
Hasso-Plattner-Institut
Universität Potsdam
Internet-Technologien und -Systeme

High-Speed Security Log Analytics Using
Hybrid Outlier Detection

Dissertation

zur Erlangung des akademischen Grades

“doctor rerum naturalium”
(Dr. rer. nat.)

in der Wissenschaftsdisziplin

IT-Systems Engineering

eingereicht an der

Digital Engineering Fakultät

der Universität Potsdam

von
Andrey Sapegin

Betreuer:
Prof. Dr. Christoph Meinel

Zweitbetreuer:
Prof. Dr. Andreas Polze

Potsdam, 13. März 2019

Prüfungskomission:

Vorsitzender: Prof. Dr. Andreas Polze (Hasso-Plattner-Institut, Universität Potsdam)
1. Gutachter: Prof. Dr. Christoph Meinel (Hasso-Plattner-Institut, Universität Potsdam)
2. Gutachter: Prof. Dr. Andrei Gurtov (Universität Linköping)
3. Gutachter: Prof. Dr. Florina Ciorba (Universität Basel)
5. Mitglied: Prof. Dr. Felix Naumann (Hasso-Plattner-Institut, Universität Potsdam)
6. Mitglied: Prof. Dr. Robert Hirschfeld (Hasso-Plattner-Institut, Universität Potsdam)

Tag der Disputation: 13. März 2019

This work is licensed under a Creative Commons License:

Attribution – NonCommercial – ShareAlike 4.0 International.

This does not apply to quoted content from other authors.

To view a copy of this license visit

https://creativecommons.org/licenses/by-nc-sa/4.0/

Published online at the

Institutional Repository of the University of Potsdam:

https://doi.org/10.25932/publishup-42611

https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-426118

Abstract

The rapid development and integration of Information Technologies over the
last decades influenced all areas of our life, including the business world. Yet
not only the modern enterprises become digitalised, but also security and crim-
inal threats move into the digital sphere. To withstand these threats, modern
companies must be aware of all activities within their computer networks.

The keystone for such continuous security monitoring is a Security Information
and Event Management (SIEM) system that collects and processes all security-
related log messages from the entire enterprise network. However, digital trans-
formations and technologies, such as network virtualisation and widespread usage
of mobile communications, lead to a constantly increasing number of monitored
devices and systems. As a result, the amount of data that has to be processed by
a SIEM system is increasing rapidly. Besides that, in-depth security analysis of
the captured data requires the application of rather sophisticated outlier detection
algorithms that have a high computational complexity. Existing outlier detec-
tion methods often suffer from performance issues and are not directly applicable
for high-speed and high-volume analysis of heterogeneous security-related events,
which becomes a major challenge for modern SIEM systems nowadays.

This thesis provides a number of solutions for the mentioned challenges. First,
it proposes a new SIEM system architecture for high-speed processing of security
events, implementing parallel, in-memory and in-database processing principles.
The proposed architecture also utilises the most efficient log format for high-speed
data normalisation. Next, the thesis offers several novel high-speed outlier detec-
tion methods, including generic Hybrid Outlier Detection that can efficiently be
used for Big Data analysis. Finally, the special User Behaviour Outlier Detection
is proposed for better threat detection and analysis of particular user behaviour
cases.

The proposed architecture and methods were evaluated in terms of both perfor-
mance and accuracy, as well as compared with classical architecture and existing
algorithms. These evaluations were performed on multiple data sets, including
simulated data, well-known public intrusion detection data set, and real data from
the large multinational enterprise. The evaluation results have proved the high
performance and efficacy of the developed methods.

All concepts proposed in this thesis were integrated into the prototype of the
SIEM system, capable of high-speed analysis of Big Security Data, which makes
this integrated SIEM platform highly relevant for modern enterprise security ap-
plications.

Zusammenfassung

In den letzten Jahrzehnten hat die schnelle Weiterentwicklung und Integration
der Informationstechnologien alle Bereich unseres Lebens beeinflusst, nicht zuletzt
auch die Geschäftswelt. Aus der zunehmenden Digitalisierung des modernen Unter-
nehmens ergeben sich jedoch auch neue digitale Sicherheitsrisiken und kriminelle
Bedrohungen. Um sich vor diesen Bedrohungen zu schützen, muss das digitale
Unternehmen alle Aktivitäten innerhalb seines Firmennetzes verfolgen.

Der Schlüssel zur kontinuierlichen Überwachung aller sicherheitsrelevanten In-
formationen ist ein sogenanntes Security Information und Event Management
(SIEM) System, das alle Meldungen innerhalb des Firmennetzwerks zentral sam-
melt und verarbeitet. Jedoch führt die digitale Transformation der Unternehmen
sowie neue Technologien, wie die Netzwerkvirtualisierung und mobile Endgeräte,
zu einer konstant steigenden Anzahl zu überwachender Geräte und Systeme. Dies
wiederum hat ein kontinuierliches Wachstum der Datenmengen zur Folge, die das
SIEM System verarbeiten muss. Innerhalb eines möglichst kurzen Zeitraumes muss
somit eine sehr große Datenmenge (Big Data) analysiert werden, um auf Bedro-
hungen zeitnah reagieren zu können. Eine gründliche Analyse der sicherheitsrele-
vanten Aspekte der aufgezeichneten Daten erfordert den Einsatz fortgeschrittener
Algorithmen der Anomalieerkennung, die eine hohe Rechenkomplexität aufweisen.
Existierende Methoden der Anomalieerkennung haben oftmals Geschwindigkeits-
probleme und sind deswegen nicht anwendbar für die sehr schnelle Analyse sehr
großer Mengen heterogener sicherheitsrelevanter Ereignisse.

Diese Arbeit schlägt eine Reihe möglicher Lösungen für die benannten Her-
ausforderungen vor. Zunächst wird eine neuartige SIEM Architektur vorgeschla-
gen, die es erlaubt Ereignisse mit sehr hoher Geschwindigkeit zu verarbeiten. Das
System basiert auf den Prinzipien der parallelen Programmierung, sowie der In-
Memory und In-Database Datenverarbeitung. Die vorgeschlagene Architektur ver-
wendet außerdem das effizienteste Datenformat zur Vereinheitlichung der Daten
in sehr hoher Geschwindigkeit. Des Weiteren wurden im Rahmen dieser Arbeit
mehrere neuartige Hochgeschwindigkeitsverfahren zur Anomalieerkennung entwi-
ckelt. Eines ist die Hybride Anomalieerkennung (Hybrid Outlier Detection), die
sehr effizient auf Big Data eingesetzt werden kann. Abschließend wird eine spezifi-
sche Anomalieerkennung für Nutzerverhaltens (User Behaviour Outlier Detection)
vorgeschlagen, die eine verbesserte Bedrohungsanalyse von spezifischen Verhaltens-
mustern der Benutzer erlaubt.

Die entwickelte Systemarchitektur und die Algorithmen wurden sowohl mit
Hinblick auf Geschwindigkeit, als auch Genauigkeit evaluiert und mit traditio-
nellen Architekturen und existierenden Algorithmen verglichen. Die Evaluation

wurde auf mehreren Datensätzen durchgeführt, unter anderem simulierten Daten,
gut erforschten öffentlichen Datensätzen und echten Daten großer internationaler
Konzerne. Die Resultate der Evaluation belegen die Geschwindigkeit und Effizienz
der entwickelten Methoden.

Alle Konzepte dieser Arbeit wurden in den Prototyp des SIEM Systems inte-
griert, das in der Lage ist Big Security Data mit sehr hoher Geschwindigkeit zu
analysieren. Dies zeigt das diese integrierte SIEM Plattform eine hohe praktische
Relevanz für moderne Sicherheitsanwendungen besitzt.

2

To my mother, Elena, to my father, Andrey, to my wife, Nataliia, and to my son,
Alexey.

3

4

Acknowledgements

The PhD thesis finishes the exciting and important period of my life, which I went
through with enormous support from many great people, whom I would like to
acknowledge here.

First, I am very thankful to my family, especially for my parents and my wife,
for all the inspiration, support and motivation they provided to me during this long
time. I have to express gratitude to my mother, who had awoken my interest to
computers and Information Technology, when I was at school, and who encouraged
and supported me to apply for a PhD position.

Next, I remember my great-grandfather, Prof. Leonid Diukov, Candidate of
Sciences, who was the first member of my family with a post-graduate degree
and hence inspired me for a PhD study. I also always remember my grandfather,
Grigoriy Binder, Docent, Candidate of Sciences, a mathematician, who passed
away more than a decade ago. He has shown me the beauty of math and is kept
in my thoughts inspiring me to learn and solve the exciting scientific problems.

Special thanks I want to give to my best friend, Mark Kibanov, PhD Student
and Research Assistant at the University of Kassel, for influencing me to move to
Germany and constantly helping me with advice for my life and research. Special
thanks should be also given to my other friend and ex-chef, Christian Beuten-
mueller, a Senior Researcher at ExB Research & Development GmbH, who helped
me with an understanding of the most sophisticated Data Mining and Machine
Learning methods.

I am very grateful to my supervisor Prof. Dr. Christoph Meinel for giving me
an opportunity to start this fascinating PhD journey and providing me his support
during all the time of my study. I would also like to deeply thank the head of
my research group, Dr. Feng Cheng, for the mentorship, advice and support he
provided for my research work.

Finally, I need to say thanks to my team members, first of all, David Jaeger,
who co-developed the SIEM system prototype together with me and took over the
import and normalisation of data in this system, which allowed me to concentrate
on the high-speed data analysis. I am very thankful to my colleagues, Martin
Ussath and Marian Gawron and many others for their help, advice and inspirations.

5

6

Contents

List of Figures 9

List of Tables 12

1 Introduction 15
1.1 History of SIEM and IDS . 15
1.2 Major challenges for SIEM Technology 16
1.3 Contributions of this thesis . 18

1.3.1 Architecture for high-speed security analytics 19
1.3.1.1 Integration of in-memory and in-database process-

ing technologies into SIEM system 19
1.3.1.2 Choosing lightweight log format for security analytics 20

1.3.2 High-speed outlier detection for multivariate security data . 20
1.3.2.1 Clustering data subsets in parallel using spherical

k-means and one-class Support Vector Machine . . 21
1.3.2.2 Applying automatic threshold detection for generic

outlier detection 21
1.3.2.3 Detecting and ranking clusters of suspicious events 21

1.3.3 Analysis of user behaviour 21
1.3.3.1 Special case: intrusion without access violation . . 22

1.4 Thesis organisation . 22

2 SIEM and IDS: state of the art 25
2.1 Classification of IDS . 25
2.2 Data gathering and analysis techniques for Intrusion Detection . . . 26

2.2.1 Data collection . 27
2.2.2 Misuse detection . 28
2.2.3 Anomaly detection . 29
2.2.4 Hybrid detection systems . 30
2.2.5 Machine learning and data mining methods for intrusion de-

tection . 30

7

2.2.5.1 Supervised classification methods for misuse detec-
tion . 32

2.2.5.2 Unsupervised outlier detection methods for anomaly
detection . 33

2.3 Data normalisation and event correlation 38
2.3.1 Data normalisation formats 38

2.3.1.1 Common Event Format 39
2.3.1.2 Common Event Expression 39
2.3.1.3 Intrusion Detection Message Exchange Format . . 39
2.3.1.4 Incident Object Description Exchange Format . . . 40
2.3.1.5 Object Log Format 40

2.3.2 Event correlation . 40
2.4 Chapter summary . 43

3 SIEM architecture for high-speed event analysis 45
3.1 Classical approach . 45
3.2 Proposed approach . 46

3.2.1 Optimal log format for security events normalisation 47
3.2.2 In-memory database backend 51
3.2.3 Hybrid detection approach 51

3.3 Final architecture of the proposed system 52
3.4 Performance evaluation . 54

3.4.1 Generation of the test data set in the virtual testbed 57
3.4.2 Selecting features from Windows Events 59
3.4.3 Environment for performance measurements 61
3.4.4 Initial anomaly detection results 65
3.4.5 Performance of classical architecture 67
3.4.6 Performance of proposed architecture 68

3.5 Chapter summary . 73

4 High-speed outlier detection for heterogeneous security events 75
4.1 Anomaly Detection in SAP HANA Predictive Analytics Library . . 75
4.2 Outlier detection for textual data based on spherical k-means 78

4.2.1 Modelling of multivariate non-normal data 78
4.2.1.1 Incorporating continuous numerical features into

the vector space model 80
4.2.2 Clustering security events in parallel 82
4.2.3 Outlier threshold based on the distribution of distances . . . 83
4.2.4 Detecting optimal number of clusters for k-means 84
4.2.5 Proposed Universal Outlier Detection approach 85
4.2.6 Threats detected in the testbed data set 87

8

4.3 High-speed detection of clusters with anomalous events 89
4.3.1 Hybrid Outlier Detection: one-class SVM ensemble trained

on clusters from spherical k-means 89
4.3.1.1 Ranking of clusters with anomalies 92

4.3.2 Windows Events data set from enterprise network and KDD
Cup 1999 data . 93

4.3.3 Threats detected in the Windows Events data set 95
4.3.4 Performance estimation . 97
4.3.5 Effectiveness on Windows Events data set and

comparison with other outlier detection algorithms 98
4.3.5.1 Comparison with Universal Outlier Detection . . . 100
4.3.5.2 Comparison with kNN-based outlier detection . . . 101

4.3.6 Effectiveness of Hybrid Outlier Detection on public KDD
Cup 1999 data set . 103

4.4 Chapter summary . 105

5 Outlier detection for malicious user behaviour without access vi-
olation 107
5.1 Scenario of malicious user behaviour without access violation 108
5.2 Simulation of user behaviour for evaluation purposes 110

5.2.1 Filtering user behaviour data 114
5.3 Outlier detection for user behaviour data 115

5.3.1 Two-level probability check 117
5.3.2 Optimal threshold detection 120
5.3.3 Ranking of anomalous user behaviour cases 120

5.4 Threats detected in the simulated data 121
5.5 Application of the proposed outlier detection on the real data . . . 123
5.6 Chapter summary . 126

6 Conclusion 129
6.1 Implementation of anomaly detection in

modern SIEM systems . 130
6.2 Overview of issues detected in the data using different analysis

methods . 133
6.3 Thesis contributions . 137
6.4 Future work . 141

9

10

List of Figures

2.1 Tree of properties in Object Log Format 41

3.1 Basic SIEM system architecture . 46

3.2 Proposed SIEM system architecture 47

3.3 Real-time Event Analytics and Monitoring System (REAMS). . . . 53

3.4 REAMS Event Viewer . 55

3.5 REAMS Dashboard with brute-force attack detected and shown in
the attack graph . 56

3.6 Active Directory testbed for generation of the test data set 57

3.7 Distribution of logon-related events in the data set 58

3.8 Anomaly Detection scenario in SAP Predictive Analysis 62

3.9 Results from Anomaly Detection algorithm 65

3.10 Results from the k-means algorithm with 8 clusters 66

3.11 Performance of k-means algorithm on the test data set using PostgreSQL
as a backend, x-axis log-scaled . 68

3.12 CPU usage and I/O Wait during performance measurements using
PostgreSQL as a backend, x-axis log-scaled 69

3.13 Performance of machine learning algorithms on the test data set,
x-axis log-scaled . 70

3.14 Performance of K-Means algorithm from SAP HANA PAL with
different number of clusters, x-axis log-scaled 71

3.15 CPU usage and I/O Wait during performance measurements, x-axis
log-scaled . 72

4.1 Outliers identified by Anomaly Detection from SAP HANA PAL
with different percentage of anomalies in the data as the input pa-
rameter. 77

4.2 Illustrative example of vector space model representation. 79

4.3 Outlier detection thresholds based on the distribution of distances
from concept vectors . 84

4.4 Hybrid Outlier Detection scheme 90

11

4.5 Overview of Windows Events data from the large enterprise, y-axis
log-scaled . 94

4.6 Average cluster similarity for different numbers of clusters (k). . . . 96
4.7 ROC curve for the top-ranked million anomalies returned from Hy-

brid Anomaly Detection algorithm 99
4.8 ROC curve for the top-ranked 64,750 anomalies returned from Uni-

versal Outlier Detection algorithm executed on 8 million events. . . 101
4.9 AUC values for the different number of training samples, discreti-

sation methods and clusters per sample (k) 104

5.1 Example of normal user behaviour in the network 109
5.2 Example of malicious user behaviour in the network 109
5.3 Scenario schema used in simulation software 111
5.4 Distribution of user logon events in the training data set 122
5.5 Distribution of user logon events in the testing data set 123
5.6 Detected user behaviour anomalies 124

6.1 Integration of Apache Spark into REAMS for scalable Big Data
processing . 142

6.2 Combination of stream and batch processing in REAMS 143

12

List of Tables

3.1 Existing common log formats . 48
3.2 Overview of the log files from the “Scan of the Month” Honeynet

Challenge (“Scan 34”) . 48
3.3 Parts of log messages without a corresponding field in the log format 50
3.4 Attacks in the generated data set 58
3.5 Size of the data sets for performance tests 59
3.6 List of selected features as stored in Object Log Format 60
3.7 System configuration for performance tests 61

4.1 Results from Universal Outlier Detection on the testbed data set. . 88
4.2 Issues detected with kNN-based outlier detection (Goldstein et al.) . 102

5.1 Hosts used for simulation of user behaviour 111
5.2 Simulation scenario containing malicious user behaviour 112
5.3 Inner simulation scenario containing malicious user behaviour . . . 112
5.4 Scenario for simulation of normal user behaviour 113
5.5 Inner scenario for simulation of normal user behaviour 113
5.6 Statistics for both types of detected issues in the data set 125

6.1 Types of issues detected by REAMS in the real data 133

13

14

Chapter 1

Introduction

The security of Information Technology (IT) systems becomes more and more
important within last decades, following rapid evolution of these systems. Many
institutions are constantly reporting alarming rates of cyber-security events, where
enterprise losses from data breaches reach 4 million US dollars on average [1]. The
rate of data compromises also remains quite high, depending on the industry, e.g.
23% for retail in 2015 [2]. Besides corporate sector, nowadays cybercrime also
affects almost 600 million people worldwide [3].

The development of new software services, the growth of computer networks,
constantly increasing number of devices, such as computers, laptops and smart-
phones, Internet of Things trend, extensive usage of wireless communications -
all these factors lead to the continuous creation of new attack vectors and blur
the enterprise security perimeter. Altogether, these networks, devices and sys-
tems generate a huge amount of heterogeneous security-related information, in-
cluding log messages, NetFlow data and traffic captures. To properly control it
and achieve acceptable security level, any modern enterprise should gather and
analyse such data. Of course, these data cannot be processed manually, and are
therefore collected and processed by Intrusion Detection Systems (IDS) as well as
Security Information and Event Management (SIEM) systems. The efficiency of
these systems became a vital part of the enterprise security infrastructure. The
next section reviews the development history of these systems and describes their
major technology challenges.

1.1 History of SIEM and IDS

Historically, attacks on the electronic systems have been emerged together with the
appearance of these systems themselves. Examples of such attacks in the history
are disruption of public telegraph system demo in 1903 [4], development of various

15

1.2. MAJOR CHALLENGES FOR SIEM TECHNOLOGY

phreaking boxes for telephone systems in the 1960s [5] and installation of a tapping
device on the underwater Soviet cable by US submarine in the 1970s [6].

With the development of computer systems, the security issues were initially
recognised by manually looking on the printed log messages [7]. However, the
number of such messages grew up constantly and in 1980, Anderson offered an
automated threat monitoring and surveillance system [8]. This system was the
first preimage of Intrusion Detection Systems (IDS), which were propagated in the
early 1990s. E.g. Heady et al. were first to define an intrusion as “any set of
actions that attempt to compromise the integrity, confidentiality or availability of
information resources” in 1990 [9].

However, the scope of IDSs was rather focused on recognition of attacks on
hosts and networks, while there was also a need in software for management of
log messages and security alerts. Therefore, Log Management systems emerged to
process various log messages centrally, whereas Security Information Management
(SIM) systems were offered to collect and manage security-related data. Next,
Security Event Manager (SEM) tools were developed to work together with IDS,
SIM and Log Management systems and to produce high-level alerts for security
operators. Finally, Security Information and Event Management Systems (SIEM)
appeared in the late 1990s and unified SIM and SEM approaches for gathering,
storing and analysing security-related data and events. A definition of SIEM was
made in 2005 by Gartner: “SIEM technology provides real-time event management
and historical analysis of security data from a wide set of heterogeneous sources”
[10].

From that point in time, SIEM systems have been further evolved in a variety
of systems with different scope and methods used. However, these systems still
face a bunch of challenges, which are reviewed in the section below.

1.2 Major challenges for SIEM Technology

Nowadays, the major challenges for SIEM are mainly related to the constantly
growing data volumes that need to be processed by such systems. For example,
Gartner defines small SIEM deployment as “one with 300 or fewer event sources,
a sustained EPS rate of 1,500 events per second or less, and a back store sized at
800 GB or less” [11]. Middle deployments have a rate of at least 15,000 events
per second, while large ones need to be able to process at least 25,000 events per
second and store about 50 Tb of data. In practice, the data volumes of the big
multinational enterprises could even exceed this rate by several times. Taking into
account heterogeneous nature of these data (variety), and the need to correlate
between different events or log messages to detect complex attacks in real time
(velocity), it is possible to classify security log messages coming into SIEM system

16

CHAPTER 1. INTRODUCTION

as Big Data [12] or Big Security Data, whereas its processing becomes a non-trivial
task. The major challenges of Big Security Data processing are described in details
below:

• Heterogeneous log messages. This issue is faced by every SIEM pro-
cessing data from more than one source, such as Microsoft Active Directory
Domain Controllers, GNU/Linux systems, or application logs in a custom
format. Each system or application has its own log format with custom fields.
This problem is also mentioned by other researchers, e.g. in the survey of
Zuech et al. [13]. To analyse such data, a SIEM system should support all
these formats. One approach to deal with it implies the creation of rules,
filters and algorithms for each monitored application or system. A classic ex-
ample of this approach is Snort IDS, which has more than 3000 rules written
by the community for different use cases [14]. A contrary approach sup-
poses conversion of all custom log messages into one common format, such
as IODEF [15] or CEF [16]. However, such a conversion is also not an easy
task, since the resulting format should, on the one hand, contain all informa-
tion from original sources, and stay relatively compact to allow high-speed
event processing on another.

• The high amount of events to be processed. Already mentioned above,
this is the key issue for any SIEM system. With billions of log messages gen-
erated daily [17, 18], a SIEM system should still be able to collect, process
and analyse all these messages in almost real time to satisfy market require-
ments [19, 11]. However, slow dashboard actions and operators waiting for a
system response are reported by many sources. A slowness of SIEM systems
is described as a common issue by Seekintoo [20], Balcerek et al. mention
unacceptable usability of Prelude IDS due to slow reactions [21], Zadrozny et
al. report about Splunk search times up to 18 minutes on 100 million events
data set [22], McAfee describes slow performance of Enterprise Security Man-
ager and its Graphical Interface in the Knowledge Base [23], SanDisk claims
query times of 30 minutes for an ArcSight SIEM system [24].

• The computational complexity of attack detection and event cor-
relation algorithms. Even though a SIEM system could at least manage
to collect and store large volumes of data, analysis of such Big Security Data
becomes a much harder task. A lot of research was done in last decades
on machine learning methods for security analysis like unsupervised outlier
detection, analysis of user behaviour, etc. [25, 26, 27]. However, most SIEM
systems on the market still do not offer such functionality, sticking to the
signature-based approach. Of course, signature-based detection fits perfectly
for known attacks and issues but fails to detect novel or previously unknown

17

1.3. CONTRIBUTIONS OF THIS THESIS

attacks [28, 29, 30]. The main reason for not implementing outlier detection
in SIEM systems could be poor scalability and relatively bad performance
of machine learning methods on Big Data [31, 32, 28].

• Lack of automatic threshold selection. Normally, a SIEM system issues
alerts based on a simple threshold, if a parameter exceeds a value, which is
pre-defined by the operator. For example, such option, called anomaly de-
tection, is provided by NetIQ Sentinel software [33, 7.5 Configuring Anomaly
Detection]. An alert could be issued on exceeding threshold, change in av-
erage values, deviation from baseline, etc. However, to the best of author’s
knowledge, no SIEM system tries to automatically identify or at least offer
an appropriate threshold value to the system operator, even though there
are some known techniques available [34]. The same issue applies to existing
outlier detection algorithms, which often require providing a parameter for
data analysis. In case the outlier detection method is based on clustering,
it could be k for k-means [35] and k-NN [36] algorithms, or MinPts and ε
parameters for DBSCAN [37] algorithm.

1.3 Contributions of this thesis

The global contribution of this thesis is a development of high-speed SIEM system,
capable of processing security events in nearly real-time. The prototype of such
SIEM system, called Real-time Event Analytics and Monitoring System (hereafter
REAMS), is being jointly developed at Hasso Plattner Institute [38]. The thesis
contributions are therefore related to the part of this SIEM system, responsible
for high-speed processing and analysis of security events after they were gathered
and normalised, while gathering and normalisation of security data are held out
of scope for this thesis (except the evaluation of log formats for normalisation as
a part of architecture for high-speed event processing).

Of course, development of such a system is not possible without addressing
major challenges for SIEM technologies described in the previous section. Thus,
contributions of this thesis focus on providing solutions for the problems mentioned
above:

• Development of an architecture for high-speed analysis of security events.

• Integration of in-memory and in-database processing technologies into SIEM
system.

• Evaluation of log formats for security analytics to select the best option for
high-speed normalisation of security events.

18

CHAPTER 1. INTRODUCTION

• Development and evaluation of novel hybrid high-speed outlier detection
with ranked output for SIEM system.

• Development and evaluation of novel outlier detection method for analysis
of user behaviour in a SIEM system.

• Integration of automatic threshold detection methods, as well as methods
for automatic selection of outlier detection parameters.

Altogether, the contributions allow to build a SIEM system capable of appli-
cation of computationally heavy outlier detection methods on Big Security Data,
which makes this work novel. All these contributions are described with more
details in the subsections below.

1.3.1 Architecture for high-speed security analytics

To satisfy challenging performance requirements for SIEM systems (e.g. ones from
Gartner, mentioned in the previous section), an architecture for accurate and high-
speed analysis of such events was developed and evaluated. To achieve high per-
formance of the system, in-memory, in-database and parallel processing methods
were used together with lightweight log format for event normalisation. All these
solutions were tested to measure their performance and prove effectiveness.

1.3.1.1 Integration of in-memory and in-database processing technolo-
gies into SIEM system

The classical way of data analysis utilises a database as information storage, while
processing of stored data is usually done after the information is queried and
retrieved from this database. The performance of the database is limited by the
type of the storage used, which is usually either Hard Disk Drive or Solid State
Drive.

To increase the performance of data processing in our system, it was decided
to utilise in-memory and in-database processing techniques. Therefore, an in-
memory SAP HANA SQL database [39] was used as the data storage for normalised
security events. Different from the classical approach, SAP HANA stores all the
data in the main memory of the database server and offers various tools for in-
database data processing. Examples of such tools are SAP HANA Predictive
Analysis Library [40] (hereafter PAL) with many machine learning algorithms
available or integration with R programming language [41]. Both are accessible
through database SQLSCRIPT procedures [42]. Thus, the data could be processed
without retrieving it from the database, while high-speed data access is ensured
with the usage of in-memory approach.

19

1.3. CONTRIBUTIONS OF THIS THESIS

To prove the benefits of this solution, it was compared with a classical ap-
proach based on popular SQL database, namely PostgreSQL [43]. The perfor-
mance of both – classical and in-memory – approaches was measured on the same
hardware. The results clearly demonstrated that in-memory and in-database pro-
cessing brings a significant increase of performance, which is critical for the SIEM
system.

1.3.1.2 Choosing lightweight log format for security analytics

The performance of the database backend also depends on the data model being
used. This data model should be on the one hand lightweight enough, to ensure fast
data processing. On the other hand, the data model should include enough fields,
so that any security-related log format could be converted/normalised into it. This
thesis compares our own log format, developed at Hasso Plattner Institute (which
is called Object Log Format [44, 45]) with other existing formats, and selects the
best one for high-speed processing of security events.

1.3.2 High-speed outlier detection for multivariate secu-
rity data

Besides the high-speed collection and normalisation of security-related events, a
SIEM system also needs to analyse collected and normalised data in the reasonable
time. For REAMS, being developed at Hasso Plattner Institute, there are 3 types
of data analysis techniques combined: signatures, complex queries and outlier
detection. This thesis focuses on the outlier detection part and provides several
novel algorithms for it.

Whereas queries and signatures are being widely used in SIEM and IDS sys-
tems on the market1, the computational complexity of outlier detection makes its
integration a challenging task for developers of SIEM system.

In this thesis, the novel unsupervised outlier detection algorithm is described.
Different to many existing approaches, the offered algorithm does not require ex-
traction of data-specific features or metrics from the data set; rather it could be
applied on the raw normalised log messages. This is achieved through conversion
of log message fields into vector space model [47] and through applying spherical
k-means [48] on these data, stored as a sparse matrix.

The thesis provides both performance and effectiveness estimation of the al-
gorithm, as well as compares it with other outlier detection approaches, such as
k-NN Anomaly Detection developed by Goldstein et al. [49].

1A classic example of signature-based system could be Snort IDS [14], while ManageEngine
EventAnalyzer [46] shows an example of query-based SIEM system.

20

CHAPTER 1. INTRODUCTION

Besides the algorithm itself, this thesis describes several other useful techniques,
which were developed during its realisation.

1.3.2.1 Clustering data subsets in parallel using spherical k-means and
one-class Support Vector Machine

Since the original k-means problem is NP-hard [50], it makes it almost impossible
to apply the k-means algorithm on bigger data volumes. This thesis describes
a possible workaround for this problem. Instead of clustering all data at once,
the data are first split into subsets, which are clustered with spherical k-means.
All data subsets could be clustered in parallel, which makes an algorithm highly
scalable. Next, to determine outliers among all clusters in all subsets, one-class
Support Vector Machine (SVM) [51] is applied on concept vectors [52] of identified
clusters.

1.3.2.2 Applying automatic threshold detection for generic outlier de-
tection

To reduce the number of parameters that should be supplied to the algorithm, the
automatic threshold detection technique is applied twice. First, it is being used to
determine the number of clusters (k) for k-means. Second, it is applied to select
a threshold between outliers and non-outliers based on the distribution of outlier
scores.

1.3.2.3 Detecting and ranking clusters of suspicious events

Another advantage of the offered outlier detection method is that its output con-
sists of ranked clusters with anomalies. Compared to the classical approach, where
an operator of a SIEM system gets a list with thousands of anomalies, the novel al-
gorithm allows an operator to concentrate on several top-ranked clusters of anoma-
lies, instead of digging through the endless list of standalone log messages.

1.3.3 Analysis of user behaviour

Another type of the outlier detection offered in this thesis is more specific but
focuses on the very important problem: analysis of user behaviour. The developed
algorithm models user logon events following a Poisson distribution. In case user
logons do not follow a Poisson distribution but are rather overdispersed (mean
number of logon events is less than a variance), the offered algorithm recognises it
and applies the negative binomial model instead. This model was proved on the
simulated Windows Events [53] data and extended to work with real data, where

21

1.4. THESIS ORGANISATION

interactive user logon/logoff data are often absent (i.e., only events with network
logon type are presented).

1.3.3.1 Special case: intrusion without access violation

The developed outlier detection for user behaviour allows analysing special cases,
like an intrusion without access violation. These cases are always especially com-
plicated to catch for classical – signature-based and query-based – approaches.
Indeed, if a user suddenly starts to connect to all available resources, it looks
suspicious, although there is no access violation. To capture such cases, a two-
level (group and user) outlier detection approach was developed and tested. First,
a group of users with suspicious activity on some resource is identified. Next,
an algorithm identifies a user responsible for such a suspicious activity within a
group. Thus, this approach allows reducing an amount of false positive alerts sig-
nificantly. For example, it correctly classifies situations, when a user accesses a
resource, which he never used before, but which was used by other members of the
corresponding user group.

All in all, the contributions presented in this thesis offer a set of solutions for the
most challenging problems of modern SIEM systems. Implemented in the REAMS
developed at Hasso Plattner Institute, these solutions build up a prototype of high-
speed SIEM system, capable of processing and correlation of security events nearly
in real-time.

1.4 Thesis organisation

The thesis is organised as follows. Chapter 2 describes modern IDS and SIEM
systems, their classification and methods used. The two types of attack detection
– misuse detection and anomaly detection – are reviewed in details. It also tells
about data formats being used and describes data processing and event correlation
techniques. Next, Chapter 3 provides information about how to create an architec-
ture for high-speed processing of security events. The proposed architecture and its
performance are tested and verified on simulated data. Compared to classical ar-
chitecture, the benefits of the new approach are highlighted. Taken the proposed
architecture as a basis for data processing, Chapter 4 describes classical outlier
detection algorithm on the example of Anomaly Detection from SAP HANA Pre-
dictive Analytics Library. Next, a novel type of outlier detection is offered, namely
hybrid unsupervised outlier detection, which combines spherical k-means cluster-
ing with one-class SVM. As a result, the output of the algorithm contains ranked
clusters of outliers/anomalies, which simplifies the interpretation of results for

22

CHAPTER 1. INTRODUCTION

an operator of SIEM system. This novel outlier detection algorithm also utilises
automatic threshold detection and could be applied on any textual fields after con-
version to vector space model, without any feature extraction needed. Estimation
of performance and effectiveness, as well as comparison with other algorithms are
also provided. The offered outlier detection is also proved on the real data set from
a big multinational company and all detected issues are reviewed and classified.
Although the offered outlier detection works well for analysis of generic security
events, an analysis of user behaviour requires a more specific approach, which is
presented in Chapter 5. Here the special case of intrusion without access violation
is described and analysed. The challenging task to detect such intrusions is solved
with novel outlier detection based on Poisson and negative binomial models of
user behaviour. Results are received and evaluated on both simulated data set
and real data. Finally, Chapter 6 concludes the thesis. It discusses the implemen-
tation questions for outlier detection in SIEM systems and provides the overview
of issues discovered in the data with different threat detection methods. Finally,
the contributions of the thesis are reviewed from the point of implementation of
high-speed anomaly detection methods in modern SIEM system.

23

1.4. THESIS ORGANISATION

24

Chapter 2

SIEM and IDS: state of the art

Modern SIEM systems vary a lot in their functions and applications, as well as
IDSs. The latter usually provide monitoring at a single point, such as a host or
network connection, whereas SIEM systems aim to process as much information
as possible from the entire enterprise network. However, within their scope, both
IDS and SIEM utilise very similar data gathering and processing techniques.

The focus of these systems could be diverse as well. While some IDS play a
role of sophisticated firewall and detect attacks on network entry points, others
could monitor the network internally to catch insiders, or even collect information
from the entire network to analyse it centrally [54]. Thus, the SIEM technology
often uses the same methods as IDS and should, therefore, be reviewed together
with IDS.

Thus, this chapter describes the classification of both SIEM and IDS and re-
views key technologies and methods used widely in such systems.

