HASSO-PLATTNER-INSTITUT Im

Fachgebiet Computergrafische Systeme *

Concepts and Techniques for Processing and
Rendering of Massive 3D Point Clouds

Dissertation
zur Erlangung des akademischen Grades
"doctor rerum naturalium"
(Dr. rer. nat.)
in der Wissenschaftsdisziplin Informatik

eingereicht an der
Digital Engineering Fakultat
der Universitat Potsdam

Rico Richter, M.Sc.

Potsdam
23. Marz 2018

Published online at the

Institutional Repository of the University of Potsdam:
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-423304
https://doi.org/10.25932 /publishup-42330

https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-423304

Abstract

Remote sensing technology, such as airborne, mobile, or terrestrial laser scanning, and
photogrammetric techniques, are fundamental approaches for efficient, automatic creation
of digital representations of spatial environments. For example, they allow us to generate
3D point clouds of landscapes, cities, infrastructure networks, and sites. As essential
and universal category of geodata, 3D point clouds are used and processed by a growing
number of applications, services, and systems such as in the domains of urban planning,
landscape architecture, environmental monitoring, disaster management, virtual geographic
environments as well as for spatial analysis and simulation.

While the acquisition processes for 3D point clouds become more and more reliable
and widely-used, applications and systems are faced with more and more 3D point cloud
data. In addition, 3D point clouds, by their very nature, are raw data, i.e., they do not
contain any structural or semantics information. Many processing strategies common to
GIS such as deriving polygon-based 3D models generally do not scale for billions of points.
GIS typically reduce data density and precision of 3D point clouds to cope with the sheer
amount of data, but that results in a significant loss of valuable information at the same
time.

This thesis proposes concepts and techniques designed to efficiently store and process
massive 3D point clouds. To this end, object-class segmentation approaches are presented to
attribute semantics to 3D point clouds, used, for example, to identify building, vegetation,
and ground structures and, thus, to enable processing, analyzing, and visualizing 3D point
clouds in a more effective and efficient way. Similarly, change detection and updating
strategies for 3D point clouds are introduced that allow for reducing storage requirements
and incrementally updating 3D point cloud databases. In addition, this thesis presents
out-of-core, real-time rendering techniques used to interactively explore 3D point clouds
and related analysis results. All techniques have been implemented based on specialized
spatial data structures, out-of-core algorithms, and GPU-based processing schemas to cope
with massive 3D point clouds having billions of points.

All proposed techniques have been evaluated and demonstrated their applicability to
the field of geospatial applications and systems, in particular for tasks such as classification,
processing, and visualization. Case studies for 3D point clouds of entire cities with up to
80 billion points show that the presented approaches open up new ways to manage and
apply large-scale, dense, and time-variant 3D point clouds as required by a rapidly growing
number of applications and systems.

Zusammenfassung

Fernerkundungstechnologien wie luftgestiitztes, mobiles oder terrestrisches Laserscanning
und photogrammetrische Techniken sind grundlegende Ansétze fiir die effiziente, automa-
tische Erstellung von digitalen Représentationen rdumlicher Umgebungen. Sie erméglichen
uns zum Beispiel die Erzeugung von 3D-Punktwolken fiir Landschaften, Stadte, Infrastruk-
turnetze und Standorte. 3D-Punktwolken werden als wesentliche und universelle Kategorie
von Geodaten von einer wachsenden Anzahl an Anwendungen, Diensten und Systemen
genutzt und verarbeitet, zum Beispiel in den Bereichen Stadtplanung, Landschaftsarchitek-
tur, Umweltiiberwachung, Katastrophenmanagement, virtuelle geographische Umgebungen
sowie zur rdumlichen Analyse und Simulation.

Da die Erfassungsprozesse fiir 3D-Punktwolken immer zuverldssiger und verbreiteter
werden, sehen sich Anwendungen und Systeme mit immer grofleren 3D-Punktwolken-
Daten konfrontiert. Dariiber hinaus enthalten 3D-Punktwolken als Rohdaten von ihrer
Art her keine strukturellen oder semantischen Informationen. Viele GIS-iibliche Verar-
beitungsstrategien, wie die Ableitung polygonaler 3D-Modelle, skalieren in der Regel
nicht fiir Milliarden von Punkten. GIS reduzieren typischerweise die Datendichte und
Genauigkeit von 3D-Punktwolken, um mit der immensen Datenmenge umgehen zu kénnen,
was aber zugleich zu einem signifikanten Verlust wertvoller Informationen fiihrt.

Diese Arbeit prisentiert Konzepte und Techniken, die entwickelt wurden, um massive
3D-Punktwolken effizient zu speichern und zu verarbeiten. Hierzu werden Ansétze fiir die
Objektklassen-Segmentierung vorgestellt, um 3D-Punktwolken mit Semantik anzureichern;
so lassen sich beispielsweise Gebaude-, Vegetations- und Bodenstrukturen identifizieren,
wodurch die Verarbeitung, Analyse und Visualisierung von 3D-Punktwolken effektiver
und effizienter durchfiihrbar werden. Ebenso werden Anderungserkennungs- und Aktu-
alisierungsstrategien fiir 3D-Punktwolken vorgestellt, mit denen Speicheranforderungen
reduziert und Datenbanken fiir 3D-Punktwolken inkrementell aktualisiert werden kénnen.
Des Weiteren beschreibt diese Arbeit Qut-of-Core Echtzeit- Rendering- Techniken zur interak-
tiven Exploration von 3D-Punktwolken und zugehériger Analyseergebnisse. Alle Techniken
wurden mit Hilfe spezialisierter rdumlicher Datenstrukturen, Out-of-Core-Algorithmen und
GPU-basierter Verarbeitungsschemata implementiert, um massiven 3D-Punktwolken mit
Milliarden von Punkten gerecht werden zu koénnen.

Alle vorgestellten Techniken wurden evaluiert und die Anwendbarkeit fiir Anwendungen
und Systeme, die mit raumbezogenen Daten arbeiten, wurde insbesondere fiir Aufgaben
wie Klassifizierung, Verarbeitung und Visualisierung demonstriert. Fallstudien fiir 3D-
Punktwolken von ganzen Stddten mit bis zu 80 Milliarden Punkten zeigen, dass die
vorgestellten Ansdtze neue Wege zur Verwaltung und Verwendung von grofiflachigen,
dichten und zeitvarianten 3D-Punktwolken erdffnen, die von einer wachsenden Anzahl an
Anwendungen und Systemen benétigt werden.

Acknowledgments

This dissertation is the result of my research work at the Department of Computer Graphics
Systems at the Hasso-Plattner-Institut (University of Potsdam). I am very grateful to my
adviser Prof. Dr. Jiirgen Déllner for granting me this opportunity.

I owe sincere and earnest thankfulness to all the anonymous reviewers for their suggestions
to improve my work. It is a great pleasure to thank everyone who supported me during
writing this dissertation, who proofreaded my thesis and gave comments and ideas for
improvement. This work has been partially funded by the Hasso-Plattner-Institut, the
German Federal Ministry of Education and Research (BMBF) as part of the InnoProfile
research group "3D Geoinformation" (www.3dgi.de) and "4D-nD GeoVis" (www.4dndvis.de).

Potsdam, Germany, March 23, 2018 Rico Richter

http://www.3dgi.de
http://www.4dndvis.de

Frontpage

Abstract

Zusammenfassung

Acknowledgments

Contents

1

Introduction

Contents

1.1 Background and Motivation L.
1.2 Problem Statement, Challenges and Research Objectives
1.3 Contributions and Structureo

Fundamentals of 3D Point Clouds
2.1 Capturing Methods - LiDAR vs. Dense Image Matching
2.2 Spatial Data Structures 0

2.3 Used Datasets

Point Cloud Classification

3.1 Potentials and Usage of Classification

3.2 Related Work

3.3 Object-Class Segmentation
3.4 Out-of-Core and GPU-based Processing
3.5 Results and Evaluation.
3.6 Discussion and Future Work

Change Detection

4.1 Potentials and Applications of Change Detection

4.2 Related Work

4.3 Change Detection L

4.4 Results. . . .

4.5 Categorization of Changes L L.

4.6 Discussion and Future Work

3D Point Cloud Rendering

5.1 Motivation .
5.2 Related Work

11
17

19
19
21
22
28
29
35

39
39
40
41
49
93
o7

vi Contents
5.3 Data Characteristics e 62
5.4 Out-of-Core Real-Time Rendering, 64
5.5 Rendering Techniques 73
5.6 Performance Evaluation 76
5.7 Summary and Discussion L Lo L 80

6 Framework for Analysis and Visualization of 3D Point Clouds 81
6.1 Architecture 81
6.2 Service-oriented Architecture 87

7 Case Studies and Applications 89
7.1 Updating 3D City Models 89
7.2 Monitoring Railroad Lines oL 95
7.3 Automatic Tree Detection and Visualization 100

8 Conclusions 109
8.1 Future Work 110

Eidesstattliche Erklarung 133

Chapter 1

Introduction

“Based on their fundamental simplicity, points have
motivated a variety of research on topics such as
shape modeling, object capturing, simplification,
processing, rendering, and hybrid point-polygon
methods.”

— Sainz, Pajarola & Lario 2004

This chapter introduces basic terms and presents research objectives and challenges
of this thesis. It outlines its main contributions for processing, analyzing, managing, and
visualizing 3D point clouds.

1.1 Background and Motivation

3D point clouds allow us to capture any type of 3D object, 3D environment and 3D spatial
phenomenon (Leberl et al. 2010; Lafarge & Mallet 2012). To generate 3D point clouds for
our physical surroundings, active and passive remote sensing approaches are frequently
used and implemented by a number of reliable techniques. Remote sensing equipment can
be mounted on a variety of platforms to capture data at different scales. 3D point clouds
can also be synthesized as computational results by geometry processes of simulations.

1.1.1 Remote Sensing

“Remote sensing is the science of deriving information about an object from measure-
ments made at a distance from the object, i.e., without actually coming in contact with
it” (Campbell & Wynne 2011). Active remote sensing techniques, such as LiDAR
or radar, emit a signal supplied by their own energy source, which is reflected by the
target and captured by the sensor (Barrett & Curtis 1993). Passive remote sensing
techniques operate in the visible, infrared, thermal infrared, and microwave portions of
the electromagnetic spectrum and gather radiation that is emitted or reflected by the object
or surrounding areas (NASA 2017). Most popular passive sensors are camera systems to
capture photographs and videos as well as radiometers and spectrometers.

1.1.2 Remote Sensing Platforms

Remote sensing hardware is mounted on structures or vehicles to capture data. Main plat-
form categories are spaceborne, airborne, and ground based. Data from spaceborne
platforms, such as earth observation satellites, is beyond the scope of this thesis because
the resulting data is not used to derive precise 3D point clouds.

2 Chapter 1. Introduction

Airborne Acquisition of 3D Point Clouds

Data acquisition from the air, i.e., airborne, is typically performed by airplanes, helicopters,
and unmanned aerial vehicles (UAVs). Airplanes are typically used at high altitudes to
capture large areas such as cities and landscapes. The main operational area of helicopters
are mid altitudes to capture infrastructure networks such as powerlines, rails, and roads.
UAVs are used at low altitudes to capture small sites and areas such as facilities. All
platforms can be equipped with LiDAR and image-based sensors.

Airborne laser scanning, i.e., Light Detection and Ranging (LiDAR) supports the
derivation of dense 3D point clouds and digital surface models from a bird’s eye view (Leberl
et al. 2010; Haala & Rothermel 2012b) for cities and landscapes (Figure 1.1 (a)). Filin &
Pfeifer (2006) stated: “airborne laser ranging as a leading technology for the extraction of
information about physical surfaces”. These 3D point clouds are typically used to derive 3D
geometric models, for example, city models, digital surface models (DSMs), digital terrain
models (DTMs), as well as for monitoring of changes such as for buildings, vegetation, and
terrain.

In contrast to LIDAR, dense image matching follows a different strategy: Rothermel
& Haala (2011) stated “the increasing quality of digital airborne cameras in combination
with recent improvements in matching algorithms meanwhile allow for the automatic image
based collection as a suitable alternative”. Photogrammetric methods such as semi-global
matching (Gehrke et al. 2010) and computer vision algorithms use large sets of overlapping
and high resolution aerial images to derive dense 3D point clouds (Haala 2013; Koutsoudis
et al. 2013; Remondino et al. 2014). These 3D point clouds have typically a higher density
than LiDAR data but exhibit several restrictions, for example, they can hardly cover the
ground surface below vegetation (Figure 1.1 (b)).

Ground-based Acquisition of Point Clouds

The ground-based data acquisition can be categorized into mobile and static methods.

Mobile mapping systems are commonly used to capture infrastructure networks
such as road (Figure 1.1 (c)) and railroad networks (Figure 1.1 (d)) with mobile vehicles
such as cars or trains (Blug et al. 2007; Haala et al. 2008; Puente et al. 2013). As Nebiker,
Bleisch & Christen (2010) explain “The latest generation of mobile mapping systems is
equipped with multiple laser scanners and is capable of dynamically acquiring vast amounts
of 3D point clouds with a very high point density at the centimeter level and a point position
accuracy of approrimately 5 cm.”

Terrestrial laser scanning is used to capture the physical environment from a
pedestrian’s view (e.g., building facades and streets (Nebiker, Bleisch & Christen 2010;
Kang & Lu 2011)). Terrestrial laser scanners are typically mounted on a tripod and used
to capture individual objects (e.g., buildings, constructions), structures and sites (e.g.,
cultural heritage) (Girardeau-Montaut et al. 2005), applied, for example, for documentation
purposes (e.g., condition of facilities, crime scenes) of the exterior (Figure 1.1 (e)) and
interior (Figure 1.1 (g)).

Recently, dense image matching based on digital photography allows even non-
experts to generate 3D point clouds of objects and structures based on specialized apps
and hand-held devices (e.g., using Autodesk’s 123D Catch (Autodesk 2017) or Microsoft’s
Photosynth (Microsoft 2015)), i.e., this approach does not require specialized hardware

1.2. Problem Statement, Challenges and Research Objectives 3

(Snavely et al. 2008). Consequently, devices, such as digital cameras and smartphones, can
be effectively used to create 3D point clouds for indoor environments (Figure 1.1 (h)) as
well as outdoor scenes (Figure 1.1 (f)). Kersten & Lindstaedt (2012) give an overview of
automatic 3D object reconstruction with open-source systems for architectural, cultural
heritage and archaeological applications. Wenzel et al. (2012) state that “off-the-shelf
industry cameras [...] provide high spatial resolution with low radiometric noise, which
enables a one-shot solution and thus an efficient data acquisition while satisfying high
accuracy requirements”.

1.1.3 Point Clouds as Universal Category of Geodata

3D point clouds form "digital twins" of 3D objects, 3D environments and 3D spatial
phenomena. They describe counterparts of the reality by means of finite sets of 3D points,
which do not contain or imply any structure or order. 3D point clouds, the most elementary
geometric primitives, can represent any spatial entity in a discrete, approximative way, which
is always faced with incompleteness and ambiguousness. They can represent almost any
type of physical object, site, landscape, geographic region, or infrastructure — at all scales
and with any precision. Becoming an essential and universal category of geodata, 3D point
clouds are used and processed by a rapidly growing number of applications, services, and
systems such as in the domains of land surveying, urban planning, landscape architecture,
environmental monitoring, disaster management, virtual geographic environments, as well
as spatial analysis and simulation.

From an IT systems engineering perspective, the use of remote sensing devices or,
alternatively, low-cost devices using dense image matching supports cost-efficient, area-wide,
and semi-automatic data acquisition for our physical surroundings. The resulting 3D point
clouds are commonly used to derive polygonal 3D models (Beutel, Mglhave & Agarwal
2010; Arikan et al. 2013) such as for sites, buildings, terrain, vegetation, objects, and indoor
environments. However, the potential of 3D point clouds is not restricted to the process of
creating polygonal 3D models. They also provide a direct data basis for documentation,
analysis, examination, monitoring, and visualization tasks (Virtanen et al. 2017). This
becomes important when the data amount increases. To process, analyze, inspect, and
visualize large datasets such as massive 3D point clouds, out-of-core or external memory
algorithms are required (Livny, Kogan & El-Sana 2009; Nebiker, Bleisch & Christen 2010;
Ganovelli & Scopigno 2012; Rodriguez & Gobbetti 2013). Figure 1.1 shows 3D point
clouds generated with LiDAR ((a), (c), (d), (e), (g)) and image-based ((b), (f), (h)) data
acquisition for aerial ((a), (b)), mobile mapping ((c), (d)) and ground-based ((e), (f), (g),
(h)) application.

1.2 Problem Statement, Challenges and Research Objectives

In the last decade, the availability, accuracy, density, and massivity of 3D point clouds has
vastly increased. Reasons include:

e Improved hardware, i.e., LIDAR systems that can generate millions of points per
second.

e Dense image matching, which facilitates a cost efficiently data acquisition for
large areas in contrast to LIDAR (Gehrke et al. 2010).

4 Chapter 1. Introduction

i v 2R Y .4 3 ,
(b) 3D point cloud from dense image matching of Berlin.

e et e . ot

(d) LiDAR point cloud captured by a train.

() Mobile mapping point cloud captured with a LiDAR
scanner mounted on a vehicle.

(e) Terrestrial laser scan of a building. (f) Dense image matching point cloud generated with Au-
todesk’s 123D Catch (Autodesk 2017).

(g) Indoor scan of a building captured with a terrestrial (h) Indoor scan of a building captured with a Microsoft
LiDAR scanner. Kinect.

Figure 1.1: 3D point clouds generated with LiDAR ((a), (c), (d), (e), (g9)) and image-based ((b),
(f), (b)) acquisition techniques for aerial ((a), (b)), mobile mapping ((c), (d)) and terrestrial ((e),
(f); (9), (h)) application.

1.2. Problem Statement, Challenges and Research Objectives 5

e Digitalization of workflows based on 3D spatial models, i.e., regular scans of
cities, landscapes, and infrastructure.

e Novel carrier systems and platforms such as cars and unmanned aerial vehicles
(UAVs).

e Cheap and easy-to-use hardware and software solutions, which increase the
number of industries that can apply 3D point clouds and set up new applications
and workflows.

1.2.1 Geographic Information Systems and 3D Point Clouds

Geographic information systems (GIS) are designed to integrate, store, and manage geodata
and provide functions to analyze, process, edit, and present the data. Most common data
categories are vector data (e.g., shapes), raster data (e.g., aerial images), and 2.5D data
(e.g., DTMs). However, more and more applications and GIS users have the key technical
requirement to store, manage, and process massive and dense 3D point clouds because
they need a detailed representation of the captured site. GIS software is sometimes limited
due to their processing strategies that generally do not scale. Reasons are compatibility
restrictions because outdated hardware platforms and numerous target systems must be
supported. ESRI, market leader for GIS software, gives the following hardware requirements
for ArcGIS: a minimum of 64 MB GPU memory and OpenGL Version 2.0 (ESRI 2017).
The engine for data handling and provision for data handling evolved over decades and
was probably not designed to implement out-of-core concepts for 3D data such as 3D point
clouds. As a remedy GIS frequently have to reduce the precision and density of 3D point
clouds to handle the data. ArcGIS, for example, gives the following recommendation for
loading 3D point clouds: “A recommended file size is approximately 25 to 50 MB, and no
larger than 100 MB. The LAS files should not contain more than three million points per
file when used in a LAS dataset.” (ESRI 2016). This statement shows impressively the
gap between the amount of data that can be handled practically with today’s GIS systems
(i.e., a few million points) and the amount of data that needs to be handled (i.e., billions
of points).

The need to efficiently handle massive 3D point clouds grows because many applications
demand for frequent scans and simultaneous use of scans taken at different points in time.
For example, in the context of urban planning, the continuation workflows applied to
virtual 3D city models requires to identify differences between scans from different points
in time. Hence, novel concepts and techniques for an efficient storage, management, and
processing of the data are required.

1.2.2 Research Objectives

This thesis aims at the following research objectives:

e Efficient processing and storage of massive 3D point clouds. The ability
to cope with massive 3D point clouds containing billions of points is a challenge
for systems and applications because the data exceeds available memory capacities
and processing resources. Existing solutions typically thin out or rasterize the 3D
point cloud to reduce the data size (Van Gosliga, Lindenbergh & Pfeifer 2006), i.e.,
they cannot take full advantage of the available data. This, however, leads to a

6 Chapter 1. Introduction

loss of accuracy and makes it difficult to match the original unfiltered data with
processing results. To overcome this limitation, specialized spatial data structures
and out-of-core algorithms are developed to prepare and handle massive 3D point
clouds for storage, analysis, and visualization.

¢ Redundancy elimination for 3D point clouds. A continuous data acquisition
typically results in redundant, time varying 3D point clouds for large parts of the
captured area. One challenge is to compare 3D point clouds from different points
in time to identify differences with "reasonable" processing times. Highly parallel,
GPU-based processing schemas are developed to perform fast change detection.

e 3D point cloud classification. In general, 3D point clouds have no inherent seman-
tics. Applications, however, commonly need only subsets of 3D point clouds belonging
to specific object-classes. Hence, such information can be used to significantly reduce
the amount of data actually processed. To this end, automatic object-class detection
algorithms are developed.

e Real-time visualization of massive 3D point clouds. Interactive visualization
requires real-time rendering techniques. Due to the massivity of the data, straightfor-
ward 3D rendering approaches are generally not feasible. This motivates out-of-core
rendering techniques for massive 3D point clouds, which can contain billions of points.
The main challenge is to guarantee interactive frame rates during user interaction
and to achieve high rendering quality. In addition, rendering techniques can take into
account object class, topology, and thematic information to improve visualization
quality and expressiveness.

1.3 Contributions and Structure

This thesis presents concepts and techniques for processing, analyzing, and visualizing
3D point clouds. In particular, they focus on massive 3D point clouds using out-of-core
strategies to achieve scalability. With these approaches — from an IT systems engineering
point of view — 3D point clouds can be applied as fundamental, efficient data category by
future IT applications, systems, and services.

Fundamentals of 3D point clouds are presented in Chapter 2. Key research questions
are addressed in separate chapters including related work, implementation details, results,
discussion, and future work. The main contributions of this thesis can be assigned to the
subjects Classification, Change Detection, and Rendering of 3D point clouds:

e Classification denotes the process of computing and assigning category information
to 3D points such as object-class categories. For example, object-class categories for
aerial 3D point clouds include building, ground, vegetation, and water.

“The classification of point clouds is an important step in the extraction of information.
Whereas point cloud classification initially served to select points on the ground in
the context of DTM production, the higher point densities obtained nowadays allow
the extraction of various object types [...] like buildings, vegetation, vehicles, and
water.” (Vosselman 2013).

1.3. Contributions and Structure 7

e Change detection denotes the process of identifying points and regions that have
changed based on a comparison between a given 3D point cloud and a given 3D
reference model.

“The goal of the change detection process is to identify and mark all the points in
the new scan that are most likely to be changes in the actual physical world and not
merely changes in measurement.” (Butkiewicz et al. 2008).

e 3D point cloud rendering denotes the process of synthesizing images of 3D point
clouds used for viewing and accessing the data.

“point-based rendering has been shown to offer the potential to outperform traditional
triangle based rendering both in speed and visual quality when it comes to processing
highly complex models.” (Botsch & Kobbelt 2003).

All presented techniques have been implemented and tested within a software frame-
work for processing, analysis, and visualization of 3D point clouds (Chapter 6). The
applicability is demonstrated with different case studies such as updating a 3D city model
and monitoring railroad lines (Chapter 7).

1.3.1 Results

Core results of this thesis can be summarized as follows:

e Classification: The classification and segmentation of 3D point clouds according
to object classes, including terrain, building, vegetation, water, and infrastructure,
relies on analyzing the 3D topology in 3D point clouds. The presented technique
does not require per-point attributes or representative training data and, therefore,
can be applied for 3D point clouds having different characteristics (e.g., LIDAR or
image-matching 3D point clouds). The approach is based on an iterative multi-pass
processing schema, where each pass focuses on different topological features and
considers already detected object classes from previous passes. To achieve scalability,
the implementation uses out-of-core spatial data structures and GPU accelerated
algorithms. The results show that 3D point clouds with semantics can substantially
improve analysis algorithms and applications as well as enhance the features of 3D
point cloud visualization.

e Change detection: Repeated data acquisition for geographic entities, such as
landscapes, cities, or infrastructures, results in redundant, time-variant 3D point
clouds (Kang & Lu 2011). To reduce storage requirements and to accelerate processing
and analysis, change detection is required to determine the differences between newly
captured and already stored 3D point clouds. The change detection approach is
based on an out-of-core spatial data structure that stores data acquired at different
points in time. A GPU-based processing schema is used to efficiently attribute 3D
points with change information that can be used to perform quality control, evaluate
the acquired data and update 3D models and contents (Matikainen 2004; Groger &
Pliimer 2009).

e 3D Point cloud rendering: 3D point cloud visualization is essential for under-
standing spatial information as well as to communicate analysis and simulation

Chapter 1. Introduction

results (Kreylos, Bawden & Kellogg 2008; Bettio et al. 2009; Kim & Medioni 2010).
Point-based rendering techniques can cope with massive 3D point clouds and enable
an interactive visualization and exploration of the data (Wimmer & Scheiblauer 2006;
Richter & Dollner 2010b) without the need to generate polygon-based 3D models.
The developed 3D rendering system implements different point-based rendering tech-
niques (e.g., photorealistic, non-photorealistic, or based on point attributes (Botsch

et al. 2005)).

Case studies and applications: The presented classification and change detection
approaches have been evaluated with 3D point cloud data for urban areas of cities
and landscapes including datasets with up to 80 billion points and densities between
5 and 400 points per square meter. Applications such as monitoring railroad lines
based on data from mobile mapping and detection of individual trees in urban areas
are presented as examples to exemplify the benefits for real-world applications. The
implemented out-of-core, real-time rendering system for massive 3D point clouds
is used to present 3D point clouds and analysis results in the application specific
context.

Chapter 2

Fundamentals of 3D Point Clouds

In this work, the term 3D point cloud refers to a set of points in the three-dimensional
Euclidean space having no structure, order, or hierarchy. Each point represents a discrete
sample of a surface and is defined by its three-dimensional coordinates z, y, and z. Per-
point attributes can provide additional information (e.g., color, surface normal, and local
density). In this thesis, the term massive 3D point cloud is used to refer to 3D point clouds
that exceed main memory capacities, i.e., vast amounts of 3D points (e.g., billions).

3D point clouds reflect the geometry of scanned targets by a discretized representation.
In a growing number of applications, 3D point clouds can be used directly (e.g., simulation,
analysis) or as base data for reconstructing 3D models. 3D point clouds are applied for
planning, monitoring (Schneider 2006; Monserrat & Crosetto 2008; Trinder & Salah 2011;
Kang & Lu 2011), and construction of 3D models (Zhou & Neumann 2008). In particular,
3D point clouds are used to automatically derive 3D models of buildings, surfaces, terrains,
and vegetation to build up virtual 3D city models. Reconstruction methods allow for
more and more automatic and fast generation of complex virtual geographic environments
(Lafarge et al. 2010; Huang, Brenner & Sester 2013).

2.1 Capturing Methods - LiDAR vs. Dense Image Matching

This section gives an overview and comparison of LIDAR (Wehr & Lohr 1999) and image-
based (Wenzel et al. 2012; Mayer, Sester & Vosselman 2013; Remondino et al. 2014)
techniques to acquire 3D point clouds. Advantages and disadvantages of both capturing
technologies are discussed with particular emphasis on 3D point clouds resulting from
aerial data acquisition of cities and landscapes.

e Capturing attributes: LiDAR has typically several per-point attributes such as
pulse and intensity information, which can be generally used to identify vegetation
and surface materials (Lodha, Fitzpatrick & Helmbold 2007). Dense image matching
data typically comes along with color information from aerial images such as RGB or
RGBI (Gehrke et al. 2010).

e Density: The density of LIDAR-based 3D point clouds depends on the flight height,
typically ranging between 4 and 25 points per m?. Much higher densities can be
achieved, for example, based on overlapping flight lines (Hofle, Hollaus & Hagenauer
2012). Dense image matching 3D point clouds are characterized by a higher density,
which depends on the resolution of the input images. Most common aerial images
have a ground sampling distance of 10 or 20 cm. This is the distance of pixel centers

10 Chapter 2. Fundamentals of 3D Point Clouds

(a) Point cloud with color information from an aerial (b) Point cloud with colors based on NDVI information
true orthophoto with CIR information. Red colors indi- from CIR images (green - vegetation; blue - water; gray
cate near infrared, which are beyond the wavelengths for - areas without vegetation).

the color red.

Figure 2.1: [llustration based on a 3D point cloud with CIR data that can be used to compute the
NDVI to separate surfaces belonging to organic, non-organic, and water structures.

measured on the ground. Hence, 3D point clouds with a density of 100 points or 25

2

points per m* can be computed (Remondino et al. 2014).

e Surface structure: LiDAR data provides more precise 3D geometry, particularly
for vegetation. Reasons are multiple returns of LiDAR rays that penetrate vegetation
structures and hit the covered ground surfaces. In contrast, 3D point clouds from
dense image matching tend to exhibit a 2.5 dimensional characteristic similar to
digital surface models (Gehrke et al. 2010). LiDAR points have an irregular point
distribution in contrast to the raster-based layout for x and y coordinates of dense
image matching 3D point clouds. Dense image matching approaches operating on
oblique airborne images, which represent well facades and other vertical objects,
can be used to generate 3D point clouds (Cavegn et al. 2014), too. However, the
availability of 3D point clouds from dense image matching is not a common practice.
Figure 2.2 compares a LiDAR and dense image matching 3D point cloud for Berlin
with different coloration schemas. The LiDAR 3D point cloud has an irregular
structure, ground points below trees, and a density of 7-8 points per m?. The dense
image matching 3D point cloud shows a regular structure with a 2.5 dimensional

characteristic and a density of 100 points per m?2.

e Color information: Color information can be added to 3D point clouds in a post-
processing step by mapping aerial images to the data. However, a precise mapping
for LiDAR data is not possible because LIDAR data and images are generally not
captured at the same point in time (Richter & Déllner 2011b). In contrast, 3D point
clouds from dense image matching can be attributed with accurate color information
if input images from dense image matching computations are used. In addition to
RGB images, RGBI or CIR images include the Normalized Differenced Vegetation
Index (NDVI) that enable to separate living green vegetation from other structures
and objects (Tucker 1979). Figure 2.1 shows a 3D point cloud colored with CIR and
NDVI information.

2.2. Spatial Data Structures 11

e Moving objects: Non-static entities such as vehicles or trains can be captured well
with LiDAR. Dense image matching approaches use multiple images from different
points in time. Hence, the structure of the 3D point cloud for non-static entities
could be incorrect.

e Water surfaces: Water surfaces can be captured only partly with LIDAR because
the water surface does poorly reflect LIDAR rays. Dense image matching approaches
are not capable to provide correct 3D point clouds for water surfaces (D’Angelo 2010).
Reasons are the limited number of varying features for the captured water surfaces to
estimate the correct height per pixel. Hence, 3D point cloud parts for water surfaces
frequently show structures similar to vegetation or canyons.

e Availability: LiDAR has been used for decades to scan the Earth’s surface; many
workflows in the scope of administration and government define LiDAR scans at
regular intervals. In contrast to collecting image data, it is much more expensive
due to lower flight altitudes and denser flight stripes. Aerial images are captured
typically once or twice a year for urban areas to produce and provide orthoimages.
Aerial images from these acquisition campaigns can be used to generate 3D point
clouds as additional product, which improves the availability of up-to-date 3D point
clouds significantly.

Both, LiDAR and dense image matching have their advantages and disadvantages. The
relevance and usability does strongly depend on the data acquisition purpose and application
context (Mayer, Sester & Vosselman 2013; Haala 2013). “Several recent publications have
compared ranging and imaging techniques based on factors such as accuracy, resolution and
dense 3D reconstructions [..]. The choice between the two techniques nowadays depends
primarily upon project constraints and requirements, budget and experience, and rather less
on the geometric properties of point density and accuracy.” (Remondino et al. 2014). Most
popular data acquisition techniques and systems are illustrated in Figure 2.3. They are
categorized into LiDAR and image based techniques and arranged according to the scale
of capturing area and acquisition costs. The illustration of acquisition cost and scale in
Figure 2.3 is not linear and used to show the basic relation between capturing technologies.

2.2 Spatial Data Structures

Spatial data structures are essential to partition and manage data. Popular data structures
for triangles and polygons are R-trees (Guttman 1984; Beckmann et al. 1990; Zhu, Gong
& Zhang 2007). They are used to partition a two-, three-, or even n-dimensional space
for a fast spatial access, e.g., required for visibility computation (Stein, Limper & Kuijper
2014). Most popular data structures for 3D point clouds are quadtree, octree, and k-d tree
derivations. Figure 2.4 illustrates the structure of a quadtree, octree, and k-d tree storing
points in their leaf nodes. The construction is typically performed in a preprocessing
step to optimize access times for processing and rendering tasks (Rusinkiewicz & Levoy
2000; Gobbetti & Marton 2004b; Wimmer & Scheiblauer 2006; Richter & Déllner 2010b;
Goswami et al. 2013). This chapter introduces spatial data structures that have been
implemented, evaluated, and used for processing, analysis, and visualization tasks presented
in this thesis.

12 Chapter 2. Fundamentals of 3D Point Clouds

(a) LiDAR scan of Berlin with colors from aerial images. (b) Dense image matching scan of Berlin with colors
from aerial images.

(d) Dense image matching scan of Berlin with a color
gradient.

Figure 2.2: Comparison of 3D point clouds from LiDAR and dense image matching of the same
area.

2.2. Spatial Data Structures 13

K=
D -
£ Airborne Laserscanning
-+
(72}
O
(@) g Mobile Mapping
c 3T e Roads
O = Terrestrial Laserscanning 3
(72}
-]
(o3
<

Low

Digital Camera / Smartphone +
123D Catch / Photosynth

: : ' —»

Object Indoor Structure Facility Infrastructure Urban Area Landscape
(e.g., workpiece) (e.g., room) (e.g., building) (e.g., plant) (e.g., railroads) (e.g., city) (e.g., country)

> LDAR Scale
O Image-based

Figure 2.3: [llustration of most common LiDAR and image-based capturing technologies arranged
in terms of acquisition cost and application scale. It shows the basic relations between capturing
technologies and not a linear scale.

14 Chapter 2. Fundamentals of 3D Point Clouds

Spatial data structures presented in this thesis are basically composed of a hierarchy
of nodes. The root node is derived from the spatial distribution of the data and has a
bounding box (typically axis-aligned) that spans all points. Each node in the hierarchy has
a spatial extend and is either an inner node with a defined number of child nodes or a leaf
node without child nodes. Points of the 3D point cloud are assigned to nodes depending on
the position in space. The number of points per node is typically limited depending on the
application. The depth of the tree structure can be predefined (e.g., 8 levels) or adaptive
depending on the spatial distribution of points (e.g., 1024 points per node). If the number
of points for a spatial area exceeds this limit, a further subdivision of the related node is
necessary. The subdivision can be performed adaptive or non-adaptive to the geometry.
“In some acceleration structures the location of subdivision planes is chosen so as to adapt
to the geometry in the scene (e.g., a k-d tree), whereas in other acceleration structures
the locations of bounding planes are predetermined, without looking at the geometry in the
scene (e.g., a grid or octree)” (Wald, Mark & Giinther 2009).

