, the vulnerability information are usually publicly available and can

be extracted or gathered from several sources. Nevertheless, a remaining chal-

lenge is to process and interpret the information correctly, since several sources

and publishers release the information in their proprietary format. Thus, a nor-

malization of the included information is required to map the specific charac-

teristics to a comprehensive data model. In addition to the normalization, it

is necessary to convert some information from natural language to a machine-

readable format, because the amount of vulnerability information and the num-

ber of different system characteristics require an automated approach to identify

vulnerabilities. For example, the information in the vulnerability descriptions,

which is usually included in all sources, is inapplicable for automated approaches,

because it cannot be interpreted automatically. The vulnerability descriptions

were originally not intended to be usable by automated approaches, but rather

by human experts that are able to derive the necessary details from the nat-

ural language. Beside the descriptions, the available standards to identify the

requirements and the impact of a vulnerability, as well as the standard to iden-

tify affected application should be utilized. Therefore, each vulnerability source

requires a custom conversion for all characteristics. After the conversion into a

machine-readable format, the information can be processed by automated anal-

ysis approaches, which is a fundamental requirement for the overall vulnerability

analysis. An early idea for the normalization of vulnerability information was

already implemented in [53]. This idea was developed further to also include

the established standards and fully support the desired vulnerability analysis

approaches.

Early ideas for an automated vulnerability analysis were already presented

in [4], which proposes a set of characteristics for each vulnerability. These char-

acteristics can be examined to determine the existence of the vulnerability. An-

other early approach was presented in [32], which introduces the idea of attack

22

1.2 Significance of Vulnerability Analysis

graphs. To create the attack graphs the authors of [32] use a similar concept as

the proposed conditions in this work. However, many previous ideas suffer from

several limitations, such as the small number of considered vulnerability types

in [4].

Currently, a popular possibility to detect vulnerabilities is the utilization of

vulnerability scanners. One of the most famous tools to identify vulnerabilities

automatically at the moment is Nessus [63], which is able to identify vulnera-

bilities on local machines or in larger networks. Therefore, Nessus runs several

tests and examines predefined requirements to verify the existence of different

vulnerabilities. The knowledge base that contains all these tests and definitions

is built from more than 100,000 plugins, which will be used in the actual scanner.

These 100,000 plugins cover around 45,000 CVE IDs and 28,000 Bugtraq IDs,

which is a considerable amount of vulnerabilities [62]. However, the total amount

of CVE IDs accumulates to more than 100,000 vulnerabilities, which means that

Nessus does not cover a large fraction of vulnerabilities.

Thus, the necessity for automated vulnerability analysis is definitely required,

because of the increasing complexity and the growing importance of modern IT

infrastructure in most companies. A running computer network is a fundamental

requirement to guarantee availability of services and the functionality of the

company’s communication. So, a malfunction could result in monetary losses as

well as image losses for the publicity. Therefore, security mechanisms need to be

in place to protect those valuable infrastructures and especially vulnerabilities

should be resolved, since this is a precaution method to secure the network.

The resolving of vulnerabilities implies the detection of those vulnerabilities in

advance, which will be shortly discussed in the next Section.

1.2.1 Importance of the Application Detection

The ability to automatically detect vulnerabilities in IT infrastructure does not

solely rely on the machine-readability of the vulnerability information, but rather

on the identification of the infrastructures inner components. The inner com-

ponents of the infrastructure include special devices, operating systems, or ap-

23

Chapter 1 Introduction

plications. Since vulnerabilities always affect a special version of a device, an

operating system, or an application, it is a fundamental requirement to identify

those components and examine whether one of the inner components is affected

by a vulnerability. Certainly, the relation between the vulnerability and the ap-

plication has to be interpreted and should be available in a machine-readable

format. However, the relation does not provide any benefit if the affected soft-

ware cannot be matched against all identified applications on the target system.

Therefore, a comprehensive identification of all installed or running applications

of the target system is the key requirement of the vulnerability detection. Thus,

the analytic approaches that will be presented later are based upon the prelimi-

nary detection of all applications of a target IT system. This is also the reason

why the application detection will play an important role in the vulnerability de-

tection approaches and will be explained in more detail for each of the detection

methods.

1.2.2 Passively Gather Information

The complexity of the application detection results in excessive and exhaustive

scans of the target infrastructure. However, recent development in the field of

security showed that SIEM systems get deployed in more and more corporate

environments and the yearly investment into logging infrastructure continuously

increases [21]. Therefore, an additional idea to collect information about vul-

nerabilities arises with the fact that insights about the components of an IT

infrastructure are already available. Then, expensive scanning of the target in-

frastructure can be omitted and the influence on the performance of the system

can be minimized. The idea to passively gather information about running appli-

cations in a network was already presented in [26], which introduces an approach

to identify applications, especially web browsers, based on the network’s traffic.

However, the approach suffers from inaccuracy of the detection methods. The

company behind Nessus also presented a passive scanning mechanism, which

was integrated in a tool that tries to detect applications based on the network

traffic [13]. Since the importance of the application detection does not only af-

24

1.2 Significance of Vulnerability Analysis

fect the vulnerability detection but is also fundamental for other areas, such as

inventory management, the field of service discovery was explored with differ-

ent purposes. For example, running applications can be detected by analyzing

the network traffic, as it was presented in [3]. Although inactive applications

will not be covered by those detection methods, it can also be used to identify

unnecessarily installed applications, which could be removed from important de-

vices. However, in the case of vulnerability detection the fundamental challenge

to identify running or installed applications could be solved by processing the

available log data. This data could be either network traffic, as it was presented

in several related approaches [26][13][3], or it can be gathered from the target

machines directly. Furthermore, event logs of ongoing or past activity from the

IT infrastructure could be used, as it is common practice that those log informa-

tion are collected nonetheless. A remaining challenge would be the processing

of those large amounts of data and the derivation of the application that pro-

duced the log event. In [31] a hierarchical knowledge base of regular expression

was presented, which is able to process many events in real time and identify

the original applications that produced the logs. Thus, it should be possible to

utilize available information to reduce the impact of the vulnerability analysis

on the target system. Additional insights and an implemented approach will be

presented in Section 4.4.

1.2.3 Data Quality Assurance

Beside the different formats, the numerous sources of vulnerability information

result in an additional challenge. The challenge is the processing of different

information in the same vulnerability attributes. Therefore, decisions have been

made that resolve those discrepancies or specify which information should be

used. Thus, methods to verify vulnerability information have to be created and

implemented into the system to allow an automated processing of the informa-

tion with a high level of accuracy. Several research work have been investigated

that also deals with automatic information derivation from textual information

of vulnerabilities, such as [56]. Some vulnerability characteristics, which are

25

Chapter 1 Introduction

important for the analysis, can also be derived from different classes of vulnera-

bilities. For example, remotely accessible vulnerabilities all belong to a separate

class if the CVSS attributes and especially the attack vector is considered. Thus,

a classification of vulnerabilities can also help in assuring a high data quality, as

it was also shown in [5]. Another work used data mining approaches to identify

vulnerability characteristics from the textual information as well [69]. However,

this research focuses on the classification of software bugs in either hidden im-

pact bugs or regular bugs. The former class relates to vulnerabilities. Thus, the

method which results in a bug classification of regular bugs and vulnerabilities

can be applied to identify vulnerability disclosures in bug forums. The automatic

derivation capabilities have also been applied to the field of identifying vulner-

abilities, as it was shown in [29], which aims at the detection of vulnerabilities

in the source code and in version control systems. Furthermore, the authors

of [48] tried to predict vulnerabilities in software components based on a simi-

larity score, which is computed in comparison to software components that are

vulnerable. In another research work, the prediction of the time until the next

vulnerability is disclosed for a specific program was investigated [71], which does

not give insights in the details of the vulnerability. However, it could have been

used for evaluating the risk of a utilization of that particular software. All of the

prediction approaches suffer from poor results, as the authors in [71] have stated

or the focus of the research work is more in the field of white-box and source

code analysis, which is not considered for this work.

1.3 Thesis Contributions

This thesis strives to improve the current situation of security of modern IT

infrastructures. It focuses especially on the detection and analysis of vulnerabili-

ties in single computers or large networks. The challenges and requirements arise

from a high complexity of the systems and a broad and widespread diversity of

vulnerability information, which can be found in several sources. The individual

contributions to the field of vulnerability research can be divided and assigned

to the following topics.

26

1.3 Thesis Contributions

Information Retrieval and Normalization The first challenge is to retrieve

the widespread information from different providers. Therefore, several vulner-

ability databases, bug forums, or vendor information pages, such as NVD [46],

Microsoft Bulletins[40], OSVDB [50], or Zero Day Initiative Advisories [70], have

been integrated. The information from each source has to be extracted, but the

different formats required additional effort. Thus, the normalization of the vul-

nerability information was necessary to convert the information into a common

format. Then analytic approaches are able to process the information from dif-

ferent sources by using the common vulnerability model. The challenges and the

solutions were also published in [22].

Vulnerability Classification with Machine Learning The different information

sources often do not contain all desired information, but rather a subset of the

vulnerability characteristics defined in the common vulnerability model. So, dif-

ferent approaches to automatically complete the information during the import

of new vulnerabilities have been invented. The classification approach focuses on

the CVSS attributes of vulnerabilities, which are particularly important for ana-

lytic approaches. The concrete approach will be explained in Section 2.3.3. The

classification model derives the most important CVSS characteristics, namely

the impact of confidentiality, integrity, and integrity and the access vector, from

the vulnerability description. Security experts usually perform this process man-

ually, which often results in a delay until the information is available. This delay

could be mitigated by the automatic classification approach that was published

and presented in [24].

Attack Graph Creation Furthermore, the vulnerability model was originally

designed to contain machine-readable characteristics and allow an automated

processing of the vulnerability information. Hence, preconditions and postcon-

ditions for each vulnerability have been created. Those conditions can be in-

terpreted and evaluated automatically, but they are especially convenient for

creating attack graphs. Since attack graphs usually visualize a possible path of

an attacker, it arranges vulnerabilities in the network infrastructure according

27

Chapter 1 Introduction

to requirements and impact of their exploitation. The requirements for vul-

nerabilities are equivalent to the preconditions and the impact is equivalent to

the postconditions. Thus, the chosen vulnerability model is well suited for at-

tack graph creation. Two different approaches to create attack graphs will be

explained and have been presented in [23].

Creation of Solutions and Integration in Attack Graphs Beside the creation

of traditional attack graphs, another approach was designed to produce interac-

tive attack graphs that contain information about the solutions for the detected

vulnerabilities. This allows a direct assessment of possible countermeasures and

their effectiveness. However, the information about possible solutions is not al-

ways available. Therefore, it has to be created and derived from the vulnerability

descriptions. It turned out that the vulnerability descriptions often contain in-

formation about possible mitigation techniques for the vulnerability, but this

information is only available in natural language. So, a transformation is needed

that has to process the information automatically, because no human interaction

is possible for this large scale of information. The approach was also presented

and published in [23].

Automatic Detection Approach One of the key approaches in the field of

vulnerability research is the detection of vulnerabilities in the first place. Because

of the high complexity of the underlying IT systems and the variety and volume of

vulnerability information an automated detection approach was required. This

approach benefits from the vulnerability model and the direct association to

the affected application or the affected component. However, the challenge to

detect applications of the target infrastructure had to be solved and two different

possibilities for different operating systems have been published in [22] and will

be discussed.

Passive Vulnerability Detection Another detection approach was presented

in [25]. This approach does not actively scan the target infrastructure but bene-

fits from already available information from log management or SIEM systems.

28

1.4 Thesis Structure

It was shown that it is possible to reduce the impact of an exhaustive detection

method especially for larger corporate environments. The approach has been im-

plemented and the feasibility was shown in an experiment with real-world data

from a large network in a research cooperation.

Publicly Available Database The before listed analytic approaches and data

quality approaches have not only been invented but also implemented into a

publicly available service [27]. The HPI vulnerability database (HPI-VDB) was

originally created in 2012. It is continuously running and importing newly dis-

closed vulnerabilities. Furthermore, the service provides the possibility to utilize

the described approaches. Therefore, the public version of the HPI-VDB allows

registered users to perform an automated vulnerability detection or the creation

of an attack graph for a given network description. An additional service that

only considers the user’s web browser was created to allow non-registered users to

test the functionality of the HPI-VDB. The browser based vulnerability detection

also has the advantage that it is not necessary to specify additional information

about the target system. It merely uses the available information, which is sent

along with each request.

1.4 Thesis Structure

The thesis is organized in six chapters. The first chapter introduces the topic

and presents the current situation. The motivation for vulnerability analysis are

discussed and the importance of the automatic approaches is emphasized. Then

the contributions of the thesis are listed and the outline of the thesis concludes

this chapter. The second chapter contains definitions and explanations of techni-

cal standards and technical terms that will be used in this work. The utilization

of established standards allows an interoperability and a better integration with

third party tools. Afterwards, the public available database is introduced [27].

Therefore, design decisions for the vulnerability model are explained and chal-

lenges in the implementation are highlighted. Several performance improvements

will be discussed and the chapter is concluded by the explanation of the imple-

29

Chapter 1 Introduction

mented analytic features of the HPI-VDB. The following chapter illustrates use

cases for the vulnerability information. The different scenarios benefit from the

proposed vulnerability model and the specially generated conditions. It also

highlights the practicability and applicability to real-world scenarios. The dif-

ferent use cases require a high data quality of the vulnerability information.

Therefore, Chapter 5 introduces different methods to ensure the data quality.

Hereunto, the formerly introduced standards will be considered and the comple-

tion or validation of the attributes in the comprehensive vulnerability model is

explained. Finally, an adjustment to the currently used vulnerability scoring sys-

tem is presented, which could increase the usefulness of the current system. The

last chapter concludes the work and summarizes the findings and investigations,

which have been achieved in the area of vulnerability analysis.

30

Chapter 2

Glossary and Technical Standards

A comprehensive security analysis always starts with a definition of the analysis

domain and all possible scenarios that should be investigated throughout the

analysis itself. Thus, it is necessary to also define the fundamental basics of

security to create common knowledge base. Therefore, in this chapter I want to

introduce some basic terms, abbreviations, and common standards that will be

used in the following work.

2.1 Security Goals

When IT security is considered one usually talks about security goals that have

to be achieved for a process, a system, or a protocol. This division is required,

because security itself influences every aspect of IT systems and therefore has a

vast variety and many different shapes. The subdivision of IT security results in

many individual security goals that have to be considered and weighted according

to their importance for the underlying system. For example, the confidentiality

of data is important for cryptography, whereas anonymity of the communication

participants is usually inappropriate.

The variety of security goals resulted in the classification of those goals into

basic and additional security goals [15]. The different classifications assign either

three or four goals to the basic security goals. The non-repudiation is sometimes

considered as an additional goal and sometimes as a basic goal. However, the

other three common goals are always considered as basic goals, which are namely

31

Chapter 2 Glossary and Technical Standards

confidentiality, integrity, and availability. They are often referred to as the CIA

goals or the CIA triad. Additionally, experts often use these three goals as a

boundary to place systems and protocols in the so-called security triangle [38].

2.1.1 Confidentiality

In the official standard of RFC-4949 [61] data confidentiality is defined as “the

property that data is not disclosed to system entities unless they have been au-

thorized to know the data.” This definition could be generalized and applied to

information in general, as the concept of confidentiality is much older than the

Information Technology. Confidentiality describes the property that information

is only accessible to authorized systems or individuals. In the context of con-

fidentiality accessible refers to the ability to read, interpret, or understand the

information.

2.1.2 Integrity

The before mentioned standard of RFC-4949 [61] contains a definition for data

integrity as well. It defines data integrity as “the property that data has not

been changed, destroyed, or lost in an unauthorized or accidental manner.” If we

only consider data integrity on computer systems themselves, this definition is

sufficient and could be realized with access control lists or similar mechanisms. If

one considers data integrity in the context of network connections, the possi-

bilities and applicable mechanisms are limited. It is not possible to protect data

against unauthorized change or loss during the transmission as the connection

medium cannot be controlled. Thus, it is only possible to detect and sometimes

correct these unauthorized or accidental modifications. Nevertheless, the data

integrity has a high impact on a systems security, since the deliberate modifica-

tion of data can change the control flow of a program and result in the corruption

of the entire system.

32

2.2 Additional Terms

2.1.3 Availability

The third basic security goal is availability, which is often considered as the most

important security goal by service providers. Service providers usually highly

rely on the accessibility of their service, as customers tend to move away if the

requested resource is not available. The RFC-4949 [61] defines availability as

“the property of a system or a system resource being accessible, or usable or

operational upon demand, by an authorized system entity, according to perfor-

mance specifications for the system [...]”. The availability should ensure the

timely, reliable access to data and services for authorized entities.

2.2 Additional Terms

Beside the above defined security goals, the research in vulnerabilities relies on

several other established terms. I want to mention and explain the most impor-

tant terms in the following to create the common foundation for the following

work.

2.2.1 Software Bug

A software bug is an erroneous part of the application that usually originates

from a human mistake or inaccuracy in the implementation. The bug itself does

not have to have critical effects on the security, but depending on the location

and type of the bug, it could provoke malicious behavior of the application.

2.2.2 Vulnerability

The official standard in the RFC-2828 [60] defines a vulnerability as “a flaw or

weakness in a system’s design, implementation, or operation and management

that could be exploited to violate the system’s security policy”. Furthermore,

the IETF states that most systems might have vulnerabilities, which does not

directly mean that those systems should not be used. Not every vulnerability

leads to an attack and some vulnerabilities might be hard to successfully attack.

33

Chapter 2 Glossary and Technical Standards

Nevertheless, if the attacks are well understood and the vulnerable application

is widely distributed, the possibility of a successful attack rises together with the

benefit for the attacker.

2.2.3 Exploit

Generally, an exploit describes the act of abusing a vulnerability and provoke an

unintended behavior of the affected program. The result of a successful exploita-

tion could be a malicious action, which is specified in the payload of the exploit.

The exploit itself can be a piece of software or a set of instructions to misuse the

flaw. Furthermore, a multitude of exploits can be found in the exploit-db [49],

which currently contains more than 38.000 exploits.

2.3 Common Standards

In the following, I want to introduce some standards that are well established

in the domain of vulnerabilities and security analysis. I used these standards in

the presented work to guarantee compatibility with existing solutions and ser-

vices. Furthermore, the established standards should allow the comprehensibility,

reusability, and interoperability of the approaches.

2.3.1 CVE

One additional important characteristic of a vulnerability is the identifier, which

is used to refer to the vulnerability in different sources. As it was already de-

scribed, information about vulnerabilities are distributed over the Internet and

can be found in different locations, which include forums, patch notes, ven-

dor pages, or public vulnerability databases. Most of the publicly available

sources use proprietary identifiers in their databases. However, they often in-

clude an additional identifier to refer to the vulnerability across different plat-

forms. This well-established standard is the Common Vulnerabilities and Expo-

sures(CVE) [42]. The CVE identifier is a well-structured format and contains

34

2.3 Common Standards

the year as well as a running number to refer to a specific vulnerability. The run-

ning number was recently extended to contain more than four digits to allow a

larger number of reports about vulnerabilities. The management and assignment

of CVE identifiers is organized by the National Institute of Standards and Tech-

nology(NIST) of the United States. The NIST publishes information about the

reported vulnerabilities in their vulnerability database NVD(National Vulnera-

bility Database)[46] and assigns CVE-IDs to the vulnerabilities. Additionally,

large software vendors can also acquire ranges of CVE-IDs for vulnerabilities

that might be detected in their software products.

2.3.2 CPE

As it was described a vulnerability describes a weakness in a system’s design

or implementation. Usually vulnerabilities arise in applications with a specific

version and get fixed in a later version of that application. Thus, vulnerability

analysis heavily relies on the ability to identify the application itself and the

affected version. This identification has to be performed with a high level of

detail as a small bug fix that resolves the vulnerability could be indicated with

a minor version change. The Common Platform Enumeration(CPE)[6] is tailor-

made for this task. The NIST also manages a dictionary with a large set of CPE-

IDs, which are used in the vulnerability definitions of the NVD. The structure of

a CPE-ID follows a predefined schema that also allows the construction of CPE-

IDs if the required application is not already listed in the dictionary. The CPE

specification was updated to version 2.3 in August 2011 [11]. The previous version

was widely used and integrated into my work to allow backward compatibility.

Listing 2.1: CPE Specifications

CPEv2 .2: cpe:/o:apple:mac_os_x :10.9.5

CPEv2 .3: cpe :2.3:o:apple:mac_os_x :10.9.5:*:*:*:*:*:*:*

Both specifications start with “cpe” and use the “:” as a delimiter. The most

important fields are the type, the vendor, the application name, and the ver-

sion number. The type could be either “a” for application, “o” for operating

system, or “h” for hardware. Additional information, such as language pack,

35

Chapter 2 Glossary and Technical Standards

platform specification, or service pack can be specified in corresponding fields

at the end. As it is illustrated in the example in Listing 2.1 the new version

requires the specification of wildcard characters for each attribute, whereas un-

used attributes could be omitted in the old version. This omission results in

problematic artifacts if several parts in the middle have been completely left out,

the remaining attributes were placed at wrong locations in the CPE-ID. For ex-

ample, it could be possible that the language identifier is placed at the position

of the architecture part. Therefore, the accurate parsing of the old version of the

CPE identifiers was difficult and required more effort.

2.3.3 CVSS

Another established standard is the Common Vulnerability Scoring System

(CVSS), which is used for weighting and to assign severity values to the different

vulnerabilities. The CVSS was presented in 2006 [37] and was the first schema to

rate vulnerabilities and their possible impact to the system. The current version

of the Common Vulnerability Scoring System is 3.0 and was released in December

2014.

Score

Vulnerabilities are classified in different groups and receive numeric scores in

the range of 0 to 10, with 10 as the highest severity. This numeric number

is called CVSS Score and it is also assigned by the NIST that manages the

NVD [18]. The scoring mechanism itself is publicly available. So everybody could

reconstruct the CVSS-Scores and also assign CVSS-Score on its own. Since this

rating schema also evolved, it is common to specify temporal and environmental

metrics in addition to the base score. This differentiation allows a monitoring

of exploitation and status upgrades for each vulnerability. However, the only

mandatory properties are the base attributes and the base score. The calculation

is strictly related to the values of the CVSS Vector, which will be explained in

the following Section.

36

2.3 Common Standards

Vector

The mandatory part of each CVSS Vector is the base vector, which defines char-

acteristics for the minimum set of attributes of a vulnerability. A successful

evaluation and a severity ranking of a vulnerability is only possible if at least

those attributes are known. The base vector of version 2 contains six attributes,

which are the access vector, the access complexity, the authentication and the ba-

sic security goals confidentiality, availability, and integrity in this specific order.

Each of these attributes can have three different values. The most important

attributes are access vector, which indicates the connectivity an attacker has

to have, and the three security goals. The range could be one of “local”(L),

“adjacent network”(A), or “remote network”(N). The attributes for each of the

basic security goals contains information about the impact on this specific se-

curity goal. So, each goal could have the values “not affected”(N), “partially

affected”(P), or “completely affected”(C). This information is especially helpful

in the estimation of consequences of a successful exploitation of a vulnerability.

A sample vector was illustrated in Listing 2.2.

Listing 2.2: CVSS Vector

CVSSv2 base vec to r :

AV: L/AC:M/Au:N/C:N/ I :P/A:C

CVSSv3 base vec to r :

CVSS: 3 . 0 /AV:N/AC: L/PR:H/UI :N/S :U/C: L/ I : L/A:N

The CVSSv3 vector contains the three security goals, information about the

attack vector, and information about the attack complexity as well. The au-

thentication indicator was replaced with user interaction and privileges required.

Furthermore, another indicator for the scope was appended. Most of the values

of the attributes remain, but one important addition was the value physical to

the attack vector. A sample base vector is illustrated in Listing 2.2.

37

Chapter 2 Glossary and Technical Standards

2.3.4 CWE

The Common Weakness Enumeration(CWE) [45] provides the possibility to clas-

sify vulnerabilities. The information is managed by the Mitre corporation [43]

and it is organized in a hierarchical form. This structure helps to arrange vulner-

abilities according to the underlying type of weakness. For example the “classical

buffer overflow” has the CWE-ID 120 and is the child of CWE-ID 119 (“Im-

proper Restriction of Operations within the Bounds of a Memory Buffer”). This

relation represents the connection between a buffer overflow and the missing or

wrong restrictions for bounds in a memory buffer, as a buffer overflow is only

possible when the check for bounds of the buffer is incorrect or missing. The

CWE-ID 119 in turn is the child of CWE-ID 118 (“Incorrect Access of Index-

able Resource”), which is the superset of improper restrictions to boundaries of

a memory buffer. So, one could also deduct further requirements and properties

of a vulnerability from the relation to its CWE-ID, which could be interpreted

as the type or family of vulnerabilities. In addition, the CWE-ID can complete

the overall picture of a vulnerability, since not all individual properties are rep-

resented in the description of a vulnerability. Another interesting point is to

identify relations between different CWE-IDs apart from parent-child relation

that might allow the prediction of chaining vulnerabilities or their types that

appear frequently.

2.3.5 OVAL

OVAL is the open vulnerability assessment language and it is maintained on the

OVAL website [8]. The content is provided and managed by the already men-

tioned Mitre corporation [43]. It offers possibilities to assess and report on the

machine state of a computer system. This is especially helpful if the inner state

in terms of installed applications or vulnerabilities is considered. Thus, OVAL

is able to create an overall list for the inventory of a computer system, which

can be used by other approaches that rely on this detailed information about

installed applications. Additionally, OVAL also proposes definitions and tests

for vulnerabilities. Therefore, it also relies on the active community to extend

38

2.3 Common Standards

and provide the available tests and definitions to find installed applications or

available vulnerabilities. However, the amount of vulnerabilities reveals the lack

of several known vulnerabilities.

2.3.6 CAPEC

CAPEC is the common attack pattern enumeration and classification [65] and a

standard to identify and address attack patterns. The commonly known attacks

receive an ID to be referred to and to be identified for better analysis. The

identifiers are managed and maintained by the Mitre Corporation [43]. The

ability to identify possible attacks for a vulnerability might also result in a more

accurate definition of the postconditions of a vulnerability. For example, cross-

site scripting (XSS) has the CAPEC-ID 63 and is the parent of reflected and

stored XSS and the child of code injection. When a vulnerability is connected to

the CAPEC-ID 63, it is possible to deduce countermeasures immediately, since it

is related to code injection, which could often be mitigated by input sanitization.

