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Jean-Luc Martinot18, Marie-Laure Paillère Martinot19, Frauke Nees8,12, Dimitri Papadopoulos Orfanos14, Tomáš Paus20,
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Abstract
Genetic and environmental factors both contribute to cognitive test performance. A substantial increase in average
intelligence test results in the second half of the previous century within one generation is unlikely to be explained by
genetic changes. One possible explanation for the strong malleability of cognitive performance measure is that
environmental factors modify gene expression via epigenetic mechanisms. Epigenetic factors may help to understand
the recent observations of an association between dopamine-dependent encoding of reward prediction errors and
cognitive capacity, which was modulated by adverse life events. The possible manifestation of malleable biomarkers
contributing to variance in cognitive test performance, and thus possibly contributing to the “missing heritability”
between estimates from twin studies and variance explained by genetic markers, is still unclear. Here we show in 1475
healthy adolescents from the IMaging and GENetics (IMAGEN) sample that general IQ (gIQ) is associated with (1)
polygenic scores for intelligence, (2) epigenetic modification of DRD2 gene, (3) gray matter density in striatum, and (4)
functional striatal activation elicited by temporarily surprising reward-predicting cues. Comparing the relative
importance for the prediction of gIQ in an overlapping subsample, our results demonstrate neurobiological correlates
of the malleability of gIQ and point to equal importance of genetic variance, epigenetic modification of DRD2 receptor
gene, as well as functional striatal activation, known to influence dopamine neurotransmission. Peripheral epigenetic
markers are in need of confirmation in the central nervous system and should be tested in longitudinal settings
specifically assessing individual and environmental factors that modify epigenetic structure.

Introduction
Genetic variance is known to explain a substantial part

of variability in cognitive capacity1–5. The largest available
study describes that polygenic scores (i.e., those common
genetic variants that are most strongly associated with test
performance in previous studies) explain up to 4.8%4 of

the variance of general intelligence quotient IQ (gIQ). A
more recent larger but not yet peer reviewed study, shows
up to 5.4% of variance explained5. On the other hand,
environmental factors have a significant impact on gen-
eral cognitive capacity, as indicated by the strong rise in
average IQ performance following the decades after
World War II6,7. According to Flynn et al.7 the change
ranged from 5 to 25 IQ points (eg. 0.3 to 1.7 standard
deviation (SD)) within one generation. This change
appears to be too strong to be explained by genetic
changes. While various environmental factors
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(e.g. changes in the educational system, overall stress
experience, nutrition, etc.) might contribute to this so-
called Flynn effect, those factors should act via changes in
neurobiological systems relevant for cognition. Possible
neurobiological factors that mediate this effect and link
genotype with complex traits like cognition are (1) epi-
genetic markers including methylation count, (2) cortical
architecture of the brain evaluated using magnetic reso-
nance imaging (MRI), and (3) the functioning of the brain
explored in vivo with functional MRI (fMRI). Those
malleable markers might as well contribute to the
“missing heritability” that is present between variance
explained by accumulating single-nucleotide polymorph-
isms (SNPs; 4.8% based on polygenic scoring5), estimates
of genomic similarities between individuals (~20% SNP
heritability5), and based on heritability estimates from
twin studies (50–70%2,3). Here we aim to explore indivi-
dual variance in gIQ that can be accounted for by neu-
robiological markers of cognitive performance and
describe the interplay of mechanisms, including epige-
netic variance that may contribute to individual malle-
ability in cognitive capacity.
Several lines of evidence suggest that gIQ is associated

with the architecture of the brain measured as cortical
volume and thickness8 explaining up to 16% of the var-
iance in right insula. Beyond cortical findings, the archi-
tecture9 and volume of subcortical structures have been
associated with cognitive capacity explaining between
2.4% in striatum10 and up to 4.2% in caudate volume11.
The importance of subcortical structures is further
underpinned by the finding that training in reasoning
alters resting state connectivity between subcortical and
cortical brain areas, including striatum, parietal, and
prefrontal areas12. This is highly plausible given the
relevance of cortico-striatal networks implicated in
executive function and goal-directed behavior13–15. In line
with this, dopamine synthesis capacity in the ventral
striatum has been associated with frontal cortical and
striatal functional activation during goal-directed vs.
habitual decision-making as well as IQ16,17, in accordance
with the well-known role of dopamine in cognition and
decision-making18–20. A readily available proxy for
dopaminergic neurotransmission is the well-known
reward anticipation signal that can be measured with
fMRI21,22. Dopaminergic neurotransmission is partly
heritable, but also substantially modulated by environ-
mental factors23–27. An emerging field that could poten-
tially link the abovementioned environmental factors and
dopaminergic neurotransmission is epigenetic modula-
tion, which can help to explain individual malleability.
Finding possible links between epigenetic changes, reward
signaling, and cognitive capacity in adolescents might
contribute further evidence for long-lasting neurobiolo-
gical correlates of environmental effects, including stress

exposure, as already observed in rodents (for a review see
Meaney et al.28).
The aforementioned candidate markers for neurobio-

logical underpinnings of cognitive capacity have been
assessed before29, however, their relative importance has
not been tested in a cumulative fashion. Moreover, the
interplay between genetic variance and possible neuro-
biological underpinnings of individual difference in cog-
nitive capacity, including epigenetic markers is not known
in detail. Data from the IMaging and GENetics (IMA-
GEN) consortium, offer a well-characterized sample to
study these topics. With experts from a variety of fields,
we aimed at contributing a broader insight into that
research question.
Therefore, we measured associations between cognitive

capacity (gIQ) and polygenic scores, epigenetic markers of
the dopaminergic system, gray matter density in striatum,
and striatal activation during reward processing, in a large
sample of healthy adolescents, and we quantified their
relative contribution to interindividual differences in IQ.
We addressed the following research questions:
1. Do two different polygenic scores, which have

previously been associated with cognitive
capacity4,30, replicate in our sample?

