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Abstract

Understanding how humans move their eyes is an important part for understanding the

functioning of the visual system. Analyzing eye movements from observations of natural

scenes on a computer screen is a step to understand human visual behavior in the real

world. When analyzing eye-movement data from scene-viewing experiments, the impor-

tant questions are where (fixation locations), how long (fixation durations) and when

(ordering of fixations) participants fixate on an image. By answering these questions,

computational models can be developed which predict human scanpaths. Models serve

as a tool to understand the underlying cognitive processes while observing an image,

especially the allocation of visual attention.

The goal of this thesis is to provide new contributions to characterize and model human

scanpaths on natural scenes. The results from this thesis will help to understand and

describe certain systematic eye-movement tendencies, which are mostly independent of

the image. One eye-movement tendency I focus on throughout this thesis is the tendency

to fixate more in the center of an image than on the outer parts, called the central

fixation bias. Another tendency, which I will investigate thoroughly, is the characteristic

distribution of angles between successive eye movements.

The results serve to evaluate and improve a previously published model of scanpath

generation from our laboratory, the SceneWalk model. Overall, six experiments were

conducted for this thesis which led to the following five core results:

i) A spatial inhibition of return can be found in scene-viewing data. This means that

locations which have already been fixated are afterwards avoided for a certain time

interval (Chapter 2).

ii) The initial fixation position when observing an image has a long-lasting influence

of up to five seconds on further scanpath progression (Chapter 2 & 3).

iii) The often described central fixation bias on images depends strongly on the duration

of the initial fixation. Long-lasting initial fixations lead to a weaker central fixation

bias than short fixations (Chapter 2 & 3).

iv) Human observers adjust their basic eye-movement parameters, like fixation dura-

tions and saccade amplitudes, to the visual properties of a target they look for in

visual search (Chapter 4).

v) The angle between two adjacent saccades is an indicator for the selectivity of the

upcoming saccade target (Chapter 4).

All results emphasize the importance of systematic behavioral eye-movement tenden-

cies and dynamic aspects of human scanpaths in scene viewing.

v





Zusammenfassung

Die Art und Weise, wie wir unsere Augen bewegen, ist ein bedeutender Aspekt des vi-

suellen Systems. Die Analyse von Augenbewegungen beim Betrachten natürlicher Szenen

auf einem Bildschirm soll helfen, natürliches Blickverhalten zu verstehen. Durch Beant-

wortung der Fragen wohin (Fixationsposition), wie lange (Fixationsdauern) und wann

(Reihenfolge von Fixationen) Versuchspersonen auf einem Bild fixieren, lassen sich com-

putationale Modelle entwickeln, welche Blickspuren auf natürlichen Bildern vorhersagen.

Modelle sind ein Werkzeug, um zugrunde liegende kognitive Prozesse, insbesondere die

Zuweisung visueller Aufmerksamkeit, während der Betrachtung von Bildern zu verstehen.

Das Ziel der hier vorliegenden Arbeit ist es, neue Beiträge zur Modellierung und Charak-

terisierung menschlicher Blickspuren auf natürlichen Szenen zu liefern. Speziell system-

atische Blicksteuerungstendenzen, welche größtenteils unabhängig vom betrachteten Bild

sind, sollen durch die vorliegenden Studien besser verstanden und beschrieben werden.

Eine dieser Tendenzen, welche ich gezielt untersuche, ist die Neigung von Versuchsperso-

nen, die Mitte eines Bildes häufiger als äußere Bildregionen zu fixieren. Außerdem wird

die charakteristische Verteilung der Winkel zwischen zwei aufeinanderfolgenden Sakkaden

systematisch untersucht.

Die Ergebnisse dienen der Evaluation und Verbesserung des SceneWalk Modells für

Blicksteuerung aus unserer Arbeitsgruppe. Insgesamt wurden 6 Experimente durchgeführt,

welche zu den folgenden fünf Kernbefunden führten:

i) Ein örtlicher inhibition of return kann in Blickbewegungsdaten von Szenenbetrach-

tungsexperimenten gefunden werden. Das bedeutet, fixierte Positionen werden nach

der Fixation für einen bestimmten Zeitraum gemieden (Kapitel 2).

ii) Die Startposition der Betrachtung eines Bildes hat einen langanhaltenden Einfluss

von bis zu fünf Sekunden auf die nachfolgende Blickspur (Kapitel 2 & 3).

iii) Die viel beschriebene zentrale Fixationstendenz auf Bildern hängt davon ab, wie

lange die erste Fixation dauert. Lange initiale Fixationen führen zu deutlich gerin-

gerer zentraler Fixationstendenz als kurze Fixationen (Kapitel 2 & 3).

iv) Menschliche Betrachter passen Fixationsdauern und Sakkadenamplituden an die

visuellen Eigenschaften eines Zielreizes in visueller Suche an (Kapitel 4).

v) Der Winkel zwischen zwei Sakkaden ist ein Indikator dafür, wie selektiv das Ziel der

zweiten Sakkade ist (Kapitel 4).

Alle Ergebnisse betonen die Wichtigkeit von systematischem Blickbewegungsverhalten

und dynamischen Aspekten menschlicher Blickspuren beim Betrachten von natürlichen

Szenen.
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Chapter 1

Introduction

Vision is the most important and complex sense of humans (Kolb, Whishaw, & Teskey,

2001). Our ability to rapidly discriminate uncountable visual inputs from each other,

instantly associate pictures with meaning and recognize a vast amount of familiar faces

is simply remarkable. However, all the wonderful things the visual system is capable of,

come at a price: the visual system requires by far the largest brain capacity of all our

senses (e.g., Purves et al., 1997; Kolb et al., 2001) and yet, the area with high visual

acuity is limited to a tiny part of the visual field, called the fovea. The fovea makes

up less than 1% of the retinal area (Kandel et al., 2000) and has the highest density of

photoreceptors (Polyak, 1941). Thus, the brain capacity needed to decode input from the

fovea is a lot larger than the capacity needed for peripheral parts of the visual field with

the same size. If the resolution in the periphery would be as high as in the fovea, our

brain would be thousands of times larger and weigh up to ten tons (Findlay & Gilchrist,

2003). Because the fovea only covers about 2° of visual angle, we have to constantly move

our eyes and head in order to accurately perceive the visual world around us. Vision is

thus not simply light being absorbed by the retina to create an image in the brain but is a

fascinating interplay of the stimuli which surround us, and ourselves as observers, deciding

where to move the eyes next. This interaction of eye movements and the stream of visual

data entering the eyes is often referred to as active vision (Findlay & Gilchrist, 2003).

Scientists can exploit the fact that our vision is foveated because of the direct link between

where our fovea is directed at and the position within the focus of our visual attention

(Henderson, 1992). Thus, investigating eye movements is tightly linked to measuring

visual attention (Schneider & Deubel, 1995; Deubel & Schneider, 1996; Rayner, Smith,

Malcolm, & Henderson, 2009).

Humans display multiple types of eye movements. We make smooth pursuit move-

ments to follow moving objects (Dodge, 1903; Lisberger, Morris, & Tychsen, 1987), ver-

gence movements to follow objects moving in depth (B. Clark, 1936; Mays, 1984), the

optical nystagmus to stabilize an image despite of a moving head (Ehlers, 1925) and more

1



1. Introduction

(for an overview see Liversedge, Gilchrist, & Everling, 2011). The two most commonly

investigated eye movements are saccades and fixations. Saccades are fast ballistic move-

ments, which are conducted approximately three times a second to shift the fovea from

one location to another. During a saccade, perception is strongly suppressed (Matin,

1974; Thiele, Henning, Kubischik, & Ho↵mann, 2002). The time between two saccades,

when the eyes seem to stand still and visual information is being processed, is called

a fixation. During a fixation the eyes never stand completely still. Small fixational eye

movements, called drift, tremor and microsaccades can be found within fixations. Without

micro-movements the image fades due to retinal adaptation (Riggs, Ratli↵, Cornsweet, &

Cornsweet, 1953) and attention shifts can be related to fixational eye movements (Engbert

& Kliegl, 2003a).

Scientists have been concerned with eye movements in multiple tasks like reading

(Rayner, 1998), driving (Mourant & Rockwell, 1972; Land & Lee, 1994), playing sports

(Williams & Davids, 1998; Land & McLeod, 2000; Rodrigues, Vickers, & Williams, 2002)

and other areas of interest. One of the tasks which has been investigated very thoroughly

in the past 30 years is natural scene viewing (Henderson & Hollingworth, 1998, 2003;

Rayner et al., 2009).

The next sections will introduce the scene-viewing paradigm and provide an overview

of what is known so far about eye-movement behavior in natural scene viewing. After-

wards, I will describe how computational models predict fixation locations, durations and

complete eye traces (so-called scanpaths) of an observation. The SceneWalk model of

scanpath generation, which simulates human eye traces on pictures, will be described in

detail (Engbert, Trukenbrod, Barthelmé, & Wichmann, 2015). This thesis contains three

studies which were designed to evaluate and improve the SceneWalk model. The primary

aim is to increase our understanding of the underlying processes for human eye-movement

behavior and integrate them into the SceneWalk model. Thus, all studies contain new

findings to describe human eye traces from scene-viewing experiments and introduce new

ideas for why we move our eyes in systematic ways when looking at a picture.

1.1 The scene-viewing paradigm

Scene-viewing experiments are an intermediate stage between highly controlled laboratory

experiments (for example psychophysical contrast discrimination experiments) and the

real-world. We are interested in understanding real-world behavior and thus investigate

eye movements from scene-viewing experiments as a step toward understanding real-world

eye-movement behavior.

In laboratory-based scene-viewing experiments, participants sit in front of a computer

screen while their eyes’ locations are being recorded with an eyetracker. Before each

2



1.1. The scene-viewing paradigm

experimental trial participants fixate a marker on the screen. This fixation check assures

that the eyetracker is recording and participants fixate where they are told to. After

the marker is fixated, an image appears. These images are usually photographs which

represent an excerpt of the real world.

The task, which participants are required to perform while watching the image, plays

an important role, because it has shown to influence the way observers look at the image

(Yarbus, Haigh, & Riggs, 1967; Mills, Hollingworth, Van der Stigchel, Ho↵man, & Dodd,

2011). The most commonly used tasks are visual search, free viewing and memorization.

Other tasks include aesthetic valuation of the image (Nuthmann & Henderson, 2010) or

estimating the age of displayed persons (Yarbus et al., 1967).

Besides the task, another important aspect of scene-viewing experiments is the stim-

ulus material. Photos require a very high definition, such that the retinal image of the

stimulus is as equal as possible to the real-world excerpt of the scene. To acquire as

much equality as possible between the real-world excerpt and the photograph, sharpness

should be uniformly high within the picture. Unfortunately, an image with equal sharp-

ness at every position can not represent the depth of sharpness the eyes create in a natural

environment, but at least the input at the fixation position is continuously sharp.

Besides the images, properties of the monitor and the laboratory setting play an

important role to recreate the visual impression of the real-world environment where the

image was taken (e.g., the definition of the monitor must be high enough and brightness

must be uniform).

Even if an experiment is designed with all required aspects in mind, real-world natural

viewing is not equivalent to looking at static photos on a computer screen. How results

from lab-based scene viewing transfer to viewing behavior in the natural environment is

beyond the scope of this thesis and subject to another field of research (see Hayhoe &

Ballard, 2005; Tatler, Hayhoe, Land, & Ballard, 2011). New tools like mobile eye tracking

glasses and virtual reality devices will help to bridge the gap from the laboratory to the

real world (e.g., ’t Hart et al., 2009; Rosa et al., 2015; Binaee, Diaz, Pelz, & Phillips,

2016; Engbert, Rothkegel, Backhaus, & Trukenbrod, 2016).

Once a scene-viewing experiment is designed and eye-tracking data are collected, three

main aspects of the eye movements are of general interest. The first aspect is where people

fixate. The second is how long they fixate. The third is when (i.e., in what order) they

fixate certain locations. A single eye trace on an image, which combines fixation locations

and their order, is called a scanpath.

To predict scanpaths in scene-viewing experiments, it is crucial to know where par-

ticipants fixate. However, it has been shown that knowing where participants look at

in an image is not enough to produce valid scanpaths, because each fixation depends on

the properties of previous fixations (Foulsham & Underwood, 2008; Tatler & Vincent,
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2008; Schütt et al., 2017). Dependencies between successive fixations and saccades can

result from memory, oculomotor and spatial attentional preferences, or simply the degra-

dation of visual acuity into the retinal periphery. Before presenting the studies conducted

for this thesis, the upcoming sections will provide an overview of what is known about

eye-movement behavior in scene viewing.

1.2 Fixation locations in scene viewing

Early work on eye movements in scene viewing showed that human fixation locations are

not placed randomly in a scene, but tend to cluster at certain image locations (Buswell,

1935; Yarbus et al., 1967). These findings led to the idea that fixation locations on an

image can be predicted. The factors, which contribute to similarities in fixation location

placement between di↵erent observations, have been divided into three categories. First,

bottom-up influences which depend merely on the visual stimulus. Second, top-down

influences which depend on the mental state of the observer while looking at the im-

age. Third, systematic eye-movement tendencies, which are mostly independent of image

content and can be found in almost all scene-viewing experiments.

1.2.1 Bottom-up influences

A thoroughly studied aspect of where people look in natural scenes are bottom-up influ-

ences (e.g., Itti, Koch, & Niebur, 1998; Itti & Koch, 2000; Peters, Iyer, Itti, & Koch, 2005;

Judd, Ehinger, Durand, & Torralba, 2009), which emanate from the visual stimulus and

thus are driven externally. A part of the bottom-up influences are believed to reflect an

evolutionary preference of the human visual system for certain statistical aspects of an

image (Itti & Koch, 2001). These so called low-level features1 are believed to guide the

eyes through a scene, by attracting visual attention regardless of higher-level processes

(e.g., Treisman & Gelade, 1980; Itti & Koch, 2000). Postulated low-level features are

luminance contrast, color contrast and orientation, since cells within the primary visual

cortex fire in reaction to specific orientations and spatial frequencies (Blakemore & Camp-

bell, 1969; De Valois, Albrecht, & Thorell, 1982; Schütt & Wichmann, 2017) and the very

early visual system (e.g., retinal ganglion cells) is tuned to react to luminance and color

di↵erences (e.g., Polyak, 1941; Purves et al., 1997; Kolb et al., 2001). Since low-level

features are supposed to involuntarily guide gaze due to properties of the early visual

system, they should be found within all healthy observers. Some stimuli, like flashing

lights have been shown to attract eye movements, even when participants where asked

1
The term level refers to the stage within the brain. Low-level stages of the visual system reach from

the sensory receptors to the primary visual cortex, high-level refers to later cortical stages like the inferior

temporal cortex or the occipital face area.

4



1.2. Fixation locations in scene viewing

not to look at them, which is an indication that low-level features may guide gaze irre-

spective of top-down attentional processes (Hallett, 1978; Theeuwes, Kramer, Hahn, &

Irwin, 1998). By correlating fixation positions with image statistics, it has additionally

been shown that fixated regions have higher contrast than non-fixated regions (Reinagel

& Zador, 1999; Tatler, Baddeley, & Gilchrist, 2005). This is particularly evident when

the incoming saccade has a small amplitude (Tatler, Baddeley, & Vincent, 2006).

Besides low-level features, mid-level features, like edge-content with high-spatial fre-

quency (Tatler et al., 2005) or local symmetry (Privitera & Stark, 2000; Kootstra, de Boer,

& Schomaker, 2011) and higher-level features like objects (Einhäuser, Spain, & Perona,

2008; Nuthmann & Henderson, 2010) also belong to bottom-up image-based influences

which correlate positively with fixation positions. It is rather di�cult to completely

separate high-level bottom-up influences from top-down influences on fixation selection.

Throughout this thesis I will categorize all image-based influences on fixation selection

as bottom-up influences (also see Einhäuser et al., 2008; Schütt, Rothkegel, Trukenbrod,

Engbert, & Wichmann, 2018). It has been suggested that higher-level objects are more

important for fixation selection than low-level features (Einhäuser et al., 2008; Nuthmann

& Henderson, 2010). Although results of the study by Einhäuser et al. (2008) have been

questioned (Borji, Sihite, & Itti, 2013), the notion that object features predict fixations

better than low-level features was confirmed in the recent past by very sophisticated mod-

eling techniques (Kümmerer, Wallis, & Bethge, 2016; Schütt et al., 2018). The bottom-up

approach for defining where humans look at has been rather successful, but even all low-,

mid-, and high-level bottom-up features combined cannot explain all variance in fixation

locations because top-down factors are also rather important for understanding where

humans look at in pictures (e.g., Oliva, Torralba, Castelhano, & Henderson, 2003; Naval-

pakkam & Itti, 2005).

1.2.2 Top-down influences

Top-down influences are observer and task dependent and become apparent when eye-

movement data from observations on the same image but under di↵erent conditions are

investigated (e.g., Yarbus et al., 1967; Nuthmann & Henderson, 2010; Mills et al., 2011). A

widely known study by Yarbus (1967) has shown that the instruction given to a participant

(e.g., estimate the age of the people in the picture vs. remember the clothes of the

people) strongly influences where they look at. Regardless of the fact that only one

person performed this task under rather unnatural conditions (see DeAngelus & Pelz,

2009), the influence of the task on fixation locations has been replicated multiple times
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since (e.g., Neider & Zelinsky, 2006; Castelhano, Mack, & Henderson, 2009; Borji &

Itti, 2014). Additionally, it has been shown that when non-salient image regions become

important for the viewing task at hand, participants fixate these regions or even produce a

characteristic scanpath pattern on a blank screen, suggesting that top-down influences can

completely take over (Ferreira, Apel, & Henderson, 2008; Einhäuser, Rutishauser, Koch,

et al., 2008; Henderson, 2011). In natural-environment tasks (e.g., tea and sandwich

making) with mobile eye tracking, it has also been shown that the eyes rather focus on

task-related than salient objects (Land & Hayhoe, 2001; Hayhoe & Ballard, 2005). Top-

down factors, other than the task, include the observers memory and scene understanding.

If two objects in a scene contain equal visual saliency, but one object is less predictable

(e.g., an octopus on a farm), this surprising object receives a higher amount of fixations

(Loftus & Mackworth, 1978) than the predictable object (e.g., a tractor on a farm).

Top-down factors are especially important in visual search tasks. Many studies of

visual search have shown that a target template is stored in the mind to guide gaze

through a scene. This template has shown to guide the eyes in a feature-based (e.g.,

looking at all red objects when searching a red rose; see Wolfe, 1994; Hwang, Higgins, &

Pomplun, 2009) and context-based manner (e.g., looking at the sky when searching for a

helicopter; see Henderson, Weeks Jr, & Hollingworth, 1999; Oliva et al., 2003; Torralba,

Oliva, Castelhano, & Henderson, 2006; Neider & Zelinsky, 2006). Another factor which

guides the eyes in visual search is the expected value associated with a target, thus eye-

movements are conducted in a way to increase possible reward (Navalpakkam, Koch,

Rangel, & Perona, 2010; Tatler et al., 2011).

Thus, top-down factors like the task, scene understanding and expected reward modu-

late viewing and search behavior on scenes and cannot be disregarded when investigating

human eye traces.

1.2.3 Systematic tendencies

Besides bottom-up and top-down influences, it has been shown that statistical regularities

in scanpaths, so called systematic eye-movement tendencies, can explain a large amount

of variance in human eye-movement behavior (Tatler & Vincent, 2008, 2009). These

systematic tendencies are very persistent and di�cult to be experimentally eliminated

from human eye movement behavior during scene viewing. Analyzing systematic eye-

movement tendencies plays a major role in determining fundamental rules of how humans

move their eyes. Examples for spatial behavioral biases are the tendency to make more

horizontal than vertical and more vertical than oblique saccades (e.g., Bair & O’keefe,

1998; Tatler & Vincent, 2009; Bays & Husain, 2012) - at least on images which are

not tilted (Foulsham, Kingstone, & Underwood, 2008) -, the tendency to make short
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1.3. Fixation durations in scene viewing

saccades (Bahill, 1975; Tatler et al., 2006), and the tendency to fixate more on the left

than on the right side of an image (Abed, 1991; Ossandón, Onat, & König, 2014). Two

well-known tendencies will be treated thoroughly throughout this thesis. The first one

is the central fixation bias, which behaviorally manifests in fixating more often in the

center of an image than close to the borders (e.g., Buswell, 1935; Tatler, 2007). This

bias is so strong, that it is the single best predictor for fixation locations in scene viewing

(Vincent, Baddeley, Correani, Troscianko, & Leonards, 2009; Judd et al., 2009). The

second one is the distribution of angles between two successive saccades. Most saccades

follow the same direction as the previous saccade or completely reverse direction (Smith

& Henderson, 2009; Luke, Schmidt, & Henderson, 2013; Wilming, Harst, Schmidt, &

König, 2013). Because the distribution of angles between successive saccades has been

shown to be consistent over many scene-viewing experiments, we tried to find a meaningful

explanation for this behavior.

A main purpose of this thesis was to find out more about when systematic eye-

movement tendencies occur and why they exist in natural scene viewing. Because they

are so common and reliable, implementing systematic tendencies into models of eye move-

ment control improves model performance substantially (Tatler & Vincent, 2009; Le Meur

& Liu, 2015).

1.3 Fixation durations in scene viewing

Fixation durations are an important measure for predicting and understanding human

eye-movement behavior because they reflect ongoing cognitive processes (Rayner et al.,

2009). Fixation duration distributions from scene-viewing experiments are typically right-

skewed with a mean of about 300 ms (e.g., Henderson & Hollingworth, 1998; Henderson,

2011) and large deviations both within and between subjects (Henderson & Hollingworth,

2003; Castelhano & Henderson, 2008b).

Many scientists have tried to answer which factors determine the duration of fixations.

To keep categorization throughout this thesis congruently, I will further group influences

on fixation durations, as for fixation locations, into bottom-up, top-down and systematic

tendencies. However, in the past it has been discussed if fixation durations underly di-

rect control, indirect control or mixed control (for an overview see Henderson & Smith,

2009; Trukenbrod & Engbert, 2014). Unfortunately, direct and indirect control of fixa-

tion duration are not completely congruent to bottom-up and top-down control. Direct

control means that the current visual input during a fixation is responsible for the length

of this fixation (e.g., Rayner, 1995). Indirect control means that a fixation duration does

not depend on the current foveal input. An example of indirect control would be an

autonomous timer, which ends the fixation by triggering a saccade after a random time
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interval (Engbert & Kliegl, 2001; Nuthmann, Smith, Engbert, & Henderson, 2010). In

mixed control, a combination of indirect and direct factors determine fixation durations

(e.g., Henderson & Pierce, 2008).

1.3.1 Bottom-up influences

To investigate how fixation durations depend on the visual input, experimenters use di↵er-

ent types of image manipulations, like changing the whole image with respect to low-level

feature content. If fixations di↵er between manipulated images and the original images,

this manipulation has a so-called global e↵ect on fixation durations, since it changes the

overall distribution of fixation durations. Examples for whole-image manipulations, which

have led to increased fixation durations in scene viewing compared to control experiments,

are luminance reduction (Loftus, 1985), spatial frequency filtering (S. Mannan, Ruddock,

& Wooding, 1995) and color removal (Ho-Phuoc, Guyader, Landragin, & Guérin-Dugué,

2012).

Experiments, where manipulations of the scene happen only in a certain part of the

visual field have also produced global changes in fixation duration distributions. For

example, spatial frequency filtering led to increased fixation durations compared to unfil-

tered images, when low-spatial frequencies were removed from the central visual field and

high-spatial frequencies were removed from the periphery (Laubrock, Cajar, & Engbert,

2013).

An experimental design to investigate bottom-up influences on individual fixation

durations is the Scene-Onset-Delay paradigm (SOD Shioiri, 1993). In SOD experiments,

a mask is placed over the scene for a variable time interval during a crucial saccade

before the original scene is restored. Results from SOD experiments have shown that

manipulations can directly influence the duration of the critical fixation (i.e., the fixation

which coincides with the mask). Two di↵erent distributions of durations were found for

the critical fixations. One was prolonged by the length of the delay interval and one was

una↵ected by the manipulation (Henderson & Pierce, 2008). This was seen as an indiction

that the current visual input and indirect factors determine fixation durations.

Recently, Nuthmann (2017) used linear mixed models to investigate the influence of

scene statistics at the position of gaze on fixation durations. Results have shown that

luminance and contrast correlated negatively with fixation durations, i.e., areas with low

contrast and luminance had higher fixation durations. The amount of edge and object

information at the current fixation location correlated positively with fixation durations.

Another result from this study was that visual features of a current fixation position
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interact with the preceding and successive fixation duration. As for fixation locations,

bottom-up influences like low- mid- and high-level image features influence fixation dura-

tions but cannot explain all variance.

1.3.2 Top-down influences

The fact that fixation durations are a measure of ongoing cognitive processes suggests

that they depend on the observers state of mind. As for fixation locations, one of the

cognitive influences on fixation duration, which has been investigated thoroughly, is the

viewing task. However, the question whether viewing task influences average fixation

durations has not been answered consistently. Castelhano and colleagues (Castelhano et

al., 2009) did not find a significant di↵erence between a memorization and a search task

in a scene-viewing experiment whereas other studies found a task dependency on fixation

durations, such that in visual search fixation durations are shorter than in memorization

(Henderson & Hollingworth, 1999; Võ & Henderson, 2009; Mills et al., 2011; Nuthmann,

2017).

Another top-down factor, which I have also mentioned for fixation locations, is the

scene context. For example, if an object is placed in a rather untypical location or

scene (De Graef, Christiaens, & d’Ydewalle, 1990; Loftus & Mackworth, 1978), fixation

durations on this object increase compared to typical objects, even when observers did

not realize that they have looked at this untypical object (T. H. Cornelissen & Võ, 2017).

Top-down influences, like the viewing task and the scene context thus are an important

factor for shaping fixation duration distributions.

1.3.3 Systematic tendencies

Systematic tendencies not only influence fixation locations but also fixation durations. For

example, fixation durations are strongly influenced by the change in saccade direction, that

is, the angle between the incoming and outgoing saccade from a fixation (Nuthmann, 2017;

Tatler, Brockmole, & Carpenter, 2017). The influence of the angle on fixation duration

has partially been attributed to inhibition of return (Smith & Henderson, 2009), because

saccades back to the previous fixation location are preceded by rather long fixations.

However, two results promote the idea that the influence of saccadic angle could originate

from the oculomotor system instead of a mere attentional inhibition of return mechanism.

