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1  | INTRODUC TION

Population admixture (hereafter: admixture) is a genetic process 
of hybridization between previously isolated populations of one 
species (Ellstrand & Schierenbeck, 2000). Admixture might, for 

example, happen via translocation of seeds or removal of isolation 
barriers. In this way, it may be an important process in invasion bi-
ology where genotypes from various origins are introduced into a 
new area (Lavergne & Molofsky, 2007). It is also a concern in resto-
ration ecology, where the origin of seed sources used for restoration 

 

Received: 19 September 2017  |  Revised: 29 January 2018  |  Accepted: 30 January 2018
DOI: 10.1002/ece3.3946

O R I G I N A L  R E S E A R C H

Costs and benefits of admixture between foreign genotypes 
and local populations in the field

Jun Shi1,2 | Jasmin Joshi3,4  | Katja Tielbörger1 | Koen J. F. Verhoeven5  |  
Mirka Macel1,6,7

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Institute of Evolution and Ecology, Plant 
Ecology Group, University of Tübingen, 
Tübingen, Germany
2Ningbo Academy of Agricultural Sciences, 
Ningbo, China
3Biodiversity Research/Systematic 
Botany, Institute of Biochemistry and 
Biology, University of Potsdam, Potsdam, 
Germany
4Berlin-Brandenburg Institute of Advanced 
Biodiversity Research (BBIB), Institute of 
Biology, Freie Universität Berlin, Berlin, 
Germany
5Department of Terrestrial 
Ecology, Netherlands Institute of Ecology 
(NIOO-KNAW), Wageningen, the 
Netherlands
6Molecular Interaction Ecology, Department 
of Plant Science, Radboud University 
Nijmegen, Nijmegen, the Netherlands
7Plant Ecology and Phytochemistry, Leiden 
Institute of Biology, Leiden, the Netherlands

Correspondence
Mirka Macel, Molecular Interaction Ecology, 
Department of Plant Science, Radboud 
University Nijmegen, Nijmegen, the 
Netherlands.
Email: mirkamacel@gmail.com

Funding information
China Scholarship Council, Grant/Award 
Number: 201206140020; the Netherlands 
Organisation for Scientific Research, Grant/
Award Number: 864.10.008; Deutsche 
Forschungsgemeinschaft, Grant/Award 
Number: DFG-SPP 1529

Abstract
Admixture is the hybridization between populations within one species. It can in-
crease plant fitness and population viability by alleviating inbreeding depression and 
increasing genetic diversity. However, populations are often adapted to their local 
environments and admixture with distant populations could break down local adap-
tation by diluting the locally adapted genomes. Thus, admixed genotypes might be 
selected against and be outcompeted by locally adapted genotypes in the local envi-
ronments. To investigate the costs and benefits of admixture, we compared the per-
formance of admixed and within-population F1 and F2 generations of the European 
plant Lythrum salicaria in a reciprocal transplant experiment at three European field 
sites over a 2-year period. Despite strong differences between site and plant popula-
tions for most of the measured traits, including herbivory, we found limited evidence 
for local adaptation. The effects of admixture depended on experimental site and 
plant population, and were positive for some traits. Plant growth and fruit production 
of some populations increased in admixed offspring and this was strongest with 
larger parental distances. These effects were only detected in two of our three sites. 
Our results show that, in the absence of local adaptation, admixture may boost plant 
performance, and that this is particularly apparent in stressful environments. We 
suggest that admixture between foreign and local genotypes can potentially be con-
sidered in nature conservation to restore populations and/or increase population vi-
ability, especially in small inbred or maladapted populations.
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is still under debate (Bucharova et al., 2017; Gellie, Breed, Thurgate, 
Kennedy, & Lowe, 2016) and where both positive and negative ef-
fects of admixture may occur. Admixture can be beneficial by lead-
ing to heterosis and lifting inbreeding depression (Escobar, Nicot, & 
David, 2008). Mildly deleterious alleles that are expressed in homo-
zygotes could be masked through admixture in the F1 hybrid off-
spring (Hufford & Mazer, 2003). This may be particularly beneficial 
for small isolated populations that are prone to suffer from inbreed-
ing depression (Hedrick & Kalinowski, 2000). Admixture can also 
lead to heterosis via a general fitness advantage of heterozygotes 
(overdominance; Charlesworth & Willis, 2009). Furthermore, ad-
mixture can increase the genetic variation of a population or lead to 
novel adaptive genotypes (Verhoeven, Macel, Wolfe, & Biere, 2011).