2. Are there epigenetic markers (i.e., methylation
count) of the dopaminergic system that show
associations with gIQ?

3. Can we replicate previous findings9–11 of a
correlation between gray matter density in bilateral
striatum and gIQ?

4. Can the previously observed association between
functional activation of the ventral striatum (BOLD-
signal) and IQ17,31 be replicated in a large sample of
adolescents?

In a subset of individuals for whom we have complete
data, we evaluated the relative contribution of each of the
aforementioned predictors for gIQ, assessed possible
interactions of genetic variance with our other predictors,
and performed model comparison for combinations of
predictors.

Materials and methods
Participants
We used a sample of 1475 adolescents (mean age=

14.43 years; SD= 0.45, 765 female participants) from the
large multicenter imaging and genetics study (IMA-
GEN32) with available data from neuropsychological
assessment, functional imaging, and genetic data. The
study is intended to investigate the genetic and neuro-
biological basis of individual variability in psychological
traits, and their relation to the development of frequent
neuropsychiatric disorders. Recruiting took place at eight
different sites (Germany, United Kingdom, France, and
Ireland). We therefore included site as a covariate in all

Kaminski et al. Translational Psychiatry  (2018) 8:169 Page 2 of 11



analysis in order to account for variance introduced by
center-specific variations. We excluded subjects with
contraindication for MRI scans as well as serious medical
conditions. Each local ethics committee approved the
study. Subjects and their parents provided informed
assent and consent, respectively.

Intelligence measure
In previous work we started out with a focus on the fluid

and crystallized IQ and stress exposure17,31. An abundant
body of work on cognitive capacity and neurobiological
correlates is based on a general factor derived from
principal component analysis (PCA)29. On the other hand
there is considerable criticism of constructing general
factors33 regarding cognitive test performance and the
authors have voiced similar concerns elsewhere34. PCA
gains general information at the expense of specific
information associated with the Wechsler’s intelligence
scale (WISC) IV subscales. Calculating a general factor
based on PCA (for a review see Deary et al.29) does not
necessarily invalidate the nature of the original scales;
instead, dimensionality reduction allows for capturing
variance that is common to a variety of subscales. In this
study, we therefore performed PCA in order to derive a
measure of general cognitive ability from WISC IV subt-
ests, comprising matrix reasoning, block design, digitspan
backward and forward, similarities, and vocabulary35. The
first principal component (gIQ) explained a large pro-
portion of the variance (variance explained= 0.49) and
was used for further analyses as a marker for gIQ (see
Table 1 in the supplement). For a more fine-grained view
we explored WISC IV subscales associations with biolo-
gical markers calculating a correlation matrix in an
overlapping subsample (see supplementary Table 7).

Genetics
For building a polygenic score, we obtained summary

statistics from two large genome-wide association studies:
Benyamin et al.30 report associations with childhood
intelligence30 on 17 989 individuals and 1 380 159 SNPs;
Sniekers et al.4 provide a meta-analysis and report asso-
ciations of common variants with intelligence in a max-
imum of 78 308 adults and children and included 10 499
625 SNPs.
We performed linkage disequilibrium (LD) pruning and

“clumped” the summary statistics, discarding variants
within 500 kb of, and in r2 ≥ 0.1 with, another (more sig-
nificant) marker. After pruning we had 70 568 LD-
independent SNPs for the score by Benyamin et al.30

and 86 330 for the score according to Sniekers et al.4. For
both scores we performed risk profile scores (RPS) of our
sample described for a range of p-value thresholds (5 ×
10−8, 1 × 10−6, 1 × 10−4, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, and
1.0), multiplying the logistic regression (i.e., the natural

log of the odds ratio) of each variant by the imputation
probability for the “risk” allele in each individual. The
resulting values were summed over each individual, so
that each individual had a whole-genome RPS for further
analysis. We aimed at replicating the association of the
polygenic score with gIQ in a sample of 1388 subjects
with sufficient data quality.

Epigenetics
Global blood DNA methylation levels were assessed by

hybridizing DNA samples to the Infinium Human
Methylation 450 Bead Chip (Illumina: http://www.
illumina.com/products/methylation_450_beadchip_kits.
html), following the manufacturer’s protocol. Unlike
polygenic scores based on multiple SNPs, no epigenetic
score exists for intelligence. With respect to epigenome-
wide data, our sample size is far too small to find effects
on an epigenome-wide association study (EWAS) level.
Therefore, we focused on epigenetic markers potentially
affecting dopamine-dependent neural encoding of reward
anticipation in the striatum and planned Bonferroni cor-
rection for multiple testing.
The FDb.InfiniumMethylation.hg19 package for R

(https://bioconductor.org/packages/release/data/annotati
on/manuals/FDb.InfiniumMethylation.hg19/man/FDb.
InfiniumMethylation.hg19.pdf) was used to tag candidate
gene to its nearest CG site. We extracted the start coor-
dinate for our candidate probes from this package. This
start coordinate was then used to go up and down 50 kb
to create a region file. We assessed methylation count in
CG site from the following genes involved in dopamine
metabolism and neurotransmission: tyrosine hydroxylase
(TH); DOPA decarboxylase (DDC); catechol-O-methyl
transferase (COMT); dopamine transporter 1 (SLC6A3);
dopamine receptor D1 (DRD1); and dopamine receptor
D2 (DRD2) resulting in 24 CG sites. We focused on D1
and D2 receptors because they are the most abundant
dopamine receptors in the brain with expression in
regions relevant for motor, limbic, and neuroendocrine
functioning36. D3, D4, and D5 mRNAs are one to two
orders of magnitude lower than that of the D1 or D237.
We think that in addition to D1 and D2, D3, 4, or 5 only
provide limited further insight for possible markers of
gIQ. Nonetheless, for a more comprehensive view, we
include an exploratory search for D3, D4, and D5 receptor
gene and tested for association with gIQ in the Supple-
ment. Epigenetic data with sufficient quality and corre-
sponding data on gIQ was available for 817 subjects.