39

Chapter 3

HPI Vulnerability Database

3.1 Introduction

The HPI vulnerability database [27] was designed to collect vulnerability infor-

mation from various sources and unify the information. Since the number of

vulnerability reports and vulnerability discoveries increased over the years, an

automatic processing technique is necessary. Thus, the information is converted

into a machine-readable format that allows an automatic processing. The orig-

inal purpose was to serve as a knowledge base for other projects and to create

the foundation for vulnerability analysis. The first version of the database was

developed in 2012 and has evolved since. The basic idea to serve as a knowl-

edge base remains but several analytic approaches have been built around and

implemented into the database as well.

3.2 Model and Format

The original design and the first data model for vulnerabilities was created in

the initial development of the HPI vulnerability database. At this time, the vul-

nerability itself only contained a subset of attributes that are now available. The

current design is illustrated in Figure 3.1. The CVSS attributes were extended

and additional timestamps as well as identifiers to other standards have been

added. During the design phase the identifier was created to contain any unique

41

Chapter 3 HPI Vulnerability Database

string, which allows the combination of different IDs, such as Bugtraq ID [59],

CVE-ID, Microsoft Bulletin [40].

Humans can use the description to explore the details of the vulnerability.

Usually the description is always present in various sources, as most of the re-

porting procedures, such as the report form of Carnegie Mellon University [7],

require a detailed description of the discovered vulnerability for reconstruction

and investigation. This description is kept to allow a manual investigation of

vulnerabilities in the HPI vulnerability database as well.

Furthermore, several references and third party IDs are used to link to ex-

ternal information and allow users to follow and investigate these third party

resources. The CWE-ID can be especially used to include information about the

vulnerability type or deduct additional characteristics of the vulnerability, as it

was explained in Section 2.3.4.

Finally, each vulnerability contains information about its severity. Since the

most commonly used schema CVSS, which was described in Section 2.3.3 allows

an assignment of severity scores in the range of 0 to 10, that information was

included as well. The CVSS information do not only include the score, but the

information about the impact, violation of security goals, and the abbreviated

form of all additional attributes in the CVSS Vector.

Besides these basic properties of the vulnerabilities that are directly included in

the vulnerability data model, the database also contains related characteristics.

As it is also illustrated in Figure 3.1 those features namely are source, CPE-

ID, preconditions, and postconditions that could be related to more than one

vulnerability.

The source is the most trivial characteristic, since it is used to save details

about the origin of the vulnerability information. Additional sources can be

specified and will be crawled periodically. This specification has to be performed

manually and for some sources, it might be necessary to implement the reader

interface or adjust an existing reader. Then, it is also possible to specify a

reliability score that will be used when information from more sources have to

be merged.

An important related attribute is the CPE-ID. As it was explained in Sec-

42

3.2 Model and Format

Vulnerability

+Identifier

+Description

+Last-Modified-Date
+Import-Date

+Oval-ID
+CWE-ID

+CVSS-Vector

+References

+CVSS-Score

+Availability
+Confidentiality
+Integrity
+CVSSv3-Vector
+CVSSv3-Score

+Impact-Score
+Exploitability-Score

CPE-ID

+Vendor

+Program

+Version

Preconditions

+Range

+Affected Programs

+Active ResourceInfluence

Postconditions

+Range

+Affected Programs

+Active Resource Influence

+Passive Resource Influence

+Range of Accessible Data

+Human Readable Name

Source

+Name

+Reliability

+URL

Solution

+Key

+Value

Figure 3.1: Vulnerability Model

tion 2.3.2, the CPE-ID can be used to identify software components with a high

level of detail. Thus, the CPE-ID is used to identify the affected application

and provide additional information about it, such as the vendor, the application

name, or version information. Since the existence of the affected application is

the main requirement for a vulnerability, this information will also be used as a

foundation for the preconditions later. The fact that the existence of the appli-

cation is the main requirement, resulted in the direct relation of the application

to the vulnerability, although the connection could also be found in the precon-

ditions. Nevertheless, several use cases and different analytic approaches showed

that a filter or search for installed applications is usually one of the first steps

of users or security specialists. So, a direct relation between affected application

and vulnerability reduced the workload during analysis and data exploration.

However, the relation in the preconditions and postconditions is still handled via

43

Chapter 3 HPI Vulnerability Database

an internal ID of the CPE-ID object. This allows a fast processing of queries

for CPE-IDs and maintains the relationship in the conditions while guarantee-

ing the consistency in the data. While monitoring the usage of the HPI-VDB

it was observed that most users query the database for vulnerabilities to a spe-

cific application. This later led to the program stack functionality, that will be

explained in Section 3.5.2.

The last related attribute, which is explained before introducing the two con-

ditions, is the solution. The solution could have different characteristics based

on the origin of the information. It could be a special reference, if the solution is

directly extracted from third party information about the vulnerability. Then,

the solution contains a link to this information. However, the solution could also

be generated during the analysis of the vulnerability description. This analysis

will be described in Section 5.2.2, as it is one of the major improvements of the

HPI-VDB to automatically extract information from the textual description.

The two conditions that were mentioned before are used to guarantee machine-

readability of the vulnerability information. The conditions are structured as

sets with logical operators. The different members of each set can be combined

using the logical operator that is specified in the set. The resulting value is a

binary representation of the degree of fulfillment of the conditions. So, if the

logical combinations of all members of a condition results in a positive value, the

condition itself is fulfilled. The operators for the conditions are usually one of

“or” or “and”. When a condition contains the “or” operator a single member

of the condition has to be fulfilled to fulfill the overall condition, whereas the

“and” operator indicates that all members have to be fulfilled. Additionally, the

conditions are organized in a hierarchical format, which means that a member

of a condition can be a set on its own. The default parts of the precondition

are usually the ability to produce input to the application, the required access

range, and the existence of the application itself. In most cases the vulnerabilities

can be found in several applications, which would lead to a set of individual

applications that contains the “or” operator. The “or” operator is used when it is

irrelevant which of the mentioned applications is running, as long as one of them

is existent. On the other hand, it is also possible to create conditions that require

44

3.2 Model and Format

a combination of applications to be in place. For example if a vulnerability

could only be misused in an application when it is executed on a Windows

machine, a condition could be built with a set of the application and the Windows

operating system connected with an “and” operator. The postconditions extend

the attributes of the preconditions by the impact of the vulnerability on the data

of the affected machine. Therefore, the postconditions consist of the applications,

the range, the program influence, the data, and the data influence. There are

some special cases that result in a different characteristic of the before mentioned

attributes applications, program influence, and range. If the vulnerability affects

the integrity of data, the attacker is able to read, write and delete data on the

target system. The attacker is usually able to change data in a way that allows

a capturing of the entire system. This means that the host itself is infected

and it is not trustworthy anymore, since it could be used for additional attacks.

Furthermore, the range of the attacker might change or another range could be

added if the attacker is able to use this machine as a Pivot point to reach deeper

into the network. The program influence can change when denial of service(DoS)

attacks are considered since these attacks affect the existence of the application.

Listing 3.1: Example preconditions of Vulnerability CVE-2014-0160

<s e t operator=”and”>

<s e t operator=”or”>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l :1 .0 .1”/ >

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 : beta1”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 : beta2”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 : beta3”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 a”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 b”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 c”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 d”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 e”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 f ”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 2 : beta1”/>

</set>

<prop key=”program in f luence ” value=”input”/>

<prop key=”range ” value=”remote”/>

</set>

For example Listing 3.1 illustrates the preconditions for the Vulnerability CVE-

2014-0160, which is better known as the “Heartbleed” bug. This precondition

45

Chapter 3 HPI Vulnerability Database

specifies OpenSSL of a specific version, a remote range for an attacker, and

the ability to send data to the application. This vulnerability could be used to

reveal confidential information, as it was prominently discussed in the public.

This results in a violation of the confidentiality and in the postconditions, which

can be found in Listing 3.2.

Listing 3.2: Example postconditions of Vulnerability CVE-2014-0160

<s e t operator=”and”>

<s e t operator=”or”>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l :1 .0 .1”/ >

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 : beta1”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 : beta2”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 : beta3”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 a”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 b”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 c”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 d”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 e”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 1 f ”/>

<prop key=”app l i c a t i o n ” value=”cpe : / a : opens s l : opens s l : 1 . 0 . 2 : beta1”/>

</set>

<prop key=”program in f luence ” value=”input”/>

<prop key=”data” value=”any”/>

<prop key=”da t a i n f l u en c e ” value=”read”/>

<prop key=”range ” value=”remote”/>

</set>

The postconditions show that the application is still in place, the applica-

tion also accepts input, and the range of the attacker was not modified either.

Nevertheless, the additional impact on the data of the system is represented by

a data influence attribute which refers to the readability of data. Therefore,

the postconditions represent the confidentiality loss and the possibility to read

information from the target system.

3.3 Information Retrieval and Normalization

At the time when the HPI-Vulnerability Database was created, the vulnerability

information, which have been publicly available are widely spread in the Internet.

So, information could be found from the individual vendors, such as Microsoft

with their Security Bulletins [40]. Additional information was provided by ex-

46

3.3 Information Retrieval and Normalization

isting and publicly available vulnerability databases, such as SecurityFocus [59],

National Vulnerability Database [46], or Open Source Vulnerability Database

(OSVDB)[50]. The OSVDB is a special candidate, since it was discontinued in

April 2016 and the service was shut down permanently. Nevertheless, in the

beginning information from OSVDB was used as well, to enrich existing entries

and extend the number of vulnerabilities. Other resources that are incorporated

are the Exploit database [49] with almost 40 thousand exploits archived. For

the HPI-VDB, vulnerability identifiers can be extracted from the exploit and

it could be used as a third party resource. Some vulnerability databases of-

fer exports and dumps for their data. For example, the National Vulnerability

Database provides dumps for every year and another file for recently published

vulnerabilities that is updated on a daily base. In addition, other providers offer

RSS feeds that contain information about recently added vulnerabilities, such as

the RSS feed from Zero Day Initiative1. These feeds often contain incomplete

information and the format of the feed varies greatly. However, an advantage is

that the information is already available even if the vulnerability was not com-

pletely analyzed yet. For retrieving vulnerabilities from the RSS feeds and from

sources that do not provide exports or dumps of their data, crawlers are used

to gather the information. For the sources that offer dumps, the data has to be

retrieved in the same schedule as the providers update their data. In addition,

a check for the Last-Modified header of the retrieved file is done and the result

is compared against the stored timestamp from the last update of this source.

This latest Last-Modified timestamp is always persisted in the database to be

available for future checks. The stored timestamp can also be used to ensure

that the information source is only queried after a certain threshold, to prevent

continuous and extensive querying. Thus, a reliable mechanism to verify the

necessity of an update is used to incorporate latest changes to the vulnerability

information.

Then the information is normalized to match the defined structure of the HPI-

VDB, which can be also seen in Figure 3.1. Since not all information is available

in all sources, the model only requires a few attributes by default. To create a new

1http://feeds.feedburner.com/ZDI-Upcoming-Advisories

47

Chapter 3 HPI Vulnerability Database

vulnerability, one has to specify information about the vulnerability identifier and

the description, which are available for most sources. The additional analytic

information, such as CVSS attributes, can be added later and will be needed to

generate the conditions. If the CPE-ID is not available, it is possible to extract

information from the description which might point to a CPE-ID in the CPE

dictionary.

Another approach to find information about vulnerabilities was presented in

my research [24], which introduced a new method to extract CVSS information

of vulnerabilities from their descriptions automatically. This approach is based

on machine learning and will be explained in more detail in Section 5.3. However,

the idea to use this method to identify whether a text contains information about

vulnerabilities can also result in an automatic approach to find information in

the first place. In this work, different machine learning approaches have been

presented to extract CVSS attributes from textual descriptions. Therefore, these

methods work on arbitrary textual input and extract information, such as attack

range or the violation of basic security goals. If these attributes can be extracted

from a text, it is likely that the text contains information about vulnerabilities

in general. Therefore, it can be used as an additional source for vulnerability

information.

When the source for additional vulnerability information was specified, the

already mentioned reader interface has to be implemented or adjusted. This ad-

justment is necessary to allow the processing of the information from the custom

structure of the new source. Therefore, the reader interface defines functions and

normalization capabilities that should be fulfilled by the reader of a new infor-

mation source. In the case of XML exports or RSS feeds the reader could benefit

from already existing libraries, such as etree from lxml2, or feedparser3. Then

the reader has only to map the specific fields from the parsed XML/ RSS model

to the vulnerability object and populate the information for each entry. When

the information is only available on websites, the reader has to be customized

and the content of the site has to be parsed to extract necessary information. In

2https://pypi.python.org/pypi/lxml/4.1.1
3https://pypi.python.org/pypi/feedparser

48

3.3 Information Retrieval and Normalization

that case libraries, such as scrapy4, have been used to simplify the parsing and

navigate to desired information based on the document object model (DOM)

tree of the page.

Then, the extracted information is normalized and official standards are used

whenever it is possible. So, the identifier is usually populated with the corre-

sponding CVE-ID, if the information is available. Otherwise, the identifier of the

source can be used for the time being. Later if the information is correlated with

additional information sources, the identifier could be replaced. The description

is not modified as it is not necessary for the analysis procedure and there is no

standard for human readable descriptions. Additionally, third party sources and

references are extracted and then transformed to a key-value pair, where the key

represents the name of the source, which is usually the domain of the host of the

information. The value contains the full link to the information and it is used

to maintain the link to the reference in the vulnerability later. The treatment of

the CWE-ID 2.3.4 is similar to the treatment of the identifier. However, if the

information is not present the attribute will not be populated until information

is found in another source or in a later version of the vulnerability information.

Another special attribute that is normalized is the information about affected

software of the vulnerability. The CPE-ID was already explained in Section 2.3.2

and this schema is also used by many sources and public vulnerability databases,

such as NVD [46]. Nonetheless, the HPI-VDB also integrates sources that do not

contain the CPE-ID or that did not feature the CPE-ID in the past. Thus, the

solution was to extract the information about the application from the descrip-

tion. Since the information about a vulnerability does not provide any benefit

if the affected program is not mentioned, the description usually contains the

application name. This allowed humans to understand the information about

the vulnerability and correlate the information with the mentioned application.

However, for the automatic integration an extraction procedure has to be per-

formed to find the application name in the description. Therefore, the CPE

dictionary was used to perform look-ups for specific applications that are al-

ready registered by the National Institute of Standards and Technology (NIST),

4https://scrapy.org/

49

Chapter 3 HPI Vulnerability Database

which maintains the CPE dictionary. The extraction of the application informa-

tion is achieved via a regular expression. Since the descriptions for vulnerabilities

has to be understandable by most humans, it also follows some basic rules in the

wording. It turned out that the application information is usually preceded by

the preposition “in” or the conjunction “and”.

Listing 3.3: Sample regular expression to identify application information

(?:^| in |, and | and |,)(.*?) (?: before|prior to)

(?:^| in |, and | and |,)(.*?) allows

After the software was specified there is a word indicating that this “allows”

a specific action or that this software “before” or “prior to” a specific version

is affected. In the latter case the “before” also indicates that a longer list of

applications with a lower version number are affected. This list is not directly

specified in the description but the regular expression in the first row of List-

ing 3.3 could be used to identify these cases. These observations have been used

to generate regular expressions that identify the program part in the description.

Two sample expressions are can be seen in Listing 3.3. This approach is similar

to the proposed approach to automatically create solutions for vulnerabilities

that is explained in section 5.2.2.

Another approach was to use the semantic background of the description.

Therefore, the text is transmitted to the DBpedia spotlight api [12] and anno-

tated there. It turned out that the requirement to process several hundred to

a few thousand descriptions in a reasonable time could not have been satisfied.

The investigation showed that the bottleneck is the processing of the description,

which has to be done to create and correlate CPE objects for the vulnerability.

Nevertheless, if the import process has to wait nearly 1 second for a description

to be parsed, including the request and response from the API, the required time

would increase drastically. In addition, the accuracy of the identification is not

as high as expected. Moreover, the approach was unable to deal directly with

large lists of applications, which are not described in the description. Especially

vulnerabilities with a high number of affected applications, such as the recently

discovered “Spectre” vulnerability (CVE-2017-5715 and CVE-2017-5753) with

50

3.4 Performance Improvement

1065 affected CPE-IDs each or some Chrome vulnerabilities that affect all pre-

vious versions (e.g. CVE-2017-5117) with 3756 affected CPE-IDs. These special

cases do not contain all affected components in their descriptions but state that

components before a specific version are affected. Certainly, the approach could

be combined with a small script that checks for those specific terms, such as

“before”, or “prior to”, but then it is again necessary to specify all these special

cases manually, which reduces the independence and universality of the DBpedia

approach. Thus, the approach could not be applied and relied on solely, but it

could have been used as an additional classification procedure and a combination

of the results from regular expressions and DBpedia classifications was planned.

In the end, the low accuracy and the additional overhead in processing time were

strong arguments to dismiss the DBpedia approach.

3.4 Performance Improvement

During the development of the HPI-VDB several challenges arose, which are tied

to the amount of data and strongly related to the usability of the database.

Since the database was designed to be accessible by the public, the usability and

responsiveness was always a strong requirement. The analysis of user actions

and requests to the HPI-VDB showed additional room to adjust the model and

focus on specific jobs, such as searching, or import.

The first adjustment was an architectural modification to increase the per-

formance for the majority of requests, which were observed from the logs. The

decision to add an additional CPE object to each vulnerability resulted from the

massive amount of searches based on program name. Originally the CPE-ID,

which was explained in Section 2.3.2, was only specified in the preconditions of

a vulnerability. Since the major requirement for a vulnerability is the existence

of the affected application, the CPE-ID is the integral part of the preconditions.

However, this resulted in the necessity to query the preconditions and reconstruct

the sets to find all connected CPE-IDs for a vulnerability. Since the CPE-ID or

multiple CPE-IDs are part of a set in the preconditions, it was necessary to obtain

the preconditions first. Then, it is checked whether the preconditions directly

51

Chapter 3 HPI Vulnerability Database

contain a CPE-ID or whether a set of applications is listed. In the latter case,

this set has to be retrieved and each entry can then be returned, as it would be

the case with the example preconditions in Listing 3.1. Although, this top-down

description to find CPE-IDs for a given vulnerability illustrates the additional

steps that have to be performed, the approach to find vulnerabilities for a given

CPE-ID works in a similar manner. The only difference is that the relationship

which is used to retrieve the property set for a specific member is member of.

Therefore it requires at least 2 additional retrieval steps to find a vulnerability

for a given CPE-ID. Thus, a new CPE-ID model was introduced and connected

directly to the vulnerability model via a many-to-many relationship. This means

each vulnerability can have multiple CPE-IDs and each CPE-ID can have mul-

tiple vulnerabilities. This adjustment allows a direct query for a CPE-ID and

receive the connected vulnerabilities without additional interaction with the pre-

conditions. The preconditions were modified to not contain the value of the

CPE-ID anymore but a reference to the corresponding CPE-ID object to avoid

a duplication of information and ensure the consistency of the data.

The other improvement for performance reasons is related to the import. Since

the database is updated on a daily base and different sources are incorporated,

the import capabilities should allow the information integration in a reasonable

time. The solution to this problem could have been a parallel import. The

idea to use multiple threads or processes to import new information was derived

from the observation that the majority of time to import a new vulnerability is

used for the creation of preconditions and postconditions. The other attributes

can often be extracted directly from the information source. So, based on the

violation of security goals and the other mentioned CVSS characteristics special

conditions are generated. These conditions contain the range, which can usually

be directly extracted, but the lookup and combination of the CPE-IDs consumes

a considerable amount of time. The idea was to run the condition generation in

parallel and synchronize the access to the database, meaning the different write

and lookup operations. The problem was that the CPE-IDs in the conditions

was initially a key-value tuple and therefore not bound to any object. Therefore,

the conditions could be generated independently and persisted in bulk requests.

52

3.4 Performance Improvement

With the parallel approach, it nearly speeds up the process by the number of

cores that are available. The performance improvement from the parallelization

is visualized in Figure 3.2.

Figure 3.2: Parallel Import Performance with 4 cores

However, the model adjustment to handle CPE-IDs as objects and use the

object identifiers in the conditions requires additional lookup operations in the

database. The read operations for the existence of a specific CPE-ID could be

parallelized, so the parallel approach could deal with this additional lookup op-

erations and achieve similar results as shown in Figure 3.2. However, additional

tests revealed that the import is not capable to handle all cases successfully.

For example cases, when a new CPE-ID object need to be created by multiple

threads at the same time, cannot be processed. The initial lookup for the CPE-

ID would yield that the CPE-ID is not listed in the database. Therefore, there

is the necessity to create the CPE-ID object. However, when the threads obtain

the lock to persist the results in the database the first thread is able to create

the object, but already the second thread is not allowed to create the CPE-ID

object, since each CPE-ID should only be listed once. Thus, the parallel import

capability was discarded in the productive environment.

Nevertheless, a similar parallelization approach was implemented for the CPE-

53

Chapter 3 HPI Vulnerability Database

ID lookup in the CPE dictionary, which will be used for analytic approaches that

are explained in Section 3.5.1. The problem was to find the correct CPE-ID for

a subset of the required attributes. Usually, not all relevant attributes of a

program could be detected or are returned by software detection tools. Thus,

the analytic approaches have to handle cases when only a subset of attributes,

such as name and version of a program, are available. Then, the lookup operation

has to search through the CPE dictionary and find suitable candidates that have

a match in the given attributes. Therefore, in the end the entire dictionary has

to be searched for each combination of program name and version, which could

result in a long processing time. Obviously, the processing speed of this problem

could be increased with a parallel approach.

The parallelization itself should allow the full utilization of the available re-

sources for the search in the CPE dictionary. The possible results would be

either the correct CPE-ID or the absence of a CPE-ID for the given program.

The first idea was to parallelize the process by dividing the CPE dictionary into

equal-sized partitions. The number of partitions should be in accordance to the

number of available cores. Then each combination of program name and version

can be searched in multiple parts of the dictionary at the same time. If a suitable

match was found in one of the partitions, the corresponding thread returns the

result and all remaining searches could be stopped. Hereby, a smaller part of

the dictionary has to be searched and results should be retrieved much faster.

However, it turned out that the performance gain does not outweigh the addi-

tional overhead for parallelization, since the combinations for program name and

version are still processed one after the other. This insight could be explained

with the low processing time for a single lookup due to the small size of the

dictionary. Thus, it was not beneficial to parallelize the lookup itself but the

analytic approaches offer another possibility to parallelize the workload.

Therefore, another parallelization approach was implemented that utilized the

fact that most analytic approaches are based on a set or a compilation of pro-

grams. The idea is to divide the set of applications, which should be processed,

instead of the dictionary. Then, every thread can run independently and perform

the lookup in the dictionary for its subset of name version tuples. Finally, the

54

3.4 Performance Improvement

results can be merged and returned for further processing. This method does not

require additional synchronization beside the final collection of all intermediate

results. The only requirement was that the dictionary has to be available for ev-

ery thread to avoid locks and synchronization issues. In the first implementation,

a copy of the dictionary was read into the memory for each thread. Since the

size of the CPE dictionary is relatively small5, the additional memory overhead

could be accepted.

Figure 3.3: Parallel Lookup Performance with 4 cores

The resulting performance boost to perform the lookup for suitable CPE-IDs

in parallel is visualized in Figure 3.3. The diagram shows that the speedup factor

from the parallelization is bound to the number of available cores.

In a later implementation, a shared data structure was used for the CPE

dictionary, as only read operations are performed. Since reading of the data

structure does not have additional side effects, multiple threads can perform the

reading in parallel. Thus, the requirement to reproduce the dictionary in memory

was circumvented, although it might not have been necessary due to the limited

size.

5CPE Dictionary was 41 MB on 19.02.2018

55

Chapter 3 HPI Vulnerability Database

3.5 Analytic Features

This section describes analytic approaches that have been implemented in the

HPI-VDB [27]. The approaches are based on the data model that was explained

in Section 3.2 and illustrated in Figure 3.1. The presented approaches work

in an automated fashion to allow the processing of vulnerability information.

Since nowadays the amount of information increased dramatically, automated

methods have to be used to handle the large number of information and possible

combinations. In addition, the different approaches always aimed at a reasonable

processing speed and a good usability to incorporate them into the online version

of the HPI-VDB. Especially, the performance of several approaches is interesting,

since the number of different applications and systems create a wide space for

combinations and require powerful analytic capabilities. The requirement that

all approaches should be useful for the public will reoccur and result in additional

efforts, which will be mentioned later on.

3.5.1 Self-Diagnosis

The first approach that will be presented is the self-diagnosis [22]. This ap-

proach was the first analytic method that was implemented into the HPI-VDB.

The idea was to provide a possibility to utilize the vulnerability information

in an automated way. The procedure has to be automated, since the amount of

vulnerability information increased recently. For example, more than 10,000 vul-

nerabilities were published in 2017, which was also the reason for the extension

of the CVE-ID to more than four digits. The automated approach was designed

to detect vulnerabilities on a system and report the results back to the user. The

approach or part of it could also be used as a foundation for other approaches

that require the initial detection of vulnerabilities. The self-diagnosis could be

divided into two major steps, namely the CPE-ID detection and the usage of

CPE-IDs to correlate vulnerabilities, which will be discussed in the following.

First, I will explain the extraction of the CPE-IDs and its necessity. Afterwards

the second step, which uses the CPE-IDs to correlate vulnerabilities and, through

this, predict the existence of vulnerabilities, will be described. Later on, a short

56

3.5 Analytic Features

elaboration on the requirements for implementing the approach in HPI-VDB is

given and the concrete use case will be explained in Chapter 4.

CPE-ID detection

The first task in the analytic approach is to gain a deep insight to the system

that should be analyzed. It is necessary to create a comprehensive representation

of the systems inner structure. Then, every installed or running application is

retrieved. This information allows the approach to predict the existence of vul-

nerabilities, since a vulnerability is mostly dependent on the affected application.

Therefore, if the information about all running applications is available all the

related vulnerabilities can be deduced and they are very likely to exist on the tar-

get system. The major requirement is that the application identification has to

be done with a very high level of detail and a high accuracy, since many vulnera-

bilities only affect a specific version or a certain language pack. The requirement

to identify applications with this high level of detail can be fulfilled when the

CPE-ID of the application is known. As it was explained in Section 2.3.2 the

CPE-ID provides a standard to precisely identify applications and their versions.

Thus, the CPE-IDs are usually utilized to describe the requirements of a vul-

nerability. Therefore, the analytic approach can use the CPE-ID to identify the

running or installed programs on the target system and to directly refer to a

precise version of the application and its vulnerabilities later.