2.1 Classification of IDS

Nowadays there are many different SIEM systems and also many types of IDS
that could be classified in different ways. SIEM systems usually have a broader
scope than IDS, and collect and correlate information from multiple sources, in-
cluding an IDS. However, there is still a lot in common between IDS and SIEM,
especially in terms of data processing techniques. Therefore, the classification and
methods described in this Chapter are relevant for both SIEM and IDS. The brief
classification, describing the most widely adopted systems, is provided below.

• According to the location within IT infrastructure, IDS could be host-based
and network-based. Host-based systems monitor single or multiple hosts,
while network-based systems control the security of the whole network.

25

2.2. DATA GATHERING AND ANALYSIS TECHNIQUES FOR INTRUSION
DETECTION

• Next, both network-based and host-based systems are classified by the type of
data used for analysis. These types include network traffic, log messages from
various monitored points, system call traces and even registry of Microsoft
Windows Operating System.

Since network-based systems usually process either network traffic or log
messages, they are classified into log-based and traffic-based.

Different to this, two most common types of host-based systems are log-
based and ‘system call trace’ - based. Besides that, some host-based IDSs for
Microsoft Windows analyse registry access traces.

Here different classes of IDSs serve different purposes and complement each
other, so the comparison between classes is not always sensible. In case
of host-based systems, “log file-based IDS are almost always less accurate
than a comparable system call based algorithm due to several issues with
the log entry data format” [55]. However, in case of network-based systems,
such comparison would not be possible. This is because traffic-based IDSs
are rather focused on the traffic at the monitored point itself, while log-
based systems, which are usually SIEM and not IDS, try to gather as much
information as possible from different log sources, which often include alerts
from traffic-based IDSs as well.

• By detection method, IDS and SIEM are usually distinguished between mis-
use detection and anomaly detection systems. Modern systems tend to utilise
both of these approaches and are called hybrid.

• Finally, it is also possible to classify IDS and SIEM by its focus. Some
systems analyse user behaviour, while others are focused mainly on the host
and network processes [56]. Additionally, there are database IDS, which
monitor database transactions for malicious activities [57], or wireless IDS,
which controls the radio range [58].

From the provided classification, it is possible to conclude that SIEM and IDS
vary a lot in their functions and purposes. However, most of them use the same or
similar methods for data gathering, storing and analysis. These common methods
are reviewed in the sections below.

2.2 Data gathering and analysis techniques for

Intrusion Detection

The purpose of the Intrusion Detection System is to detect malicious activity
in the monitored network or at the monitored point. Obviously, the quality of

26

CHAPTER 2. SIEM AND IDS: STATE OF THE ART

the detection depends on the quality of the collected data. Thus, data collection
becomes an important step in the intrusion detection process.

2.2.1 Data collection

There are different ways used for the data collection by both IDS and SIEM. In
case of the host-based IDS, the data for the detection can be collected directly from
the system, where an IDS is installed. However, in case of network-based IDS, the
data collection methods vary depending on the location of the IDS.

The basic scenario considers that an IDS is used to monitor the single available
connection to the Internet. Placed next to the firewall, an IDS system monitors
all Internet traffic and does not need any extra sensors in this case as well.

However, monitoring the modern network perimeter is not as easy as monitor-
ing single connection point. Due to the growing number of mobile and wireless
devices, the network perimeter in modern enterprises becomes more and more
blurred or even disappears [59]. Therefore, an IDS should monitor not only all
regular Internet connection points and VPN servers, but also Wi-Fi connection
points and end-user devices like laptops and smartphones [60, 61].

Such networks can be monitored using distributed network-based IDS that have
not only IDS nodes or sensors, but also agent applications installed on every mon-
itored point, such as user computers. Another type of an agent are third-party
firewalls or even other IDSs that support external monitoring or can send the
monitoring data to the distributed IDS.

The distributed IDS also analyses the data at all its nodes, which makes the cor-
relation of data between nodes almost impossible. Different to this, the centralised
network-based IDS first collects all the data from nodes and agents centrally. The
Central Analysis Server is the place where events are analysed, correlated, visu-
alised and reported [54].

Generally, the data collection for all types of agents, including IDS nodes, sen-
sors, application agents and third-party devices could be implemented in two ways.
Either the data are pushed from all agents to the central server, or the server every
time initiates the data transfer by querying each agent with the predefined time
interval to pull the needed information. As IDS and SIEM aim the high-speed
processing of security data, the data are usually pushed to the central server im-
mediately. However, in this case, the Central Analysis Server becomes a bottleneck
in the large network and should be able to process and store all the messages it re-
ceives. As mentioned in Section 1.2, the large deployments need to process 25,000
events per second and store at least 50 Tb of data, which becomes a non-trivial
task and requires an efficient data processing architecture to be developed.

Thus, sometimes there is almost no difference between centralised network-
based IDS and SIEM system that also collects and correlates the security-related

27

2.2. DATA GATHERING AND ANALYSIS TECHNIQUES FOR INTRUSION
DETECTION

data from agents, such as network devices, user computers, other SIEM systems
and IDSs.

The analysis and detection techniques used in both SIEM and IDS are also
similar and will be described in the sections below.

2.2.2 Misuse detection

Misuse detection is currently the most common detection approach used in IDS
and SIEM. Under this approach, analysed data (network packets, log messages,
system calls, registry access traces) are checked against a specific set of rules or
patterns that match a malicious activity.

In the simplest case, such rules represent filter masks applied on the specific
data fields or characteristics, such as packet header, payload, TAG part of syslog
[62] message, etc. These signatures are used in many popular IDS such as Snort
[14] and Bro [63]. The difference of this simple signature detection approach from
firewall rules is that firewall rules are applied on the packet header only, while
systems like Snort apply their rules on any part of the data, including payload
[64].

Of course, signature detection is not limited to such simple filtering. Using
special languages such as STATL [65], LAMBDA [66] or SHEDEL [67], it is pos-
sible to create much more complicated attack models and specifications [68]. The
more advanced approach, namely Event Description Language, allows describing
signatures for multi-step attacks using signature-nets (similar to Petri-nets) [69].
The recent work of Jaeger et al. shows how to detect multi-step attacks with this
language [70].

Besides signature detection, misuse detection also utilises machine learning
and data mining algorithms, which are applied to learn malicious patterns from
existing data [71, 72, 73]. This type of detection requires samples with malicious
patterns. These patterns are processed by data mining algorithm to create a model
of malicious behaviour. At the next step, incoming data are checked against the
learned model. Thus, a similarity between known malicious patterns (contained
in the sample) and new incoming data is measured [74]. Finally, if the similarity
between new data and pattern is high enough, an alert will be issued.

A classic example of machine learning based misuse detection was provided
by Mukkamala et al. [75] on the KDD Cup 1999 data set [76] (hereafter KDD
Cup data). First, training and test data sets were created by selecting samples
of normal and attack data from original labelled data. Based on these samples,
they have used Support Vector Machine and Artificial Neural Network to train
models of both normal and attack activities. Next, authors applied models on the
different testing data sets, reaching 99% or even higher accuracy.

28

CHAPTER 2. SIEM AND IDS: STATE OF THE ART

Since machine learning and data mining methods could be applied not only for
misuse detection but for anomaly detection as well, the relevant techniques will be
reviewed in more details in Section 2.2.5.

Although misuse detection and, in particular, signature-based detection is con-
sidered an efficient approach and adopted widely, it still has some limitations. The
main limitation of misuse detection is the inability to detect previously unknown
attacks if no signature or model covers them [25, 26, 29]. This implies that misuse
detection systems should be actively maintained and updated on a regular basis
in order to function properly. Besides this, the variety of monitored applications
and protocols generate many different traces that should be covered by signatures
or modelled.

One approach to deal with these heterogeneous data is to create a separate
signature for each protocol or application. For example, in Snort [14] it results in
more than 3,400 rules maintained by the community. A high number of rules neg-
atively affects the performance of the whole system, since it becomes complicated
to find a corresponding rule for each piece of data being analysed.

An alternative to this approach is to apply signatures or create models based
on the normalised data. For example, for log-based IDS or SIEM, it means that
each log line should be converted into one common format. Then, each type of
attack signature should be written only once for this common format. Although it
allows reducing the number of signatures, a normalisation of heterogeneous data
is not always straightforward. For example, Jaeger et al. utilise a hierarchical
knowledge base for normalisation of log lines [77]. Based on regular expressions,
it achieves high performance in both normalisation and searching corresponding
signature or rule.

All in all, misuse detection and especially signature detection remains to be
a fast and reliable method for IDS and SIEM. The main limitation of misuse
detection approach — inability to detect novel attacks — could be compensated
by the use of anomaly detection, which is described below.

2.2.3 Anomaly detection

Different to misuse detection techniques that check data against predefined rules or
signatures to capture malicious patterns, anomaly detection tries to build a model
or pattern of “normal” system state or behaviour and then alerts on the deviations
from this “normal” model. Since an anomaly detection approach allows capturing
all deviations from “normal” state, it can detect any kind of novel attacks, which
is not possible with misuse detection. However, this approach also results in two
problems. First, it is a very tough task to build a model of “normal” system state.
Second, anomaly detection considers any kind of deviation from “normal” model
as an issue, while these deviations could be benign [78]. For example, false alerts

29

2.2. DATA GATHERING AND ANALYSIS TECHNIQUES FOR INTRUSION
DETECTION

could be caused by connections of a new user, changing roles of users and user
groups, rare cases of authorized remote access, software updates and so on.

Although there are some heuristic, signal-processing or rule-based anomaly de-
tection models [79], nowadays most commonly used anomaly detection approaches
are based on statistical methods as well as machine learning or data mining tech-
niques [72]. These methods are reviewed in details in Section 2.2.5.

2.2.4 Hybrid detection systems

To avoid disadvantages of misuse and anomaly detection, modern IDS and SIEM
normally try to incorporate both of these approaches. Such systems, called hybrid,
apply anomaly detection methods on data together with misuse detection. The
results from both approaches are either aggregated or hierarchically integrated
with each other [80]. Thus, misuse detection will report all detected known attacks,
avoiding any false positive alerts. Meanwhile, novel attacks could be recognised
by anomaly detection approach, among some false positive alerts.

2.2.5 Machine learning and data mining methods for in-
trusion detection

Machine learning and data mining methods rely on statistical techniques and try
to extract knowledge or learn models from data itself [81, 82]. Such knowledge,
models and other characteristics extracted from data are then used to solve differ-
ent kinds of problems and tasks. Two major classes of machine learning and data
mining algorithms — based on the type of the problem to solve — are:

• Classification algorithms, which classify new events according to the
model learned from data (to solve so-called classification problem).

• Regression algorithms, which predict a value of a variable based on one
or more parameters (to solve so-called regression problem).

Of course, apart from this two generic problem classes, machine learning al-
gorithms are applied to a wide variety of tasks from very different areas. Based
on these tasks, machine learning and data mining methods could be grouped into
classes as follows:

• Clustering methods that cluster “similar” events together. Such algorithms
also solve classification problem, however, clustering algorithm needs to clas-
sify all available data (and not only new events) into clusters.

30

CHAPTER 2. SIEM AND IDS: STATE OF THE ART

• Dimensionality reduction, which is used to reduce the number of dimen-
sions in the data, to simplify forthcoming data processing.

• Outlier/novelty detection methods that are often based on clustering
algorithms. These methods are used to find unusual, rare or novel data
points, i.e. to identify suspicious activity.

• Natural language processing techniques which are used to extract se-
mantic from the text, classify documents by topic, recognise spam, perform
automatic translation etc.

• ...

Here the same algorithms can be applied to the different problems. For exam-
ple, a clustering algorithm could be used to classify data points into several classes.
When the clusters are found, they could be used for outlier detection purposes.
E.g. points located far from all clusters are considered outliers. Next, the same
clustering algorithm could be applied to cluster texts into topics for the purposes
of natural language processing.

Besides the classification based on the type of the problem, machine learning
approaches are also classified depending on how the algorithm learns from the
data, i.e. on the properties of data [83]:

• Supervised learning where a data set for training contains labels for each
example. A machine learning algorithm tries to build a model, which will
correctly predict a right label for new-coming samples.

• Unsupervised learning, when there is no training data set, i.e. data do
not contain labels. Therefore, a machine learning algorithm tries to group
data points together and separate them into different categories.

• Semi-supervised learning, when only a few samples from the training
data set have labels. During training, machine learning algorithm will first
try to cluster samples together and assign missing labels based on similarity
with labelled samples.

• Reinforcement learning, when, instead of getting a label, a machine learn-
ing algorithm gets feedback for each answer it produces for specific input
(reward in case of right answer). However, this feedback does not contain
information, how to improve an answer.

In addition to these classes, the training data set can be also prepared in differ-
ent ways. For example, to apply some machine learning techniques on unlabelled

31

2.2. DATA GATHERING AND ANALYSIS TECHNIQUES FOR INTRUSION
DETECTION

data set for outlier detection, such a data set could be divided into two parts,
where the first one will be considered or labelled as “normal”. The model trained
on this part of the data will not be able to find outliers in it. However, such model
can be applied on the second part of the data to highlight all novel data points
or outliers, relative to the first part of the data. This approach is often utilised
for outlier detection in the area of SIEM and IDS. As soon as it does not require
any information, labels or examples of outlier records during the training phase, it
will be considered unsupervised in this thesis, whereas different researchers could
classify it differently: as supervised [28] or also as unsupervised [84].

In the area of SIEM and IDS, generally, two types of machine learning al-
gorithms are used: (1) supervised classification for misuse detection and (2) un-
supervised outlier/novelty detection for anomaly detection. The review of these
machine learning techniques for SIEM and IDS is provided in subsections below.

2.2.5.1 Supervised classification methods for misuse detection

Nowadays, recent machine learning and data mining methods for misuse detection
can be applied on security data with very high accuracy.

An example of such advanced misuse detection with machine learning methods
is provided by Wang et al. [85]. By applying fuzzy clustering and Artificial Neural
Networks on the KDD Cup data set, authors achieved 99.91% accuracy with 98%
F-score. The total training time on 1.8 GHz dual-core CPU (1.8 GB RAM was
used) was approximately 35 minutes for 18,285 randomly selected records.

Another research by Dhakar et al. [86] has shown 99.96% accuracy and 0.03%
False Positive Rate (on the KDD Cup data) by combining Tree Augmented Naive
Bayes and Reduced Error Pruning.

Li et al. [87] apply advanced data set deduplication (based on k-means clus-
tering), training data set construction (using Ant Colony Optimisation), as well
as feature selection and reduction methods (Gradually Feature Removal) before
training an SVM on KDD Cup data. This allows authors to reach 98.62% accuracy
for SVM classifier. The prediction time for the whole KDD Cup data set was less
than 9 seconds on single core CPU (1.8 GB RAM was used), depending on the
number of features.

Farid et al. [88] proposed a combination of Naive Bayes and Decision Tree,
which allowed them to achieve 99% accuracy also on KDD Cup data.

Kevric et al. [89] also achieved an accuracy of 99.53% by training NBTree and
Random Tree classifiers on 20% of KDDTrain+ data from NSL-KDD [76] data
set. The classifiers were combined with sum rule and tested on the same data with
tenfold cross-validation.

Peddabachigari et al. [90] reached 100% accuracy by combining decision trees
and SVM algorithms first hierarchically, and then in the ensemble.

32

CHAPTER 2. SIEM AND IDS: STATE OF THE ART

Besides the direct application of machine learning methods for misuse detec-
tion, some researchers utilise these methods to create/extract signatures for misuse
detection. For example, W. Li applies Genetic Algorithm to evolve rules for IDS
from the pre-classified data set with network traffic [91].

Rastegari et al. [92] also utilise Genetic Algorithm for the creation of rule sets.
Authors compare their approach not only with existing genetic algorithm based
methods for evolving rule sets but also compare the accuracy of the classifier based
on the evolved rules with non-genetic algorithms, such as k-nearest neighbours and
decision trees. The results show similar accuracy (up to 98.4%) for all methods on
the constructed data sets.

Thus, supervised machine learning and data mining methods are comparable
to signatures at least in terms of the accuracy of misuse detection. The estimation
of analysis’ speed for these methods is, however, not so straightforward since most
of the algorithms were evaluated on the relatively small KDD Cup data set (less
than 5 million records) or its subsets. The study of Chauhan et al. [93] shows that
some of machine learning methods can be applied on the data at relatively high
speed, e.g. 0.04 seconds for Instance Based Learning or 0.6 seconds for Random
Tree on 25,192 records from NSL-KDD data set. Taking into account the nearly
linear computational complexity of Instance Based Learning or Random Trees, one
could assume that processing of much bigger data set should be possible as well.
Moreover, since the supervised machine learning techniques could also be used
to evolve signatures or rules, the processing speed does not play such a big role.
Once evolved, the rule sets or signatures can be directly added into an Intrusion
Detection System to extend an original set of signatures.

Of course, supervised approaches, even having the high accuracy, are by def-
inition not able to detect previously unknown attacks. Such detection is usually
performed with unsupervised machine learning and data mining methods, reviewed
in the next subsection.

2.2.5.2 Unsupervised outlier detection methods for anomaly detection

Within last decades, anomaly detection methods based on machine learning and
data mining were significantly improved. These methods often allow authors to
reach a high precision (90-100%) and relatively low false positive ratio.

Papalexakis et al. used Sparse Matrix Regression (SMR) Co-clustering and
Information Theoretic Co-clustering for anomaly detection on KDD Cup data
set [94]. The authors did not use any special feature selection techniques and,
therefore, do not rely on any special characteristics of the particular data set. The
data labels were also used only for evaluation of the results. These properties
make their approach fully unsupervised compared to other related work (reviewed
in the paper), where researchers either use custom features (specific for the par-

33

2.2. DATA GATHERING AND ANALYSIS TECHNIQUES FOR INTRUSION
DETECTION

ticular data set) or train the algorithm on the “normal” subset of the data. The
computational complexity of SMR Co-clustering did not allow its application on
the selected subset of the data, which contained less than 500,000 events. The
authors applied it on the smaller data subset and extracted the parameters for
Information Theoretic Co-clustering, which was “not able to isolate a consistent
set of parameters”. After the Information Theoretic Co-clustering was applied on
the subset of almost 500,000 events, it returned 2 clusters with anomalies and 3
clusters with normal data (checked with the data labels), whereas the prevalence
of the main class in each cluster was between 94.7% and 99.79%. This result was
comparable with the winner of KDD Cup 1999 competition, who used a supervised
approach.

Salem and Stolfo [27] applied one-class SVM for anomaly detection in user
search behaviour data. The authors analysed user file searches (from the specially
collected Windows data set with 20 million records) and created custom features,
such as “number of file touches” or “percentage of file system navigation user
actions”. Using 80% of normal user data for training of one-class SVM, they
achieved 100% masquerade detection rate with only 1.1% of false positive alerts,
whereas the execution time was from 18 to 69 minutes on a regular desktop with
2.66GHz Intel Xeon processor (24 GB RAM was used).

Viswanath et al. [95] propose to use Primary Component Analysis (PCA) for
anomaly detection of user behaviour. The goal of the authors is to find anomalous
users in the data sets from Facebook, Yelp and Twitter. The authors create custom
features for social network users, such as a number of likes per day. The features
are forwarded to PCA and then the threshold on the L2 norm in the residual
feature subspace is set to detect anomalies. This approach achieves a detection
rate of 66% but with less than 0.3% false positive rate.

In [96], Ye et al. perform analysis of various data sets containing audit events
from the BSM security extension for the Solaris OS (up to 100,000 events of
284 types, each data set is related to single host machine) with Markov Chain
Model. The authors evaluate the effectiveness with Receiver Operating Char-
acteristic (ROC) curve, showing nearly 100% True Positive Rate and small False
Positive Rate. The execution time for their approach is not estimated, but authors
mention that all referenced anomaly detection techniques are computationally in-
tensive.

Ni et al. [97] describe the challenges for Big Data Intrusion Detection. To elab-
orate on these challenges, they develop an approach to improve the performance
of the anomaly detection on large-scale data. Authors offer an “Unsupervised
Feature Selection based Density Peak clustering”, which is based on the Maximal
Information Coefficient. It allows processing different types of data (both numeric
and textual). Authors utilise this algorithm for feature selection on KDD Cup

34

CHAPTER 2. SIEM AND IDS: STATE OF THE ART

data set. Next, they evaluate classification accuracy of various algorithms, such
as Support Vector Machine or Random Forest applied to selected features. All
in all, the offered feature selection method allowed to reduce the time needed for
the analysis by 14.44% on average, whereas the loss of accuracy was less than 1%.
However, due to the memory constraints, the authors were only able to apply their
approach on 10% of the original KDD Cup data set.

Another anomaly detection method was developed by Goldstein et al. [49].
This method relies on “data views” that aggregate various statistics for users and
workstations from Windows Events. Next, kNN-based outlier detection is used to
analyse these statistics. Thanks to the usage of “data views”, the outlier detection
is performed on the relatively small volume of aggregated data instead of the full
data set. Authors evaluated the results by manually checking the outliers and
considered them useful. However, this approach is limited to the Windows Events
only and cannot be utilised (without changing the “data views”) on any other data.
Besides that, the offered implementation of the kNN outlier detection implements
linear search and has rather high computational complexity (O(n2)), which can
be an issue for the data sets with a high number of users and workstations.

Chawla and Gionis [98] propose discovering outliers during clustering, and im-
plement an extension of k-means algorithm accordingly. This algorithm is proved
to converge to the locally optimal solution and has linearly growing computation
time for a number of processed records if other parameters (dimension, number of
clusters and number of outliers to return) are fixed. Authors evaluated it on 10%
of KDD Cup data, but only analysed numerical attributes. Next, they compared
their results with kNN-based outlier detection, which was not able to run on the
selected data set. The proposed algorithm achieved a high purity of outlier clus-
ters and better precision in comparison with kNN outlier detection, however, the
precision does not exceed 60%.

Song et al. [99] offered to combine clustering with one-class SVM for outlier
detection. The algorithm heuristically prepares training data by filtering out pos-
sible attacks. This step is performed by analysing feature space and filtering out
all data points from sparse regions. After the training data was prepared, the
algorithm heuristically divides it into clusters, each of which is forwarded as an
input into separate one-class SVM. The testing data are also filtered in the same
way and then classified into existing clusters, to select the corresponding SVM
model for outlier detection. This idea allowed authors to implement the outlier
detection process in parallel. The algorithm was evaluated on self-collected traffic
data from Kyoto University’s honeypots with approximately 60,000 records. The
results show 75-85% precision for normal data, 100% precision for attack data and
15-25% false positive rate. The authors claim to keep the time complexity com-
parable with their earlier work, which was evaluated on KDD Cup data set [100].

35

2.2. DATA GATHERING AND ANALYSIS TECHNIQUES FOR INTRUSION
DETECTION

In that paper, an offered method took approximately 500 seconds for training and
50 seconds for testing on 600,000 records, while the execution time grows linearly.

Some researchers also managed to apply classical neural networks for unsuper-
vised outlier/novelty detection, even though the neural network approach is often
not considered as the first choice for outlier detection [101]. This is because neural
networks could have problems with detection of completely novel classes due to
open decision boundaries [102]. Compared to one-class SVM, neural network does
not produce such a clear outlier score like decision values from SVM, which are
basically the distance to the hyperplane around “normal” class. Therefore, differ-
ent heuristic techniques are applied to create a metric for outlier detection, such
as “threshold on the highest output value” from the neural network or average
reconstruction error for Replicator Neural Networks [103].

For example, Hawkins et al. [104] constructed the Replicator Neural Network
(RNN), which is a multi-layer perceptron with three hidden layers. To apply it
for anomaly detection purposes, authors define an Outlier Factor as “average re-
construction error over all features” and rank outliers accordingly to this measure.
The approach was tested on the subset of KDD Cup data set, which contained 4
out of 41 features for 703,066 records, where only 0.48% were attacks. This subset
was further divided into smaller subsets by the type of the application (‘http’,
‘smtp’, etc.). Each subset was used for training of a corresponding RNN. To train
it within a feasible time, authors decided to further reduce the subset by sampling
it so that the maximum size of the training subset never exceeds 6,000 records.
The results are evaluated in different ways, including an analysis of the middle
hidden layer of the RNN. The best results are obtained for analysis of ‘http’ data.
The middle layer analysis shows that one of the value patterns covers 2202 of 2211
intrusions, whereas the precision is 99.6%.

Other neural network-based approaches, such as Self-Organising Maps could
be more suitable for the task of anomaly detection. Lei and Ghorbani [105] used
unsupervised machine learning methods, including Self-Organising Map and “Im-
proved Competitive Learning Network” on the subset of KDD Cup data. First,
these methods were applied to cluster the data set into 6-15 clusters. Next, authors
labelled the clusters as either intrusion or normal using the label information from
KDD Cup data (if more than 50% of the records in the cluster belong to one of 7
intrusion classes from the testing data set, then the cluster is labelled as intrusion).
Finally, the testing data were classified into these clusters. The applied methods
allowed them to achieve 97.8% accuracy with 98.4% precision and 98.97% recall.
Training was performed on 101,000 records and took from 500 to 3,000 seconds,
depending on the selected algorithm and parameters. The testing time was from
454 to 3,308 seconds for 400,000 events in the testing data set. However, the au-
thors do not provide any hardware details of the execution environment and do

36

CHAPTER 2. SIEM AND IDS: STATE OF THE ART

not share the reasons why only the part of KDD Cup data set was selected for the
analysis.

All in all, the reviewed anomaly detection methods can indeed reach high
effectiveness, but only under some circumstances and for particular data set. In [27,
95, 49, 104, 96], the authors use custom data-specific features or feature selection
based on the data set knowledge. In [99], authors prepare the training data set
with ‘normal’ data based on the assumption that dense regions in the feature space
represent the normal state. In [105], the label information is used to distinguish
clusters with the prevalence of normal and attack data. Similarly, the algorithm
used in [94] returns the clusters with a high prevalence of the main class, but
the knowledge about the data set is required to identify which of these clusters
contain attacks. Thus, these approaches are not fully unsupervised but achieve
high effectiveness. On the other hand, the more generic approaches, like one offered
in [106], achieve much lower precision (60%).

Considering the performance of the reviewed approaches for anomaly detection,
authors often mention the high computational complexity of their methods ([96,
94]). In [94, 97, 104], authors were forced to reduce the data set size due to
computational complexity or memory requirements of their algorithms. Salem
and Stolfo [27] do not claim any performance issues, but this is due to their use of
custom features. The similar manual feature construction allows Goldstein et al.
[49] to apply kNN-based anomaly detection even based on linear search (which is
quite inefficient).

High performance was claimed by Lei and Ghorbani [105]. However, for the
training and following classification of testing data, their system needs attack
labels. Taking into account the fact that 80% of records of KDD Cup data set are
labelled as intrusions, it could be relatively easy to create clusters with intrusions
during the training phase. Also Ni et al. consider relying on data label information
as impractical for large-scale network data [97].

The approach offered by Song et al. also has quite high performance, is easy
to parallelise and could indeed be more suitable for Big Data analysis. However,
it relies on the heuristic filtering and clustering of training data. Applied on the
relatively small data sets (up to 600,000 records from KDD Cup data), it shows
good performance. Nevertheless, it is hard to predict, how good the filtering and
clustering will work on the Big Data with hundreds of millions of events from
heterogeneous sources.

Thus, the processing of Big Data is challenging for existing unsupervised outlier
detection methods in terms of both effectiveness and time complexity. Nowadays,
both SIEM and IDS should deal with large data sets that contain data from het-
erogeneous sources. The heterogeneous nature of these data (data collected from
different sources in different formats, and containing different types of informa-

37

2.3. DATA NORMALISATION AND EVENT CORRELATION

tion about monitored systems) makes it hard to extract data-specific features and
apply anomaly detection algorithms developed for particular data set. Finally,
the volume of the data makes application of some unsupervised algorithms almost
impossible.

The key to the processing of large volumes of heterogeneous data from various
sources is the data normalisation, which will be reviewed in the next section.

2.3 Data normalisation and event correlation2

The Security Information and Event Management systems collect and process
security-related information and alerts from the entire enterprise network. This in-
formation comes from different data sources, such as network-level devices (routers
and firewalls), web servers, domain controllers, computers of regular users, IDSs
and even other SIEM. The correlation of these diverse data is hardly possible with-
out conversion or normalisation into the same format. The existing normalisation
formats and correlation techniques are reviewed in this chapter.

2.3.1 Data normalisation formats

Each modern software or application usually writes the information into the log
file or system socket (in Unix-based systems) [107], or Event Log (in Microsoft
Windows Operating System) [108]. In any case, this information could be for-
warded to the Log Management server and in the end collected by SIEM or IDS.
However, the existence of a high number of custom log formats makes the log
analysis more complicated [109]. Many system administrators, developers and op-
erators of security systems are therefore experiencing problems with analysis of
such data [110, 111]. To elaborate on this issue, several log formats were proposed
as a standard: CEF [16], CEE [111], IDMEF [112] and IODEF [15].

Nevertheless, the proposed formats are often avoided by many software devel-
opers in their projects. This applies to the modern IDS as well. For example,
systems like BlackStratus LogStorm [113], Sawmill LogAnalyzer [114] and OSSEC
[115] use a custom self-developed log format. The causes for this situation origi-
nate from the architecture of IDS, SIEM and Log Management systems. All such
systems handle huge amounts of data [116] and need to store and process them
efficiently. The existing generic log format standards do not perfectly fit for this
purpose. These formats contain too many standardised fields that do not compose
together the suitable schema for normalisation of security-related log messages.

In particular, to parse log messages from the most common sources, such as
Windows Events [53] and syslog [62], one needs to add many custom fields to

2Some contents of this section have been published as [44, 45].

38

CHAPTER 2. SIEM AND IDS: STATE OF THE ART

existing formats. At the same time, many defined fields often remain unused [44].

To address this issue, a novel Object Log Format (OLF) [44] was jointly devel-
oped specially for normalisation of log messages within SIEM and Log Management
systems.

The above mentioned log normalisation formats, including the proposed OLF,
are now review in the subsections below.

2.3.1.1 Common Event Format

The Common Event Format (CEF) [16] was originally developed by HP for its for-
mer ArcSight SIEM system [117]. This format is specially designed for SIEM and
other security-related information systems. Based on the syslog, it contains eight
mandatory fields. These fields include meta-information, for example, version, de-
vice vendor, severity and name. The last mandatory field is an extension field,
which contains a collection of other (optional) fields, stored as key-value pairs
[118]. The documentation describes an Extension Dictionary with 165 optional
fields defined. The fields could be mapped to each other. Besides that, custom
extensions of CEF are also supported.

2.3.1.2 Common Event Expression

The Common Event Expression (CEE) format was offered by MITRE [111], but
the work on this format was discontinued since 2014. The CEE is a hierarchical
format containing 58 fields, 7 of which are objects (each object consists of several
fields). In case the number of defined fields is not enough, CEE supports custom
fields and custom syntax for events.

2.3.1.3 Intrusion Detection Message Exchange Format

The Intrusion Detection Message Exchange Format (IDMEF) is defined in the
RFC 4765 [112]. IDMEF is mainly proposed for the exchange of the messages
between security systems but can be also used for reporting and normalisation.
IDMEF is a hierarchical class-based format. The top class called “Message” has
several subclasses, each of which describes a particular message type. The major
message types or subclasses also have subclasses, namely 5 core classes (“Ana-
lyzer”, “Source”, “Target”, “Classification”, and “AdditionalData”). The classes
at the lowest level of the class hierarchy consist of attributes. All in all, the whole
class hierarchy contains 118 elements. The RFC also defines the way to extend
classes and attributes.

39

2.3. DATA NORMALISATION AND EVENT CORRELATION

2.3.1.4 Incident Object Description Exchange Format

The Incident Object Description Exchange Format is defined in the RFC 5070
[15]. Different to IDMEF, this format is proposed for sharing information between
Incident Response Teams, and not Intrusion Detection Systems. The data model
is similar to the IDMEF and has a multi-level class hierarchy. All in all, this
format is backwards compatible with IDMEF but has more pre-defined classes for
the metadata, which describes security incident. IODEF has 19 top-level classes
and 83 attributes.

2.3.1.5 Object Log Format

During the joint development of HPI REAMS, the existing log formats have shown
some disadvantages. Not all log messages being analysed in REAMS could be nor-
malised into existing formats without the use of custom fields or another extension
[45]. The most problematic part was a precise parsing of the textual event descrip-
tions. The existing formats by default usually have an only single field for text
messages, such as “authentication failure”, “Relaying denied. IP name lookup
failed” and “BLEEDING-EDGE WORM Mydoom.ah/i Infection IRC Activity
[Classification: A Network Trojan was detected]”. Such fields are, for example,
“Classification” class of the IDMEF or “message” field in the CEE. Next, before an
extension of IODEF was offered by IETF in RFC 7203 [119], existing formats did
not have enough fields for storing security meta-information, such as vulnerability
classifiers, the correlation between events and other metrics [44].

Besides that, an extension of existing formats by adding all necessary fields
was not an optimal solution, taking into account huge data volumes that need to
be processed by SIEM system nowadays. Adding new fields, classes and attributes
blows up the data model, which could have a negative impact on the overall system
performance.

Therefore, a new lightweight format was offered to optimise the data model for
normalisation of log messages, and thus improve an attack detection. The offered
format, called Object Log Format [44], is presented in Figure 2.1.

The proposed hierarchical format has 3 levels, starting with 19 top-level ele-
ments. All in all, OLF has 107 fields that fully satisfy the requirements of REAMS
for normalisation of log files.

2.3.2 Event correlation

After the log messages are normalised into the same log format, the correlation of
events between log traces from different sources becomes much easier. Indeed, the
data stored in the different fields of different original formats is now saved in the

40

CHAPTER 2. SIEM AND IDS: STATE OF THE ART

Figure 2.1: Tree of properties in Object Log Format

same attributes of the selected common log format.
The correlation of the normalised data can be performed in the different ways.

One example of the simplest correlation method would be queries in SQL or similar
language to get general overview or statistics about the data. Examples of such
basic queries are listed below as follows:

• number of events, users and hosts in the network or subnetwork

41

2.3. DATA NORMALISATION AND EVENT CORRELATION

• user logon/logoff events calculated per time interval

• number of log messages during a predefined time period

• types of security-related events

• statistics on failed events

• ...

The example of a little bit more complicated query in SQLSCRIPT [42] lan-
guage is presented in Listing 2.1.

Listing 2.1: Users, accessing network shares of other users

1 select count (∗) , t o varchar (f i l e p a t h) ,
2 targetuser username , min(time) , max(time)
3 from EVENT
4 where e v e n t t y p e i d = ’ 5140 ’ and
5 to varchar (f i l e p a t h) l ike ’%.% ’ and
6 ta rge tuse r use rname l ike ’%.% ’ and
7 upper (to varchar (f i l e p a t h)) not l ike
8 concat (concat (’%’ ,upper (ta rge tuse r use rname))
9 , ’%’)

10 group by to varchar (f i l e p a t h) ,
11 ta rge tuse r use rname
12 order by targetuser username , count (∗) DESC

Listing 2.1 shows the query for Windows Event logs. This query selects Win-
dows users, accessing network shares of other users. Even though this query works
on single source only — Windows Events — the analytics of such data would
hardly be possible without data normalisation. The original Windows Events
have different XML schemas for different Event IDs and/or different providers
that complicates parsing and correlation of events within this single source [120].

