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Simulation of herbicide impacts on a plant 
community: comparing model predictions 
of the plant community model IBC-grass 
to empirical data
Jette Reeg1* , Simon Heine2, Christine Mihan2, Sean McGee3, Thomas G. Preuss2 and Florian Jeltsch1,4

Abstract 

Background: Semi-natural plant communities such as field boundaries play an important ecological role in agricul-
tural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To 
prevent undesired effects of herbicide applications on these communities and their structure, the registration and 
application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level 
greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of 
herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness 
of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As 
an alternative approach, plant community models can be used to predict potential effects on plant communities of 
interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. 
In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based 
plant community model for grasslands) by comparing model predictions with empirically measured effects at the 
plant community level.

Results: We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. 
Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks 
after application), the model was able to realistically predict short-term herbicide impacts on communities when 
compared to empirical data.

Conclusion: The results presented in this study demonstrate an approach how the current standard greenhouse 
experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to esti-
mate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.

Keywords: Plant community model, Non-target terrestrial plants, Community-level effects, Herbicide risk assessment, 
Individual-based modeling
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Background
With agricultural landscape covering almost half of the 
European land area, it is reasonable that environmen-
tal impact of agricultural practices is evaluated. Of par-
ticular interest are the potential impacts of pesticide 

applications, which regulatory authorities around the 
world are required to evaluate and make regulatory 
decisions on the acceptability of potential risks to the 
environment. Pesticides are designed to control pests, 
including competing weed species in agricultural fields, 
thereby increasing the yields. However, small amounts 
of these pesticides may reach adjacent off-field areas, the 
so-called non-target areas [1, 2]. To prevent undesired 
effects of an herbicide application, the registration and 
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application are regulated by risk assessment schemes in 
many industrialized countries [3]. To characterize the 
effects of herbicide loads potentially reaching off-field 
areas on plants, standardized individual-level greenhouse 
experiments are conducted on a selection of crop and 
wild plant species [4–7].

To account for uncertainties associated with extrapo-
lating from testing plant individuals in the greenhouse to 
plant communities in the field, an assessment factor may 
be applied. However, the appropriateness of the assess-
ment factor can be debated as currently there is no refer-
ence tier that would allow for calibration. Extending the 
standard ecotoxicological tests for non-target terrestrial 
plants under worst-case greenhouse conditions to more 
realistic field conditions or community level is not fea-
sible. Not only reproducibility is a major constraint, but 
there is also the question of representativeness of higher 
tier studies for different landscapes under different cli-
matic conditions. Additional data are needed to reduce 
uncertainty associated with predicting the potential long-
term impacts on non-target terrestrial plant communi-
ties from short-term individual-level greenhouse studies.

Several researchers investigated specific uncertainties 
associated with the current standard test guidelines [4, 
5]. Many of these focus on comparing individual-level 
standard experiments conducted in greenhouses ver-
sus in the field. They assess the level of protection when 
using greenhouse experiments to predict expected effects 
under field conditions [8–10]. Although it was generally 
shown that the effects on single species observed in the 
greenhouse are more pronounced than under field con-
ditions and, therefore, lead to a conservative risk assess-
ment, these experiments cannot illustrate the influence 
of competition between individuals of different plant 
species. Only few studies focused on artificial communi-
ties to account for these processes [11, 12]. Both studies 
are based on a small species pool (4 and 6 plant species) 
and thus do not represent the diversity and composition 
of plant communities observed in environments that 
may receive off-site herbicide exposure. Real field stud-
ies testing the impact of in-field herbicide application on 
plant communities adjacent to the arable field are rare 
(e.g., [13, 14]). Thus, general conclusions of the herbicide 
impact on plant communities under various environmen-
tal conditions cannot be made.

In nature conservation, modeling approaches are fre-
quently used to overcome the limits of experimental stud-
ies and make general predictions on long-term impacts 
of, for example, climate change or grazing intensity [15]. 
Cousins et al. [16] highlight that landscape models are a 
useful method to increase the understanding of mecha-
nisms affecting grassland communities due to land use 
change. Such ecological models have the advantage to 

cover a variety of different environmental scenarios and 
therewith a wider range of potential impacts than empiri-
cal studies, which are often limited in space and time. 
These studies highlight that modeling approaches can 
be valuable tools to address uncertainties in the current 
risk assessment scheme by analyzing potential long-term 
impacts on community level.

In this study, we analyzed the reliability and adequacy 
of the plant community model IBC-grass by comparing 
model predicted and experimentally measured effects at 
the plant community level. IBC-grass is an individual-
based and spatially explicit plant community model; thus, 
individual-level effects from standard greenhouse studies 
can be integrated and competition between plant indi-
viduals is accounted for. We adjusted the model to the 
settings in the empirical study of Reuter and Siemoneit-
Gast [12]; using one part of the data set for calibration 
(control data and dose–responses after herbicide appli-
cation of the monocultures on individual plant basis). 
We evaluated if the calibrated model is able to predict 
similar plant community-level effects as observed in the 
empirical data (second part of the data set) and analyzed 
to which degree the model is able to reproduce realistic 
effects by calculating model adequacy and reliability as a 
measure for the model fit [17].