2.2.1 Quadtree

Quadtrees partition two-dimensional data (e.g., 2D images data) in a recursive way, splitting
a given rectangular area into four quadrants (Finkel & Bentley 1974; Zhang, Chengyuan
and Zhang, Ying and Zhang, Wenjie and Lin 2013). In the scope of 3D point clouds, they
can be applied with respect to a chosen reference plane (e.g., 2D geo-coordinate system).
Each quadtree node is either an inner node with up to four child nodes, or a leaf node
containing a subset of points (Shaffer & Samet 1987). The bounding box of the root node
corresponds to the bounding box of the 3D point cloud. Quadtrees can be created in an
adaptive way, taking into account the point density in the corresponding spatial area of a
node. An inner node can also store a representative subset of the points of its child nodes
providing a level-of-detail representation as required by many applications (e.g., real-time
rendering) (Martinez-Rubi et al. 2015; van Oosterom et al. 2015). Quadtrees are also used
as global index to organize local spatial areas with other data structures (Jian 2014).

2.2.2 Octree

Octrees, similar to quadtrees, recursively divide and partition spatial data within the three
dimensional space (Meagher 1982). Each node represents a rectangular 3D subspace and an
inner node can have up to eight child nodes (Figure 2.4). With respect to 3D point clouds,
octrees compared to quadtrees provide more efficient handling and management because the
data has a predominant three-dimensional extension and distribution (e.g., terrestrial scans
of facilities and buildings). In particular, they support spatial partitioning, compression,
and search operations on 3D point clouds. Octrees can be quickly constructed as required
by time-efficient processing algorithms (Richter, Kyprianidis & Déllner 2013). Figure 2.5
shows an adaptive octree illustrated by bounding spheres for each node’s subspace.

2.2.3 k-d tree

k-d trees, a specialized variation of the binary space-partitioning tree, are designed to
manage points in a k-dimensional space and to support spatial queries (Bentley 1975). An
important feature of a k-d tree is the balanced tree structure for irregularly distributed
data (Goswami et al. 2010; Richter, Discher & Dollner 2015). A non-regular subdivision is

2.2. Spatial Data Structures 15

Table 2.1: Comparison of quadtree, octree, and k-d tree properties. + indicates a good suitability,
o means neutral, and - indicates that a property is not fulfilled or only partly applicable.

Property Quadtree Octree k-d tree
Construction time + + o}
Equal number points per node - - +
Balanced tree structure - - +

Equal spatial extend of nodes per tree level
Speed of data excess

Ability to store level-of-details
Applicability for terrestrial data
Applicability for mobile mapping data
Applicability for airborne data

++ 4+ 0o+ + +
o+t

Applicability for multi-temporal data

used to divide the space to get equal-sized partitions in contrast to quadtrees and octrees.
Hence, a more time-consuming preprocessing of the data is required due to the need to sort
the points along the relevant dimension to determine the splitting plane (Goswami et al.
2010). The advantage of k-d trees are the balanced tree structure and almost equal-sized
data chunks. This is important to implement efficient caching and memory swapping
mechanism required by various applications such as real-time rendering (Preiner, Jeschke
& Wimmer 2012; Richter, Discher & Déllner 2015).

2.2.4 Design Principles

In this work, the spatial data structures that have been implemented can be used to store
and manage 3D point clouds based on the following design principles:

e Simple storage: Store points only in leave nodes (Elseberg, Borrmann & Niichter
2011).

e Simple level-of-detail: Store points in leave nodes and a generalized or abstract
representation (e.g., average position of child nodes) in inner nodes (Wand et al.
2007).

e Multi-resolution: Store points in leave nodes and a representative subset also in inner
nodes to provide a level-of-detail representation.

e Adaptive multi-resolution: Store points either in inner nodes or leave nodes to reduce
the required memory. Thus, all nodes together represent the entire data and are
equal to the input 3D point cloud (Gobbetti & Marton 2004b).

Features and criteria of all presented spatial data structures, relevant for applications
such as real-time rendering, processing, analysis, and management, are listed in Table 2.1.

16 Chapter 2. Fundamentals of 3D Point Clouds

(a) Quadtree (b) Octree (c) k-d tree

Root Node
Level 0

Leaf Nodes
with Data
Level 2

Figure 2.4: lllustration of the quadtree, octree, and k-d tree structure used to arrange 3D point
clouds by storing them in leave nodes.

Figure 2.5: [llustration of an octree structure with bounding spheres for tree levels 3—6. Fach
sphere represents a tree node and encloses all child nodes of the presented node. Inner nodes are
tllustrated with red and leaf nodes with blue color.

2.3. Used Datasets 17

2.2.5 Out-of-Core Construction

One challenge addressed in this thesis is the handling of massive amounts of data. 3D point
clouds to be handled by today’s and future applications exceed available main memory
capacities and, therefore, require out-of-core or external memory algorithms. The general
concept for the preparation of out-of-core spatial data structure can be divided into to three
preprocessing steps. First, a division of the input data into subsets fitting into available
main memory. The hierarchy and partition criteria of the first tree levels are used to define
spatial areas for subsets. The input 3D point cloud is divided and each point is assigned to
a subset on secondary storage. Second, all subsets are processed in a sequential order and
serialized to secondary storage. The preprocessing of chunks in memory takes into account
all data structure specific construction rules, e.g., subdivision criteria, node size, and LoD
concept. The number of points, which can be stored and processed in main memory, is
typically up to 100 million points on standard PC equipment with 16 GB main memory.
Third, all preprocessed subsets are merged to the final tree structure on secondary storage.
In general, the total size and capacity of the out-of-core tree structure is only limited by
the available secondary storage capacity (e.g., hard disk, network drive).

2.2.6 GPU-based Processing

Most analysis and classification algorithms for 3D point clouds require to characterize and
evaluate the proximity of each point. Hence, a large number of data queries are necessary.
The number of queries is typically a multiple of the total number of points. Hence, these
queries are typically time-consuming tasks and become a bottleneck in case of massive
3D point clouds. A solution to increase the processing speed are GPU-based processing
schemas to parallelize time-consuming tasks, i.e., queries.

“Creating an optimal GPU implementation not only requires redesigning serial algo-
rithms into parallel ones but, more importantly, requires careful balancing of the GPU
resources of registers, shared memory, and threads, and understanding the bottlenecks and
tradeoffs caused by memory latency and code execution”(Lee et al. 2012).

CUDA, OpenCL, and compute shader provide a flexible programming API for general
purpose computations on GPUs. They enable the parallelization of algorithms by dividing
the input data into chunks that are processed in parallel by a collection of threads (Farber
2011). The GPU facilitates a massive parallel processing using multiple processors and
dedicated memory directly on the device. Similar to the out-of-core construction approach
for spatial data structures, subdivisions of 3D point clouds and sequential processing
of tiles on the GPU is required. A combination of spatial data structures and GPU-
based processing schemas can be used to significantly increase the speed of processing
tasks (Richter, Kyprianidis & Dollner 2013). In this thesis, all presented GPU-based
processing schemas are based on NVIDIA’s Compute Unified Device Architecture (NVIDIA
Corporation 2011).

2.3 Used Datasets

3D point clouds captured with different technologies and at different scales are used to
evaluate and proof processing and visualization techniques. All data sets presented in this
thesis are listed in Table 2.2.

18 Chapter 2. Fundamentals of 3D Point Clouds

Table 2.2: Characteristics of different 3D point clouds from aerial, terrestrial, and mobile data
acquisition used to study and evaluate presented research objectives.

Name Type Size Density Vendor
Berlin2008 Aerial LiDAR 4.7 bln 5-10 pts/m> virtualcitySYSTEMS
Berlin2013 Image Matching 80 bln 100 pts/m? Berlin Partner
Frankfurt2005 Aerial LiDAR 1.9 bln 7-8 pts/m? LVA Frankfurt
Frankfurt2009 Aerial LiDAR 7.1 bln 28 pts/m? LVA Frankfurt
Mansion Terrestrial LiDAR 5.1 bln 1000 pts/m> Uni Colone
Railroads Mobile Mapping 200 m 12 mln pts/ m? DB Netz AG
Salzburg Image Matching 400 pts/km? 200 min virtualcitySYSTEMS
Kleinwalsertal Image Matching 3.2 bln 25 pts/m? virtualcitySYSTEMS
Bournemouth2006 Aerial LiDAR 275 mln 38 pts/m? Ordnance Survey
Bournemouth2008 Aerial LiDAR 95 miln 21 pts/m? Ordnance Survey
Bournemouth2006 Image Matching 2.2 bln 153 pts/m? Ordnance Survey
Bournemouth2010 Image Matching 3.5 bln 220 pts/m> Ordnance Survey
Johannesburg2006 Aerial LiDAR 12.4 mln 1 pts/m? City of Johannesburg
Johannesburg2012 Aerial LiDAR 23.8 mln 2 pts/m> City of Johannesburg
Rotterdam2009 Aerial LiDAR 13 bln 60 pts/m? City of Rotterdam

Poland Aerial LiDAR 24.1 mln 20 pts/m? SHH

Chapter 3

Point Cloud Classification

This chapter introduces concepts and techniques to classify 3D point clouds from airborne
LiDAR scans and dense image matching into object classes. This object-class segmentation
splits a massive 3D point cloud into 3D point subclouds according to the estimated surface
category such as terrain, building, vegetation, water, and infrastructure. It relies on
analyzing the point cloud topology and does not require per-point attributes or repre-
sentative training data (Richter, Behrens & Doéllner 2013). Object-class segmented 3D
point clouds are important to improve analysis algorithms and applications as well as
enhance visualization techniques (Figure 3.1) as they enable to treat each category inde-
pendently. This chapter is partially based on the author’s scientific publications in Richter
and Déllner (2012), Richter, Behrens and Déllner (2013), and Richter and Déllner (2014).

3.1 Potentials and Usage of Classification

The classification of 3D point clouds is an essential processing step for applications, systems,
and workflows (Lodha, Fitzpatrick & Helmbold 2007; Carlberg et al. 2009; Samadzadegan,
Bigdeli & Ramzi 2010a; Grilli, Menna & Remondino 2017). In general, 3D point clouds
provide only geometric data (i.e., z, y, z coordinates). The classification is used to add
semantics information to the data and is required in a large number of applications such as
reconstruction, modeling, and monitoring of buildings (Zhou & Neumann 2008; Meixner,
Leberl & Brédif 2011; Yang et al. 2017a), terrain (Meng, Currit & Zhao 2010), and
vegetation (Rutzinger et al. 2008). Point cloud classification provides a way to segment
a massive 3D point cloud into disjoint subsets belonging to different surface categories,
i.e., object classes such as building (Jochem et al. 2012), vegetation (Hofle, Hollaus &
Hagenauer 2012), ground (Meng, Currit & Zhao 2010), city furniture (Golovinskiy, Kim &
Funkhouser 2009), and infrastructure network (Clode, Kootsookos & Rottensteiner 2004).
The process of enhancing 3D points by this kind of semantics is also called object-class
segmentation due to the partitioning of the data according to object classes that can be
found in urban areas (Richter, Behrens & Déllner 2013).

The classification can be used to optimize and enhance algorithms operating on massive
3D point clouds:

e Most importantly, a classified 3D point cloud can significantly reduce the required
amount of data and improve the performance and accuracy of algorithms. For
example, building reconstruction, infrastructure monitoring, or flood simulations can
operate on a subset of the entire 3D point cloud belonging to object classes that are
relevant for the domain of application.

20 Chapter 3. Point Cloud Classification

e “ L i, i",'.

(a) 3D point cloud with color information. (b) 3D point cloud with object-class information.

Figure 3.1: Illustration of a 3D point cloud before and after object-class segmentation. The
resulting object classes are illustrated with their respective colors: buildings - red, vegetation - green,
water - blue, infrastructure - gray, terrain - aerial image colors.

e Object-class enriched 3D point clouds can improve the visualization by applying
different 3D rendering techniques to different object classes or by providing different
interaction techniques for them.

e 3D point clouds with object-class information from different points in time enable a
more specific detection of changes, e.g., after natural disasters to estimate damages.

The following requirements for classification approaches are important to provide
added values for a variety of applications:

e Reliable classification for urban areas with different surface characteristics such as
downtown, suburban, tree-covered, and hilly areas.

e Applicable for data captured with different remote sensing technologies, such as
LiDAR and dense image matching with a 3D or 2.5D characteristic.

e No need for remote sensing technologies specific per-point attributes such as intensity,
pulse, LiDAR return number, or RGB color.

e No need for training data, e.g., required for machine learning approaches, to avoid a
time-consuming manual classification.

e Density adaptive classification to handle 3D point clouds with common densities
from 5 to 400 points/m?.

Existing object-class segmentation approaches frequently require additional per-point
attributes (e.g., pulse or intensity information) or operate on manually classified training
data sets that are used for machine learning approaches (Lodha, Fitzpatrick & Helmbold
2007; Jiang, Zhang & Ming 2008; Samadzadegan, Bigdeli & Ramzi 2010a).

The presented approach classifies massive 3D point clouds according to principal object
classes found in urban areas. It is based on analyzing the 3D point cloud topology, i.e.,
geometric relationships between points and segments, such as connectivity, local flatness,
smoothness, and orientation. These attributes can be calculated in a preprocessing step and
take into account only the position of each point (i.e., x, y, z). Resulting per-point attributes

3.2. Related Work 21

are used as input for the segmentation as well as feature- and segment-based algorithms
to determine object classes. The approach can be subdivided into the following steps: At
first, per-point attributes are calculated by analyzing the proximity of each point. Second,
an adaptive segmentation is performed taking into account previously calculated per-point
attributes to determine patches (i.e., segments) of points with a similar characteristic.
Third, all ground points are detected by analyzing the horizontal relationship of segments.
Fourth, large segments with a characteristic topology for vegetation and building structures
are determined. Sixth, all unclassified segments are analyzed within multiple passes taking
already classified points into account. Finally, a classification of ground points is performed
using geospatial data with semantics information (e.g., thematic maps). This determines
specific object classes for ground points, such as terrain, water, and infrastructure that
cannot be derived from the 3D point cloud topology in general.

3.2 Related Work

One category of related approaches for point cloud classification is based on additional
attributes per point such as color (Charaniya, Manduchi & Lodha 2004), intensity (Cha-
raniya, Manduchi & Lodha 2004; Lodha, Fitzpatrick & Helmbold 2007; Samadzadegan,
Bigdeli & Ramzi 2010a), scan line (Sithole & Vosselman 2005; Douillard et al. 2011; Che &
J.Olsen 2017), amplitude (Alexander et al. 2011), spectral (Matikainen et al. 2017; Morsy,
Shaker & El-rabbany 2017), and pulse information (Charaniya, Manduchi & Lodha 2004;
Clode & Rottensteiner 2005; Samadzadegan, Bigdeli & Ramzi 2010a), which are specific
for the used scanning technology and device. Other classification approaches use per-point
features, segment features (Ni, Lin & Zhang 2017), or machine learning algorithms (Lodha,
Fitzpatrick & Helmbold 2007; Samadzadegan, Bigdeli & Ramzi 2010a; Hu & Yuan 2016;
Ao et al. 2017), which requires training data sets that have to be prepared manually. The
presented approach, however, does not require any additional information per point or
manually classified training data sets.

One main purpose of capturing and processing 3D point clouds from aerial scans is to
construct digital terrain models (DTM) (Raber et al. 2002; Shao & Chen 2008; Chen et al.
2016; Che & J.Olsen 2017), surface models (DSM), 3D building models (Zhou & Neumann
2008; Meixner, Leberl & Brédif 2011), and identify city furniture, e.g., cars (Zhang et al.
2014a; Zhang et al. 2014b). The creation of DTMs requires to separate ground points from
non-ground points (Lodha, Fitzpatrick & Helmbold 2007). Sithole and Vosselman (2004)
performed an experimental comparison of several ground filter algorithms with different 3D
point clouds from airborne laser scanning. Meng et al. (2010) give a detailed overview and
evaluation of ground filtering algorithms to derive digital elevation models (DEMs). Chen
et al. (2017) present the state-of-the-art of DTM generation approaches. The presented
classification is based on the approach of Rabbani et al. (2006) to derive segments in a 3D
point cloud. Ground segments are identified by analyzing the topological structure and
relation between neighboring segments.

Building reconstruction algorithms require roof points as input data to derive building
models. These algorithms typically require only points that belong to planar roof areas
(Zhou & Neumann 2008; Awrangjeb & Fraser 2014; Wang et al. 2016). Therefore, an exact
and complete detection of all points belonging to facade structures and small roof elements,
e.g., smoke stacks, roof dormers, and other roof constructions, is not necessary (Meixner,

22 Chapter 3. Point Cloud Classification

Leberl & Brédif 2011; Yang et al. 2017a). The purpose of the presented approach is to
detect all building elements that can be recognized in the 3D point cloud.

Well-proven vegetation classification approaches use first and last pulse information
(Charaniya, Manduchi & Lodha 2004; Clode & Rottensteiner 2005; Jiang, Zhang &
Ming 2008), reflection intensity (Charaniya, Manduchi & Lodha 2004), or color attributes
(Charaniya, Manduchi & Lodha 2004) of each point. These attributes are not always
available, e.g., for 3D point clouds resulting from dense image matching approaches. Secord
and Zakhor (2007) address the problem of identifying trees in LiDAR data. Rutzinger et al.
(2008) perform an object-based analysis for vegetation detection. The presented approach
is applicable for 3D point clouds without specific per-point attributes because it operates
only on the point cloud topology.

Golovinskiy et al. (2009) uses data from airborne and mobile scans to identify city
furniture (e.g., newspaper boxes, traffic lights, cars) in urban environments. Yao (2013)
and Weinmann (2017) detect individual trees along road corridors using data from mobile
laser scanning systems. Other approaches detect power lines (Clode & Rottensteiner 2005)
using per-point return information and road networks (da Silva, Centeno & Henriques
2011) using digital images.

Machine learning and support vector machines (SVM) require a representative and
manual classified 3D point cloud as training data (Lodha, Fitzpatrick & Helmbold 2007;
Jiang, Zhang & Ming 2008; Samadzadegan, Bigdeli & Ramzi 2010a; Yang et al. 2017b).
Shapovalov et al. (2010; 2011) use non-associative markov networks to classify airborne and
terrestrial laser scans. Lodha et al. (2007) uses per-point features (height variation, normal
variation, and return intensity) to group points with a similar characteristic. Alexander
et al. (2011) use a decision tree approach that can dynamically handle a large number
of attributes. The manual preparation of training data is time consuming and has to be
accomplished for 3D point clouds that differ in their characteristics, e.g., point density and
point distribution. In contrast to the presented approach, no specific domain knowledge is
used, e.g., arrangement of ground, vegetation and building segments.

Carlberg et al. (2009) introduce a multi-category classification system for airborne
LiDAR data with similar objectives compared to the presented system. Multiple classifiers
perform a region growing algorithm and a segment-wise classification. Planar and scattered
segments are identified using manual classified training data. This approach results in a
large number of unclassified points, especially for segments resulting from building facades
and small scattered areas. The presented approach reduces the amount of unclassified
points by performing an iterative multi-pass analysis.

3.3 Object-Class Segmentation

The object class classification workflow can be divided into the following processing steps
and is illustrated in Figure 3.2:

e Preprocessing includes detection and removal of outliers and duplicates to ensure a
defined data quality for the further object-class segmentation. Calculation of basic
per-point attributes such as color information (Richter & Dollner 2011b) from aerial
images and surface normals by analyzing the local point proximity (Mitra & Nguyen
2003).

3.3. Object-Class Segmentation 23

3D Point
Cloud

3D Point
Cloud

Segmentation | 8D Point Cloud
Segments

- Preprocessing |

Ground
Detection

Thematic > Ground Ground > Building and Vegetation
Maps " | Classification Points | Classification

A

A

Figure 3.2: System overview showing the data workflow and components of the object-class
segmentation pipeline.

\

Y

e Segmentation groups points with a similar characteristic in a local proximity (Rabbani,
van den Heuvel & Vosselman 2006) that most likely belong to the same object class.

o (lassification to identify segments belonging to ground, building, and vegetation
(Carlberg et al. 2009).

3.3.1 Preprocessing

The preparation of the 3D point clouds has the aim to ensure a defined data quality and
to attribute the data with per-point attributes that are relevant for a further classification.
In general, 3D point clouds from LiDAR scans include outliers (Arabsheibani, Abedini &
Kanani Sadat 2015), duplicates and noise resulting from measurement errors which need to
be removed (Sotoodeh 2006). Therefore, the number of neighboring points within a local
point proximity (e.g., 2 meters) is determined. If no other point can be found, the point is
defined as outlier and not considered in the further processing. Duplicates are identified by
comparing the point position with points in a small proximity (e.g., 0.01 meter).

The following per-point attributes are computed in the preprocessing stage and used
to classify the 3D point cloud and also to enhance the visualization:

e Color data. RGB and CIR color information is in general not required to classify 3D
point clouds. A mapping of 2D image data, i.e., aerial images, cannot be performed
exact enough to 3D point clouds from LiDAR scans. Typical problems occur below
vegetation because the same color information is mapped the tree crown and ground
points under trees (see Figure 2.2 (a)). However, a mapping of RGB and CIR data to
3D point clouds from dense image matching is possible and can be used to improve
the detection of vegetation (see Chapter 2.1 and Figure 2.2 (b)).

24 Chapter 3. Point Cloud Classification

e Per-point normal to approximate the surface of the local point proximity. It is
computed using the covariance matrix of the nearest neighbors (e.g., 10 nearest
neighbor points) and the corresponding eigenvectors and eigenvalues (Hoppe et al.
1992).

3.3.2 Segmentation

Segmentation is a process that partitions the 3D point cloud into disjoint subsets with similar
characteristics (Grilli, Menna & Remondino 2017). Common segmentation approaches
perform a region growing to group spatially connected points within a defined proximity
(e.g., 0.5 meter) (Dong et al. 2017). The general objective is the robust detection of features
(Daniels et al. 2007), e.g., for simplification and reconstruction purposes. The aim of the
presented segmentation is to group only points belonging to the same object class (e.g.,
ground, building, vegetation) to enable a segment-based classification. However, points
belonging to different object classes can be located next to each other (e.g., trees close to
building roofs or ground surfaces close to building fagades). For that reason, an additional
segmentation criteria, such as a slope value, is required that considers surface structure
properties (Yang, Zhang & Li 2017). Rabbani et al. (2006) introduced a segmentation
approach that considers surface smoothness in addition to the local connectivity of points.
A surface smoothness and residual value parameter are used by a region growing algorithm.
The normal variation between points (surface smoothness) is used to stop the segmentation
at edges and offsets in the 3D point cloud. This parameter is difficult to determine for
the entire 3D point cloud because the segmentation should work for smooth regions (e.g.,
planar roofs) but also be tolerant to curved areas (e.g., bended building structures). For
that reason, a second parameter is used that indicates areas of high curvature in the 3D
point cloud (residual value). This enables to be flexible regarding surface smoothness
and locally adjusting normal variation based on the 3D point cloud structure. Suitable
segmentation thresholds for the presented datasets are 0.5 for surface smoothness and 0.05
as residual value. An increased residual value results in larger segments that could contain
multiple object class points. A decreased residual value increases the size of small segments.
The residual value strongly depends on the point density.

3.3.3 Segment Classification
Ground Detection

The ground detection algorithm operates on segments that result from the segmentation
pass. Ground points typically form large-area segments due to smooth surface characteristic
and connectivity of ground areas. In contrast, building and tree-covered areas generate
smaller segments (Meng, Currit & Zhao 2010). For that reason, large-area segments (e.g.,
> 50k m?) are assumed as ground segments. These segments include the majority of
ground points. Special cases occur for small ground regions surrounded by buildings (e.g.,
backyards) or located in dense vegetated areas that are not connected with large-area
ground segments. To identify those segments, all non-classified segments are analyzed
concerning the relative position to already classified ground points. For each point in a
segment the nearest already detected ground points are determined. If the height difference
to these ground points is below a defined threshold (e.g., 0.5 meter) the point is tagged as

3.3. Object-Class Segmentation 25

possible ground point. The whole segment is identified as ground segment if the segment
contains a significant number of possible ground points (e.g., 80 percent).

Building and Vegetation Detection

Building and vegetation points are identified with an iterative multi-pass approach that is
the most challenging part of the object-class segmentation pipeline. Traditional approaches
use per-point or per-segment feature values for the classification. Typical features are
normal distribution, regularity, horizontality and flatness (Zhou & Neumann 2008) of
segments or points. They are derived from the structure and topology of the local point
proximity. In general, planar segments are classified as roof elements and scattered segments
are classified as vegetation (Sithole & Vosselman 2005). This approach works well for large
segments but becomes unreliable for small segments, i.e., with less than 50 points. These
segments are difficult to analyze with current state-of-the-art approaches and therefore
often labeled as unclassified points (Carlberg et al. 2009). Regions with an accumulation
of unclassified points typically occur due to:

e Scattered roof segments (e.g., stacks, antennas, roof constructions)
e Mixed roof and tree-covered areas (e.g., trees covering roofs, trees in the courtyard)

e Building facades with a small number of points (e.g., 1 point/m?)

To overcome this limitation, an iterative multi-pass classification approach is used
that benefits in each iteration from classified points in previous passes. Each pass analyzes
aspects of the 3D point cloud topology that are specific for individual object classes. At
first, only large segments that can be clearly or most likely assigned to an object class are
identified. Second, a more precise vegetation analysis pass is performed using an additional
segmentation and taking into account already classified vegetation and building points. In
the third pass, remaining small segments are classified by considering a larger proximity.

Large Segment Analysis. All large segments (i.e., with more than 50 points) are
analyzed in relation to already detected ground points. For each point in a segment, all
subjacent ground points are determined. If a segment contains many points above the
ground it is identified as vegetation. This assumption can be made because LiDAR rays
partially run through vegetation up to the ground, in contrast to building structures where
no subjacent ground points can be found. Consequently, segments containing many points
without subjacent ground points can be most likely classified as building segments. Excep-
tions of this assumption are dense vegetation areas where LIDAR rays do not reach the
ground surface and tree covered areas that are captured with image-based remote sensing
technologies (e.g., dense image matching). For that reason, an additional validation pass is
performed to analyze large segments without subjacent ground points. For each point, a
flatness attribute is computed based on the normal variation to the nearest neighbor points.
If the majority of points belong to a scattered region, the overall segment is classified
as possible vegetation, otherwise as building. The results of the large segment analysis
are building, vegetation, possible vegetation, and unclassified segments. Figure 3.3 (a)
illustrates the input segments (left) and detected building and vegetation segments (right).
Possible vegetation and unclassified points are colored white.

26 Chapter 3. Point Cloud Classification

Vegetation Analysis. In contrast to areas with urban structures, tree-covered areas
result in a large number of small segments (Figure 3.3 (a) left). These segments are
difficult to classify due to similarities to other small segments (e.g., from buildings, stacks,
antennas, roof constructions, and city furniture). Consequently, a segment-based analysis
of vegetation points using segments of the previous pass becomes unreliable. Therefore,
an additional segmentation pass is performed taking into account typical 3D point cloud
topology for vegetation areas and already detected vegetation segments. The segmentation
is performed on already detected vegetation, possible vegetation, and unclassified segments
without smoothness parameters. This results in merged segment clusters and small seg-
ments are added to already detected vegetation segments (Figure 3.3 (b) left). In the
next step, all segments that exceed a defined size (e.g., 50 points) are analyzed because
these segments enable a reliable classification. This analysis is performed with respect to
the amount of vegetation and possible vegetation points that were detected in the large
segment analysis. If the majority of points belong to these object classes, all points in the
segment are assigned to the object class vegetation. Figure 3.3 (b) shows segmentation
and vegetation analysis results. The remaining unclassified segments are very small and
not connected to already detected vegetation areas.

Small Segment Analysis. In this pass, all remaining unclassified segments are an-
alyzed taking into account already detected building, vegetation, and ground points. These
segments typically tend to occur at small building roof elements, fagades, low vegetation,
and city furniture (Figure 3.3 (b) - right). Small roof elements can be detected if all
neighboring points are already detected building points. Facade segments are more difficult
to detect, due to an incomplete surface and a small number of facade points. The detection
is performed by specifying a point neighborhood volume, similar to a tube, with a small
radius (e.g., 0.5 meter). A point is classified as fagade point, if building points can be
found above, and building or ground points below a point. If the majority of points in a
segment fulfill this property, all segment points are identified as fagade points belonging to
the object class building. All remaining segments belong to low vegetation or city furniture.
Assumptions are made by considering already classified ground points. For instance, cars
can be found above or next to infrastructure points.

Classification of LIDAR and Dense Image Matching 3D Point Clouds. The
used capturing technology affects the surface characteristic of 3D point clouds as described
in Section 2.1. Differences occur due to the 2.5D and 3D nature of dense image matching
and LiDAR data. Large forestry areas are difficult to classify in 2.5D point clouds because
of missing ground points under vegetation and the smoother surface characteristic in
contrast to 3D point clouds from LiDAR scans. Tree surfaces and roof surfaces could show
an unusual flatness which makes it difficult to separate vegetation from building segments.
To overcome this limitation, CIR data can be used to classify points and segments with a
structure that does not clearly indicate the characteristic of vegetation or non-vegetation.

3.3.4 Specific Classification of Object Classes

The presented object-class segmentation splits a 3D point cloud into disjoint object classes
ground, building, and vegetation. Each object class can be divided into subclasses using

3.3. Object-Class Segmentation 27

(a) Large segment analysis. (b) Vegetation analysis.

Figure 3.3: 3D point cloud segments (left) and resulting object classes (right) for large segment
(a) and vegetation (b) analysis.

thematic data or object-class specific analysis approaches. Common subclasses for the
following object classes are:

e Ground: Terrain, water, land use (e.g., cropland), and infrastructure (e.g., road
networks and railway) (Lillesand, Kiefer & Chipman 2015).

e Building: Roof area, roof construction, fagade, and building entity (e.g., belonging
to house number) (Haala & Kada 2010).

e Vegetation: Low vegetation, high vegetation, vegetation species, and vegetation
entity (e.g., single tree) (Secord & Zakhor 2007).

The ground detection pass outputs all points that represent the ground surface. In
general, these points have a 2.5D characteristic, i.e., there are no overlapping structures. A
detailed differentiation of ground points can rarely be derived from the 3D point cloud
topology due to the smooth connection of ground surface areas. For that reason a more
specific classification of ground points can be performed by utilizing additional geospatial
data, e.g., thematic maps, open street map data, shapefiles, or any other data that provides
georeferenced information. Typically, this thematic data can be automatically generated
(e.g., with feature extraction from aerial images) but may require manual effort (Meng,
Currit & Yang 2010).

The geographic registration and mapping between thematic data (e.g., maps) and
the 3D point cloud could include a certain degree of uncertainty and varying accuracies.
To overcome this limitation, multiple data sources can be used to get precise ground
classification results.

The classification of ground points in the presented approach has been implemented
with a flexible approach and is performed in three steps. First, all available data sources
are determined and prepared. For instance, Web Map Services (WMS) are used to obtain
maps with thematic information. Priorities for each input source and object class are
used to handle redundant, contradictory, and overlapping information. For example, road
network information are available in thematic maps and open street map data, but differ in
coverage and accuracy. Second, a ground classification texture is generated by combining
object-class information and priorities from the input data. In the last step, the ground
classification texture is used to determine the object-class information for each ground
point. Figure 3.4 illustrates the ground classification process for terrain, road, railroad,
and water surfaces.

28 Chapter 3. Point Cloud Classification

Ground Points

Ground Classification
Texture

[Water [] Railroads
Bl Road [Terrain

Frvy l
[Water [] Railroads
Bl Road [] Other

Figure 3.4: Ground classification workflow using multiple geospatial data sources as input to
subdivide ground points into infrastructure, water and terrain points.

A more specific classification of building and vegetation points cannot be performed
reliable with thematic maps in contrast to ground points. Reasons are the 3D characteristic
of vegetation and building points (e.g., horizontally overlapping), the missing data accuracy
(e.g., rapid change of vegetation structures), and incompleteness of additional geospatial
data. For that reason, structure and segment information can be used to identify roof,
facade, and roof structure within all building points as described in Section 3.3.3. The
detection of points that belong to individual buildings is a well-studied field in research
because it is required for the automatic building reconstruction (Zhou & Neumann 2008;
Zhang, Yan & Chen 2006). In a first step, a segmentation of already detected building
points is used to create roof patches. These roof patches can be merged if they share the
same roof ridge. In a second step, all boundary points are determined and used to create a
detailed building outline. In general, this outline has many details and is jagged due to the
irregular structure of the 3D point cloud. For that reason, a third step is performed to
simplify the boundary. The identification of individual buildings with the same roof type
and height that adjacent to each other, e.g., in a building complex, can be improved be
taking into account address data (Jarzabek-Rychard 2012).

3.4 Out-of-Core and GPU-based Processing

The algorithms and processes of the object-class segmentation have different memory
and computation time requirements. This becomes particularly relevant when the data
amount increases, i.e., billions of points need to be processed. To perform the classification
for massive 3D point clouds on standard consumer hardware, spatial data structures,
out-of-core processing strategies, and a parallel GPU-based processing of time consuming
tasks are required and have been implemented.

To overcome main memory limitations, an adaptive out-of-core quadtree, introduced in
Chapter 2.2.1, is used to handle the entire 3D point cloud and enable fast data integration,

3.5. Results and Evaluation 29

subdivision, and updates (Figure 2.4 (left)). The quadtree enables an adaptive selection
of data tiles that fit into available main memory. To ensure a correct classification for
points close to tile boundaries, each tile includes overlapping areas of neighborhood tiles.
Depending on the distribution and density of the 3D point cloud, suitable tiles that fit
into available main memory are selected and processed in a sequential order.

The bottleneck of the object-class segmentation are multiple local neighborhood
requests for all points belonging to the 3D point cloud. Different requests are required in
the preprocessing (e.g., filtering and normal calculation), segmentation, and classification
stage. A single local neighborhood analysis, e.g., at the beginning of the classification, is
not possible due to varying parameters:

e Request volume (e.g., sphere, tube)

Request direction (e.g., below or above requested points)

Volume size (e.g., 10 meter, 0.5 meter)

Requested object class (e.g., ground, vegetation, building)

An octree is used as spatial data structure to improve the performance of local
neighborhood requests (Figure 2.4 (middle)). The octree instead of a k-d tree is used
because request with different volumes and directions are necessary and the construction is
faster. A GPU-based implementation is used to increase the performance. The process of
requesting the local neighborhood for points in a parallel way is divided into five steps.
At first, all points belonging to object classes that should be processed are transferred to
GPU memory and arranged in an octree. Second, request parameters for volume, size, and
object class are defined. Third, all points whose local neighborhood should be analyzed
are transferred to GPU memory. Fourth, these points are assigned to parallel executed
threads that traverse the octree structure and determine all point that fulfill the specified
request parameter. Last, results are stored in a data structure on the GPU and transferred
back to CPU memory. Special cases occur, if the number of points in the requested area
exceeds the available GPU memory capacity (e.g., 2 GB). To overcome this limitation, a
subdivision into suitable chunks is necessary. The presented approach performs best for
requests with a large number of query points (e.g., 100k points) to use the full processing
capacities of the GPU. Measurements show that the GPU implementation performs on
average 25 times faster than a comparable CPU implementation.