First, longer fixations appear when saccades change direction but the saccade target does

not land on the previous fixation location (Luke, Nuthmann, & Henderson, 2013). Second,

fixation duration increases monotonically with increasing angle between the incoming and

outgoing saccade (Tatler & Vincent, 2008; Luke, Smith, Schmidt, & Henderson, 2014).
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Another systematic influence on fixation durations is viewing time. Fixation dura-

tions increase throughout a trial, whereas saccade amplitudes decrease throughout a trial

(Antes, 1974; Over, Hooge, Vlaskamp, & Erkelens, 2007; Mills et al., 2011). This be-

havior is interpreted as the coarse-to-fine eye movement strategy in scene viewing and

visual search. This strategy means that an image is initially scanned and observed rather

globally (i.e., large saccades, short fixations) before observers try to extract finer details

(i.e., small saccades, long fixations).

The fact that influences on fixation locations and fixation durations have much in

common, suggests that they are not independent from each other. In agreement with this

notion, it has been shown that positions which are fixated often also receive long fixation

durations (Einhäuser & Nuthmann, 2016).

1.4 Computational models of eye movements in scene

viewing

The past sections have shown that eye-movement data from scene-viewing experiments

contain many regularities. These regularities can be used to predict human eye-movement

behavior by formulating computational models. The next section will first provide an

overview on fixation location and fixation duration models and then introduce a series of

dynamical models for scanpath generation.

1.4.1 Models of fixation locations in scene viewing

Within the past 20 years the question of where humans look at in pictures has been

subject to a vast amount of research which led to numerous models predicting human

fixation locations on images. The first numerical and most influential model to predict

fixation locations on any given image was developed by Itti, Koch, and Niebur (1998).

This model was based on the feature integration theory (Treisman & Gelade, 1980) which

states that a series of single low-level features (e.g., shape & color) can be processed in

parallel, irrespective of top-down processes. The model by Itti et al. uses the idea by

Koch and Ullman that the preattentively processed features are combined to one single

map, which is responsible for attentive selection of fixation locations (Koch & Ullman,

1985). Thus, the model computes allocation of conspicuity within an image in a purely

low-level feature-based manner. In the model, low-level feature maps from any given

image are computed and combined to create a single 2-D saliency map. The features

which create the saliency map are local di↵erences in luminance, color and orientation,

which correspond to the sensitivity of neurons in the retina, the lateral geniculate nucleus

and the primary visual cortex (e.g., Leventhal, 1991; Itti et al., 1998; Schütt & Wichmann,
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2017). This follows the logic that positions which are conspicuous on the basis of low-level

image features attract human gaze (see Section 1.2.1).

After the original Itti et al. model, which had strong theoretical implications, but

performed only slightly above chance in predicting empirical fixation locations, many

fixation location models followed, which also produce saliency maps (e.g., Kienzle, Wich-

mann, Franz, & Schölkopf, 2006; Harel, Koch, & Perona, 2007; Bruce & Tsotsos, 2009).

The development of saliency models has become a real competition and new models are

developed continuously (for a review, see Borji & Itti, 2013). A website ranking these

models has even been established (Bylinskii et al., 2015). Although the original term

visual saliency described a combination of local di↵erences in low-level features, which

resemble the receptive field properties of the early visual system, by now the majority of

stimulus-based fixation location models (or bottom-up models) are referred to as saliency

models.

Some newer models, which go beyond the original low-level bottom-up saliency model,

take higher-level features like faces or top-down factors like scene context or task into

account (Navalpakkam & Itti, 2005; Torralba et al., 2006; Cerf, Harel, Einhäuser, &

Koch, 2008). The currently best performing saliency model is the DeepGaze II model

(Kümmerer et al., 2016). DeepGaze II uses a deep neural network architecture to extract a

large amount of visual features and weights to predict fixation locations. The features from

DeepGaze II specifically predict where objects are placed in the scene and which image

features are found in objects. The fact that predicting fixation locations by predicting

where objects are placed works rather well agrees with previous studies, showing that

objects predict eye movements better than low-level saliency (Einhäuser et al., 2008;

Stoll, Thrun, Nuthmann, & Einhäuser, 2015; Schütt et al., 2018).

Although newer saliency models perform quite well in predicting the overall placement

of fixation locations in free-viewing experiments, they are mechanistically implausible be-

cause they are static and do not take the inhomogeneous distribution of photoreceptors

in the retina into account. Static models treat an image as an homogeneously perceived

stimulus, although di↵erent fixation locations create di↵erent percepts for the observer.

Furthermore, only recently evaluation methods have been established to adequately com-

pare saliency models with a principled metric (Kümmerer, Wallis, & Bethge, 2015; Schütt

et al., 2017; Nuthmann, Einhäuser, & Schütz, 2017). Studies providing new evaluation

methods for models show that most models rely heavily on the implementation of a cen-

tral fixation bias (Clarke & Tatler, 2014; Kümmerer et al., 2015; Nuthmann, 2017; Schütt

et al., 2018). This means that most models have to heighten activities at the center of

the image compared to parts close to the image borders. It has actually been shown no

other feature predicts fixations locations as well as the central fixation bias (Judd et al.,

2009; Vincent et al., 2009). The central fixation bias exists independently of top-down
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or bottom-up processes and thus hides attentional processes elicited by the image or the

task. Due to the large influence of the central fixation bias on fixation selection, Chapter

3 of the present thesis will explicitly investigate it’s underlying cause.

Most saliency models were designed to predict fixation locations in free-viewing tasks

and perform rather poorly on data from visual search experiments (Henderson, Brockmole,

Castelhano, & Mack, 2007; Schütt et al., 2018). One way to improve performance of static

models in visual search tasks is to take properties of the search target into account, to

represent a mentally stored target template (Wolfe, 1994; Navalpakkam & Itti, 2005;

Hwang et al., 2009).

1.4.2 Models of fixation durations in scene viewing

In reading, numerical models which predict fixation durations have been established for

two decades (Reichle, Pollatsek, Fisher, & Rayner, 1998; Engbert, Nuthmann, Richter,

& Kliegl, 2005). In scene viewing these models emerged later, probably because the

common interest rather focused on where people look instead of how long they dwell on

each location.

The first computational model of fixation durations in scene viewing was the CRISP

model (Nuthmann et al., 2010). The model simulates fixation durations by implementing

a random-walk. Once a certain threshold is reached by the random walk the model starts

a saccade program. The idea of a random walk for fixation duration modeling has also

proved its worth in reading models (Engbert & Kliegl, 2003b). In the CRISP model,

the random walk can be inhibited by ongoing cognitive processes, i.e., influenced by the

current visual input. The random walk increases with a fixed rate, which can be reduced

through inhibition by the current visual input. Due to variability between realizations

of the random walk, the model can account for the variance in fixation durations. The

mixture of an autonomous timer and ongoing cognitive processes is an example of mixed

control for fixation durations. Another principle of the CRISP model is that it has two

stages of saccade programming. The first one is the labile stage, where a saccade to a

certain location is planned but can still be aborted (Becker & Jürgens, 1979; Reichle et

al., 1998; Engbert, Longtin, & Kliegl, 2002). The second is the non-labile stage, in which

a saccade program can not be canceled anymore.

One shortcoming of the CRISP model, although it produced rather accurate distribu-

tions of fixation durations, was that it does not di↵erentiate between peripheral and foveal

input, i.e., does not take the inhomogeneity of the retina into account. Thus, Laubrock,

Cajar and Engbert (2013) extended the CRISP model by postulating two random-walks,

one for peripheral and one for foveal input. With this model they were able to account for

a wider range of experimental manipulations such as spatial frequency filtering in selected
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areas of the visual field.

Another model, which uses an autonomous timer and inhibition by the current visual

input, is the ICAT model by Trukenbrod and Engbert (Trukenbrod & Engbert, 2014).

Besides local control, i.e. the current input, fixation durations in this model depend on

global control, like the task of the observation and overall processing di�culties within a

task, independent of each current fixation properties.

Recently, a new fixation duration model was published by Tatler, Brockmole, and

Carpenter (2017). Since this model not only predicts fixation durations but also fixation

locations and dependencies between successive fixations, it will be discussed in the next

section on dynamical models in scene viewing.

1.4.3 Dynamical models of scanpath generation in scene viewing

To overcome the mechanistic implausibility of static saliency models and incorporate the

statistical dependencies between successive eye-movements, dynamical models have been

developed to predict complete scanpaths on an image. As afore mentioned, a scanpath

is characterized by an ordered series of fixations within an image (Noton & Stark, 1971;

Foulsham & Underwood, 2008). The sequential order of fixations and dependencies be-

tween successive eye-movements can provide information about the influences of low-level

and high-level bottom-up factors on fixation selection (Parkhurst, Law, & Niebur, 2002;

Schütt et al., 2018), reveal properties of covert attention (Bays & Husain, 2012; Wilming

et al., 2013; Cajar, Schneeweiß, Engbert, & Laubrock, 2016) or even help to predict par-

ticipants intelligence (Hayes & Henderson, 2017). Leaving out the dynamic aspects of eye

movements in scene viewing means neglecting a major aspect of human viewing behavior.

Furthermore, it has been shown that by only weighting a saliency map by the distance to

a current fixation location, model performance can be improved substantially (Parkhurst

et al., 2002). Additionally, modeling eye movements by only using dependencies between

successive fixations and saccades outperformed classical saliency modeling (Tatler & Vin-

cent, 2009). Not many dynamic models have been published yet, but the ones available

outperform static models substantially (Le Meur & Liu, 2015; Schütt et al., 2017).

Itti and Koch (2000) provided a mechanism to guide gaze through their saliency map.

In their model, dynamics are implemented rather simplistically with an inhibition of return

mechanism that inhibits recently fixated locations (Posner, Rafal, Choate, & Vaughan,

1985; Klein, 2000). Fixation locations are chosen in a winner-takes-all manner, such that

the highest saliency value receives the first fixation. The following fixations are ordered

by descending saliency value. This is rather implausible, because no spatial dependen-

cies of successive eye movements are captured by this model. The eye movement system

produces saccadic errors, which is another reason why a deterministic fixation selection is
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biologically implausible (Deubel, Wolf, & Hauske, 1984; Krügel & Engbert, 2014). Other

contradictory results to the postulation of a deterministic scanpath on an image is that

participants fixation locations on the same image are highly variable (Castelhano & Hen-

derson, 2008b; Henderson & Luke, 2014) and even scanpaths of the same participant on

the same image when viewed a second time are di↵erent from first observations (Kaspar

& König, 2011; Trukenbrod, Barthelmé, Wichmann, & Engbert, 2017). Thus, the Itti

and Koch model, although able to predict overall fixation locations above chance, creates

scanpaths which are rather di↵erent than those from human observers (Foulsham & Un-

derwood, 2008). Nonetheless, the idea that inhibition of return drives the eyes through

a spatial map has been used many times since and Itti and Koch were the first ones to

implement it in an eye-movement model for scene viewing.

Newer dynamic models of saccade generation have attempted to implement systematic

tendencies and dependencies between successive eye movements. Le Meur (2015) proposed

a model where static saliency (he used the GBVS model by Harel et al. (2006) as the

static saliency map) is multiplied with the conjunctive probability distribution of saccade

amplitude and direction to create a target selection map. Thus, each fixation position

leads to a unique target selection map. The distribution of saccade amplitudes and

direction is computed from experimental eye-movement data. The model uses a transient

inhibition of return for guiding the eye through the image and instead of a winner-takes-

all mechanism, the successive fixation is drawn randomly from the 5 positions with the

highest activations on the target map. The inhibition of return for each fixation remains

active for the following five fixations with decreasing influence for each new fixation. This

rather simple adjustment of the dynamic control and the avoidance of a deterministic

fixation selection makes the model by Le Meur mechanistically more plausible than the

Itti and Koch model, reproduces saccade amplitude and angle distributions and scores

higher in standard metrics for measuring performance of saliency models.

One recently published model, the LATEST model by Tatler, Brockmole and Car-

penter (2017), predicts scanpaths and fixation durations. The idea behind this model is

that humans continuously decide if they want to move the eyes (go) or maintain fixation

(stay; see Findlay & Walker, 1999). Previously it has been shown that locations, which

are fixated more often, are also fixated longer (Einhäuser & Nuthmann, 2016). This is

congruent with the idea that fixation duration and target selection probability are not

independent from each other. In the LATEST model, not only the current fixation po-

sition influences the stay or go decision, but all possible saccade targets on the image

influence how long a fixation duration lasts. Each single location on the map influences

a so called LATER unit (based on the LATER model by Noorani & Carpenter, 2016),

which accumulates evidence for the decision to start a saccade. As soon as any location

on the image has reached a certain threshold, a saccade toward this position is triggered.
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1.4. Computational models of eye movements in scene viewing

Thus, in the model the question of where participants move their eyes depends completely

on when they move them. How each location in the image influences fixation duration is

predicted by multiple image features, the ordinal fixation number and oculomotor factors

like the change in saccade direction. The image features are devided between influences

from the current and all possible upcoming fixation locations. Additional to the main part

of the distribution of fixation durations, the LATEST model has a so called maverick unit

of rather short fixations, which might be either be fixations which are interrupted by

pre-programmed saccades or slightly erroneous fixations, which are followed by corrective

saccades. Results produced by the LATEST model are promising but some aspects, like

the peak of saccades in the opposite direction than the previous one, are not captured by

the model, since saccades in the opposite direction than the previous precede rather long

fixations but appear very often.

1.4.4 The SceneWalk model of scanpath generation

The SceneWalk model is a dynamical model of scanpath generation (Engbert et al., 2015).

I will describe the model in detail, because all three studies within this thesis had the

particular goal to improve and evaluate the SceneWalk model. In the studies of this thesis,

we used the model to simulate data and added extensions to the model, to reproduce

systematic eye-movement tendencies.

The SceneWalk model is based on two di↵erent neural activation maps, an attention

map which represents allocation of bottom-up visual attention and the inhomogeneity of

visual acuity, and a fixation map, which keeps track of visited locations. These two maps

are combined to create a target selection map. This assumption of an allocentric dynamic

map is supported by physiological studies (Killian, Jutras, & Bu↵alo, 2012).

The attention map A

ij

is driven by early visual processing and controls the distribution

of visual attention. The attention map is computed by weighting the empirical density

map of fixations (computed from experimental data, see Barthelmé, Trukenbrod, Engbert,

& Wichmann, 2013) with a two-dimensional Gaussian around the current fixation position

(i, j). This Gaussian for a gridded map at each of k ⇥ l positions is given by

G

A

=
1

2⇡�2
a

e

� (k�i)2+(l�j)1

2�2
a

, (1.1)

where �
a

is the standard deviation of the Gaussian. The attention map A

ij

thus heightens

activations close to the current fixation position and reduces activations on positions which

are far away from the current fixation position. The motivation behind this is that visual

acuity decreases away from the fixation position. Also, visual attention is linked to the

foveal position (Henderson, 1992) and is thus generally reduced with increasing distance

to the fixation position. The attention map is initialized as the empirical saliency map
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multiplied with the two dimensional Gaussian around the starting position.

The second map, the fixation map, keeps track of fixated positions. The fixation

map also weights activation around the current fixation position with a two dimensional

Gaussian (equivalent to Eq. 1.1 but with a di↵erent standard deviation �

f

). The fixation

map starts out as zero activation in the original model (Engbert et al., 2015) or constant

activation in a newer version of the model (Schütt et al., 2017). At each time-point t

within a trial, the attention map and fixation map are updated. The updating formula

for the attention map A(t) is

A(t) =
G

A

⇥ �P
G

A

⇥ �

+ e

�!a(t�t0)

✓
A(t0)�

G

A

⇥ �P
G

A

⇥ �

◆
, (1.2)

where G

A

represents the Gaussian map from Equation 1.1 around the current fixation

position. A(t0) is the attention map from the last fixation at time t0 and � represents

the empirical density map2. The exponential function indicates that with increasing

fixation duration (t� t0) the influence of the previous attention map A(t0) decreases. The

parameter ! controls the speed of the updating process for the map. The fixation map F

at time t is computed as

F (t) =
G

FP
G

F

+ e

�!f (t�t0)

✓
F (t0)�

G

FP
G

F

◆
, (1.3)

where G

F

is equivalent to G

A

from the attention map, but with di↵erent standard de-

viation �

f

. The fixation map updates like the attention map, but the empirical density

does not play a role in creating this map. After the attention map and the fixation map

at time t are computed, they are combined to the target selection map u in the following

way:

u

ij

(t) =
[A

ij

(t)]�P
kl

[A
kl

(t)]�
� c

inhib

[F
ij

(t)]�P
kl

[F
kl

(t)]�
. (1.4)

In this equation c

inhib

is a constant parameter controlling the strength of the inhibition,

which was not present in the original model version (Engbert et al., 2015) but was added in

a newer version (Schütt et al., 2017). The parameters � and � control the variance within

the fixation and attention map and � is generally set to 1. Since u is a target selection

map, where each value should translate to a probability for being fixated, negative values

have to be replaced. Thus, each value of u which is smaller or equal to zero is set to zero

on target map u

⇤ as

2
The empirical density map can only be used when data from eye tracking experiments for an image

are available. To produce scanpaths on any given input image, any fixation location or saliency model

can be used instead of the empirical fixation map �.

16



1.4. Computational models of eye movements in scene viewing

u

⇤
ij

(t) =

8
<

:
u, u � 0

0, u < 0 .

(1.5)

Since this still produces impossible target locations, which is not plausible, due to noise

and measuring error, the adjusted u

⇤ is further weighted by factor ⌘, to obtain a proba-

bility map ⇡(i, j) for each field on the grid. This is computed as

⇡(i, j) = (1� ⌘)
u

⇤
ijP

kl

u

⇤
kl

+ ⌘

1P
kl

1
, (1.6)

to obtain small positive values for each location which was zero on u⇤. This weighting

function does not distort locations with high activities and has a sum of 1, making it

a probability distribution. The step of removing values which equal zero from the map

is crucial for estimating the likelihood of the model. If any fixation were to fall onto a

grid cell with zero probability, the likelihood of the model to have produced the whole

scanpath would be zero (see next section). In the original version of the model (Engbert

et al., 2015) all vallues of u, which were smaller than ⌘, were set to ⌘.

Note, that activations from the fixation map F have a negative influence on u, whereas

parameters from A have positive influences. In the map u, a higher value means a higher

probability for receiving a fixation. Thus, locations with high activations on fixation map

F and low activations on attention map A have a small probability for being fixated on

the next fixation, meaning that the fixation map inhibits locations close to the current

fixation and the attention map excites locations close to the current fixation. This might

seem odd at first, because the maps are computed rather similarly but work in a reverse

direction. However, the width of the standard deviation of the Gaussians (�
f

and �

a

) are

di↵erent and the paramaters !
a

and !

f

controlling the dynamic of the maps are di↵erent

as well. In the original model version by Engbert et al. (2015) and a in a newer version by

Schütt et al. (2017), the attention map’s standard deviation was larger than the fixation

map’s standard deviation. Thus, inhibition of return is more local than the allocation of

visual attention around the fixation position. In both model versions the decay parameter

for the attention map is larger than that of the fixation map. This means that inhibition

is slower and lasts longer than the influence of early visual processing. New results have

shown that a divisive instead of a subtractive influence of the fixation map F on the target

selection map u might improve results (Schütt et al., 2017), however, in the studies of

this thesis, we simulated data with the subtractive version of the model. In Chapter 2 we

used to original version of the model (Engbert et al., 2015) and in Chapter 3 the newer

version (Schütt et al., 2017).

After obtaining a probability map ⇡(i, j) for each possible fixation location, a fixation
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is drawn according to the probability on the map ⇡. This means that the creation of the

map ⇡ itself is deterministic for each scanpath history, but fixation selection follows a

stochastic process.

Engbert et al. (2015) have shown that the SceneWalk model is able to replicate typical

scanpath statistics like saccade amplitudes and the pair-correlation function of fixations,

which describes how strong fixations within one observation tend to cluster (Engbert et al.,

2015; Trukenbrod et al., 2017). Additionally, we have shown that the model substantially

outperforms sampling from the empirical density map, which by definition is the perfect

static saliency map (Schütt et al., 2017). Thus, the model has already proven to capture

some dynamic aspects of a scanpath. The studies within this thesis were designed to

further elaborate the model and evaluate the model regarding dynamical aspects of a

scanpath, which had not yet been tested.

1.4.5 Evaluating dynamical models of scanpath generation

The development of dynamical models led to new approaches in scanpath modeling. Un-

fortunately, it turned out that it is very di�cult to compare dynamical models in terms

of performance metrics. Le Meur and Baccino (2013) reviewed commonly used methods

for scanpath comparison. One limitation of many evaluation methods is that they re-

quire predefined areas of interest within an image. Additionally, all methods described

capture di↵erent aspects of scanpaths and are thus di�cult to compare. To overcome

this obstacle, we developed a likelihood-based method which facilitates the comparison of

dynamical models and additionally provides an e�cient way to estimate optimal model

parameters (Schütt et al., 2017). The likelihood of any dynamical model can be computed

if the model output is a gridded target map with activations, which can be transformed

into probabilities for receiving a fixation. If a model is deterministic in the creation of

the target selection map, the likelihood of the model can be computed rather e↵ortlessly.

For each fixation of a scanpath, the SceneWalk model produces activations at each

possible target location as a function of viewing time. To obtain the likelihood of a

scanpath, all likelihood values of the empirically observed fixations are multiplied. This

likelihood value can then for example be compared to other dynamical models, to a

random fixation selection or to an image independent central fixation bias (Schütt et al.,

2017). For better interpretation, the likelihood is usually logarithmized to the base of 2.

The di↵erence of the log-likelihood between two models is called the information gain of

the better performing model compared to the other one. The advantage of this evaluation

method is that it captures not only the fixation location positions, but all aspects of the

scanpath.

We used the likelihood approach for the evaluation and parameter estimation of an
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extended SceneWalk model in Chapter 3. The likelihood method also showed that the

SceneWalk model outperforms sampling from the empirical density by far, which con-

firms that knowing all fixation locations is by itself not enough to predict valid scanpaths.

Comparisons between the SceneWalk model and other dynamical models of saccade gen-

eration are subject to future research and will reveal weaknesses and advantages of the

di↵erent dynamical models.

1.5 The present studies

Chapters 2–4 of this thesis consist of three studies investigating the contribution of selected

systematic eye-movement tendencies on scanpaths in natural scene viewing and natural

scene search. All studies were conducted to evaluate and improve the SceneWalk model

of scanpath generation.

Chapter 2 will report data from a memory experiment, Chapter 3 from four free-

viewing experiments and Chapter 4 from a visual search experiment. The studies report

eye-movement recordings from 132 participants who saw between 25 and 120 images.

Overall, fixations and saccades from about 25,000 experimental trials are investigated in

this thesis.

1.5.1 Influence of initial fixation position in scene viewing

The experiment reported in Chapter 2 was designed to improve our understanding of

the dynamic interaction between the location of the first fixation of a scanpath, image

saliency, and the evolution of the scanpath. For the SceneWalk model this study serves as a

validation of the spatial inhibition of return mechanism incorporated by the fixation map.

Results from this study demonstrate the importance of dynamic aspects for computational

models of scanpath generation.

In the large body of literature investigating eye movements in natural scene viewing,

the starting position of the eyes has almost entirely been neglected. In most experiments

participants start their observation in the center of the screen (see Tatler, 2007) and, after

the scene is presented, participants are allowed to move their eyes. This first fixation, close

to the center of the screen, is then removed from further analysis, because it’s location

was induced by the experimental design.

It has been shown that the first glance of a scene provides the observer with a relatively

good representation of a scene, often described as the scene’s gist (for an overview on gist

see Oliva, 2005). Thus, it seems to be a valid assumption that the initial fixation of a

scanpath plays an important role in how humans further explore a scene.

For our first experiment we manipulated the initial fixation position in a scene-viewing

19



1. Introduction

experiment. Participants were forced to maintain fixation for one second after appearance

of the image on the starting position, which was close to the left or right border of the

screen. After participants maintained fixation for a second, the fixation cross disappeared

and they were instructed to inspect the image for 10 s for a successive memory test.

Results showed a strong interaction between visual saliency and starting position and

an influence of the starting position on the scanpath for up to 5 s. Saliency distribution

was measured as a combination of two well known saliency models (Harel et al., 2007;

Judd et al., 2009) and the empirical distribution of fixations. A strong overshoot to

the image side opposite of the starting position was observed in 7 of 8 conditions and

lasted for up to 5 s. This longlasting influence of the starting position is remarkable,

since most scene-viewing studies (i) do not take the starting position into account and

(ii) only last for around 3-5 s (Bylinskii et al., 2015). This study additionally revealed an

asymmetry between left and right starting positions. If participants started on the right

image side, the first saccade was significantly larger and overshoots to the other image

side were stronger. These results agree with previously found leftward biases in natural

scene viewing (Dickinson & Intraub, 2009; Ossandón et al., 2014).

For the SceneWalk model, this study was conducted to gain information about the

interaction of early fixation positions and stimulus material. Additionally, we conducted

this experiment to validate a basic model component, the inhibitory fixation map. For

this purpose we simulated data with the SceneWalk model, a selection of statistical mod-

els and a model which incorporates the distribution of successive saccadic amplitudes and

angles without an inhibitory component. We used the empirically observed starting posi-

tions, fixation durations and number of fixations for each trial to start simulations3. Only

models with an inhibitory component were able to reproduce the observed overshoot, the

model based on the angular distribution was not able to recreate this particular scanpath

characteristic and neither was sampling from the empirical density map. Saccades return-

ing immediately back to the starting positions were hardly observed in this experiment.

The results from this study advocate the idea that an inhibition-of-return mechanism

is a valid driving force for dynamical models of scene perception. It also confirms that

knowing all fixation locations on an image is not enough to predict valid scanpaths. The

long-lasting influence of the starting position proves that it is crucial to know the starting

position, with which observers were first confronted with the stimulus, to adequately

model scanpaths in natural scenes.

In summary, this study is the first to show that the initial fixation position has a

long-lasting influence on further scanpath progression. The results and model simulations

support spatial inhibition of return in natural scene viewing, which is a fundamental

3
For the model, which incorporates the distribution of saccadic amplitudes and angles, we used the

first two fixations because this model needs an initial saccade direction to compute further saccades
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principle of the SceneWalk model of scanpath generation.

1.5.2 The temporal evolution of the central fixation bias in scene

viewing

Chapter 3 reports a study designed to systematically investigate the issue of the central

fixation bias (CFB) in scene viewing. The central fixation tendency is a strongly sys-

tematic eye-movement behavior in scene-viewing experiments (Tatler, 2007). This bias is

extremely persistent and is particularly pronounced on the initial fixations of an observa-

tion.