Methods
Short summary of the experimental study design
Based on the results of a pre-study in which the 
researchers tested the germination rate and handling 
of plants, Reuter and Siemoneit-Gast [12] tested their 
proposed higher tier study design on 6 wild plant spe-
cies: Bromus erectus, Cynosurus cristatus, Galium 
mollugo, Leontodon hispidus, Silene nutans and Tri‑
folium pratense. Plant individuals were transplanted 
into monocultures and communities after reaching the 
growth stage BBCH 12–14. In the monoculture setup, 
4 individuals of the same plant species were trans-
planted into a pot with a diameter of 7 cm. In the arti-
ficial communities, 8 individuals per plant species were 
transplanted randomly in square pots of 17 × 17  cm. 
The distance between each individual was 2.5 × 2.6 cm. 
The remaining space in the center of each pot was 
planted with an individual of a randomly chosen spe-
cies. Monoculture setup included 4 repetitions for each 
of the 3 assessment dates (i.e., overall 12 pots per treat-
ment); community setup included 3 repetitions per 
assessment date (i.e., overall 9 pots per treatment). The 
researchers used the experimental setup to investigate 
two different herbicides: a broad spectrum herbicide, 
 RoundUp® (active ingredient glyphosate), and a selec-
tive herbicide,  Monitor® (active ingredient sulfosulfu-
ron). Five different test item rates (3, 5, 9, 15, 25% of 
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the maximal application rate of 3 L/ha  RoundUp® and 
5, 9, 17, 31 and 55% of the maximal application rate 
of 25 g/ha of  Monitor®) and a control were tested per 
herbicide. In the EU, the current off-field risk assess-
ment approach assumes 2.77% of an application in field 
crops might drift of the target application site. This 
drift rate accounts for normal farming practice and 
machine operation and assumes wind direction into the 
off-field area. The lowest rates tested were in the same 
range  (RoundUp®) or higher  (Monitor®) than the rates 
that would be used in a baseline EU risk assessment to 
assess the potential risk from exposure to off-field areas 
in 1  m distance. Fresh shoot weight and phytotoxic-
ity were measured every 2  weeks over 6  weeks; how-
ever, only results for shoot weight could be compared 
to the model predictions, as the model is designed and 
developed to simulate biomass and not phytotoxicity. 
In addition, the assessment of phytotoxicity is a very 
subjective measure and a conversion of symptoms into 
effects on biomass would not be feasible. For more 
details, see Reuter and Siemoneit-Gast [12].

IBC‑grass
The spatially explicit and individual-based plant com-
munity model IBC-grass was originally designed to 
test the response of plant communities to different dis-
turbances such as grazing [18–22]. The main processes 
such as inter- and intraspecific competition for space 
and resources, growth, mortality and disturbances like 
grazing, trampling, mowing and herbicide impact are 
accounted for. A detailed description of the IBC-grass 
version on which this study is based on can be found 
in the appendix of Reeg et al. [21]. It follows the ODD 
(overview, design concept and details) protocol [23]. 
Here, we will give only a short overview of the main 
aspects and focus on the modifications and adaption 
we integrated in the model to reconstruct the expo-
sure scenario from the study of Reuter and Siemoneit- 
Gast [12] to evaluate the precision of the model 
predictions.

General description of the main principles and processes
Plant functional type approach To allow for general con-
clusions, plant species are classified into plant functional 
types (PFTs) according to important trait characteristics. 
This functional type approach is widely used in com-
munity ecology to explain dynamics in ecosystems [24]. 
Experimental studies proved that the response of plant 
species with similar trait characteristics to environmental 
conditions and disturbances is comparable. Six different 
traits and trait syndromes (i.e., a group of traits repre-
senting general trade-offs) are distinguished in IBC-grass: 

growth form, plant size (correlated with seed mass, and 
dispersal traits), resource response (correlation of com-
petitive ability and stress-tolerance), grazing response 
and clonality. Plant species of the species pool of interest 
are classified into PFTs based on trait information in the 
databases BiolFlor, LEDA and cloPla3 [25–27].

Zone of influence approach Intra- and interspecific com-
petition is accounted for in the aboveground and in the 
belowground compartment. Plant individuals acquire 
resources within a circular area around the stem—their 
zone of influence (ZOI). For the belowground compart-
ment, the size of the ZOI is determined only by the root 
biomass. It is assumed that plants have similar root geom-
etries. Aboveground, the ZOI of a plant is determined by 
the shoot biomass and shoot geometry accounting for 
taller plants and shading effects. In overlapping ZOI areas, 
plant individuals compete for resources. Belowground, 
competition is simulated size-symmetrically. Thus, the dis-
tribution of resources in overlapping areas only depends 
on the competitive ability of the PFTs (resource response 
traits). Aboveground, resource competition is partially 
size-asymmetrically accounting for shading effects of taller 
plants. For both compartments, intraspecific competition 
is stronger than interspecific competition.

General processes Figure 1 gives a general overview of all 
processes accounted for in this current IBC-grass version. 
Several processes important for long-term community 
dynamics are excluded in this version due to the short-
term time scale of 6  weeks in the experimental study. 
In the following, the main processes applied in this ver-
sion of IBC-grass are explained. For more details, see the 
appendix of Reeg et al. [21].

Plant growth and mortality As mentioned before, 
plants acquire resources within their ZOI and com-
pete for resources in overlapping areas. The acquired 
resources are allocated to the roots and shoot, and con-
verted into biomass based on a constant conversion 
rate, the current shoot (root) mass, the trait character-
istics of the shoot (root), the growth form, the maximal 
resource utilization and the maximal plant mass. In the 
absence of competition, the growth function results in 
a sigmoid growth (see also in [28, 29]). Since the exper-
imental study traced plant biomass over a time frame of 
6 weeks and the researchers did not observe any mor-
tality, we excluded mortality in this version. However, 
it is an important process for long-term community 
dynamic. A detailed description of how mortality is 
modeled in IBC-grass can be found in the ODD proto-
col of Reeg et al. [21].

Seed dispersal, germination and establishment These 
processes are important for community dynamics. 
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However, since the time frame of the experimental 
study is limited to 6  weeks, these processes have no 
impact on the results. The young plant individuals are 
not yet producing seeds. In this specific study, we used 
a 100% germination and establishment rate for the 
plant individuals (see Spatial set up in model calibra-
tion to experimental data). A detailed description of the 
implemented process can be found in the ODD proto-
col in the appendix of Reeg et al. [21].