While heterosis can be a benefit of admixture, the introduction 
of novel genotypes can also cause outbreeding depression, that is, 
an increase in maladapted genotypes, which is the main potential 
fitness cost of admixture. A mechanism for outbreeding depression 
is “dilution” of locally adapted genomes (Hufford & Mazer, 2003). 
Species can evolve local adaptation due to divergent selection by 
the local environments (Leimu & Fischer, 2008; Linhart & Grant, 
1996). Factors that can play a role in local adaptation can be abi-
otic, for example, climate and soil chemistry, or biotic such as her-
bivores, pathogens, and mutualists (Cremieux et al., 2008; Macel 
et al., 2007). Admixture would dilute locally adapted genomes in the 
admixed offspring (Keller, Kollmann, & Edwards, 2000). Selection 
would therefore put constraints on the dilution of locally adapted 
gene pools through substantial fitness loss of the admixed offspring 
relative to either parent (Angert, Bradshaw, & Schemske, 2008). 
Consequently, this local adaptation might contribute to isolation of 
populations by selection against nonlocal genotypes in a population 
thus reducing admixture and may enhance inbreeding (Nosil, Vines, 
& Funk, 2005; Verhoeven et al., 2011).

On a genetic level, if the parents are genetically very distant, 
there may be a disruption of co-adapted gene complexes via re-
combination (Lynch, 1991). This may lead to reduced viability or 
fertility in case of serious genetic incompatibilities, also known as 
“hybrid breakdown” (Rius & Darling, 2014). As recombination of a co-
adapted gene complex first occurs in the second hybrid generation, 
hybrid breakdown might only occur in subsequent F2 or later gener-
ations (Fenster & Galloway, 2000; Hathaway, Andersson, & Prentice, 
2009; Hufford & Mazer, 2003).

Thus, the intrinsic genetic benefits of admixture through hetero-
sis and/or from increased adaptive potential in admixed progenies 
are intertwined with the environmentally dependent costs of admix-
ture from the dilution of locally adapted genomes in the local habitat 
and hybrid breakdown in later generations (Keller & Taylor, 2010; 
van Kleunen, Rockle, & Stift, 2015; Lavergne & Molofsky, 2007; Rius 
& Darling, 2014).

To our knowledge, until now only a few studies have looked 
at the balance between the costs and benefits of admixture in 
F1 and F2 offspring of plants in the field (Cremieux, Bischoff, 
Muller-Scharer, & Steinger, 2010; Pickup, Field, Rowell, & Young, 
2013; Verhoeven, Vanhala, Biere, Nevo, & Van Damme, 2004). 

Furthermore, most of those studies were limited to one field site 
with one local population instead of using multiple sites and their 
local populations, which makes it difficult to generalize the results 
for a given species.

Here, we tested the performance of F1 and F2 offspring of 
within and between population crosses of the invasive plant Lythrum 
salicaria of three European regions in its native range in the field. 
We used a reciprocal transplant approach to test for local adapta-
tion and the effect of admixture on plant performance in the field. 
Performance of local versus foreign genotypes within each site as 
well as the plant performance at home versus the plant performance 
away can indicate local adaptation (Joshi et al., 2001; Kawecki 
& Ebert, 2004). We had three common gardens across Western 
Europe in close proximity of our seed origins and used local soil in-
ocula from the home population at each common garden because 
plants may be adapted to local soil biota. If admixture is decreasing 
the performance of the local population due to the dilution of lo-
cally adapted genomes, we would expect a negative effect of ad-
mixture at the home site but not at the foreign sites. We measured 
plant growth and reproduction, and herbivory in order to answer 
the following questions: (1) Is there local adaptation in native L. sali-
caria? If L. salicaria shows local adaptation, then (2) does admixture 
negatively affect plant performance of locally adapted populations 
in their local environments (dilution of local adaptation) but not in 
other environments? And if there is no local adaptation, then (3a) 
does admixture enhance plant performance (heterosis)? Or (3b) does 
admixture decrease plant performance (hybrid breakdown)?