Magnetic resonance imaging
Structural MRI
Subjects were scanned in 3T-MRI-Scanners from dif-

ferent manufacturers (Bruker, General Electric, Philips
and Siemens32). We controlled for variance accounted for
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by scanning site using dummy coded variables38. We used
high resolution T1-weighted three-dimensional magneti-
zation prepared rapid gradient echo sequence based on
the ADNI protocol (http://www.loni.ucla.edu/ADNI/
Cores/index.shtml). Gray matter density was estimated,
including age, gender, and total intracranial volume as
covariates of no interest. Mean striatal gray matter density
was extracted from anatomical masks using the WFU-
Pick atlas39 comprising bilateral striatum (http://fmri.
wfubmc.edu/software/pickatlas) as an anatomic voxel
mask with the individual Brain Atlases tool in SPM
(IBASPM 71). Structural imaging data with sufficient
quality and corresponding data on gIQ were available for
1401 subjects.

Task details
During fMRI subjects performed a modified version of

the well-known monetary incentive delay (MID) task22,40.
The MID assesses how quickly the subject can react to a
reward-indicating vs. neutral cues and pull a trigger to hit
a target (with the left or right index finger). The cue was
followed by a variable anticipation interval. Then the
subjects were asked to push a button with their left or
right index finger in order to hit an appearing target. If the
subject is able to hit the target, following a reward-
indicating (but not a neutral) cue, he or she scores points
(Fig. 1 in SI).

Functional MRI
Due to our a priori hypotheses of an association

between intelligence measures with activation of the
ventral striatum during reward anticipation in the MID
task22, we tested our research question in a region of
interest (ROI). For this a literature-based mask41 of the
bilateral ventral striatum was used in order to test for
effects of individual signal change. We extracted the mean
beta-values from the main effect in the abovementioned
volume of interest of the ventral striatum from contrast
images estimating the BOLD-signal change during
anticipation of big and small vs. no reward (Table 5 in SI).
This signal is considered as an estimate of temporal dif-
ference errors elicited by temporarily surprising reward-
predicting cues, which are related to phasic dopaminergic
neurotransmission (Fig. 1 in SI)22,42. For further details
concerning scanning parameters, preprocessing, and sin-
gle subject statistics please refer to the Supplement.

Statistical analysis
We assumed that for a sufficient power of 1− β= 80%

(α= 5%) and a small effect sizes ranging from 2.4%10 in
previous structural imaging studies and 4.8%4 for previous
polygenic scores, according to Hulley et al.43 we would
need a total sample size of 161–324 subjects. To estimate
the variance explained by two different polygenic scores in

our sample, we were able to calculate linear regression
models with gIQ as dependent variable and polygenic
scores as predictors in n= 1388 subjects. Additional
covariates included age, gender, and principal compo-
nents from our prior PCA, which account for population
stratification and tested two different polygenic scores,
therefore we chose a significance level of p= 0.025.
For epigenetic markers, linear regression models were

fitted for each marker in a combined sample of 817 sub-
jects. Age, gender, and site as well as first two principle
components of estimated differential cell counts and wave
information were included into linear regression models
as variables of no interest. We plotted a correlation matrix
for all candidate markers in order to explore associations
between methylation count in each CG site. Correlations
between candidate CG sites revealed that most regions
were independent markers (Fig. 1b). As candidate markers
appeared to be rather independent, we decided to apply
Bonferroni correction to rigorously correct our results for
multiple comparisons resulting in a significance level of
p= 2 × 10−3.
We applied linear regression to estimate the correlation

between gIQ and bilateral gray matter density in striatum
of 1401 subjects with sufficient imaging quality. We
accounted for variance from the following variables of no
interest: age, gender, site, and total brain volume.
To statistically evaluate associations between bilateral

ventral striatal reward anticipation signal (BOLD-signal)
and gIQ, we used multiple linear regression controlling
for age, gender, and site in a sample of 1475 subjects. For
imaging parameters, we used split-half cross-validation on
two subsets. A significance level of p= 0.05 was chosen.
For explorative analysis of gIQ and whole-brain asso-

ciations with BOLD-signal during reward anticipation, we
computed linear regression models at each voxel, using
ordinary least squares. Due to spatial auto-correlation we
used whole-brain family-wise error correction (p= 0.05)
applying random field theory as implemented in statistical
parametric mapping software (SPM 8) in n=
1475 subjects.
For our best predictors, we estimated variance explained

and obtained 95% bootstrapped confidence intervals from
1000 randomly drawn samples to evaluate reliability of
our results.
For further analysis, we choose to partial out variance

from variables of no interest by calculating separate
regression models of our nuisance variables on our pre-
dictors. For the polygenic scores we regressed out var-
iance accounted for by age, gender, and principal
component from our prior PCA. For epigenetic markers,
we accounted for age, gender, site, first two principle
components of estimated cell count, and wave informa-
tion. For structural MRI, we regressed out variance from
age, gender, site, and total brain volume. For fMRI, we
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Fig. 1 (See legend on next page.)
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accounted for age, gender, and site. To explore possible
interrelatedness between residuals of our variables, we
calculated a correlation matrix.
We calculated one multiple linear regression model on

residuals of our predictors in an overlapping subsample of
755 subjects with gIQ as independent variable and BOLD-
signal, gray matter density, polygenic score, and epige-
netic candidate marker as predictors. In order to estimate
the effect size, we calculated standardized parameter
estimates (beta) in a multiple regression model, which
assumes standardized predictors and dependent variables
(variance equals one). The standardized parameter esti-
mate (beta) indicates how many SDs gIQ will change, per
SD change in the predictor variable. We used the lavaan
package44 in combination with the SemPlot package45 in
R 3.2.4 for illustration purposes.
Although we did not primarily hypothesize interaction

effects, we calculated interaction terms in order to explore
the interplay between our variables. We focused on pos-
sible interactions of genetic effects on epigenetic, struc-
tural MRI and BOLD-signal resulting in three interaction
terms (gene × epigenetic marker, gene × structural MRI,
and gene × BOLD-signal). Correcting for multiple com-
parisons, we considered a significance level of p= 0.017
(i.e., p= 0.05 divided by the number of interaction terms).