The CFB has been investigated thoroughly in previous work (e.g., Buswell, 1935;

Tatler, 2007; Bindemann, 2010), but the underlying cause has not yet been fully identified.

The CFB has been found in many scene viewing experiments, regardless of the starting

position (Tatler, 2007), the image position on the screen (Bindemann, 2010), the images’

low-level features (Tatler, 2007) and many more. Due to the omnipresence of the central

fixation bias and the fact that it is especially pronounced on early fixations, it possibly

masks attentional allocation driven by top-down or bottom-up processes.

This thesis aims to obtain new knowledge about eye movement behavior in natural

scene viewing to predict scanpaths and to understand the underlying cognitive processes

which lead to these scanpaths. Since the CFB is the best single predictor for fixation

locations in natural scene viewing (Judd et al., 2009; Vincent et al., 2009; Clarke &

Tatler, 2014; Kümmerer et al., 2015; Schütt et al., 2018), it is important to find out if the

CFB is a laboratory artifact or whether it can be transferred to natural viewing behavior

and, if so, why it exists.

The manipulation of our experiment from Chapter 2 led to a reduction of the CFB

compared to scene-viewing experiments, in which the initial fixation position was not

experimentally prolonged. To further investigate the cause of this reduction, we conducted

four experiments with variable starting position and an experimentally prolonged initial

fixation by variable time intervals from 0-1 s. This was done by presenting an image with

a pretrial fixation cross present for a certain amount of time and instructing participants

not to start exploration until the fixation cross had disappeared. Our hypothesis was that

this manipulation dissociates the sudden image onset and the signal to move the eyes,

which we hypothesized would reduce the image independent CFB. We used the same

images as Tatler (2007) in his seminal work on the CFB.

The results confirmed our observations from Chapter 2. A delay of the initial saccade

led to a reduction of the CFB, if this delay was equal to or larger than 75 ms. Smaller

delays did not reduce the CFB and increasing the delay above 250 ms did not produce

e↵ects noteworthy. Analyzing the initial saccade latency, regardless of our manipulation,
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showed that this initial latency reliably predicts the magnitude of the CFB. Short initial

latencies led to a strong CFB and longer latencies led to less CFB. This confirms the

idea that the CFB is mainly an image independent artifact, which is produced by the

sudden onset of an unknown stimulus. The results from this study were especially helpful

for implementing a biologically plausible CFB into the SceneWalk model. For the initial

attention map of the SceneWalk model, we used a map with a central activation instead

of the Gaussian weighted empirical saliency map from the original model. Thus, with in-

creasing time, this central activation map transforms into the fixation location dependent

map from the original model. The adjustment replicated the latency-dependent CFB in a

plausible and computationally rather simple matter. The adjusted model reproduced the

qualitative progression of the CFB throughout the trial and improved model performance

on initial fixation selection substantially. The design of the experiments from Chapter 3

reduced the influence of the sudden image onset and thus might create a more natural

viewing experience for the participants.

In summary, we found a way to reliably reduce the central fixation bias in this study,

which mainly depends on the initial saccade latency. We used our results to implement a

plausible central fixation bias in the SceneWalk model.

1.5.3 Searchers adjust their eye-movement dynamics according

to the search target in natural scenes

The last study of this thesis, presented in Chapter 4, contains a visual search experiment.

In visual search on natural scenes, fixation locations are influenced by the visual properties

of the search target (e.g., Wolfe, 1994; Wolfe & Horowitz, 2004; Hwang et al., 2009).

To our knowledge it has not been investigated whether the target’s visual properties

also influence other scanpath properties like fixation durations, saccade amplitudes or

changes in saccadic direction. Answering the question, whether humans adapt their search

behavior to the target is crucial to model scanpaths in visual search experiments, since

dynamical parameters would depend on the search target, if participants actually adjusted

their eye movement characteristics to the target.

Many visual search experiments have been conducted on so called search arrays, where

one target and multiple distractors are presented on homogeneous background and the

goal is to find the target. Although these studies have provided many new insights into

how visual search works, they mostly disregard the role of eye movements, which are an

important aspect of many visual search tasks (Zelinsky, Rao, Hayhoe, & Ballard, 1997;

Findlay & Gilchrist, 1998, 2003; Rayner, 2009; Hulleman & Olivers, 2015).

Eye movements in complex visual search have shown that human searchers not simply

fixate the most likely target location but move their eyes almost optimally such that the
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probability of finding the target, according to properties of our visual field (the degra-

dation of visual acuity into the periphery), is maximized (Najemnik & Geisler, 2005,

2008; Geisler, 2011). Because target features influence fixation locations on complex

backgrounds so strongly, we were interested in how they influence other basic scanpath

properties like saccade amplitudes and fixation durations.

In the study we showed participants 6 artificial targets of di↵erent spatial frequency

content, to find out whether scanpath properties are adjusted to the visibility of the

targets in the periphery. Eye movements were adjusted to the visual properties of the

target e�ciently. High-spatial frequency targets, which are less visible in the periphery, led

to smaller saccade amplitudes than low-spatial frequency targets. Fixation durations were

also adjusted to the target, such that high-spatial frequency targets led to shorter fixation

durations. High-spatial frequencies can be perceived better in central vision (Laubrock

et al., 2013; Schütt & Wichmann, 2017), thus it is useful to make more eye movements

with shorter fixation durations when looking for high-spatial frequency targets. A recent

model of early spatial vision (Schütt & Wichmann, 2017) evaluated the targets in terms

of foveal detectability. This evaluation showed that the high-spatial frequency targets

had a higher signal to noise ratio compared to the background when presented in the

central visual field. This additionally indicated that short fixation durations are more

useful when looking for high-spatial frequency targets.

In a post-hoc analysis we found that only saccades which changed direction compared

to the previous saccade were influenced by target properties. Saccades which maintained

direction from the previous saccade did not di↵er between the two target types. The ab-

sence of a target influence brought us to the idea that saccades which maintain direction

are part of a default scanning mechanism. Analyzing saccades without a change in direc-

tion in terms of visual saliency and empirical density confirmed this assumption, because

they landed on positions which were less salient and less looked at by other observers

compared to other fixation locations.

In summary, this study is the first to show that human participants adjust their

fixation durations and saccade amplitudes to the visual features of the target in complex

visual search. Additionally, the results from this study provide new information about

the role of forward and backward saccades in natural scene search.
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Abstract

During scene perception our eyes generate complex sequences of fixations. Predictors

of fixation locations are bottom-up factors such as luminance contrast, top-down factors

like viewing instruction, and systematic biases e.g. the tendency to place fixations near

the center of an image. However, comparatively little is known about the dynamics of

scanpaths after experimental manipulation of specific fixation locations. Here we investi-

gate the influence of initial fixation position on subsequent eye-movement behavior on an

image. We presented 64 colored photographs to participants who started their scanpaths

from one of two experimentally controlled positions in the right or left part of an im-

age. Additionally, we used computational models to predict the images’ fixation locations

and classified them as balanced images or images with high conspicuity on either the left

or right side of a picture. The manipulation of the starting position influenced viewing

behaviour for several seconds and produced a tendency to overshoot to the image side

opposite to the starting position. Possible mechanisms for the generation of this over-

shoot were investigated using numerical simulations of statistical and dynamical models.

Our model comparisons show that inhibitory tagging is a viable mechanism for dynamical

planning of scanpaths.
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2.1 Introduction

An important problem for research on human vision is to predict where people look in

visual scenes (Tatler & Vincent, 2008). Recording of eye movements is among the most

important tools to investigate how attention is distributed over a given scene (Findlay

& Gilchrist, 2003). In addition to scene content (Henderson, 2003), image-independent

viewing strategies exist, e.g., the central fixation tendency (Tatler, 2007) as the most

important e↵ect in this category. To obtain a deeper understanding about dynamical

aspects of the attention distribution over a scene and possible dependencies between

successive fixations we investigate the influence of the eye’s starting position on subsequent

viewing behavior based on statistical and dynamical assumptions about eye guidance.

Processes that influence the selection of upcoming saccade targets can be divided into

three di↵erent categories of theoretical principles. Bottom-up processes derive from prop-

erties of the viewed stimulus (S. K. Mannan, Ruddock, & Wooding, 1996; Itti et al., 1998;

Parkhurst et al., 2002). Top-down processes depend on the mental state of an observer,

e.g., the observers’ visual memory (Henderson & Hollingworth, 2003) or the instruction

given to the observer before inspection of a scene (Yarbus et al., 1967; Castelhano et

al., 2009). Finally, systematic tendencies describe eye movement behavior found in many

experiments independent of stimulus and observer. The initial selection of the center

of an image (Tatler, 2007; Bindemann, 2010), the tendency to make initial movements

in the leftward direction (Dickinson & Intraub, 2009; Foulsham, Gray, Nasiopoulos, &

Kingstone, 2013; Ossandón et al., 2014) or the preference for horizontal and vertical

over oblique saccades relative to the image (Foulsham & Kingstone, 2010) belong to this

category.

Research on bottom-up processes has been particularly popular to predict fixation

locations from low-level image features such as contrast, orientation and color (Itti et

al., 1998; Torralba, 2003; Kienzle et al., 2006). For a given scene, computational models

generate a saliency map, a 2D probability distribution that indicates the probability of

receiving a fixation in an eye tracking experiment with human participants (Itti et al.,

1998; Itti & Koch, 2000; Judd et al., 2009; Borji & Itti, 2013). Thus, a saliency map is a

stationary model that computes probabilities for all locations simultaneously.

However, current computational models for the prediction of fixation locations are not

exclusively based on bottom-up features. Recent models incorporate top-down processes

like task demands (Navalpakkam & Itti, 2005) and other higher-level image features like

face processing (Cerf et al., 2008). Moreover, systematic tendencies such as the central

fixation bias (Tatler, 2007) are included in the computation of fixation density models. As

a result, current models integrate multiple features from all three categories of processes

into a coherent computational framework (Cerf et al., 2008; Judd et al., 2009; Kümmerer
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et al., 2015). Although the original meaning of saliency refers to the bottom-up features

of an image, newer computational models that include other features are also termed

saliency models by their authors (Judd et al., 2009; Bylinskii et al., 2015). Because of

this unclear terminology we will refer to all stationary models that aim at the prediction

of fixation locations as fixation density models. A location that a model tags as likely to

receive a fixation will be re↵ered to as conspicuous rather than salient.

All fixation density models need to predict the density of the eye’s fixation locations

(so-called first-order statistics). Thus, the evaluation of the models is primarily based

on the assumption of statistically independent fixations without reference to previous

fixations, i.e., the scanpath (Kümmerer et al., 2015). In contrast to static models, dynamic

models try to capture some additional aspects of the scanpath. Dynamical principles for

saccade planning are inhibitory tagging (Klein, 1988; Itti et al., 1998; Bays & Husain, 2012;

Le Meur & Liu, 2015), saccadic momentum (Smith & Henderson, 2009, 2011; Wilming et

al., 2013) and facilitation of return (Smith & Henderson, 2009, 2011; Luke, Schmidt, &

Henderson, 2013)

Inhibitory tagging is motivated by the e↵ect of inhibition of return, a neural mecha-

nism that inhibits the processing at recently attended locations (Posner & Cohen, 1984;

Posner et al., 1985; Klein, 2000) and is often interpreted as a foraging facilitator. While

this mechanism was first discovered as an e↵ect on a temporal scale, i.e., increased pro-

cessing time at a previously attended stimulus for a specific time window, inhibition of

return might carry over to spatial e↵ects. In the case of spatial inhibition of return re-

cently fixated positions are inhibited from being re-fixated shortly afterwards (Gilchrist

& Harvey, 2000). Several studies were unable to report evidence for inhibition of return

during scene viewing; quite the contrary, a facilitation of return saccades to currently

fixated locations has been found (Smith & Henderson, 2009, 2011; Wilming et al., 2013).

However, compared to a statistical baseline model without memory based on inhibitory

tagging, return saccades occur less often in experiments than expected (Bays & Husain,

2012), when the density map of fixations and the distribution of angles between two

subsequent saccades are reproduced. Therefore, there is at least weak support for a

memory-producing mechanism during scene exploration. In agreement with this result,

we recently published a computational model of saccade generation in scene viewing that

implements both inhibitory tagging and dynamical attention mechanisms (Engbert et al.,

2015). In this model inhibitory tagging is combined with a dynamical activation map

representing attention allocation, allowing the model to reproduce second-order statistics

that include spatial correlation functions characterizing the clustering of fixations in addi-

tion to the first-order density of fixations. Thus, inhibitory tagging seems to be important

to reproduce higher-order scanpath statistics (Engbert et al., 2015), despite the current

lack of direct experimental support for inhibition of return in scene viewing (Smith &
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Henderson, 2009, 2011; Luke, Schmidt, & Henderson, 2013).

Saccadic momentum, another dynamical principle of saccade planning in scene view-

ing, describes the tendency to maintain the direction of the previous saccade for the

upcoming saccade (Smith & Henderson, 2009, 2011; Wilming et al., 2013). Similar to

inhibition of return, saccadic momentum could serve as a foraging facilitator in visual

search. Finally, facilitation of return describes the tendency that it is actually more likely

to produce return saccades than it would be by chance (Hooge, Over, van Wezel, & Frens,

2005; Smith & Henderson, 2009). On the time scale of one fixation duration (⇠ 300 ms),

such a facilitation seems to be in contradiction to spatial inhibitory tagging. Because of

these behaviorally relevant processes, we were interested to find experimental support for

the presence of inhibitory tagging, saccadic momentum, facilitation of return or a mixture

of these fundamental principles in attentional and oculomotor control.

Smith and Henderson (2009) ruled out inhibitory tagging, since they found an in-

creased number of return saccades in comparison to a probabilistic baseline (Smith &

Henderson, 2009). However, it has also been argued that there is a reduced number of

return saccades compared to a memoryless system (Bays & Husain, 2012). Given the

current mixed evidence on return saccades, we focus on the time window of events. Re-

turn saccades are limited to a time window of one fixation duration, i.e., about 300 ms.

Since attention moves to the future fixation location before a saccade is executed (Deubel

& Schneider, 1996), inhibition of return is at its maximum shortly after the saccade is

planned if we assume that the typical time-course transfers to scene viewing (Posner &

Cohen, 1984; Klein, 2000). However, first, it would not be surprising to find that more

time than a single fixation duration is needed to build-up spatial inhibition. Second, re-

turn saccades might be planned before the inhibition of return mechanism is activated, so

that saccades to previously inspected image regions could be produced while inhibition

is on the rise. Third, it has been reported that the time scale of IOR is dependent on

task di�culty (Klein, 2000). Therefore, the current lack of direct evidence for inhibition

of return does not rule out inhibitory tagging as a saccade-planning mechanism.

To investigate inhibitory tagging, saccadic momentum, and facilitation of return, we

recorded observers’ scanpaths on natural scenes starting from one of two predefined start-

ing positions close to either side of the monitor. Participants were forced to maintain

fixation at an initial location in an image for one second under gaze-contingent monitor-

ing. Under the hypothesis that spatial inhibitory tagging is active at the starting position,

we expected observers (i) to leave their starting positions when fixation markers disap-

peared, and (ii) not to return immediately to the region of the experimentally controlled

starting position. Since we hypothesized that both behaviors depend on the conspicuity

of the region of the starting position, we classified natural images into three categories

with left-sided and right-sided conspicuity asymmetry as well as images with an approx-
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imately symmetrical distribution. First, we expected that initial fixations stay closer to

the starting position when the starting position was in interesting side of a scene; second,

gaze was expected to move immediately to the opposite side of a scene, when the starting

position was opposite to the scenes interesting side. Third, according to the saccadic mo-

mentum and facilitation of return hypothesis, we expected a behavior where subsequent

eye movements depend on the direction of the first saccade. With the typical center bias

we assume that the gaze had to shift to the center and, subsequently, either maintain

direction and move to the opposite image side (saccadic momentum) or return close to

the starting position (facilitation of return).

Below we report that gaze positions of the participants moved further away from the

starting position than predicted by the empirical fixation map or a saccadic momentum

mechanism. Next, we compare experimental data with numerical simulations from a range

of models, including a model reproducing the saccadic momentum mechanism and our

dynamical model (SceneWalk) which uses inhibitory tagging as a mechanism for saccade

planning (Engbert et al., 2015) and a combination of the latter ones.

2.2 Method

The methodology of this work is similar to a recently published study from our lab

(Engbert et al., 2015).

2.2.1 Experiment

Stimuli

A set of 64 color photographs was presented to human observers. Pictures were presented

on a 20 inch CRT monitor (Mitsubishi Diamond Pro 2070; frame rate 120 Hz, resolution

1280 ⇥ 1024 pixels; Mitsubishi Electric Corporation, Tokyo, Japan). The dimensions of

the monitor where 39.6 cm (horizontal) x 29.7 cm (vertical) and the viewing distance was

70 cm. For the presentation during the experiment all images were converted to a size of

1200 ⇥ 960 pixels and displayed in the center of the screen with gray borders extending

32 pixels to the top/bottom and 40 pixels to the left/right of the image. Images covered

31° of visual angle in the horizontal and 25° in the vertical dimension.

Images showed either natural object-based scenes (N=48) or abstract natural patterns

(N=16). All photographs were taken by members of our lab. Object-based scenes were

further devided into three categories as balanced, left focus, or right focus, yielding a total

of 4 categories (Fig. 2.1). The Pattern images were chosen to obtain a more homogenous

fixation distribution because of the lack of objects present. Systematic oculomotor biases

were expected to be more evident in these images.
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For the categorization of object-based scenes we used an objective test by computing

conspicuity with the graph based visual saliency model (Harel et al., 2007) and the Judd

model (Judd et al., 2009) without distance to center weighting and face or object detection.

As a posthoc measure, the density map of the observers’ fixations for each of the 48

natural scenes was evaluated to obtain an empirical measure of left and right bias for the

images. Figure 2.2 shows an example of an image with right focus compared to the output

of the two computational models and the kernel density estimate of the fixation density

(excluding the initial fixation) from all observers. To obtain a quantitative measure for the

presence of a left or right focus, we computed the horizontal position of a vertical line with

equal conspicuity/intensity on each side. If the horizontal position of this line di↵ered by

more than 5 percent from the center (for the average over the two computational models

and the human fixation map), the corresponding image was classified as having left or

right focus. After application of this criterion, we retained 23 images with focus close to

the center (balanced images), 12 images with left focus, and 13 images with right focus

among the set of object-based scenes1. The distribution of focus for the di↵erent models as

well as the rater’s judgements are shown in Figure 2.3. Though for some images the focus

of the empirical fixation map di↵ers strongly from the computational models, overall they

match fairly well. The green line, that represents the empirical map lies below the other

lines. This indicates that human fixation locations are biased more to the left than the

computational models predict. This is compatible with the findings of an initial leftward

bias in scene viewing (Dickinson & Intraub, 2009; Foulsham et al., 2013; Ossandón et al.,

2014).

Participants

We recorded eye movements from 28 human participants with normal or corrected-to-

normal vision. The group of participants consisted of 20 female and 8 male observers aged

between 19 and 33 years; all were recruited from the University of Potsdam. Participants

received credit points or a monetary compensation of 8 Euro for their participation. The

work was carried out in accordance with the Declaration of Helsinki. Informed consent

was obtained for experimentation by all participants.

Procedure

Participants were instructed to position their heads on a chin rest in front of a computer

screen. Eye movements were recorded binocularly using an Eyelink 1000 video-based eye

tracking system (SR Research, Osgoode/ON, Canada) with a sampling rate of 1000 Hz.

1
Based on our subjective assesment each category contained 16 images. Because our subjective cate-

gorization did not match the objective criterion for some of the images, an unequal number of images in

each category remained for further analysis.
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(a) (b)

(c) (d)

Figure 2.1: Examples from the set of images, (a) balanced (b) natural pattern (c) left
focus (d) right focus.

Trials began with a black fixation cross presented on a grey background at the vertical

meridian 5.6° away from the left or right border of the monitor. After successful binocular

fixation in a square with a side length of 2.2° an image appeared while the fixation cross

remained present for another second. Participants were instructed to keep their eyes

on the fixation cross until it disappeared. This was done to assure that participants

started their exploration from the experimentally controlled position. If this fixation

test failed, a mask with random noise appeared and the fixation check was repeated.

After successful completion of the fixation test participants explored each scene for 10 s

for a subsequent memory test. In the memory test participants had to indicate for 64

images—32 presented images and 32 new images—if they had seen it before.2 Figure

2.4 summarises the experimental procedure. In the example, the first fixation test failed,

before the actual scene exploration started. A fixation check of 1 second turned out to

be very di�cult for participants and had to be repeated in 32% of all trials. Thus, some

participants experienced an even longer preview from the starting position before the

actual trial. Importantly, no participant was able to fixate the image from a di↵erent

2
Participants answered correctly in 91.5% of all trials with a mean reaction time of 1.4 seconds.
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(a)

(b) (c) (d)

Figure 2.2: Objective categorizing of images. (a) Example of an image with right fo-
cus. (b) Experimental density map of fixations, estimated using a Gaussian kernel with
bandwith � = 2.56� according to Scott’s rule. (c) Output from the Judd model, without
distance-to-center analysis and face/object detection. (d) Output from the graph based
visual saliency (GBVS) model.

position before inspection and the fixation on the starting position was never shorter

than one second. In 20% it was repeated once, in 6% twice and in 2.8% three times.

In 2.2% percent of the trials the fixation test had to be repeated more than 3 times.

All analyses were conducted separately for the trials with and without a repetition of

the second fixation check. No systematic di↵erences are visible between these analyses.

The corresponding figures for the data without a repeated fixation check are provided as

supplemantary material. For the analyses in the main text of this article we used fixations

from all trials.

2.2.2 Data analysis

Data preprocessing and saccade detection

For saccade detection we applied a velocity-based algorithm (Engbert & Kliegl, 2003a;

Engbert & Mergenthaler, 2006). This algorithm marks an event as a saccade if it has a

minimum amplitude of 0.5° and exceedes the average velocity during a trial by 6 median-

based standard deviations for at least 6 data samples (6 ms). The epoch between two

subsequent saccades is defined as a fixation. The number of fixations for further analyses

was 47 330.
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Figure 2.3: Categoriziation of images. All images ordered by point of focus from strongest
left to strongest right focus image. The blue line is the mean value of the three catego-
rization measures. The black vertical lines indicate where the posthoc measure devided
between left focus, neutral and right focus images. Symbols at the top of the graphic
show the rater’s judgements of the images.
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Fixation Check 1 200 ms

Fixation Check 2 1000 ms

Masked Image if 
Fixation Check 2 failed

Repetition of Fixation
Check 1

Repetition of Fixation 
Check 2

Observation of the 
image for 10 seconds

Figure 2.4: Schematic illustration of the experimental procedure. In the example, the
fixation test failed. After a repetition of the fixation check exploration of the image
started.

Mean horizontal distance from starting position

To analyse the potential dependence of the scanpath on the experimentally controlled

starting position, we estimated the temporal evolution of the mean horizontal gaze posi-

tion. In the first step, we computed the time-dependent horizontal distance to the starting

position for each trial. The calculation was based on fixation positions and fixation dura-

tions obtained from data preprocessing. The estimated mean horizontal distance (MHD)

from the starting position was computed as

XMHD(t) =
1

m · n

nX

j=1

mX

k=1

(x
jk

(t)� x

jk

(0)) ,

where x
jk

(t) indicates horizontal gaze position at time step t (in milliseconds) for partici-

pant j and image k. For each combination of image and participant, the starting position

x

jk

(0) was close to the position of the initial fixation cross on the left or right side of an

image (see Procedure). To obtain a comparable measurement for both starting positions,

gaze position for right starters was mirrored on the vertical meridian. Afterwards a Gaus-

sian kernel with � = 100 ms was applied to obtain a smoothed curve of X̄MHD(t). Another

possible analysis would be the vertical or the overall distance to the starting position. The

vertical distance showed no interesting e↵ect, as the starting position was always on the

vertical midline. The overall distance did hence only depend on the horizontal distance,

which we therefore analysed.

35



2. Initial fixation position

2.2.3 Model simulations with controlled initial positions

To interpret the experimental results of the temporal evolution of mean horizontal dis-

tance XMHD(t) we performed numerical simulations using statistical control models, a

model emulating saccadic momentum, a recently proposed dynamical model for scanpath

generation using inhibitory tagging (Engbert et al., 2015) and a combination of the latter

ones. For the model runs, simulations started at initial positions corresponding to the ex-

perimentally manipulated starting positions. Fixation durations and number of fixations

in each trial were taken from the experimental data. We obtained the same number of

trials from numerical simulations as from the experimental data and analysed the MHD

function XMHD(t) for each model. The number of grid points on which all models were

computed was 128 in both dimensions.

Sampling from density map

As the most straightforward statistical control, we simulated scanpaths by randomly sam-

pling from the 2D density map of all fixations on a given image, i.e., the empirical fixation

map, generated by all participants. First, we applied kernel density estimation using the

SpatStat package (Baddeley & Turner, n.d.) of the R Language for Statistical Computing

(R Core Team, 2014). Based on a Gaussian kernel function with a bandwidth parameter

according to Scott’s rule (Scott, 2015), ranging from 1.81° to 2.72°, we computed the

empirical fixation density map for each image. Second, to simulate a scanpath (i.e., a fix-

ation sequence), we sampled randomly from this map where local density at a particular

location translated into probability to generate a fixation at this position.

Gaussian Model

Next, we implemented a statistical model that sampled from the empirical fixation map

via a Gaussian-shaped aperture to mimic a limited attentional span for saccade target

selection. For a given fixation position x, the empirical fixation map was weighted by a

two dimensional Gaussian, centered at x, with a standard deviation of 4.88° visual angle.
The same standard deviation was used for the attention map of the SceneWalk model

by Engbert et al. (see section 2.3.4). Sampling from the resulting weighted map, which

was recomputed after each fixation, generated a scanpath in this model. E↵ectively, this

model is similar to the SceneWalk model without an inhibitory tagging mechanism.

Saccadic Momentum Model

The third model reproduced the behavior that saccades, on average, tend to follow the

direction of the previous saccade — a phenomenon termed saccadic momentum (Smith &
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Henderson, 2009). In order to reproduce the typical angles between two subsequent sac-

cades, while keeping the saccade amplitude distribution similar to the experimental data,

saccades were sampled from the joint probability distribution of amplitudes and angles.