3.5 Results and Evaluation

This section presents object-class segmentation results for 3D point clouds with different
characteristics illustrated in Figure 3.5 — 3.8. To prove the usability of the presented
approach areas with different surface characteristics have been classified such as down-
town, suburban, and tree-covered regions. The datasets have been captured with LiDAR
technology or generated with dense image matching approaches. The larges dataset con-
tains approximately 80 billion points and the density of the data ranges from 5 up to
400 points/m?. A detailed evaluation of the accuracy and performance is presented is
performed for three tiles (480.000 m?), representing different environment characteristics
(i.e., a tree-covered, suburban, and downtown area). 3D point clouds used for the evaluation
are listed in Table 3.1. They show the following capabilities:

30 Chapter 3. Point Cloud Classification

Table 3.1: Datasets used to show the capability of the object-class segmentation to classify 3D point
clouds with different characteristics (DT - downtown, SU - suburban, TC - tree-covered).

Name Type Density #Points Charact. Fig.
Berlin2008 LiDAR 5-10 pts/m2 4.7bln DT; SU; TC 3.5

- Tilel LiDAR 11 pts/m®> 54mln TC 3.9 (a)
- Tile2 LiDAR 6 pts/m? 28 mln SU 3.9 (b)
- Tile3 LiDAR 5 pts/m? 24mlnh DT 3.9 (c)
Frankfurt2005 LiDAR 7-8 pts/m?> 1.9bln DT; SU 3.6 (a)
Frankfurt2009 LiDAR 28 pts/m? 7.1bln DT; SU 3.6 (b)
Poland LiDAR 20 pts/m? 24.1 mln DT; SU 3.7
Bournemouth2010 Image Matching 220 pts/m? 3.5bln SU 3.8

e Massive 3D point clouds: Figure 3.5 shows classification results for a 3D point cloud
of an entire city. It is proven that the classification can be applied to massive data
sets without any restrictions regarding the number of points.

e Different densities: Figure 3.6 illustrates results for an area captured at different
points in time with varying resolutions. The classification was successfully applied to
LiDAR 3D point clouds with a resolution between 5 and 100 points/m?. A resolution
of less than 5 points/m? reduces the classification quality.

e Different capturing seasons: Figure 3.7 shows a dense LiIDAR point cloud captured
in the summer with a dense canopy and less points below trees. The results show
that the presented approach can separate building and vegetation structures reliable
even for 3D point clouds with no or less ground points below vegetation.

e Dense image matching: Figure 3.8 shows a point cloud from dense image matching. It
is proven that the classification can be applied to data sets with a 2.5D characteristic.
In contrast to LIDAR data NDVI information is recommended to improve the
segmentation stage.

3.5.1 Accuracy Evaluation

The accuracy evaluation is performed for 3D point cloud with different surface characteristics.
To this end, three subsets of the dataset Berlin2008 were classified manually to generate
ground truth data. Tile 1 is a tree-covered area with a few buildings, Tile 2 is a suburban
area with solitary buildings and Tile 3 represents a downtown are with large connected
buildings. The manual classification was performed with a tool that provides functionality
for a human operator to classify points into ground, vegetation, and building. A classification
of ground points into terrain, infrastructure and water points was not performed. The
classification and evaluation was done for a representative part (25 %) of each tiles
(Figure 3.9) to limit the required time for manual classification.

All manually classified tiles are compared with object-class segmentation results and
indicate a precision of at least 93.4 % for vegetation, 95.2 % for building and 97.9 % for

3.5. Results and Evaluation 31

(a) 8D point cloud with colors from aerial images. (b) 8D point cloud colored based on object-class informa-
tion.

(¢) Detailed view of upper right. (d) Detailed view of lower left.

Figure 3.5: Illustration of object-class segmentation results for a massive 3D point cloud of Berlin
from an aerial LIDAR scans.

(a) Frankfurt2005 with 7-8 points/m?. (b) Frankfurt2009 with 28 points/m?.

Figure 3.6: Illustration of object-class segmentation results for 3D point clouds with different
resolutions.

32 Chapter 3. Point Cloud Classification

Gy

(a) 3D point cloud with colors from aerial images.

o ;?’ 1 - ‘ o % 3

(b) 3D point cloud colored based on object-class information.

Figure 3.7: [llustration of object-class segmentation results for a 3D point cloud from an aerial
LiDAR scans in the summer with a dense canopy.

3.5. Results and Evaluation 33

(¢) 3D point cloud colored based on object-class information.

Figure 3.8: [llustration of object-class segmentation results for a 3D point cloud from dense image
matching.

34 Chapter 3. Point Cloud Classification

Table 3.2: Object class and segment statistics for a tree-covered (Tile 1), suburban (Tile 2), and
downtown (Tile 3) area with different characteristics (Figure 3.9) and points belonging to the
Berlin2008 dataset (Figure 3.5).

Tile 1 Tile 2 Tile 3 All Tiles

Points 5350k (100%) 2819k (100%) 2414k (100%) 4601 mln (100%)
- Terrain 2464k (46.0%) 1831k (65.0%) 571k (23.2%) 2399 mln (52.1%)
- Infrastructure 182k (3.4%) 197k (7.0%) 652k (26.5%) 428 mln (9.3%)

- Water 25k (0.5%) 12k (0.4%) 8k (0.3%) 55 min (1.2%)

- Vegetation 2587k (48.3%) 456 k (16.2%) 160k (6.5%) 1228 mln (26.7%)
_ Building 96k (1.8%) 323k (11L5%) 1023k (41.5%) 491 mln (10.7%)
Segments 1154 k 270 k 106 k 975 min

- Large 18 k 5k 3k 11 mln

- Small 1136 k 265 k 103 k 964 mln

Table 3.3: Object-class segmentation evaluation based on manually classified 3D point clouds used
as ground truth (GT) for tree-covered, suburban, and downtown area. Precision, recall, and total
error (TErr) are derived from true positives (TP), false positives (FP), false negatives (FN), and

true negatives (TN) for vegetation, building, and ground points.

#GT #Result TP FP FN TN Pre. Recall TErr.
Tile 1
Vegetation 556 697 557 301 555621 1680 1076 587 634 99.70% 99.81% 0.24%
Building 31 657 30 721 30 511 210 1146 1114 144 99.32% 96.38% 0.12%
Ground 557 657 557 989 556 954 1035 703 587 319 99.81% 99.87% 0.15%
Tile 2
Vegetation 88 202 89 298 83414 5884 4788 432 138 93.41% 94.57% 2.03%
Building 98 515 99 230 94 517 4713 3998 422 996 95.25% 95.94% 1.66%
Ground 339 507 337696 335209 2487 4298 18 4230 99.26% 98.73% 1.29%
Tile 3
Vegetation 98 412 93 204 90 874 2330 7538 448 969 97.50% 92.34% 1.80%
Building 159 075 160 449 157093 3356 1982 387280 97.91% 98.75% 0.97%
Ground 292 224 297 077 291045 6032 1179 251 455 97.97% 99.60% 1.31%

ground point detection. The results are listed in Table 3.2 and include the point distribution
for each object class and the number of segments that result from the segmentation pass.
Point density varies due to multiple LiDAR returns, especially caused by vegetation.
Precision, recall, and error rates for each object class are listed in Table 3.3. The precision
for detecting vegetation and building points indicates that the presented approach performs
best for tree-covered and downtown areas where vegetation and building structures are
mainly separated. However, also suburban areas with building and vegetation structures
with a similar size and overlapping volumes can be separated with a precision of 93% for
vegetation and 95% for buildings. The ground detection performs best for tree-covered
and suburban areas because the number of ground points, in relation to the total number
of input points, is much higher in contrast to downtown areas. Ground segments are more
connected and cover larger areas which is advantageous for the ground detection pass. The
results show that the presented object-class segmentation provides a robust classification
with a maximum total error of 2.03 % for vegetation, 1.66 % for building, and 1.31 % for
ground point detection.

3.6. Discussion and Future Work 35

(a) Tile 1: tree-covered area. (b) Tile 2: suburban area. (¢) Tile 8: downtown area.

Figure 3.9: Illustration of three tiles with different characteristics: tree-covered (a), suburban (b),
and downtown area (c).

3.5.2 Performance Evaluation

This section presents the performance evaluation of the object-class segmentation. First,
performance measurements for three tiles with different characteristics that can be processed
in main memory are presented and discussed. Second, the performance of the overall
workflow to classify a 3D point cloud with almost 5 billion points is evaluated. All tests
were performed on an Intel Xeon CPU with 2.66 GHz and 12 GB main memory. For GPU
computations a NVIDIA GeForce GTX 480 with 1536 MB device memory and 480 CUDA
cores is used.

Measurements in Table 3.4 show that the preprocessing and segmentation time are
only slightly affected by the point cloud characteristic. Also the performance of the
ground detection pass is only affected by the overall number of points. The increased
processing time for the vegetation analysis for Tile 1 is caused by the large number of
vegetation segments. Different processing times for the small segment analysis result from
the total amount of small segments, e.g., facades, that need to be processed. In summary,
the object-class segmentation of urban areas performs best due to the lower number of
segments.

The overall object-class segmentation workflow for the 3D point cloud Berlin2008
takes less than 23 hours. The processing without GPU accelerated algorithms would
require about 250 hours. The average throughput of the object-class segmentation system
is 3.3 million points per minute. However, there is still potential to increase the processing
performance, e.g., by performing the segmentation pass on the GPU.

3.6 Discussion and Future Work

This chapter presents an approach for object-class segmentation of massive 3D point
clouds from airborne scans that facilitates the use of 3D point clouds for a broad range
of applications. The concept and implementation is based on a processing pipeline that
classifies the data into the main categories building, vegetation, and terrain as well as
water and infrastructure. The detection of building and vegetation points is performed
with an iterative multi-pass algorithm taking into account 3D point cloud topology. The
amount of unclassified points is reduced due to the iterative process. Key feature of the
presented approach is that 3D point clouds are robustly processed without additional

36 Chapter 3. Point Cloud Classification

Table 3.4: Object-class segmentation performance for three tiles with different characteristics
(Figure 3.9) and the overall 8D point cloud of Berlin (Figure 3.5) in seconds (all points / per
million points).
Task Tile 1 Tile 2 Tile 3 All Tiles
Point Cloud Import 1.39 s (0.26 s 0.54 s (0.19 s 0.60s/0.25s 22.38 m (0.29 s)

)))
Preprocessing 5.41 s (1.15 s) 2.31s (1.04 s) 2.33's (1.16 s) 87.12m (1.14 s)
Segmentation 35.69 s (7.61 s) 13.79 s (6.20 s) 11.52 s (5.73 s) 534.83 m (6.97 s)
Ground Detection 1.90s (0.40s) 0.90s (0.41s) 0.51s (0.25) 30.78 m (0.40 s)
Ground Classification 1.59 s (0.34 s) 0.76 s (0.34 s) 0.74 s (0.37 s) 26.33 m (0.34 s)
Large Seg. Analysis 10.71 s (2.28 s) 2.86 s (1.28 s) 3.16 s (1.57 s) 125.63 m (1.64 s)
Vegetation Analysis 5.21 s (1.11 s) 0.60 s (0.27 s) 0.35 s (0.17 s) 46.84 m (0.61 s)
Small Seg. Analysis 34.85 s (7.43 s) 11.84 s (5.32 s) 11.25 s (5.60 s) 475.42 m (6.20 s)
Point Cloud Export 0.71s (0.13 s) 0.37 s (0.13 s) 0.31 s (0.13 s) 12.32 m (0.16 s)

))))

Overall Classification 97.46 s (20.71s) 33.97 s (15.18 s) 30.77 s (15.23s) 1361.65 m (17.75 s

per-point attributes or training data. Thematic maps can be used to split detected ground
points into disjoint object classes.

The accuracy evaluation indicates that the approach works reliable for areas with
different characteristics such as tree-covered, suburban, and downtown areas. In addition,
it can be applied to 3D point clouds from LiDAR or dense image matching with different
resolutions. The presented approach was combined with out-of-core concepts and GPU-
based processing schemas to enable the object-class segmentation even for massive 3D
point clouds.

The following drawbacks have been identified where the object-class segmentation does
not work reliable depending on some environment scenarios. For example, large vegetation
covered balconies are detected as vegetation, heavy smoke (e.g., from power plants) is
classified as vegetation, and roofs with large window areas are not classified correct. Also
low point densities (< 5 points/m?) could cause incorrect results for small structures. In
some cases, round roofs (e.g., like domes) are not classified correct because they have
the same characteristic like trees. The ground detection for dense image matching 3D
point clouds from large forests could be difficult because of the limited number of available
ground points. However, most limitations are mainly caused by the quality of the data
rather than the presented approach. A more adaptive segmentation taking into account
NDVI or color data, especially for dense image matching 3D point clouds, could improve
the overall object-class segmentation quality.

To summarize, object-class segmentation facilitates analysis and provides a fundamen-
tal instrument to improve performance and functionality of applications, systems, and
workflows. One application field that benefits from 3D point clouds with object-class
information is disaster management. Here, the fast analysis of large 3D point clouds is
essential to estimate object-class specific damages to buildings, infrastructure, or forests.
Another application is the selective update for geospatial data, such as surface models,
maps, and 3D city models. In addition, object-class segmented 3D point clouds are essential
to enhance the exploration and visualization of massive 3D point clouds.

Future work will focus on classification approaches that use a fusion of 3D point clouds
captured with mobile and aerial remote sensing systems. These dense datasets present a
more complete surface representation of an environment and will lead to a more detailed

3.6. Discussion and Future Work 37

object-class segmentation (e.g., for city furniture, cars, power lines, facade elements). The
usage of multiple 3D point clouds from different points in time presents new possibilities
to perform a more reliable classification and identification of static and non-static entities
in urban environments. This requires additional analysis passes and results in a more
expensive analysis and processing. However, it enables to generate more detailed and
realistic 3D models (e.g., 3D city models) that can be used in a variety of application
domains. The processing performance can be improved by implementing the remaining
time-consuming CPU-based processing steps, such as segmentation and segment analysis,
on the GPU.

Chapter 4

Change Detection

This chapter introduces concepts and techniques to detect changes in 3D point clouds
generated at different points in time. The ability to efficiently compare 3D point clouds
from entire cities and landscapes represents a challenging part. This chapter presents
a GPU-based approach based on an out-of-core spatial data structure designed to store
massive 3D point clouds acquired at different points in time. All points are attributed
with computed change information to enable later selective storage, processing, analysis,
and presentation. The approach, for example, enables to draw conclusions about temporal
changes in 3D geodatasets based on point cloud change detection at reasonable processing
and rendering times. This chapter is partially based on the author’s scientific publications
in Richter and Déllner (2011) and Richter, Kyprianidis and Déllner (2013).

4.1 Potentials and Applications of Change Detection

Due to increasing geometric precision, decreasing acquisition costs, and higher frequency of
capturing, applications and systems are more and more faced with massive sets of 3D point
clouds. The need for efficient processing techniques for massive 3D point clouds is intensified
because many applications demand for frequent scans and simultaneous use of scans taken
at different points in time. However, there is no need to store, process, and manage the
entire 3D point clouds of all scans. Differences between redundant captured surfaces occur
generally only for locally bounded parts of the data. The process of identifying and marking
regions or points that have most likely changed in the actual physical world (Butkiewicz
et al. 2008) is known as change detection or 3D difference analysis. Applications of change
detection include:

e Performing selective updates for existing 3D point clouds (Kang & Lu 2011; Kalasa-
pudi, Turkan & Tang 2014)

e Monitoring structures and constructions over time (Girardeau-Montaut et al. 2005;
Schneider 2006; Tuttas et al. 2017)

e Evaluating the quality of captured data (Anil et al. 2011; Kim et al. 2015)

e Identifying static and non-static entities by temporal 3D point clouds (Richter &
Déllner 2014)

e Updating 3D models and contents such as 3D city and building models (Matikainen
2004; Groger & Pliimer 2009)

40 Chapter 4. Change Detection

e Visualizing multiple degrees of change or deformations in the built environment
(Stojanovic et al. 2018)

In case of massive 3D point clouds with billions of points, straightforward approaches
of change detection turn out to be computationally not feasible. Existing solutions typically
thin out or rasterize the 3D point cloud to reduce the data size (Van Gosliga, Lindenbergh
& Pfeifer 2006). This, however, leads to a loss of accuracy and makes it difficult to match
the original unfiltered data with the results of the change detection.

This chapter presents approaches to process 3D point clouds of arbitrary size and to
detect changes in sets of massive 3D point clouds that do not force users to thin out or
to rasterize the data. To this end, an out-of-core spatial data structure is used to store
datasets acquired at different times, which ensures fast access to subsets of the stored
3D point clouds. In particular, the technique supports the subdivision of the data into
spatially arranged parts, which enables efficient distribution of workloads to multiple
CPU cores or the GPU. Based on the out-of-core spatial data structure, three different
parallel computation schemas are presented and evaluated regarding to performance aspects.
The first is a multi-core CPU-based implementation, while the other two perform the
computations on the GPU by using GPGPU and CUDA technology.

4.2 Related Work

Change detection in the scope of virtual 3D city models is typically performed based on
polygonal geometry derived from 3D point clouds. Approaches using point-to-mesh and
mesh-to-mesh algorithms were introduced by Besl and McKay (1992). The need for an
explicit surface model generally requires a time-consuming preprocessing to reconstruct
polygonal models (Vosselman et al. 2004). In Butkiewicz et al. (2008) all points were
projected to a triangulated surface model derived from a 3D point cloud to detect changes
in the urban structure. The accuracy of this approach depends on the resolution and quality
of the surface model and, in contrast to the presented approach here, is only applicable
to 2.5-dimensional geodata. Gosliga et al. (2006) presented a deformation analysis for a
tunnel, acquired with a terrestrial laser scanner. However, the calculation is only performed
on 1% of the 3D point cloud data due to the interpolation based on a regular grid used to
perform the calculation. By contrast, the presented approach directly uses the raw data
without thinning out or rasterizing the 3D point clouds. Hence, it can be used for 3D point
clouds acquired with different devices and technologies for different scales (see Section 2.3),
e.g., objects, infrastructure, and landscapes.

Point-to-point comparison approaches have the advantage that they can directly oper-
ate on 3D point clouds. A theoretical and computational framework for global comparison
of uniformly sampled 3D point clouds was presented by Mémoli and Sapiro (2004). A
further framework for 3D point clouds with divergent point data distribution, for example
resulting from terrestrial laser scans, was presented by Girardeau-Montanut et al. (2005).
Both approaches work well for small 3D point clouds (e.g., with a few million points).
However, they cannot be applied to 3D point clouds with billions of points because the
processing time will increase dramatically. Girardeau-Montanut et al. (2005) address the
problem of missing surface information due to occlusion during the data acquisition process
and solved it with visibility maps to mark regions with missing surface information for the
change detection process. Barber et al. (2008) derived 3D point cloud data from aerial

4.3. Change Detection 41

—) g)
| l ‘) 3D Poir[]jt Cloud ’
| Create Multi-data | Renderer

Octree ‘ ’
| | | |

’ L (—‘—> 3D City Model Tools
o [EEL | |
| ‘ ’
| ' ‘ ;‘—} GIS Infrastructure ’

| A 3D Points |

e | Target e | |
Refzr[;r?cznctjoud | ’ ;|> 3DI3F’a(;i2t§aZEUd ’
| Cmpoeam \| 30 pontclout sgpicators_

Figure 4.1: [llustration of the system architecture showing components for change detection and
rendering.

imagery and airborne LiDAR systems organized in an octree data structure to identify
significant changes in the urban area. Leite et al. (2009) presented a system to determine
k-nearest neighbors (KNN) for 3D point clouds on the GPU. The data is organized as
grid data structure on the GPU that can be evaluated in real-time. Their system is
able to process data in real-time, but limited to data sizes that fit into GPU memory.
By contrast, the presented system only needs to find the nearest neighbor, but has to
deal with massive datasets. Therefore, the designed data structure enables out-of-core
swapping mechanisms between GPU and CPU as well as CPU and secondary storage
without the requirement to evaluate the data in real-time. Heinzle et al. (2008) presented
a flexible hardware processing unit for 3D point clouds with focus on fundamental and
computationally expensive operations. In the presented approach there is no need to do
complex operations on 3D point clouds. Other GPU-based k-nearest neighbors approaches
are presented by Qiu et al. (2009) and Pan et al. (2011).

4.3 Change Detection

A schematic overview of the system and data processing pipeline is illustrated in Figure 4.1.
The processing starts with the creation of a spatial data structure and the calculation of 3D
differences between a 3D point cloud called target cloud and another 3D point cloud called
reference cloud that is used as reference object. The distance between the target point and
the closest point of the reference cloud is used as metric for the degree of change. For each
point in the target cloud the Euclidean distance to the closest point in the reference cloud
is calculated and stored as an attribute of the related point in the target cloud.

A straightforward approach to detect changes in 3D point clouds would be to determine
the minimum distance for all points of the target cloud to points of the reference cloud by
simply computing the distance between all possible pairs. However, for massive 3D point
clouds it is computationally not feasible due to quadratic complexity of the algorithm. The
presented approach is able to process datasets of arbitrary size by utilizing a specialized
out-of-core data structure that supports an efficient organization and access of the data.

42 Chapter 4. Change Detection

4.3.1 Concept Multi-Data Octree

The spatial data structure is a fundamental component of the overall change detection
process. It can be applied for:

e Multi-temporal 3D point clouds

e Massive 3D point clouds

e 3D point clouds from airborne, mobile, and terrestrial data acquisition
e Rapid preparation and preprocessing computations

e Fast access to subsets of 3D point clouds

The multi-data octree, introduced in this chapter, is designed to fulfill these requirements.
It extends the concepts of an octree data structure and manages 3D point clouds with
different characteristics (see Section 2.2.2). Out-of-core concepts for the multi-data octree
facilitate the fast processing for data that exceeds the available main memory. In contrast
to quadtrees, octrees can handle arbitrary 3D point clouds, e.g., from airborne, mobile, and
terrestrial data acquisition, which differ in their horizontal and vertical spatial distribution
and density. A k-d tree is not applicable, since the subdivision of the space depends on the
arrangement of the point data. It would be difficult to subdivide the space to construct a
balanced k-d tree containing more than one 3D point cloud. Moreover, the preprocessing
times to prepare the data structure would increase due to the need to sort the data along
the longest axis for each tree level to perform a correct spatial subdivision. The decision to
store multiple datasets in a single tree structure is motivated by the following reasons. The
memory required to arrange the 3D point clouds is reduced since structure information
needs to be stored only for one data structure. Also management, swapping and selection
of points for multiple datasets can be performed faster because the distance calculation
algorithm, in general, requests data for the same spatial part of the tree structure. The
structure of the multi-data octree is illustrated in Figure 4.2.

Fach node of the multi-data octree is either an inner node, with up to eight child
nodes, or a leaf node containing points of the target and reference cloud. Inner nodes
subdivide the space in up to eight subspaces of uniform size. The root node represents a
bounding box enclosing all 3D points of the target and reference cloud. The subdivision
of nodes is controlled by the number of points in the spatial volume of the node. If this
amount is above a fixed threshold, a subdivision is performed and the node becomes an
inner node. Otherwise no further subdivision is performed and points of the target and
reference cloud are stored in the leaf node. Inner nodes contain information about their
child nodes and the number of points of the reference and target cloud in the represented
subtree. This is necessary to estimate memory requirements for each part of the multi-data
octree when loading data into main memory.

4.3.2 Construction Multi-Data Octree

The preparation of the multi-data octree is performed in a preprocessing step. If the
number of 3D points of the target and reference cloud exceeds the capacity of the main
memory, an in-memory calculation of the overall multi-data octree is not possible. In this
case, the data is subdivided, using secondary storage, according to the hierarchy of the

4.3. Change Detection 43

(a) Multi-data Octree (b) Node Hierarchy

1]

B
W&

Fq

3D Points Target Cloud a H D D

3D Points Reference Cloud

[Request example

Figure 4.2: (a) Illustration of the multi-data octree filled with target and reference points. (b) Node
hierarchy resulting from the 3D point distribution.

octree cells until the subclouds fit into main memory. For these subclouds the multi-data
octree is prepared in main memory and serialized to secondary storage. Then, all prepared
parts of the multi-data octree are merged on secondary storage to build the multi-data
octree containing all points of the target and reference cloud.

The access to the data is performed with data requests based on a bounding volume.
These volumes will be referred to as in-memory chunks containing the multi-data octree
structure with all inner and leaf nodes that are inside the requested bounding volume or
that intersect it. The time to load the in-memory chunks into main memory depends on
the multi-data octree depth and the maximal capacity of leaf nodes. The total number of
points in an in-memory chunk also depends on the maximum capacity of leaf nodes, since
all points of intersected leaf nodes are selected to avoid a bounding volume test for each
point. This is performed to improve loading times for in-memory chunks.

4.3.3 Distance Computation

The distance computation must access the data as fast as possible to be efficient. Different
types of memory, e.g., secondary storage, main memory, GPU device memory, and GPU
registers differ in latency times to access data and available capacity (Cheng, Grossman &
McKercher 2015). For example, billions of 3D points can be stored on secondary storage,
but access times are typically in the range of milliseconds. In contrast to that, GPU
device registers can store only a view hundred points, but provide access within a few CPU
clock cycles (Lee et al. 2012). In order to maximize the potential of available computing
resources, it is necessary to perform a subdivision and partitioning of the data to perform
the computation in memory with low capacity but adequate access times.

The partitioning of the data is performed using the multi-data octree and is illustrated
in Figure 4.3. The multi-data octree is divided into volumes that contain a subset of data
that fits into available main memory. These volumes referred to as in-memory chunks and

44 Chapter 4. Change Detection

S

| RS W
9 Co 500 10 Ce

| oo pete| “oriete]l T vl A0l oo ‘

| e [ool Lo] ok i HE

| o2 1 7 o

‘ | ‘ | ‘ ‘
o <. Pt Sl LR P i |

| R B A LT B oo] |

| So [ole .o [oo, |

o d e d |

‘ 3D Points Target Cloud X) "

\ P Rl e Gl (a) Multi-data Octree - Hard Disk (b) In-memory Chunk - RAM (c) Calculation Chunk - GPU ‘

~ /

Figure 4.3: (a) Illustration of the memory hierarchy of the multi-data octree on the hard disk.
(b) In-memory chunk that is resident in main memory. (c) Calculation chunk that is used for the
computation on the GPU.

their spatial size is derived from the size of the multi-data octree nodes (Figure 4.3 (a)).
All in-memory chunks together cover the overall volume of the multi-data octree. Special
cases occur for target points close to boundaries of in-memory chunks, because the closest
reference point could be located in an adjacent in-memory chunk. To ensure a correct
computation, the volume of the in-memory chunk is extended to include all points from
the reference cloud within a defined margin around the volume. This is illustrated in
Figure 4.3 (b) for an in-memory chunk transferred from the multi-data octree to main
memory.

In-memory chunks are further subdivided into small volumes called calculation chunks.
These chunks are used as cache to avoid frequent requests to the multi-data octree, which
are required to determine the reference points for a given target point. Similar to in-
memory chunks, calculation chunks are also extended to guarantee a correct computation
(Figure 4.3 (c)). The size of the boundary extension depends on the application requirements
and the point density. Calculation chunks contain all necessary data for self-contained
processing and enable, in particular, parallel processing. The size of the calculation chunks
is adjusted to match the computation algorithm and device.

The following sections describe and compare several implementations to perform change
detection in a parallel way using multiple CPU cores and modern GPU technology. A
multi-core, a GPGPU, and a CUDA implementation are presented and analyzed regarding
performance and hardware issues.

CPU Computation

The single-core CPU implementation processes all in-memory chunks in sequential order.
For each in-memory chunk all calculation chunks are determined and the computation is
performed sequentially. For a given target point the minimum distance to points of the
reference cloud is computed by iterating over all reference points in the calculation chunk.

This computation can be performed in parallel using multiple threads to take advantage of
all available CPU cores.

4.3. Change Detection 45

GPGPU Computation

Graphics processing units (GPUs) were originally developed for fast processing of graphics
primitives in a massively parallel way using multiple processors and dedicated memory
directly on the device. Software development for GPUs is typically performed using domain
specific programming languages such as the OpenGL shading language (GLSL) (Wolff
2013), HLSL (Varcholik 2014), or Cg (Fernando & Kilgard 2003). These languages have
been designed for computer graphics purposes. However, a clever design of algorithms and
their adaption to the available graphics primitives, such as vertex buffers and textures,
allowing to use GPUs also for other tasks, and has led to the development of a separate
branch called general-purpose GPU (GPGPU) computing (Luebke et al. 2005).

The implemented GPGPU approach of the distance calculation is based on GLSL. The
selected reference points of the calculation chunk are encoded in a texture and transferred
as a texture buffer object (TBO) to the GPU. The target points are transferred as a
vertex buffer object (VBO) and then rendered using a single rendering pass. The distance
computation is performed in the vertex shader by computing distances to all reference
points, which are accessed by using texture fetches. Finally, for each target point the
minimum distance is stored in a buffer object and the buffer object transferred back to the
CPU.

The GLSL implementation does not allow to directly control or configure individual
threads or GPU memory. The frequent texture fetches turn out to be the bottleneck of
this approach since each element of the VBO needs to access all elements of the TBO.
In contrast to the multi-core CPU implementation, the GPGPU implementation requires
only 1-2 percent of the computation time due to the highly parallel execution by utilizing
hundreds of GPU threads.

CUDA Computation

NVIDIA’s Compute Unified Device Architecture (CUDA) is a parallel computing architec-
ture that, in contrast to shading languages, provides a more flexible programming API
for general purpose computations on GPUs (Sanders & Kandrot 2010; Cheng, Grossman
& McKercher 2015). Interesting key features of CUDA are the ability to read and write
arbitrary device memory addresses and faster transfers of data between CPU and GPU.
Moreover, CUDA enables access to high-performance on-chip memory, called shared mem-
ory, that is shared by a collection of threads. Shared memory enables the implementation of
customized user-managed caching strategies, resulting in higher bandwidth and throughput
(NVIDIA Corporation 2011).

Modern NVIDIA GPUs consists of several single-instruction multiple-data (SIMD)
multiprocessors, each having a large number of cores. An NVIDIA GTX 480, for example,
has 15 multiprocessors, each with 32 cores. NVIDIA’s currently most powerful state-of-the-
art GPU, i.e., the Titan X, has 96 multiprocessors and a total number of 3072 CUDA cores
(NVIDIA Corporation 2016). Threads on the GPU are organized into blocks and blocks
are organized into a grid. A multiprocessor executes one block at a time. A warp is the
set of threads executed in parallel and currently consists of 32 threads. A hardware-based
thread scheduler manages scheduling threads across the available multi-processors. The
threads are light-weight, enabling the scheduler to perform a zero-cost immediate context
switch to another thread if a thread is waiting for memory access (Sanders & Kandrot

46 Chapter 4. Change Detection

Target DN
Calculation
Chunk
Threads 1 2 ... | 10241025 |1026 | ... |2048 |2049 | 2050| .. |3072]3073 | 3074 1’8;
Block 1 Block 2 Block 3 BIo:: tn
Shared "
Memory 4 '
AN g b
Reference SN
Calculation
Chunk VoY
3D Points Target Cloud D Current Sub-Chunk of the
3D Points Reference Cloud Reference Cloud

Figure 4.4: [llustration of the change detection computation for a calculation chunk on the GPU.

2010). Hence, the number of CUDA cores corresponds with the number of threads that
can be executed in a parallel way.

Similar to the GPGPU approach, the CUDA implementation first transfers all target
and reference points of the calculation chunk to the device memory of the GPU. For each
multiprocessor one block with 1024 threads is scheduled. Target points are divided up
between blocks and assigned uniformly to available threads. For all assigned target points,
the threads compute the minimum distance to the reference points, by first reading the
target point and then reading all reference points from device memory. This calculation
schema is comparable to the GPGPU implementation and shows a similar processing
performance. However, compared to the time required for the actual computation, device
memory access is rather slow. For the performance this is critical, because each thread
needs to read all reference points for all assigned target points.

A better approach is to first load portions of the reference points into the low-latency
shared memory of the multiprocessor. In contrast to device memory, which has high latency,
shared memory provides fast access, but is limited to below 48 kilobytes in size (Farber
2011). The reference points of the computation chunk are therefore, again, subdivided into
smaller portions that fit into shared memory. The computation now runs in two phases
that are repeated until all data has been processed. First, all threads collectively load a
portion of the reference points into shared memory, resulting in the device memory being
read only once instead of multiple times. Then, after a synchronization of the threads,
each thread computes for all assigned target points the distance to all reference points in
shared memory and updates the minimum distance that is kept in local registers. After all
reference points have been processed, the computed minimum distance is written to device
memory and then transferred to the CPU. This process is illustrated in Figure 4.4.

Processing of calculation chunks can be performed asynchronously to avoid blocking

4.3. Change Detection 47

Table 4.1: Performance of processing calculation chunks with different sizes measured in seconds.

#Target #Reference #Distance Single Multi-core GPGPU CUDA

Points Points Calc. in miln CPU CPU
20000 20000 400 7.25 1.75 0.20 0.05
40000 40000 1600 29.40 6.86 0.32 0.08
60000 60000 3600 65.57 15.53 0.39 0.13
80000 80000 6400 116.50 27.78 0.54 0.20
100000 100000 10000 182.45 43.55 0.74 0.29
150000 150000 22500 410.77 98.76 1.32 0.59
200000 200000 40000 728.36 178.33 2.35 1.03

of CPU and GPU, since preparation, selection, and transfer of the next calculation chunk
can be performed during the computation of the current calculation chunk.

4.3.4 Performance Evaluation

The performance evaluation is performed for different processing levels of the overall
workflow from processing a single calculation chunk up to processing a dataset with a view
billion points. First, a comparisons of the presented distance computation for a single
calculation chunk using the multi-core CPU, GPGPU, and CUDA implementations is
performed. Second, an evaluation of the processing of an in-memory chunk using the
multi-data octree with different size limits to determine the calculation chunks is presented.
Finally, the performance of the overall workflow starting with the preparation of the out-of-
core multi-data octree up to the final attributed 3D point cloud using an example dataset
of the urban region of a city is evaluated. All tests and measurements were performed on
an Intel Xeon CPU with 2.66 GHz and 6 GB main memory. The GPU calculations were
performed on a NVIDIA GeForce GTX 480 with 1536 MB device memory.

Performance of Distance Computation

Table 4.1 shows the processing performance for a calculation chunk using the presented
CPU and GPU approaches. The evaluation is performed for calculation chunks that
differ in their number of target and reference points. Hence, the total number of distance
computations increases with a growing amount of data. The single CPU implementation
shows as expected the worst performance. Using multiple CPU cores is also still significantly
slower than the GPU approaches. The CUDA implementation performs best independently
of the size of calculation chunks and is used for further performance evaluation.

The second evaluation scenario is related to processing of an in-memory chunk using
the CUDA implementation and shown in Table 4.2. The used in-memory chunk contains
5 million target and reference points and is organized in the multi-data octree with a
leaf capacity of 256 point for each dataset. A larger capacity increases the number of
distance computations for calculation chunks, because more reference points are selected
from intersecting leaf nodes for the computation. A lower capacity would result in more
effort to evaluate and load the tree structure. The multi-data octree is used to select the
calculation chunks for the distance calculation and enables to control the size and total
number of target and reference points in the calculation chunks. Smaller calculation chunks

48 Chapter 4. Change Detection

Table 4.2: Performance of the CUDA implementation for different sized calculation chunks in
seconds.