Finally, we formally described and compared different
combinations of our predictors using model comparison.
With an exhaustive search for all combinations between
our predictors we wanted to find the best model
explaining gIQ. We choose to compare a set of all com-
binations, resulting in 15 models. We performed model
comparison based on difference in Bayesian information
criterion (BIC), which is known to penalize for models
with larger numbers of parameters more strongly,
resulting in a parsimonious model.
All probability values for the abovementioned tests are

reported non-directional (two-tailed).
If not stated differently statistical tests were performed

using R version 3.2.4

Results
Association between IQ and polygenic scores
With respect to our first research question regarding

the influence of genetics on gIQ, we observed that the
polygenic score by Benyamin et al.30 at a p-threshold of
0.1 comprising 16 972 SNPs was significantly associated
with gIQ (0.33% variance explained, degrees of freedom
(df)= 1376, p= 1.7 × 10−2; Fig. 2a, and Table 2 in SI).
With respect to the score provided by Sniekers et al., we

found the maximal proportion of variance explained with

Fig. 2 Variance explained (%Exp) of two different polygenic scores predicting general IQ. Each bar represents variance explained for a given
set of multi-SNP predictors at a given p-value threshold that is color-coded. The color code is described in the legend within the plot and represents
p-value thresholds for inclusion of SNPs. On top of the bars p-values for association with gIQ for each polygenic score are reported. a The left panel
shows the polygenic score derived from Benyamin et al.30. b The right panel shows the polygenic score derived from Sniekers et al.4

Fig. 1 Association between methylation count in dopaminergic candidate markers and general IQ in n= 817 subjects. a Plot of negative
decadic logarithm of p-values for association of methylation count in CG site 50 kb pairs up- and downstream from dopaminergic candidate markers.
Candidate markers were tyrosine hydroxylase (TH), DOPA decarboxylase (DDC), catechol-O-methyl transferase (COMT), dopamine transporter 1
(SLC6A3), dopamine receptor 1 (DRD1), and dopamine receptor 2 (DRD2). Among 24 identified CG sites we found significant associations of
epigenetic candidate markers for dopamine D2 receptor (cg26132809) involved in dopamine neurotransmission with general IQ correcting for age,
gender, study site, wave information, and variability in cell type. The red line marks p-value threshold for multiple comparison correction for each CG
site (p < 2 × 10−3) and the dashed line for p < 0.05. b Correlation matrix of epigenetic candidate markers involved in dopaminergic
neurotransmission. Only correlation indices are displayed at a significance level of p < 0.01 (i.e., R > 0.2). Correlation coefficients are color-coded
(positive correlation blue, negative correlation red)
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Fig. 3 (See legend on next page.)

Kaminski et al. Translational Psychiatry  (2018) 8:169 Page 7 of 11



3.2% (p= 7.3 × 10−8, df= 1376, bootstrapped confidence
interval (CI): 1.64–5.43%) using a score comprising 5636
SNPs significant at a p-threshold of 0.01 (Figs. 2b and 3a,
and Table 2 in SI).

Association between IQ and epigenetic markers of
dopaminergic neurotransmission
Regarding our second research question, we found

significant effects of methylation on gIQ in a CG site in
the DRD2 gene (cg26132809), which survived Bonferroni
correction for multiple testing (2.7% variance explained,
df= 803, p= 3.18 × 10−4, bootstrapped CI: 0.01–2.94%;
Figs. 1a and 3b, and Table 3 in SI).

Association between IQ and gray matter density in
striatum (MRI)
We found a positive correlation between gray matter

density in bilateral striatum with gIQ (0.71% variance
explained, df= 1399, p= 1.7 × 10−3, bootstrapped CI:
0.09–1.87%; Fig. 3c). Using split-half cross-validation, we
could confirm this finding (d0: 0.81%, df= 698, p= 2.2 ×
10−2; d1: 0.64%, df= 699, p= 3.2 × 10−2).

Association between IQ and ventral striatal BOLD-signal
(fMRI)
In accordance with our third research question, we

found that in our ROI, the ventral striatum, beta para-
meter estimates of reward anticipation (BOLD-signal)
showed a significant positive association with gIQ (1.4%
variance explained, df= 1463, p= 4.1 × 10−6,

bootstrapped CI: 0.49–3.24%; Fig. 3d). This finding was
confirmed using split-half cross-validation (d0: 1.4%, df=
726, p= 1.1 × 10−3; d1: 1.7%, df= 725, p= 4.4 × 10−4).
In an exploratory analysis we also observed that gIQ was

positively correlated with functional activation during
reward anticipation (BOLD-signal) in a large network
outside of the ventral striatum as well in frontal and
temporal regions (see Fig. 2 and Table 6 both in SI).

Influence of genetics, epigenetics, gray matter, and striatal
activation on IQ
Calculating one regression model with residuals of our

candidate markers, including the polygenic score (by Snie-
kers et al.), epigenetic finding (DRD2 cg26132809), gray
matter in striatum, and striatal activation, we observed that
an increase in the polygenic score of one SD leads to a beta
= 0.13 change in gIQ (p= 2.8 × 10−4; Fig. 3b). Increase in
methylation count in candidate CG site (DRD2
cg26132809) was associated with a decrease in gIQ (beta=
−0.1, p= 6.2 × 10−3). There is a positive effect of BOLD-
signal change during reward anticipation predicting gIQ
(beta= 0.14, p= 9.4 × 10−5). In this additional analysis gray
matter density in striatum showed no significant association
with gIQ (beta= 0.02, p= 0.5; Fig. 3b). Calculating a cor-
relation matrix, we found no significant association between
the neurobiological predictors (Table 1). Exploring possible
non-additive effects, we found no significant interaction
between the polygenic scores (Snieker et al. and Benyamin
et al.) and our candidate markers (epigenetics, gray matter,
and striatal activation). We conducted an exhaustive search