2  | METHODS

2.1 | Study species

Lythrum salicaria L. (Purple Loosestrife; Lythraceae) is an erect, wet-
land herbaceous perennial plant (Thompson, Stuckey, & Thompson, 
1987). It is heterostylous and each plant produces one of three 
morph-specific patterns: long-, mid- or short-styled morph (Waites 
& Agren, 2004). The trimorphic system in L. salicaria avoids self-
pollination (Colautti, White, & Barrett, 2010; Knuth, 1898) as legiti-
mate pollination requires the deposition of pollen on the stigma from 
anthers of equivalent height, which are found only between differ-
ent flower style lengths (Eckert, Manicacci, & Barrett, 1996; Oneil, 
1992; Waites & Agren, 2004).

2.2 | Plant material and experimental crosses

2.2.1 | Lythrum salicaria seed collection

In September 2012, seeds of native European L. salicaria were col-
lected from three populations in each of three regions, Tübingen, 
Potsdam, and Wageningen, respectively (nine populations in total; 
Table 1). The geographical distances between populations within 
each region ranged from 3 to 15 km, and the three regions were 
approximately 600 km apart from each other. The collected seeds 
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were stored at 4°C. The geographical position of the collection sites, 
altitude, and annual temperature is illustrated in Table 1.

2.2.2 | F1 generation of Lythrum salicaria

In October 2012, seeds from 12 to 15 mother plants per popula-
tion of all nine populations were sown in petri dishes with water in 
a greenhouse with 16-hr light, 8-hour dark, and a constant 20°C. 
Two weeks later, one seedling per mother plant was transplanted 
into 1.5 L pots filled with steamed commercial potting soil. In total, 
116 seedlings were planted in the same greenhouse as used for 
the germination with the same conditions. Around 50 days after 
transplantation, three types of pollinations were made: (1) between 
plants within a single population (intrapopulation crosses), (2) be-
tween plants from different populations in the same region (inter-
population crosses), and (3) between plants from different regions 
(interregional crosses). For each of the nine populations, the 12–15 
plants grown per population were used both as seed parent and as 
pollen donor for all cross types. Due to incompatibility within the 
style morphs (tristylous mating system; Eckert et al., 1996), not all 
seed parents could be used for all cross types. In the end, of each 
population, there were 4–7 seed parents that were used for all three 
cross types, receiving pollen from within-population, within-region, 
and between-region pollen donors that were randomly chosen 
from available plants. The remaining seed parents only received 
pollen from one or two cross types. Cross type × population iden-
tifiers were defined by the name of each seed parent (not pollen 
donor). Thus, for example, “Potsdam interregional cross” denotes 
seeds from a Potsdam plant that was crossed with one of the other 
European populations. In April 2013, the seed capsules from each 
plant were harvested and stored at 4°C.

2.2.3 | F2 generation of Lythrum salicaria

In August 2013, seeds from 10 mothers of the F1 generation per 
focal population and cross type were sown in petri dishes. The 
growing conditions were the same as that in “F1 generation of L. sali-
caria.” The F2 generation was made by only crossing the F1 plants 
within each population and cross type. For the interpopulation and 
interregional crosses, this meant that some pollen donor popula-
tions for the F2 where not identical to the pollen donors of the F1 
(e.g., Tübingen Reusten × Wageningen Ewijk could be crossed with 
Tübingen Reusten × Potsdam Golm). In February 2014, the seed 
capsules from each plant were harvested and also stored at 4°C.

2.3 | Reciprocal transplant common garden  
experiment

In June 2014, three common gardens in each region, Tübingen 
(48°32′N, 09°02′E), Potsdam (52°24′N, 13°01′E), and Wageningen 
(51°59′N, 05°40′E), were prepared for our reciprocal transplant ex-
periment. We selected three focal local populations (seed parents) 
for the experiment, one of each region (Table 1). The distance from TA
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the common garden in each region to the focal local L. salicaria 
population was around 2.5 km in Wageningen, 6 km in Potsdam, 
and 8.5 km in Tübingen. The average annual/monthly temperature 
and precipitation of each region of 2014 and 2015 are provided in 
Table 1 and Figure S1.

In each common garden, F1 and F2 offspring of the intrapopu-
lation crosses and the interregional crosses of the same three focal 
populations were planted (one local focal population and two foreign 
focal populations per site). Only for the local focal population of each 
common garden, also the offspring of the interpopulation crosses 
were included to test the effect of admixture with close-by versus 
distant parents on the performance of the local population in the 
field.