The extraction of CPE-IDs on its own is a complicated task as different pro-

grams have different installation routines. Furthermore, different operating sys-

tems use diverse mechanisms to preserve information or document installation

procedures. Even the execution of a program itself could be varying. For ex-

ample, one could execute an already created binary, or compile the binary and

run it, or use third-party tools to download, install and run programs. These

different ways of executing an application leave different traces and require suit-

able methods to identify running or installed programs. Thus, the self-diagnosis

has to distinguish the type of operating system to use the appropriate extraction

method in the beginning.

57

Chapter 3 HPI Vulnerability Database

CPE-ID extraction on Windows systems One extraction method was de-

signed to work for Windows systems. During the development, several tests

with registry extraction or interpretation of environment variables, such as sys-

tem path, were performed to find installed applications. However, I found a

third-party tool, which already solves the problem of the program identification.

The tool is the public available scanning tool OVALDI [41], which was published

by the MITRE corporation and is now maintained by the Center for Internet

Security. The scanner is documented on the OVAL website [8] and can be down-

loaded via sourceforge6. The scanner itself will test for properties that are speci-

fied in the definitions, which can be downloaded from the OVAL website [8]. The

definitions are updated on a daily basis and are organized in various categories,

such as inventory or vulnerability. So, as explained in Section 2.3.5, OVAL it-

self can be used to find vulnerabilities, but it only encompasses 16,000 tests for

vulnerabilities, whereas the HPI-VDB contains information about 96,000, as of

February 2018. This is the reason why OVAL can be used to identify applications,

but when it comes to vulnerabilities, the amount of available tests lacks compre-

hensiveness. In addition to the different classes, the definitions are divided into

groups for different operating systems and architectures, which allows working

only with the necessary subset of definitions during the processing. Thus, the

self-diagnosis for Windows will utilize the inventory and program identification

capabilities of OVAL. One benefit when using OVAL is that the active commu-

nity of OVAL continuously adds definitions and maintains the already created

definitions. Another benefit of using the OVAL method is that the result of the

inventory detection contains CPE-IDs for each identified application. Hence, it

is not necessary to perform additional lookup operations in the CPE dictionary.

Besides, the OVALDI scanner is also available for different operating systems,

since it is published as a Windows executable, as well as an RPM package and

source code for self-compiling.

CPE-ID extraction on UNIX systems UNIX systems could be scanned for

applications with the OVALDI tool as well, since the scanner’s source code is

6https://sourceforge.net/projects/ovaldi/

58

3.5 Analytic Features

available and could be compiled on the specific Unix system. However, in several

test cases, compilation problems arose and the decision to use default commands

for the identification of applications was done. Usually new applications are in-

stalled as packages on most Linux distributions. The dpkg command can be used

to install those packages, but it could also be used to identify already installed

packages, since it has to keep track about the installation status as well. Thus,

a small script to collect all installed applications was included to gather the re-

quired information on Unix systems. The concrete script will be described again

in Section 4.3, when some concrete use cases will be described. The downside of

this approach is that the results contain only the name and the version string

for each application. Thus, an additional lookup is required to find the corre-

sponding CPE-IDs for each application. This task benefits from the performance

improvements that were described in Section 3.4. After the CPE-IDs for each

program were identified, the self-diagnosis can continue independently from the

operating system.

Using CPE-IDs to correlate Vulnerabilities

The comprehensive list of CPE-IDs for all identified applications represents the

inner structure and all relevant components of the target system. This means

that the vulnerability detection investigated the necessary information from the

system that should be analyzed. The remaining step is to identify the related

vulnerabilities for this combination of CPE-IDs. Therefore, the preconditions of

the vulnerabilities will be used. As it was already explained, the most important

requirement for every vulnerability is the existence of the affected application

or hardware component. The self-diagnosis can already capitalize on the fact

that the CPE-IDs for the affected applications of all vulnerabilities are listed

in the HPI-VDB. Therefore, a query for all identified CPE-IDs will return the

CPE-IDs, which are actually listed in the HPI-VDB and are related to vulnera-

bilities. Then those vulnerabilities can be retrieved as well. This first collection

of vulnerabilities is checked for further restrictions in the preconditions, which is

illustrated in Algorithm 1. As it was explained, the individual properties of the

conditions are organized as members of condition-sets that are connected with a

59

Chapter 3 HPI Vulnerability Database

logical operator. Thus, an evaluation of those condition-sets is required to eval-

uate if all necessary conditions are fulfilled and the vulnerability exists on the

system. The algorithm will check if the condition-sets are evaluated successfully

and return a boolean result. Therefore, it has to differentiate between AND and

OR condition sets. Then the vulnerability will be appended to the set of results.

Algorithm 1 Evaluation of conditional structure of vulnerabilities

1: for vulnerability in vulnerabilities do
2: programset = vulnerability.preconditions.programs
3: vulnerabilityFound = false
4: if programset.operator == “OR” then
5: for cpe in programset.members do
6: if cpe in cpeListOfTarget then
7: vulnerabilityFound = true
8: break
9: end if

10: end for
11: else if programset.operator == “AND” then
12: vulnerabilityFound = true
13: for cpe in programset.members do
14: if cpe not in cpeListOfTarget then
15: vulnerabilityFound = false
16: break
17: end if
18: end for
19: end if
20: if vulnerabilityFound then
21: result.append(vulnerability)
22: end if
23: end for

Finally an additional check for the remaining preconditions is done, depend-

ing on the type of analysis. For the self-diagnosis the activeResourceInfluence

is tested, since it usually should be possible for a potential attacker to send in-

put to the vulnerable application. Therefore, the application should be running

and process input, which is send to it, e.g., via network or via local console

access. For the self-diagnosis the remaining precondition, namely the Range, is

60

3.5 Analytic Features

discarded, since it is assumed that the diagnosis should check for vulnerabilities

in general and independently of the potential attack-range. This means that

the self-diagnosis will perform a full analysis regardless of the position of the

attacker. Additional analysis procedures that incorporate the attack range will

be discussed in Section 3.5.3, when the attack graphs are presented.

3.5.2 Program Stack

Another special capability of the HPI-VDB is the program stack. Since the

vulnerability information in the Internet is widespread and diverse, the idea

arose to create the HPI-VDB in the first place. In addition, another observation

was that it is not easy to always find the important information for oneself.

Thus, the possibility to perform a self-diagnosis was created and multiple users

took the opportunity to test their systems. However, the self-diagnosis is a short

glimpse of the current state of the system, as well as the current state of the

available vulnerabilities. Thus, in theory a self-diagnosis could return different

results on two consecutive days, since the system might have changed or the

vulnerability information might have been updated. Hence, another feature for

a more continuous monitoring was required. A direct and detailed continuous

monitoring of the target system is out of scope, as this would require an agent

running on the system that continuously reports changes. Therefore, the new

feature focuses on the continuity on the side of HPI-VDB.

The before mentioned requirements resulted in the program stack feature,

which allows an ongoing reporting for selected applications. Hereunto, the ap-

plications that should be monitored are selected and stored for each user. This

results in a list of CPE-IDs per user, which is called program stack in the HPI-

VDB as it represents the accumulation of important programs for that user. An

example program stack is illustrated in Figure 3.4, which includes two operating

systems, namely Windows 8 and Suse Linux. However, the CPE-IDs of each

application has to be inserted by the user manually in the first iteration of the

program stack. Since the input of CPE-IDs could be complicated, an assisted

method was designed that uses auto-completion after a separation of CPE-IDs

61

Chapter 3 HPI Vulnerability Database

in classes of most used types, such as operating system or browser. The assisted

method is especially helpful for inexperienced users and allows those users to

benefit from the program stack. The disadvantage of this manual approach is

that it cannot guarantee that every application of the system is represented in

the program stack. This might be important for inexperienced users as it is

difficult to find the important applications in the first place. The benefit is that

a more experienced user can limit the number of applications, which should be

monitored, so the amount of noise is kept low. A solution for this limitation

is the option to directly transfer the identified CPE-IDs from the self-diagnosis,

which was explained in Section 3.5.1, to the program stack. Then every CPE-ID

from the target system can be continuously monitored.

9 Hasso-Plattner-lnstitut

All Search Self-Diagnosis Program Stack API

Modification / Creation of program stack

Select CPEs of applications on your system, which should be integrated in the stack. All programs of the stack are used to detect

vulnerabilities and keep track of recent vulnerability information.

Specify whether to receive updates per email in your User Details.

The default value is set to no notifications.

News for CPE-Stack

No News for CPE Stack

IMII

CPEs

Category

Operating Systems

Operating System

Windows 8 x64 (64-bit)

suse suse_linux

Browsers

Arbitrary Programs

-

, Previous 2 3

Vulnerability Description

CPE-1D

Operating System's CPE

cpe:/o:microsoft:windows_8:-:-:x64

cpe:/o:suse:suse_linux:2.6.5

6 7 Next-,

CVE-2016-0018 Microsoft Windows 7 SP1, Windows 8, Windows 8.1, Windows Server ...

CVE-2016-0016 Microsoft Windows Vista SP2, Windows Server 2008 SP2 and R2 ...

CVE-2016-0015 DirectShow in Microsoft Windows Vista SP2, Windows Server 2008 SP2 ...

CVE-2016-0014 Microsoft Windows Vista SP2, Windows Server 2008 SP2 and R2 ...

-

Remove

Remove

CPE-1D

cpe:/o:microsoft:windows_8:-:-:x64

cpe:/o:microsoft:windows_8:-:-:x64

cpe:/o:microsoft:windows_8:-:-:x64

cpe:/o:microsoft:windows_8:-:-:x64

Figure 3.4: Example of a Program Stack

If the specific CPE-IDs are appended to the program stack an initial round of

62

3.5 Analytic Features

collecting the associated vulnerabilities is triggered. The vulnerabilities will then

be appended to the vulnerability list of the program stack. In the future, every

creation of a new vulnerability that is related to a CPE-ID will consequently

trigger the addition of this vulnerability to the specific program stacks, which

contain the CPE-ID. This approach was realized with a signal mechanism from

the Django framework7. Therefore, this approach helps to keep track of recent

vulnerabilities for the specified applications without regular manual investigation

of those applications. Furthermore, the program stack includes the possibility to

receive information about updates via email. This allows users to be informed

without visiting HPI-VDB regularly. The email will contain the news section of

the program stack, which is updated whenever a new vulnerability was included

that affects a CPE-ID from the program stack, as it was described before. The

news section contains one element for each update that was detected for the

program stack. The element contains the CPE-ID, the vulnerability identifier,

most often the CVE-ID, and a timestamp to identify the specific update. Thus,

the news section could contain several items and keep growing, as long as the

user does not trigger a flush of the older elements. Currently, one third of all

users actively use the program stack feature, as of 25th of February. The usage

shows that the feature was widely accepted and is used to receive updates about

vulnerabilities.

3.5.3 Attack Graph

This section describes the concept of the attack graph that is enriched with vul-

nerability information from the database. Then the attack graph could visualize

the possible weaknesses in a network and reveal specific points that have to be

hardened to secure the infrastructure. This attack graph differs from the tra-

ditional way of attack graphs that visualizes all possibilities as a path for one

target component. This results in a large graph that is hardly readable or un-

derstandable. An example excerpt for a traditional attack graph is illustrated

in Figure 3.5. This gives an idea of the amount of nodes and connections for a

7https://www.djangoproject.com/

63

Chapter 3 HPI Vulnerability Database

relatively small scenario of five machines and three networks. In the top right

corner of the Figure, the full graph is illustrated and the part, which is sur-

rounded with the red rectangle is illustrated in the bigger part of the picture.

Thus, the complexity of the traditional graph is a problem that prevents a wide

utilization of the attack graph creation with MulVAL [51]. In contrast to the

complex graph, the same scenario is also illustrated in Figure 3.6, which is less

confusing. Several research work focused on the simplification or increase of the

usability of those graphs, such as [32]. Most of the traditional attack graph cre-

ations utilize logic programming paradigms to find all possibilities that lead to

a positive result. The downside is that those graphs have this high complexity.

A famous example of those tools is MulVAL [51], which was also used in the

example graph in Figure 3.5.

1:netAccess(webServer ,_ ,443):0

2:RULE 26 (Port-Forwarding via zone access):1

3:isZone(vlan1):1

9:RULE 27 (Access via gateway the gateway connected by zone):1

15:RULE 29 (access via zone):1

18:RULE 27 (Access via gateway the gateway connected by zone):123:RULE 27 (Access via gateway the gateway connected by zone):1

28:RULE 27 (Access via gateway the gateway connected by zone):1

33:RULE 26 (Port-Forwarding via zone access):1

38:RULE 27 (Access via gateway the gateway connected by zone):1 43:RULE 27 (Access via gateway the gateway connected by zone):1

44:RULE 27 (Access via gateway the gateway connected by zone):1

47:RULE 27 (Access via gateway the gateway connected by zone):1

56:RULE 29 (access via zone):1

58:RULE 27 (Access via gateway the gateway connected by zone):1

59:RULE 27 (Access via gateway the gateway connected by zone):1

60:RULE 27 (Access via gateway the gateway connected by zone):1

62:RULE 27 (Access via gateway the gateway connected by zone):1

63:RULE 27 (Access via gateway the gateway connected by zone):177:RULE 27 (Access via gateway the gateway connected by zone):1

88:RULE 27 (Access via gateway the gateway connected by zone):1

89:RULE 27 (Access via gateway the gateway connected by zone):193:RULE 27 (Access via gateway the gateway connected by zone):1

101:RULE 27 (Access via gateway the gateway connected by zone):1

102:RULE 27 (Access via gateway the gateway connected by zone):1

104:RULE 27 (Access via gateway the gateway connected by zone):1

108:RULE 29 (access via zone):1

110:RULE 27 (Access via gateway the gateway connected by zone):1 111:RULE 27 (Access via gateway the gateway connected by zone):1

112:RULE 27 (Access via gateway the gateway connected by zone):1

113:RULE 27 (Access via gateway the gateway connected by zone):1

114:RULE 27 (Access via gateway the gateway connected by zone):1118:RULE 27 (Access via gateway the gateway connected by zone):1

124:RULE 29 (access via zone):1

127:RULE 27 (Access via gateway the gateway connected by zone):1131:RULE 27 (Access via gateway the gateway connected by zone):1

132:RULE 27 (Access via gateway the gateway connected by zone):1

134:RULE 27 (Access via gateway the gateway connected by zone):1

135:RULE 27 (Access via gateway the gateway connected by zone):1 139:RULE 27 (Access via gateway the gateway connected by zone):1

4: isZone(internet) :1

5:hacl(vlan1,webServer ,_ ,443):1

6:hacl(firewall,vlan1,_,443):1

7:hacl(internet,f irewall ,_,443):1 8:netAccess(internet ,_ ,443):0

10:hacl(vlan1,firewall,_,443):1 11:hacl(’cto-workstation’,vlan1,_,443):1

119:RULE 5 (multi-hop access):0 120:RULE 5 (multi-hop access):0

12:execCode(’cto-workstation’,_):0

25:RULE 1 (local exploit):0

70:RULE 5 (multi-hop access):0 82:RULE 5 (multi-hop access):094:RULE 5 (multi-hop access):0 140:RULE 5 (multi-hop access):0

13:RULE 2 (remote exploit of a server program):0

14:netAccess(’cto-workstation’,_,139):0

16:hacl(vlan1,’cto-workstation’,_,139):1

17:netAccess(vlan1,_,139):0

19:hacl(vlan1,firewall,_,139):120:hacl(’cto-workstation’,vlan1,_,139):1

95:RULE 5 (multi-hop access):0

21:hacl(firewall,vlan1,_,139):1 22:gateway(firewall ,’cto-workstation’,vlan1):124:execCode(’cto-workstation’,root):0

27:RULE 1 (local exploit):0 72:RULE 5 (multi-hop access):0 83:RULE 5 (multi-hop access):0 141:RULE 5 (multi-hop access):0

26:vulExists(’cto-workstation’,’cVE-2012-0003’,cpeomicrosoftwindowsxpsp2,localExploit,privEscalation):1

29:hacl(webServer ,vlan1,_,139):1

96:RULE 5 (multi-hop access):0

97:RULE 5 (multi-hop access):0

30:execCode(webServer ,_):0

49:RULE 1 (local exploit):0 84:RULE 5 (multi-hop access):0121:RULE 5 (multi-hop access):0 142:RULE 5 (multi-hop access):0

31:RULE 2 (remote exploit of a server program):0

32:netAccess(webServer ,_ ,80):0

34:hacl(vlan1,webServer ,_ ,80):1

35:hacl(firewall,vlan1,_,80):1

36:hacl(internet,f irewall ,_,80):137:netAccess(internet ,_ ,80):0

39:hacl(vlan1,firewall,_,80):140:hacl(’cto-workstation’,vlan1,_,80):141:hacl(firewall , internet,_,80):142:gateway(firewall ,’cto-workstat ion’, internet):1

45:hacl(webServer ,vlan1,_,80):1

85:RULE 5 (multi-hop access):0

46:gateway(f i rewal l ,webServer , in ternet) :1

48:execCode(webServer , root) :0

51:RULE 1 (local exploit):0122:RULE 5 (multi-hop access):0 143:RULE 5 (multi-hop access):0

50:vulExists(webServer,’cVE-2012-0001’,cpeamicrosoftinternetinformationservices51,localExploit,privEscalation):1

52:RULE 6 (direct network access):0

53:hacl(uniquelyNamedAttackerMachine, internet ,_,80):154:at tackerLocated(uniquelyNamedAttackerMachine):1

105:RULE 6 (direct network access):0

55:forward(f i rewall ,_ , internet ,80,webServer ,80):1

57:netAccess(vlan1,_,80):0

61:gateway(f i rewal l ,webServer ,vlan1):1 64:isZone(vlan2):1 65:hacl(vlan2,’app-gateway’,_,80):166:hacl(’db-server’,vlan2,_,80):1

67:execCode(’db-server’,_):0

79:RULE 1 (local exploit):0

68:RULE 2 (remote exploit of a server program):0

69:netAccess(’db-server’,_,1143):0

71:hacl(’cto-workstation’,’db-server’,_,1143):1

73:networkServiceInfo(’db-server’ ,cpeaphpmyadminphpmyadmin21151,_,1143,_):174:vulExists(’db-server’,’cVE-2012-0005’,cpeaphpmyadminphpmyadmin21151,remoteExploit ,privEscalation):1

75:hacl(’app-gateway’,vlan1,_,80):176:gateway(’app-gateway’,’db-server’,vlan1):178:execCode(’db-server’,root):0

81:RULE 1 (local exploit):0

80:vulExists(’db-server’,’cVE-2012-0005’,cpeaphpmyadminphpmyadmin21151,localExploit,privEscalation):186:networkServiceInfo(webServer,cpeamicrosoft internet informationservices51,_,80,_):187:vulExists(webServer,’cVE-2012-0001’,cpeamicrosoftinternetinformationservices51,remoteExploit ,privEscalation):1

90:hacl(vlan2,’app-gateway’,_,139):1 91:hacl(’db-server’,vlan2,_,139):192:hacl(’app-gateway’,vlan1,_,139):1

98:networkServiceInfo(’cto-workstation’,cpeomicrosoftwindowsxpsp2,_,139,_):199:vulExists(’cto-workstation’,’cVE-2012-0003’,cpeomicrosoftwindowsxpsp2,remoteExploit,privEscalation):1

100:hacl(f irewall , internet ,_,443):1

103:hacl(webServer ,vlan1,_,443):1

106:hacl(uniquelyNamedAttackerMachine, internet ,_,443):1

107:forward(f i rewal l ,_ , internet ,443,webServer ,443):1 109:netAccess(vlan1,_,443):0

115:hacl(vlan2,’app-gateway’,_,443):1 116:hacl(’db-server’,vlan2,_,443):1 117:hacl(’app-gateway’,vlan1,_,443):1

123:netAccess(webServer,_,_):0

125:hacl(vlan1,webServer ,_,_):1 126:netAccess(vlan1,_,_):0

128:hacl(vlan1,firewall,_,_):1129:hacl(’cto-workstation’,vlan1,_,_):1 130:hacl(firewall,vlan1,_,_):1

133:hacl(webServer ,vlan1,_,_):1 136:hacl(vlan2,’app-gateway’,_,_):1 137:hacl(’db-server’,vlan2,_,_):1 138:hacl(’app-gateway’,vlan1,_,_):1

Figure 3.5: Excerpt from a traditional attack graph created with MulVAL

The first step to create this enriched attack graph is to identify the network

structure and the necessary information for each machine, such as connected

networks, IP addresses. That structural information will provide the foundation

64

3.5 Analytic Features

for the graph creation. The different connections between the machines and their

affiliations to the networks can be represented with that information. In addition,

the internal state for each machine has to be detected, which means information

about the running applications, installed programs and open ports have to be

collected. This additional information will be used to identify weaknesses in each

machine to move from host to host or elevate privileges or something similar.

The integrated network scanning tool [10] is able to fulfill both of these re-

quirements and create a representation of the network in an XML format. This

representation will contain the structural information, as well as the information

about the inner structure of each node. An excerpt from an example XML rep-

resentation, which was produced using the integrated scanner proposed in [10]

is illustrated in Listing 3.4. If an administrator manually wants to alter this

data, it is still possible and the straightforward structure of the XML allows

an easy modification. The simple schema of the XML also allows the manual

creation of the entire XML for smaller networks. For bigger networks the in-

tegrated scanner [10] can be used. The core requirements are that each host

should have information about the connected networks and as many informa-

tion about installed applications as possible. Therefore, the integrated scanner

combines different tools, such as nmap [35] and nessus [63] to scan for hosts

and the installed and listening applications respectively. Thus, the attack graph

creation of HPI-VDB can start from the point, when a full XML description of

the network is available. At this point the important applications, which listen

on the individual hosts are listed in the CPE format.

So, as it was also described in the paper [23], the attack graph creation process

the XML to generate the network outline first. Afterwards vulnerability informa-

tion about the identified applications is gathered. This requires the CPE-IDs for

the detected applications, which can be directly taken from the XML description.

When the list of vulnerabilities for each node is composed, the position of the

attacker is not considered. The initial attack graph only visualizes the network

structure and provides insights about the existent vulnerabilities in the details

of each node. Furthermore, vulnerable nodes are highlighted and the existent

vulnerabilities are displayed in the graph, if the amount does not influence the

65

Chapter 3 HPI Vulnerability Database

Listing 3.4: Extract of description of a web server

<component id=”webserver”>
<desc>This i s the webserver .</ desc>
<image>
<os>
<cpe name>cpe : / o : m i c ro so f t : windows xp : : sp2</cpe name>
<port number>139</port number>

</os>
<program>
<cpe name>cpe : / a : apache : h t t p s e r v e r :2 .4 .9 </ cpe name>
<port number>80</port number>

</program>
. . .

visualization, as it is illustrated in Figure 3.6. In addition to the nodes them-

selves, their connections are highlighted as well, since connections that originate

from a vulnerable host are classified as corrupted as well, if the vulnerability

affects the integrity of the system. In this case, the attacker could modify data

and execute commands on the system, which results in an overall compromise

of the system. Then, the network connections from this system are under the

control of the attacker as well and cannot be trusted anymore. Thus, these com-

promised connections visualize the possibilities of an attacker to influence the

data flow in a network and move from one node to the other. In addition to

the general evaluation of the network, it is also possible to explicitly place the

attacker in one of networks. Consequently, an evaluation is triggered that com-

putes the hosts, which can be accessed or captured by the attacker. Therefore,

it is a similar evaluation to the approach already described but this time the

location of the attacker is considered as well. The data structure for the graph is

a JSON representation of the individual nodes and edges with their correspond-

ing attributes. Then the visualization of the graph is performed by Springy [30],

which is an external library and able to create a force directed graph. This

graph should have a minimum of overlapping edges and the nodes should be

distributed equally in the available canvas. Thus, these properties should result

in a well-structured graph that does not include additional complexity, as it is

66

3.5 Analytic Features

shown in Figure 3.6. The graph itself allows interaction with the nodes, so one

can easily drag or remove individual nodes. For the presented graph, the Springy

library was extended to incorporate the possibility to highlight edges and nodes

and visualize the vulnerability identifiers, as it was described before. Finally,

the graph is visualized using the extended Springy library and JavaScript in the

browser. One constraint of the simplistic graph is the limited number of nodes

that still allow a good representation and the interaction of the user. If the target

network contains tens or hundreds of nodes, the approach does not perform well

and another library should be used to visualize the graph. However, the general

approach and the reasoning can still be utilized, only the visualization front-end

should be replaced.

Figure 3.6: Example Attack Graph without an attacker

Overall, the graph from the HPI-VDB, which is shown in Figure 3.6, increased

the readability of attack graphs, but the downside is that the attack routes are not

67

Chapter 3 HPI Vulnerability Database

visible. This attack graph only visualizes the network structure and integrates

information about the vulnerabilities and endangered nodes of the network. Nev-

ertheless, the HPI-VDB can still be used, as a knowledge base for vulnerability

information, with the original attack graph creation of MulVAL as it was ex-

plained before and shown in Figure 3.5. Therefore, the information could still be

produced, but the HPI-VDB incorporates the more simplistic representation of

the attack graph as the detailed representation was designed for a special group

of experts only.

Furthermore, the solutions for the vulnerabilities were integrated as well.

Therefore, the solutions from each vulnerability are collected and duplicates in

the resulting set of solutions are dismissed. Then, a list of available solutions is

presented to the user, which can be applied by selecting the solution. The result

of applying the solution to the scenario will be represented in the attack graph.

This means that the attack graph is updated interactively and could also be used

to evaluate the effectiveness of the possible solutions. Based on this, decisions

could be made, which solutions or which fixes have to be prioritized, because

they have the largest impact on the security of the network. It can also be used

to identify focal points that should be secured especially, since most attacks have

to go through this station.

3.6 Conclusion

This chapter describes the fundamental model that was used to represent vul-

nerabilities with all necessary properties to allow the application of analytic

approaches. The unique attributes of the proposed vulnerability model are the

preconditions and the postconditions. Those conditions aim at the overall goal of

the HPI-VDB [27] to allow an automatic processing of the vulnerability informa-

tion. During the development and the research, other vulnerability databases,

such as NVD [46] also integrated requirements for a vulnerability which are

similar to the preconditions. However especially the postconditions allow an

evaluation of possible combinations of vulnerabilities, which could be exploited

one after each other.

68

3.6 Conclusion

Thus, the proposed attack graph was an obvious choice for one of the im-

plemented analytic approaches. The simplified attack graph differentiates from

traditional attack graphs, which tend to be confusing, because of their complex-

ity. The presented attack graph illustrates the network structure, which rep-

resents the inevitable complexity to model the target network, with integrated

vulnerability information.