Limit #Calc. Mean Mean Calc time Select. time Total time
Target pts Patches Target pts. Ref. pts. in ms in ms ins
10000 1821 2745 29132 21352 2148 23.50
20000 1056 4734 36120 16461 1589 18.05
30000 547 9140 43595 12636 1392 14.03
40000 327 15290 49810 11772 794 12.57
50000 302 16556 51047 11754 765 12.52
60000 272 18382 54877 12140 700 12.84
70000 242 20664 59092 12687 690 13.38
80000 206 24271 64994 13439 686 14.13
100000 142 35211 82154 15396 622 16.02
150000 65 76923 136592 19808 540 20.35

make the selection and preparation of calculation chunks computationally more expensive,
but would reduce the total number of distance computations for all calculation chunks.
The optimal calculation chunk size depends on the processing schema and the available
hardware capabilities. For the used system the CUDA implementation performs best using
calculation chunks with a size between 40.000 and 60.000 target points.

Performance of Case Study

The performance is evaluated with a real-world dataset as case study. Two 3D point clouds
of the urban area of the city of Frankfurt am Main are used to evaluate the performance of
the overall change detection workflow. The target cloud Frankfurt2011 is an airborne scan
of the year 2009 with 7.1 billion points. The reference cloud Frankfurt2005 was captured
in the year 2005 and contains 1.9 billion points. Both scans cover almost the same urban
area but differ in their sampling density.

The overall time to attribute the target point cloud can be divided into subprocesses
to evaluate the different time demands as illustrated in Table 4.3. The process to create
the multi-data octree takes the most time, due to the frequent access of secondary storage
to organize the data and prepare the multi-data octree. The time to load in-memory
chunks and to determine the calculation chunks is rather negligible, because of the fast
access to the data provided by the multi-data octree. The distance computation for all
calculation chunks takes about 10.5 hours on the GPU and is significantly faster than a
CPU implementation that would require several months for the computation. The overall
change detection takes about 35 hours and is a reasonable preprocessing time for two
datasets with a total amount of 9 billion points and a size of 135 gigabytes. The subprocess
to create the multi-data octree has optimization potential using multiple storage systems
and parallel processing. This, however, is beyond the scope of this work. Moreover, the
performance of the distance computation can be increased by distributing the computation
over multiple GPUs.

4.4, Results 49

Table 4.3: Performance of the overall change detection workflow in minutes.

Task Time Percent

Create multi-data octree 1260 61.1%

Load In-memory chunks 114 5.5%
Determine calculation chunks 63 3.1%
Distance computation on GPU 624 30.3%
Overall change detection 2061 100%

4.4 Results

This section presents change detection results for multi-temporal 3D point clouds of different
cities. Results of the distance computations are mapped to color attributes and rendered
with a point-based rendering technique. The color mapping is configurable to enable
adapting the visualization depending on application and analysis task. Figure 4.5 shows
the processing and rendering results of the entire dataset of Frankfurt am Main from
different points of view (3D point cloud properties are listed in Table 2.2). The entire
dataset with color information, mapped from aerial images, without distance information is
shown in Figure 4.5 (a) (Richter & Do6llner 2011b). Results are shown in Figure 4.5 (b)-(d).
All points indicating a defined degree of change are highlighted with a color gradient
from green to red depending on the degree of change. Points with a distance value below
1 meter are classified as points that have not changed and are rendered with colors from
aerial images to enable a better perception of the 3D point cloud structure. The detailed
view in Figure 4.5 (d) shows an area with buildings and sites that are clearly detected as
changes. Another example is illustrated in Figure 4.6 and shows urban changes for the city
of Bournemouth in the UK.

Swapping of target and reference cloud enables additional analysis and interpretation
of the data, illustrated in Figure 4.7, where a construction site was captured. The left
column shows a target cloud Frankfurt2009, attributed with a reference cloud Frankfurt2005.
The right column shows change detection results using the dataset Frankfurt2005 as target
cloud and the dataset Frankfurt2009 as reference cloud. In the upper row the 3D point
clouds are attributed with color attributes from aerial images, whereas in the middle row
a black-to-white color gradient is used to visualize points based on their height. This is
helpful to recognize even small structures, e.g., cars and vegetation that are more difficult
to recognize in the 3D point cloud colored by aerial images. In the bottom row change
detection results are shown. Figure 4.7 (e) shows a construction site and a new building
whereas Figure 4.7 (f) shows the former building structures that were removed. Figure 4.8
shows change detection results for the city of Johannesburg captured in 2006 and 2012
using Johannesburg2006 and Johannesburg2012. The reconstructed stadium for the soccer
world cup is shown in Figure 4.8 (c).

50 Chapter 4. Change Detection

(c) Detailed view of upper right. (d) Detailed view of lower left.

Figure 4.5: Change detection results of a 3D point cloud with 7.1 billion points of the urban area of
Frankfurt. (a) Visualized with color information. (b) Visualized with color and distance information.
(c)-(d) Two closeup views of (b). A color gradient from green (1m) to red (>3m) indicates the
degree of change.

gy 5 i

(a) 2006 - changes to 3D point cloud 2008. (b) 2008 - changes to 3D point cloud 2006.

Figure 4.6: Change detection results for the city of Bournemouth for 3D point clouds from 2006
and 2008. (a) 3D point cloud of a construction site in 2006. (b) 3D point cloud of the final building
in 2008.

4.4, Results 51

(e) 2009 - changes to reference cloud 2005. (f) 2005 - changes to reference cloud 2009.

Figure 4.7: 3D point clouds and change detection results for scans Frankfurt2005 and Frankfurt2009.
The first row shows the 3D point cloud with color information from aerial images, the second row
uses a color gradient based on the 8D point height and the third row shows the degree of change
with a color gradient from green to red based on distance values above 1 meter.

52 Chapter 4. Change Detection

SEREESon i

- ; oy o WU Tk N e Y
%:-3".‘2?-1 o \ SR o

(a) Johannesburg2006 - changes to 8D point cloud Johannesburg2012.

R

Figure 4.8: 3D point clouds and change detection results for the city of Johannesburg.

4.5. Categorization of Changes 53

4.5 Categorization of Changes

The change detection approach presented in Section 4.3 can be used to estimate the degree
of change for each point of a captured surface. However, a categorization of changes is
not performed because semantics information, such as object class information, is not
considered. This section presents an approach for aerial 3D point clouds to determine the
type of change and to estimate quantity parameters by taking into account object class
information. Changes for surface categories such as ground, building, and vegetation can
be categorized as follows and typically occur due to the following reasons:

e Ground-to-building - Construction of new buildings

Ground-to-vegetation - Growing or planting of vegetation

e Ground-to-ground - Elevated or lowered ground due to natural events

e Building-to-vegetation - Demolition of constructions and growing of vegetation
e Building-to-ground - Demolition of constructions

e Building-to-building - Structural changes or continuation of constructions

e Vegetation-to-ground - Removed vegetation

e Vegetation-to-building - Construction of new buildings

e Vegetation-to-vegetation - Grown or reduced vegetation

Figure 4.9 illustrates detected change categories for the city of Frankfurt. The workflow
to categorize changes can be divided into the following steps:

1. Object-class segmentation for target and reference data.
2. Change detection by taking into account object-class information.
3. Object-class aware segmentation of changed regions.

4. Estimation and calculation of change parameters per segment.

First, target and reference cloud need to be classified into ground, building, and
vegetation points as described in Chapter 3. Second, the change detection approach, as
described in Section 4.3, is used to determine the degree of change for each point of the
target cloud. This approach is extended to determine in addition to the distance also
object-class information of the reference cloud in the local proximity of each point from the
target cloud. This information is used to assign each changed point to a category of change
(e.g., ground-to-building). A limitation of this approach is that it does not work reliable
for edge regions of changed structures that are located close to unchanged structures.
The reason is that the closest reference point is inappropriate because it could belong
to an unchanged structure and not to the removed part of the target cloud. To handle
these scenarios, a more specific reference point query can be used. The reference query
volume is bounded by an unbounded vertical circular cylinder with a defined radius (e.g., 1
meter) that depends on the point density of the data. Hence, changes are classified in an

54 Chapter 4. Change Detection

(e) Frankfurt2005. (f) Frankfurt2009 with categorized changes.

Figure 4.9: 3D point clouds and categorization of change detection results of Frankfurt2005 and
Frankfurt2009. Items indicate the change category and bounding boxes show the expansion of a
selected item.

4.5. Categorization of Changes 55

appropriate way even for high structures (e.g., buildings). The third step is a segmentation
of changed points that can be configured depending on the degree (e.g., small or large)
and type (e.g., building-to-ground) of changes. In the last step, these segments are used to
estimate additional parameters such as changed area, extend, and volume that are essential
to evaluate, filter, and explore the 3D point clouds with change information.

4.5.1 Change Detection for Incremental Point Cloud Updates

In the near future, automatic, ubiquitous, and frequent data acquisition, e.g., with mobile
mapping cars, will result in 3D point clouds with a high redundancy (Schachtschneider,
Schlichting & Brenner 2017). It would not be possible to store highly redundant data
for the same surface with straightforward approaches. The presented change detection
approach computes per-point attributes to estimate the degree of change for each input
point (i.e., it supports the decision whether a point is already represented by another
points). Hence, it can be used to compare existing data (e.g., in a point cloud database)
with new data to perform incremental updates.

The point-to-point comparison that computes the Euclidean distance between each
input point and the nearest point of the reference data works well for 3D point clouds with
similar point densities to detect large-scale changes (e.g., new constructions). This can
be done with a global threshold, e.g., all points with distance values above 2 meter are
declared as new or changed structures (e.g., for urban areas, landscapes, buildings, and
constructions (Matikainen 2004; Barber, Holland & Mills 2008; Butkiewicz et al. 2008)).

However, the Euclidean distance as a metric for changes becomes unreliable for a non-
uniform surface sampling and different point densities (e.g., caused by varying capturing
devices and distances between capturing device and scanned surface). Moreover, the
detection of small-scale changes (e.g., construction and building deformations (Schneider
2006; Monserrat & Crosetto 2008; Kang & Lu 2011)) is difficult for datasets with varying
resolutions.

A solution is a point-to-splats approach that takes into account the surface structure of
the reference point cloud. Splats are used as reference data that are derived from the local
point density and proximity. They can be computed based on the point position, surface
normal (required for orientation), and locale density (required for splat size) to approximate
the surface of the scanned target. Hence, a distance to these splats can be used as change
metric that is tolerant against non-uniform surface sampling and varying point densities.
Figure 4.10 illustrates the point-to-point and point-to-splat approach. A target 3D point
cloud (Pr2) is attributed with change attributes based on a reference 3D point cloud (Pry).
The distance threshold can be determined adaptively based on the available data, density,
precision, and application. Restrictions of the point-to-splats approach are scattered parts
of 3D point cloud (e.g., vegetation) because a surface approximation with splats cannot be
performed reliable.

The presented point-to-splat change detection approach constitutes an important
component for incremental point cloud updates. It is essential to reduce system workloads
for further processing and analysis tasks to control storage costs. The overall number of
points can be reduced by avoiding the need to store points for surfaces or surface parts
that are already present in the data.

56 Chapter 4. Change Detection

Point-to-Point P+; + Surface Attributes Point-to-Splat

I I I I
I I I I
I I I I
| | | |
I I
° | Q00 | 0009 | A § | 000
° ! 09 ! .)OQO o ! - ! ®
I o o I ©
¢ I O I i O | k I i O
[I 0] I @ I & I
I O I O I I
) I o I ® : I
I I I
[] | (@] |)] | |
I 9 9 | I
) I 8 I 8 : +’ I
I I I
|) | .QS}. o |
! O ! ® ! !
d I I I I
[) Point Pr @) Point Py - without Change
O Point Py, O Point Py, - medium Change

PR Size and Orientation of Splated Point (@) Point Pr, - major Change

Figure 4.10: Illustration of a point-to-point and point-to-splat change detection approach to update
a database. Pty is the 8D point cloud in the database and is used to compute change attributes for
the input data Pro.

4.5.2 Potential of Multi-temporal 3D Point Clouds to Detect Static
Structures and Non-static Entities

A redundant capturing of surfaces and structures can be used to update 3D point clouds
incrementally, as explained in the Section 4.5.1. In addition, it has a lot of potential for
the identification of static structures and non-static entities in 3D point clouds. Examples
of static structures are buildings and ground surfaces that can be typically found in a
large number of scans of the same spatial area. In contrast, non-static entities, such as
vehicles and pedestrians, can only be found in individual scans at the same position. The
separation of static and non-static entities (e.g., in road traffic scenarios) is well studied
for robotic application and mobile mapping applications, e.g., by analyzing principal
component analysis (PCA) features (Li et al. 2012a). The detection of non-static entities
in aerial 3D point clouds can be performed by comparing overlapping flight strips (Hofle,
Hollaus & Hagenauer 2012). In general, these approaches use data that is captured in a
short period of time. It can be assumed that a redundant capturing (e.g., at more than 20
timestamps) for a longer time (e.g., a few weeks, months, or years) enables the possibility
of separating static structures and non-static entities based on the frequency of points that
have been captured for a surface.

A simple approach uses a voxel grid to store the frequency of points for a spatial
area. This supports the determination of points that belong to static structures that were
captured with a defined redundancy (e.g., at more than 5 different timestamps). In addition,
points that can only be found once in a redundantly captured area can be identified as
non-static entities. One challenge for this approach are occluded areas (e.g., vehicles that
occlude fagades). The detection of occluded areas is addressed by Girardeau-Montaut et al.
(2005) and could be resolved with visibility maps. Another solution for occluded structures
is a segment-based approach that takes into account segments of locally connected points
with a similar characteristic. If parts of the segment are occluded but most points that
belong to the segment can be identified as static, then all segment points can be declared

4.6. Discussion and Future Work 57

as static points. The overall quality of this approach would increase with the number of
3D point clouds from different timestamps. However, this is an open research topic and
need to be investigated in future work.

4.6 Discussion and Future Work

This chapter presents and discusses concepts and implementations to detect changes in
3D point clouds taken at different points in time. Existing frameworks for point cloud
comparison (Mémoli & Sapiro 2004; Girardeau-Montaut et al. 2005) work well for small
3D point clouds (e.g., with a few million points) but cannot be applied to massive 3D
point clouds. The challenge of massive 3D point clouds is addressed and solved with a
specialized out-of-core data structure that enables fast and efficient access to multiple
3D point clouds for a parallel processing. Several parallel processing schemas have been
investigated, with the GPU-based approaches turning out to be clearly superior. In
particular, the evaluation shows that the CUDA implementation performs best due to
its ability to leverage high-performance on-chip memory in a flexible way. Hence, the
GPU-based presented approaches can cope with massive 3D point clouds. Among potential
applications are:

e Visualization and inspection tools, using change detection results as input for
real-time visualization systems that enable exploring and analyzing temporal changes
of highly accurate 3D point clouds of arbitrary size.

e Categorization of changes is possible by taking into account classification results.
It enables to separate different types of temporal changes as requested by a growing
number of applications that can take advantage of the full resolution and potential
of the 3D point clouds.

e Incremental updates are important for applications that demand for up-to-date
data. An adaptive change detection for different scales and data characteristics is
required and can be implemented with a point-to-splat approach.

e Separation of static and non-static entities is a further example for semantics
information that can be derived from multi-temporal 3D point clouds and used to
provide more precise, i.e., filtered data to domain specific applications.

e Up-to-date traffic networks are important for autonomous driving and navigation
tasks. A detection and monitoring of temporary network modifications is possible
with GPS trajectories (Kuntzsch, Sester & Brenner 2016) and can be supplemented
with change detection results.

Future work could focus on change detection approaches for 3D point cloud streams.
These steams are generated by camera systems, i.e., stereo cameras with depth images as
output, or LIDAR systems as a constant stream of data. A permanent change detection
would be required to handle the massive, redundant amount of data. Technical and
algorithmic challenges are a spatial data structure that can be created, extended, filled, and
requested in real-time. Multiple streaming devices and a distributed system infrastructure
for storage, processing, and access are required. Applications also include autonomous
driving and navigation, using dynamic point cloud as models of the environment.

Chapter 5

3D Point Cloud Rendering

“Point-based rendering has been shown to offer the
potential to outperform traditional triangle based
rendering both in speed and visual quality when it
comes to processing highly complexr models.”

— Botsch & Kobbelt 2003

This chapter introduces concepts and techniques for the visualization, presentation,
and exploration of 3D point clouds. In particular, it presents implementations of real-time
rendering algorithms and interaction techniques to make an interactive visualization and
exploration of 3D point clouds feasible. Point-based rendering techniques use points as
display primitives to avoid the generation of traditional polygon-based models that use
triangles as display primitives. Out-of-core strategies and level-of-detail data structures
allow us to handle even datasets that exceed available memory resources by several orders
of magnitude. The presented point-based rendering techniques are adaptive and can be
applied to 3D point clouds of any origin, e.g., from airborne, mobile, and terrestrial scans.
The rendering techniques take into account per-point attributes such as color, object class,
and change information and can be configured based on system, application, and user
requirements.

5.1 Motivation

Applications of 3D point clouds include large-scale models of 3D environments and virtual
3D city models that require time-intensive and costly workflows for model creation and
geometry updates. Point-based rendering systems proved an alternative to represent 3D
models and environments by dense 3D point clouds, which significantly minimizes the
effort for preparation and updates (Nebiker, Bleisch & Christen 2010).

Visualization and presentation techniques for massive 3D point clouds are essential
for the understanding and communication of spatial information, as well as analysis and
simulation results (Kreylos, Bawden & Kellogg 2008; Bettio et al. 2009; Kim & Medioni
2010). Point-based rendering techniques can cope with massive 3D point clouds and enable
an interactive visualization and exploration of the data (Wimmer & Scheiblauer 2006;
Richter & Dollner 2010b). These techniques can be applied to 3D point clouds, thereby
enabling different rendering styles (e.g., photorealistic, non-photorealistic, or based on
point attributes (Botsch et al. 2005)).

Thematic and semantics information as well as analysis and simulation results can
be provided as per-point attributes to avoid the generation of polygon-based 3D models,

60 Chapter 5. 3D Point Cloud Rendering

which become outdated when the 3D point cloud partially changes (Richter, Kyprianidis &
Doéllner 2013). This becomes particularly important when the 3D point cloud permanently
changes and up-to-date models and analysis results are required. Visualization of 3D point
clouds can be used to:

e Control, examine, and evaluate the quality of the captured data

e Understand and communicate spatial information

e Communicate analysis, simulation, and processing results

e Edit, filter, and correct the data

e Avoid costly generation of 3D models in case of massive 3D point clouds

e Represent 3D GeoVEs as dense 3D point clouds to avoid time-consuming generation
of 3D models

The design and implementation of point-based rendering techniques for real-time
visualization of 3D point clouds requires to address the following main challenges:

e Qut-of-core strategies to handle any sized 3D point clouds
e Guarantee high frame rates during user interaction
e High rendering quality even on standard consumer hardware

e Adaptive consideration of user interaction, memory resources, and hardware perfor-
mance

e Adaptive regarding semantics information to apply individual rendering techniques
or render only selected subsets (e.g., based on object-class information)

5.2 Related Work

The first rendering techniques for 3D point clouds have been presented in Surfels (Pfister
et al. 2000) and QSplat (Rusinkiewicz & Levoy 2000). Surfels is based on an octree data
structure to store points. QSplat is based on a k-d tree to store a bounding sphere hierarchy
that provides position, normal, and color information for the rendering process. Sainz,
Pajarola & Lario (2004) and Gross & Pfister (2007) give a good overview about point-based
rendering techniques and systems.

Several point-based rendering techniques aim for a photorealistic and, thus, solid
visualization of 3D point clouds without holes in the surface (Sibbing et al. 2013; Yu &
Turk 2013). These techniques commonly represent points as splats, i.e., oriented flat disks
(Zwicker et al. 2001; Botsch & Kobbelt 2003; Botsch et al. 2005), spheres, or particles.
To visualize closed surfaces, an adequate size and orientation based on the local point
density need to be applied to each point (Kim et al. 2012). These attributes can be
simply determined from polygon-based models that are used to generate 3D point clouds
(Pfister et al. 2000). However, these techniques are difficult to apply for irregular and
unstructured 3D point clouds, such as LiDAR scans, because of varying point densities,
e.g., on horizontal and vertical structures, as well as fuzzy and planar areas. In addition, it

5.2. Related Work 61

is difficult to combine these techniques with out-of-core rendering approaches that take
into account density attributes. Reasons are changing point density due to LoD-techniques
that adaptively select and render points.

The focus of this work are 3D point clouds from real-world scenes and surfaces with
varying densities and irregular surface characteristics, captured with different scanning
technologies and systems. As a consequence, attributes required to improve the rendering
quality need to be calculated in a preprocessing step (Wu & Kobbelt 2004) or on a per-frame
basis as proposed by Preiner, Jeschke & Wimmer (2012). Surface normal and density
information can be computed by analyzing the local point proximity (Dey, Li & Sun 2005).
Color information can be added by using multiple images (Abdelhafiz & Niemeier 2006) or
projected videos during the rendering process (Zhao, Nister & Hsu 2005).

Dachsbacher et al. (2003) have introduced sequential point trees to efficiently render
3D point clouds by evaluating the data structure on the GPU. This approach is limited by
the available GPU memory and therefore not suitable for 3D point clouds that do not fit
into GPU memory.

Non-photorealistic rendering techniques for 3D point clouds have been proposed by
Goesele et al. (2010) and Xu et al. (2004). Olson et al. (2011) show how the complete
set of silhouette points of a surface can be calculated instant. However, that information
comes with the cost of an additional preprocessing step.

XSplat (Pajarola, Sainz & Lario 2005) is a rendering system based on Dachsbacher et
al. (2003) with out-of-core strategies to render massive 3D point clouds. It concentrates on
display quality and has been designed to render sampled models with continuous surfaces.
Further out-of-core rendering systems for 3D point clouds have been presented in Gobbetti
& Marton (2004b), Wimmer & Scheiblauer (2006), and Goswami et al. (2013). These
systems use LoD data structures that aggregate or generalize points for a spatial area to
create a defined LoD. Wimmer & Scheiblauer (2006) have presented a rendering approach
that does not assume any sampling density or availability of normals for rendering of
LiDAR data. The rendering of unprocessed 3D point clouds is based on memory-optimized
sequential point trees and has out-of-core strategies to handle massive 3D point clouds.
LoD data structures that aggregate or generalize points for a spatial area are not applicable
for the presented purpose because it could be required to separate points according to their
semantics, e.g., object-class information, at any time during rendering to apply individual
rendering techniques as well as render only selected subsets of the data.

Pauly et al. (2003) have introduced a modeling framework for point-based geometries.
A data structure to enable surface modifications at different scales was introduced by
Pauly, Kobbelt & Gross (2006). Rendering systems with out-of-core data structures can
be also combined with features to edit 3D point clouds (Zwicker et al. 2002; Wand et al.
2007; Kreylos, Bawden & Kellogg 2008; Scheiblauer, Zimmermann & Wimmer 2009). The
data structures are designed and optimized to edit, insert, and remove points during the
rendering process. Editing of 3D point clouds during the rendering process is beyond the
scope of this thesis. It is not implemented and supported to keep the spatial data structure
compact.

The presented techniques do not use the sequential point tree approach introduced by
Dachsbacher et al. (2003) and adapted by the Instant Points rendering system of Wimmer
& Scheiblauer (2006). The presented approach uses some basic strategies from QSplat
(Rusinkiewicz & Levoy 2000) to perform efficient culling and data chunk selection. The

62 Chapter 5. 3D Point Cloud Rendering

GPU memory is only used to store points that need to be rendered.

Bettio et al. (2009) have introduced a client-server framework to render large point-
based 3D models, which can perform different measurements. The used data structure is
based on Layered Point Clouds from Gobbetti & Marton (2004b). Boubekeur, Duguet &
Schlick (2005) introduce the use of normal-mapped polygons as approximation to reduce
the complexity of 3D point clouds.

Some other approaches propose hybrid rendering to increase frame rates by replacing
point sampled areas with meshes (Wahl, Guthe & Klein 2005). Rendering of huge triangle-
based meshes assumes a simplification of the mesh (Isenburg & Lindstrom 2005). In
contrast to massive 3D point clouds connectivity information for meshes must be stored.
Most solutions use a progressive mesh representation for storing and transmitting arbitrary
triangle meshes (Hoppe 1996). Out-of-core techniques to render huge triangle meshes have
been investigated in Gobbetti, Kasik & Yoon (2008), Callieri et al. (2008), and Wald,
Dietrich & Slusallek (2004). Eggert & Sester (2013) present a visualization approach for
mobile mapping data using partially translucent images. This compressed representation
is used for a fast data browsing of massive 3D point clouds (Eggert & Schulze 2014).

Streaming solutions for meshes (Isenburg & Lindstrom 2005) and 3D point clouds
(Pajarola 2005) enable a fast transfer of data into main memory but are limited for
interactive visualizations.

5.3 Data Characteristics

This section describes the data characteristic and per-point attributes that can be used
to enhance and adapt the rendering of 3D point clouds. In general, only coordinates
(z, y, z) of each point are require. 3D point clouds from different sources need to be
transformed into a uniform coordinate system and standardized to a predefined precision
(e.g., floating point precision). Additional per-point attributes are optional and can be
used to improve the rendering quality and visual appearance. These attributes can be
categorized into thematic and structure attributes. Thematic attributes are related to some
information that is application specific and relevant for users to understand and recognize
structures and relationships. Structure attributes are generally not relevant for the user and
used to enhance the visual appearance of the data. All attributes can be mapped during
the rendering to color attributes and geometric properties of each point. This enables
customizing the visualization depending on the data characteristics and application.

5.3.1 Thematic Attributes

e Color data. Color data is typically extracted from images that are ideally captured
at the same point in time as the 3D point cloud (Abdelhafiz, Riedel & Niemeier
2005). In general, mobile and terrestrial scanning systems capture image data and
are able to export a color value for each point. Color data for aerial 3D point cloud is
typically added in a separate processing step. This process is similar to the texturing
of 3D models (e.g., 3D city models) and can be performed for massive data sets
(Richter & Dollner 2011b). Each point can have multiple color attributes, e.g., from
RGB images, infrared images, or thematic maps. RGB color data is generally used
for a colorization, e.g., when a photorealistic and natural appearance of the points is

5.3. Data Characteristics 63

required. Infrared and thematic data can be used to highlight surface categories such
as water, vegetation, and non-vegetation.

Object-class information. This attribute denotes to which surface category a point
belongs and can be automatically generated for aerial 3D point clouds as described in
Section 3. Common object classes are vegetation, building, terrain, and water, which
can be derived by analyzing the 3D point cloud topology, i.e., local neighborhood of
a point. A more detailed subdivision of terrain points (e.g., infrastructure, land use)
or building points (e.g., commercial, residence) can be made by taking into account
additional map data (e.g., infrastructure maps) (Richter, Behrens & Déllner 2013).
Object-class information for mobile and terrestrial may include city furniture (e.g.,
cars, traffic lights) that can be identified with approaches presented in (Golovinskiy,
Kim & Funkhouser 2009).

Distance information. Distance information indicates the distance to a reference
geometry and is typically encoded as a value per point, e.g., floating point number.
Common reference geometries are 3D point clouds from a different date indicating
changes (Chapter 4.3), digital surface models (e.g., DTMs, DSMs), or 3D models
(e.g., digital 3D city models) that need to be compared with the captured data.
Hence, it is important to use and visualize these attributes together with the entire
3D point cloud for quality control and evaluation of acquired data.

5.3.2 Structure Attributes

Surface normal. Per-point normals approximate the surface of the local point
proximity. They can be computed efficiently by analyzing the local neighborhood
of a point (Mitra & Nguyen 2003) and are used to orientate the points primitive
according to the represented surface.

Horizontality. This attribute indicates how vertical the surface normal of a point
is oriented, i.e., points representing horizontal surfaces (e.g., flat building roofs). It
features a higher value for points on vertical surfaces (e.g., building facades) (Zhou
& Neumann 2008). The horizontality can be used for a colorization to accentuate
detailed object structures such as roof elements.

Global height. This attribute describes the height of a point in relation to all other
points that belong to the same object class. Colorizing points based on their global
height emphasizes height differences for different objects belonging to the same object
class (e.g., trees with different heights).

Local height. The local height describes the height of a point in relation to all
point belonging to the same object class in the point proximity. Using local heights
for a colorization facilitates to highlight edges and differences in the structure of an
object (e.g., roof ridges and smokestacks).

Segment information. Segment information, i.e., IDs stored as per-point attribute,
are used to identify and group points belonging to the same object, surface, or
category. Segment information is typically a result of a processing or analysis pass
and can be used to highlight specific points, e.g., belonging to a single tree or a roof
surface.

Out-of-Core Rendering System

3D Point
Cloud

3D Rendering Engine

Pre-
processor

Display

I
g

Interaction | User
Handler |

T l c EEN
LoD Node Manager

Rendering l
t l echnique

LoD Node Loader (RAM) LoD Node Loader (GPU)

LoD-Node
RequestPool

LoD Data

Structure

\ ¥

Serializer

Secondary Storage

Figure 5.1: Common architecture of an out-of-core rendering system for 3D point clouds.

A challenge for rendering massive 3D point clouds at interactive frame rates are limited
storage capacities of main memory and GPU device memory. The size of the data affects
the performance of the rendering process. Each point of the 3D point cloud is typically
given by a three-dimensional floating point vector with a size of 12 bytes and optional
thematic or structure attributes, such as color, distance, and normal data.

5.4 Out-of-Core Real-Time Rendering

The interactive visualization of massive 3D point clouds demands for out-of-core rendering
techniques that combine level-of-detail (LoD) concepts, spatial data structures, and external
memory algorithms to handle and render 3D point clouds that exceed available memory
resources and rendering capabilities. The spatial data structure is used to store the data
and to determine subsets of a 3D point cloud at an arbitrary LoD at runtime. The
preparation and construction is typically performed in a preprocessing step that serializes
the data to secondary storage. The rendering algorithm uses this structure to select, update,
and remove data chunks in an efficient way to perform an interactive or real-time image
synthesis. Figure 5.1 illustrates the common architecture of an out-of-core rendering system
for 3D point clouds. 3D point clouds are prepared and converted into a LoD data structure
that is stored on secondary storage (Section 5.4.1). The 3D rendering engine controls a
LoD node manager to schedule required data chunks, i.e., LoD nodes, for the rendering
depending on the user interaction (Section 5.4.3). Point-based rendering techniques are
applied to the data to provide an interactive visualization (Section 5.5).

5.4.1 Multi-Resolution Data Structure

Most spatial data structures use k-d tree, quadtree, or octree derivations to arrange 3D
point clouds in a preprocessing step (Rusinkiewicz & Levoy 2000; Gobbetti & Marton
2004b; Wimmer & Scheiblauer 2006; Richter & Dollner 2010b; Goswami et al. 2013). The
construction of quadtrees and octrees can be performed faster in contrast to k-d trees
because there is no need to sort the points during the construction process. However, the

5.4. Out-of-Core Real-Time Rendering 65

use of quadtrees and octrees for irregular and sparse distributed data, e.g., airborne laser
scans, results in LoD nodes with a varying number of points. This complicates efficient
caching and memory swapping mechanisms that would benefit from equal-sized data chunks.
For that reason, the basic concept of a k-d tree is used and has been extended to fill the
following requirements:

e R1 - Efficient storage of 3D point clouds and related per-point attributes.

e R2 - Ability to handle massive 3D point clouds that exceed available memory
resources.

e R3 - Storage of LoD chunks to enable an interactive visualization and control of the
rendering budget (e.g., 30 frames per second).

e R4 - Adaptive memory management with equal-sized LoD chunks to implement
efficient caching and out-of-core strategies.

e R5 - Attribute specific subdivision of the 3D point cloud to enable a selective access
and visualization, e.g., only building or vegetation points.

The root node of the data structure represents the overall expansion of the 3D point
cloud. Child nodes subdivide the area of their parent node. Nodes with children are inner
nodes and nodes without children are named leaf nodes. Each inner node is a generalization
of its child nodes. Every node stores a defined number of points and corresponds to a LoD
for a spatial area (R3). The root node is the highest abstraction of the data and a leaf
nodes provides a maximum of details. Each point is stored only once in the tree to reduce
the memory requirements (R1). Thus, all nodes together represent the entire data and are
equal to the input 3D point cloud. The capacity of nodes affects the total number of nodes
in the tree, which has an impact on main memory requirements, caching mechanisms, and
the rendering quality.

This multi-resolution data structure can be extended for an attribute-specific organi-
zation of the data. This is important to enable an efficient selection of subsets based on
spatial and thematic attributes. Points belonging to different categories (e.g., object classes)
can be assigned to different layers of the tree. A layer is characterized as part of the tree
structure that contains only points with defined attributes. Common attributes are object
class, time, or other semantics information that can be used to divide the data efficiently
in addition to the spatial extend (R5). An example is illustrated in Figure 5.2 that shows
different layers of the multi-resolution data structure according to object-class information.
The spatial subdivision of the data enables to implement a memory management that load
parts of the structure from external memory. Thus, it is possible to interactively visualize
3D point clouds of arbitrary size. Practical, the size is limited by the available hardware
storage capacity of the hard-disk or network storage (e.g., cloud or NAS system). The
visualization of 3D point clouds is implemented by point-based rendering.

5.4.2 Construction

This section describes the construction of the multi-resolution k-d tree with out-of-core
concepts to arrange massive 3D point clouds in multiple layers according to per-point
attributes. The layerd, multi-resolution out-of-core k-d tree is named data structure in the
following.

66 Chapter 5. 3D Point Cloud Rendering

Terrain @ Building

Input Data:

<<l Vegetation

Multi-resolution

K-d tree Layers
LoD Node in
Main Memory

% LoD Node on
% Secondary Storage

Figure 5.2: Schematic overview showing the structure of a layered, multi-resolution data structure
using the basic concept of a k-d tree. For each object class a separate multi-resolution k-d tree is
maintained.

Histogram-based Subdivision

The data structure is constructed in a preprocessing step and can be stored on secondary
storage. First, the given 3D point cloud is subdivided based on layers that should be used,
such as object class or point in time (Section 5.4.1, R4). Second, for each layer the related
points are arranged in individual data structures with equal-sized data chunks (R4). The
construction of a balanced tree with equal-sized data chunks per node requires to order the
data for each tree level along the longest spatial extent. To avoid a time-consuming sorting
of the entire data, at worst for each tree level, a histogram-based approaches can be used.
The histogram is comparable to a voxel grid and is used to count the number of points for
spatial areas. It can be used to determine a small subset of the data called median chunk
that contains the median element that is required to split the data into a left and right
subtree (Figure 5.3). In addition, the histogram is used to determine representative points
for a defined area that are used to construct a LoD node. The first iteration over the input
3D point cloud fills the histogram. The histogram is used to determine the pivot element
of the 3D point cloud that is equal to the splitting plane required to construct a balanced
tree structure. A second iteration over the 3D point cloud is used to fill up the current
node with representative points (i.e., to create a LoD) and to assign all points to the left
or right part of the tree. All points belonging to the median chunk need to be sorted to
determine the exact median element. The median element for the split is chosen so that
the number of points to the left is a multiple of the node capacity. The histogram for the
left and right belonging to the next tree level is prepared during the separation of points
of the previous tree level. Thus, only one iteration of the data per tree level is necessary,
which is important to reduce the time for preparing the whole data structure.

5.4. Out-of-Core Real-Time Rendering 67

A Left Subtree Right Subtree

! ALIATIILIN

. Pivot Chunk Spatial Distribution
D Representative Points

Figure 5.3: [llustration of the histogram-based construction of the k-d tree to reduce preprocessing
times for massive 3D point clouds.