At each site, 10 replicates of each population × cross type × gen-
eration were planted, 140 plants in total: one focal local pop-
ulation × two generations (F1 and F2) × three cross types × 10 
replicates + two foreign populations × two generations (F1 and 
F2) × two cross types × 10 replicates.

At each common garden, seeds from 10 families per population 
per generation in each cross type were sown in seed trays in a green-
house with natural light and humidity and a minimum temperature 
of 18°C at the end of May 2014. Three weeks later, one randomly 
selected seedling from each family was transplanted into a 15 L pot 
in the respective common garden. Bulk field soils were collected 
from fields nearby the common gardens in each region and steam 
sterilized. Additionally, in each local focal population, 140 L of local 
soil was collected. Pots were filled with 14 L steam-sterilized bulk 
field soil and 1 L local nonsteamed field soil to inoculate the bulk soil 
with the local soil biota. In each experimental garden, the pots thus 
contained a different bulk background field soil inoculated with soil 
from the focal local population. Pots were placed on large dishes 
(diameter 28 cm). In the Tübingen and Potsdam common gardens, 
water was supplied manually when needed, keeping the soils wet. In 
the Wageningen common garden, plants were watered through an 
automatic watering system. At each common garden site, the pots 
were placed in a completely randomized design.

There were three rounds of censuses, one at the end of the 
first growing season, one in the middle of the second growing sea-
son, and one final census at the end of the second growing season. 
Biomass, plant height, and fruit production were used as a proxy for 
fitness of this perennial plant. Plant height was recorded at all three 
censuses as the vertical length (cm) from the surface of soil to the 
top of the plant. Plant height was highly correlated with total bio-
mass (Spearman’s correlation at final harvest: Rs = 0.70, p < .0001, 
N = 418) and thus a good indicator for biomass throughout the ex-
periment. Biomass itself was only harvested at the final census; all 
aboveground biomass was harvested, dried for 3 days at 65°C and 
weighed. At the end of each growing season, the length of each in-
florescence stalk was measured and summed for total inflorescence 
length (cm). We randomly selected two 10-cm-length sections on 
inflorescence stalks on each plant to calculate average fruit number 
per 10 cm. These data were then used to estimate total fruit pro-
duction per plant per year, and fruits year 1 and fruits year 2 were 

summed for total fruit number. Time to first flowering can be an in-
dication for adaptive latitudinal clines in plants, where plant from 
higher latitudes tend to flower earlier (Montague, Barrett, & Eckert, 
2008). In the second growing season, the time to first flower, from 
1st May to the day of first flowering in each plant, was therefore also 
recorded. Adaptation to the local herbivore community may play a 
role in local adaptation (Cremieux et al., 2008). At the end of the 
first growing season and in the middle of the second growing sea-
son, herbivore damage to leaves was measured. In each plant, eight 
leaves from the main stem were randomly selected to score how 
many leaves showed signs of damaged by herbivores.

2.4 | Statistical analyses

Statistical analyses were conducted using SPSS version 21. The ef-
fect of plant population, experimental site, cross type, and plant 
generation on all plant performance traits were analyzed with a 
multivariate analysis of variance (MANOVA), because of the inter-
dependency of the measured traits. Site, population, cross type, and 
generation were set as fixed factors and their full factorial interac-
tions were added to the model. Plant total biomass was log10 trans-
formed, and total number of fruits were square root transformed 
to meet the assumptions of normal distribution and homoscedas-
ticity. Herbivory (the proportion of the number of leaves attacked 
by herbivores/eight randomly selected leaves) was analyzed with 
generalized linear models with binomial distribution and a logit func-
tion. Differences between the groups were analyzed with post hoc 
Tukey’s tests where relevant. We tested for local adaptation within 
the intrapopulation crosses (no admixture) using linear contrasts 
within the above model. Local versus foreign contrasts between the 
performances of the local population versus the two foreign popula-
tions were tested for each experimental site separately (Kawecki & 
Ebert, 2004). p-values were adjusted for multiple comparisons using 
false discovery rates (FDR).