This probability distribution was computed from all saccades with an amplitude smaller

than 20°. We estimated a density map from these saccades with the SpatStat package

(Baddeley & Turner, n.d.) where density translated into the probability of generating a

saccade with length s and angle a. After sampling from this map, simulated saccades

shifted fixation positions by length s and angle a with respect to the previous saccade. If

this new target location did not lie within the image boundaries, a new saccade was sam-

pled. To initialize the saccadic momentum model the first saccade and fixation position

was taken from the experimental data.

SceneWalk model

In a recently proposed mathematical model for scanpath generation in scene viewing

(Engbert et al., 2015), it was assumed that eye movements are driven by the interaction

of two neural activation maps. A fixation map f(x; t) keeps track of previous fixations by

adding activation at fixation position x. The time dependence of this map results from the

addition of activation at each time step in combination with fixation-position independent

decay. The fixation map serves as an inhibitory tagging mechanism (Itti & Koch, 2001).

The distribution of visual attention at time t is given by a second activation map a(x; t).

The assumption of maps of visual space is consistent with recent neurophysiological work

on an allocentric motor map in the primate entorhinal cortex (Killian et al., 2012; Stensola

et al., 2012), which is spatially discrete like that in the model with discrete activations

f

ij

(t) and a

ij

(t), where subscripts i and j denote horizontal and vertical dimensions.

In the SceneWalk model, the di↵erence of the normalized fixation map f

ij

(t) and the

normalized attention map a

ij

(t) is a time-dependent potential function u

ij

(t) computed

as

u

ij

(t) = � a

ij

(t)P
kl

a

kl

(t)
+

[f
ij

(t)]�P
kl

[f
kl

(t)]�
,

where the exponent � is a free parameter that is important for controlling the amount of

aggregation (or clustering) of realized gaze positions (Engbert et al., 2015).

Since the potential u
ij

(t) is the di↵erence of activation maps, it can be positive or

negative at position (i, j). We implemented stochastic selection of saccade targets pro-

portional to relative activations (Luce, 1959) among the lattice sites with negative values
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(S). The probability for saccadic target selection is given by

⇡

ij

(t) = max

0

B@
u

ij

(t)P
(k,l)2S

u

kl

(t)
, ⌘

1

CA ,

where ⌘ is an additional model parameter that allows each grid position to serve as a

possible saccade target with a probability above zero. All model parameters were chosen

as in the published version of the SceneWalk model (Engbert et al., 2015). In an additional

model run, the free parameter � controlling the inhibition and amount of clustering of

fixations was manually adapted for a second analysis for illustrative purposes.

SceneWalk Model + Saccadic Momentum

Because the original SceneWalk Model (Engbert et al., 2015) does not incorporate any

information regarding the angular distribution between successive saccades we added a

mechanism to the SceneWalk model to reproduce the distribution of angles. Before a

saccade was chosen from the target map u

ij

(t) this target map was multiplied with a

map representing the density function of angles with respect to the previous saccade. To

obtain this map we first computed the angle that a saccade to each grid cell encloses with

the previous saccade. Afterwards the probability of the angle was inserted into the grid

cell. This probability was taken from a kernel density estimation of the angles between

successive saccades. The resulting map was multiplied with the target map u

ij

(t) from

the SceneWalk model and the combined map was normalized. This model thus behaved

very similarly to the SceneWalk model but favoured grid cells that enclose empirically

frequent angles between the previous and the future saccade.

2.3 Results

In our experiment, we manipulated starting positions to investigate the influence on scan-

path statistics. We begin with reporting summary statistics on saccade amplitudes and

saccade turning angles, before we analyze the temporal evolution of the mean horizon-

tal distance from the starting position. The temporal evolution of the mean horizontal

distance from the starting position will turn out to be an important measure of scan-

path statistics. Finally, we run several numerical model simulations to interpret potential

mechanisms underlying scanpath generation.
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2.3.1 Saccadic amplitudes and directions

In our experiment, distributions of saccade amplitudes show the heavy tailed curve that

is typically observed in scene viewing experiments (Tatler et al., 2006; Henderson &

Hollingworth, 1998). Saccade amplitude distributions (Fig. 2.5a) across di↵erent image

types and starting positions were very similar. The only visible di↵erence was a slight

shift from short to medium saccade lengths in the pattern images compared to the object

based images.

We computed an ANOVA for the influence of saccade number on saccade amplitude.

There was a significant e↵ect between the first and the second saccade (F (1, 1790) =

54.4, p = 2.5⇥10�13), where the amplitude of the first saccade was larger than the ampli-

tude of the second (Fig. 2.5b). Statistical tests between subsequent saccade amplitudes

showed no significance, indicating that after the first long saccade, the mean amplitude

reaches a stable value.

We computed another ANOVA to investigate influences of the image type and the

starting position on the first saccade length. The starting position was significant

(F (1, 1785) = 47.95, p = 6.09⇥ 10�12) as well as the image type (F (3, 1784) = 11.73, p =

1.30 ⇥ 10�7). The mean first saccade amplitudes for left and right starters were s̄left =

7.80° and s̄right = 9.26°, resp. Mean values for the image types were s̄

balanced

= 8.01° ,

s̄

pattern

= 7.81° , s̄
leftfocus

= 9.28° and s̄

rightfocus

= 9.02°. The interaction between image

type and starting position was also significant (F (3, 1784) = 53.67, p < 2⇥10�16). Figure

2.5c visualizes this interaction and the main e↵ects of image type and starting position.

In summary, forcing the observers to start exploration from an experimentally con-

trolled initial position close to the border of the monitor resulted in a long first saccade.

This was particularly true if the interesting image part was on the opposite side of the

initial position. The longer initial saccade from right to left than vice versa is congruent

to the left direction bias that has been found in various experiments (Dickinson & In-

traub, 2009; Foulsham et al., 2013; Ossandón et al., 2014). This result indicates that the

leftward bias is not only present, if participants start observations from the center of the

image (see Fig. 2.3).

2.3.2 Saccade turning angle and its relation to amplitude

Statistically, most saccades are likely to follow the direction of previous saccades or shift

gaze position back to the direction of the starting position of the previous saccade. The

overall distribution of saccade turning angles between two subsequent saccades (Fig.2.6a)

is characteristic for similar experiments in scene viewing (Tatler & Vincent, 2008; Smith

& Henderson, 2009). Next, we constructed a conditional plot of saccade amplitude in

relation to the previous saccade amplitude and orientation (Fig.2.6b). The endpoint
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Figure 2.5: Summary statistics of saccade amplitudes. (a) Densities of all saccade ampli-
tudes for the three images types of object-based scenes (balanced, left, and right focus)
and the pattern images for left and right starting position. (b) Mean saccade amplitude
for the nth saccade in each trial for all conditions. While there is a strong e↵ect on the
mean of the first saccade length, subsequent saccade amplitudes show no systematic pat-
tern. (c) Mean values of the first saccade amplitude for the 8 di↵erent conditions. There
is a strong interaction between the image type and the starting position, especially for
the left focus images and the right focus images. Errorbars represent the standard error
of the mean.

40



2.3. Results

of the previous saccade was mapped to the origin of the coordinate system, saccade

amplitude was normalized to the amplitude of the previous saccade, and the saccade

orientation of the previous saccade was rotated to the right (or 180° orientation). In

this representation, an endpoint at (x; y) = (1; 0) corresponds to a saccade that has the

same length and orientation as the previous saccade (i.e., a turning angle of 180°). The

endpoint at (x; y) = (�1; 0) indicates that the saccade had the same amplitude as the

previous saccade , but an opposite direction, which represents a perfect return saccade

(i.e., a turning angle of 0°). The high intensity at this point is consistent with earlier

experiments that reported a large number of return saccades (Hooge et al., 2005; Tatler

& Vincent, 2008; Smith & Henderson, 2009).

Results from our analysis of turning angles and saccade amplitudes seem - on visual

inspection only - to be inconsistent with an inhibitory tagging mechanism. However, ruling

out an inhibitory tagging mechanism based on these data would be premature, since

inhibitory tagging could still be active, but not express in behavioral data represented

in Figures 2.6a & b. Our analyses below will indicate a potential role of inhibitory

tagging. Moreover, Figure 2.6c shows the same plot as Figure 2.6b, but only for the second

saccade. This plot indicates return saccades appeared rarely for the second saccade, i.e.

a facilitation of return back to the starting position was not observed.

2.3.3 Influence of starting position and image type on explo-

ration behavior

The most important aim of the current study was to investigate the influence of starting

position on scanpath statistics. Therefore we introduced a measure of the mean horizontal

distance (MHD) to the starting position at time t, denoted by XMHD(t) (see Methods).

This measure was computed for each combination of image type and starting position

(Fig. 2.7a). The blue horizontal line indicates the horizontal center of the image. There

are three important main e↵ects of XMHD(t) in the plots. First, for the long term behavior

in the balanced images and pattern images, XMHD(t) approaches the midline, while there

are obvious deviations for images with left or right focus.

Second, the transient behavior induced by the starting position lasts to about 3 s to

5 s (depending on condition). This observation is in strong contrast to our finding that

saccade amplitudes are only a↵ected for the first saccade, which translates into a transient

phase of the mean first fixation duration, equivalent to 609.01 ms. This untypically long

first fixation indicates that participants needed a long time to initiate the first saccade

after disappearance of the fixation cross.

Third, after approximately 1.5 s to 2 s almost all curves cross the midline and show a

local maximum of MHD. The existence of such a maximum lends support for inhibition
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Figure 2.6: Summary statistics for saccade turning angles. (a) The distribution of angles
between two successive saccades is markedly peaked at 0° (saccades that turn around) and
180° (forward saccades). (b) Plot of the relation between saccade amplitude and turning
angle contingent on parameters of the previous saccade. The previous saccadic endpoints
are aligned to the origin. Saccade amplitudes were normalized to one and the saccade
orientations were rotated to map the endpoints of a saccade with unit length to the point
(1, 0). This representation shows that most saccades either travel in the same direction
as the previous saccade, but with reduced saccade amplitude, or shift gaze back to the
starting position of the previous saccade, i.e., the point (�1; 0). (c) same as (b) but only
for the first two saccades. This shows that after the long first fixation return saccades
back to this position are hardly present.
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at the starting position, i.e., the eye is actively driven to the opposite image side. This is

most evident for the conditions in which observers started in the image side opposite to the

focus (starting from the right in left-focus images and starting from the left in right-focus

images), but the e↵ect is also visible for balanced images. Additionally, an interaction

between image type and starting position is visible in Figure 2.7a. When observers started

in the interesting side of an image, the final MHD to the starting position is smaller than

for the balanced and pattern images and for the balanced and pattern images it is smaller

than if participants started in the focus image side. Graphs are cut o↵ at t = 6000 ms

because after approximately 5 seconds the MHD reaches an asymptotic behaviour.

Finally, we investigated the statistical reliability of our results via bootstrapping from

1 000 bootstrap samples of the 28 participants (Efron & Tibshirani, 1994). The confidence

intervals (Fig. 2.7b,c) for the MHD curves XMHD(t) were obtained by subtracting the

subject mean and adding the overall mean to the samples as described by Cousineau

(Cousineau, 2005; Loftus & Masson, 1994) and taking the 2.5% and 97.5% quantile of the

MHD samples for the lower and upper bound. Confidence intervals show that MHD of left

and right focus images di↵er significantly for both starting positions from the balanced

images. Pattern images show almost the same MHD as balanced images. As a statistical

test we computed ANOVAS to compare the mean of the balanced and pattern images

(= neutral images) with the focus images. We did this at 7 di↵erent time points (0.1 s,

0.5 s, 1 s, 1.5 s, 2 s, 2.5 s and 5 s). At 0.1 s the MHD was rarely significantly (p < 0.05)

di↵erent for the focus images and the neutral images. At 0.5 s all focus images‘ MHDs

di↵ered significantly (p < 0.05) from the neutral images, except for right focus images

with a start on the right side. The MHD was always significantly di↵erent (p < 0.05)

between focus and neutral images for the time points between 1 s and 2.5 s. After 5 s

only some conditions show significant di↵erences.

The di↵erence between the images with focus (left vs. right) was significant at all time

points (p < 0.05) after 100 ms (also at t = 8 s and t = 10 s) except for inspections from

the right starting position at t = 5 s.

2.3.4 Comparison of experimental data with model simulations

for scanpath statistics

The analysis of the time-dependence of the mean horizontal distance to the starting

position uncovered at least two unexpected results, (i) the observation of long transients

and (ii) an overshoot component to the image side opposite to the starting position, even

in the case of balanced images. To interpret the experimental findings we calculated the

same statistics for computer-generated scanpaths from two statistical models, a saccadic

momentum model, a dynamical model of scene exploration as well as a combination of

43



2. Initial fixation position

0

3

6

9

12

15

18

0 2500 5000
Time [ms]

D
is

ta
nc

e 
to

 S
ta

rti
ng

 P
os

iti
on

 [°
]

Image type
Balanced
Pattern
Left Focus
Right Focus

Start
Left
Right

0

3

6

9

12

15

18

0 2500 5000
Time [ms]

D
is

ta
nc

e

0

3

6

9

12

15

18

0 2500 5000
Time [ms]

D
is

ta
nc

e

(a) (c)

(b)

Figure 2.7: Mean horizontal distance XMHD(t) of gaze position at time t from starting
position. (a) Almost all curves show an overshoot of the mean gaze position to the
image side opposite to the starting position. (b) Curves from left starting positions
with bootstrap-based confidence intervals. (c) Curves from right starting positions with
bootstrap-based confidence intervals.
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the SceneWalk and the saccadic momentum model (see Methods) and compared them

to the experimental data. Each model will first be described with respect to the mean

horizontal distance to the starting position averaged over all experimental conditions (Fig.

2.8) and split by image type and starting position (Fig. 2.9). We will then discuss how

far each model diverges from the empirically observed MHD. The time course of this

deviation is plotted in Figure 2.10 and an overall comparison is presented in Figure 2.11.

An example of a computer generated scanpath illustrates how each model behaves (Fig.

2.8b-g) compared to a human scanpath (Fig. 2.8a). At last we compare the distribution

of angles between successive saccades of all models (Fig. 2.12) to the empirical data.

Sampling from density map

Random sampling from the density map (yellow path in Fig. 2.8) indicates that this

model cannot produce an overshoot to the image side opposite to the starting position.

When the starting position was oposite to the images’ focus it crosses the midline (yellow

path in Fig. 2.9) but stays on the opposite side afterwards. The yellow path in Figure

2.10 shows that the density model on average stays too close to the starting position

until 5 seconds of observation time, because the MHD is constantly smaller than the

experimental data. We only investigated the time between 1 s and 5 s because simulations

of the saccadic momentum model equal the empirical data until 999 ms and after 5 s the

empirical MHD curve reaches a stable value. We pooled the eight conditions from Figure

2.9 into the three conditions neutral images, start within the focus side and start opposite

to the focus. There were no systematic di↵erences between di↵erent conditions within

these groups. The simluated scanpath of the density model (Fig. 2.8b) coveres similar

locations as human observers but fails to produce the systematic scanning behaviour.

This claim is supported by Figure 2.12. The angle distribution of the density model does

not resemble human behaviour. The density model generated almost no forward saccades

(i.e. 180°) but a very large amount of backward saccades. This agrees with the findings

that a memoryless system produces more return saccades than present in the data (Bays

& Husain, 2012).

Gaussian Model

Though the Gaussian-weighted model is psychologically more plausible than the density

model because of its limited attentional span, it performs even worse with respect to the

MHD (light blue path in Fig. 2.8 & 2.9). It leaves the starting position even slower

than the density model due to the limited attention span. The deviation of the MHD

from the experimental data (Fig. 2.10) is always negative. The scanpath of the gauss

model (Figure 2.8c) indicates that the limited attention span and the absence of inhibition
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leads to rather small saccades. Thus the scanpath of the gaussian model often covers a

smaller area of the image, than human observers. The angular distribution shows too

little forward saccades (Fig. 2.12). The peak of return saccades is less pronounced than

for the density model but is still evident. This is due to the fact, that the model cannot

cross image boundaries and thus, when a fixation is placed close to the border, cannot

produce forward saccades.

Saccadic Momentum Model

Although the saccadic momentum model contains the same initial two fixations as the

data, it cannot reproduce the overshoot from the data (dark blue path in Fig. 2.8 & 2.9).

The MHD is almost constantly lower than that of the human data (Figure 2.10) and it’s

MHD is even further away from the data in two of the three conditions than that of the

density model (Fig. 2.11). Figure 2.8d shows a scanpath that is similar to human data

with respect to saccade lengths and angles but does neither capture the locations looked

at nor dynamical aspects of human data. The angular distribution resembles that of the

experimental data (Fig. 2.12). Thus, the model reproduces the distribution of angles

between successive saccades but fails to produce a similar MHD as the data, because it

stays too long on the image side of the initial fixation.

SceneWalk model

In contrast to the other models, the dynamical SceneWalk model (Engbert et al., 2015)

reproduces the overshoot component of the MHD curves in the time interval between 1.5 s

and 2 s (pink path in Fig. 2.8 & 2.9). The SceneWalk model uses inhibitory tagging that

drives the eyes away from the starting position by suppressing the selection of saccade

targets close to the initial fixation position. The MHD produced by the SceneWalk model

is closer to the empirical MHD than models without inhibitory tagging (Fig. 2.10) when

the starting position was not in the side of the images’ focus. If starting positions were

on the focus side, the overshoot produced by the SceneWalk model was too strong (Fig.

2.9).

The scanpath produced by the SceneWalk model (Figure 2.8e) resembles a typical

human scanpath, because it doesn’t stick to any locations and inspects important image

parts more thoroughly. The angle distribution of the SceneWalk model however does not

resemble human data (Figure 2.12). It shows a similar distribution as the density and the

gaussian model but the peak of the return saccades is less pronounced.
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Adjusted SceneWalk model

Since model parameters of the SceneWalk model were taken from the published version

and not adjusted to the current experimental data, we changed the exponent of the

inhibition map from � = .3 to .2 (see Eq. 2.2.3 in Methods) in a second simulation (dark

red path in Fig. 2.8 & 2.9). This parameter controls the inhibition map and influences

the amount of aggregation (or clustering) of realized gaze positions. We see that the

overshoot of the MHD curve of the SceneWalk model with an adjusted exponent of the

inhibition map is in good agreement with the overshoot observed in the experimental

data (Fig. 2.10). These simulations suggest that the overshoot produced by the model

is primarily caused by the inhibitory tagging mechanism. The angle distribution of the

adjusted SceneWalk model (Fig. 2.12) as well as the computed scanpath (Fig. 2.8f)

showed similar characteristics as the orignial SceneWalk model. Because this model was

adjusted post hoc, we did not statistically compare it to the other models.

SceneWalk Model + Saccadic Momentum

With an additional saccadic momentum mechanism, the SceneWalk model still produces

the overshoot seen in the data (red path in Fig. 2.8 & 2.9). As in the original SceneWalk

model, the overshoot in MHD of the augmented model is sometimes too strong (Fig.

2.10), especially when the starting position is within the focus side of the image. The

scanpath produced by this model looks similar to the human scanpath (Fig. 2.8g). The

overshoot of MHD is reproduced by the model and the angle distribution is very similar

to the human data (Fig. 2.12).

Statistical model comparison

We computed an ANOVA to statistically compare the performance of the SceneWalk

model to other models. We compared the mean deviation of MHD between models and

experimental data in the interval from 1 s to 5 s (Figure 2.11). Because the adjusted Sce-

neWalk model was hand tuned post hoc, we will only statistically compare the original

SceneWalk to the other models. In neutral images the SceneWalk model performs signif-

icantly better than the density model (F (1, 54) = 18.77, p < 0.001), the gaussian model

(F (1, 54) = 91.49, p < 0.001) and the saccadic momentum model (F (1, 54) = 23.77, p <

0.001). If the initial fixation position was on the side of the scene focus the SceneWalk

model did not di↵er significantly from the density model (F (1, 54) = 1.398, p = 0.242) or

the saccadic momentum model (F (1, 54) = 1.736, p = 0.193) but performed significant-

lyy better than the gaussian model (F (1, 54) = 7.13, p < 0.01). For a starting position

opposite to the focus the MHD produced by the SceneWalk model di↵ered significantly

less from the empirical MHD than the density model (F (1, 54) = 17.63, p < 0.001),
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the gaussian model (F (1, 54) = 116, p < 0.001) and the saccadic momentum model

(F (1, 54) = 22.55, p < 0.001). Comparing the original SceneWalk model to the Sce-

neWalk + saccadic momentum model did not show significant di↵erences (p < 0.05) for

any condition.

2.4 Discussion

In an eye tracking experiment we investigated the influence of experimentally manipulated

starting positions on scanpath behavior in human observers. The most important e↵ects

were observed in the temporal evolution of the mean horizontal distance (MHD) to the

starting position. First, we found unexpectedly long transients in mean eye position.

It took up to 5 seconds for gaze of human observers to reach the final average fixation

position. This is a lot longer than the saccade amplitude e↵ects, which were limited

to the very first saccade of an observers’ scanpath. Second, for almost all experimental

conditions the MHD over time is characterized by a strong overshoot of the midline into

the image side opposite to the starting position before reaching a stable value. This e↵ect

lends support to a foraging strategy that actively moves the gaze to unexplored image

regions although on a shorter time scale, a high number of return saccades suggests the

opposite.

Next, we analyzed computational models that incorporate mechanisms of eye move-

ment control to produce human scanpaths. Random sampling from the empirical fixation

map (i.e., assuming a ‘perfect’ fixation density model) does not replicate human behav-

ior, since the overshoot to the opposite side of the image cannot be reproduced and the

distribution of angles between successive saccades did not resemble human behaviour.

Considering that this density model is a ‘perfect’ fixation density model this is quite re-

markable, because it shows that even if we can perfectly predict fixation locations, human

eye movement behaviour is not reproduced by default. Additionally, such a model is psy-

chologically highly implausible because of the missing e↵ect of degraded visual processing

towards the periphery of the visual field. However, an augmented model, i.e., a combi-

nation of the density map with a gaussian attention window representing the fall-o↵ of

visual processing to the periphery, performs even worse compared to random sampling

from the empirical map. We conclude from these results that an active mechanism driving

the eyes away from the starting position is necessary to explain scanpath statistics as the

time-dependence of mean horizontal distance.

Given the above experimental results, we were looking for potential principles of eye

guidance that drive the trajectory faster away from the current fixation position than a

simple random process. We investigated two principals in computational models: sac-

cadic momentum (Smith & Henderson, 2009; Wilming et al., 2013) and spatial inhibitory
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Figure 2.8: Comparison of mean horizontal distance of gaze from starting position for
the experimental data and the computational models. Examples of scanpaths for (a) ex-
perimental data, (b) random sampling from density map, (c) gaussian weighted random
sampling from density map, (d) saccadic momentum model, (e) SceneWalk model (Eng-
bert et al., 2015) based on target selection from dynamic activation maps, (f) SceneWalk
model with an adjusted exponent of the inhibition map and (g) SceneWalk + Saccadic
Momentum Model. (h) Mean horizontal distanceXMHD(t) of gaze position at time t shows
that the qualitative behavior in the experimental data with an overshoot component to
the image side opposite to the starting position is reproduced by the SceneWalk models
that use inhibitory tagging as a driving mechanism.
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Figure 2.9: Mean horizontal distance to the starting position for all 8 combinations of
image type and starting position, for the 4 di↵erent scanpath models and experimental
data. In all but one condition (left-focus image with left starting position), an overshoot
of the mean position to the image side opposite to the starting position is visible in the
experimental data. This overshoot was reproduced by the dynamical SceneWalk models
that implement inhibitory tagging.
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Figure 2.10: Di↵erence between the MHD produced by the models and the experimental
data between 1 and 5 seconds. The SceneWalk models are often above the zero-error
line, indicating that the overshoot of the MHD is too strong. The other models are
always below this line, indicating that they leave the starting position slower than human
observers.
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Figure 2.11: Mean absolute di↵erence between the MHD produced by the models and the
experimental data between 1 and 5 seconds. For neutral images and if the starting position
was opposite of the focus the SceneWalk models perform better than the other models. If
the initial fixation position lies in the focus side of an image there is no significant di↵erence
between the orignial SceneWalk model and the other predictive models (density model,
gaussian model, saccadic momentum model).
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Figure 2.12: Distribution of angles between successive saccades for all models (see Fig.
2.6a). The density model, the gauss model and the original and adjusted SceneWalk
model can not reproduce the angle distribution of the experimental data. A saccadic
momentum model that is based on the angle distribution of the data can reproduce it as
well as the SceneWalk model augmented with a saccadic momentum mechanism.
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tagging (Itti et al., 1998; Le Meur & Liu, 2015).

We designed a model with saccadic momentum that samples from the joint probability

distribution of saccade angles and amplitudes and keeps the first saccade as observed in the

experiments. As a trivial result, the first two fixations in each trial from the simulations

fit the experimental data better than any other model. However, the model did not

reproduce the overshoot component to the opposite image side.

We also used the SceneWalk model (Engbert et al., 2015), a dynamical model for eye-

movement control in scenes that reproduces first- and second-order statistics, i.e., densi-

ties of fixation locations and clustering of fixation locations, respectively. The SceneWalk

model uses inhibitory tagging, a mechanism motivated by the findings on inhibition of

return (Posner & Cohen, 1984; Posner et al., 1985; Klein, 1988). We demonstrated that

the SceneWalk model generates the overshoot e↵ect for MHD via inhibitory tagging in

contrast to the two random-sampling models or the saccadic momentum model. With the

parameters that were fitted from a di↵erent experiment, the SceneWalk model produced

MHD curves that were more similar to the curves computed from the experimental data

than all other models. Reducing the exponent of the inhibition map alternated the over-

shoot, in particular when participants started in the focus side of an image. To account

for the distribution of angles between successive saccades we added a map that weights

possible future fixation locations with respect to the probability of angles between suc-

cessive saccades. This model reproduced the observed angle distribution (Fig. 2.12) and

produced the overshoot that was not observed in a simple saccadic momentum model (see

Fig. 2.8). Although the empirical angle distribution shows a peak at return saccades, a

facilitation of return (Smith & Henderson, 2009) back to the starting position was not

observed (Fig. 2.6c).

We investigated models using an inhibitory tagging mechanism and a saccadic mo-

mentum mechanism. The overshoot to the image side that is observed in human data

is reproduced by all models that implement inhibitory tagging. The angle distribution

between two succesive saccades is produced by all models that use a saccadic momentum

mechanism. Without any of these mechanism, both measures fail to be reproduced by a

model. This shows that the distribution of angles with a large amount of return saccades

and an inhibitory tagging mechanism are not necessarily a contradiction but reproduce

certain spatial and temporal dependencies of human scanpaths when applied together in

a model.