The correlation of events takes into account not only the data from log messages
themselves but also the metadata, which can be extracted during the normalisation
in common log format. The examples of such metadata are event status (failure or
success) and type of the action described in the log message (a logon event, access
to the file share, a start of the process). If extracted from all events and sources,
the metadata simplify filtering of events. The example of such filtering is shown
in Listing 2.2.

Listing 2.2: Sample query capturing all failure events

1 select distinct (e v e n t t y p e i d)
2 from EVENT where t a g s t a t u s = ’ Fa i l u r e ’ ;

42

CHAPTER 2. SIEM AND IDS: STATE OF THE ART

The query in Listing 2.2 selects failure events by checking their status. Since
the metadata (event status) were extracted from all events, now the simple query
is enough to find out all failure events from different sources, including Windows,
generic syslog and various application logs (like a web server, SSH and so on).

Of course, queries are the simplest correlation method that could be applied to
normalised data. The normalisation and conversion of all incoming data into one
common log format also simplify data analysis and correlation with other methods,
such as misuse and anomaly detection that were already reviewed in Sections 2.2.2
and 2.2.3.

2.4 Chapter summary

In this chapter, the current state of SIEM and IDS was described, including data
collection methods, intrusion detection approaches and normalisation formats.

The blurring network perimeter requires IDS and SIEM to be capable of col-
lecting data from various systems and devices from all over the network. This, in
turn, increases the data volumes that such systems should process on a regular
basis. Therefore, the special architecture design is needed to enable high-speed
processing of high data volumes.

Another important point for high-speed processing and correlation of hetero-
geneous log messages from various sources is the normalisation into common log
format. This common format defines the data model, which in the end has an im-
pact on the overall performance of the system. The existing normalisation formats
differ in the structure and size, so the choice of the optimal data model becomes
a challenge as well.

Provided examples of machine learning algorithms for unsupervised outlier de-
tection reflect the existing challenges mentioned in Section 1.2, in particular, high
amount of heterogeneous log messages and computational complexity of machine
learning and data mining methods. These challenges prevent modern SIEM and
IDS systems from wide adoption of machine learning and data mining methods
and application of anomaly detection for Big Security Data.

To solve all these challenges, a jointly developed prototype of the SIEM system
is proposed in this thesis (Real-time Event Analytics and Monitoring System).
According to the classification described in Section 2.1, the offered system could be
classified as centralised network-based log-based hybrid SIEM. Within this system,
the thesis focuses on the high-speed processing of log messages as well as their high-
speed analysis. For the analytical part, the thesis focuses on anomaly detection

43

2.4. CHAPTER SUMMARY

techniques based on unsupervised machine learning and data mining algorithms3.
Next chapters describe the contributions of this thesis in details, starting with

developed SIEM architecture for high-speed analysis of log messages.

3Hereafter the terms anomaly detection and (unsupervised) outlier/novelty detection will be
used interchangeably. Although there are other anomaly detection techniques that do not use
machine learning and data mining methods (please see Section 2.2.3 for details), nowadays the
anomaly detection in SIEM and IDS is normally presented with unsupervised outlier detection
algorithms only.

44

Chapter 3

SIEM architecture for high-speed
event analysis4

High-speed processing of security events requires a special architecture to deal
with large volumes of data. Before the development of such architecture, one
needs to define what is “high-speed” related to SIEM systems. Since the goal of
the SIEM is the “real-time collection and processing of security events”, in this
thesis a SIEM system is called “high-speed” if it is able to process events with
all analytical methods (including data mining) faster than they come into the
system. According to Gartner [11], the large SIEM deployment should be capable
of processing at least 25,000 events per second. For historical data analysis, it
implies the ability to process more than 2 billion events per day. However, data
sets with such a huge size are still a challenging task for current data mining
and machine learning methods [124]. Nevertheless, a novel system architecture
proposed in this chapter is capable of handling even bigger data sets with data
mining methods.

3.1 Classical approach

To build an architecture for high-speed event analysis, the classical SIEM sys-
tem architecture should be reviewed at first. Such classical basic architecture is
presented in Figure 3.1.

The SIEM includes the gatherer component, which collects information from
the monitored network. This component receives log messages with from Log
Management servers, its own installed agents, sensors and third-party devices and
services, such as inventory systems or IDS. Next, the received data are normalised
into common log format and stored in the relational database management system

4Some contents of this chapter have been published as [44, 45, 121, 122, 123].

45

3.2. PROPOSED APPROACH

Figure 3.1: Basic SIEM system architecture

(RDBMS). Finally, the data can be queried from the database to be analysed and
visualised in the User Interface.

This classical design has some implications on the performance. E.g. Zuech
et al. mention that the “traditional RDBMSs are a performance bottleneck for
SIEM systems” [13]. Indeed, in case of RDBMS, the data are stored on the disk
of the database instance and need to be taken from the database for the analysis,
i.e. read into the memory of the Analytical Engine for the analysis or returned to
the User Interface as a query result.

The other components, such as Gatherer, Knowledge Base and Analytical En-
gine, should also be capable of performing high-speed processing. The improve-
ments, proposed for the classical architecture, are reviewed in the section below.

3.2 Proposed approach

To improve the performance of the classical SIEM architecture, nearly every com-
ponent was reviewed and redesigned. The updated architecture is presented in
Figure 3.2.

The architectural changes shown in Figure 3.2 are listed below:

• First of all, the Gatherer and Normalisation (Knowledge base) components
were improved and can now reach the speed of 145,000 events per second
[125].

• Next, the common log formats were tested to select optimal data model for
the normalised events.

• Then, the database backend was replaced with in-memory SAP HANA [39]
database.

46

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

Figure 3.2: Proposed SIEM system architecture

• Finally, the Analytical Engine was redesigned and all analytic modules were
moved to the database platform. Thanks to the in-memory database back-
end, all data mining and machine learning-based analytics, as well as query-
based analytics, can be executed either directly in the memory of the database
backend, or in the memory of Rserve server [126]. Thus, all the data are
stored and analysed in-memory, which significantly improves the processing
speed.

As mentioned earlier, the high-performance event gathering and normalisation
are out of the scope of this thesis. These topics were reviewed by Jaeger et al. in
[125]. All other improvements are reviewed in details in the subsections below.

3.2.1 Optimal log format for security events normalisation

To find out the best data model for normalised security events, the common log
formats reviewed in Section 2.3.1 should be compared with each other. To perform
such a comparison, existing log formats are evaluated using the following criteria:

• Scalability. The log format for normalisation of security messages should be
scalable, i.e. there should be an ability to add new custom fields for those
log messages, which cannot be fully parsed without it.

• Lightweight. For the purposes of high-speed normalisation, the log format
should have a relatively small number of fields.

• Multi-level schema. The multi-level schema allows categorisation of different
log message fields into classes, which could simplify event correlation and
analysis.

47

3.2. PROPOSED APPROACH

Table 3.1: Existing common log formats

Format name Organisation Size estimation Format structure

CEE (Common Event
Expression)

MITRE 58 fields, 7 objects
two levels,

hierarchical,
object-based

IDMEF (Intrusion
Detection Message
Exchange Format)

IETF
118 elements, 5 core
classes, 53 attributes

multi-level,
class-based

IODEF (Incident
Object Description
Exchange Format)

IETF
53 elements, 19

top-level classes, 83
attributes

multi-level,
class-based

CEF (ArcSight
Common Event

Format)

Micro
Focus

8 mandatory fields, 1
extension field with 165

optional fields

one-level,
key-value pairs

OLF (Object Log
Format)

HPI 107 fields
3 levels, 19

top-level elements

The overview of the existing log formats is provided in Table 3.1. Taking into
account the first criteria (scalability), all formats support adding custom fields.
Reviewing the second criteria (lightweight), the CEE format has fewer fields in
comparison to other formats. However, it is unclear whether just 58 fields are al-
ready enough to parse real log messages. Therefore, during the initial development
of REAMS architecture, it was decided to test log formats on the real data set
from “Scan of the Month” Honeynet Challenge: “Scan 34 - Analyze real honeynet
logs for attacks and activity” [127], which is presented in Table 3.2.

Table 3.2: Overview of the log files from the “Scan of the Month” Honeynet
Challenge (“Scan 34”)

Server Service Date
Total number of

records

n/a HTTP Server Jan 30 - Mar 16 3925

bridge iptables firewall Feb 25 - Mar 31 179752

bastion snort IDS Feb 25 - Mar 31 69039

combo syslog Jan 30 - Mar 17 7620

The Honeynet data set contains real attack data and other log messages col-
lected from different honeypots between 30 January and 31 March 2005. The

48

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

Honeynet challenge analyses multiple log files related to different services, which
makes the data set a perfect example of heterogeneous log data a SIEM system
should deal with. Ideally, the SIEM data model should allow normalisation of all
security log messages without adding new custom-defined fields. The Table 3.3,
however, presents the parts of the log messages that do not have corresponding
fields in the log format.

Obviously, the Object Log Format, which was developed specially for REAMS
taking into account multiple log sources, including the Honeynet challenge, can
parse every log message without adding any custom fields. Unfortunately, all
other log formats need extra custom fields to be able to fully normalise the log
messages from the Honeynet challenge. For example, CEE needs 59 extra fields,
which doubles its size [45]. Compared to other formats with added custom fields,
OLF becomes the most lightweight one, at least for the types of log messages that
are regularly processed in REAMS.

Analysing the last criteria (multi-level schema), all formats except CEF, have a
hierarchical schema, which simplifies correlation and analysis of normalised events.

Taking into account all three criteria, it was decided to use OLF for normal-
isation within REAMS. The benefit of the log normalisation into OLF could be
demonstrated with the simple attack detection example on the log messages from
the Honeynet challenge. To perform the attack detection, the challenge winners
used some custom scripts as well as the manual analysis [128, 129]. However, after
the data are normalised into OLF, one could use rather simple queries to identify
some of the attacks. For example, the query provided in Listing 3.1 searches for
Simple Mail Transfer Protocol [130] (SMTP) failures, which are usually caused by
SMTP scans.

Listing 3.1: Simple query for detection of SMTP failures in normalised OLF data

1 select ∗ from event where a p p l i c a t i o n p r o t o c o l = ’ smtp ’ and
t a g s t a t u s = ’ f a i l u r e ’

Using this query, it is possible to identify log lines related to SMTP scans from
multiple sources, including Snort alerts from the logging server and mail server.

49

3.2. PROPOSED APPROACH

Table 3.3: Parts of log messages without a corresponding field in the log format

Log line CEE IDMEF IODEF CEF OLF

81.181.146.13 - -
[15/Mar/2005:05:06:53 -0500]

“GET
//cgi-bin/awstats/awstats.pl?

configdir= —%20id%20—
HTTP/1.1” 404 1050 “-”

”Mozilla/4.0 (compatible; MSIE
6.0; Windows 98)

HTTP/1.0,
GET, 404

Mozilla/4.0,
404

81.181.146.13,
GET, //cgi-
bin/awstats/
awstats.pl,

404,
Mozilla/4.0

- -

Mar 15 13:38:03 combo
sshd(pam unix)[14490]:
authentication failure;

logname= uid=0 euid=0
tty=NODEVssh ruser=

rhost=202.68.93.5.dts.net.nz
user=root

- -

14490,
202.68.93.5
.dts.net.nz,
user=root

14490 -

Mar 1 20:45:12 bastion snort:
[1:2001439:3]

BLEEDING-EDGE WORM
Mydoom.ah/i Infection IRC
Activity [Classification: A

Network Trojan was detected]
[Priority: 1]: TCP
11.11.79.67:2568 ->
129.27.9.248:6667

TCP -
Priority: 1,
11.11.79.67,
129.27.9.248

Priority:
1

-

Mar 24 19:46:50 bridge kernel:
INBOUND ICMP: IN=br0
PHYSIN=eth0 OUT=br0

PHYSOUT=eth1
SRC=63.197.49.61

DST=11.11.79.100 LEN=32
TOS=0x00 PREC=0x00

TTL=111 ID=1053
PROTO=ICMP TYPE=8

CODE=0 ID=512 SEQ=29421

ICMP,
eth0, eth1,

br0
-

SRC =
63.197.49.61,

DST =
11.11.79.100,
eth0, eth1,

br0

br0 -

Feb 1 10:08:32 combo
sendmail[32433]:
j11F8FP0032433:

ruleset=check rcpt, arg1 =
<china9988@21cn.com>,

relay=[61.73.94.162], reject=550
5.7.1 <china9988@21cn.com>...

Relaying denied. IP name
lookup failed [61.73.94.162]

ruleset =
check rcpt,

550,
china9988@
21cn.com

ruleset =
check rcpt,

550,
china9988@
21cn.com

check rcpt,
relay=

[61.73.94.162],
550,

61.73.94.162

32433,
ruleset =
check rcpt

-

50

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

3.2.2 In-memory database backend

After normalisation, log messages in Object Log Format are persisted into the
SAP HANA [39]. The SAP HANA is an in-memory platform that includes SQL
database, where all data are stored in the main memory of the database instance
in compressed form. SAP HANA supports both row- and column-based storage
types. If the data are stored in the column-based table, the compression ratio
could be higher, since the columns often contain identical values.

Besides the database itself, the platform offers multiple options for in-memory
data analysis. First, SAP HANA PAL [40] contains the most popular data mining
functions that can be executed directly from SQLSCRIPT [42]. Alternatively, one
can use SAP Predictive Analysis5 [131] to build and execute the analysis algorithms
graphically based on the capabilities of SAP HANA PAL.

Another option for in-memory data analysis is SAP HANA R Integration [41],
which allows calling R scripts from SQLSCRIPT. To enable it, SAP HANA should
be able to connect to Rserve server [126], where all the data will be sent for the
analysis. Of course, in this case, the analysed data/table should be transferred
to Rserve. However, only the selected data will be copied from the database
memory to the memory of the Rserve, which can be done relatively fast through
the high-speed network connection. Moreover, both Rserve and SAP HANA could
be installed on the same hypervisor, which means that the data should only be
transferred from the memory of one virtual machine into another. Finally, even
though the SAP HANA Integration Guide states that Rserve cannot be installed
on the SAP HANA host [41], such a setup is technically still possible and can be
used to run both SAP HANA and Rserve directly on the same host and without
any hypervisor.

This connection to R provides access to any custom analytics using a variety
of R libraries available. This covers not only machine learning and data mining
libraries but also the libraries that allow parallelising R computations or executing
them in the cluster environment.

All analytical options provided by SAP HANA platform allow operating on
the data directly in the memory of the database instance, which improves the
performance of the SIEM system in whole.

3.2.3 Hybrid detection approach

The REAMS utilises the hybrid detection approach (see Section 2.2.4) to gain the
benefit of both misuse and anomaly detection methods.

The misuse detection, namely the signature-based analytics is the fastest detec-
tion method and can, therefore, be applied “on the fly”, directly after the data are

5Now renamed to SAP Predictive Analytics.

51

3.3. FINAL ARCHITECTURE OF THE PROPOSED SYSTEM

normalised into the same format. Signature-based analytics module in REAMS
operates before the data are persisted into the in-memory database and allows get-
ting the detection results “on the fly” as well. It is also able to detect multi-step
attacks in different sources using the same generic signature [70]. This approach
significantly reduces the number of signatures in the knowledge base and enables
correlation of events coming from different sources.

After the normalised data are saved in the in-memory database, it can be
analysed with all the variety of tools available from SAP HANA platform. The
basic analytics can be done with queries using SQLSCRIPT. Such queries allow
an operator of REAMS to perform custom searches, correlate events manually
and calculate the statistics on the data. If an attack was identified using such a
custom query but was not caught by a signature, an operator can easily create a
new signature based on the query. All available signatures can also be re-applied
on the data in the database at any time.

Both signatures and queries are indeed very important and provide the nec-
essary level of attack detection, as well as an overview of the data. However, to
detect the previously unknown attacks in an automated way, an anomaly detection
should be implemented and applied on the data in addition to the signature- and
query-based analytics. As mentioned in the previous section, the anomaly detec-
tion can be applied on the data directly in the memory of the database (using SAP
HANA PAL and R Integration), which has a positive impact on the performance.

Thus, the data analysis in REAMS is organised in two steps. First, signature-
based analytics is applied in the streaming mode on the all incoming data. Second,
the data are saved in the database, where it becomes a subject of historical an-
alytics (which includes anomaly detection methods). The aim of this historical
analytics is to complement the signature-based detection and to extend the detec-
tion rate of the system overall.

3.3 Final architecture of the proposed system

The resulting structure of REAMS (based on the proposed architecture) is shown
in Figure 3.3.

To gather the data from the monitored network, REAMS utilises several op-
tional modules. First, the data could be collected from the other Log Management
server or SIEM system, such as Syslog-ng [132] or Splunk [133]. Second, another
module allows REAMS to gather the Windows Events from any Windows host,
including the Domain Controller, where the Security Audit events from the whole
Windows domain are usually collected. Finally, the REAMS agent installed on
the end systems could also send the security-related events to the Log Gatherer
component, running on the REAMS server.

52

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

Figure 3.3: Real-time Event Analytics and Monitoring System (REAMS).

53

3.4. PERFORMANCE EVALUATION

Besides its Log Gatherer component, the REAMS server also includes the Log
Normalisation module, which normalises all supported source log messages into the
Object Log Format. After the normalisation, all messages are immediately sent to
both Persistence and Signature Analytics modules. The Persistence module sends
the data to the SAP HANA in-memory platform, while Signature Analytics module
applies all available signatures on the normalised messages. The detected attacks
are immediately shown in the corresponding tab of the REAMS User Interface (on
the Dashboard tab).

SAP HANA platform contains SQL procedures with analytical algorithms that
utilise either SAP HANA PAL or custom Anomaly Detection Modules, imple-
mented in R programming language. The algorithms utilising PAL are executed
directly in the SAP HANA in-memory platform, while custom Anomaly Detection
Modules are executed on the R cluster served by a Rserve server after the analysed
data are transferred to the Rserve.

All analytical modules can be triggered from the REAMS User Interface, in-
cluding the Signature Analytics module. The User Interface, therefore, acts as a
control centre for the operator of REAMS. The screenshots of the REAMS User
Interface are presented in Figures 3.4 and 3.5.

As shown in these Figures, an operator of REAMS can browse the log messages
(on the Log Browser tab), filter them and run analytics on the selected subset of
events. The Dashboard view allows an operator to see the statistics and results
from Signature Analytics module, including an attack graph, which is generated
based on the attacks detected using Signature Analytics module.

The screenshots of REAMS User Interface are provided for the reference only
since the implementation of the User Interface is not a part of this thesis. Rather,
this thesis is focused on the optimal architecture of SIEM system and high-speed
anomaly detection. The proposed architecture should be evaluated to prove that
it outperforms the classical approach. The performance evaluation provided in
the section below answers the question whether the proposed architecture can be
taken as a basis for high-speed anomaly detection on Big Data.

3.4 Performance evaluation

Although the in-memory database is expected to demonstrate higher computa-
tional performance by design, it is not clear whether the in-memory backend will
help SIEM system to significantly outperform the classical architecture. To mea-
sure and compare the performance of anomaly detection algorithms with both
architecture types, the test data set with injected attacks was generated in the
virtual network. This data set was used to evaluate and compare the performance
of existing anomaly detection methods in SAP HANA PAL and R.

54

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

Figure 3.4: REAMS Event Viewer

55

3.4. PERFORMANCE EVALUATION

(a) REAMS Dashboard: main screen

(b) REAMS Dashboard: attack graph tab

Figure 3.5: REAMS Dashboard with brute-force attack detected and shown in the
attack graph

56

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

3.4.1 Generation of the test data set in the virtual testbed

To generate the test data set, a virtual testbed with Microsoft Windows domain
was created. The testbed is shown in Figure 3.6.

Figure 3.6: Active Directory testbed for generation of the test data set

In Figure 3.6, the virtual network contains 3 user machines and 1 Domain
Controller. All 3 users and the administrator of the domain are able to log in
to every virtual machine. To collect security-relevant log messages, the Audit
policy was enabled on the Domain Controller. The REAMS client, installed on
the Domain Controller, was used to forward Windows Events to the REAMS
server.

The virtual testbed was used over two periods (first between 28.11.2013 and
13.12.2013; second between 14.01.2014 and 29.01.2014). During this time, several
simple attacks were performed manually and from another virtual machine within
the same network, but outside the Windows domain. The performed attacks are
listed in Table 3.4.

All in all, 477,172 Windows Events were collected, including the attack data.
This number includes all Windows Events from the Security log of the Domain
Controller. However, some of these events could be filtered out, since only events
related to the user behaviour need to be analysed to detect the performed at-
tacks. Thus, only the events with the following Event IDs need to be selected for
the performance testing purposes: 4768 (“A Kerberos authentication ticket was
requested”), 4769 (“A Kerberos service ticket was requested”), 4771 (“Kerberos
pre-authentication failed”), 4776 (“The domain controller attempted to validate
the credentials for an account”), 4624 (“An account was successfully logged on”)
and 4625 (“An account failed to log on”). The distribution of these events is
presented in Figure 3.7.

After filtering, the total number of logon-related events in the test data set is

57

3.4. PERFORMANCE EVALUATION

Table 3.4: Attacks in the generated data set

Date Attack performed
28.01.2014, 13:11 GMT+1 Unsuccessful password brute-force with

Hydra [134] via RDP [135] on domain con-
troller

29.01.2014, 10:00-10:10 GMT+1 Successful brute-force of LDAP [136] us-
ing Hydra

29.01.2014, 12:30-13:10 GMT+1 Manual password brute-force in the con-
sole of the User PC 2 (Windows 2000)

 1

 10

 100

 1000

 10000

11/23/13

11/30/13

12/07/13

12/14/13

12/21/13

12/28/13

01/04/14

01/11/14

01/18/14

01/25/14

02/01/14

n
u
m

b
e
r

o
f
e

v
e

n
ts

 p
e

r
s
e
c
o

n
d

date

Figure 3.7: Distribution of logon-related events in the data set

188,457, which is a relatively small data set for performance tests. To increase
the number of records for the performance tests, the data set was replicated. The
replicated data sets are described in Table 3.5.

Since every Windows Event contains a timestamp, the replication should not
generate the duplicate events with the same timestamp that can confuse anomaly
detection algorithms. Therefore, during the replication, the timestamp was always
updated.6

6Each event’s timestamp was updated in such a way that the time span of unreplicated data
set (from the previous replication step, originally 65 days between 28.11.2013 and 29.01.2014) in
days was added to it.

58

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

Table 3.5: Size of the data sets for performance tests

Number of events Number of events with selected Event IDs
477,172 188,457
954,344 376,914

1,908,688 753,828
3,817,376 1,507,656
7,634,752 3,015,312
15,269,504 6,030,624
30,539,008 12,061,248
61,078,016 24,122,496
122,156,032 48,244,992

3.4.2 Selecting features from Windows Events

The replicated data set was normalised into Object Log Format and persisted
into the SAP HANA database. However, many fields could be excluded from the
analysis of the user behaviour based on this data set. Taking Windows Event
ID 4624 (“An account was successfully logged on”) as an example, many fields,
such as ‘Provider Name’, ‘Opcode’, ‘Task’, ‘Keywords’, ‘LogonProcessName’, ‘Key
Length’, reflect system information or other event data and could not help to detect
attacks described in Table 3.4.

Therefore, only the most relevant fields were selected as features for the perfor-
mance evaluation. The mapping of these fields from Windows Event schema into
Object Log Format is presented in Table 3.6.

As also shown in Table 3.6, different Windows Events have different schemas,
depending on the Event ID and provider [120]. It makes the normalisation more
complicated, for example, ‘TargetSid’ for EventID 4768 and ‘TargetUserSid’ for
EventID 4771 should be mapped to the same field in the Object Log Format. In
total, 13 features from the Object Log Format data model are selected to perform
data analysis during the performance evaluation.

Initially, the selected textual features were simply mapped to numbers to eval-
uate the computational performance7 of anomaly detection algorithms and system
architectures using the environment described in the section below.

7The processing of textual features for outlier detection will be discussed in details in the
next chapter of the thesis.

59

3.4. PERFORMANCE EVALUATION

Table 3.6: List of selected features as stored in Object Log Format

Windows Event ID
Object Log Format

fields
4768 4769 4771 4776 4624 4625

subjectUser
.userId

Subject
UserSid

Subject
UserSid

subjectUser
.username

Subject
UserName

Subject
UserName

targetUser
.userId

TargetSid Target
UserSid

Target
UserSid

Target
UserSid

targetUser
.username

Target
UserName

Target
UserName

Target
UserName

Target
UserName

Target
UserName

Target
UserName

additional
[win.ad.login.type]

LogonType LogonType

network.srcIpv4 /
network.srcIpv6

IpAddress IpAddress IpAddress IpAddress IpAddress

network.srcHost Workstation Workstation
Name

Workstation
Name

eventTypeId EventID EventID EventID EventID EventID EventID
time Time

Created
Time
Created

Time
Created

Time
Created

Time
Created

Time
Created

producer.host Computer Computer Computer Computer Computer Computer
application
.statusCode

Status Status Status Status Status

additional
[win.ad.sub.status]

SubStatus

additional
[win.ad.failure.reason]

Failure
Reason

60

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

3.4.3 Environment for performance measurements

To test anomaly detection algorithms with both classical and proposed architec-
tures, two setups were prepared and compared to each other:

• Classical architecture setup is based on the PostgreSQL RDBMS [43]. This
classical architecture requires the data to be read from the database for the
analysis. Thus, in this setup, the main analytical module runs on the Rserve
server and queries the data from PostgreSQL.

• Proposed architecture setup utilises SAP HANA in-memory platform. Un-
der this approach, the data are analysed directly in the memory of the
database. In the case when additional analytical modules should be exe-
cuted on Rserve server, no data are queried by those modules from Rserve.
Rather, SQLSCRIPT running on the SAP HANA sends the data to the
Rserve server and initiates the analysis.

Both the analysis of the test data set and all performance measurements using
classical and proposed setups were executed in the virtual environment described
in Table 3.7.

Table 3.7: System configuration for performance tests

System Operating
System

CPU HDD RAM

Hypervisor VMware
ESXi 5.5.0

2x Intel Xeon
E5-2660,
2.2GHz,
32vCPU

1,2TB SAS
6Gbit/s
10k

128 GB
1.600MHz
RDIMM

Database VM
SAP HANA SPS06
/ PostgreSQL 9.4

SLES for SAP
Applications 11.3
(x86 64)

16 vCPU 320 GB 80 GB

Rserve (R 3.0.2)
VM

openSUSE 11.4
(x86 64)

8 vCPU 40 GB 16 GB

The database and Rserve servers were installed into virtual machines on the
VMware ESXi hypervisor [137]. The database VM was initially configured to be
able to run SAP HANA SPS06 database. Since SAP HANA stores all data in
the memory, 80 GB RAM was assigned for the virtual machine. The disk space
was allocated according to the SAP HANA installation guide (3 times bigger than

61

3.4. PERFORMANCE EVALUATION

the amount of RAM). To implement the classical architecture, the PostgreSQL
RDBMS was installed on the same VM and used when the SAP HANA database
instance was shut down. The PostgreSQL settings were changed to utilise as much
RAM as possible. In particular, the following modifications were done in the ‘post-
gresql.conf’ file: shared buffers = 32GB, temp buffers=8GB, work mem=32GB,
max stack depth=4MB.

The Rserve has lower hardware requirements and needs less RAM as well.
During the data analysis, it was found that 16 GB RAM was sufficient for the
Rserve server instance to perform the necessary analysis. The disk space was set
to the default setting of 40 GB for GNU/Linux VM in VMware ESXi since the
Rserve was not using a disk for the computations.

To estimate the performance and compare classical and proposed approaches
with each other, several analysis algorithms directly available in SAP HANA PAL
and R were selected.

SAP HANA PAL offers an Anomaly Detection algorithm, which is based on the
k-means clustering. Since the implementation of this Anomaly Detection algorithm
is proprietary and the same algorithm is not available in R, it was decided to also
compare the performance of underlying k-means algorithms from both SAP HANA
PAL and R (‘kmeans’ function from package “stats”).

To run the Anomaly Detection and K-Means8 algorithms in SAP HANA PAL,
the SAP Predictive Analysis software was used. The example scenario for running
Anomaly Detection on the data is presented in Figure 3.8.

Figure 3.8: Anomaly Detection scenario in SAP Predictive Analysis

To perform the data analysis in SAP Predictive Analysis, the processing blocks
should be dragged-and-dropped onto the document sheet. The first block accesses
the data in the specific table in SAP HANA, the second one performs the Anomaly
Detection, and the last one writes the results to another table in SAP HANA. On
click on the Run button, the SAP Predictive Analysis transforms the scenario into
the SQLSCRIPT commands with the corresponding SAP HANA PAL function
calls and submits them to the SAP HANA platform, where the script is executed.

The Anomaly Detection module was configured with the following parameters:

• percentage of anomalies for Anomaly Detection: 10%

8Here the specific implementation of k-means from SAP HANA PAL is meant.

62

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

• anomaly detection: by the sum of distances from all centres

• normalisation type: based on row values

• distance measure: Euclidean Distance

• number of clusters: 8

• maximum number of iterations: 10

• number of threads: 8

The same options were used for K-Means function (except the percentage of
anomalies and the type of anomaly detection since they are not applicable for the
K-Means).

The k-means function available from R is executed with R script using the
same parameters (except the number of threads, which is not applicable). The R
script is presented in Listing 3.2.

Listing 3.2: Example of SAP HANA procedure using R integration

1 CREATE PROCEDURE KMeansR(IN t ab l e1 INPUTTABLE, OUT r e s u l t
RESULTTABLE)

2 LANGUAGE RLANG AS
3 BEGIN
4 c l <− kmeans (tab le1 , c e n t e r s = 8)
5 r e s u l t <− as . data . frame (cbind (table1 ,CLUSTERNUMBER=

c l $ c l u s t e r))
6 END;
7 CALL KMeansR(INPUTTABLE, RESULTTABLE) ;

The whole R script contains just two lines (4 and 5), where the first one executes
k-means, which returns cluster numbers. The second line of the R code adds
identified cluster numbers to the original table.

To execute the same R functions in the classical architecture, the R script
should contain code to query the data from the database. This updated script is
shown in Listing 3.3

Listing 3.3: Example of R script processing data from PostgreSQL

1 l i b r a r y (RPostgreSQL)
2 drv <− dbDriver (”PostgreSQL”)
3 con <− dbConnect (drv , user=” anomal ies ” , password=” anomal ies

” , host=” 1 9 2 . 1 6 8 . 0 . 1 ” , port=”5432” , dbname=” anomal ies ”)
4

5 tab <−dbReadTable (con , ” norma l i s ed event s ”)

63

3.4. PERFORMANCE EVALUATION

6 f e a t u r e s <− cbind (tab$SUBJECTUSER, tab$TARGETUSER,
tab$FAILUREREASON, tab$LOGONTYPE, tab$IPADDRESS4 ,
tab$IPADDRESS6 , tab$WORKSTATION, tab$EVENTID ,
tab$UNIXTIME , tab$COMPUTER, tab$STATUS , NAOK=TRUE)

7

8 c l <− kmeans (f e a tu r e s , c e n t e r s = 8 , i t e r .max = 10 , n s t a r t =
1)

9

10 r e s u l t <− as . data . frame (cbind (tab ,CLUSTERNUMBER=c l $ c l u s t e r)
)

11

12 i f (dbExistsTable (con , ” c l u s t e r w i t h r ”)){
13 dbRemoveTable (con , ” c l u s t e r w i t h r ”)
14 }
15

16 dbWriteTable (con , ” c l u s t e r w i t h r ” , r e s u l t)
17

18 dbDisconnect (con)

The second R script is larger since it should create the database connection
(lines 1-3), retrieve the data and prepare the features (lines 5-6), and write back
the results (lines 12-16)9.

To monitor the execution time and resources during the performance tests,
various tools were used in the prepared environment, as listed below:

• SAP HANA Studio [138] was used to measure the execution time of scripts
running in SAP HANA.

• SAP Predictive Analysis was used to measure the execution time of the
Anomaly Detection and K-Means scenarios.

• R was used to print out the execution time of k-means clustering for the
classic architecture scenario.

• ‘top’ tool was used on both Database VM and Rserve VM to measure CPU
usage and memory usage.

• ‘sar’ tool (from ‘systat’ package) was used on both Database VM and Rserve
VM to measure I/O Wait and CPU usage.

9Different to this, in the proposed architecture all steps except running the k-means clustering
are performed directly in the database using SQL queries that were not shown in the Listing3.2.

64

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

After the environment for the performance tests was set up, one last step
before running the tests is needed. It is important to check whether the selected
anomaly detection and clustering algorithms are not only able to identify outliers
and cluster the data fast, but also able to produce explainable results. The next
subsection describes the initial results received with the algorithms selected for the
performance testing.

3.4.4 Initial anomaly detection results

The Anomaly Detection from SAP HANA PAL was applied on the data, which
were normalised into OLF. The results are shown in Figure 3.9.

 1

 10

 100

 1000

 10000

12/07/13

12/14/13

12/21/13

12/28/13

01/04/14

01/11/14

01/18/14

01/25/14

02/01/14

n
u
m

b
e
r

o
f
e
v
e
n
ts

 p
e
r

s
e
c
o
n
d

date

Figure 3.9: Results from Anomaly Detection algorithm

The Anomaly Detection algorithm was able to identify both password brute-
force attacks from Table 3.4. These two attacks are represented with spikes in
the right side of the chart. The two other small spikes on the left side are false
positives and contain benign Windows Events. The appearance of false positive
alerts is caused by the preset percentage of anomalies in the data (10%), which
should be guessed for this algorithm.

Next, the K-Means algorithm from SAP HANA PAL was used to cluster the
data.10 The results of the clustering are presented in Figure 3.10.

10K-means algorithm in R produced similar results, which are omitted.

65

3.4. PERFORMANCE EVALUATION

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1
1
/2

3
/1

3

1
1
/3

0
/1

3

1
2
/0

7
/1

3

1
2
/1

4
/1

3

1
2
/2

1
/1

3

1
2
/2

8
/1

3

0
1
/0

4
/1

4

0
1
/1

1
/1

4

0
1
/1

8
/1

4

0
1
/2

5
/1

4

0
2
/0

1
/1

4

c
lu

s
te

r
n

u
m

b
e

r

date

(a)

 1

 10

 100

 1000

 10000

11/23/13

11/30/13

12/07/13

12/14/13

12/21/13

12/28/13

01/04/14

01/11/14

01/18/14

01/25/14

02/01/14

n
u

m
b

e
r

o
f

e
v
e

n
ts

 p
e

r
s
e

c
o

n
d

date

cluster 3

(b)

 1

 10

 100

 1000

 10000

01/28
12:00

01/28
16:00

01/28
20:00

01/29
00:00

01/29
04:00

01/29
08:00

01/29
12:00

01/29
16:00

n
u

m
b

e
r

o
f

e
v
e

n
ts

 p
e

r
s
e

c
o

n
d

date

cluster 4

(c)

Figure 3.10: Results from the k-means algorithm with 8 clusters

66

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

Figure 3.10(a) shows the distribution of Windows Events among 8 clusters.
The size of the bubble represents the number of events (log-scaled) per second.
The biggest bubbles in the chart correspond to the clusters 3 and 4. The cluster
3 is shown in Figure 3.10(b) and contains all brute-force attacks from Table 3.4
(including the manual one, which was not identified by the Anomaly Detection),
as well as other benign events. The cluster 4, shown in Figure 3.10(c), contains
events related to two automated brute-force attacks only.