Fig. 3 Candidate markers predicting general IQ. For display purpose, we grouped individuals into septiles of the candidate markers and plotted
the mean phenotypic value (here general IQ) for each quantile on the y-axis52. Error bars indicate standard error of the mean. a General IQ can be
predicted using polygenic score from Sniekers et al.4 at a p-threshold of 0.01 comprising 5636 SNPs explaining 3.2% of variance (df= 1376; p= 7.3 ×
10−8; correcting for age, gender, study site, principal components from imputation, and genetic strata). b Here we display association with the marker
with the lowest p-value (methylation count in dopamine D2-receptor gene, DRD2 cg26132809) among our candidate markers. We grouped
individuals into septiles of their methylation level (higher septile rank indicating higher probability of methylation) and plotted those septiles against
mean general IQ score on the y-axis. General IQ is negatively correlated with candidate marker for dopamine neurotransmission in our regression
model (2.7% of variance explained, df= 803, p= 3.18 × 10−4 correcting for age, gender, study site, wave information, and variability in cell type)
indicating that higher methylation count, which is considered as downregulation of transcription of DRD2 receptor, is related to lower IQ scores.
c Gray matter density in bilateral striatum was used to group individuals into septiles. We plotted gray matter density against general IQ and found
0.71% variance explained (df= 1399, p= 1.7 × 10−3), correcting for age, gender, site, and total brain volume. d Here we plot general IQ by reward
anticipation signal (BOLD-signal) in region of interest (ROI). We grouped individuals into septiles of beta parameter estimates (BOLD-signal) and
plotted mean general IQ for each quantile on the y-axis for display purposes. General IQ is positively correlated with functional activation of the
ventral striatum (1.4% of variance explained, df= 1463, p= 4.11 × 10−6; correcting for gender, age, and study site). e Regression model illustrating
neurobiological correlates of general IQ in an overlapping sample of n= 755. A multiple linear regression model with general IQ (gIQ) as outcome
variable was estimated with the residuals of the following predictors: polygenic score (from Sniekers et al.), methylation in DRD2 gene, gray matter in
striatum, and functional activation during reward anticipation. The whole model was significant with an adjusted R2= 0.04 (df= 750, p= 3.3 × 10−7).
On the edges, we display the standardized parameter estimates for each predictor (beta) describing how many standard deviations the dependent
variable (gIQ) will change, per standard deviation increase in the predictor variable. With respect to the different predictors, we could replicate
previous findings that the established polygenic score (including 5636 SNPs significant at a p-threshold of 0.01) shows an association with general IQ
(beta= 0.13, p= 2.8 × 10−4). We find variance in methylation count in our candidate CG site (DRD2 cg26132809) that is negatively associated with
general IQ (beta=−0.10, p= 6.2 × 10−3), indicating that higher methylation (lower gene activity) being associated with lower gIQ. In this subsample
gray matter density in striatum was not associated with gIQ (beta= 0.02, p= 0.5). BOLD-signal change during reward anticipation significantly
predicts cognitive capacity (beta= 0.14, p= 9.4 × 10−05)
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for possible combinations of predictors and found the
lowest BIC for a model comprising polygenic score by
Sniekers et al., methylation count in the DRD2 gene
(cg26132809) and BOLD-signal during reward anticipation
in the ventral striatum (Table 2). This model explained
4.81% of variance (p= 1.05 × 10−7, df= 751, bootstrapped
CI: 2.22–9.04%). We calculated an additional correlation
matrix in order to explore our candidate markers associa-
tion with WISC IV subscales (see supplementary Table 7).

Discussion
Individual differences in intelligence have a substantial

heritable background, while strong increases in test per-
formance across the world in the last decades also point to
strong environmental effects7,46. Using a polygenic score
previously associated with cognitive capacity in children30

and a novel score4 tested in children and adults, we were

able to replicate significant associations with gIQ, with the
score based on 78 308 adults4 performing better than the
one based on a sample of 17 989 children30. The striking
difference between heritability estimates derived from
twin and adoption studies (around 50–70%2,3) and var-
iance explained by common genetic polymorphisms
(around 5%5) for many traits has been labeled “the case of
the missing heritability”. For example, regarding the par-
tially heritable and polygenic human trait “body height”,
polygenic scores account for 10% of the variance47, much
below the high heritability estimates derived from
monozygotic twin studies (heritability estimates around
85%3). So the discrepancy between variance explained by
polygenic risk scores and twin studies may simply be due
to the fact that polygenic risk scores only include com-
mon genetic polymorphisms and do not assess effects of
rare gene variants. On the other hand, if epigenetic var-
iation is transmitted to the offspring, as has been shown
for some stress-related epigenetic effects28, a more or less
substantial part of the presumably genetic background
regarding IQ test results may indeed be due to epigenetic
factors (and hence environmental effects including social
exclusion or discrimination stress).
Searching for neurobiological markers associated with

dopaminergic neurotransmission in light of studies link-
ing this system to cognitive capacity11,17,18 we found sig-
nificant associations between methylation of DRD2 gene
(cg26132809) and gIQ. Epigenetic control of gene
expression is modulated by environmental factors such as
stress exposure to the individual or in some cases parental
generation48. Stress exposure and further environmental
factors also strongly modulate dopaminergic neuro-
transmission, with relations to epigenetic modification
unexplored. In line with previous findings11 we found gIQ
to be related to gray matter density in striatum. These
observations suggest a striatal contribution to the malle-
ability of cognitive capacity49.
The association between ventral striatal activation and

gIQ was found to be robust using split-half cross-valida-
tion as well as estimation of bootstrapped confidence
intervals. In the MID task, temporarily unpredicted pre-
sentation of reward-associated stimuli elicit functional
activation of the ventral striatum (BOLD-signal), which
was previously associated with dopamine release mea-
sured indirectly by displacement of radio ligands of
dopamine D2 receptors in this brain area21. Unlike in
studies directly quantifying the size of the reward pre-
diction error using computational modeling31,50, in the
MID task, the size of the temporal error in the prediction
of reward-anticipatory cues cannot be individually com-
puted. Although not limited to the ventral striatum,
finding the strongest effect in this region suggests that
dopamine-dependent encoding of reward-anticipatory