Inspections of a left-focus image from a starting position on the left show di↵erent

dynamics of the mean horizontal distance compared to all other conditions. This could

be due to a stronger directional bias in left-focus images than in right-focus images in

our experimental material. It is also possible that there is a general tendency to first

look at the left image side and then scan to the right—a tendency that has been found
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earlier in scene viewing (Dickinson & Intraub, 2009; Ossandón et al., 2014), pattern

exploration (Abed, 1991) and face viewing (Guo, Meints, Hall, Hall, & Mills, 2009)—

which is congruent to the reading direction of our participants. A dynamical model of

eye guidance might perform better with an additional Bayesian-type prior probability

implementing a leftward bias and a center bias for initial saccades. Thus, our results

emphasize the need for more advanced dynamical models of scanpath generation.

2.5 Conclusion

The experimental manipulation of starting position exerts a strong and long lasting influ-

ence on scanpaths during scene exploration. Using computational models, we demonstrate

that a model with inhibitory tagging can explain the mean overshoot of gaze position to

the image side opposite to the starting position whilst simple statistical models as well as

a saccadic momentum model without inhibitory tagging do not reproduce this overshoot.

In addition, even if we are able to predict a perfect fixation density model, we are still

far from predicting spatial and temporal dependencies between successive fixations. Our

results lend support to inhibitory tagging as a dynamical principle of saccade planning

during scene viewing.
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2.7 Appendix

Because the experimental design turned out to be di�cult for our participants, many trials

had to be repeated. Figures 2.13-2.17 represent Figures 2.5–2.9 if only trials without

a repeated fixation check are taken into account. All results are very similar and no

systematic di↵erence was observed between trials with and without a repeated fixation

test.
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Figure 2.13: Summary statistics of saccade amplitudes for trials without repetition of
the fixation test. (a) Densities of all saccade amplitudes for the three images types of
object-based scenes (balanced, left, and right focus) and the pattern images for left and
right starting position. (b) Mean saccade amplitude for the nth saccade in each trial for
all conditions. While there is a strong e↵ect on the mean of the first saccade length,
subsequent saccade amplitudes show no systematic pattern. (c) Mean values of the first
saccade amplitude for the 8 di↵erent conditions. There is a strong interaction between
the image type and the starting position especially for the left focus images and the right
focus images. Errorbars represent the standard error of the mean.
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Figure 2.14: Summary statistics for saccade turning angles for trials trials without repeti-
tion of the fixation test. (a) The distribution of angles between two successive saccades is
markedly peaked at 0° (saccades that turn around) and 180° (forward saccades). (b) Plot
of the relation between saccade amplitude and turning angle contingent on parameters of
the previous saccade. The previous saccadic endpoints are aligned to the origin. Saccade
amplitudes were normalized to one and the saccade orientations were rotated to map the
endpoints of a saccade with unit length to the point (1, 0). This representation shows
that most saccades either travel in the same direction as the previous saccade, but with
reduced saccade amplitude, or shift gaze back to the starting position of the previous
saccade, i.e., the point (�1; 0). (c) same as (b) but only for the first two saccades. This
shows that after the long first fixation return saccades back to this position are hardly
present.
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Figure 2.15: Mean horizontal distance XMHD(t) of gaze position at time t from starting
position for trials without repetition of the fixation test. (a) Almost all curves show an
overshoot of the mean gaze position to the image side opposite to the starting position.
(b) Curves from left starting positions with bootstrap-based confidence intervals. (c)
Curves from right starting positions with bootstrap-based confidence intervals.
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Figure 2.16: Comparison of mean horizontal distance of gaze from starting position for
the experimental data and the computational models for trials without repetition of the
fixation test. Examples of scanpaths for (a) experimental data, (b) random sampling
from density map, (c) gaussian weighted random sampling from density map, (d) saccadic
momentum model, (e) SceneWalk model (Engbert et al., 2015) based on target selection
from dynamic activation maps, (f) SceneWalk model with an adjusted exponent of the
inhibition map and (g) SceneWalk + Saccadic Momentum Model. (h) Mean horizontal
distance XMHD(t) of gaze position at time t shows that the qualitative behavior in the
experimental data with an overshoot component to the image side opposite to the starting
position is reproduced by the SceneWalk models that use inhibitory tagging as a driving
mechanism.
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Figure 2.17: Mean horizontal distance to the starting position for all 8 combinations of
image type and starting position, for the scanpath models and experimental data for trials
without repetition of the fixation test. In all but one condition (left-focus image with left
starting position), an overshoot of the mean position to the image side opposite to the
starting position is visible in the experimental data. This overshoot was reproduced by
the dynamical SceneWalk models that implement inhibitory tagging.
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3. Central fixation bias

Abstract

When watching the image of a natural scene on a computer screen, observers initially

move their eyes toward the center of the image — a reliable experimental finding termed

central fixation bias. This systematic tendency in eye guidance likely masks attentional

selection driven by image properties and top-down cognitive processes. Here, we show

that the central fixation bias can be reduced by delaying the initial saccade relative to

image onset. In four scene-viewing experiments we manipulated observers’ initial gaze

position and delayed their first saccade by a specific time interval relative to the onset of

an image. We analyzed the distance to image center over time and show that the central

fixation bias of initial fixations was significantly reduced after delayed saccade onsets. We

additionally show that selection of the initial saccade target strongly depended on the first

saccade latency. A previously published model of saccade generation was extended with

a central activation map on the initial fixation whose influence declined with increasing

saccade latency. This extension was su�cient to replicate the central fixation bias from

our experiments. Our results suggest that the central fixation bias is generated by default

activation as a response to the sudden image onset and that this default activation pattern

decreases over time. Thus, it may often be preferable to use a modified version of the scene

viewing paradigm that decouples image onset from the start signal for scene exploration

to explicitly reduce the central fixation bias.
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3.1 Introduction

How humans visually explore natural scenes depends on multiple factors. Eye movements

are influenced by low level image properties (e.g., chromaticity, orientation, luminance,

and color contrast; Itti et al., 1998; Torralba, 2003; Le Meur, Le Callet, Barba, & Thoreau,

2006) as well as higher level cognitive processes like the observers’ scene understanding

(Loftus & Mackworth, 1978; Henderson et al., 1999), task (Yarbus et al., 1967; Castelhano

& Henderson, 2008a), or probability of reward (Hayhoe & Ballard, 2005; Tatler et al.,

2011). Besides low-level image features and high-level cognition, systematic tendencies

have a strong impact on how humans look at pictures (Tatler & Vincent, 2009; Le Meur

& Liu, 2015). A dominant systematic tendency in natural scene viewing is the central

fixation bias (CFB; Buswell, 1935; Tatler, 2007; Tseng, Carmi, Cameron, Munoz, &

Itti, 2009). Regardless of stimulus material (Tatler, 2007; Tseng et al., 2009), head

position (Vitu, Kapoula, Lancelin, & Lavigne, 2004), initial fixation position (Tatler,

2007; Bindemann, Scheepers, Ferguson, & Burton, 2010), or image position (Bindemann,

2010), the eyes tend to initially fixate close to the center of an image when presented to

a human observer on a computer screen. After several explanations of the CFB had been

ruled out, two hypotheses remained.

First, the image center might be the best location to maximize information extraction

from scenes (Najemnik & Geisler, 2005; Tatler, 2007) – at least for typical photographs

found in image databases and on the internet (c.f; Wichmann, Drewes, Rosas, & Gegen-

furtner, 2010). Second, the center provides a strategic advantage to start the exploration

of an image (Tatler, 2007). Because real-world visual input does not suddenly appear

and peripheral information of an upcoming stimulus is usually available, the CFB might

be a laboratory artifact to some degree. Also, natural visual stimuli do not have rigid

boundaries like a computer screen. A reduction of the CFB in mobile eye tracking data

(’t Hart et al., 2009; Ioannidou, Hermens, & Hodgson, 2016) supports this idea.

A previous study from our lab resulted in a strong reduction of the CFB on initial

fixations compared with similar experiments. In this study we manipulated the initial

fixation by requiring participants to maintain fixation on a starting position close to the

border of the screen for 1 s (Rothkegel, Trukenbrod, Schütt, Wichmann, & Engbert,

2016). In addition, some images in this study had asymmetric conspicuity distributions,

with interesting or salient image parts on either side of the image, but less so in the

center. Thus, the reduction of the CFB in our scene-viewing experiment could have been

generated by three aspects: extreme initial starting positions, delayed initial saccades,

and the saliency bias of the images we used.

To investigate the principles underlying the reduced CFB, we designed and analyzed

four experiments, in which observers started exploration from di↵erent positions within an
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image and were required to maintain fixation for various time intervals after image onset

(pretrial fixation time). Our study used the images investigated in the most frequently

cited paper on the central fixation bias (Tatler, 2007), to exclude any influence of the

images on the reduction of the CFB.

We hypothesized that (a) a forced prolonged initial fixation decouples image onset from

the signal to start exploration and leads to a reduced CFB on the second fixation which

in turn reduces the bias on subsequent fixations (due to the short saccade amplitudes of

humans during scene perception; Tatler & Vincent, 2008) and that (b) the magnitude of

the reduction varies with the duration of the prolonged initial fixation.

Here, we show that the CFB of early eye movements can be reduced by dissociating

initial eye movements from a sudden image onset by 75 ms and more. Increasing the

delay of the initial response by more than 250 ms produced only marginal di↵erences.

In addition, we show that the initial saccade latency predicts the strength of the CFB

on a trial-by-trial basis. The pretrial fixation time primarily assures that the initial

fixation is long enough to avoid a strong orienting response to the center of an image. By

implementing these results in a previously published model of saccade generation (Engbert

et al., 2015) we were able to reproduce the influence of saccade latency on the CFB as

well as the qualitative progression of the CFB over time.

3.2 General methods

3.2.1 Stimuli

A set of 120 images was presented on a 20-in. CRT monitor (Mitsubishi Diamond Pro

2070: frame rate 120 Hz, resolution 1,280 ⇥ 1,024 pixels; Mitsubishi Electric Corporation,

Tokyo, Japan) in Experiments 1, 2 and 4 and on a di↵erent 20-in. CRT monitor in

Experiment 3 (Iiyama Vision Master Pro 514: frame rate 100 Hz, resolution 1,280 ⇥ 1,024

pixels; Iiyama, Nagano, Japan). The images were the same as in Tatler’s (2007) original

study on the central fixation bias. Images were indoor scenes (40 images), outdoor scenes

with manmade structures present (e.g., urban scenes; 40 images), and outdoor scenes with

no manmade structures present (40 images). Images were taken using a Nikon D2 digital

SLR using its highest resolution (4 megapixel). All pictures had a size of 1,600⇥1,200

pixels. For the presentation during the experiment, images were converted to a size of

1,200 ⇥ 900 pixels and centered on a screen with gray borders extending 64 pixels to

the top/bottom and 40 pixels to the left/ right of the image. In Experiments 1, 2, and

4 the images covered 31.1° of visual angle in the horizontal and 23.3° in the vertical

dimension. In Experiment 3 images covered a larger proportion of the visual field with

36.25° of visual angle in the horizontal and 27.20° in the vertical dimension due to a

62



3.2. General methods

reduced viewing distance.

3.2.2 Participants

Participants were students of the University of Potsdam and of nearby high schools. Num-

ber of participants will be reported for each experiment separately. They received credit

points or a monetary compensation of 8 Euro for their participation in any of the four

experiments. The average duration of one experimental session was 40-45 min. All partic-

ipants had normal or corrected-to-normal vision. The work was carried out in accordance

with the Declaration of Helsinki. Informed consent was obtained for experimentation by

all participants.

3.2.3 General procedure

Participants were instructed to position their heads on a chin rest in front of a computer

screen at a viewing distance of 70 cm (60 cm in Exp. 3). Eye movements were recorded

binocularly (monocularly in Experiment 3) using an EyeLink 1000 video-based-eye tracker

(desktop mount system for Experiments 1,2, and 4 and tower mount system for Exp. 3;

SR Research, Osgoode, ON, Canada) with a sampling rate of 500 Hz (1000 Hz in Exp.

3 and downsampled to 500 Hz for our analysis). Trials began with a black fixation cross

presented on a gray background. After successful fixation, an image was presented. After

onset of the image, the fixation cross remained visible on top of the image for a variable

duration. We refer to this duration as the pretrial fixation time. Participants were

instructed to keep their eyes on the fixation cross until it disappeared. If participants

moved their eyes before the pretrial fixation time elapsed, a mask of Gaussian white

noise was displayed and the trial started anew with the initial fixation check. After

successful initial fixation, participants were instructed to explore the scene freely for 5 s

in all experiments. Experiments were run with the MATLAB software (MATLAB, 2015)

using the Psychophysics (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007) and EyeLink

(F. W. Cornelissen, Peters, & Palmer, 2002) toolboxes.

3.2.4 Data analysis

Data preprocessing and saccade detection

For saccade detection we applied a velocity-based algorithm (Engbert & Kliegl, 2003a;

Engbert & Mergenthaler, 2006). Saccades had minimum amplitude of 0.5° and exceeded

an average velocity during a trial by six (median-based) standard deviations for at least

six data samples (12 ms). The epoch between two subsequent saccades was defined as a

fixation.
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3.2.5 Distance to center over time

We computed the mean distance of the eye position to the image centerDTC as a function

of pretrial fixation time (T ). This was computed as follows

DTC

T

=
1

m · n

nX

j=1

mX

k=1

||x
jk

(t)� x

center

|| , (3.1)

where x

jk

(t) indicates gaze position of participant j on image k at time t and x

center

indicates the image center. The vertical bars indicate the Euclidian distance from the

center for each gaze position. As a continuous-time measure, we computed the DTC of

each sample of the eye position time series. In this representation, a larger DTC indicates a

less pronounced CFB and vice versa. For all experiments we visualized the mean DTC(t)

to the image center for the entire 5-s observation window for each pretrial fixation time.

The observation window started at t = 0 with the disappearance of the fixation marker.

All figures were created with the ggplot2 package (Wickham, 2009) of the R-Language of

Statistical Computing (R Core Team, 2014).

Influence of the initial fixation on the second fixation

The pretrial fixation time influenced the DTC on early fixations. To further investigate

this influence, we plot the DTC of the second fixation as a function of overall saccade

latency from image onset. We computed linear mixed models (Bates, Mächler, Bolker, &

Walker, 2015) with initial saccade latency and pretrial fixation time as fixed e↵ects, the

DTC of the second fixation as the dependent variable and an intercept for participants

and images as random factors. To compute the models, we transformed DTC with the

boxcox function of the R package MASS (Venables & Ripley, 2002) to follow a normal

distribution. We obtained significance levels with the lmerTest package (Kuznetsova,

Brockho↵, & Christensen, 2013). Contrasts were defined as sum contrasts. This means

that each pretrial fixation time is compared with the overall mean of distance to center.

To be able to compare the di↵erent factor levels with the overall mean, the highest pretrial

fixation time in each experiment was left out. In all experiments we excluded saccades

with latencies smaller than or equal to 80 ms as anticipatory.

Density maps of eye positions over time

To visualize the temporal evolution of eye positions in our experiments, we computed

movies of two-dimensional density maps for the di↵erent pretrial fixation times and each

eye position of the time series recorded for each experiment. Based on a kernel density

estimation via di↵usion (Botev, Grotowski, & Kroese, 2010), we estimated density maps
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for the first 2 s (after removal of the fixation cross) in each experiment. These movies are

available as supplementary material under

http://jov.arvojournals.org/article.aspx?articleid=2661519.

3.3 Experiment 1

3.3.1 Methods

Participants

We recorded eye movements from 40 participants in Experiment 1 (34 female, 14–39 years

old); 38 participants were recruited from the University of Potsdam and two from a nearby

high school.

Procedure

In Experiment 1 the fixation cross was presented at the horizontal meridian 5.6° (256

pixels) away from the left or right border of the monitor. This position was chosen to

reproduce the findings of a strongly reduced central fixation bias observed in an earlier

study (Rothkegel et al., 2016), where participants experienced a pretrial fixation time of

1 s. A proportion of 20% of participants explored the image immediately after successful

fixation without an additional pretrial fixation time (0 ms). This corresponds with the

standard scene viewing paradigm. For all other participants the fixation cross remained

on top of the image for a duration of 125 ms, 250 ms, 500 ms, or 1000 ms. Pretrial fixation

time was used as a between-subject factor, i.e., each participant was tested with one of

five pretrial fixation times. Figure 3.1 illustrates a representative trial with the starting

position on the left side of the screen. Fixation Check 2 was nonexistent for participants

with a 0-ms pretrial fixation time.

3.3.2 Results

Distance to center over time

In Experiment 1, the DTC initially decreased for all conditions (i.e., the CFB increased;

see Fig. 3.2). There was a pronounced e↵ect that mean fixation positions tended to be

closer to the image center when participants were allowed to explore an image immediately

after image onset, i.e., with a pretrial fixation time of 0 ms (black curves in Fig. 3.2a).

Surprisingly, for the first four participants (Block 1) of this group the e↵ect was visible

throughout the whole observation time of 5 s. A second group of participants in the 0 ms

condition (Block 2) did not replicate the stronger CFB through the whole observation
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Fixation Check 1 

5 s of free
observation

Fixation Check 2 
(0;125;250;500;1000ms)

Figure 3.1: Schematic illustration of the experimental procedure of Experiment 1 with
a starting position close to the left border of the screen. After a short fixation check of
200 ms (Fixation Check 1) the image is presented. A second fixation check between 0
and 1000 ms controls if participants move their eyes after image onset. After a successful
second fixation check, participants are allowed to freely move their eyes.
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Figure 3.2: Experiment 1. a) Mean distance to center over time (DTC(t)) for the five
di↵erent pretrial fixation times with starting positions close to the border of the screen.
Confidence intervals indicate standard errors as described by Cousineau (2005). Block 1
represents participants 1-20, Block 2 participants 21-40 who were originally tested as a
follow up experiment to consolidate the results. b) Mean distance to center of the second
fixation as a result of initial saccade latency and pretrial fixation time. Bins represent
quintiles of the saccade latency distribution. Errorbars are the standard error of the mean.
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time. In addition, there was a gradual reduction of the CFB for pretrial fixation times

from 125 ms to 250 ms (red and green curve). DTC for pretrial fixation times of 250 and

500 ms hardly di↵ered (green vs. blue curve). The minimum for the pretrial fixation time

of 1000 ms occurred later in time because of disproportionately long saccade latencies of

the first saccade after a forced fixation on the fixation cross of 1000 ms (cyan curve).

Distance to Center on the second fixation

Figure 3.2b shows the influence of initial saccade latency on the mean DTC of the second

fixation for the five pretrial fixation times. Each bin represents a quintile of the distribu-

tion of saccade latencies in each condition. A clear relation between DTC of the second

fixation and latency of the initial saccade is visible for the pretrial fixation times of 0 ms

and 125 ms. Overall, short saccade latencies led to a small average DTC (i.e., a strong

initial CFB) whereas long latencies led to a larger average DTC (i.e., a less pronounced

initial CFB).

Table 3.1 shows the output of the LMM for Experiment 1. The DTC for a pretrial

fixation time of 0 ms is significantly lower than the average DTC and for a pretrial fixation

time of 500 ms it is significantly higher. The initial saccade latency is highly significant

regardless of the pretrial fixation time. This means that a saccade immediately after the

sudden image onset led to a stronger CFB in this experiment. The model also shows that

an interaction between saccade latency and pretrial fixation time exists. If participants

are allowed to move their eyes directly after image onset (pretrial fixation of 0 ms), the

influence of saccade latency is significantly higher than on average (see saccade latency

⇥ 0 ms). If pretrial fixation time is as long as 500 ms, the influence of saccade latency

is significantly weaker than on average (see saccade latency ⇥ 500 ms). This interaction

suggests that after a certain threshold time is reached, the influence of increasing saccade

latency disappears.

3.3.3 Discussion

Experiment 1 led to a reduction of the CFB on the initial saccade target for all pretrial

fixation times of 125 ms and more during scene perception from extreme starting positions

(Fig. 3.2a). A pretrial fixation time of 125 ms produced an intermediate CFB, whereas

longer pretrial fixation times produced an asymptotic behavior. With a pretrial fixation

time of 0 ms the DTC was smaller throughout almost the whole observation time of 5 s

for the first group of participants. However, this e↵ect was not replicated in a retest

with 20 new participants. The early e↵ect of the CFB did not di↵er in the two groups of

participants. The CFB of the second fixation did strongly depend on the latency of the

initial saccade (Fig. 3.2b). Thus, the early di↵erences between pretrial fixation times in
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3. Central fixation bias

Table 3.1: Output of LMM for Experiment 1

Fixed E↵ect Estimate SE t

(Intercept) 1.856 0.079 23.546 ***

0 ms -0.925 0.151 -6.106 ***

125 ms -0.148 0.140 -1.053

250 ms 0.185 0.140 1.320

500 ms 0.496 0.136 3.660 ***

saccade latency 0.751 0.108 6.951 ***

saccade latency x 0 ms 1.685 0.339 4.976 ***

saccade latency x 125 ms 0.245 0.208 1.178

saccade latency x 250 ms -0.210 0.175 -1.199

saccade latency x 500 ms -0.886 0.155 -5.726 ***

Random e↵ects variance: Subjects 0.1498
Random e↵ects variance: Images 0.1477
Log-Likelihood -7135.53

Deviance 14271.07

AIC 14297.07

BIC 14380.64

N 4575

⇤p < .05, ⇤⇤p < .01, ⇤⇤⇤p < .001

Figure 3.2a are driven by di↵erences in the distribution of initial saccade latencies.

These results replicated our earlier findings of a reduced CFB during scene perception

by introducing a non-zero pretrial fixation time (Rothkegel et al., 2016). A delay of 125 ms

was su�cient to achieve a considerable reduction and after a delay of 250 ms the minima

of DTC curves only di↵ered marginally. In addition, our results suggest that the most

important mediating factor of the CFB was the latency of the first saccadic response.

Saccades with brief saccade latencies were on average directed more strongly toward the

center than saccades with long saccade latencies.

3.4 Experiment 2

To assure that our results from Experiment 1 were not mainly induced by the extreme

starting positions we conducted another experiment with starting positions closer to the

image center.

3.4.1 Methods

Participants

We recorded eye movements from 20 participants for Experiment 2 (17 female; 14-28 years

old). Nineteen subjects were recruited from the University of Potsdam and one from a
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Figure 3.3: Experiment 2. a) Mean distance to center over time (DTC(t)) for the five
di↵erent pretrial fixation times with starting positions on a donut shaped ring around the
image center. Confidence intervals indicate standard errors as described by Cousineau
(2005). b) Mean distance to center of the second fixation as a result of initial saccade
latency and pretrial fixation time. Bins represent quintiles of the saccade latency distri-
bution. Errorbars are the standard error of the mean.

nearby high school.

Procedure

Experiment 2 was similar to Experiment 1 except that the fixation cross was presented

on a donut-shaped ring with a distance of 2.6° to 7.8° (100-300 pixels) to the center. We

used this donut-shaped ring to obtain intermediate starting positions neither too close

nor too far away from the center so that fixations could be directed both towards and

away from the center. In addition, the donut-shaped ring of starting positions made the

initial starting position less predictable. This setup di↵ered slightly from the experiment

conducted by Tatler (2007) where the initial starting position was randomly chosen from

a circle (fixed radius) around the image center.

3.4.2 Results

Distance to center over time

In Experiment 2, where the starting positions were located on a ring around the image

center, the eyes moved initially even further towards the image center in the 0 ms pretrial

condition (black curve in Fig. 3.3a was the only curve with a pronounced negative slope
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3. Central fixation bias

Table 3.2: Output of LMM for Experiment 2

Fixed E↵ect Estimate SE t

(Intercept) 2.167 0.094 22.965 ***

0 ms -0.899 0.186 -4.829 ***

125 ms -0.010 0.177 -0.054

250 ms 0.228 0.174 1.308

500 ms 0.255 0.177 1.439

saccade latency 0.468 0.110 4.258 ***

saccade latency x 0 ms 1.126 0.291 3.870 ***

saccade latency x 125 ms 0.327 0.229 1.430

saccade latency x 250 ms -0.541 0.204 -2.656 **

saccade latency x 500 ms -0.235 0.208 -1.132

Random e↵ects variance: Subjects 0.1112
Random e↵ects variance: Images 0.1333
Log-Likelihood �3599.60
Deviance 7199.20
AIC 7225.20
BIC 7299.56
N 2253

⇤p < .05, ⇤⇤p < .01, ⇤⇤⇤p < .001

in the beginning). A di↵erence in DTC was visible until about 600 ms after o↵set of the

fixation marker. Later during the trial, the curves converged for all pretrial conditions

and reached a stable DTC for the rest of the trial. Qualitatively, we also observed a small

initial di↵erence in DTC between short pretrial fixation times of 125 ms and 250 ms and

pretrial fixation times of 500 ms and 1000 ms.

Distance to center of the second fixation

As in Experiment 1, we found a strong influence of the latency of the first saccade on

the DTC of the second fixation for small pretrial fixation times (Fig. 3.3b). The results

of the linear mixed model in Experiment 2 (Tab. 3.2) were similar to Experiment 1.

The most important results are the significantly lower DTC of the 0 ms pretrial fixation

time compared with the average and the significant increase in DTC for higher saccade

latencies. As in Experiment 1 an interaction between saccade latency and pretrial fixation

time is visible. This is especially true for the 0 ms condition, where the influence of saccade

latency significantly increases compared with the average influence. In Experiment 2 the

only significant decrease in saccade latency influence is visible for a pretrial fixation time

of 250 ms. Overall direction of the influence (increasing influence of saccade latency for

pretrial fixation times of 0 ms and 125 ms vs. decreasing influence for pretrial fixation

times of 250 ms and 500 ms) is the same as in Experiment 1.
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3.5. Experiment 3

3.4.3 Discussion

If the starting position was close to the image center all pretrial fixation times of 125 ms

or longer (Fig. 3.3a) led to a reduction of the CFB on early fixations. After around

600 ms this influence disappeared. Furthermore, a clear relation between latency of the

first saccade and the CFB of the second fixation was visible (Fig. 3.3b). Thus, the results

replicated our observations from Experiment 1 and demonstrated that a reduced CFB

was not exclusively generated by the extreme starting positions used in Experiment 1.

3.5 Experiment 3

The results from Experiment 1 and 2 showed that a pretrial fixation time of 125 ms was

enough to reduce the central fixation bias on early fixations. The di↵erence of the CFB

between pretrial fixation times larger than 125 ms was relatively small. To investigate the

minimum pretrial fixation time for a substantial CFB reduction, we conducted a third

experiment with pretrial fixation times ranging from 0 to 125 ms in six equidistant steps.