Thus, both Anomaly Detection and K-Means algorithms from SAP HANA
PAL, and also k-means from R are able to produce explainable results on the
testing data set. With the parameters used, the Anomaly Detection algorithm
correctly identified both automated brute-force attacks, but also produced a rela-
tively small amount of false positive alerts (see Figure 3.9) and did not detect the
manual password brute-force. The K-Means algorithm correctly clustered brute-
force attacks together (similar to k-means from R). The attacks were classified into
2 clusters, even though one of the clusters with attacks contained a lot of benign
events.

The performance of the selected algorithms in both classical and proposed ar-
chitectures was tested in the prepared environment. The results of the performance
evaluation are presented in the subsections below.

3.4.5 Performance of classical architecture

In the classical architecture, the SIEM system queries the data from the database
for the analysis. In our environment, the R script (see Listing 3.3) gets the data
for the k-means clustering from the PostgreSQL database. The performance of
the k-means with PostgreSQL backend is shown in Figure 3.11.

The algorithm needed only 5 seconds to analyse the original unreplicated data
set with 188 thousand of events. With the increase of the data set size, the
execution time grows nearly linear (x-axis is log-scaled). However, the biggest
data set size that could be analysed using classical architecture was 12 million
events that were processed within 8 minutes. On the bigger data sets, the k-
means was constantly failing due to an insufficient amount of memory. Increasing
the memory of Rserve virtual machine from 16 to 32 GB did not solve the issue,
and the performance tests were stopped on the data set with 12 million events.
The possible cause of the failures could be the ‘RPostgreSQL’ library [139], which
is required to query the data from PostgreSQL database.

The results of the server monitoring during the performance tests are presented
in Figure 3.12.

From Figures 3.12(a) and 3.12(b), it is possible to conclude that PostgreSQL
database always had many resources during the data analysis. Only maximum of
10% CPU was used and I/O Wait was also quite low. This shows that the database

67

3.4. PERFORMANCE EVALUATION

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

188k 377k 754k 1.5M 3M 6M 12M

ti
m

e
,

s
e

c
o

n
d

s

number of processed events

KM_R_time

Figure 3.11: Performance of k-means algorithm on the test data set using
PostgreSQL as a backend, x-axis log-scaled

was able to cache nearly all data in the memory and did not reach any resource
limitations. The CPU usage on the Rserve VM was also relatively low and never
exceed 13% (of 16 CPU cores available11), see Figure 3.12(c). Since all data were
processed in the memory of the Rserve VM, the I/O Wait chart is provided just
for the reference. In Figure 3.12(d), the I/O Wait values different from zero are
caused by insufficient amount of RAM and indicate that the swap was being used
during the data analysis.

3.4.6 Performance of proposed architecture

The performance of proposed architecture, where the data are either analysed di-
rectly in the in-memory database or sent to Rserve for the analysis, is demonstrated
in Figure 3.13.

Figure 3.13 shows the execution time for 3 algorithms: Anomaly Detection
in SAP HANA PAL, K-Means in SAP HANA PAL and k-means running on the
Rserve server. Using the same hardware, it was possible to analyse the data sets
with size up to 48 million events, compared with 12 million for classical approach.
The k-means algorithm from Rserve also failed due to memory limitation, but this
time only on the biggest data set. Even though it failed on the data set with
48 million events, it was possible to analyse the data set with 24 million events

11The k-means from “stats” package in R does not support parallel processing

68

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

 0

 20

 40

 60

 80

 100

188k 377k 754k 1.5M 3M 6M 12Mm
a
x
 C

P
U

 l
o
a
d
 o

n
 P

o
s
tg

re
S

Q
L
 s

e
rv

e
r,

 %

number of processed events

KMeans_PostgreSQL_CPU

(a)

 0

 20

 40

 60

 80

 100

188k 377k 754k 1.5M 3M 6M 12Mm
a
x
 I
/O

 w
a
it
 o

n
 P

o
s
tg

re
S

Q
L
 s

e
rv

e
r,

 %

number of processed events

KMeans_PostgreSQL_IOwait

(b)

 0

 20

 40

 60

 80

 100

188k 377k 754k 1.5M 3M 6M 12M

m
a
x
 C

P
U

 l
o
a
d
 o

n
 R

 s
e
rv

e
r,

 %

number of processed events

KMeans_Rserve_CPU

(c)

 0

 20

 40

 60

 80

 100

188k 377k 754k 1.5M 3M 6M 12M

m
a
x
 I
/O

 w
a
it
 o

n
 R

 s
e
rv

e
r,

 %

number of processed events

KMeans_Rserve_IOwait

(d)

Figure 3.12: CPU usage and I/O Wait during performance measurements using
PostgreSQL as a backend, x-axis log-scaled

69

3.4. PERFORMANCE EVALUATION

 0

 50

 100

 150

 200

 250

 300

188k 377k 754k 1.5M 3M 6M 12M 24M 48M

ti
m

e
,

s
e

c
o

n
d

s

number of processed events

PredictiveAnalysis_AnomalyDetection_time
PredictiveAnalysis_KMeans_time

Rserve_KMeans_time

Figure 3.13: Performance of machine learning algorithms on the test data set,
x-axis log-scaled

using the same configuration of the Rserve server, as was used to test the classical
architecture. The only difference was the usage of ‘RPostgreSQL’ library [139] in
classical approach, which seems to be the cause for the increase of the memory
requirements.

The interesting observation is that k-means in R demonstrates similar per-
formance to the K-Means from SAP HANA PAL, despite the fact that the data
should be transferred to the Rserve server and the fact that the k-means from R
used 1 CPU thread only, against 8 threads used by the parallel k-means implemen-
tation from SAP HANA PAL. This fact shows the potential to further improve
the performance of algorithms in SAP HANA PAL.

The execution time of all three algorithms also grows linearly. The 48 million
events were analysed within 5 minutes. On the data set with 12 million events, all
algorithms are approximately 6 times faster than classical approach (91 against
470 seconds). However, on the smaller data sets the difference is not so high,
e.g. classical architecture with PostgreSQL database backend is just 2.8-2.9 times
slower than the proposed one with the in-memory backend.

Of course, the execution time of Anomaly Detection and underlying k-means al-
gorithm grows linearly if only one parameter (e.g. data set size) is being changed12.
In case of the growing data set size, it is often needed to increase the number of
clusters for k-means. To check, how the performance of the data analysis will

12Since the k-means algorithm is NP-hard.

70

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

change with a different number of clusters, K-Means from SAP HANA PAL was
tested on the data set with 24 million events. The results of these tests are shown
in Figure 3.14.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

ti
m

e
,

h
o

u
rs

number of clusters

Figure 3.14: Performance of K-Means algorithm from SAP HANA PAL with dif-
ferent number of clusters, x-axis log-scaled

Here the execution time also grows linearly (x-axis is log-scaled), at least until
512 clusters. The chart shows that the high number of clusters requires much
more execution time, e.g. 8 hours to cluster 24 million events into 1024 clusters.
Still, if the data does not contain too many clusters, the proposed architecture
and in-memory database backend allow processing big amounts of data with a
high speed, e.g. 8 minutes for processing 24 million events with 64 clusters using
only 8 CPU threads.

Even though only 48 million events could be analysed with selected algorithms
due to the memory limit (80 GB RAM), it is worth to mention that the database
stored much more data in its memory. To process 48 million events, 122 mil-
lion replicated events with original log lines were stored at the same time in the
database (see table 3.5). Besides that, there were tables with results and other
auxiliary tables needed for Anomaly Detection. The utilisation of both database
and Rserve virtual machines during the performance tests is presented in Figure
3.15.

The monitoring of server resources shows that only CPU can be a limiting
factor for the algorithm’s performance. However, as shown in Figure 3.15(a),
the maximum of 100% of CPU usage is only reached on the bigger data sets,

71

3.4. PERFORMANCE EVALUATION

 0

 20

 40

 60

 80

 100

188k 377k 754k 1.5M 3M 6M 12M 24M 48Mm
a
x
 C

P
U

 l
o
a
d
 o

n
 H

A
N

A
 s

e
rv

e
r,

 %

number of processed events

PredictiveAnalysis_AnomalyDetection_HANA_max_CPU
PredictiveAnalysis_KMeans_HANA_max_CPU

Rserve_KMeans_HANA_max_CPU

(a)

 0

 20

 40

 60

 80

 100

188k 377k 754k 1.5M 3M 6M 12M 24M 48M

m
a
x
 I
/O

 w
a
it
 o

n
 H

A
N

A
 s

e
rv

e
r,

 %

number of processed events

PredictiveAnalysis_AnomalyDetection_HANA_max_IOwait
PredictiveAnalysis_KMeans_HANA_max_IOwait

Rserve_KMeans_HANA_max_IOwait

(b)

 0

 20

 40

 60

 80

 100

188k 377k 754k 1.5M 3M 6M 12M 24M

m
a
x
 C

P
U

 l
o
a
d
 o

n
 R

 s
e
rv

e
r,

 %

number of processed events

Rserve_KMeans_max_CPU

(c)

 0

 20

 40

 60

 80

 100

188k 377k 754k 1.5M 3M 6M 12M 24M
m

a
x
 I
/O

 w
a
it
 o

n
 R

 s
e
rv

e
r,

 %

number of processed events

Rserve_KMeans_max_IOwait

(d)

 0

 20

 40

 60

 80

 100

8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

m
a
x
 C

P
U

 l
o
a
d
 o

n
 H

A
N

A
 s

e
rv

e
r,

 %

number of clusters

(e)

 0

 20

 40

 60

 80

 100

8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

m
a
x
 I
/O

 w
a
it
 o

n
 H

A
N

A
 s

e
rv

e
r,

 %

number of clusters

(f)

Figure 3.15: CPU usage and I/O Wait during performance measurements, x-axis
log-scaled

starting from 12 million events. Even though the CPU utilisation always reaches
the maximum for bigger data sets (see also Figure 3.15(e)), the execution time
remains reasonable and grows nearly linear. The CPU usage on the Rserve server
is always low (see Figure 3.15(c)), because the implementation of k-means from R
is single-threaded. The I/O Wait is also not so high since all data processing is
performed in the main memory (see Figures 3.15(b), 3.15(d) and 3.15(f)).

72

CHAPTER 3. SIEM ARCHITECTURE FOR HIGH-SPEED EVENT
ANALYSIS

3.5 Chapter summary

This chapter presented the novel architecture of the SIEM system, based on the
in-memory data processing, normalisation into common log format and hybrid
detection approach.

The performance tests have proved the suitability of the proposed architecture
for high-speed analysis of security-related events. The execution time for the
Anomaly Detection and underlying k-means algorithm on the data set containing
48 million events is less than 5 minutes (approximately 175,000 events per second).
If it will continue to grow linearly, such a performance allows processing of up to
15 billion events per day. This performance could be enough to satisfy needs of the
large enterprises, such as EMC [18]. The enterprises that collect up to 1 trillion
security events per day [17], but are able to analyse only up to 3% of it, can still
benefit from the proposed architecture since it may allow them to increase the
percentage of analysed events.

Compared with the classical architecture, the proposed one could achieve up
to 6 times higher processing speed on the same hardware, especially on the larger
data sets. The main limitation of the proposed approach is the relatively large
amount of main memory needed for the data storage and the analysis. However,
taking into account the fact that some additional data were stored in the database
during performance tests (see Section 3.4.6 for details), the memory usage could
be further optimised.

The comparison with the k-means algorithm from R shows that algorithms
from SAP HANA PAL, namely Anomaly Detection and K-Means could potentially
be optimised. For example, k-means implementation in R has nearly the same
performance as K-Means from SAP HANA PAL, even though it uses only 1 CPU
against 8 for SAP HANA PAL.

In the next Section, the Anomaly Detection algorithm from SAP HANA PAL
will be analysed to propose a more advanced anomaly detection approach, in terms
of both high-speed processing and usability of results for a human operator.

73

3.5. CHAPTER SUMMARY

74

Chapter 4

High-speed outlier detection for
heterogeneous security events13

The results of the performance tests have shown the possibility to analyse Big
Security Data with machine learning and data mining methods, such as Anomaly
Detection from SAP HANA PAL. To better understand whether such algorithm
could be further improved to propose a more advanced, fast and usable approach,
it is reviewed in the subsection below.

4.1 Anomaly Detection in SAP HANA Predic-

tive Analytics Library

Anomaly Detection algorithm from SAP HANA Predictive Analytics Library works
as follows:

• First, numerical data are scaled (optionally), so that the distance could be
calculated properly even for multi-dimensional data sets.

• Next, scaled features are clustered using the well-known k-means algorithm.
This algorithm requires to input the number of clusters in the data, number
of iterations to perform and the distance measure (Manhattan, Euclidean
and Minkowski distances are supported).

• After clustering, data records are ordered either by the distance from the
centre of the corresponding cluster or by the sum of distances from all cluster
centres.

13The results described in this chapter have been published as [122, 123].

75

4.1. ANOMALY DETECTION IN SAP HANA PREDICTIVE ANALYTICS
LIBRARY

• Finally, the top p% of all data records with the biggest distance are marked
as anomalies

This outlier detection approach has several disadvantages. Foremost, the
Anomaly Detection algorithm only works on the numerical data, whereas most
log messages have textual data only. The examples of the textual data are user-
names, protocol names, port numbers etc. Therefore, to prepare the data set for
the performance tests, textual features were simply projected to natural numbers.
This projection could be formally explained as follows [123]:

Let cj be a multiset and let c̃j/ = be a set of all equivalence classes for cj. Then,
let K = {1, 2, ..., N} be the index set of c̃j, so that c̃j = {a1, a2, ..., aN} = (ak)k∈K .
Let’s define the function g : cj → c̃j that returns the equivalence class of an element
in cj, so that g(xi) = ak. And another function h : c̃j → K that returns the index
of that equivalence class, i.e. h(ak) = k. Then the mapping will look like:

c′j = {h(g(x1)), h(g(x2)), ..., h(g(xm))}.
In other words, the data set is presented as a collection of columns:
D = {c1, c2, ..., cn}, where each column is a vector of values:
cj = {x1, x2, ..., xm}.
Then each column cj is converted to new column c′j by mapping each value to

its category. E.g. taking the column of usernames as an example,
cj = {bob, alice, bob, carol, bob, bob, . . .}
will be converted to
c′j = {1, 2, 1, 3, 1, 1, . . .}.
However, this simple conversion still does not guarantee that a clustering algo-

rithm, such as k-means, can be meaningfully applied on the data. To calculate the
Euclidean distance between two events/rows, all columns or features of the data
set have to be numeric and of the same measure. Even though the text fields, such
as usernames, port numbers, protocol names etc. are converted to numbers, they
are still not numeric and are not of the same measure. Therefore, they cannot
be used for Euclidean distance calculation. Obviously, after such a mapping, the
number representation also does not follow a normal distribution, which does not
allow applying Mahalanobis distance as well [140]14.

Besides this problem with processing textual fields, the Anomaly Detection
algorithm has other issues as well. As indicated during the performance tests,
the execution time for this algorithm grows linearly with increasing the number of
events to be analysed. However, with increasing number of records, a number of
clusters in the data often should also be increased. It significantly increases the
computational complexity and potentially makes an algorithm inapplicable to Big
Data, if the whole data set has to be clustered at once.

14Mahalanobis distance can be used for data sets with features/columns of different measures,
but only if all features/columns are normally distributed.

76

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

Next, the Anomaly Detection from SAP HANA PAL requires a user to input
a number of parameters, such as a number of clusters and percentage of anomalies
in the data. The number of clusters is indeed required for k-means; however,
one could try to automatically determine it using one of the existing methods
[141, 142, 143].

The percentage of anomalies in the data required as input could be very con-
fusing for the data analyst. First, the value of this parameter could be unknown
for the data analyst. This is often the case for the unsupervised outlier detection
when the knowledge about anomalies in the data is unavailable. To illustrate this
problem, the Anomaly Detection from SAP HANA PAL was executed on the ar-
tificial sample data set with 2 features (V1 and V2) to detect outliers. The results
are presented in Figure 4.1.

2 4 6 8

2
4

6
8

V1

V
2

2 4 6 8

2
4

6
8

V1

V
2

2 4 6 8

2
4

6
8

V1

V
2

2 4 6 8

2
4

6
8

V1

V
2

Figure 4.1: Outliers identified by Anomaly Detection from SAP HANA PAL with
different percentage of anomalies in the data as the input parameter.

Figure 4.1 shows results of the Anomaly Detection with the percentage of
anomalies in the data equal to 10%, 20%, 30% and 40% correspondingly (left-to-
right and top-to-bottom), whereas the number of clusters was set to 10. From these
figures, it is possible to conclude that the anomalies are not selected in an optimal

77

4.2. OUTLIER DETECTION FOR TEXTUAL DATA BASED ON
SPHERICAL K-MEANS

way. First, not all data points from the same cluster are marked as anomalies, even
though they are located near each other. Second, if the value for the percentage of
anomalies in the data is too high (30% or 40%), the points from clusters that does
not look suspicious are marked as anomalies. This happens because the threshold
is not set based on the distances from the cluster centres; rather it is set based on
the number of outliers in the data set, which often stays unknown.

Thus, the Anomaly Detection algorithm from SAP HANA PAL needs to be
improved to become more efficient for the analysis of high volumes of security-
related events. In terms of processing security log messages, the weak points of the
algorithm are the inability to process textual fields, high computational complexity
on large data volumes with a high number of clusters and requirements to input
number of clusters and percentage of anomalies in the data.

In the next section, the solutions for these problems are offered. These solutions
are incorporated into the universal outlier detection approach, which is evaluated
on the test data set.

4.2 Outlier detection for textual data based on

spherical k-means

The outlier detection algorithm presented in this section is based on the k-means
clustering, similar to the Anomaly Detection from SAP HANA PAL, but proposes
several changes making it more universal and applicable for the analysis of textual
fields. The proposed improvements are described in the subsections below.

4.2.1 Modelling of multivariate non-normal data

To deal with processing of textual/categorical features, all columns mapped to
numeric categories (see Section 4.1) are further converted into a Vector Space
Model (also called feature binarisation or one-hot encoding), which was introduced
by Salton et al. in 1975 [47]. To formally describe this conversion, let us take the
data set with all columns mapped to numeric categories:

D′ = {c′1, c′2, ..., c′n}.
Each column c′j = {b1, b2, ..., bp} is converted to the sparse matrix

Sp×q =


s11 s12 s1q
s21

sp1 spq

 , (4.1)

where q = max(c′i) and

78

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

sij =

{
1 if bi = j,

0 otherwise
(4.2)

After this step, the sparse matrices for different data set columns are joined
horizontally. It results in a matrix with p rows (number of rows in the data set)
and r = max(c′1) +max(c′2) + ...+max(c′n) columns.

The vector space model conversion is also illustrated in Figure 4.2.

Figure 4.2: Illustrative example of vector space model representation.

As shown in Figure 4.2, each unique value or category from each column be-
comes a new column. If the original column has this value in row p, the corre-
sponding column in the vector space model will have 1 as a value in row p and 0
otherwise.

This conversion allows correct calculation of the distance between every two
data set rows, e.g. using the function of the angle between the corresponding pairs
of vectors [47].

However, the resulting vector space matrix could be very large, since each
unique IP address, username, protocol and so on becomes a separate column.
For the large enterprise networks with tens of thousands hosts and users, this
could result in several hundreds of thousand columns. Nevertheless, since this
matrix is mainly filled with zeroes, it is possible to use sparse matrix structure to
store it, if the sparse matrices are supported by the programming language. In
R, this functionality is provided by the “Matrix” package [144], while “skmeans”
package [145] provides the implementation of the spherical k-means which uses
d = 1− cosine similarity as a distance function (a function of the angle between
two vectors representing data set rows).

Still, to reduce the size of this matrix, some simple measures could be per-
formed. For example, all hostnames should be converted to lower case, usernames
cast to the same form (user.name == user.name@exampledomain.edu) and so
on. The timestamp could be divided into multiple features, such as day of the
week, hour and minute. In case there are too many unique IP addresses, one
could only keep the network address (or 3 of 4 octets) to reduce the number of

79

4.2. OUTLIER DETECTION FOR TEXTUAL DATA BASED ON
SPHERICAL K-MEANS

columns. Thus, if the number of columns in the sparse matrix becomes too high,
some features can be optimised or dropped to reduce it.

4.2.1.1 Incorporating continuous numerical features into the vector
space model

Even though the security-related log messages normally contain only textual or
categorical fields, such as IP address, username, hostname, protocol and so on,
SIEM systems may need to process mixed data containing continuous numerical
features as well. An example of such a data set is the KDD Cup 1999 data
[146], which contains both categorical and numerical features [76]. Although the
numerical features are actually discrete and not continuous (for example, “number
of data bytes from destination to source” or “% of connections that have “SYN”
errors”), the number of possible discrete values becomes too high for vector space
model.

The common approach to process numerical features together with categorical
ones is the feature discretisation. Under this approach, the numerical values are
distributed into the finite amount of intervals that do not overlap with each other
[147]. The original values from the same interval are then replaced with the same
categorical value, e.g. the interval number. For the unsupervised outlier detection,
which is the focus of this thesis, it is reasonable to utilise the unsupervised feature
discretisation. The basic example of such unsupervised discretisation is based on
k-means clustering [148]. First, each continuous numerical column is clustered into
a predefined number of clusters. Then, each original value is replaced with the
cluster number from k-means.

Written formally, before conversion to the vector space, each column con-
taining continuous numerical values cj = {x1, x2, ..., xm} is converted to a new
column c′j by mapping each value to the cluster number from k-means: c′j =
{f(x1), f(x2), ..., f(xm)}, where function f returns the corresponding cluster num-
ber.

Using this simple discretisation method, mixed data sets with both numerical
and categorical values can be converted to vector space and analysed with spherical
k-means. However, the feature discretisation of numerical values implies data
reduction/loss, because the similar but still different original values are replaced
with the cluster number. These cluster numbers become a separate column in the
vector space matrix and contain only zeroes or ones. Thus, if two rows in the data
set are the same except the values of the one numerical continuous feature, and
these values are clustered into the same category, the spherical k-means distance
of these two rows will be calculated as 0.

For example, let’s take a mixed data set with one categorical column c1 =
{a, b, b, b, a}, which is mapped to c′1 = {1, 2, 2, 2, 1} and one column with continu-

80

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

ous numerical values c2 = {2.5, 3.7, 3.8, 3.9, 4}, which is discretised into 3 clusters
as c′2 = {1, 2, 2, 2, 3}. Both columns are converted to the following vector space
matrix:

a b 1 2 3
1 0 1 0 0
0 1 0 1 0
0 1 0 1 0
0 1 0 1 0
1 0 0 0 1

Then the cosine similarity, for example, between 2nd and 3rd row will be equal
to 1, which means that the difference between 2nd, 3rd and the 4th elements in
the column c1 (originally, 3.7, 3.8 and 3.9) is lost.

However, the cosine similarity used in spherical k-means can also take into
account the values in the vector space matrix between 0 and 1, which reduces the
information loss during the feature discretisation.

To reduce the information loss, each value of a continuous numeric column
should be mapped not to the cluster number, but to the original value, scaled
to the unit length with min-max normalisation within the corresponding cluster.
Written formally, during the feature discretisation, each column containing con-
tinuous numerical values cj = {x1, x2, ..., xm} is converted to k new columns of the
same length as cj, where each

c′jr = {f(x1), f(x2), ..., f(xm)}, where r = 1..k and

f(xi) =


(xi −min(Xi)/(max(Xi)−min(Xi)) ∗ C + (1− C)

if min(Xi) <> max(Xi) AND xi ∈ clustr,
1 if min(Xi) == max(Xi) AND xi ∈ clustr,
0 otherwise,

where Xi = {x1, x2, .., xn} is a set of all values belonging to the same cluster r
as xi and 0 < C < 1 is a coefficient to avoid discretised values close to 0.

Next, the conversion to the vector space model described in the Section 4.2.1
should be adapted as well, cause for the discretised numerical columns the sparse
matrix should be filled not with zeroes and ones, but with values scaled to the
unit length. Thus, for the discretised numerical columns, instead of the use of
the Equations 4.1 and 4.2, the discretised numerical column c′jr = {b1, b2, ..., bp}
can be directly used as a sparse vector and be horizontally joined with the sparse
matrices for other data set columns.

With this offered advanced discretisation (taking C = 0.5), the column c2 =
{2.5, 3.7, 3.8, 3.9, 4} should be discretised to {c′21 = {1, 0, 0, 0, 0}, c′22 = {0, 0.5, 0.75,

81

4.2. OUTLIER DETECTION FOR TEXTUAL DATA BASED ON
SPHERICAL K-MEANS

1, 0}, c′23 = {0, 0, 0, 0, 1}}.
The original mixed data set is then converted to the following vector space

matrix:

a b 1 2 3
1 0 1 0 0
0 1 0 0.5 0
0 1 0 0.75 0
0 1 0 1 0
1 0 0 0 1

Different from before, the vector space matrix constructed with the advanced
discretisation still distinguishes between the 2nd, 3rd and 4th element of the origi-
nal numeric column c1. E.g. the cosine similarity between 2nd and 3rd row is now
equal to 0.98 (and not to 1), which shows that the original values were different.

Thus, the offered advanced discretisation allows conversion of continuous nu-
merical features into the vector space model with reduced information loss dur-
ing discretisation. This, in turn, improves the accuracy of the distance function
(1− cosine similarity) used in the outlier detection for mixed data sets with both
categorical and continuous numerical features.

4.2.2 Clustering security events in parallel

In Section 3.4, the performance tests have shown that the execution time grows
nearly linearly if only one of two parameters — the number of events or the number
of clusters — is changed. However, the high-speed implementation of Anomaly
Detection for Big Security Data with both high number of events and a high num-
ber of corresponding clusters is still non-trivial due to the fact that the underlying
k-means algorithm is NP-hard. The conversion of textual fields to the vector space
model also requires a lot of memory and slows down the computation, even though
it could be stored and processed as a sparse matrix.

To limit the number of events and clusters for k-means clustering and increase
the processing speed, the data set is divided time-wise into the subsets with the
same number of events. Each subset is clustered with k-means in the separate
thread. Then the outliers can be determined by the distance (cosine dissimilarity)
from the concept vectors [52] of all clusters from all subsets.

Of course, the clustering of the subsets is not as precise as the clustering of
the full data set. However, it enables parallel clustering, limits the number of
events and clusters for each processed subset and increases the overall algorithm’s
performance.

82

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

4.2.3 Outlier threshold based on the distribution of dis-
tances

Anomaly Detection from SAP HANA PAL defines the threshold for outliers based
on the percentage of the anomalies in the data. Different to this, it is possible to
select outliers based on their distance from concept vectors of all clusters, which
has a geometrical sense. In particular, the threshold is set to the nth percentile of
the distribution of the distances of outliers from all concept vectors of all clusters.

For each cluster C ⊂ S, where C = {sc1, sc2, ..., scr}, the vector of column
means is calculated as cm = {sc1, sc2, ..., scr}. Next, the concept vector [52] cv is
calculated as well:

cv =
cm√√√√ m∑
j=1

cm2
j

Then, for every event e its cosine dissimilarity to each concept vector of each
cluster from all subsets is calculated:

dissimilaritye,cv = 1− cv × e√
(cv × cv) ∗ (e× e)

Thus, the outlier score of each event is equal to the sum of its cosine distances
to all concept vectors:

outlier scoree =
t×k∑
i=1

dissimilaritye,cvi ,

where t is the number of time intervals (or data subsets) and k is the number
of clusters in each subset corresponding to the time interval.

Next, the threshold is set to the nth percentile of the outliers’ distance distri-
bution:

threshold = max(outlier score)− 100− n
100

(max(outlier score)−min(outlier score)),

where n could be selected by the data analyst.
This approach is illustrated in Figure 4.3 (please also see the artificial example

from Section 4.1, as well as Figure 4.3 for reference).
The distance-based threshold could be represented by circles around the geo-

metric centre of all cluster centroids, as shown in Figure 4.3. The Figure shows the
data from artificial example and possible thresholds based on the nth percentile
of distance distribution (drawn as red circles). Such a threshold allows selecting

83

4.2. OUTLIER DETECTION FOR TEXTUAL DATA BASED ON
SPHERICAL K-MEANS

2 4 6 8

2
4

6
8

V1

V
2

Figure 4.3: Outlier detection thresholds based on the distribution of distances
from concept vectors

outliers by their distance, e.g. to select all events with the outlier score (distance
from all concept vectors), which is higher than 99% of events have. Thus, the
threshold has geometrical sense and is much more intuitive for the data analysis.

4.2.4 Detecting optimal number of clusters for k-means

As mentioned in Section 4.1, a variety of methods is available to automatically
determine the number of clusters in the data [141, 142, 143]. To prove the concept
of finding an optimal k for Big Security Data, the most simple and natural generic
approach called “Elbow Method” was selected and adapted to apply on the data
converted to the vector space model. This approach is very similar to one men-
tioned by Sugar and James in [141] or Salvador and Chan in [149]. The method
analyses the “distortion curve” or evaluation function, which represents the mea-
sure of cluster dispersion (for example, average Mahalanobis distance between each
data point and the corresponding cluster centre) for a different number of clusters.
The point where the distortion curve levels off (or the maximum curvature point)
is taken as the optimal number of clusters.

The particular implementation of the “Elbow Method” used for security-related
data converted into the vector space model is described below.

First, t subsets are selected from the original data (see Section 4.2.2) to execute
spherical k-means for each of them with a different number of clusters (k). When
clusters are determined, average cosine similarity is determined for all clusters.

84

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

For each cluster C from data subset S, where C = {sc1, sc2, ..., scr}, the vector
of column means cm = {sc1, sc2, ..., scr} is determined to calculate the concept
vector [52] cv:

cv =
cm√√√√ m∑
j=1

cm2
j

,

where m is the number of rows in the data subset.
Then, for every cluster row cr, its cosine similarity to its concept vector is

calculated as follows:

similarityi = 1− cv × cr√
(cv × cv) ∗ (cr × cr)

Next, the mean cosine similarity of each row with its concept vector for a
defined k is calculated and used as a similarity measure:

similarity measure =
1

m× t× k

m×t×k∑
i=1

similarityi,

where m is the number of rows in the data subset, t is the number of data subsets
and k is the number of clusters in each subset.

The result of these calculations is a set of tuples {k,similarity measure} for all
values of k. The optimal k is calculated as the maximum curvature point of the
interpolated function based on this discrete set of tuples. To find the maximum
curvature point based on a discrete set of tuples, the second-order central difference
is calculated for each discrete point (tuple):

δ2smi = smi+2 − 2 ∗ smi+1 + smi,

where sm is a similarity measure.
The maximum valuemax(|δ2sm|) indicates the point with the maximal curvature

(“elbow/knee point”). Then, the value of k from the corresponding tuple can be
taken as an optimal number of clusters, please see Algorithm 1 for details.

Algorithm 1 calculates the value of the second-order central difference for first
n − 2 points from similarities vector and finds its absolute maximum — point
with maximum curvature (lines 1-4). The corresponding k value (line 5) would be
optimal according to the described method.

4.2.5 Proposed Universal Outlier Detection approach

The improvements for Anomaly Detection algorithm described in Sections 4.2.1-
4.2.4 are merged together into the Universal Outlier Detection algorithm, which is

85

4.2. OUTLIER DETECTION FOR TEXTUAL DATA BASED ON
SPHERICAL K-MEANS

Algorithm 1 ElbowPoint(similarities,k values)

1: for i = 0 to length(similarities)-2 do
2: δ2similaritiesi = |similarities[i+ 2]− 2 ∗ similarities[i+ 1] + similarities[i]|
3: if max difference < δ2similaritiesi then
4: max difference = δ2similaritiesi
5: OptimalK = k values[i]
6: end if
7: end for
8: return OptimalK

Algorithm 2 Universal Outlier Detection

1: determine optimal number of clusters
2: divide data into N subsets
3: for all {subsets} from data do
4: sparse subset = convert to vector space(subset)
5: end for
6: for all {sparse subset} from sparse subsets do
7: clusters = spherical kmeans(sparse subset,num clusters,

method=’pclust’,nruns=3)
8: for all {cluster C[xij] mn} from clusters do

9: colmeans = {colmean1, .., colmeann}, where colmeanj =
1

n

n∑
i=1

xij

10: concept vector = colmeans/

√√√√ m∑
j=1

colmeans2j

11: end for
12: end for
13: for all {sparse subset} from sparse subsets do
14: for all {subset row} from sparse subset do
15: for all {concept vector} from concept vectors do
16: similarity =

= 1− concept vector × subset row
√
concept vector × concept vector ∗

√
subset row × subset row

17: end for
18: Distance =

∑
similarity

19: end for
20: end for

86

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

presented in Algorithm 2.
The Algorithm 2 calculates the distance for each event from all concept vec-

tors of all clusters for all data subsets, whereas the clustering can be executed in
parallel. Thanks to the conversion into the vector space model and feature dis-
cretisation, the algorithm now works with any type of data: continuous numerical,
textual and mixed.

To select the outliers, the threshold should be defined as a percentile of the
distances distribution (see Section 4.2.3 for details). All events with the distance
higher than the threshold will be then marked as outliers. The proposed algorithm
was evaluated on the same testbed data set with (please see data set described in
Table 3.5 from Section 3.4.1) with 188 thousand events. The next section shows
the results of the evaluation of the proposed algorithm.

4.2.6 Threats detected in the testbed data set

The proposed Universal Outlier Detection algorithm was able to detect the attack
from the second row in Table 3.4. When the threshold was set to a 99,99th
percentile of distances’ distribution, the algorithm returned 18 events that were
all related to this attack. One of these events is listed below:

{"ComputerName": "ADController",

"TimeGenerated":"2014-01-29T10:04:43",

"Params":["MICROSOFT_AUTHENTICATION_PACKAGE_V1_0", "Administrator",

"ADCONTROLLER", "0xc000006a"], "Sid": null, "EventID": 4776,

"TimeWritten": "2014-01-29T10:04:43",

"SourceName": "Microsoft-Windows-Security-Auditing",

"EventType": "AUDIT_FAILURE", "EventCategory": 14336,

"LogType": "Security", "Message": "The computer attempted

to validate the credentials for an account.

Authentication Package:

MICROSOFT_AUTHENTICATION_PACKAGE_V1_0

Logon Account:Administrator

Source Workstation:ADCONTROLLER

Error Code:0xc000006a",

"RecordNumber": 953526,

"Data": ""}

The error code ‘0xc000006a’ in the event means that the password was wrong.
Thus, the proposed outlier detection algorithm was able to identify the failed au-
thentication events even though the Error Code indicating that the authentication
failed due to the wrong password was not included as a feature into the data set
for outlier detection (see Section 3.4.2).