3  | RESULTS

3.1 | Overall effect of site and population on plant 
performance

Survival was high in our pot experiment. All 140 plants survived 
until the end of the experiment at the Wageningen site, one plant 
died in Tübingen and one plant died in Potsdam. While survival 
was equally high among the sites, the effect of site on plant growth 
and reproduction was significant (Table 3). In general, plant per-
formance was lowest at the Potsdam common garden and high-
est at Wageningen common gardens (Figure 1, Table S1; Post hoc 
Tukey’s tests p < .0001). Herbivory was highest at the Wageningen 
site, especially in the second year of the experiment (Figure 2; Post 
hoc Tukey’s test p < .0001). The effect of plant population origin 
was significant for biomass and fruit number, and near significant 
for the other traits (Table 3). Overall, the Wageningen Lythrum 
population produced more fruits than the Tübingen and Potsdam 
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F IGURE  1 Estimated total fruit number (a) and total biomass (b) of F1 offspring of different crosses of focal Lythrum salicaria populations 
of three regions at common gardens in each region, and fruit number (c) and biomass (d) of the F2 offspring. P indicates Potsdam-Golmer 
Luch as focal population (seed donor), T indicates Tübingen-Reusten as focal population, W indicates Wageningen–Wageningen as 
focal population, in bold are the home populations. Light gray bars indicate intrapopulation crosses (C1), middle gray bars indicate the 
interpopulation crosses with a region (C2), and dark gray bars indicate the interregion crosses (C3). Error bars indicate standard errors. 
N = 10 per site × population × cross type × generation
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populations, and fruit production of the Potsdam population was 
lowest (post hoc Tukey’s tests p < .0001). The Potsdam popula-
tion also had the overall lowest biomass compared to the other 
two populations (p ≤ .002). The Wageningen population flowered 
1–2 days earlier than the Potsdam population (Table 2, p = .001), 
time to flowering of the Tübingen population was not significantly 
different from the other two populations. However, the effect of 
plant population also depended on site as indicated by the signifi-
cant site by population interaction for some of the traits (Table 3).

3.2 | Testing local adaptation

The significant interaction between site and population may indi-
cate local adaptation, which was further tested using local versus 
foreign population contrasts among the nonadmixed plants (intra-
population crosses) at each site (Table 4). At the Tübingen common 
garden, the foreign plants had a higher biomass relative to the local 
Tübingen population, suggesting local maladaptation (indicated by 
“↓” in Table 4; Figure 1b,d). At the Potsdam site, although all plants 
were relatively small, the Potsdam population had a significantly 
higher biomass compared with foreign plants, suggesting local ad-
aptation (indicated by “↑” in Table 4; Figure 1b,d). Interestingly, 
for total fruit production the pattern was reverse; the Potsdam 
population produced significantly less fruits than the foreign pop-
ulations at the Potsdam site (Table 4, Figure 1a,c). Performance of 
the foreign and local plants at the Wageningen site was similar 
(Table 4; Figure 1).

3.3 | Effects of admixture

There was no overall significant main effect of cross type on any of 
the measured plant traits (Table 3). However, the effect of cross type 
depended on experimental site for total fruit number and height3 (in-
dicated by a significant site by cross type interaction, Table 3). At the 
Tübingen site, the admixed interregional offspring overall had more 
fruits and higher stems compared to the nonadmixed (intrapopulation 
crosses) offspring, or offspring of crosses between close-by popula-
tions (interpopulation crosses) (Figure 1a,c, post hoc tests p ≤ .002). At 
the other sites, there was no significant overall effect of the cross type.

For fruit production and stem height, the effect of cross type 
also depended on plant population (Table 3). For the Potsdam 
population, fruit numbers and stem height overall increased with 
admixture, being lowest in the nonadmixed offspring and the 
highest in the interregional offspring (post hoc Tukey’s tests, 
p ≤ .001). For the other two populations, the overall effect of 
cross type was less pronounced. We also did not find a main ef-
fect of cross type on herbivory. However, the three-way inter-
action between cross type, site, and population was significant 
for herbivory2 (Table 3; Figure 2), suggesting that the effects of 
admixture on herbivore resistance depended both on plant geno-
type and on environment.

To test our hypothesis that admixture may negatively affect 
the performance of the home population, we performed post 
hoc tests between the nonadmixed (intrapopulation cross type) 
and the admixed offspring (interpopulation and interregion cross 
types) for each home population at their home site. Although 
not significant after correcting for multiple comparisons (FDR), 
admixture with distant populations (interregional crosses) had a 
positive effect on the biomass of the Tübingen population at its 
home Tübingen site (Figure 1b,d, p < .01). Biomass of the Potsdam 
and Wageningen populations was not affected by cross type at 
their home site. Fruit production increased with interregional ad-
mixture for the Potsdam population at the home site (Figure 1a,c, 
p < .0001). There was no effect of admixture on fruit production at 
the home site for the local Tübingen and Wageningen populations 
(Figure 1a,c, p > .05).