Out-of-Core Construction

An out-of-core construction is important to handle massive 3D point clouds, e.g., with
billions of points (Section 5.4.1 (R2)). If the size of the input data exceeds available
memory, the histogram-based subdivision is performed on secondary storage until a subset
of the data fits into memory. The processing in memory can be performed in a parallel
way using multiple CPU cores. Therefore, a defined number of subtrees (e.g., 16) are
constructed by separate threads. The performance of the out-of-core construction depends
on the following conditions:

e Size of the 3D point cloud

e Main memory budget or capacity for in-memory processing (Table 5.1)
e Node capacity (Table 5.2)

e Number of available CPU cores (Table 5.4)

e Performance of secondary storage (Table 5.3)

All performance measurements are evaluated independent from each other on a system
with the following hardware specifications:

e CPU: Intel Xeon E5 1620, 4x3.6GHz, with hyper-threading and turbo frequencies up
to 3.8Ghz.

e Main memory: 2x4GB with 1333MHz, timings are 9-9-9-24, and dual-channel mode.

e HDD: ST31000524AS, Seagate Barracuda 7200.12 with 1TB capacity and an average
data transfer rate of 115 MB/sec.

e SSD: Samsung SSD 840 EVO with 500GB capacity, connected with SATA III and an
average data transfer rate of 495 MB/sec.

68 Chapter 5. 3D Point Cloud Rendering

e NAS: Dell PowerEdge R720 with an attached direct-attached storage (DAS). The
DAS was a DS S16S-G2240 with 16 ST33000650SS hard drives (Seagate Constellation
ES.2 SAS, 6GB/s, 7200RPM, 3TB) in a RAID-6 configuration. The testing system
was connected with a Gigabit-LAN to the network and an average data transfer rate
of 110 MB/sec.

Default values are a main memory budget of 6 GB, a node size of 4096, a SSD as storage
device, and a parallelization with 8 CPU cores.

Main memory budget and performance specification of secondary storage device have
the strongest impact on the overall performance. A higher memory budget significantly
reduces the required read and write operations. A HDD and NAS as secondary storage
have a much lower sequential read and write speed as well as latency that is higher by
orders of magnitude compared to a SSD. The number of CPU threads and capacity of
nodes does only slightly affect the performance because of the large number of read and
write operations that are required during the overall construction process.

5.4.3 Rendering Algorithm

The rendering process can be divided into three stages that are performed per frame.
The first stage is responsible for the data provision, caching, and transferring of points
from secondary storage to main memory as well as from main memory to GPU memory
(Figure 5.1: LoD Node Manager). The second stage applies a point-based rendering
techniques (Section 5.5) to all points in GPU memory that should be rendered (Figure 5.1:
3D Rendering Engine). The last stage performs an image compositing if 3D point clouds
are rendered with different rendering techniques, e.g., based on semantics information such
as object classes (Section 5.5.2).

Memory and LoD Management

The rendering algorithm has to cope with a finite main memory (e.g., 8 GB) and GPU
memory (e.g., 2 GB) budget that can be used. The size depends on the available hardware
capability, application, and user input. In general, only a small subset of the data can
be present in main and GPU memory at the same time. Common 3D point clouds from
cities and landscapes have billions of points and could have a size of a few terabyte on
secondary storage (e.g., Berlin2013 contains 80 billion points and requires 2 TB of data).
The LoD Node Manager has to load, schedule, and remove LoD nodes for the rendering.
The following parameters affect the rendering:

Table 5.1: Evaluation of processing performance in seconds for different main memory budgets in
MB. A larger budget leads to less secondary storage access and significantly improves the performance.
8 GB 16 GB 32 GB

Budget Time Speedup Time Speedup Time Speedup

384 1130 —49.3% 2574 —38.2% 6009 —31.2%

768 1022 —-35.0% 2367 —27.1% 5564 —21.5%

1536 932 —-23.1% 2195 —17.9% 5183 —13.2%

3072 841 —11.1% 1994 —71% 4807 -5.0%

6144 757 0.0% 1862 0.0% 4579 0.0%

5.4. Out-of-Core Real-Time Rendering 69

Table 5.2: Comparison of tree construction performance in seconds for nodes with different point
capacities. The capacity has a strong impact to rendering performance and quality and does slightly

affect the processing performance.
8 GB 16 GB 32 GB
Node Capacity Time Speedup Time Speedup Time Speedup
1024 809 —6.9% 1971 —5.9% 4806 —5.0%
2048 779 —-2.9% 1931 =3.7% 4704 —2.7%
4096 757 0.0% 1862 0.0% 4579 0.0%
8192 726 4.1% 1805 3.1% 4389 4.1%
16384 714 57% 1773 4.8% 4363 4.7%

Table 5.3: Performance comparison in seconds for different storage devices. Seek time and
throughput have a strong impact on the performance.
8 GB 16 GB 32 GB
Storage Type Time Speedup Time Speedup Time Speedup
NAS 2147 —183.6% 5410 —190.5% 14392 —214.3%
HDD 1021 —34.9% 2759 —48.2% 7091 —54.9%
SSD 757 0.0% 1862 0.0% 4579 0.0%

Table 5.4: Performance overview in seconds for a different number of threads. The performance
improvement is not equal with the number of used threads because reading and writing the data

cannot be performed in a parallel way.
8 GB 16 GB 32 GB
Threads Time Speedup Time Speedup Time Speedup
1 900 —18.9% 2153 —15.6% 5002 —9.2%
2 815 —7.7% 1971 —5.9% 4635 -1.2%
4 789 —4.2% 1898 —1.9% 4482 2.1%
8 757 0.0% 1862 0.0% 4579 0.0%

70 Chapter 5. 3D Point Cloud Rendering

e Screen resolution (e.g., Full HD)

e User input and navigation (e.g., overview or detailed view)

Point-based rendering technique (e.g., glPoints or Splats)

Available main and GPU memory (e.g., 8 GB main memory and 3 GB GPU memory)

The first step to render a 3D point cloud is to load the root node of the data structure
into main memory. If the tree structure has multiple layers, all root nodes belonging
to layers that should be rendered are loaded. Each node is equal to a LoD node and
has a defined size. A bounding sphere is used to estimate the volume of a LoD node
in object space. Bounding boxes or oriented disks would estimate the volume of a LoD
more precise. However, culling and a size evaluation is computational more expensive and
additional memory to store the LoD representation is required. Bounding spheres as LoD
approximation enable the evaluation of much more LoD nodes per frame in contrast to
other primitives (Richter & Dollner 2010b). The bounding sphere is specified in object
space and can be projected into screen space to perform culling and determine the size on
the screen. The size of a LoD node on the screen can be estimated as a number of pixel
and is called projected node size (PNS). The number of covered pixels per node and the
number of points per LoD node is used to estimate the required LoD to render the 3D
point cloud. If the PNS is above a threshold, child nodes are added to increase the point
density. If the PNS of a node is below a threshold, it does not have to be rendered because
the parent node is sufficient to render a frame with a dense 3D point cloud. The PNS
for each node changes during user interaction due to a changing position of the virtual
camera. All nodes that need to be rendered are mapped to GPU memory into a vertex
buffer object (VBO). The VBO is divided into equal sized chunks that can store exactly
one LoD node. Nodes that are not available in main memory are loaded from secondary
storage into main memory. Loading nodes from secondary stored typically requires several
frames due to slower access times on secondary storage. The loading time depends on
secondary storage performance and the number of nodes that are already in the request
queue. If the user interacts with the 3D point cloud some node reload requests can become
unnecessary. Reasons can be that they are outside the frustum or too far away, and the
parent LoD is sufficient. For that reason all reload requests are evaluated and updated per
frame. Figure 5.4 illustrates a possible memory usage and related LoD node locations.

Rendering Layered 3D Point Clouds

In general, the PNS-threshold is used for all LoD nodes and depends on the available
memory, computing capability of the GPU, and used point-based rendering technique.
However, a more adaptive and configurable setting of the PNS-threshold is required if
subsets of a 3D point cloud are rendered with different rendering techniques. An example
is the subdivision of the point cloud into object classes. Each object class that should be
rendered has its own memory budget (Figure 5.5) and is balanced permanently during the
rendering process because the amount of memory required by an object class may vary
due to the following reasons:

e Only a small number of points belonging to an object class is visible during the
exploration

5.4. Out-of-Core Real-Time Rendering 71

s

A CIO0OQIQ G N\ |
| LoD Level 4 ' .{/.A. .{‘. .‘. .‘.}}. .'}. .\}.}\.. |

!

| GPU Memory | | Main Memory | | Secondary Storage | l

Figure 5.4: LoD data structure used for out-of-core rendering. LoD nodes are available in GPU
memory (orange), main memory (green), or secondary storage (blue).

Building Water Terrain Vegetation
RRNNEEEE 7Y
Building Water Terrain Vegetation
NENNE uy
Water Terrain Vegetation
o I T T

Figure 5.5: [llustration of an exemplary GPU memory usage that is balanced during rendering
according to memory requirements of LoD nodes that belong to different object classes. (a)-(b)
illustrate how unused memory is assigned to other object classes. (b)-(c) illustrate the balancing
process when the visualization of one object class (i.e., layer) is disabled.

72 Chapter 5. 3D Point Cloud Rendering

e Visualization of certain object classes is disabled

e Close up views require a high point density for an object class (e.g., for a building)

Rendering techniques for a subset can allocate additional memory until the memory
capacity is exceeded. Therefore, the PNS-threshold is decreased to increase the point
density, i.e., the rendered LoD. Object classes can be rendered with different LoDs because
the required number of points for an appropriate rendering result depends on the structure.
For example, buildings can be rendered with more points due to detailed roof structures in
contrast to terrain or vegetation that can be rendered with less points. The lower point
density can be compensated by using larger primitives, e.g., splats for terrain or spheres
for vegetation.

Rendering Front for Caching

The rendering algorithm is designed to fulfill two aims: the first purpose is the point
throughput to render as many points as possible to get a closed surface. This is necessary
to present large parts of the 3D point cloud with a high resolution. The second one is to
guarantee high frame rates during interaction to enable interactive exploration of the data.

The projected node size (PNS) threshold for displaying nodes is adapted dynamically
depending on the user input and available hardware resources. Traditionally, a depth-first
traversal of data structures is performed until the PNS threshold is reached (Wand et al.
2007). The traversal of the entire data structure is time-consuming and, if less or no
interaction or navigation is performed, a high frame-to-frame coherence is given. To exploit
the frame-to-frame coherence all LoD nodes selected for rendering are kept per frame.
These nodes are stored in a list, called rendering front, which cuts the data structure in
two parts (Figure 5.6). All nodes above the rendering front have a PNS larger than the
PNS threshold and are rendered whereas all nodes in the rendering front have a lower or
equal PNS. The rendering front is used for the next frame to check the validity of nodes.
If the PNS of a node is larger than the threshold, it can be replaced with its child nodes
(Figuge 5.6 (a)). On the other hand, if the size of a parent node in the rendering front is
below the PNS threshold, all nodes with this parent can be replaced by the parent node
(Figure 5.6 (b)).

The number of LoD node updates per frame is limited to achieve interactive or real-
time frame rates as well as a smooth refinement of the rendered 3D point cloud. The
number of nodes that can be added or removed per frame are estimated from the rendering
duration of the last frames. The PNS threshold is increase if a user interacts with the
scene and can be decrease if no interaction is performed to increase the point density and
rendering quality.

Memory Release Strategies

A fixed memory budget is used to prevent running out of main memory. If this memory
limit is reached, no reloads are performed and the algorithm releases memory resources
by removing unused parts of the tree structure. The rendering front is used to determine
which LoD nodes can be removed from main memory: all nodes in the rendering front were
rendered in the last frame. They serve as good indicator to approximate, which parts of
the data structure can become important in the next frames. The possibility that a node

5.5. Rendering Techniques 73

Rendering front
Rendering front after pass
------ Rendering front before pass Q

u¢ T l(AIS D A)u /i @ﬁ& /A«A\ AN DL SD DD DA DA A
CRR KR AR R -v CLAR KKK KKK KKK ARARRAKR XKKR AAARLEXXK_KKKKTARAA ARKR AKKR ARKR ARKAK AKKR KRR KRAR KKK XK fn {RAKLRAXK

(a) Expansion of the rendering front

AN A (N ,J.l,_ ,/,A,\, AA A DD u(u’)u A A A A N N m N
m “KKAK:KRAR XAKR AKARK KX v WAAA KRKR KA ‘ﬁ'v UKAK ARKR AXKAR AKAA ARARLAXER XXKRITARI ARAR KKK RAKK AKEK ARKR KKK REKKKLAXKR

(b) Decreasing of the rendering front

Figure 5.6: lllustration of the tree structure with a related rendering front for one frame. In (a)
the rendering front is expanded at 11 nodes because their PNS does not fulfill the PNS threshold;
(b) illustrates the decreasing of the rendering front by replacing nodes by their parent.

is needed in the next frame decreases with the distance of the node to the rendering front
in the tree hierarchy. An additional indicator is the timestamp of the node that enables to
identify outdated nodes that were not rendered in the last frames.

5.5 Rendering Techniques

The out-of-core rendering algorithm, presented in the previous section, is responsible to
select LoD nodes and keep all required points in GPU memory. In this section, different
point-based rendering techniques are presented that can be used in combination with the
presented rendering system and out-of-core data structure in Section 5.4.

To efficiently render 3D point clouds the Graphics Processing Unit (GPU) supports
point primitives, such as GL__POINTS in OpenGL. However, these primitives have a fixed
size in pixels (Shreiner et al. 2013) (e.g., Figure 5.7 (a) uses a size of 3 pixel), i.e., their
size in object space varies according to their perspective depth. Depending on the view
position undersampling, i.e., holes between neighboring points (Figure 5.7 (a) - bottom),
or oversampling, i.e., visual clutter due to overlapping points (Figure 5.7 (a) - top), occurs.
Rendering all points in a "uniform way" does not take into account characteristics of
different surfaces that belong to object classes, such as vegetation, building, terrain, street,
or water. For example, building facades generally exhibit lower point density in contrast
to roofs and terrains. A uniform rendering, therefore, results in gaps between neighboring
facade points (Figure 5.7), complicating their perception as a continuous surface. If points
are rendered by the point primitives of the underlying rendering system (e.g., OpenGL’s
GL_POINTS) they are not scaled according to the camera distance making it difficult to
correctly estimate depth differences and leading to visual artifacts due to overlapping of
points close to each other. In addition, a uniform rendering does not differentiate between
surface characteristics such as planar (e.g., terrain), structured (e.g., roof structures), and

74 Chapter 5. 3D Point Cloud Rendering

(2) (b)

Figure 5.7: (a) Example of a massive 3D point cloud rendered in a uniform way by GL__POINTS
primitives and textured by aerial photography. (b) Same scene rendered by class-specific point-based
techniques: different object classes can be better distinguished, holes on facades are filled, and visual
clutter in the background is reduced.

fuzzy areas (e.g., vegetation), complicating the visual identification and categorization of
objects and structures by the user.

Point specific attributes can be used to adapt the appearance of a point, i.e., its color,
size, orientation and shape, at run-time (Kim et al. 2012; Goesele et al. 2010; Gao, Nocera
& Neumann 2012). The color of a point can be chosen based on its color value, object
class, topology attributes (i.e., surface normal, horizontality, global, or local height), or
a combination of them. The orientation of a point can either correspond to its surface
normal, the current view direction or a defined uniform vector. In addition, size and shape
type of a point can be set dependent on its object class.

Figure 5.8 shows a schematic overview of the 3D rendering engine that implements
different point-based rendering techniques. Points are categorized by object classes and
rendered with different styles to fulfill different requirements:

e Close the surface represented by the 3D point cloud
e Improve recognition of structures and objects
e Generalization of structures

e Combination of rendering techniques based on object-class information

5.5.1 Point-based Rendering

This section presents a variety of point-based rendering techniques that have been imple-
mented. Advantages and disadvantages are discussed and illustrated for different data
sets.

Point Splats

To avoid undersampling and oversampling due to changing view positions, the Point
Splats technique renders each point as an opaque disk defined in object space that can be

5.5. Rendering Techniques 75

Rendering Engine

Rendering Technique .

Point Cloud
Level-of-Detail & Renderer
Memory Manager

)

Vegetation

Image
Compositer

Screen

G-Buffer

GPU Memory
(FBO)

GPU Memory
(VBO)

Figure 5.8: Schematic overview of the class-specific point-based rendering system. Categorized by
object classes, points are transferred to GPU memory and rendered into separate G-Buffers that are
composed to synthesize the final image.

oriented alongside the surface normal (Rusinkiewicz & Levoy 2000; Botsch et al. 2005).
The on-screen size depends on the current view position and angle, ensuring a perspective
correct visualization (Figure 5.9 (a—f, i)). However, the perception of depth differences
between overlapping points that are colored homogeneously (e.g., points belonging to the
same object class), is generally limited.

Point Spheres

This point-based rendering technique is useful to emphasize the three-dimensional character
of a point. The proposed Point Spheres extend the original splat concept by rendering
points as hemispheres instead of flat disks that are always facing the view position and,
thus, look like spheres (Rusinkiewicz & Levoy 2000). These hemispheres are created by
adding an offset to each depth value of the rendered fragment and by shading each fragment.
The depth offset as well as the shading color can be determined by projecting the fragment
onto the plane defined by the related splat and by calculating the projected distance of the
fragment to the center of the splat. Point spheres are well suited for non-planar and fuzzy
surfaces, such as vegetation (Figure 5.9 (g)).

Silhouette Rendering

Point-based silhouettes highlight and abstract silhouettes and distinctive surface structures
(e.g., deep differences). This technique extends the splat rendering approach and was
originally proposed by Xu et al. (Xu et al. 2004). Similar to the rendering of point spheres,
color and depth of each fragment depend on its projected distance to the center of the
splat. In addition, the splat is split into an inner and an outer part. Fragments in the
outer part represent the silhouette and are rendered with an increased depth value and
another color. As a result, depth discontinuities between overlapping points exceeding the
depth offset are highlighted (Figure 5.9 (h, j, 1)).

76 Chapter 5. 3D Point Cloud Rendering

Table 5.5: Characteristics of the datasets used to evaluate the performance of the presented
point-based rendering approach.

Dataset 1 Dataset 2 Dataset 3
Name Berlin2008 Frankfurt2009 Berlin2013
Point Density — 7-8 pts/m? 28 pts/m? 100 pts/m?
Number Points 4.7 bln 7.1 bln 80 bln
Data Size 112 GB 159 GB 1788 GB

Solid Rendering

This point-based rendering technique was developed to render buildings with solid and
hole-free fagades. As the point density on facades in airborne laser scans is very low in
contrast to horizontal structures, the efficient identification of building segments is limited
because other structures behind a building are visible through the fagade (Gao, Nocera
& Neumann 2012). To overcome this, a second rendering pass to fill the area below roof
points with new primitives is implemented. The geometry shader is used to render a
point-based splat, sphere, or silhouette equal to the rendering techniques presented above
and an additional quad that imitates the facade below a point. The quad width is equal to
the point size used in the first pass and the height ranges from the point position to the
terrain level. All quads are aligned to the view position and have the same color or color
gradient (e.g., height-based) to create a solid facade look (Figure 5.9 (k)).

5.5.2 Compositing of Point-based Rendering Techniques

To combine different point-based rendering techniques, a multi-pass rendering utilizing
G-Buffers for image-based compositing is used (Figure 5.8). G-buffers are specialized frame
buffer objects (FBO) that store multiple 2D textures for color, depth, or normal values
(Saito & Takahashi 1990). Each object class requires one rendering pass. Results for each
class are stored in G-Buffers that are combined by the final rendering pass. Figure 5.10
shows an example of the combination of different point-based rendering techniques. The
image-based compositing enables to implement rendering techniques for focus + context
visualization (Trapp et al. 2008; Vaaraniemi, Freidank & Westermann 2012) such as
interactive lenses (Figure 5.11 (b)). Moreover, object-class specific visibility masks, i.e.,
static lenses, can be computed and applied during the rendering to highlight occluded
structures (Figure 5.11 (c)). All point-based rendering techniques can be independently
selected, combined, and configured at run-time to adjust the appearance of each object
class.

5.6 Performance Evaluation

The presented system and point-based rendering techniques are evaluated with three
massive 3D point clouds containing up to 80 billion points (Table 5.5). Measurements and
tests were performed on an Intel Xeon CPU with 3.20 GHz, 12 GB main memory, and a
NVIDIA GeForce GTX 770 with 2 GB device memory.

As shown in Figure 5.12, interactive frame rates can be achieved for each rendering
technique as long as the overall number of rendered points does not exceed a certain

5.6. Performance Evaluation 77

5 R s <

(a) Point Splats; aerial image colors. (b) Point Splats; aerial image colors

(e) Point Splats; aerial image colors (f) Point Splats; global height.
and object-class information.

e & ;. : 3 ~ : 7
ek - d = h A
(j) Silhouette Rendering; local height. (k) Solid Rendering; horizontality. (1) Silhouettes; global height.

Figure 5.9: Ezamples of massive 3D point clouds rendered with different rendering setups for
vegetation (left), buildings (middle), and terrain (right).

78 Chapter 5. 3D Point Cloud Rendering

Figure 5.10: Ezamples of a 3D point cloud rendered with different point-based rendering techniques
taking into account object-class information per point. (left) All points are rendered as point splats
with color information from aerial images. (right) Buildings are rendered with solid rendering,
vegetation with point spheres, and ground with point splats. The color depends on the surface
category.

()

Figure 5.11: Examples of focus + context visualization for classified 3D point clouds. (a) Regular
visualization with buildings partially occluded by vegetation. (b) Interactive focus + context lens.
(c) Static focus + context lenses positioned around building points.

5.6. Performance Evaluation 79

fps A

350 glPoints
300 s Point Splats

Point Spheres
250

s Silhouette Rendering
\

200 \\ sssssssssmm Solid Rendering
150

B R
50 - \

—

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0 5.5 6.0
#Points in Million

Figure 5.12: Rendering performance in frames per second (fps) using different sized subsets of the
datasets from Table 5.5.

threshold (e.g., 6 million points for the solid rendering approach). The highest frame
rate could be observed for GL_ POINTS, which was expected since these primitives
are supported natively by the GPU. Point Spheres as well as the solid and silhouette
rendering approach extend the concept of Point Splats and increase the computational
effort during rendering. Consequently, lower frame rates were achieved when using these
techniques for rendering as opposed to Point Splats. Furthermore, the performance for
Point Spheres is higher than for Point Silhouettes due to a more hardware demanding
shading implementation (e.g., conditional branching).

Since the proposed out-of-core rendering approach limits the number of rendered
points by dynamically selecting them, massive datasets with varying point densities can be
rendered in real-time as well (Table 5.6).

Table 5.6: Rendering performance in frames per second (fps) using the proposed out-of-core
rendering approach. FEach dataset is evaluated for a close and a far perspective.

Dataset 1 Dataset 2 Dataset 3
Far Close Far Close Far Close
#Rendered Points in Million 2.32 0.50 3.42 0.85 4.85 1.04

GL_POINTS 86.39 378.07 60.02 246.12 40.24 194.35

Point Splats 51.84 214.32 32.27 138.67 23.01 108.63

Point Spheres 49.57 203.81 28.31 133.72 22.35 107.07

Silhouette Rendering 46.07 195.65 26.66 127.38 22.18 106.97

Solid Rendering 27.32 100.13 20.22 63.78 18.74 59.45

Combination 1 (Figure 5.9, row 3) 40.51 200.97 27.33 128.73 22.45 107.75
Combination 2 (Figure 5.9, row 4) 33.28 126.31 22.21 80.80 19.90 68.47

80 Chapter 5. 3D Point Cloud Rendering

5.7 Summary and Discussion

This chapter presents a rendering system for point-based graphics that is designed to
process and render 3D point clouds. Main advantages of the presented real-time rendering
system for 3D point clouds are the following:

e Out-of-core rendering strategies to cope with large-scale 3D point clouds with
billions of points in short processing times. The presented system adapts automatically
to available hardware resources such as main memory and GPU memory. It achieves
high frame rates during user interaction and also a high point density if no interaction
is performed for any sized 3D point clouds. The technical limit is the available storage
capacity of the used system or network infrastructure.

e Point-based rendering techniques to visualize captured objects, surfaces, and
landscapes with a photorealistic, non-photorealistic, or solid look for different appli-
cations. These techniques support to dissolve occlusion and enable a task-specific
interactive exploration.

e Adaptive multi-resolution data structure that enables in addition to a spa-
tial data selection an object-class specific selection of LoDs. Hence, memory and
processing resources can be used economically and adaptively.

e Thematic attributes and additional per-point information to select and com-
bine specialized point-based rendering techniques to enhance the visual appearance
and facilitate recognition of objects within 3D point clouds. In addition, it enables
focus + context techniques, e.g., lenses for filtering and highlighting.

To summarize, rendering techniques for 3D point clouds offers many degrees of freedom
for graphics and interaction design. Due to an increasing availability of scanning devices
the number of datasets will most likely grow dramatically. A variety of traditional and
new application domains will be confronted with large-scale, dense, and time-variant
3D point clouds. The visualization itself is a fundamental component for systems and
IT-infrastructures to derive, provide, and communicate spatial information.

Future work could focus on point-based rendering techniques that enable a per-frame
reconstruction of object surfaces (Preiner, Jeschke & Wimmer 2012), e.g., for terrain or
roof points. The combination of 3D point clouds from aerial, mobile, and terrestrial scans
for indoor and outdoor environments has a big potential. Further research directions are
service-based and web-based solutions to be independent from data storage location and
hardware capabilities of end user systems. A web-based solution that can be integrated
into existing applications and systems can open up new markets and enables to provide
massive 3D point clouds to a large number of users (Schiitz 2015; Martinez-Rubi et al.
2015).

Chapter 6
Framework for Analysis and
Visualization of 3D Point Clouds

This chapter introduces the software framework that implements the processing, analysis,
and visualization techniques for 3D point clouds introduced in this thesis. The implemen-
tation relies on a service-based software architecture that provides the prerequisite for the
integration into various applications and system infrastructures and for the distribution of
this services to a variety of application domains. This chapter is partially based on the
author’s scientific publications in Richter and D6llner (2012) and Discher, Richter and
Dollner (2018).

6.1 Architecture

The developed framework for 3D point clouds can be divided into two subframeworks
called PCLib and PCViewer. The PCLib includes features and implementations to import,
export, manage, process, and analyze 3D point clouds as well as other spatial data such as
3D models, aerial images, and vector data. The PCViewer provides real-time rendering
and visualization techniques for inspection and exploration of massive 3D point clouds and
related analysis results. In addition, the PCViewer implements features to render various
2D and 3D models (e.g., 3D city models, terrain models, aerial images, shapefiles) in the
context of 3D point clouds. Both subframeworks implement out-of-core data structures to
cope with massive 3D point clouds. Used programming languages, middleware technologies,
and third party frameworks are:

e C++ as object oriented programming language

e Compute Unified Device Architecture (CUDA) as programming API for
general purpose computations on the GPU

e OpenSceneGraph as scene-graph based rendering middleware and container for
the 3D rendering engine

e OpenGL and GLSL to implement rendering and shading techniques that are
provided by the 3D rendering engine

e Qt as application framework to implement the graphical user interface

e Point Cloud Library (PCL) as open source library to use selected processing
algorithms for 3D point clouds

82 Chapter 6. Framework for Analysis and Visualization of 3D Point Clouds

PCViewer
v \ 4
PCLib OpenSceneGraph
\ 4 A 4 \ 4
PCL QT
\ 4 \ 4
CUDA OpenGL / GLSL

Figure 6.1: QOverview showing the usage relations of the point cloud framework, third party
frameworks, and middleware technologies.

The usage relation of PCLib, PCViewer, third party frameworks, and middleware
technologies are illustrated in Figure 6.1.

The PCLib is responsible to import and export various data formats for 3D point
clouds, 3D models, image data, and vector data. All data formats can be used as input for
processing and analysis as well as for rendering and visualization tasks implemented by
the PCViewer. Main features of the PCLib are illustrated in Figure 6.2. Core features
for import, export, processing, and analysis have been implemented modular with a
defined interface describing all required and optional input and output data. Hence, all
implemented features and algorithms can be re-used and combined in a flexible way for
an efficient implementation of domain specific applications. A graphical user interface
allows to configure, combine, and design point cloud processing workflows as illustrated in
Figure 6.3. A more complex pipeline is given in Figure 6.4 and illustrates a composition of
input, processing, and output components to detect individual trees in 3D point clouds
from aerial scans. The following enumeration is a selection of applications that have been
implemented based on core functions of the PCLib:

e (lassification of aerial 3D point clouds

e Building outline extraction

e Terrain model extraction and generalization
e Tree detection and tree cadastre extraction
e Tree cadastre evaluation

e Change map generation

e Update of 3D city models

e Point cloud converter

6.1. Architecture

83

r :)
Point Cloud Framework
s .)
PCViewer
[Point Rendering | [Mesh Rendering | [Core Features |
s e Photorealistic ¢ Surface Models e Multi-resolution
§ e Non-photorealisitc e CityGML Models Data Structures
= e Semantic-based ¢ 3D Modles e Out-of-Core
2 e Solid e 2D Shapes Management
> e Attribute-based e Tree Models e Interaction
\ ? J
e .
PCLib
©
= @ Building Outline Tree Cadastre Change Map
g 2 Extraction Evaluation Creation
28 .
T2 Terrain Model 3D City Model Railroad
EZ Extraction Update Evaluation
a
Importer / Export | Processing | Analysis
e 3D Point Clouds e Unification e Classifiaction
(LAS, ASCII, TXT) e Conversion e Change Detection
3 Shapefiles (SHP) o Outlier Filtering ¢ Shape Evaluation
2 3D Models e KNN e 3D Model
@ (3DS, OBJ, CityGML) Determination Evaluation
o e Surface Models o Normal Estimation | |e Tree Detection
S (TIFF, GEOTIFF) e Segmentation e Clearance Profile
e Aerial Images Analysis
(PNG, JPG, TIFF)
\
L T b,
g : f)
S | libcitygml l | LibLAS l OpenSceneGraph
g PCL CUDA Qt5.x
g)_ | ShapeLib l GDAL OpenGL / GLSL
3]
[a}

Figure 6.2: Illustration of the main features for the import, export, processing, and analysis as

well as applications that have been implemented in the PCLib.

84 Chapter 6. Framework for Analysis and Visualization of 3D Point Clouds

& Point Cloud Processing Tool - o x
Settings

Node Configuration 8 x
Fipeine Classification ”

Radius: 2,000 m 2
e e =

Addnode Fileinput s
File output 4 Cesium3DTilesKdTreeWriter
Synthetic input 4 Cesium3DTilesWriter
PointCloud >
peGroup > Resource Manager 8 x
ElevationModlel manipulation LasFileWiter .
Data > U
Distance calculation > ShapeFileWriter .
Tree detection 4 ShapeGroupToCSVFilewriter
Tree cadastre analysis > TreeCadastreWiter sorese (€
Roof analysis 4 XPCWriterNode Shez
Application-specific > XYZFileWriter
BreaklineDetector
ChangeDetector
PointCloudByShapeGroupFier
PointCloudOutlineExtractor
PointCloudToShapeGroupMatcher
iter
ShapeGroupToPointCloudMatcher
Leg _—— & x

OErrors |0 Wamings || 0lnfos

Timestamp Pipeline node Message

Figure 6.3: Application for configuration of point cloud processing pipelines. The "Pipeline" canvas
can be used to add different node types for import, processing, analysis, and export. A "Node
Configuration" widget allows to configure nodes of the pipeline and setup parameters, e.g., radius of
point proximity analysis as illustrated in the figure.

& Point Cloud Processing Tool - O x
Settings 7
Pipeline. Classification bode Sopnxealiny LIS
Tile size:
N Soverpoe] O = S
Border width: 20,00
Tiling cache size: 512MB

Temporary drectory: |C:/_NLTest/Result

p—
Storage (Ci/)
Executing Pipeline. ... about 19 seconds remaining
| _— =
. oS

OErrors |0 Wamings || 0lnfos

Timestamp Pipeline node Message

Figure 6.4: [llustration of a running processing pipeline for classification of 3D point clouds. The
"Resource Manager" widget shows available and used hardware resources, e.g., CPU cores. The
state of each node is either finished (dark green), running (light green), or waiting (yellow). Data
packages are illustrated as blue dots on the edges between nodes.

6.1. Architecture 85

The PCViewer implements a 3D rendering engine for 3D point clouds that is capable
to render 3D point clouds in a photorealistic, non-photorealistic, or solid style as well
as in a way that includes semantics information and per-point attributes as presented
in Chapter 5.5. Figure 6.5 shows the application with the user interface that allows to
configure the visualization. Several interaction techniques, such as panning, hovering, zoom
as well as flight and game navigation techniques can be used to explore the data. The
out-of-core functionality is implemented based on a multi-resolution data structure and
out-of-core management modules as presented in Chapter 5.4.1.

The memory management is implemented adaptively to assign main memory and
GPU memory resources automatically or manually. This is important for use cases with
other 3D models that should be visualized in the context of 3D point clouds. Supported
data types and formats are:

e 3D point clouds (asc, pf, ptx, xpc, ply, las, laz, fx, t3c, bin)

Digital surface and terrain models (Tiff, GeoTiff, ASCGrid, txt)

3D city models (CityGML, 3ds)

3D models (3ds, obj, vrml)

2D shapes (shp, osm)
e Aerial images (Tiff, GeoTiff, png, jpg)

e Tree models as parametrized impostors (jpg, shp, gml)

Another important feature is the capability to measure in the data and extract per-
point information on-demand. This is a challenging task for massive 3D point clouds
because straight forward techniques such as raycasting the point cloud data itself do not
work. They cannot be performed in real-time for massive data sets and do not consider
different rendering techniques, i.e., with a varying point size. Picking techniques that
operate in the screen space can solve this limitations. The implemented technique uses
an additional buffer, called ID-buffer, that is in contrast to the color buffer not visible for
the user. This ID-buffer stores per point a unique ID and allows to identify a point and
related attributes regardless the used rendering technique. Point coordinates and per-point
attributes are shown to the user in the status bar (Figure 6.6). This accurate point selection
approach allows to implement interaction techniques, for example to measure the distance
between points and areas, which are required by most applications, e.g., in the field of
documentation and construction (Figure 6.6).

86 Chapter 6. Framework for Analysis and Visualization of 3D Point Clouds

File View | resentaton Extras Interaction ©a

- ~ s
ove [BEES] see omsemwr 5 Dlapvescing | sowwescon [g ¥ @ ¥ e & 1 = @ &

Show. Focus+ First Person
Classes color. Z“'" Orientation [View-oriented ~)
ua

Configure ~ Configure Advanced DepthBuffer
Gradient _ LiveFicking | Colorization_ Visualization

Dist ty D
Visualzation Visualization Colorization Context Navigation

Brightness Shading

Normals
N Soiid appesrance

—~1:0/0/0

Figure 6.5: PCViewer application that implements a variety of real-time rendering techniques for
massive 3D point clouds. Users can select different rendering styles, color schemas, and semantic-
based visualization modes (e.g., based on analysis results) to configure the appearance of the 3D
point cloud.

530 ot cou xR T e

File View Presentation Exras Interaction Da

® Left Double Click: Add to Selection Group
Right Double Cick: Spavin new Selection Group.

Distances Areas 0
ctrl + Z: Undo last Action

~- XYZ: 14.003 / -37.503 / -1.226 -~ RGB: 30 / 63 / 7 - Intensity: 179 1/0/ 14141857

Figure 6.6: PCViewer application showing features to measure distances (e.g., height of the roof)
and areas (e.qg., size of the window) in 3D point clouds.