87

4.2. OUTLIER DETECTION FOR TEXTUAL DATA BASED ON
SPHERICAL K-MEANS

If the outlier threshold is decreased to the 99,9th percentile of distances’ dis-
tribution, 189 events are marked as anomalies. The summary of these events is
shown in Table 4.1.

Table 4.1: Results from Universal Outlier Detection on the testbed data set.

Number
of
events

Type Relation to attacks

56 Audit failure, Event ID 4776 Brute-force attack on LDAP
16 Logon failure, Event ID 4625 Brute-force attack on LDAP
13 Audit success, Event IDs 4768

and 4769
False positive

104 Successful logon, EventID 4624 False positive

Table 4.1 contains both events related to the brute-force attack and benign
events marked as outliers (false positives). The false positives are, however, quite
easy to filter out, as soon as these events are only of two types: audit success and
successful logon.

All in all, it is possible to conclude that the proposed Universal Outlier Detec-
tion algorithm was able to detect malicious behaviour in the data set.

However, the performance of the proposed approach is not so high. The algo-
rithm divided the data set of 188,427 events into 19 samples of 10,000 records each
(except the last sample, which contained 8,427 events). These samples were then
clustered with 19 threads during the algorithm’s execution.15 The execution time
was 24 minutes16, which is much slower than 3-4 seconds execution time needed
for Anomaly Detection from SAP HANA PAL.

Since the determined number of clusters was equal to 8, which is not a high
number, the reason for the low performance is the conversion of textual features
into vector space model and its further processing. Even though the offered Uni-
versal Outlier Detection allows processing bigger data sets, since it is easy to
parallelise (for example, with 100 threads, the same period of 24 minutes would
be enough to process the data set containing approximately 1 million events), the

15The Universal Outlier Detection was executed not on the environment for performance mea-
surements described in Table 3.7, but on the environment with Intel Xeon E7-8870 CPU, due to
technical reasons.

16The computation of the optimal number of clusters is not taken into account since it should
be only performed once and only for limited number of subsets before the execution of main
algorithm.

88

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

measured performance should be further improved to make this algorithm appli-
cable to large data volumes.

Both Anomaly Detection from SAP HANA PAL and proposed Universal Out-
lier Detection have one more disadvantage, which is generic for outlier detection
algorithms and especially relevant for the Big Data. The outlier detection often
produces too many anomalies and the large volume of such events makes their anal-
ysis more time-consuming for the human operator. Even though these anomalies
are ranked by distance from concept vectors or another outlier score, the similar
events are still not grouped together. In the simple case of brute-force attack, it
could easily lead to the situation when the output of the outlier detection algo-
rithm is flooded with failed authentication events. These events are often mixed
with other types of anomalies, which makes the analysis of the outlier detection
results especially uncomfortable for the human operator.

Both issues — low performance and a large number of ungrouped outliers —
are addressed in the next section, which proposes the Hybrid Outlier Detection
algorithm.

4.3 High-speed detection of clusters with anoma-

lous events

To group similar outliers together in the outlier detection output, the algorithm
can be changed in the way that it will detect the whole clusters of events as outliers.
Such implementation of outlier detection requires a chain of at least two machine
learning / data mining methods. The first one determines clusters in the data,
whereas the second one finds outliers among these clusters (for example, taking
cluster centres or concept vectors to describe each cluster).

This approach can be theoretically faster than Universal Outlier Detection on
Big Data since it avoids calculating the distance between each record and all cluster
centres. Instead, the outlier detection itself is done on the smaller data set that
includes cluster centres only. To further speed-up the algorithm, the training of
outlier detection algorithm can be performed on the reduced data set, selected, for
example, by random sampling without replacement [150].

The implementation of this approach is described in the section below.

4.3.1 Hybrid Outlier Detection: one-class SVM ensemble
trained on clusters from spherical k-means

The base part of the Hybrid Outlier Detection algorithm is similar to the proposed
Universal Outlier Detection: the data are divided into subsets, which are clustered

89

4.3. HIGH-SPEED DETECTION OF CLUSTERS WITH ANOMALOUS
EVENTS

in parallel using spherical k-means. However, to be able to detect clusters of
outliers, this clustering should be extended with another outlier detection method.

For this purpose, a one-class SVM outlier detection algorithm was selected.
One-class SVM produces a clear outlier score, namely the decision value, which
is a distance from the hyperplane around the “normal” class (data used for the
training). It is also possible to create a separate SVM model for the concept vectors
of clusters from each training data subset in parallel. The ensemble of such SVM
models will produce a joint outlier score based on scaled decision values. The
resulting Hybrid Outlier Detection algorithm is presented in Figure 4.4.

Figure 4.4: Hybrid Outlier Detection scheme

The Hybrid Outlier Detection algorithm showed in Figure 4.4 consists of 15
steps that could be described as follows:

90

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

• In step 1, the data, which is stored in OLF, are selected for the analysis.

• Using these data, N training samples are generated in step 2. The sample
generation mechanism could be different, e.g. one could take first 50% (or
less) of the full data set and use it for training to find outliers in the second
50% of the data set. However, to improve the speed of the training phase,
the random sampling without replacement is proposed. The N randomly
generated samples could cover a smaller part of the data set and thus require
less training time. On the other hand, the randomly selected samples should
be still sufficient to train the model, which is precise enough17, and even
improve the quality of the outlier detection compared to the one trained on
the full data set [150, Section 3.2].

• In step 3, the samples are converted to the vector space model, as described
in Section 4.2.1, which allows processing of both textual and continuous
numerical (after its discretisation) data.

• In step 4, the optimal value of k (the number of clusters in a sample) is
determined based on several samples. To determine the k, the approach
described in Section 4.2.4 is used.

• In steps 5-7, the N training samples are used to train an ensemble of N
one-class SVM models. Each training sample is clustered with spherical k-
means. Next, the concept vectors are calculated for each cluster (see Section
4.2.4 for details). Finally, to train each of N one-class SVM models, the
concept vectors from the corresponding training samples are used.

• The steps 8 and 9 are executed to prepare subsets for the detection of
outliers. Each subset (maybe except the last one, if the full data set size is
not divisible by sample size) should have the same size and the same number
of clusters as N training samples have.

• Steps 10-11 are executed for each subset and are identical to steps 5-6.

• After clustering and calculation of concept vectors, each concept vector (cor-
responding to one cluster) is evaluated by each of N one-class SVM models
at step 12. An SVM model classifies the concept vector and returns 0 if it
is an outlier, together with the decision value.

• In step 13, only clusters classified as outliers by all N SVM models are
selected. It means that out of N training samples, no sample contains a
cluster with the concept vector similar to the classified one. Such an outlier

17The effectiveness estimation will be described later in this chapter.

91

4.3. HIGH-SPEED DETECTION OF CLUSTERS WITH ANOMALOUS
EVENTS

cluster should be relatively rare in the data set, since it was not captured by
the random sampling without replacement.

• In steps 15 and 16 the scaling of the decision values is performed to rank
clusters by the sum of decision values (this step will be described in details
in the next subsection). Thus, the clusters with higher rank have a higher
dissimilarity with clusters from all N training samples and should contain
the rarest events in the data set.

The offered Hybrid Outlier Detection is easy to parallelise and should be much
faster than Universal Outlier Detection since the outlier detection is now performed
on the reduced data set with concept vectors only. Another important feature of
this algorithm is the ability to output the ranked clusters, which is described in
the subsection below.

4.3.1.1 Ranking of clusters with anomalies

Each cluster is characterised by its concept vector, which is evaluated by an en-
semble of SVM models at step 12 of the Hybrid Outlier Detection. To rank these
clusters, it is required to calculate the outlier score, which is an SVM decision value
in case of a single SVM model. However, N SVM models applied to each concept
vector produce decision values of a different scale, due to the fact that these mod-
els were trained on N different samples. To be able to sum up the decision values
from different models, the scaling should be performed [151].

For this purpose, the decision values from the SVM models can be presented
as a matrix

DVt×N =


dv11 dv12 dv1N
dv21

dvt1 dvtN

 ,

where elements are SVM decision values and t is the number of outliers.
These decision values are then scaled by the standard deviation without cen-

tring using function f : R→ R, where

f(dvij) =
dvij
σj

and σj is the standard deviation for column j of matrix DV , so that:

σj =

√√√√1

t

t∑
i=1

(
dvij −

1

t

t∑
i=1

dvij

)2

92

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

The resulting matrix is

DV ′t×N =


dv′11 dv′12 dv′1N
dv′21

dv′t1 dv′tN

 ,

where dv′ij = f(dvij).
This matrix is used to get a set of summarised scaled decision values for each

outlier from different SVM models SumDV = {sdv1, sdv2, ..., sdv3}, where

sdvi =
N∑
j=1

dv′ij.

The set SumDV can be used as a set of outlier scores to rank the outliers
accordingly.

Thus, the Hybrid Outlier Detection allows an operator of the SIEM system to
look on the most suspicious events, which are grouped together into clusters and
ranked by the sum of scaled decision values from an SVM ensemble.

To prove the benefits of the proposed Hybrid Outlier Detection, it was com-
pared with other outlier detection methods on the real data set from the large
multinational enterprise, as well as on the KDD Cup 1999 data. Both of these
data sets are described in the next section.

4.3.2 Windows Events data set from enterprise network
and KDD Cup 1999 data

The ability of the proposed Hybrid Outlier Detection to identify suspicious events
is checked on the real data set from the large multinational company. This data
set mainly includes Windows Events from a network segment of this company
covering the period of three months. The Windows Events were originally collected
by Domain Controllers with enabled Security Audit policy and then forwarded to
the ArcSight SIEM system. Besides the Security Windows Events, the data set
also includes “System and Application Events”, as well as ArcSight messages. The
overview of the data set is provided in Figure 4.5.

The data set presented in Figure 4.5 includes 163,725,150 log messages. The
number of messages per day is varying due to the weekly working cycle and due
to the failures of the event filtering. The three spikes (on 07.09-08.09, 15.09 and
25.11) are caused by “Denial of service event filtering triggered” (according to the
ArcSight log messages). During this failure, the events were collected from 103 to
735 Domain Controllers instead of 14 on average for the rest of the data set.

93

4.3. HIGH-SPEED DETECTION OF CLUSTERS WITH ANOMALOUS
EVENTS

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

07.09.2014

09.09.2014

11.09.2014

13.09.2014

15.09.2014

17.09.2014

19.09.2014

21.09.2014

23.09.2014

25.09.2014

27.09.2014

29.09.2014

01.10.2014

03.10.2014

05.10.2014

07.10.2014

09.10.2014

11.10.2014

13.10.2014

15.10.2014

17.10.2014

19.10.2014

21.10.2014

23.10.2014

25.10.2014

27.10.2014

29.10.2014

31.10.2014

02.11.2014

04.11.2014

06.11.2014

08.11.2014

10.11.2014

12.11.2014

14.11.2014

16.11.2014

18.11.2014

20.11.2014

22.11.2014

24.11.2014

26.11.2014

28.11.2014

30.11.2014

date

number of events
number of event types

number of hosts
number of users

Figure 4.5: Overview of Windows Events data from the large enterprise, y-axis
log-scaled

The set of the monitored Domain Controllers is also not consistent. Most of
Domain Controllers were monitored during 1-3 days only, whereas only 16 Domain
Controllers were monitored during a longer period (between 34 and 81 days, 64
days on average).

To apply Hybrid Outlier Detection, it is reasonable to filter out all log messages
from Domain Controllers that were monitored less than 3 days (so that the outlier
detection algorithm will be able to build the clusters based on the long-term pat-
terns in the data). After such filtering, the data set contained 123,552,537 events
from 200,699 users (71,537 of which are computer accounts).

One limitation of the data set is the nature of the monitored events. The
collected Security Audit events include mainly the automated activity of the user
accounts rather than real user actions. Taking a Windows Event ID 4624 (“An
account was successfully logged on”) as an example, all such events in the data
set have logon type 3 or 5. These logon types reflect automated network activity
and service start-up, whereas the logon type 2 (recorded when the user enters
his/her password) was never reported to the ArcSight SIEM system. Further,
only 5,826,900 of 31,481,180 Windows Events with Event ID 4624 are related to
accounts of real users, while the rest are related to computer accounts that do not
directly reflect the user activity.

Nevertheless, even though the most of the collected events represent automated
activity in the network, such events still can reflect the activity of real users. All
in all, this Windows Event data set provides a real example of log messages in the
SIEM system of a large enterprise that should be processed and analysed.

Besides the Windows Events data set, the benefits of the Hybrid Outlier De-
tection were also proved on the public KDD Cup 1999 data set [146]. Even though

94

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

it contains redundant and duplicated records [76], it is still the most popular data
set for evaluation of intrusion detection algorithms. Although the cleaned NSL-
KDD version of this data set was offered by Tavallaee et al. [76], the original KDD
Cup 1999 data could better reflect the real scenarios, since the real-world data col-
lected by IDS or SIEM system also often contain redundant or duplicated events.
However, due to the fact that the data set has attack ratio of 80%, there is a
high probability that unsupervised outlier detection methods will classify attacks
as normal since they represent the majority of the data. To avoid this issue, only
first 400,000 records (with an attack ratio of 9.8%) of the KDD Cup 1999 data set
will be used to evaluate Hybrid Outlier Detection.

The next sections describe the results of Hybrid Outlier Detection applied on
the data and evaluate both accuracy and performance of the proposed algorithm
in comparison with existing approaches.

4.3.3 Threats detected in the Windows Events data set

To analyse the Windows Events data with Hybrid Outlier Detection, the following
columns from Object Log Format were selected:
event id, subjectuser username, targetuser username, net src ipv4, net src host,
net src port, producer host, net dst ipv4, net dst host, net dst port, tag action,
tag status, file path, event type id, time.

The number of training samples and number of events per each sample were
selected heuristically taking into account optimal sample size (from 10% to 20%
of the data set size according to Zimek et al. [150, Section 3.2]), the algorithm’s
performance and available resources (will be described in the next section). To
apply Hybrid Outlier Detection, a number of samples and events were set to N =
80 and m = 100, 000.

According to the step 4 of the Hybrid Outlier Detection, an optimal value of k
(the number of clusters per sample) was determined based on 2 training samples,
as well as 2 of M subsets from original data (see Section 4.3.1 for details). Figure
4.6 shows the function of calculated similarity measure based on the value of k for
both training and original data samples.

For both types of samples, the optimal k was determined as 96 using the tech-
nique described in Section 4.2.4. Taking k = 96, the average similarity (for all
clusters) between all events in the cluster and the corresponding concept vector
is 84% and 90% for the training samples and samples from original data corre-
spondingly. This proves that the selected value of k allows the spherical k-means
to produce clusters with a relatively small variance of events within the cluster.

The Hybrid Outlier Detection returned 12,759 clusters with 10,822,312 Win-
dows Events marked as outliers. Obviously, such a number of outliers is very hard
to process for the human operator. However, since all outliers are clustered and or-

95

4.3. HIGH-SPEED DETECTION OF CLUSTERS WITH ANOMALOUS
EVENTS

Figure 4.6: Average cluster similarity for different numbers of clusters (k).

dered by the sum of scaled decision values from different SVM models, it is possible
to check the most highly ranked clusters/outliers only. Within top 100,000 events
from the most suspicious clusters, approximately 98% are authentication failures.
These are mainly Windows Events with Event IDs 539, 560, 4625 and 4776. Thus,
the Hybrid Outlier Detection algorithm was able to identify authentication failures
as anomalies and place them at the top of the output.

If instead of looking at top 100,000 outliers, one will check the 100 most suspi-
cious clusters, these clusters contain 7439 events, 7376 of which are authentication
failures. Thus, some clusters with authentication failures that can be caused by
misconfiguration (as described in Section 4.3.2, the Windows Event data set re-
flects automated activities only) also contain a few events where the authentication
was successful. Since the username, IP addresses and other parameters of failures
and successes are same, it is hard to explain the reason for the authentication
failures in such cases.

Besides that, the top 100 clusters from the output of Hybrid Outlier Detection
contain two types of events that are different from the rest authentication failures:

• 26 authentication failures in clusters 1-9 (top to bottom in the ranking)
related to the target user ‘snapdrive’. All these authentication failures were
created by one server only. Among 123 million of Windows Events, there were
only 206 events of this type, and the Hybrid Outlier Detection placed 26 of
them within the 10 most highly ranked clusters with outliers. These failures
could indicate a failure of the SnapDrive storage management software or
other misconfiguration. The detection of such issues proves the ability of
Hybrid Outlier Detection to identify rare and unusual events in the data set.

• The Hybrid Outlier Detection identified 422 events with authentication fail-
ures for computer accounts accessing network shares (Event ID 5140). These

96

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

events were places in clusters 10-14 in the outlier ranking. In total, the Win-
dows Events data set contains 330,363 network share access events and only
1483 of them (including 422 placed within 15 most suspicious clusters) are
failures. It is possible to assume that this rare type of event also indicates
a misconfiguration preventing specific servers from accessing the network
share.

All in all, the Hybrid Outlier Detection was able to identify authentication
failures in the data set and place them at the top of the output. The algorithm
was also able to find out several rare suspicious events and place them within top
10-15 clusters with outliers. It proves the concept mentioned in Sections 1.3.2.3
and 4.3.1.1, which states that the operator of the SIEM system should be able
to concentrate on the several clusters with most suspicious events ranked by the
outlier score, instead of checking the endless list of all outliers returned by the
algorithm.

The Hybrid Outlier Detection is just one algorithm in the REAMS that im-
plements hybrid detection approach, as mentioned in Section 3.2.3. According to
this approach, the Windows Events data set was also analysed with other meth-
ods. The full overview of issues detected with all analytical methods available in
REAMS will be provided in the conclusion of this thesis. The next sections of this
chapter concentrate on the Hybrid Outlier Detection and provide performance and
effectiveness estimation, as well as comparison with existing methods.

4.3.4 Performance estimation

The estimation of the execution time was done on the IBM System x3850 X5
server with 6 TB RAM and 8 Intel Xeon E7-8870 CPUs providing 80 physical
cores and 160 threads with enabled Hyper-Threading. Due to the fact that this
server was always shared to execute multiple tasks18, the Hybrid Outlier Detection
was executed with 50% of available CPU threads. Each thread used up to 27 GB
RAM, resulting in 2.1 TB RAM required to perform outlier detection in parallel
with 80 threads.

The Hybrid Outlier Detection needs approximately 39 hours to process all 123
million events from the Windows Event data set. The training phase took 3 hours,
whereas 36 hours were spent to finish the application phase. Taking into account
the fact that these events cover 85 days with an approximate rate of 60,000 events
per hour, the Hybrid Outlier Detection was able to process them at more than
50 times higher rate. Indeed, to apply the model on 123 million events, it took
36 hours, which implies the rate of 3.4 million events per hour. Besides that, the

18Even though the server was shared, there were always free resources, both RAM and CPU,
during the data analysis.

97

4.3. HIGH-SPEED DETECTION OF CLUSTERS WITH ANOMALOUS
EVENTS

server hardware has a capacity to further increase the processing speed since the
Hybrid Outlier Detection used only 50% of available CPU resources and 30% of
available RAM.

On the one hand, even though all available hardware resources would be used,
the processing rate will not exceed 160 million events per day, which is not too high
(but still enough to process the whole 3 months of Windows Event data within
1 day). On the other hand, the Hybrid Outlier Detection should be much faster
than other existing generic outlier detection methods. In the next section, both
the effectiveness and performance of Hybrid Outlier Detection will be compared
with other outlier detection methods.

4.3.5 Effectiveness on Windows Events data set and
comparison with other outlier detection algorithms

The initial effectiveness estimation of Hybrid Outlier Detection algorithm can be
performed based on the results provided in Section 4.3.3. The 98% of the top
100,000 outliers are authentication failures. If compared with the number of au-
thentication failures in the original data set (4,618,649 events or 3.7% of the full
data set with 123 million events), it can be considered a good result and proves
that Hybrid Outlier Detection is able to at least identify authentication failures.

For the proper effectiveness estimation, it could be possible to plot the Re-
ceiver Operating Characteristic (ROC)19 based on the ground truth. However, the
Windows Event data set does not contain the knowledge about the ground truth,
i.e. there is no information whether events are malicious or not. Therefore, it is
only possible to take the status field of Windows Events as ground truth. Thus, all
events with “Failure” in the status field should be considered malicious to create a
ROC curve based on this data set. However, this approach could lower the real ef-
fectiveness of the algorithm due to the fact that not only “Failure” events could be
considered malicious in the real situations. The output of the Hybrid Outlier De-
tection also includes clusters with outliers that contain a number of authentication
failures followed by authentication success. In such cases, the events of successful
authentication preceded with failures should not be classified as false positive since
they could be a part of successful password brute-force attack. However, in this
section, such condition is still counted as false positive just for evaluation purposes.
Figure 4.7 shows the ROC curve for the top one million ranked outliers from the
Hybrid Outlier Detection output.

The number of “false positives” (Windows Events with ‘success’ status) within
the top one million outliers is 64.7%, which is much higher than 2% for top 100,000.
However, the absolute number of false positives is not so important for the outlier

19Standard evaluation method for unsupervised outlier detection algorithms [152].

98

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

1− specificity

s
e
n
s
it
iv

it
y

Figure 4.7: ROC curve for the top-ranked million anomalies returned from Hybrid
Anomaly Detection algorithm

detection, if the algorithm produces ranked results and is able to place true positive
alerts at the top of the output [152]. The ROC curve shows how good the Hybrid
Outlier Detection is able to place “true positives” (events with “Failure” status)
higher in its output, i.e. how much higher is the True Positive Rate (y-axis)
than False Positive Rate for each outlier threshold value. The Area Under Curve
(AUC) characteristic represents this rate difference with the single number, which
is equal to 73.9%. Although this AUC value is not too high for unsupervised outlier
detection in general, taking into account the specifics of the Windows Events data
set (described in Section 4.3.2) and other benefits of the Hybrid Outlier Detection
(such as performance, ranking of clusters with outliers and ability to work on any
type of data), this result can be considered a good one.

To compare the effectiveness of Hybrid Outlier Detection with another outlier
detection method on the Windows Event data set, another method should ideally
also return ranked clusters with outliers. However, the literature search does not
reveal any examples of similar approaches. Moreover, many existing unsupervised
outlier detection methods cannot work on textual data (like [153] and [154]) or
are bounded to the specific data set, due to custom pre-processing, mappings and
other feature preparation techniques [155, 27, 156].

Therefore, it was first decided to compare Hybrid Outlier Detection with the
Universal Outlier Detection from Section 4.2.5, in order to be able to compare the

99

4.3. HIGH-SPEED DETECTION OF CLUSTERS WITH ANOMALOUS
EVENTS

ROC curves of two generic outlier detection methods. However, the initial tests of
the Universal Outlier Detection proved that it is much slower than Hybrid Outlier
Detection and requires more than 3 weeks for the analysis of Windows Events data
set on the same hardware. To reduce the execution time, the Windows Events
data set size was also reduced to the first 8 million events for Universal Outlier
Detection.

In addition to Universal Outlier Detection, another approach [49], based on
custom feature selection but designed specially for Windows Events, was selected
for the efficiency comparison. The kNN-based outlier detection offered by Gold-
stein et al. works on so-called “data views” that are aggregation views for different
types of Windows Events. An example of such data view would be “events of sin-
gle users” that “are aggregated with a time unit of one day” [49]. Each data view
is processed with the kNN outlier detection to identify anomalies (for example,
the unexpectedly high number of authentication failures for a single user within
one day). This algorithm was implemented by Amer and provided by Goldstein in
the RapidMiner [157]. However, this implementation utilises the straightforward
approach to find k nearest neighbours, which needs to calculate the distance be-
tween every two events. On the large data sets, this method becomes inefficient.
The Windows Event data set contains 164,840 users, which makes this algorithm
almost impossible to apply on these data. To solve this problem, the kNN-based
outlier detection was completely re-implemented using cover tree [158] under this
thesis. The re-implemented algorithm was able to apply outlier detection on 51
of 85 data views, while the computation for the rest of the data views was not
finished even within 3 days.

The results of the comparison of Hybrid Outlier Detection with both Universal
Outlier Detection and re-implemented kNN-based Outlier Detection are presented
in the subsections below.

4.3.5.1 Comparison with Universal Outlier Detection

Similarly to Hybrid Outlier Detection, the Universal Outlier Detection also returns
authentication failures as outliers after being applied on first 8 million events from
the Windows Events data set. To compare the results of these two algorithms,
the ROC curve was also calculated for Universal Outlier Detection. To keep the
same ratio between the number of outliers and the full size of the analysed data,
as for Hybrid Outlier Detection results, the ROC curve was the plot for top 64,750
outliers20. The ROC curve is shown in Figure 4.8.

20Top 64,750 outliers from data set with 8 million records for Universal Outlier Detection
correspond to the same ratio as top 1 million outliers from data set with 123 million records for
Hybrid Outlier Detection.

100

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

1− specificity

s
e
n
s
it
iv

it
y

Figure 4.8: ROC curve for the top-ranked 64,750 anomalies returned from Univer-
sal Outlier Detection algorithm executed on 8 million events.

The AUC value for Universal Outlier Detection is 69.8%, which proves that this
outlier detection method is also able to rank outliers higher in the output. However,
this value is 4% less than for Hybrid Outlier Detection. Thus, the Hybrid Outlier
Detection has both higher performance and better AUC value / higher effectiveness
than Universal Outlier Detection.

4.3.5.2 Comparison with kNN-based outlier detection

In the case of kNN-based outlier detection, it is not possible to plot the ROC
curve for comparison with Hybrid Outlier Detection. The reason for this is the
absence of ground truth for Windows Events data set. As mentioned in Section
4.3.5, the events were considered malicious/benign based on their status field. All
authentication failures were therefore marked as malicious. This approach cannot
be applied to kNN-based outlier detection due to the fact that this algorithm
works on the data views containing failures only21. Thus, there are no benign

21Original data set is pre-filtered with queries that select different types of failures and aggre-
gate them into the data views. The kNN-based outlier detection is then executed on failures
only, just to find the most abnormal values within various access failure events. Therefore, the
direct comparison with Hybrid Outlier Detection (which works on all events and should be able
to distinguish “malicious” authentication failure events from “benign” authentication success
events) is not possible.

101

4.3. HIGH-SPEED DETECTION OF CLUSTERS WITH ANOMALOUS
EVENTS

events within the data views, which makes ROC curve pointless.
To compare two algorithms without the possibility to plot a ROC curve, it was

decided to check, how many users identified as suspicious by kNN-based outlier
detection are also included into the top 100,000 outliers from the Hybrid Anomaly
Detection. The results of kNN-based outlier detection from 51 data views are
presented in Table 4.2 below.

Table 4.2: Issues detected with kNN-based outlier detection (Goldstein et al.)

Type of issue detected Number of users/events
Account locked out 2 users with more than 100 account lockouts

within 1 hour
Account locked out 1 computer user with 308 account lockouts

on the same workstation
Special privileges assigned to new
logon

7 users with 100 or more assignments per
hour

Special privileges assigned to new
logon

6 users with 600 to 6000 assignments per day

Special privileges assigned to new
logon

5 users with several thousand assignments on
one workstation

Kerberos pre-authentication
failed

6 users with more than 70 failures per hour

Kerberos pre-authentication
failed

4 users with more than 100 failures per day

Kerberos pre-authentication
failed

10 users with more than 1000 failures on the
same workstation

Unknown username or bad
password

3 users with 50-100 bad username/password
events per hour

Unknown username or bad
password

2 computer accounts and 2 real users with
800 to 36,000 bad username/password events
on one workstation

Account currently disabled 1 computer account with 325 logon failures
within 1 hour

Account currently disabled 7 computer accounts with more than 100
logon failures on one workstation

In total, the kNN-based outlier detection returned 56 users with an abnormally
high number of authentication failure events.

The top 100,000 outliers from Hybrid Outlier Detection include 22 of these
56 users, which can be considered as a good result. On the one hand, the kNN-

102

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

based outlier detection is focused on the authentication failures only and is able
to detect more suspicious failures (related to the pre-defined data views) than
Hybrid Outlier Detection. On the other hand, the Hybrid Outlier Detection is
a generic algorithm, which is able to identify various issues, not limited to the
authentication failures. Besides that, some events were identified by Hybrid Outlier
Detection only, for example, SnapDrive authentication failures or failed network
share accesses. These events cannot be detected with kNN-based outlier detection
by definition since there were no data views for these types of events.

All in all, kNN-based outlier detection and Hybrid Outlier detection comple-
ment each other, while each approach has its own advantages. The kNN-based out-
lier detection can be used for detailed analysis of authentication failures, whereas
the Hybrid Outlier Detection works on the original data set without any pre-
processing and returns different types of outliers, which cannot always be covered
by data views.

Thus, the comparison of Hybrid Outlier detection with two existing approaches
on Windows Events data set clearly shows its benefits: support for any types of
data, high performance and effectiveness, clustered output. To make the compar-
ison with other approaches also possible, the Hybrid Outlier Detection was tested
on the public KDD Cup 1999 data. The effectiveness estimation on this public
data set is provided in the section below.

4.3.6 Effectiveness of Hybrid Outlier Detection on public
KDD Cup 1999 data set

The KDD Cup 1999 data is an example of the data set containing both textual and
continuous numerical features. The Hybrid Outlier Detection is able to process
all of them thanks to the techniques described in Sections 4.2.1-4.2.4 and 4.3.1.1.
The results of the Hybrid Outlier Detection on this data set were evaluated with
AUC values, which are shown in Figure 4.9.

Figure 4.9 shows the AUC values calculated for multiple ROC curves, each of
which was created using a different combination of parameters for Hybrid Outlier
Detection: number of training samples (on the x-axis), number of clusters per
sample (k) and type of discretisation22 (marked with line colour).

The AUC values were also calculated for a different number of training samples,
up to the half of the data set (20 samples 10,000 records each). From Figure 4.9,
it is possible to conclude that the AUC value has a relatively small variance for
different parameter combinations. Both relatively small fluctuations and the drop-
down of AUC value in Figure 4.9(b) can be explained with the fact that the k-
means algorithm (with random initialisation) is applied multiple times to the data

22See Section 4.2.1.1 for details.

103

4.3. HIGH-SPEED DETECTION OF CLUSTERS WITH ANOMALOUS
EVENTS

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 4 6 8 10 12 14 16 18 20

A
U

C
 v

a
lu

e

number of training samples

simple
advanced, C=0

advanced, C=0.5

(a) AUC for k=22

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 4 6 8 10 12 14 16 18 20

A
U

C
 v

a
lu

e

number of training samples

simple
advanced, C=0

(b) AUC for k=10

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2 4 6 8 10 12 14 16 18 20

A
U

C
 v

a
lu

e

number of training samples

simple
advanced, C=0.5

(c) AUC for k=43

Figure 4.9: AUC values for the different number of training samples, discretisation
methods and clusters per sample (k)

104

CHAPTER 4. HIGH-SPEED OUTLIER DETECTION FOR
HETEROGENEOUS SECURITY EVENTS

during execution of Hybrid Outlier Detection (first, during feature discretisation,
then during clustering of training samples and later for clustering data subsets
during model application phase).

For each number of training samples, the measurements of AUC value was per-
formed with different feature discretisation methods (simple and advanced). On
the samples created with simple discretisation, an optimal number of clusters was
k = 22 (Figure 4.9(a)), whereas when the advanced discretisation was used, the
optimal number of clusters was k = 10 for C = 0 ((Figure 4.9(b))) and k = 43 for
C = 0.5 (Figure 4.9(c)). To compare discretisation methods with each other, the
Hybrid Outlier Detection was also applied on the data using advanced discretisa-
tion and k = 22, as well as using k = 10 and k = 43 and simple discretisation.

Figures 4.9(a)-4.9(c) prove that advanced discretisation allows reaching higher
AUC values on average. For example, with k = 22 and advanced discretisation,
the Hybrid Outlier Detection reaches average AUC value of 94.2%, whereas with
simple discretisation the average AUC value is 92.9%. For k = 10, the average
AUC value equals 91% and 87% with advanced (C = 0) and simple discretisa-
tion correspondingly. For k = 43, the average AUC value is 93.8% for advanced
discretisation (C = 0.5) and only 91% when using simple discretisation.

The results also prove that the Hybrid Outlier Detection is able to identify
outliers even when trained on the relatively small subset of the data (2 or 4 training
samples with 10,000 records each, which is 5-10% of the data set size). Indeed,
with 4 training samples, k = 22 and advanced discretisation with C = 0.5, the
AUC value is 98.4%. This value is comparable to other existing unsupervised
outlier detection methods evaluated on the same data set. For example, Goldstein
et al. [152] evaluated a number of such methods with AUC values between 73.7
and 99.9% on KDD Cup 1999 data set.

4.4 Chapter summary

In this chapter, the existing classical outlier detection algorithm was reviewed to
propose the various improvements for modern unsupervised outlier detection meth-
ods. These improvements result in two new outlier detection algorithms, namely
Universal Outlier Detection (defined in Section 4.2.5) and Hybrid Outlier Detection
(described in Section 4.3.1). Both algorithms were tested on different data sets,
including real Windows Event data set with 123 million events from the multina-
tional enterprise. The Hybrid Outlier Detection was also evaluated on KDD Cup
1999 data and compared with other existing approaches for unsupervised outlier
detection.

The results of the evaluation and comparison show the clear benefits of the
proposed algorithms. In particular, the Hybrid Outlier Detection does not require

105

4.4. CHAPTER SUMMARY

feature preprocessing, produces ranked clusters of outliers and works on any type
of the data. The performed tests also show that the techniques offered in this thesis
allow the proposed algorithms to reach higher performance on the same data. For
example, thanks to the training on randomly selected data subsets, the Hybrid
Outlier Detection is approximately 7 times faster than Universal Outlier Detection
(which is, in turn, based on the classical k-means outlier detection, similar to the
one implemented in SAP HANA PAL). Thanks to the special techniques, such as
advanced feature discretisation and conversion of the features into the vector space
model, the Hybrid Outlier Detection also has high effectiveness, which was proved
on different data sets. Trained on 5-10% of the data set it shows high efficacy, e.g.
AUC of 98.4% on KDD Cup 1999 data.

Taking into account all evaluation results provided in this chapter, the Hybrid
Outlier Detection can be claimed as a most relevant generic unsupervised outlier
detection approach for the analysis of Big Security Data within a SIEM system.

However, besides the generic outlier detection methods, SIEM systems some-
times need to detect special types of outliers, for example, the activity of intruders
that do not produce any authentication failures or other errors traces in the log
messages (which is therefore hard to detect with generic methods). The next chap-
ter focuses on such cases and proposes the anomaly detection method specially for
the analysis of user behaviour.

106

Chapter 5

Outlier detection for malicious
user behaviour without access
violation23

Modern SIEM and IDS systems usually concentrate on various hacking scenarios,
including access violation cases, policy violations, protocol anomalies and suspi-
cious network traffic [160, 29, 30, 161, 162, 163, 26]. The existing solutions for the
user behaviour analysis are also rather focused on specific use cases, such as local
user activity or VPN access [164, 156, 165]. The malicious user behaviour that
does not trigger these scenarios often stays out of focus for SIEM and IDS. For
example, in case of espionage, the insider (or intruder who uses the stolen identity
of the employee, including the password) can try to collect the company data as
silently as possible, accessing only the resources he/she is authorised to access.
In this case, his/her actions can stay undetected by SIEM and IDS. The Data
Leak Protection systems can also have difficulties in detection of such espionage
cases since they are generally focused on the data itself and usually do not control
data flows within the enterprise [166, 167]. Then, to stay undetected by a Data
Leak Protection system, an attacker can try to avoid large data transfers to the
untrusted locations.