3.4 | Performance of F1 versus F2 offspring

A main generation effect (difference between F1 and F2 generation) 
was not observed for any of the traits (Table 3). There was a signifi-
cant interaction between population and generation for Herbivory1. 
In the Wageningen population, there was overall more herbivory in 
the F2 generation than the F1 generation in the first year (post hoc 
tests P = 0.004), but there were no differences for the other two 
populations. The four-way interaction between all four main factors 
including generation is also significant for herbivory in the first year 
of the experiment (Table 3).

Population Cross type

Site

Potsdam Tübingen Wageningen

Potsdam Intrapopulation 65 ± 1 48 ± 1 56 ± 1

Interpopulation 65 ± 2 – –

Interregion 60 ± 1 47 ± 2 57 ± 1

Tübingen Intrapopulation 61 ± 1 47 ± 1 56 ± 1

Interpopulation – 52 ± 1 –

Interregion 62 ± 2 49 ± 1 56 ± 1

Wageningen Intrapopulation 59 ± 1 44 ± 1 55 ± 1

Interpopulation – – 57 ± 2

Interregion 60 ± 1 47 ± 1 54 ± 1

TABLE  2 Mean and standard error of 
the time to first flowering (the number of 
days from 1st May to the time of first 
flowering) of each cross type and each 
population in each experimental site. Data 
of F1 and F2 generations per population x 
cross type were combined, and 
interpopulation crosses were only 
included for the local populations
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4  | DISCUSSION

Our reciprocal transplant study across three sites in the native range 
showed little evidence for local adaptation of European L. salicaria. 
However, depending on the environment, there was a positive ef-
fect of admixture on plant performance. In the following, we discuss 
these findings with respect to the initial questions.

4.1 | Local adaptation

We found some home-site advantage for the Potsdam population con-
cerning plant growth but for not reproduction. The slightly shorter time 
to flowering of the Wageningen population in general may be an indi-
cation for adaptation to a shorter growing season in northwest Europe 
(Olsson & Agren, 2002). However, contrary to our expectations, there 
was no overall strong sign of local adaptation. There may be several rea-
sons why we did not detect local adaptation in L. salicaria in this study. 
One reason for a potential lack of local adaptation could be a relatively 
small population size of the Tübingen and Wageningen populations 
(<500 flowering individuals, pers. observations J. Shi/K. Verhoeven). 
Small populations can have lower evolutionary potential to adapt to 
their environments relative to larger populations if genetic variation 
is low (Hill, 1982; Weber & Diggins, 1990). They may also suffer more 
from inbreeding depression, which could mask the benefits of local ad-
aptation (Rius & Darling, 2014). Moreover, neutral genetic processes 
such as genetic drift may also occur more strongly in smaller popu-
lations and could lead to a loss of some advantageous alleles (Willi, 
Van Buskirk, Schmid, & Fischer, 2007). Possibly, continuous gene flow 
between L. salicaria populations, despite low population sizes, could 
hamper local adaptation (Slatkin, 1987). Using a common garden ap-
proach in three European regions, we likely tested regional adaptation 
(Weisshuhn, Prati, Fischer, & Auge, 2012), for example, adaptation 
to climatic conditions. The Wageningen site had milder winters and 

TABLE  3 Effects of site, plant population, cross types, and generation on plant performance and herbivory. Plant performance data were 
analyzed by full factorial MANOVA with site, population, cross type, and generation as fixed factors. Table entries of above traits are F 
values. Herbivory was analyzed separately by generalized linear models with binomial distribution. N = 419. Height1, Height2, and Height3 
indicate stem height at the end of the first growing season, and at the middle and end of the second growing season, respectively. Fruit no. is 
the estimated total number of fruits produced during the experiment. Herbivory1 is the herbivory measurement in year 1, Herbivory2 of 
year 2

Factor df Height1 Height2 Height3 Time to flower Biomass Fruit no. Herbivory1a Herbivory2a