6.2. Service-oriented Architecture 87

6.2 Service-oriented Architecture

The provision of individual modules is particularly important when system features should
be integrated into existing applications, systems, and infrastructures that require only
selected features for the import, processing, analysis, or visualization of 3D point clouds.
Hence, the modular and loosely coupled architecture facilitates the construction of dis-
tributed, scalable, and expandable systems that can be easily configured according to the
field of application.

Key requirements for the overall framework design is reusability and modularity of all
components. Common workflows include the following tasks and subsystems:

1. an infrastructure to collect 3D point clouds, e.g., from multiple, heterogeneous sources

2. system components to integrate, update, and access 3D point clouds, e.g., in a
database

3. applications and algorithms that operate directly on 3D point clouds

4. rendering techniques to enable a task and application-specific visualization of 3D
point clouds

5. visualization services to provide 3D point clouds for heterogeneous clients

Figure 6.7 gives an example and illustrates a composition of components for the
collection, preparation, and integration of 3D point clouds from different, heterogeneous
data sources (e.g., aerial and terrestrial LiDAR scans or image collections) as well as
autonomously operating scanning systems (e.g., cars). The continuous data acquisition
results in redundant 3D point clouds for large parts of the captured area (Kang & Lu
2011). To avoid the need for redundant storage, incremental updates and change detection
can be used to determine the differences between collected and already available 3D point
clouds. This allows for selective updating parts of the data.

The service-oriented architecture takes into account and is partially based on GIS-
oriented SOA-services, e.g.,:

e Web Processing Services (Schut 2007) for processing and analysis tasks

e Web Feature Services (Vretanos 2010), Web 3D Services (Schilling & Kolbe 2010) or
Web Coverage Services (Baumann 2012) for data provisioning

e Web View Service (Hagedorn 2010) for visualization tasks

Figure 6.8 illustrates such an service-oriented architecture with call relations between
components that are assigned to common layers of a service-oriented architecture (Doéllner,
Hagedorn & Klimke 2012; Prandi et al. 2014).

88 Chapter 6. Framework for Analysis and Visualization of 3D Point Clouds
Autonomous Physical World]
Capturing Structures & Cgptqnng A % i %
System Phenomena evice ——

L)

)

3D Point 3DP Thin Fat Visualization
oin D Point Visualization X Processing Tool
Clouds Clouds ; Client
Client
A A
-t —-—— — Network—m—— — —|—m — — — | — — —
4
Preprocessing Analysis Visualization
kNN Object Class Images
Determination Segmentation
5 Model Viewing Servi Data Provision
fewin Vi ;
Segmentation 3D Model o0 cel Service
Reconstruction (WVS) (WFS, W3DS)
I 7\
Normal Estimation | Simulation

.

)
7

2?7

Point Cloud Database

Data Access Interface

=
s e HE
oo 119

=2

il

Point
Attributes

Figure 6.7: System architecture illustrating data flow between components for data integration,
processing, analysis, provision, and visualization. Data types are illustrated with different colors:
3D points - orange, point attributes - green, LoD data structures - blue.

\»

r X

T
r —

Interaction |
Layer

Administration & Configuration Client |

| Analysis Clients

=)
m | Visualization Clients Lu

Y

Yy

Process
Layer

Integration

> Preprocessing >

Analysis

2

Analysis

Visualization

Visualization

Visualization

Determination

Object Class
Segmentation

Geodata
Provision

Functionality Normal 3D Model Graphi
phics Data
Layer Estimation Reconstruction 2> 2 | Provision
Seeen segenaion | simusion [50 endere
A
(
Data \ A\ Y ¢ A A A A Y Y Y Y
Raw Data .
Layer (3D Point Clouds) Point Cloud Database

Figure 6.8: Service-oriented architecture of the presented system. Functionalities are provided by
Web Processing Services (WPS), Web Feature Services (WFS), Web 3D Services (W3DS), and Web
View Services (WVS). Arrows indicate the usage relation between components.

Chapter 7

Case Studies and Applications

This section presents case studies that have been implemented, performed, and evaluated
based on concepts and techniques introduced in previous chapters. For each case study,
a description of the application domain, core requirements and challenges, input data,
and results is given and associated with the various processing, analysis, and visualization
techniques that have been developed. The following case studies are presented:

e Updating 3D city models based on classification and change detection for multi-
temporal 3D point clouds from aerial scans

e Monitoring of a railroad infrastructure based on 3D point clouds from mobile mapping

e Automatic tree detection and visualization based on 3D model extraction and hybrid
rendering of 3D point clouds from aerial scans.

7.1 Updating 3D City Models

3D city models and, more general, geographical virtual environments (GeoVEs) are used in
many disciplines and application domains such as urban planning, landscape architecture,
monitoring, documentation, marketing, analysis, simulation, and disaster management
(MacEachren & Kraak 2001; Doéllner, Baumann & Buchholz 2006; Wolff & Asche 2008;
Trinder & Salah 2011). These polygon-based 3D models can be constructed based on a
portfolio of geodata (Lafarge & Mallet 2012). Commonly required data sources include 3D
point clouds, orthophotos, oblique aerial images, surface models, and floor plans. However,
the construction of high quality, semantic-rich, geometrically complex, well textured, and
large-scale 3D city models with multiple LoDs (e.g., CityGML LoD2, LoD3) requires
time-intensive, costly, and manual workflows that cannot be performed in a fully automatic
way and become expensive in case of large areas and dense 3D point clouds. For that
reason, it is generally not feasible (e.g., from an economic perspective) to construct 3D
city models from the scratch once new geodata has been acquired. In practice, there is a
huge difference between the high degree of automation for data acquisition, which can be
performed in increasingly shorter time intervals, and the required manual effort to analyze
and convert results in 3D city models. In the long term, approaches are required to enable
continuation and update processes for 3D city models that reduce manual interventions,
processing costs, and provisioning times. This section presents an approach to enable
selective updates for 3D city models based 3D point clouds with classification and change
detection results introduced in Chapter 3 and Chapter 4.

90 Chapter 7. Case Studies and Applications

(a) 3D point cloud Berlin2013. (b) Old 8D city model of Berlin.

Figure 7.1: [llustration of the old 3D city model of Berlin that needs to be updated using the 3D
point cloud of the new data acquisition.

Table 7.1: Overview and characteristics of the used data to update the 3D city model of Berlin.

Name Type #Points Density Storage
Berlin2009 Aerial LiDAR 4.7 bln 5-10 pts/m? 75 GB
Berlin2013 Image Matching 80 bln 100 pts/m? 1.2 TB
Orthophoto Berlin20183 RGB and NDVI 10 cm res. 100 pts/m? 1.2 TB
Building Footprints Shapefile 1 527 k buildings 400 MB

7.1.1 Application Requirements and Input Data

The project aimed at updating the official 3D city model of Berlin, which was previously
built with significant manual efforts. As a key requirement, buildings that have been newly
constructed, significantly changed, or destructed should be detected based on the 3D point
cloud taken from a new data acquisition round. In particular, the approach aimed at
avoiding the complete reconstruction of all building models as a large number of details and
corrections had been incorporated yet in the previous model. Based on these requirements,
the approach included the following subtasks:

e R1 - Detection of buildings in the 3D city model, i.e., cadastre that cannot be found
in the 3D point cloud (outdated buildings).

e R2 - Detection of buildings with structural changes and, therefore, which need to be
updated in the 3D city model (changed buildings).

e R3 - Detection of buildings that can be found in the 3D point cloud but are not
present in the 3D city model (new buildings).

As a further requirement, this analysis should be available and provide the results, in
this case for the urban area of Berlin, within weeks.

7.1.2 Process

The change detection process required to update 3D city models can be divided into
the following tasks, which are illustrated in Figure 7.2. First, information from aerial
color and infrared images is added to the input 3D point cloud Berlin2013 (Chapter 5.3).

7.1. Updating 3D City Models 91

Floor Plan

3D Point Cloud 3D Point Cloud ALK / ALKIS / CityGML 3D Clty Model

New Outdated Up-to-date

Classification Change Detection Data Evaluation

-3

" J

Figure 7.2: [llustration of the workflow and processing pipeline used to update 3D city models.

Second, both 3D point clouds are partitioned into tiles (e.g., 500 x 500 meters) to enable
sequential processing, e.g., batch jobs on multiple processing systems. All tiles have
overlapping borders of 50 meters to guarantee correct processing results for points close to
tile borders. Third, the classification is performed for Berlin2013 to detect all building
points (Chapter 3). Forth, change detection is performed with Berlin2013 as target cloud
and Berlin2009 as reference cloud (Chapter 4). The next steps are specific for the presented
application and use classification and change detection information from previous passes.
To fulfill requirement R1 and R2, each building footprint of the 3D city model is compared
to the 3D point cloud Berlin2013. All points that are above a footprint are determined
and analyzed to generate attributes for the footprint with the following information:

e Number of building, vegetation, and ground points

Ratio of building, vegetation, and ground points

Number of changed points (e.g., distance > 1 meter)

Ratio of changed points (e.g., 50 percent)

Mean change of all points (e.g., 5 meter)

Maximal and minimal change of all points (e.g., 20 meter and 3 meter)

Changed area (e.g., 100 m?) and change volume (e.g., 2000 m?).

Buildings that need to be removed from the 3D city model (requirement R1) can be
identified by determining all footprints for which the building ratio is below a defined
threshold (e.g., 60 percent). The threshold depends on the characteristic of the urban
area. For example, buildings in suburban areas where trees cover roof parts do not have
a building ratio of 100 percent. The determination of footprints belonging to different
coverage intervals (e.g.,[70 — 80]) is used to facilitate the updating process and supports
building reconstruction tools.

Buildings with structural changes (requirement R2) are identified by evaluating the
parameters ratio changed points, mean change, and change volume. In general, changed
buildings have at least 20 percent changed points and a change volume of 200 m?3. All

92 Chapter 7. Case Studies and Applications

values below the mentioned thresholds result from different resolutions, capturing methods,
measuring inaccuracies, or minor roof constructions.

New building are not present in the cadastre or 3D city model (requirement R3), but
can be detected by evaluating the classified 3D point cloud Berlin2013. This is done by
removing all non-building points and all points above existing building footprints from
the 3D point cloud. The remaining points are grouped based on the local connectivity
to patches (Section 3.3.3). If a patch is larger than a defined threshold (e.g., 100 m?) it
indicates a possibly missing building, and the patch is used to compute a building outline.
The outline extraction is implemented based on the approach of Zhang et al. (2006) and
Zhou and Neumann (2008). For each patch, all boundary points are determined and used
to construct the building outline that is in general very detailed and jagged due to the
fussy structure of the input point cloud. The approach of Douglas and Peucker (1973) is
used to simplify the building outlines by reducing the number of vertices. The algorithm
provides smoothed as well as rectangular and orthogonal oriented surfaces (i.e., walls).

7.1.3 Results

All building outline polygons are exported in the ESRI Shapefile format that is a commonly
used in GIS (ESRI 1998). Building footprint polygons for requirement R1 and R2 are
derived from the original input shapes and attributed with additional information that
indicates the degree of change (Figure 7.3). All new buildings that are derived from the
classified 3D point cloud are provided as separate shape file (R3). The results were used as
input for domain-specific building reconstruction and modeling tools to update the 3D city
model. A comparison of the 3D city model before and after the update is illustrated in
Figure 7.4.

7.1. Updating 3D City Models 93

s i & ik ! : . o %h C

(¢) Illustration of building footprints that are up-to-date (gray), new (blue), and outdated or changed (red).

Figure 7.3: Change detection results for the area Berlin Schéneweide.

94 Chapter 7. Case Studies and Applications

(e) 3D city model Berlin - campus buch old. (d) 3D city model Berlin - campus buch new.

Figure 7.4: Illustration of the 8D city model of Berlin before (left) and after (right) the update.

7.2. Monitoring Railroad Lines 95

7.2 Monitoring Railroad Lines

Mobile mapping systems are well established to capture the environment of infrastructure
networks such as streets and railroad lines. The data acquisition can be performed in
an automatic way by mounting capturing systems (e.g., laserscanners or cameras) to
a vehicle used as its platform (e.g., car or train). Common applications are detection,
documentation, and monitoring of obstacles, (e.g., on railroad lines), narrows (e.g., for
heavy transporters), or potholes (e.g., on streets). Further applications are the object
detection and categorization (Chauhan et al. 2014) to document the state of the environment
(Golovinskiy, Kim & Funkhouser 2009). This section presents a use case and application
scenario related to the field of monitoring a railroad infrastructure. The aim is to detect
and categorize obstacles within a defined clearance profile in an automatic way based on
3D point clouds captured with a mobile mapping system mounted on a train.

7.2.1 Application Requirements and Input Data

The environment of railroad lines must be monitored in regular intervals for documentation,
safety, and planning reasons. The data acquisition is performed with mobile mapping
solutions, e.g., specific measurement trains, and is known also as Railborn Laserscanning
(Kohut et al. 2012). The 3D point clouds for the presented application was captured by
a the measurement train LIMEZ III of the DB Netz AG (Blug et al. 2007) shown in
Figure 7.5 (a). A typical 3D point cloud of a track section containing a small train station
is illustrated in Figure 7.5 (¢,d). The general objective is the detection and categorization of
objects and structures inside a defined clearance profile, e.g., shown in Figure 7.5 (b). These
profiles form a volume along the track containing all structures and objects of interest for
the mentioned applications. The requirements can be divided into the following subtasks:

e R1 - Filtering the input 3D point cloud and detecting outliers and duplicates in the
data, which typically occur due to reflections of LiDAR rays.

e R2 - Detection of points belonging to objects inside a defined clearance profile.

e R3 - Categorization of obstacles to enable an application specific filtering, e.g., based
on obstacle properties such as size, position, and height.

e R4 - Time-efficient processing workflow to analyze a set of clearance profiles for a
track sections (e.g., 20 km) within a reasonable processing time (e.g., a few minutes).

e R5 - Real-time visualization of the input 3D point cloud, clearance profiles as well as
processing and analysis results of R1 and R2.

e RG6 - Exploration, interaction, and filtering techniques for inspection of obstacles in
the context of the captured environment.

The input data is a mobile mapping point cloud with 825 million points for a track
section of 68 kilometers and an average point density of 12.2 million pts/km. The clearance
profile is a 2D profile composed of multiple lines and is illustrated in Figure 7.5 (b).

96 Chapter 7. Case Studies and Applications

(b)

Figure 7.5: (a) Measurement train "Limez III" of the DB Netz AG. (b) 2D clearance profile
example. (c) 3D point cloud of Railroads of captured track station. (d) Typical railroad environment
with a track signal.

7.2. Monitoring Railroad Lines 97

-—

s
. e .
.
.
s

Bas
e

SR '.',°:.]E‘
> 9 & .".o % T O LE: :. ot q,..-. I.E.
'.-'.- ..";‘.;l'- :..’i.' - ?.4 . %ﬂr
Wy . o
. '1'3.'_ . -ﬂ.b
p. '.._,'_:" “EL_.
& AT ool
‘L
b

(a) 3D point cloud with highlighted outliers (red). (b) 3D point cloud rendered without outliers.

Figure 7.6: [llustration of outlier detection results for the 3D point cloud of a track section.

7.2.2 Clearance Profile Analysis

The clearance profile analysis can be divided into filtering, clearance profile comparison,
and obstacle analysis tasks. First, an outlier and duplicate detection is performed to
identify all points that need to be removed to clean up the data. The implemented outlier
and duplicate detection process is similar to the presented approach in Section 3.3.1 and
fulfills requirement R1. Figure 7.6 compares the input data with outliers and the filtered
data. Second, all remaining points are compared with the clearance profile by determining
the horizontal and vertical distance to a given profile (R2). This task requires the most
computational effort and is performed with the change detection approach presented in
Section 4 to fulfill requirement R4. In contrast to the point-to-point comparison a point-
to-line computation has been implemented with a GPU-based approach. Figure 7.2.2 (a)
and (b) show different clearance profiles. The results are stored as per-point attributes
and can be visualized as shown in Figure 7.2.2 (c) and (d). Third, all points inside the
clearance profile are determined and grouped based on the local proximity. These resulting
segments are considered as obstacles that need to be categorized in the last stage. Each
segment is analyzed and attributed with the following information to characterize the
obstacle (requirement R3):

e #Points
e Volume

Bounds

e Mean segment height

Minimal distance to profile

e Maximal distance to profile

98 Chapter 7. Case Studies and Applications

Table 7.2: Processing performance of the clearance profile analysis of 3D point cloud Railroads.

Length Points Calculation Disk I/O Total

1 km 10.96 mln 1.1s 1.3s 24 s
5 km 54.43 mln 5.6 s 6.0 s 11.6 s
68 km 825 min 80 s 85 s 165 s
34.000 km — mln —s — s ~23 h

Exploration and inspection of the 3D point cloud and the processing results has been
implemented based on the out-of-core real-time rendering system presented in Section
5.4 (R5). Each point is attributed with outlier, distance, and segment information as
per-point attribute to enable filtering and highlighting during the interaction, shown in
Figure 7.2.2 (c) and (d). Obstacle segments with related attributes are stored in a data
structure used as input for the 3D visualization tool. Obstacles can be highlighted and
inspected by selecting them in the 3D scene or a list view provided by the 3D visualization
tool, illustrated in Figure 7.2.2 (e) and (f). The user interface provides features for filtering
obstacles based on user defined requirements such as size, volume, and location. Several
exploration features such as camera flights along the track or from one obstacle to another
support the exploration of the data.

7.2. Monitoring Railroad Lines 99

-

(c¢) Distance analysis clearance profile and 3D point (d) Visualization of points inside clearance profile.
cloud.

»: 196
Dimension (wx hx d): 0218000 x0.726001 x 030000 mxm xm
Vohume: oonn m
. s

sinv: sesvom o
Dt a2 n
it o000000 n
oan Height sss17 "
it Setmgs
R —— e hax
#points. i @ & 30 { e003
@ g s o
e 2085 0 s
Mot 7
meanveght ¥ [[13719 0 493
adgaton

| 9 got0 segment

“poims MinY MinDist MaxDist MeanHeight

5138 41 065 0 151429

152 239 3041 0765 -000900.. 339781
159 44 3079 1139 00109999 324348
10 4 3079 -0907 0 146848
164 172 3098 1114 0 159367
285 630 3991 -093% -000150.. 482653
286 63003 3992 -13015 485562
20 1693 3994 -1232 03685 49088
302 65 401 0621 0192 443195

30 1116 4076 -L006S -00840001 45234
I8 1105 4131 -08735 -00260003 491997
421 1087 42 0862 -00010.. 490662
433 1068 4247 0845 -000400.. 492197
47 1049 4256 08395 -00050.. 492176
484 123 434 0935 01625 478201
S01 1078 4371 -08475 -00410001 491026

(e) Segmentation of obstacles inside clearance profile. (f) Obstacle property inspection.

Figure 7.7: Visualization of 3D point clouds from railroad track used for clearance profile analysis.

100 Chapter 7. Case Studies and Applications

7.3 Automatic Tree Detection and Visualization

Vegetation objects such as trees represent one main compositional element of digital 3D
models of our environment required by a growing number of simulation, analysis, and
visualization applications. However, a detailed representation of vegetation in 3D spatial
models is generally not feasible due to the lack of up-to-date, object-based, and area-wide
tree surveys.

Traditionally, geo-spatial datasets containing individual trees, called tree cadastres,
are collected and maintained manually, which is an expensive and time-consuming process.
To reduce the amount of work, these tree cadastres are often restricted to selected regions
of interest, such as roadsides in the case of municipal tree cadastres. In addition, manually
created tree cadastres frequently do not provide data about the real-world appearance and
geometry of individual trees. Tree height and crown diameter, for example, are commonly
omitted in a municipal tree cadastre as it would require frequent updates due to vegetation
growth.

For these reasons, approaches for automatic detection, categorization, and visualization
of trees within 3D point clouds are required as part of the digital transformation of related
workflows. The automatic derivation of a tree cadastre based on dense 3D point clouds is a
feasible and cost-efficient approach to integrate area-wide, object-based vegetation models
into geographical virtual environments (e.g., 3D city models). This process does not only
enhance the contents regarding vegetation, but also provides the prerequisites for further
computational and simulation processes that can be built upon tree cadastres as the tree
data is based on a uniform analysis without any subjective bias resulting from a manual
data collection.

7.3.1 Application Requirements and Input Data

The application aims at automatically creating an area-wide tree cadastre. The input
data are 3D point clouds from aerial LIDAR or dense image matching acquisition with
classification results. The classification relies on points belonging to vegetation objects and
excludes points belonging to other surface categories. The requirements can be divided
into the following subtasks:

e R1 - Automation of data collection to create tree cadastres for arbitrarily large areas
without any manual interaction by analyzing dense 3D point clouds together with
aerial images.

e R2 - Single tree delineation to identify individual trees.

e R3 - Derivation of tree parameters such as tree position, height, crown diameter,
volume, and typical leaf color.

e R4 - Visualization and real-time rendering of tree cadastres.

7.3.2 Automatic Tree Detection

In the context of this thesis, tree detection is a data processing task that generates an
object-based tree cadastre for a geographic area based on a dense 3D point cloud (e.g., by
LiDAR or dense image matching) and related four-channel orthoimages. Various approaches

7.3. Automatic Tree Detection and Visualization 101

])\ 4 ™\
Tree Detection Tree Visualization %

Vegetation Identification Treo Tree Modeling
¢ Species g ¢ 1 ;
Textures

3D Point
Cloud

Visualization Client
Single Tree Delineation Tree Customization
Aerial l—b . Tree > . 3D Tree 3D City
Images Tree Property Determination Cadastre Rendering > Model Model
N J - J

Figure 7.8: Overview of tree detection and visualization pipeline.

have been presented in recent years (Jakubowski et al. 2013) that automatically extract
tree positions from 3D point clouds and aerial images, along with additional geometrical
parameters (Edson & Wing 2011), such as tree height and crown diameter. Further,
four-channel aerial images (RGBNIR) can be used to obtain information about tree species
(Zhang & Hu 2012). However, the determination of species is out of the scope of this work.
Tree detection involves three main consecutive steps:

1. Vegetation identification
2. Single tree delineation

3. Tree property determination

The common processing workflow is illustrated in Figure 7.8. Results can be used for a
variety of applications such as urban monitoring, tree cadastre maintenance, analysis, or
visualization.

Vegetation Identification

The first step is a classification of the input data, which is described in detail in Chapter 3
and in Richter et al. (2013). It serves to distinguish vegetation and non-vegetation points.
The classification can be performed automatically for arbitrarily large urban areas (R1)
and supports subsequent processing stages to operate on a subset of the input data, i.e.,
vegetation points. In addition, identified ground points are used to derive a digital terrain
model used as an elevation filter as well es to determine the tree height. Typically, only
vegetation points located at least 2.0 m above the ground are relevant and reliable for a
tree detection.

Single Tree Delineation

The second step operates on detected and filtered vegetation points and separates individual
tree objects from each other (R2). Existing methods for single tree delineation can be
classified into image-based and point-based approaches. Image-based approaches convert
the 3D point cloud into a 2D height map and apply image processing algorithms on
this height map, such as inverse watershed segmentation (Reitberger et al. 2007) or edge
detection (Chen & Zakhor 2009). In contrast, point-based approaches operate on the 3D
point data itself and use geometric approaches to delineate single trees, such as RANSAC
methods (Tittmann et al. 2011) or iterative, top-down classification based on horizontal
spacing rules (Li et al. 2012b).

102 Chapter 7. Case Studies and Applications

(c) Single trees visualized with a random color. (d) Single trees visualized with a random color.

Figure 7.9: 3D point clouds from dense image matching (left) and LiDAR (right) used for tree
delineation. Illustration of data characteristic (top) and each identified tree visualized with a random
color (bottom,).

The tree delineation algorithm presented in this section is based on the approach of Li
et al. (2012). It is a new, point-based approach and requires only a single iteration over
the 3D point cloud. During this iteration, each point in the 3D point cloud is assigned a
tree ID, while all points belonging to the same tree are assigned the same tree ID. To take
advantage of the horizontal spacing between treetops, the algorithm starts with the highest
point in the 3D point cloud. For the current point p, a sub procedure searches for the
closest tree point ¢ in the local neighborhood, i.e., the closest point that has already been
assigned a tree ID, while the radius of this neighborhood linearly depends on the elevation
of p above the ground. If such a point ¢ exists in the local neighborhood, p belongs to
the same tree as ¢ and is therefore assigned the same tree ID. Otherwise, if there is no
such point ¢ in the local neighborhood, p is assigned a new tree ID, which is typically the
case for the highest point within a tree. Figure 7.9 shows tree delineation results for dense
image matching and LiDAR data.

Tree Property Determination

For each detected tree, geometric and spectral properties are derived that describe the
individual tree characteristics. These parameters (R3) are important for statistical analysis,
monitoring, and visualization tasks (R4). Geometric properties are extracted from the 3D
point cloud and include position, height (elevation of the treetop relative to the ground),
crown diameter, and crown cover area for each tree. Spectral properties are extracted from
the related aerial image of the tree crown and include mean band ratios, mean NDVI, and
mean channels in HSV color space. The latter is used to identify the typical leaf color

7.3. Automatic Tree Detection and Visualization 103

of individual trees leading to more realistic virtual appearance. To minimize the effect
of shadows a shadow index (SI), introduced by Ono et al. (2010), is applied to identify
shadowed regions on the tree crown, and those areas are ignored during the computation of
spectral properties. As an additional application, spectral properties are useful to predict
individual tree species. Figure 7.10 illustrates a tree cadastre and related properties for an
urban area.

7.3.3 Tree Cadastre Visualization

The visualization and exploration of tree cadastres by geographical virtual environments
requires real-time rendering techniques (R4). To address this issue, instancing is used as
optimization technique to render a large number of similar tree objects that are customized
through their object-specific parameters (Bao et al. 2011).

The input of the tree visualization component is an object-based tree cadastre that
specifies the position and characteristics of each tree and a set of 2D tree textures that
contain the image of the tree from three different points of view (Figure 7.11 (a-c)). To
generate a 3D tree model, these textures are mapped onto separate, semi-transparent, inter-
secting quads as geometric primitives, commonly denoted as crossed billboards (Zhang et al.
2006) (Figure 7.11 (d-e)). Crossed billboards leverage the capabilities of modern texturing
hardware to create visually complex 3D models that can be efficiently rendered. However,
if viewed at close range (Figure 7.11 (d-e)) or from an elevated position (Figure 7.11 (e)),
crossed-billboard trees appear unrealistic due to the plane-like carrier structures of the
quads which results in particular in parallax artifacts. To increase the visual complexity of
nearby trees, billboard planes can be dynamically tessellated into a polygonal mesh that is
deformed using vertex displacement. The resulting tree models (Figure 7.11 (f-g)) exhibit
a more detailed, volumetric, and unstructured appearance leading to less parallax artifacts.
Tessellation and vertex displacement are performed on the GPU and are only applied to
tree models close to the viewer. To render large collections of 3D tree objects efficiently,
instancing is used as a means of minimizing the communication overhead between CPU and
GPU. Moreover, trees outside the view frustum are excluded from rendering to increase
performance. To obtain a more diverse and realistic appearance, tree models are customized
by their individual characteristics defined in the tree cadastre such as tree height and
typical leaf color. Color transfer from the aerial image to the tree texture takes place in
HSV color space and involves the following tasks:

e The tree detection process extracts the mean hue (h1), saturation (s1), and value
(v1) channels from each tree crown in the related region of the aerial image; these
results are stored as properties per-tree attributes (Figure 7.10).

e A preprocessing step extracts the mean value channel (v2) of all pixels belonging to
leafs of a tree texture.

e The 3D rendering engine generates tree texture for each tree on-demand by using
the per-tree attributes (mean hue (h1) and saturation (s!)) and the value channel
of the tree species texture. The new pixel color is computed by v — v2 to have an
appearance that looks like the tree texture with a characteristic color similar to the
real tree.

104 Chapter 7. Case Studies and Applications

(a) 2D illustration of tree cadastre. Tree positions are illustrated as red circles over the aerial image.

pul X N z HEIGHT AREA VOLUME diameter NIR ratio R_ratio G_ratio B ratio meanNDVI meanGRI meanH means meanV

1 11077.859375 |36589.867188 34.574821 24.174183 38.408363 | 6382.721680 |12.225761 |0.427899 0.171263|0.251439 0.149399 0.428998 |0.190539 |0.303833 |0.407666 0.405436
2 11085.649414 36689.855469 | 34.470001 2.882927 |4.825389 6393.087891 1.535969 |0.392317 0.185831 |0.260629 0.161223 |0.362706 |0.172655 |0.303530 |0.383946 0.477820
3 11068.016602 |36590.792969 34.564438 26.158672 | 70.617294 | 7854.318848 22.478184 |0.414167 0.182921 |0.243466 0.159447 |0.399067 |0.154980 |0.299156 |0.351967 0.404004
4 11233.459961 |36725.082031 34.972347 2.253052 |7.995431 7859.227539 2.545025 |0.341153 0.2173240.278259 0.1632640.243790 |0.139808 |0.260258 |0.422685 0.563836
5 11079.750000 [36700.539063 34.467731 14.357597 79.315971 8670.169922 25.247057 |0.386286 0.221133|0.263300 0.1292800.286038 |0.099599 |0.221488 |0.515620 0.518830
6 11121.541016 | 36679.667969 34.555191 2.045975 |11.771352 | 8685.430664 3.746938 |0.366743 0.229204|0.272542 0.131511 |0.242699 |0.095736 |0.221230 |0.515979 0.541982
7 11143.336914 |36670.730469 34.714821 2.139118 |14.530262 |8705.996094 4.625126 |0.358058 0.240134|0.274457 0.127350|0.204564 |0.069759 |0.206778 |0.531311 0.575910
8 11218.727539 |36672.527344 35.054535 6.812069 |5.398809 8727.123047 |1.718494 |0.381394 0.208315 |0.264448 0.1458420.306852 |0.128806 |0.247769 |0.449924 0.517176
9 11045.197266 |36572.085938 34.631935 2.188786 |5.387990 8735.536133 1.715050 |0.343590|0.243927|0.250081 0.162401 |0.183518 |0.022266 |0.186747 |0.360254 0.498356
10 11062.981445 36691.566406 34.429066 4.062965 |6.340085 8743.706055 2.018112 |0.291210 0.270966 |0.266247 0.171577 |0.043342 |-0.002294 |0.171361 |0.373373 0.557975
11 11106.987305 |36522.496094 34.700001 3.007000 |16.272163 |8771.252930 5.179591 |0.393396 0.196877 |0.267714 0.1420130.342187 |0.160482 |0.271330 |0.472763 0.475112
12 11147.090820 |36567.812500 34.747456 9.266506 |11.208751 | 8840.861328 3.567856 |0.410167 0.169196 |0.245800 0.1748370.418512 |0.185095 |0.350201 |0.328356 0.390292
13 11063.917969 | 36742.304688 34.428955 2.230885 |8.633767 8848.923828 2.748214 0.291013 0.275507 |0.263375 0.170105 |0.028034 |-0.022401 |0.148081 |0.382437 0.638909
14 11162.313477 | 36583.242188 | 34.804634 3.055672 |5.193244 8856.110352 1.653061 |0.412211 0.186417|0.258325 0.143047 |0.387759 |0.170864 |0.282901 |0.442696 0.452022
15 11057.179688 |36506.812500 34.730053 6.163193 |25.890482 | 8945.968750 8.241197 |0.411570 0.188878 |0.257155 0.1423980.376145 |0.154513 |0.270884 |0.439286 0.449937
16 11162.304688 |36562.433594 34.806179 17.404655 94.657677 |10002.708984 30.130474 |0.416950 0.183096 |0.255095 0.144859 0.393314 |0.168147 |0.280911 |0.430597 0.436317
17 11000.956055 |36696.753906 34.400002 5.129997 29.655584 |10108.168945 |9.439666 |0.399821 0.1893580.258412|0.152409 |0.362802 |0.158284 |0.283488 |0.4092510.434778
18 11062.597656 | 36618.250000 34.499634 17.220921 |29.331005 | 10459.604492 |9.336349 |0.419943 |0.1836700.233866 |0.162521 |0.402229 |0.134058 |0.292640 |0.311922|0.393522
19 11123.910156 |36544.949219 34.705967 3.376354 |19.766783 | 10493.394531 |6.291962 |0.419393 0.185593 |0.254087 0.1409270.391272 |0.159352 |0.270644 |0.442166 0.436626

(b) Sample of a tree cadastre shapefile. FEach line represents an individual tree with related attributes such as
position, geometric properties, and color information.

Figure 7.10: Results of single tree delineation (a) and tree property determination (b) for the
campus area of the Hasso Plattner Institute.

() (b) (d) (e) () ()

Figure 7.11: Basic principle of instancing-based tree rendering. The input is a small set of 2D
tree textures (a-c) used to form a crossed-billboard tree (d-e). To prevent parallaz artifacts at close
range, trees are adaptively tessellated (f-g).

7.3. Automatic Tree Detection and Visualization 105

7.3.4 Results

The presented concepts and techniques have been implemented as part of the software
framework for 3D point clouds. An evaluation of tree detection accuracy and visualization
performance was performed on a desktop computer with an Intel Core i5 CPU at 3.30
GHz (4 cores and 4 threads), 8 GB of main memory, and a NVIDIA GeForce GTX 760
with 2 GB of video memory. The input 3D point cloud was generated through dense
image matching and has a resolution of 100 points/m?. The automatically generated tree
cadastres were compared with manually classified reference data for two selected regions
shown in Figure 7.12. The suburban area (Figure 7.12 (a)) contains a significant number
of isolated, small-sized and medium-sized trees (up to 10 m) and some large, grouped trees.
The urban forest (Figure 7.12 (b)) is mainly constituted by large, grouped trees (above
15 m). For three different height categories, the achieved precision, recall, and F-Measure
were calculated as shown in Table 7.3. In both regions, small, isolated trees (below 10 m)
are robustly detected, as indicated by the high recall of 97.4% for the suburban area and
92.3% for the urban forest. The least number of false positives occurred in the highest tree
category (above 15 m), resulting in the highest precision of 80.3% for the suburban area
and 91.1% for the urban forest. In the suburban test area, the precision is mainly affected
by dense image matching errors associated with city furniture, such as poles and traffic
signs, resulting in a number of false positives.

Figure 7.9 shows a visualization of single tree delineation results for a dense forest
area. Most tree crowns were separated correctly, as indicated by different colors, but the
automatic approach fails at separating tree crowns that are tightly interconnected, creating
some degenerated large segments. This is especially due to the limited ability of 3D point
clouds generated by dense image matching to describe the complete, three-dimensional
structure of dense vegetation. For visualization purposes, however, the uncorrected tree
cadastre may already be sufficient to derive a plausible and realistic model of the overall
vegetation. Figure 7.13 shows two visualizations of an automatically generated tree cadastre
for an urban area as part of a virtual 3D city model. Figure 7.13 (a) demonstrates how
individual tree models are scaled to their individual height, as indicated by the group of
old trees on the left and the small roadside trees on the right. Moreover, different leaf
colors are observable that were extracted from the aerial image and mapped onto the
individual tree crowns. Figure 7.13 (b) shows an urban forest from a distant view. Tree
rendering performance has been evaluated on a synthetic, randomly generated tree cadastre,
a window resolution of 1920 x 1080, and two fixed camera orientations. During the test,
the amount of trees was gradually increased to investigate the impact on the achieved
frame rate in frames per second (FPS), as illustrated in Figure 7.14. Three different render
settings were compared to each other: First, all trees were rendered with full tessellation
(294 triangles per tree) and without culling. Second, adaptive tessellation was enabled to
reduce the geometric complexity for distant trees to a minimum of 6 triangles per tree.
Third, adaptive tessellation was supplemented with individual tree culling, further reducing
the rendering overhead for trees outside the view frustum. The first setting shows similar
performance for both camera orientations, achieving a frame rate of 10 FPS for up to 60k.