Thus, detecting such cases of malicious user behaviour is a rather complex task,
especially in the large enterprises with tens of thousands of employees. The existing
anomaly detection methods based on user behaviour models have high precision
(more than 90%) but are rather sophisticated and too heavy for large data volumes.
The examples of these models are Markov chains and Hidden Markov Models
[96, 168], Principal Component Analysis [95, 169], Support Vector Machines and
Neural Networks [27, 75, 170], and finally hybrid techniques [90, 171]. All in all,

23The results described in this chapter have been published as [159, 123].

107

5.1. SCENARIO OF MALICIOUS USER BEHAVIOUR WITHOUT ACCESS
VIOLATION

the existing solutions are either too specific and analyse a particular scenario, data
source or system, or do not consider the described espionage scenario at all.

In this chapter, the case of malicious user behaviour without access violation
is analysed in details to develop the high-performance user behaviour model, suit-
able for the analysis of Big Security Data. To develop such a model, the described
scenario was implemented using the special simulation tool. Based on this sim-
ulated scenario, the high-performance and lightweight user behaviour model was
proposed. Next, this model was tested on both simulated and real data. The de-
tailed description of the scenario, user behaviour model and the data are provided
in the sections below.

5.1 Scenario of malicious user behaviour without

access violation

In order to implement the described scenario and generate the simulated data set,
the scenario itself should be defined with more details. These details should cover
the “normal” case, when nothing suspicious happens in the company’s network,
as well as “abnormal” case, when, for example, stolen credentials of an employee
are utilised to collect all information available in the company’s network, but
without access violations. Both the benign and malicious user behaviour cases are
presented with necessary details in Figures 5.1 and 5.2.

Both Figures 5.1 and 5.2 describe the network with two user groups: users
(Alice, Bob and Carol) and administrators (Administrator). To access any of the
servers, the user first needs to enter credentials on his/her PC. All users have
rights to logon on any server or computer in the network, however, only Server 1
is accessed by users in the normal case. Different to this, the Server 2 is normally
never used by anybody except administrators.

In the “abnormal” case (shown in Figure 5.2), the user Bob accesses both
Server 2 and Admin PC, which were never used before neither by him nor by his
user group. Although he is authorised (according to the domain policy) to use
these resources, such case should be classified as malicious. On the other hand,
when Alice accesses Server 1, her behaviour should be classified as benign due to
the fact that other users from her group were using the same server before.

Both cases of “normal” and “abnormal” user behaviour were implemented using
a special simulation tool in the virtual testbed with Windows domain. The testbed
and the simulation tool are described in the section below.

108

CHAPTER 5. OUTLIER DETECTION FOR MALICIOUS USER
BEHAVIOUR WITHOUT ACCESS VIOLATION

Figure 5.1: Example of normal user behaviour in the network

Figure 5.2: Example of malicious user behaviour in the network

109

5.2. SIMULATION OF USER BEHAVIOUR FOR EVALUATION PURPOSES

5.2 Simulation of user behaviour for evaluation

purposes

To simulate the described user behaviour scenario, the testbed with virtual ma-
chines running Microsoft Windows 7 (for the user and administrator PCs), Win-
dows Server 2003 (for Server 1 and Server 2) and Windows Server 2012 (for Do-
main Controller) was created on the VMware ESXi hypervisor [137]. The Remote
Desktop [135] was enabled on all virtual machines, whereas the Domain Controller
virtual machine was also running DHCP, DNS and Active Directory services. The
simulation of user activities was implemented utilising VNC [172] remote access
functionality supported by VMware ESXi. The special simulation tool was imple-
mented in Python (based on Python Imaging Library [173]) to execute user actions
through VNC using screen recognition functions [174]. Thus, the simulation soft-
ware connects in parallel to multiple virtual machines via VNC and recognises the
screen state. Based on the screen state and scenario being executed, the simulation
tool is able to lock or unlock the Windows session (by sending key combinations
or typing the password into the corresponding input field), as well as to run a
PowerShell [175] script, which is placed on the Desktop of each virtual machine in
advance. This script, in turn, connects to another virtual machine over Remote
Desktop according to the pre-defined scenario.

The collection of user behaviour events is organised in the same way as de-
scribed in Section 3.4.1. The enabled Audit policy allows the Domain Controller
to receive all Windows Events related to user actions, such as logon and logoff
events.

The simulation tool is controlled with scenario files containing the actions to
be executed in order. The overview of the scenario files format is presented in
Figure 5.3. All scenarios with the schema shown in Figure 5.3 are stored in the
.csv24 files. The main file is the ‘Scenario’, which describes how many times and
for how long each user should login on different computers. All entries from this
file are executed in parallel, but can lock each other (i.e., only one user can access
one computer at the same time). Besides this, each entry can be executed several
times, if defined in the ‘TIMES’ field.

The computers, where users log in, are defined in the ‘Computers’ file, which
contains all data needed to establish the VNC connection to the virtual machine:
hostname of the VMware ESXi hypervisor, password and port (different for each
virtual machine).

The simulation tool also supports execution of “inner scenarios” that are used
if the user should perform a remote connection from the computer where he/she
is logged in to another computer or server. The descriptions of inner scenarios are

24Comma-separated values.

110

CHAPTER 5. OUTLIER DETECTION FOR MALICIOUS USER
BEHAVIOUR WITHOUT ACCESS VIOLATION

Figure 5.3: Scenario schema used in simulation software

stored in the ‘Inner scenario’ file and contain parameters for the PowerShell script
used to establish the Remote Desktop connection to another VM, as well as the
time of the Remote Desktop session. During the execution of the inner scenario,
a user still holds the lock for his/her computer.

The use cases of benign and malicious behaviour described in Section 5.1 were
simulated according to the scenario files provided in Tables 5.1-5.3 below.

Table 5.1: Hosts used for simulation of user behaviour

ID HOST PORT HOST PASSWORD OS DESCRIPTION
1 192.168.42.20 5908 <PC1pass> win7 PC1
2 192.168.42.20 5905 <PC2pass> win7 PC2
3 192.168.42.20 5906 <PC3pass> win7 PC3
4 192.168.42.20 5901 <PC4pass> win7 Admin PC

111

5.2. SIMULATION OF USER BEHAVIOUR FOR EVALUATION PURPOSES

Table 5.2: Simulation scenario containing malicious user behaviour

ID COMP. ID USER PASSWORD SESSION TIME

INNER
SCE-

NARIO
ID

TIMES

1 4 Administrator <adminpass> 300 1 15
2 4 Administrator <adminpass> 200 4 10
3 4 Administrator <adminpass> 300 5 20
4 4 Administrator <adminpass> 215 0 30
5 1 Alice <pass1> 205 0 40
6 1 Alice <pass1> 205 6 40
7 2 Bob <pass2> 195 2 66
8 3 Carol <pass3> 300 3 45
9 2 Bob <pass2> 220 0 30
10 3 Carol <pass3> 200 0 44
11 1 Alice <pass1> 205 6 40
12 4 Administrator <adminpass> 300 0 11
13 2 Bob <pass2> 245 7 31
14 1 Alice <pass1> 250 0 22
15 4 Bob <pass2> 200 0 25

Table 5.3: Inner simulation scenario containing malicious user behaviour

ID HOST USER PASSWORD SESSION TIME
1 10.10.21.1 Administrator <adminpass> 235
2 10.10.21.110 Bob <pass2> 240
3 10.10.21.110 Carol <pass3> 250
4 10.10.21.110 Administrator <adminpass> 250
5 10.10.21.109 Administrator <adminpass> 230
6 10.10.21.110 Alice <pass1> 229
7 10.10.21.109 Bob <pass2> 230

112

CHAPTER 5. OUTLIER DETECTION FOR MALICIOUS USER
BEHAVIOUR WITHOUT ACCESS VIOLATION

Table 5.4: Scenario for simulation of normal user behaviour

ID COMP. ID USER PASSWORD SESSION TIME

INNER
SCE-

NARIO
ID

TIMES

1 4 Administrator <adminpass> 300 1 15
2 4 Administrator <adminpass> 200 4 10
3 4 Administrator <adminpass> 300 5 20
4 4 Administrator <adminpass> 215 0 30
5 1 Alice <pass1> 205 0 40
6 2 Bob <pass2> 195 2 66
7 1 Bob <pass2> 199 0 6
8 3 Carol <pass3> 300 3 45
9 1 Carol <pass3> 280 0 25
10 2 Bob <pass2> 220 0 30
11 3 Carol <pass3> 200 0 44
12 4 Administrator <adminpass> 300 0 11
13 1 Alice <pass1> 250 0 22

Table 5.5: Inner scenario for simulation of normal user behaviour

ID HOST USER PASSWORD SESSION TIME
1 10.10.21.1(Domain Controller) Administrator <adminpass> 235
2 10.10.21.110 (Server 1) Bob <pass2> 240
3 10.10.21.110 (Server 1) Carol <pass3> 250
4 10.10.21.110 (Server 1) Administrator <adminpass> 250
5 10.10.21.109 (Server 2) Administrator <adminpass> 230

The scenarios of benign and malicious user behaviour described in Tables 5.1-
5.3 were executed with the simulation tool. During the execution time, 38,568
Windows Events were collected by the Domain Controller. However, to proceed
with the analysis of user behaviour, these events need to be filtered first, as de-
scribed in the next section.

113

5.2. SIMULATION OF USER BEHAVIOUR FOR EVALUATION PURPOSES

5.2.1 Filtering user behaviour data

For analysis of user behaviour, the special filtering was applied to focus on the
logon-related events only. Initially, only the following Windows Events related to
user behaviour were selected:

• 4768 “A Kerberos authentication ticket (TGT) was requested”

• 4771 “Kerberos pre-authentication failed”

• 4776 “The domain controller attempted to validate the credentials for an
account”

• 4624 “An account was successfully logged on”

• 4625 “An account failed to log on”

The selected events capture all events related to user login and logout for the
whole Windows domain. However, these events still need to be cleaned up due to
specifics of Windows logging process. The clean-up steps could be described as
follows:

• Filter out all events with target user name ‘DWM-2’. Events logged for
DWM-2 user just reflect Desktop Window Manager activity. Even if this
event is connected to the user logon process, there should be another logged
event (4624) containing complete information about the real user.

• Filter out all events with ID 4624 and Security ID ‘NULL’. Such events are
not related to the user logon; rather they represent some local system activity
[176].

• Filter out all events with logon type 5. Logon type 5 means start of some
service and is not related to user logon.

• Filter out all events with logon type 3. Logon type 3 reflects Windows
network activity and is not directly related to user logon.

• Filter out all events with Impersonation level ‘impersonation’ and without
workstation data. It is not necessary to process such events since there is
always a duplicated event containing workstation data.

• Filter out all other events where the subject user name is ‘NULL’ and target
user name is ‘NULL’ or does not contain one of the real domain users. Such
events do not need to be processed as well since they are caused by the
normal system activity and are not related to any real domain users.

114

CHAPTER 5. OUTLIER DETECTION FOR MALICIOUS USER
BEHAVIOUR WITHOUT ACCESS VIOLATION

The data set containing these filtered events was used to develop a novel high-
speed outlier detection approach for the analysis of user behaviour, which is de-
scribed in the section below.

5.3 Outlier detection for user behaviour data

Since the data set mainly contains logon events, the user behaviour model should
be based on such events. To create this model, the data are divided into equal time
intervals. Next, the number of logon events is calculated for each {user,workstation}
pair (tuple) per time interval. The optimal time interval should be selected heuris-
tically, since each user behaviour data set can have different properties, such as
the number of users in the company, time range, user activity (number of logon
events per day) and so on. For small companies with 10-20 users that access 1 or
2 servers a couple of times per day, the optimal time interval could be one or more
days. For large enterprises with thousands of users and a high number of servers,
the optimal time interval can be set to several minutes, depending on user activity.
Based on the simulated data set, the time interval of 15 minutes was chosen as
optimal.

The resulting statistics for the number of logon events for each
{user, workstation} tuple per time interval is used to create the user behaviour
model. Since the data describe the discrete number of logon events per time
interval, it is possible to suggest that it could be modelled with the Poisson’s
distribution, which is widely used for modelling user arrival events and network
traffic [177, 178]. The Poisson’s model is also quite simple (see Formula 5.1),
which reduces the computational complexity of the outlier detection and allows
the high-speed event processing.

P (X = x) =
e−λλx

x!
(5.1)

However, for the simulated data set, the variance of the number of logon events
per time interval is higher than the mean for the most of {user,workstation} tuples,
which does not allow direct application of the Poisson’s model. In the real data25,
such cases of over-dispersion can be mixed with series of logon events that follow
the Poisson distribution. To handle this problem, the negative binomial model
(which is the generic case of the Poisson model and covers the over-dispersion
cases, when the variance is higher than mean) can be applied, according to the
Formula 5.2.

25The real data set will be described in details later in this chapter.

115

5.3. OUTLIER DETECTION FOR USER BEHAVIOUR DATA

P (X = x) =
Γ
(
x+ µ2

σ2−µ

)
x! ∗ Γ

(
µ2

σ2−µ

) ∗ (µ
σ2

)(µ2

σ2−µ

)
∗
(
σ2 − µ
σ2

)x
(5.2)

Although the negative binomial distribution also covers the cases when mean
equals to variance, it still makes sense to model such event series with Poisson’s
formula to process the corresponding event series at a higher speed.

To apply the outlier detection, the data are divided into training and testing
subsets (normal and abnormal scenarios). Both data sets are divided into time
intervals to calculate the number of events for each {user,workstation} tuple. Next,
the mean and variance are learned from the training data set and then applied to
the testing data set to calculate the probability for each number of logon events
there. This approach is described in the Algorithm 3 in details.

Algorithm 3 Outlier detection users(thresholduser)

1: for all {user,workstation} from training data do
2: µuser,workstation = average number of logon events per time interval
3: σ2

user,workstation = E[(X − µ)2]
4: end for
5: for all time interval in testing data do
6: for all {user,workstation} from testing data do
7: if σ2

user,workstation > µuser,workstation then
8: Probability({user,workstation}) =

= PoissonsProbability({user,workstation},µuser,workstation)
9: else

10: Probability({user,workstation}) =
= NegativeBinomialProbability(
{user,workstation},
µuser,workstation,
σ2

user,workstation

)
11: end if
12: if Probability({user,workstation}) < thresholduser then
13: mark {user,workstation,time interval} as anomaly
14: end if
15: end for
16: end for

Thus, in the lines 1-4 of the Algorithm 3, the mean and variance are identified
for all {user,workstation} tuples. Next, all time intervals for the testing data are

116

CHAPTER 5. OUTLIER DETECTION FOR MALICIOUS USER
BEHAVIOUR WITHOUT ACCESS VIOLATION

processed in lines 5-16. Each {user,workstation} tuple from each time interval
is evaluated in lines 6-15. First, in line 7, the type of the learned logon event
distribution is checked by comparing mean with variance. If mean is equal or
slightly less than variance26, the probability of a number of logon events within the
time interval is calculated according to Poisson distribution in line 8, otherwise, it is
calculated according to negative binomial distribution in line 10. If the probability
is less than the predefined threshold, the tuple {user,workstation,time interval} is
marked as an anomaly in line 13.

This approach detects an anomalous number of events related to user logon.
However, all {user,workstation} pairs are evaluated individually, which will result
in the misclassification of benign cases, when a user accesses the resource that was
regularly used not by him/her, but by his/her user group (like described in Section
5.1). To classify such user behaviour cases correctly, the two-step probability check
is introduced in the section below.

5.3.1 Two-level probability check

To model both user and group behaviour, the Algorithm 3 can be applied twice
to the data. First, instead of modelling events for {user,workstation} tuples,
{group,workstation} tuples are analysed to identify anomalous (or suspicious)
user groups. The suspicious groups are the {group,workstation,time interval} tu-
ples with the probability less than the pre-defined threshold, which means that
the number of events from the particular group to the particular workstation is
abnormal within the particular time interval (according to the Poisson or negative
binomial distribution). The Algorithm 3 applied to user groups is presented below
as Algorithm 4.

Second, the same algorithm is applied to {user,workstation} tuples. However,
the probability of a number of events is calculated only for users from suspicious
groups. Thus, it becomes possible to identify the users which caused the abnormal
number of events for each suspicious {group,workstation,time interval} tuple. This
modified version of Algorithm 3 is described as Algorithm 5 below.

Different to the Algorithm 3, Algorithm 5 calculates the probability of a number
of events only for those {user,workstation} tuples, where the user belongs to the
suspicious user group (see line 6).

26The data set does not contain {user,workstation} tuples where the mean value is less than
90% of variance value.

117

5.3. OUTLIER DETECTION FOR USER BEHAVIOUR DATA

Algorithm 4 Outlier detection groups(thresholdgroup)

1: for all {group,workstation} from training data do
2: µgroup,workstation = average number of logon events per time interval
3: σ2

group,workstation = E[(X − µ)2]
4: end for
5: for all time interval in testing data do
6: for all {group,workstation} from testing data do
7: if σ2

group,workstation > µgroup,workstation then
8: Probability({group,workstation}) =

= PoissonsProbability({group,workstation},µgroup,workstation)
9: else

10: Probability({group,workstation}) =
= NegativeBinomialProbability(
{group,workstation},
µgroup,workstation,
σ2

group,workstation

)
11: end if
12: if Probability({group,workstation}) < thresholdgroup then
13: mark {group,workstation,time interval} as suspicious
14: end if
15: end for
16: end for

118

CHAPTER 5. OUTLIER DETECTION FOR MALICIOUS USER
BEHAVIOUR WITHOUT ACCESS VIOLATION

Algorithm 5 Outlier detection users(thresholduser,suspicious groups)

1: for all {user,workstation} from training data do
2: µuser,workstation = average number of logon events per time interval
3: σ2

user,workstation = E[(X − µ)2]
4: end for
5: for all time interval in testing data do
6: for all {user,workstation} from testing data where

{user group,workstation,time interval} is suspicious do
7: if σ2

user,workstation > µuser,workstation then
8: Probability({user,workstation}) =

= PoissonsProbability({user,workstation},µuser,workstation)
9: else

10: Probability({user,workstation}) =
= NegativeBinomialProbability(
{user,workstation},
µuser,workstation,
σ2

user,workstation

)
11: end if
12: if Probability({user,workstation}) < thresholduser then
13: mark {user,workstation,time interval} as anomaly
14: end if
15: end for
16: end for

119

5.3. OUTLIER DETECTION FOR USER BEHAVIOUR DATA

Thus, the offered approach is able to identify an abnormal number of events for
{user,workstation} tuples. Besides that, the algorithm also takes into account the
group behaviour and uses it to correctly classify the cases when the user connects
to the workstation, which was previously used only by his/her group, but not by
him/her directly.

This approach for detection of user anomalies is based on the predefined
thresholduser and thresholdgroup that are relatively hard to determine without
the knowledge about each particular data set. The next section describes the au-
tomatic detection of the optimal values for both thresholds, which simplifies the
application of the algorithm to different data sets.

5.3.2 Optimal threshold detection

To detect the threshold automatically, the same method as mentioned in Section
4.2.4 can be used. To apply this method, the number of suspicious groups should
be calculated for different threshold values.

To perform this calculation, the maximal probability of a number of events for
each {group,workstation} tuple within the time interval is identified based on the
training data. Depending on the type of the distribution for each particular tuple,
either Poisson or negative binomial distribution is used to calculate this probability
value. The highest probability value is used as upper bound for the possible
threshold value. Then, N threshold values between 0 and highest probability/2
are used in the Algorithm 4 to find out the number of detected suspicious groups
for each threshold value. Finally, the Algorithm 1 from Section 4.2.4 is applied to
identify the optimal threshold value.

The optimal values for thresholduser can be identified in a similar way. How-
ever, the Algorithm 5 requires the list of suspicious user groups, and only calculates
the probabilities for the users from those groups. To include all users into the op-
timal threshold calculation, the Algorithm 3 should be used instead.

Based on these optimal threshold values, all {user,workstation} tuples with
the probability of the number of logon-related events below the threshold will be
marked as anomalies. After that, the calculated probability will be used to rank
anomalous events, as described in the next section.

5.3.3 Ranking of anomalous user behaviour cases

The output of the proposed outlier detection will contain all anomalous
{user,workstation} tuples ranked by the probability of the number of events within
the time interval in ascending order. Thus, the events with the lowest probability
will be placed on the top of the algorithm’s output to attract the attention of the

120

CHAPTER 5. OUTLIER DETECTION FOR MALICIOUS USER
BEHAVIOUR WITHOUT ACCESS VIOLATION

operator of the security system. However, it is important to distinguish between
two types of anomalies by their probability score.

The first type are events with the probability equal to zero. The events with
zero probability arise due to the fact that the proposed outlier detection requires
the training data (which can be simply the part of the data set being analysed27 or
simulated data following the “normal” user behaviour scenario). The probability
equal to zero means that the anomalous {user,workstation} tuple never appeared
in the training data. Depending on the analysed data set and the training data,
such events could either be the false positive alerts (new benign connections of users
to workstations) or reflect an attack or insider activity (new connection between
user and workstation that was not expected by the security policy and therefore
was not modelled or included into the training data).

The second type of the anomalies are events with a probability higher than
0 (but still less than the threshold). The low probability value means that the
{user,workstation} tuple was included into the training data set, but the data
contains an abnormal number of logon-related events, which was very different
from the training data.

To make the difference between these two types of the anomalies clear for the
operator of the system, the algorithm’s output contains two lists with anomalies:
one with events that have zero probability, and another one with events that have
a probability higher than zero.

Thus, the proposed outlier detection for user behaviour is able to automatically
determine optimal thresholds, take into account both group and user behaviour
and distinguish between two distribution types for each {group,workstation} or
{user,workstation} tuple. The ranked output helps to highlight the most suspicious
events to the security expert. The effectiveness and performance of the proposed
method are evaluated on both simulated and real data in the sections below.

5.4 Threats detected in the simulated data

To check the detection rate of the proposed set of algorithms, the simulated data
set (please see Sections 5.1 and 5.2 for details) is reviewed. Figures 5.4 and 5.5
show the distribution of filtered (according to the Section 5.2.1) Windows Events
related to user behaviour for training and testing subsets (normal and abnormal
scenarios) correspondingly.

The distribution of user behaviour events in both Figures is shown as bubbles,
where the size of the bubble represents the number of events for {user,workstation}

27In this case, the offered outlier detection still will be unsupervised according to the classifi-
cation from Section 2.2.5.

121

5.4. THREATS DETECTED IN THE SIMULATED DATA

Server_1

Server_2

Domain controller

Admin PC

PC1

PC2

PC3

Administrator Alice Bob Carol

w
o

rk
s
ta

ti
o
n

user

Figure 5.4: Distribution of user logon events in the training data set

tuple (users and workstations are marked on the x- and y-axis correspondingly).
The bubbles are logarithmically scaled.

The outlier detection learned the mean and variance from the training data
and then was applied on the testing data. The {user,workstation} tuples that
were marked as anomalous due to the low probability of the number of events are
shown in Figure 5.6.

The results presented in Figure 5.6 include all user behaviour events for user
Bob connecting to Admin PC and Server 2, which are malicious according to the
original scenario (see Section 5.2 for details). Besides this, the connection of user
Alice to Server 1 was not marked as anomalous, since this server was used by
the user group of Alice in the training data. Thus, the offered outlier detection
algorithm was able to identify all malicious cases of user behaviour and produced
no false positive alerts. This proves the high effectiveness of the offered approach
and, in particular, the two-step probability check.

To prove that the proposed algorithm is also effective on the real data, it was
applied on the Windows Event data set from Section 4.3.2, as described below.

122

CHAPTER 5. OUTLIER DETECTION FOR MALICIOUS USER
BEHAVIOUR WITHOUT ACCESS VIOLATION

Server_1

Server_2

Domain controller

Admin PC

PC1

PC2

PC3

Administrator Alice Bob Carol

w
o

rk
s
ta

ti
o
n

user

Figure 5.5: Distribution of user logon events in the testing data set

5.5 Application of the proposed outlier detection

on the real data

The Windows Event data set from Section 4.3.2 was selected since it contains the
events reflecting the user behaviour. Even though these events are mainly related
to the automated activity of the user accounts, the traces of this automated activity
can be still used for the outlier detection. However, the offered approach should
be adopted to better fit to the real data. Since the monitored network covered
by the real data set is much bigger (in terms of a number of users and hosts)
than the simulated one, it could be reasonable to increase the number of features
for the outlier detection. The additional features are the time of day and the
day of the week (that can help to identify user activity in the unusual time), as
well as the source IP address (to distinguish between the logon-related events of
the same user coming from different computers and/or locations). Thus, instead
of {user,workstation} tuples, the {source,user,day,hour,destination} tuples will be
used for the outlier detection on the real data.

Besides the additional features, the outlier detection cannot be applied with
proposed two-step probability check to the data set as is, since the Windows Event

123

5.5. APPLICATION OF THE PROPOSED OUTLIER DETECTION ON THE
REAL DATA

Server_2

Admin PC

Bob

w
o

rk
s
ta

ti
o
n

user

Figure 5.6: Detected user behaviour anomalies

data set does not contain the information about the user groups. So, to analyse
this data set, the original Algorithm 3 from Section 5.3 was used.

Next, to apply the proposed outlier detection, it is important to check that the
real data follows either Poisson or negative binomial distribution. In this data set,
63% of {source,user,day,hour,destination} tuples have a distribution of the number
of logon-related events per time interval with variance higher than mean by more
than 1.5 times, which can be modelled with the negative binomial distribution. For
the rest of these tuples, the variance is slightly less than mean (0.9µ < σ2 < µ)
and the Poisson distribution can be applied for the probability calculation.

Finally, the real data also requires the extra filtering in addition to one pro-
posed in Section 5.2.1. Due to the algorithm specifics, the part of the data set
should be used to train the user behaviour models. In this case, all user be-
haviour events (combinations of {source,user,day,hour,destination}) that were not
captured by the training data will be automatically classified as anomalies. Due to
specifics of this particular data set, it contains a lot of events that were produced
by users or computer accounts that were active for just several days within the
3-months period. To avoid the enormously high number of false positive alerts
caused by such issues, the outlier detection will be executed only for those users
and computer accounts that were active for at least 45 days within 3 months cov-

124

CHAPTER 5. OUTLIER DETECTION FOR MALICIOUS USER
BEHAVIOUR WITHOUT ACCESS VIOLATION

ered by the data set. After this extra filtering, there are 618,043 events covering
679 unique user accounts. However, this filtered data subset still contains ≈29,000
unique combinations of {user,source,destination} and ≈191,000 unique combina-
tions of {user,source,destination,weekday,dayhour} features. This fact makes it
very complicated to apply the proposed outlier detection to the data. However,
the outcomes of the outlier detection prove that it is still capable of producing
explainable results. The statistics for the outliers are presented in Table 5.6.

Table 5.6: Statistics for both types of detected issues in the data set

Type of issue detected Number of events/issues
Events with 0 probability (IP address
change, destination host change)

675 of 679 users, 184,521
events

Events with a probability less than the opti-
mal threshold (unexpected number of logon
events at destination host at specific time/-
date)

328 of 679 users, 56,997
events

Table 5.6 shows the number of events for both types of outliers (described in
details in Section 5.3.3). Altogether, there are 241,518 events marked as anomalies,
which is a relatively high value. The reason for such high number of outliers
can be found in the data set specifics. The high number of unique combinations
in {user,source,destination,weekday,dayhour} tuples and constantly changing IP
addresses (due to the settings of DHCP server), as well as changes of destination
hosts (that are not malicious on their own) created a lot of events that were new for
the trained models. However, since all such records have 0 probability, they can be
easily filtered out by the operator of the security system. Of course, these filtered
events can also contain some unexpected connections that could be malicious.
Based on the available data set, it seems impossible to distinguish such events from
noise created due to IP address changes and benign unique connections. However,
if the model can be trained over the longer time period and include the user group
information, the noise level should be reduced, which would allow detecting such
events more easily.

The rest of 56,997 anomalies with low probability is still a high number, even
though the optimal threshold value was automatically set to 0.09% (which is rel-
atively low). These events are classified as anomalies mainly due to the abnormal
number of logon events. The fact that the output is ordered (ranked) by the prob-
ability of the number of logon events helps the operator of the security system to
check the most suspicious anomalies placed on the top of the list. By checking the

125

5.6. CHAPTER SUMMARY

top of this list, two users with an average number of logon/logoff events per day
exceeded by 100 times were identified, which clearly indicates either a security or
a misconfiguration issue28. Other suspicious user behaviour cases were related not
only to the high number of logon events but also to the unusual logon time. The
first 10 users with the lowest probability are described below:

• user 1: an unusual number of logon events

• users 2-4: an unusual number of logon events on Sunday, 03:00

• users 5-9: an unusual number of logon events

• user 10: an unusual number of logon events on Wednesday, 04:00

Thus, both high number of logon events and suspicious user activity in the
night time were identified and highly ranked by the proposed outlier detection
algorithm, which proves its effectiveness.

To estimate the performance of the algorithm, it was executed on the same
hardware, as described in Section 4.3.4. Utilising 40 CPU threads, the analysis
of logon-related events took 14 minutes (including data selection and filtering
procedures), which can be considered a good result taking into account the full
size of the data set (as described in Section 4.3.2, the full data set contains 123
million events that need to be processed to extract 618,043 relevant user behaviour
events suitable for the analysis).

5.6 Chapter summary

The User Behaviour Outlier Detection algorithm developed in this chapter solves
the problem of detecting malicious user behaviour cases without access violation.
The offered approach was able to detect all attacks in the simulated data set with-
out producing any false positive alerts (thanks to the two-level probability check
described in Section 5.3.1). On the real data, the proposed algorithm demon-
strated both high effectiveness and good performance. Besides that, the optimal
threshold detection and ranking of anomalies make the offered approach easier to
apply and to parse for the operators of SIEM systems.

The application of the offered approach requires the training phase, which
would need a clean data set to learn the normal user behaviour from it. The
creation of such a data set is a rather sophisticated task, which was also addressed
in this chapter. The first option to create the clean data set is to develop a scenario

28These 2 users had approximately 1500 logon events per day, whereas the mean value was
equal to 15.

126

CHAPTER 5. OUTLIER DETECTION FOR MALICIOUS USER
BEHAVIOUR WITHOUT ACCESS VIOLATION

of normal user behaviour and use a special simulation tool to implement it. The
log messages needed for the training phase are then generated during execution
of the simulation tool. Although this approach was used to create a small data
set with both normal and abnormal scenarios for the proof-of-concept, it could be
rather complicated to create such a scenario for large enterprises with thousands
of employees. Another option to create a training data set would be cleaning
of the log messages (generated during the user activity) from attacks and other
malicious behaviour. However, to get such a cleaned data set, one should be able
to identify all attacks and malicious user behaviour cases in it, which is technically
almost impossible. Even if this option would be available, it will make the further
application of anomaly detection useless, since all attacks would be detected with
the data cleaning methods. The last option to create a training data set (which
was used in this chapter to apply the proposed User Behaviour Outlier Detection
on the real data) is to take a subset of the data to learn the model of normal
user behaviour. The main disadvantage of this approach is that all attacks and
malicious user behaviour cases from the training data subset will be learned as
normal. However, all new attacks, not included into the training subset, will still
be detected by the algorithm. The last approach can be classified as unsupervised,
since it does not require any data labels for training (please see Section 2.2.5 for
classification of machine learning approaches).

Trained on the subset of the real data, the offered unsupervised User Behaviour
Outlier Detection was able to identify several cases of suspicious user behaviour,
which were reported to the enterprise partner. Thus, the offered approach was
proved suitable for analysis of user behaviour within large enterprises and helps
to detect special cases of unusual user activity, which were not covered by SIEM
systems before.

127

5.6. CHAPTER SUMMARY

128

Chapter 6

Conclusion

Nowadays, the major challenges for existing SIEM systems are related to the huge
data volumes that these systems collect, store and analyse. The data analysis is
the most computational heavy of these tasks, due to the high complexity of data
processing techniques used in the SIEM systems. The need to process the data in a
nearly real-time or at least with high speed29 makes the application of data analysis
methods based on machine learning30 extremely complicated. At the current state
of SIEM systems, the high-speed application of anomaly detection methods was
only possible either with manual feature construction for each particular data set
and source or for limited data volumes31. Due to these circumstances, anomaly
detection approaches are not widely implemented in the modern SIEM systems,
which, in turn, leads to the limitations in data analysis options for the security
experts and operators of such systems.

This thesis solves the problem of high-speed analysis of Big Security Data in
SIEM systems. The offered solution is based on the contributions of the thesis,
such as the new architecture for SIEM system, log format for high-speed normal-
isation of security events, integration of in-memory and in-database processing
techniques and high-speed outlier detection methods. The special focus of this
thesis is given to the development of high-speed unsupervised anomaly detection
methods. The proposed Hybrid Outlier Detection has high performance, is easy
to parallelise, can be applied on the heterogeneous data (including textual and
continuous numerical features), automatically determines optimal parameters for
clustering and thresholds, returns ranked clusters of anomalies and has better ef-
fectiveness compared to other outlier detection methods. This outlier detection
method is an example of a generic algorithm that can be applied on the data with

29As mentioned in Section 3, a high-speed SIEM system should have the processing rate higher
than the event input rate.

30The data processing methods were reviewed in details in Chapter 2.
31The review of modern anomaly detection methods was provided in Section 2.2.5.2.

129

6.1. IMPLEMENTATION OF ANOMALY DETECTION IN
MODERN SIEM SYSTEMS

minimal input from the security expert or an operator of a SIEM system. Another
type of the algorithm proposed in this thesis is the User Behaviour Outlier De-
tection algorithm. Different to the generic Hybrid Outlier Detection, it solves the
previously uncovered problem of detecting malicious user behaviour that does not
cause the access violation alerts. The offered User Behaviour Outlier Detection
has a lightweight model (which ensures the high performance), automatic thresh-
old detection and returns ranked lists with outliers. The two-level probability
check covered in Section 5.3.1 reduces the number of false positive alerts for users
with group information.

The performance of both outlier detection methods proposed in this thesis al-
lows their integration into SIEM system for the purpose of high-speed processing
of Big Security Data, which brings new analysis options for security experts and
operators of SIEM systems. The section below discusses in details the integra-
tion and application of outlier detection methods, as well as their benefits and
limitations.

6.1 Implementation of anomaly detection in

modern SIEM systems

The main advantage of anomaly detection methods over the misuse detection is
that the first ones are able to detect previously unknown issues or attacks through
capturing the deviations from the system state, which is assumed normal. These
deviations are measured based on probability, score from a statistical model or
some heuristic metrics. By their nature, such probabilistic outlier scores imply the
presence of both type I and II errors, i.e. false positive and false negative alerts.
When anomaly detection is applied on Big Data, it often produces a huge number
of alerts, including both the false positives and false negatives.