Biotic disturbances In this version, we excluded all 
biotic disturbances, such as grazing, tramping and cut-
ting. We only integrated the herbicide impact.

Abiotic factors and temporal dimensions IBC-grass 
distinguishes aboveground and belowground resource 
availability. For both compartments, resources are dis-
tributed homogenously in space and time. One time 
step in the model represents 1 week.

Model preparation
Spatial setup
We adjusted the spatial initial setup in the model to 
mimic the experimental setup (Table  1). The grid size 
of the model was set to 7 × 7 grid cells, representing a 
7 × 7  cm2 pot, for the monocultures, and 20 × 20 grid 
cells, representing a 20 × 20  cm2 pot for the artificial 
communities. In the monoculture setup, we distributed 
4 seeds of the same PFT on the grid. Seeds had a dis-
tance of 2 grid cells to one another. The 4 seeds germi-
nated with a probability of 100%, resulting in 4 young 
plant individuals located in the grid. In the model, her-
bicide treatment started according to the time of trans-
planting in the experiments (Table 2). The spatial setup 
in the modeled communities was adjusted according 
to that in the experiments: for each species, 6 plant 

individuals were initialized randomly in the grid with 
a distance of 2 grid cells to each other. The grid cell 
located in the middle was initialized with a randomly 
chosen plant individual. As mentioned before, initial 
plant biomasses in the communities were based on the 
biomasses in the monoculture set up (in the model) at 
the time of reaching the BBCH 12–14 in the experi-
ment (Table 2).

Model calibration
In the following section, we will describe the process of 
calibrating the model against the monoculture control 

Initialization

Resource
competition

Plant growth

Plant mortality

Evaluation

Biomass reduction

Herbicide-induced impact

IBC-grass

Week + 1

Week = 6

Fig. 1 Flowchart of the processes in the current version of IBC-grass. 
Several processes such as seed production, seed dispersal and biotic 
disturbances such as grazing are omitted in this version due to the 
short time scale of the experiments

Table 1 Overview of  the  experimental setup compared 
to the model set up

Since IBC-grass simulates only rectangular plots, it is not able to represent a 
circular pot of 7 cm diameters. As the model assumes that plant individuals 
cannot grow beyond the plot size, we chose to use a greater area (7 × 7 cm) 
rather than a smaller one (6 × 6 cm) to account for potential shoot growth 
beyond the pot size. There was no information about the distance between 
plant individuals within the monoculture setup of the experiment. Therefore, we 
decided to use a similar distance as in the community set up. This also results in 
an even distribution of individuals within the plot

IBC‑grass Experimental study

Monoculture

 Plot size 7 × 7 cm2 Ø 7 cm

 Nb. of individuals 4 4

 Distance between individuals 2 cm (2 grid cells) No information

Community

 Plot size 20 × 20 cm2 17 × 17 cm2

 Nb. of individuals 49 49

 Distance between individuals 2 cm (2 grid cells) 2.5 × 2.6 cm

Table 2 Compared biomasses in  the  model and  the   
experiment

Due to the different germination times and growth rates, the age of the plant 
individuals when being transplanted in the experiments differs between species. 
e.g., B. erectus was transplanted at the age of 2 weeks. In this case, herbicide 
treatment in the simulated monoculture started 2 weeks after germination 
and initial biomasses in the community setup are based on these biomasses 
(biomasses 2 weeks after germination in the simulated monocultures). In the 
analyses of B. erectus in the monoculture, the simulated biomasses of plants 4, 6 
and 8 weeks after germination are equivalent to the biomass measurements of 
week 2, 4 and 6 in the experiments
a BBCH12-14 is reached between 2 and 3 weeks

Species Week > 75% 
emergence

Week BBCH 
12–14

Age at potting in the  
experiment (‘week 0’ in the  
modeled monocultures)

B. erectus 2 4 2

C. cristatusa 2 2 0

G. mollugo 2 3 1

L. hispidus 2 3 1

S. nutans 3 4 1

T. pratense 1 3 2
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and effect data. All model parameters and settings are 
summarized in Additional file 1: Appendix A.

Resource levels in  IBC‑grass As the model is not con-
sidering concrete resources such as nutrients, soil mois-
ture or light, but groups all kinds of resources into overall 
resource units, we cannot specify resources in a numerical 
way, e.g., % CaCO3. To find the resource unit levels for 
the aboveground and belowground compartment, which 
result in similar growth patterns as in the experiments, we 
used Latin Hypercube Sampling (LHS, [30]). Therewith, 
we uniformly covered the whole potential sampling space. 
We selected these resource levels, for which the simulated 
shoot masses fell within the empirically measured shoot 
masses. We used only the monoculture control data for 
this calibration step, in order to have an independent vali-
dation on the community growth. Additionally, although 
Reuter and Siemoneit-Gast [12] used different soils for the 
two herbicides and conducted the studies in spring and 
in summer, we combined the shoot masses for all con-
trol monocultures to have a higher sampling size (N = 8). 
This process is based on the pattern-oriented modeling 
approach [31, 32], which aims at comparing the patterns 
predicted by a model with patterns observed in the nature, 
e.g., the temporal growth of plants.

We ended up varying belowground resource units 
between 60 and 120 (medium and high resource level) and 
aboveground resource units between 50 and 100 (medium 
and high resource level). 90 different resource combina-
tions were selected using Latin Hypercube Sampling (LHS, 
[30]), therefore, covering uniformly the sampling space. 
Each resource combination was repeated ten times to 
account for stochasticity, resulting in 900 simulation runs.