Table 1 Correlation matrix for predictors of overlapping
sample of n= 755

gIQ BOLD Epigenetic Polygenic score

BOLD 0.14****

Epigenetic −0.10** 0

Polygenic score 0.13**** −0.03 −0.03

Gray matter 0.03 0 −0.03 0.01

The correlation coefficients are based on linear regressions on residuals
partialling out variance from variables of no interest
gIQ general IQ
BOLD, functional activation during reward anticipation; epigenetic, methylation
in CG site DRD2 cg26132809; polygenic score, polygenic score including 5636
SNPs significant at a p-threshold of 0.01 from Sniekers et al.; gray matter, gray
matter density in striatum
Significant levels (two-tailed) ****p < 0.0001; ***p < 0.001; **p < 0.01, *p < 0.05

Table 2 Top six models of model comparison, among all
possible combinations of 15 models

Model ΔBIC df

gIQ ~ polygenic score+ epigenetic+ BOLD 0 751

gIQ ~ polygenic score+ BOLD 1.02 752

gIQ ~ polygenic score+ epigenetic+ BOLD+ gray matter 6.16 750

gIQ ~ epigenetic+ BOLD 6.73 752

gIQ ~ polygenic score+ BOLD+ gray matter 7.08 751

gIQ ~ BOLD 8.24 753

From top to bottom we display the models starting with the lowest Bayesian
information criterion (BIC). We used the overlapping sample of n= 755 and
residuals of our predictors (partialling out variance from variables of no interest)
df degrees of freedom, gIQ general IQ
ΔBIC, difference in Bayesian Information Criterion compared to the best model:
ΔBIC= 0; BOLD, functional activation during reward anticipation in striatum;
epigenetic, methylation in CG site of DRD2 gene cg26132809; polygenic score,
polygenic score including 5636 SNPs significant at a p-threshold of 0.01 from
Sniekers et al.; gray matter, gray matter density in striatum
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cues and prediction errors contribute to cognitive flex-
ibility and rapid decision-making.
Calculating a regression model in a subsample of

755 subjects with fully available data for all predictors we
found polygenic score of Sniekers et al.4, epigenetic
markers of the DRD2 gene and the ventral striatal BOLD-
signal were significantly associated with gIQ with a similar
effect size. In combined assessment in this subsample,
gray matter density in striatum did not show a significant
effect. Exploring the interrelatedness of our candidate
markers, we found no significant association, thus point-
ing to rather independent sources of variance for gIQ. The
abovementioned polygenic scores (Sniekers et al. and
Benyamin et al.) did not show a significant interaction
effect with our candidate markers (epigenetics, gray
matter and striatal activation) in our sample. In order to
formally describe and compare possible models that
predict gIQ, comparison of all possible combinations of
our predictors resulted in a model comprising BOLD-
signal during reward anticipation in the ventral striatum,
methylation count in the DRD2 gene and the polygenic
score. Altogether, the winning model points to a rather
independent contribution of variance of dopaminergic
neurotransmission to variance in gIQ on the one hand
and genetic differences on the other hand.
Limitations of our study include the sample size, which

is rather large for neuroimaging studies but exceedingly
small for explorative genetic and epigenetic studies. This
is reflected in rather large CIs when applying bootstrap
procedures in epigenetic markers. Furthermore, our
sample size is too small for the detection of epigenome-
wide markers. Therefore, the DNA methylation score was
limited to CG sites in selected dopaminergic genes, with
only a single CG site emerging as significant. It is highly
likely that a more comprehensive DNA methylation
analysis would have identified more epigenetic loci, which
are associated with IQ score. Despite the relatively small
sample size, we were able to replicate effects of polygenic
score on gIQ derived from large samples4,30. Further
limitations include that our epigenetic markers are
assessed in peripheral blood. They may not reflect var-
iance in brain tissue and have to be validated in studies
with methods directly accessing tissue in the central
nervous system51. The cross-sectional design of the study
does not allow any statement concerning causality. Fur-
ther studies with a longitudinal design in possible quasi
experimental settings are warranted.
Taken together, our findings suggest that both func-

tional activation of the reward system, epigenetic control
of dopaminergic neurotransmission, and genetic markers
contribute to gIQ. Of note, the effect sizes studied are
small but in the same range as previous studies (2.4%10 in
previous structural imaging studies and up to 4.8%4 for
previous polygenic scores). Eventually, it is fundamental

for the understanding of cognitive capacity that we find
variable neurobiological correlates of gIQ. Variance of
methylation count in our epigenetic candidate marker and
individual differences in ventral striatal activation during
reward anticipation seem to be independent predictors
and do not show a relation with genetic correlates.
Observing an association between epigenetic markers and
neural signatures of gIQ should encourage further studies
exploring mechanisms that mediate genetic and envir-
onmental effects on the neurobiological correlates of
cognitive functions.

Acknowledgements
The IMAGEN study receives research funding from the European Community’s
Sixth Framework Programme (LSHM-CT-2007-037286).