We changed the between-subject design of pretrial fixation time to a within-subject design

to reduce the influence of individual participants (cf., Exp. 1). Hence, every participant

was tested with all pretrial fixation times. Because e↵ects were maximal in the first

experiment we used the same extreme starting positions as in Experiment 1.

3.5.1 Methods

Participants

We recorded eye movements from 24 participants for Experiment 3 (20 female; 20–29

years old). All participants were recruited from the University of Potsdam.

Procedure

In Experiment 3, participants experienced pretrial fixation times between 0 and 125 ms

in steps of 25 ms (0, 25, 50, 75, 100, 125 ms). Each of the six pretrial fixation times

was presented in a block of 20 images, pseudorandomized across participants. Note that

the experiment was tested with a di↵erent setup (monitor, eye tracker, etc.; see General

methods section for details). Thus, the absolute value of DTC is not directly comparable

between Experiment 3 and the remaining experiments.
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Figure 3.4: Experiment 3. a) Mean distance to center over time (DTC(t)) for the six
di↵erent pretrial fixation times with starting positions close to the left and right border.
Confidence intervals indicate standard errors as described by Cousineau (2005). b) Mean
distance to center of the second fixation as a result of initial saccade latency and pretrial
fixation time. Bins represent quintiles of the saccade latency distribution. Errorbars are
the standard error of the mean.

3.5.2 Results

Distance to center over time

As in Experiment 1 and 2 the eyes initially moved towards the center for all pretrial

fixation times (Fig. 3.4a). The di↵erence between pretrial conditions was not as clearly

visible as in previous experiments. Even the di↵erence between the 0- and the 125-ms

condition was relatively small. The smaller di↵erence was probably due to the blocked

design where pretrial fixation times changed after 20 trials during the experiment for each

participant. Nonetheless, curves with a pretrial fixation time smaller than or equal to

50 ms had smaller minima than the ones with pretrial fixation times larger than 50 ms

(see inset in Fig. 3.4a).

Distance to center of the second fixation

The influence of the first saccade latency on the distance to center of the second fixation

is clearly visible in Figure 3.4b. The influence seemed even clearer than in previous exper-

iments. However, the range of the distance to center values was larger in this experiment

as a result of the increased magnitude of the image in visual degree. Saccade latencies

were more homogeneous in Experiment 3. The di↵erence of mean saccade latencies (pre-
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3.5. Experiment 3

Table 3.3: Output of LMM for Experiment 3

Fixed E↵ect Estimate SE t

(Intercept) 2.187 0.110 19.832 ***

0 ms 0.056 0.076 0.731

25 ms -0.096 0.086 -1.118

50 ms -0.069 0.072 -0.949

75 ms 0.055 0.081 0.673

100 ms -0.015 0.078 -0.190

saccade latency 1.056 0.110 9.564 ***

saccade latency x 0 ms -0.334 0.201 -1.662

saccade latency x 25 ms 0.161 0.249 0.645

saccade latency x 50 ms 0.071 0.208 0.340

saccade latency x 75 ms -0.093 0.227 -0.409

saccade latency x 100 ms 0.153 0.226 0.678

Random e↵ects variance: Subjects 0.2308
Random e↵ects variance: Images 0.1359
Log-Likelihood �3990.68
Deviance 7981.35
AIC 8011.35
BIC 8099.75
N 2679

⇤p < .05, ⇤⇤p < .01, ⇤⇤⇤p < .001

trial fixation time + saccade latency after removal of the fixation marker) between the 0-

and 125- ms condition was much smaller (57 ms) than in Experiments 1 (154 ms) and 2

(138 ms).

A linear mixed model for Experiment 3 showed that DTC of the second fixation did not

show an independent influence of pretrial fixation time (Tab. 3.3). However, we replicated

a significant influence of the first saccade latency on DTC of the second fixation. Shorter

saccade latencies led to fixations closer to the center of an image. An interaction between

pretrial fixation time and saccade latency was not observed.

Distributions of saccade latencies in Experiment 3 were rather similar between di↵erent

pretrial fixation times. However, there was a di↵erence between the three lowest pretrial

fixation times (mean saccade-latencies of 315, 320, and 321 ms) compared with the three

longer pretrial fixation times (mean saccade-latencies of 365, 352, and 371 ms). Thus

somewhere around 75 ms seems to be the lowest pretrial fixation time to influence further

viewing behavior.

3.5.3 Discussion

Experiment 3 was conducted to investigate the minimum pretrial fixation time necessary

for a reduction of the early central fixation bias. All pretrial conditions showed a similar
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3. Central fixation bias

behavior with a tendency of an early CFB as measured by the DTC. We observed the

weakest DTC e↵ect for pretrial fixation times of 125 ms (inset in Fig. 3.4a). Pretrial

fixation times equal to or smaller than 50 ms generated fixation positions closest to the

image center. Di↵erences in DTC could be explained by the influence of the first saccade

latency on the selection of the second fixation location (Fig. 3.4b). Thus, saccade laten-

cies are the most important factor modulating the CFB. A post-hoc analysis revealed

that saccade latencies were only a↵ected in conditions with pretrial fixation times larger

than 50 ms. This is in line with previous research that the shortest image preview to

influence further eye movement behavior in visual search lies between 50 and 75 ms (Võ

& Henderson, 2010). We conclude that a minimum pretrial fixation time of around 75 ms

is needed to prolong saccade latencies in order to reduce the CFB in scene viewing.

3.6 Experiment 4

In Experiment 4, participants started exploration at the center of the screen. This starting

position was chosen to quantify the influence of pretrial fixation times in a standard scene

viewing paradigm.

3.6.1 Methods

Participants

In this experiment we recorded eye movements from 10 participants (three male; 18–36

years old). All were recruited from the University of Potsdam.

Procedure

Experiment 4 followed the same procedure as the preceding experiments but participants

started observation in the center of the screen. We tested pretrial fixation times of 0, 125,

and 250 ms since we observed only subtle changes of results for longer pretrial fixation

times in Experiments 1 and 2. As in Experiment 3, we used a within-subject design for

the three di↵erent pretrial fixation times such that participants viewed blocks of 40 images

for each pretrial fixation time.

3.6.2 Results

Distance to center over time

Contrary to the first experiments initial gaze positions could only move away from the

image center with central starting positions in Experiment 4 (Fig. 3.5a). Therefore, DTC
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Figure 3.5: Experiment 4. a) Mean distance to center over time (DTC(t)) for the three
di↵erent pretrial fixation times with starting positions in the center of the image. Con-
fidence intervals indicate standard errors as described by Cousineau (2005). b) Mean
distance to center of the second fixation as a result of initial saccade latency and pretrial
fixation time. Bins represent quintiles of the saccade latency distribution. Errorbars are
the standard error of the mean.

gradually increased until it reached an asymptote. Between pretrial conditions, DTC

di↵ered with respect to the point in time, when curves started to monotonically increase

(pretrial fixation times: 250 ms < 125 ms < 0 ms). Although pretrial fixation times were

chosen to be equidistant, curves for 125-ms and 0-ms pretrial conditions (red and black

curve) take longer to converge than curves for the 250-ms and 125-ms pretrial conditions

(green and red curve; see inset Fig.3.5a). This demonstrated that pretrial fixation times of

125 ms or more reduce the CFB of early fixations even during scene viewing with central

starting positions.

Distance to center of the second fixation

Latencies of the first saccade were longer in this experiment than in any of the other

experiments. This observation is in line with results from face perception, where the initial

fixation is longer when participants start exploring a face in the center (Arizpe, Kravitz,

Yovel, & Baker, 2012). Due to the increased number of long initial saccade latencies, an

influence of saccade latency on the second fixation location was not as clearly visible as

in the previous experiments (Fig. 3.5b).

Results of a linear mixed model for Experiment 4 partially replicated the main results

from Experiments 1–3. The DTC of the second fixation was significantly smaller for a
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Table 3.4: Output of LMM for Experiment 4

Fixed E↵ect Estimate SE t

(Intercept) 2.858 0.157 18.194 ***

0 ms -0.309 0.093 -3.312 ***

125 ms 0.155 0.083 1.877

saccade latency 0.224 0.122 1.837

saccade latency x 0 ms 0.454 0.174 2.611 **

saccade latency x 125 ms -0.189 0.154 -1.222

Random e↵ects variance: Subjects 0.2607
Random e↵ects variance: Images 0.1845
Log-Likelihood �1877.00
Deviance 3754.01
AIC 3772.01
BIC 3817.26
N 1128

⇤p < .05, ⇤⇤p < .01, ⇤⇤⇤p < .001

pretrial fixation time of 0 ms. The influence of saccade latency on distance to center of the

second fixation did not reach a level of significance of 95% in Experiment 4. The direction

of the influence was positive and nearly reached the level of significance. The fact that

saccade latency was not a significant predictor is a result of the rather long latencies and

a small number of participants. By removing initial saccade latencies of higher than 1 s

(which normally are very rare) saccade latency becomes a significant predictor (p < 0.03).

The interaction between saccade latency and pretrial times showed that the influence of

saccade latency on DTC was, as observed in Experiments 1 and 2, significantly larger for

a pretrial fixation time of 0 ms.

3.6.3 Discussion

In our last experiment we investigated the e↵ect of pretrial fixation times on the CFB in

a standard scene-viewing experiment where participants start exploration from the image

center. As expected, DTC increased in all conditions continuously until it reached an

asymptote. The point in time when DTC started to increase varied for di↵erent pretrial

fixation times. We measured the earliest response for pretrial fixation times of 250 ms

and the slowest response after no pretrial fixation times (0 ms). If we remove latencies of

higher than 1 s we can replicate an influence of saccade latencies on DTC of the second

fixation. In general, saccade latency seems to be a strong mediating factor of the CFB.

In addition, we observed long initial saccade latencies when participants started at the

image center. This is particularly worrying, because the first fixation is usually omitted

from analyses in scene viewing experiments.
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3.7. Discussion of empirical results

When comparing Experiment 4 to the remaining experiments, the CFB was strongest

when participants started at the image center without pretrial fixation time (0 ms). Only

after about 1 s DTC (and CFB) was comparable between experiments and pretrial con-

ditions. Because most scene-viewing experiments last five seconds or less (c.f., data sets

in MIT saliency benchmark; Bylinskii et al., 2015) a substantial proportion of fixations

is biased towards the center during a standard scene viewing experiment. A combination

of a non-zero pretrial fixation time and adjustments of the starting position will reduce

the CFB and may help to better understand target selection during scene viewing. We

will further comment on this issue in the general discussion.

3.7 Discussion of empirical results

In four scene-viewing experiments we have shown that by delaying the initial saccade

relative to the sudden image onset the early central fixation bias was significantly reduced.

Further analysis showed that the amount of early CFB is directly linked to the initial

saccade latency. Figure 3.6 shows the influence of initial saccade latency on distance

to image center for all four experiments combined. A clear increase of DTC is visible

between 150 and 400 ms. Because initial saccade latencies above 400 ms do not show an

influence, pretrial fixation times above 250 ms did not produce noteworthy e↵ects. This

also explains why in Experiment 4 the rather long saccade latencies were not a significant

predictor for the CFB. We conclude our experiment by stating that the initial saccade

latency is the dominant factor influencing the early central fixation bias in scene viewing.

This leads to the assumption that the sudden image onset is involved in generating the

early CFB.

3.8 Computational modeling of the central fixation

bias

To test if the early CFB might result from default activation in the image center after

a sudden onset that is replaced by a content driven activation over time, we simulated

scanpaths generated by a computational model. For the simulations we used an extended

version of the previously published SceneWalk model of saccade generation from our

group (Engbert et al., 2015). Di↵erent to the original model with zero activation at the

beginning of a trial, we decided to start each trial with higher activations in the center

of an image than at the periphery (see Fig. 3.7a). The influence of this central starting

activation declines with increasing saccade latency and is replaced by a more content

driven activation (the empirical density map of the image multiplied with a Gaussian
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Figure 3.6: Influence of initial saccade latency on the distance to image center of the
second fixation for all 4 experiments combined.

around the starting position; see Fig. 3.7b). This initial central activation represents the

sudden image onset. We refer to this extended model as the SceneWalk StartMap model.

A more detailed description of the model can be found in the Appendix.

Figure 3.7 shows the simulated fixations 1–4 of two trials with di↵erent pretrial condi-

tions (0 ms vs. 1000 ms) of the SceneWalk StartMap model. The initial saccade latency

in the first trial (Fig 3.7a) was very short (t = 184 ms) and thus the first target selection

map of the SceneWalk StartMap model is biased strongly toward the center. The activa-

tions on this map translate into probabilities for being “fixated” by the model. Thus trials

with short initial saccade latencies produce many fixations close to the image center. The

second trial (Fig 3.7b) had an initial saccade latency of 1484 ms (1000-ms pretrial fixation

time + 484 ms after the fixation cross vanished) which is enough to replace the central

activation map with the empirical density map of the image multiplied with a Gaussian

around the starting position. After a long saccade latency, this map is roughly the same

map as the original SceneWalk model without an explicit center bias produces and leads

to mean fixation positions further away from the image center.

We simulated saccadic sequences from the SceneWalk StartMap model with the same

starting positions, number of fixations, and fixation durations as observed empirically.

The temporal evolution of the DTC of Experiment 1 for di↵erent pretrial fixation times

for the SceneWalk StartMap model is shown in Figure 3.8a). The SceneWalk StartMap

model took the initial saccade latency after image onset into account, which produced a

qualitatively similar pattern for the di↵erent pretrial fixation times as seen in the data.

The qualitative progression for most pretrial fixation times was similar to what was ob-

served empirically. It is eminent though that the central fixation tendency produced by
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3.8. Computational modeling of the central fixation bias

Figure 3.7: Simulated fixations 1–4 (left to right) of two trials on the same image. a) A
pretrial fixation time of 0 ms and a saccade latency of 184 ms create an attention map
for the first saccade target biased towards the center. This leads to fixations close to the
center. b) A pretrial fixation time of 1000 ms and saccade latency of 1484 ms create an
attention map for the first saccade target without a central bias. The initial attention
map in this trial roughly represents the empirical density map of the image multiplied
with a Gaussian around the starting position.

the model was too weak when compared with the data. This was probably a result of the

method and the fixations used for the parameter estimation (see Appendix).

We also evaluated the relation between latencies of the first saccade and DTC of the

second fixation (Fig. 3.8b). This influence was also visible in the SceneWalk StartMap

model, because longer initial saccade latencies led to a less pronounced central activation

map. The SceneWalk StartMap model produced a result pattern similar to the empirical

data with a similar progression of lines and a di↵erentiation between pretrial fixation

times. However, the early CFB on the second fixation was too small in all experiments,

i.e., the distance to center in all simulations was too large.

3.8.1 Discussion

Adjusting an existing model of saccade generation with an initial central activation map

whose influence declines with increasing saccade latency can reasonably explain the cen-

tral fixation bias. The SceneWalk StartMap model qualitatively replicated di↵erences
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Figure 3.8: a) Distance to image center over time for the empirical data and the SceneWalk
StartMap model for the di↵erent pretrial fixation times in Experiment 1. b) Influence of
the initial saccade latency on the distance to image center on the second fixation for the
empirical data and the SceneWalk StartMap model in Experiment 1.

in DTC curves between pretrial fixation times, and replicated saccade latency e↵ects on

DTC of the second fixation. However, the CFB from our simulations was too weak, which

is probably a result from the methods used for estimating the parameters (see Appendix).

Replicating our empirical findings was accomplished by assuming that a the central fixa-

tion bias is a result of a default activation in the center of a suddenly appearing stimulus,

which is gradually replaced by a content-driven activation.

3.9 General discussion

During scene viewing the eyes have a strong tendency to fixate near the center of an

image, which potentially masks other bottom-up and top-down e↵ects of saccadic target

selection. In a previous study (Rothkegel et al., 2016) with starting positions near the

image border and an experimentally delayed first saccade after the onset of an image

we observed a considerable reduction of the central fixation bias (CFB; Tatler, 2007).

Here, we investigated this reduction in four scene-viewing experiments. We manipulated

starting positions and the latency of the initial saccade. Di↵erent to the original scene-

viewing paradigm, where participants start exploration immediately after image onset,

we delayed the initial saccadic response by instructing participants to start exploration

only after disappearance of a fixation marker. As a measure of the central fixation bias

we computed the distance to center (DTC) of the eyes over time. In all experiments the

disappearance of a fixation marker 125 ms after image onset led to an early reduction of

the CFB in comparison to trials where the fixation marker disappeared simultaneously to
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the image onset (original scene-viewing paradigm). The earliest pretrial fixation time to

produce an influence was measured at 75 ms (see Exp. 3). The reduction of the CFB was

particularly pronounced in experiments with pretrial fixation time as a between-subject

factor (Exp. 1 and 2). A reduction of the CFB was even visible when participants started

observation at the center of an image (Exp. 4). The distance to center of the second

fixation was well predicted by the latency of the initial saccade (time from image onset)

across experiments. Short saccade latencies led to a strong bias toward the center whereas

longer saccade latencies were less systematically directed toward the center. Hence, the

latency of the initial response seemed to primarily account for the observed di↵erences of

the CFB.

Previous studies have shown that it takes 90 ms on average for the visual input to

reach the cortical areas (V. P. Clark, Fan, & Hillyard, 1995; Di Russo, Mart́ınez, Sereno,

Pitzalis, & Hillyard, 2002) and at least another 60 ms to execute an already programmed

saccade (e.g., Findlay & Harris, 1984; Ludwig, Mildinhall, & Gilchrist, 2007). Thus, to

plan a saccade to an image dependent location the latency has to be at least 150 ms. All

pretrial fixation times smaller than 125 ms contained trials with initial saccades latencies

below 150 ms. Thus implementing a pretrial fixation time of 125 ms and more removed

all saccades, which could not have been the result of an image-specific target selection.

Additionally, our results and model simulations have shown that the central fixation

bias gradually decreases for latencies from 150 ms to 400 ms. Thus we propose a delay

somewhere between 125 ms and 250 ms for a strong and reliable reduction of the CFB.

Our findings are in agreement with the note communicated earlier that a sudden

image onset during scene viewing represents an artificial laboratory situation and may

cause unnatural saccadic behavior (’t Hart et al., 2009; Tatler et al., 2011). However, the

sudden image onset seems to primarily a↵ect the tendency of the first saccade to move the

eyes toward the center of an image. Due to the dependence of fixation locations (Engbert

et al., 2015), subsequent fixations are then also more likely located near the center. Of

the two explanations for the CFB proposed by Tatler (2007), one can be excluded from

our results. If the image center is the strategically optimal position to start inspection

of the image, regardless of the content and previous gist extraction, the central fixation

bias would not decrease due to prolonged initial saccade latency. The other remaining

possibility of the central fixation bias was that by fixating the center of the image the

amount of information or gist being extracted is maximized. This explanation cannot be

ruled out due to our results. However, if participants are forced to extract the scenes’ gist

from another position, they do not necessarily look at the center for further information

extraction.

We propose another explanation for the early central fixation bias. Our results have

shown that the sudden image onset is a dominant contributor to the persistent early
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central fixation bias. Previous research has shown that the sudden appearance of a new

stimulus captures attention and attracts eye movements, even if it is completely task

irrelevant (Theeuwes et al., 1998). If, however, this suddenly appearing stimulus appears

during a fixation when no saccade is being programmed it does not guide gaze irrespective

of the task (Tse, Sheinberg, & Logothetis, 2002). These results can be transferred to our

experiment in the following way: The sudden luminance change on the monitor when

an image is displayed can be treated as a large object (the image) suddenly appearing.

When looking at an object, the eyes usually try to land in the center (Nuthmann &

Henderson, 2010) and suddenly appearing objects are being fixated close to the center

(Richards & Kaufman, 1969; Kowler & Blaser, 1995). Thus, if an image suddenly appears

and a saccade is planned in parallel, this saccade is a reflexive, stimulus driven saccade

towards the appearing stimulus executed via a subcortical path (Ottes, Van Gisbergen, &

Eggermont, 1985; Munoz & Everling, 2004). If some time passes after the sudden onset,

before the saccade is executed, a saccade can be planed via a cortical path (Ottes et al.,

1985; Munoz & Everling, 2004) targeting a location defined by the image content.

These hypotheses were used to extend a recently published model of saccade generation

(SceneWalk model; Engbert et al., 2015; Schütt et al., 2017). To generate a strong early

CFB, we needed to assume that the sudden image onset led to a strong central activation

at the beginning of a trial, which declines with increasing saccade latency. The model

was able to qualitatively reproduce the CFB and the relation between saccade latency

and the distance to center of the second fixation. However, in its current form the model

underestimated both e↵ects. These model simulations show that by only incorporating a

central fixation bias, which depends on initial saccade latency, we were able to reproduce

the progression of the early central fixation bias.

Computational models that aim at predicting the allocation of visual attention on an

image are based on the extraction of image features (Itti et al., 1998; Borji & Itti, 2013)

and top-down cognitive processes (Navalpakkam, Arbib, & Itti, 2005; Cerf et al., 2008).

These models are evaluated by comparing human fixations with a weighted distribution

of di↵erent influences (Bylinskii et al., 2015; Borji & Itti, 2013; Le Meur & Baccino, 2013;

Borji, Cheng, Jiang, & Li, 2015). Although bottom-up and top-down influences as well as

a combination of the two can predict human fixations (Bylinskii et al., 2015), the CFB is

a strong predictor that improves goodness-of-fit more than any other single feature (Judd

et al., 2009; Bylinskii et al., 2015). Thus, saliency models are usually compared with the

CFB as a baseline (e.g., Wilming, Betz, Kietzmann, & König, 2011; Clarke & Tatler, 2014;

Bruce, Wloka, Frosst, Rahman, & Tsotsos, 2015) and rely heavily on the implementation

of a CFB for a good performance (Kümmerer et al., 2015). Because the early CFB during

scene viewing seems to be an automated, stereotyped response of the saccadic system to a

sudden image onset, it masks bottom-up and top-down factors of saccade target selection
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and its strength critically depends on the duration of a trial since it primarily a↵ects early

fixations. Therefore, a reduction of the CFB during scene viewing, as generated by our

paradigm, provides a better understanding of target selection and a more rigorous test of

visual attention models than the original scene-viewing paradigm. At the minimum, the

latency of the first saccade needs to be taken into account, because it strongly influences

subsequent viewing behavior.

Our results imply to use a modified version of the scene-viewing paradigm to study

bottom-up and top-down processes of target selection beyond the CFB. To minimize the

influence of the sudden image onset, we suggest use of a fixation marker that disappears

between 125 and 250 ms after image onset. In addition, due to the dependence of suc-

cessive fixations, scene exploration should not exclusively start near the image center.

Instead initial fixations (fixation markers) should be evenly distributed across the entire

image or even with a preference toward the periphery. Central parts of the image will be

fixated when the eyes move toward the other side of an image. Finally, sudden onsets of

stimuli are often used in other laboratory tasks as well (e.g., visual search or face percep-

tion). To what extent our results generalize to other domains remains an open question

but an early initial CFB might also bias initial fixations in these tasks.

3.9.1 Conclusion

Delaying the first saccadic response relative to image onset reduced the central fixation

bias, which is most pronounced during early fixations. The latency of the first saccade

after image onset was the main predictor for the distance to image center of the second

fixation in all four experiments relatively independent of the time we enforced. The results

suggest that the early central fixation bias is a result of default saccades as a response to

a sudden image onset. Our results suggest use of modified version of the scene-viewing

paradigm to better understand saccade target selection beyond the central fixation bias.

3.10 Appendix

3.10.1 SceneWalk Model

For our model simulations we took the existing SceneWalk model of saccade generation

(Engbert et al., 2015) and extended it to model the early central fixation bias. The

SceneWalk model proposes that eye movements are driven by two di↵erent time-dependent

neural activation maps. An attention map reflects the attentional allocation on the given

scene for a specific fixation position. To compute the attention map, first an intermediate

map is computed by multiplying a two dimensional Gaussian distribution centered at
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the current fixation position with the empirical saliency map of the image to reflect

the reduced processing in the periphery. The influence of attention maps from previous

fixations declines over time and thus the previous attention map is increasingly replaced

by the map of the new fixation. A second map, the fixation map, memorizes previous

fixations and tags visited fixations locations, making them less probable to be fixated again

shortly afterwards. Thus, this map serves as an inhibition of return mechanism (Itti &

Koch, 2001; Klein, 2000). The mechanism to control the dynamics of inhibition, i.e., the

fixation map, is equivalent to the mechanism used for the attention map. The attention

and inhibition maps prior to the first fixation are set to zero. After computation of the

two maps for the current fixation position and duration, they are combined by subtracting

the fixation map from the attention map to a target map. After the maps are combined,

a target is chosen proportional to the relative activations (Luce, 1959) of the target map.

Thus, positions where the fixation map is high whereas the attention map is low are rarely

fixated and vice versa. For the interested reader the complete architecture of the model

can be found in (Engbert et al., 2015) and a newer version in (Schütt et al., 2017).

3.10.2 SceneWalk StartMap Model

Since the original SceneWalk model was not intended to produce an early CFB, we devel-

oped a modified version of the original model which takes the sudden image onset during

scene perception into account. We made two changes.

First, di↵erent than in the original SceneWalk model with zero activation across the

entire attention map at the beginning of a trial, we used an attention map with higher

activations near the center of an image than at the periphery (see Fig. 3.7a). This was

motivated by the sudden image onset that may lead to an initial prioritization of central

locations. This activation was a two dimensional Gaussian centered at the image center

with two di↵erent standard deviations for the horizontal and vertical dimension (�
x

and

�

y

). This initial attention map was normalized to a sum of 1.

Second, we realized that the decay of the attention map was too fast during the initial

fixation. Therefore, we estimated a new parameter ⇢2 that specified the rate of decay

during the initial fixation. For all other fixations we used the same decay parameter as

during the original simulations (Engbert et al., 2015).

The default central activation maps transition into the attention map before the first

saccade is computed as

a(t) = � · A
i,j

(t) + e

(�t·⇢2) · (a(t)� � · A
i,j

(t)), (3.2)

where a(t) is the attention map at time (t) and A

i,j

· � is the empirical density map

multiplied with a Gaussian around the starting position i, j. The new decay parameter
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⇢2 controls the speed with which the initial central activation map is replaced. Thus with

increasing saccade latency (increasing t) the initial central activation map (i.e. a(0)) is

gradually replaced by the empirical saliency map multiplied with a Gaussian around the

starting position (� · A
i,j

)

To estimate the parameters for the SceneWalk StartMap model we used a standard op-

timization algorithm (fminsearch) implemented in MATLAB (MATLAB, 2015) to obtain

the parameters with maximum likelihood (Bickel & Doksum, 1977; Schütt et al., 2017)

of fixations 2–4 of half of the participants (Exp. 1–4: N = 20/10/12/5) and a quarter of

the images (N = 30). We estimated parameters from the second to fourth fixation only

for e�ciency reasons and since DTC curves reached a stable value for later fixations.