106 Chapter 7. Case Studies and Applications

-

(a) Isolated trees. (b) Urban forest.

Figure 7.12: Querview of the two test areas with mostly isolated, urban trees (a) and urban forest

(b)-

(a) Isolated trees. (b) Urban forest.

Figure 7.13: Automatically generated tree models visualized by a virtual 8D city model.

Table 7.3: Tree detection accuracy measured as precision, recall, and F-Measure.

Tree height (m) Count Prec. Recall F-Meas.
Suburban area

[2;10) 214 71.9% 97.4% 82.7%

[10; 15) 115 69.6% 84.5% 76.3%

[15; 00) 160 80.3% 72.1% 76.0%

[2; 00) 489 73.7% 85.3% 79.1%
Urban area

[2;10) 61 62.1% 92.3% 74.2%

[10; 15 16 78.6% 84.6% 81.5%

)
[15; 00) 341 91.1% 84.4% 87.6%
) 418 86.0% 85.3% 85.6%

[2; 00

7.3. Automatic Tree Detection and Visualization

107

60 60
2 50 250
= =
=40 40
230 £30
2 20 220
8 s
=10 =10

0 0

0 200k 400k 600k 800k 1000k 0 200k 400k 600k 800k 1000k

Number of trees
A Full tessellation, no culling

(a)

Number of trees
® Adaptive tessellation plus culling

(b)

W Adaptive tessellation, no culling

Figure 7.14: Tree scene used for performance evaluation (a) and frame rate depending on the
number of rendered trees (b).

Chapter 8

Conclusions

How can physical surroundings be captured in an efficient way? How can 3D point clouds
become the central source to generate digital twins? How can we use workflows based on
3D point clouds to document, monitor, and identify spatial objects and environments?
How can spatial analytics based on 3D point clouds help us to draw conclusions and get
insights?

This thesis contributes to these questions. It shows that 3D point clouds serve as a
universal digital representation for spatial 3D models, provided that storage, processing,
analysis, and visualization are based on efficient and reliable algorithms and data structures
that reflect the specific characteristics of 3D point clouds. In that respect, this thesis
presents a number of concepts and solutions to selected challenges, which contribute to
establish 3D point clouds as a fundamental and essential category of 3D spatial data.
Obviously, there was, is, and still will be demand for polygonal 3D modeling approaches
(e.g., digital terrain models, 3D city models). Nevertheless, the main attraction and key
strengths of 3D point clouds include their ability to represent any geometry — regardless of
their shape, topology or morphology — and provide a uniform digital representation. A
number of today’s systems and applications use polygonal 3D models as a compromise
because they cannot adequately handle raw 3D point data.

3D point clouds are already used in a variety of application domains and typically
generated or captured by ground-based or airborne remote sensing systems at high precision
and density. Novel technologies, including image-based 3D reconstruction, more and more
allow for real-time 3D point cloud acquisition that will produce dense 3D point clouds by
standard hardware. For example, smartphones will become de-facto handheld scanners
to capture the environment in 3D using stereo cameras and image-matching; small and
autonomous unmanned aerial vehicle (UAVs) will be used to capture sites and interiors
fully automatically. Hand in hand with these developments, the increasing amount of data
demands for specialized storage, processing, and visualization software solutions that are
designed for and driven by the specific properties of 3D point clouds. Most traditional
systems, such as geoinformation systems, will most likely not be able to fully cope with these
specific needs as their data structures and processing paradigms as well as their storage and
systems architectures have not been designed with 3D (or even 4D) point clouds in mind.
Furthermore, there is not only a need for parallel and GPU-accelerated processing as well as
out-of-core processing concepts, there is also a strong need for distributed, service-oriented
systems to enable the seamless integration of 3D point cloud services into arbitrary IT
workflows and services.

The framework developed throughout this thesis shows that components to manage,
process, and visualize massive 3D point clouds can be efficiently implemented in terms of a

110 Chapter 8. Conclusions

fine-grained service family. For their implementation, appropriate spatial data structures
have been developed to cope with massive amounts of data as presented in Chapter 2.
Concepts and techniques for the classification turned out to be essential to attribute point
cloud data with semantics information. This way, applications and systems get a far more
effective access to the information contained and represented by 3D point clouds — a key
step to reduce their implementation complexity as they do not have to take care of the
geo-specific preprocessing, processing, and classification phases (Chapter 3). Another main
high-level functionality provided for 3D point clouds represents massive parallel processing
using GPU-based processing, and, as key application, this allows for 3D difference analysis
among point clouds taken for the same region at different points in time (Chapter 4).
Change detection appears to have a still untapped potential for both traditional spatial as
well as non-spatial fields of applications.

Complementary, the framework also developed a number of out-the-box visualization
approaches for massive 3D point clouds that are based on the spatial data structures
used to implement an out-of-memory data management. In particular, the developed
3D rendering engine enables to select, combine, and configure point-based rendering
techniques. It allows to adjust the appearance of the captured environment (i.e., based on
semantics information), leads to an improved visual representation, enhances recognition
of objects within 3D point cloud depictions, and facilitates visual filtering and highlighting
(Chapter 5). All concepts and techniques have been implemented and evaluated within the
thesis’ framework and demonstrate the feasibility and applicability for common real-world
data sets (Chapter 6). In addition, the thesis verifies the relevance of classification, change
detection, and visualization techniques with case studies and related projects (Chapter 7).

From a software engineering point of view, one essential requirement to build complex
software systems based on 3D point clouds represent service-oriented architectures (SOA).
The work in this thesis is based on a strong decomposition of functionality into components
that can be deployed within SOA-based IT landscapes in terms of services. These compo-
nents have been designed in a modular way to operate in arbitrary IT solutions, without
assuming a specific GIS. This, in particular, is important as the bigger part of future appli-
cations will use 3D point clouds as spatial data source for purposes in completely different
domains (e.g., insurance, facility management, agriculture, security), which commonly need
that level of abstraction regarding geodata management. Insofar, the presented system
architecture can serve as general framework for designing, implementing, and operating
generic services based on 3D point clouds.

8.1 Future Work

The presented concepts and techniques focussing on 3D point clouds provide the basis for
a number of future research directions.

e Analytics for terrestrial 3D point clouds: 3D point clouds from mobile mapping
scans will vastly increase in the future. These datasets represent ground-aligned
or near-ground assets, such as building facades, cars, traffic lights, and trees as
well as static and non-static natural or manmade objects, which appear to be
essential to achieve and operate many applications (e.g., monitoring, simulations,
asset management). For that purpose, classification strategies for aerial 3D point
clouds cannot directly be used due to different scales, data characteristics, and

8.1. Future Work 111

relevant structures to be detected. Hence, there is a strong need for classification
concepts and techniques specific to mobile mapping data to classify these "assets"
of urban areas (Lehtoméaki et al. 2016). A fusion of aerial and mobile 3D point
clouds is promising and would enable to implement novel classification approaches. In
addition, automotive sensor data, e.g., provided by cars, can provide spatio-temoral
data (Voland & Asche 2017) for analysis tasks. Deep-learning techniques can be
seen as an effective approach as they can be trained and as they are able to resolve
the many ambiguities inherent to these assets and their partial representation in 3D
point clouds.

e Database technology for 3D point clouds: A recurring task for almost all ap-
plications is efficient data access and management. A distributed and redundant
data acquisition by many devices will lead to streams of 3D point clouds for over-
lapping areas and a large degree of redundancy. Further research should focus on
infrastructures and spatial databases for massive 3D point clouds that could be used
as a kind of "black boz" for different applications (Cura, Perret & Paparoditis 2017;
van Qosterom et al. 2015). Key requirements are the ability to store 3D point clouds
from heterogeneous sources, captured at different points in time, with different char-
acteristics and per-point attributes. Advantages of databases are transaction, backup,
migration, concurrency, and user management mechanisms. In addition, the database
must support a fast and parameterizable data selection based on different attribute
layers and LoDs. A possible request could be to return all points within a defined
area (e.g., along a street), belonging to a specified object class (e.g., vegetation), with
a defined degree of change (e.g., 2 meter), captured at a period of time (e.g., between
2005 and 2007), with a specific NDVI value (e.g., larger than 0.5), etc. These kind of
customized requests are essential to establish generic point cloud infrastructures for
different industries. The general idea can be summarized in database technology for
"4D point clouds".

e Analytics for massive redundant 3D point clouds: A continuous data acqui-
sition, e.g., collected with sensors on vehicle fleets, results in streams of 3D points
with a high degree of redundancy, for example in the case of a laser scanning system
installed on garbage cars, UAVs, or trains, providing up-to-date or real-time 3D point
clouds of entire cities or along infrastructure networks. A future research direction
represent analytics functions that detect and handle massive redundancy, for example,
by separating static and dynamic entities. In addition, a reliable detection and
detailed classification of different assets such as vegetation structures (e.g., separation
of leafs and brunches), city furniture, or construction site changes is required.

e Service-based visualization and standardization: Web-based solutions for
aerial images, maps, and 3D city models benefit from OGC standards and pro-
vide interoperability. The unrestricted availability has massively promoted the use
of maps by professional and private users (Engemaier & Asche 2011). Today, the
first web-based rendering systems for 3D point clouds are available. These systems
apply rendering capabilities of modern browsers using WebGL and OpenGL ES.
The rapidly growing popularity and use of 3D point clouds with different formats,
services, and applications require to develop and establish future standards for data
storage, exchange, and provision. Hence, these standards will facilitate opening up

112

Chapter 8. Conclusions

new markets and providing 3D point clouds to a large number of businesses and
users.

Machine-learning for point cloud classification: A key promising area for
future extensions, which can be integrated in a canonical way into the presented
system architecture developed in this thesis, are procedures to analyze 3D point
clouds based on machine learning techniques (Qi et al. 2017; Yang, Zhang & Li 2017;
Ao et al. 2017). They will allow us to derive more precise asset information, possibly
with a high degree of detail and a high degree of robustness provided that appropriate
training data sets are given.

In that respect, 3D point clouds exhibit their power of representation: they virtually

have no limitations regarding model, geometry, structure, or topology of what is being
represented. They are particularly suitable to interpret and extract those parts and objects

that are of interest by an application or service. As a prerequisite, the various processing
modules presented in this thesis along the extensible system architecture allow for future

extensions both for generic as well as for application-specific purposes.

List of Publications

The work presented in this manuscript appeared previously in the following publications:

Journal Papers and Book Chapters

1.

Discher, S., Richter, R., Trapp, M. & Déllner, J. Service-Oriented Processing
and Analysis of Massive Point Clouds in Geoinformation Management. In Service
Oriented Mapping: Changing Paradigm in Map Production and Geoinformation
Management (eds Déllner, J., Jobst, M. & Schmitz, P.) in press (Springer, 2018).
ISBN: 978-3-319-72433-1.

Richter, R., Behrens, M. & Déllner, J. Object class Segmentation of Massive 3D
Point Clouds of Urban Areas Using Point Cloud Topology. International Journal of
Remote Sensing 34(23), 8408-8424. 1SsN: 0143-1161 (2013).

Richter, R. & Déllner, J. Concepts and Techniques for Integration, Analysis and
Visualization of Massive 3D Point Clouds. Computers, Environment and Urban
Systems 45, 114-124 (2014).

Richter, R. & Dollner, J. Integrierte Echtzeit-Visualisierung von massiven 3D-
Punktwolken und georeferenzierten Texturdaten. Photogrammetrie Fernerkundung
Geoinformation (PFG) 2011(3), 145-154 (2011).

Richter, R., Kyprianidis, J. E. & Déllner, J. Out-of-Core GPU-based Change
Detection in Massive 3D Point Clouds. Transactions in GIS 17(5), 724-741. 1SSN:
13611682 (2013).

Stojanovic, V., Richter, R., Dollner, J. & Trapp, M. Comparative Visualization Of
Bim Geometry And Corresponding Point Clouds. International Journal of Sustainable
Development and Planning 13(1), 12 23 (2018).

Conference Papers

7.

Discher, S., Richter, R. & Déllner, J. Interactive and View-Dependent See-Through
Lenses for Massive 3D Point Clouds. In Advances in 3D Geoinformation 2016
(Springer International Publishing, 2016), 49-62.

Discher, S., Richter, R. & Dollner, J. Konzepte fir eine Service-basierte Systemar-
chitektur zur Integration, Prozessierung und Analyse von massiven 3D Punktwolken.
In 84. Wissenschaftlich-Technische Jahrestagung der DGPF (2014).

Oehlke, C., Richter, R. & Déllner, J. Automatic Detection and Large-Scale Visual-
ization of Trees for Digital Landscapes and City Models based on 3D Point Clouds.
In 16th Conference on Digital Landscape Architecture (DLA 2015) (2015), 151-160.

113

114 List of Publications

10. Richter, R., Discher, S. & Dollner, J. Out-of-Core Visualization of Classified 3D
Point Clouds. In 3D Geoinformation Science: The Selected Papers of the 3D Geolnfo
2014 (2015), 227-242.

11. Richter, R. & Doéllner, J. Bestandsaktualisierung von 3D-Stadtmodellen durch
Analyse von 3D-Punktwolken. In Tagungsband der 3-Lindertagung DGPF (2010).

12. Richter, R. & Dollner, J. Ein Ansatz fiir die Differenzanalyse zwischen 3D-Punktwolken
und 3D-Referenzgeometrie. In 31. Wissenschaftlich-Technische Jahrestagung der
DGPF (2011), 463-471.

13. Richter, R. & Déllner, J. Qut-of-core Real-time Visualization of Massive 3D Point
Clouds. In 7th International Conference on Computer Graphics, Virtual Reality,
Visualisation and Interaction in Africa (2010), 121-128.

14. Richter, R. & Dollner, J. Potentiale von massiven 3D-Punktwolkendatenstromen. In
Geoinformatik 2012 - Mobilitit und Umwelt (2012), 215-222.

15. Richter, R. & Déllner, J. Semantische Klassifizierung von 3D-Punktwolken fiir
Stadtgebiete. In Terrestrisches Laserscanning 2012 (Wifiner-Verlag, 2012), 127 —134.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Bibliography

Abdelhafiz, A & Niemeier, W. Developed technique for automatic point cloud
texturing using multi images applied to a complex site. JAPRS XXXVI, 1-7
(2006).

Abdelhafiz, A, Riedel, B & Niemeier, W. Towards a 3d true colored space by the
fusion of laser scanner point cloud and digital photos. International workshop 3DArch
(2005).

Alexander, C., Tansey, K., Kaduk, J., Holland, D. & Tate, N. J. An Approach to
Classification of Airborne Laser Scanning Point Cloud Data in an Urban Environment.
International Journal of Remote Sensing 32(24), 9151-9169 (2011).

America, M. & America, J. Web Processing Service Best Practices Discussion Paper,
Open Geospatial Consortium. 2012.

Anil, E., Tang, P., Akinci, B. & Huber, D. Assessment of Quality of As-is Building
Information Models Generated from Point Clouds Using Deviation Analysis. In
Proceedings of the SPIE Vol. 7864A, Electronics Imaging Science and Technology
Conference (IS€T), 3D Imaging Metrology (2011).

Ao, Z., Su, Y., Li, W., Guo, Q. & Zhang, J. One-Class Classification of Airborne
LiDAR Data in Urban Areas Using a Presence and Background Learning Algorithm.
Remote Sensing 9(10), 1001. 1SSN: 2072-4292 (2017).

Arabsheibani, R., Abedini, A. & Kanani Sadat, Y. Comparison of outlier detection
at the edges of point clouds using statistical approach and fuzzy methodology:
ground-based laser scanner field experiment and randomly simulated point cloud.
Geodesy and Cartography 41(3), 119-130. 1SsN: 2029-6991 (2015).

Arikan, M., Schwérzler, M., Flory, S., Wimmer, M. & Maierhofer, S. O-snap:
Optimization-based Snapping for Modeling Architecture. ACM Transactions on
Graphics 32(1), 6:1-6:15. 1SSN: 07300301 (2013).

Autodesk, 123D Catch. http://www.123dapp.com/catch. (Last accessed 20.11.2017),
2017.

Awrangjeb, M. & Fraser, C. S. Automatic Segmentation of Raw LIDAR Data for
Extraction of Building Roofs. Remote Sensing 6(5), 3716-3751. 1SSN: 2072-4292
(2014).

Bao, G., Meng, W, Li, H, Liu, J & Zhang, X. Hardware instancing for real-time
realistic forest rendering. In SIGGRAPH Asia 2011 Sketches (2011), 6-7. ISBN:
9781450308076.

115

116

Bibliography

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Barber, D. M., Holland, D. & Mills, J. P. Change detection for topographic mapping
using three- dimensional data structures. International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences 37(B4), 1177-1182 (2008).

Barrett, E. C. & Curtis, L. F. Introduction to Environmental Remote Sensing 3rd.
ISBN: 978-0412371707 (Springer, 1993).

Baumann, P. Web Coverage Service (WCS) Interface Standard, Version 2.0.1 Open
Open Geospatial Consortium Inc. 2012.

Becker, C. and Héni, N. and Rosinskaya, E. and d’Angelo, E. and Strecha, C.
Classification of Aerial Photogrammetric 3D Point Clouds. ISPRS Annals of Pho-

togrammetry, Remote Sensing and Spatial Information Sciences IV-1/W1, 3-10
(2017).

Beckmann, N., Kriegel, H.-P., Schneider, R. & Seeger, B. The R*-tree: an efficient
and robust access method for points and rectangles. In ACM SIGMOD (1990), 322—
331.

Bentley, J. L. Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9), 509-517 (1975).

Besl, P. J. & McKay, N. D. A method for registration of 3-D shapes. IEEFE
Transactions on Pattern Analysis and Machine Intelligence 14(2), 239-256 (1992).

Bettio, F., Gobbetti, E., Marton, F., Tinti, A., Merella, E. & Combet, R. A point-
based system for local and remote exploration of dense 3D scanned models. In The

10th International Symposium on Virtual Reality, Archaeology and Cultural Heritage
VAST (2009), 25-32.

Beutel, A., Mglhave, T., Agarwal, P. K., Boedihardjo, A. P. & Shine, J. A. TerraNNI:
natural neighbor interpolation on a 3D grid using a GPU. In Proceedings of the 19th
ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems (2011), 64-74. 1SBN: 9781450310314.

Beutel, A., Mglhave, T. & Agarwal, P. K. Natural neighbor interpolation based grid
DEM construction using a GPU. In 18th SIGSPATIAL International Conference on
Advances in Geographic Information Systems (2010), 172-181. 1SBN: 9781450304283.

Blug, A., Baulig, C., Dambacher, M., Wolfelschneider, H. & Hofler, H. Novel
platform for terrestrial 3D mapping from fast vehicles. PIA0Q7 - Photogrammetric
Image Analysis 36(3/W49B)), 7-12 (2007).

Botsch, M. & Kobbelt, L. High-quality point-based rendering on modern GPUs.
Pacific Conference on Computer Graphics and Applications, 335-343 (2003).

Botsch, M., Hornung, A., Zwicker, M. & Kobbelt, L. High-quality surface splatting
on today’s GPUs. In Eurographics Symposium on Point-Based Graphics (2005),
17-24. 18BN: 3-905673-20-7.

Boubekeur, T., Duguet, F. & Schlick, C. Rapid Visualization of Large Point-Based
Surfaces. The 6th International Symposium on Virtual Reality, Archaeology and
Cultural Heritage VAST (2005).

Broring, A., Stasch, C. & Echterhoff, J. Sensor Observation Service Interface
Standard, Version 2.0 Open Geospatial Consortium Inc. 2012.

Bibliography 117

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Butkiewicz, T., Chang, R., Wartell, Z. & Ribarsky, W. Visual analysis and semantic
exploration of urban LIDAR change detection. Computer Graphics Forum 27(3),
903-910. 15SN: 01677055 (2008).

Callieri, M., Ponchio, F., Cignoni, P. & Scopigno, R. Virtual Inspector: a flexible
visualizer for dense 3D scanned models. IEEE Computer Graphics and Applications
28, 44-55 (2008).

Campbell, J. B. & Wynne, R. H. Introduction to Remote Sensing 5th. ISBN: 978-
1609181765 (The Guilford Press, 2011).

Carlberg, M., Gao, P., Chen, G. & Zakhor, A. Classifying Urban Landscape in
Aerial Lidar Using 3D Shape Analysis. In 16th IEEFE International Conference on
Image Processing (ICIP) (2009), 1701-1704.

Carlberg, M., Gao, P., Chen, G. & Zakhor, A. Urban Landscape Classification
System Using Airborne LiDAR (2008).

Cavegn, S., Haala, N., Nebiker, S., Rothermel, M. & Tutzauer, P. Benchmarking
High Density Image Matching for Oblique Airborne Imagery. ISPRS - International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
XL-3(September), 45-52. 1SSN: 2194-9034 (2014).

Charaniya, A. P., Manduchi, R. & Lodha, S. K. Supervised Parametric Classification
of Aerial LiDAR Data. In Computer Vision and Pattern Recognition Workshop (2004),
25-32.

Chauhan, I., Brenner, C., Garg, R. D. & Parida, M. A New Approach to 3D Dense
LiDAR Data Classification in Urban Environment. Journal of the Indian Society of
Remote Sensing 42(3), 673-678. 1SsN: 0255660X (2014).

Che, E. & J.Olsen, M. Fast ground filtering for TLS data via Scanline Density
Analysis. ISPRS Journal of Photogrammetry and Remote Sensing 129, 226-240
(2017).

Chen, G. & Zakhor, A. 2D Tree Detection in Large Urban Landscapes Using Aerial
Lidar Data. In 16th IEEE International Conference on Image Processing (ICIP)
(2009), 1693-1696.

Chen, Q., Wang, H., Zhang, H., Sun, M. & Liu, X. A Point Cloud Filtering Approach
to Generating DTMs for Steep Mountainous Areas and Adjacent Residential Areas.
Remote Sensing 8(1) (2016).

Chen, Z., Gao, B. & Devereux, B. State-of-the-Art: DTM Generation Using Airborne
LIDAR Data. Sensors 17(1), 150. 1SsN: 1424-8220 (2017).

Cheng, J., Grossman, M. & McKercher, T. Professional CUDA C Programming 1.
Edition. 1SBN: 978-1118739327 (John Wiley & Somns, 2015).

Clode, S., Kootsookos, P. & Rottensteiner, F. The automatic extraction of roads
from LIDAR data. ISPRS 35(3B), 231-236 (2004).

Clode, S. & Rottensteiner, F. Classification of Trees and Powerlines from Medium
Resolution Airborne Laserscanner Data in Urban Environments. In APRS Workshop
on Digital Image Computing (WDIC) (2005), 97 —102.

118

Bibliography

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Coutinho-Rodrigues, J., Siméo, A. & Antunes, C. H. A GIS-based multicriteria
spatial decision support system for planning urban infrastructures. Decision Support
Systems 51(3), 720-726. 1sSN: 01679236 (2011).

Cura, R., Perret, J. & Paparoditis, N. A scalable and multi-purpose point cloud
server (PCS) for easier and faster point cloud data management and processing.
ISPRS Journal of Photogrammetry and Remote Sensing 127, 39-56 (2017).

Da Silva, C. R., Centeno, J. A. S. & Henriques, M. J. Automatic Road Extraction on
Aerial Photo and Laser Scanner Data. International Conference on Environmental
and Computer Science 19, 99-103 (2011).

Dachsbacher, C., Vogelgsang, C. & Stamminger, M. Sequential point trees. ACM
Transactions on Graphics 22, 657-662 (2003).

D’Angelo, P. Image matching and outlier removal for large scale DSM generation.
In ISPRS Technical Commission I Symposium (2010), 1-5.

Daniels, J, Ha, L., Ochotta, T & Silva, C. Robust Smooth Feature Extraction from
Point Clouds. In IEEE International Conference on Shape Modeling and Applications
(2007), 123 —136.

Dey, T., Li, G. & Sun, J. Normal estimation for point clouds: A comparison study
for a Voronoi based method. Furographics Symposium on Point-Based Graphics,
39-46 (2005).

Déllner, J., Baumann, K. & Buchholz, H. Virtual 3D City Models as Foundation
of Complex Urban Information Spaces. In 11th international conference on Urban
Planning and Spatial Development in the Information Society (2006), 107-112. ISBN:
9783950213904.

Doéllner, J., Hagedorn, B & Klimke, J. Server-based rendering of large 3D scenes
for mobile devices using G-buffer cube maps. In Web3D ’12 Proceedings of the 17th
International Conference on 3D Web Technology (2012), 97-100.

Dong, W., Lan, J., Lianga, S., Yao, W. & Zhan, Z. Selection of LiDAR geometric
features with adaptive neighborhood size for urban land cover classification. In-
ternational Journal of Applied Earth Observation and Geoinformation 60, 99-110
(2017).

Douglas, D. H. & Peucker, T. K. Algorithms for the Reduction of the Number of
Points Required to Represent Digitized Line or its Caricature. Cartographica: The

International Journal for Geographic Information and Geovisualization, 112-122
(1973).

Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V., Quadros, A., Morton, P.
& Frenkel, A. On the Segmentation of 8D LiDAR Point Clouds. In International
Conference on Robotics and Automation (2011), 2798-2805.

Duranleau, F., Beaudoin, P. & Poulin, P. Multiresolution point-set surfaces. In
Proceedings of Graphics Interface (2008), 211-218.

Edson, C. & Wing, M. G. Airborne Light Detection and Ranging (LiDAR) for
Individual Tree Stem Location, Height, and Biomass Measurements. Remote Sensing
3(11), 2494-2528. 18SN: 2072-4292 (2011).

Bibliography 119

71.

72.

73.

74.

75.

76.
7.
78.

79.

80.

81.

82.

83.

84.

85.

86.

Eggert, D. & Schulze, E. C. Visualization of Mobile Mapping Data via Parallax
Scrolling. ISPRS - International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences XL-3, 89-94. 1sSN: 2194-9034 (2014).

Eggert, D. & Sester, M. Multi-Layer Visualization of Mobile Mapping Data. ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences II-
5/W2, 73-78. 1SsN: 2194-9050 (2013).

Elseberg, J., Borrmann, D. & Niichter, A. Efficient processing of large 3D point
clouds. In XXIII International Symposium on Information, Communication and
Automation Technologies (2011), 1-7. ISBN: 978-1-4577-0746-9.

Engemaier, R. & Asche, H. CartoService: A web service framework for quality
on-demand geovisualisation. In ICCSA’11 Proceedings of the 2011 international
conference on Computational science and its applications - Volume Part I (2011),
329-341. 1SBN: 9783642219276.

ESRI, ArcGIS. http://resources.arcgis.com/en/help/main/10.1/index.html. (Last
accessed 19.01.2016), 2016.

ESRI, ArcGIS System Requirements. (Last accessed 10.11.2017), 2017.
ESRI, ESRI Shapefile Technical Description. 1998.

F. Samadzadegan, B. Bigdeli, M. H. Automatic road extraction from LIDAR data
based on classifier fusion. Laserscanning09, 81-86 (2009).

Farber, R. CUDA Application Design and Development. 1SBN: 978-0123884268
(Morgan Kaufmann Publishers, 2011).

Fernando, R. & Kilgard, M. J. The CG Tutorial: The Definitive Guide to Pro-
grammable Real-Time Graphics. 1SBN: 78-0321194961 (Addison Wesley Pub Co Inc,
2003).

Filin, S. & Pfeifer, N. Segmentation of Airborne Laser Scanning Data Using a Slope
Adaptive Neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing
60(2), 71-80. 1SSN: 09242716 (2006).

Finkel, R. & Bentley, J. Quad trees a data structure for retrieval on composite keys.
Acta informatica 4(1), 1-9 (1974).

Ganovelli, F. & Scopigno, R. OCME: Out-of-Core Mesh Editing Made Practical.
Computer Graphics and Applications 32(3), 46-58. 1SSN: 0272-1716 (2012).

Gao, Z., Nocera, L. & Neumann, U. Visually-complete aerial LiDAR point cloud
rendering. In 20th International Conference on Advances in Geographic Information
Systems (2012), 289-298. 1SBN: 9781450316910.

Gehrke, S., Morin, K., Downey, M., Boehrer, N. & Fuchs, T. Semi-global matching:
An alternative to LIDAR for DSM generation? International Archives of Photogram-
metry and Remote Sensing 38(B1) (2010).

Girardeau-Montaut, D., Roux, M., Marc, R. & Thibault, G. Change detection
on points cloud data acquired with a ground laser scanner. International Archives

of Photogrammetry, Remote Sensing and Spatial Information Science 36(3/W19),
30-35 (2005).

120

Bibliography

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

Gobbetti, E., Kasik, D. & Yoon, S. Technical strategies for massive model visualiza-
tion. ACM Solid and Physical Modeling Symposium, 405-415 (2008).

Gobbetti, E. & Marton, F. Layered point clouds. In FEurographics Symposium on
Point Based Graphics (2004), 113-120.

Gobbetti, E. & Marton, F. Layered point clouds: a simple and efficient multiresolution
structure for distributing and rendering gigantic point-sampled models. Computers
& Graphics 28(6), 815-826. 1SSN: 00978493 (2004).

Goesele, M., Ackermann, J., Fuhrmann, S., Haubold, C., Klowsky, R., Steedly, D.
& Szeliski, R. Ambient point clouds for view interpolation. ACM Transactions on
Graphics 29(4), 95:1-95:6. 1ssN: 07300301 (2010).

Golovinskiy, A., Kim, G. V. & Funkhouser, T. Shape-based Recognition of 3D Point
Clouds in Urban Environments. In 12th International Conference on Computer
Vision (2009), 2154-2161.

Goswami, P., Erol, F., Mukhi, R., Pajarola, R. & Gobbetti, E. An efficient multi-
resolution framework for high quality interactive rendering of massive point clouds
using multi-way kd-trees. The Visual Computer 29(1), 69-83. 1sSN: 0178-2789 (2013).

Goswami, P., Zhang, Y., Pajarola, R. & Gobbetti, E. High Quality Interactive

Rendering of Massive Point Models Using Multi-way kd-Trees. In 18th Pacific
Conference on Computer Graphics and Applications (2010), 93-100. 1SBN: 978-1-
4244-8288-7.

Grilli, E., Menna, F. & Remondino, F. A review of point clouds segmentation and
classification algorithms. International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences - ISPRS Archives 42(2W3), 339-344. 1SSN:
16821750 (2017).

Groger, G. & Pliimer, L. Updating 3D city models: how to preserve geometric-
topological consistency. ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, 532-535 (2009).

Gross, M. & Pfister, H. Point-based Graphics. 1SBN: 9780123706041 (Morgan Kauf-
mann Publishers Inc., 2007).

Guttman, A. R-Trees: A Dynamic Index Structure for Spatial Searching. In ACM
SIGMOD (1984), 47-57.

Haala, N. Multiray Photogrammetry and Dense Image Matching. In Photogrammetric
Week (2011), 185-195.

Haala, N. The landscape of dense image matching algorithms. In Photogrammetric
Week 2013 (ed Fritsch, D.) (Wichmann, Berlin/Offenbach, 2013), 271-284.

Haala, N. & Kada, M. An update on automatic 3D building reconstruction. ISPRS
Journal of Photogrammetry and Remote Sensing 65(6), 570-580 (2010).

Haala, N. & Rothermel, M. Dense Multi-Stereo Matching for High Quality Digital
Elevation Models. PFG Photogrammetrie, Fernerkundung, Geoinformation 2012(4),
331 -343 (2012).

Haala, N. & Rothermel, M. Dense Multiple Stereo Matching of Highly Overlapping
Uav Imagery. International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences XXXIX-B1, 387-392 (2012).

Bibliography 121

103.

104.

105.

106.

107.
108.

109.

110.

111.

112.
113.

114.

115.

116.

117.

118.

Haala, N., Peter, M., Kremer, J. & Hunter, G. Mobile LiDAR mapping for 3D
point cloud collection in urban areas - A performance test. International Archieves
of Photogrammetry and Remote Sensing 62(6), 415-433 (2008).

Hagedorn, B. Web View Service Discussion Paper, Version 0.3.0 Open Geospatial
Consortium Inc. 2010.

Heinzel, S., Guennebaud, G., Botsch, M. & Gross, M. A hardware processing unit
for point sets. Graphics Hardware, 21-31 (2008).

Hofle, B., Hollaus, M. & Hagenauer, J. Urban vegetation detection using radiometri-
cally calibrated small-footprint full-waveform airborne LiDAR data. ISPRS Journal
of Photogrammetry and Remote Sensing 67, 134—147. 1SSN: 09242716 (2012).

Hoppe, H. Progressive meshes. In ACM SIGGRAPH (1996), 99-108. 1SBN: 0897917464.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. & Stuetzle, W. Surface
Reconstruction from Unorganized Points. ACM SIGGRAPH Computer Graphics
26(2), 71-78. 15sN: 00978930 (1992).

Hu, X. & Yuan, Y. Deep-learning-based classification for DTM extraction from ALS
point cloud. Remote Sensing 8(9), 730. 1SSN: 20724292 (2016).

Huang, H., Brenner, C. & Sester, M. A generative statistical approach to auto-
matic 3D building roof reconstruction from laser scanning data. ISPRS Journal of
Photogrammetry and Remote Sensing 79, 29-43. 1SSN: 09242716 (2013).

Huang, H., Wu, S., Gong, M., Cohen-Or, D., Ascher, U. & Zhang, H. R. Edge-aware
point set resampling. ACM Transactions on Graphics 32(1), 1-12. 1ssN: 07300301
(2013).

Isenburg, M. & Lindstrom, P. Streaming meshes. In Visualization (2005), 231-238.

Jakubowski, M., Li, W., Guo, Q. & Kelly, M. Delineating Individual Trees from
Lidar Data: A Comparison of Vector- and Raster-based Segmentation Approaches.
Remote Sensing 5(13), 4163-4186. 1SsN: 2072-4292 (2013).

Jarzabek-Rychard, M. Reconstruction of Building Outlines in Dense Urban Areas
Based on LIDAR Data and Address Points. In Proceedings of the XXII ISPRS
Congress (2012), 121-126.

Jeschke, S., Wimmer, M. & Purgathofer, W. Image-based representations for
accelerated rendering of complex scenes. In EUROGRAPHICS 2005 State of the Art
Reports (2005), 1-20.

Ji, G., Shen, H.-W. & Gao, J. Interactive Ezxploration of Remote Isosurfaces with
Point-Based Non-Photorealistic Rendering. In IEEE Pacific Visualization Symposium
(2008), 25-32. 1SBN: 978-1-4244-1966-1.

Jian, S. Y. A Method of Combing the Model of the Global Quadtree Index with Local
KD- tree for Massive Airborne LiDAR Point Cloud Data Organization. Geomatics
and Information Science of Wuhan University 39, 918-922 (2014).

Jiang, J., Zhang, Z. & Ming, Y. Filtering of Airborne Lidar Point Clouds for
Complex Cityscapes. Geo-spatial Information Science 11(1), 21-25. 1SsN: 1009-5020
(2008).

122

Bibliography

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

Jochem, A., Hofle, B., Wichmann, V., Rutzinger, M. & Zipf, A. Area-wide roof
plane segmentation in airborne LiDAR point clouds. Computers, Environment and
Urban Systems 36(1), 54-64. 1SsN: 01989715 (2012).