Species classification into PFTs We classified the six plant 
species according to the categories used in Weiss et al. [19] 
and Reeg et al. [21] (Table 3). Without any further adap-

tion, the monoculture control biomass of L. hispidus, T. 
pratense and S. nutans could not be sufficiently predicted 
by the model. The experimental biomass of T. pratense was 
even higher than the maximal plant masses assumed in 
the model according to the classification. Also for L. hispi‑
dus the modeled biomass was not able to increase further 
due to the maximal plant size assumed in the trait char-
acterization. Thus, we increased the maximal plant mass 
of these two species to the next higher category (from 
small to medium sized plant species). This can be also sup-
ported by data found in the TRY database for maximal 
plant size [33]. According to the root/shoot ratios found in 
the trait database [34–36] and according to expert knowl-
edge (Michael Ristow, University of Potsdam, Germany, 
personal communication, 2017), S. nutans allocates more 
resources to root growth compared to other plant species, 
especially in early live stages (approx. 50% higher root bio-
mass than shoot biomass [34]). In contrast to that, T. prat‑
ense has higher shoot biomasses (approx. 20%, [35, 36]). 
Based on this knowledge, we integrated a root and shoot 
allocation factor in the model (Eqs. 1a, b; Eqs. 2a, b).

Higher resource allocation into the shoot growth was 
simulated as:

Higher resource allocation into the root growth was 
simulated as:

(1a)

Shoot_resources = Shoot_resources

+ (Root_resources ∗ alloc_shoot)

(1b)
Root_resources = Root_resources ∗ (1− alloc_shoot)

(2a)
Shoot_resources = Shoot_resources ∗ (1− alloc_root)

(2b)

Root_resources = Root_resources

+ (Shoot_resources ∗ alloc_root)

Table 3 Classification of  species into  plant functional types (PFT) according to  the  classification rules [21] and  current 
adaptations

During the calibration process (i.e., fitting simulated shoot growth against empirical shoot growth in monoculture controls) a root/shoot allocation trait was 
integrated in the model. The trait characteristics are based on trait data (‘root/shoot ratio’) and expert knowledge
a According to classification rules the species would be classified as small. However, experimental data reach or exceed the maximal plant size even within 6 weeks of 
growth. Therefore, we classified these species in the next higher category

Species Plant size Growth form Resource response Grazing response Root/shoot allocation

B. erectus Large Semi-rosette Stress-tolerator Tolerator Alloc_root/shoot = 1

C. cristatus Large Semi-rosette Intermediate Avoider Alloc_root/shoot = 1

G. mollugo Medium Erect Competitor Intermediate Alloc_root/shoot = 1

L. hispidus Mediuma Rosette Intermediate Tolerator Alloc_root/shoot = 1

S. nutans Medium Semi-rosette Intermediate Intermediate Alloc_shoot = 1
Alloc_root = 0.5

T. pratense Mediuma Semi-rosette Competitor Tolerator Alloc_shoot = 0.2
Alloc_root = 1
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With Shoot/Root_resources: the resources allocated to 
root and shoot growth without the allocation factor and 
alloc_shoot/root: the PFT-specific allocation factor.

These factors allow for an additional shift in resource 
allocation from shoots to roots and vice versa after the 
general distribution of resources between roots and 
shoots. For T. pratense, 20% of the resources assigned 
for root growth were additionally available and shifted 
to shoot growth. In the case of S. nutans, 50% of the 
resources assigned for shoot growth were additionally 
available and shifted to root growth.

Integration of herbicidal effects The design of the empir-
ical study was based on the OECD Guideline for Vegeta-
tive Vigor studies [5] and focused on the endpoint bio-
mass, not measuring the effect on seedling emergence or 
survival. This means, plant individuals were oversprayed 
with different application rates and fresh weight was 
measured 2, 4 and 6  weeks after application. Therefore, 
we integrated the herbicide effect in the model only as a 
reduction in biomass gain per weekly time step.

The herbicide effect was based on the effects on fresh 
weight (reduction in shoot mass) measured 4  weeks 
after application in the experimental monocultures. We 
selected the 4th week to be as close as possible to the 
standardized greenhouse experiments, which measure 
effects on biomass 3–4 weeks after herbicide application. 
For each species and herbicide, the dose–response curves 
were calculated using an optimization algorithm [37], 
which calculates the ER50 and slope (b) estimates of the 
dose–response function (Eq. 3):

Effect is the reduction in growth for the specific 
application rate, application rate is the applied rate 
of the herbicide [in g/ha for  Monitor® or mL/ha for 
 RoundUp®], ER50 is the rate [in mL/ha for  Monitor® or 
g/ha for  RoundUp®], at which 50% reduction of biomass 
occurred, and b is the slope for the dose–response func-
tion. Effect and slope b are dimensionless.

In each weekly time step following the simulated her-
bicide application in the model, the biomass gain was 
reduced by this species and dose specific effect based 
on the dose–response data. We assumed no dissipation 

(3)

Effect (Application rate) =
Application rateb

ER50b + Application rateb

of the herbicides throughout the time of the experiment, 
i.e., the effect does not change over time. This holds 
true for both the modeled monocultures and communi-
ties: Modeled effects are based on these species-specific 
dose responses and applied each week after herbicide 
application.

Analyses
For model calibration and the comparison of the above-
ground biomasses without herbicide effect, we used pat-
tern-oriented modeling—the visual comparison of the 
patterns (i.e., shoot mass dynamics over time) observed 
in the empirical data compared to those in the modeled 
simulations. Therefore, we first needed to convert the 
empirically measured fresh weights to dry weight, which 
is the biomass parameter simulated in IBC-grass.

We repeated the control monoculture experiment 
to measure the fresh to dry weight ratio for each spe-
cies and used the mean ratio as a conversion factor (see 
Additional file 1: Appendix B for further details). Besides 
pattern-oriented calibration, we calculated the Welch 
Two Sample t test (not paired, no correction for multiple 
comparison, alpha value = 0.05) for each experimental 
and modeled pair (by PFT and time) of data to determine 
whether significant differences exist (see Additional file 1: 
Appendix C for detailed test results).