Site 2 185.76*** 30.26*** 71.24*** 170.85*** 1229.24*** 859.70*** 34.92*** 468.73***

Population (Pop) 2 3.13 5.83** 3.82 3.93 6.17** 6.26** 3.16 1.22

Generation (Gen) 1 1.01 0.03 0.39 0.76 0.34 0.01 1.98 2.48

Cross type (Cross) 2 0.81 0.10 0.63 4.63 4.36 1.12 <0.01 1.01

Site × Pop 4 0.56 4.29** 1.92 0.21 4.02** 2.20 14.06 0.07

Site × Gen 2 1.69 2.30 2.58 1.88 1.24 1.22 21.51*** 4.61

Site × Cross 2 4.59 1.65 5.22* 1.27 3.06 6.61** 5.27 3.24

Pop × Gen 2 0.99 0.01 2.16 1.05 1.61 0.20 5.42 0.03

Pop × Cross 2 1.27 6.84** 5.64** 1.73 3.14 5.97** 2.69 3.13

Gen × Cross 2 0.03 0.16 0.20 0.66 0.29 0.28 0.94 1.83

Site × Pop × Gen 4 1.03 0.16 0.67 0.21 0.49 1.10 19.32*** 9.52

Site × Pop × Cross 4 0.41 1.15 2.02 1.30 1.49 2.63 9.56 18.15***

Site × Gen × Cross 2 0.06 1.28 1.56 0.28 0.10 0.55 2.52 0.11

Pop × Gen × Cross 2 3.39 0.71 1.57 1.26 2.27 3.04 5.93 6.22

Site × Pop × Gen × Cross 4 1.96 2.53 1.20 1.75 0.58 3.18 34.23*** 2.50

aWald chi-square.
*, ** and *** indicate P ≤ .01, .005 and .001 respectively, significant after false discovery rates correction.

TABLE  4 Local versus foreign population contrasts of the plant 
performance of intrapopulation crosses at each site, based on the 
same dataset and statistical model of Table 3. Table entries of traits 
are F values of the linear contrasts, df = 1, N = 60 per site. The data 
of the F1 and F2 generations were combined in these analyses

Trait Potsdam Tübingen Wageningen

Height1 0.03 6.72↓ 0.01

Height2 7.13↑** 26.62↓*** 0.27

Height3 6.81↑** 11.24↓*** 0.45

Time to Flowering 9.89** 0.39 0.75

Fruit number 60.57↓*** 5.37↑ 0.86

Total Biomass 3.57↑ 7.38↓** 1.29

“↑” indicates the direction of contrasts (local > foreign, suggesting local 
adaptation); “↓” indicates local < foreign, suggesting local 
maladaptation.
** and *** indicate P ≤ .005 and .001 respectively, significant after false 
discovery rates correction.
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twice as much precipitation compared to the other two sites. A 4-year 
large-scale experiment in the invasive range of L. salicaria showed that 
there has been rapid adaptation to climatic gradients in North America 
(Colautti & Barrett, 2013). This was, however, over a much larger scale 
and larger climatic gradient than the West-European study we pre-
sent here, so perhaps if we would have included a broader range of 
European populations, we would have been able to detect adaptation 
to climate in the native range as well.

Intriguingly, the Potsdam population had a very high biomass at 
a foreign site, the Tübingen common garden. This high biomass may 
have been caused by two aspects: (1) escaping from some stress-
ful local biotic and/or abiotic factors, such as low nutrient soils or 
local pathogens, which potentially restricted plant performance in 
Potsdam, (2) genomes of the Potsdam plants are preadapted to the 
Tübingen environment. For example, the climates of Tübingen and 
Potsdam are relatively similar (Table 1).

4.2 | Costs of admixture: Outbreeding depression

We tested the effect of admixture on the three focal populations at 
our three transplant sites. If admixture dilutes local adaptation, we 
would expect a decrease in performance of the admixed offspring 
of the local plant genotypes at their home sites. Most previous stud-
ies that tested this assumption used a single field site (e.g., Cremieux 
et al., 2010; Keller et al., 2000). Because we found little evidence for 
local adaptation, our data do not provide a good basis for evaluating 
the cost of admixture that is associated with diluting locally adapted 
genomes. In the Potsdam region where we found some indications 
for local adaptation, there was a positive effect of admixture on fruit 
production for the home Potsdam population and no effect on plant 
growth. Possibly, the cost of dilution of local adaptation was counter-
balanced or even overruled by the benefit of heterosis. For the other 
home populations, Tübingen and Wageningen, we also found no effect 
or a positive effect of admixture on performance at their home sites.