Beside the attack graph, the vulnerability detection is the major analytic ap-

proach that can be used to scan a system and identify existing vulnerabilities.

The detection relies on the before-mentioned preconditions and automatically

evaluates the necessary requirements for each vulnerability. This approach was

also developed with a high focus on performance improvement, as it has to be

applied to each system of a target network, which could require numerous com-

putations. Furthermore, the results of the vulnerability detection could also be

incorporated into the program stack feature. This feature allows to receive in-

formation about recently discovered vulnerabilities for the specified applications.

Thus, the users do not have to constantly check for information themselves any-

more. They merely have to specify the applications of interest and receive no-

tifications about updates automatically. Several users benefit from this feature

already, which shows the acceptance and usefulness.

A special requirement during the development of the HPI-VDB and its analytic

approaches originates from the fact that the system is publicly available. This

means that the ability to demonstrate the approaches to the public should always

be considered. Additionally, each approach should be understandable for novice

users and it should have an intuitive workflow. Besides, the requirement to make

the approaches usable via the web server also results in performance optimization

as the average user does not want to wait for a request for a long time duration.

69

Chapter 4

Use Cases of Vulnerability

Information

4.1 Introduction

The original purpose for the development of the HPI-VDB [27] was to create a

database for vulnerability information that can be automatically evaluated and

queried by analytic approaches. Since most other publicly available vulnerability

databases limit the access to the data or even do not provide the possibility to

query the data in a large scale, the necessity to create an own database had to be

satisfied. Additionally, the format of the available vulnerability information is of-

ten designed to be readable by humans and it is hard to extract the most relevant

information for the analytic approaches. Thus, the HPI-VDB was created and

provides the data in a machine-readable format. Furthermore, it allows query-

ing the database frequently for specific characteristics of the vulnerabilities and

the results will comply with the desired format for different analytic approaches.

The approaches were partly integrated into the database itself to provide ad-

ditional benefits to the users of the HPI-VDB. This chapter will elaborate on

some approaches that were developed for different use cases for vulnerability

information.

71

Chapter 4 Use Cases of Vulnerability Information

4.2 Attack Graphs

The first use case for vulnerability information is the creation of attack graphs.

The attack graphs utilize vulnerability information to detect possible paths of

an attacker in the network. Therefore, the network structure has to be identified

in the first place. As it was described in Section 3.5.3, one could use different

network scanners, such as nmap [35], or even vulnerability scanners, such as nes-

sus [63] to create the initial outline of the network. Another possibility would

be the usage of the integrated scanner, which was described in [10]. The inte-

grated scanner has the benefit that the result of the network scan can be directly

used in the attack graph creation process. As it was described earlier, the scan-

ner produces an XML file, which will be parsed to identify the overall network

structure and running applications. Since the structure of the XML is kept in a

simple form, administrators can manually adjust the XML file, if the scanning

was inaccurate. Then two different possibilities to create attack graphs have been

created. One attack graph creation was already described in Section 3.5.3. This

attack graph is directly included in the HPI-VDB and provides an overall picture

of the weaknesses in the network. It includes the possibility to place the attack

at various points in the network structure and use the reasoning to identify the

possible paths. If no attacker is placed, a complete evaluation of all connections

is executed that highlights suspicious connections and herewith disclose possible

attack paths, which could be used by an attacker. The attack graph is visualized

interactively, which allows the user to modify the graph, by dragging or removing

vertices. Thus, a complex graph could be modified to investigate a specific part

of the attack graph. Furthermore, the vulnerability information that has been

used to identify affected nodes in the network, are attached in a textual format

to the nodes. This allows an easy investigation to identify the vulnerabilities for

each node.

As it is illustrated in Figure 4.1, an additional table illustrates the vulner-

abilities per node and includes a preview of the textual description for each

vulnerability. Besides this preview, the other valuable information that is in-

cluded in the overview is the affected software. The affected application is the

72

4.2 Attack Graphs

Figure 4.1: Attack Graph Visualization with Vulnerability Information

original cause for the existence of the vulnerability and therefore security ex-

perts will most likely use this information to resolve the vulnerability through an

upgrade or an uninstallation. The visualization also includes information about

the type of vulnerability. The “db-server” for example contains one vulnerabil-

ity, which does not infect the integrity of the node. Thus, the node is marked as

orange, since it contains a vulnerability that can lead to data leakage, but the

vulnerability will not allow a compromise of the system. The endangered systems

that can be compromised and abused to penetrate deeper into the network are

on the other hand marked as red. This color-coding should allow a fast recog-

nition of important and high risks, which should be the focus for the security

experts. An additional feature for security experts is the integration of solutions

into the attack graph view. Above the graph itself, the available solutions for

73

Chapter 4 Use Cases of Vulnerability Information

each vulnerability are listed and combined if a single solution resolves multiple

vulnerabilities. Then, the security experts can manually select solutions and the

graph will be recreated with the selected solutions applied. Thus, it is possible

to identify the minimal effort to resolve all relevant vulnerabilities and secure the

network again. The combination of solutions is necessary as it could occur that

an old version of some application contains a vulnerability, which was fixed in

later version. Then this later version could again contain a vulnerability, which

was fixed in the current version. This would mean that it is not necessary to

apply an upgrade to the intermediate version of the application to resolve the

first vulnerability, since this vulnerability will be resolved with the current ver-

sion of the application as well. Therefore, only one upgrade to the latest version

is necessary. An example of this attack graph with integrated information about

solutions is illustrated in Figure 4.2.

(a) Without Solutions (b) With Solutions

Figure 4.2: Apply Solutions for Attack Graph

On the left side, the default attack graph is illustrated in Figure 4.2a. It visu-

74

4.2 Attack Graphs

alizes an attack graph of a network that contains five hosts with two individual

networks. The vlan1 network contains a cto-workstation, a firewall, a webServer,

and an app-gateway. The app-gateway regulates the access to the second network

that includes the gateway and a db-server. Furthermore, the firewall secures the

connection to the internet. The Figure also highlights the two vulnerable hosts

of the scenario, namely cto-workstation and webServer. The webServer contains

an old version of the Apache HTTP server, with several vulnerabilities. These

vulnerabilities could be fixed by an upgrade of the HTTP server, as it is indicated

in the solution table of Figure 4.2a. On the right side, the result of the appli-

cation of the solution to the target scenario is illustrated. The security expert

checked the upgrade of the HTTP server to version 2.4.26, which resolves three

vulnerabilities. Then the webServer is not vulnerable anymore and the attack

graph adapts itself accordingly.

The second attack graph creation was developed in an external attack graph

construction platform (AttGCP)[9], which uses the Multi-host, Multi-stage Vul-

nerability Analysis Language (MulVAL) [51]. The requirements for the attack

graph construction platform were originally a system information file, which

should have the same format as the XML file that was used in the other attack

graph approach and another XML that contains the knowledge base for vulnera-

bility information. The development for the platform included the possibility to

retrieve the vulnerability information directly from the HPI-VDB server. Thus,

the vulnerability information should always be up to date and the platform only

needs to process the relevant vulnerabilities, because the HPI-VDB can already

return a filtered set of vulnerabilities. Beside this improvement, the reasoning

that is used to identify possible attack paths was enhanced, because some logical

errors have been identified. The platform uses the MulVAL reasoner, which is

written in the logic programming language Prolog [68]. The requirements for the

reasoning with Prolog are a knowledge base that describes some facts and pos-

sible relations and rules between these facts. During the execution, the Prolog

engine generates all possible variable bindings and tests whether this combina-

tion results in a true statement. If a true result is the logical consequence, the

used variable binding is returned as a possible solution. If a binding results in

75

Chapter 4 Use Cases of Vulnerability Information

a negative result, the bindings after the latest choice-point are newly set with

the next possibility. This process is also called backtracking. Thus, it iterates

through all possible variable bindings and finds the binding that leads to a pos-

itive result. This behavior is used in the area of attack graphs, where a goal is

specified beforehand. The usual goal is the access to a server, a file, or a success-

ful denial-of-service attack. Then the starting point for the attacker has to be

specified, which is often the location of the attacker. Additionally, the network

structure has to be represented with facts, which is necessary since the network

structure includes fixed environment factors and the overall setting of the sce-

nario. Now, the MulVAL interpreter can start to iterate through all possible

combinations of rules and relations with the different variable bindings. If all

possibilities have been tested, the combinations with a positive result represent

possible attack paths through the network. Finally, those paths are combined

for the attack graph, which is also the reason for the complexity of those graphs,

as it is illustrated in Figure 3.5.

4.3 Detection of Vulnerabilities

The most important use case for vulnerability information is the detection of

those vulnerabilities in specific systems. Besides the human factor, another

huge impact factor is the existence of vulnerabilities for successful attacks. The

detection of vulnerabilities represents the fundamental needs for vulnerability

databases in general. Therefore, the vulnerability information has to be pub-

licly available. Then, security experts could utilize this information to ensure

that their systems are not affected by any of the published vulnerabilities. How-

ever, this traditional approach was often cumbersome and required a tremendous

manual effort. Especially, if the systems become more complex and contain nu-

merous applications and components, the manual maintenance is hardly possible

anymore. Thus, the mechanism to process, understand, and utilize vulnerabil-

ity information to identify vulnerabilities on specific systems have to be auto-

mated. Hence, the HPI-VDB was created with the special requirement to include

machine-readable information for each vulnerability. These information should

76

4.3 Detection of Vulnerabilities

then be used in automated detection approaches. As it was already explained in

Section 3.5.1, preconditions and postconditions are assigned to each vulnerability

during the import phase. Those conditions are available in an XML format and

represent the requirements and the impact of a vulnerability. For the detection,

the requirements of a vulnerability are the most important characteristics, since

each of the requirements has to be satisfied to exploit the vulnerability. Fur-

thermore, the most important part of the preconditions is the existence of the

affected application or if multiple applications are affected, at least one of them

has to be installed. Therefore, the main feature in the process of vulnerabil-

ity detection is the comprehensive identification of applications and additional

details of the system. At the point when the interior state of a system can be

represented with all installed, running, and listening applications and additional

configurations, the real vulnerability analysis can start. The applications have

to be detected with a high level of detail to allow specific identification of the

version or additional release differences, such as language packs or architecture.

Therefore, the official standard CPE is used and each application is associated

with the corresponding CPE-ID. Afterwards, the complete list of detected CPE-

IDs is used to find all vulnerabilities that are related to at least one CPE-ID, as

it was also explained in Section 3.5.1. Finally, the resulting vulnerabilities are

presented to the user in a list that is sorted by the severity of the vulnerabilities,

as it was also described in [22]. Thus, the most important and most critical

vulnerabilities are highlighted and could be investigated for possible solutions.

As it was described before, the overall process of vulnerability detection heavily

relies on the correct and comprehensive detection of the applications on a target

system. Thus, this step is the most important part of the approach, since the

following correlation in the database can be easily achieved. However, a complete

investigation of a systems interior poses a more challenging task. Therefore, the

OVALDI tool [41] was used for Windows systems and even though it also exists

for UNIX systems a small script, which is illustrated in Listing 4.1, was the better

solution.

77

Chapter 4 Use Cases of Vulnerability Information

#! / bin / sh

echo ” This s c r i p t w i l l c o l l e c t the names o f a l l i n s t a l l e d

a p p l i c a t i o n s \n Continue ? (y/n) ”

while [”$Key” != ”y”] && [”$Key” != ”n”]

do

read Key

i f [”$Key” = ”y”]

then

echo ” Creat ing i n s t p k g s f i l e ”

dpkg − l | grep −Po ”ˆ i i \ s ∗\K\S+\s +[0−9\ . :]+\d” | sed −E ’ s

/ [0 −9] :// g ’ > i n s t p k g s

e l i f [”$Key” = ”n”]

then echo ”Abort”

f i

done

Listing 4.1: Script to gather application names and versions from Unix Systems

The script includes a short information for the user and requires the explicit

confirmation to be executed and lists all packages of the systems and filters them

by the installation status. Then it selects the name and the version of each

application. Finally, the list of applications is transmitted to the HPI-VDB,

which has to translate the combinations of name and version to the corresponding

CPE-ID, before the workflow is similar to the detection on Windows systems

again. The script was preferred to the OVALDI solution, since several tests

indicate runtime and compiling problems for OVALDI on UNIX systems.

However, an additional challenge has to be solved to provide this feature to

average users. The usability for the script is already satisfying since it can be

downloaded and easily executed. One advantage of the script is that it does not

require superuser privileges and the limited complexity even allows a manual

inspection of the commands that should be executed. This should increase the

trustworthiness of the approach, which is a special requirement for the vulnera-

bility detection and will be discussed later. Furthermore, the user is presented

with a set of instructions that describe the workflow for the vulnerability detec-

78

4.3 Detection of Vulnerabilities

tion on UNIX systems. After the user downloaded the script, he should execute

it and upload the resulting file to the vulnerability database. Then, the correla-

tion process will be started and the detected vulnerabilities are reported to the

user.

The usability of the Windows based approach had to be improved as well, since

the OVALDI scanner can be downloaded and executed without installation, but

it requires the correct definitions and has to be executed from the command line.

Those two requirements could usually be difficult for average users, since they

require advanced knowledge. Thus, the vulnerability detection was packed into

one executable that contains the current version of the OVALDI scanner. It au-

tomatically downloads the latest and the correct version of the definitions that

are needed by the OVALDI scanner. As it was described earlier, the OVALDI

scanner relies on a knowledge base that is provided on the OVAL website and

maintained by the OVAL community. However, this results in the necessity that

the definitions have to be downloaded before the analysis can start. The reposi-

tory contains definitions for vulnerabilities, compliance, patches, and inventory.

Since the vulnerability definitions always lack some recent and some historic vul-

nerabilities the executable will download the inventory definitions. Thus, it is

sufficient to circumscribe the OVALDI detection to the identification of all in-

stalled applications. Therefore, the inventory definitions include tests to detect

all installed applications with their version numbers and additional details. Fur-

thermore, the output of the application detection contains the CPE-IDs of the

detected applications. Hence, it is sufficient to perform the OVALDI inventory

detection to extract all CPE-IDs from the target system. Finally, the bundled

executable establishes a connection to the HPI-VDB and performs a login to the

desired user. Then it uploads the resulting list of CPE-IDs in the user’s private

area, which is then used to perform the vulnerability analysis, as it was described

in the UNIX based approach.

79

Chapter 4 Use Cases of Vulnerability Information

4.3.1 Requirements and Limitations

Since information about the interior of a target system is sensitive data, the

approach includes additional protection measures to guarantee the privacy and

the confidentiality of the data. This requirement arises, because the situation

can become dangerous if an attacker is able to receive this information about a

possible victim. The application detection results include all installed applica-

tions that were identified on the system. Either this information can be used to

identify vulnerabilities and reveal attack possibilities on the victim’s system or it

can also be misused to perform a social engineering attack. A social engineering

attack might be successful through pretending to be a support for one of the

installed application and try to deceive the victim to reveal further information

or obtain direct access to the victim’s system.

In addition, recent incidents also increased the user awareness for personal

and sensitive data, which would lead to an aversion of using the service without

additional security mechanisms. This is also the reason why every approach is

created in a transparent way to allow users to comprehend every single action

if they chose to. Nevertheless, even with the previously described methods to

ensure confidentiality and privacy of the user’s data, the operation of the HPI-

VDB still shows that many users are scared to reveal so many details about

their systems. The full self-diagnosis was only used from 10% of the registered

users. The approach requires a user to be registered, since the list of CPE-IDs

or program name and version combinations has to be uploaded to the HPI-

VDB. Then the uploaded information has to be stored and protected to only be

available to the one user who performed the upload. Even though the details

about the user’s systems are protected with the highest security mechanisms,

the observation that many users do not perform the full vulnerability detection

still holds true. Thus, another detection method had to be introduced into the

HPI-VDB to make the service beneficial for average users. The most important

requirement is to only depend on a minimal set of information from the users.

Ideally, the approach should only require information, which is already available

if the user visits the website. Thus, the idea to have a browser based vulnerability

80

4.3 Detection of Vulnerabilities

detection was created, which will be described in the following.

4.3.2 Browser Based Vulnerability Detection

The browser based vulnerability detection can be executed without the require-

ment of additional information from the target system beside the information

that is already available. The detection utilizes the fact that the target system

connects to the web server with a normal HTTPS request. This request al-

ready contains meta information in the HTTP headers, such as accept-language,

host, referrer, or user agent. The most important header is the user agent,

since it provides information about the browser and the system that performed

the request. Usually, this information is used for content negotiation, which

means that the server adjusts the source of the website to consider browser

specific differences. These differences include some HTML tags or cascading

style sheet(CSS) items, such as the different prefixes of CSS values (“-moz-”,

“-webkit-”, “-ms-” for mozilla, chrome, and microsoft respectively) or xml, and

comment tags. In the case of vulnerability detection, the user agent can be

used to identify the browser of the client, including its version and it can be

used to reveal details about the operating system of the user. So, a normal

user agent could look like: “Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv :

32.0) Gecko/20100101 Firefox/32.0”. This user agent reveals that the client is

running Windows 10 as an operating system and it is using a 64-bit architecture.

Furthermore, the browser is a Firefox of version 32.0. Thus, the vulnerability

detection can focus on this information to identify vulnerabilities on the target

system. The browser is often considered as the main intrusion point and should

be especially secured and protected. Additionally, on normal client systems the

browser is the only application that establishes connections to the network and

could be abused by attackers to infiltrate the client system. On top of this, the

information about the browser is send on every request, which means that the

attacker is also able to derive the browser and identify possible vulnerabilities.

Therefore, the detection is finally able to identify the browser and all related vul-

nerabilities are returned. The second part of the information that refers to the

81

Chapter 4 Use Cases of Vulnerability Information

operating system cannot be fully used, since it does not provide enough details.

The user agent only allows an identification of the major version of the operating

system, such as Windows 7, Windows 8, Windows 10, or Windows XP. Unfor-

tunately, it does not include further information as the service pack or patch

levels. Thus, the available information from the operating is not detailed enough

to make a precise assessment and derive the related vulnerabilities. However, the

information is used to further filter the resulting vulnerabilities from the browser.

The idea is to remove all vulnerabilities that require different operating systems.

Therefore, if the example user agent is considered all vulnerabilities that require

a Unix system are removed from the resulting list of vulnerabilities. In this ex-

ample the user would perform the browser based vulnerability detection and he

would receive a result that is illustrated in Figure 4.3a.

1 of 2 6/5/2018, 12:15 PM

(a) Firefox 32

No vulnerabilities were found for Firefox 60 on Windows 10

In the case that your version could not be identified perfectly, you will get information about similar vulnerable versions.

Name Your version Similar Version Plugin and its Vulnerabilities

Flash 29.0.0.171 No vulnerabilities found for Flash 29.0.0.171

Note: Most of the vulnerabilities could be solved with the current version of the browser and updates of every plugin.

About Statistics Publications Registration FAQ Imprint & Contact Privacy Statement © 2012-2018 - Hasso Plattner Institute

1 of 1 6/5/2018, 12:05 PM

(b) Firefox 60

Figure 4.3: Browser Detection

Afterwards, a normal user behavior would be to perform an update of the

browser to the actual version at this time, which is Firefox of version 60, to

resolve the detected vulnerabilities. Thus, in the second vulnerability detection

the updated browser was detected without any vulnerabilities, as it is illustrated

in Figure 4.3b. In the result, no vulnerabilities could be associated, because at

this time no vulnerabilities have been known for this browser version. However,

the HTTP header that contains the user agent could be forged and there are some

plugins that allow a manual specification of the user agent. In these cases, the

browser based vulnerability detection will not work correctly, but since the user

performs this concealment method himself, he should be aware of the implications

by a forged user agent. Another limiting factor is the accuracy of the browser

version in different browser families. Firefox browsers include the version with

82

4.4 Passive Vulnerability Detection

the major version number and one additional digit and chrome browser even

include the full version string, whereas internet explorer and edge only include

the major version number. These differences have to be considered as well, which

means that it is not possible to detect the detailed version for edge and internet

explorer. Furthermore, it was observed that the ESR releases do not include a

special indicator in the user agent, which results in the appearance of an outdated

browser. Beside these limitations, it is still important to prioritize the security

of the browser and utilize the already available information in the vulnerability

detection. This service is also the most used part of the HPI-VDB and receives

between 200 and 600 requests per day on average.

4.4 Passive Vulnerability Detection

The machine-readable vulnerability information can also be used in another an-

alytic approach. Since, users tend to hesitate with releasing sensitive data, this

approach will utilize already available information. In these terms it is similar

to the browser based detection. However, the passive vulnerability detection is

designed to work in corporate networks of companies or organizations, which

was also described in [25]. As it can be observed in the previously described

approaches, the most important challenge in detecting vulnerabilities on tar-

get systems is to correctly identify the installed applications. The remaining

correlation between the identified applications and the corresponding vulnera-

bilities can be achieved with a suitable data structure, such as the vulnerability

model, which was described in Section 3.2. Then the correlation can either be

performed by manual investigation of the detected applications or with the im-

plemented application programming interface(API), which will be explained in

Section 4.5. Thus, the focus for the passive vulnerability detection is the iden-

tification of installed applications. As the name suggests, passive methods are

utilized to perform this identification, which should have a lower impact on the

performance compared to active periodic scanning of the target systems. Similar

to the previous approaches the results of the application detection should have a

high level of detail and include the CPE-ID for each detected application. Then

83

Chapter 4 Use Cases of Vulnerability Information

the correlation of vulnerabilities to each CPE-ID can be directly reused from

the other approaches. The identification of the CPE-IDs requires deep insights

into the target systems. Usually, active scanning methods, such as Nessus [63]

or OVALDI [41] can be used to extract all relevant details. However, those tools

use multiple scans or numerous plugins to verify and increase the accuracy of

the result.Compared to that, the passive vulnerability detection benefits from

knowledge about the history of the system or the network, which is recorded in

log files and provides a high level of detail.

An additional assumption to realize this approach for corporate networks

is that those networks are constantly monitored and the occurring events are

logged. This monitoring is already common practice in multiple large productive

networks, because companies want to be able to trace suspicious or malicious

activity. Thus, these logs contain a lot of valuable information for the vulnera-

bility detection already. Usually, the log files are either stored and generated at a

central instance, such as a domain controller or a security information and event

management system (SIEM) of the network, or they can be stored at each indi-

vidual host first and forwarded for later analysis. If the logs have to be forwarded,

existing tools can be used to transfer the information. Some of the more popu-

lar tools are (r)syslog, which uses the syslog protocol [47], or Windows Remote

Management(winrm) [39], which can forward Windows Event Logs. Hence, it is

always possible to gather the information at a central point of our network and

it is not necessary to rely on agents that have to be pre-installed on each client

in the network. This property allows the passive vulnerability detection to be

directly integrated into network based intrusion detection systems (NIDS) or into

SIEM systems. An example of a SIEM system that could be used to integrate

the passive vulnerability detection is the Real-time Event Analysis and Monitor-

ing System (REAMS) [28][1], which was developed in our research group. The

SIEM systems usually also perform a normalization of the gathered event logs.

The normalization is necessary to process log formats of different applications,

which are often unique for the application. Therefore, the application is derived

from the log message and afterwards an application specific regular expression

is used to extract the desired information from the log line. In our REAMS the

84

4.4 Passive Vulnerability Detection

normalization is performed hierarchically, which can be directly mapped to the

hierarchical object log format [55]. Since this feature requires the preliminary

identification of the application that produced the log, the information about

the application is already available in the SIEM system and can be used in the

vulnerability detection. Furthermore, this feature allows an easy extension and

inclusion of new clients that should be integrated into the vulnerability detec-

tion. The new clients only need to forward their log files to the central instance

as well. An advantage of the integration into NIDS or SIEM systems is the

ability to correlate occurring events with vulnerability information. Since the

preconditions of the vulnerabilities can be interpreted, it is possible to evaluate

which preconditions are already fulfilled and keep track of the state of the missing

preconditions. So, the progress in a possible exploitation of vulnerabilities can

be lively monitored as well. Since the crucial part of the passive vulnerability

detection is the identification of installed applications, two different approaches

that utilize log files will be presented in the following.

4.4.1 CPE Detection based on System Logs

The first approach to identify installed application utilizes information from log

files that are automatically created by the operating system or exist on the tar-

get system itself. The level of detail in those log files depends on the individual

configuration. However, most applications provide details about their name and

their version during their startup phase or during the installation process. The

advantage in processing log files is the predefined format of the information,

which simplifies the information extraction process. The goal of this approach

is the extraction of the application name and its version, which means that the

system logs contain a sufficient level of detail about all installed application.

Nevertheless, different operating systems handle the installation routines in dif-

ferent ways, which is the reason for a differentiation between UNIX and Windows

systems.

Unix systems usually create application specific logs in the default logging

directory (/var/log). Nevertheless, it is possible that application differs in this

85

Chapter 4 Use Cases of Vulnerability Information

behavior and write their logs to custom locations. Then running applications

will create entries in their log files and document ongoing actions depending on

the log level or additional configuration. However, the system often stores infor-

mation and logs of events in the syslog file, which includes the date, the running

process, and detailed information about the current event [47]. The type and

the format of the logged information can be adjusted in the syslog configuration

file. Additionally, useful information for this use case can be extracted from log

files of the package management applications, such as dpkg or apt-get. These

commands are normally used to install new applications on UNIX system, which

results in the fact that those installation methods leave traces in the logs of the

package management applications. The major advantage in using the logs of

package management compared to the logs of the individual applications is the

fixed format of the package management applications. The individual applica-

tions might have their proprietary format in the logs, which could complicate

the information extraction. However, by using the information from the pack-

age management this problem can be circumvented. This information contains

details about the application that have been installed with the package manage-

ment, including the application name and the version that was installed. The

package management has to keep track about the installation status of all appli-

cations and their versions to be able to verify if a concrete version is installed or if

a new version is available already. Thus, this information can be extracted with a

regular expression that captures the program and the version in named groups for

each entry if the information is preceded by the word installed. The final regular

expression looks like “.∗?installed\s(?<program>\S+)\s+(?<version> \S+)”.

The fact that neither the program name nor the version contains any white-space

characters allows the expression to identify the program name and the version

with white-space characters as the delimiters in between. An example of the log

messages of dpkg is illustrated in Listing 4.2, which contains information about

the installation of tcpdump. If the regular expression is applied on these logs the

second line will match the expression and the named groups program and version

will contain tcpdump and 4.2.1-1ubuntu2.1 respectively. Since the inner state is

not only changed by installation but also by uninstallation of applications, these

86

4.4 Passive Vulnerability Detection

actions have to be identified as well. Thus, a similar expression can be used to

identify the uninstallation of applications to keep track of the current interior

status of the target system.