In addition to the visual comparison of the observed 
patterns of the predicted and empirically measured 
effects in the monocultures and communities, we also 
calculated the model adequacy and model reliability 
according to Scholten and van der Toll [17]. We calcu-
lated the area covered by the 2.5th and 97.5th percentile 
of the modeled data (M, Eq. 4) on the one hand and of the 
empirical data (O, Eq. 5) on the other hand. In addition, 
we calculated the area of the intersection of M and O (I, 
Eq. 6).

(4)
M =

3
∑

t=1

∣

∣2.5th percentile modeled shoot mass2t

−97.5th percentile modeled shoot mass2t
∣

∣

(5)
O =

3
∑

t=1

∣

∣min(experimental shoot mass)2t

−max(experimental shoot mass)2t
∣

∣

(6)
I =

3
∑

t=1

∣

∣max
(

2.5th percentile modeled shoot mass2t , min(experimental shoot mass)2t
)

−min
(

97.5th percentile modeled shoot mass2t , max(experimental shoot mass)2t
)
∣

∣
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Model adequacy describes which part of the experi-
mental data can be explained by the model. It is calcu-
lated by dividing the intersection I with the area of the 
observed data in the experiments (O) (adequacy = I/O). 
Model reliability describes which part of the modeled 
data can also be observed in the experimental data. 
Therefore, we put the intersection I in relation to the 
modeled data area M (reliability = I/M). Both endpoints 
can have values between 0 and 1. If model adequacy is 
1, all observed data fall within the range of the modeled 
data. If model reliability is 1, all modeled data fall within 
the range of the observed data. Thus, in the best case that 
both values are 1, there is a complete overlap between 
modeled and observed data and the model is able to 
fully represent the empirically observed data. If both the 
adequacy and reliability have values close to zero, there is 
almost no overlap between modeled and observed data 
(i.e., the intersection area I is close to zero).

Calibration results
Control growth With the model adjustments mentioned 
before, we were able to simulate similar biomasses in the 
control monocultures of the six tested plant species over 
the 6 weeks (Fig. 2) compared to the empirical data. Only 
for the last measurement in week 6, C. cristatus and L. 
hispidus show significant differences. In the experiments, 
the biomass of C. cristatus even decreased without any 
herbicide effect. The latter might imply an empirical bias, 
i.e., the growing conditions in the experiment were not 
suitable for C. cristatus and thus plants were impaired in 
their growth even without any herbicide impact. On the 
other hand, as we converted the empirically measured 
fresh weight to dry weight using a species-specific static 
conversion factor, the potential intraspecific and temporal 
variability of the fresh to dry weight ratio might be under-
estimated. Still, there is a high overlap between model 
and empirical data and on average the simulated shoot 
weights for the monocultures are on the same level as the 
empirical effects.

Herbicidal effects We calculated the dose–response 
function based on the empirical effects measured 
4  weeks after application in the monoculture experi-
ment. Table  4 summarizes the results of the optimi-
zation algorithm and Fig.  3 shows an exemplary dose 
response for B. erectus when affected by the broad 
spectrum herbicide  RoundUp® (see Additional file  1: 
Appendix D for all dose–response curves). Especially 
the dose responses of the selective herbicide  Monitor® 
show the different herbicide sensitivities of the test 
species.

Results
Prediction of control growth in communities
After calibration, the IBC-grass model was able to pre-
dict similar shoot masses in the artificial communities 
without herbicide effect (i.e., control data, Fig.  4). Most 
of the species-specific comparisons were not significantly 
different from each other. In the case of C. cristatus, the 
predicted and observed biomasses were significantly dif-
ferent; however, all empirical data are within the range of 
the model predictions. The good prediction of the control 
communities is underlined also by high adequacy and 
reliability values (Table 5). All values are above 0.6, except 
for the model adequacy of T. pratense. For this species, 
only 20% of the modeled shoot masses in the artificial 
communities are similar to empirically measured values. 
Nevertheless, the reliability for modeling T. pratense in 
these artificial communities is still 0.6, meaning that 60% 
of the observed data were predicted by the model.

Prediction of herbicide impacts based on monoculture 
dose responses
Monocultures
In the monoculture treatment, the calibrated IBC-grass 
model showed a good reliability for both the selec-
tive herbicide as well as the broad spectrum herbicide 
(Table  6). In 56–100% of the simulation runs, in which 
we varied above and belowground resource levels (see 
Methods, overall 900 simulation runs with 90 different 
resource level combinations and 10 repetitions for each 
combination), the predicted effects are within the range 
of the experimentally measured effects (Fig.  5). The 
observed effects on the shoot masses of the 6 different 
PFTs over time (i.e., patterns) are comparable to the pat-
terns predicted by the model. For example, for the realis-
tic drift rate of 3.0% of the maximum application rate of 
the broad spectrum herbicide  RoundUp® (≡ 90 mL/ha), 
the mean effect on the shoot mass of B. erectus remained 
negligible in both the empirical data as well as in the 
model predictions. In contrast to that, the mean effects 
on C. cristatus are increasing over time in both the 
empirical and modeled data. However, especially at this 
lowest test rate which is similar or slightly higher than the 
predicted EU drift rate (2.77%), some species show a very 
high variation in the experiments (e.g., C. cristatus). That 
biological variation is not covered in IBC-grass, which 
is also reflected in lower model adequacy (Table 6). The 
design of the toxicological submodel, transferring the 
empirical effects measured in the monocultures 4 weeks 
after application as a weekly reduction in the biomass 
gain, results in a good representation of the observed 
patterns and temporal dynamics of the species-specific 
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effects. Nevertheless, it needs to be kept in mind that the 
dose responses, on which the individual-level effects are 
based on in the model, were calculated using the empiri-
cal monoculture data 4 weeks after application. Thus, the 
modeled data are not completely independent from the 
empirical data.