Author details
1Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité –
Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany. 2Berlin
Institute of Health (BIH), Kapelle Ufer 2, 10117 Berlin, Germany. 3Max-Planck-
Institute for Human Cognitive and Brainsciences, Stephanstraße 1a, 04103
Leipzig, Germany. 4Social and Preventive Medicine, University of Potsdam, Am
Neuen Palais 10, 14469 Potsdam, Germany. 5Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
6Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology &
Neuroscience, King’s Colleges, London, UK. 7Department of Child and
Adolescent Psychiatry, Psychotherapy and Psychosomatics, University of
Leipzig, Liebigstrße 20a, 04103 Leipzig, Germany. 8Department of Child and
Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health,
Medical Faculty Mannheim, Heidelberg University, Square J5, 68159
Mannheim, Germany. 9Discipline of Psychiatry, School of Medicine and Trinity
College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
10University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr.
52, 20246 Hamburg, Germany. 11Medical Research Council—Social, Genetic
and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology &
Neuroscience, King’s College, London, UK. 12Department of Cognitive and
Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty
Mannheim, Heidelberg University, Square J5, Mannheim, Germany.
13Department of Psychology, School of Social Sciences, University of
Mannheim, 68131 Mannheim, Germany. 14Neurospin, Commissariat à l’Energie
Atomique, CEA-Saclay Center, Paris, France. 15Departments of Psychiatry and
Psychology, University of Vermont, Burlington, VT 05405, USA. 16Sir Peter
Mansfield Imaging Centre School of Physics and Astronomy, University of
Nottingham, University Park, Nottingham, UK. 17Physikalisch-Technische
Bundesanstalt (PTB), Abbestr. 2-12, Berlin, Germany. 18Institut National de la
Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging &
Psychiatry”, University Paris Sud, University Paris Descartes—Sorbonne Paris
Cité, Maison de Solenn, Paris, France. 19Institut National de la Santé et de la
Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”,
University Paris Sud, University Paris Descartes—Sorbonne Paris Cité; and AP-
HP, Department of Adolescent Psychopathology and Medicine, Maison de
Solenn, Cochin Hospital, Paris, France. 20Rotman Research Institute, Baycrest
and Departments of Psychology and Psychiatry, University of Toronto, Toronto,
ON M6A 2E1, Canada. 21Department of Child and Adolescent Psychiatry and
Psychotherapy, Medical University of Vienna, Vienna, Austria. 22Department of
Psychiatry and Neuroimaging Center, Technische Universität Dresden,
Dresden, Germany. 23Department of Psychology, University College Dublin,
Dublin, Ireland

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Kaminski et al. Translational Psychiatry  (2018) 8:169 Page 10 of 11



Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41398-018-0222-7).

Received: 19 September 2017 Revised: 14 June 2018 Accepted: 14 July
2018

References
1. Davies, G. et al. Genetic contributions to variation in general cognitive func-

tion: a meta-analysis of genome-wide association studies in the CHARGE
consortium (N= 53 949). Mol. Psychiatry 20, 183–192 (2015).

2. Bouchard, T. J., Lykken, D. T., McGue, M., & Segal, N. L. & Tellegen, A. Sources of
human psychological differences: the Minnesota Study of Twins Reared Apart.
Science 250, 223–228 (1990).

3. Polderman, T. J. C. et al. Meta-analysis of the heritability of human traits based
on fifty years of twin studies. Nat. Genet 47, 702–709 (2015).

4. Sniekers, S. et al. Genome-wide association meta-analysis of 78,308 individuals
identifies new loci and genes influencing human intelligence. Nat. Genet 49,
1107–1112 (2017).

5. Savage J. E., et al. GWAS meta-analysis (N= 279,930) identifies new genes and
functional links to intelligence. bioRxiv. http://biorxiv.org/content/early/2017/
09/06/184853.1.abstract (2017).

6. Flynn, J. R. The mean IQ of Americans: massive gains 1932 to 1978. Psychol.
Bull. 95, 29–51 (1984).

7. Flynn, J. R. Massive IQ gains in 14 nations: what IQ tests really measure. Psychol.
Bull. 101, 171–191 (1987).

8. Karama, S. et al. Childhood cognitive ability accounts for associations between
cognitive ability and brain cortical thickness in old age. Mol. Psychiatry 19,
555–559 (2014).

9. Burgaleta, M. et al. Subcortical regional morphology correlates with fluid and
spatial intelligence. Hum. Brain Mapp. 35, 1957–1968 (2014).

10. MacDonald, P. A., Ganjavi, H., Collins, D. L., Evans, A. C. & Karama, S. Investi-
gating the relation between striatal volume and IQ. Brain Imaging Behav. 8,
52–59 (2014).

11. Grazioplene, R. G. et al. Subcortical intelligence: caudate volume predicts IQ in
healthy adults. Hum. Brain Mapp. 36, 1407–1416 (2015).

12. Mackey, A. P., Miller Singley, A. T. & Bunge, S. A. Intensive reasoning training
alters patterns of brain connectivity at rest. J. Neurosci. 33, 4796–4803
(2013).

13. Alexander, G. Parallel organization of functionally segregated circuits linking
basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

14. Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and
human imaging. Neuropsychopharmacology 35, 4–26 (2009).

15. Neubert, F., Mars, R. B., Sallet, J. & Rushworth, M. F. S. Connectivity reveals
relationship of brain areas for reward-guided learning and decision making in
human and monkey frontal cortex. Proc. Natl Acad. Sci. USA 112, 1–10 (2015).

16. Deserno, L. et al. Ventral striatal dopamine reflects behavioral and neural
signatures of model-based control during sequential decision making. Proc.
Natl Acad. Sci. USA 112, 1595–1600 (2015).

17. Schlagenhauf, F. et al. Ventral striatal prediction error signaling is associated
with dopamine synthesis capacity and fluid intelligence. Hum. Brain Mapp. 34,
1490–1499 (2013).

18. Montague, P. R., Hyman, S. E. & Cohen, J. D. Computational roles for dopamine
in behavioural control. Nature 431, 760–767 (2004).

19. Cools, R., Gibbs, S. E., Miyakawa, A., Jagust, W. & D’Esposito, M. Working
memory capacity predicts dopamine synthesis capacity in the human stria-
tum. J. Neurosci. 28, 1208–1212 (2008).

20. O’Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instru-
mental conditioning. Science 304, 452–454 (2004).

21. Schott, B. H. et al. Mesolimbic functional magnetic resonance imaging acti-
vations during reward anticipation correlate with reward-related ventral striatal
dopamine release. J. Neurosci. 28, 14311–14319 (2008).

22. Knutson, B., Adams, C. M., Fong, G. W. & Hommer, D. Anticipation of increasing
monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21,
RC159 (2001).

23. Gluskin, B. S., & Mickey, B. J. Genetic variation and dopamine D2 receptor
availability: a systematic review and meta-analysis of human in vivo molecular
imaging studies. Tranlational Psychiatry 6, e747–e748 (2016).

24. Eisenberg, D. P. et al. Common variation in the DOPA decarboxylase (DDC)
gene and human striatal DDC activity in vivo. Neuropsychopharmacology 41,
2303–2308 (2016).