Theoretically, large geographical distances between plant prov-
enances can lead to outbreeding depression via “hybrid breakdown” 
due to disruption of co-adapted gene complexes (Hathaway et al., 
2009; Wolfe, Blair, & Penna, 2007). Despite the fact that there is 
significant genetic differentiation between our European L. salicaria 
populations (Chun, Nason, & Moloney, 2009), we did not find a de-
crease in performance of our interregional crosses with large paren-
tal distances of 600 km, neither in the F1 nor in the F2 generation. 
This suggests that outbreeding depression via hybrid breakdown, 
at the scale of the regions included in this study, is unlikely to be 
of significant concern in mid-European native L. salicaria. However, 
further rounds of crosses, that is, F3 or later generations, which we 
did not test here, may still reveal hybrid breakdown by disrupting co-
adapted gene complexes by further recombination.

4.3 | Benefits of admixture: Heterosis

If there was a significant effect of admixture on the performance of 
our L. salicaria populations in the field, it was positive. This positive 

heterosis effect of admixture depended on both plant population 
and experimental site, which is in line with previous findings in other 
systems (Munaro, Eyherabide, D’Andrea, Cirilo, & Otegui, 2011). For 
the Tübingen plants at their home Tübingen site, a positive effect 
of admixture on shoot biomass was found both in the F1 and in the 
F2 generations. The Potsdam population overall benefitted from ad-
mixture. For both populations, this effect was strongest when plants 
were admixed with populations from distant regions, and less appar-
ent or absent in admixture with close-by populations. Genomes of 
geographically more distant populations are likely less similar than 
genomes of near-by populations (isolation-by-distance), and there-
fore, the heterosis effect can be more pronounced. The observed 
heterosis could be due to the lift of inbreeding depression through 
admixture. For example, the Tübingen focal population size was very 
small, which could have led to inbreeding depression (Ellstrand & 
Elam, 1993; Young, Boyle, & Brown, 1996), although we did not test 
of the level of inbreeding in our populations. Our results suggest that 
mixing gene pools could be a potential tool to restore endangered 
small populations (Gellie et al., 2016). An alternative explanation for 
the boost of plant performance in admixed progeny particularly at 
the home site (Tübingen population) could be that some novel lo-
cally adapted genotypes have been created, for example, with 
higher resistance against herbivores or (soil) pathogens (Lavergne & 
Molofsky, 2007). However, we did not find a direct effect of cross 
type on herbivory in our experiment. There was no significant effect 
of admixture on the performance of the Wageningen population, 
neither at the home site, nor at the foreign sites.

The positive effect of admixture on some populations (mostly 
Tübingen) was not apparent in the Wageningen common garden. 
There, all plants performed more or less the same. However, some 
positive effects of admixture were found at the Tübingen and 
Potsdam sites. In Potsdam, all the plants were a lot smaller compared 
to the other sites, indicating that this might have been a more stress-
ful environment, for example, a low nutrient soil or more drought. 
More stressful conditions may have led to a greater expression of 
inbreeding depression, and consequently also a more detectable 
heterosis effect. In general, the expression inbreeding depression is 
greater under stressful environments (Armbruster & Reed, 2005).

In conclusion, minor indications for local adaptation were only 
found in one of three L. salicaria populations. Dilution of local ad-
aptation by admixture was not significant in our study, nor did we 
find indications of any hybrid breakdown. In the absence of local 
adaptation, admixture could lead to heterosis, and in our L. salicaria 
study the expression of heterosis depended on the environment. 
L. salicaria is highly invasive in North America (Colautti & Barrett, 
2013), and there are indications that the invasive populations are 
admixed (Chun et al., 2009). Possibly, the increase in plant growth of 
L. salicaria in its invasive range is partly due to the heterosis effect of 
admixture (Verhoeven et al., 2011). Furthermore, our results suggest 
that in conservation, contrary to the current paradigm of only using 
local seed sources, admixture could be a tool to restore populations 
and/or increase population viability, especially in small inbred or mal-
adapted populations (Gellie et al., 2016; Hufford & Mazer, 2003).
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