Artificial communities
In general, the predicted temporal patterns and magni-
tude of the effects on plant populations in an artificial 

community of the model IBC-grass are comparable to 
the observed patterns and magnitude (Fig.  6). Model 
adequacy is higher than in the monocultures (Table 7, 
compared to Table  6). The variation in the simulated 
communities is greater than that in the monocultures 
due to the additional interspecific competition. There-
fore, the model is able to cover the natural variability 
found in the experiments to a greater extent. There are 
slight differences between the two herbicides (selective 
and broad spectrum herbicide), but looking at all plant 
species (or PFTs), the adequacy is the same. Model 
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Fig. 2 Model calibration to empirical monocultures: Comparing the shoot weight of experimentally measured (red points, N = 8) and modeled 
(blue points, N = 900 covering potential variability in resource levels) data for each assessment date in control monocultures. Experimental values 
measured in fresh weight were converted to dry weight using a conversion factor based on a repeated monoculture control experiment, in which 
we measured the fresh to dry weight ratio of each species (see Additional file 1: Appendix B for further details). Both broad spectrum herbicide and 
selective herbicide control values are included in the experimental data. Each experiment model pair was tested for significance using a t test; not 
significant results indicate that there are no differences between experimental and model data. Please note the logarithmic scale of the y-axis
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reliability is smaller than in the monocultures, espe-
cially for the broad spectrum herbicide, meaning that a 
lower percentage of the model predictions is within the 
range of observed effects (Fig. 6). This can be explained 
by a higher variability in the predicted effects due to 
interspecific competition between plant individuals 
(compared to the monocultures).

Discussion
In a plant community, inter- and intraspecific compe-
tition plays a major role in determining the dynamics 
within the community. Thus, indirect impacts of her-
bicides on populations as well as on plant community 
dynamics might appear, especially if affected plants dif-
fer in their susceptibility (e.g., if selective herbicides 
are applied). As a result, the competitive relationship 
between plant individuals in a community might shift 
between individuals of different plant species and, con-
sequently, indirect impacts might alter plant community 
dynamics (see, e.g., [21]). Such indirect effects on plant 
species not impaired by the herbicide were observed in 
the study of Reuter and Siemoneit-Gast [12], especially 
regarding the selective herbicide  Monitor®. Already in 
this short-term study, for instance the shoot mass of T. 
pratense, being less sensitive to the herbicide than other 
test species, increased due to lower interspecific compe-
tition from more sensitive plant species such as G. mol‑
lugo with a decreasing shoot mass. After the calibration 
process, where the IBC-grass model was solely adapted 
to the monoculture control data of the experiment [12], 
the model was able to not only predict shoot masses 
measured in control communities without further model 
adaptations, but also to predict similar effect intensities 
and dynamics over time in these artificial communities. 
Similar to the empirical results, T. pratense showed only 
minor decreases in shoot masses or even an increase 
under herbicide treatments; whereas for G. mollugo the 
model predicted a high negative impact on the shoot 
mass.

The study setup allows us to make conclusions about 
the intra- as well as interspecific competition and their 
reflection in the model: in monocultures, only plant indi-
viduals of the same species compete for resources and 
space, whereas in the artificial communities both types 
of competition occur: between individuals of the same 
species and between individuals of different species. 
Although we did not quantify the specific impact of intra- 
or interspecific competition in the empirical data, it can 
be assumed that competition occurs as soon as plant indi-
viduals overlap in their roots or shoots. As the distance 
between the plant individuals is quite small (2.5 cm), an 
overlap of roots and shoots is very likely. We were able to 
calibrate the model to the monoculture control growth, 
where only intraspecific competition took place. This 
allows the conclusion that the intraspecific competition 
is indeed well reflected in the model. The fact that we did 
not touch any process regarding the competition during 
the calibration process even strengthens this conclusion. 
Excluding the competition from this calibrated model 
actually showed that simulated plant growth would 
have exceeded the empirical measurements (Additional 

Table 4 Estimated ER50 values and slopes b for the 6 test 
species and  the  two herbicides including  the  standard 
errors (see Additional file  1: Appendix D for  all dose–
response curves)

a The optimization routine was not able to calculate the Hessian matrix. 
Therefore, we were not able to calculate an error

Herbicide Species ER50 ER50 error Slope b Slope b error

Broad 
spectrum 
herbicide 
 RoundUp®

B. erectus 323.69 12.50 2.14 0.18

C. cristatus 94.88 5.88 2.07 0.31

G. mollugo 104.88 1.62 4.57 0.33

L. hispidus 111.16 4.47 2.24 0.22

S. nutans 149.93 12.09 1.46 0.18

T. pratense 233.5 12.33 1.36 0.11

Selective 
herbicide 
 Monitor®

B. erectus 25.23 7.20 0.64 0.12

C. cristatus 1.73 0.44 0.67 0.17

G. mollugo 1.52 0.06 1.93 0.19

L. hispidus 1.80 0.21 0.86 0.11

S. nutans 1.68 0.21 0.69 0.08

T. pratense 4.74 0a − 0.08 0a

ER50 =  323.7 [mL/ha]

b =  2.14
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Fig. 3 Effects on the fresh weight (% reduction of fresh weight) of 
B. erectus in the monoculture treatment 4 weeks after application, 
when sprayed with different application rates of the broad spectrum 
herbicide  RoundUp®. Points show the empirically measured data 
and the line the estimated dose–response curve based on the 
dose-response function (Eq. 3), with the predictors for the ER50 value 
and the slope b 
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file 1: Appendix F). Also interspecific competition is well 
reflected in the model: On the one hand, the model pre-
dicted similar shoot masses in control communities. The 
main difference compared to the monoculture simulation 
is actually the interspecific competition process. And, on 
the other hand, also similar effect intensities and tempo-
ral dynamics under herbicide treatment were predicted. 
Thus, indirect effects resulting from intraspecific compe-
tition due to the different species specific susceptibilities 
are reflected by the model.