The horizontal standard deviation �

x

of the initial center map was estimated at values

of 3.5°, 1.8° and 3.9° for Experiments 1–3. The vertical standard deviation �

y

for Exper-

iment 1–3 was estimated at 2.3°, 2.3° and 2.4° and the decay parameters ⇢2 for the first

three experiments were estimated at 1.11, 3.72 and 1.49. The parameters estimated for

Experiment 4 were very large with �

x

= 136.0°, �
y

= 4.2° and ⇢2 = 310. This resulted in

small initial di↵erences in activations between center and periphery for simulations of Ex-

periment 4 and was similar to the constant activations in the original model. The reason

for this behavior arises from the architecture of the model. Since activations in the atten-

tion map rise near fixation, central activations are prioritized initially when participants

start to explore a scene near the image center.
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Abstract

When searching a target in a natural scene, both the target’s visual properties and sim-

ilarity to the background influence whether and how fast humans are able to find it. So

far, it was unclear whether searchers adjust the dynamics of their eye movements (e.g.,

fixation durations, saccade amplitudes) to the target they search for. In our experiment

participants searched natural scenes for six artificial targets with di↵erent spatial fre-

quency content throughout eight consecutive sessions. High spatial frequency targets led

to smaller saccade amplitudes and shorter fixation durations than low spatial frequency

targets if target identity was known. If a saccade was programmed in the same direction

as the previous saccade, fixation durations and successive saccade amplitudes were not in-

fluenced by target type. Visual saliency and empirical fixation density at the endpoints of

saccades which maintain direction were comparatively low, indicating that these saccades

were less selective. Our results demonstrate that searchers adjust their eye-movement

dynamics to the search target e�ciently, since low-spatial frequencies are visible farther

into the periphery than high-spatial frequencies. We interpret the saccade direction speci-

ficity of our e↵ects as an underlying separation into a default scanning mechanism and a

selective, target-dependent mechanism.
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4.1 Introduction

One of the most important everyday tasks of our visual system is to search for a specific

target. Whether the task is to find a fruit amongst leaves, detect a dangerous animal or

find relatives in a crowd of people, visual search has always been essential for survival.

How the brain performs visual search tasks has been subject to a vast amount of research

and, consequently, a number of comprehensive theories have been proposed (Treisman

& Gelade, 1980; Wolfe, 1994; Duncan & Humphreys, 1989). However, most studies

concerning visual search have been conducted on so-called search arrays, where targets

and distractors are presented on a homogeneous background. While results from these

highly controlled studies are very useful for understanding the basic nature of visual

search, many do not take eye movements into account, although eye movements play

an important role in real world search behavior (Findlay & Gilchrist, 2003; Malcolm &

Henderson, 2009; Hulleman & Olivers, 2015).

When searching on a complex background, saccades—fast ballistic eye movements—

are executed about three to four times per second to increase the probability of finding

a target. It has been shown in many studies that the search target strongly influences

saccade target selection of eye movements when searching through natural scenes. Object-

scene consistency (Loftus & Mackworth, 1978; Henderson et al., 1999; T. H. Cornelissen

& Võ, 2017), scene context (Torralba, 2003; Neider & Zelinsky, 2006) as well as low-level

features (Hwang et al., 2009) of the target influence where observers fixate. Thus, a

top-down search template of the target appears to guide gaze during scene exploration

(Wolfe, 1994; Hwang et al., 2009). Correlations between the visual properties of target-

related search templates and fixated image patches exist, but do not completely explain

eye-movement behavior in visual search on complex backgrounds. Najemnik and Geisler

(Najemnik & Geisler, 2005, 2008) showed that human observers do not simply move

their eyes to positions which maximally resemble the target but rather apply a strategy

which takes the visual degradation towards retinal periphery into account. They argue

that observers sample as much relevant information as possible with a minimal number

of eye movements, which they call the optimal eye movement strategy in visual search.

Thus, it seems useful for the visual system to adapt eye-movement strategies according

to the target’s visibility in the periphery. Target visibility depends on retinal eccentricity

(Meinecke, 1989) and its interaction with many factors such as spatial frequency (Pointer

& Hess, 1989) and contrast (Campbell & Robson, 1968; Robson & Graham, 1981).

To investigate whether target features not only influence where participants look at

(fixation locations) but also how they search (saccade amplitudes and fixation durations),

we let participants search natural scenes for artificial targets with di↵erent low-level fea-

tures. Although one might suspect that di↵erent targets lead to di↵erent saccade ampli-
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tudes and fixation durations, to our knowledge no one has yet provided empirical evidence

to answer this question. It is rather important for models of eye movement control to

know whether, how fast, and how accurately human observers change search strategies

contingent on the target they search for. To explicitly compare targets of di↵erent spatial

frequency on various backgrounds, we used artificial targets instead of real-world objects

in this study. Furthermore, we used scenes instead of plain backgrounds because (i) we

are interested in real-world search behavior and not search on highly controlled arrays

and (ii) to gain knowledge to improve dynamical models of saccade generation in natural

scenes (Engbert et al., 2015; Schütt et al., 2017).

In our study, observers searched in each of 8 consecutive sessions for 6 targets of

varying spatial frequency content and, in the case of high-spatial frequency, orientation

(vertical and/or horizontal; see Fig. 4.1). Each session contained one block per target.

Each block consisted of one repetition of the same 25 images. Target type was specified

in advance to each block, to provide a search template. In one session (Session 7), targets

were chosen randomly for each trial and target type was unknown prior to a trial.

If dynamical aspects of eye movements are indeed adapted to the search target in a

useful way, saccade amplitudes should be larger during search for low-spatial frequency

targets, since low-spatial frequencies can be detected further into the periphery than

high-spatial frequencies (Pointer & Hess, 1989). Additionally, fixation durations should be

shorter for high-spatial frequency targets, since high-spatial frequency targets are detected

easier if they fall into the fovea than low-spatial frequency targets (Schütt & Wichmann,

2017). Another reason to prolong fixation durations for low-spatial frequency targets is

that low-spatial frequency targets can be perceived from further away, and the size of

the window in which targets can be detected increases with longer stimulus presentation

(Geisler & Chou, 1995).

Thus, we expected a search behavior with small saccade amplitudes and short fixation

durations when participants search for high-spatial frequency targets and a search behav-

ior with large saccade amplitudes and long fixation durations when participants search

for low-spatial frequency targets.

4.2 Results

We analyzed eye movement data from our experiment for search accuracy, search speed,

average fixation duration, average saccade amplitudes and e↵ects of changes in saccadic

direction. All variables were investigated separately for the di↵erent search targets. Bar

plots (left side of Figures 2–5) represent results for each of the 6 targets and the results for

all targets combined in Session 7, when target type was unknown prior to each trial. Line

graphs in Figures 2–7 show comparisons between the three low-spatial frequency targets
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Figure 4.1: Illustration of the task. Subjects were asked to search for one specific target
for a block of 25 trials, each overlayed over natural scenes like this one. In this image
all 6 targets are hidden twice as large and at higher contrast than in the experiment, to
make them visible despite the small image. In the actual experiment only one target was
hidden per image and the image was shown much larger. The bottom panels show the
6 targets we used. The frames around the targets mark which frequency category they
belong to.

(Gaussian Blob and positive/negative Mexican hat, black line) and the three high-spatial

frequency targets (vertical, horizontal bar and cross, red line; cf. Fig. 4.1, bottom panels)

throughout the course of the 8 experimental sessions. Error bars in the graphs are the

standard error of the mean. Significance signs refer to di↵erences between low and high-

spatial frequency targets (* p < .05, ** p < .01, *** p < .01). Solid lines below significance

stars indicate significant di↵erences between low and high-spatial frequency targets for a

range of neighboring data points (see Fig. 3–6).

4.2.1 Task performance

Detection rate

Performance of our group of 10 participants (see Methods) is characterized by similar

detection rates (Hits/Misses) for the di↵erent targets throughout the whole experiment

(Fig. 4.2A). The lowest detection rates were observed for the positive Mexican hat and

the high-spatial frequency cross (both 83%) and the highest rate for the negative Mexican

hat (92%). The overall rate of false alarms was very low (3.44% of target absent trials).

Over the course of the experiment (Fig. 4.2B), the detection rate for both low and high-

spatial frequency targets increased. No clear di↵erence between the groups of high-spatial
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Figure 4.2: A) Detection rate for the 6 targets. Red bars are high-spatial frequency targets
and gray bars low-spatial frequency targets. The blue bar captures all trials where target
type was unknown prior to the trial. B) Average detection rate of the three low and
high-spatial frequency targets throughout the 8 experimental sessions. In Session 7 target
type was unknown prior to a trial.

frequency and low-spatial frequency targets was observed. In Session 7, when target

type was unknown prior to the trial, detection rates dropped for both target types but

performance was still better than in the first experimental session.

Search time

Mean search times (Fig. 4.3A) were more variable between the targets than the detection

rate. Participants were faster at finding low-spatial frequency targets than high-spatial

frequency targets. Participants were fastest at finding the negative Mexican hat and

slowest at finding the high-spatial frequency cross. Search time decreased over the 8

sessions. The first 3 sessions showed a clear training e↵ect and afterwards a plateau was

reached (Fig. 4.3B). In Session 7 (target unknown) search times increased but high-spatial

frequency targets were still detected faster than in the first session, indicating that search

training compensated for loss of guidance in this case, which was also visible in detection

performance.

4.2.2 Scanpath properties

Saccade amplitudes

Analyses of the saccade amplitudes throughout our experimental sessions (Fig. 4.4) showed

three clear results: (i) Mean amplitudes were greater for low than for high-spatial fre-

quency targets, (ii) this di↵erence was established in the first session, persisted throughout

all other sessions, and (iii) vanished when target type was unknown prior to a trial. Search-
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Figure 4.3: A) Search times for the 6 targets. Red bars are high-spatial frequency targets
and gray bars low-spatial frequency targets. The blue bar captures all trials where target
type was unknown prior to the trial. B) Average search times for the three low and high-
spatial frequency targets throughout the 8 experimental sessions. In Session 7 target type
was unknown prior to a trial.

ing for the Gaussian blob led to the largest mean saccade amplitudes (Fig. 4.4A). Overall,

low-spatial frequencies produced larger saccade amplitudes, indicating that search strat-

egy was adjusted to the visibility of the targets into the periphery.
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Figure 4.4: A) Mean saccade amplitude for the 6 di↵erent targets. Red bars are high-
spatial frequency targets and gray bars low-spatial frequency targets. The blue bar cap-
tures all trials where target type was unknown prior to the trial. B) Average saccade
amplitude of the three low and high-spatial frequency targets throughout the 8 experi-
mental sessions. In Session 7 target type was unknown prior to a trial.

Fixation durations

The pattern for mean fixation durations (Fig. 4.5) was similar to the pattern of saccade

amplitudes: (i) The three low-spatial frequency targets led to a search strategy with
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longer fixation durations, (ii) this di↵erence in fixation durations needed one training

session to be established, but afterwards persisted throughout the other sessions, and (iii)

vanished when target type was unknown prior to a trial. Fixation durations decreased

throughout the experiment, thus mean fixation durations were rather short in Session 7,

when the target was unknown prior to each trial (Fig. 4.5B). Again, the search strategy

was adjusted according to the spatial frequency of the targets in a useful way, since it

takes longer for low-spatial frequency targets to be detected when they fall into the fovea.
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Figure 4.5: A) Mean fixation durations for the 6 di↵erent targets. Red bars are high-
spatial frequency targets and gray bars low-spatial frequency targets. The blue bar cap-
tures all trials where target type was unknown prior to the trial. B) Average fixation
duration of the three low and high-spatial frequency targets throughout the 8 experimen-
tal sessions. In Session 7 target type was unknown prior to a trial.

Time-course during a trial

In the sequence within a trial, mean fixation durations increased and mean saccade lengths

decreased (except for the first fixations/saccades, which were influenced by the experi-

mental design and the central fixation bias; Fig. 4.6). This behavior is known as the

coarse-to-fine strategy of eye movements (Antes, 1974; Over et al., 2007). However, the

e↵ect of target spatial frequency already occured after the second saccade and lasted for

the rest of the trial. Thus, participants displayed di↵erent coarse-to-fine strategies for low

and high-spatial frequency targets.

Change in saccadic direction

Although we did not have a hypothesis about the interaction of saccade direction and

visual search target, we included corresponding post-hoc analyses, since angles between

successive saccades in scene viewing follow a very characteristic distribution (Tatler &

Vincent, 2009; Smith & Henderson, 2009; Rothkegel et al., 2016) and strongly a↵ect
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Figure 4.6: Temporal evolution of A) mean saccade amplitude and B) fixation duration
for the two targets types throughout a trial.

saccade amplitudes and fixation durations (Tatler & Vincent, 2008; Tatler et al., 2017).

Saccades which maintain direction (which we will denote as saccadic momentum saccades

in the following (Smith & Henderson, 2009)) typically have small amplitudes and preced-

ing fixation durations are short. Saccades with a 180 degree change in direction (or return

saccades) are usually large and fixations, which preceed a return saccade, last rather long.

No apparent di↵erence was found between the distributions of intersaccadic angles

for low and high-spatial frequency targets (Fig. 4.7A). As has been described previously

(Tatler & Vincent, 2008) we observered an increase in saccade amplitude as a function

of change in saccade direction. Figure 4.7B also shows that saccades which maintained

direction from the previous saccade (0 degree change) were equally large for both target

types. Saccades which did contain a change direction di↵ered in saccadic amplitude except

for complete turns in direction (180 degree change). An influence of the angle is even more

evident if we look at fixation duration di↵erences between the two target types in relation

to the change in saccade direction (Fig. 4.7C). Again, fixation durations increased for

large changes in saccade direction. However, compared to previous results (Tatler &

Vincent, 2008) the increase in our experiment was not linearly but reached a plateau for

large changes in saccade direction an even decreased slightly for compelte return saccades.

Again we see that saccades which maintain direction (0 degree change) show no di↵erence

for fixation durations between the two target types. For saccades which change direction,

the fixation durations di↵er between the two target types. The fact that both, saccade

amplitude and fixation duration do not di↵er for saccades without a change in direction

led us to the hypothesis, that these saccades are less selective than other saccades and

follow a sort of default scan.

To further investigate this hypothesis, we compared the saccadic landing points for

di↵erent changes in saccade direction in terms of empirical density and visual saliency.
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The empirical density maps were computed with the SpatStat package of the R language

for statistical computing (Baddeley & Turner, n.d.; R Core Team, 2014) and for visual

saliency we used the DeepGaze 2 model (Kümmerer et al., 2016), which is the currently

highest ranking saliency model on the MIT saliency benchmark (Bylinskii et al., 2015).

The fixations were evaluated in terms of their likelihood under the Deep Gaze model or

the empirical density compared to a uniform distribution (see (Kümmerer et al., 2015;

Schütt et al., 2017) for further elaboration). Values above zero thus indicate improvements

compared to a uniform distribution, negative values represent predictions below chance.

Figures 4.7D and E show that saliency and empirical density, respectively, depended

on the previous change in saccade direction. Saccade targets were most salient (Fig.

4.7D) and visited more by all other participants (Fig. 4.7E) if the previous saccade had a

large change in direction (180 degree). Saliency values increased continuously with larger

changes in saccade direction. Empirical density of the saccade targets was highest for

return saccades (180 degree) but lowest for saccades with a left or right turn (90 degree)

from to the previous saccade. This did not match our hypothesis, that the least selective

saccades are saccades which maintain direction (0 degree change). However, most sac-

cades wich maintain direction are rather short, and short saccades often land at highly

interesting positions, because they contain corrective saccades. Thus, we analyzed the

empirical density with respect to the preceding change in direction for di↵erent saccade

amplitudes separately. Figure 4.7F shows the the empirical density with respect to pre-

vious change in saccade direction only for saccades between 3 and 8 degrees of visual

angle. Removing the rare large saccades and small corrective saccades led to the smallest

empirical density for saccades without a change in direction, as hypothesized for a default

scan mechanism. If we conduct this analysis for one degree bins of saccade amplitude

sizes separately, the increase of empirical density for an increasing change in saccade di-

rection is evident for all amplitudes between 2 and 11 degree. Larger saccades show a

rather noisy distribution and smaller saccades a rather constant value, independent of the

previous change in saccade direction.

Although visual saliency depended on the change in direction (Fig. 4.7D), all fixations

are predicted below chance by the visual saliency model (the di↵erence in log-likelihood

compared to a uniform prediction was negative). This agrees with the notion that visual

saliency does not predict fixation locations in visual search above chance (Henderson et

al., 2007; Schütt et al., 2018).

4.2.3 Spatial frequency spectra of fixated locations

Earlier analyses of eye movements during visual search reported similarities between the

fixated locations and the target and, consequently it was assumed that such relationships
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Figure 4.7: A) Density distribution of change in saccadic direction. Influence of change in
saccadic direction on B) successive saccade amplitude C) fixation duration between the
two saccades D) DeepGaze saliency of successive saccade target E) empirical density of
successive saccade target and F) empirical density of successive saccade target only for
saccades between 3 and 8 degree of visual angle.
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could be exploited for the prediction of fixation locations (Hwang et al., 2009). Thus, we

investigated whether a corresponding di↵erence between fixated and non-fixated image

locations exists in our data. As fixated locations, we extracted patches around the fixation

locations and compared them to control patches extracted from the same locations in a

di↵erent image from the stimulus set (Judd et al., 2009; Kienzle, Franz, Schölkopf, &

Wichmann, 2009) (see Methods). To compare the fixated patches for the di↵erent targets,

we analyzed the spectra of the patches (Fig. 4.8; see Methods). As displayed in Figure

4.8A, the average spectrum of a fixated patch looks much like the spectrum of any image

patch with a clear 1
f

decline in spatial frequency content and a preference for horizontal

and vertical structure. As these strong e↵ects hide all other e↵ects, all other spectra are

divided by the spectra of the comparison patches for display.

The overall spectrum of fixated patches shows increased power for all frequencies and

orientations (Fig. 4.8B) compared to a random image patch, indicating that fixated

patches have more contrast than non-fixated patches. The unknown target condition

(Fig. 4.8C) produces no clear deviation from the average over the conditions with known

target. Searching for a specific target produces a slight bias of the fixated image patches

towards being more similar to the spectrum of the target (Fig.4.8 D). The deviations of

the single targets from the grand average are all smaller than 5%, however, while the

variance over patches is substantial (SD
M

2 [78.65%, 161.03%], average = 91.10%).

While these results indicate a bias towards image patches, which have similar spectrum

to the target, di↵erences in the range of 0.1 standard deviations are certainly too small

to infer the fixation category from the spectrum. Thus the only distinction, which might

provide some predictive value is the generally increased contrast at fixated locations in

general.

4.2.4 Target di�culty

Since we placed the targets on di↵erent, pseudorandom positions in the images, it was -

by chance - sometimes easy and sometimes hard to find them. A direct measure of how

di�cult it was to find a target, is the time it took participants to find the target. As

a computational measure, we used a recently published early vision model for images,

which computes a signal-to-noise-ratio (SNR) of the target on the background for all

target patches (Schütt & Wichmann, 2017), (i) to evaluate whether the model can predict

search behavior on natural scenes and (ii) to obtain a measure of visibility for each of the

targets. A glance at Figure 4.9 indicates that both, detectability and search time were

correlated with the predicted SNR from the early vision model. The computed SNR by

the early vision model thus predicts search behavior. The model computes SNRs for foveal

vision. Note however, that the high-spatial frequency targets have higher SNRs than the
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Figure 4.8: Analysis of spatial frequency amplitude spectra at fixated locations. A: Grand
average spectrum over all fixated patches. B: Spectrum from A divided by the average
spectrum at control locations. The value at 0 frequency is 0.97, all other values are in the
range of [1.09, 1.26]C: Average spectrum for fixations when the target is unknown, plotted
as for known targets in D. D: Triples for each target: The target at 100% contrast against
a gray background, the amplitude spectrum of the target and the average amplitude
spectrum at fixation locations divided by the average over all targets. The color range
from black to white for the third plot is always [0.925, 1.075].

low-spatial frequency targets and are thus easier to see, when looked at in foveal vision

(di↵erent scales of y-axis in Fig. 4.9). Nonetheless, low-spatial frequency targets were

found significantly faster than high-spatial frequency target, arguing that the periphery

and eye movements play a highly important role in visual search (Nuthmann, 2014).

4.3 Discussion

We studied visual search for artificial low and high-spatial frequency targets in natural

scenes and found that fixation durations and saccade amplitudes depend on the low-level

properties of the search target. The di↵erent influences of a target on these basic eye-

movement characteristics are part of a top-down search strategy, since di↵erences between

targets disappeared immediately, as soon as participants did not know which target to

search for. Additionally, di↵erences between target types also occurred when the target

was absent but participants were told which target to look for. Our findings imply that

humans adjust their basic search behavior to the target they look for. In our study,

fixation durations and saccade amplitudes were longer for low-spatial frequency targets.

Previous research has shown that detectability of targets in the periphery depends on

spatial frequency (Pointer & Hess, 1989) and fixation duration (Geisler & Chou, 1995).

Increasing fixation durations thus lead to a larger window of detectability and low-spatial

frequency targets can generally be detected from further away. For high-spatial frequency
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Figure 4.9: Signal to Noise Ratio from an early vision model for all target-background
combinations (Schütt & Wichmann, 2017). Search times and detectability are correlated,
when separating analysis between target types.

targets, participants decreased their fixation durations strongly over time. Decreasing

fixation durations and thus increasing frequency of fixations for high-spatial frequency

targets is a useful search strategy because they (i) cannot be detected from far away and

(ii) have a higher SNR when looked at directly (see Fig. 4.9).

A recently published model of early vision (Schütt & Wichmann, 2017) was used to

predict target di�culty. Separately looking at the results for the di↵erent targets produced

promising results. We found high correlations between a targets signal-to-noise-ratio and

search times and detectability values. However, the targets themselves had very di↵erent

signal-to-noise-ratios, which were not reflected in search times. One possible reason that

the model fails at predicting search times between di↵erent target types is, that only

foveal input is modeled. The fact that low-spatial frequency targets are found faster than

high-spatial frequency targets, although they have a lower SNR, shows that the periphery

plays a strong role when searching for artificial targets on complex backgrounds.

Analyses of the fixation locations demonstrate that searchers slightly adjust where

they look to depending on the target and confirming earlier reports (Wolfe, 1994; Hwang

et al., 2009). However, the influence of the target on fixation locations (investigated

by comparing spatial frequency spectra) is rather small, agreeing with the notion that

participants do not merely look at positions which mostly resemble the target (Najemnik

& Geisler, 2005), but take their peripheral vision into account.

Additional post-hoc analyses of the changes in saccade direction and its dependence

on further viewing behavior revealed interesting results. Saccades, which generated strong

changes with respect to previous scanpath direction, landed at locations with higher em-

pirical fixation probability (when removing small corrective saccades from the analysis)

and visual saliency, and were influenced by target properties, except for saccade ampli-
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tudes after a 180 degree change in direction. Saccades which maintained direction were

not influenced by the search target and corresponding endpoints had low fixation den-

sity and low saliency values. For the control of fixation durations, our current results

lend support to the concept of mixed control (Henderson & Pierce, 2008; Trukenbrod &

Engbert, 2014), meaning that the visual input as well as some independent time-keeper

influences when a saccade is generated. The eyes simply progress in a default manner

with saccadic momentum saccades, unless an interesting object captures the attention,

which prolongs fixation duration and urges the eyes to change direction. The idea, that

interesting locations can inhibit default saccadic momentum saccades, strongly suggests

that eye movement behavior in search is shaped not only by foveal, but also peripheral

vision (Nuthmann, 2014; Cajar, Engbert, & Laubrock, 2016; Hulleman & Olivers, 2015).

We interpret our results as an indication for two di↵erent ways of searching, a selective

search and a default scan, which primarily moves the eyes forward in one direction. These

findings agree with a study by Bays and Husain (Bays & Husain, 2012), who reported

that return saccades are generally inhibited and only executed if a saccade target is

highly interesting while forward saccades are facilitated and more frequent than a random,

memoryless control mechanism would predict.

Eye movements play a substantial role for visual search in natural scenes and are at

least partially under top-town control. However, there also seems to be a default scanning

mechanism, which continues to move the eyes in the previous saccade direction and is not

adjusted to needs of the target-template. This default scan might simply be the result of

an evolutionary program to facilitate foraging (Wilming et al., 2013). Thus, our results are

consistent with at least two mechanisms controlling eye movements under natural search

conditions, which is important for dynamical models of scanpath generation (Engbert et

al., 2015; Le Meur & Liu, 2015; Tatler et al., 2017).

4.4 Methods

We generated 6 di↵erent low-level targets with di↵erent orientation and spatial frequency

content (Fig. 4.1):

A Gaussian blob with a standard deviation of 0.4� of visual angle. This is an isotropic

stimulus, which is a Gaussian in spatial frequency as well (with a standard deviation of

�

f

= 0.3979). A positive Mexican hat, the di↵erence between a Gaussian with a standard

deviation of 0.2� and a Gaussian with standard deviation 0.4�. This stimulus is isotropic

and has a peak frequency of roughly 0.7 cyc

deg

. A negative Mexican hat, the negative of

the positive Mexican hat, which has exactly the same spatial frequency spectrum. A

vertical Gabor, the product of 8 cyc

deg

vertical cosine centered at the origin and a Gaussian

with standard deviations of 0.06� and 0.32� in x and y direction. In frequency space
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this stimulus is strongly oriented and has a relatively broad frequency peak at 8 cyc

deg

. A

horizontal Gabor, the same as the vertical Gabor but oriented horizontally. A Gabor cross,

the sum of the two Gabors, each at half the contrast.

All stimuli but the Gaussian blob were near zero mean and all stimuli were normalized

to have an amplitude of 1, i.e. max(abs(T )) = 1.

To embed the targets into the natural images, we first converted the image to lumi-

nance values based on a power function, fitted to the measured luminance response of the

monitor. We then combined this luminance image I
L

with the target T with a luminance

amplitude ↵L

max

, fixed relative to the maximum luminance displayable on the monitor

L

max

as follows:

I

fin

= ↵L

max

+ (1� 2↵)I
L

+ ↵L

max

T. (4.1)

We rescaled the image to the range [↵, (1 � ↵)]L
max

and then added the target with

a luminance amplitude of ↵L
max

, such that the final image I
fin

never left the displayable

range. We then converted the image I
fin

back to [0, 255] grayscale values by inverting the

fitted power function.