Listing 4.2: Sample Loglines of dpkg log

2017−12−05 06 : 3 4 : 4 5 c o n f i g u r e tcpdump 4.2.1−1 ubuntu2 . 1 <none>

2017−12−05 06 : 3 4 : 4 6 s t a t u s i n s t a l l e d tcpdump 4.2.1−1 ubuntu2 . 1

Finally, all of those logs on the individual systems can be forwarded with the

rsyslog tool that was mentioned earlier. Then, the information can be collected

at the central point of the network and the application detection can be applied

at this central system only. So, it is not necessary to deploy the application

detection on each individual host, but solely on the central instance, which can

map the information back to the individual clients. Besides, it is also valuable

to collect the information about installation processes in the SIEM or the NIDS.

On the other hand, Windows systems produce information about installed

applications as well. The level of detail depends on the predefined policy level

of the Windows logs. However, it is possible to gather information about the

installed applications based on these logs. A shortened sample of an event, which

was produced during an installation routine is illustrated in Listing 4.3. The

interesting information is stored in the EventData field and the fixed structure of

the events in XML, allows a direct access to this field by using the field hierarchy.

It contains the name and the version of the application that was installed on the

target system. The origin of this event is the MSI-Installer process that is usually

used to install applications on Windows machines.

Listing 4.3: Windows Event

− <Event xmlns=”http :// schemas . m i c ro so f t . com/win /2004/08/

events / event”>

− <System>

<Provider Name=”M s i I n s t a l l e r ” />

. . .

</System>

− <EventData>

87

Chapter 4 Use Cases of Vulnerability Information

<Data>Adobe Reader XI − Deutsch</Data>

<Data>11.0.00</Data>

. . .

</EventData>

</Event>

Furthermore, the Windows registry contains valuable information about in-

stalled application that could also be extracted. Finally, the logs could also be

forwarded using the winrm tool [39]. This allows a processing at a central in-

stance and removes the necessity to deploy the processing at each client in the

network. The clients only need to be configured to forward the logs appropriately.

In the end, the gathered information from both system types about the in-

stalled application contain the application names and the version. Thus, the

remaining step to derive CPE-IDs is to perform a lookup in the CPE dictionary,

which was also described in the performance improvement part in Section 3.4.

4.4.2 Proxy Logs and Web Server Logs to identify

Applications

As it was already mentioned, the detection of vulnerabilities is especially crucial

for applications that perform or allow network connections. It is important,

since they are directly connected with the internet and thereby usually represent

entry-points for the attacker. For corporate networks, there are usually different

systems that are used by the clients of the network, which then can be used

to collect information about all clients at once. One of those systems could be

an internal web server and another one could be a proxy server that is used to

establish outgoing connections. The web server is a good example, because it is

designed to allow connections to the server itself and provide different resources.

The web server produces logs, which could be used to extract the details for the

web server application, but even more important is the information about all

clients that connect to the web server. The logs contain information about the

browser of the clients that is the most crucial application for a normal client, since

it is generally used to connect to the network. A sample log of the web server

88

4.4 Passive Vulnerability Detection

is illustrated in Listing 4.4, which documents the access from Firefox browser of

version 34. The client also used a 64-bit version of Microsoft Windows 8.1.

Listing 4.4: Sample Logline of Web Access Log

123 . 456 . 789 . 211 − − [07/ Feb /2016 : 07 : 37 : 02 +0100] ”GET /vulndb/

d e t a i l s /CVE−2007−1192 HTTP/1.0” 200 1146 ” https : // hpi−vdb . de/”

” Moz i l l a /5 .0 (Windows NT6 . 3 ; WOW64; rv : 3 4 . 0) Gecko /20100101

F i r e f ox /34 .0”

As it was described in Section 4.3.2 the focus of the vulnerability detection is

the browser, because the information about the operating system lacks sufficient

details. However, this limitation does not hinder this approach, since the accurate

detection of the browser is even more important. The experiments, which should

prove the feasibility of the approach, focused on the two most important browsers,

which are illustrated in Table 4.1.

Web Browser Market Share
Google Chrome 68.0 %
Firefox 19.1 %
Internet Explorer 6.3 %
Safari 3.7 %
Opera 1.5 %

Table 4.1: Market Share of Web Browsers in December 2015 [67]

For those two browsers, namely Firefox and Chrome, the major release dates

were mapped to the recorded events of the web server of the HPI-VDB. This

results in an insight about the update behavior of the clients, which is important

if a corporate environment is considered. In a company network, it is essential

that all clients have a high security awareness, since one client with a lower

awareness could serve as an initial intrusion point for attackers. Therefore, it is

important that the clients of a company network are aware of existing updates

and install them to mitigate potential vulnerabilities. Nowadays, the update

behavior for browsers is different from most other applications, since browsers

usually perform the updates automatically. These automatic updates should

89

Chapter 4 Use Cases of Vulnerability Information

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1/1/2015 2/1/2015 3/1/2015 4/1/2015 5/1/2015 6/1/2015 7/1/2015 8/1/2015 9/1/2015 10/1/2015 11/1/2015

Requests with Mozilla Firefox per day

firefox 35 release

firefox 36 release

firefox 37 release

firefox 38 release

firefox 39 release

firefox 40 release

firefox 41 release

firefox 42 release

firefox 34

firefox 35

firefox 36

firefox 37

firefox 38

firefox 39

firefox 40

firefox 41

firefox 42

Figure 4.4: Firefox requests and releases in year 2015

improve the security for browsers, as it was also shown in [19].

Nevertheless, the experiments show that a certain amount of users does not

immediately install the latest updates. For example, several requests were logged

with a Firefox of version 37, after the release of version 38, as it is shown in

Figure 4.4.

The delay in the update process represents a critical security weakness, since

the release of Firefox 38 resolved 15 vulnerabilities in the earlier versions, which

are also publicly available at this point [44]. These 15 vulnerabilities are docu-

mented in the release notes, which can be explored by attackers. Even though

the update resolves the vulnerabilities, the attackers can still abuse those, be-

cause of the delay in the update mechanism. A similar observation could be done

for the releases of Firefox 39, 41, and 42, which resolve 13, 19, and 18 security

flaws respectively.

The investigation of request from Google Chrome browsers produced similar

results. The major releases for Google Chrome have been mapped to the logged

events of the web server of HPI-VDB , which is illustrated in Figure 4.5. The

Figure shows that updates have been performed in a timely manner, which could

be a result of the automatic update routine. Nevertheless, for several releases a

90

4.4 Passive Vulnerability Detection

0

50000

100000

150000

200000

250000

300000

350000

400000

1/1/2015 2/1/2015 3/1/2015 4/1/2015 5/1/2015 6/1/2015 7/1/2015 8/1/2015 9/1/2015 10/1/2015 11/1/2015

Requests with Google Chrome per day

40.0.2214 release

41.0.2272 release

42.0.2311 release

43.0.2357 release

44.0.2403 release

45.0.2454 release

46.0.2490 release

chrome 40.0.2214

chrome 41.0.2272

chrome 42.0.2311

chrome 43.0.2357

chrome 44.0.2403

chrome 45.0.2454

chrome 46.0.2490

Figure 4.5: Chrome requests and releases in year 2015

time period of approximately one week could be identified, which elapses until

the majority of users adopted the new update.

Another possibility to find useful information about running applications that

communicate via the network, is the utilization of logs from proxy servers. This

possibility omits the necessity to perform a comprehensive scan of the target

network and each client for running applications. It benefits from the fact that

those applications will exchange some messages via the network. The proxies

are points in a network, which are often used as strategic locations for SIEM

systems or firewalls. Since these systems usually serve as entry points to a local

network infrastructure, the outgoing and incoming network packets have to pass

the proxies. Thus, the messages of those applications have to pass the proxy

system as well and leave traces in the proxy logs. These traces could in turn

be used in a similar way to gather information about active applications. The

advantage to the log forwarding is similar to the web server approach, since it

is not necessary to forward the logs in the beginning. The information about

the clients is already centralized at the web server or the proxy system. One

additional advantage of the proxy-based approach is that this approach is not

limited to the identification of the browser of the clients. It is rather able to

91

Chapter 4 Use Cases of Vulnerability Information

process information of any application that communicates via the proxy, such as

an FTP client or a messenger application. Thus, the proxy-based approach covers

a broader range of applications that communicate over the network, although

the browser might still be the most used application there. The disadvantage

is the lack of completeness as only applications that exchange messages via the

proxy will appear in the logs. Thus, if an application is only communicating with

internal systems and produces only local network traffic, it will not appear in the

proxy logs. Since proxy systems are usually located at network boundaries only

the external incoming and outgoing traffic will be recorded there, which could

miss several applications. An example of a proxy event that was then recorded by

Arcsight, which is a popular SIEM system, can be found in Listing 4.5. The event

includes the important items of the proxy log, such as destination and source

as well as the application. In the example from Listing 4.5, the application

is http, which means that the proxy connection contains HTTP requests of a

browser. Thus, the requestClientApplication field contains the important part

that provides additional details about the application. This part is underlined

in the Listing. So, again the user agent can be used to determine the version of

the browser. Finally, the browser name and the detailed version string will be

used to perform the lookup in the CPE dictionary and derive the corresponding

CPE-ID for this application.

Listing 4.5: Sample Log Message of Arcsight

app=http s r c=XXX.XX.XXX.XXX dhost=www. t e s t . com

dst=XX.XXX.XX.XXX reques t=http ://www. t e s t . com:80/ someService

requestMethod=POST requestContext=http ://www. t e s t . com/ index

. html r e q u e s t C l i e n t A p p l i c a t i o n=Moz i l l a /5 .0 (Windows NT 6 . 1 ;

WOW64) AppleWebKit /537 .36(KHTML, l i k e Gecko)

Chrome / 4 3 . 0 . 2 3 1 1 . 6 0 S a f a r i /537.36 requestUr lHost=www. t e s t . com

The application identification on proxy logs was also deployed in a research co-

operation with one of our project partners. They run a large infrastructure with

numerous servers and clients. It was possible to test and execute the applica-

tion detection on real-world data that was received through the project contract.

However, it was challenging to process the data in a reasonable time, since the

92

4.5 API for Threat Intelligence Platforms

data accumulates to around 100 GB of compressed events and 1.5 billion events

per week. Although, the company network is well managed, it was possible

to identify some strange occurrences in the log files. The proxy logs were first

grouped by the MAC address of the client to allow a backtracking to the indi-

vidual users later. However, it turned out that several clients use various user

agents, which could indicate that the identified MAC address does not belong

to a real client, but rather to another router or a switch, which cascades an-

other local network. However, a correlation with the lookup file for all registered

clients showed that the hostname of the device indicates that it belongs to a

laptop of the company. Besides, this observation the company usually does not

allow users to perform manual installations on their devices and they manage

the update behavior of each device. Hence, it is peculiar that several clients with

outdated user agents have been detected in the corporate network, since they

should receive the browser updates automatically.

Therefore, these two approaches show the feasibility to identify communicating

applications in a corporate network, without performing extensive scans of the

connected clients. Since the information is available nonetheless, because internal

web servers or proxy systems are likely to be in place, it can also be used to

identify applications and later correlate the corresponding vulnerabilities.

4.5 API for Threat Intelligence Platforms

Another use case for vulnerability information is the interoperability with other

services to serve as a knowledge base. This information integration can be utilized

in a threat intelligence platform, which is able to correlate information from the

vulnerabilities with current or historic events in an infrastructure. Furthermore,

the vulnerability information can be used as indicators in threat intelligence plat-

forms to provide the ability to evaluate the security of a target system. If the

browser of a specific client contains vulnerabilities, the requests of this browser

might have an impact on the overall security of the system. The browser might

be exploited directly, without the need of downloading and executing a malicious

application but by executing malicious script or by erroneous interpretation of

93

Chapter 4 Use Cases of Vulnerability Information

the website. The logical preconditions of the vulnerabilities allow an evaluation

for partial and overall fulfillment. Thus, the events can directly be mapped to

those preconditions. The vulnerability information can also be used to highlight

insecure systems and monitor those systems closely to detect suspicious activity.

This interoperability is achieved via an application programming interface(API)

that can be used to query the database for information about vulnerabilities.

The API is only accessible to registered users that have to use the API key to

perform requests. With the API key, a limited number of automatic requests is

possible per day. This limitation should prevent an extensive querying that could

overload the web server and result in a possibility to perform denial of service

attacks(DOS). Furthermore, several filter mechanisms allow a targeted informa-

tion retrieval for specific scenarios. The vulnerabilities can be filtered based on

the CVSS vector, the CVSS attributes, the last modified date, the identifier,

and the CPE-IDs. The most important filtering mechanism for many analytic

approaches is the CPE-ID filtering, since the approaches usually detect the appli-

cations first. Then, the identified applications have to be checked for correlated

vulnerabilities. Thus, the API has to provide a filter for multiple CPE-IDs. Each

vulnerability that is correlated to at least one CPE-ID is returned in the results,

but duplicates are eliminated before returning the results. The results themselves

can be returned in different formats that can be chosen when querying the API.

The predefined formats are either XML or JSON, which are both well-structured

and allow a straightforward integration into other applications. The number of

results per request are also limited, which produces a paging of the overall re-

sults. The link for the query to the following slice of vulnerabilities will be

generated and appended in the meta section of the results. A possible extension

of this approach would be the integration of the Structured Threat Information

eXpression(STIX) [2]. STIX is a widely adapted format to specify any type of

threat information and be able to exchange the information across different or-

ganizations. Two external companies that query the HPI-VDB continuously are

currently using the API for information about vulnerabilities. Additionally, the

API is also used for the Attack Graph Construction Platform(AttGCP) [9], which

was explained in Section 4.2. Thus, the API is an integral part of the HPI-VDB

94

4.6 Conclusion

that is utilized in diverse research projects and industrial co-operations.

4.6 Conclusion

This chapter focuses on several use cases for vulnerability information. Further-

more, it explains the necessity for the vulnerability database that was created and

explained earlier. Especially, the newly created preconditions and postconditions

that are available in a machine-readable format are fundamental for different an-

alytic approaches. In the first use case the vulnerability information are used

to generate attack graphs from a scenario description. Therefore, two different

methods to create the attack graph have been implemented. One method utilizes

a graphical representation of the scenario description and highlight vulnerable

systems and possibly tainted connections from those systems. Thus, the attack

graph itself has a low complexity and directly maps the underlying network struc-

ture to the graph. The other attack graph creation utilizes the MulVAL reasoning

and creates a complex graph that visualizes possible attack paths in the network.

This graph creation uses the vulnerability database as a knowledge base to iden-

tify the existence, the requirements, and the impact of the vulnerabilities. The

graph creation is performed on an external system that queries the database via

API. The following use case represents the most obvious usage of vulnerability

information, which is the detection of vulnerabilities on a target infrastructure.

Hereafter, different vulnerability detection mechanisms are explained that target

separate user groups. To begin with, the average user is taken into account that

should also be able to benefit from the vulnerability database. Then, the com-

prehensive detection of vulnerabilities for single systems is explained. However,

some limitations of this approach, such as privacy concerns and the sensitive type

of information, are discussed. Thus, a moderate version of this approach was re-

quired to provide the service to average users. The browser-based approach was

an appropriate solution for this challenge, since it utilizes information, which

are already disclosed by the browser of the user. Furthermore, the browser is

considered the most crucial application, since it is normally used to connect to

remote resources. Attackers can abuse those connections as the initial point of

95

Chapter 4 Use Cases of Vulnerability Information

attack. For the second group of target users, corporate architectures are consid-

ered that already collect several information or contain internal servers. Those

circumstances allow a passive vulnerability detection approach, which benefits

from already generated or collected information. The first part of the passive

vulnerability detection detects CPE-IDs based on log information from the in-

dividual systems. Since this information is usually generated anyway, it can be

used to identify running applications for each target system. Additionally, log

information are used for the second type of the passive vulnerability detection

as well. The difference is that the information are extracted from web servers

or proxy systems. The scalability of these approaches can be enhanced if the

log information is forwarded to a central point of the network, which can then

perform the mapping to CPE-IDs. The final use case for vulnerability informa-

tion is based on the API of the database. The application programming interface

allows a straightforward integration of the desired information about vulnerabili-

ties, which can be queried from the API. The filtering possibilities of the API can

be used to search for information about specific vulnerabilities, which are then

returned in a structured format. The possibilities to create different endpoints

that provide different representations of the vulnerability information allows a

tailored vulnerability model for each use case. These models can be integrated

into threat intelligence platforms or in other third party software that requires

information about vulnerabilities.

96

Chapter 5

Vulnerability Data Quality

5.1 Introduction

One major challenge in the development of the HPI-VDB was to ensure the data

quality. The problem is that the data is available in the Internet and can be found

in different formats and sources. However, especially textual reports about a

vulnerability are hard to evaluate in a large scale. Nevertheless, further analytic

approaches require a high quality and accuracy of data, since the approaches can

only achieve correct results if the underlying data is correct. Thus, for many

sources the lack of a verification, which results in low trustworthiness of the

information is a problem. Therefore, the NVD [46] is considered as the main

source that is queried for vulnerability information. The fact that NVD first

receives the vulnerability reports and then completely evaluates the information

before a full publication of the vulnerability ensures that the information was

verified and approved by experts. So, for the HPI-VDB reliability scores are

assigned to each source that should be integrated, as it is illustrated in the

model in Figure 3.1.

Another problem is missing or diverse information for the vulnerabilities. If a

new vulnerability was found in one of the sources, but the source only provides

a textual description of the vulnerability or a subset of the different attributes,

the remaining properties have to be integrated later. As it was explained in

Section 3.2 the minimum requirements for a new vulnerability are the existence

of any kind of identifier and at least a textual description. During the research,

97

Chapter 5 Vulnerability Data Quality

several methods that can deal with missing information have been created. The

different methods range from simple correlation to other sources to more com-

plex procedures that automatically deduce properties from other attributes of

the vulnerability. All these methods had the major requirement to work in an

automated way, as a manual investigation or an adjustment by experts is not

feasible for this high amount of vulnerability information.

5.2 Information Enrichment and Correction

This section describes the solutions to missing and defective properties in the

vulnerability information. While missing properties can be easily detected and

operations to restore the information can be initiated, the issue is different with

defective information. For a successful correction of the information, it is nec-

essary to identify the erroneous property first. This requires either a possibility

to deduce the property from other attributes or the possibility to compare the

wrong information with another source that is known to be more reliable. In

addition to defective information with regards to content, it is also possible to

find and correct information that was provided in the wrong format. Especially,

in the case of vulnerabilities many standards are used to identify applications,

weaknesses or other attributes. This standardization allows a verification of the

structure of the information and usually it is possible to correct the flawed at-

tribute. Even if the standardized format was not used in the first place, it should

be integrated since the analytic approaches often rely on those standards.

5.2.1 Integration of external Identifiers

A typical example of information enrichment are external identifiers. Many

providers of vulnerability information do not list additional external identifiers or

only include a subset of identifiers. Certainly, it is not possible to always include

all identifiers, since there is no finite number of those identifiers. However, sev-

eral standards and well-known information sources have established themselves

in the community over time. Especially those standards are the focus for the

98

5.2 Information Enrichment and Correction

integration of external identifiers. In addition to the lack of those identifiers, the

information is often included as plain text information without further explana-

tion or guides how to make use of this identifier. Therefore, expert users are

the only ones that can make use of this information, since it requires additional

knowledge to achieve anything from those identifiers. Thus, it is a better idea to

also include links to the resource or even incorporate the interesting and most

important information from the external source. Then, average users can also

benefit from the information and the identifier provides a benefit in general.

A prominent candidate that is often missing from the vulnerability information

in many sources is the exploit-id, which is the identifier from the exploit-db [49].

This ID usually refers to an exploit of the corresponding vulnerability, which

is often mainly interesting for attackers. However, the information from the

description in exploit-db can include additional information about the vulner-

ability itself and possible reasons and circumstances that are required for this

vulnerability. Furthermore, the exploit usually contains information about pos-

sible targets, which means specific version numbers or operating systems that

are required for the exploit and consequently for the vulnerability.

The common weakness enumeration(CWE), which was already explained in

Section 2.3.4 allows the classification of the vulnerability. The CWE-ID can also

be used to identify additional requirements to exploit the vulnerability and it can

reveal possible security methods to fix the vulnerability. So a possible cross site

scripting vulnerability that is related to the CWE-ID CWE-80 can be enriched

with information from the CWE entry. The corresponding CWE entry contains

information about different types of mitigation techniques that can be used by

the service provider to resolve the vulnerability.

The common attack pattern enumeration and classification is a standardized

identifier for attack pattern, as it was explained in Section 2.3.6. It provides some

information, which is similar to the CWE-ID, such as mitigation techniques.

However, the CAPEC-ID provides additional information, such as severity or

possible results of a successful exploitation, which could be cookie stealing or

content spoofing for CAPEC-ID 63, which is the CAPEC identifier for cross site

scripting.

99

Chapter 5 Vulnerability Data Quality

The addition of identifiers usually improves the comprehensiveness of the vul-

nerability information as it nearly always adds additional information. Thus, the

external identifiers should be included in a way that those third party sources can

be used to enrich the vulnerability with additional information and provide bene-

fit to the users. Therefore, whenever it is possible the resource should be directly

linked and important information can be directly appended to the vulnerability

to allow a full utilization of that information for analytic approaches.

5.2.2 Solution Creation

As it was described before, the analysis of vulnerability information relies on in-

formation about the affected application. Furthermore, additional requirements

have to be fulfilled to ensure the existence of the vulnerability. However, one

question remains. When the vulnerability was successfully detected and the ex-

istence validated, the responsible administrator has to resolve the vulnerability.

Since it does not provide so much benefit to only detect the vulnerabilities and

compose a report about the existence of numerous vulnerabilities on a system

without any further information about possible solutions, one important piece

of information is the solution for a vulnerability. The vulnerability model that

was presented in Section 3.2 already includes a solution property for each vul-

nerability. Therefore, this information has to be extracted if the specific source

for the vulnerability information incorporates insights about possible solutions.

However, several sources do not propose information about solutions for vulner-

abilities, because it is often difficult to investigate the causes of a vulnerability

and identify possible workarounds. Another limitation is the high amount of vul-

nerability reports that do not allow a manual and time-consuming investigation

for each vulnerability. These limitations were the reason for the development of

the automatic solution creation, which was also presented in [23]. The feature

was implemented in the HPI-VDB [27] and is applied for every import of vul-

nerability information. The solution creation first checks if the source has an

attribute that contains information about possible solutions. If it is not the case,

the algorithm tries to derive the necessary information from the vulnerability

100

5.2 Information Enrichment and Correction

description. Since the vulnerability description is a mandatory attribute of a

vulnerability, as described in Section 3.2, it has to be available for this use-case.

In addition, also humans would try to extract the missing information from the

description of a vulnerability. Therefore, it was an obvious step to utilize the

description for an automated approach as well. The challenge for using the vul-

nerability description is the natural language of the description. It is designed

to be understandable for a human expert and therefore not directly usable for

an automated approach. However, several vulnerability descriptions have been

analyzed in the preparation of the solution creation approach. The investigation

revealed certain patterns that occurred regularly, when a vulnerability of a spe-

cific software version was detected and a newer version already fixed the problem.

Usually when a vulnerability in an application is detected, it affects either all

older versions of the application, which have been published before the patch

or it affects the versions that incorporate the newly integrated feature. One of

the identified patterns originates from the fact that the keywords before or after

appear directly after the name of the program. Thus those patterns could be

used to construct regular expressions that can be applied on the vulnerability

descriptions and yield the software version with the corresponding fix. The regu-

lar expressions were divided into two different parts that occur usually one after

another, as it is illustrated in Listing 5.1. The first part is used to identify the

name of the application, which should also appear in the preconditions. Since the

existence of the application is a necessary requirement for the vulnerability, this

fundamental precondition includes the name of the application as a part of the

CPE-ID, as it was explained in Section 3.2. The affected program name is used

in connection with the new version that resolves the vulnerability. Then this

application name can be used to verify the match of the regular expression, as it

has to appear in the preconditions. Therefore, the match, which will be returned

in the first group of the regular expression for the application name, has to be

identical with the application name in the corresponding CPE-ID. Furthermore,

the application should appear in an enumeration, which could be identified with

the keyword and or a comma. It could also appear at the beginning of a sentence

or directly after the keyword in. So the final regular expression to detect the

101

Chapter 5 Vulnerability Data Quality

application is constructed according to these requirements and is illustrated in

Listing 5.1. In this case, the description provides additional information about

affected versions and about a version that does not include the vulnerability any-

more. Then this version identifier occurs behind the regular expression for the

application name and the keyword, which is either before or prior to.

Listing 5.1: Regular Expressions for Solution Creation

Appl i ca t ion Name : (? : ˆ | in | , and | and | ,) (. ∗ ?) (? : b e f o r e |
p r i o r to)

Vers ion : ((? : Bui ld | Patch) ? (? : SP | \d) [\d \ . a−z \ (\)\−]+)

The investigation of numerous vulnerability descriptions in the HPI-VDB re-

vealed that the version identifier could be composed of various characters. There-

fore, the regular expression has to be a bit more specific, since the following word

in the description is not known. The difference to the expression for the applica-

tion name is that this expression benefits from the fact that the following term

is known and can be used as a boundary for the application name. Thus, the

regular expression for the application name can be composed with a minimum

number of wildcard characters, followed by the keyword before or prior to. It is

not possible to use the same principle for the regular expression of the version.

Therefore, the specification for the allowed characters in the version itself has to

be detailed and tailored. The result of the investigation showed that the version

can include a Build or patch keyword followed by the specific number for the

build. Another possibility is the specification of a service pack identifier, which

is often used in the context of operating systems. The most common possibility

is a combination of numbers, lowercase letters, dots, dashes, underscores and

brackets. These insights result in the regular expression that is illustrated in

Listing 5.1.

After this method was designed and tested, it was directly implemented into

the HPI-VDB. It is applied on all incoming vulnerability descriptions and creates

the solution objects as it was described in Section 3.2. The HPI-VDB contains

information about 99,381 vulnerabilities and a total number of 52,594 solutions.

102

5.2 Information Enrichment and Correction

However, the solutions are only available for 31,420 vulnerabilities1, because

some vulnerabilities can have multiple ways to be resolved. Nevertheless, 31.6%

of the vulnerabilities contain information about possible solutions and all those

solutions have been created with the described method in an automated way.

Another possibility to include information about solutions for vulnerabilities

is to evaluate the references of a vulnerability, if the information is available.