To reduce the number of alerts in general, the outlier score produced by the
model should be kept and used for ranking of anomalies. In this way, the sim-
ple threshold can be used to select only the most suspicious anomalies. However,
taking into account the heterogeneous nature of Big Security Data, the optimal
threshold value varies between different data sources, time intervals and data sub-
sets. To simplify the task of the security experts and operators of SIEM systems,
it is important to automatically detect the optimal threshold value as proposed in
this thesis (please see Sections 4.2.3 and 5.3.2 for details).

Besides this, grouping of outliers into clusters also makes it easier to deal with
false positive and false negative alerts. Even though the clustering does not reduce
the number of alerts on its own, it becomes much easier for the human operator to
look at clusters of similar outliers (for example, a group of failed logon events for

130

CHAPTER 6. CONCLUSION

the same user and workstation, where only the timestamps differ) rather than to
dig through a mixture of different events placed next to each other due to similar
outlier score.

Other options for reducing the number of false positive and false negative alerts
are data specific and require special techniques that are based on the knowledge
of data analyst. An example of such technique is the two-level probability check
proposed in this thesis for User Behaviour Outlier Detection. Even though such
approaches usually have higher efficiency than the generic ones, they cannot be
easily extended to other data sources and data subsets. On the one hand, it
becomes the main limiting factor for the integration of such approaches into Big
Data processing pipeline. On the other hand, such customised approaches should
still be available for the security expert, since they take into account more data-
specific details and allow reaching higher effectiveness through focusing on the
particular data type.

Another major problem for application of anomaly detection is the processing of
textual data. Whereas the signatures can be easily applied to the textual data (for
example, capturing messages such as “ssh login failure” with regular expressions),
the anomaly detection methods try to calculate the distance or similarity between
normal system state and the potential outlier. Finding such similarity or distance
between two textual log messages is rather complicated. Therefore, the classical
solution for this problem requires knowledge about each specific data set and
source. Based on this knowledge, specific numerical features (for example, number
of failed logon events per user for Windows Events data set) can be constructed
out of textual data. However, this approach is not widely applicable on Big Data
due to the variety of data sets and data sources. In this thesis, the novel Hybrid
Outlier Detection is proposed to solve the problem of textual data processing. The
Hybrid Outlier Detection utilises one-hot encoding to convert textual features
into vector space model stored as the sparse matrix. This measure enables the
possibility to apply outlier detection methods on original fields of log messages,
such as username, IP address, etc. The thesis also solves the problem of conversion
mixed data containing both textual and continuous numerical features into vector
space model by applying customised feature discretisation method. Thus, the
proposed outlier detection supports all possible types of security-related data and
can be applied to any Big Security Data contexts.

The last but not the least issue for integration of anomaly detection techniques
into a SIEM or IDS system is the high computational complexity of these tech-
niques. The application of these methods for Big Data processing requires a lot
of resources, i.e. a high amount of CPU cores or a large volume of RAM if the
results have to be calculated in a reasonable time. However, this limitation should
not be the reason to avoid integration of such methods into security analytics

131

6.1. IMPLEMENTATION OF ANOMALY DETECTION IN
MODERN SIEM SYSTEMS

systems. According to the definition of “high-speed” from Chapter 3, a security
analytics system should be able to process the data with the speed comparable
to the event input rate. This thesis has shown that such high-speed anomaly
detection is still possible even for the Big Security Data. To reach this goal, a
number of architectural solutions are proposed in this thesis, such as in-memory
and in-database processing, or lightweight log format for event normalisation. The
more sophisticated solution requires the development of high-speed and scalable
outlier detection algorithms, which is also covered in this thesis (please see Chap-
ters 4 and 5 for details). Lastly, the operator of SIEM system can decide to apply
the heaviest anomaly detection algorithms only on selected relevant data feeds to
reduce the number of events for the analysis.

All in all, this thesis proposes to apply anomaly detection techniques in addition
to the misuse detection, and not instead of it. In REAMS, the normalised data
are first analysed using signatures (misuse detection) and then stored in the in-
memory SAP HANA database backend. Next, at the database level, the stored
data are correlated and processed using predefined SQL-based queries (which can
be also classified as a misuse detection). These queries are used to detect suspicious
events and user behaviour by ranking events according to different metrics (e.g.
top 10 users with the highest number of authentication failures; top 10 users with
high file share activity, etc.). Finally, the anomaly detection methods are applied
to identify the suspicious events that were not captured by signatures and custom
queries. The application of anomaly detection methods can be also divided into
two phases. First, the generic Hybrid Outlier Detection is executed to highlight
the most suspicious clusters of events over all data sources. Second, the data-
specific approaches such as User Behaviour Outlier Detection are applied in order
to identify more suspicious events in selected data sets.

The task of the operator of REAMS is to react on the alerts from misuse detec-
tion modules and regularly check the top of the output of the anomaly detection
modules, i.e. to prove the alerts on the most highly ranked outliers and clusters
of outliers.

The next section reviews the results detected by REAMS in real data with
both misuse and anomaly detection methods and demonstrates the add-on value
from the usage of anomaly detection methods, as well as describes the divergence
in the detected issues between different outlier detection algorithms.

132

CHAPTER 6. CONCLUSION

6.2 Overview of issues detected in the data using

different analysis methods32

The hybrid detection of attacks (with both misuse and anomaly detection meth-
ods) in REAMS is illustrated on the real data set with Windows Events, which
was described in Section 4.3.2. Some properties of the data set, such as the ab-
sence of events recorded for user interactive logon actions and a high number of
events related to the activity of computer accounts (which do not directly reflect
the activity of real users), makes the detection of real malicious activity a very
complicated task. Nevertheless, using the hybrid detection, many suspicious users
and events were identified by REAMS. The overview of these issues is provided in
Table 6.1.

Table 6.1: Types of issues detected by REAMS in the real data

N Method Type of issue detected Number of events/issues
1 Signatures Failed login brute-force attack (≥

10 failed logins by the same user)
2,784 alerts

2 Signatures Successful login brute-force at-
tack (≥ 10 failed logins by the
same user followed by successful
login)

24 alerts, 3 of which are
related to real users (non-
computer accounts)

3 Queries Failed network share access
(Event 5140)

1,483 of 330,363 network
share access events

4 Queries Logon failure (Event 4625) 2,411 users including com-
puter accounts

5 Queries Kerberos replay attack (Event
4,649)

2 events

6 Queries Users accessing hidden private
shares of other users

1,612 users

7 Hybrid
Outlier
Detection

Authentication failures for Snap-
Drive

26 of 206 events ranked as
most suspicious events (9
of 10 most suspicious clus-
ters) in the data set

8 Hybrid
Outlier
Detection

Failed network share access
(Event 5140)

422 of 1,483 events are in-
cluded in the top 15 suspi-
cious clusters

32Some of the results described in this section have been published in [123].

133

6.2. OVERVIEW OF ISSUES DETECTED IN THE DATA USING
DIFFERENT ANALYSIS METHODS

9 Hybrid
Outlier
Detection

Various authentication failures
(Events 539, 560, 4625, 4776, ...)

98% of top 100,000 suspi-
cious events

10 kNN-based
Outlier
Detection

Users with a high number of
various authentication failures
(account lock outs, Kerberos au-
thentication failures, disabled ac-
counts)

34 users including com-
puter accounts

11 kNN-based
Outlier
Detection

Users with a high number of “spe-
cial privileges assigned to new lo-
gon” messages

18 users including com-
puter accounts

12 User
Behaviour
Outlier
Detection

Events with 0 probability (IP
address change, destination host
change)

675 of 679 users, 184,521
events

13 User
Behaviour
Outlier
Detection

Events with a probability less
than the optimal threshold (unex-
pected number of logon events at
destination host at specific time/-
date)

328 of 679 users, 56,997
events

14 User
Behaviour
Outlier
Detection

Average number of logon/logoff
events per day exceeded by 100
times

2 users

Table 6.1 shows that each analytical method was able to identify some issues
or suspicious activity in the data.

An exemplary signature implemented in REAMS for detection of brute-force
attacks33 was applied at the time of data normalisation (please see Section 3.2.3 for
details). Using this signature, both unsuccessful and successful brute-force attacks
were identified (see lines 1-2 of Table 6.1). The most suspicious of detected issues
are the 3 series of failed logon events (related to non-computer user accounts)
followed by successful ones.

The queries implemented in REAMS using SAP HANA SQLSCRIPT (please
see Sections 2.3.2 and 3.2.3 for details) also captured various authentication fail-
ures, which are listed in rows 3-6 of Table 6.1. The most suspicious of these issues

33The REAMS is a prototype of a SIEM system and does not have a large signature knowl-
edge base, rather it only contains several signatures for proof-of-concept. From the exemplary
signatures, only the signature for brute-force attack detection was applicable on Windows Events
data set.

134

CHAPTER 6. CONCLUSION

are the Kerberos replay attacks and connections to the private file shares of users,
whereas logon failures and failed share accesses are the results of misconfiguration
in the Windows domain policies.

The anomaly detection methods were applied after misuse detection to search
for suspicious events that were identified neither by signatures nor by custom
queries implemented in REAMS. First, the generic outlier detection method (Hy-
brid Outlier Detection) was executed. The detected issues shown in lines 7-9 of
Table 6.1 partly overlap with the issues identified using queries and signatures.
E.g. failed network share access cases were detected with both queries and Hybrid
Outlier Detection. The Hybrid Outlier Detection also highlighted various authen-
tication failures (line 9 of Table 6.1), whereas some of them were already captured
with queries and signatures (lines 1, 2 and 4 of Table 6.1). Together with the
fact that the 98% of top 100,000 suspicious events from the output of the outlier
detection are authentication failures, it proves that the proposed method is able to
identify abnormal activity in the data34. The Hybrid Outlier Detection also iden-
tified many events that would stay undetected otherwise, including authentication
failures for SnapDrive storage management software described in line 7 of Table
6.1. These events are very rare for the data set (206 of 123 million events) and
were not highlighted by signatures or queries due to their relatively small volume.

The next anomaly detection method applied on the data set was the kNN-based
Outlier Detection. This method also detected various authentication failures (lines
10 and 11 of Table 6.1), but focused more on the specific subtypes of authentication
failures, such as, for example, “special privileges assigned on logon”. The results
from this outlier detection method are also partly overlapping with the results of
signatures, queries and Hybrid Outlier Detection. For example, 22 of 56 suspicious
users were also identified by Hybrid Outlier Detection35. However, the specific
types of authentication failures were not always detected by other methods (due
to the lack of specific signatures or the probabilistic nature of Hybrid Outlier
Detection), which makes this type of anomaly detection valuable for analysis of
Windows Events.

Finally, the User Behaviour Outlier Detection was used to identify suspicious
users without access violation (please see Section 5.5 for details). The results
from this type of anomaly detection include two types of outliers (described in
details in Section 5.3.3), which are listed in lines 12-13 of Table 6.1. The User
Behaviour Outlier Detection highlighted several very suspicious cases of a high
number of logon events at the unusual time. This method also allowed to identify
2 users with unusually high activity (100 times more logon/logoff events per day,

34Please see Section 4.3.3 for details on issues detected in the Windows Events data set with
Hybrid Outlier Detection.

35Please see Section 4.3.5 for details.

135

6.2. OVERVIEW OF ISSUES DETECTED IN THE DATA USING
DIFFERENT ANALYSIS METHODS

compared to the average value for all users), which is mentioned separately in line
14 of Table 6.1.

Thus, both misuse and anomaly detection methods produced the relevant re-
sults on the selected data set. Even though the results of all methods overlap
with each other, the proposed outlier detection algorithms identified a number of
issues, which would stay undetected otherwise. Due to the different focus of the
developed outlier detection methods (Hybrid Outlier Detection for generic anal-
ysis, kNN-based Outlier Detection for analysis of specific types of authentication
failures in Windows Events, User Behaviour Outlier Detection for capturing ma-
licious user behaviour without access violation), the results obtained from these
methods complement each other and enrich the detection capabilities of REAMS.

All anomaly detection algorithms have demonstrated high performance. The
Hybrid Outlier Detection processed 123 million events within 36 hours (3.4 million
events per hour). Compared to its predecessor (Universal Outlier Detection), it is
capable of processing events at 14 times higher rate (please see Sections 4.3.4 and
4.3.5 for details). The kNN-based Outlier Detection (re-implemented in this thesis)
needs the maximum of 65 hours to process 51 data views in parallel [123], whereas
the original version of this algorithm [49] was unable to run on such data set at
all, even though its implementation was included into RapidMiner [157]. Finally,
the User Behaviour Outlier Detection needs 14 minutes to filter 123 million events
and process 618,043 events (please see Section 5.5 for details), which implies the
rate of at least 2.6 million events per hour (or 527 million events per hour before
filtering), thanks to the lightweight user model proposed in this thesis. Compared
to the input rate of 60,000 events per hour (for Windows Events data set from the
large multinational company), the proposed algorithms can process the 50 times
bigger data sets at high speed without allocation of extra hardware resources.

The next section summarises the contributions of this thesis that allowed to
develop the high-speed SIEM system (REAMS) and integrate the reviewed outlier
detection methods enabling processing of Big Security Data with high performance
and accuracy.

136

CHAPTER 6. CONCLUSION

6.3 Thesis contributions

The efficient and high-speed log analytics demonstrated in the section above was
made possible despite many existing challenges for SIEM system technology (please
see Section 1.2 for details). These challenges were addressed and overcome thanks
to the contributions of this thesis that were listed in Section 1.3. These contribu-
tions are now reviewed with the focus on the technical and implementation details,
as well as the performance and accuracy improvements:

• Architecture for high-speed analysis of security events.

This thesis proposes the new architecture for the high-speed analysis of
security-related events in a SIEM system. The proposed architecture is based
on in-memory and in-database processing, as well as high-speed data normal-
isation and lightweight log format. In Chapter 3 of this thesis, the proposed
architecture is compared with classical architecture, where the data should
be retrieved from the database before processing. The performance evalua-
tion has shown that the proposed architecture is up to 6 times faster than
the classical one (on the same hardware). The performance gain is especially
high on the larger data set, which makes the proposed architecture even more
attractive for SIEM systems.

• Integration of in-memory and in-database processing technologies
into SIEM system.

To build an architecture for the high-speed analysis, both in-memory and
in-database processing techniques were integrated into the prototype of the
SIEM system (REAMS). In this thesis, the SAP HANA SQL-database [39]
was utilised as in-memory storage and in-database processing engine. All
data processed by the SIEM system were stored in the main memory of the
database. There the data were analysed with SQLSCRIPT [42] queries and
various outlier detection algorithms. These algorithms are available either
from SAP HANA PAL [40], or through R integration [41]. This solution was
validated on the replicated data set with up to 48 million records, which was
processed with different algorithms based on k-means clustering (please see
Section 3.4 for details). The comparison with classical architecture (based
on PostgreSQL database) has proved that the proposed solution has much
higher performance. On the same data set, the performance of the classical
approach — which requires retriving the data from the database — was
enough to process only 12 million events within 8 minutes, whereas the in-
memory solution processed 48 million events within 5 minutes.

137

6.3. THESIS CONTRIBUTIONS

• Evaluation of log formats for security analytics to select the best
option for high-speed normalisation of security events.

When a SIEM system stores and analyses all data in the main memory, the
optimal log format becomes extremely important for efficient data process-
ing. In this thesis, 5 different log formats36 were evaluated (according to the
developed criteria) on the Honeynet Challenge data set [127]. The analysis
(please see Section 3.2.1 for details) was performed to select the best op-
tion for the SIEM system architecture and to improve the performance of
REAMS.

• Development and evaluation of novel high-speed outlier detection
methods for SIEM system.

Besides the architecture for high-speed data processing, the data analysis
methods should also have high performance to enable the Big Security Data
processing in a SIEM system. The modern hybrid SIEM systems, such as
HPI REAMS, combine two data analysis techniques, namely misuse and
anomaly detection methods. The first ones are not computationally heavy
and can be applied on the large data volumes. The second ones require
many computational resources and are therefore not widely used for Big
Data processing in SIEM systems.

This thesis focuses on high-speed outlier detection methods and proposes the
novel Universal Outlier Detection and Hybrid Outlier Detection algorithms
(please see Chapter 4 for details), which are capable of Big Security Data
analysis. To develop these novel approaches, the original Anomaly Detection
algorithm from SAP HANA PAL was reviewed to identify and mitigate its
disadvantages. Different to PAL Anomaly Detection, the proposed Univer-
sal Outlier Detection introduces the ability to work on heterogeneous data
(including both textual/categorical and continuous numerical features) and
implements parallel processing techniques. In Universal Outlier Detection,
the categorical data are converted into the vector space model using one-hot
encoding, whereas the numerical features are first mapped into categories
using improved feature discretisation method (described in Section 4.2.1.1).
The resulting vector space is divided into subsets that are clustered in parallel
using spherical k-means to perform outlier detection on the data.

The proposed Hybrid Outlier Detection further improves the speed and accu-
racy of the Universal Outlier Detection by training an ensemble of one-class

36The evaluated formats (also reviewed in details in Section 2.3.1) are: CEE [111], CEF [16],
IODEF [15], IDMEF [112] and OLF (Object Log Format, which was jointly developed at HPI
[44]).

138

CHAPTER 6. CONCLUSION

SVMs on clusters (represented by concept vectors) from the output of spher-
ical k-means clustering.

The algorithms are evaluated on the real Windows Events data set con-
taining 123 million events after filtering (the data set is described in details
in Section 4.3.2). Both algorithms were able to detect issues in the data,
whereas the Hybrid Outlier Detection was approximately 10 times faster
and had the AUC value equal to 73.9% against 69.8% for Universal Out-
lier Detection. The Hybrid Outlier Detection was also compared with newly
re-implemented (to increase its performance) kNN-based Outlier Detection
proposed by Goldstein et al. [49]. The results have shown that the generic
Hybrid Outlier Detection was also able to detect the same issues as kNN-
based Outlier Detection. Besides this, on the KDDCup 1999 Data, the Hy-
brid Outlier Detection reaches AUC of 98.4%. Thus, the proposed Hybrid
Outlier Detection allows high-speed analysis of Big Security Data and out-
performs other existing methods without loss of accuracy.

• Development and evaluation of novel outlier detection method for
analysis of user behaviour in a SIEM system.

Besides the proposed generic high-speed outlier detection algorithms (Uni-
versal Outlier Detection and Hybrid Outlier Detection), this thesis also fo-
cuses on the special case of user behaviour without access violation. As
mentioned in Chapter 5, this scenario often stays uncovered by existing de-
tection methods. Of course, there is still a chance that generic outlier detec-
tion algorithms will be able to capture the most evident deviations in user
behaviour resulting in high numbers of log messages, even without access
violation. However, to detect most of suspicious user behaviour cases, a spe-
cial targeted outlier detection method based on the user behaviour model is
required.

This issue was thoroughly analysed in this thesis. The specified user be-
haviour case was simulated using the specially developed tool, as described
in Section 5.2. The simulated data were analysed to propose the most ef-
ficient user behaviour model capable of the high-speed data analysis. As a
result, the User Behaviour Outlier Detection was developed and proposed
in this thesis. This algorithm builds a unique user behaviour model based
on a number of user activities/connections per time interval. The algorithm
also models the behaviour of user groups to correctly classify the cases when
abnormal or unusual user actions are rather normal in the context of his/her
user group. This technique, namely the two-level probability check, signif-
icantly reduces the number of false positive alerts (please see Section 5.3.1
for details).

139

6.3. THESIS CONTRIBUTIONS

Both high performance and effectiveness of the proposed User Behaviour
Outlier Detection were proved on the same Windows Event data set, as other
outlier detection approaches. Running in parallel with 40 CPU threads, the
proposed algorithm was able to filter 123 million log messages and process
618 thousand of user-related events within just 14 minutes. The output of
the User Behaviour Outlier Detection, described in Section 5.5, shows that
the algorithm is able to identify suspicious user activities that were reported
to the partner enterprise.

• Usability and accuracy improvements for outlier detection algo-
rithms through ranking and clustering of outliers and integration
of automatic parameter detection.

All novel outlier detection methods proposed in this thesis (Universal Outlier
Detection, Hybrid Outlier Detection and User Behaviour Outlier Detection)
were developed taking into account their usability for operators of SIEM
systems. To apply outlier detection methods, an operator often needs a
specific knowledge about the data or the selected algorithm to configure var-
ious parameters and thresholds. Further, the output of the outlier detection
algorithms often contains a large number of events including many false pos-
itive alerts. In the end, outlier detection becomes a rather sophisticated and
time-consuming task for an operator of a SIEM system.

This thesis provides solutions to these usability issues. First, the proposed
generic clustering-based outlier detection algorithms utilise a method to au-
tomatically detect an optimal number of clusters whenever possible and thus
reduce the amount of the input parameters (please see Section 4.2.4 for
details). Second, all offered outlier detection algorithms also support auto-
matic detection of outlier threshold, as mentioned in Sections 4.2.3 and 5.3.2.
Third, all proposed algorithms implement the ranking of outliers (mentioned
in Sections 4.3.1.1 and 5.3.3), which helps the operator of SIEM system to
concentrate on the several most suspicious outliers on the top of the out-
put, instead of scrolling through the full list of outliers. Finally, the Hybrid
Outlier Detection algorithm clusters the outliers together in the output (as
also mentioned in Section 4.3.1.1), which makes the output much easier to
parse for the security expert. Thus, instead of looking on a long list with
different standalone outliers mixed with each other, a security expert can
analyse several clusters with the highest outlier score.

All contributions of this thesis are integrated into the jointly developed proto-
type of SIEM system (HPI REAMS). This system resolves the most challenging
problems of modern IDS and SIEM systems and becomes a proof-of-concept solu-
tion capable of Big Security Data processing.

140

CHAPTER 6. CONCLUSION

Besides the high-speed outlier detection methods that were the main focus of
this thesis, nowadays there is a number of novel emerging technologies that can be
utilised to further improve existing SIEM systems. The continuous development
of HPI REAMS considers these technologies to define the directions for the future
work, which is described in the section below.

6.4 Future work

The emerging modern technologies and architectural trends for future SIEM sys-
tems can be grouped into several directions. These directions include (1) data
enrichment approaches, (2) new data analysis and detection methods and (3) scal-
able Big Data processing technologies. This section discusses these directions in
details, including the ways of their integration into HPI REAMS.

• Data enrichment approaches. At the current state, HPI REAMS sup-
ports the direct collection of log messages from individual workstations and
domain controllers. More important, REAMS can be connected to various
Log Management servers, as well as other IDS and SIEM systems. These
systems forward all collected log messages from the enterprise network to
REAMS, including data from workstations, proxy and web servers, firewalls
and so on. All these data are correlated and analysed in REAMS to iden-
tify malicious activities. To improve the detection capabilities of the SIEM
system, log data can be enriched with other information sources. These new
sources include both external Threat Intelligence and vulnerability data, and
internal intermediary devices within the enterprise network. First, correla-
tion of proxy and firewall logs with domain blacklists from Threat Intelligence
can be used to identify suspicious user behaviour cases or infected worksta-
tions that regularly connect to malicious web sites. Next, the correlation of
internal inventory with vulnerability data can highlight the weak spots in the
enterprise infrastructure. In turn, this information can be used to adjust the
score of related alerts in the output of the SIEM system, so that the alerts
from most vulnerable systems will have a higher ranking. Finally, collecting
data from intermediary devices should broaden the scope of the SIEM sys-
tem. In addition to security monitoring of intermediary devices themselves,
it will allow monitoring availability problems caused by disruptions in net-
work protocols [179]. Indeed, many routing protocols have security issues
as well [180], which stay unmonitored even though the routers themselves
could be controlled by a SIEM (via syslog messages or Simple Network Man-
agement Protocol). The related work [181, 182] shows an example, how the
routing protocol can be analysed to identify the reasons for large bursts in
the protocol messages.

141

6.4. FUTURE WORK

• Novel data analysis and detection methods. To further improve the de-
tection capabilities of HPI REAMS, more high-speed outlier detection meth-
ods should be developed and integrated. However, the task of generic outlier
detection is already covered with Universal Outlier Detection and Hybrid
Outlier Detection algorithms, proposed in this thesis. Therefore, the main
focus of new outlier detection algorithms should be specific use cases, such
as analysis of user behaviour (also covered in this thesis), data flows, process
creation logs, etc.

Besides the classical outlier detection methods, the graph-based analysis also
becomes a very promising direction. Under this approach, various informa-
tion sources are used to construct a single graph representing the relations
between entities in the enterprise network, as well as outbound communi-
cations. The resulting graph can be analysed with various graph inference
techniques to perform threat detection. For example, in the related work
such graph was built based on DNS and proxy server logs to determine
malicious nodes in the network [183]. This type of analytics can be also
re-implemented using in-memory and in-database processing techniques to
reach higher performance, thanks to SAP HANA Graph engine [184].

• Scalable Big Data processing technologies. While the parallel and
distributed (using R cluster) processing was widely used in this thesis, more
scalable distributed approaches may be needed for Big Security Data in the
future SIEM systems. The higher scalability can be reached, for example,
with MapReduce [185] algorithms on Apache Hadoop [186] or Apache Spark
[187]. All these technologies can be easily integrated into REAMS alongside
SAP HANA, as shown in Figure 6.1.

Figure 6.1: Integration of Apache Spark into REAMS for scalable Big Data
processing

142

CHAPTER 6. CONCLUSION

Figure 6.1 demonstrates the possibilities for the integration of MapReduce-
based algorithms for distributed data processing into REAMS (the actual
REAMS architecture is shown in Figure 3.3). First, the integration can
be performed through SAP Vora distributed computing solution [188] using
ODBC connection to SAP HANA database. Second, Apache Spark can
be directly connected to SAP HANA through Spark extension [189]. Both
options allow accessing the data stored in SAP HANA database and move
it to the HDFS [190] for distributed analysis.

Both the proposed distributed analysis and the outlier detection methods
developed in this thesis are related to the high-speed batch processing. In-
deed, many outlier detection algorithms need to cluster batches of data in
order to identify outliers. However, to react on security issues in real-time, a
SIEM system should also be able to process Big Security Data in streaming
mode. The actual version of REAMS contains two stream processing mod-
ules, namely Normalisation and Signature Analytics. In the future work,
the system can be extended to include more stream processing modules, for
example, Threat Intelligence correlation module. Thus, REAMS combines
various batch and stream processing methods for better threat detection, as
shown in Figure 6.2.

Figure 6.2: Combination of stream and batch processing in REAMS

Figure 6.2 presents how the stream and batch processing can be combined
in a SIEM system. The data collected with the REAMS gatherer comes
into processing layer, where it can be analysed in parallel using both batch
processing in Apache Spark and stream processing in REAMS modules.
Afterwards, the data are forwarded to the storage layer, where developed
in-memory anomaly detection algorithms can be applied in the batch mode.

143

6.4. FUTURE WORK

Finally, the data from the storage layer can be sent back to Apache Spark
for distributed outlier detection.

Thus, all novel technologies can be easily integrated into HPI REAMS in the
future, thanks to the system architecture, which was developed in this thesis.
The reviewed modern high-speed data processing methods, analytical modules
and data enrichment techniques ensure the sustainable development of this SIEM
system prototype in the future.

144

Bibliography

[1] 2015 Cost of Data Breach Study: Impact of Business Continuity Man-
agement. Ponemon Institute, May 2015. http://public.dhe.ibm.com/

common/ssi/ecm/se/en/sew03053wwen/SEW03053WWEN.PDF. Visited on 03-
05-2018.

[2] Trustwave Global Security Report. Trustwave, 2016. https://www2.

trustwave.com/GSR2016.html. Visited on 03-05-2018.

[3] Symantec Corp. Norton Cybersecurity Insights Report. Nor-
ton, 2016. http://us.norton.com/norton-cybersecurity-insights-

report-global. Visited on 05-02-2018.

[4] Dot-dash-diss: The gentleman hacker’s 1903 lulz. https://www.

newscientist.com/article/mg21228440-700-dot-dash-diss-the-

gentleman-hackers-1903-lulz/. Visited on 03-05-2018.

[5] Ron Rosenbaum. The Secrets of the Little Blue Box. Esquire, October 1971.

[6] Sherry Sontag and Christopher Drew. Blind Man’s Bluff: The Untold Story
of American Submarine Espionage. PublicAffairs, 2016.

[7] R.A. Kemmerer and G. Vigna. Intrusion detection: a brief history and
overview. Computer, 35(4):27–30, April 2002.

[8] James P. Anderson. Computer Security Threat Monitoring and Surveillance,
April 1980.

[9] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The architecture of a
network level intrusion detection system. Technical Report 9, Los Alamos
National Laboratory (LANL), Los Alamos, NM, August 1990.

[10] Amrit T. Williams and Mark Nicolett. Improve IT Security with Vulnera-
bility Management. Gartner, 2005. ID:G00127481.

145

BIBLIOGRAPHY

[11] Oliver Rochford Kelly M. Kavanagh. Magic Quadrant for Security Informa-
tion and Event Management. Gartner, 2015. ID:G00267505.

[12] Jonathan Stuart Ward and Adam Barker. Undefined By Data: A Survey of
Big Data Definitions. Computing Research Repository, abs/1309.5821, 2013.

[13] Richard Zuech, Taghi M. Khoshgoftaar, and Randall Wald. Intrusion detec-
tion and Big Heterogeneous Data: a Survey. Journal of Big Data, 2(1):1–41,
February 2015.

[14] Snort, an open source network intrusion prevention and detection system.
http://www.snort.org/. Visited on 03-05-2018.

[15] R. Danyliw, J. Meijer, and Y. Demchenko. RFC 5070 - The Incident Object
Description Exchange Format. Network Working Group, IETF, December
2007.

[16] ArcSight Common Event Format, July 2010. https://kc.mcafee.com/

resources/sites/MCAFEE/content/live/CORP_KNOWLEDGEBASE/78000/

KB78712/en_US/CEF_White_Paper_20100722.pdf. Visited on 03-05-2018.

[17] Sandeep Bhatt, Pratyusa K. Manadhata, Loai Zomlot, and Loai Zomlot
Hewlett-packard Laboratories. The Operational Role of Security Information
and Event Management Systems. IEEE Security & Privacy, 12(5):35–41,
September 2014.

[18] Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William
Robertson, Ari Juels, and Engin Kirda. Beehive: Large-Scale Log Analysis
for Detecting Suspicious Activity in Enterprise Networks. In Proceedings of
the 29th Annual Computer Security Applications Conference on - ACSAC
’13, ACSAC ’13, pages 199–208, New York, New York, USA, 2013. ACM
Press.

[19] Oliver Rochford Kelly M. Kavanagh, Mark Nicolett. Magic Quadrant
for Security Information and Event Management. Gartner, June 2014.
ID:G00261641.

[20] Seekinto solution brief. https://web.archive.org/web/20160402160725/
http://www.seekintoo.com/pdf/siem.pdf. Visited on 03-05-2018.

[21] Bart lomiej Balcerek, Bartosz Szurgot, Mariusz Uchroński, and Wojciech
Waga. ACARM-ng: Next Generation Correlation Framework. In Building
a National Distributed e-Infrastructure–PL-Grid, pages 114–127. Springer,
2012.

146

BIBLIOGRAPHY

[22] Peter Zadrozny and Raghu Kodali. Big Data Analytics Using Splunk. Apress,
Berkeley, CA, 2013.

[23] McAfee KB82563. Common causes for slow ESM performance. https://

kc.mcafee.com/corporate/index?page=content&id=KB82563. Visited on
03-05-2018.

[24] Enhance ArcSight 6.0 ESM Security with Fusion ioMemory TM Perfor-
mance Density and High Throughput. SanDisk, 2014. https://www.

sandisk.com/content/dam/sandisk-main/en_us/assets/resources/

enterprise/overviews/Fusion_ioMemory_HP_ArcSight_Solution.pdf.
Visited on 03-05-2018.

[25] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan
Tung. Intrusion detection system: A comprehensive review. Journal of
Network and Computer Applications, 36(1):16–24, 2013.

[26] Shelly Xiaonan Wu and Wolfgang Banzhaf. The use of computational intel-
ligence in intrusion detection systems: A review. Applied Soft Computing,
10(1):1–35, January 2010.

[27] Malek Ben Salem and Salvatore J. Stolfo. Modeling User Search Behavior for
Masquerade Detection. In Proceedings of the 14th International Conference
on Recent Advances in Intrusion Detection, volume 6961 of Lecture Notes in
Computer Science, pages 181–200. Springer Berlin Heidelberg, 2011.

[28] P. Gogoi, D. K. Bhattacharyya, B. Borah, and J. K. Kalita. A Survey of Out-
lier Detection Methods in Network Anomaly Identification. The Computer
Journal, 54(4):570–588, 2011.

[29] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel, and
Muttukrishnan Rajarajan. A survey of intrusion detection techniques in
Cloud. Journal of Network and Computer Applications, 36(1):42–57, January
2013.

[30] Ahmed Patel, Qais Qassim, and Christopher Wills. A survey of intrusion
detection and prevention systems. Information Management & Computer
Security, 18(4):277–290, 2010.

[31] Shan Suthaharan. Big Data Classification: Problems and Challenges in Net-
work Intrusion Prediction with Machine Learning. SIGMETRICS Perform.
Eval. Rev., 41(4):70–73, April 2014.

147

BIBLIOGRAPHY

[32] Samuel Marchal, Xiuyan Jiang, Radu State, and Thomas Engel. A Big Data
Architecture for Large Scale Security Monitoring. In Proceedings of the 3rd
IEEE Congress on Big Data, pages 56–63. IEEE, July 2014.

[33] NetIQ Sentinel User Guide. https://www.netiq.com/documentation/

sentinel-73/pdfdoc/s73_user/s73_user.pdf. Visited on 03-05-2018.

[34] Muhammad Qasim Ali, Ehab Al-Shaer, Hassan Khan, and Syed Ali Khayam.
Automated Anomaly Detector Adaptation using Adaptive Threshold Tun-
ing. ACM Transactions on Information and System Security (TISSEC),
15(4):1–30, April 2013.

[35] Tapas Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, Ruth Silver-
man, and A.Y. Wu. An efficient k-means clustering algorithm: analysis
and implementation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(7):881–892, July 2002.

[36] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, 13(1):21–27, 1967.

[37] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In Proc. of 2nd International Conference on Knowledge Discovery
and Data Mining (KDD’96), pages 226–231, 1996.

[38] Real-time Event Analysis and Monitoring System. https://hpi.de/en/

meinel/security-tech/security-analytics/reams.html. Visited on 03-
05-2018.

[39] SAP HANA. https://www.sap.com/products/hana.html. Visited on 03-
05-2018.

[40] Predictive Analysis Library. http://help.sap.com/hana/SAP_HANA_

Predictive_Analysis_Library_PAL_en.pdf. Visited on 03-05-2018.

[41] SAP HANA R Integration Guide. https://help.sap.com/hana/SAP_HANA_
R_Integration_Guide_en.pdf. Visited on 03-05-2018.

[42] SAP HANA SQLScript Reference. https://help.sap.com/viewer/

de2486ee947e43e684d39702027f8a94/2.0.00/en-US. Visited on 03-05-
2018.

[43] PostgreSQL: The world’s most advanced open source database. http://

www.postgresql.org/. Visited on 03-05-2018.