4.4.1 Target locations

For placement of the targets we lay a grid of 4⇥2 rectangles over each image. Within each

rectangle, we chose a random position for each target and image, which was at least 100

pixels away from the border, such that the target was not cut o↵ at any side. The original

plan was to present each target at each position in each image once over the eight sessions

of one observer. Unfortunately, a bug in the experimental code led to a random choice of

the target location instead, but we sampled only among the 8 possible locations sampled

for the target-image combination. Most target-position-image combinations appeared

between 6 and 10 times (10 participants and about 20 % target absent trials, mean=7.8)

and none was present more than 16 times. We are rather certain that participants could

not remember the position-target-image combinations over 1200 trials and even if they

did, a target appeared so rarely again at the same position that it would not have been

strongly predictive of the target position. Furthermore, no participant mentioned noticing

anything like repeating target positions.

4.4.2 Experiment

Stimuli

As stimulus material we used 25 images taken by L.R. and a member of the Potsdam

lab with a Canon EOS 50D digital camera (max. 4752 x 3168 pixels). The images were

outdoor scenes without people, animals or written words present. Most images had parts
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with a lot of high-spatial frequency content (grass or woods) and parts with no high-

spatial frequency content (sky or empty street). They were all taken on a bright sunny

day in the summer.

Stimulus Presentation

Stimuli were presented on a 20-inch CRT monitor (Mitsubishi Diamond Pro 2070; frame

rate 120 HZ, resolution 1280⇥1024 pixels; Mitsubishi Electric Corporation, Tokyo, Japan).

All pictures were reduced to a size of 1200⇥960 pixels. For the presentation during the

experiment, images were displayed in the center of the screen with gray borders extending

32 pixels to the top/bottom and 40 pixels to the left/right of the image. Images covered

31.1 degree of visual angle in the horizontal and 24.9 degree in the vertical dimension.

Participants

We recorded eye movements from 10 human participants (4 female) with normal or

corrected-to-normal vision in 8 separate sessions on di↵erent days. 6 participants were

students from a nearby high school (age 17 to 18) and 4 were students at the University

of Potsdam (age 22 to 26). The work was carried out in accordance with the Declaration

of Helsinki. Informed consent was obtained for experimentation by all participants.

Procedure

Participants were instructed to position their heads on a chin rest in front of a computer

screen at a viewing distance of 70 cm. Eye movements were recorded binocularly using

an desktop mounted Eyelink 1000 video-based-eyetracker (SR-Research, Osgoode/ON,

Canada) with a sampling rate of 1000 Hz. Participants were instructed to search a target

for the upcoming 25 images. Before each block of 25 images, the target was presented on

an example image, marked by a red square. Each session consisted of 6 blocks with 25

images with the 6 di↵erent targets. The 25 images were always the same images.

Overall, 10 participants searched 6 targets on 25 images in 8 sessions, thus we collected

data of 12000 search trials. Target absent trials made up between 3 and 7 for each block

of 25 images (⇠ 80%).

Trials began with a black fixation cross presented on gray background at a random

position within the image borders. After successful fixation, the image was presented

with the fixation cross still present for 125 ms. This was done to assure a prolonged first

fixation to reduce the central fixation tendency of the initial saccadic response (Tatler,

2007; Rothkegel, Trukenbrod, Schütt, Wichmann, & Engbert, 2017). After removal of the

fixation cross, participants were allowed to search the image for the previously defined
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target for 10 s. Participants were instructed to press the space bar to end the trial, once

a target was found.

At the end of each session participants could earn a bonus of up to 5e additional to

a fixed 10e reimbursement, depending on the number of points collected. Participants

earned 1 point for each correctly identified target. If participants pressed the bar although

no target was present, one point was subtracted.

Data preprocessing and saccade detection

For saccade detection we applied a velocity-based algorithm (Engbert & Kliegl, 2003a;

Engbert & Mergenthaler, 2006). This algorithm marks an event as a saccade if it has a

minimum amplitude of 0.5 degree and exceeds the average velocity during a trial by 6

median-based standard deviations for at least 6 data samples (6 ms). The epoch between

two subsequent saccades is defined as a fixation. All fixations with a duration of less than

50 ms were removed from further analysis since these are largely glissades (Nyström &

Holmqvist, 2010). The number of fixations for further analyses was 166,903.

4.4.3 Fixation locations analysis

Empirical density and saliency at saccadic endpoints

To estimate empirical fixation densities, we used kernel density estimation as implemented

in the R package SpatStat (version 1.51-0). To estimate the bandwidth for the kernel

density estimate we used leave one subject out cross-validation, i.e. for each subject we

evaluated the likelihood of their data under a kernel density estimate based on the data

from all other subjects repeating this procedure with bandwidths ranging from .5 to 2

degrees of visual angle (dva) in steps of 0.1 dva. We report the results with the best

bandwidth chosen for each image separately. We then took the resulting density value

of each saccade target and averaged for the di↵erent target types and previous changes

in saccade direction. Likelihood values are the average of each fixation position on the

map, taken from a grid of 128⇥128 grid cells. The DeepGaze II model (Kümmerer et al.,

2016) provides a map, where we could simply draw saliency values for each fixation. We

again averaged these values for the di↵erent target types and previous changes in saccade

direction.

For further information on likelihood evaluation of saliency models we refer to

Kümmerer et al. (2015), Schütt et al. (2017) and Schütt et al. (2018).

104



4.5. Acknowledgements

Spatial frequency spectra

To analyze the image properties at fixation locations, we extracted image patches around

fixation locations and compared them over targets and to comparison locations. We

extracted 79⇥79 pixel patches (⇡ 2.05⇥2.05 dva), around the fixated pixel, for all fixation

locations for which this patch lay entirely inside the image. To obtain comparison patches,

we extracted patches at the measured fixations locations shifting the image index by one,

i.e., we used the fixations from picture one to extract patches from picture two (and so

on), and the fixations from the last picture to extract patches from the first picture, as

was done earlier to train saliency models (Judd et al., 2009; Kienzle et al., 2009).

For our analysis, we converted the patches to luminance using the measured gamma

curves of the screen and calculated the spatial frequency spectrum using MATLAB’s ↵t2

function. Then we calculated the amplitude as the absolute value for each frequency

and averaged it over patches within a group to display. To display di↵erences between

conditions, we divided the average of one group by the average of the other. To quan-

tify the variability of patches within one condition we divided the standard deviation of

amplitudes by the mean value (SD
M

).
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Chapter 5

General discussion

Eye-movement data from laboratory scene-viewing experiments are investigated to in-

crease our understanding of active vision in the real world. One primary goal of scene-

viewing research is to determine where and how visual attention in a scene is allocated.

Many years of investigating where observers look at in an image, have led to computa-

tional models which can explain a large amount of variance in scene-viewing data (Itti

et al., 1998; Borji & Itti, 2013; Kümmerer et al., 2015). The question of how long par-

ticipants look at certain locations has also gotten into the focus of research and in the

last decade, elaborate models for fixation durations have been proposed (Nuthmann et

al., 2010; Laubrock et al., 2013). However, even by knowing exactly where participants

look at and how long they look there, the order of fixations within one scanpath cannot

be predicted adequately (Rothkegel et al., 2016; Schütt et al., 2017). Dynamical models,

which take fixation history of a scanpath and the inhomogeneity of acuity within the

visual field into account, have been developed to overcome this obstacle (Engbert et al.,

2015).

The purpose of the present thesis was to obtain new information about systematic

eye-movement behavior, some of which can only be found when investigating dynamic

aspects of scanpaths from scene-viewing experiments. By systematically investigating

three aspects of natural scene perception, the role of initial fixation position, the temporal

evolution of the central fixation tendency, and the influence of low-level target features

on basic scanpath properties in complex visual search, we were able to answer several

questions to improve and evaluate our dynamical model of scanpath generation in scene

viewing, the SceneWalk model.
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5.1 How do results fit into the existing literature?

Before providing an outlook for what the results from Chapters 2–4 imply for future

research of scene viewing, I will summarize the results and embed them into current

viewpoints.

5.1.1 Inhibition of return in scene viewing

In Chapter 2 we approached one of the key questions regarding dynamic aspects of human

scanpaths: What is the force, which urges the eyes to move through an image and pre-

vents them from oscillating between the most interesting (or salient) points on an image?

Dynamical models often implement this force in the form of spatial inhibition of return

(IOR). Spatial IOR is an attentional mechanism which inhibits the eyes from refixating

previously examined locations (Posner et al., 1985; Klein, 2000). However, there has been

a strong debate about whether spatial IOR exists in natural scene viewing.

A large amount of perfect return saccades back to the last fixation position (Smith &

Henderson, 2009; Rothkegel et al., 2016), found in data from scene-viewing experiments,

favored the idea that IOR has no influence on the selection of fixation locations. Smith

and Henderson (2009) showed that a sudden luminance onset at the previous fixation

position attracted more saccades, than if it appeared at positions, which would induce

a left or right 90° turn of the saccade. They considered this proof that the previous

fixation is not inhibited but even facilitated and thus termed their finding facilitation of

return. To confirm their theory, they showed that empirical scene-viewing data contain

more return saccades than surrogate data, which takes human saccade amplitudes and

angles into account. However, Bays and Husain (2012) showed that, when taking saliency

values and typical angle distributions of saccades into account, return saccades are in fact

inhibited and not facilitated. They additionally showed that saccades which maintain

direction are facilitated strongly. This facilitation of saccades in the same direction as

preceding saccades has been termed saccadic momentum (also see Smith & Henderson,

2009; Wilming et al., 2013; Luke et al., 2014). In Chapter 2 we have shown that the initial

fixation with an experimentally prolonged duration was inhibited on later fixations. This

was shown by a strong overshoot to the image side opposite to the starting position.

This overshoot was not found in simulated data from many statistical models without

an inhibition of return mechanism and, more importantly, also not found in a model

incorporating a saccadic momentum mechanism. The SceneWalk model, which uses the

fixation map as an inhibition of return mechanism, was the only model which produced

the characteristic overshoot observed in experimental data. Additionally, a facilitation of

return back to the starting position with a long fixation was not observed in the data.

Smith and Henderson proposed that inhibition of return only influences the last or second
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Figure 5.1: Mean distance from one fixation to successive fixations. Data is taken from a
large Corpus study from our lab with 90 images and 105 observers (Schütt et al., 2018).

last fixation. The overshoot from our experiment is active for up to five seconds. We thus

argue that inhibition of return in scene viewing is a more long-lasting e↵ect which evolves

later than in highly controlled saccade tasks. In a large corpus study (see Schütt et al.,

2018) we found that the average distance of successive fixation positions increases for

the six upcoming fixations and then decreases until a stationary value is reached (see

Fig. 5.1), which also indicates that inhibition of return has a long-lasting influence on eye

movements in natural scene viewing. Thus, inhibition of return, as used in the SceneWalk

model, appears to be a viable mechanism to guide the eyes through an image.

5.1.2 The influence of the angle between two successive saccades

In Chapters 2 and 4 we have replicated results from previous studies, that the distribution

of angles between successive saccades has a very rather characteristic shape (e.g., Smith

& Henderson, 2009; Tatler & Vincent, 2009). In Chapter 4 we have shown that fixations,

which follow saccades with a large change in direction, are visually more salient and fixated

more often than other locations. This indicates that a change in saccade direction is only

conducted when the target location is of special interest. The opposite was found for
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landing positions of saccades, which maintain their current direction (saccadic momentum

saccades). They are on average less informative and are not influenced by the low-level

features of search targets. Thus, I believe that additionally to spatial IOR, a default scan

which mostly contains saccades in the same direction exists in scene viewing. This scan

can be explained as a mechanism which facilitates foraging (Wilming et al., 2013). The

default saccadic momentum scan follows a sort of reading-like viewing behavior, which

is interrupted, when interesting saccade targets prevent the next default saccade from

happening. An open question that remains unanswered is why so many saccades show a

complete turn in direction, compared to other saccadic angles. We have shown in Chapter

2 that all models produce a large amount of saccades with a complete turn in direction.

I think that this is a result of the image framing, forcing the eyes to stay within certain

boundaries. Additionally, it is physiologically not possible to constantly move the eyes in

one direction. However, it is possible to change the direction after each saccade. Thus,

the peak of backward saccades in the distribution of angles between successive saccades

might simply be an oculomotor, experimentally enhanced necessity, whereas the peak of

saccades which maintain direction is not.

5.1.3 The central fixation bias in scene viewing

One of the most prominent systematic eye-movement tendencies in natural scene viewing

is the central fixation bias (Buswell, 1935; Tatler, 2007). This strong tendency is in fact

the single best feature to predict fixation locations in scene-viewing experiments (Vincent

et al., 2009). We were interested in the main cause of this bias, because it spans across

all images and observers. We found that the initial saccade latency of an observation can

predict the central fixation bias on a trial by trial basis. Thus, we argue that the artificial

situation in the laboratory, with a sudden image onset, is one of the main contributors

to this bias. We are aware that a photographers bias (Tatler, 2007), the head position

(Vitu et al., 2004), the framing of the image on the screen (Bindemann, 2010), and other

factors also contribute to this bias. However, all explanations agree with the notion that

the center bias is a laboratory artifact. In mobile eye-tracking, the central fixation bias

is reduced (’t Hart et al., 2009). However, in mobile eye-tracking studies, center bias is

equivalent to the eyes looking at the center of the visual field (i.e. the camera of the

eye tracking device. See Ioannidou et al. 2016), which is not the same as looking at the

center of an external object, e.g., the image on the screen. Thus, the question, whether

an object-based central fixation bias exists outside of the laboratory situation, has not

yet been answered to my knowledge.

The results presented in Chapter 3, indicate that the central fixation bias hides or

overrides attentional processes elicited by the image or the task. This central fixation
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bias can be reduced by dissociating the sudden image onset from initial eye movements.

5.1.4 Adaptiveness of the visual system to search targets

In Chapter 4 we tested whether eye movement parameters adjust to the visual properties

of a target in visual search. Although previous work has shown that properties of the

search template (i.e. the target) and fixated locations correlate with respect to visual fea-

tures (Hwang et al., 2009), no studies have yet investigated how target features influence

fixation durations and saccade amplitudes. We found that the spatial frequency of a target

influences both saccade amplitude and fixation durations, such that saccade amplitudes

are larger and fixation durations are longer for low than for high-spatial frequency targets.

Both adjustments confirm a tight coupling between perception and eye movements. The

oculomotor system is adjusted in a way, which facilitates search in this experiment. Large

saccade amplitudes are useful for low-spatial frequency targets, since low-spatial frequency

targets are more visible in the periphery than high-spatial frequency targets. Fixation

durations are also longer for low-spatial frequency targets, probably because in foveal

vision high-spatial frequency targets can be detected better than low-spatial frequency

targets (Schütt & Wichmann, 2017) but not in peripheral vision. The adjustment of the

eye movement characteristics can also be seen in target absent trials, indicating that the

adaption of gaze control is driven in a top-down manner. Additionally, in target present

trials, when target identity was unknown to the searcher, di↵erences between target types

vanished. Overall, results from Chapter 4 show that basic eye-movement characteristics

are adjusted to the visual properties of the search target in complex visual search.

5.2 Implications for future research

5.2.1 Implications for scene-viewing experiments

The results from this thesis lead to new ideas for the design of scene-viewing experiments.

First, the central fixation bias should be avoided as much as possible, because it

overrides top-down and bottom-up influences on fixation selection. We reduced the bias

by introducing a pre-trial fixation time, during which participants are forced to view

the image from a predefined position for a variable duration, before they are allowed to

explore the image. We recommend to use a pre-trial fixation time of 125-250 ms to reduce

the influence of the sudden image onset. It is also possible to evaluate eye movements

from scene viewing beyond the central fixation bias, by incorporating the bias as an

image independent baseline (Clarke & Tatler, 2014; Nuthmann et al., 2017). The initial

fixations of an observation are driven strongest by bottom-up features (Parkhurst et al.,
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2002; Anderson, Donk, & Meeter, 2016; Schütt et al., 2018) and thus, reducing the bias on

initial fixations can enhance our understanding of factors, which drive the first voluntary

eye movement beyond the sudden image onset. Another possibility to reduce the bias

is to use large, almost borderless pictures. This can be done with virtual reality devices

or mobile eye tracking. Novel techniques will help to answer the question, whether an

object-based central fixation bias exists in natural viewing behavior.

Besides the duration of the initial fixation, the location of the starting position of an

observation influences further scanpath progression strongly. We showed in Chapter 2

that each observation depended on the starting position for up to 5 seconds. In most

studies, the starting position is in the center of an image and afterwards neglected, when

investigating the data. Although probably not the perfect solution for this problem, a

variable starting position reduces systematic biases. Whatever starting position is chosen,

it is crucial for further analysis that the impact of the initial fixation on further scanpath

progression is known to the experimenter.

In visual search on complex scenes, target properties need to be evaluated before

the experiment, because factors like visibility in the periphery will shape eye movements

(Chapter 4) and thus one visual search path is not simply transferable to another one,

when for example fixation durations are investigated.

The last aspect I want to mention here is the amount of viewing time for each trial.

Throughout a trial viewing behavior changes systematically. We showed in Chapter 2

that the starting position influences further viewing behavior for up to 5 s. Additionally,

results from Chapter 3 have shown that the first second of viewing is strongly influenced

by the central fixation bias, especially when the starting position is in the center. Also,

most experiments show a coarse to fine strategy, meaning that fixation durations get

longer and saccade amplitudes get shorter with increasing viewing time (Over et al., 2007;

Rothkegel, Schütt, Trukenbrod, Wichmann, & Engbert, 2018). We have also shown that

a large between-subject congruency of fixation locations is only observed in the first 1-2

seconds and decreases systematically after the first fixation (Schütt et al., 2018). Thus,

data from experiments with long-lasting observations have to be treated di↵erent than

data from short observations. To understand the temporal dependencies, it is helpful to

investigate all obtained results as a function of viewing time.

Unfortunately, even if all afore mentioned aspects of the experiment are controlled for

and a scene-viewing experiment is conducted in a manner which tries to avoid all biases, it

needs to be questioned how eye-movement behavior, when looking at a photo on a screen,

can transfer to the behavior, when seeing the same scene in the natural environment

(Tatler et al., 2011).
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5.2.2 Implications for computational models

The most common approach when modeling visual attention and eye movement behavior

in scene viewing has been to compute bottom-up feature maps, which predict fixation lo-

cations (Itti et al., 1998; Borji & Itti, 2013). Many researchers have pointed out that only

computing bottom-up saliency is not su�cient to predict fixation locations in a scene, be-

cause higher-level features, like objects, outperform low-level visual saliency (Einhäuser et

al., 2008; Nuthmann & Henderson, 2010; Kümmerer et al., 2016; Schütt et al., 2018). Ad-

ditionally, top-down factors like the observers task (Yarbus et al., 1967) and scene context

(Loftus & Mackworth, 1978; Torralba et al., 2006) guide the eyes in scene viewing. Al-

though recent fixation location models perform close to optimal on data from free-viewing

experiments (Kümmerer et al., 2016), we have shown in Chapter 2 that even knowing the

perfect fixation density map does not produce valid scanpaths, because dynamical aspects

play a major role (also see Engbert et al., 2015; Schütt et al., 2017). In Chapter 3 we

have shown that the most predictive feature of fixation locations in an image, the central

fixation bias, is to a large degree an artifact of the laboratory design. In Chapter 4 and

in our paper on the influence of saliency over time (Schütt et al., 2018), we have shown

that saliency models, which predict fixations in free-viewing tasks close to what is known

as the gold-standard (Kümmerer et al., 2015), predict fixation locations in visual search

worse than chance (also see Henderson et al., 2007). Thus, in all chapters limitations of

the classical saliency approach have been described, which confirm the need for dynamical

models to predict human eye movements in scene viewing. This does not imply that the

saliency approach is not important, because it laid the groundwork of further visual atten-

tion models. Static saliency modeling is just not a holistic approach for predicting human

scanpaths in natural scene perception. To overcome this problem, dynamical models have

been formulated in the recent past. All experiments within this thesis were conducted to

improve and evaluate the dynamical SceneWalk model of scanpath generation.

The first success for the model was showing that spatial inhibition of return is compat-

ible with our results presented in Chapter 2 and that the SceneWalk model can account

for the long-lasting influence of the starting position via the dynamic fixation map. The

SceneWalk model generated a characteristic overshoot to the opposite image side which

was not present in simulated data of any model without an inhibition of return mechanism.

As a second success for the SceneWalk model, we were able to implement a plausible

central fixation bias, which improved the models performance on early fixations of the

scanpath. Since the bias explains a large amount of variance in scene-viewing data, it is

important to find an appropriate way to model it. To estimate parameters for the model

extension we used likelihood based parameter estimation (Schütt et al., 2017).

As a first shortcoming of the model, we found that the systematic distribution of
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angles between two adjacent saccades, seen in multiple experiments (Tatler & Vincent,

2008; Smith & Henderson, 2009; Rothkegel et al., 2016), was not yet replicated by the Sce-

neWalk model. By adding a conditional probability map of saccade amplitude and angle,

as seen in Chapter 2, the model created an angle distribution close to the empirical dis-

tribution (see Fig. 2.12). Thus, the SceneWalk model can be improved rather e↵ortlessly

to match experimental data. Unfortunately, the implementation of the distribution of

saccadic angles and amplitudes taken from the data does not help to understand why this

systematic behavior is manifested in human eye movements. Thus, in a future version of

the model a more theoretical approach to model systematic tendencies between adjacent

saccades is necessary. An increase in attentional activation of potential saccade targets,

which lie in the same direction as the previous saccade, is one possibility to increase the

amount of forward saccades. It has been postulated that attention shifts to a new target

location before a saccade is executed (Deubel & Schneider, 1996) and that, once the eyes

start to move, this attentional shift moves with the eyes (Rolfs, Jonikaitis, Deubel, &

Cavanagh, 2011). If this movement of attentional shifts (or so-called remapping) exists,

position which lie within the same direction as the previous saccade would indeed be

facilitated. Additionally, it has been shown that attention lingers at the previous saccade

for a short time-interval, which is compatible with our observation that inhibition of re-

turn sets in after a short facilitation of return period (Golomb, Chun, & Mazer, 2008).

Both these mechanisms, a short facilitation of return and an increase of attention in the

current saccadic direction can be implemented into the SceneWalk model without adding

additional maps. The attention map can be asymmetrical to account for the facilitation

of forward saccades. The fixation map could start out positive (i.e. producing facilitation

of return) and evolve into a negative influence (i.e. inhibition of return) with increasing

time.

So far, the SceneWalk model has only been tested on free-viewing and memorization

data. In the future, the model will be evaluated on search experiments and other tasks

as navigating in real-world environment. For visual search we found an easy way to tune

the model to some target characteristics. Human observers adapt their eye movement

behavior rather fast to the visibility of the target in the periphery. We believe that

this adaptation results from an increase or decrease in the attentional span of searchers,

which resembles the size of the attention map of the SceneWalk model. To account for

adaptation, the standard deviation of the Gaussian from the attentional map could be

adjusted, according to the properties of the target in a visual search task.

The original SceneWalk model uses the ground truth empirical density map as an

underlying saliency map, on which a gaze-control model chooses saccade targets. This

empirical saliency map is not available when we want to predict scanpaths on any given

image. Recently, we published a saliency model (Schütt et al., 2018) based on an image-
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computable early-vision model by Schütt and Wichmann (2017). This underlying early

vision model accurately modeled data from psychophysical experiments on early vision

and thus has proven its psychophysical validity (Schütt & Wichmann, 2017). By combin-

ing deep-learning software with receptive field properties of neurons in the early visual

cortex, this model performs slightly better than classic saliency models but still performed

below the DeepGaze II model (Kümmerer et al., 2016), probably due to the before men-

tioned aspect that higher-level objects are necessary to predict human viewing behavior in

natural scenes. Although the model performs rather well, it’s performance could still be

improved by incorporating higher-level features and top-down influences. One important

outcome of this thesis (Chapter 4) is that we are now able to divide fixations into selective

(after a change in saccade direction) and more default fixations (after saccadic momentum

saccades). For modeling saliency or conspicuity, it is important to know which fixations

are placed unintentionally by a default mechanism and which are rather selective. We

think that the models performance in predicting fixation locations might be improved

by extracting features based only on fixations which are preceded by a large change in

saccade direction.

5.3 Final conclusion

This thesis investigated how selected systematic eye-movement tendencies shape human

scanpaths in computer based scene-viewing experiments and how these help to increase

the predictive power of a dynamical model of saccade generation. In three studies we

found systematic eye-movement behavior which goes beyond influences of the image con-

tent. The most important implications for dynamical modeling of scanpaths were: (i)

Inhibition of return is not a strictly temporal phenomenon in scene viewing but influences

spatial selection of saccade targets. The implementation of a dynamic inhibition-of-return

mechanism in computational models of saccade generation replicated dynamic progression

of human scanpaths. Thus, it seems that inhibitory tagging is a valid driving force for

dynamical models. (ii) The initial fixation position and duration have a strong influence

on the subsequent scanpath. Although this interacts strongly with the image content, an

overshoot to the opposite image side and a long lasting transient were observed indepen-

dent of the image. (iii) The initial fixation is also primarily accountable for the central

fixation bias in scene viewing. Long-lasting initial fixations lead to a significantly weaker

central fixation bias than short initial fixations. By experimentally prolonging the initial

fixation for 75 ms or more, the central fixations bias was significantly reduced. (iv) Human

observers adapt their eye movements very fast when searching for targets of di↵erent low-

level properties on complex backgrounds. It has been shown before that fixation locations

depend on the visual properties of the search target but to our knowledge no work has yet
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shown that scanpath properties like saccade amplitudes and fixation durations are influ-

enced by the low-level properties of a search target. (v) Saccades are strongly influenced

by the direction of preceding saccades, regardless of the image, subject or task. Although

this has been shown before, we were able to show that saccades which maintain direction

are less selective than saccades which change direction. We thus interpret saccades which

maintain direction as part of a default scanning mechanism. Another indication for the

existence of default saccades is that in visual search the visual properties of search targets

only influence saccades with a change in direction.

This thesis highlights the important contribution of systematic eye-movement tenden-

cies in scene viewing and scene search and shows that they are an important aspect of

eye-movement control. Furthermore, when investigating human eye movement behavior,

dynamic aspects of a scanpath need to be considered for a complete understanding of how

visual attention is distributed.
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