Kalasapudi, V. S., Turkan, Y. & Tang, P. Toward Automated Spatial Change Analysis
of MEP Components Using 3D Point Clouds and As-Designed BIM Models. In 3D
Vision (3DV) (2014), 145-152.

Kaminsky, R., Snavely, N., Seitz, S. & Szeliski, R. Alignment of 3D point clouds to
overhead images. In Computer Vision and Pattern Recognition Workshops (2009),
63-70. 1SBN: 978-1-4244-3994-2.

Kang, Z. & Lu, Z. The change detection of building models using epochs of terrestrial
point clouds. In International Workshop on Multi- Platform/Multi-Sensor Remote
Sensing and Mapping (M2RSM) (2011), 1-6.

Katz, S., Tal, A. & Basri, R. Direct visibility of point sets. ACM Transactions on
Graphics 26(3), 24. 1ssN: 07300301 (2007).

Kersten, T. P. & Lindstaedt, M. Automatic 3D Object Reconstruction from Mul-
tiple Images for Architectural, Cultural Heritage and Archaeological Applications
Using Open-Source Software and Web Services. Photogrammetrie - Fernerkundung -
Geoinformation (PFG) 2012(6), 727-740. 1SsN: 14328364 (2012).

Kim, E. & Medioni, G. Urban scene understanding from aerial and ground LIDAR
data. Machine Vision and Applications 22(4), 691-703. 1SsN: 0932-8092 (2010).

Kim, H.-J., Oztireli, A. C., Gross, M. & Choi, S.-M. Adaptive surface splatting for
facial rendering. Computer Animation and Virtual Worlds 23(3-4), 363-373 (2012).

Kim, M.-K., Jack, C. C., Sohn, H. & Chang, C.-C. A framework for dimensional
and surface quality assessment of precast concrete elements using BIM and 3D laser
scanning. Automation in Construction 49(Part B), 225-238 (2015).

Kohut, P., Mikrut, S., Pyka, K., Tokarczyk, R. & Uhl, T. Research on the Prototype
of Rail Clearance Measurement System. International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences XXXIX-B4, 385-389
(2012).

Kolbe, T. H. Representing and Exchanging 8D City Models with CityGML. In 8D
geo-information sciences (2009), 15-31.

Koénig, S. & Gumbhold, S. Consistent Propagation of Normal Orientations in Point
Clouds. In (2009), 83-92.

Koutsoudis, A., Vidmar, B., loannakis, G., Arnaoutoglou, F., Pavlidis, G. & Chamzas,
C. Multi-image 3D reconstruction data evaluation. Journal of Cultural Heritage
15(1), 73-79 (2013).

Kreylos, O., Bawden, G. W. & Kellogg, L. H. Immersive Visualization and Analysis
of LiDAR Data. In 4th International Symposium on Advances in Visual Computing
(2008), 846-855.

Kuntzsch, C., Sester, M. & Brenner, C. Generative models for road network
reconstruction. International Journal of Geographical Information Science 30(5),
1012-1039 (2016).

Bibliography 123

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

Lafarge, F. & Mallet, C. Creating Large-Scale City Models from 3D-Point Clouds:
A Robust Approach with Hybrid Representation. International Journal of Computer
Vision 99(1), 69-85. 1sSN: 0920-5691 (2012).

Lafarge, F., Descombes, X., Zerubia, J. & Pierrot-Deseilligny, M. Structural approach
for building reconstruction from a single DSM. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32(1), 135-147. 1SsN: 1939-3539 (2010).

Leberl, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz, S. & Wiechert, A.
Point Clouds: Lidar versus 3D Vision. Photogrammetric Engineering and Remote
Sensing 76(10), 11231134 (2010).

Lee, D., Dinov, I., Dong, B., Gutman, B., Yanovsky, I. & Toga, A. W. CUDA
optimization strategies for compute-and memory-bound neuroimaging algorithms.
Computer Methods and Programs in Biomedicine 106(3), 175-187 (2012).

Lehtoméki, M., Jaakkola, A., Hyyppé, J., Lampinen, J., Kaartinen, H., Kukko, A.,
Puttonen, E. & Hyyppé, H. Object Classification and Recognition From Mobile Laser
Scanning Point Clouds in a Road Environment. IEEE Transactions on Geoscience
and Remote Sensing 54(2), 1226-1239. 1ssN: 01962892 (2016).

Leite, P., Teixeira, J., de Farias, T., Teichrieb, V. & Kelner, J. Massively parallel near-
est neighbor queries for dynamic point clouds on the GPU. In Computer Architecture
and High Performance Computing (2009), 19-25. 1SBN: 978-0-7695-3857-0.

Li, M, Li, W, Wang, J., Li, Q. & Niichter, A. Dynamic VeloSLAM - Preliminary
Report on 3D Mapping of Dynamic Environments. In 2012 IEEFE Intelligent Vehicles
Symposium (IV ’12), Workshop on Navigation, Perception, Accurate Positioning
and Mapping for Intelligent Vehicles (2012), 1-6.

Li, W., Guo, Q., Jakubowski, M. K. & Kelly, M. A New Method for Segmenting
Individual Trees from the Lidar Point Cloud. Photogrammetric Engineering €/ Remote
Sensing 78(1), 75-84 (2012).

Lillesand, T., Kiefer, R. W. & Chipman, J. Remote Sensing and Image Interpretation
7th. 1SBN: 978-1-118-91947-7 (John Wiley & Sons, 2015).

Livny, Y., Kogan, Z. & El-Sana, J. Seamless patches for GPU-based terrain rendering.
The Visual Computer 25(3), 197-208. 1SSN: 0178-2789 (2009).

Livny, Y., Pirk, S., Cheng, Z., Yanl, F., Deussen, O., Cohen-Or, D. & Chen, B.
Texture-Lobes for Tree Modelling. ACM Transactions on Graphics 30(4), 53:1-53:10
(2011).

Lodha, S. K., Fitzpatrick, D. M. & Helmbold, D. P. Aerial Lidar Data Classification
using AdaBoost. In Sizth International Conference on 3-D Digital Imaging and
Modeling (3DIM) (2007), 435-442. 1SBN: 0-7695-2939-9.

Luebke, D., Harris, M., Kriiger, J., Purcell, T., Govindaraju, N., Buck, 1., Woolley,
C. & Lefohn, A. GPGPU: General Purpose Computation On Graphics Hardware. In
SIGGRAPH 2005 Course Notes (2005).

MacEachren, A. M. & Kraak, M. J. Research Challenges in Geovisualization.
Cartography and Geographic Information Science 28(1), 3-12 (2001).

124

Bibliography

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.
160.

161.

162.

163.

Maltezos, E. & Ioannidis, C. Automatic Detection of Building Points From Lidar
and Dense Image Matching Point Clouds. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences II-3 /W5, 33-40. 1sSN: 2194-9050 (2015).

Martinez-Rubi, O., Verhoeven, S., Meersbergen, M. V., Schiitz, M., Oosterom,
P. V., Goncalves, R. & Tijssen, T. Taming the beast: Free and open-source massive
point cloud web visualization. In Capturing Reality Forum 2015 (2015).

Masry, M. A. & Schwartzberg, P. Marine high-density data management and
visualization. Networks, 53-58 (2009).

Matikainen, L. Automatic detection of changes from laser scanner and aerial image
data for updating building maps. International Archives of Photogrammetry, Remote
Sensing and Spatial Information Science 35(B2), 434-439 (2004).

Matikainen, L., Karila, K., Hyypp4, J., Litkey, P., Puttonen, E. & Ahokas, E.
Object-based analysis of multispectral airborne laser scanner data for land cover
classification and map updating. ISPRS Journal of Photogrammetry and Remote
Sensing 128, 298-313. 1sSN: 09242716 (2017).

Mayer, H., Sester, M. & Vosselman, G. Basic Computer Vision Techniques. In
Manual of Photogrammetry. American Society for Photogrammetry and Remote
Sensing (ASPRS) 6th ed., 517-583 (Bethesda, 2013). 1SBN: 1-57083-099-1.

Meagher, D. Geometric modeling using octree encoding. Computer Graphics and
Image Processing 19(2), 129-147 (1982).

Meixner, P., Leberl, F. & Brédif, M. Planar Roof Surface Segmentation Using
3D Vision. In 19th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (2011), 9-15. 1SBN: 9781450310314.

Mémoli, F. & Sapiro, G. Comparing point clouds. In Symposium on Geometry
Processing (2004), 32-40.

Meng, X, Currit, N & Yang, X. Object-oriented residential building land-use mapping
using lidar and aerial photographs. In American society of photogrammetry and remote
sensing 2010 annual conference (2010), 26-30.

Meng, X., Currit, N. & Zhao, K. Ground Filtering Algorithms for Airborne LiDAR
Data: A Review of Critical Issues. Remote Sensing 2(3), 833-860. 1SSN: 2072-4292
(2010).

Microsoft, Photosynth. https://photosynth.net/. (Last accessed 20.11.2017), 2015.

Mitra, N. J. & Nguyen, A. Estimating surface normals in noisy point cloud data.
In 19th Annual Symposium on Computational Geometry (2003), 322-328. ISBN:
1581136633.

Monserrat, O & Crosetto, M. Deformation measurement using terrestrial laser scan-
ning data and least squares 3D surface matching. ISPRS Journal of Photogrammetry
and Remote Sensing 63(1), 142-154. 1SsN: 09242716 (2008).

Morsy, S., Shaker, A. & El-rabbany, A. Multispectral LIDAR Data for Land Cover
Classification of Urban Areas. Sensors 17(5), 958. 1SSN: 1424-8220 (2017).

NASA, Remote Sensors. (Last accessed 13.11.2017), 2017.

Bibliography 125

164.

165.

166.
167.
168.

169.

170.
171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

Nebiker, S., Bleisch, S. & Christen, M. Rich point clouds in virtual globes — A new
paradigm in city modeling? Computers, Environment and Urban Systems 34(6),
508-517. 1sSN: 01989715 (2010).

Ni, H., Lin, X. & Zhang, J. Classification of ALS Point Cloud with Improved Point
Cloud Segmentation and Random Forests. Remote Sensing 9(3), 288. 1SSN: 20724292
(2017).

NVIDIA Corporation, CUDA GPUs. (Last accessed 19.01.2016), 2016.
NVIDIA Corporation, NVIDIA CUDA C Programming Guide v4.0 (2011).

Olson, M, Dyer, R., Zhang, H. & Sheffer, A. Point set silhouettes via local recon-
struction. Computers & Graphics 35(3), 500-509 (2011).

Ono, A, Kajiwara, K & Honda, Y. Development of new vegetation indexes, shadow

index (SI) and water stress trend (WST). International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Science XXXVIII(8), 710-714
(2010).

Pajarola, R. Stream-Processing Points. IEEE Visualization, 239-246 (2005).

Pajarola, R., Sainz, M. & Lario, R. XSplat: External Memory Multiresolution Point
Visualization. In IASTED Visualization, Imaging and Image Processing (2005),
628-633.

Pan, J. & Manocha, D. Fast GPU-based locality sensitive hashing for k-nearest
neighbor computation. In Proceedings of the 19th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems - GIS '11 (ACM Press,
2011), 211-200. 1SBN: 9781450310314.

Paravati, G. & Sanna, A. An open and scalable architecture for delivering 3D shared
visualization services to heterogeneous devices. Concurrency and Computation:
Practice and Ezperience 23(11), 1179-1195 (2011).

Park, S., Guo, X., Shin, H., Qin, H., KAIST, D. & Korea, S. Shape and appearance
repair for incomplete point surfaces. In Tenth IEEE International Conference on

Computer Vision 2 (2005), 1260-1267.

Pauly, M., Kobbelt, L. P. & Gross, M. Point-based multiscale surface representation.
ACM Transactions on Graphics 25, 177-193. 1sSN: 07300301 (2006).

Pauly, M., Keiser, R., Kobbelt, L. & Gross, M. H. Shape modeling with point-sampled
geometry. ACM Transactions on Graphics 22, 641-650 (2003).

Pfister, H, Zwicker, M, Baar, J. V. & Gross, M. Surfels: Surface elements as
rendering primitives. In ACM SIGGRAPH (2000), 335-342.

Poullis, C. & You, S. Photorealistic Large-Scale Urban City Model Reconstruction.
IEEFE Transactions on Visualization and Computer Graphics 15(4), 654 —669 (2009).
Prandi, F, Soave, M, Devigili, F, Andreolli, M. & Amicis, R. D. Services Oriented
Smart City Platform Based On 3d City Model Visualization. ISPRS Annals of

Photogrammetry, Remote Sensing and Spatial Information Sciences 11-4, 59-64
(2014).

Preiner, R., Jeschke, S. & Wimmer, M. Auto Splats: Dynamic Point Cloud Visual-
ization on the GPU. In Proceedings of Furographics Symposium on Parallel Graphics
and Visualization (2012), 139-148.

126

Bibliography

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

Puente, 1., Gonzéalez-Jorge, H., Martinez-Sanchez, J. & Arias, P. Review of mobile
mapping and surveying technologies. Measurement 46(7), 2127-2145 (2013).

Qi, C. R., Su, H., Mo, K. & Guibas, L. J. PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation. Conference on Computer Vision and Pattern
Recognition (CVPR). eprint: 1612.00593v2 (2017).

Qiu, D., May, S. & Andreas, N. GPU-accelerated Nearest Neighbor Search for 8D
Registration. In International Conference on Computer Vision Systems (ICVS ’09)
(2009), 194-203.

Rabbani, T., van den Heuvel, F. & Vosselman, G. Segmentation of Point Clouds
Using Smoothness Constraint. In ISPRS Image Engineering and Vision Metrology
(2006), 248 —253.

Raber, G. T\, Jensen, J. R., Schill, S. R. & Schuckman, K. Creation of Digital Terrain
Models Using an Adaptive Lidar Vegetation Point Removal Process. Photogrammetric
Engineering € Remote Sensing 68(12), 1307-1315 (2002).

Reitberger, J., Heurich, M., Krzystek, P. & Stilla, U. Single Tree Detection in Forest
Areas With High-Density Lidar Data. Remote Sensing and Spatial Information
Sciences 36(3/W49B), 139-144 (2007).

Remondino, F. & Menna, F. Image-Based Surface Measurement for Close-range
Heritage Documentation. International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences 37(B5), 199-206 (2007).

Remondino, F., Spera, M. G., Nocerino, E., Menna, F. & Nex, F. State of the art in
high density image matching. The Photogrammetric Record 29(146), 144-166. ISSN:
0031868X (2014).

Rodriguez, M. & Gobbetti, E. Coarse-grained multiresolution structures for mobile
exploration of gigantic surface models. In SIGGRAPH Asia Symposium on Mobile
Graphics and Interactive Applications (2013), 4:1-4:6.

Rothermel, M. & Haala, N. Potential of Dense Matching for the Generation of High
Quality Digital Elevation Models. International Society for Photogrammetry and
Remote Sensing XXX VII(4-W19) (2011).

Rusinkiewicz, S & Levoy, M. QSplat: A multiresolution point rendering system for
large meshes. In ACM SIGGRAPH (2000), 343-352.

Rusinkiewicz, S. & Levoy, M. Streaming QSplat: a viewer for networked visualization
of large, dense models. In Proceedings of the 2001 symposium on Interactive 3D
graphics - SISD ’01 (2001), 63-68. 1SBN: 1581132921.

Rusu, R. B. & Cousins, S. 8D is here: Point Cloud Library (PCL). In IEEE

International Conference on Robotics and Automation (ICRA) (2011). 1SBN: 978-1-
61284-386-5.

Rutzinger, M., Hofle, B., Hollaus, M. & Pfeifer, N. Object-Based Point Cloud
Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation
Classification. Sensors 8(8), 4505-4528. 1SSN: 1424-8220 (2008).

Sainz, M., Pajarola, R. & Lario, R. Points reloaded: Point-based rendering revisited.
Symposium on Point-Based Graphics, 121-128 (2004).

1612.00593v2

Bibliography 127

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

Saito, T. & Takahashi, T. Comprehensible Rendering of 3-D Shapes. SIGGRAPH
Computer Graphics 24(4), 197-206. 1ssSN: 00978930 (1990).

Samadzadegan, F., Bigdeli, B. & Ramzi, P. A Multiple Classifier System for
Classification of LiDAR Remote Sensing Data Using Multi-class SVM. In Multiple
Classifier Systems (2010), 254-263.

Samadzadegan, F., Bigdeli, B. & Ramzi, P. Classification of Lidar Data Based on
Multi-class SVM (2010).

Sanders, J. & Kandrot, E. CUDA by Example: An Introduction to General-Purpose
GPU Programming. 1SBN: 978-0131387683 (Addison-Wesley Professional, 2010).

Schachtschneider, J., Schlichting, A. & Brenner, C. Assessing Temporal Behavior
in Lidar Point Clouds of Urban Environments. ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences 42, 543-550.
ISSN: 2194-9034 (2017).

Scheiblauer, C, Zimmermann, N & Wimmer, M. Interactive Domitilla Catacomb
Exploration. Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST
(2009).

Schilling, A. & Kolbe, T. Draft for Candidate OpenGIS®) Web 3D Service Interface
Standard, Version 0.4.0 Open Geospatial Consortium Inc. 2010.

Schnabel, R., Wahl, R. & Klein, R. Ransac Based Out-of-Core Point-Cloud Shape
Detection for City-Modeling. zugspitze.cs.uni-bonn.de, 1-8.

Schneider, D. Terrestrial laser scanning for area based deformation analysis of
towers and water damns. In Proceedings of the 3rd IAG Symposium of Geodesy for
Geotechnical and Structural Engineering and 12th FIG Symposium on Deformation
Measurements (2006), 22-24.

Schut, P. OpenGIS Web Processing Service, Version 1.0.0 Open Geospatial Consor-
tium Inc. 2007.

Schiitz, M. Rendering Large Point Clouds in Web Browsers Multi-Resolution Octree.
In CESCG 2015: The 19th Central European Seminar on Computer Graphics (2015).

Secord, J. & Zakhor, A. Tree Detection in Urban Regions Using Aerial LiDAR and
Image Data. Geoscience and Remote Sensing Letters 4(2), 196-200. 1SSN: 1545-598X
(2007).

Shaffer, C. A. & Samet, H. Optimal Quadtree Construction Algorithms. Computer
Vision, Graphics and Image Processing 37(3), 402-419. 1SsN: 0734189X (1987).

Shao, Y. & Chen, L. Automated Searching of Ground Points from Airborne Lidar
Data Using a Climbing and Sliding Method. Photogrammetric Engineering and
Remote Sensing 74(5), 625-635 (2008).

Shapovalov, R. & Velizhev, A. Cutting-Plane Training of Non-associative Markov
Network for 3D Point Cloud Segmentation. International Conference on 3D Imaging,
Modeling, Processing, Visualization and Transmission, 1-8 (2011).

Shapovalov, R., Velizhev, A. & Barinova, O. Non-Associative Markov Networks
for 3D Point Cloud Classification. Photogrammetric Computer Vision and Image
Analysis 38(3A), 103-108 (2010).

128

Bibliography

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

Shreiner, D., Sellers, G., Kessenich, J. M. & Licea-Kane, B. M. OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 4.3 8th (Addison-Wesley,
2013).

Sibbing, D., Sattler, T., Leibe, B. & Kobbelt, L. SIFT-Realistic Rendering. Interna-
tional Conference on 3D Vision, 5663 (2013).

Sithole, G. & Vosselman, G. Experimental Comparison of Filter Algorithms for
Bare-Earth Extraction from Airborne Laser Scanning Point Clouds. ISPRS Journal
of Photogrammetry and Remote Sensing 59(1-2), 85-101. 1SSN: 09242716 (2004).

Sithole, G. & Vosselman, G. Filtering of Airborne Laser Scanner Data Based on
Segmented Point Clouds. In Laser Scanning 2005 (2005), 66-71.

Snavely, N., Seitz, S. & Szeliski, R. Photo tourism: Exploring photo collections in
3D. ACM Transactions on Graphics 25(3), 835-846 (2006).

Snavely, N., Garg, R., Seitz, S. M. & Szeliski, R. Finding Paths Through the World’s
Photos. ACM Transactions on Graphics 27(3), 11-21. 1sSN: 07300301 (2008).

Sotoodeh, S. Outlier detection in laser scanner point clouds. International Archives
of Photogrammetry and Remote Sensing XXXVI(5), 297-302 (2006).

Stein, C., Limper, M. & Kuijper, A. Spatial data structures for accelerated 3D
visibility computation to enable large model visualization on the web. In Proceedings
of the 19th International ACM Conference on 3D Web Technologies (2014), 53-61.
ISBN: 9781450330152.

Thoeni, K., Giacomini, a., Murtagh, R. & Kniest, E. A comparison of multi-
view 3D reconstruction of a rock wall using several cameras and a laser scanner.
ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XL-5(June), 573-580. 1SSN: 2194-9034 (2014).

Tittmann, P., Shafii, S., Hartsough, B. & Hamann, B. Tree Detection and Delineation
from LiDAR point clouds using RANSAC. In SilviLaser (2011), 1-23.

Tran, P., Shaw, R., Chantry, G. & Norton, J. GIS and local knowledge in disaster
management: a case study of flood risk mapping in Viet Nam. Disasters (2009).

Trapp, M., Glander, T., Buchholz, H. & Doéllner, J. 3D Generalization Lenses for In-
teractive Focus + Context Visualization of Virtual City Models. In 12th International
Conference on Information Visualisation (2008), 356-361. 1SBN: 978-0-7695-3268-4.

Trinder, J. & Salah, M. Airborne LiDAR as a tool for disaster monitoring and
management. Geolnformation for Disaster Management (2011).

Tucker, C. Red and Photographic Infrared Linear Combinations for Monitoring
Vegetation. Remote Sensing of Environment 8(2), 127-150 (1979).

Tuttas, S., Braun, A., Borrmann, A. & Stilla, U. Acquisition and Consecutive
Registration of Photogrammetric Point Clouds for Construction Progress Monitoring
Using a 4D BIM. Journal of Photogrammetry, Remote Sensing and Geoinformation
Science 85(1), 3-15 (2017).

Vaaraniemi, M., Freidank, M. & Westermann, R. Enhancing the visibility of labels
in 3D navigation maps. In Lecture Notes in Geoinformation and Cartography (2012),
23-40.

Bibliography 129

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

239.

240.

241.

Van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horhammer, M., Geringer,
D., Ravada, S., Tijssen, T., Kodde, M. & Gongalves, R. Massive point cloud data
management: Design, implementation and execution of a point cloud benchmark.
Computers € Graphics 49, 92—-125 (2015).

Van Gosliga, R., Lindenbergh, R. & Pfeifer, N. Deformation analysis of a bored tunnel
by means of terrestrial laser scanning. International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences 36(5), 167-172 (2006).

Varcholik, P. Real-Time 3D Rendering with DirectX 11 and HLSL: A Practical Guide
to Graphics Programming (Game Design and Development). 1ISBN: 978-0321962720
(Addison Wesley, 2014).

Virtanen, J.-p., Kukko, A., Kaartinen, H., Turppa, T., Hyyppé, H. & Hyypp4, J.
Nationwide Point Cloud - The Future Topographic Core Data. ISPRS International
Journal of Geo-Information 6(8), 243 (2017).

Voland, P. & Asche, H. Geospatial Visualization of Automotive Sensor Data: A
Conceptual and Implementational Framework for Environment and Traffic-Related
Applications. In Computational Science and Its Applications - ICCSA 2017 (2017),
626—637. 1SBN: 978-3-319-62406-8.

Vosselman, G. Point cloud segmentation for urban scene classification. ISPRS - In-
ternational Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences XL-7/W2(November), 257-262. 1SSN: 2194-9034 (2013).

Vosselman, G., Gorte, B., Sithole, G. & Rabbani, T. Recognising Structure in Laser
Scanner Point Clouds. International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences 46(8), 33-38 (2004).

Vretanos, P. P. A. OpenGIS Web Feature Service 2.0 Interface Standard, Version
2.0.0 Open Geospatial Consortium Inc. 2010.

Wabhl, R., Guthe, M. & Klein, R. Identifying planes in point-clouds for efficient hybrid
rendering. The 13th Pacific Conference on Computer Graphics and Applications,
1-8 (2005).

Wald, 1., Dietrich, A. & Slusallek, P. An Interactive Out-of-Core Rendering Frame-

work for Visualizing Massively Complex Models. Furographics Symposium on Ren-
dering (2004).

Wald, 1., Mark, W. & Gilinther, J. State of the Art in Ray Tracing Animated Scenes.
Computer Graphics Forum 28(6), 1691-1722 (2009).

Wand, M, Berner, A, Bokeloh, M, Fleck, A, Hoffmann, M, Jenke, P, Maier, B,
Staneker, D & Schilling, A. Interactive Editing of Large Point Clouds. Eurographics
Symposium on Point-Based Graphics, 37-46 (2007).

Wang, J & Oliveira, M. Filling holes on locally smooth surfaces reconstructed from
point clouds. Image and Vision Computing 25(1), 103—113. 1SSN: 02628856 (2007).

Wang, L., Xu, Y. & Li, Y. Aerial Lidar Point Cloud Voxelization with its 3D
Ground Filtering Application. Photogrammetric Engineering € Remote Sensing
83(2), 95-107 (2017).

130

Bibliography

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

Wang, S., Wilkins-Diehr, N. R. & Nyerges, T. L. CyberGIS - Toward synergistic
advancement of cyberinfrastructure and GIScience: A workshop summary. Journal
of Spatial Information Science 4(4), 125-148. 1SSN: 1948-660X (2012).

Wang, Y., Xu, H., Cheng, L., Li, M., Wang, Y., Xia, N., Chen, Y. & Tang, Y.
Three-Dimensional Reconstruction of Building Roofs from Airborne LiDAR Data

Based on a Layer Connection and Smoothness Strategy. Remote Sensing 8(5), 415.
ISSN: 20724292 (2016).

Wehr, A. & Lohr, U. Airborne Laser Scanning - an Introduction and Overview.
ISPRS Journal of Photogrammetry and Remote Sensing 54(2-3), 68-82 (1999).

Weinmann, M., Weinmann, M., Mallet, C. & Brédif, M. A Classification-Segmentation
Framework for the Detection of Individual Trees in Dense MMS Point Cloud Data
Acquired in Urban Areas. Remote Sensing 9(3), 277. 1SsSN: 20724292 (2017).

Wenzel, K., Abdel-Wahab, M., Cefalu, A. & Fritsch, D. High-resolution surface
reconstruction from imagery for close range cultural Heritage applications. Interna-

tional Archives of Photogrammetry, Remote Sensing and Spatial Information Science
XXXIX-B5, 133-138 (2012).

Wimmer, M. & Scheiblauer, C. Instant points: Fast rendering of unprocessed point
clouds. In Eurographics Symposium on Point-Based Graphics (2006), 129-137.

Wolff, D. OpenGL J Shading Language Cookbook 2nd Revise. ISBN: 978-1782167020
(Packt Publishing, 2013).

Wolff, M. & Asche, H. Geospatial Modelling of Urban Security: A Novel Approach
with Virtual 3D City Models. In Computational Science and Its Applications - ICCSA
2008 (2008), 42-51.

Wu, J. & Kobbelt, L. Optimized Sub-Sampling of Point Sets for Surface Splatting.
Computer Graphics Forum 23(3), 643-652. 1SSN: 0167-7055 (2004).

Xu, H., Nguyen, M. X., Yuan, X. & Chen, B. Interactive Silhouette Rendering
for Point-Based Models. Eurographics Symposium on Point-Based Graphics, 1318
(2004).

Yang, B., Huang, R., Li, J., Tian, M., Dai, W. & Zhong, R. Automated Recon-

struction of Building LoDs from Airborne LiDAR Point Clouds Using an Improved
Morphological Scale Space. Remote Sensing 9(1) (2017).

Yang, R., Guinnip, D. & Wang, L. View-dependent textured splatting. The Visual
Computer 22(7), 456-467. 1SsN: 0178-2789 (2006).

Yang, Y. B., Zhang, N. N. & Li, X. L. Adaptive slope filtering for airborne Light
Detection and Ranging data in urban areas based on region growing rule. Survey
Review 49(353), 139-146 (2017).

Yang, Z., Jiang, W., Xu, B., Zhu, Q., Jiang, S. & Huang, W. A convolutional neural
network-based 3D semantic labeling method for ALS point clouds. Remote Sensing
9(9), 936. 1SSN: 20724292 (2017).

Yao, W. & Fan, H. Automated detection of 3D individual trees along urban road
corridors by mobile laser scanning systems. In International Symposium on Mobile
Mapping Technology (MMT) 2013 (2013).

Bibliography 131

257.

258.

259.

260.

261.

262.

263.

264.

265.

266.

267.

268.

269.

270.

271.

Yu, J. & Turk, G. Reconstructing surfaces of particle-based fluids using anisotropic
kernels. ACM Transactions on Graphics 32(1), 5:1-5:12. 1ssN: 07300301 (2013).

Yunfei, B., Guoping, L., Chunxiang, C., Xiaowen, L., Hao, Z., Qisheng, H., Linyan,
B. & Chaoyi, C. Classification of LIDAR point cloud and generation of DTM from
LIDAR height and intensity data in forested area. In International Society for
Photogrammetry and Remote Sensing Congress (2008), 313-318.

Zhang, J., Duan, M., Yan, Q. & Lin, X. Automatic Vehicle Extraction from Airborne
LiDAR Data Using an Object-Based Point Cloud Analysis Method. Remote Sensing
6(9), 8405-8423. 1SSN: 2072-4292 (2014).

Zhang, J., Duan, M., Yan, Q. & Lin, X. Automatic Vehicle Extraction from Airborne
LiDAR Data Using an Object-Based Point Cloud Analysis Method. Remote Sensing
6(9), 8405-8423. 1SSN: 2072-4292 (2014).

Zhang, K., Yan, J. & Chen, S. Automatic construction of building footprints from
airborne LIDAR data. In IEEE Transactions on Geoscience and Remote Sensing
(2006), 2523 —2533.

Zhang, K. & Hu, B. Individual Urban Tree Species Classification Using Very High
Spatial Resolution Airborne Multi-Spectral Imagery Using Longitudinal Profiles.
Remote Sensing 4(6), 1741-1757. 1SSN: 2072-4292 (2012).

Zhang, Y.-K., Teboul, O., Zhang, X.-P. & Deng, Q.-Q. Image Based Real-Time and
Realistic Forest Rendering and Forest Growth Simulation. 2006 Second International
Symposium on Plant Growth Modeling and Applications, 323-327 (2006).

Zhang, Chengyuan and Zhang, Ying and Zhang, Wenjie and Lin, X. Inverted Linear
Quadtree: Efficient Top K Spatial Keyword Search. In International Conference on
Data Engineering 28 (2013), 901-912.

Zhao, W., Nister, D. & Hsu, S. Alignment of continuous video onto 3D point clouds.
IEEFE transactions on pattern analysis and machine intelligence 27, 1305—1318. 1SSN:
0162-8828 (2005).

Zhou, Q.-Y. & Neumann, U. 2.5D Building Modeling by Discovering Global Regu-
larities. In Computer Vision and Pattern Recognition (2012), 326-333.

Zhou, Q.-Y. & Neumann, U. Fast and Extensible Building Modeling from Airborne
Lidar Data. In 16th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (2008), 1-8.

Zhu, Q., Gong, J. & Zhang, Y. An efficient 3D R-tree spatial index method for
virtual geographic environments. ISPRS Journal of Photogrammetry and Remote
Sensing 62(3), 217-224 (2007).

Zwicker, M & Gotsman, C. Meshing point clouds using spherical parameterization.
Proc. Eurographics Symp. Point-Based Graphics (2004).

Zwicker, M., Pauly, M., Knoll, O. & Gross, M. Pointshop 3D: an interactive system
for point-based surface editing. ACM Transactions on Graphics, 322—-329. ISSN:
07300301 (2002).

Zwicker, M., Pfister, H., van Baar, J. & Gross, M. H. Surface splatting. In ACM
SIGGRAPH (2001), 371-378.

Eidesstattliche Erklarung
Declaration of Academic Honesty

I hereby declare in lieu of an oath that this thesis has been written by myself without
any external unauthorized help, that it has been neither presented to any institution for
evaluation nor previously published in its entirety or in parts.

Potsdam, March 23, 2018

Rico Richter

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Background and Motivation
	1.1.1 Remote Sensing
	1.1.2 Remote Sensing Platforms
	1.1.3 Point Clouds as Universal Category of Geodata

	1.2 Problem Statement, Challenges and Research Objectives
	1.2.1 Geographic Information Systems and 3D Point Clouds
	1.2.2 Research Objectives

	1.3 Contributions and Structure
	1.3.1 Results

	2 Fundamentals of 3D Point Clouds
	2.1 Capturing Methods - LiDAR vs. Dense Image Matching
	2.2 Spatial Data Structures
	2.2.1 Quadtree
	2.2.2 Octree
	2.2.3 k-d tree
	2.2.4 Design Principles
	2.2.5 Out-of-Core Construction
	2.2.6 GPU-based Processing

	2.3 Used Datasets

	3 Point Cloud Classification
	3.1 Potentials and Usage of Classification
	3.2 Related Work
	3.3 Object-Class Segmentation
	3.3.1 Preprocessing
	3.3.2 Segmentation
	3.3.3 Segment Classification
	3.3.4 Specific Classification of Object Classes

	3.4 Out-of-Core and GPU-based Processing
	3.5 Results and Evaluation
	3.5.1 Accuracy Evaluation
	3.5.2 Performance Evaluation

	3.6 Discussion and Future Work

	4 Change Detection
	4.1 Potentials and Applications of Change Detection
	4.2 Related Work
	4.3 Change Detection
	4.3.1 Concept Multi-Data Octree
	4.3.2 Construction Multi-Data Octree
	4.3.3 Distance Computation
	4.3.4 Performance Evaluation

	4.4 Results
	4.5 Categorization of Changes
	4.5.1 Change Detection for Incremental Point Cloud Updates
	4.5.2 Potential of Multi-temporal 3D Point Clouds to Detect Static Structures and Non-static Entities

	4.6 Discussion and Future Work

	5 3D Point Cloud Rendering
	5.1 Motivation
	5.2 Related Work
	5.3 Data Characteristics
	5.3.1 Thematic Attributes
	5.3.2 Structure Attributes

	5.4 Out-of-Core Real-Time Rendering
	5.4.1 Multi-Resolution Data Structure
	5.4.2 Construction
	5.4.3 Rendering Algorithm

	5.5 Rendering Techniques
	5.5.1 Point-based Rendering
	5.5.2 Compositing of Point-based Rendering Techniques

	5.6 Performance Evaluation
	5.7 Summary and Discussion

	6 Framework for Analysis and Visualization of 3D Point Clouds
	6.1 Architecture
	6.2 Service-oriented Architecture

	7 Case Studies and Applications
	7.1 Updating 3D City Models
	7.1.1 Application Requirements and Input Data
	7.1.2 Process
	7.1.3 Results

	7.2 Monitoring Railroad Lines
	7.2.1 Application Requirements and Input Data
	7.2.2 Clearance Profile Analysis

	7.3 Automatic Tree Detection and Visualization
	7.3.1 Application Requirements and Input Data
	7.3.2 Automatic Tree Detection
	7.3.3 Tree Cadastre Visualization
	7.3.4 Results

	8 Conclusions
	8.1 Future Work

	List of Publications
	Bibliography