This was shortly introduced in Section 3.2 and requires additional workload

during import time. The specified references will be crawled and if the website

contains information about solutions, the corresponding textual information will

be embedded into a solution object and stored along with the vulnerability.

However, this approach is limited due to the various formats of third party

references. The crawler can parse the website and check for the solution keyword

in a prominent place, such as headlines, beginning of paragraphs or on a single

lane followed by colons. In these cases, the information can be retrieved, but

often it is not directly possible. Another problem is the legal requirements.

Many providers do not allow an automated retrieval of their sources or only

permit the information processing for specific clients or after a user logon. These

restrictions affect this possibility as well and therefore it is easier and more

convenient to derive the information from textual description. This derivation

does not affect the import performance as much as the crawling and evaluation

of external references. It is also similar to a human that tries to extract the

necessary information from the description. Since the vulnerabilities are still

reported by human investigators most of the information can be found in the

description.

5.2.3 Correction of CPE Identifiers

Another part of the information correction focuses on the correction of CPE iden-

tifiers. As it was already explained in Section 2.3.2, the CPE identifiers are used

to identify applications with a high level of detail. The MITRE Corporation pro-

vides the information itself and it is also responsible for the publication and the

1Statistics from 16th of April 2018

103

Chapter 5 Vulnerability Data Quality

maintenance of the CPE dictionary. The CPE dictionary contains all currently

available entries for the analyzed applications. However, the schema descrip-

tion allows creating CPE identifiers for unlisted applications on one’s own by

following the specified guidelines. The necessary information to create the CPE

identifier consists of the application name, the application type, which is operat-

ing system, hardware, or normal application, the vendor name, and the version

identifier. Additional information can be appended to the identifier to specify

further details, such as language packs, architecture, patch number. The main

problem is that not all providers of vulnerability information completely follow

these instructions, which could lead to inconsistencies. Another possible source

of those inconsistencies are changes over time, when the CPE dictionary changes

and specific entries are deprecated. Then the information providers should also

reconsider the adjustments and integrate the changes, which unfortunately does

not happen often. In the end, several information providers still work with out-

dated CPE identifiers, which could be problematic for analytic approaches. The

difficulty is that CPE identifiers are interpreted as strings that are associated

to a specific application. If two CPE identifiers differ, then the two associated

applications should also be two separate applications. Thus, a two-tiered error

correction feature was integrated into the HPI-VDB. In the first part, the CPE

dictionary is integrated and will be used to find and correct the deprecated CPE

entries. In the second step, the remaining CPE objects are checked for tuples of

similar entries, which are likely to relate to the same application.

In the first part, an iteration through the complete dictionary is performed and

the deprecated entries are extracted and put into a dictionary structure for a fast

access later. Then those deprecated entries are checked against the database. If

no match can be found the respective CPE identifier can be discarded. Otherwise,

the found deprecated CPE will be tested for the existence of the corresponding

updated CPE entry. If it can be found, the pair will be appended to a list of

results. In the other case, the updated entry has to be created. This additional

test is necessary, since the updated CPE identifier could already be listed in

the database, if it was introduced by another more recent vulnerability, and

the strings for the CPE identifiers should be unique. Finally, the list with the

104

5.2 Information Enrichment and Correction

identified tuples will be returned for logging and traceability purposes.

Algorithm 2 Identification of deprecated CPE identifiers

1: deprecatedCpe = { }
2: foundMatches = []
3: for each entry in CPE DICT do
4: if entry is deprecated then
5: deprecatedCpe[entry] = entry.deprecated by
6: end if
7: end for
8: for each entry in deprecatedCpe.keys() do
9: try retrieve CPE object with entry.name

10: except CPE does not exist
11: continue
12:

13: try retrieve CPE object with deprecatedCpe[entry]
14: except CPE does not exist
15: create CPE object with entry.name
16:

17: foundMatches.append([deprecatedCpe[entry],entry])
18: end for

The second part iterates through all CPEs in the database and searches for

other CPEs that have a similar vendor name and a similar application name.

This means that the vendor and the application names should be identical if

they are transformed to a lowercase version. If the algorithm could find some

candidates that fulfill these conditions, the two version strings are checked for

inclusion. Therefore, the CPE dictionary is used as the gold standard to obtain

the CPE, which is officially documented in the dictionary. Then the two similar

CPEs are merged and the correct entry from the dictionary is kept, whereas

the other CPE is deleted from the database. However, prior to the deletion of

the wrong entry, all relations have to be adjusted to preserve the relationship

between application and vulnerability.

Some example results that have been found with this approach are illustrated

in Table 5.1. Usually the version string is mixed up and the attributes are

stored in the wrong position or the character to indicate a blank spot in the

105

Chapter 5 Vulnerability Data Quality

CPE identifier was changed from a “-” to no character. Another frequent source

for those similar CPEs is the inaccuracy with the type of CPE, which is often

between application and operating system. Although most often the amount of

vulnerabilities that are associated to the detected CPEs is not that high, it is

still important to be able to match those vulnerabilities with the correct CPE.

Otherwise, those vulnerabilities will never be considered, since the analytic algo-

rithm will only detect the official, not deprecated CPEs and their corresponding

vulnerabilities.

Table 5.1: Sample of similar CPEs detected

CPE1 vulnerabilities CPE2 vulnerabilities
of CPE1 of CPE2

cpe:/o:microsoft:windows 2 cpe:/o:microsoft:windows 1
2003 server:enterprise 2003 server:::enterprise

cpe:/o:microsoft:windows 2 cpe:/o:microsoft:windows 107
xp:-:sp1:home xp::sp1:home

cpe:/o:cisco:ios:- 13 cpe:/o:cisco:ios 14
cpe:/a:opera:opera:5..10 7 cpe:/a:opera:opera:5.10 4

cpe:/o:openbsd 25 cpe:/a:openbsd 1
:openbsd:3.1 :openbsd:3.1

cpe:/o:google:android:1.1 4 cpe:/a:google:android:1.1 1

5.3 Validation of CVSS Attributes

The completion of the information for the vulnerability model includes the ad-

dition of CVSS attributes as well. The Common Vulnerability Scoring System

information is valuable for many analytic approaches, as the information about

violations of the different security goals can give insights about the type of the

vulnerability. Nevertheless, the attributes are missing in several sources for vul-

nerability information or the information is appended at a later point. This

delay occurs, because of additional tests and checks that have to be performed

by vulnerability analysts, which also start with the textual description of the

vulnerability [18]. Then the experts have to perform this manual investigation

of the vulnerability to assign the CVSS properties. The time delay could be

106

5.3 Validation of CVSS Attributes

crucial for analytic approaches that rely on those attributes. The delay of the

scoring and evaluation of vulnerabilities could amount to several days, as it was

the case of the OpenSSH vulnerability with the identifier CVE-2016-0777. It

was published on 14th of January 2016, whereas the CVSS attributes have been

added on 19th of January. This delay of five days limits the capabilities of many

analytic approaches to process the information for this vulnerability. However,

attackers can already benefit from the publication of the vulnerability, because

they usually rely on the textual description. Thus, this advantage of the attack-

ers can be limited with an automated or semi-automated attribution method.

Then, the manual investigation of vulnerabilities is not necessary in general or

at least for some cases. This approach should consequently reduce the workload

for the vulnerability analysts and create the CVSS attributes directly with the

initial publication.

The automated vulnerability analysis is based on a classification of the vul-

nerability according to the textual description. So, the necessary information to

perform the classification is always given, as the textual description is a manda-

tory part in all vulnerability databases or submission forms [7]. The idea of an

automated classification of vulnerabilities based on their textual description was

also presented in [58] where the authors want to predict vulnerabilities in soft-

ware components before the release. However, they face the problem that the

normalization of the different vulnerability sources requires a large effort. A sim-

ilar approach was presented in [5], which focused on the exploitability of different

vulnerabilities and used data mining approaches in vulnerability databases.

The classification methods that are necessary to predict and derive the CVSS

attributes have a more promising perspective, since the classification results

should yield whether a security goal was violated or which attack vector was

detected. It is more likely to be able to derive those results from the textual de-

scription than the exploitability of future weaknesses. The classification method

focuses on the prediction of the most important CVSS characteristics, such as

violation of the security goals and the attack vector. Thus, the classifier has to

determine the value for the attack vector, which could be remote, local, adjacent

network, or unknown. Furthermore, each of the security goals, namely availabil-

107

Chapter 5 Vulnerability Data Quality

ity, confidentiality, and integrity, has to be evaluated and it has to be determined

whether and how those goals are violated. Those values could be None, Partial,

or Complete. Finally, the classifiers should be able to predict those four at-

tributes either independently or as a combination. The combination results in a

maximum of 108 different categories that can be used. The classification of the

vulnerabilities was performed with two different methods, namely Naive Bayes

and Neural Networks, which will be explained in the following. The classifiers

have been evaluated on the available vulnerabilities in the HPI-VDB and the

results will be presented in Section 5.3.3.

5.3.1 Naive Bayes Approach

The first approach that was used for the automatic classification of vulnerabilities

is based on a naive Bayes classifier [54]. The choice for the naive Bayes classi-

fier has been made, because the naive Bayes approach is a widely known and

commonly used algorithm for classification problems. Thus, the approach has to

classify the vulnerabilities based on the corresponding description according to

the selected CVSS attributes, which should be determined.

However, some preparation steps are required to apply the classifier on the

vulnerability descriptions. The first preprocessing step is to determine the most

meaningful words that can have the highest impact on the classification. This

determination depends on the selected feature and this step has to be performed

for each of the possible attributes. The processing applies a bag-of-words model

that represents the existence of individual words. The bag-of-words model is also

widely used in the domain of document classification and was a natural choice.

Nevertheless, the model requires the specification of an overall dictionary of all

possible words. The dictionary creation should already consider the classification

domain, since different domains have a different vocabulary. In this case, the dic-

tionary was created with the available vulnerabilities in the HPI-VDB. Therefore,

around 72,000 vulnerability descriptions have been exported from the HPI-VDB.

Those descriptions were analyzed and resulted in a list of around 104,000 words.

Thereafter, the descriptions are normalized, which means the descriptions are

108

5.3 Validation of CVSS Attributes

cleansed from stop-words [64] that do not provide additional information. An-

other step in the process of normalization is the stemming of the single words of

each description. The stemming removes differences that only occur, because of

declination and conjugation. Those differences do not provide additional infor-

mation as well, but will result in multiple words for the same information. Up

to this point, the preprocessing steps are identical regardless of the selected at-

tribute. However, the next step will depend on the selected attribute that should

be considered for the classification. This step is a first training round that is used

to find the most meaningful words. Those meaningful words are directly bound

to the selected attribute, since the violation of the integrity would have different

important keywords than the attack vector. To find the most important words

for the selected attributes, all words are ranked by their importance, which is

measured by the impact of the existence of the word to the classification result.

Thus, the prepared and cleansed descriptions are separated based on the value

of the selected attribute. Therefore, the descriptions will be divided into specific

subsets for each of the values of the attribute. If the attack vector is consid-

ered for example, the descriptions are separated into 3 subsets of vulnerability

descriptions with a remote, a local, and an adjacent network range. Then those

subsets are used to compute an adapted form of the relative term frequency and

an adapted version of the inverse document frequency for each of the words. The

relative term frequency is computed as the fraction of the number of occurrences

of a given word or term (t) in the document (d) and the maximum number of

occurrences of any word (t′) in the document. Then the fractions are summed

up over all documents in the subset of the value of the selected attribute as it is

illustrated in the equation 5.1. The inverse document frequency is computed as

the logarithm of the fraction of the number of all documents without the subset

of the value of the selected attribute (subsetattributeV alue) and the number of doc-

uments in this set that contain the given term (t). The equation for the second

statistic can be found in 5.2. In the specific case of vulnerability descriptions,

each description is considered as a single document.

109

Chapter 5 Vulnerability Data Quality

TermFrequency(t, d) =
∑

d∈subsetattributeV alue

|{t ∈ d}|
maxt′∈d |{t′ ∈ d}|

(5.1)

InverseDocumentFrequency = log
|subsetattributeV alue|

|{d ∈ subsetattributeV alue : t ∈ d}|
(5.2)

The relative term frequency is a measure to find candidates for important

words, since it is more likely that a word has a higher impact on the value of

the selected attribute if it appears more often in the corresponding subset. On

the other hand, it is also more likely that a word is specific to a value of the

selected attribute if it does not appear so often in the complementary set. This

means that a word that appears only in one of the subsets that was created by

the separation based on the value of the selected attribute has a strong impact

on this classification. This observation can also be explained with the already

mentioned effect of domain specific vocabulary and keyphrase extraction [17]. In

natural languages, one usually uses a specific vocabulary to describe scenarios

in a certain domain. Thus, it is possible to evaluate the utilized vocabulary to

derive the domain and try to predict the meaning of the description. Therefore,

a group-wise comparison of the term frequencies and a selection of the words

with the highest discrepancies was performed. The resulting candidates have

been investigated manually and they looked promising, as each of the candidates

could be explained and a connection to the value of the selected attribute was

possible. For example, words, such as “remote”, “message”, or “connection”

have a strong indication that the attack vector of a vulnerability is remote.

Whereas, words, such as “crash” or “denial” suggest a violation of availability.

So the candidates for the most promising words have been selected based on their

term frequency and their inverse document frequency. Therefore, the inverse

document frequency and the term frequency should have high values for words

that have a strong influence on the value for the selected attribute. Then the

possible candidates have been sorted according to their term frequency and the

inverse document frequency, as shown in the equations 5.1 and 5.2 respectively.

110

5.3 Validation of CVSS Attributes

For the final classification round it proved to be sufficient to use the 500 most

meaningful words to achieve satisfying results. The limitation to 500 words arose

from the performance limitation, as the approach should be able to be executed

on a web server without significant performance losses. Therefore, this initial

training round considered all of the 104,000 words and revealed the 500 words

that provided the highest impact to the classification.

The resulting list of words has been investigated manually as well, since 500

words is an amount that is still manageable for a human. The proposed can-

didates of the training round are comprehensible. Then the final features that

are used by the naive Bayes approach are binary representations of the existence

of those 500 words. Therefore, an iteration over all vulnerability descriptions is

performed that flag the existence of one of the 500 words. This execution was

only possible, because of the limitation to 500 words, as a binary vector over all

104,000 words would require memory of roughly 13 megabyte for each vulnera-

bility description, which is not feasible if the classifier has to deal with 72,000

vulnerability descriptions. The prepared features that amount to a 500-bit list

for each vulnerability description are then passed to the classifier for the training

of the model.

The results of the naive Bayes approach are illustrated and discussed in Sec-

tion 5.3.3, since they are compared to the Neural Network approach that contains

similarities to the naive Bayes approach but also some special characteristics.

Thus, the next Section describes the Neural Network approach in more detail.

5.3.2 Neural Network Approach

The second approach that was chosen and implemented utilizes neural networks

to classify vulnerability descriptions. The classification problem is identical and

the approach starts with the vulnerability descriptions in natural language as

well. Neural networks are also widely used for multi-class classification problems

that have a high complexity. Therefore, it was another natural step to apply a

neural network based classification. The approach should be able to deal with

natural language, as recent research revealed good progress in the implementa-

111

Chapter 5 Vulnerability Data Quality

tion of chat-bots that derive meaning from the natural language and propose

appropriate answers. A requirement to apply neural networks is that the clas-

sifier has to be trained on a supervised dataset in advance, which provides the

required labels for the training. However, this limitation is easily overcome by

the dataset that was exported from the HPI-VDB. The other condition, which is

a known vocabulary that can be interpreted by the classifier, can also be met by

using the dataset of the HPI-VDB. The 72,000 provided vulnerability descrip-

tions can be analyzed and transformed into a dictionary of all included words,

which can then be used as the vocabulary for the domain of vulnerability de-

scriptions, similar to the naive Bayes approach. The necessary steps to prepare

the vulnerability descriptions and transform them into a format that can be fed

into the neural network are described in the following.

The first step of the preparation part is the removal of unnecessary information

from the vulnerability descriptions. Since the description is composed in natural

language by a human investigator, it contains numerous additional words that

are only needed to create well-formed sentences but do not contribute additional

meaning. Thus, those additional fill-words can be filtered out as they increase

the complexity for the neural network without adding information. Therefore,

the filtering will not have an impact on the available information. As it was

described in the naive Bayes approach the first filter targets well-known stop

words [64]. Thereafter, conjunctions, prepositions, auxiliary verbs, and personal

pronouns are omitted. In a next step, the remaining words are transformed into

their principal part. This removal of differences that are produced by declination

and conjugation is also called word stemming. The information of the word itself

will not be changed. The last step of the word-by-word processing is the trans-

formation to lowercase letters to remove differences that arise from the position

of the word inside the sentence. These three steps remove unnecessary words

and transform the vulnerability descriptions into lists of substantial words. The

transformed descriptions can still be read and interpreted by humans, although

the grammar is incorrect. Nevertheless, those transformations are necessary,

since the remaining differences between the words are related to the information

content and therefore the classifier should consider those differences. The three

112

5.3 Validation of CVSS Attributes

preparation steps are also represented in Figure 5.1 that illustrates the overall

workflow of the neural network approach.

12

AV:R C:C I:P A:N

remote

exploit

buffer

0.5522

0.2379

-1.0105

0.9271

…

0.9311

-0.4428

0.6412

0.7609

-1.3425

0.7231

…

0.9671

-0.4928

0.1246

0.2009

-1.0025

0.4281

…

0.8371

-0.0815

X

X

X

X

X

X

X

X

X

Preparation

Transformation

Extract Result

Mapping

Feed into Network

Figure 5.1: Workflow of the Neural Network Approach

The next step of the workflow utilizes the specially prepared vulnerability

descriptions and transforms the individual words to a format that is usable for

the neural network. This preprocessing step is necessary, because neural networks

usually work with numeric value or vectors of floating point numbers. Normally,

neural networks are not able to process textual data directly. Thus, a suitable

113

Chapter 5 Vulnerability Data Quality

transformation for the words is needed. The transformation step is illustrated as

the second step in the workflow in Figure 5.1 and it is labeled as transformation.

The specific transformation replaces each of the word with a vector of floating

point numbers. For the concrete implementation the GloVe [52] tool was used.

GloVe is an unsupervised learning algorithm that derives vector representation

for given input words. The distinctive feature of this algorithm is the capability

to identify words with similar meanings and to retain the relationship between

multiple pairs of words. For example the difference of the vectors for “king” and

“queen” and the difference of the vectors for “man” and “woman” have a high

similarity. The authors of the GloVe algorithm even state that it is possible to

form equations, such as “king” - “man” + “woman” = “queen”, because of the

relation between the words that was identified with the GloVe algorithm. This

means that the example removes the “male” attribute from “king”, which would

leave something like “royal” and adds a “woman” to receive a “royal” “woman”,

which is a “queen”. The algorithm was applied to the vulnerability descriptions,

since it is necessary to retain some relationship between different words as well.

Thus, the GloVe algorithm was configured to produce a 50 dimensional vector for

each word in a vulnerability description, which was the proposed configuration.

The result of the GloVe algorithm is a kind of dictionary that provides a mapping

between each of the words in all preprocessed vulnerability descriptions. This

dictionary can then be used to replace the words with their vector representations

as it is illustrated in Figure 5.1. In the final step each of the prepared vulnerability

descriptions, which have been translated to lists of the substantial words, are

transformed into lists of the respective vector representations of their words.

Thus, each vulnerability descriptions is built of n 50 dimensional vectors, where

n denotes the number of words in the description. The final problem that has to

be solved is the different lengths of all vulnerability description, since the textual

descriptions vary greatly in their length the lists of vectors differ in their number

of vectors as well. Therefore, a normalization method has to be applied to adjust

the length of the vector lists to a uniform size. In the first proposal, the average

number of words was used and each description has to be modified to match

the size of 37 words. However, this method had the effect that long descriptions

114

5.3 Validation of CVSS Attributes

have to be shortened, which would mean some words had to be omitted. Since

this omission has to be performed in an automated way, it is likely that some

words that contribute meaning are left out. This option is not possible, as it

would have a negative impact on the overall performance of the approach, as the

neural network should be able to make use of all available information in the

descriptions.

Therefore, a better idea is to use the maximum number of words in the descrip-

tions. Then no description has to be shortened and the risk of an information loss

could be circumvented. This means that all shorter descriptions have to be en-

larged without modification of the information in the descriptions. The solution

is dummy word vectors that are not mapped to a specific word in the vocabulary,

but they merely act as placeholders. The used dummy word vector is the null

vector, which only includes zeros in all 50 dimensions. The largest vulnerability

description consists of around 400 substantial words that are left after the filter-

ing in the preparation step. Thus, each vulnerability description is enlarged with

null vectors until the corresponding list of vectors has 400 items. This means

that the neural network has to process 400 vectors with 50 dimensions. So, each

vulnerability description is transformed into 2,000 input values that are fed into

the neural network. At this point, the neural network can process the trans-

formed descriptions, but the classification task should also consider the labels

that identify the different classes. Therefore, the labels have to be extracted and

converted to a numeric space. For the single attribute classification, a simple

enumeration of the different attribute values is sufficient. Therefore, each at-

tribute was investigated and the distinct values have been identified, which are

None, partial, and complete for the security goals and unknown, local, adjacent

network, and remote for the attack vector. In the case of multiple attributes,

all possible combinations of different values are generated and enumerated to

derive the numeric values. This means that the CIA classification, which deter-

mines the values for confidentiality, integrity, and availability, has to deal with

27 different labels, since each of the attributes has three possible values. The

other combination additionally considers the attack vector, which results in 108

possible combinations and 108 different labels. Finally, this mapping has to be

115

Chapter 5 Vulnerability Data Quality

persisted, since it should be used to translate the determined label to the textual

form, as it is also illustrated in Figure 5.1.

At this point all necessary preprocessing steps have been performed and the

transformed vulnerability descriptions with the corresponding label can be fed

into the neural network. To train the classifier the prepared dataset is randomly

split into a training dataset, which contains 80% of the data, and a testing dataset

with 20% of the data. The neural network was configured with a learning rate

of 0.001 and a run-time of 100 epochs. Several tests showed that the accuracy of

the network converges after this run-time. Furthermore, different configurations

for the number of layers and the corresponding units per layer have been tested.

The most promising results have been achieved with a network of 3 layers and

1200, 700, and 50 units for the respective layers. The investigation of the results,

which will be described in the following, revealed that the algorithm encountered

a problem that is known as overfitting. The results in the training set have been

accurate with an overall accuracy of around 99%. However, the application on

the test dataset produced an accuracy of only 70%. This observation is typical

for overfitting of a neural network. It means that the algorithm was trained and

adjusted on the training dataset. It does not generalize the problem anymore,

but learned the distribution and labels from the training set directly. The usual

approach to tackle this problem is the specification of a dropout rate. This rate

describes a probability that an individual node of the neural network is kept or

dropped from propagation. Thus, not all nodes of each layer influence the output

anymore. This method is also illustrated in the Neural Network of our workflow

in Figure 5.1. It is shown that the nodes marked with an “X” do not propagate

their results to the following layers of the network. Thus, the neural network

does not depend too much on the training dataset anymore and the accuracy of

the test dataset increased.

In the final step, the numerical labels that have been chosen by the classifier are

translated to the corresponding textual values, which are readable for humans.

Then, the classification process is complete and either a single attribute value or

a combination of attribute values is derived from the vulnerability description.

Thus, it is possible to add the CVSS attributes or to check for the correctness

116

5.3 Validation of CVSS Attributes

if the source does not have a high reliability. This final step also concludes the

overall workflow of the neural network approach, as it is illustrated in Figure 5.1.

5.3.3 Results

For the experiments with the previously explained classifiers, real vulnerability

descriptions from the HPI-VDB [27] have been exported. This means that the

classifiers had to deal with real world vulnerability descriptions, which are pub-

lished on different vulnerability databases before 1st of January 2016. Therefore,

all available vulnerabilities, which have CVSS attributes and are published be-

fore 1st of January 2016, have been selected. Then, the CVSS attributes and

the vulnerability descriptions were exported to create the labeled dataset. The

fixed point in time was used to always refer to the same set of vulnerabilities,

since new vulnerabilities are detected and published continuously, but the results

of the classifiers should be reproducible and comprehensible. The work and the

experiments with the classifiers already began in the later time of 2016 and early

time of 2017, which resulted in the choice for 1st of January 2016. Hence, the

resulting dataset contains 72,490 vulnerabilities with their corresponding CVSS

attributes and their descriptions. The dataset was divided into a training dataset

of 80% of the vulnerabilities and a testing dataset with the remaining 20% of

the vulnerabilities. The division of the dataset is performed with an initial shuf-

fling to select random vulnerabilities for each set. This randomness ensures that

the results of the classifier are not achieved by using convenient data. The per-

formance of the classifier are independent of the selection and differ for each

execution of the classifiers. This difference can result in slightly different results

for each execution. Therefore, the results have been determined by multiple ex-

ecutions and the average performance of these executions. Each of the classifiers

was trained and executed 10 times and the average accuracy was computed.

Additionally, a third dataset, which will be referenced as validation dataset,

was created with vulnerabilities that are published in 2016. The validation

dataset consists of 2,400 vulnerabilities and is used as an additional evalua-

tion for each of the classifiers. In addition to the test dataset, this secondary

117

Chapter 5 Vulnerability Data Quality

dataset allows a more thorough test of the classifiers as the vulnerabilities in the

validation dataset were definitely not used in any of the training steps. This is

especially important for the neural network approach, since the test dataset is

fed into the network as well. It is used to adjust and fine-tune the parameters in

each iteration of the network in addition to the training dataset. Therefore, the

descriptions of the validation dataset did not have any impact on the training

of the neural network. This means that the application of the trained neural

network to the validation dataset is similar to the application of the network on

newly discovered vulnerabilities, as it would be used in the future. Thus, the

accuracy on the validation dataset is the most important evaluation criteria for

the two classifiers.

The overall prediction of the CVSS attributes focused on the most important

CVSS attributes, which are the violation of security goals and the attack vector.

As it was mentioned in the previous chapter, which described the approaches,

the resulting classifications are based on the availability, the confidentiality, the

integrity, and the attack vector. In the experiments, a separate classifier was

created for each of these attributes. Furthermore, additional classifiers for the two

combinations of the attributes were built. One classifier combines the violation of

the three basic security goals and will be referenced as the CIA classifier, since it

classifies the vulnerability based on the violation of confidentiality, integrity, and

availability. The second and most comprehensive combination includes the attack

vector in addition to the security goals. Thus, it contains all of the important

attributes and will be referenced as the overall classifier.