25. Nader, M. A. et al. PET imaging of dopamine D2 receptors during chronic
cocaine self-administration in monkeys. Nat. Neurosci. 9, 1050–1056 (2006).

26. Robinson, O. J., Overstreet, C., Charney, D. R., Vytal, K. & Grillon, C. Stress
increases aversive prediction error signal in the ventral striatum. Proc. Natl
Acad. Sci. USA 110, 4129–4133 (2013).

27. Vaessen, T., Hernaus, D., Myin-germeys, I. & Amelsvoort, Tvan. The dopami-
nergic response to acute stress in health and psychopathology: a systematic
review. Neurosci. Biobehav. Rev. 56, 241–251 (2015).

28. Meaney, M. J. Maternal care, gene expression, and the transmission of indi-
vidual differences in stress reactivity across generations. Annu. Rev. Neurosci.
24, 1161–1192 (2001).

29. Deary, I. J., Penke, L. & Johnson, W. The neuroscience of human intelligence
differences. Nat. Rev. Neurosci. 11, 201–211 (2010).

30. Benyamin, B. et al. Childhood intelligence is heritable, highly polygenic and
associated with FNBP1L. Mol. Psychiatry 19, 253–258 (2014).

31. Friedel, E. et al. The effects of life stress and neural learning signals on fluid
intelligence. Eur. Arch. Psychiatry Clin. Neurosci. 265, 35–43 (2015).

32. Schumann, G. et al. The IMAGEN study: reinforcement-related behaviour in
normal brain function and psychopathology. Mol. Psychiatry 15, 1128–1139
(2010).

33. Gould, S. J. The Mismeasure of Man (W. W. Norton & Company, New York,
1996).

34. Heinz, A., Müller, D. J., Krach, S., Cabanis, M. & Kluge, U. P. The uncanny return
of the race concept. Front Hum. Neurosci. 8, 271–283 (2014).

35. Wechsler, D. et al. Wechsler Intelligence Scale for Children: Fourth Edition (WISC-
IV) (Pearson, San Antonio, 2003).

36. Meador-Woodruff J. H. Dopamine receptor transcript localization in
human brain. Neuropsychopharmacology (2000) http://www.acnp.org/g4/
GN401000026/CH026.html.

37. Sokoloff, P., Giros, B., Martres, M.-P., Bouthenet, M.-L. & Schwartz, J.-C. Molecular
cloning and characterization of a novel dopamine receptor (D3) as a target for
neuroleptics. Nature 347, 146 (1990).

38. Whelan, R. et al. Neuropsychosocial profiles of current and future adolescent
alcohol misusers. Nature 512, 185–189 (2015).

39. Maldjian, J. A., Laurienti, P. J., Kraft, R. A. & Burdette, J. H. An automated method
for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI
data sets. Neuroimage 19, 1233–1239 (2003).

40. Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L. & Hommer, D. Dissociation
of reward anticipation and outcome with event-related fMRI. Neuroreport 12,
3683–3687 (2001).

41. Rothkirch, M., Schmack, K., Deserno, L., Darmohray, D. & Sterzer, P. Attentional
modulation of reward processing in the human brain. Hum. Brain Mapp. 35,
3036–3051 (2014).

42. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and
reward. Science 275, 1593–1599 (1997).

43. Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D. G. & Newman, T. B.
Designing Clinical Research (Lippincott Williams & Wilkins, Philadelphia PA 2013).

44. Rosseel, Y. lavaan: an R package for structural equation mdeling. J. Stat. Softw.
48, 1–36 (2012).

45. Epskamp, S. semPlot: unified visualizations of structural equation models.
Struct. Equ. Model A Multidiscip. J. 22, 474–483 (2015).

46. Davies, G. et al. Genome-wide association study of cognitive functions and
educational attainment in UK Biobank (N= 112 151). Mol. Psychiatry 21,
758–767 (2016).

47. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and
biological pathways affect human height. Nature 467, 832–838 (2010).

48. McGowan, P. O. et al. Epigenetic regulation of the glucocorticoid receptor in
human brain associates with childhood abuse. Nat. Neurosci. 12, 342–348
(2009).

49. Scarr, S. & Weinberg, R. A. IQ test performance of Black children adopted by
White families. Am. Psychol. 31, 726–739 (1976).

50. Schlagenhauf, F. et al. Striatal dysfunction during reversal learning in unme-
dicated schizophrenia patients. Neuroimage 89, 171–180 (2014).

51. Tylee, D. S., Kawaguchi, D. M. & Glatt, S. J. On the outside, looking in: A review
and evaluation of the comparability of blood and brain ‘-omes’. Am. J. Med.
Genet. B Neuropsychiatr. Genet. 162, 595–603 (2013).

52. Krapohl, E. et al. Phenome-wide analysis of genome-wide polygenic scores.
Mol. Psychiatry 21, 1188–1193 (2016).

Kaminski et al. Translational Psychiatry  (2018) 8:169 Page 11 of 11

https://doi.org/10.1038/s41398-018-0222-7
https://doi.org/10.1038/s41398-018-0222-7
http://biorxiv.org/content/early/2017/09/06/184853.1.abstract
http://biorxiv.org/content/early/2017/09/06/184853.1.abstract
http://www.acnp.org/g4/GN401000026/CH026.html
http://www.acnp.org/g4/GN401000026/CH026.html

	Title
	Abstract
	Epigenetic variance in dopamine D2 receptor: a marker of IQ malleability?
	Introduction
	Materials and methods
	Participants
	Intelligence measure
	Genetics
	Epigenetics
	Magnetic resonance imaging
	Structural MRI
	Task details
	Functional MRI
	Statistical analysis


	Results
	Association between IQ and polygenic scores
	Association between IQ and epigenetic markers of dopaminergic neurotransmission
	Association between IQ and gray matter density in striatum (MRI)
	Association between IQ and ventral striatal BOLD-signal (fMRI)
	Influence of genetics, epigenetics, gray matter, and striatal activation on IQ

	Discussion
	ACKNOWLEDGMENTS