Furthermore, the model was able to predict similar 
short-term herbicide impacts on communities based 
on the species specific dose responses (calculated from 
empirical effects in monocultures measured 4  weeks 
after application) compared to empirical data. The guid-
ance document currently in use in the EU specifies an 
assessment factor, which is supposed to cover the uncer-
tainties in the risk assessment for non-target terres-
trial plants, e.g., the extrapolation from individual-level 
tests to the community level or the occurrence of even 
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Fig. 4 Prediction of shoot growth in control community: Comparing the shoot weight of experimentally measured (red points, N = 8) and modeled 
(blue points, N = 900 covering potential variability in resource levels) data for each assessment date in control communities. Experimental values 
measured in fresh weight were converted to dry weight using a conversion factor based on a repeated monoculture control experiment, in which 
we measured the fresh to dry weight ratio of each species. Both broad spectrum herbicide and selective herbicide control values are included 
in the experimental data. Each experiment-model pair was tested for significance using a t-test; not significant results indicate that there are no 
differences between experimental and model data. Please note the logarithmic scale of the y-axis
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more sensitive species [38]. However, the appropriate-
ness of the assessment factor for covering uncertainties 
is debated. Participants of a non-target terrestrial plant 
workshops held by the Society of Environmental Toxicol-
ogy and Chemistry (SETAC) in 2014 and 2015 recom-
mended using modeling approaches to support the risk 
assessment of terrestrial plant communities [39]. The 
current study strengthens that the presented plant com-
munity model IBC-grass is suitable to be used for analyz-
ing short-term effects on a plant community based on 
monoculture dose responses, which can be derived from 
the standard studies used for the current non-target ter-
restrial plant risk assessment. However, also the extrapo-
lation from short-term to long-term effects is important 
to estimate the potential risk on non-target terrestrial 
plant communities. Therefore, longer term field data 
are required to evaluate the models’ accuracy and reli-
ability for predicting long-term impacts of herbicides 

and therewith strengthen the model’s credibility for risk 
assessors. It would be valuable if new empirical studies 
were designed to be used as additional data for validating 
ecological models like IBC-grass, e.g., measuring biomass 
on individual level over a longer time period.

Plant communities show a high natural variability. 
This variability is caused by various factors, e.g., het-
erogeneity in the soil (i.e., in nutrients or moisture) or 
aboveground and belowground disturbances by graz-
ing, trampling or management practices, but also the 
history of the landscape is important for its current 
state. To adequately characterize herbicide-related 
effects on plant communities, a high amount of replica-
tion is needed. Thus, the field studies are not only labor 
and cost intensive but also put high demands on the 
study site, e.g., a large homogenous field area in order 
to disentangle the herbicide impact from other fac-
tors determining the variability. Ecological models can 
overcome this dilemma if they comprise the main driv-
ers for the variability in plant community dynamics, 
which were mentioned earlier. Different scenarios (e.g., 
resource levels, management practices) can be simu-
lated to cover for various conditions occurring in semi-
natural grasslands. In IBC-grass indeed many of these 
factors are included: resource levels and disturbances 
such as grazing, trampling and cutting are integrated in 
the model. As previous studies showed, the IBC-grass 
model is able to predict also long-term impacts on 
grassland communities. For example, Weiß et  al. [19] 
analyzed the effect of different grazing intensities and 
realistically predicted the yield under different grazing 
regimes. Integrating resource heterogeneity directly in 
the model might be desirable for improving the model 
performance. However, heterogeneity in resources can 
also be covered by simulating small plots with a variety 
of potential resource levels similar to sample subplots 
in empirical studies to cover the natural variability, 
which is comparable to the approach in the current 
study.

As several environmental parameters (e.g., resource 
levels, disturbances, PFT pool) can be changed in IBC-
grass, different environments can be covered. However, 
the model was originally developed and validated for 
semi-natural grasslands in Germany. Therefore, special 
environmental conditions, e.g., occurring in drylands or 
wetlands, which are driven or limited by other factors 
such as soil moisture, fire or salinity, are currently not 
covered in the model. Thus, the processes driving these 
specific ecosystems would need to be integrated in the 
model beforehand in order to be suitable for the corre-
sponding risk assessments. However, for semi-natural 
grasslands in regions, which have similar environmental 
conditions to German grasslands, IBC-grass can provide 

Table 5 Model adequacy and  reliability values 
for the predicted control communities

The values show the mean over all three measurements (weeks 2, 4 and 6). 
Model adequacy is the intersection of the modeled and empirical data space 
divided with the observed data space. If the value is 1, all observed data points 
fall within the modeled area. Model reliability is the intersection divided with 
the modeled data space. If the value is 1, all modeled data points fall within the 
observed area

PFT Adequacy Reliability

B. erectus 0.67 0.89

C. cristatus 0.79 0.73

G. mollugo 0.82 0.75

L. hispidus 0.62 0.89

S. nutans 0.66 0.79

T. pratense 0.20 0.60

Table 6 Model fit for the monocultures

Mean model adequacy and reliability over all herbicide application rates for the 
selective and the broad spectrum herbicide. Model adequacy is the intersection 
of the modeled and empirical data space divided with the observed data space. 
If the value is 1, all observed data points fall within the modeled area. Model 
reliability is the intersection divided with the modeled data space. If the value is 
1, all modeled data points fall within the observed area