The export of the vulnerabilities and the subsequent division into sets for each

value of the selected attribute revealed another problem that has to be solved.

The different sets vary in their respective size, which results in unbalanced sets

for training. This difference in the distribution of each attribute value could

negatively impact the classification. The problem is that the classifier could

achieve an accuracy of 80% already by assigning the most used attribute value

to each vulnerability. For example in the case of the attack vector, the division

will create one set for all remote vulnerabilities that contains 80% of the overall

vulnerabilities. Therefore, if this inequality is not corrected in the training pro-

118

5.3 Validation of CVSS Attributes

cess, the classifier can achieve 80% accuracy by classifying each vulnerability as a

remote vulnerability. Thus, this imbalance has to be fixed by reducing the size of

large datasets, as it is the usual approach for balancing training datasets. Then

the pure majority of the attribute values will not influence the algorithm. There-

fore, considering the availability attribute, the 72,400 vulnerabilities are divided

into 17,700 vulnerabilities with a complete violation, 31,900 vulnerabilities with

a partial violation, and 22,800 vulnerabilities which are unaffected. Then those

sets are reduced to 17,700 vulnerabilities each, which accumulates to 53,100 vul-

nerabilities whereof 80% are used for the training of the classifiers. Then the

training sets are equally balanced at the cost of losing some of the vulnerabili-

ties. Hence, the classification should only depend on the identified semantic in

the descriptions and not on the pure majority of the attribute values.

After the experiments with the different classifiers were carried out, the per-

formance of each classifier has to be evaluated. Therefore, the single attribute

classifiers were simply compared by their accuracy, which can be computed by a

fraction of the correctly classified vulnerabilities and the overall number of vul-

nerabilities. In the case of multiple attributes, the classifier accuracy is computed

over all labels to correctly evaluate the effectiveness of our multi-class classifica-

tion as described in [57]. Thus, the accuracy of the multi-class classification has

to consider all selected attributes, as it was also described in Equation 5.4.

CorrectlyClassified =
⋂

Attr∈SelectedAttributes

{v ∈ V ulns|v.Attr = result}

(5.3)

ClassificationAccuracy =
|CorrectlyClassified|
|AllDescriptions|

(5.4)

Naive Bayes Results

The first results and the initial impression, if it is possible to create an auto-

matic classification approach for vulnerability descriptions was received by the

119

Chapter 5 Vulnerability Data Quality

naive Bayes classification. The initial choice for the naive Bayes approach was

done, because naive Bayes is a commonly used method for classification problems

that is also capable to process multi-class classification. Furthermore, the wide

distribution of naive Bayes results in the availability of libraries in many lan-

guages, such as the naive Bayes implementation in the Natural Language Toolkit

(nltk)2 for Python. Then, this allows a first impression of the possibility to cre-

ate an automated classification for vulnerability descriptions, by implementing

the classifier and evaluate the initial results. In addition, the straightforward

usage and implementation of the naive Bayes classifier allows to reproduce the

results and it could be used as a candidate to compare results from more so-

phisticated approaches, such as the neural network approach. Thus, the naive

Bayes classification was implemented and applied, as it was already described in

Section 5.3.1.

The approach produced four separate classifiers for the single CVSS attributes,

namely attack vector, availability, confidentiality, and integrity. The results for

the four classifiers on the different datasets are shown in Table 5.2. The results

revealed that the accuracy on the different datasets does not vary much, which

was expected since the training dataset is created by a random partition for each

execution of the classifier. Therefore, the training dataset and the test dataset

produced almost identical results in the experiments. A slight difference can

be observed in the performance on the validation dataset, which is completely

isolated from the two other datasets, as it was created from vulnerabilities that

were discovered later. However, the results are promising as all attributes can

be predicted with an accuracy of nearly 70%. Especially the attack vector could

even be predicted with a high accuracy of around 90%, which could indicate that

the description often contains hints about the necessary attack range.

In addition to the presented results from Table 5.2, the naive Bayes implemen-

tation provides a confidence value for the classification result. This confidence

value can be used as a measure of the reliability of the classification. Thus,

a separate experiment was created with a modified form of the classifier that

considers the confidence value. The modified version of the classifier now only

2https://www.nltk.org/

120

5.3 Validation of CVSS Attributes

Table 5.2: Accuracy of the Naive Bayes Approach

CVSS attribute train data test data validation data

Attack Vector 89.9% 90.8% 92.3%

Availability 68.4% 68.0% 70.0%

Confidentiality 73.2% 72.4% 69.1%

Integrity 74.2% 73.6% 68.3%

propagates the final classification result if the confidence of the classification

is at least 75%. Otherwise, the classifier will yield an unknown result for the

vulnerability description. This change resulted in similar results as the basic

naive Bayes classifier. The accuracy of the attack vector drops by 2%, whereas

the accuracy of the availability, integrity, and confidentiality increases by 3%.

However, these gains come with the disadvantage that 56, 419, 428, and 321

vulnerability descriptions are not classified in their respective group. Therefore,

the final accuracy did not increase enough to outweigh the omission of those

vulnerability classifications. However, this confidence value could be used when

the results of different classifiers are combined to achieve a more comprehensive

and sophisticated classification result.

Neural Network Results

The second approach that was implemented utilizes neural networks to classify

vulnerability descriptions according to the CVSS attributes. The implementa-

tion and workflow was already explained in Section 5.3.2. The neural network

was created with Tensorflow of version 0.103 and Glove 1.2 [52]. The neural

network approach was originally designed to solve the classification for the com-

plex combination of attributes. However, the experiments were also carried out

for single attributes, since the neural network approach should be compared to

the first approach with the naive Bayes classifier as well. Thus, four different

neural networks have been created for each of the four CVSS attributes, namely

confidentiality, integrity, availability, and attack vecotr. The experiments were

3https://www.tensorflow.org/

121

Chapter 5 Vulnerability Data Quality

repeated 10 times to reduce the impact of fortunate initialization. Finally, the

average of the 10 iterations is computed and presented in this Section. The

accuracy itself was computed according to the formula, which was specified in

Equation 5.4. In the case of classifying single attributes, the formula can be re-

duced to the fraction of correctly classified descriptions and the overall number

of vulnerability descriptions. Since the neural network has to be trained in a

first phase, the dataset was divided into a training dataset and a test dataset.

This division was performed in a similar way to the division for the naive Bayes

approach, where 80% of the data was used for training and the remaining 20%

of the data was used for testing. The major difference to the naive Bayes ap-

proach is that the test dataset is also integrated in the training phase of the

network. This integration is performed in every tenth iteration of the training

phase. Then the test data is fed into the network to create a preliminary result

for the accuracy. Thus, the test dataset is already considered for improving the

weights in the network during the training phase. This surely has some impact

on the accuracy of the classifier on the dataset, as the classifier already learned

from the specific dataset. Therefore, the validation dataset is especially useful

to evaluate the performance of the neural network. The network itself was con-

figured to run for 100 epochs. Several experiments with a different number of

epochs and the visualization of TensorBoard4 showed that the different networks

converge after 100 epochs at the latest. The other important hyperparameters

for the network are the number of layers and their respective sizes. The process of

finding optimal values for the hidden layers and the number of hidden layers was

accompanied by several experiments, measurements, and adjustments. Different

configurations of two up to 10 hidden layers with different unit sizes of the layers

were tested. Therefore, a script was implemented that simply iterates through

different combinations of layers, trains the network and determines the accuracy

of the classification. It turned out that an increasing number of layers does not

add much more benefit after three hidden layers, but the execution time will still

increase with more layers. Thus, the minimum number of layers with a good

performance was chosen, which resulted in three hidden layers. Then, the sizes

4https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard

122

https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard

5.3 Validation of CVSS Attributes

for the individual layers were defined with a decreasing number of units for each

hidden layer, which was also a result of several experiments that were carried out

with the before mentioned script. This means that the first layer consists of 1200

units, the second consists of 700 units, and the third and last layer consists of 50

units. The classification results for single attributes are illustrated in Table 5.3.

Table 5.3: Accuracy of the Neural Network Approach

CVSS attribute train data test data validation data

Attack Vector 99% 88.9% 80.3%

Availability 99% 80.7% 70.0%

Confidentiality 99% 81.1% 70.2%

Integrity 99% 81.9% 69.8%

As it is shown in the Table 5.3, the results for the single attributes vary greatly

depending on the dataset. The performance on the training data results in an

almost completely accurate classification. This observation points at the effect of

overfitting, which was explained earlier in Section 5.3.2. However, the results on

the test data are acceptable as more than 80% of the vulnerability descriptions

are classified correctly. The application on the validation data results in a lower

accuracy, which could be explained by the uneven distribution of the data. As it

was explained, the training and the test dataset have been balanced to achieve

independence from pure majority influences on the classification result. However,

the validation dataset was not specially prepared, which results in an uneven

distribution of the different attributes. This could result in a lower accuracy

since difficulties of the classifier with special cases can appear more often in the

real-world dataset. Furthermore, the style and the language in the vulnerability

descriptions could also evolve over time. Therefore, a slight variation in the

language of the validation data, which only contains newer vulnerabilities than

the training and test dataset, is possible. However, an accuracy of 70% for

the violation of security goals is still similar to the accuracy of the naive Bayes

approach. The major difference is the accuracy of the attack vector, where

the neural network can only achieve 80% compared to the 90% of the naive

Bayes. Nevertheless, the overall performance of 70% or respectively 80% for the

123

Chapter 5 Vulnerability Data Quality

single attributes is a proof that the classification in general can be automated.

Thus, the approaches should be integrated in the analysis process of vulnerability

descriptions and they could speed up the investigation procedure.

Results for Combined Attributes

The previously described classification results show that vulnerability analy-

sis can be automatically performed with promising results for single CVSS at-

tributes. The two approaches are capable to classify the exported vulnerability

descriptions based on the selected CVSS attribute. The two approaches produce

comparable and similar results. Therefore, neither the naive Bayes approach nor

the neural network approach achieved significantly better results. However, the

original idea was to create a classification approach that is able to derive all

of the important CVSS attributes from a vulnerability description. This would

allow an immense reduction of the necessary workload that has to be manually

supplied.

Therefore, two different combinations have been identified that are mostly

used for further analytic processes with one combination being a subset of the

other. The smaller combination consists of the violation of the three security

objectives, namely confidentiality, integrity, and availability. This combination

is often referenced as the CIA objectives, which is derived from the initial let-

ters. So, the results for this combination will also be referenced as the CIA

classification results. The second attribute combination additionally includes

the attack vector to the CIA attributes. Thus, all four CVSS attributes are com-

bined and the classification approach should derive the full classification from

the vulnerability description. A naive approach could be a combination of the

single classifiers. The accuracy could be predicted by the product of the accu-

racy of each of the single attribute classifiers. This would result in an accuracy

of 0.9 ∗ 0.7 ∗ 0.69 ∗ 0.68 ≈ 0.2956 for the naive Bayes approach and an accuracy

of 0.8 ∗ 0.7 ∗ 0.7 ∗ 0.7 ≈ 0.274 for the neural network approach, if the complete

attribute combination is considered. However, an accuracy of only 30% or even

only 27% is not satisfying. Thus, the alternative solution was to create new

classifiers that learn based on the attribute combination. This means that all

124

5.3 Validation of CVSS Attributes

possible results of the combination of all attributes, which will be referenced as

overall classification, and the CIA classification are investigated and considered.

This different value combination will then be used as the different labels for the

classification approach. Thus, 27 different labels for the CIA classification and

108 different labels for the overall classification are created. Thereafter, the ap-

proaches are similar to the single attribute classification, which means the dataset

will be balanced and divided into a training dataset and a test dataset. Then the

training of the qualifiers was performed and the trained model was applied on

the test dataset and on the validation dataset. These steps were performed 10

times and the averages of these 10 iterations are used as the final results, which

are also illustrated in Table 5.4.

Table 5.4: Accuracy of Naive Bayes and Neural Network on Combined Attributes

CVSS attribute combination Naive Bayes Neural Network

CIA Test Data 63.9% 71.2%

CIA Validation Data 51.6% 53.4%

Overall Test Data 61.4% 59.3%

Overall Validation Data 48.1% 49.1%

The results show that the creation of a new classifier produces better results

than the combination of the different single attribute classifiers could achieve.

The neural network approach had an accuracy of 27% for the combination of the

single attribute classifiers compared to the 49.1% of the newly created classifier

for example. Even though the results are mostly near the 50% mark, it is still

remarkable that a classification with 108 different labels is correct for half of

the vulnerability descriptions. It also shows that the neural network approach

slightly outperforms the naive Bayes approach, with exception of the overall test

data. This was partly expected since neural networks are usually applied for

problems with a rather high complexity and the complexity for this classification

problem increases when combinations of CVSS attributes are considered.

The final observation of these experiments is that the classification of vul-

nerability descriptions can be automated and even all relevant CVSS attributes

can be successfully predicted. Thus, it is possible to use machine-learning tech-

125

Chapter 5 Vulnerability Data Quality

niques for an automated vulnerability classification to save processing time for

vulnerability experts.

5.4 Scoring Scheme

The scoring of vulnerabilities has always been an important task in the field

of vulnerability analysis. The problem is that the total amount of vulnerabili-

ties is hardly manageable anymore. Therefore, a possibility to rank important

vulnerabilities is needed. The measurement to decide which vulnerabilities are

more important than others is usually the effect a vulnerability could have on

a system. If the impact of a successful exploitation of a vulnerability is higher

than this vulnerability should receive a higher weight in the analysis and espe-

cially it should be resolved with a higher priority. The currently used scheme

to weight and rank vulnerabilities is the Common Vulnerability Scoring System

(CVSS) standard, which was described in Section 2.3.3. In the current version

of the CVSS the base metrics, which are constant over time and independent

from the user environment, are divided into exploitability metrics and impact

metrics. The impact metrics consists of the already mentioned violation of the

three security goals, integrity, confidentiality, and availability. The exploitability

metrics include the attack vector, the attack complexity, the privileges required,

and the user interaction. Beside the attack vector that was already discussed

and introduced earlier, the other parts of the exploitability metrics focus on the

likelihood and the ease of an exploitation. Thus, these base metrics combine the

possible impact and the possibility of a successful exploitation and are used to

compute the CVSS base score. The overall ranking ideas are also used in the

HPI-VDB. In the database, the CVSS Score is employed to sort the vulnerabil-

ities in the results of the analytic approaches, since usually the results contain

numerous vulnerabilities that should be ranked according to the corresponding

criticality.

In addition to the pure impact and the severity of the vulnerability, the fact

whether the affected application is running and listening should be considered as

well. Usually vulnerability scanners will only include vulnerabilities for detected

126

5.4 Scoring Scheme

applications, which often relies on the fact that the applications have to be ex-

ecuted at the time of the scan. One of the most famous vulnerability scanners

is Nessus [63], which is often executed from a central point in the network and

thus scans the attached clients for vulnerabilities. Therefore, Nessus, as well as

most other vulnerability scanners, starts with a port scan to find open ports

and derive the listening applications. Nessus can use integrated port scanners

or external tools, such as nmap [35] or amap5 for this task. Then the scanning

mechanism is able to determine the corresponding vulnerabilities for each of the

identified applications and the listening port. Furthermore, some scanners even

try various exploits, if the exploits are publicly known, to test if a successful

exploitation of the vulnerability is possible. The benefit is that the scanning

mechanism works in a fast manner and it is easy to integrate additional clients

that are connected to the network. The only necessary adjustment is that the

scanner has to be configured to also include the new client into the detection

process. On the other hand, the disadvantage of network-based vulnerability

scanning is the inaccuracy, which comes with the limited insights that the scan-

ner can obtain. The scanning tool can only investigate the target from a remote

point of view, which is limited to open ports and possible responses for requests

on these ports. Thus, it is only able to identify applications that are listening

on the specific ports. One could argue that a remote attacker has to deal with

the same limitations, but it becomes more complicated if multi-step attacks are

considered. When the attacker can first exploit a vulnerability to obtain access

to a remote machine with only limited permissions, he is only able to execute

a limited set of commands on the system, which could be bound to the permis-

sions of the exploited service. But if the attacker could exploit a locally running

service or another local application to elevate his privileges, this possible attack

will remain undetected by network based vulnerability scanners. Furthermore,

network based vulnerability scanners have a higher probability for an incorrect

application detection than local scanners have, as the local scanners can utilize

much more information from the target system, such as registry entries, instal-

lation logs. The downside of the local scanners is the complexity to integrate

5http://sectools.org/tool/amap/

127

Chapter 5 Vulnerability Data Quality

additional clients, since local agents or local scanning applications have to be

installed and configured.

However, this difference shows that the detection of vulnerabilities has to be

performed comprehensively and extensively to identify all existing vulnerabili-

ties. Thus, vulnerabilities in applications that are running and listening on the

network definitely pose a higher risk to the security of the target. Nevertheless,

the vulnerabilities of installed applications, which are not executed, should still

be considered, as an attacker might be able to start the application to elevate the

privileges or maintain the foothold. Additionally, running applications that do

not listen to the network might not be exploited remotely, but an attacker could

also misuse them. Therefore, the fact that an application is running and listening

should be integrated into the scoring of vulnerabilities. One could think about

a multiplier that represents the fact if the affected application is running and

listening. Hence, an active vulnerability with an application that is running and

listening can receive a multiplier of 1, which would mean that the CVSS score will

receive the full weight. If the application is running but is not listening on open

ports, the exploitation requires a preemptive infiltration of the machine. Thus,

the multiplier could be set to 0.8, which would lessen the basic CVSS score since

the access is not directly possible. In the last scenario, the passive vulnerability

of an unused application has to be activated by starting the application. Then,

an attacker has to infiltrate the system and start the application before being

able to benefit from the corresponding vulnerability. Therefore, the multiplier

could be set to 0.5 as this scenario has the highest requirements that have to

be satisfied before an exploitation is possible. The final formula to compute the

vulnerability score includes the multiplier and is illustrated in Equation 5.5.

128

5.4 Scoring Scheme

FinalScore = Multiplier ∗ CV SSscore

(5.5)

OverallScore = log(
⋂

vulnerability∈detectedV ulnerabilities

vulnerability.cvss score)

(5.6)

The multiplier is used to adjust the CVSS score as it was described before.

Then the overall scale for the score will still be in the interval between 0 and 10,

which allows an interoperability with the current CVSS scores.

Finally, severity scores could be assigned to full computers that have been

scanned. Therefore, the results for the individual vulnerabilities have to be

combined. Several possibilities to combine the scores for the single vulnerabilities

were discussed and all methods show different advantages and disadvantages.

For example a simple maximum of all the identified vulnerabilities, would still

produce results in a suitable scale of 0 to 10. The problem is that the amount

of vulnerabilities will not have any effect on the score, which means a system

with one vulnerability of a score of 10 will receive a higher overall score than

a system with 20 vulnerabilities with a score of 8. Thus, the combination has

to incorporate the score of each of the vulnerabilities. Then a multiplication

or an addition of all the scores was evaluated, but many test cases result in

numerous vulnerabilities, which were discovered. This in turn would produce an

overall score, which grows to fast. If several vulnerabilities have a score of 10, the

multiplication might result in an overall score in the range of millions or billions.

A combination of the multiplication and a logarithm could be a better choice,

since the logarithm will drastically decrease the growth of the overall score. The

equation for this score is illustrated in Equation 5.6. Even, when numerous

vulnerabilities have a score of 10 then the logarithm will reduce the overall score

to the number of these vulnerabilities, which is a reasonable measure.

129

Chapter 5 Vulnerability Data Quality

5.5 Conclusion

This chapter discusses the challenges and possible solutions that arise from the

necessity of a high data quality. The available information, which is collected

from the internet, suffers from unchecked, outdated, or missing properties for

the different vulnerabilities. Since the information has to be included into the

HPI-VDB, it was necessary to find ways to circumvent the described problems.

First of all the defective attribute has to be identified. It is easy to identify miss-

ing attributes, since they are simply not available in the specific source. Then a

correlation method can be used to enrich the vulnerability with information from

other sources. This correlation mechanism utilizes the CVE identifier, which was

described in Section 2.3.1. Furthermore, an approach was presented that allows

deriving solutions from the textual description of the vulnerability automatically.

This solution creation was created, because the information about possible so-

lutions is often missing in several sources. Nevertheless, it is likely that those

solutions provide the highest benefit for average users of a vulnerability database,

since they include instructions to resolve the vulnerability.

Another aspect of assuring high data quality is the detection of incorrect infor-

mation for a vulnerability. If the incorrect information is located in an attribute

that is used to identify specific properties of the vulnerabilities, a detection of

this defect can be achieved by a check against the commonly used standards.

The field of vulnerabilities includes several standards to define and identify dif-

ferent properties of the vulnerability, such as CPE, CAPEC, CVSS, and CWE.

Thus, those identifiers and schemes should be used as often as possible to allow

an easy interoperability and guarantee an error-free identification of specific re-

quirements and impacts for a deep analysis. It is especially important for CPE

identifiers, since those CPEs are used to identify applications of a specific version.

Therefore, even a minor difference in the CPE would result in an inaccuracy of

the analytic approach, since it would assume a different application. Thus, a

correction approach was implemented to deal with outdated or incorrectly cre-

ated CPEs. The approach will correct the flaws automatically and reassign the

corresponding vulnerabilities to the correct version of the CPE.

130

5.5 Conclusion

The third approach that was described in this chapter can be used to validate,

correct, or create CVSS attributes automatically. Therefore, two different auto-

matic classification methods have been created, which use a naive Bayes and a

neural network approach for the classification. The classifiers have been trained

on real world data, which was exported from the HPI-VDB. Then, a test dataset

and an additional validation dataset was used to perform a thorough evaluation

for each approach. The experiments show that an automatic classification of the

CVSS attributes is possible, with a promising accuracy of more than 50% for a

combination of four different attributes and 108 possible classification results. If

only single attributes are considered, the classifier could even achieve up to 90%

accuracy. Thus, these approaches can be used to reduce the manual workload of

vulnerability experts, who have to investigate the vulnerability reports.

Finally, some thoughts about an adjustment for the scoring mechanism of vul-

nerabilities conclude the chapter. The difference to the well-established CVSS

method is to include passive vulnerabilities and adjust the score accordingly.

Overall, this chapter dealt with several ways to increase the quality of attributes

for vulnerabilities by enrichment, validation, and correction of various properties.

The approaches have been implemented and tested to complete the comprehen-

sive vulnerability model and increase the reliability of that information.

131

Chapter 6

Future Work and Conclusion

6.1 Conclusion

6.1.1 Vulnerability Detection

This thesis addresses the challenges in utilizing vulnerability information to in-

crease the security of a target IT infrastructure. Therefore, different use cases

that could be applied to single systems or large corporate networks have been

presented. Thus, both average users and security professionals are able to ben-

efit from the proposed approaches. The importance of a secure environment

has been presented and it applies to both of the different target groups. There-

fore, the average user has to care about the security of his home network or his

computer, which could be used to perform critical actions, such as home automa-

tion, storage for documents and personal data, and financial transactions. On

the other hand, corporate networks usually contain sensitive information about

the company and security issues could lead to several infections at once. Further-

more, modern companies organize their daily work and internal processes with

IT systems or completely rely on IT infrastructure to operate their business.

Nevertheless, the conditions for those user groups have to be considered, which

are tremendously different. These different requirements were also incorporated

in the design of the analytic approaches. Hence, a limited version of the vulner-

ability analysis was designed and implemented, which mainly focuses on the web

browser of a user and was presented in [25]. Since the browser is usually the only

133

Chapter 6 Future Work and Conclusion

application, which interacts with other IT systems in the Internet, it is often

regarded as the highest risk for potential attacks. Therefore, it is essential to

protect the browser, as it is the potential entrance point for IT criminals. Beside

protection mechanisms, such as disabling javascript from unknown sources, the

user should ensure that the browser is up-to-date and does not contain vulner-

abilities. Since the majority of attacks exploit known vulnerabilities to break

into the target system [20] the vulnerabilities of the web browser have to be re-

solved immediately after disclosure. In the other case, operators of corporate IT

systems can directly perform deeper investigations of their systems. Therefore,

they can use inventory data, application scanners, or vulnerability scanners to

identify potential vulnerabilities in their infrastructure. The results of the appli-

cation detection can be used to identify correlated vulnerabilities and investigate

possible countermeasures. Beyond that, companies already started to collect in-

formation about the systems interior status to be able to identify user activities

in the corporate network. This information could also be used to identify pos-

sible vulnerabilities in the corporate networks and on the user devices as it was

described in [25]. Then, the detection results can be presented to the operator,

who can investigate the information and ultimately resolve the vulnerabilities.

The representation of vulnerability information in large company networks is a

complex task by itself. Therefore, attack graphs have been explored, adapted

and simplified to allow an easy recognition of the important information, as it

was presented in [23]. Additionally, information about solutions of vulnerabili-

ties have been incorporated into the attack graphs to visualize the consequences

of applying different countermeasures to the overall infrastructure.

6.1.2 Data Quality

Additional challenges arise with the distributed nature of vulnerability informa-

tion. Since the information is widespread in several sources, it also varies in the

data format. This variance results in different properties for the vulnerabilities

and requires a unification. Thus, a comprehensive vulnerability model was cre-

ated that contains a combination of all relevant attributes. Furthermore, the

134

6.2 Summary of Contributions

model utilizes established standards whenever possible, which allows an interop-

erability and integration into other security approaches. Since these identifiers

are not always in place, a suitable and scalable transformation was required,

which was also integrated into the import functionality of the database. However,

the available information often prevents an adequate and complete utilization of

the comprehensive model. Thus, the minimal requirements for the vulnerability

model have been established to avoid information losses. Additionally, differ-

ent approaches to extend the available information by derivation methods were

implemented that allow the creation of different attributes during the import

procedure. Beside these extension mechanisms, it was necessary to ensure a high

accuracy of the information, since wrong relations between affected applications

and vulnerabilities would produce incorrect analysis results. Thus, the before

mentioned derivation methods can be used to ensure the correctness of the vul-

nerability information by applying the derivation and comparing the results to

the available values of the characteristic, as it was presented in [24]. Additionally,

a reliability measure was included for each of the integrated sources. This relia-

bility is used for a decision when the information differs in the different sources.

Furthermore, the employment of the established standards and identifiers have

to be ensured, since the analytic approaches do not consider similarities in iden-

tifiers, it merely checks for exact matches. Thus, even small inconsistencies have

to be corrected, as it was performed with the CPE identifiers.

All of these adjustments have to be performed automatically, because the

amount of vulnerability information, which is processed periodically, does not

allow a manual interference by security experts. Thus, the different approaches

have been designed to work automatically with the help of dictionaries for identi-

fiers or benefit from insights that were gained from machine learning mechanisms.