148

BIBLIOGRAPHY

[44] Andrey Sapegin, David Jaeger, Amir Azodi, Marian Gawron, Feng Cheng,
and Christoph Meinel. Hierarchical object log format for normalisation of
security events. In 2013 9th International Conference on Information As-
surance and Security (IAS), IAS ’13, pages 25–30. IEEE, December 2013.

[45] Andrey Sapegin, David Jaeger, Amir Azodi, Marian Gawron, Feng Cheng,
and Christoph Meinel. Normalisation of Log Messages for Intrusion Detec-
tion. Journal of Information Assurance and Security, 9(3):167–176, Septem-
ber 2014.

[46] ManageEngine EventLog Analyzer. https://www.manageengine.com/

products/eventlog/. Visited on 03-05-2018.

[47] Gerard Salton, Andrew Wong, and Chung-Shu S. Yang. A Vector Space
Model for Automatic Indexing. Communications of the ACM, 18(11):613–
620, 1975.

[48] Kurt Hornik, Ingo Feinerer, Martin Kober, and Christian Buchta. Spherical
k-Means Clustering. Journal of Statistical Software, 50(10):1–22, 2012.

[49] Markus Goldstein, Stefan Asanger, Matthias Reif, and Andrew Hutchin-
son. Enhancing Security Event Management Systems with Unsupervised
Anomaly Detection. In Proceedings of the 2nd International Conference on
Pattern Recognition Applications and Methods, pages 530–538. SciTePress -
Science and and Technology Publications, 2013.

[50] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The Pla-
nar k-Means Problem is NP-Hard. Theoretical Computer Science, 442:274–
285, July 2009.

[51] Larry M. Manevitz and Malik Yousef. One-Class SVMs for Document Classi-
fication. Journal of Machine Learning Research, 2:139–154, December 2001.

[52] Inderjit S. Dhillon and Dharmendra S. Modha. Concept decompositions for
large sparse text data using clustering. Machine Learning, 42(1-2):143–175,
2001.

[53] Windows Events. https://msdn.microsoft.com/en-us/library/

windows/desktop/aa964766(v=vs.85).aspx. Visited on 03-05-2018.

[54] Royce Robbins. Distributed Intrusion Detection Systems: An Introduction
and Review. SANS Institute, 2003. https://www.sans.org/reading-

room/whitepapers/detection/distributed-intrusion-detection-

systems-introduction-review-897. Visited on 03-05-2018.

149

BIBLIOGRAPHY

[55] Gideon Creech. Developing a high-accuracy cross platform Host-Based In-
trusion Detection System capable of reliably detecting zero-day attacks. PhD
thesis, University of New South Wales, 2013.

[56] Anup K. Ghosh and Aaron Schwartzbard. A Study in Using Neural Networks
for Anomaly and Misuse Detection. In Proceedings of the 8th Conference on
USENIX Security Symposium - Volume 8, SSYM’99, pages 12–12, Berkeley,
CA, USA, 1999. USENIX Association.

[57] Ricardo Jorge Santos, Jorge Bernardino, and Marco Vieira. Approaches
and Challenges in Database Intrusion Detection. ACM SIGMOD Record,
43(3):36–47, 2014.

[58] Ismail Butun, Salvatore D. Morgera, and Ravi Sankar. A Survey of Intrusion
Detection Systems in Wireless Sensor Networks. IEEE Sensors Journal,
14(5):1370–1379, 2014.

[59] Buecker Axel, Andreas Per, and Paisley Scott. Understanding IT Perimeter
Security. IBM, 2008. https://www.redbooks.ibm.com/redpapers/pdfs/

redp4397.pdf. Visited on 03-05-2018.

[60] Michael T. Raggo. Mobile Data Loss: Threats and Countermeasures. Elsevier
Inc., 2016.

[61] Arun Madan, Sridhar Muppidi, Nilesh Patel, and Axel Buecker. Securely
Adopting Mobile Technology Innovations for Your Enterprise Using IBM
Security Solutions. IBM, 2013.

[62] R. Gerhards. RFC 5424 - The Syslog Protocol. Network Working Group,
IETF, 2009.

[63] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-
time. In Proceedings of the 7th Conference on USENIX Security Symposium -
Volume 7, SSYM’98, page 3, Berkeley, CA, USA, 1998. USENIX Association.

[64] Mike Fisk and George Varghese. Applying Fast String Matching to Intrusion
Detection. DTIC Document, 2002. www.dtic.mil/get-tr-doc/pdf?AD=

ADA406266. Visited on 03-05-2018.

[65] Steven T. Eckmann, Giovanni Vigna, and Richard A. Kemmerer. STATL:
An attack language for state-based intrusion detection. Journal of Computer
Security, 10(1-2):71–103, 2002.

150

BIBLIOGRAPHY

[66] Frédéric Cuppens and Rodolphe Ortalo. LAMBDA: A Language to Model a
Database for Detection of Attacks. In Recent Advances in Intrusion Detec-
tion, volume 1907, pages 197–216. Springer-Verlag Berlin Heidelberg, 2000.

[67] Michael Meier, Niels Bischof, and Thomas Holz. SHEDEL — A Simple Hi-
erarchical Event Description Language for Specifying Attack Signatures. In
Security in the Information Society, pages 559–571. International Federation
for Information Processing, 2002.

[68] Michael Meier. A Model for the Semantics of Attack Signatures in Misuse
Detection Systems. In Information Security, pages 158–169. Springer Berlin
Heidelberg, 2004.

[69] Ulrich Flegel and Michael Meier. Modeling and Describing Misuse Scenarios
Using Signature-Nets and Event Description Language. it - Information
Technology, 54(2):71–81, April 2012.

[70] David Jaeger, Martin Ussath, Feng Cheng, and Christoph Meinel. Multi-Step
Attack Pattern Detection on Normalized Event Logs. In Proceedings of the
2nd IEEE International Conference on Cyber Security and Cloud Computing
(CSCloud’15), pages 390–398. IEEE Computer Society, November 2015.

[71] P. Arun Raj Kumar and S. Selvakumar. Distributed denial of service attack
detection using an ensemble of neural classifier. Computer Communications,
34(11):1328–1341, July 2011.

[72] Carlos A. Catania and Carlos Garćıa Garino. Automatic network intru-
sion detection: Current techniques and open issues. Computers & Electrical
Engineering, 38(5):1062–1072, September 2012.

[73] Pavel Laskov, Patrick Düssel, Christin Schäfer, and Konrad Rieck. Learn-
ing Intrusion Detection: Supervised or Unsupervised? In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), volume 3617 LNCS, pages
50–57. Springer-Verlag Berlin Heidelberg, 2005.

[74] Sumeet Dua and Xian Du. Data Mining and Machine Learning in Cyberse-
curity. Auerbach Publications, Boston, MA, USA, 2011.

[75] Srinivas Mukkamala, Guadalupe Janoski, and Andrew Sung. Intrusion de-
tection: support vector machines and neural networks. In Proceedings of
the IEEE international joint conference on neural networks (ANNIE), pages
1702–1707, 2002.

151

BIBLIOGRAPHY

[76] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. A
detailed analysis of the KDD CUP 99 data set. IEEE Symposium on Com-
putational Intelligence for Security and Defense Applications, CISDA 2009,
2009.

[77] David Jaeger, Amir Azodi, Feng Cheng, and Christoph Meinel. Normalizing
Security Events with a Hierarchical Knowledge Base. In Information Security
Theory and Practice, volume 9311 of Lecture Notes in Computer Science,
pages 237–248. Springer International Publishing, Cham, 2015.

[78] Steven Noel, Duminda Wijesekera, and Charles Youman. Modern Intrusion
Detection, Data Mining, and Degrees of Attack Guilt. In Applications of
Data Mining in Computer Security, pages 1–31. Springer, Boston, MA, 2002.

[79] Ali A. Ghorbani, Wei Lu, and Mahbod Tavallaee. Network Intrusion De-
tection and Prevention, volume 47 of Advances in Information Security.
Springer US, Boston, MA, 2010.

[80] Gisung Kim, Seungmin Lee, and Sehun Kim. A novel hybrid intrusion de-
tection method integrating anomaly detection with misuse detection. Expert
Systems with Applications, 41(4 PART 2):1690–1700, 2014.

[81] Daniel T. Larose. Discovering Knowledge in Data. John Wiley & Sons, Inc.,
Hoboken, NJ, USA, 2005.

[82] Yoav Benjamini and Moshe Leshno. Statistical Methods for Data Mining. In
Data Mining and Knowledge Discovery Handbook, pages 565–587. Springer-
Verlag, New York, 2010.

[83] Stephen Marsland. Machine Learning: An Algorithmic Perspective,
2009. http://books.google.com/books?id=n66O8a4SWGEC. Visited on 03-
05-2018.

[84] Charu C. Aggarwal. Supervised Outlier Detection. In Outlier Analysis, pages
169–198. Springer New York, 2013.

[85] Gang Wang, Jinxing Hao, Jian Ma, and Lihua Huang. A new approach
to intrusion detection using Artificial Neural Networks and fuzzy clustering.
Expert Systems with Applications, 37(9):6225–6232, September 2010.

[86] Mradul Dhakar and Akhilesh Tiwari. A Novel Data Mining based Hybrid
Intrusion Detection Framework. Journal of Information and Computing Sci-
ence, 9(1):37–48, 2014.

152

BIBLIOGRAPHY

[87] Yinhui Li, Jingbo Xia, Silan Zhang, Jiakai Yan, Xiaochuan Ai, and Kuobin
Dai. An efficient intrusion detection system based on support vector ma-
chines and gradually feature removal method. Expert Systems with Applica-
tions, 2012.

[88] Dewan Md. Farid, Nouria Harbi, and Mohammad Zahidur Rahman. Com-
bining Naive Bayes and Decision Tree for Adaptive Intrusion Detection. In-
ternational journal of Network Security & Its Applications, 2(2):12–25, April
2010.

[89] Jasmin Kevric, Samed Jukic, and Abdulhamit Subasi. An effective combin-
ing classifier approach using tree algorithms for network intrusion detection.
Neural Computing and Applications, 28(S1):1051–1058, December 2017.

[90] Sandhya Peddabachigari, Ajith Abraham, Crina Grosan, and Johnson
Thomas. Modeling intrusion detection system using hybrid intelligent sys-
tems. Journal of Network and Computer Applications, 30(1):114–132, Jan-
uary 2007.

[91] Wei Li. Using genetic algorithm for network intrusion detection. Proceed-
ings of the United States Department of Energy Cyber Security Group 2004
Training Conference, Kansas City, Kansas, pages 24–27, 2004.

[92] Samaneh Rastegari, Philip Hingston, and Chiou-Peng Lam. Evolving sta-
tistical rulesets for network intrusion detection. Applied Soft Computing,
33:348–359, August 2015.

[93] Himadri Chauhan, Vipin Kumar, Sumit Pundir, and Emmanuel S Pilli. A
Comparative Study of Classification Techniques for Intrusion Detection. In
2013 International Symposium on Computational and Business Intelligence,
pages 40–43. IEEE, August 2013.

[94] Evangelos E. Papalexakis, Alex Beutel, and Peter Steenkiste. Network
Anomaly Detection Using Co-clustering. In 2012 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, pages 403–
410. IEEE, August 2012.

[95] Bimal Viswanath, Ahmad M. Bashir, Mark Crovella, Saikat Guha, Kr-
ishna P. Gummadi, Balachander Krishnamurthy, and Alan Mislove. To-
wards Detecting Anomalous User Behavior in Online Social Networks. In
23rd USENIX Security Symposium (USENIX Security), April 2014.

153

BIBLIOGRAPHY

[96] Nong Ye, Yebin Zhang, and C.M. Borror. Robustness of the Markov-
Chain Model for Cyber-Attack Detection. IEEE Transactions on Reliability,
53(1):116–123, March 2004.

[97] Xiejun Ni, Daojing He, Sammy Chan, and Farooq Ahmad. Network Anomaly
Detection Using Unsupervised Feature Selection and Density Peak Cluster-
ing. In Applied Cryptography and Network Security, volume 2846, pages
212–227. Springer International Publishing Switzerland, 2016.

[98] Sanjay Chawla and Aristides Gionis. k-means–: A Unified Approach to Clus-
tering and Outlier Detection. In Proceedings of the 2013 SIAM International
Conference on Data Mining, pages 189–197. SIAM, 2013.

[99] Jungsuk Song, Hiroki Takakura, Yasuo Okabe, and Koji Nakao. Toward
a more practical unsupervised anomaly detection system. Information Sci-
ences, 231:4–14, 2013.

[100] Jungsuk Song, Hiroki Takakura, Yasuo Okabe, and Yongjin Kwon. Unsu-
pervised Anomaly Detection Based on Clustering and Multiple One-Class
SVM. IEICE Transactions on Communications, E92-B(6):1981–1990, 2009.

[101] M. F. Augusteijn and B. A. Folkert. Neural network classification and novelty
detection. International Journal of Remote Sensing, 23(14):2891–2902, 2002.

[102] Markos Markou and Sameer Singh. Novelty detection: a review - part 2:
neural network based approaches. Signal Processing, 83(12):2499–2521, 2003.

[103] Marco A. F. Pimentel, David A. Clifton, Lei Clifton, and Lionel Tarassenko.
A review of novelty detection. Signal Processing, 99:215–249, June 2014.

[104] Simon Hawkins, Hongxing He, Graham Williams, and Rohan Baxter. Outlier
Detection Using Replicator Neural Networks. In Data Warehousing and
Knowledge Discovery, volume 4654 of Lecture Notes in Computer Science,
pages 170–180. Springer Berlin Heidelberg, December 2002.

[105] J.Z. Lei and a. Ghorbani. Network intrusion detection using an improved
competitive learning neural network. Proceedings. Second Annual Conference
on Communication Networks and Services Research, 2004., pages 190–197,
2004.

[106] Sanjay Chawla and Aristides Gionis. k -means–: A unified approach to
clustering and outlier detection. In Proceedings of the 2013 SIAM Interna-
tional Conference on Data Mining, pages 189–197. Society for Industrial and
Applied Mathematics, Philadelphia, PA, May 2013.

154

BIBLIOGRAPHY

[107] Angela D. Orebaugh, Simon Biles, and Jacob Babbin. Snort Cookbook -
Solutions and Examples for Snort Administrators. O’Reilly Media, Inc.,
January 2005.

[108] About Event Tracing. https://msdn.microsoft.com/en-us/library/

windows/desktop/aa363668(v=vs.85).aspx. Visited on 03-05-2018.

[109] D Casey. Turning log files into a security asset. Network Security, 2008(2):4–
7, 2008.

[110] Liu Yang, Pratyusa Manadhata, William Horne, Prasad Rao, and Vinod
Ganapathy. Fast submatch extraction using OBDDs. In Proceedings of the
eighth ACM/IEEE symposium on Architectures for networking and commu-
nications systems, ANCS ’12, pages 163–174, New York, NY, USA, 2012.
ACM.

[111] Common Event Expression White Paper, June 2008. https://cee.mitre.

org/docs/Common_Event_Expression_White_Paper_June_2008.pdf. Vis-
ited on 03-05-2018.

[112] H. Debar, D. Curry, and B. Feinstein. RFC 4765 - The Intrusion Detec-
tion Message Exchange Format (IDMEF). Network Working Group, IETF,
March 2007.

[113] BlackStratus’ LOG Storm. http://www.blackstratus.com/enterprise/

supported-technologies/log-storm/. Visited on 03-05-2018.

[114] Sawmill log analysis tool. http://www.sawmill.net/. Visited on 03-05-
2018.

[115] Open Source Host-based Intrusion Detection System. http://www.ossec.

net/. Visited on 03-05-2018.

[116] Alvaro A. Cardenas, Pratyusa K. Manadhata, and Sreeranga P. Rajan. Big
Data Analytics for Security. IEEE Security & Privacy, 11(6):74–76, 2013.

[117] Micro Focus ArcSight Data Platform. https://software.microfocus.

com/fr-ca/software/siem-data-collection-log-management-

platform. Visited on 03-05-2018.

[118] HPE Security ArcSight Common Event Format. Hewlett Packard Enter-
prise, May 2016. https://www.secef.net/wp-content/uploads/sites/

10/2017/04/CommonEventFormatv23.pdf. Visited on 03-05-2018.

155

BIBLIOGRAPHY

[119] T. Takahashi, K. Landfield, and Y. Kadobayashi. RFC 7203 - An Incident
Object Description Exchange Format (IODEF) Extension for Structured Cy-
bersecurity Information. Internet Engineering Task Force (IETF), 2014.

[120] PowerShell Get-WinEvent XML Madness: Getting details from event
logs. http://blogs.technet.com/b/ashleymcglone/archive/2013/08/

28/powershell-get-winevent-xml-madness-getting-details-from-

event-logs.aspx. Visited on 03-05-2018.

[121] Andrey Sapegin, Marian Gawron, David Jaeger, Feng Cheng, and Christoph
Meinel. High-Speed Security Analytics Powered by In-Memory Machine
Learning Engine. In 2015 14th International Symposium on Parallel and
Distributed Computing, pages 74–81. IEEE, June 2015.

[122] Andrey Sapegin, Marian Gawron, David Jaeger, Feng Cheng, and Christoph
Meinel. Evaluation of in-memory storage engine for machine learning anal-
ysis of security events. Concurrency and Computation: Practice and Expe-
rience, 29(2):e3800, 2016.

[123] Andrey Sapegin, David Jaeger, Feng Cheng, and Christoph Meinel. Towards
a system for complex analysis of security events in large-scale networks.
Computers & Security, 67:16–34, June 2017.

[124] Alessandro D’Alconzo, Pere Barlet-Rosb, Kensuke Fukudac, and David
Choffnes. Machine learning, data mining and Big Data frameworks for net-
work monitoring and troubleshooting. Computer Networks, 107(1):1–4, 2016.

[125] David Jaeger, Andrey Sapegin, Martin Ussath, Feng Cheng, and Christoph
Meinel. Parallel and distributed normalization of security events for instant
attack analysis. In 2015 IEEE 34th International Performance Comput-
ing and Communications Conference (IPCCC), pages 1–8. IEEE, December
2015.

[126] Binary R server. http://rforge.net/Rserve/. Visited on 03-05-2018.

[127] Anton Chuvakin. Scan 34 - Analyze real honeynet logs for attacks and ac-
tivity. http://old.honeynet.org/scans/scan34/. Visited on 03-05-2018,
February 2005.

[128] Matt Richard, Michael Ligh, Andy Magnusson, Syd Seale, and Kelly Stan-
dridge. Project Honeynet Scan of the Month 34, May 2005. http://old.

honeynet.org/scans/scan34/sols/1/index.html. Visited on 03-05-2018.

156

BIBLIOGRAPHY

[129] Christine Kronberg and Agleia Freeworld. Analysis of the logfiles given in
SotM34, 2005. http://old.honeynet.org/scans/scan34/sols/2/proc.

pdf. Visited on 03-05-2018.

[130] J. Klensin. RFC 5321 - Simple Mail Transfer Protocol. Network Working
Group, IETF, 2008.

[131] SAP Predictive Analysis. https://www.sap.com/products/predictive-

analytics.html. Visited on 03-05-2018.

[132] syslog-ng - Open Source log management solution. https://syslog-ng.

org/. Visited on 03-05-2018.

[133] Splunk Enterprise. http://splunk.com/. Visited on 03-05-2018.

[134] THC-Hydra, network logon cracker. https://www.thc.org/thc-hydra/.
Visited on 03-05-2018.

[135] Remote Desktop Protocol. http://msdn.microsoft.com/en-us/library/
aa383015.aspx. Visited on 03-05-2018.

[136] J. Sermersheim. RFC 4511 - Lightweight Directory Access Protocol (LDAP):
The Protocol. Network Working Group, IETF, 2006.

[137] Charu Chaubal. The Architecture of VMware ESXi. White Pa-
per, 2008. https://microage.com/wp-content/uploads/2016/02/ESXi_

architecture.pdf. Visited on 03-05-2018.

[138] SAP HANA Studio Installation and Update Guide. https://help.

sap.com/viewer/a2a49126a5c546a9864aae22c05c3d0e/2.0.01/en-US.
Visited on 03-05-2018.

[139] RPostgreSQL: R interface to the PostgreSQL database system.
https://cran.r-project.org/web/packages/RPostgreSQL/index.html.
Visited on 03-05-2018.

[140] Rik Warren, Robert E. Smith, and Anne K. Cybenko. Use of Maha-
lanobis Distance for Detecting Outliers and Outlier Clusters in Markedly
Non-Normal Data: A Vehicular Traffic Example, June 2011.

[141] Catherine A. Sugar and Gareth M. James. Finding the Number of Clusters in
a Dataset. Journal of the American Statistical Association, 98(463):750–763,
September 2003.

157

BIBLIOGRAPHY

[142] D. Pelleg and A.W. Moore. X-means: Extending K-means with efficient
estimation of the number of clusters. In Proceedings of the 17th International
Conference on Machine Learning, pages 727–734, November 2000.

[143] Greg Hamerly and Charles Elkan. Learning the k in k-means. In Proceed-
ings of the 16th International Conference on Neural Information Processing
Systems, NIPS’03, pages 281–288, Cambridge, MA, USA, 2003. MIT Press.

[144] Matrix: Sparse and Dense Matrix Classes and Methods. https://cran.r-

project.org/web/packages/Matrix/index.html. Visited on 03-05-2018.

[145] skmeans: Spherical k-Means Clustering. https://cran.r-project.org/

web/packages/skmeans/index.html. Visited on 03-05-2018.

[146] KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/

kddcup99.html. Visited on 03-05-2018.

[147] Salvador Garcia, Julián Luengo, José Antonio Sáez, Victoria López, and
Francisco Herrera. A Survey of Discretization Techniques: Taxonomy and
Empirical Analysis in Supervised Learning. IEEE Transactions on Knowl-
edge and Data Engineering, 25(4):734–750, April 2013.

[148] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsu-
pervised discretization of continuous features. Machine Learning: Proceed-
ings of the Twelfth International Conference, 54(2):194–202, 1995.

[149] Stan Salvador and Philip Chan. Determining the number of clusters/seg-
ments in hierarchical clustering/segmentation algorithms. In 16th IEEE In-
ternational Conference on Tools with Artificial Intelligence, pages 576–584.
IEEE, 2004.

[150] Arthur Zimek, Matthew Gaudet, Ricardo J.G.B. Campello, and Jörg Sander.
Subsampling for efficient and effective unsupervised outlier detection ensem-
bles. In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’13, pages 428–436, New York,
NY, USA, 2013. ACM.

[151] Hans-Peter Kriegel, Peer Kroger, Erich Schubert, and Arthur Zimek. In-
terpreting and Unifying Outlier Scores. In Proceedings of the 2011 SIAM
International Conference on Data Mining, pages 13–24. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, April 2011.

[152] Markus Goldstein and Seiichi Uchida. A comparative evaluation of unsu-
pervised anomaly detection algorithms for multivariate data. PLOS ONE,
11(4):1–31, April 2016.

158

BIBLIOGRAPHY

[153] Mei Ling Shyu, Shu Ching Chen, Kanoksri Sarinnapakorn, and Liwu Chang.
Principal component-based anomaly detection scheme. Studies in Computa-
tional Intelligence, 9:311–329, 2006.

[154] Wei Wang and Roberto Battiti. Identifying intrusions in computer networks
with principal component analysis. In First International Conference on
Availability, Reliability and Security (ARES’06). IEEE, April 2006.

[155] Jonathan J. Davis and Andrew J. Clark. Data preprocessing for anomaly
based network intrusion detection: A review. Computers & Security, 30(6-
7):353–375, September 2011.

[156] Michael J. Chapple, Nitesh Chawla, and Aaron Striegel. Authentication
anomaly detection: A case study on a virtual private network. In Proceedings
of the 3rd Annual ACM Workshop on Mining Network Data, MineNet ’07,
pages 17–22, New York, NY, USA, 2007. ACM.

[157] Rapid Miner. Predictive Analytics Platform. https://rapidminer.com/.
Visited on 03-05-2018.

[158] Li Shengqiao, Alina Beygelzimer, Sham Kakadet, John Langford, Sunil Arya,
and David Mount. Package ’FNN’, 2015. https://cran.r-project.org/

web/packages/FNN/FNN.pdf. Visited on 03-05-2018.

[159] Andrey Sapegin, Aragats Amirkhanyan, Marian Gawron, Feng Cheng, and
Christoph Meinel. Poisson-based anomaly detection for identifying malicious
user behaviour. In Lecture Notes in Computer Science, volume 9395, pages
134–150, 2015.

[160] Susanta Nanda and Tzi Cker Chiueh. Execution trace-driven automated
attack signature generation. In Proceedings - Annual Computer Security
Applications Conference, ACSAC, pages 195–204, 2008.

[161] P Garćıa-Teodoro, J Dı́az-Verdejo, G Maciá-Fernández, and E Vázquez.
Anomaly-based network intrusion detection: Techniques, systems and chal-
lenges. Computers & Security, 28(1-2):18–28, February 2009.

[162] Karen A. Scarfone and Peter M. Mell. Guide to Intrusion Detection and
Prevention Systems (IDPS). National Insitute of Standards and Tech-
nology, 2007. https://www.nist.gov/publications/guide-intrusion-

detection-and-prevention-systems-idps. Visited on 03-05-2018.

[163] Alexander Ihler, Jon Hutchins, and Padhraic Smyth. Adaptive event detec-
tion with time-varying poisson processes. In Proceedings of the 12th ACM

159

BIBLIOGRAPHY

SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’06, pages 207–216, New York, NY, USA, 2006. ACM.

[164] Robin Berthier, Will Rhee, Michael Bailey, Partha Pal, Farnam Jahanian,
and William H Sanders. Safeguarding academic accounts and resources with
the University Credential Abuse Auditing System. In IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN 2012), pages
1–8. IEEE, June 2012.

[165] Sang Hyun Oh and Won Suk Lee. An anomaly intrusion detection method
by clustering normal user behavior. Computers & Security, 22(7):596–612,
October 2003.

[166] Simon Liu and Rick Kuhn. Data Loss Prevention. IT Professional, 12(2):10–
13, March 2010.

[167] A Shabtai, Y Elovici, and L Rokach. A survey of data leakage detection and
prevention solutions. Springer, 2012.

[168] Rahul Khanna and Huaping Liu. System approach to intrusion detection
using hidden markov model. In Proceedings of the 2006 International Con-
ference on Wireless Communications and Mobile Computing, IWCMC ’06,
pages 349–354, New York, NY, USA, 2006. ACM.

[169] Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe Diot.
Sensitivity of pca for traffic anomaly detection. In Proceedings of the 2007
ACM SIGMETRICS International Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’07, pages 109–120, New York,
NY, USA, 2007. ACM.

[170] Wun-Hwa Chen, Sheng-Hsun Hsu, and Hwang-Pin Shen. Application of
SVM and ANN for intrusion detection. Computers & Operations Research,
32(10):2617–2634, October 2005.

[171] You Chen, Yang Li, Xue-qi Cheng, and Li Guo. Survey and Taxonomy of
Feature Selection Algorithms in Intrusion Detection System. In Information
Security and Cryptology, volume 4318 of Lecture Notes in Computer Science,
pages 153–167. Springer Berlin Heidelberg, 2006.

[172] Virtual Network Computing. http://www.hep.phy.cam.ac.uk/vnc_docs/
index.html. Visited on 03-05-2018.

[173] Python Imaging Library. http://www.pythonware.com/products/pil/.
Visited on 03-05-2018.

160

BIBLIOGRAPHY

[174] Aragats Amirkhanyan, Andrey Sapegin, Marian Gawron, Feng Cheng, and
Christoph Meinel. Simulation user behavior on a security testbed using user
behavior states graph. In Proceedings of the 8th International Conference on
Security of Information and Networks - SIN ’15, pages 217–223, New York,
NY, USA, 2015. ACM Press.

[175] Windows PowerShell. https://docs.microsoft.com/en-us/powershell/

scripting/powershell-scripting. Visited on 03-05-2018.

[176] Event 4624 null sid - Repeated security log. http://www.morgantechspace.
com/2013/10/event-4624-null-sid-repeated-security.html. Visited
on 03-05-2018.

[177] Hongliang Yu, Dongdong Zheng, Ben Y. Zhao, and Weimin Zheng. Under-
standing User Behavior in Large-scale Video-on-demand Systems. In Pro-
ceedings of the 1st ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2006, EuroSys ’06, pages 333–344, New York, NY, USA, 2006.
ACM.

[178] Balakrishnan Chandrasekaran. Survey of network traffic models. Wasching-
ton University in St. Louis CSE, pages 1–8, 2009.

[179] Umar Javed, Italo Cunha, David Choffnes, Ethan Katz-Bassett, Thomas
Anderson, and Arvind Krishnamurthy. PoiRoot: Investigating the Root
Cause of Interdomain Path Changes. In Proceedings of the ACM SIGCOMM
2013 conference on SIGCOMM, page 183, New York, NY, USA, 2013. ACM
Press.

[180] Kevin Butler, T.R. Farley, Patrick McDaniel, and Jennifer Rexford. A Survey
of BGP Security Issues and Solutions. Proceedings of the IEEE, 98(1):100–
122, January 2010.

[181] Andrey Sapegin and Steve Uhlig. On the extent of correlation in BGP
updates in the Internet and what it tells us about locality of BGP routing
events. Computer Communications, 36(15-16):1592–1605, September 2013.

[182] Andrey Sapegin, Feng Cheng, and Christoph Meinel. Catch the Spike: On
the Locality of Individual BGP Update Bursts. In 2013 IEEE 9th Inter-
national Conference on Mobile Ad-hoc and Sensor Networks, pages 78–83.
IEEE, December 2013.

[183] Pejman Najafi, Andrey Sapegin, Feng Cheng, and Christoph Meinel. Guilt-
by-Association: Detecting Malicious Entities via Graph Mining. In Security

161

BIBLIOGRAPHY

and Privacy in Communication Networks, pages 88–107. Springer Interna-
tional Publishing, 2018.

[184] SAP HANA Graph Reference. https://help.sap.com/doc/

21574acf46fe45a8ae9def213f2c4d9e/2.0.00/en-us/sap_hana_graph_

reference_en.pdf. Visited on 03-05-2018.

[185] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. Proceedings of 6th Symposium on Operating Systems
Design and Implementation, pages 137–149, 2004.

[186] Apache Hadoop. https://hadoop.apache.org/. Visited on 03-05-2018.

[187] Apache Spark - Lightning-fast luster computing. https://spark.apache.

org/. Visited on 03-05-2018.

[188] SAP Vora. https://www.sap.com/product/data-mgmt/hana-vora-

hadoop.html. Visited on 03-05-2018.

[189] Using the SAP Vora Spark Extension. https://help.

sap.com/doc/0991e2320f5940d988ed32b995d28a44/2.1/en-US/

b289656d890f410698ff7e82871f6451.html. Visited on 03-05-2018.

[190] Apache Hadoop HDFS. https://hortonworks.com/apache/hdfs/. Visited
on 03-05-2018.

162

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 History of SIEM and IDS
	1.2 Major challenges for SIEM Technology
	1.3 Contributions of this thesis
	1.3.1 Architecture for high-speed security analytics
	1.3.1.1 Integration of in-memory and in-database processing technologies into SIEM system
	1.3.1.2 Choosing lightweight log format for security analytics

	1.3.2 High-speed outlier detection for multivariate security data
	1.3.2.1 Clustering data subsets in parallel using spherical k-means and one-class Support Vector Machine
	1.3.2.2 Applying automatic threshold detection for generic outlier detection
	1.3.2.3 Detecting and ranking clusters of suspicious events

	1.3.3 Analysis of user behaviour
	1.3.3.1 Special case: intrusion without access violation

	1.4 Thesis organisation

	2 SIEM and IDS: state of the art
	2.1 Classification of IDS
	2.2 Data gathering and analysis techniques for Intrusion Detection
	2.2.1 Data collection
	2.2.2 Misuse detection
	2.2.3 Anomaly detection
	2.2.4 Hybrid detection systems
	2.2.5 Machine learning and data mining methods for intrusion detection
	2.2.5.1 Supervised classification methods for misuse detection
	2.2.5.2 Unsupervised outlier detection methods for anomaly detection

	2.3 Data normalisation and event correlation
	2.3.1 Data normalisation formats
	2.3.1.1 Common Event Format
	2.3.1.2 Common Event Expression
	2.3.1.3 Intrusion Detection Message Exchange Format
	2.3.1.4 Incident Object Description Exchange Format
	2.3.1.5 Object Log Format

	2.3.2 Event correlation

	2.4 Chapter summary

	3 SIEM architecture for high-speed event analysis
	3.1 Classical approach
	3.2 Proposed approach
	3.2.1 Optimal log format for security events normalisation
	3.2.2 In-memory database backend
	3.2.3 Hybrid detection approach

	3.3 Final architecture of the proposed system
	3.4 Performance evaluation
	3.4.1 Generation of the test data set in the virtual testbed
	3.4.2 Selecting features from Windows Events
	3.4.3 Environment for performance measurements
	3.4.4 Initial anomaly detection results
	3.4.5 Performance of classical architecture
	3.4.6 Performance of proposed architecture

	3.5 Chapter summary

	4 High-speed outlier detection for heterogeneous security events
	4.1 Anomaly Detection in SAP HANA Predictive Analytics Library
	4.2 Outlier detection for textual data based on spherical k-means
	4.2.1 Modelling of multivariate non-normal data
	4.2.1.1 Incorporating continuous numerical features into the vector space model

	4.2.2 Clustering security events in parallel
	4.2.3 Outlier threshold based on the distribution of distances
	4.2.4 Detecting optimal number of clusters for k-means
	4.2.5 Proposed Universal Outlier Detection approach
	4.2.6 Threats detected in the testbed data set

	4.3 High-speed detection of clusters with anomalous events
	4.3.1 Hybrid Outlier Detection: one-class SVM ensemble trained on clusters from spherical k-means
	4.3.1.1 Ranking of clusters with anomalies

	4.3.2 Windows Events data set from enterprise network and KDD Cup 1999 data
	4.3.3 Threats detected in the Windows Events data set
	4.3.4 Performance estimation
	4.3.5 Effectiveness on Windows Events data set and comparison with other outlier detection algorithms
	4.3.5.1 Comparison with Universal Outlier Detection
	4.3.5.2 Comparison with kNN-based outlier detection

	4.3.6 Effectiveness of Hybrid Outlier Detection on public KDD Cup 1999 data set

	4.4 Chapter summary

	5 Outlier detection for malicious user behaviour without access violation
	5.1 Scenario of malicious user behaviour without access violation
	5.2 Simulation of user behaviour for evaluation purposes
	5.2.1 Filtering user behaviour data

	5.3 Outlier detection for user behaviour data
	5.3.1 Two-level probability check
	5.3.2 Optimal threshold detection
	5.3.3 Ranking of anomalous user behaviour cases

	5.4 Threats detected in the simulated data
	5.5 Application of the proposed outlier detection on the real data
	5.6 Chapter summary

	6 Conclusion
	6.1 Implementation of anomaly detection in modern SIEM systems
	6.2 Overview of issues detected in the data using different analysis methods
	6.3 Thesis contributions
	6.4 Future work

	Bibliography