PFT Selective herbicide Broad spectrum 
herbicide

Adequacy Reliability Adequacy Reliability

B. erectus 0.43 0.89 0.39 0.73

C. cristatus 0.08 1.00 0.04 0.56

G. mollugo 0.25 0.91 0.32 0.74

L. hispidus 0.35 0.75 0.32 0.83

S. nutans 0.17 0.98 0.20 0.73

T. pratense 0.72 0.98 0.56 0.84

All 0.33 0.92 0.31 0.74



Page 12 of 16Reeg et al. Environ Sci Eur           (2018) 30:44 

B. erectus C. cristatus G. mollugo L. hispidus S. nutans T. pratense

90 m
L/ha 

 R
ealistic

B
road spectrum

 herbicide

750 m
L/ha 

 W
orst case

B
road spectrum

 herbicide

1.32 g/ha 
 R

ealistic

S
elective herbicide

13.8 g/ha 
 W

orst case

S
elective herbicide

2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6

−50

0

50

100

−50

0

50

100

−50

0

50

100

−50

0

50

100

Assessment date [weeks after application]

E
ffe

ct
 [%

 re
du

ct
io

n 
of

 s
ho

ot
 w

ei
gh

t]

Fig. 5 Effects on species specific shoot masses (treatment/control) in the monocultures after herbicide application. Black solid lines represent the 
median of the model predictions and dark gray ribbons show the upper and lower 2.5th percentile of the predictions. Dotted black lines show 
the empirically measured median and gray ribbons and dotted gray lines the upper and lower 2.5th percentile of these. Only the lowest (realistic) 
and highest (worst-case) tested application rates are presented here. The lowest rates tested were in the same range (broad spectrum herbicide 
Roundup) or higher (selective herbicide Monitor) than the rates that would be applicable to the risk assessment considering European standard 
drift rates. The results for these test rates are presented to deliver a more realistic picture. Results for the whole range of tested application rates can 
be found in Additional file 1: Appendix E
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Fig. 6 Effects on species specific shoot masses (treatment/control) in the artificial communities after herbicide application. Black solid lines 
represent the median of the model predictions and dark gray ribbons show the upper and lower 2.5th percentile of the predictions. Dotted black 
lines show the empirically measured median and gray ribbons and dotted gray lines the upper and lower 2.5th percentile of these. Only the lowest 
(realistic) and highest (worst-case) tested application rates are presented here. The lowest rates tested were in the same range (broad spectrum 
herbicide  RoundUp®) or higher (selective herbicide  Monitor®) than the rates that would be applicable to the risk assessment considering European 
standard drift rates. The results for these test rates are presented to deliver a more realistic picture. Results for the whole range of tested application 
rates can be found in Additional file 1: Appendix E
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reasonable assessments of potential outcomes of her-
bicide impacts on community level (see [21] for poten-
tial long-term effects of herbicide impacts on different 
grassland communities occurring adjacent to agricultural 
fields in Germany).

To evaluate the credibility of model predictions using 
empirical data, we chose to calculate model adequacy 
and reliability [17]. Both values are equally important to 
qualify the model predictions. Reliability explains which 
part of the model predictions is observed in the empirical 
data. Thus, it is a measure to estimate in how many sim-
ulations the model is in agreement with empirical data. 
Adequacy, on the other hand explains which part of the 
observed data is predicted. It gives an idea whether the 
model is covering also the extreme cases, e.g., the strong-
est effects that were observed. Therefore, both meas-
urements should always be reported and considered in 
combination. For example, if all model predictions have 
also been observed, but only cover a small range of the 
variability in the observed data, the reliability is high; 
however, the adequacy is low. Ideally, you would want to 
have a high adequacy and a high reliability. In general, it 
is important to be aware of the instances which might not 
be covered by the model.

With the detailed model description following the 
ODD protocol [21], sensitivity analyses [19, 22] and the 
short-term validation in the current study, IBC-grass now 
fulfills the main aspects for an ecological model to be 
used for ecological risk assessments and thus for environ-
mental decision making [40]. Based on individual-level 
effects measured in standard greenhouse experiments, 
IBC-grass can extrapolate the effects up to community 
level. Thus, a range of different environmental scenarios 

and the effect on different grassland communities can be 
simulated to estimate the potential risk posed by herbi-
cide applications on non-target terrestrial plants. The 
current study showed that for short-term effects the 
model is realistically predicting the community-level 
effects. To strengthen the credibility of the model also for 
long-term effects, a validation based on long-term effect 
data is desirable; however, it is difficult to reach as there 
is a lack of suitable long-term field studies.

Conclusions
In this current study, we were able to show that the plant 
community model IBC-grass was able to realistically pre-
dict short-term community-level effects on plant biomass 
based on monoculture dose–response data. It represents 
an approach how individual-level effects measured in 
current standard greenhouse experiments can be inte-
grated in a community model to estimate community-
level effects in ecological risk assessments of herbicides. 
Such validated plant community models might be espe-
cially important in the future as EFSA considers specific 
protection goals for non-target terrestrial plants on pop-
ulation and community level [2].

Additional file

Additional file 1. Supporting information.
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Table 7 Model fit for the communities

Mean model adequacy and reliability over all herbicide application rates of the 
selective  (Monitor®) and the broad spectrum herbicide  (RoundUp®). Model 
adequacy is the intersection of the modeled and empirical data space divided 
with the observed data space. If the value is 1, all observed data points fall 
within the modeled area. Model reliability is the intersection divided with the 
modeled data space. If the value is 1, all modeled data points fall within the 
observed area

PFT Selective herbicide Broad spectrum 
herbicide

Adequacy Reliability Adequacy Reliability

B. erectus 0.46 0.53 0.48 0.63

C. cristatus 0.73 0.52 0.93 0.17

G. mollugo 0.37 0.93 0.41 0.28

L. hispidus 0.55 0.78 0.49 0.43

S. nutans 0.79 0.74 0.67 0.42

T. pratense 0.77 0.86 0.65 0.73

All 0.61 0.73 0.61 0.44
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