6.2 Summary of Contributions

This thesis deals with several challenges that arise in the processing of vulner-

ability information for security analysis. Different fields, such as vulnerability

model engineering, information representation, data verification, and classifica-

135

Chapter 6 Future Work and Conclusion

tion based on machine learning have been touched in this work. The different

contributions can be summarized in three main categories, which are composed

of different parts.

The first category deals with the retrieval and the quality assurance of the

vulnerability information. Therefore, a proposed vulnerability model is used

which was presented in [53]. This model was improved and the normalization

of the vulnerability information was explained in [22] with a special focus on

the scalability and autonomy of the approaches. These normalization steps have

been included in the import procedures of the HPI-VDB. Additionally, different

methods to ensure the data quality were developed to always guarantee a utiliza-

tion of established standards and their identifiers. Therefore, correction methods

and lookup procedures have been created, such as the correction and lookup of

CPE identifiers. Finally, inconsistencies between different sources or the absence

of information has to be considered. These challenges were addressed in [24],

where missing CVSS attributes, which are fundamental for multiple analytic ap-

proaches, are derived from textual information. These derivation methods are

based on machine learning approaches that automatically process the informa-

tion.

The second category addresses the challenge of an appropriate representation

of the results. Therefore, the concept of attack graphs is employed. The attack

graph creation with MulVAL was developed further and a suitable interface was

created to provide vulnerability information for an external tool that creates

the attack graph. However, this graph representation is complex and often not

adequate. Thus, a simplistic form of the attack graph was integrated into the

system, which uses the network structure as the base. It enriches the graphi-

cal representation of the network with vulnerability information and highlights

vulnerable systems and connections. Furthermore, the automatically created so-

lutions of the vulnerabilities are integrated to allow a direct assessment of the

effect of the individual solutions. The user is able to enable the solutions in the

graph and will be presented with the resulting scenario, which illustrates the

changes that were caused by the application of the solution.

The third category includes the approaches to detect and identify vulnera-

136

6.3 Future Work

bilities in the specific target environments. Therefore, an automatic detection

approach was created that strongly depends on the accurate identification of the

inner structure of the environments. Thus, the installed applications have to be

identified with a high level of detail that includes the version of the application

as well. This automatic detection can be performed with an active scanning

approach that examines the target system and identifies installed applications.

Thus, the direct detection can be performed on the target system by investigating

special paths, entries in the registry or querying the package management. On

the other hand, another approach that is less performance intensive was designed

for larger corporate networks. The passive detection approach utilizes informa-

tion from event logs to identify running and communicating applications. These

applications can also be classified as more severe, since they have a network con-

nection and are executed. Thus, an attacker might be able to remotely penetrate

the network through a vulnerability in one of those applications. Additionally,

many large companies meanwhile log events in their environments nonetheless,

so this information could directly be used to create an overview of the running

applications. Irrespective of the utilized method, the results of the application

detection have to be transformed to CPE identifiers, which is the established

standard to identify applications. Then those CPE identifiers can be used to

perform a lookup in the database and retrieve the related vulnerabilities for the

set of applications. Afterwards, the remaining requirements of the vulnerabilities

can be evaluated, such as a specific operating system or a required access vector.

All of the explained approaches have been implemented and most of them

were also deployed at the publicly available vulnerability database HPI-VDB [27].

Thus, the applicability and practical feasibility can be tested on the website. Fur-

thermore, the different detection mechanisms were also applied on real scenarios

to prove the workflow with real-world data.

6.3 Future Work

The work on vulnerability analysis can be continued with additional correlation

approaches. Especially, the addition of further sources of vulnerability informa-

137

Chapter 6 Future Work and Conclusion

tion would result in a more comprehensive collection of vulnerability information.

Besides the addition of vulnerabilities, additional sources can be used to verify or

complete the information about already existing vulnerabilities. Thus, the data

quality could be increased with more sources. A better data quality also results

in a higher accuracy of the vulnerability detection, since the knowledge about

requirements and impact of all vulnerabilities is fundamental for an appropriate

analysis. The foundation for several types of vulnerability sources was created

with the reader interface, which has to be implemented for each source. How-

ever, the implementation of the RSS reader already solves different challenges

and new RSS sources will only require a new regular expression to extract the

corresponding fields.

Another point for further work is the creation of additional end-points in the

API. The API provides direct access to the vulnerability information and can

be used by third-party software to receive vulnerability information for specific

use-cases. Thus, the database can serve as a knowledge base for additional

security mechanisms. The API can then be queried to receive the vulnerability

information with the option of filtering the results. The filtering reduces the

necessary data transfer and allows a restriction of the result to the important

entries. Currently, two different types for the result have been implemented.

Therefore, either the full vulnerability record with all references, solutions, and

conditions or a reduced version of the record, which omits the conditions, can

be retrieved. For a possible application in the field of threat intelligence, a new

type could be created, which includes the conditions, but omits other unnecessary

attributes, such as references or timestamps. A confinement for the set of results

would also reduce the workload in composing the results.

Additional improvements can be done for attack graphs. As it was elaborated,

traditional representations of attack graphs often suffer from high complexity

and the resulting problems in interpreting the results. Thus, further work on

reducing the complexity should increase the user experience and enhance the

usability of attack graphs. One possibility would be an interactive graph that

abstracts several details and only visualizes detailed attack steps if the focus of

the viewer is centered on the specific part of the graph. Another idea would be

138

6.3 Future Work

the utilization of graph databases to efficiently allow a traversal of the graph. The

current implementation of the simplistic graph is a data structure of nodes and

edges with several attributes in the JSON format. The visualization of the graph

is done with Springy.js [30] and different tests already showed the limitation of

the approach if large networks with tens or hundreds of nodes are considered. So

one possibility to increase the usability of the attack graph approach would be the

integration of another front-end for the visualization of the graph. Moreover, the

reasoning and traversal of the simplistic graph are currently performed in Python,

which has a large impact on the performance of the approach. Larger scenarios

would also benefit from a replacement with a graph database that should have

a better performance in traversing large graphs. Finally, these changes could be

evaluated by conducting a user study for the attack graph approach. Then, it

would be possible to find the most used graph, whether users would prefer the

simplistic graph with possible improvements and different visualization front-

ends or the traditional graph with MulVAL.

139

Bibliography

[1] A. Azodi, D. Jaeger, F. Cheng, and C. Meinel. A new approach to

building a multi-tier direct access knowledgebase for ids/siem systems. In

Dependable, Autonomic and Secure Computing (DASC), 2013 IEEE 11th

International Conference on, pages 118–123. IEEE, 2013.

doi:10.1109/DASC.2013.48.

[2] S. Barnum. Standardizing cyber threat intelligence information with the

structured threat information expression (stix). MITRE Corporation,

11:1–22, 2012. URL http://www.standardscoordination.org/sites/

default/files/docs/STIX_Whitepaper_v1.1.pdf.

[3] G. Bartlett, J. Heidemann, and C. Papadopoulos. Understanding passive

and active service discovery. In Proceedings of the 7th ACM SIGCOMM

Conference on Internet Measurement, IMC ’07, pages 57–70, New York,

NY, USA, 2007. ACM. doi:10.1145/1298306.1298314.

[4] M. Bishop. Vulnerabilities analysis. In Proceedings of the Recent Advances

in intrusion Detection, pages 125–136, 1999.

[5] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker. Beyond heuristics:

learning to classify vulnerabilities and predict exploits. In Proceedings of

the 16th ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 105–114. ACM, 2010.

doi:10.1145/1835804.1835821.

[6] A. Buttner, T. M. Corporation, N. Ziring, and N. S. Agency. Common

platform enumeration (cpe)—specification. URL http://cpe.mitre.org,

2008. doi:10.1.1.210.2673.

141

http://dx.doi.org/10.1109/DASC.2013.48
http://www.standardscoordination.org/sites/default/files/docs/STIX_Whitepaper_v1.1.pdf
http://www.standardscoordination.org/sites/default/files/docs/STIX_Whitepaper_v1.1.pdf
http://dx.doi.org/10.1145/1298306.1298314
http://dx.doi.org/10.1145/1835804.1835821
http://dx.doi.org/10.1.1.210.2673

Bibliography

[7] Carnegie Mellon University. Cert/cc vulnerability report form.

https://vulcoord.cert.org/VulReport/form, 2017. [accessed

12-March-2018].

[8] Center for Internet Security. Home / oval repository.

https://oval.cisecurity.org/repository/download, 2018. [accessed

22-March-2018].

[9] F. Cheng, M. Gawron, and C. Meinel. Attack graph construction.

https://hpi.de/meinel/security-tech/security-analytics/

attack-graph-construction.html, 2018. [accessed 13-June-2018].

[10] F. Cheng, S. Roschke, and C. Meinel. An integrated network scanning tool

for attack graph construction. In Proceedings of the 6th International

Conference on Grid and Pervasive Computing (GPC’11), pages 138–147,

2011. doi:10.1007/978-3-642-20754-9 15.

[11] P. Cichonski, D. Waltermire, and K. Scarfone. Common platform

enumeration: Dictionary specification version 2.3. NIST

Interagency/Internal Report (NISTIR)-7697, 2011.

doi:10.6028/NIST.IR.7697.

[12] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes. Improving efficiency

and accuracy in multilingual entity extraction. In Proceedings of the 9th

International Conference on Semantic Systems, pages 121–124. ACM,

2013. doi:10.1145/2506182.2506198.

[13] R. Deraison, R. Gula, and T. Hayton. Passive vulnerability scanning:

Introduction to nevo. Revision, 9(1-13):7, 2003. URL http://www.vodun.

org/papers/net-papers/gula_passive_scanning_tenable.pdf.

[14] Dimitar Kostadinov. Ghostnet - part i.

https://resources.infosecinstitute.com/ghostnet-part-i/, 2013.

[accessed 13-April-2018].

142

https://vulcoord.cert.org/VulReport/form
https://oval.cisecurity.org/repository/download
https://hpi.de/meinel/security-tech/security-analytics/attack-graph-construction.html
https://hpi.de/meinel/security-tech/security-analytics/attack-graph-construction.html
http://dx.doi.org/10.1007/978-3-642-20754-9_15
http://dx.doi.org/10.6028/NIST.IR.7697
http://dx.doi.org/10.1145/2506182.2506198
http://www.vodun.org/papers/net-papers/gula_passive_scanning_tenable.pdf
http://www.vodun.org/papers/net-papers/gula_passive_scanning_tenable.pdf
https://resources.infosecinstitute.com/ghostnet-part-i/

Bibliography

[15] E. A. Fisch, G. B. White, and U. W. Pooch. Computer system and

network security. 1996. doi:10.1201/1079/43236.25.8.19980201/30188.4.

[16] Flexera. Computer security research - secunia. https:

//secuniaresearch.flexerasoftware.com/community/research/,

2018. [accessed 22-March-2018].

[17] E. Frank, G. W. Paynter, I. H. Witten, C. Gutwin, and C. G.

Nevill-Manning. Domain-specific keyphrase extraction. In 16th

International Joint Conference on Artificial Intelligence (IJCAI 99),

volume 2, pages 668–673. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1999. URL https://hdl.handle.net/10289/1508.

[18] J. Franklin, C. Wergin, and H. Booth. Cvss implementation guideline.

National Institute of Technology, 2014. doi:10.6028/NIST.IR.7946.

[19] S. Frei, T. Duebendorfer, and B. Plattner. Firefox (in) security update

dynamics exposed. ACM SIGCOMM Computer Communication Review,

39(1):16–22, 2008. doi:10.1145/1496091.1496094.

[20] Gartner Inc. Focus on the biggest security threats, not the most

publicized. "https://www.gartner.com/smarterwithgartner/

focus-on-the-biggest-security-threats-not-the-most-publicized,

2017. [accessed 10-March-2018].

[21] Gartner Inc. Magic quadrant for security information and event

management. https:

//www.gartner.com/doc/reprints?id=1-4JMUB31&ct=171031&st=sb,

2017. [accessed 14-June-2018].

[22] M. Gawron, F. Cheng, and C. Meinel. Automatic detection of

vulnerabilities for advanced security analytics. In Proceedings of the 17th

Asia-Pacific Network Operations and Management Symposium

(APNOMS’15), pages 471–474. IEEE, 2015.

doi:10.1109/APNOMS.2015.7275369.

143

http://dx.doi.org/10.1201/1079/43236.25.8.19980201/30188.4
https://secuniaresearch.flexerasoftware.com/community/research/
https://secuniaresearch.flexerasoftware.com/community/research/
https://hdl.handle.net/10289/1508
http://dx.doi.org/10.6028/NIST.IR.7946
http://dx.doi.org/10.1145/1496091.1496094
"https://www.gartner.com/smarterwithgartner/focus-on-the-biggest-security-threats-not-the-most-publicized
"https://www.gartner.com/smarterwithgartner/focus-on-the-biggest-security-threats-not-the-most-publicized
https://www.gartner.com/doc/reprints?id=1-4JMUB31&ct=171031&st=sb
https://www.gartner.com/doc/reprints?id=1-4JMUB31&ct=171031&st=sb
http://dx.doi.org/10.1109/APNOMS.2015.7275369

Bibliography

[23] M. Gawron, F. Cheng, and C. Meinel. Automatic vulnerability detection

for weakness visualization and advisory creation. In Proceedings of the 8th

International Conference on Security of Information and Networks

(SIN’15), pages 229–236. ACM Press, 2015. doi:10.1145/2799979.2799986.

[24] M. Gawron, F. Cheng, and C. Meinel. Automatic vulnerability

classification using machine learning. In International Conference on Risks

and Security of Internet and Systems, pages 3–17. Springer, Springer,

2017. doi:10.1007/978-3-319-76687-4 1.

[25] M. Gawron, F. Cheng, and C. Meinel. PVD: Passive vulnerability

detection. In Information and Communication Systems (ICICS), 2017 8th

International Conference on, pages 322–327. IEEE, Apr. 2017.

doi:10.1109/iacs.2017.7921992.

[26] R. Gula. Passive vulnerability detection. Network Security Wizards, 9:7,

1999. URL http://www.vodun.org/papers/net-papers/gula_passive_

vulnerability_detection.pdf.

[27] Hasso Plattner Institute. HPI Vulnerability Database.

https://hpi-vdb.de/, 2018. [accessed 26-March-2018].

[28] Hasso Plattner Institute. Real-time Event Analysis and Monitoring System

(REAMS). 2018. URL https://hpi.de/en/meinel/security-tech/

security-analytics/reams.html. [accessed 12-March-2018].

[29] D. Hein and H. Saiedian. Predicting attack prone software components

using repository mined change metrics. In Proceedings of the 2nd

International Conference on Information Systems Security and Privacy -

Volume 1: ICISSP,, pages 554–563, 2016. doi:10.5220/0005812905540563.

[30] D. Hotson. Springy - a force directed graph layout algorithm in javascript,

2013. URL http://getspringy.com/. [accessed 05-July-2018].

[31] D. Jaeger, A. Azodi, F. Cheng, and C. Meinel. Normalizing security events

144

http://dx.doi.org/10.1145/2799979.2799986
http://dx.doi.org/10.1007/978-3-319-76687-4_1
http://dx.doi.org/10.1109/iacs.2017.7921992
http://www.vodun.org/papers/net-papers/gula_passive_vulnerability_detection.pdf
http://www.vodun.org/papers/net-papers/gula_passive_vulnerability_detection.pdf
https://hpi-vdb.de/
https://hpi.de/en/meinel/security-tech/security-analytics/reams.html
https://hpi.de/en/meinel/security-tech/security-analytics/reams.html
http://dx.doi.org/10.5220/0005812905540563
http://getspringy.com/

Bibliography

with a hierarchical knowledge base. In Information Security Theory and

Practice, pages 237–248. Springer, 2015. doi:10.1007/978-3-319-24018-3 15.

[32] S. Jajodia, S. Noel, and B. O‘Berry. Topological analysis of network attack

vulnerability. In Managing Cyber Threats, pages 247–266. Springer, 2005.

doi:10.1007/0-387-24230-9 9.

[33] Jonathan Crowe. Must-know phishing statistics 2017.

https://blog.barkly.com/phishing-statistics-2017, 2017. [accessed

12-March-2018].

[34] Kevin McCaney. Hack of rsa’s secureid exploited flash vulnerability.

https://gcn.com/articles/2011/04/04/

rsa-hack-securid-adobe-flash.aspx, 2011. [accessed 13-April-2018].

[35] G. Lyon. Nmap: the network mapper - free security scanner.

https://nmap.org/, 2011. [accessed 13-June-2018].

[36] McAfee. Economic impact of cybercrime - no slowing down.

https://www.mcafee.com/enterprise/en-us/assets/reports/

restricted/economic-impact-cybercrime.pdf, 2018. [accessed

12-March-2018].

[37] P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring

system. Security & Privacy, IEEE, 4(6):85–89, 2006.

doi:10.1109/MSP.2006.145.

[38] M. S. Merkow and J. Breithaupt. Information security: Principles and

practices. Pearson Education, 2014. URL

http://cds.cern.ch/record/1749101.

[39] Microsoft. Windows remote management.

https://msdn.microsoft.com/en-us/library/aa384426.aspx, 2016.

[accessed 12-March-2018].

145

http://dx.doi.org/10.1007/978-3-319-24018-3_15
http://dx.doi.org/10.1007/0-387-24230-9_9
https://blog.barkly.com/phishing-statistics-2017
https://gcn.com/articles/2011/04/04/rsa-hack-securid-adobe-flash.aspx
https://gcn.com/articles/2011/04/04/rsa-hack-securid-adobe-flash.aspx
https://nmap.org/
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/economic-impact-cybercrime.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/economic-impact-cybercrime.pdf
http://dx.doi.org/10.1109/MSP.2006.145
http://cds.cern.ch/record/1749101
https://msdn.microsoft.com/en-us/library/aa384426.aspx

Bibliography

[40] Microsoft. Microsoft security bulletins.

"https://technet.microsoft.com/en-us/security/bulletins.aspx,

2018. [accessed 24-March-2018].

[41] Mitre Corporation. Oval - oval interpreter.

http://oval.mitre.org/language/interpreter.html, 2012. [accessed

22-March-2018].

[42] Mitre Corporation. Cve list main page, 2018. URL

http://cve.mitre.org/cve/index.html. [accessed 22-June-2018].

[43] Mitre Corporation. The mitre corporation, 2018. URL

https://www.mitre.org/. [accessed 22-June-2018].

[44] Mozilla. Security advisories for firefox. https://www.mozilla.org/

en-US/security/known-vulnerabilities/firefox/, 2016. [accessed

11-March-2018].

[45] National Institute of Standards and Technology. Cwe - common weakness

enumeration. http://nvd.nist.gov/cwe.cfm, 2016. [accessed

14-March-2018].

[46] National Institute of Standards and Technology. National vulnerability

database. http://nvd.nist.gov/, 2017. [accessed 22-April-2018].

[47] Network Working Group. Rfc 5424: The syslog protocol.

https://tools.ietf.org/html/rfc5424, 2009. doi:10.17487/RFC5424.

[accessed 11-February-2016].

[48] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Predicting

vulnerable software components. In Proceedings of the 14th ACM

conference on Computer and communications security, pages 529–540.

ACM, 2007. doi:10.1145/1315245.1315311.

[49] Offensive Security. Exploits database by offensive security.

https://www.exploit-db.com/, 2017. [accessed 22-June-2018].

146

"https://technet.microsoft.com/en-us/security/bulletins.aspx
http://oval.mitre.org/language/interpreter.html
http://cve.mitre.org/cve/index.html
https://www.mitre.org/
https://www.mozilla.org/en-US/security/known-vulnerabilities/firefox/
https://www.mozilla.org/en-US/security/known-vulnerabilities/firefox/
http://nvd.nist.gov/cwe.cfm
http://nvd.nist.gov/
https://tools.ietf.org/html/rfc5424
http://dx.doi.org/10.17487/RFC5424
http://dx.doi.org/10.1145/1315245.1315311
https://www.exploit-db.com/

Bibliography

[50] OSVDB Project Group. Osvdb: Open sourced vulnerability database.

http://www.osvdb.org, 2017. [accessed 28-March-2018].

[51] X. Ou, S. Govindavajhala, and A. W. Appel. Mulval: A logic-based

network security analyzer. In USENIX Security Symposium, volume 8,

pages 113–128. Baltimore, MD, 2005. URL

http://dl.acm.org/citation.cfm?id=1251398.1251406.

[52] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for

word representation. In Empirical Methods in Natural Language Processing

(EMNLP), pages 1532–1543, 2014. URL

http://www.aclweb.org/anthology/D14-1162.

[53] S. Roschke, F. Cheng, R. Schuppenies, and C. Meinel. Towards unifying

vulnerability information for attack graph construction. In Proceedings of

the 12th Information Security Conference (ISC’2009), pages 218–233,

2009. doi:10.1007/978-3-642-04474-8 18.

[54] S. Russell, P. Norvig, and A. Intelligence. A modern approach, volume 25.

Citeseer, 1995.

[55] A. Sapegin, D. Jaeger, A. Azodi, M. Gawron, F. Cheng, and C. Meinel.

Hierarchical object log format for normalisation of security events. In

Proceedings of the 9th International Conference on Information Assurance

and Security (IAS 2013), Tunis, Tunisia, 12 2013. IEEE CS.

[56] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen. Predicting

vulnerable software components via text mining. IEEE Transactions on

Software Engineering, 40(10):993–1006, 2014.

doi:10.1109/TSE.2014.2340398.

[57] R. E. Schapire and Y. Singer. Improved boosting algorithms using

confidence-rated predictions. Machine learning, 37(3):297–336, 1999.

doi:10.1023/A:1007614523901.

147

http://www.osvdb.org
http://dl.acm.org/citation.cfm?id=1251398.1251406
http://www.aclweb.org/anthology/D14-1162
http://dx.doi.org/10.1007/978-3-642-04474-8_18
http://dx.doi.org/10.1109/TSE.2014.2340398
http://dx.doi.org/10.1023/A:1007614523901

Bibliography

[58] M. Schumacher, C. Haul, M. Hurler, and A. Buchmann. Data mining in

vulnerability databases. In 7. Workshop ”Sicherheit in vernetzten

Systemen” (Hamburg, Germay, March 2000), DFN-CERT, 12, 2000.

[59] SecurityFocus. Securityfocus. https://www.securityfocus.com/bid/,

2018. [accessed 24-March-2018].

[60] R. W. Shirey. Internet security glossary. Request For Comment (RFC),

2828. doi:10.17487/RFC2828.

[61] R. W. Shirey. Internet security glossary, version 2 (2007). Request For

Comment (RFC), 4949. doi:10.17487/RFC4949.

[62] Tenable Inc. Plugins — tenable. https://www.tenable.com/plugins,

2018. [accessed 13-June-2018].

[63] Tenable Network Security. Nessus vulnerability scanner.

https://www.tenable.com/products/nessus-vulnerability-scanner,

2016. [accessed 13-June-2018].

[64] Text Fixer. Common English Words List.

http://www.textfixer.com/tutorials/common-english-words.txt,

2017. [accessed 11-March-2018].

[65] The MITRE Corporation. Capec - common attack pattern enumeration

and classification (capec). https://capec.mitre.org/, 2017. [accessed

22-April-2017].

[66] Vikram Thakur. The sykipot attacks.

https://www.symantec.com/connect/blogs/sykipot-attacks, 2011.

[accessed 13-April-2018].

[67] w3schools. Browser statistics.

http://www.w3schools.com/browsers/browsers_stats.asp, 2015.

[accessed 11-March-2018].

148

https://www.securityfocus.com/bid/
http://dx.doi.org/10.17487/RFC2828
http://dx.doi.org/10.17487/RFC4949
https://www.tenable.com/plugins
https://www.tenable.com/products/nessus-vulnerability-scanner
http://www.textfixer.com/tutorials/common-english-words.txt
https://capec.mitre.org/
https://www.symantec.com/connect/blogs/sykipot-attacks
http://www.w3schools.com/browsers/browsers_stats.asp

Bibliography

[68] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog.

Theory and Practice of Logic Programming, 12(1-2):67–96, 2012.

doi:10.1017/S1471068411000494.

[69] D. Wijayasekara, M. Manic, and M. McQueen. Vulnerability identification

and classification via text mining bug databases. In IECON 2014-40th

Annual Conference of the IEEE Industrial Electronics Society, pages

3612–3618. IEEE, 2014. doi:10.1109/IECON.2014.7049035.

[70] Zero Day Initiative. Zdi: Published advisories.

https://www.zerodayinitiative.com/rss/published/, 2018. [accessed

13-April-2018].

[71] S. Zhang, X. Ou, and D. Caragea. Predicting cyber risks through national

vulnerability database. Information Security Journal: A Global

Perspective, 24(4-6):194–206, 2015. doi:10.1080/19393555.2015.1111961.

149

http://dx.doi.org/10.1017/S1471068411000494
http://dx.doi.org/10.1109/IECON.2014.7049035
https://www.zerodayinitiative.com/rss/published/
http://dx.doi.org/10.1080/19393555.2015.1111961

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	List of Equations
	Introduction
	Current Situation
	Significance of Vulnerability Analysis
	Importance of the Application Detection
	Passively Gather Information
	Data Quality Assurance

	Thesis Contributions
	Thesis Structure

	Glossary and Technical Standards
	Security Goals
	Confidentiality
	Integrity
	Availability

	Additional Terms
	Software Bug
	Vulnerability
	Exploit

	Common Standards
	CVE
	CPE
	CVSS
	CWE
	OVAL
	CAPEC

	HPI Vulnerability Database
	Introduction
	Model and Format
	Information Retrieval and Normalization
	Performance Improvement
	Analytic Features
	Self-Diagnosis
	Program Stack
	Attack Graph

	Conclusion

	Use Cases of Vulnerability Information
	Introduction
	Attack Graphs
	Detection of Vulnerabilities
	Requirements and Limitations
	Browser Based Vulnerability Detection

	Passive Vulnerability Detection
	CPE Detection based on System Logs
	Proxy Logs and Web Server Logs to identify Applications

	API for Threat Intelligence Platforms
	Conclusion

	Vulnerability Data Quality
	Introduction
	Information Enrichment and Correction
	Integration of external Identifiers
	Solution Creation
	Correction of CPE Identifiers

	Validation of CVSS Attributes
	Naive Bayes Approach
	Neural Network Approach
	Results

	Scoring Scheme
	Conclusion

	Future Work and Conclusion
	Conclusion
	Vulnerability Detection
	Data Quality

	Summary of Contributions
	Future Work

	Bibliography

